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Preface

This volume contains the papers presented at the 16th International Sympo-
sium on String Processing and Information Retrieval (SPIRE 2009), held during
August 25–27, 2009 in Saariselkä, Finland.

The annual SPIRE conference provides researchers within fields related to
string processing and/or information retrieval a possibility to present their orig-
inal contributions and to meet and discuss with other researchers with similar
interests. The Call for Papers invited submissions related to string processing
(dictionary algorithms; text searching; pattern matching; text and sequence com-
pression; automata-based string processing), information retrieval (information
retrieval models; indexing; ranking and filtering; interface design; visualization;
benchmarking), natural language processing (text analysis; text mining; ma-
chine learning; information extraction; language models; knowledge representa-
tion), search applications and usage (cross-lingual information access systems;
multimedia information access; digital libraries; collaborative retrieval and Web-
related applications; semi-structured data retrieval; evaluation), and interaction
of biology and computation (DNA sequencing and applications in molecular bi-
ology; evolution and phylogenetics; recognition of genes and regulatory elements;
sequence driven protein structure prediction).

The papers presented at the symposium were selected from 84 submissions
written by authors from 28 different countries. Each submission was reviewed by
at least two and on average 2.9 reviewers. The Committee accepted 34 papers
(≈ 40%): 22 papers for 25-minute and 12 papers for 15-minute presentations. In
addition to these, SPIRE 2009 also featured invited talks by Mehryar Mohri (New
York University, USA) and Kalervo Järvelin (University of Tampere, Finland).

The Program Committee voted to give the Best Paper Award to Amihood
Amir and Haim Parienty for their paper “Towards a Theory of Patches.”

We are especially thankful to the members of the Program Committee, who
provided us with thorough and timely reviews despite the fact that the reviewing
schedule was unusually tight due to the early date of the 2009 symposium.

Additional thanks go to the following people for their generous helpfulness
and support throughout the process of planning and organizing SPIRE 2009:
SPIRE Steering Committee coordinator Ricardo Baeza-Yates, the editorial office
staff at Springer, the office personnel at the University of Tampere, and the staff
at the conference hotel Riekonlinna in Saariselkä.

We are grateful for the financial support provided by the Department of
Computer Sciences of University of Tampere, the Federation of Finnish Learned
Societies, Yahoo! Research, the Department of Computer Science of University
of Helsinki, and the Swedish Institute of Computer Science.

June 2009 Jussi Karlgren
Jorma Tarhio
Heikki Hyyrö
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Stéphane Raux
Hiroshi Sakamoto
Riva Shalom
Jouni Sirén
Wilson Soto

Torsten Suel
German Tischler
Manos Tsagkias
Dekel Tsur
Oscar Täckström
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Table of Contents

Algorithms on Trees

Range Quantile Queries: Another Virtue of Wavelet Trees . . . . . . . . . . . 1
Travis Gagie, Simon J. Puglisi, and Andrew Turpin

Constant Factor Approximation of Edit Distance of Bounded Height
Unordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Daiji Fukagawa, Tatsuya Akutsu, and Atsuhiro Takasu

k2-Trees for Compact Web Graph Representation . . . . . . . . . . . . . . . . . . . . . 18
Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro

On-Line Construction of Parameterized Suffix Trees . . . . . . . . . . . . . . . . . 31
Taehyung Lee, Joong Chae Na, and Kunsoo Park

Compressed Indexes

Succinct Text Indexing with Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Alan Tam, Edward Wu, Tak-Wah Lam, and Siu-Ming Yiu

A Compressed Enhanced Suffix Array Supporting Fast String
Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Enno Ohlebusch and Simon Gog

Compressed Suffix Arrays for Massive Data . . . . . . . . . . . . . . . . . . . . . . . . . 63
Jouni Sirén

On Entropy-Compressed Text Indexing in External Memory . . . . . . . . . . . 75
Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and
Jeffrey Scott Vitter

Compression

A Linear-Time Burrows-Wheeler Transform Using Induced Sorting . . . . . 90
Daisuke Okanohara and Kunihiko Sadakane

Novel and Generalized Sort-Based Transform for Lossless Data
Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Kazumasa Inagaki, Yoshihiro Tomizawa, and Hidetoshi Yokoo

A Two-Level Structure for Compressing Aligned Bitexts . . . . . . . . . . . . . . 114
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Range Quantile Queries:

Another Virtue of Wavelet Trees�

Travis Gagie1, Simon J. Puglisi2,��, and Andrew Turpin2

1 Research Group for Combinatorial Algorithms in Bioinformatics,
Bielefeld University, Germany
travis.gagie@gmail.com

2 School of Computer Science and Information Technology,
Royal Melbourne Institute of Technology, Australia
{simon.puglisi,andrew.turpin}@rmit.edu.au

Abstract. We show how to use a balanced wavelet tree as a data struc-
ture that stores a list of numbers and supports efficient range quantile
queries. A range quantile query takes a rank and the endpoints of a sub-
list and returns the number with that rank in that sublist. For example,
if the rank is half the sublist’s length, then the query returns the sub-
list’s median. We also show how these queries can be used to support
space-efficient coloured range reporting and document listing.

1 Introduction

If we are given a list of the closing prices of a stock for the past n days and asked
to find the kth lowest price, then we can do so in O(n) time [1]. We can also
preprocess the list in O(n logn) time and store it in O(n) words such that, given
k later, we can find the answer in O(1) time: we simply sort the list. However, we
might also later face range quantile queries, which have the form “what was the
kth lowest price in the interval between the �th and the rth days?”. Of course, we
could precompute the answers to all such queries, but storing them would take
Ω(n3 log n) bits of space. In this paper we show how to use a balanced wavelet
tree to store the list in O(n) words such that we can answer range quantile
queries in O(log σ) time, where σ is the number of distinct items in the entire
list.

We know of no previous work on quantile queries1, but several authors have
written about range median queries, the special case in which k is half the
length of the interval between � and r. Krizanc, Morin and Smid [11] introduced
the problem of preprocessing for median queries and gave four solutions, three
� This work was supported by the Sofja Kovalevskaja Award from the Alexander von

Humboldt Foundation and the German Federal Ministry of Education and Research
and by the Australian Research Council.

�� Corresponding Author.
1 Henceforth, for brevity, we will use “quantile query” to mean “range quantile query”,

and similarly with other types of range queries.

J. Karlgren, J. Tarhio, and H. Hyyrö (Eds.): SPIRE 2009, LNCS 5721, pp. 1–6, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 T. Gagie, S.J. Puglisi, and A. Turpin

Table 1. Bounds for range median queries

space (words) time restriction

Krizanc et al. [11] O(n) O(nε) ε > 0

Krizanc et al. [11] O(n logb n) O(
b log2 n/ log b

)
2 ≤ b ≤ n

Krizanc et al. [11] O(
n log2 n/ log log n

) O(log n)

Petersen and O(
n2(log log n)2/ log2 n

) O(1)Grabowski [16]

Theorem 1 O(n) O(log n)

of which have worse bounds than using a balanced wavelet tree; their fourth
solution involves storing O(

n2 log log n/ log n
)

words to answer queries in O(1)
time. Bose, Kranakis, Morin and Tang [2] then considered approximate queries,
and Har-Peled and Muthukrishnan [9] and Gfeller and Sanders [7] considered
batched queries. Recently, Krizanc et al.’s fourth solution was superseded by
one due to Petersen and Grabowski [15,16], who reduced the space bound to
O(

n2(log log n)2/ log2 n
)

words. Table 1 shows the bounds for Krizanc et al.’s
first three solutions, for Petersen and Grabowski’s solution, and for using a
balanced wavelet tree.

Har-Peled and Muthukrishnan [9] describe applications of median queries to
the analysis of Web advertising logs. In the final section of this paper we show
that our solution for quantile queries can be used to support coloured range
reporting, that is, to enumerate the distinct items in a sublist. This result imme-
diately improves Välimäki and Mäkinen’s recent space-efficient solution to the
document listing problem [13,18].

In the full version of this paper we will also discuss how to use a wavelet tree
to answer range counting queries (see [12]), coloured range counting queries (re-
turning the number of distinct elements in a range without enumerating them),
and how to support updates at the cost of slowing queries down to take time
proportional to the logarithm of the largest number allowed.

2 Wavelet Trees

Grossi, Gupta and Vitter [8] introduced wavelet trees for use in data compression,
and Ferragina, Giancarlo and Manzini [5] showed they have myriad virtues in this
respect. Wavelet trees are also important for compressed full-text indexing [14].
As we shall see, there is yet more to this intriguing data structure.

A wavelet tree T for a sequence s of length n is an ordered, strictly binary
tree whose leaves are labelled with the distinct elements in s in order from left
to right and whose internal nodes store binary strings. The binary string at
the root contains n bits and each is set to 0 or 1 depending on whether the
corresponding character of s is the label of a leaf in T ’s left or right subtree.
For each internal node v of T , the subtree Tv rooted at v is itself a wavelet
tree for the subsequence of s consisting of the occurrences of its leaves’ labels.
For example, if s = a, b, r, a, c, a, d, a, b, r, a and the leaves in T ’s left subtree are
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labelled a, b and c, then the root stores 00100010010, the left subtree is a wavelet
tree for abacaaba and the right subtree is a wavelet tree for rdr. The important
properties of the wavelet tree for our purposes are summarized in the following
lemma.

Theorem 1 (Grossi et al. [8]). The wavelet tree T for a list of n elements
on alphabet σ requires n logσ(1 + o(1)) bits of space, and can be constructed in
O(n log σ) time.

To see why the space bound is true, consider that the binary strings’ total length
is the sum over the distinct elements of their frequencies times their depths,
which is O(n logσ) bits. The construction time bound is easy to see from the
recursive description of the wavelet tree given above.

We note as an aside that, while investigating data structures that support rank
and select queries, Mäkinen and Navarro [12] pointed out a connection between
wavelet trees and a data structure due to Chazelle [3] for two-dimensional range
searching on sets of points.

3 Range Quantile Queries

We now describe how the wavelet tree can be used to answer quantile queries.
Let s be the list of n numbers we want to query. We build and store the wavelet
tree T for s and, at each internal node v, we store a small data structure that
lets us perform O(1)-time rank queries on v’s binary string. A rank query on a
binary string takes a position and returns the number of 1s in the prefix that
ends at that position. Jacobson [10] and later Clark [4] showed we can support
O(1)-time rank queries on a binary string with a data structure that uses a
sublinear number of extra bits, beyond those needed to store the string itself. It
follows that the size of this preprocessed wavelet tree remains O(n log σ) bits.

Given k, � and r and asked to find the kth smallest number in s[�..r], we start
at the root of T and consider its binary string b. We use the two rank queries
rankb(� − 1) and rankb(r) to find the numbers of 0s and 1s in b[1..� − 1] and
b[�..r]. If there are more than k copies of 0 in b[�..r], then our target is a label
on one of the leaves in T ’s left subtree, so we set � to one more than the number
of 0s in b[1..� − 1], set r to the number of 0s in b[1..r], and recurse on the left
subtree. Otherwise, our target is a label on one of the leaves in T ’s right subtree,
so we subtract from k the number of 0s in b[�..r], set � to one more than the
number of 1s in b[1..� − 1], set r to the number of 1s in b[1..r], and recurse on
the right subtree. When we reach a leaf, we return its label. An example is given
in Figure 1. Since T is balanced and we spend constant time at each node as
we descend (using the rank structures), our search takes O(log σ) time. Thus,
together with Theorem 1 we have the following.

Theorem 2. There exists a data structure of size O(n log σ) bits which can be
built in O(n log σ) time that answers range quantile queries on s[1..n] in O(log σ)
time.
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2 0 3 1 4
0 0 1 0 1

0 1

2 3 4

5 6

6 5
1 0

0 1
0 1

2 0 1
1 0 0

3 4
0 1

8 9

9 8
1 0

1 0 0 1 1 0 0 1 1 0
6 2 0 7 9 3 1 8 5 4

6 7 9 8 5
0 0 1 1 0

6 7 5
0 1 0

7

k = 5
� = 3
r = 9

k = 2
� = 2
r = 5

k = 2
� = 2
r = 3

k = 1
� = 1
r = 1

Fig. 1. A wavelet tree T (left) for s = 6, 2, 0, 7, 9, 3, 1, 8, 5, 4, and the values (right) the
variables k, � and r take on as we search for the 5th smallest element in s[3..9]. The
dashed boxes in T show the ranges from which we recursively select.

Some comments on σ are in order at this point. Firstly, and obviously, if σ is
constant, then so is our query time. If we represent the binary strings at each
level of the wavelet tree with a more complicated rank/select data structure of
Raman et. al [17] (instead of Clark [4], see [8,12]), the size of the wavelet tree is
reduced to nH0(s)+O(n log log n/ logσ n) bits without affecting the query time,
where H0(s) is the zeroth order entropy of s. Prior solutions for median queries
do not make such opportunistic use of space.

At the other extreme, if σ is Ω(n) we can map the symbols in s to the range
[1..n], by first sorting the items in O(n logn) time, and storing the mapping in
O(n logσ) bits of space. Preprocessing the array this way, and then using the
wavelet tree approach above, allows us to match the Ω(n log n) time lower bound
for median queries [11], when the number of queries is O(n). This lower bound
applies to any computational model which has an Ω(n log n) time lower bound
on sorting s. Still, the solution is not completely satisfying, and we leave an open
question: Does an O(n log n) preprocessing algorithm exist that allows quantile
(or even just median) queries to be answered in o(log n) time when σ is Ω(n)?

4 Application to Space Efficient Document Listing

The algorithm for quantile queries just described can, when coupled with another
wavelet tree property, be used to enumerate the d distinct items in a given sublist
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s[�..r] in O(d log σ) time as follows. Let c1, c2, . . . , cd be the distinct elements in
s[�..r] and, without loss of generality, assume c1 < c2 < . . . < cd. Further, let
mi, i ∈ 1..d be the number of times ci occurs in s[�..r]. To enumerate the ci, we
begin by finding c1, which can be achieved in O(log σ) via a quantile query, as
c1 must be the element with rank 1 in s[�..r]. Observe now that c2 must be the
element in the range with rank m1 + 1, and in general ci is the element with
rank 1 +

∑i−1
j=1 mj+1. Fortunately, each mi can be determined in O(log σ) time

by exploiting a well known property of wavelet trees, namely, their ability to
return, in O(log σ) the number of occurrences of a symbol in a prefix of s (see
[8]). Each mi is the difference of two such queries.

The document listing problem [13] is a variation on the classical pattern match-
ing problem. Instead of returning all the positions at which a pattern P occurs
in the text T , we consider T as a collection of k documents (concatenated) and
our task is to return the set of documents in which P occurs.

Muthukrishnan [13], who first considered the problem, gave an O(n log n) bit
data structure (essentially a heavily preprocessed suffix tree) that lists documents
in optimal O(|P | + ndoc) time, where ndoc is the number of documents contain-
ing P . Recently, Välimäki and Mäkinen [18] used more modern compressed and
succinct data structures to reduce the space requirements of Muthukrishnan’s
approach at the cost of slightly increasing search to O(|P | + ndoc log k) time.
Their data structure consists of three pieces: the compressed suffix array (CSA)
of T ; a wavelet tree built on an auxilliary array, E (described shortly); and a
succinct range minimum query data structure [6].

Central to both Muthukrishnan’s and Välimäki and Mäkinen’s solutions is
the so-called “document array” E[1..n], which is parallel to the suffix array
SA[1..n]: E[i] is the document in which suffix SA[i] begins. Given an interval
SA[i..j] where all the occurrences of a pattern lie, the document listing problem
then reduces to enumerating the distinct items in E[i..j]. Without getting into
too many details, Välimäki and Mäkinen use the compressed suffix array (CSA)
of T to find the relevant sublist of E in O(|P |) time, and then a combination
of E’s wavelet tree and a range minimum query data structure [6] to enumerate
the distinct items in that sublist in O(ndoc log k) time. However, as we have
described above, the wavelet tree of E alone is sufficient to solve this problem in
the same O(ndoc log k) time bound. In practice we may expect this new approach
to be faster, as the avoidance of the minimum queries should reduce CPU cache
misses. Also, because the wavelet tree of E is already present in [18] we have
reduced the size of their data structure by 2n + o(n) bits, the size of the data
structure for minimum queries.

Acknowledgements

Our thanks go to the three anonymous reveiwers whose helpful comments ma-
terially improved the paper, and to Meg Gagie for righting our grammar.



6 T. Gagie, S.J. Puglisi, and A. Turpin

References

1. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. Journal of Computer and System Sciences 7, 448–461 (1973)

2. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 377–388. Springer, Heidelberg (2005)

3. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17, 427–462 (1988)

4. Clark, D.: Compact PAT trees. PhD thesis, Waterloo University, Canada (1996)
5. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees.

In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 560–571. Springer, Heidelberg (2006)

6. Fischer, J.: Efficient Data Structures for String Algorithms. PhD thesis, LMU,
München (2007)

7. Gfeller, B., Sanders, P.: Towards optimal range medians. arXiv:0901.1761 (2009)
8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:

Proceedings of the 14th Symposium on Discrete Algorithms, pp. 841–850 (2003)
9. Har-Peled, S., Muthukrishnan, S.M.: Range medians. In: Halperin, D., Mehlhorn,

K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 503–514. Springer, Heidelberg (2008)
10. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th

Symposium on Foundations of Computer Science, pp. 549–554 (1989)
11. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on

lists and trees. Nordic Journal of Computing 12, 1–17 (2005)
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Abstract. The edit distance problem on two unordered trees is known
to be MAX SNP-hard. In this paper, we present an approximation algo-
rithm whose approximation ratio is 2h + 2, where we consider unit cost
edit operations and h is the maximum height of the two input trees. The
algorithm is based on an embedding of unit cost tree edit distance into
L1 distance. We also present an efficient implementation of the algorithm
using randomized dimension reduction.

1 Introduction

The tree edit distance problem is important because of its wide range of applica-
tions which is not limited to but includes computational biology, XML databases,
and image analysis [4,8,18].

For the ordered tree edit distance problem, Tai [15] first developed a polyno-
mial time algorithm, from which several improvements followed [11,21]. Recently,
Demaine et al. [6] developed an O(n3) time algorithm and showed that it is opti-
mal under a reasonable computation model, where n is the maximum size of the
input trees. Garofalakis and Kumar [7] developed an efficient method to embed
ordered edit distance into L1 normed vector space, although move operations
are allowed in their definition of the edit distance.

On the other hand, the unordered edit distance problem is known to be MAX
SNP-hard for trees of bounded height [20], whereas some polynomial time algo-
rithms are known for restricted cases [9,19]. Halldórsson and Tanaka [9] gave a
2h approximation algorithm for the largest common subtree problem (LCST) for
unordered trees of bounded height h, which was recently improved to a 1.5h ap-
proximation by us [3]. These results do not imply that the edit distance problem
is 1.5h-approximable, although the edit distance can be calculated from LCST.
An intuitive explanation for this statement is as follows: let us consider trees each
of which consists of n nodes. Assume that the input trees are very similar so that
the size of LCST is large (e.g., OPTLCST = n − Θ(log n)) and the edit distance
between them is small (e.g., OPTTED = Θ(log n)). Even if we can approximate
the LCST by a small factor α(> 1), the corresponding edit distance becomes at

J. Karlgren, J. Tarhio, and H. Hyyrö (Eds.): SPIRE 2009, LNCS 5721, pp. 7–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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least APXTED ≥ n−APXLCST = n−(1/α)OPTLCST = n−(1/α)(n−Θ(logn)) =
(1−1/α)n+Θ(log n) = Θ(n), which may be much greater than OPTTED = Θ(1).
That is a motivation for us to develop an approximation algorithm for the tree
edit distance problem.

In this paper, we propose an algorithm to embed the tree edit distance into
the L1 norm with worst case distortion 2h + 2. Though similar representations
have appeared in the literature [5,14,16,17], they did not prove any approxima-
tion ratios. Although the idea of embedding and its algorithm is not novel in the
sense that linear (or close to linear) algorithms are already shown for the similar
distances, our main interest of this paper is to guarantee an approximation ratio
against the original edit distance using such a distance. For the embedding, we
also show efficient representation of the vector by randomized dimension reduc-
tion. Our algorithm gives a (2h + 2)-approximation ratio for the edit distance
problem on rooted, labeled and unordered trees, which implies a constant factor
approximation for trees of bounded height. The handling of unordered trees of
bounded height is important since the height of trees in XML databases tends
to be low1.

2 Preliminaries

2.1 Tree and Forest

A forest is a graph without cycles. A tree is a connected forest. For a forest F ,
V(F ) denotes the set of nodes in F . In this paper, a tree T is rooted, that is,
T has a special node called the root of T , denoted by root(T ). Each connected
component of a forest is a rooted tree. Every non-root node v ∈ V(F ) has a
parent, denoted by parent(v), and v is called a child of parent(v). Nodes sharing
the same parent are siblings. In this paper, a forest F is labeled, that is, each
node v ∈ V(F ) has a label, denoted by label(v), from a finite alphabet Σ. In
this paper, we assume that |Σ| = O(n) where n is the number of nodes that we
consider.

For a forest F , we call a forest F ′ a subforest of F if V(F ′) ⊆ V(F ) and the
ancestor-descendant relation among V(F ) is conserved in V(F ′). A subforest is a
subtree if it is connected. A subforest F ′ of F is complete if for any node v ∈ V(F ),
parent(v) ∈ V(F ′) implies v ∈ V(F ′). A (complete) subforest is a (complete)
subtree if it is connected. We use F (v) (resp. T (v)) to refer to the complete
subtree of a forest F (resp. of a tree T ) rooted at v. For a pair of subforests F1 and
F2 of a forest F , F1 ∪F2, F1 ∩F2, and F1 −F2 denote the subforests of F induced
by V(F1)∪V(F2), V(F1)∩V(F2), and V(F1)−V(F2) = {v ∈ V(F1) | v �∈ V(F2)},
respectively.

In this paper, trees and forests are unordered; it implies that the ordering be-
tween siblings can be permuted arbitrarily. In what follows, we call an unordered,
rooted, and labeled tree simply a tree.

1 http://www.cs.washington.edu/research/xmldatasets/
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We use |F | to denote the size of F (i.e., |F | = |V(F )|). The depth of a node
v in a tree T , which is denoted by depth(v), is the length of the path from the
root to v. The height of a tree T is height(T ) = maxv∈V(T ) depth(v). For two
isomorphic forests F1 and F2, we write F1 ≈ F2.

2.2 Tree Edit Distance and Mapping

An edit operation of tree T is either a deletion, an insertion, or a substitution,
which are defined as follows:

Deletion: Delete a non-root node v in T making the children of v become
children of the parent of v.

Insertion: The complement of deletion. Insert a node v as a child of u in T
making a subset of the children of u become the children of v.

Substitution: Change the label of a node v in T .

The unit cost edit distance (or just edit distance) between T1 and T2 is the mini-
mum number of edit operations which transforms T1 into T2. We use dist(T1, T2)
to denote the edit distance between T1 and T2. Note that dist(·, ·) is a metric.

It is known that there exists a close relationship between the edit distance and
the edit distance mapping (or just mapping) [4]. A set of pairs M ⊆ V(T1)×V(T2)
is called a mapping if the following conditions are satisfied for any two pairs
(v1, w1), (v2, w2) ∈ M : (i) v1 = v2 iff w1 = w2, (ii) v1 is an ancestor of v2 iff w1
is an ancestor of w2. For a mapping M and a pair of nodes vi ∈ V(Ti), i = 1, 2,
we denote M(v1) = v2 and v1 = M−1(v2) if (v1, v2) ∈ M .

3 A (2h+2)-Approximation Algorithm for Trees of
Height h

The algorithm is quite simple. We construct a feature vector from each input
tree and compute the L1 distance between two feature vectors (see Fig. 1). Let
h denote the maximum height of input trees, i.e., h = maxi=1,2{height(Ti)}.

3.1 Feature Vector for Trees

For a pair of trees t and T , #(T, t) denotes the number of T (v)’s isomorphic
to t; in other words, #(T, t) = |{v ∈ V(T ) | T (v) ≈ t}|. Then, we consider the
feature vector φ(T ) for a tree T which is defined by φ(T ) = (φt(T ))t∈T and
φt(T ) = #(T, t) for a set T = {t1, t2, . . .} of trees that we consider. Though
we may consider feature vectors in infinite dimensions (i.e., we may consider
all possible trees t), it is enough to consider feature vectors in (|T1| + |T2|)-
dimensions (i.e., each coordinate corresponds to a complete subtree in T1 or T2)
for the case of approximating the edit distance between T1 and T2.

Let N denote the set of non-negative integers and let N
T denote the set of all

possible functions from T to N.
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T
1 r

a a b c

a b a d b b c

a a d

T2 r

a b b
a

a b a b b c

a a d

b c

φ(T1) = ( 4,    4,    2,    1,    1,    1,    0,    0,    1,        1,        0 )

φ(T2) = ( 3,    6,    2,    0,    2,    0,    1,    1,    0,        0,        1 )

a

a b

a

a d

a

b c

d

b c

d

b cb

a b c d r

b caa
a a d

ba da bbc

r

b
a

ba
a a

ba ba bc

d

cb

Fig. 1. Feature vectors for two trees. Only coordinates whose values are positive for at
least one of T1 and T2 are shown.

Definition 1 (Feature vector for a tree). For a tree T , the feature vector
of T is the vector φ(T ) ∈ N

T which satisfies φt(T ) = #(T, t) for any t ∈ T .

In what follows, we assume that T is a set which covers all complete subtrees of
the input trees.

The distance function dφ(T1, T2) = ‖φ(T1) − φ(T2)‖1, which is naturally de-
fined by the feature vector, is equivalent to the bottom-up distance introduced
by Valiente [16]. As shown in that paper, the corresponding bottom-up mapping
is a special case of the edit distance mapping and the time complexity of com-
puting the bottom-up distance is linear in the number of nodes. However, he did
not showed any approximation ratio of bottom-up distance against the original
tree edit distance, which is the main interest of this paper.

3.2 Approximate Tree Edit Distance with Feature Vector

In this section, we prove that given two trees T1 and T2, the L1 norm of their
feature vectors ‖φ(T1) − φ(T2)‖1 approximates dist(T1, T2) with distortion 2h+
2. Recall that the L1 norm ‖x‖1 of a real vector x = (xi)i∈X in R

X is given by
‖x‖1 =

∑
i∈X |xi|.

Lemma 1. ‖φ(T1) − φ(T2)‖1 ≤ (2h + 2) · dist(T1, T2) holds.

Proof. Let e1, . . . , em denote an optimal sequence of edit operations which con-
verts T1 into T2, and let T 0

1 (= T1), T 1
1 , . . . , T m

1 (= T2) be the sequence of inter-
mediate trees. That is, for j = 1, 2, . . . , m, the tree T j

1 is obtained by applying
an edit operation ej to T j−1

1 . Note that m = dist(T1, T2) since the sequence of



Constant Factor Approximation of Edit Distance 11

operations is optimal. We assume without loss of generality that height(T j
1 ) < h,

j = 1, 2, . . . , m by the following proposition.

Proposition 1. Any optimal sequence of edit operations can be arranged so that
all deletions precede all insertions.

This proposition is apparent by considering the corresponding edit distance map-
ping (see e.g., [15]) and its cost. For an edit distance mapping M from T to T ′,

cost(M) :=
∑

u∈I

cost(u → ∅) +
∑

(u,v)∈M

cost(u → v) +
∑

v∈J

cost(φ → v) (1)

where I = V(T ) − M−1(V(T ′)) and J = V(T ′) − M(V(T )). This is equal to the
cost of edit sequence in which we delete the nodes in I, change the labels of
nodes (u, v) ∈ M if it is necessary, and insert the nodes J .

Then, we prove the following equation.

‖φ(T1) − φ(T2)‖1 ≤
m∑

j=1

‖φ(T j−1
1 ) − φ(T j

1 )‖1 ≤ (2h + 2) · dist(T1, T2) .

Since the first inequality clearly holds by the definition of T j
1 , it is sufficient

to prove that ‖φ(T j−1
1 ) − φ(T j

1 )‖1 ≤ 2h + 2 holds for j = 1, . . . , m. Let anc(v)
denote the set of ancestors of v, including v itself. Note that |anc(v)| = depth(v)+
1 ≤ h + 1.

Substitution: Let v and v′ respectively be the nodes in T j−1
1 and T j

1 which are
relevant to the substitution. Then, φt may decrease by one for each subtree
t = T j−1

1 (x), x ∈ anc(v) and φt′ may increase by one for each subtree t′ =
T j

1 (x′), x′ ∈ anc(v′). Therefore, ‖φ(T j−1
1 ) − φ(T j

1 )‖1 ≤ |anc(v)|+ |anc(v′)| ≤
2h + 2 holds.

Deletion: Let v be the deleted node in T j−1
1 . For w = parent(v), let w′ in T j

1
correspond to w. Then, the feature vector may decrease for the subtrees
t = T j−1

1 (x), x ∈ anc(v) and may increase for t = T j
1 (x′), x′ ∈ anc(w′).

Therefore, ‖φ(T j−1
1 ) − φ(T j

1 )‖1 ≤ |anc(v)| + |anc(w′)| ≤ 2|anc(v)| ≤ 2h + 2
holds.

Insertion: Since insertion is the complement of deletion, T j−1
1 is obtained by

deleting a node in T j
1 . Therefore, ‖φ(T j−1

1 ) − φ(T j
1 )‖1 ≤ 2h + 2 holds.

Since ej is one of the above, it holds that ‖φ(T j−1
1 ) − φ(T j

1 )‖1 ≤ 2h + 2. 
�

Note that the ratio 2h + 2 is tight; consider non-branching trees (that is, each
non-leaf node has exactly one child) T1 and T2 of the same height h in which
nodes are all labeled a except that the leaf of T2 is labeled b. Then we have
dist(T1, T2) = 1 and ‖φ(T1) − φ(T2)‖1 = 2h + 2.

By Lemma 1, we have shown the upper bound of the embedded distance.
Next, we show that the lower bound of the embedded distance exactly matches
the edit distance. Before showing the lower bound, we show that our embedding
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approximates the tree edit distance by computing the largest common complete
subforest of the input trees. For two trees, a common complete subforest is a
forest which is isomorphic to a complete subforest of each tree. It is obvious
that the feature vectors of trees share the feature vector of a common subforest
because the common subforest appears in each tree. The following lemma says
that the opposite is true.

Lemma 2. For a largest common complete subforest F of T1 and T2, φt(F ) =
min{φt(T1), φt(T2)} holds for any t ∈ T .

Proof. Assume that there exists a tree t for which φt(F ) �= mini=1,2{φt(Ti)}
holds. Since F is a common complete subforest of T1 and T2, φt(F ) ≤ φt(Ti),
i = 1, 2 is obvious. By the assumption, we have φt(F ) < mini=1,2 φt(Ti). For
i = 1, 2, let Fi ≈ F be a complete subforest of Ti and let M ⊆ V(F1) × V(F2)
be the corresponding mapping between nodes in F1 and F2. That is, {M(v) |
v ∈ V(F1)} = V(F2). Since φt(F ) < φt(Ti) i = 1, 2, Ti must include a complete
subtree Ti(wi) ≈ t for some node wi ∈ V(Ti − Fi).

Now we prove that there is a common complete subforest F ′′ between T1 and
T2 and that |F ′′| > |F |, which contradicts the assumption that F is the largest.

Let Xi be the complete subforest induced by V(Fi ∩ Ti(wi)) (see Fig. 2). In
what follows, we simply write M(X1) and M−1(X2) to denote the subtrees
induced by {M(v) | v ∈ V(X1)} and {M−1(v) | v ∈ V(X2)}, respectively. Let us
divide Fi into four disjoint complete subforests of Ti:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P1 = X1 − M−1(X2),

Q1 = X1 ∩ M−1(X2),

R1 = M−1(X2) − X1,

F ′
1 = F1 − X1 − M−1(X2),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P2 = M(X1) − X2,

Q2 = M(X1) ∩ X2,

R2 = X2 − M(X1),
F ′

2 = F2 − X2 − M(X1).

,

though some of them may be empty. Then, the mapping M satisfies M(P1) = P2,
M(Q1) = Q2, and M(R1) = R2, where M(X) denotes the subforest of T2
induced by {M(v) ∈ V(F2) | v ∈ V(X) ⊆ V(F1)} for a subforest X of T1.
Therefore we have M(F ′

1) = F ′
2 and F ′

1 ≈ F ′
2.

Furthermore, we expand construct larger subforests F ′′
i = F ′

i ∪Ti(wi), i = 1, 2.
Since F ′

i is a subforest of Fi − Xi = Fi − (Fi ∩ Ti(wi)) = Fi − Ti(wi), F ′
i and

Ti(wi) do not intersect. Thus F ′′
1 and F ′′

2 are isomorphic.
Finally, we prove that |F ′′

1 | = |F ′′
2 | > |F |. We assume without loss of generality

that |X1 ∪ M−1(X2)| ≤ |T1(w1)| since we can modify the mapping M between
F1 and F2 so that the mapping between their subforests X1 and X2 is maximal,
that is, M maps all the component subtrees which are common between X1 and
X2. Since F1 includes X1 ∪ M−1(X2) and w1 ∈ V(F1), the inequation is strict,
that is, |X1 ∪ M−1(X2)| < |T1(w1)|. Therefore, we have |F ′′

1 | = |F1| − |X1 ∪
M−1(X2)| + |T1(w1)| > |F1| = |F | and the lemma follows. 
�
Lemma 3. For any pair of trees T1 and T2, dist(T1, T2) ≤ ‖φ(T1) − φ(T2)‖1.

Proof. We assume without loss of generality that T1 and T2 are not isomor-
phic, since the lemma is obvious if they are isomorphic. Let F be a largest
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T
1

A B

C
B

F1

T
2

A B

C
B

F2

w1 w2

X1 X2

A B

T
1

A B

C
B

F1-X1-M
-1(X2)

w1

A

T1(w1)

P1

R1

T
2

A B

C
B

F2-X2-M(X1)

w2

B

T2(w2)

R2

P2

Q1
Q2

Fig. 2. An example for the proof of Lemma 2. In the upper row, the common complete
subforest F of T1 and T2 (shown within dashed lines) consists of four components
of complete subtrees {A, B, B, C}. The two complete subtrees T1(w1) and T2(w2) are
isomorphic. For i = 1, 2, Ti(wi) and Fi share complete subtrees Xi (shown by shaded
triangles). In the lower row, modified common subforests are shown (using dashed
lines). The union of the modified common subforest F ′

1 = F1 −X1 −M−1(X2) and the
subtree T1(w1) is strictly larger than F1.

common complete subforest of T1 and T2. Then, we can edit T1 to become iso-
morphic to T2 by changing the label of root(T1) into that of root(T2), deleting
|T1|− |F |− 1 non-root nodes, and inserting |T2|− |F |− 1 non-root nodes. There-
fore, we have dist(T1, T2) ≤

∑
i=1,2(|Ti| − |F | − 1) + 1. On the other hand,

‖φ(T1) − φ(T2)‖1 =
∑

i=1,2
∑

t∈T (φt(Ti) − min{φt(T1), φt(T2)}). Recall that
‖φ(T )‖1 = |T | by the definition and

∑
t min{φt(T1), φt(T2)} = |F | by Lemma 2.

Then, we have dist(T1, T2) ≤
∑

i=1,2 |Ti| − 2|F | = ‖φ(T1) − φ(T2)‖1. 
�

Combining Lemma 1 and Lemma 3, we have:

Theorem 1. For rooted, unordered, and labeled trees T1 and T2 of maximum
height h, it holds that

1
2h + 2

‖φ(T1) − φ(T2)‖1 ≤ dist(T1, T2) ≤ ‖φ(T1) − φ(T2)‖1.
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Procedure ComputeSignature(F )
Let Lk = {v | height(F (v)) = k}, k = 0, 1, . . . , h ;
Assign an integer σ(v) ∈ [0, |Σ|) to each node v ∈ L0 according to their labels ;
for k = 1, . . . , h do

For each node v ∈ Lk, let ξ(v) denote the descending list of integers
{σ(w) | w ∈ children(v)} ;
Sort Lk in lexicographical ascending order of (label(v), ξ(v)), v ∈ Lk ;
Let m = maxv∈Lk−1 σ(v) ;
Assign an integer σ(v) > m to each v ∈ Lk so that σ(v) = σ(v′) iff
(label(v), ξ(v)) = (label(v′), ξ(v′)) ;

Fig. 3. Algorithm to compute signatures σ(v) for each complete subtree F (v) in a
forest F

Corollary 1. Let T1 and T2 be trees of maximum height h. Then, dist(T1, T2)
can be approximated within a factor of 2h + 2 in O(n log n) time, where n is the
number of nodes that we consider, that is, n = |T1| + |T2|.

Note that computing ‖φ(T1) − φ(T2)‖1 is usually much more efficient than com-
puting dist(T1, T2). Computing ‖φ(T1) − φ(T2)‖1 can be done efficiently by com-
puting the signatures (see Section 4.1) of all complete subtrees T1 and T2. In
Fig. 3, we show an algorithm to compute the signatures of all complete subtrees
in a given forest F , which is similar to the well-known isomorphism test algo-
rithm [1]. The time cost of our algorithm is O(|F | log(|F | + |Σ|)) (or linear time
in the RAM model)2, although computing dist(T1, T2) is MAX SNP-hard for
unordered trees and only an O(n3) algorithm is known even for ordered trees,
where n = maxi=1,2 |Ti|. In the next section, we define the signature of trees and
discuss its merits and drawbacks.

4 Tree Signature and Fingerprint

4.1 Coding of Trees

In this section, we discuss efficient data structures for the feature vectors of trees.
Recall that φ(T ) ∈ N

T where T is the set of all possible trees. Although
T is infinite, the feature vector φ(T ) is so sparse that at most |T | elements
of φ(T ) become non-zero and we can use, for example, a set of pairs α(T ) =
{(code(t), φt(T )) | φt(T ) > 0} where code(t) is a bit-string which encodes a
tree t.

For example, code(t) may be the Euler string [2,11] of a canonically ordered
version of t (which can be obtained by using the algorithm in Fig. 3). In this
case, the size of code(t) becomes O(|t| log |Σ|). This is optimal in the sense that
2 Our algorithm is essentially the same as the O(Λ|F | log |F |) time algorithm by Vish-

wanathan and Smola [17] where they consider another setting in which a label of
a node is a string of length at most Λ. Even in their setting, our algorithm works
after a preprocess to encode strings by integers at most |F |, which does not affect
the order of running-time.
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there are at most Cn|Σ|n = O(4n|Σ|n) distinct labeled unordered trees of size n,
where Cn denotes the Catalan number (see e.g., [12]). We further reduce the size
of code(t) of a tree t by using hashing functions — for example, the signature
of t. For a forest F , the signature of a complete subtree of F is an integer at
most O(|Σ| + |F |), which may be dealt with as one word in the RAM model.
Furthermore, computing all signatures in a forest F is done efficiently by the
algorithm shown in Fig. 3.

4.2 Karp-Rabin Fingerprint for Trees

In some applications, we want to deal with huge number of trees. In those cases,
it is hard to apply the signature-based technique since the signature σ(T ) of a
tree T depends on the whole set of input trees.

Let us consider a situation that we have a text of a set of trees T1, T2, . . .
and we want to perform nearest neighbor tasks for each query tree q which is
not known beforehand. If we adopt the signature-based technique, we have to
compute the signatures of all subtrees in q. If we directly use the algorithm
ComputeSignature, we have to recompute almost all signatures in the text
trees. To avoid running the algorithm against the whole trees, we may be able
to use dictionary-based signatures, in which we maintain signature of a subtree
t along with the label of root(t) and the list of signatures of children(root(t)).
In both cases, however, we have to lookup each subtree of the query q, which
causes expensive |q| lookups to compute φ(q).

Instead, we can design a randomized scheme to obliviously encode trees with
small integers. By obliviously encoding trees, we can compute φ(T ) of a tree T
by itself, that is, without the other trees.

Oblivious encoding is simply realized by using 〈code(T )〉, though it may be too
large. Since the size of code(T ) is O(|T | log |Σ|), we can interpret it as an integer,
denoted by 〈code(T )〉, and can assume that log(〈code(T )〉) = O(|T | log |Σ|).
For example, a Σ-string s = (s0, . . . , s|s|−1) ∈ Σ∗ is interpreted as an integer
〈s〉 =

∑|s|
i=0 s′i|Σ|i where s′i = si for 0 ≤ i < |s| − 1 and s′|s| = 1.

To reduce the size of integers, we substitute 〈code(·)〉 by its modulo p for
a randomly drawn prime number p. We call such a hashing function the Karp-
Rabin fingerprint [10] and denote it by ψp : T → N

p, that is, ψp(T ) = (ψp
k(T ))p−1

k=0
and ψp

k(T ) =
∑

t∈T (k;p) #(T, t) where T (k; p) = {t ∈ T | 〈code(t)〉 ≡ k mod p}
for k = 0, . . . , p−1. By using modular arithmetic, two distinct complete subtrees
may fall into the same hash; we call that a collision. Clearly, ‖φ(T1) − φ(T2)‖1 =
‖ψp(T1) − ψp(T2)‖1 holds if no collision occurs. If a collision occurs, the two
distances may differ. In the rest of this section, let us estimate the probability
that a collision occurs.

Let us assume that p is drawn uniformly at random from the set of prime
numbers less than τ . Then, the following lemma is known [10,13]:

Lemma 4. For any positive number N , the probability that p divides N is
O

( log N
τ/ log τ

)
.
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Let F = T1 ∪ T2 ∪ · · · ∪ Tm be the forest of concern. Let n = maxi |Ti| and
N = |F | =

∑
i |Ti|. If we set the upper bound of the prime number p as τ =

N2n2 log N log |Σ|, the probability of collision is at most:

Pr
[
∃v, w ∈ V(F )[F (v) �≈ F (w) ∧ (〈code(F (v))〉 ≡ 〈code(F (w))〉 mod p)]

]

= N2 · O

(
log(maxt∈F 〈code(t)〉)

τ/ log τ

)

= O
(N2n log |Σ|

τ/ log τ

)
= O(1/n) . (2)

Note that computation of ψp and modular arithmetic operations on p are done in
time polynomial in N and in log |Σ|. Using randomized prime number generation
[13], our algorithm works in randomized polynomial time.

Theorem 2. For a set of trees, denoted by F = {T1, . . . , Tm}, let us choose the
upper bound of the random prime number as τ = N2n2 log N , where N =

∑
i |Ti|

and n = maxi |Ti|. Then, with probability 1 − O(1/n),

1
2h + 2

‖ψp(Ti) − ψp(Tj)‖1 ≤ dist(Ti, Tj) ≤ ‖ψp(Ti) − ψp(Tj)‖1 for all i, j.

5 Concluding Remarks

In this paper, we have shown an 2h + 2 approximation algorithm for the tree
edit distance problem for unordered trees of height at most h. The algorithm is
based on embedding the tree edit distance into the L1 norm of feature vectors.
Although both the idea of the embedding and the algorithm to compute the
feature vector are known in the literature, any approximation ratio had not
been known for them.

Recently the simlar approximation ratio 1.5h is proved by the authors, how-
ever, the ratios are not compatible and the techniques used are completely dif-
ferent. The results complement each other, by which both problems are approx-
imable when the height is small. This is interesting because both problems are
known to be hard to approximate even if the height is constant. To develop an
efficient approximation algorithm for the general tree edit distance problem is
left as an open problem.
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Abstract. This paper presents a Web graph representation based on
a compact tree structure that takes advantage of large empty areas of
the adjacency matrix of the graph. Our results show that our method is
competitive with the best alternatives in the literature, offering a very
good compression ratio (3.3–5.3 bits per link) while permitting fast nav-
igation on the graph to obtain direct as well as reverse neighbors (2–15
microseconds per neighbor delivered). Moreover, it allows for extended
functionality not usually considered in compressed graph representations.

1 Introduction

The World Wide Web structure can be regarded as a directed graph at several
levels, the finest grained one being pages that point to pages. Many algorithms
of interest to obtain information from the Web structure are essentially basic
algorithms applied over the Web graph [11, 16].

Running typical algorithms on those huge Web graphs is always a problem.
Even the simplest external memory graph algorithms, such as graph traversals,
are usually non disk-friendly [24]. This has pushed several authors to consider
compressed graph representations, which aim to offer memory-efficient graph
representations that still allow fast navigation without decompressing. The aim
of this research is to allow classical graph algorithms to be run in main memory
over much larger graphs than those affordable with a plain representation.

The most famous representative of this trend is surely Boldi and Vigna’s We-
bGraph Framework [6]. The WebGraph compression method is indeed the most
successful member of a family of approaches to compress Web graphs based on
their statistical properties [1, 5, 7, 20, 21, 23]. It allows fast extraction of the
neighbors of a page while spending just a few bits per link (about 2 to 6, de-
pending on the desired navigation performance). Their representation explicitly
exploits Web graph properties such as: (1) the power-law distribution of inde-
grees and outdegrees, (2) the locality of reference, (3) the “copy property” (the
set of neighbors of a page is usually very similar to that of some other page).

More recently, Claude and Navarro [10] showed that most of those properties
are elegantly captured by applying Re-Pair compression [17] on the adjacency
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J. Karlgren, J. Tarhio, and H. Hyyrö (Eds.): SPIRE 2009, LNCS 5721, pp. 18–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



k2-Trees for Compact Web Graph Representation 19

lists, and that reverse navigation (finding the pages that point to a given page)
could be achieved by representing the output of Re-Pair using some more so-
phisticated data structures [9]. Reverse navigation is useful to compute several
relevance ranking on pages, such as HITS, PageRank, and others. Their tech-
nique offers better space/time tradeoffs than WebGraph, that is, they offer faster
navigation than WebGraph when both structures use the same space.

Asano et al. [2] achieve even less than 2 bits per link by explicitly exploiting
regularity properties of the adjacency matrix of the Web graphs, but their nav-
igation time is substantially higher, as they need to uncompress full domains in
order to find the neighbors of a single page.

In this paper we also aim at exploiting the properties of the adjacency ma-
trix, yet with a general technique to take advantage of clustering rather than a
technique tailored to particular Web graphs. We introduce a compact tree rep-
resentation of the matrix that not only is very efficient to represent large empty
areas of the matrix, but at the same time allows efficient forward and backward
navigation of the graph. An elegant feature of our solution is that it is symmet-
ric, both navigations are carried out by similar means and achieve similar times.
In addition, our proposal allows some interesting operations that are not usually
present in alternative structures.

2 Our Proposal

The adjacency matrix of a Web graph of n pages is a square matrix {aij} of n×n,
where each row and each column represents a Web page. Cell aij is 1 if there
is a hyperlink in page i towards page j, and 0 otherwise. Page identifiers are
integers, which correspond to their position in an array of alphabetically sorted
URLs. This puts together the pages of the same domains, and thus locality of
reference translates into closeness of page identifiers. As on average there are
about 15 links per Web page, this matrix is extremely sparse. Due to locality
of reference, many 1s are placed around the main diagonal (that is, page i has
many pointers to pages nearby i). Due to the copy property, similar rows are
common in the matrix. Finally, due to skewness of distribution, some rows and
colums have many 1s, but most have very few.

We propose a compact representation of the adjacency matrix that exploits its
sparseness and clustering properties. The representation is designed to compress
large matrix areas with all 0s into very few bits.

We represent the adjacency matrix by a k2-ary tree, which we call k2-tree, of
height h = �logk n�. Each node contains a single bit of data: 1 for the internal
nodes and 0 for the leaves, except for the last level, where all are leaves and
represent bit values of the matrix. The first level (numbered 0) corresponds to
the root; its k2 children are represented at level 1. Each child is a node and
therefore it has a value 0 or 1. All internal nodes (i.e., with value 1) have exactly
k2 children, whereas leaves (with value 0 or at the last tree level) have no children.

Assume for simplicity that n is a power of k; we will soon remove this as-
sumption. Conceptually, we start dividing the adjacency matrix following a MX-
Quadtree strategy [22, Section 1.4.2.1] into k2 submatrices of the same size, that
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(b) Expansion, subdivision and navigation for k = 2.

Fig. 1. k2-tree examples

is, k rows and k columns of submatrices of size n2/k2. Each of the resulting k2

submatrices will be a child of the root node and its value will be 1 iff in the cells
of the submatrix there is at least one 1. A 0 child means that the submatrix has
all 0s and hence the tree decomposition ends there.

The children of a node are ordered in the tree starting with the submatrices
in the first (top) row, from left to right, then the submatrices in the second row
from left to right, and so on. Once the level 1, with the children of the root, has
been built, the method proceeds recursively for each child with value 1, until
we reach submatrices full of 0s, or we reach the cells of the original adjacency
matrix. In the last level of the tree, the bits of the nodes correspond to the
matrix cell values. Figure 1(a) illustrates a 22-tree for a 4 × 4 matrix.

A larger k induces a shorter tree, with fewer levels, but more children per
internal node. If n is not a power of k, we conceptually extend our matrix to the
right and bottom with 0s, making it of width n′ = k�logk n�. This does not cause
a significant overhead as our technique is efficient to handle large areas of 0s.

Figure 1(b) shows an example of the adjacency matrix of a Web graph (we use
the first 11 × 11 submatrix of graph CNR [6]), how it is expanded to an n′ × n′

matrix (n′ power of k = 2) and its corresponding tree. Notice that its last level
represents cells in the original adjacency matrix, but most cells in the original
adjacency matrix are not represented in this level because, where a large area
with 0s is found, it is represented by a single 0 in a smaller level of the tree.

2.1 Navigating with a k2-Tree

To obtain the pages pointed by a specific page p, that is, to find direct neighbors
of page p, we need to find the 1s in row p of the matrix. We start at the root
and travel down the tree, choosing exactly k children of each node.

Example. We find the pages pointed by the first page in the example of
Figure 1(a), that is, find the 1s of the first matrix row. We start at the root
of the 22-tree and compute which children of the root overlap the first row of
the matrix. These are the first two children, to which we move:

– The first child is a 1, thus it has children. To figure out which of its children
are useful we repeat the same procedure. We compute in the corresponding
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submatrix (the one at the top left corner) which of its children represent
cells overlapping the first row of the original matrix. These are the first and
the second children. They are leaf nodes and their values are 1 and 1.

– The second child of the root represents the second submatrix, but its value
is 0. This means that all the cells in the adjacency matrix in this area are 0.

Thus, the Web page represented by the first row has links to itself and page 2.
Figure 1(b) shows this navigation for a larger example.

Reverse neighbors. An analogous procedure retrieves the list of reverse neigh-
bors. To obtain which pages point to page q, we need to locate which cells have
a 1 in column q of the matrix. Thus, we carry out a symmetric algorithm, using
columns instead of rows.

Summarizing, searching for direct or for reverse neighbors in the k2-tree is
completely symmetric. The only difference is the formula to compute the children
of each node used in the next step. In either case we perform a top-down traversal
of the tree. If we want to search for direct(reverse) neighbors in a k2-tree, we go
down through k children forming a row(column) inside the matrix.

3 Data Structure and Algorithms

Our data structure is essentially a compact tree of N nodes. There exist several
such representations for general trees [4, 12, 14, 19], which asymptotically ap-
proach the information-theoretic minimum of 2N +o(N) bits. In our case, where
there are only arities k2 and 0, the information-theoretic minimum of N + o(N)
bits is achieved by a so-called “ultra-succinct” representation [15] for general
trees. Our representation is much simpler, and close to the so-called LOUDS
(level-ordered unary degree sequence) tree representation [14] (which would not
achieve N + o(N) bits if directly applied to our trees).

Our data structure can be regarded as a simplified variant of LOUDS for the
case where arities are just k2 and 0, which achieves the information-theoretic
minimum of N+o(N) bits, provides the traversal operations we require (basically
move to the i-th child, although also parent is easily supported) in constant time,
and is simple and practical.

3.1 Data Structure

We represent the whole adjacency matrix via the k2-tree using two bit arrays:

T (tree): stores all the bits of the k2-tree except those in the last level. The bits
are placed following a levelwise traversal: first the k2 binary values of the
children of the root node, then the values of the second level, and so on.

L (leaves): stores the last level of the tree. Thus it represents the value of (some)
original cells of the adjacency matrix.

We create over T an auxiliary structure that enables us to compute rank
queries efficiently. Given an offset i inside a sequence T of bits, rank(T, i) counts
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the number of times the bit 1 appears in T [1, i]. This can be supported in con-
stant time and fast in practice using sublinear space on top of the bit sequence
[14, 18]. In practice we use an implementation that uses 5% of extra space on
top of the bit sequence and provides fast queries, as well as another that uses
37.5% extra space and is much faster [13].

We do not need to perform rank over the bits in the last level of the tree;
that is the practical reason to store them in a different bitmap (L). Thus the
space overhead for rank is paid only over T .

Analysis. Assume the graph has n pages and m links. Each link is a 1 in the
matrix, and in the worst case it induces the storage of one distinct node per
level, for a total of �logk2(n2)� nodes. Each such (internal) node costs k2 bits,
for a total of k2m�logk n� bits. However, especially in the upper levels, not all
the nodes in the path to each leaf can be different. In the worst case, all the
nodes exist up to level �logk2 m� (only since that level there can be m different
internal nodes at the same level). From that level, the worst case is that each of
the m paths to the leaves is unique. Thus, in the worst case, the total space is
∑�logk2 m�

�=1 k2� + k2m(�logk2 n2� − �logk2 m�) = k2m(logk2
n2

m + O(1)) bits.
This shows that, at least in a worst-case analysis, a smaller k yields less space

occupancy. For k = 2 the space is 4m(log4
n2

m +O(1)) = 2m log2
n2

m +O(m) bits,
which is asymptotically twice the information-theoretic minimum necessary to
represent all the matrices of n × n with m 1s. In the experimental section we
see that, on Web graphs, the space is much better than the worst case, as Web
graphs are far from uniformly distributed.

Finally, the expansion of n to the next power of k can, in the horizontal
direction, force the creation of at most k� new children of internal nodes at level
� ≥ 1 (level � = 1 is always fully expanded unless the matrix is all zeros). Each
such child will cost k2 extra bits. The total excess is O(k2 ·k�logk n�−1) = O(k2n)
bits, which is usually negligible. The vertical expansion is similar.

3.2 Finding a Child of a Node

Our levelwise traversal satisfies the following property, which permits fast navi-
gation to the i-th child of node x, childi(x) (for 0 ≤ i < k2):

Lemma 1. Let x be a position in T (the first position being 0) such that T [x] =
1. Then childi(x) is at position rank(T, x) · k2 + i of T : L

Proof. T : L is formed by traversing the tree levelwise and appending the bits
of the tree. We can likewise regard this as traversing the tree levelwise and
appending the k2 bits of the childred of the 1s found at internal tree nodes. By
the time node x is found in this traversal, we have already appended k2 bits per
1 in T [1, x − 1], plus the k2 children of the root. As T [x] = 1, the children of x
are appended at positions rank(T, x) · k2 to rank(T, x) · k2 + (k2 − 1).

Example. To represent the 22-tree of Figure 1(b), arrays T and L are:
T = 1011 1101 0100 1000 1100 1000 0001 0101 1110,

L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.
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Direct(n, p, q, x)
1. If x ≥ |T | Then // leaf
2. If L[x − |T |] = 1 Then output q
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2 + k · �p/(n/k)�
6. For j = 0 . . . k − 1 Do
7. Direct(n/k, p mod (n/k),

q + (n/k) · j, y + j)

Reverse(n, q, p, x)
1. If x ≥ |T | Then // leaf
2. If L[x − |T |] = 1 Then output p
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2 + �q/(n/k)�
6. For j = 0 . . . k − 1 Do
7. Reverse(n/k, q mod (n/k),

p +(n/k)·j, y + j ·k)

Fig. 2. Returning direct(reverse) neighbors

In T each bit represents a node. First four bits represent nodes 0, 1, 2 and 3,
which are the children of the root. The following four bits represent the children
of node 0. There are no children for node 1 because it is a 0, then the children
of node 2 start at position 8 and those of node 3 start at position 12. The bit in
position 4, the fifth bit of T , represents the first child of node 0, and so on.

3.3 Navigation

To find the direct(reverse) neighbors of a page p(q) we need to locate which
cells in row ap∗ (column a∗q) of the adjacency matrix have a 1. We have already
explained that these are obtained by a top-down tree traversal that chooses k
out of the k2 children of a node, and also gave the way to obtain the i-th child
of a node in our representation. The only missing piece is the formula that maps
global row numbers to the children number at each level.

Recall h = �logk n� is the height of the tree. Then the nodes at level � represent
square submatrices of width kh−�, and these are divided into k2 submatrices of
width kh−�−1. Cell (p�, q�) at a matrix of level � belongs to the submatrix at row
�p�/kh−�−1� and column �q�/kh−�−1�.

Let us call p� the relative row position of interest at level �. Clearly p0 =
p, and row p� of the submatrix of level � corresponds to children number k ·
�p�/kh−�−1�+ j, for 0 ≤ j < k. The relative position in those children is p�+1 =
p� mod kh−�−1. Similarly, column q corresponds q0 = q and, in level �, to children
j · k + �q�/kh−�−1�, for 0 ≤ j < k, with relative position q�+1 = q� mod kh−�−1.

The algorithms for extracting direct and reverse neighbors are described in
Figure 2. For direct neighbors it is called Direct(kh, p, 0,−1), where the param-
eters are: current submatrix size, row of interest in current submatrix, column
offset of the current submatrix in the global matrix, and the position in T : L
of the node to process (the initial −1 is an artifact because our trees do not
represent the root node). Values T , L, and k are global. It is assumed that
n is a power of k and that rank(T,−1) = 0. For reverse neighbors it is called
Reverse(kh, q, 0,−1), where the parameters are the same except that the second
is the column of interest and the third is the row offset of the current submatrix.
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Analysis. Our navigation time has no worst-case guarantees better than O(n),
as a row p− 1 full of 1s followed by p full of 0s could force a Direct query on p
to go until the leaves across all the row, to return nothing.

However, this is unlikely. Assume the m 1s are uniformly distributed in the
matrix. Then the probability that a given 1 is inside a submatrix of size (n/k�)×
(n/k�) is 1/k2�. Thus, the probability of entering the children of such submatrix
is (brutally) upper bounded by m/k2�. We are interested in k� submatrices at
each level of the tree, and therefore the total work is on average upper bounded
by m·∑h−1

�=0 k�/k2� = O(m). This can be refined because there are not m different
submatrices in the first levels of the tree. Assume we enter all the O(kt) matrices
of interest up to level t = �logk2 m�, and from then on the sum above applies.
This is O(kt + m · ∑h−1

�=t+1 k�/k2�) = O(kt + m/kt) = O(
√

m) time. This is not
the ideal O(m/n) (average output size), but much better than O(n) or O(m).

Again, if the matrix is clustered, the average performance is indeed better
than under uniform distribution: whenever a cell close to row p forces us to
traverse the tree down to it, it is likely that there is a useful cell at row p as well.

3.4 Construction

Assume our input is the n×n matrix. Construction of our tree is easily carried o
ut bottom-up in linear time and using the same space as the final tree. If, instead,
we have an adjacency list representation of the matrix, we can still achieve the
same time by setting up n cursors, one per row, so that each time we have to
access apq we compare the current cursor of row p with value q.

In this case we could try to achieve time proportional to m, the number of 1s
in the matrix. For this sake we could insert the 1s one by one into an initially
empty tree, building the necessary part of the path from the root to the cor-
responding leaf. After the tree is built we can traverse it levelwise to build the
final representation, or recursively to output the bits to different sequences, one
per level, as before. The space could still be O(k2m(1 + logk2

n2

m )), that is, pro-
portional to the final tree size, if we used some dynamic compressed parentheses
representation of trees [8]. The total time would be O(log m) per bit of the tree.

As we produce each tree level and traverse each matrix row (or adjacency list)
sequentially, we can construct the tree on disk in optimal I/O time provided we
have main memory to maintain logk n disk blocks to output the tree, plus B
disk blocks (B being the disk page size in bits) for reading the matrix.

4 A Hybrid Approach

As we can notice, the greater k is, the more space L needs, because even though
there are fewer submatrices in the last level, they are larger. Hence we may spend
k2 bits to represent very few 1s. Notice for example that if k = 4 in Figure 1(b),
we will store some last-level submatrices containing a unique 1, spending 15 more
bits that are 0. On the contrary, when k = 2 we use fewer bits for that leaf level.

We can improve our structure if we use a larger k for the first levels of the
tree and a small k for the last levels. This strategy takes advantage of the strong
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points of both approaches. Using large values of k for the first levels, the tree is
shorter, so we will be able to obtain the list of neighbors faster, as we have fewer
levels to traverse. Using small values of k for the last levels we do not store too
many bits for each 1 of the adjacency matrix, as the submatrices are smaller.

5 Experimental Evaluation

We ran several experiments over some Web crawls from the WebGraph project.
Figure 3(a) gives the main characteristics of the graphs used: name (and ver-
sion) of the graph, number of pages and links and the size of a plain adjacency
list representation of the graphs (using 4-byte integers). The machine used in
our tests is a 2GHz Intel R©Xeon R© (8 cores) with 16 GB RAM. It ran Ubuntu
GNU/Linux with kernel version 2.4.22-15-generic SMP (64 bits). The compiler
was gcc version 4.1.3 and -O9 compiler optimizations were set. Space is mea-
sured in bits per edge (bpe), by dividing the total space of the structure by the
number of edges (i.e., links) in the graph. Time results measure average cpu user
time per neighbor retrieved: We compute the time to search for the neighbors of
all the pages (in random order) and divide by the total number of edges in the
graph.

5.1 Comparison between Different Alternatives

We first study our approach with different values of k. Figure 3(b) shows 8
different alternatives of our method over the EU graph using different values of
k. All build on the rank structure that uses 5% of extra space [13]. The first
column names the approaches as follows: ′2× 2′, ′3× 3′ and ′4× 4′ stand for the
alternatives where we subdivide the matrix into 2×2, 3×3 and 4×4 submatrices,
respectively, in every level of the tree. On the other hand, we denote ′H − i′ the
hybrid approach where we use k = 4 up to level i of the tree, and then we
use k = 2 for the rest of the levels. The second and third columns indicate
the size, in bytes, used to store the tree T and the leaves L, respectively. The
fourth column shows the space needed in main memory by the structures (e.g.,
including the extra space for rank), in bits per edge. Finally, the last two columns
show the times to retrieve the direct (fifth column) and reverse (sixth) neighbors,
measured in microseconds per link retrieved (μs/e). Note that, when we use a
fixed k, we obtain better times when k is greater, because we are shortening the
height of the tree, but the compression ratio worsens, as the space for L becomes
dominant and many 0s are stored in there.

If we use a hybrid approach, we can maintain a compression ratio close to
that obtained by the ′2 × 2′ alternative while improving the time, until we get
close to the ′4 × 4′ alternative. The best compression is obtained for ′H − 3′,
even better than ′2 × 2′. Figure 3(c) shows similar results graphically, for the
three larger graphs, space on the left and time to retrieve direct neighbors on the
right. The space does not worsen much if we keep k = 4 up to a moderate level,
whereas times improve consistently. A medium value, say switching to k = 2 at
level 7, looks as a good compromise.
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(a) Description of the graphs used.

File Pages Links Size
(millions) (millions) (MB)

CNR (2000) 0.325 3.216 14
EU (2005) 0.862 19.235 77
Indochina (2004) 7.414 194.109 769
UK (2002) 18.520 298.113 1,208

(b) Different approaches over graph EU.

Variant Tree Leaves Space Direct Reverse
(bytes) (bytes) (bpe) (μs/e) (μs/e)

2 × 2 6,860,436 5,583,076 5.21076 2.56 2.47
3 × 3 5,368,744 9,032,928 6.02309 1.78 1.71
4 × 4 4,813,692 12,546,092 7.22260 1.47 1.42
H − 1 6,860,432 5,583,100 5.21077 2.78 2.62
H − 3 6,860,412 5,583,100 5.21076 2.67 2.49
H − 5 6,864,404 5,583,100 5.21242 2.39 2.25
H − 7 6,927,924 5,583,100 5.23884 2.10 1.96
H − 9 8,107,036 5,583,100 5.72924 1.79 1.67
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(d) Space/time to retrieve direct and reverse neighbors.
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(e) Retrieving only direct neighbors.

(f) Comparison with approach Smaller.

Space (bpe) Smaller Smaller × 2 Hybrid5

CNR 1.99 3.98 4.46
EU 2.78 5.56 5.21
Time (ms/p)
CNR 2.34 0.048
EU 28.72 0.099

Fig. 3. Experimental evaluation
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5.2 Comparison with Other Methods

We first compare graph representations that allow retrieving both direct and
reverse neighbors. Figure 3(d) shows the space/time tradeoff for retrieving direct
and reverse neighbors, over the larger graph (UK), as it is representative of
the common behaviour of the other smaller graphs. We measure the average
time efficiency in μs/e as before. Representations providing space/time tuning
parameters appear as a line, whereas the others appear as a point.

We compare our compact representations with the proposal in [9, Chapter
7] that computes both direct and reverse neighbors (RePair both), as well as
the simpler representation in [10] (as improved in [9, Chapter 6], RePair) that
retrieves just direct neigbors. In this case we represent both the graph and its
transpose, in order to achieve reverse navigation as well (RePair × 2). We do the
same with Boldi and Vigna’s technique [6] (WebGraph), as it also allows for direct
neighbors retrieval only (we call it WebGraph × 2 when we add both graphs).
As this technique uses less space on disk than what the process needs to run, we
show in WebGraph (RAM) the minimum space needed to run (yet we keep the
best time it achieves with sufficient RAM space). All the implementations were
provided by their authors.

We include our alternatives 2 × 2, 3 × 3, 4 × 4, and Hybrid5, all of which use
the slower solution for rank that uses just 5% of extra space [13], and Hybrid37,
which uses the faster rank method that uses 37.5% extra space on top of T .

As we can see, our representations (particularly Hybrid5 and 2×2) achieve the
best compression (3.3 to 5.3 bpe, depending on the graph, 4.22 for graph UK)
among all the techniques that provide direct and reverse neighbor queries. The
only alternative that gets somewhat close is RePair both, but it is much slower
to retrieve direct neighbors. For reverse neighbors, instead, it is an interesting
alternative. Hybrid37 offers relevant tradeoffs in some cases. Finally, WebGraph
× 2 and RePair × 2 offer very attractive time performance, but they need
significantly more space. As explained, using less space may make the difference
between being able of fitting a large Web graph in main memory or not.

If, instead, we wished only to carry out forward navigation, alternatives Re-
Pair and WebGraph become preferable in most cases. Figure 3(e), however, shows
graph EU, where we still achieve significantly less space than WebGraph.

We also compare our proposal with the method in [2] (Smaller). As we do not
have their code, we ran new experiments on a Pentium IV of 3.0 GHz with 4
GB of RAM, which resembles better the machine used in their experiments. We
used the smaller graphs, on which they have reported experiments. Figure 3(f)
shows the space and average time needed to retrieve the whole adjacency list of
a page, in milliseconds per page. As, again, their representation cannot retrieve
reverse neighbors, Smaller × 2 is an estimation of the space they would need to
represent both the normal and transposed graphs.

Our method is orders of magnitude faster to retrieve an adjacency list, while
the space is similar to Smaller × 2. The difference is so large that it could be
possible to be competitive even if part of our structure (e.g. L) was in secondary
memory (in which case our main memory space would be similar to just Smaller).
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6 Extended Functionality

While alternative compressed graph representations [2, 6, 10] are limited to re-
trieving the direct, and sometimes the reverse, neighbors of a given page, and we
have compared our technique with those in these terms, we show now that our
representation allows for more sophisticated forms of retrieval than extracting
direct and reverse neighbors.

First, in order to determine whether a given page p points to a given page q,
most compressed (and even some classical) graph representations have no choice
but to extract all the neighbors of p (or a significant part of them) and see if
q is in the set. We can answer such query in O(logk n) time, by descending to
exactly one child at each level of the tree. More precisely, at level � we descend
to child k · �p/kh−�−1�+ �q/kh−�−1�, if it is not a zero, and compute the relative
position of cell (p, q) in the submatrix just as in Section 3.3. If we arrive at the
last level and find a 1 at cell (p, q), then there is a link, otherwise there is not.

A second interesting operation is to find the direct neighbors of page p that
are within a range of pages [q1, q2] (similarly, the reverse neighbors of q that are
within a range [p1, p2]). This is interesting, for example, to find out whether p
points to a domain, or is pointed from a domain, in case we sort URLs in lexico-
graphical order. The algorithm is similar to Direct and Reverse in Section 3.3,
except that we do not enter all the children 0 ≤ j < k of a row (or column), but
only from �q1/kh−�−1� ≤ j ≤ �q2/kh−�−1� (similarly for p1 to p2).

Yet a third operation of interest is to find all the links from a range of pages
[p1, p2] to another [q1, q2]. This is useful, for example, to extract all the links
between two domains. The algorithm to solve this query indeed generalizes all
of the others we have seen. This gives times of O(n) for retrieving direct and
reverse neighbors (we made a finer average-case analysis in Section 3.3), O(p2 −
p1 + logk n) or O(q2 − q1 + logk n) for ranges of direct or reverse neighbors, and
O(logk n) for queries on single links.

7 Conclusions

We have introduced a compact representation for Web graphs that takes ad-
vantage of the sparseness and clustering of their adjacency matrix. Our rep-
resentation enables efficient forward and backward navigation in the graph (a
few microseconds per neighbor found) within compact space (about 3 to 5 bits
per link). Our experimental results show that our technique offers an attrac-
tive space/time tradeoff compared to the state of the art. Moreover, we support
queries on the graph that extend the basic forward and reverse navigation.

More exhaustive experimentation and tuning is needed to exploit the full
potential of our data structure, in particular regarding the space/time tradeoffs
of the hybrid approach. We also plan to research and experiment more in depth
on the extended functionality supported by our representation.

The structure we have introduced can be of more general interest. It could be
fruitful, for example, to generalize it to binary relations, such as the one relating
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keywords with the Web pages, or more generally documents, where they appear.
Then one could retrieve not only the Web pages that contain a keyword, but also
the set of keywords present in a Web page, and thus have access to important
summarization data without accessing the page itself. Our range search could
permit searching within subcollections or subdirectories. Our structure could
become a relevant alternative to the current state of the art in this direction,
e.g. [3, 9]. Another example is the representation of discrete grids of points, for
computational geometry applications or geographic information systems.
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Abstract. We consider on-line construction of a suffix tree for a param-
eterized string, where we always have the suffix tree of the input string
read so far. This situation often arises from source code management sys-
tems where, for example, a source code repository is gradually increasing
in its size as users commit new codes into the repository day by day. We
present an on-line algorithm which constructs a parameterized suffix tree
in randomized O(n) time, where n is the length of the input string. Our
algorithm is the first randomized linear time algorithm for the on-line
construction problem.

1 Introduction

Parameterized pattern matching is a variant of traditional pattern matching
in which some symbols are allowed to be consistently renamed into different
symbols within a match. It was first introduced by Baker [1] and has been suc-
cessfully applied to several application domains, such as software maintenance,
program plagiarism detection [1,2], and RNA structural matching [3].

For general pattern matching problems, we usually preprocess a text and build
an index data structure, e.g., a suffix tree or a suffix array, which enables us to
answer pattern occurrence queries in time proportional to the length of the
pattern but independent of the length of the text. For parameterized pattern
matching, Baker adopted this idea and proposed an algorithm to answer all
pocc parameterized matches of a pattern of length m in a text of length n in
O(m log n+pocc) time, by using a variant of suffix trees, so called parameterized
suffix tree (p-suffix tree) of the text.
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A suffix tree of a string T is the compacted trie of all the suffixes of T [4,5,6].
A suffix tree is one of the most popular full-text index data structures, and it has
been widely used in many applications for decades. There are several algorithms
to construct the suffix tree of a string drawn from a constant-sized alphabet
in O(n) time. These include the algorithms by Weiner [4], McCreight [5] and
Ukkonen [6]. We remark that all these algorithms exploit an important property
of suffix trees, i.e., each node has an outgoing suffix link. For a general alphabet,
where the alphabet size is not constant but some polynomial in n, however, these
algorithms inherently incur O(log n) overhead due to the branching problem. To
address this problem, Farach [7] proposed a divide-and-conquer approach, which
constructs suffix trees in O(n) time. This algorithm differs from the others above
in that it is not sweep-based and it is not dependent on the existence of outgoing
suffix links.

In contrast to suffix trees for strings, p-suffix trees lack the suffix link property,
i.e., there could be nodes in the tree without an outgoing suffix link defined. In
addition, the number of children in an internal node of the tree usually needs
not to be bounded by a constant. These problems have been major hurdles
in developing a linear time construction algorithm for p-suffix trees, and until
recently, it seemed inevitable to bear the alphabet dependent O(log n) factor
in the time complexity [1,8]. However, Cole and Hariharan [9] came up with
a breakthrough that achieves a randomized O(n) time construction algorithm.
The algorithm uses dynamic perfect hashing and introduces additional types of
nodes in the tree, so that it effectively deals with the above mentioned problems.

We consider an on-line construction of p-suffix trees, where we always have
the p-suffix tree of the input string read so far. This situation often arises from
source code management systems where, for example, a source code repository
is gradually increasing in its size as users commit new codes into the repository
day by day. If we want to use p-suffix trees for duplicate code detection [1], we
have to rebuild the entire p-suffix tree index from scratch, every time a user
commits a new code. On-line p-suffix tree construction, on the other hand, only
requires to update a portion of the p-suffix tree, thus it can minimize the effort
to manage the whole index system.

However, the above mentioned algorithms do not support on-line construction
since they are based on McCreight’s suffix tree construction algorithm. Recently,
Shibuya [3] adapted Ukkonen’s algorithm to [1] and [8], and proposed on-line
construction algorithms that achieve the same time complexity bounds as their
off-line counterparts (see Table 1). Still, to the best of our knowledge, an on-
line construction algorithm which achieves linear time complexity has not been
reported yet.

In this paper, we propose an on-line algorithm for constructing parameterized
suffix trees in randomized linear time. Our algorithm can be regarded as the
on-line counterpart to the Cole and Hariharan’s off-line construction algorithm.
Table 1 summarizes the time complexities of p-suffix tree construction algorithms
in the literature.
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Table 1. Time complexity of algorithms for constructing parameterized suffix trees.
n is the length of an input parameterized string over Σ ∪ Π where Σ is a set of fixed
symbols and Π is a set of parameters.

Off-line Algorithms On-line Algorithms
Algorithm Time Complexity Algorithm Time Complexity
Baker [1] O(n(|Π | + log |Σ|)) Shibuya [3] O(n(|Π | + log |Σ|))
Kosaraju [8] O(n(log |Π | + log |Σ|)) Shibuya [3] O(n(log |Π | + log |Σ|))
Cole and Hariharan [9] Randomized O(n) This paper Randomized O(n)

2 Preliminaries

Let T = T [1..n] be a string of length n over a finite ordered alphabet. We denote
the i-th symbol of T as T [i]. A substring starting at position i and ending at
position j is denoted by T [i..j] = T [i]T [i + 1] . . . T [j], and if i > j, we regard
T [i..j] as an empty string. We denote the i-th prefix of T ending at position i
as T i = T [1..i], and the j-th suffix of T starting at position j as Tj = T [j..n].

2.1 Parameterized Matching

A parameterized string (p-string, in short) is a string over Σ ∪ Π , where Σ is a
set of fixed symbols and Π is a set of parameters. Two p-strings are said to be a
parameterized match (p-match) if there exists a bijective mapping from Π to Π
which maps a parameter in the first string into a parameter in the second string,
while keeping the fixed symbols invariant. For example, suppose that we have a
set of fixed symbols Σ = {a, b, c, · · · } and a set of parameters Π = {X, Y, Z, · · · }.
Two p-strings abXaXYb and abZaZXb are a p-match since all fixed symbols, a
and b, are identical and there exists the bijective mapping from X and Y of the
first p-string into Z and X, respectively, of the second p-string.

In order to match two p-strings, we use an encoding prev, which chains to-
gether occurrences of the same parameter, to obtain a string in (Σ ∪ IN)∗ where
IN is the set of non-negative integers. For each parameter, the leftmost occur-
rence is represented by a 0, and each successive occurrence is represented by the
difference in positions compared to the previous occurrence of the same param-
eter. A number representing such difference in positions is called a parameter
pointer. For example, prev(abXaXYb) = ab0a20b = prev(abYaYZb).

Definition 1 (prev encoding). We define prev : (Σ ∪ Π)∗ → (Σ ∪ IN)∗ to be
the function such that for any p-string T of length n, prev(T ) = S where, for
1 ≤ i ≤ n,

S[i] =

⎧
⎪⎨

⎪⎩

T [i] if T [i] ∈ Σ,

0 if T [i] ∈ Π and T [i] �= T [j] for any 1 ≤ j < i,

i − k if T [i] ∈ Π and k = max{j|T [j] = T [i] and 1 ≤ j < i} .

From the above definitions, it is easily seen that matching two prev encoded
strings is equivalent to p-matching two p-strings [1].
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Fig. 1. A p-suffix tree of the p-string T = XbYbYXbX$ where Σ = {b, $} and Π = {X, Y}

Theorem 1. Two p-strings T and T ′ of the same length n are a p-match if and
only if prev(T ) = prev(T ′).

2.2 Parameterized Suffix Trees

Assume that a given p-string T ends with the sentinel symbol $ ∈ Σ, which is
lexicographically smaller than any other symbol in Σ ∪ Π and occurs nowhere
else in T . For 1 ≤ i ≤ n, we define the i-th parameterized suffix (p-suffix) of T ,
denoted by T i, as the prev encoded string of a suffix Ti, i.e., prev(Ti).

A parameterized suffix tree (p-suffix tree) of T , PST (T ), is a compacted trie
that represents all the p-suffixes of T . We refer to [1] for a formal description. An
example of the p-suffix tree of T = XbYbYXbX$ is shown in Fig. 1. Each edge of
the tree is labeled with a nonempty substring of suffix T i for some i. Note that
some edge labels are not exact substrings of prev(T ) as we will describe shortly.
We frequently refer to any position, locus, in the tree as follows. The string for
a locus u, denoted by str(u), is the concatenation of the labels on the path from
the root to that locus. If u is a node then we say that str(u) occurs explicitly;
otherwise, it occurs implicitly. For any locus u, we call u the locus of str(u). If
a locus u of a string ω lies in the middle of the edge from a node x to a node
y, we call x and y the contracted and extended locus of u (or ω), respectively.
An implicit locus can be specified by its contracted locus and the proper offset
label. For any locus u, pathlen(u) is defined to be the length of str(u). We also
denote the parent of a given node u as parent(u). In Fig. 1, for example, we can
see str(u) = 0b and pathlen(u) = 2 for explicit locus u. An implicit locus v can
be specified by (root, b) in this example.

Due to the difference between normal and parameterized strings, we have to
address the following issues to construct p-suffix trees.



On-Line Construction of Parameterized Suffix Trees 35

Dynamic representation of edge labels. Note that, for some integers 1 ≤
i < j ≤ n, a parameter symbol T [j] can have different values in T i and prev(T ),
if the last occurrence of the same symbol lies before i. For example, observe that
for T = aXaXb, the 4-th symbol X differs in prev(T ) = a0a2b and T 3 = a0b.
Since the algorithm frequently refers to the prev value of a symbol on any locus
in the tree, it should be computed in constant time. By storing prev(T ) in an
array of size n, we can compute the j-th symbol of T i in constant time [1].
Let eval be the function of j and b ∈ Σ ∪ IN such that eval(j, b) = 0 if b is
a non-negative integer larger than j − 1, and eval(j, b) = b, otherwise. Then,
T i[j] = eval(j, prev(T )[j + i − 1]).

In order to store the p-suffix tree in space linear in the input size, each edge
label is specified by a pair (k, p), where k and p are starting and ending posi-
tions of the corresponding substring of T . We store pathlen(u) for each internal
node u, so that we can dynamically determine the label on the edge. For ex-
ample, if node u has an outgoing edge label (k, p), we evaluate the label as
T k−pathlen(u)[pathlen(u)+1..pathlen(u)+ (p−k+1)]. This can be done in time
proportional to the length of the label.

Missing suffix links. We define suffix links in p-suffix trees as follows.

Definition 2 (Suffix link). For a node u, we define a suffix link from a node
u to a locus v, if str(u) is a prefix of the (i − 1)-th p-suffix T i−1 and str(v) is a
prefix of the i-th p-suffix T i and |str(u)| = |str(v)| + 1. Let link(u) denote this
locus v.

Unlike the suffix tree for strings, an internal node in the p-suffix tree does not
necessarily have an outgoing suffix link defined as a node. This is due to the fact
that the distinct right context property [10] does not hold for p-strings. Figure 1
shows that for node u, suffix link link(u) points to the middle of an edge, which
corresponds to implicit locus v. Observe that v is not defined as a real node,
i.e., an internal node with at least two children. For this reason, dynamic data
structure is used to maintain incoming suffix links for each edge and this incurs
O(log n) factor in previous construction algorithms [1,8,3].

Node branching. Given a node u and a symbol α, node branching is to find
the edge (u, v) whose label begins with α. Since an internal node in the tree has
at most |Σ| + |Π | children, branching may incur alphabet dependent O(log n)
overhead.

3 Algorithm

We assume that p-string T is given on-line symbol by symbol and from left to
right. At time r, the algorithm reads the r-th symbol of T and builds PST (T r)
by updating PST (T r−1). Note that the prefix of p-suffix T i read so far at time
r is T

r

i = T i[1..r − i + 1], where 1 ≤ i ≤ r.
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Algorithm 1. Main

1: Create ⊥ and root, and set link(root) ← ⊥;
2: Create an edge from ⊥ to root and mark it as a don’t care edge;
3: The result tree is denoted by PST (T 0);
4: for r = 1 to n do
5: Compute prev(T )[r];
6: Transform PST (T r−1) into PST (T r);
7: end for

The outline of our algorithm for constructing the p-suffix tree of T is shown in
Algorithm 1. Our algorithm is based on the Ukkonen’s algorithm, but we need
some tools to make our on-line algorithm run in linear time for p-strings.

– Computing prev on-line. As we have considered in the previous section,
we need to determine the prev value of a newly introduced symbol in order
to maintain an array of prev(T ). This can be done in O(1) time by using a
table of size |Π | which holds the last occurrence of each parameter. In the
case that |Π | is a polynomial in n, we can use a dynamic perfect hashing
scheme [9] instead. Thus we assume that at any time we can determine the
symbol on the label in the p-suffix tree in constant time.

– Implicit update. For supporting implicit update of edges to leaf nodes u,
we use an open transition (k, ∞) to represent the label on the edge from
parent(u) to u as described in [6].

– Maintaining missing suffix links. To maintain missing suffix links, three
types of nodes, namely, real, imaginary and back-propagated nodes are
used [9]. We call a node v an imaginary node, if v has only one child and
there are some nodes u having suffix links to v, i.e., v = link(u). We call a
node u a back-propagated node, if u has one child and an outgoing suffix link
to a node v, i.e., v = link(u) exists. Real nodes are the other internal nodes,
which are neither imaginary nor back-propagated.

– Constant node branching. Cole and Hariharan [9] showed that node
branching can be done in randomized O(1) time using dynamic perfect hash-
ing with high success probability. By hashing a pair of the node number and
the first symbol of the label, we can find the corresponding edge in constant
time.

At time r, we need to update loci of the p-suffixes by extending the existing
edges or creating new branches in PST (T r−1). For 1 ≤ i ≤ r − 1, let ω denote
T

r−1
i . We can represent T

r

i as ωa, where a ∈ Σ∪IN is the prev value of the newly
introduced r-th symbol on the corresponding locus. According to the occurrences
of ω and ωa in PST (T r−1), exactly one of the following cases holds:

– Case 1. ω occurs only once in PST (T r−1).
It implies that ωa does not occur in PST (T r−1) and the locus of ω is a leaf
in PST (T r−1). In order to insert ωa to PST (T r−1), we only update the
locus of ω to point to ωa. However, this can be done implicitly thanks to the
open transition [6].
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– Case 2. ω occurs more than once in PST (T r−1), but ωa does not.
It implies that for some symbol b �= a, ωb occurs in PST (T r−1). Thus,
we have to create a new leaf w and (possibly) an internal node v so that
str(w) = ωa and str(v) = ω.

– Case 3. ωa occurs already in PST (T r−1).
It implies that ωa already exists in PST (T r−1). Thus, we do nothing but
extend the current locus by one symbol to point to ωa.

We define an active point and an end point as follows. The end point at time
r, denoted by Endr, is the locus of the longest p-suffix T

r−1
i for which Case 3

holds. The active point at time r, denoted by Actr, is the locus of the longest
p-suffix T

r−1
i for which Case 2 holds (if exists). If no such suffix for Case 2 exists,

the active point is defined to be the same as the end point.
We now describe how the algorithm builds PST (T r) from PST (T r−1). At

time r, we denote a ∈ Σ ∪ IN as the prev value of the newly introduced r-th
symbol. Note that we have to compute the proper value of a according to the
corresponding locus. Let v be Actr at the beginning of time r.

1. (Case 3) If we can follow an existing edge from v with a (i.e., Actr = Endr),
(a) follow the edge from v with a and find the locus w of ωa, where ω =

str(v). By definition, w will be Actr+1.
(b) r ← r + 1.

2. Otherwise, we perform the following iterations until Endr is encountered.
(a) (Case 2) While v does not have an a-transition

i. Create an a-transition from v
ii. Traverse upwards from v to find the nearest ancestor u which has an

outgoing suffix link. Follow the suffix link from u to u′ = link(u).
iii. Traverse downwards from u′ to a locus v′ such that |str(v′)|−|str(u′)|

= |str(v)|−|str(u)|. Meanwhile, for every second node z′ encountered
on the path from u′ to v′ (excluding u′ and v′), we create a new back-
propagated node z (if not exists) on the path from u to v such that
|str(z′)| − |str(u′)| = |str(z)| − |str(u)|. Set link(z) ← z′.

iv. If v′ is not a node, create a node at v′ and link(v) ← v′.
v. v ← v′.

(b) (Case 3) Follow an existing edge from v with a and find the locus w of
ωa, where ω = str(v). w will be Actr+1.

(c) r ← r + 1.

We remark that if a newly created node v′ has only an a-transition, v′ is an
imaginary node by definition.

4 Analysis

We now discuss the time complexity of our algorithm.
First, we consider the total number of nodes created during the entire op-

erations. Since we create at most one real node and one imaginary node per



38 T. Lee, J.C. Na, and K. Park

suffix, the number of real and imaginary nodes is bounded by O(n). By using
a charging argument, the number of back-propagated nodes is also bounded by
O(n). We omit the details because it can be proven as in [9].

We now account for the time taken for traversing the p-suffix tree. At time r,
the algorithm performs iterations until the end point is encountered. Note that
the total number of iterations during the entire operations is bounded by O(n)
as in [6]. For each iteration, we process the following procedures:

1. Traverses up nodes from v to the nearest ancestor u with an outgoing suffix
link.

2. Traverses down from u′ = link(u) to v′ and create back-propagated nodes.
3. Performs the remaining operations, e.g., node branching, updating edge

labels, computing pathlen(v) for newly created nodes, etc.

The time to process Part 1 and 2 is proportional to the number of imaginary
and back-propagated nodes, and it is bounded by O(n). We refer to [9] for the
details. Part 3 requires constant time to perform each operation and thus the
total time is O(n).

Theorem 2. For a p-string T of length n, the parameterized suffix tree of T
can be constructed on-line in randomized O(n) time.
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Abstract. A succinct text index uses space proportional to the text
itself, say, two times n log σ for a text of n characters over an alphabet of
size σ. In the past few years, there were several exciting results leading to
succinct indexes that support efficient pattern matching. In this paper
we present the first succinct index for a text that contains wildcards.
The space complexity of our index is (3 + o(1))n log σ + O(� log n) bits,
where � is the number of wildcard groups in the text. Such an index finds
applications in indexing genomic sequences that contain single-nucleotide
polymorphisms (SNP), which could be modeled as wildcards.

In the course of deriving the above result, we also obtain an alter-
nate succinct index of a set of d patterns for the purpose of dictionary
matching. When compared with the succinct index in the literature, the
new index doubles the size (precisely, from n log σ to 2n log σ, where n
is the total length of all patterns), yet it reduces the matching time to
O(m log σ + m log d + occ), where m is the length of the query text. It
is worth-mentioning that the time complexity no longer depends on the
total dictionary size.

1 Introduction

Pattern matching is a fundamental problem. Consider a text T and a pattern P ,
the earliest work can solve the problem in O(|T | + |P |) time. When the text
remains relatively static (say, the text is the human genome), one would like to
build an index of T so as to speed up pattern matching. Let n be the number of
characters of T . The classical index suffix trees requires O(n) words, or equiva-
lently, O(n log n) bits, and can support pattern matching in O(|P | + occ) time,
where occ is the number of occurrences of P in T . Note that the space complex-
ity has a natural lower bound of n logσ bits (i.e., worst-case text size), where
σ is the alphabet size. Starting with the work of Ferragina and Manzini [6] and
Grossi and Vitter [9], the past decade has witnessed a chain of works that make
it feasible to build a succinct text index with size proportional to n log σ bits or
even a compressed index (with size proportional to nHk bits), while supporting
efficient pattern matching, using O(|P | + occ log1+ε n) time for any ε > 0 (see
the survey by Navarro and Mäkinen [12] for a complete list of references).

This paper is concerned with pattern matching on text containing wildcards
(or don’t care characters). Specifically, a wildcard, denoted by φ, is a special char-
acter that matches any single character. Fischer and Paterson [8] were among
� Part of the work is supported by RGC Grant HKU 714006E.
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the first to study wildcard matching. There are several results on text indexing
for wildcard matching. In the simple setting where the text contains no wild-
cards, Rahman and Iliopoulos [15] and later Lam et al. [11] have each given
an O(n)-word index for matching patterns with wildcards. Indexing a text con-
taining wildcards is technically more challenging. It naturally arises in indexing
genomic sequences, in which some base pairs are known to be single-nucleotide
polymorphisms (SNP), that could be modeled as wildcards. The wildcard index
by Cole et al. [5] uses O(n logk n) words, where k is the number of wildcards.
It takes O(|P | + logk n log log n + occ) time to find the occurrences of a given
pattern P without wildcards. Obviously, the size of the index implies a pro-
hibitive amount of memory for applications involving more than a few wildcards.
Lam et al. [11] have given another index, which requires only O(n) words and
also avoids a time complexity exponential in the number of wildcards. Precisely,
the time required is O(|P | log n + γ + occ) time, where γ is defined as follows.
Assume that the text T contains � ≥ 1 groups of consecutive wildcards. I.e.,
T = T1φ

k1T2φ
k2 . . . φk�T�+1, where k1, k2, . . . k� ≥ 1, and each Ti contains no

wildcards. Define γ to be the sum, over all Ti’s, of the number of occurrences
of Ti in P . Note that γ is upper bounded by |P |(� + 1).1 Both indexes can be
extended to handle patterns with wildcards.

When we index long genomic sequences (e.g., the human genome which has
about three billion characters), even an O(n)-word or O(n log n)-bit data struc-
ture is still too large. In this paper, we give a succinct index for a text containing
wildcard characters. Precisely, assume that T has � ≥ 1 wildcard groups, the
space complexity is (3 + o(1))n log σ + O(σ log n) + O(� log n) bits. For practical
applications, the last two terms can often be absorbed into o(n log σ), and the
pattern matching time of the new index compares favorably with the previous in-
dexes. It is useful to define �̂ to be the number of distinct wildcard-group lengths
(i.e., the number distinct elements in the set {k1, k2, . . . , k�}; e.g., if ki = 1 for
all i, then �̂ = 1). Given a pattern P , our new index can find all occurrences
of P in O(|P |(log σ + min(|P |, �̂) log �) + γ logσ � + occ log1+ε n) time for any
ε > 0.

In the course of deriving the above solution for indexing wildcards, we have
also obtained a succinct index for the dictionary matching problem, which is
another classical matching problem not involving wildcards. In this problem, we
are required to index a set of patterns P1, P2, . . . , Pd with total length n. Given
a query text T , the index is required to locate the occurrences of all Pi in T .
Aho and Corasick [1] were the first to give an O(n)-word index for the dictionary
matching problem. Chan et al. [3] have improved the space complexity to O(nσ)
bits, and recently Hon et al. [10] gave a succinct index using (1 + o(1))n log σ +
O(d log n) bits. The matching time for any text T is O(|T |(logε n+log d)+occ). In
this paper we present a different way to derive a succinct index for the dictionary

1 [11] has given a more practical upper bound of γ. Define the prefix complexity of
the Ti’s to be the maximum number of Tj ’s that are prefixes of the same Ti. Then γ
is at most |P | times the prefix complexity. In practice, wildcards are sparse and the
prefix complexity is often a small constant.
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matching problem. The new index increases the space to (2 + o(1))n log σ +
O(d log n) bits, but reducing the matching time to O(|T |(log σ + log d) + occ).

Organization of the paper. In Section 2, we will review several data structures
in the literature for indexing text (without wildcards), as well as for indexing
geometric data on a two-dimensional plane. In Section 3, we describe the core
elements of our succinct index, which include BWT and a new solution to the
dictionary matching problem. In Section 4, we present the details of matching
with wildcards in the text.

2 Preliminaries

Throughout this paper, we consider texts and patterns with characters chosen
from an alphabet Σ of size σ. The text can contain one or more wildcard charac-
ter φ, which is a special character not in Σ, and which can match any character
in Σ. Our data structures would make use of two additional symbols $ and #
not in Σ. We assume that $ is lexicographically smaller than all characters in Σ,
and # greater than all characters in Σ. Below we review several data structures
for text indexing (without wildcards), as well as points and rectangles in a two
dimensional plane.

2.1 Suffix Array

Let T [1..n] be a text that does not contain wildcard character and ends with a
special character $. A suffix of T is a substring T [j..n] where 1 ≤ j ≤ n. We sort
all suffixes of T in lexicographical order and store their starting positions in an
integer array SA[1, n]. Intuitively, SA[i] gives the starting position of the i-th
smallest suffix of T , or equivalently, the suffix with rank i.

Consider a pattern X . Inside SA, all the suffixes of T that contain X as a
prefix appear in consecutive entries. We define the SA range X to be [s, r] if
there are s′ = s − 1 suffixes lexicographically smaller than X , and r suffixes
smaller than or equal to X . If X does not appear in T , then s− 1 = r and the
SA range has a right boundary (r) smaller than the left boundary (s). In this
case, we say that the SA range of X is empty.

2.2 Burrows-Wheeler Transform (BWT)

Burrows-Wheeler Transform (BWT) was first proposed as a compression tech-
nique [2]. Later it was found that BWT can support pattern matching efficiently
when equipped with auxiliary data structures. Let T [1..n] be a text (containing
no wildcard). Assume T [n] = $. The BWT of T is a sequence of n characters
such that the i-th character is the character in T just preceding the rank-i suffix
of T . Precisely, BWT [i] = T [j− 1] where j = SA[i] and SA[i] �= 1. If SA[i] = 1,
BWT [i] = $.

BWT can be used to compute the SA range of any pattern if it is equipped with
auxiliary data structures to compute the functions Count(c) and Appear(i, c). For
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any character c, Count(c) gives the number of characters in T that are lexico-
graphically smaller than c, and Appear(i, c) returns the number of times c ap-
pears in the prefix BWT [1..i]. Suppose that the SA range [s, r] of a string X is
given. Then, for any character c, we can find the SA range of cX as [Count(c) +
Appear(s− 1, c) + 1, Count(c) + Appear(r, c)] [6].

A straightforward implementation of the Appear function requires O(nσ log n)
bits. To reduce the space requirement, we use the wavelet tree implementation
proposed by Ferragina et al. [7]. It only uses n log σ + o(n log σ) bits, but it
is slower, taking O(log σ) time to serve each function call. On the other hand,
with the wavelet tree implementation, we no longer need to store T or BWT
explicitly, since it supports retrieving any single character of BWT in O(log σ)
time. In summary, BWT together the auxiliary data structures occupy n logσ +
o(n log σ)+O(σ log n) bits and can support pattern matching efficiently, as stated
in the following lemma.

Lemma 1. Let P be a pattern of m characters. The SA ranges of all suffixes of
P can be computed in O(m log σ) time.

2.3 Orthogonal Range Search

Consider a set G of � points on a two-dimensional plane. Given a rectangle R =
(x1, y1)× (x2, y2), we want to find all the points in G that are enclosed by R.

Lemma 2. [13] Given � points with coordinates in [1..n], we can build an
O(� log n)-bit data structure such that given a query rectangle R, all the points
enclosed by R can be reported in O(log � + t logε �) time, where t is the number
of answers and ε > 0.

2.4 Point Enclosure Problem

Consider a set H of � rectangles on a two-dimensional plane. Given a query point
q = (x, y), we want to find efficiently all the rectangles in H that enclose q.

Lemma 3. [4] Given � rectangles on a 2-D plane, we can build an O(�)-word
data structure such that given a query point q, all the rectangles enclosing q can
be reported in O(log� + t) time, where t is the number of answers.

3 Succinct Representation of Non-wildcard Characters

Consider a text T of n characters. Suppose T = T1φ
k1T2φ

k2 . . . T�φ
k�T�+1, where

φki denotes a group of ki consecutive wildcards, and each Ti does not contain any
wildcard. Below, each Ti is called a text segment. In this section we show how to
index the Ti’s. We make use of BWT and the point enclosure data structure. The
former allows us to determine whether each Ti is a prefix of a given pattern X in
constant time. This prefix matching capability, together with the point enclosure
data structure, allow us to have a faster index for dictionary matching, i.e., to
find out the occurrences of every Ti in a given pattern X . In Section 4, we will
show how to make use of these indexes to perform wildcard matching.
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3.1 BWT and Prefix Matching

Define TS = T1$T1#T2$T2# . . . T�+1$T�+1#, where $ and # are new symbols
assumed to be lexicographically smaller than and greater than all symbols in
T , respectively. We construct the BWT index (including the necessary auxiliary
data structures) to support pattern matching for TS. We denote this index as
BWT -TS. Note that with BWT -TS, we no longer need to store the text TS
explicitly as the index can support pattern matching TS. BWT -TS uses (2 +
o(1))n log σ + O(σ log n) bits. Furthermore, we explicitly store the SA range of
each Ti (with respect to the suffixes of TS), using (� + 1) log n bits.

Below, an SA range always makes reference to the suffixes of TS. By Lemma 1,
for any pattern P [1..m], we can use BWT -TS to find the SA ranges of the suffixes
P [m..m], P [m−1..m], . . . , P [1..m] in O(m log σ) time. In the rest of this section,
we show how to exploit the SA ranges of a suffix X = P [j..m] and a text segment
Ti to determine whether X is a prefix of Ti, and more importantly, whether Ti

is a prefix of X .
Note that X may or may not appear in any Ti, and the SA range [s, r] of X

may be empty (s − 1 = r) or non-empty (s ≤ r). When X has a non-empty
SA range, it is straightforward to determine whether X is a prefix of a text
segment Ti, or vice versa. See the following lemma. The duplicate structure
of TS is needed to handle the case when X has an empty SA range.

Lemma 4. Suppose that the text segment Ti has SA range [p, q]. For any string X,
if the SA range [s, r] of X is non-empty, then (i) X is a prefix of Ti if and only if
s ≤ p ≤ q ≤ r; and (ii) Ti is a prefix of X if and only if p ≤ s ≤ r ≤ q. Both
conditions can be determined in constant time.

Proof. We only prove (i), as (ii) is symmetric. Suppose X is a prefix of Ti. The
SA range of X encloses all suffixes with prefix X , so the SA range of Ti must
be enclosed by the SA range of X . Hence, s ≤ p ≤ q ≤ r. Conversely, suppose
s ≤ p ≤ q ≤ r. The SA range of X encloses all suffixes with the prefix X . Since
the SA range of Ti is a subrange of [s, r], all suffixes with the prefix Ti must also
have X as the prefix. Thus, X is a prefix of Ti.

It remains to consider the case when X has an empty SA range. In this case, X
does not occur anywhere in TS, and X is not a prefix of any text segment Ti.
However, Ti can still be a prefix of X . To determine this case is no longer
straightforward. The following lemma exploits the duplicate structure of each Ti

in TS to derive a simple condition.

Lemma 5. Suppose that the text segment Ti has SA range [p, q]. For any string X,
if the SA range [s, r] X is empty (i.e., s − 1 = r), then Ti is a prefix of X if and
only if p ≤ r < s ≤ q. This can be determined in constant time.

Proof. Suppose that Ti is a prefix of X . Since X has an empty SA range and Ti

has a non-empty one, Ti is a proper prefix of X . Recall that $ is smaller than
any character in Σ, and hence Ti$ is lexicograpically smaller than X . Similarly,
Ti# is lexicograpically greater than X . If [s, r] is an empty range, s− 1 = r and
r < s. It remains to prove the other two inequalities: (1) p ≤ r; (2) s ≤ q.



44 A. Tam et al.

(1) By definition of [p, q], the p-th smallest suffix of TS contains Ti$ as a prefix.
This prefix is smaller than X , and hence there are at least p suffixes of TS
smaller than X . Therefore, s− 1 ≥ p and r = s− 1 ≥ p.

(2) By definition of [p, q] and #, the q-th smallest suffix of TS contains Ti# as
a prefix, and this prefix is greater than X . There are at most q − 1 suffixes
of TS smaller than or equal to X . Therefore, r ≤ q − 1 and s = r + 1 ≤ q.

Conversely, if p ≤ r < s ≤ q, we can prove that Ti is a prefix of X . Let X ′

be the prefix comprising the first |Ti| characters of X (or equal to X if X is
shorter than Ti). For the sake of contradiction, we assume that Ti is not a prefix
of X and consider the scenarios when X ′ is larger than Ti or smaller than Ti.
If X ′ > Ti, TS contains at least q suffixes smaller than X , and s − 1 ≥ q. It
contradicts that s ≤ q. If Ti > X ′, then there are at most p− 1 suffices that are
smaller than X , and s− 1 ≤ p− 1. It contradicts that r = s− 1 ≥ p.

3.2 Dictionary Matching

Given the text segments T1, T2, . . . , T�+1 and a pattern P [1..m], the dictionary
matching problem is to report the occurrences of all Ti that appear in P . In this
section, we show how to make use of BWT -TS (defined in the previous section)
and a point enclosure index to perform dictionary matching in a more efficient
way than the existing indexes in the literature. The overall space requirement
is (2 + o(1))n log σ + O(σ log n) + O(� log n) bits, and the dictionary query can
be answered in O(m log σ +m log � + γ) time, where γ denotes the total number
of occurrences. This result, when compared with the work of Hon et al. [10],
doubles the space requirement, but improves the dominating term of the time
complexity from m logε n to m log σ.

Suppose that a text segment Ti appears in P . Then Ti must be a prefix of
some suffix of P . To find out such occurrences, we consider each suffix P [j..m]
of P separately and find all Ti’s that are a prefix of P [j..m]. First of all, we use
Lemma 1 to compute the SA ranges (with respect to TS) of every suffix P [j..m].
Using Lemmas 4(ii) and 5, we can check whether Ti, for all i in [1, � + 1], is a
prefix of P [j..m] in O(�) time. We can speed up this checking process for each
P [j..m] to O(log �) time by a reduction to a point enclosure problem defined as
follows.

For each Ti with SA range [p, q], we consider the rectangle (p, p)× (q, q)
in the two-dimensional plane. Let H be the set of all the � + 1 rectan-
gles associated with the Ti’s. We build an O(� log n)-bit index for point
enclosure query. For each P [j..m], we transform its SA range [s, r] to a
query point xj = (s, r). By Lemmas 4(ii) and 5, Ti is a prefix of P [j..m]
if and only if the rectangle of Ti encloses xj .

Lemma 6. We can build an index for T1, T2, . . . , T�+1 using (2 + o(1))n log σ +
O(σ log n)+O(� log n) bits. Then, given a pattern P , the occurrences of all Ti in
P can be computed in O(m log σ +m log �+ γ) time, where γ is the total number
of occurrences.
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Proof. First, we can find the SA ranges of all suffixes of P . By Lemma 1, it
takes O(m log σ) time. H contains � + 1 rectangles. By Lemma 3, we can build
an O(� log n)-bit data structure to answer the point enclosure query of each suffix
of P in O(log �+t) time, where t is the number of answers. In summary, the total
time required to find the occurrences of all Ti in P is O(m log σ + m log � + γ).

Repeated Dictionary Matching. Given a pattern P , after we have computed
the γ occurrences of the text segments in P , we want to store these results in a
compact way so that they can be retrieved altogether in O(γ) time. It is indeed
relatively simple to derive a scheme using only O(m log �) bits, i.e., independent
of the size of γ. Details are as follows.

First, we observe a relationship between all text segments Ti that are a prefix
of a particular suffix P [j..m] of P . For any 1 ≤ j ≤ m, let Dj be the set
containing all such Ti’s. Let Longest(Dj) denote the longest Ti in the set Dj .
Note that a text segment Ti is in Dj if and only if Ti is a prefix of Longest(Dj).
Therefore, for each Ti, we maintain a set of text segments that are each a prefix
of Ti. Then, for each P [j..m], we only need to store Longest(Dj). The space
required to store all Longest(Dj) for all j is O(m log �) bits. To re-generate the
γ answers of the dictionary matching for P , we report all Ti’s that are each a
prefix of Longest(Dj) for all j.

It remains to show how to maintain the list of prefix text segments for each Ti.
There are several possible ways. Below we make use of a compact trie, which
requires O(� log �) bits. First, we build a compact trie CT for all text segments
{T1$, T2$, .., T�$}. Each Ti is associated with a leaf in CT . If text segments are
identical, they are associated with the same leaf. Consider any node u in CT ,
we denote path(u) as the concatenation of all edge labels from the root to u.
For each Ti, we mark the node v of CT such that path(v) = Ti. Then, for all
nodes, we store a link to its closest marked ancestor. The space required by CT
is O(� log �) bits. Given any Ti, we can recover the text segments that are a prefix
of Ti by traversing the marked nodes from the leaf associated with Ti towards
the root. To conclude, the space requirement is dominated by BWT -TS and the
SA ranges of all Ti’s, which is (2 + o(1))n log σ + O(σ log n) + O(� log n) bits.

Lemma 7. Using CT , we can retrieve, for any Ti, all the text segments that
are each a prefix of Ti in O(t) time, where t is the number of results.

4 Matching with Wildcards

Finally we come to the discussion of matching a text T containing wildcards.
Assume T = T1φ

k1T2φ
k2 ..T�φ

k�T�+1, where k1, k2, . . . , k� ≥ 1, and each Ti

contains no wildcards. The basic data structure is BWT -TS (as defined in
Section 3.1), which indexes all the text segments Ti of T . Furthermore, we index
the reverse of each Ti, which is denoted ←−Ti below. Let TP = ←−T1$

←−
T2$ . . .

←−
T�$,

and denote BWT -TP as the index comprising the BWT of TP and the required
auxiliary data structures (as stated in Section 2.2). BWT -TS and BWT -TP to-
gether occupy (3+ o(1))n logσ +O(σ log n) bits. Note that TP doesn’t have the
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duplicate structure of TS. We only need BWT -TP to support constant-time
checking whether a string X is a prefix of some ←−Ti, but not vice versa. We also
store the SA ranges of all Ti’s with respect to TS, as well as the SA ranges of
all ←−Ti’s with respect to TP . They require O(� log n) bits.

Additional auxiliary data structures (such as for indexing the SA ranges of the
Ti’s) will be given in the discussion below; they only use o(n log σ) + O(� log n)
bits.

Let P be a given pattern of m characters. Following Lam et al. [11], we divide
the problem of matching P with T into three cases.

Type 1: P is a substring of some Ti, where 1 ≤ i ≤ � + 1.
Type 2: P occurs in T [u..v] which contains exactly one wildcard group φkj .
Type 3: P occurs in T [u..v] which contains two or more wildcard groups.

Below we show how to make use of BWT -TS, BWT -TP and some auxiliary
data structures to match the pattern efficiently in each case.

4.1 Type 1 Matching

This is the simplest case and it does not involve any wildcards. We simply search
for P in BWT -TS. The required SA range can be computed in O(n log σ) time.
The only technical difficulty is how to retrieve the occurrences of P given the
SA range of P with respect to TS. The problem becomes trivial if we can keep
a suffix array of TS, which requires O(n log n) bits. Below we show that with a
suitable sampling of the suffix array, we can reduce the space to o(n log σ), while
allowing each occurrence to be retrieved in O(log1+ε n) time for any ε > 0.

Lemma 8. We can build an o(n log σ)-bit auxiliary data structure such that,
given the SA range of a pattern P , the occurrences of P in TS can be reported
in O(occ1 logε+1 n) time, where occ1 is the number of type-1 occurrences.

Proof. Let β be the sampling factor. We show that an index of O(n
β log n) bits

would allow us to access an value in the suffix array of TS in O(β log σ) time.
Let M be a bit vector of length |TS|. Initially, M [i] = 0 for all i. Then we

mark every M [i] = 1 where SA[i] = kβ and 0 ≤ k ≤
⌈

n
β

⌉
. We store the tuple

(i, SA[i]) where M [i] is marked with 1 in ascending order of i. Suppose we want
to retrieve SA[j] which has not been stored up. Let j0 = j. We will have to find
an index jy such that the tuple (jy , SA[jy]) is stored and SA[j0]−SA[jy] < β. In
general, we can find the index jx by backward searching BWT -TS with character
BWT -TS[jx−1]. We recurively obtain j1, j2, j3.. until we find jy such that the
tuple (jy , SA[jy]) is stored. Tuple can be retrieved in constant time if a rank and
select data structure has been built on M . Then, we report SA[j] = SA[jy] + y.
The searching time for a character in BWT -TS is O(log σ). Since y < β, we can
compute SA[j] in O(β log σ) time.

Let β = �logε n logσ n� for some ε > 0. The space requirement of the sampled
SA plus the rank and select index is o(n log σ). The access time of an entry in
the suffix array becomes O(log1+ε n).
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4.2 Type 2 Matching

For type 2 matching, we are interested in matching a given pattern P [1..m] with
Tiφ

kiTi+1 for all 1 ≤ i ≤ �. More specifically, we want to find out whether,
for some 1 ≤ a ≤ m, P [1..a] is a suffix of Ti, and P [a + ki + 1..m] is a prefix
of Ti+1. The first condition can be rewritten as

←−−−−
P [1..a] is a prefix of←−Ti. In other

words, both conditions involve prefix matching, so we can exploit BWT -TP and
the SA ranges of ←−Ti’s, as well as and BWT -TS and the SA ranges of Ti’s. By
Lemma 4(i), we would first compute the SA ranges of the suffixes of P and ←−P ;
then for any fixed i and a, it takes constant time to check whether

←−−−−
P [1..a] is a

prefix of ←−Ti , and P [a + ki + 1..m] is a prefix of Ti+1. Finding all the SA ranges
requires O(m log σ) time, and then the naive implementation of type-2 matching
requires O(m�) time.

For genomic sequences, we observe that the number of wildcard groups (i.e., �)
is usually not a small constant, but the number of distinct wildcard group sizes ki’s
is a small constant. Recall that the latter is denoted by �̂. In fact, it is often the case
that most groups contain only one wildcard. This motivates us to further improve
the time complexity to something depending on �̂ instead of �. Below we show how
to index the SA ranges of the Ti’s using an orthogonal range search index. Then
the time complexity can be reduced to to O(m(�̂) log � + occ2 logε �) time, where
occ2 is the number of type-2 occurrences of P .

Consider any integer b which is equal to some wildcard group size ki. Let W (b)
denote all the wildcard groups that have size b, i.e., W (b) = {i | ki = b and 1 ≤
e ≤ �}. We want to conduct type-2 matching for all the wildcard groups in W (b)
together. Given a position a of P , we want to find, for all i in W (b), whether
P [1..a] is a suffix of Ti and P [a + b + 1..m] is a prefix of Ti+1.

Lemma 9. We can build an O(� log n)-bit data structure to store the SA ranges
of ←−Ti’s and the SA ranges of Ti’s. Then, for any wildcard group size b, given
a pattern P [1..m] and a position 1 ≤ a ≤ m, we can find in O(log �) time the
number of i ∈ W (b) such that

←−−−−
P [1..a] is a prefix of ←−Ti and P [a + b + 1..m] is

a prefix of Ti+1. Furthermore, if there are t such i’s, we can report them in
O(t logε �) time for some ε > 0.

Proof. We make use of orthogonal range search on a two-dimensional plane.
Consider any wildcard group size b. We define a set Gb of points as follows. For
each wildcard group i ∈ W (b), let the SA range of ←−Ti on TP be (s′, r′) and the
SA range of Ti+1 on TS be (s, r). We add the point (s′, s) into Gb. Given any
position a on P , let Ra be the rectangle (x1, y1) × (x2, y2) where (x1, y1) and
(x2, y2) are the SA range of

←−−−−
P [1..a] on TP and the SA range of P [a + b + 1..m]

on TS, respectively. We find all the points on Gb that is enclosed by the query
range Ra. A point in Gb represents a wildcard group ki, it is enclosed by Ra if
and only if the SA range of

←−−−−
P [1..a] encloses the SA range of←−Ti and the SA range

of P [a + b + 1..m] encloses the SA range of Ti+1. By Lemma 2, an O(� log n)-bit
data structure can be built for all �̂ distinct wildcard group sizes, then we can
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determine the number of points enclosed by Ra in O(�̂+log �) time, and retrieve
each point in O(logε �) time.

There are � wildcard groups. The total number of points in all �̂ orthogonal
range search indexes is �. Therefore, the total space required by the orthogonal
range search indexes is O(� log n) bits.

Let us summarize the computation for type-2 matching for any given pattern P

of m characters. We compute the SA ranges of all
←−−−−
P [1..a] with respect to TP

and the SA ranges of all P [a..m] with respect to TS in O(m log σ) time. There
are min(m, �̂) different b’s for P . For each b, we consider every position a on
P . All type-2 matches can be found in O(m log � + t logε �) time, where t is the
number of occurrences. Summing over possible wildcard group size, we obtain
the following lemma.

Lemma 10. Given a pattern of m characters, all type-2 matches can be located
in O(m(log σ + min(m, �̂) log �) + occ2 logε �) time, where occ2 is the number of
type-2 occurrences and ε is an arbitrary positive constant.

4.3 Type 3 Matching

Type-3 matching occurs when a pattern P matches with a substring T [j..j + m]
which contains at least two groups of wildcards. In this case, P contains at least a
whole text segmentTi. Therefore, we will first find out all Ti completely included in
P , and then verify whether each suchTi can be extended to form a type-3 matching.

The first step is equivalent to performing a dictionary matching to report all
Ti that occurs in P . By Lemma 6, we could find all Ti that occurs on P in
O(m log σ + m log � + γ) time, where γ is the total number of occurrences of the
Ti’s in P . If Ti occurs in P with starting position x, then it is possible that P
occurs in T with starting position y = ti−x+1, where ti is the starting position
of Ti in T . Using BWT -TS and BWT -TP , we can apply Lemma 4(i) to verify
each candidate position y in constant time. Details are as follows.

First of all, we collect all the γ candidate positions y in an array A[1..n]
as follows. Initially, all entries of A are set to zero. We employ the constant
time initialization technique[14] on A. The access time to any cell in A remains
constant. Each time we find a candidate position y of P , we increment A[y] by 1.
The working space required by A is O(n log �) bits.

Consider each y with A[y] > 0. We want to verify whether P matches T [y..y+
m− 1]. Let Tf be the first text segment whose starting position tf ≥ y. Let Tg

be the last text segment that ends at or before y +m−1 (i.e., tg ≤ y+m−|Ti|).
Note that g ≥ f . A position y defines a type-3 matching of P if and only if the
following three conditions hold.

(1) A[j] = g − f + 1.
(2) If y < tf − kf−1 (i.e., the wildcard group φkf−1 starts after T [y]), then

P [1..tf − kf−1 − y] is a suffix of Tf−1, or equivalently,
←−−−−−−−−−−−−−−
P [1..tf − kf−1 − y] is

a prefix of ←−−−Tf−1.
(3) If tg+1 ≤ y + m− 1 (i.e., the wildcard group φkg ends before T [y + m− 1]),

then P [tg+1 − y + 1..m] is a prefix of Tg+1.



Succinct Text Indexing with Wildcards 49

Suppose that we have computed the SA ranges of all suffixes of P with respect
to TS, as well as the SA ranges of all the suffixes of ←−P with respect to TP .
Then, by Lemma 4(i), we can make use of BWT -TP and BWT -TS to verify
condition (2) and condition (3) in constant time. We conclude with the following
lemma.

Lemma 11. All type-3 matches can be located in O(m log σ +m log �+ γ) time.
The working space required is O(n log � + m log n) bits.

Theorem 1. Combining the results on type-1, type-2 and type-3 matching, we
can find all occurrences of a given pattern P of m characters in O(m(log σ +
min(m, �̂) log �)+occ1 logε+1 n+occ2 logε �+γ) time, where occ1 and occ2 denote
the number of type-1 and 2 occurrences respectively, and γ is the occurrences of
all text segments in P . The index space required is (3+o(1))n log σ+O(σ log n)+
O(� log n) bits. The working space required is O(n log � + m log n) bits.

Reducing the Working Space. The solution to the type-3 matching demands
a working space O(n log �+m logn) bits. The first term is way too much. Below
we show how to trade the running time for a solution that requires less working
space. At the end, we obtain a solution that requires only O(n log σ + m log n)-
bit working space, but the verification time for the γ candidates would increase
to O(γ logσ �). Intuitively, the idea is to split the array A into a number of
subarrays. Then, we parse the γ dictionary matching results several times to
cover all candidate positions.

By Lemma 7, we could retrieve the γ matching results for multiple times.
Precisely, we could retrieve the γ matching results for d times in O(dγ) time.
Now, we split the entries in the array A into a number of groups. In each group,
there are ρ = 	n log σ

�log �� 
 consecutive entries of array A. No entry in A is contained
in more than one group. Therefore, there are O(logσ �) groups of entries in total.
Each group corresponds to a range of entries in A.

Let B[1..ρ] be an array of integers. The space required by B is O(ρ log �) =
O(n log σ) bits. We repeat the process to mark the candidate positions, however,
we mark the candidate positions on array B instead. We set b = 1, ρ + 1, 2ρ +
1, . . . , ρ logσ �+1. For each b, we mark on the array B by increasing the entry B[j′]
by one if the candidate position j = ti − k + 1 falls between b and b + ρ − 1,
where j′ = j − b + 1. We ignore all candidate positions that do not fall between
b and b + ρ − 1. After we have marked array B for all γ dictionary matching
occurrences, for each B[j′] > 0, it indicates an candidate position j = j′ + b− 1.
Then, we verify the candidate position j as mentioned in previous section. We
repeat the marking process for another b until all positions on T are covered.
The process marks the array for logσ � times.

Lemma 12. Type 3 matches can be located in O(m log σ + m log � + γ logσ �)
time. The working space required is O(m log n + n log σ) bits.
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Abstract. Index structures like the suffix tree or the suffix array are of
utmost importance in stringology, most notably in exact string matching.
In the last decade, research on compressed index structures has flourished
because the main problem in many applications is the space consumption
of the index. It is possible to simulate the matching of a pattern against a
suffix tree on an enhanced suffix array by using range minimum queries or
the so-called child table. In this paper, we show that the Super-Cartesian
tree of the LCP-array (with which the suffix array is enhanced) very
naturally explains the child table. More important, however, is the fact
that the balanced parentheses representation of this tree constitutes a
very natural compressed form of the child table which admits to locate
all occ occurrences of pattern P of length m in O(m log |Σ| + occ) time,
where Σ is the underlying alphabet. Our compressed child table uses
less space than previous solutions to the problem. An implementation is
available.

1 Introduction

The suffix tree of a string S is an index structure that can be computed and stored
in O(n) time and space [1], where n = |S|. Once constructed, it can be used to
efficiently solve a “myriad” of string processing problems [2,3]. Although being
asymptotically linear, the space consumption of a suffix tree is quite large. This is
a drawback in actual implementations. Thus, nowadays many string algorithms
are based on suffix arrays and not on suffix trees. The suffix array specifies the
lexicographic ordering of all suffixes of S, and it was introduced by Manber and
Myers [4]. They showed that all occ occurrences of a pattern P of length m can
be found in O(m log n+occ) time by binary search. Using additional information,
this worst-case time complexity can be improved to O(m + log n + occ); see [4].
The suffix array can be compressed; see e.g. [5,6].

In another line of research, Abouelhoda et al. [7] introduced the concept of lcp-
intervals in the LCP-array (the LCP-array stores the lengths of longest common
prefixes of consecutive suffixes in the suffix array; it can also be compressed [8,9])
and showed that these form a virtual tree (called lcp-interval tree) which directly
corresponds to the suffix tree of the string under consideration. To simulate the
string matching of pattern P against a suffix tree, one must be able to solve the
following problem efficiently: Given an lcp-interval [i..j], find its child interval
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(if it exists) that “starts” with a certain character a. The solution of Abouelhoda
et al. [7] uses a so-called child table, which can be precomputed in linear time.
Exact pattern matching then takes O(m|Σ|+occ) time, where Σ is the underlying
alphabet. Other researchers improved this result:

– Kim et al. [10] showed that pattern matching can be done in O(m log |Σ| +
occ) time. This time can even be achieved with a compressed child table; see
Kim and Park [11].

– Fischer and Heun [12] pointed out that the child table can be replaced
by constant time range minimum queries, yielding an O(m|Σ| + occ) time
pattern search algorithm. Very recently, they showed that an improvement
to O(m log |Σ| + occ) time is possible by finding range medians of minima
queries, building on the new data structure Super-Cartesian tree; see [13].

In this paper, we show that the Super-Cartesian tree of the LCP-array natu-
rally explains the child table (i.e., the introduction of the child table in [7] was
not as simple as it could have been). More important, however, is the fact that
the balanced parentheses representation of this tree constitutes a very natural
compressed form of the child table which admits to locate all occ occurrences of
pattern P in O(m log |Σ| + occ) time. Our compressed child table requires only
2n + o(n) bits, while Fischer and Heun’s [13] approach takes 2.54n + o(n) bits
and Kim and Park’s [11] compressed child table requires 5n + o(n) bits.

As a matter of fact, the combination of a compressed enhanced suffix array
(i.e., both the suffix array [5,6] and the LCP-array are compressed [8,9]) with
the balanced parentheses representation of the Super-Cartesian tree of the LCP-
array yields yet another compressed suffix tree with full functionality; see e.g.
[8,9] and [14] for an overview of this field.

2 Preliminaries

Let S be a string of length n over the alphabet Σ. For every i, 1 ≤ i ≤ n, Si

denotes the i-th suffix S[i..n] of S. The suffix array SA of the string S is an
array of integers in the range 1 to n specifying the lexicographic ordering of
the n suffixes of the string S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n].
As already mentioned, the suffix array was introduced by Manber and Myers
[4]. In 2003, it was shown independently and contemporaneously by Kärkkäinen
& Sanders [15], Kim et al. [16], and Ko & Aluru [17] that a direct linear time
construction of the suffix array is possible. To date, over 20 different suffix array
construction algorithms are known; see the taxonomy by Puglisi et al. [18].

The inverse suffix array SA−1 is an array of size n such that for any q with
1 ≤ q ≤ n the equality SA−1[SA[q]] = q holds. Moreover, ψ is defined by ψ[i] =
SA−1[SA[i] + 1] for all i with 1 ≤ i ≤ n if SA[i] �= n and SA−1[1] otherwise.

Let lcp(u, v) denote the longest common prefix between two strings u and v.
The suffix array is often enhanced with the so-called LCP-array containing the
lengths of longest common prefixes between consecutive suffixes in SA. Formally,
the LCP-array is an array such that LCP[1] = −1 = LCP[n + 1] and LCP[i] =
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CLD
i SA LCP PSV NSV SSA[i] L R

1 3 −1 aaacatat 11
2 4 2 1 3 aacatat

3 1 1 1 7 acaaacatat 2 5
4 5 3 3 5 acatat

5 9 1 1 7 at 4 6
6 7 2 5 7 atat

7 2 0 1 11 caaacatat 3 9
8 6 2 7 9 catat

9 10 0 1 11 t 8 10
10 8 1 9 11 tat

11 −1 7
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2�[7..8]

Fig. 1. The enhanced suffix array of the string S = acaaacatat consists of the arrays
SA and LCP. The corresponding lcp-interval tree is shown on the right.

|lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n. Kasai et al. [19] showed that the LCP-array
can be computed in linear time from the suffix array and its inverse.

According to [7], an interval [i..j], where 1 ≤ i < j ≤ n, in an LCP-array is
called an lcp-interval of lcp-value � (denoted by �-[i..j]) if

1. LCP[i] < �,
2. LCP[k] ≥ � for all k with i + 1 ≤ k ≤ j,
3. LCP[k] = � for at least one k with i + 1 ≤ k ≤ j,
4. LCP[j + 1] < �.

Every index k, i + 1 ≤ k ≤ j, with LCP[k] = � is called �-index. Note that each
lcp-interval has at most |Σ| − 1 many �-indices.

An lcp-interval m-[p..q] is said to be embedded in an lcp-interval �-[i..j] if it
is a subinterval of [i..j] (i.e., i ≤ p < q ≤ j) and m > �. The interval [i..j] is
then called the interval enclosing [p..q]. If [i..j] encloses [p..q] and there is no
interval embedded in [i..j] that also encloses [p..q], then [p..q] is called a child
interval of [i..j]. This parent-child relationship constitutes a tree which we call
the lcp-interval tree (without singleton intervals). An interval [k..k] is called
singleton interval. The parent interval of such a singleton interval is the smallest
lcp-interval [i..j] which contains k.

The child intervals of an lcp-interval can be determined as follows. If i1 < i2 <
. . . < ik are the �-indices of an lcp-interval �-[i..j] in ascending order, then the
child intervals of [i..j] are [i..i1−1], [i1..i2−1], . . . , [ik..j] (note that some of them
may be singleton intervals); see [7] for details. With range minimum queries on
the LCP-array, �-indices can be computed easily [12]: RMQLCP(i + 1, j) returns
the smallest index k such that LCP[k] = min{LCP[q] | i + 1 ≤ q ≤ j}. Therefore,
it returns the first �-index i1. Analogously, RMQLCP(i1 + 1, j) yields the second
�-index i2, etc. In this way, one can simulate a top-down traversal of the lcp-
interval tree, and exact string matching takes O(m|Σ|) time in the worst case
[7,12] because an array can be preprocessed in linear time so that range minimum
queries can be answered in constant time [12,20,21].
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The next lemma states how the parent interval of an lcp-interval can be de-
termined; cf. [9]. For any index 2 ≤ i ≤ n, define

PSV[i] = max{j | 1 ≤ j < i and LCP[j] < LCP[i]}
NSV[i] = min{j | i < j ≤ n + 1 and LCP[j] < LCP[i]}

Lemma 1. Let �-[i..j] be an lcp-interval with LCP[i] = p and LCP[j + 1] = q. If
p ≥ q, then the parent of [i..j] is the lcp-interval [PSV[i]..NSV[i]− 1]. Otherwise,
if p < q, the parent of [i..j] is the lcp-interval [PSV[j + 1]..NSV[j + 1] − 1].

Given an lcp-interval [i..j], the smallest lcp-interval [p..q] satisfying p ≤ ψ[i] <
ψ[j] ≤ q is called the suffix link interval of [i..j]. For every lcp-interval �-[i..j]
the suffix link interval exists and it has lcp-value � − 1; see [7] for details.

3 Finding Child Intervals without Range Minimum
Queries

In the top-down traversal of the lcp-interval tree we actually do not need the
rather complex machinery of constant-time range minimum queries. To see this,
we first recall the definition of the Super-Cartesian tree from [13].

Definition 1. Let A[l..r] be an array of elements of a totally ordered set (S, <)
and suppose that the minima of A[l..r] appear at positions p1, p2, . . . , pk for some
k ≥ 1. The Super-Cartesian tree Csup(A[l..r]) of A[l..r] is recursively constructed
as follows:

– If l > r, then Csup(A[l..r]) is the empty tree.
– Otherwise create k nodes v1, v2, . . . , vk, label each vj with pj, and for each

j with 1 < j ≤ k the node vj is the right sibling of node vj−1 (in Fig. 2,
node vj−1 is connected with vj by a horizontal edge). Node v1 is the root of
Csup(A[l..r]). Recursively construct C1 = Csup(A[l..p1−1]), C2 = Csup(A[p1+
1..p2 − 1]), . . ., Ck+1 = Csup(A[pk + 1..r]). For each j with 1 ≤ j < k, the left
child of vj is the root of Cj. The left and right children of vk are the roots of
Ck and Ck+1, respectively.

We would like to emphasize that a node in a Super-Cartesian tree has either
a right sibling or a right child but not both. The Super-Cartesian tree Csup(A)
of an array A can be build incrementally in O(n) time; see [13] for details. As
an example, consider the enhanced suffix array of the string S = acaaacatat in
Fig. 1. The Super-Cartesian tree of this LCP-array is depicted in Fig. 2.

We store the Super-Cartesian tree in an additional table CLD, which we call
child table because it can be used to determine child intervals. For didactic
reasons, we will first store the child table CLD in two arrays CLD.L and CLD.R.
We shall see in a moment, however, that one array suffices. By definition, a
node in a Super-Cartesian tree has either a right sibling or a right child but not
both. Therefore, for each node i, we store its left child in CLD[i].L and its right
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Fig. 2. The Super-Cartesian tree of the LCP-array from Fig. 1

sibling/right child in CLD[i].R. For example, the child table CLD of the string
S = acaaacatat is depicted in Fig. 1.

As already mentioned, finding all child intervals of an lcp-interval �-[i..j] boils
down to finding all �-indices of that interval. The following theorem shows where
the first �-index of an lcp-interval �-[i..j] can be found in the child table.

Proposition 1. For every lcp-interval �-[i..j] we have:

1. If LCP[i] ≤ LCP[j + 1], then CLD[j + 1].L stores the first �-index of the
lcp-interval [i..j].

2. If LCP[i] > LCP[j + 1], then CLD[i].R stores the first �-index of the lcp-
interval [i..j].

Now we have all ingredients to realize a top-down traversal of the lcp-interval
tree without range minimum queries. Proposition 1 tells us where the first �-
index, say i1, of [i..j] can be found. Using the child table, we find the second
�-index i2 by i2 = CLD[i1].R, the third �-index i3 by i3 = CLD[i2].R, and so
on. The index ik is the last �-index if LCP[ik+1] �= �. Algorithm 1 implements
this approach. The procedure getChildIntervals applied to an lcp-interval [i..j]
returns the list of all child intervals of [i..j].

Of course, the Super-Cartesian tree is only conceptual, i.e., we can construct
the child table without it. Algorithm 2 uses a stack to do this. The procedures
push (pushes an element onto the stack) and pop() (pops an element from the
stack and returns that element) are the usual stack operations, while top() pro-
vides a pointer to the topmost element of the stack. Moreover, top().idx denotes
the first component of the topmost element of the stack, while top().lcp denotes
the second component.

To reduce the space requirement of the child table, only one array is used in
practice. As a matter of fact, the memory cells of CLD[i].R, which are unused,
can store the values of the CLD.L array. To see this, note that CLD[i +1].L �= ⊥
if and only if LCP[i] > LCP[i + 1]. In this case, however, we have CLD[i].R = ⊥.
In other words, CLD[i].R is empty and can store the value CLD[i + 1].L; see
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Algorithm 1. getChildIntervals applied to an lcp-interval [i..j].
intervalList = [ ]
k ← i
if LCP[i] ≤ LCP[j + 1] then

m ← CLD[j + 1].L
else m ← CLD[i].R
� ← LCP[m]
repeat

add(intervalList, [k..m − 1])
k ← m
m ← CLD[m].R

until m = ⊥ or LCP[m] �= �
add(intervalList, [k..j])

Algorithm 2. Construction of the child table.
push(〈1, −1〉) /* an element on the stack has the form 〈idx, lcp〉 */
for k ← 2 to n + 1 do

while LCP[k] < top().lcp do
last ← pop()
while top().lcp = last.lcp do

CLD[top().idx].R ← last.idx
last ← pop()

if LCP[k] < top().lcp then
CLD[top().idx].R ← last.idx

else CLD[k].L ← last.idx
push(〈k, LCP[k]〉)

Fig. 1. Finally, for a given index i, one can decide whether CLD[i].R contains the
value CLD[i + 1].L by testing whether LCP[i] > LCP[i+ 1]. To sum up, although
the child table conceptually uses two arrays, only space for one array is actually
required.

4 Balanced Parentheses Representation of the Tree

The Super-Cartesian tree of the LCP-array can be represented by a sequence of
balanced parentheses; see Fig. 3. Again, it turns out that the Super-Cartesian
tree is only conceptual. To be precise, its balanced parentheses representation
can be obtained solely based on the LCP-array; see Algorithm 3.

Each node k, 1 ≤ k ≤ n, in the Super-Cartesian tree is represented by the
k-th opening parenthesis (and the matching closing parenthesis). Node n + 1
is not represented. Consequently, the sequence of balanced parentheses has 2n
parentheses, and it can be represented with 2n bits.
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( ( ) ( ( ) ( ( ) ) ) ( ( ) ( ( ) ) ) )
1 2 2 3 4 4 5 6 6 5 3 7 8 8 9 10 10 9 7 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 3. Balanced parentheses representation of the Super-Cartesian tree of Fig. 2

Algorithm 3. Construction of the balanced parentheses representation of the
Super-Cartesian tree of the LCP-array.

push(−1) /* LCP[1] = −1 */
write an opening parenthesis
for k ← 2 to n + 1 do

while LCP[k] < top() do
pop() and write a closing parenthesis

if k �= n + 1 then
push(LCP[k]) and write an opening parenthesis

else
write a closing parenthesis

Given a balanced parentheses sequence, the following operations can be sup-
ported in constant time with only o(n) bits of extra space [22,23,24,25]:

– rank((i): returns the number of opening parentheses up to and including
position i; see Jacobson [22]. rank)(i) is defined analogously.

– select((i): returns the position of the i-th opening parenthesis; see Clark [23].
select)(i) is defined analogously.

– findclose(i): returns the position of the closing parenthesis matching the
opening parenthesis at position i; see Munro & Raman [24]. findopen(i) is
defined analogously.

– enclose(i): given a parenthesis pair whose opening parenthesis is at position
i, it returns the position of the opening parenthesis corresponding to the
closest matching parenthesis pair enclosing i; see Munro & Raman [24].

Geary et al. [25] provide a simpler o(n) extra space solution for findclose,
findopen, and enclose. In our implementation, we use a data structure which
is similar to that of [25]. That is, our implementation needs 2n + o(n) bits to
support all operations in constant time.

As we have seen, determining the child intervals of an �-interval [i..j] boils
down to finding the �-indices of [i..j] in ascending order. On the balanced paren-
theses representation of the Super-Cartesian tree of the LCP-array these can be
found as follows.

Lemma 2. With the balanced parentheses representation, the first �-index k of
an lcp-interval [i..j] can be determined in constant time by

k =
{

rank((findopen(select((j + 1) − 1)) , if LCP[i] ≤ LCP[j + 1]
rank((findopen(findclose(select((i)) − 1)), if LCP[i] > LCP[j + 1]
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Proof. If LCP[i] ≤ LCP[j + 1], then k is the left child of j + 1 in the Super-
Cartesian tree of the LCP-array. In the balanced parentheses representation, the
closing parenthesis matching the k-th opening parenthesis is directly followed by
the (j + 1)-th opening parenthesis. Therefore, k = rank((findopen(select((j +
1) − 1)). If LCP[i] > LCP[j + 1], then k is the right child of i in the Super-
Cartesian tree of the LCP-array. In the balanced parentheses representation, the
closing parenthesis matching the k-th opening parenthesis is directly followed
by the closing parenthesis matching the i-th opening parenthesis. Thus, k =
rank((findopen(findclose(select((i)) − 1)).

If we know an �-index k of an lcp-interval [i..j], then the next �-index m (if it
exists) is the right sibling of k in the Super-Cartesian tree of the LCP-array. In the
balanced parentheses representation, the closing parenthesis matching the m-th
opening parenthesis is directly followed by the closing parenthesis matching the
k-th opening parenthesis. So m = rank((findopen(findclose(select((k)) − 1)).

Given an �-index k of an lcp-interval [i..j], an algorithm that computes the
next �-index m (if it exists) works as follows. First it tests whether select((k) �=
findclose(select((k)) − 1. If this is the case, then k is not a leaf in the Super-
Cartesian tree of the LCP-array (i.e., the k-th opening parenthesis is not directly
followed by a closing parenthesis) and the algorithm further computes m =
rank((findopen(findclose(select((k))−1)). If LCP[k] = LCP[m], then it returns
m as the next �-index of [i..j]. Otherwise, there is no next �-index. It follows as
a consequence that all child intervals of an lcp-interval [i..j] can be determined
in O(|Σ|) time solely based on the balanced parentheses representation of the
Super-Cartesian tree of the LCP-array. That is, one neither needs range minimum
queries nor the child table.

To exemplify our method, we search for the first �-index k of the lcp-interval
1-[1, 6] (see Fig. 1): As LCP[1] = −1 ≤ LCP[7] = 0, k is the left child of node 7
in the Super-Cartesian tree of Fig. 2. In the balanced parentheses sequence, we
obtain the position of the 7th opening parenthesis by select((7) = 12; see Fig. 3.
The left child of node 7 is represented by the opening parenthesis matching the
closing parenthesis at position 12−1 = 11, and this opening parenthesis is found
at position findopen(11) = 4. Since rank((4) = 3, we conclude that k = 3. The
next �-index (if it exists) corresponds to the right sibling of node k = 3 in the
Super-Cartesian tree. If node k = 3 is not a leaf, then the parenthesis directly
left to the closing parentheses corresponding to k is also a closing parenthesis.
In our example this is the case and therefore rank((findopen(10)) = 5 tells us
that node 5 is either a sibling or a child of node k = 3. Because LCP[5] = LCP[3],
node 5 is the right sibling. Hence 5 is the next �-index.

In string matching, we search for a specific child interval. To be precise, if
[i..j] is an lcp-interval that represents a string ω, we wish to compute the lcp-
interval [i′..j′] that represents the string ωa for some character a ∈ Σ. Clearly,
we can enumerate all child intervals [i′..j′] of [i..j] until the one with S[SA[i′] +
|ω|] = . . . = S[SA[j′] + |ω|] = a is found. This takes O(|Σ|) time in the worst
case. As a matter of fact, the balanced parentheses representation allows us to
determine such an interval in O(log |Σ|) time. This goes as follows. The left



A Compressed Enhanced Suffix Array Supporting Fast String Matching 59

boundary of the interval we are searching for is either i or one of the �-indices
of the lcp-interval [i..j]. Thus, if S[SA[i] + |ω|] = a, we are done. Otherwise,
one determines the first �-index k as in Lemma 2. If S[SA[k] + |ω|] = a, we are
done. If not, we determine the position p of the closing parenthesis matching
the k-th opening parenthesis by p = findclose(select((k)). The key observation
is that the remaining �-indices of [i..j] (there are at most |Σ| − 2 many) are
the siblings of node k in the Super-Cartesian tree and—by construction—the
closing parentheses immediately preceding the closing parenthesis at position p
correspond to these �-indices. Therefore, a binary search on the matching opening
parentheses of the first |Σ| − 2 closing parentheses immediately preceding the
closing parenthesis at position p (if there are so many closing parentheses at all),
can be used to find the desired interval. First check whether the index m under
consideration satisfies LCP[m] = LCP[k]. If not, we have to search in the right
half. If so, m is another �-index and one further compares S[SA[m] + |ω|] with
the character a. If the characters coincide, then m is the left boundary of the
interval we are searching for. If S[SA[m] + |ω|] < a, we have to search in the
right half, and if S[SA[m] + |ω|] > a, we have to search in the left half.

5 Full Functionality

The balanced parentheses representation of the Super-Cartesian tree of the LCP-
array supports all operations of a suffix tree as listed e.g. in [8,9]. Here we
show how the following two crucial operations can be implemented (the other
operations are rather straightforward; cf. [9]):

– parent([i..j]): returns the parent interval of the lcp-interval [i..j].
– slink([i..j]): returns the suffix link interval of the lcp-interval [i..j].

According to Lemma 1, the parent interval of an lcp-interval can be deter-
mined with the help of PSV and NSV-values. The next lemma shows how these
values can be computed on the balanced parentheses representation.

Lemma 3. Let i be an index with LCP[i] �= −1. With the balanced parenthe-
ses representation of the Super-Cartesian tree of the LCP-array, NSV[i] can be
determined in constant time by NSV[i] = rank((findclose(select((i))) + 1 and
PSV[i] can be computed in O(|Σ|) time by

j ← rank((enclose(select((i)))
while LCP[j] = LCP[i] do

j ← rank((enclose(select((j)))
PSV[i] ← j

It is also possible to compute PSV[i] in O(log |Σ|) time by a binary search
on the balanced parentheses sequence (similar to the method described above).
Consequently, the parent interval of an lcp-interval can be found in O(log |Σ|)
time by Lemma 1.

The suffix link interval [p..q] of an lcp-interval �-[i..j] �= 0-[1..n] can be deter-
mined as follows: First, the range minimum query RMQLCP(ψ[i] + 1, ψ[j]) yields
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an (� − 1)-index of [p..q] (see [7] for details), say index k, and then the bound-
aries of the suffix link interval are determined by p = PSV[k] and q = NSV[k]−1
(this is a direct consequence of the definition of an lcp-interval). Thus, [p..q]
can be computed in O(log |Σ|) time provided that range minimum queries can
be answered in constant time. However, the ability to answer range minimum
queries in constant time requires a different data structure, and this is disadvan-
tageous in practice. To compute suffix links on our data structure, we introduce
the new operation range-restricted-enclose (rr-enclose for short) on balanced
parentheses sequences: Given two opening parentheses at positions i and j such
that findclose(i) < j, the operation rr-enclose(i, j) returns the smallest po-
sition, say k, of an opening parenthesis such that findclose(i) < k < j and
findclose(j) < findclose(k). If such a k does not exist, it returns ⊥.

Theorem 1. Given the balanced parentheses representation of the Super-Cart-
esian tree of the LCP-array and two indices i and j with 1 ≤ i ≤ j ≤ n, let
i′ = select((i) and j′ = select((j). Then

RMQLCP(i, j) =

⎧⎨
⎩

i, if j′ < findclose(i′)
j, if findclose(i′) < j′ and rr-enclose(i′, j′) = ⊥
rank((rr-enclose(i′, j′)), otherwise

Proof. We use a case differentiation. If j′ < findclose(i′), then i′ < j′ <
findclose(j′) < findclose(i′), i.e., the parenthesis pair with opening parenthe-
sis at position i encloses the other parenthesis pair. This, in turn, means that
LCP[i] ≤ LCP[q] for all q with i < q ≤ j. Hence RMQLCP(i, j) = i. Otherwise,
we have findclose(i′) < j′. If rr-enclose(i′, j′) = ⊥, then there is no parenthe-
sis pair with opening parenthesis at a position > findclose(i) that encloses the
parenthesis pair with opening parenthesis at position j. This means that the
parenthesis pairs are “siblings”. In other words, LCP[i] is a successor of LCP[j] on
a “left path” in the Super-Cartesian tree of the LCP-array. It follows as a conse-
quence that LCP[q] > LCP[j] for all q with i ≤ q < j. Thus, RMQLCP(i, j) = j. In
the last case rr-enclose(i′, j′) = k, where k is the smallest position of an opening
parenthesis such that findclose(i′) < k < j′ and findclose(j′) < findclose(k).
So we have i′ < findclose(i′) < k < j′ < findclose(j′) < findclose(k). In the
Super-Cartesian tree of the LCP-array, this corresponds to LCP[q] > LCP[k] for
all q with i ≤ q < k and LCP[k] ≤ LCP[q] for all q with k < q ≤ j. Therefore,
RMQLCP(i, j) = k.

6 Conclusions

The methods described above have been implemented in C++, and the imple-
mentation is available under the GNU General Public License. In our opinion,
the main advantage of the balanced parentheses representation of the Super-
Cartesian tree of the LCP-array is that child intervals can be computed efficiently.
Thus, it would be natural to compare our implementation experimentally with
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the related methods of Kim and Park [11] and of Fischer and Heun [13]. Unfor-
tunately, for both methods no implementation is available.

On the other hand, our compressed enhanced suffix array has full functionality,
i.e., it supports all operations of a suffix tree and it is natural to compare it
experimentally with implementations of compressed suffix trees with such a full
functionality. Välimäki et al. [26] implemented Sadakane’s compressed suffix tree
[8], and to the best of our knowledge this is the sole implementation which
is available. For a fair comparison, however, both implementations should use
the same compressed suffix array and the same compressed LCP-array. We are
currently working on our own implementation of Sadakane’s compressed suffix
tree [8] and an experimental comparison is forthcoming.

First experiments with texts of size 50MB show that the O(log |Σ|)-time ver-
sion of the method that determines a specific child interval is two times faster
than the O(|Σ|)-time version for 20 < |Σ| < 30 and up to 10 times faster for
90 < |Σ| < 230. Unsurprisingly, for |Σ| = 4 (DNA-alphabet) the O(log |Σ|)-time
version is (slightly) slower than the O(|Σ|)-time version.
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Abstract. We present a fast space-efficient algorithm for constructing
compressed suffix arrays (CSA). The algorithm requires O(n log n) time
in the worst case, and only O(n) bits of extra space in addition to
the CSA. As the basic step, we describe an algorithm for merging two
CSAs. We show that the construction algorithm can be parallelized in
a symmetric multiprocessor system, and discuss the possibility of a dis-
tributed implementation. We also describe a parallel implementation of
the algorithm, capable of indexing several gigabytes per hour.

1 Introduction

Self-indexing [23] is a new approach for storing sequence data. The main idea
is to combine the data and its index in a compressed structure, which provides
random access to the data and supports various pattern matching queries. Some
of the most relevant self-indexes are the compressed suffix array (CSA) [12] and
the FM-index [8], both offering suffix array-like functionality.

With the explosive growth of sequential data in many applications such as
genome browsers, version control systems, and online document collections, good
search capabilities are becoming more and more important every day. This
trend is making the self-indexes, combining small size with full-text searching, a
promising approach for indexing large and massive data sets.

Obviously we need efficient practical algorithms for constructing these self-
indexes, if we want them to truly live up to their promises. Unfortunately all the
experiments reported so far have been performed with data sets at most a few
gigabytes in size [5, 7, 14, 16, 17, 24], telling that the construction algorithms
have trouble scaling up for massive data sets.

The typical way to construct a compressed self-index has been to use a regular
suffix array construction algorithm [24]. While these algorithms are fast, they
must store the data and the suffix array in main memory, making the memory
requirements many times the size of the data. This is a major problem, especially
with highly repetitive collections [21, 26], where the final index can be more than
a hundred of times smaller than the suffix array.

Other alternatives have been to use secondary memory suffix array construc-
tion algorithms [4, 5], dynamic indexes [3, 11, 19, 20, 25], or algorithms for con-
structing the compressed index directly [13, 15, 22]. While these algorithms are
� Funded by the Academy of Finland under grant 119815. Part of the work was done
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often memory efficient, they are also slow. Experiments have reported through-
puts in the order of 100 kilobytes/second, which is more than an order of mag-
nitude slower than the regular suffix array construction algorithms, and clearly
too slow for data sets of tens of gigabytes or more.

The most promising algorithms are the distributed suffix array construction
algorithm by Kulla et al. [17] and the space-efficient Burrows-Wheeler transform
construction algorithm by Kärkkäinen [16]. Still, we must store either the suffix
array in distributed memory or the entire data set in local memory, making both
of the algorithms unsatisfactory for highly compressible data sets.

In this paper, we present a fast and space-efficient algorithm for direct CSA
construction. The algorithm is related to the incremental suffix array construc-
tion algorithm by Gonnet et al. [10], as well as to the incremental CSA construc-
tion algorithm by Hon et al. [13]. Alternatively our algorithm can be thought of
as replacing a dynamic CSA with a static structure and batch updates.

We start by some basic definitions in Sect. 2. Section 3 describes an algorithm
for merging two compressed suffix arrays. Section 4 builds upon it, describing a
parallelizable incremental CSA construction algorithm. The details of our imple-
mentation of the algorithm are discussed in Sect. 5. In Sect. 6, we validate the
effectiveness of our algorithm experimentally. Finally, we discuss the possibility
of a distributed implementation in Sect. 7.

2 Background Information

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (characters, letters).
Each symbol is an element of an alphabet Σ = {1, 2, . . . , σ}. A substring of S
is written as Si,j = si · · · sj . A substring of type S1,j is called a prefix, while
a substring of type Si,n is called a suffix. We often assume that the string is
an array, and refer to its symbols as S[i], and to its substrings as S[i, j]. A text
string T = T1,n is a sequence terminated by tn = $ �∈ Σ smaller than any symbol
in Σ. The lexicographic order ”<” among strings is defined in the usual way.

We call a set C of texts T 1, T 2, . . . , T r a collection. The collection can be
represented as a string T = T 1T 2 · · · T r. We denote the length of each text T i

as ni, and the total length of the collection as |C| = |T | = n. Lexicographic
order among such strings is defined in the usual way, except that each of the end
markers $ is considered a different symbol, so that every suffix of every string
will be unique in the collection. If T [i] = T [j] = $ and i < j, we define T [i] <
T [j]. We informally call a collection highly repetitive, if most of its texts are
highly similar to some other text in the collection. Examples of highly repetitive
collections include individual genomes and different versions of a document.

The suffix array SA[1, n] of a string S is an array of pointers to the suffixes
of S in lexicographic order. As an abstract data type, a suffix array is any data
structure providing similar functionality as the concrete suffix array. This can
be defined by the following operations: (a) count the number of occurrences of
a pattern in the string; (b) locate these occurrences (or more generally retrieve
a suffix array value); and (c) display any substring of S.
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The compressed suffix arrays discussed in this paper support these operations.
Their compression is based on the Burrows-Wheeler transform (BWT) [2], a per-
mutation created by sorting cyclical strings. The cyclical strings corresponding
to string S are all strings of the form CSi = Si,nS1,i−1, including CS1 = S. The
BWT is a sequence L such that L[i] = CSj [n], where CSj is the ith cyclical
string in lexicographic order. If S is a text or a collection, sorting cyclical strings
is the same as sorting suffixes, as the first end marker encountered will end the
comparison between two cyclical strings. In that case the BWT can be defined
as L[i] = S[SA[i] − 1], where S[0] = S[n].

The Burrows-Wheeler transform is reversible. The reverse transform is based
on a function called LF -mapping [2, 8] that is also used extensively in compressed
self-indexes. The mapping is usually described by using an array C[1, σ] such
that C[c] is the number of characters in {$, 1, 2, . . . , c − 1} occurring in the
collection. With this array and the sequence L, we can define LF -mapping as
LF (i) = C[L[i]] + rankL[i](L, i), where rankc(L, i) is the number of occurrences
of character c in the prefix L[1, i]. We leave LF (i) undefined when L[i] = $, as
each $ is actually a different character. This is not a problem, as LF -mapping
is not used for these positions in CSA operations.

LF -mapping and its inverse function Ψ [12] form the backbone of many
compressed self-indexes. As SA[LF (i)] = SA[i] − 1 [8] and hence SA[Ψ(i)] =
SA[i]+1, we can use these functions to move the suffix array position backward
and forward in the sequence. Both of the functions can be efficiently imple-
mented by adding some extra information to a compressed representation of the
BWT. Standard techniques [23] to support suffix array operations by using these
functions include backward searching [8] for count, and adding a sample of suffix
array values for locate and display.

The regular BWT is based on the cyclical strings of a single string. In this
paper, we generalize the transform by allowing multiple strings, each of which can
be a concatenation of several texts [9]. This makes it easier to merge the BWTs
of two collections. We call the way the texts of a collection A are concatenated
to form strings the structure of A. Collection B contains the structure of A, if
A ⊆ B and the texts of A are concatenated to form the same strings in the
structures of A and B.

The position of a character T i[j] �= $ in the BWT is determined by the
cyclical string of the string containing it starting at T i[j + 1]. As the first end
marker encountered ends any comparison, we only need the suffix T i[j + 1, ni]
to determine the position, as with the regular BWT. The position of the end
marker T i[ni] is determined by the text T i′

following T i in the cyclical strings.
As each text is used to determine the position of exactly one end marker in the
BWT, the structure of a collection does not affect its BWT.

3 Merging Compressed Suffix Arrays

Consider the collection {T 1, T 2}, where T 1 = ababbaa$ and T 2 = abbaa$. The
BWTs of the texts are aab$bbaa and aab$ba, respectively. Figure 1 shows a
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T a b a b b a a $ a b b a a $

SA 8 14 7 13 6 12 1 3 9 5 11 2 4 10

I 0 1 0 1 0 1 0 0 1 0 1 0 0 1

L a a a a b b $ b $ b b a a a

Ψa 1 1 1 1 0 0 0 0 0 0 0 1 1 1

Ψb 0 0 0 0 1 1 0 1 0 1 1 0 0 0

Fig. 1. A generalized Burrows-Wheeler transform L and the suffix array SA of col-
lection {T 1, T 2}. Note that T 1 and T 2 are separate strings in the structure of the
collection. One can get the regular BWT by changing which $ belongs to which text.

generalized Burrows-Wheeler transform of the collection, where the characters
of text T 2 are marked with 1-bits in bit vector I.

We see that the marked characters form the BWT of T 2, while the other
characters form the BWT of T 1. This is true in general as well. Assume we have
two collections A and B, where B contains the structure of A. As the position
of each character of A is determined by the same cyclical string in the BWTs of
A and B, the BWT of A is a subsequence of the BWT of B.

Now let us turn our attention to the bit vectors Ψc marking the occurrences
of character c ∈ Σ in L. These vectors completely describe the BWT of the
collection. We can perform the rankc(L, i) used in LF -mapping as rank1(Ψc, i).
We can also compute Ψ(j) as select1(Ψc, j−C[c]), where C[c] < j ≤ C[c+1] and
select1(Ψc, i) returns the position of the ith 1-bit in Ψc. Hence we can implement
a self-index by compressing the bit vectors Ψc.

In fact, that is exactly what compressed suffix arrays [12], based on the func-
tion Ψ , already do. As the values of Ψ form an increasing sequence in the region
of the suffix array corresponding to a character c, any representation of that part
of Ψ is also a representation of the bit vector Ψc.

This gives us an idea for an algorithm to merge two compressed suffix arrays.
If we have the CSAs of collections C1 and C2 and the bit vector I, we can use
them to build a CSA for the combined collection. For each c ∈ Σ, we simply take
the Ψc vectors of the two CSAs and merge them. Vector I is used to indicate
how to interleave the bits from the two vectors. Sampled suffix array positions
can be merged in a similar manner.

Let ni = |Ci| and n = n1 + n2. With a suitable representation of the bit
vectors (as in Sect. 5), we can merge the CSAs in-place in O(|CSA|+n2σ) time,
where |CSA| is the size of the resulting CSA. The O(n2σ) part comes from the
fact that we have to scan the bit vector I once for every pair of vectors merged.
This is not very efficient for large alphabets.

In such situations, it is better to merge the BWTs instead of the bit vectors.
We can read the BWT of collection Ci from its CSA in O(ni) time by using a
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buffer of Ω(σ) characters. If we decompress both of the BWTs simultaneously,
merge the buffers, and write the results immediately to the combined CSA, we
can perform the merge in O(n) time and O(σ log n) extra space for the buffer
and bookkeeping.

The remaining question is, how to construct the bit vector I, denoting the
ranks of every suffix of B in the combined suffix array. As the rank of a suffix
is the sum of its ranks among the suffixes of A and B [13], we get the following
algorithm for merging two CSAs:

1. Search for the ranks of the suffixes of B among the suffixes of A by backward
searching [13]. Store the ranks in an integer array in any order.

2. Sort the array. Increment the values by their positions in the array (by the
ranks of the suffixes of B among themselves) to get I.

3. Merge the BWTs of the two CSAs.

Searching takes O(n2tΨ ) time, where tΨ is the cost of one access to Ψ . We are
not aware of any upper bounds better than tΨ = O(log n1) (as in Sect. 5 with a
logarithmic value for B) for CSAs that allow efficient merging. Array I requires
O(n2 log n) bits of space, and sorting it takes O(n2 log n2) time. Hence the entire
algorithm takes O(|CSA| + n2(σ + log n)) or O(n + n2 log n) time, and works in
|CSA|+O(n2 log n) or |CSA|+O((n2 +σ) log n) bits of space, respectively, with
regular and BWT-based merging.

A similar algorithm can be used to remove sequences from the collection. We
search for the positions of the suffixes to be removed, marking them on a bit
vector I. Then we scan the bit vectors Ψc, removing bits as indicated by I.

4 CSA Construction

The algorithm for merging two compressed suffix arrays can be used as a building
block for a CSA construction algorithm. The basic idea is to divide the collection
into smaller ones, each of which can be indexed in limited memory, build CSAs
for the parts, and merge the resulting partial indexes by using the algorithm in
the previous section. For each part of the input, we first execute the build phase:

1. Build a CSA for the current input collection.

Then we merge the resulting partial index to the existing CSA by executing the
search, sort, and merge phases.

Assume a collection of size n has been split into p parts of size n/p. Then,
with any O(n log n) time and space suffix array construction algorithm, the build
phases take a total of O(n log(n/p)) time and require |CSA|+O((n/p) log(n/p))
bits of space. By using BWT-based merging, the other three phases require
O(pn + n log n) time and |CSA| + O((n/p + σ) log n) bits of space. If we assume
p = Θ(log n) and σ = O(n/p), we get an algorithm requiring O(n log n) time
and |CSA| + O(n) bits of space.
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The algorithm can be parallelized with the following modifications:

1. Build. We can either build indexes for multiple input collections in parallel,
increasing memory usage, or use a parallel suffix array construction algorithm
such as [17].

2. Search. The ranks of the suffixes of a text are independent from the other
texts in the input collection. Hence we can perform the search for multiple
texts in parallel. If there are too few texts to distribute the searches evenly, we
can try to split a search into multiple smaller ones. Assume we are searching
for the ranks of the suffixes of text T backwards from position T [j]. If we find
a substring T [i, j] with no occurrences in the index, we can start reporting
the ranks, as the symbols after T [j] do not affect them.

3. Sort. Use a parallel sorting algorithm.
4. Merge. Multiple bit vector pairs can be merged in parallel. If there are more

processors than bit vectors, work can be divided by splitting the vectors into
multiple parts.

5 Implementation

We have implemented a sequential version of the algorithm, as well as a parallel
version for symmetric multiprocessor (SMP) systems.1 The implementation is
written in in C++. The input is assumed to be divided into a number of files,
each of them consisting of concatenated C-style 0-terminated strings. Each string
is considered a separate text, with the trailing 0 interpreted as an end marker.
The build phase is executed for all input files in the beginning of the construction
to save memory. The resulting partial indexes as well as unused parts of the input
are stored in secondary memory until needed.

We use two kinds of bit vectors in the implementation: gap encoded and
run-length encoded. In gap encoding, the vector is encoded as a sequence of
integers denoting the distances between the successive 1-bits, while in run-length
encoding each run of 1s is encoded as the gap after the previous run followed by
the length of the run. In both cases, δ codes [6] are used to encode the integers.

The compressed bit vectors are divided into blocks of B bytes. For each block,
we sample the first 1-bit in the block, writing down its rank and position in the
vector. Each sample takes 2 log u bits, where u is the length of the vector. By
using these samples, we can determine, which block to decompress to answer bit
vector operations such as rank and select.

As a binary search among the samples is quite slow, we speed up the search
by constructing secondary indexes for rank and select when the vector is loaded
into memory. Both indexes consist of about b/5 integers of log b bits, where b
is the number of blocks in the vector. For rank, the ith value is the number of
the the block storing the first 1-bit at or after position i · 5u/b. For select, the
jth value is similarly the number of the block storing the 1-bit of rank j · 5no/b,
1 The implementation is available at
http://www.cs.helsinki.fi/group/suds/rlcsa/
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where no is the number of 1s in the vector. By using these indexes, we can limit
the search to a (typically) small number of samples.

Instead of a compressed bit vector, we use a simpler structure as the indicator
vector I in the merge phase. This structure is just an array of native 32-bit or
64-bit integers in increasing order, each of them indicating a 1-bit in the vector.

Our implementation of CSA is based on the Run-Length Compressed Suffix
Array [21, 26]. We use a run-length encoded bit vector to represent each Ψc.
This makes the index most suitable for highly repetitive collections, while some
compression is lost on other types of collections.

Suffix array samples are marked in a gap encoded bit vector and stored as
log(n/d)-bit integers, where n is the size of the collection and d is the sample
rate. Inverse suffix array samples used in display are constructed when the index
is loaded, and stored as another array of log(n/d)-bit integers. The end points
of all sequences in the collection are marked in a gap encoded bit vector E.

The implementation supports multiple parallel queries. Each thread using the
CSA maintains separate state information, while large arrays, such as samples
and bit vector blocks, are shared between the threads. Large queries are not
automatically split into smaller ones, but must be parallelized manually.

Locate queries are optimized for retrieving multiple occurrences simultane-
ously [21]. This greatly reduces the required number of accesses to Ψ and suffix
array samples on highly repetitive collections.

We use the suffix array construction algorithm by Larsson and Sadakane [18]
in the build phase because of its robustness with highly repetitive collections.
The algorithm supports large alphabets, making it possible to use a different
character value for each $ in the collection. By limiting the size of the input files
to less than 2 gigabytes, we can build the CSA for a file of size ni in about 8ni

bytes. We build the indexes for multiple files in parallel, making this phase the
most memory intensive one in the algorithm.

When the partial indexes have been built, we take one of them as the initial
index, and begin merging the other indexes with it one at a time. We distribute
the sequences in the input file dynamically between the threads, and report the
ranks of the suffixes as either 32-bit or 64-bit integers. When all threads have
finished searching, we sort the resulting array, and increment each value by its
position in the array to get the bit vector I used in merging.

We merge the bit vectors instead of the BWTs in our implementation. Suffix
array samples, bit vector E, and each of the bit vectors Ψc are merged as separate
subtasks that are dynamically allocated to available threads. Large subtasks are
not divided into smaller ones, which can be a problem with small alphabets, or
when merging a large number of suffix array samples. In-place merging is not
implemented, doubling the memory usage of the bit vectors being merged.

6 Experiments

We tested the performance of our new algorithms experimentally. The experi-
ments were performed on a 16-core SMP system running Ubuntu Linux. The
system had 128 gigabytes of memory and four quad-core Intel Xeon X7350
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processors running at 2.93 GHz. All programs were compiled with GCC version
4.2.4. OpenMP was used for parallelization. MCSTL2 was used to parallelize
std::sort, as the GCC version in use did not support libstdc++ parallel mode.

Three data sets were used to test our construction algorithms: genome, enwiki,
and fiwiki. Genome is the human reference genome (NCBI build 34), with 25
sequences as individual files for a total of 2.88 gigabytes. Enwiki and fiwiki are
larger text collections downloaded from Wikipedia.3 Enwiki contains a dump of
the current versions of all English language Wikipedia articles (as of 2009-03-
13), while fiwiki is a highly repetitive collection containing all Finnish language
Wikipedia articles with their full version histories (as of 2009-01-22).

The Wikipedia data sets were in XML format, and had to be preprocessed
before indexing. In the enwiki collection, we considered the lines between tags
<page> and </page> as one sequence. In fiwiki, each sequence was contained be-
tween tags <revision> and </revision>. The extracted sequences were written
into 500-megabyte input files. In this final form, enwiki contains 16080833 se-
quences in 85 files for a total of 41.48 gigabytes, while fiwiki contains 5849111
sequences in 87 files for a total of 42.03 gigabytes.

We tested our construction algorithm on the three data sets. The sequential
implementation was used on the smaller genome data set, while the larger enwiki
and fiwiki collections were indexed using the parallel implementation. Index
parameters were mostly set to default ones. We used 32-byte block size on the
run-length encoded Ψc vectors, and 16-byte block size on the gap encoded vectors.
Suffix array sample rate was set to 64 on genome and enwiki data sets, and to
512 on the highly repetitive fiwiki data set. With these parameters, the final
index sizes for genome, enwiki, and fiwiki were 2.18 GB, 17.37 GB, and 2.13
GB, respectively. Table 1 summarizes the construction.

Table 1. Results for index construction. The construction times are in hours, and the
peak memory usage is in gigabytes. Throughput is measured in megabytes / second to
make comparisons with earlier results easier.

Construction Times
Collection Threads Memory Build Search Sort Merge Total MB/s

genome 1 2.9 0.75 0.86 0.08 0.74 2.43 0.34

enwiki 8 36–37 3.25 1.88 0.37 3.42 9.00 1.31
16 64 2.97 1.17 0.37 3.35 7.92 1.49

fiwiki 8 32 5.33 1.75 0.36 2.16 9.60 1.24
16 64 5.01 1.22 0.38 1.99 8.62 1.39

We were able to index the human genome in about 145 minutes using less
than 3 gigabytes of memory. Even considering the improvements in processor
speeds and cache sizes, this is clearly better than the 24 hours and 3.6 gigabytes
2 http://algo2.iti.uni-karlsruhe.de/singler/mcstl/
3 http://download.wikipedia.org/
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Table 2. Query times on the three data sets with a different number of (T)hreads.
(C)ount and (D)isplay times are in microseconds / character, while (L)ocate times are
in microseconds / occurrence.

genome enwiki fiwiki
T C L D C L D C L D

1 1.532 34.155 0.611 2.272 10.603 0.992 1.704 37.081 0.829
8 0.238 4.816 0.082 0.337 1.475 0.137 0.262 5.163 0.116

16 0.211 2.914 0.044 0.221 0.899 0.080 0.177 4.091 0.070

on a 1.7 GHz Pentium 4 system reported by Hon et al. [14]. By using in-place
merging, we should be able to reduce our memory consumption by the final
size of the largest bit vector (almost 500 megabytes). Further memory would be
saved by replacing the run-length encoded bit vectors with gap encoded ones.

On the the enwiki and fiwiki collections, there was no significant speedup
from 8 to 16 threads. Only the search phase that involves relatively complex
operations on small pieces of data shows major improvement. This behavior is
probably caused by cache and memory bus issues in the other phases that process
large amounts of data sequentially. Another thing to note is that while merging
the small indexes of the highly repetitive fiwiki collection was fast, building the
partial indexes for it was much slower than for the enwiki collection.

We also tested our implementation by performing a large number of count,
locate, and display queries using 1, 8, and 16 threads. We generated a set of
random patterns for count and locate queries for each of the three collections. On
the genome data set, this was 1000 patterns of length 10, with about 15.15 million
total occurrences. We modified one pattern with over 2 million occurrences, as
it dominated the query times in locate. For enwiki and fiwiki, we generated
40 random patterns of length 15 per input file, for a total of 3400 and 3480
patterns, respectively. Patterns with more than 105 occurrences were ignored in
locate, making the total number of reported occurrences 16.89 million and 14.07
million, respectively.

Display queries consist of 10000 random prefixes of at most 10000 characters
each. The total size of the extracted prefixes was 95.37 megabytes for genome,
17.64 megabytes for enwiki, and 38.90 megabytes for fiwiki. Table 2 shows the
average query times. The results are mostly comparable with those in [21].

The time required for one random access to the CSA is similar in all three
collections. We got a significant improvement from 8 to 16 threads for the same
reasons, as in the search phase of index construction. Locate performance was
similar on genome and fiwiki with different sample rates, because of the opti-
mizations for retrieving multiple occurrences. Enwiki was significantly faster, as
it benefited both from the low sample rate and the optimizations.

We could not directly compare the performance of our algorithm to other
similar algorithms. Of the few known implementations, the one by Hon et al. [14]
is not generally available. While Kärkkäinen’s space-efficient BWT construction
algorithm [16] is available, we could not compile it in a 64-bit environment.
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Table 3. Construction times for Burrows-Wheeler transform. The BWT is not included
in the memory consumption, as both implementations write it directly to disk.

Our Algorithm Kärkkäinen’s
5 10 20 128 1024 4096

Time (minutes) 35 41 46 29 46 68
Memory (GB) 1.86 1.29 1.02 2.00 1.45 1.28

Finally, the dynamic FM-index by Gerlach [9] is outperformed by Kärkkäinen’s
algorithm in BWT construction, making comparisons to it redundant.

With this in mind, we compared our sequential algorithm to Kärkkäinen’s
algorithm on BWT construction. The comparison was performed on a 2.66 GHz
Intel Core 2 Duo E6750 desktop system with 4 GB of memory (3.2 GB visible to
OS). We downloaded the 1.10 GB protein sequence collection from the Pizza &
Chili Corpus [7], and split it into 5, 10, and 20 parts for our algorithm. We used
parameter values v = 128 (default), 1024, and 4096 for Kärkkäinen’s algorithm.
The results can be seen in Table 3. While Kärkkäinen’s algorithm was faster
with default parameters, our algorithm performed better with limited memory.
We also achieved a reasonable speed while using less memory than the input
size, which is impossible with Kärkkäinen’s algorithm.

7 Discussion

We have presented a parallel algorithm for constructing compressed suffix ar-
rays, and demonstrated its practical effectiveness by indexing tens of gigabytes
with a throughput of about 4–5 gigabytes / hour. When the collection is highly
repetitive, this can be done in memory available on today’s high-end desktop
systems, except for the build phase of the algorithm. Hence if we distribute the
building of partial indexes to multiple systems, it should be feasible to index
collections of hundreds of gigabytes in size with the current implementation.

We actually considered indexing the German language Wikipedia with full
version history – a 933 GB highly repetitive collection. The plan was to use two
older SMP systems (both with 8 cores and 32 GB of RAM) to index 10-gigabyte
parts, and to merge the partial indexes on the larger system. Extrapolating from
the results with the Finnish language Wikipedia, this should have taken about
four days. However, due to the need for exclusive access to the systems, the
experiment had to be postponed.

This naturally leads to the question, whether a true distributed implementa-
tion of the algorithm is possible. The answer seems to be yes. In addition to the
build phase, sort and merge phases are also relatively easy to distribute. Sort-
ing is one of the fundamental operations in distributed computing, with many
efficient practical solutions, as is made evident by the Sort Benchmark.4 On

4 http://www.hpl.hp.com/hosted/sortbenchmark/
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the other hand, merging can easily be split into as many independent tasks as
necessary, making its distribution straightforward.

Search phase is the hardest one to distribute, as solving it will probably require
a distributed CSA. As long as the CSA fits into the memory of a single node,
things are easy. We can just have a copy of the CSA in each node, and distribute
the sequences between the nodes. When the index grows larger, we must either
store it in secondary memory, or distribute it among the nodes (or both in case
of very large collections).

Using secondary memory yields a major performance loss, as we need one
random access to the CSA for each character inserted. While a sequential search
can process more than 1 MB/s, hard disks allow at most a few hundred random
accesses per second. Although modern solid-state drives are much faster, allowing
tens of thousands of random accesses per second, they are still about 30–40 times
slower than the CPU. With one solid-state drive, one might get a 100 megabytes
/ hour throughput, so with many drives reasonable speeds could be attained.

Storing the CSA in distributed memory creates different performance prob-
lems. Network latency becomes the main factor in sequential search speed, as
nodes must communicate with each other to access different parts of the CSA. On
the other hand, large bandwidth makes it possible to search for many sequences
in parallel, alleviating the problem. If many queries directed to the same node
are grouped into one packet, a 5–10 MB/s (log n bits / character) data stream
should be enough for one CPU core.

With this algorithm, distributed construction of CSAs seems feasible for multi-
terabyte collections. Much of the work can even be performed on a production
system, as new data arrives. Significant resources are only required for the final
merging of the indexes. The real question is, can the algorithm be extended for
the other structures required for suffix tree functionality [1]. If the answer is
positive, it could make compressed suffix arrays the data structure of choice for
many applications, such as large-scale analysis of genome data.
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Abstract. A new trend in the field of pattern matching is to design
indexing data structures which take space very close to that required
by the indexed text (in entropy-compressed form) and also simultane-
ously achieve good query performance. Two popular indexes, namely
the FM-index [Ferragina and Manzini, 2005] and the CSA [Grossi and
Vitter 2005], achieve this goal by exploiting the Burrows-Wheeler trans-
form (BWT) [Burrows and Wheeler, 1994]. However, due to the intricate
permutation structure of BWT, no locality of reference can be guaran-
teed when we perform pattern matching with these indexes. Chien et
al. [2008] gave an alternative text index which is based on sparsifying
the traditional suffix tree and maintaining an auxiliary 2-D range query
structure. Given a text T of length n drawn from a σ-sized alphabet set,
they achieved O(n log σ)-bit index for T and showed that this index can
preserve locality in pattern matching and hence is amenable to be used
in external-memory settings. We improve upon this index and show how
to apply entropy compression to reduce index space. Our index takes
O(n(Hk + 1)) + o(n log σ) bits of space where Hk is the kth-order em-
pirical entropy of the text. This is achieved by creating variable length
blocks of text using arithmetic coding.

1 Introduction

Given a text T and a pattern P , finding all occurrences of P in T is the most
fundamental problem in the field of pattern matching. In the data-structural
sense, an index is built over T , and later some pattern P comes as a query; our
target is to solve the above problem more quickly with the help of the index.
Suffix trees [20,16] and suffix arrays [15] are the most popular indexes which can
answer the query in O(p + occ) time and O(p + log n + occ) time respectively,
where n = |T |, p = |P |, and occ is the number of places where P occurs in T .

� This work is supported in part by Taiwan NSC Grant 96-2221-E-007-082-MY3 (W.
Hon) and US NSF Grant CCF–0621457 (R. Shah and J. S. Vitter).
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Historically, these two data structures are considered to consume “linear” space.
However, the notion of space measure here was in terms of memory words. When
measured in terms of bits, these indexes take O(n log n) bits which is asymp-
totically higher than the n�logσ� bits required to store the text in plain form;
here, σ denotes the size of the common alphabet set Σ from which characters of
T and P are drawn. Practically when we are indexing DNA texts (with σ = 4),
these indexes are reported to take 15 to 50 times more space than the original
data. Furthermore, the text T can often be compressed into nHk bits by entropy-
compression methods like gzip or bzip, where Hk ≤ log σ denotes the kth-order
empirical entropy of the text. Thus, the actual gap between the indexing space
and the storage space is even larger.

A longstanding open question was to develop a text index which takes “truly”
linear space. Grossi and Vitter [10] presented the first text index taking O(n log σ)
bits. Simultaneously, Ferragina and Manzini [6] presented an index based on
Burrows-Wheeler transform (BWT) [3] which took O(nHk) bits. Both indexing
schemes were further refined [18,9,7] to take nHk + o(n log σ) bits, and various
space-time trade-offs are also obtained (see [17] for an excellent survey). One of
the main approach in designing all these indexes is to permute the text according
to the BWT. However, a short-coming of this approach is that BWT permuta-
tion completely shatters the locality of text characters. Each next character of
the pattern being matched can occur at a random location in the BWT. Hence,
no efficient external memory results were possible with such an approach. Chien
et al. [4] took a different approach of sparsifying the suffix tree to achieve space
reduction. The main idea was to combine a few contiguous characters from the
text to create a block, where each block in turn is treated like a new alphabet
symbol (or a meta-character). The index structures then includes the suffix tree
of this blocked text as a component, which is effectively a miniature of the suf-
fix tree of the original text but with fewer suffixes. This leads to an alternative
O(n log σ)-bit index when we set each block to contain roughly d = 0.5 logσ n
characters.

In this paper, we show the first entropy-compressed index in external memory
which can effectively exploit locality in pattern matching. Our technique is to
improve the blocking technique of Chien et al. [4]. We first introduce a variable-
length blocking technique which is combined with arithmetic coding scheme.
Using this we improve the space from O(n log σ) bits to O(nHk) + o(n log σ)
bits when k = o(logσ n) and σ = O(n1−ε) for any fixed ε > 0. We first
present an index that works efficiently in the RAM model. Then, we show
how to convert it to work in the external-memory model, and show that by
maintaining an O(nε)-bit table in RAM, pattern matching queries can be an-
swered in O((p log n)/B + log3 n/(log σ log B) + occ logB n) I/Os; here, B de-
notes I/O block size in terms of memory words. This result is further improved
to O(p/(B logσ n) + log4 n/ log log n + occ logB n) I/Os by using O(n)-bit extra
space.

On a related note, there were several attempts at designing compressed in-
dexes in secondary memory based on LZ-indexes. In [2], Arroyuelo and Navarro
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proposed an index whose space is O(nHk) + o(n log σ), but the I/O bounds
for pattern searching were not given. Their work is practical in nature and
claims to answer pattern matching queries in about 20–60 disk accesses. In [8],
González and Navarro provided an index which achieves O(p + occ/B) I/Os for
answering pattern matching query. However, their space usage is O((n log n) ×
Hk log(1/Hk)) bits, which is an O(log n) factor more in terms of the optimal
space complexity. Our techniques of blocking text and encoding blocks (meta-
characters) using arithmetic coding are similar to the ones used in the above
LZ-index line of work [2,8]. The key difference is in the way how the size of the
blocks is controlled to achieve the desired theoretical bounds.

2 Preliminaries

This section introduces a few existing data structures for text indexing and
orthogonal range searching which form the building blocks of our compressed
text indexes. We will briefly explain their roles in our indexes, while a more
detailed description is deferred in later sections. We also give a brief summary
of the external-memory model of [1].

Throughout the paper, we use T to denote the text to be indexed, and n = |T |
to denote its length. We use P to denote the pattern which comes as an online
pattern matching query, and p = |P | to denote its length. Further, we assume
the characters of T and P are both drawn from the same alphabet set Σ whose
size is σ.

2.1 Suffix Trees, Suffix Arrays, and Burrows-Wheeler Transform

Suffix trees [20,16] and suffix arrays [15] are two well-known and popular text
indexes that support online pattern matching queries in optimal (or nearly opti-
mal) time. For text T [1...n] to be indexed, each substring T [i..n], with i ∈ [1, n],
is called a suffix of T . The suffix tree for T is a lexicographic arrangement of
all these n suffixes in a compact trie structure, where the ith leftmost leaf rep-
resents the ith lexicographically smallest suffix. Each edge e in the suffix tree
is labeled by a series of characters, such that if we examine each root-to-leaf
path, the concatenation of the edge labels along the path is exactly equal to the
corresponding suffix represented by the leaf.

Suffix array SA[1...n] is an array of length n, where SA[i] is the starting
position (in T ) of the ith lexicographically smallest suffix of T . An important
property of SA is that the starting positions of all suffixes with the same prefix
are always stored in a contiguous region in SA. Based on this property, we define
the suffix range of a pattern P in SA to be the maximal range [�, r] such that for
all j ∈ [�, r], SA[j] is the starting point of a suffix of T with P as a prefix. Note
that SA can be obtained by traversing the leaves of suffix tree in a left-to-right
order, and outputting the starting position of each leaf (i.e., a suffix of T ) along
this traversal. In particular, we have the following technical lemma about suffix
trees, suffix arrays, and suffix ranges.
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Lemma 1. Given a text T of length n, we can index T using suffix tree and
suffix array in Θ(n log n) bits such that the suffix range of any input pattern P
can be obtained in O(p) time.

Suffix trees or suffix arrays maintain relevant information of all n suffixes of T
such that on given any input pattern P , we can easily search for the occurrences
of P simultaneously in each position of T . However, a major drawback is the
blowup in space requirement, from the original Θ(n log σ) bits of storing the
text in plain form to the Θ(n log n) bits of maintaining the indexes. In our
compressed text indexes, we apply a natural and very simple idea to achieve space
reduction, as suggested in [4] by maintaining only a fraction of these suffixes.
The consequence is that we can no longer search all positions of T in a single
pass. Instead, we need multiple passes, thus causing some inefficiency in the
query time. On the other hand, we gain much space reduction by storing fewer
suffixes.

The Burrows-Wheeler transform of a text T is an array BWT of characters
such that BWT [i] is the character preceding the ith lexicographically smallest
suffix of T . That is, BWT [i] = T [SA[i]− 1].

2.2 External-Memory Model

The external-memory model [1] or I/O model was introduced by Aggarwal and
Vitter in 1988. In this model, the CPU is connected directly to an internal
memory of size M , which is then connected to a much larger and slower disk.
The disk is divided into blocks of B words (i.e., B log n bits). The CPU can only
operate on data inside the internal memory. So, we need to transfer data between
internal memory and disk through I/O operations, where each I/O may transfer
a block from the disk to the memory (or vice versa). Since internal memory
(RAM) is much faster, operations on data inside this memory are considered
free. Performance of an algorithm in the external-memory model is measured by
the number of I/O operations used.

2.3 String B-Tree

String B-tree (SBT) [5] is an index for a text T that supports efficient online
pattern matching queries in the external-memory setting. Basically, it is a B-
tree over the suffix array SA of T but with extra information stored in each
B-tree node to facilitate the matching. The performance of SBT is summarized
as follows.

Lemma 2. Given a text T of length n characters , we can index T using a string
B-tree in Θ(n/B) blocks or Θ(n log n) bits such that the suffix range of any input
pattern P of length p can be obtained in O(p/(B logσ n) + logB n) I/Os. ��
In our compressed text index for the external-memory setting, we again achieve
space reduction by maintaining fewer suffixes. Thus, our index includes a spar-
sified version of the SBT as the main component.
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2.4 Orthogonal Range Searching in 2D Grid Using Wavelet Tree

In our compressed text index, in addition to the suffix trees or SBT, another key
component is a data structure to represent some integer array A[1...m], with each
integer drawn from [1, n], which can efficiently support online 4-sided queries of
the following form:

Input: A position range [�, r] and a value bound [y, y′]
Output: All those z’s in [�, r] such that y ≤ A[z] ≤ y′

The above problem can easily be modeled as a geometric problem as follows.
First, for each i ∈ [1, m], generate a point (i, A[i]) in the 2-dimensional grid
[1, m]× [1, n]. This forms the representation of the array A. Then, for any input
query with position range [�, r] and value bound [y, y′], the desired output corre-
sponds to all points in the grid that are lying inside the rectangle [�, r]× [y, y′].

Such a query is called an orthogonal range query in the literature, and many
indexing schemes are devised that have different tradeoffs between index space
and query time. In our compressed text indexes, we will require an index for A
which takes O(m log n) bits of space, so we select the wavelet tree [14,12,21] as
our choice, whose results are summarized in the following lemma.

Lemma 3. Given an integer array A of length m with values drawn from [1, n], we
can index A in O(m log n) bits such that the 4-sided query of any position range [�, r]
and any value bound [y, y′] can be answered in O((occ + 1) logn/ log log n) time in
the RAM model and O((occ + 1) logB n) I/Os in the external-memory model. ��

3 The Framework of Our Indexing Scheme

This section first describes the general framework of our index design, which
consists of a combination of the building block data structures mentioned in
Section 2. Afterwards, we will look at the general approach to perform pattern
matching based on our index. The following two sections details with the design
and the analysis of the index performance.

3.1 The Framework of the Index Design

To obtain our compressed index, we perform the following three key steps:

Step 1: Given a text T , we first transform T into an equivalent text T ′ such that
T ′ consists of at most O((nHk + o(n log σ))/ log n) meta-characters, where each
meta-character represents at most d consecutive characters in the original text
for some threshold d. In addition, we also require that each meta-character can
be described in O(log n) bits, so that T ′ can be described in O(nHk)+o(n logσ)
bits.

Step 2: We maintain the suffix tree or String B-Tree for T ′, where we consider
each meta-character of T ′ as a single character from a new alphabet.
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Step 3: We perform the Burrows-Wheeler transform on T ′ to obtain an array
A. Then we maintain the wavelet tree for A.

3.2 The Framework of the Pattern Matching Algorithm

The suffix tree or SBT in our index will maintain only the suffixes of T ′, which
correspond to only a fraction of the original suffixes. Then, when a pattern P
occurs in T , it will in general match the corresponding meta-characters of T ′ in
the following way:

The first part of P , say P [1..i], matches the suffix of a meta-character
T ′[j] and the remainder of P , say P [i + 1..p], matches the prefix
of T ′[j + 1..|T ′|]. We shall call such an occurrence of P an offset-i
occurrence of P in T .

Our pattern matching algorithm is to find the offset-i occurrences of P sepa-
rately for each relevant i. In our design, each meta-character of T ′ represents at
most d original characters of T . It is therefore sufficient to consider only those
i in [0, d − 1]. This leads to the following pattern matching algorithm, which
consists of two major steps:

Step 1: Compute the suffix range of P [i + 1..n] in the suffix array SA′ of T ′ for
each i ∈ [0, d− 1] using the suffix tree (ST ′) or String B-Tree (SBT ′) of T ′.

Step 2: For each i ∈ [0, d−1], use the suffix range of P [i+1..n] to issue a 4-sided
query in the wavelet tree of A to find all offset-i occurrences of P . (Details of
how to issue the corresponding 4-sided query are given in the next section.)

4 Index for Internal Memory Model

In this section, we show a simple index based on variable length meta-character
blocking and sparse suffix tree in the internal memory model. Later, in section 5,
we shall show how to extend our results to the external memory model.

4.1 Index Design

In the index given by Chien et al. [4], the given text T is converted to an
equivalent text T ′ by blocking every d = 0.5 logσ n characters. Each block, called
a meta-character, contains fixed number of characters. The transformed text
T ′ consists of O(n/ logσ n) meta-characters. Hence, the suffix tree of T ′ takes
O(n log σ) bits space.1 The new index we propose in this paper improves the
space complexity to O(nHk)+o(n logσ) bits. Here, instead of having each meta-
character contain a fixed number of characters, we allow a variable number
of characters. Each meta-character is encoded in such a way that, its first k
characters are written explicitly (using fixed length encoding) and the rest using
kth-order arithmetic coding. The number of characters within a meta-character
is restricted by the following two conditions.
1 Assuming each integer and each pointer is at most log n bits long.
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– The number of characters should not exceed a threshold d = log2 n/ log σ.
– After encoding, the total length should not exceed 0.5 logn bits.2

In our new index, the transformation of T into T ′ can be performed as follows.
Start encoding T from T [1] and get its longest prefix T [1...j], which satisfies the
conditions of a meta-character. Hence, T [1...j] in its encoded form is our first
meta-character. After that the remainder of T is encoded recursively. (Note that
the strings corresponding to distinct meta-characters are not required to be
prefix-free.) The starting position of each meta-character is stored in an array
M such that M [i] corresponds to the starting position of ith meta-character in
T . In other words, the substring T [M(i)...(M [i + 1]− 1)] corresponds to the ith
meta-character. For instance, M [1] = 1 and M [2] = j + 1. By concatenating all
these meta-characters (in the order in which the corresponding block appears in
T ), we obtain the desired string T ′.

Since each meta-character corresponds to a maximal substring of T without
violating the two conditions, a meta-character corresponds either to (i) exactly
d characters of T , or (ii) its encoding is just below 0.5 logn in which case the
encoding is of Θ(log n) bits and corresponds to Θ(logσ n) characters of T .3 Note
that in both cases each meta-character corresponds to Ω(logσ n) characters.

Direct entropy compression of T would have resulted in nHk + o(n log σ)-
bit space for T ′. But in our scheme, the first k characters are written explic-
itly in each block. This results in an overhead of O((n/ logσ n) × k log σ) =
o(n log σ) bits to encode T ′, assuming k = o(logσ n).4 Thus, the number of
meta-characters from (i) cannot exceed n/d = o(n log σ/ log n), while the num-
ber of meta-characters from (ii) is bounded by O((nHk + o(n log σ))/ log n).
In summary, the length of T ′ = nHk + o(n log σ) bits, and there is a total of
O((nHk + o(n log σ))/ log n) meta-characters in T ′.

By considering each meta-character as a single character from the new alpha-
bet set, we construct the suffix tree ST ′ of T ′. As the length of T ′ is given by
O((nHk + o(n log σ))/ log n), so is the number of nodes in ST ′. Thus, ST ′ takes
O((nHk + o(n log σ))/ log n× log n) = O(nHk) + o(n log σ) bits of space.

Lemma 4. The total number of distinct meta-characters is O(
√

n).

Proof. Each meta-character has an encoding between 1 and 0.5 logn bits. Thus,
the number of distinct meta-character is at most

∑0.5 log n
r=1 2r = O(

√
n). ��

2 Without loss of generality, we assume here that σ < n1/4. The parameters can be
appropriately adjusted for the more general case when σ = O(n1−ε) for any fixed
ε > 0.

3 Here, we make a slight modification that one extra bit is spent for each meta-
character, such that if our kth-order encoding of the next o(logσ n) characters already
exceeds 0.5 log n, we shall instead encode the next 0.5 logσ n characters (i.e., more
characters) in its plain form. The extra bit is used to indicate whether we use the
plain encoding or the kth-order encoding.

4 As mentioned, there is also an extra bit overhead per meta-character; however, we
will soon see that the number of meta-characters = O((nHk + o(n log σ))/ log n) so
that this overhead is negligible.
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We also construct an auxiliary trie-structure Π which can be used to rank each of
the meta-characters among all the meta-characters that are constructed from the
text. Let B be a block in T which corresponds to a meta-character C in T ′, and
let←−B denote the string obtained by reversing the characters of B. We maintain a
string L which is the concatenation of all distinct←−B ’s in the uncompressed form
and we construct a compact trie Π storing all distinct ←−B ’s. The edges of Π are
represented using two pointers, which are the starting and ending points of the
corresponding substring in L. String L takes O(

√
n × (log2 n/ logσ) × log σ) =

o(n) bits and Π takes O(
√

n× log n) = o(n) bits of space.
Let Π(i) represent the ith leftmost leaf of Π . Now we shall show how to

obtain an array A from which we construct the wavelet tree. For this, we first
compute BWT of T ′. Let BWT [i] = C, where C is a meta-character and B is
its corresponding character block. Now, search for←−B in Π and reach a leaf node
Π(j); then we set A[i] = j. That is, A[i] is the leaf-rank of ←−B in Π . Finally,
we maintain a wavelet tree of A based on Lemmas 3 and 4, whose space takes
O((nHk +o(n log σ))/ log n)× log(O(

√
n)) = O(nHk)+o(n logσ) bits. The total

space requirement for our index is O(nHk) + o(n log σ) bits.

4.2 Pattern Matching Algorithm

The suffix tree ST ′ maintains only the suffixes of T ′. Therefore navigating
through ST ′ can only report those occurrences of the query pattern P which
start at a meta-character boundary. But in general, P can start anywhere in-
side T , where P [1...i] matches to the suffix of a meta-character T ′[j] and the
remaining of P , P [i+1...p] matches the prefix of T ′[j +1...|T ′|]. We call such an
occurrence of P an offset-i occurrence of P in T . We need to check for all possible
offset occurrences. Since the number of characters inside a meta-character is at
most d, it is sufficient to check for those offsets i where i = 0, 1, 2, . . . , d− 1.

To find offset-i occurrences, we let Ppre represent the prefix P [1...i] and Psuf

represent the suffix P [i + 1...p] of the pattern P . We first convert Psuf into P ′
suf

by blocking this into meta-characters. Following our convention, we use ←−−Ppre to
denote the reverse of Ppre . Next, we search for ←−−Ppre in the compact trie Π to
reach a position u∗ (if exists); note that u∗ may be an internal node, or within
an edge, rather than a leaf. In any case, we use Π(ileft) and Π(iright ) to denote,
the leftmost and rightmost leaves in the subtree of u∗.

We are now ready to show how to search for the desired offset-i occurrences of P :

1. Search for P ′
suf in ST ′ and obtain its suffix range SA′[�...r]. Here P ′

suf is of
length at most p logσ, hence by assuming standard word length of O(log n)
bits, this matching step can be performed in O(p/ logσ n) time. But for
matching an ending portion of a pattern, which may be smaller than the
length of a meta-character, we need to perform a “predecessor search” in
order to get the range. Therefore, in general the suffix range can be obtained
in O(p/ logσ n + log n) time.5

5 More precisely, we maintain the SBT data structure for short patterns as suggested
by Hon et al. [11] to accomplish the task. We defer the details in the full paper.
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2. We need to find out those text positions in SA′[�...r], such that Ppre occurs
before those positions. This is equivalent to finding all z’s in [�, r], such that
ileft ≤ A[z] ≤ iright .

3. Now the search for offset-i occurrences is reduced to an orthogonal range
searching problem in 2D grid. We use the wavelet tree structure of A to solve
this query. According to Lemma 3, this will take O((occ(i)+1) log n/ log log n)
time, where occ(i) represents the number of offset-i occurrences.

Lemma 5. Based on ST ′ and the wavelet tree of A, all the offset-i occurrences
of a pattern P in T , which cross at least one meta-character boundary, can be
reported in O(p/ logσ n + log n + occ(i) log n/ log log n) time, where occ(i) is the
number of offset-i occurrences of P in T . ��

The above steps need to be performed for all possible offsets i, where i =
0, 1, . . . , d − 1. For each offset i we need to convert Psuf into P ′

suf . Assum-
ing the conversion is done independently for each offset, it will in total take
O(p log n + d log n) time. This gives the following lemma.

Lemma 6. A given text T can be indexed in O(nHk)+ o(n log σ) bits such that
all the occurrences of a pattern P in T , which crosses at least one meta-character
boundary in T , can be reported in O(p log n + log3 n/ logσ + occ log n/ log log n)
time. ��

4.3 Index for Short Patterns

The methods described before will work only for those occurrences of a pattern
that cross a meta-character boundary. To find those short patterns which start
and end inside the same meta-character, we rely on an auxiliary data struc-
ture which is a generalized suffix tree Δ of all the distinct meta-characters that
appear. Considering Lemma 4, the space for Δ can easily be bounded by o(n).

The search begins by matching the pattern P in Δ to obtain the list L of all
the distinct meta-characters in which P occurs (along with the relative positions
of pattern occurrences inside a given meta-character. Now, on top of this, for
each distinct meta-character C appearing in the text, we maintain the list HC

of all the positions in T ′ where the meta-character C occurs. These lists overall
take log n bits per meta-character and hence the total space for the H structure
is bounded by O(nHk)+o(n log σ) bits. Once the list L of meta-characters (along
with the internal positions) is obtained from Δ we use H as the de-referencing
structure to obtain the final set of positions.

Lemma 7. A given text T can be indexed in O(nHk)+ o(n log σ) bits such that
all the occurrences of pattern P in T , which starts and ends inside the same
meta-character in T , can be reported in O(p + occ) time. ��
The following theorem concludes our result.

Theorem 1. A text T can be indexed in O(nHk) + o(n log σ) bits space, such
that all the occurrences of a pattern P in T can be reported in O(p log n +
log3 n/ logσ + occ log n/ log log n) time. ��
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5 Extension to External Memory Model

In this section, we extend our results in the RAM model to the external memory
model.6 For this, we replace each data structure in internal memory model with
its external memory counterpart. The sparse suffix tree ST ′ will be replaced by
a sparse string B-tree SBT ′ of T ′. The wavelet tree of array A will be replaced
with its external memory version [12,14]. By performing a similar analysis, and
setting the threshold d to be log2 n/ logσ, the searching for a pattern P in
T will take

∑d−1
i=0 O(p/(B logσ n) + logB n + occ(i) logB n) = O((p log n)/B +

(logB n)(log2 n/ logσ) + occ logB n) I/Os, where occ(i) represents the number
of offset-i occurrences that cross at least one meta-character boundary and occ
represents the total number of such occurrences. The generalized suffix tree for
short patterns will be replaced by string B-tree, which can perform pattern
matching in O(p/B + logB n + occ) I/Os. Immediately, we have the following
theorem.

Theorem 2. A text T can be indexed in O(nHk)+o(n log σ) bits in the external
memory, such that all occurrences of pattern P can be reported in O((p log n)/B+
log3 n/(log σ log B) + occ logB n) I/Os.

Indeed, we can reduce the O((p log n)/B) term to O(p/(B logσ n)), if we allow
slightly more index space. This is done by combining our index with Sadakane’s
Compressed Suffix Tree (CST) [19]. Our goal is to avoid repeated pattern match-
ing for various offsets, which is done by using the “suffix link” functionality pro-
vided by CST. The main idea is that if some part of the pattern is matched
during the offset-k search then we avoid re-matching it for offset-(k + 1) search
and onwards; instead we rely on the suffix link to provide information for the
subsequent search.

In the remainder of this section, we sketch how the pattern matching algorithm
can be sped up by storing the CST. Firstly, for any internal node u inside the
suffix tree, let path(u) denote the string obtained by concatenation of edge labels
from root to u. The suffix link of u is defined to be the (unique) internal node v
such that the removal of the first character of path(u) is exactly the same as
path(v). However, suffix link with respect to the original suffix tree may not
exist in the sparse suffix tree or the sparse string B-tree (simply because some
suffixes are missing).

In our algorithm, the full (non-sparse) suffix tree on T must be used, so that
we can follow the original suffix links. To stay within our space bounds of O(nHk)
we cannot afford to use the regular suffix tree. This explains why we choose the
CST of [19], which provides all suffix tree functionalities in compressed space.

6 Recall that the block size parameter B is measured in terms of memory words while
the pattern length p is measured in terms of characters. Here, we further assume that
the decoding table for arithmetic coding fits in the internal memory. By choosing
appropriate parameters and with the condition that k = o(logσ n), we can ensure
that the decoding table size is O(nε) bits.
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5.1 Compressed Suffix Tree

Let us assume we have stored Compressed Suffix Tree CST of the text T . In
addition, all the nodes in CST which are also in the sparse suffix tree ST ′ are
marked. For this marking, a bit-vector is maintained in addition to CST. The
nodes in CST are considered in pre-order fashion and whenever a marked node is
visited we write “1” or else we write “0”. Thus, this bit-vector B stores marking
information on the top of CST .

We shall need the following functionalities provided by the recent CST of [19]
together with our bit-vector B:

Suffix link: Given a node u (by its pre-order rank) in CST, return the suffix
link node v (by its pre-order rank). This function can be done in O(log σ)
I/Os.

Highest marked descendant: Given a node u in CST, its highest marked
descendant is defined to be the node v such that v is in the subtree of u,
v is marked, and no nodes between u and v is marked. Such a node v (if
exists) is unique. This is due to the fact that the least common ancestor of
two marked nodes (i.e., the least common ancestor of two sparse suffix tree
nodes) is also marked. Note that this functionality is not directly provided
by CST of [19] but can easily be implemented in O(1) I/Os by storing a
rank/select data structure over the bit-vector B along with the parentheses
encoding of CST.

Lowest marked ancestor: Given a node u in CST, report its lowest marked
ancestor (if exists). This can be done in O(1) I/Os based on B and its the
rank/select data structure.

Leftmost leaf: Given a node u in CST, locate its leftmost (rightmost) leaf
node in its subtree. This can be done in O(1) I/Os.

String-depth: Given a node u, report the length of path(u). This can be done
in O(log2 n/ log log n) I/Os.

Weighted level ancestor: Given a leaf � and string-depth w, report the
(unique) node u such that u is the first node on the path from root to � with
string-depth ≥ w. This node u must be a lowest common ancestor between
� and some other leaf �′, so that we can find u if �′ is determined. Such �′

can be found by binary searching all leaves to the right of �, and examine
the string-depth of lowest common ancestor of � and the leaf. The process
can be done in O(log3 n/ log log n) I/Os.

5.2 Sparse String B-Tree

Our explanation below shall refer to both the sparse suffix tree and the sparse
string B-tree. However, the sparse suffix tree is never stored and is just for
the sake of notation and the identification of nodes. Firstly, the following two
functionalities of the sparse string-B tree SBT ′ will be used. The I/O complexity
for both functions follows directly from the searching strategy of SBT in the
original paper [5].
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1. Given a pattern P , let lcp(P, ST ′) be the length of the longest common prefix
of P with any suffix stored in SBT ′: we can use O(lcp(P, ST ′)/B + logB n)
I/Os to find the node u (by its pre-order ranking in the suffix tree ST ′)
such that u is the node with smallest string-depth in ST ′ and lcp(P, ST ′) =
lcp(P, path(u)).

2. If we are given a node u in ST ′ such that the pattern P is guaranteed to
match up to some length x on path(u), then the above lcp search can be
done in O((lcp(P, ST ′)− x)/B + logB n) I/Os.

5.3 Pattern Matching Algorithm

Now, we are ready to show how we match a pattern P in this combination of
sparse string B-tree and CST. First we start with finding offset-0 occurrences,
then we find offset-1 occurrences, then offset-2 occurrences and so on. Let Pi

denote the pattern P with the first i characters deleted. Thus we have to match
P0, P1, P2, . . . , Pd−1 in the string B-tree. Corresponding to each offset i we find
the range [�i, ri] in the sparse string B-tree.

We start matching the pattern P = P0 in SBT ′; this allows us to find the node
u in ST ′, such that u is the closest node from root such that lcp(path(u), P ) =
lcp(P, ST ′). If the pattern is matched entirely, then we call this offset a success
and output its range. In this case we set lcp = p, and also obtain the range
[�0, r0]. If not, we set lcp = lcp(P, ST ′) and follow the “suffix link”. Let’s first
define the notion of suffix link in the sparse suffix tree ST ′ (or SBT ′).

Definition 1. Given the pair (u, lcp), let pair (v, lcp′) be such that (1) lcp ′ =
lcp − t, (2) path(u)[t + 1..lcp] = path(v)[1..lcp ′] and (3) t is the smallest integer
≥ 1 for which such a node v exists in ST ′. If more than one v exists in ST ′, we
set v to be the highest node among them. Then (v, lcp′) as is called t-suffix link
of (u, lcp).

Now, we show how to compute t-suffix link for pair (u, lcp) in O(t log3 n/ log log n)
I/Os. This is done by using the suffix link functionality provided by CST . First, we
use the pre-order rank of u to find the corresponding node in CST . Then, inside
CST , we can find u’s ancestor y such that string-depth of y is just more than
lcp. This can be done by the weighted level ancestor query in O(log3 n/ log log n)
I/Os. The node y represents the location where P stops in the CST if P were
matched with the CST instead. To proceed for the next offset, we follow the
suffix link from y and reach node w (and increment t by 1). Now, we first find
the lowest marked ancestor m of w in O(1) I/Os and check if its string-depth
is at least lcp − t. If so, we come back to its corresponding node v in ST ′ and
set lcp′ = lcp − t. Note that (v, lcp ′) is the desired t-suffix link of (u, lcp), so
that we can proceed with the pattern matching in SBT ′.7 Otherwise, if m does
not exist or its string-depth is too small, we find in the subtree of w and try
the highest marked descendant m′ of w in O(1) I/Os. If m′ exists, we come
7 Note that when we switch back to a node in SBT ′, we choose the top-most node in

SBT ′ corresponding to the node v.
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back to its corresponding node v′ in ST ′ and set lcp′ = lcp − t, while it follows
that (v′, lcp′) is the desired t-suffix link of (u, lcp) so that we can again proceed
with the pattern matching in SBT ′. If there is no such marked descendant m′,
we follow further the suffix link from w (and increment t), and keep following
suffix links until we reach either a node m or m′ using the above procedure. In
this case, we can be sure that none of the offsets between 1 and t − 1 would
produce any results. Consequently the corresponding (v, lcp′) or (v′, lcp′) will
be the desired t-suffix link and we can directly jump to offset-t match. This
procedure gives us all the ranges [�i, ri] for all the possible offsets (up to at most
d of them).

5.4 Analysis

The space taken by both CST and string B-tree is O(nHk + n)+ o(n log σ) bits.
For matching the pattern P , there are d phases. In each phase, we match some
distinct part of P and then spend O(log3 n/ log log n) I/Os in CST plus an extra
O(logB n) I/Os (apart from matching characters of P ) in SBT ′. Thus, in total,
we spend O(d log3 n/ log log n) in addition to the I/O in which the pattern is
matched with the actual text inside the SBT ′. On the other hand, since the
characters of P are accessed once and are accessed sequentially, the total I/Os
for matching characters of P can be bounded by O(p/(B logσ n)+d logB n). For
the conversion of the characters in P into the corresponding meta-characters,
we assume that it is done in RAM so that it does not incur additional I/Os.
Overall, this gives us O(p/(B logσ n)+d log3 n/ log log n) I/Os for finding out all
the ranges [�0, r0], [�1, r1], ..., [�d−1, rd−1].

Once these ranges are ready, we can use the external memory wavelet tree to
find out the actual occurrences (which cross a meta-character boundary). The
short patterns are handled as before using the generalized suffix tree approach
(except we are using a SBT instead). Since the space of CST is O(nHk +n) bits
which is the bottleneck, we may reduce the blocking factor to be d = 0.5 logn
(thus having the effect of more meta-characters in T ′ but faster query) without
affecting the space. The following theorem captures our new result.

Theorem 3. A text T can be indexed in O(nHk + n) + o(n log σ) bits in exter-
nal memory, such that all occurrences of a pattern P in T can be reported in
O(p/(B logσ n) + log4 n/ log log n + occ logB n) I/Os.

6 Conclusion

We show the first entropy compressed text index in external memory. Our index
is based on the paradigm of using sampled suffixes [13], and achieves locality
while matching pattern which was lacking in other BWT based indexes. The
main idea here is to partition the text into variable length block according to
their compressibility and then compress each block using arithmetic coding. We
show how this idea can be combined with the notion of suffix links by using CST
of Sadakane[19].
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We achieve optimal query I/O performance with respect to the length p of
the input query pattern, taking O(p/(B logσ n)) I/Os. As noted by Chien et
al. [4], the lower bounds in range searching data structures suggest that the last
term O(occ logB n) cannot be improved to O(occ/B). But, it may be possible to
improve the middle term of polylog(n). Another possible improvement could be
in reducing space term from O(nHk) to strictly nHk.
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Abstract. To compute Burrows-Wheeler Transform (BWT), one usually builds
a suffix array (SA) first, and then obtains BWT using SA, which requires much
redundant working space. In previous studies to compute BWT directly [5,12],
one constructs BWT incrementally, which requires O(n log n) time where n is
the length of the input text. We present an algorithm for computing BWT directly
in linear time by modifying the suffix array construction algorithm based on in-
duced sorting [15]. We show that the working space is O(n log σ log logσ n) for
any σ where σ is the alphabet size, which is the smallest among the known linear
time algorithms.

1 Introduction

A Burrows-Wheeler Transform (BWT) [1] is a transformation from a text to a text,
which is useful for many applications including data compression, compressed full-text
indexing, pattern mining to name a few.

To compute BWT, one usually builds a suffix array (SA) first, and then obtains
BWT from SA. Although both steps can be done in linear time in the length of the
text [8,9,10], it requires large working space. Although the space for the result of BWT
is n lg σ bits 1 where n is the length of the text, and σ is the alphabet size, that for SA is
n lg n bits. For example, in the case of human genomes, n = 3.0 × 109 and σ = 4, the
size of BWT is about 750 MB, and that of SA is 12 GB. Therefore, the working space
is about 16 times larger than that for BWT.

Previous studies [5,12] showed that one can compute BWT without SA by implic-
itly adding suffixes from the shortest ones to longest ones. However, these algorithms
are slow due to the large constant factor, and their computational cost are O(n log n)
time. There also exist other types of algorithms. Hon et al. [6] gave an algorithm
using O(n logσ) space and O(n log log σ) time. Na and Park [13] gave one using
O(n logσ logα

σ n) space and O(n) time where α = log3 2.
In this paper, we present an algorithm for computing BWT directly in linear time

using O(n log σ log logσ n)-bit space. Our algorithm is based on the suffix array con-
struction algorithm based on induced sorting [15]. In original SA algorithm, the whole

1 lg x denotes �log2 x�.
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Table 1. Time and space complexities. H0 is the order-0 empirical entropy of the string and
H0 ≤ log σ. α = log3 2.

Time Space (bits) References
O(n) O(n log n) [2,8,9,10,15] (compute SA)
O(n log n) O(nH0) [5]
O(n log log σ) O(n log σ) [6]
O(n) O(n log σ) [6] (log σ = O((log log n)1−ε))
O(n) O(n log σ logα

σ n) [13]
O(n) O(n log σ log logσ n) This paper

SA are induced from the carefully sampled SA. Our algorithm simulates this algorithm
by using BWT only, and induces whole BWT from the sampled BWT. Our algorithm
works in linear time and requires the working space close to that for input and output.
Moreover our algorithm is simple and easy to implement. Table 1 gives a comparison
with other algorithms. Our algorithm uses the smallest space among the linear time
algorithms.

2 Preliminaries

Let T [1, n] be an input text, n its length, and Σ its alphabet set, with σ = |Σ|. We denote
the i-th character of T by T [i], and the substring from i-th character to j-th character
for i ≤ j by T [i, j]. We assume that T is followed by a special character T [n] = $,
which is lexicographically smaller than any other characters in T , and do not appear in
T elsewhere. We also assume σ ≤ n because otherwise n log σ = Ω(n log n).

2.1 Suffix Arrays and Burrows-Wheeler Transform

A suffix of T is Ti = T [i, n] (i = 1, . . . , n). Then, a suffix array of T , SA[1, n] is
defined as an integer array SA[1, n] of length n such that TSA[i] < TSA[i+1] for all
i = 1, . . . , n − 1 where < between strings denotes the lexicographical order of them.
SA requires n lg n bit of space.

A Burrows-Wheeler Transform (BWT) of a text T , B[1, n] is defined as follows;

B[i] =
{

T [SA[i]− 1] (SA[i] > 1)
T [n] (SA[i] = 1). (1)

We will denote BWT not only as the transformation, but also the result of the
transformation.

BWT has several characteristics; First, BWT is a reversible transformation. That is,
the original text can be recovered from BWT without any additional information [1].
Second, BWT is often easy to compress. For example, by using the compression boost-
ing technique [3], we can compress BWT in k-th order empirical entropy for any k by
using simple compression algorithms, which does not consider the context information.
Third, BWT can be used for constructing compressed full-text indexes. For example, we
can build a compressed suffix array [4], and a FM-index from BWT in O(n) time [5].
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T = m m i s s i s s i i p p i i $

type L L L L L L L L L LS* S* S* S S*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S* 15

$ i m p s

L
S

3 6 9
14 13 2 1 12 11 5 8 4 7

9 10 3 6

V1 1 2 3 3

T1 = 3 3 2 1

Fig. 1. An example of induced sorting for T = mmississiippii$. S∗substrings are located at
positions (15, 3, 6, 9) in T , and their positions are stored in SA. From them, L-type suffixes
(14, 13, 2, 1, 12, 11, 5, 8, 4, 7) are induced. Then S-type suffixes (9, 10, 3, 6) are induced from
L-type suffixes. We obtain names V1 of the S∗substrings, and finally obtain the shortened string
T1 = 3321.

Forth, BWT is also useful for many other applications, such as data compression [1],
compressed full-text indexes [14], and pattern mining [11].

Since BWT is the result of the shuffled input text, the space of BWT is n lg σ bits.
Therefore, the space of BWT is much smaller than that for the suffix array when σ � n,
such as genome sequences.

To compute BWT, one usually constructs SA first, and then obtains BWT using (1).
Although the total computational time is linear in the length of the input text [8,9,10],
its working space is n lg n bits and is much larger than that for BWT. Previous stud-
ies [5,12] show how to compute BWT without SA. These algorithms incrementally
build BWT by implicitly adding the suffixes from the shortest ones. Although these
algorithms are remarkably simple, they require O(n log n) time and also slow in prac-
tice due to the large constant for keeping dynamic data structures. In another study [7],
one divides input into the small blocks according to their first characters in suffixes so
that the working space would be small. However it requires O(n logn) time and relies
on the complex handling of long repetitions. Therefore, no previous work can compute
BWT in linear time using small working space.

2.2 Storing Increasing Sequences

Let s1, s2, . . . , sn be a strictly increasing sequence of integers such that 0 ≤ s1 < s2 <
· · · < sn < U . A naive representation of the sequence uses n lg U bits of space. Instead
we can represent it succinctly by using a clever encoding with the following properties,
which is rephrased from [6].

Lemma 1. A sequence s1, s2, . . . , sn of n integers such that 0 ≤ s1 < s2 < · · · <
sn < U can be stored in a bit-stream of n(2 + lg U

n ) bits. The bit-stream can be
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constructed incrementally in O(n) time in the sense that the integers can be given in
arbitrary order, provided that both the value si and its index i are given. Furthermore,
after O(n) time preprocessing to the bit-stream to construct an auxiliary data structure
of O(n log log n/ log n) bits, the i-th smallest integer si (1 ≤ i ≤ n) is obtained in
constant time.

Proof. The bit-stream consists of two parts: upper stream and lower stream. Each inte-
ger si is originally encoded in lg U bits, and its lower lg U

n bits are stored in the lower
stream as it is. The upper lg n bits are stored in the upper stream after converting its
original binary encoding to the following one. The upper stream is represented by a 0, 1
vector B[1, 2n], and the i-th number si is encoded by setting B[i+ � si

n �] = 1. It is easy
to show that each bit of B corresponds to at most one number in the sequence, and the
bit position for si does not depend on other numbers. Therefore the upper stream can
be constructed for any input order of the numbers.

The element si is obtained from the bit-streams as follows. The upper lg n bits of
the binary encoding of si are computed by select(B, i) − i, where select(B, i) is the
position of i-th 1 in Band it is computed in constant time using an auxiliary data structure
of O(n log log n/ logn) bits [16] which is constructed by O(n) time preprocessing. The
lower lg U

n bits of the binary encoding of si are obtained directly from the lower stream
in constant time. By concatenating the upper and the lower parts, we obtain si. �

3 Constructing SA Based on Induced Sorting

Our novel algorithm for computing BWT is based on the liner-time suffix array con-
struction algorithm using purely induced sorting [15]. We will explain their algorithm
here again for the sake of clarity. We call this algorithm SAIS (Suffix Array construction
algorithm based on Induced Sorting).

First, we classify suffixes into two types; S-type, and L-type as follows.

Definition 1. A suffix Ti is called S-type if Ti < Ti+1, and called L-type if Ti > Ti+1.
The last suffix is defined as S-type.

We also classify a character T [i] to be S- or L-type if Ti is S- or L-type, respectively.
We can determine the type of each suffixes in O(1) time by scanning T once from right
to left as follows. First, T [n] is defined as S-type. Next, for i from n−1 to 1, we classify
a suffix by using the following rule;

– Ti is S-type if (T [i] < T [i + 1]) or (T [i] = T [i + 1] and Ti+1 is S-type).
– Ti is L-type otherwise.

Obviously, in SA, the pointers for all the suffixes starting with a same character
must span consecutively. Let’s call a sub-array in SA for all the suffixes with a same
character as a bucket. Specifically, we call c-bucket a bucket starting with a character
c. Further, in the same bucket, all L-type suffixes precede to the S-type suffixes due to
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their definition. Therefore, each bucket can be split into two sub-bucket with respect to
the types of suffixes inside: we call them L- and S-type buckets each.

We also introduce S∗-type suffixes.

Definition 2. A suffix Ti is called S∗-type if Ti is S-type and Ti−1 is L-type (called
Left-Most-S type in [15]). A character T [i] is called S∗-type if Ti is S∗-type.

Then, given sorted S∗-type suffixes, we can induce the order of L-type and S-type suf-
fixes as follows. These steps can be done in linear time.

– Given sorted S∗suffixes, put all of them into their corresponding S-type buckets in
SA, with their relative orders unchanged.

– Scan SA from the head to the end. For each item SA[i], if c = T [SA[i] − 1] is
L-type, then put SA[i] − 1 to the current head of the L-type c-bucket and forward
the current head one item to the right.

– Scan SA from the end to the head. For each item SA[i], if c = T [SA[i] − 1] is
S-type, put SA[i] − 1 to the current end of the S-type c-bucket and forward the
current end one item to the left.

Next, we explain how to obtain sorted S∗suffixes in linear time.
We introduce S∗substring.

Definition 3. An S∗substring is (i) a substring T [i, j] with both T [i] and T [j] being
S∗characters, and there is no other S∗character in the substring, for i �= j; or (ii) T [n].

Let we denote these S∗substrings in T as R1, R2, . . . , Rn′ where Ri is the i-th S∗

substring in T . Let σ1 be the number of different S∗substrings in T . Then we assign
names Vi ∈ [1, σ1] to Ri, (i = 1, . . . , n′) so that Vi < Vj if Ri < Rj and Vi = Vj if
Ri = Rj . Finally, we construct a new text T1 = V1, V2, . . . , Vn′ whose length is n′ and
the alphabet size is σ1.

We recursively apply the linear-time suffix array construction algorithm to T1 and
obtain the order of S∗suffixes. Since the relative order of any two S∗suffixes in T is the
same for corresponding suffixes in T1 [15], we can determine the order of the S∗suffixes
by using the result of the recursive algorithm.

To compute the names of S∗substrings, we again use the induced algorithm modi-
fied that input are unsorted S∗suffixes; we place unsorted S∗suffixes at the end of S-
type buckets, and apply inducing procedure; induce the order of L-type suffixes from
S∗suffixes, and the order of S-type suffixes from L-type suffixes. As a result, we obtain
the sorted S∗substrings. Then, we can assign names to each S∗substring in linear time
by checking their suffixes from the beginning to the ending. An example is shown in
Figure 1.

Finally, to obtain the total computational cost, we use the following lemma;

Lemma 2. [15] The length of T1 is at most half of that of T .

The SAIS algorithm for an input of length n requires O(n) time and the time required
to solve the same problem of half the length. Therefore, the total time complexity is
O(n).
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4 Direct Construction of BWT

We explain our algorithm to obtain BWT without SA by modifying SAIS. We use
the same definitions of S-, L-, S∗-type suffixes/characters, and S∗-substrings as in the
previous section. In addition, we call BWT character B[i] = T [SA[i]−1] (B[i] = T [n]
if SA[i] = 1) S-, L-, S∗-type if T [SA[i]] is S-, L-, S∗-type character. Our idea is that
we can simulate SAIS by using only S∗substrings, in that we can induce L-type BWTs
from sorted S∗-BWTs and induce S-type BWTs from sorted L-type BWTs. Similarly,
we can determine the order of S∗substrings by using the inducing algorithm.

In our algorithm, we do not store SA, but keep S∗substrings directly. Specifically,
we keep following arrays, each of which stores the list of substrings for each character
c ∈ Σ.

– S∗
c : Store substrings whose last character is c and S∗-type.

– Lc : Store substrings whose last character is c and L-type.
– LSc : Store substrings whose last character is c and S-type, and the next to the last

character in the original text is L-type.
– Sc : Store substrings whose last character is c and S-type and the next to the last

character in the original text is S-type.

These arrays support the following operations.

– A.push back(q) : Add the substring q at the end of the array A.
– A.pop front() : Return the substring at the front of the array A, and remove it.
– A.reverse() : Reverse the order in the array A.

For example, after the operation A.push back(“abc”), A.push back(“bcd”),
and A.push back(“cde”), A = {“abc”, “bcd”, “cde”}. The operation results are
A.pop front() = “abc” and A.pop front() = “bcd”. We will discuss how to store
these substrings in the section 5.

Note that, since our algorithm only uses these FIFO operations (and reverse opera-
tions. ), we can implement this on external memory architecture easily.

In addition to these arrays, we keep following three arrays to store the result of BWT.

– E[1, n′] : Store the end characters of S∗substrings.
– BLc : Store the result of L-type BWT for a c bucket.
– BSc : Store the result of S-type BWT for a c bucket.

The overall algorithm is shown in the algorithm 1. All S∗substrings are placed in S∗
c ,

and then moved to Lc, LSc, and Sc in turn, and this is almost the same as in SAIS.
First, an input text T [1, n] is decomposed into S∗substrings R1, R2, . . . , Rn′ . Let σ1

be the number of different S∗substrings. Then we assign names Vi to Ri, (i = 1, . . . , n′)
from 1 . . . σ1 so that Vi < Vj if Ri < Rj and Vi = Vj if Ri = Rj . Then, we recursively
call BWT-IS to determine the BWT of T1. Let B1[1, n′] be the result of BWT of T1.
Then, we induce the B from B1. All steps except the assigning of names and induce
are obviously done in linear time. We will see these steps in the following sections.
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Algorithm 1. BWT-IS(T , n, k): The algorithm for computing BWT for T

Input: T [1, n] : An input text
n: An input length
k: A number of alphabets
Scan T once to classify all characters in T as S- or L-type (Also S∗type).
Decompose T into S∗substrings R[1, . . . n′] (R[i] ∈ {1, . . . , k}∗)
Name S∗substrings by using the result of Induce(R), and get a new shortened string T1[1, n′],
T1[i] ∈ {1, . . . , k′}.
if Each character in T1 is unique then

Directly compute B1 from T1

else
B1 = BWT-IS(T1, n′, k′) // recursive call

end if
Decode S∗strings B1 into R′[1, . . . , n′]
B = Induce(R′)
Output: B

4.1 Induce BWT

We explain how to induce B, the BWT of original substring, from B1, the BWT of
S∗substrings. The overall algorithm is shown in the algorithm 2.

First we lookup the original S∗substrings, and keep the reversed ones. We reverse it
because all operations are represented by pop front and push back only. We do not
require the reverse operation if we replace pop front and push back with pop back
and push front. Each substring is appended the character c = k−1 which denotes the
sign of the end of the string. We place these substring at S∗

c where c is the first character
of the substring.

Second, for each character i from 1 to σ, we lookup Li one by one. and check
whether the first character c (Since S∗strings are reversed, this corresponds to the last
character in S∗strings) is L-type or not. Particularly if c ≥ i then it is L-type and append
it to the array Lc. If not, we place it at LSi. After enumerating all the elements in Li,
we next lookup the substrings in S∗

i , and move it to Lc where c is the first character
of each substring. Note that we can omit the check of L-type here because all the last
characters in S∗

i should be L-type.
Third, for each character i from σ to 1, we lookup the substrings in the array Si, and

check whether it is empty or not. If so, we place the last character of E (we determine
the position of S∗substring) at the end of BSi. After seeing all elements in Si, we
check LSi similarly. In this case, we can omit the check whether it is empty because all
substrings in this arrays should not be empty.

After obtaining the L-type and S-type BWTs, we just append these substrings in
order and return it as the result of BWT.

4.2 Assigning Names to S∗Strings

Let we explain how to compute the names of S∗substrings. This is almost the same
as in the induced algorithm in the previous section. As in SAIS algorithm, we apply



A Linear-Time Burrows-Wheeler Transform Using Induced Sorting 97

Algorithm 2. Induce(R): The algorithm for inducing BWT from the S∗substrings
Input: R[1, n′] : A list of S∗substrings.
for i = 1 to n′ do

U := Reverse(Ri)
U.push back(k − 1) // Sentinel
c := U.pop front().
S∗

c .push back(U)
end for
for i = 1 to k do

while U := Li.pop front() do
c := U.pop front()
BLi.push back(c)
if c < i then

LSi.push back(c + U)
else

Lc.push back(U)
end if

end while
LSi := Reverse(LSi)
while U := S∗

i .pop front() do
c := U.pop front()
E.push back(c)
Lc.push back(U)

end while
end for
E := Reverse(E)
for i = k to 1 do

while U := Sc.pop front() do
c := U.pop front()
if c < i then

BSi.push front(c)
Sc.push back(U)

else
c2 := Ec.pop front() // Reach the sentinel
BSi.push back(c2)

end if
end while
while U := LSi.pop front() do

c := U.pop front()
BSi.push back(c)
Sc.push back(U)

end while
end for
for i = 1 to k do

BSi := Reverse(BSi)
B := B + BLi + BSi

end for
Output: B
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the algorithm to unsorted S∗substrings, and as a result, we obtain sorted S∗substrings.
At this time, we do not place the BWT characters, and we keep S∗substrings without
removing. This is achieved by changing pop front() operations for the substring U in
the algorithm 2 by the following cycle() operation.

– A.cycle() : Return the character at the front of the array A, and moves it to the end
of A.

For example, for A = “abcd”, A.cycle() = “a” and after this operation A = “bcda”.
This cycle operation can be done in O(1) time when the length of substring is O(log n)
bits. Otherwise, we keep pointers and simulate the cycle operation, which is also done
in O(1) time.

Next, given sorted S∗substrings, we calculate the names of them, which is trivial, and
we place them in an original order to obtain the shortened string T1 = V1, V2, . . . , Vn′ .
However, since we don’t have SA, we cannot find the original positions of each names
directly.

First, we store positions p1, . . . , pn′ of S∗substrings in T using the data structure of
Lemma 1. Namely, we define qi = cn + pi for i = 1, . . . , n′ where c = T [pi], and
store all qi by using Lemma 1 using n(2 + log σ) + o(n) bits. From qi, c and pi are
obtained in constant time by c = �qi/n� and pi = qi mod n. We call this data structure
Φ. To compute Φ, for each c ∈ Σ we count the number of occurrences of c in T . This is
done in O(n) time for all c by using an integer array of σ log n ≤ n log σ bits because
σ ≤ n. Then we scan T from right to left to determine the positions pn′ , pn′−1, . . . , p1

of S∗substrings in this order. For each pi we compute qi and store it in Φ. We also
store the S∗substring located at pi in a bucket. Namely, we obtain the head character
c = T [pi], and store the substring into bucket for c. Each bucket stores the concatenation
of S∗substrings with the same head character. We store a pointer to indicate the position
to append a new S∗substring for each bucket. The space for storing all the pointers is
O(σ log n) = O(n logσ).

If the length of an S∗substring is at most logσ n, it is encoded in at most log n bits,
and therefore it takes constant time to append it to the end of a bucket. Otherwise,
instead of storing the S∗substring itself, we store the index pi and the length of the
S∗substring. Because there exist at most n log σ/ logn S∗substrings of length more
than logσ n, we can store the indexes and lengths in O(n log σ) bits.

The S∗substrings are sorted by this modified induced-sorting in O(n) time
and O(n log σ)-bit working space. During the modified induced-sorting for sorting
S∗substrings, we compute the following function Ψ and store it by the data structure of
Lemma 1. Assume that in the original algorithm a suffix SA[j] is induced from SA[i],
that is, T [SA[i] − 1] = c and SA[j] belongs to the bucket for c. In our modified algo-
rithm corresponding this, we define Ψ [j] = cn + i. Because this induce-sorting scans
SA from left to right and buckets are sorted with c, Ψ is strictly increasing. Therefore
we can store Ψ in n(2 + log σ) + o(n) bits by Lemma 1. We also store a bit-vector
PS∗ [i] indicating that the i-th suffix in the sorted order corresponds to an S∗substring.

After the induced-sorting, we obtain Ψ [i] for i = 2, . . . , n (Ψ [1] is not defined be-
cause SA[1] is the last suffix.). To compute names of S∗substrings, we use another bit-
vector V [i] indicating that the S∗substring corresponding to V [i] is different from its left
neighbor. To compute V , we scan PS∗ to enumerate S∗substrings, and if PS∗ [i] = 1,
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Fig. 2. An example of our modified induced-sorting corresponding to the original one in Figure 1.
Positions of S∗substrings are stored in Φ. We also store S∗substrings in queues. Then L-type suf-
fixes are induced from them. We actually move the substrings among queues, which are illustrated
by arrows in the figure. The inverse of the movements are memorized as Ψ . The bit-vector PS∗

represents where are the S∗substrings stored, and the bit-vector V encodes the names of them.

we compute i := Ψ [i] repeatedly until we reach the position i that corresponds to the
head of an S∗substring, whose position in T is computed by Φ[i]. We can determine
if two adjacent S∗substrings in sorted order are different or not in time proportional to
their lengths. Therefore computing V takes O(n) time because the total length of all the
S∗substrings is O(n). If V is ready, we can compute the name of the S∗substring corre-
sponding to PS∗ [i] by rank(PS∗ , i) which returns the number of 1’s in PS∗ [0, i]. The
rank function is computed in constant time using an O(n log log n/ log n)-bit auxiliary
data structure [16].

5 Succinct Representation of Substring Information

We explain the data structure for storing the list of (prefix of) S∗strings. As noted in the
previous section, these arrays should support push back(q), pop front(), and cycle()
operations. Note that in our algorithm, A.pop front() is not called when A is empty. If
the length of an S∗substring is at most logn σ bits, we directly store it and the operations
push back(q) and pop front() are done in constant time. Otherwise, instead of storing
the S∗substring itself, we store the index pi and the length of the S∗substring. Because
there exist at most n logσ/ log n S∗substrings of length more than logσ n, we can store
the indexes and lengths in O(n logσ) bits.

Next, we estimate the size for BWTs in the recursive steps. It seems that in the worst
case n′ = n/2, the naive encoding of names will cost n′ log n′ = Ω(n log σ) bits. To
guarantee that the string T1 = V1, V2, . . . , Vn′ is encoded in O(n logσ) bits, we use the
following encoding of the names, which is summarized as follows.
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Lemma 3. For a string T of length n with alphabet size σ, the shortened string
T1 = V1, V2, . . . , Vn′ is encoded in O(n log σ) bits, and given i, the name of Vi and
consecutive O(log n) bits at any position of the S∗substring are computed in constant
time. This encoding can be done in O(n) time during the modified induced-sorting.

Proof. The encoding consists of two types of codes; one is for S∗strings whose lengths
are at most 1

2 logσ n, and the other is for the rest. We call the former short S∗strings and
the latter long S∗strings. For short S∗strings, the code is its binary encoding itself, and
for long S∗strings the code is their names. To distinghish the type, we use a bit-vector
F [1, n′] such that F [i] = 1 indicates Vi is a long S∗string.

For computing the name Vi of a short S∗string Ri, we obtain 1
2 logσ n bits of T

whose position is the beginning of Ri. To compute the name from the 1
2 logσ n bits, we

construct a decoding table such that for all bit patterns of 1
2 logσ n bits which begin with

the code of Ri we store the name Vi. This table can be constructed in O(n) time in the
modified induced-sorting. We scan S∗strings in lexicographic order, and for each one
we obtain its name and its position in T . From T we obtain the code of Ri, and fill a part
of the table with the name. The size of the table is O(σ

1
2 logσ n log n) = O(

√
n log n)

bits.
For long S∗strings, we first construct the bit-vector F and the auxiliary data structure

for rank. Then during the modified induced-sorting, if there is a long S∗substring Ri,
we store its name in an array entry W [rank(F, i)]. Because there exist at most n

1
2 logσ n

long S∗substrings, we can store their names in O(n logσ) bits.
To obtain consecutive O(log n) bits at any position of the S∗substring, we use an-

other bit-vector G[1, n] such that G[i] = 1 stands for T [i] is the head of an S∗substring.
We construct the auxiliary data structure for select. By select(G, i) we obtain the po-
sition of Vi in T . Then it is obvious that any consecutive O(logn) bits are obtained in
constant time. �

6 Time and Space Analysis

Our algorithm for an input of length n requires O(n) time and the problem with the half
length. Obviously, the time complexity is O(n).

Next we analyze the space complexity. At the recursive step, the input space is
O(n logσ) bits using the lemma 3. In addition, at each step, we keep the mapping
information from the name to the original S∗substring. We keep this by using an array
list, which requires n lg σ bits of space in the worst case.

After lg lgσ n steps, the input length becomes n′ = n/2lg logσ n = n/ logσ n and the
size of suffix array for this input is n′ lg n′ = n/ logσ n(lg n − lg logσ n) < n lg σ.
Therefore we can use SAIS using the space less than n lg σ. Therefore the total space is
O(n logσ log logσ n) bits.

7 Conclusion

In this paper, we present an algorithm for BWT. Our algorithm directly computes BWT,
and does not require suffix arrays. Our algorithm works in linear time, and requires
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O(n logσ log logσ n) bits of space for any alphabets where n is the length of an original
input space, and σ is the alphabet size.

As a next step, we consider how to efficiently build the longest common prefix array,
or compressed suffix trees from BWT only. And we are also interested in the problem,
whether can we compute BWT in linear time using 2n lgσ + o(n log σ) bits only?
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Abstract. We propose a new sort-based transform for lossless data com-
pression that can replace the BWT transform in the block-sorting data
compression algorithm. The proposed transform is a parametric gener-
alization of the BWT and the RadixZip transform proposed by Vo and
Manku (VLDB, 2008), which is a rather new variation of the BWT. For
a class of parameters, the transform can be performed in time linear in
the data length. We give an asymptotic compression bound attained by
our algorithm.

1 Introduction

The block-sorting data compression algorithm [4] has been analyzed and evalu-
ated both theoretically and empirically by researchers from the fields of informa-
tion theory and algorithms. Several extensions to this algorithm and applications
have been developed for various purposes [1]. Most of these extensions are mod-
ifications and generalizations of the BWT (the Burrows–Wheeler Transform),
which is the core component of the block-sorting data compression algorithm.
Few transformations that are completely different from the BWT have been de-
veloped. One such recent example is the RadixZip Transform proposed by Vo and
Manku [9], which can replace the BWT in the block-sorting data compression
algorithm.

In this paper, we propose a parametric generalization of the following two
different transforms: the BWT and the permute transform in RadixZip. The
proposed transform, called the generalized radix permute transform, or the GRP
transform, bridges the two existing transforms. It also includes some of the finite-
order variations [8], [7] of the BWT as special cases.

Data compression methods based on these transforms do not perform any
context modeling in an apparent way. They are not classified into the class of
statistical methods that make use of contexts to predict the following symbols.
Actually, however, the transforms gather those symbols that occur in the same
or similar contexts in a source string. In effect, they can be regarded as context
modeling methods, each of which is distinguished in the length, or the order,
of contexts it considers. While the original BWT uses unlimited order contexts,
RadixZip uses the contexts of orders from zero to a predetermined upperbound.
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RadixZip begins at the zeroth order context to gather the statistics of source
strings, and it must inevitably include low-order contexts. It tends to fail in
utilizing higher order contexts, on which any high-performance data compression
method should rely.

In our GRP transform, the lowest order at which the encoder begins to obtain
the statistics of source strings can be selected arbitrarily. The transform is more
general than the finite-order variations of the BWT since both the highest and
lowest orders of contexts can be controlled. It uses the contexts from the shortest
to the longest cyclically on the source string to predict the following symbols.
We show that as long as the lowest order remains constant, both the forward
and inverse transformations run in time linear in the string length. Even if the
lowest order is fixed, a compression method combining the GRP transform and
an appropriate second-step encoder can attain an asymptotic compression bound
similar to that obtained on the block-sorting data compression method.

For space reasons, we concentrate only on presenting the GRP transform itself
and its asymptotic analysis in compression performance. The GRP transform can
be applied to any data of any length. However, for simplicity we present a version,
in which we require the data lengths to be integer multiples of a parameter.

2 GRP Transform

2.1 Preliminaries

Let
x[1 : n] = x1x2 · · ·xn

be an n-symbol string over an ordered alphabet A of size |A|. The string x[i : j]
represents a substring xi · · ·xj for 1 ≤ i ≤ j ≤ n, and the empty string λ

for i > j. The string x[i : j] will be denoted also as xj
i in the later analysis

section. Similarly, a two-dimensional n× m matrix M of symbols is denoted by
M [1 : n][1 : m].

Similar to the BWT, the GRP transform converts the input string x[1 : n] to
another string y[1 : n] ∈ An and an integer L. The GRP transform has two inte-
ger parameters. The first parameter is called the block length, which is denoted
by �. For simplicity it is assumed that the string length n is an integer multiple
of �, that is, n = b� for an integer b.

In our transform, the input string is divided into b non-overlapping blocks of
length �, and saved as the column vectors of a matrix as follows:

T [1 : �][1 : b] =

⎡
⎢⎢⎢⎣

x1 x�+1 x2�+1 · · · x(b−1)�+1

x2 x�+2 x2�+2 · · · x(b−1)�+2

...
...

...
...

...
x� x2� x3� · · · xb�

⎤
⎥⎥⎥⎦ . (1)

The second parameter of the GRP transform is called the context order, or
simply order, which is a non-negative integer less than or equal to �. Let d denote
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the order. We first perform a left-cyclic shift of the top d rows of T [1 : �][1 : b] and
insert the results as the bottom rows of T [1 : �][1 : b]. Thus, the GRP transform
is applied to the initial configuration of the (� + d) × b matrix given below:

T [1 : � + d][1 : b] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x�+1 · · · x(b−1)�+1

x2 x�+2 · · · x(b−1)�+2

...
...

...
...

x� x2� · · · xb�

x�+1 x2�+1 · · · x1

...
...

...
...

x�+d x2�+d · · · xd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

As an example, consider the string

x[1 : 15] = hotspotstopshot, (3)

and let � = 3 and d = 2. Then, b = 5 and

T [1 : 5][1 : 5] =

⎡
⎢⎢⎢⎣

h s t o h
o p s p o
t o t s t
s t o h h
p s p o o

⎤
⎥⎥⎥⎦ . (4)

2.2 Forward Transformation

The forward transformation of the GRP transform proceeds as follows:

1. /∗ Initialization ∗/
Convert the input string x[1 : n] into a matrix T = T [1 : � + d][1 : b];
Set v := the rightmost column vector of T ;
Set L := b;

2. for i := 1 to d do
(a) Sort the column vectors of T in a stable manner according to the symbols

of the ith row;
/∗ The vector v may have moved to another column. ∗/

(b) Set L := the current column number of v;
end for

3. for i := d + 1 to d + � do
(a) Output the ith row of T ;
(b) if i = d + � then break;
(c) Sort the column vectors of T in a stable manner according to the symbols

of the ith row;
end for

4. Concatenate the outputs of Step 3 (a) to form y[1 : n] = y1y2 · · · yn. The
string y[1 : n] with the value of L is an output of the GRP transform.
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For the string given in (3), the above procedure works as follows:

Step 2: i = 1

Perform a stable sort on the columns of T using the first row as the key to
yield

T =

⎡
⎢⎢⎢⎣

h h o s t
o o p p s
t t s o t
s h h t o
p o o s p

⎤
⎥⎥⎥⎦ .

Now, the column v has shifted to the second column. Thus, we have L = 2.

i = 2

Perform a stable sort on the columns in T by using the second row. This does
not change the value of T since the row was already sorted. Now, L = 2 is stored.

Step 3: i = 3

The third row of T , ttsot, is outputted. Then, perform a stable sort on the
columns in T by using the third row to yield

T =

⎡
⎢⎢⎢⎣

s o h h t
p p o o s
o s t t t
t h s h o
s o p o p

⎤
⎥⎥⎥⎦ .

i = 4

The fourth row of T , thsho, is outputted. Then, perform a stable sort on the
columns in T by using the fourth row to yield

T =

⎡
⎢⎢⎢⎣

o h t h s
p o s o p
s t t t o
h h o s t
o o p p s

⎤
⎥⎥⎥⎦ .

i = 5

The fifth row of T , oopps, is outputted. Since i = �+d (= 5), the concatenation
of the above three outputs and the value of L yield

y[1 : 15] = ttsotthshooopps,
L = 2.

(5)

This is the result of the GRP transform of the string given in (3).
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2.3 Inverse Transformation

The GRP transform is reversible. The inverse transformation of the GRP trans-
form is more complicated than the forward transformation. Actually, in its de-
scription below, we will introduce a couple of auxiliary matrices that have not
appeared in the forward transformation. However, these matrices are used only
for explaining the transformation and are not essential for the transformation.
The values of the parameters � and d, and the string length n are the same in
both the forward and inverse transformations. Hence, the number of blocks of
the string, b = n/�, is an integer.

1. /∗ Initialization ∗/
Store the string y[1 : n] in an � × b matrix S = S[1 : �][1 : b] according to

S[i][j] := y[(i − 1)b + j] for 1 ≤ i ≤ �, 1 ≤ j ≤ b;

Set its �th row to the bottom row of an (� + d) × b matrix U ;
/∗ The top � − 1 rows of U are initialized to be empty. ∗/

2. for j := 1 to � − 1 do
(a) Sort the symbols in the (� − j)th row of S alphabetically, and put the

result into the (� + d − j)th row of U ;
(b) Sort the columns of U in a stable manner so that its (� + d − j)th row

corresponds to the (� − j)th row of S;
end for

3. (a) Copy the bottom d rows of U into a d × b matrix V ;
(b) Considering the bottom row of V to be a significant part of the key,

perform a radix sort on the columns of V (that is, perform a stable sort
on the columns of V using the first to dth rows as the keys in this order);

(c) Stack the matrix V on U ;
/∗ Note that U is now identical to T which is obtained immediately after
Step 2 in the forward transformation. ∗/

4. Let w be the Lth column of U ;
Copy w to the bth column of an (� + d) × b matrix T ;

5. for j := 1 to b − 1 do
(a) From the columns of U that have not been copied to T , select the leftmost

column that has the same d top symbols as the bottom d-symbol column
of w;

(b) Set w := the selected column, and copy it to T as the jth column;
end for

6. /∗ The matrix T in (2) has been reconstructed. ∗/
Recover the original string by

x[i + (j − 1)�] := T [i][j] for 1 ≤ i ≤ �, 1 ≤ j ≤ b.

Before giving the general explanation of the reversibility of the above inverse
transformation, we show how it works for the example given in (5).
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Step 1

S =

[
t t s o t
t h s h o
o o p p s

]
, U =

5th

[
...

o o p p s

]
.

Step 2: j = 1

U =

⎡
⎣

...
h h o s t
o o p p s

⎤
⎦ −→ U =

⎡
⎣

...
t h s h o
s o p o p

⎤
⎦ .

j = 2

U =

⎡
⎢⎢⎣

...
o s t t t
t h s h o
s o p o p

⎤
⎥⎥⎦ −→ U =

⎡
⎢⎢⎣

...
t t s o t
s h h t o
p o o s p

⎤
⎥⎥⎦ .

Step 3

V =
[
s h h t o
p o o s p

]
−→ V =

[
h h o s t
o o p p s

]
,

U =

⎡
⎢⎢⎢⎣

h h o s t
o o p p s
t t s o t
s h h t o
p o o s p

⎤
⎥⎥⎥⎦ .

Step 4

T =

⎡
⎢⎢⎢⎣

· · · · h
· · · · o
· · · · t
· · · · h
· · · · o

⎤
⎥⎥⎥⎦ .

Step 5: j = 1

T =

⎡
⎢⎢⎢⎣

h · · · h
o · · · o
t · · · t
s · · · h
p · · · o

⎤
⎥⎥⎥⎦ ,

j = 2

T =

⎡
⎢⎢⎢⎣

h s · · h
o p · · o
t o · · t
s t · · h
p s · · o

⎤
⎥⎥⎥⎦ ,

j = 3

T =

⎡
⎢⎢⎢⎣

h s t · h
o p s · o
t o t · t
s t o · h
p s p · o

⎤
⎥⎥⎥⎦ .
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j = 4

T =

⎡
⎢⎢⎢⎣

h s t o h
o p s p o
t o t s t
s t o h h
p s p o o

⎤
⎥⎥⎥⎦ .

Step 6

x[1 : 15] = hotspotstopshot.

2.4 Reversibility and Complexity

In order to show the reversibility of the GRP transform, we first note the sym-
metric relation between Step 3 of the forward transformation and Step 2 of the
inverse transformation, which can be stated in the following lemma.

Lemma 1. For i and j such that i + j = d + �, at the end of the jth iteration
of the loop in Step 2 of the inverse transformation, the bottom j + 1 rows of U
are identical to the bottom d + � − i + 1 rows of T in Step 3 (a) of the forward
transformation.

The above lemma can be proved by induction on j. The case of j = 0 corresponds
to the initial state of the loop in Step 2 of the inverse transformation. In this
state, the bottom row of U is simply a copy of the last output of Step 3 of the
forward transformation. From the condition of the lemma, we have i = d + �
when j = 0, which corresponds to the last iteration of Step 3 of the forward
transformation. Therefore, the statement of the lemma holds for j = 0. Starting
from this initial state, we can show the validity of the statement from j = 1 to
j = � − 1, inductively. Finally, we can show that, at the end of Step 2 of the
inverse transformation, the bottom � rows of U are identical to the bottom � rows
of T that are obtained immediately after Step 2 of the forward transformation.

In the inverse transformation, the process then moves on to Step 3, which
is essentially the same as Step 2 of the forward transformation. Thus, we can
establish the fact written as the comment in Step 3 of the inverse transformation
that U and T are identical. The rest of the inverse transformation, namely Steps
4 and 5, can be easily validated by the stability of the sorting process of Step 2
of the forward transformation. In this way, we can prove the reversibility of the
GRP transform.

Here, we make a brief comment about the time complexity of the GRP trans-
form. We assume that each stable sorting process can be performed linearly by
using bucket sorting. Under this assumption, the forward transformation can be
done in O(b(� + d)) = O(n + bd) time.

The inverse transformation seems more time-demanding than the forward
transformation since Step 5 of the inverse transformation requires string search-
ing. Actually, however, we can perform this process of string searching in O(bd)
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time by using the result of Step 3 (b). In Step 5, for every column, say w, of U ,
we must find a column that has the same d top symbols as the d-symbol bottom
column of w. Step 3 has already established the correspondence between every w
and at least one such column. Moreover, after the step, all columns are arranged
in lexicographic order of the top d-symbols. Therefore, it is not so difficult to
find the column that satisfies the condition of Step 5. The total time required
in Step 5 is proportional to the total number of symbols in the top d rows in T .
In summary, we can prove the following theorem.

Theorem 1. For any string of length n, both the forward and inverse transfor-
mations run in O(n+bd) time, where b is the number of blocks of the string, and
d is the context order of the GRP transform. For any fixed order d, therefore,
they run in time linear in the string length n.

Remark: In this paper, we have presented only the case of n = b�. We have
already succeeded in eliminating this assumption. The GRP transform can be
modified to be applicable to any string of any length. We have also assumed
that the order d satisfies 0 ≤ d ≤ �. The transform can be extended for larger
values of d than � so that it includes existing transforms as special cases. Specific
correspondences follow.

GRP with � = 1 and d = n: BWT;
GRP with � = 1 and d < n: ST transform [7],[8];
GRP with d = 0: Permute transform in RadixZip.

3 Information Theoretical Analysis

3.1 Second-Step Algorithm

Similar to the BWT, the GRP transform requires a second-step algorithm for
actual compression. In addition to the same algorithms as those adopted in the
block sorting compression algorithm [1], [5], we may incorporate new encoding
methods that rely on the nature of the GRP transform. For example, the output
string of the GRP transform is a concatenation of � blocks; each block can be
encoded by distinct encoding methods. In this paper, however, we consider only
the simplest case for the analysis of asymptotic performance of the proposed
transform.

We encode the output y[1 : n] of the GRP transform by using the Move-to-
Front (MTF) encoding scheme [3], which produces a list of integers from 1 to the
size |A| of the source alphabet. Then, we encode each integer in the list using
the δ code of Elias [6]. The codeword length for integer t is upperbounded by

f(t) = log t + 2 log(log t + 1) + 1 bit, (6)

where all logarithms in this paper are taken to base 2. We will ignore the code-
word for the integer component L of the output, for simplicity.
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3.2 Asymptotic Characterization

The following analysis is based mainly on the model in [2].
Although the order d can be extended to an arbitrary integer as mentioned

above, we restrict its range to 0 ≤ d ≤ �. We first shift the blocks of the input
string by d symbols. That is, we assume x[(j − 1)� + d + 1 : j� + d] to be the jth
block (1 ≤ j ≤ b−1). Thus, we consider only the substring x[d + 1 : (b − 1)� + d].
We ignore x[1 : d], which serves only as the context to the following symbols in
the first column of matrix T in (2), and is encoded in the last column in a virtual
context. We focus on the kth symbol x[(j−1)�+d+k] in the jth block (1 ≤ k ≤ �).
We define the context of this kth symbol by x[(j − 1)� + 1 : (j − 1)� + d + k − 1].
The context of the kth symbol in the jth block is a substring of d+k−1 symbols
that immediately precedes x[(j − 1)� + d + k]. In the forward transformation,
each kth symbol appears in the (d + k)th row of T , and is included somewhere
in y[(k − 1)b + 1 : kb] of the transformed string. Note that when the kth sym-
bols {x[(j − 1)� + d + k]}b−1

j=1 are transformed into y[(k − 1)b + 1 : kb] in Step 3
of the forward transformation, their contexts are lexicographically arranged as
columns consisting of top d+k−1 rows of T . That is, the same contexts appear
consecutively as columns in T (see Fig. 1).

In Fig. 1, y1|c is the ith symbol of y[(k − 1)b + 1 : kb] that appeared in context
c. Thus, y1|c, y2|c, y3|c, . . . , yN(c)|c are the symbols that appear sequentially in
this order in context c in the transformed string, where N(c) is the number
of blocks that have the same prefix c. In general, for an arbitrary string ai

1 =
a1a2 · · · ai ∈ Ai (0 ≤ i ≤ �), N(ai

1) represents the number of blocks appeared
in the entire b − 1 blocks that begin with the prefix ai

1. For the empty string λ,
N(λ) equals b − 1. Let z

N(c)
1 = z1z2 · · · zN(c) be a sequence of positive integers

that is obtained from y1|cy2|c · · · yN(c)|c by using the MTF scheme. For every
symbol a ∈ A, if yi|c equals a with i = t1, t2, . . . , tN(ca), then we have

zt1 ≤ |A|, (7)
zti ≤ ti − ti−1 for 2 ≤ i ≤ N(ca). (8)

k = 1
2

k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′
1

x′
2

... c
x′

d+1 · · · · · ·
...
x′

d+k y1|c y2|c · · · yN(c)|c
...
x′

d+�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Matrix T after transformation of kth symbols of blocks in Step 3 of the forward
transformation
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According to the proof of Theorem 1 in [2], the sum of the lengths of the code-
words representing the symbol a in context c can be bounded by

f(|A|) +
N(ca)∑
i=2

f(ti − ti−1) ≤ N(ca) f
(N(c) + |A|

N(ca)

)
. (9)

The kth symbols {x[(j − 1)� + d + k]}b−1
j=1 are transformed into b − 1 symbols

in y[(k − 1)b + 1 : kb], and then converted into a sequence of integers by the
MTF scheme. Let lk(yb−1

(k) ) denote the sum of the codeword lengths representing
the b − 1 kth symbols. Then, we have the following result, which is a direct
consequence of the inequality (9).

Lemma 2. For any fixed integer k in [1, �], the kth symbols {x[(j − 1)� + d +
k]}b−1

j=1 of b − 1 blocks can be encoded with the length lk(yb−1
(k) ), which satisfies

lk(yb−1
(k) ) ≤

∑

ad+k−1
1

∑
ad+k

N(ad+k
1 )f

(N(ad+k−1
1 ) + |A|
N(ad+k

1 )

)

=
∑

ai
1∈Ai

N(ai
1) f

(N(ai−1
1 ) + |A|
N(ai

1)

)
for i = d + k, (10)

where the second summation is taken over ad+k so that N(ad+k
1 ) is greater than

zero.

Suppose that an input string is generated from a stationary and ergodic source
{Xi}∞i=1 with probability measure p and entropy rate H , where Xi takes values in
the alphabet A. Let p(am

1 ) denote the probability that Xm
1 is equal to am

1 ∈ Am,
and p(am | am−1

1 ) denote the conditional probability of am ∈ A given am−1
1 ∈

Am−1. The conditional entropy is defined by

H(Xm | Xm−1
1 )

= −
∑

am−1
1

p(am−1
1 )

∑

p(am|am−1
1 )�=0

p(am | am−1
1 ) log p(am | am−1

1 ). (11)

Similarly, p(ad+�
d+1 | ad

1) represents

p(ad+�
d+1 | ad

1) =
�∏

i=1

p(ad+i | ad+i−1
1 ) =

p(ad+�
1 )

p(ad
1)

. (12)

The conditional joint entropy H(Xd+�
d+1 | Xd

1 ) is defined by

H(Xd+�
d+1 | Xd

1 ) = −
∑

ad
1∈Ad

p(ad
1)

∑

p(ad+�
d+1|ad

1)�=0

p(ad+�
d+1 | ad

1) log p(ad+�
d+1 | ad

1).
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The entropy rate of a stationary source can be characterized in multiple ways.

H = lim
m→∞H(Xm | Xm−1

1 ) (13)

= lim
d→∞

1
�

H(Xd+�
d+1 | Xd

1 ) for any � (14)

= lim
�→∞

1
�

H(Xd+�
d+1 | Xd

1 ) for any d. (15)

For arbitrary fixed integers � > 0 and b > 1, consider a prefix of length (b−1)�
that begins at the (d+1)th place of an infinite string x over A. Divide the prefix
into b − 1 blocks of non-overlapping substrings each of length �, and let Nx(ai

1)
represent the number of blocks whose prefix is equal to ai

1, where 0 ≤ i ≤ �.
Define a set

D̃b(ai
1, ε) =

{
x ∈ A∞ :

∣∣∣Nx(ai
1)

b − 1
− p(ai

1)
∣∣∣ > εp(ai

1)
}

(16)

for fixed b and ε > 0. Moreover, we introduce the following set:

Db(d, �, ε) =
d+�⋃
i=d

⋃
ai
1

D̃b(ai
1, ε) (17)

When we encode a b�-symbol prefix of x by using the proposed scheme, we
represent the codeword length corresponding to the substring x[d+1 : (b−1)�+d]
by l(yb−1). That is,

l(yb−1) =
�∑

k=1

lk(yb−1
(k) ). (18)

We can now bound the codeword length for each source symbol in our encoding
scheme in a series of theorems, which we will present without proofs.

Theorem 2. For any fixed � > 0, k ≤ �, d ≤ �, and εk > 0, there exists a
positive integer Bk = Bk(d, �, εk) such that for any b > Bk and x /∈ Db(d, �, εk),

lk(yb−1
(k) )

(b − 1)�
≤ 1

�
H(Xd+k | Xd+k−1

1 ) +
2
�

log
(
H(Xd+k | Xd+k−1

1 ) + 1
)

+ 1 + ε̂k,

where ε̂k → 0 as ε → 0.

Theorem 3. For any fixed � > 0, d ≤ �, and ε > 0, there exists a positive
integer B = B(d, �, ε) such that for any b > B and x /∈ Db(d, �, ε),

l(yb−1)
(b − 1)�

≤ 1
�
H(Xd+�

d+1 | Xd
1 ) + 2 log

(1
�
H(Xd+�

d+1 | Xd
1 ) + 1

)
+ 1 + ε̂, (19)

where ε̂ → 0 as ε → 0.
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Theorem 4. For any stationary and ergodic source with entropy rate H, the
codeword length per symbol satisfies

lim
b→∞
�→∞

l(yb−1)
(b − 1)�

≤ H + 2 log(H + 1) + 1 (20)

with probability one.

The above theorem shows that the symbolwise application of the MTF scheme
followed by Elias’ δ code simply yields the same bound as that obtained by the
block-sorting data compression method when used under the same conditions.
Thus, to eliminate the additive terms other than the entropy rate H in (20),
we must incorporate such techniques as alphabet extension into our scheme.
In addition to such theoretical techniques, more practical ones like run length
encoding have been combined with the BWT to improve its actual compression
performance. We have to introduce similar techniques to the proposed scheme
to make it applicable to real data. Furthermore, although the bound in (20)
can be attained by setting, e.g., b = O(

√
n) and � = O(

√
n), as n → ∞, these

parameters also have to be optimized from a practical viewpoint.

4 Conclusion

We have proposed a sort-based transform, called the GRP transform, which is
a parametric generalization of the BWT. Future work includes efficient imple-
mentation of the transform for d ≥ � and evaluation of practical compression
schemes based on it.
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Abstract. A bitext, or bilingual parallel corpus, consists of two texts, each one
in a different language, that are mutual translations. Bitexts are very useful in
linguistic engineering because they are used as source of knowledge for different
purposes. In this paper we propose a strategy to efficiently compress and use
bitexts, saving, not only space, but also processing time when exploiting them.
Our strategy is based on a two-level structure for the vocabularies, and on the use
of biwords, a pair of associated words, one from each language, as basic symbols
to be encoded with an ETDC [2] compressor. The resulting compressed bitext
needs around 20% of the space and allows more efficient implementations of
the different types of searches and operations that linguistic engineerings need to
perform on them. In this paper we discuss and provide results for compression,
decompression, different types of searches, and bilingual snippets extraction.

1 Introduction

The amount of multilingual texts is growing very fast due to multilingual digital li-
braries and legal requirements in countries and supra-national entities with more than
one official language. Two texts that are mutual translations are usually referred to as
a bilingual parallel corpus or, in short, as a bitext. The growing availability of bitexts
has enabled the development on many natural language processing applications that use
bitexts as source of knowledge.

Usually, bitexts get aligned before exploiting them; a standard text alignment process
allows to establish word correspondences between the two texts of the bitext. Aligned
bitexts can be used in applications involving both languages (machine translation, cross-
language information retrieval, extraction of bilingual lexicons, etc) or in monolingual
applications (syntactic parsing, word sense induction, word sense disambiguation, etc.)
that use the bitexts as a bridge to project the linguistic knowledge available in one
language to another one [11].
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Fig. 1. Spanish–English word-aligned sentence

We present a strategy to compress bitexts that we called Two-level Compressor for
Aligned Bitexts (2LCAB). Our strategy is designed to facilitate the use of the most in-
teresting features of bitexts, because, in our compressed representation, obtaining the
words in one language aligned with a word in the other language is simply done by
using a vocabulary, instead of processing the whole aligned bitext. In addition, 2LCAB

obtains compression ratios around 20% and allows a more efficient processing of the
aligned bitexts that the uncompressed form.

2 Word-Aligned Bitexts

A bitext is a text written in two languages. In words of Melamed, “bitexts are one of
the richest sources of linguistic knowledge because the translation of a text into another
language can be viewed as a detailed annotation of what that text means” [10].

A bitext in which the translation relationship among the words in one text (left) and
the words in the other text (right) has been established is usually referred to as a word-
aligned bitext; the task of establishing such relationships is known as word alignment.

The word alignment task [15] connects words in the left sentence L with words in
the right sentence R. The result is a bigraph for the words in L and the words in R with
an arc between word l ∈ L and word r ∈ R if and only if they are mutual translations.
Figure 1 shows an example of a Spanish–English word-aligned sentence.

For this research the bigraph representing a word-aligned bitext is stored as a se-
quence of pairs of two words, each one from a different language, that are mutual trans-
lations in the bitext. Therefore, for this research the word-aligned bitext of the example
in Figure 1 is represented as the following sequence of pairs:
(la,the) (,green) (casa,house) (verde,) (donde,where) (te,) (,I)

(vı́,saw) (,you) (se,) (ha,has) (derrumbado,collapsed)

Notice that some words are associated to an “empty word”, e.g. (te,). This is either
because that word is not aligned with another word in the other text, or because its align-
ment has been discarded due to a crossing, e.g. (,green). In this work we have used
one-to-one word alignments obtained with the help of the open-source GIZA++ [15]
toolkit.1

3 Compression of Natural-Language Texts

The key to the success of natural language text compression is the use of a word-based
model, so that the text is regarded as a sequence of words. This poses the overhead of man-
aging a large source alphabet, but in large text collections the vocabulary size is relatively

1 http://code.google.com/p/giza-pp/
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insignificant because of Heaps Law [5]. In order to be searchable, semi-static models have
been used in compressed text databases, to ensure that the codeword assigned to a word
does not change across the text. Thus, a pattern can be compressed and directly searched
for in the compressed text without decompressing it. This is also essential to allow local
decompression of text passages in order to present them to the final users.

End-Tagged Dense Code (ETDC) [2] is a word-based compression technique where
the first bit of each byte is reserved to flag whether the byte is the last one of its code-
word (stopper) or not (continuer); this flag is enough to ensure that the code is a prefix
code regardless of the content of the other 7. The flag bit in ETDC permits Boyer-
Moore-type searching [1] and random access. Simple encode and decode procedures
can be used to obtain the codeword Ci corresponding to a position i in the sorted vo-
cabulary (Ci = encode(i)) and, symmetrically, to obtain the position i corresponding
to a specific codeword Ci (i = decode(Ci)).

3.1 Compression of Bitexts

Compression of bitexts is a subfield of natural language text compression. In spite of its
relevance, only few previous works have been found in the literature. In [14] text com-
pression methods are considered for its extension to bitext compression considering
exact correspondences between two words, and synonymy relationships between the
words in both texts (as given by a thesaurus). These parallel predictions are then com-
bined with PPM [3] ones. The weighting of both models are carefully tuned improving
PPM compression ratios on separate texts.

Text alignment is proposed in [4] as a way to enable multilingual text compression.
The algorithm stores one of the texts (L) as it is, and the other one (R) as a collection
of pointers to the translation of the substring in the L text. These relationships are
determined by means of an alignment algorithm that uses some additional linguistic
resources, such as a lemmata dictionary in L and a bilingual glossary, among others.

4 Two-Level Compressor for Aligned Bitexts (2LCAB)

Our strategy, called Two-Level Compressor for Aligned Bitexts (2LCAB), is based on
two main ideas: (i) the use of biwords [9], pairs of aligned words, as the basis of the
model, that is, as the symbols to compress, and (ii) the use of a two level structure for
the representation of the vocabularies, where the vocabulary of biwords, at the second
level, is represented in compressed form using the vocabularies of the first level.

Figure 2 shows a conceptual description of this scheme. At the first level two vo-
cabularies are stored, one for each language. Each of them stores the words of the
corresponding language sorted by the number of biwords they take part in. The “empty
word” is also represented in both dictionaries. On the second level, each pair of words
(biword) is represented as the concatenation of the codewords assigned to each word
in the pair using ETDC. That is, each biword is used as a single symbol in the bi-
word vocabulary. In this second-level vocabulary the ranking of biwords is performed
in accordance with their frequencies in the bitext.

Four strings are the output of the compression process. Lv and Rv contain sorted
left and right vocabularies. BWv stores the biword vocabulary where biwords are repre-
sented in compressed form as explained above. These three strings constitute the header
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In all cases  ci  � encode (i), where encode is the function defined by ETDC to encode a word in a specific rank of the vocabulary.

Codeword

Fig. 2. Conceptual description of the 2LCAB strategy

of the compressed bitext. The fourth string contains the compressed bitext, where each
pair of words is represented by the codeword corresponding to the ETDC codeword
assigned to its biword from its position in the second level vocabulary.

4.1 Compression and Decompression

Our strategy is based on a semi-static approach; therefore, it is necessary to make two
passes over the (aligned) bitext. In the first one, the aligned bitext is pair-to-pair parsed
and, in addition to the three vocabularies aforementioned, a hash table of pairs (biword,
codeword) is built. In the second pass, the compression process looks for each biword
in the hash table and outputs its corresponding codeword. The compression process is
completed in O(n) time overall, where n is the number of biwords in the bitext.

The decompression process begins by loading the strings Lv and Rv to get the left
and right vocabularies. These strings are stored in vectors Vl and Vr, respectively. Then,
the string BWv is read and Vl and Vr are used to rebuilt the biword vocabulary, which is
stored in vector Vb, where each biword is explicitly represented by its pair of words so
as to improve the efficiency of the decompression process. Building Vb takes O(b) time,
where b is the number of entries in the BWv vocabulary. Then, the compressed bitext
is processed by decoding each codeword. Given a codeword Ci, the simple decoding
function of the ETDC is used to obtain the corresponding position i = decode(Ci) in
the biword vocabulary (Vb[i]). The decompression process is completed in O(T ) time,
where T is the number of biwords in the bitext.

4.2 Processing the Compressed Bitext

Our representation allows to process the bitext without decompressing it. In fact, only
decompressing small snippets is necessary for most applications, and only when they
need to show the snippet to the user. Semantic relationships between languages in the
bitext suggest specific search possibilities such as: (i) to find all the occurrences of a
word in the bitext, that is, all the occurrences of biwords that include it; and (ii) to find
all the possible translations of a word, that is, all the biwords for a specific word.
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To process the compressed bitext we start loading and storing the strings Lv and
Rv into Vl and Vr vectors, respectively. Also, two hash tables are built from Lv and
Rv. Then, the string BWv is read and stored in main memory. To facilitate the searches,
a bitmap with a bit for each byte in BWv is built. In this bitmap 0-bits correspond to
continuer bytes in BWv whereas 1-bits correspond to stopper bytes.

Searching the Occurrences of a Word in the Bitext. This operation is useful to re-
trieve all the contexts (snippets) in which each biword appears, that is, to find all the oc-
currences of a specific biword and decode its snippets. Given a word, and the language
in which it is represented, we first find it in the corresponding first-level vocabulary (left
or right hash table depending of the language supplied); this process takes O(1) time.
Once the codeword is retrieved it is searched in BWv to find those biwords in which the
word appears. This is carried out using any well-known exact pattern matching algo-
rithm (such as KMP [7] or BM [1]) slightly modified to avoid possible false matchings
due to the fact that ETDC codes are not suffix codes, and, therefore, a codeword can
be a suffix of another one. This overhead in searches is negligible because checking the
previous byte is only necessary when a matching occurs, which is infrequent [2].

To determine the language of a codeword found in the biwords vocabulary at posi-
tion p a rank1(p) operation on the bitmap is done. If an even value is obtained, the word
belongs to the left vocabulary, whereas an odd value means that the word belongs to the
right vocabulary. If the found matching corresponds to the adequate language, the code-
word of the biword is computed as C = encode(rank1(p)/2). Then, that codeword is
added to the trie of searched codewords that will be used by the multiple-pattern match-
ing algorithm over the compressed bitext. The search of all the required biwords takes
O(b) time, where b is the size of BWv because the rank operation, to check the lan-
guage correspondence, only takes O(1) [12]. At the end of this process the codewords
in the trie will encode all the biwords where the searched word appears. We choose Set
Horspool [6,13], as search algorithm because it is an efficient choice for very small sets
of searched patterns on large alphabets. Set Horspool outputs all the occurrences of the
required biwords in the compressed text. This search takes O(m) time, where m is the
size in bytes of the compressed text.

To find the context where each specific translation (biword) of a word is found, it is
only necessary to decompress a snippet around each occurrence. Doing this is straight-
forward by using the ETDC decode procedure.

Searching All the Possible Translations of a Word. This operation allows to find
all the correspondences of a word in a language with words in the other language.
One of the main advantages of our approach is that to find all the possible translations
of a word in the bitext it is not necessary to read the bitext, because all the biwords
(possible translations) are represented in the vocabulary of biwords. Therefore, it is
only necessary to search for the codeword of that specific word in the BWv string using
the strategy already explained.

5 Experimental Evaluation

All the experiments were performed on a Debian 4 Etch operating system, running on
an AMD Athlon Dual Core processor at 2 GHz and with 2 GB of RAM. We used g++
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4.1.2 compiler with full optimization. We used heterogeneous corpora with different
languages pairs to evaluate the influence of the similarity between the two languages
of the bitext in the compression ratio. Furthermore, we used bitexts of different size for
each language pair. More precisely, we used bitexts of around 1, 10, and 100 MB where
larger bitexts contained the smaller ones (for Spanish–Galician we only used bitexts of
1, and 10 MB). The following corpora were used:

– a Spanish–Catalan (es-ca) bitext from El Periódico de Catalunya,2 a daily news-
paper published both in Catalan and Spanish;

– a Spanish–Galician (es-gl) bitext from Diario Oficial de Galicia,3 the bulletin of
the Government of Galicia, published both in Galician and Spanish; and

– bitexts for German–English (de-en), Spanish–English (es-en) and French–
English (fr-en) from the European Parliament Proceedings Parallel Corpus [8].

To evaluate the success of 2LCAB in obtaining a competitive compression ratio, we
compare it with some well-known state-of-the-art compressors such as GZIP, BZIP2
and PPMDI [16], this last one as a representative PPM [3]. Moreover, to evaluate the
effect of our strategy of using a biword-oriented model, we also implemented ETDC
compression over the bitext using two different word-oriented models. In one case (1V)
we just used one vocabulary to store the words of both languages. In the other case (2V)
we used two different vocabularies, one for each language.

Table 1 summarizes some data about the bitexts and the compression ratios obtained
by the different compressors. Notice that 2LCAB achieves very good compression ratios
(some times the best one) when the size of the bitext is medium or large. However,
GZIP, BZIP2, and PPM, not being semi-static, provide better results for small files.
2LCAB outperforms GZIP for 10 MB bitexts (except for es-gl which is a special case
because Spanish and Galician are closely-related languages) and only PPM, as would
be expected, can compete with 2LCAB for large bitexts. Nevertheless, GZIP, BZIP2, and
PPM, as dynamic compressors, do not permit random access, nor direct searching.

We do not compare our compressor against those described in Section 3.1 because we
have not found any available implementation. However, Conley and Klein [4] compare
their TRANS approach with GZIP and BZIP2 and they conclude that TRANS is slightly
better than BZIP2 (an improvement of 1% is reported). In any case, the authors do not
consider the size of the auxiliary files that TRANS requires to decompress the bitext;
thus, TRANS compression ratio would be worse than that of BZIP2.

Table 2 shows compression and decompression times (in seconds) for two bitext col-
lections: es-ca and es-en. Similar times were obtained for the remaining bitexts.
The times reported correspond to the average time obtained for 5 different executions.
2LCAB is always the fastest in compression, around 3-6 times faster than BZIP2 and
PPM for medium-large file sizes. Only for small files GZIP shows a slightly better per-
formance. When decompressing, only GZIP is slightly faster than our approach, which
is much faster than BZIP2 (up to 9 times) and PPM (up to 35 times).

Table 3 shows the time required to retrieve all the occurrences of a specific word
when searching the es-en bitext of 100 MB. Considering the number of biwords a

2 http://www.elperiodico.com
3 http://www.xunta.es/diario-oficial
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Table 1. Compression ratios

BITEXT
SIZE Words

Biwords GZIP BZIP2 PPM 1V 2V 2LCAB
(MB) Left Right

es-gl
1.09 6488 6543 7219 17.09% 11.21% 8.72% 32.09% 35.30% 25.35%

10.55 24983 25284 29855 16.91% 10.58% 8.68% 28.67% 29.82% 18.53%

es-ca

1.18 15594 14939 19336 31.48% 23.09% 20.75% 47.89% 50.02% 42.78%

11.53 54115 52256 78825 31.13% 22.18% 20.33% 36.68% 37.21% 26.72%

105.36 161132 159216 292994 30.79% 21.95% 20.17% 32.75% 32.51% 19.97%

es-en

1.08 9169 6696 21301 31.83% 22.33% 20.07% 43.47% 42.85% 37.30%

10.91 30486 19465 93544 31.67% 21.73% 19.98% 35.61% 34.54% 25.99%

110.60 81868 51353 347866 31.26% 21.22% 19.48% 32.36% 31.19% 20.86%

fr-en

1.08 8211 6493 20491 31.64% 21.99% 19.78% 42.30% 41.97% 36.33%

10.74 25536 19045 86353 31.43% 21.42% 19.74% 35.10% 34.11% 25.55%

109.45 65877 50418 322618 31.26% 21.22% 19.52% 32.40% 31.21% 21.04%

de-en

1.08 9957 6514 21159 32.46% 22.76% 20.66% 44.69% 44.09% 39.16%

10.94 39287 19305 90815 32.27% 22.13% 20.47% 36.38% 35.31% 27.44%

110.86 139012 51018 357753 32.22% 22.05% 20.37% 32.75% 31.57% 22.01%

Table 2. Compression and decompression times

es-ca es-en

SIZE Compression time (secs.) Decompression time (secs.) Compression time (secs.) Decompression time (secs.)

(MB) GZIP BZIP2 PPM 2LCAB GZIP BZIP2 PPM 2LCAB GZIP BZIP2 PPM 2LCAB GZIP BZIP2 PPM 2LCAB

1 0.24 0.41 0.51 0.35 0.04 0.14 0.55 0.05 0.23 0.38 0.47 0.25 0.03 0.13 0.52 0.04

10 1.32 4.16 4.61 1.10 0.16 1.40 5.15 0.33 1.36 4.10 4.70 1.01 0.14 1.35 5.16 0.29

100 10.19 38.32 41.86 6.88 1.38 12.47 45.34 1.29 11.56 41.21 45.95 7.81 1.46 13.56 50.27 1.46

Table 3. Searching times. The values between brackets show the average time and standard devi-
ation needed to locate all the biwords in which a given word occurs.

Biwords Occurrences
1V 2V 2LCAB

time σ time σ time σ

[A] 41.20 754.07 0.635 0.034 0.617 0.036 0.119 (0.006) 0.030 (0.002)

[B] 14.30 226.77 0.636 0.009 0.613 0.014 0.099 (0.008) 0.044 (0.003)

[C] 4.77 69.87 0.641 0.063 0.614 0.045 0.066 (0.007) 0.012 (0.002)

[D] 1.47 10.87 0.631 0.017 0.615 0.018 0.061 (0.007) 0.011 (0.002)

words is associated to, we defined four categories: [A]: xA ≥ 25; [B]: 7 ≤ xB ≤ 24;
[C]: 3 ≤ xC ≤ 6; and [D]: xD ≤ 2, where xcategory indicates the number of biwords
a word must be associated to, in order to belong to that category. Then, we built four
groups of 30 words randomly chosen among those in each category.

We used 1V and 2V to compare the efficiency of 2LCAB in searching processes.
Notice that, 1V performs a simple pattern-matching process to find the codeword of
the desired word. However, 2V needs to check if the found codeword belongs to the
appropriate side of the bitexts, that is, if it is in the desired language; this is achieved by
calculating if the found codeword is in a even or an odd position.
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2LCAB is the fastest choice in all the cases, improving 5-10 times both 1V and 2V

compressed bitexts. Notice that the number of occurrences has a stronger influence in
2LCAB than in 1V and 2V. This is because when there are many biwords associated to
a word the Set Horspool algorithm handles a more complex trie composed by all the
codewords of those biwords. Finally, notice that 2V is always slightly better than 1V.
This is mainly due to the fact that 2V gets better compression ratios than 1V.

6 Conclusions

2LCAB has been proposed as strategy to compress word-aligned bitexts. It provides very
good compression ratios and it is the fastest option for compressing and decompressing
large bitext. Its main property is that bitexts can be efficiently exploited because dif-
ferent kind of searches and local decompression can be effectively performed over the
compressed bitext without needing to decompress it. Another interesting result of this
research is how the similarity between the languages in the bitext affects the number of
different biwords, the number of total biwords and, therefore, the compression ratio.
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Abstract. We introduce a symbol reordering technique that implicitly
synchronizes variable-length codes, such that it is possible to directly
access the i-th codeword without need of any sampling method. The
technique is practical and has many applications to the representation of
ordered sets, sparse bitmaps, partial sums, and compressed data struc-
tures for suffix trees, arrays, and inverted indexes, to name just a few. We
show experimentally that the technique offers a competitive alternative
to other data structures that handle this problem.

1 Introduction

Variable-length coding is at the heart of Data Compression [23,21]. It is used,
for example, by statistical compression methods, which assign shorter codewords
to more frequent symbols. It also arises when representing integers from an
unbounded universe: Well-known codes like γ-codes and δ-codes are used when
smaller integers are to be represented using fewer bits.

A problem that frequently arises when variable-length codes are used is that
it is not possible to access directly the i-th encoded element, because its posi-
tion in the encoded sequence depends on the sum of the lengths of the previous
codewords. This is not an issue if the data is to be decoded from the beginning,
as in many compression methods. Yet, the issue arises recurrently in the field
of compressed data structures, where the compressed data should be accessible
and manipulable in compressed form. A partial list of structures where the need
to directly access variable-length codes arises includes Huffman and other sim-
ilar encodings of text collections [14,15,1], compression of inverted lists [23,4],
compression of suffix trees and arrays (for example the Ψ function [20] and the
LCP array [7]), compressed sequence representations [19,6], partial sums [13],
sparse bitmaps [19,18,3] and its applications to handling sets over a bounded
universe supporting predecessor and successor search, and a long so on. It is
indeed a common case that an array of integers contains mostly small values,
but the need to handle a few large values makes programmers opt for allocating
the maximum space instead of seeking for a more sophisticated solution.

� Funded in part (for the Spanish group) by MEC grant (TIN2006-15071-C03-03); and
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The typical solution to provide direct access to a variable-length encoded
sequence is to regularly sample it and store the position of the samples in the
encoded sequence, so that decompression from the last sample is necessary. This
introduces a space and time penalty to the encoding that often hinders the use
of variable-length coding in many cases where it would be beneficial.

In this paper we show that, by properly reordering the target symbols of a
variable-length encoding of a sequence, direct access to any codeword (achiev-
ing constant time per symbol of the target alphabet) is easy and fast. This is
a kind of implicit data structure that introduces synchronism in the encoded
sequence without using asymptotically any extra space. We show some experi-
ments demonstrating that the technique is not only simple, but also competitive
in time and space with existing solutions in several applications.

2 Basic Concepts

Statistical encoding. Let X = x1x2 . . . xn be a sequence of symbols to represent.
A way to compress X is to order the distinct symbol values by frequency, and
identify each value xi with its position pi in the ordering, so that smaller positions
occur more frequently. Hence the problem is how to encode the pis into variable-
length bit streams ci, giving shorter codewords to smaller values. Huffman coding
[11] is the best code (i.e., achieving the minimum total length for encoding X)
such that (1) assigns the same codeword to every occurrence of the same symbol
and (2) is a prefix code.

Coding integers. In other applications, the xis are directly the numbers pi to be
encoded, such that the smaller values are assumed to be more frequent. One can
still use Huffman, but if the set of distinct numbers is too large, the overhead
of storing the Huffman code may be prohibitive. In this case one can directly
encode the numbers with a fixed prefix code that gives shorter codewords to
smaller numbers. Well-known examples are γ-codes and δ-codes [23,21].

Vbyte coding. [22] is a particularly interesting code for this paper. In its general
variant, the code splits the �log(pi + 1)� bits needed to represent pi by splitting
it into blocks of b bits and storing each block into a chunk of b + 1 bits. The
highest bit is 0 in the chunk holding the most significant bits of pi, and 1 in the
rest of the chunks. For clarity we write the chunks from most to least significant,
just like the binary representation of pi. For example, if pi = 25 = 110012 and
b = 3, then we need two chunks and the representation is 0011 1001.

Compared to an optimal encoding of �log(pi + 1)� bits, this code loses one
bit per b bits of pi, plus possibly an almost empty final chunk. Even when the
best choice for b is used, the total space achieved is still worse than δ-encoding’s
performance. In exchange, Vbyte codes are very fast to decode.

Partial sums are an extension of our problem when X is taken as a sequence of
nonnegative differences between consecutive values of sequence Y = y1, y2, . . . yn,
so that yi = sum(i) =

∑
1≤j≤i pj. Hence, X is a compressed representation of Y

that exploits the fact that consecutive differences are small numbers. We are then
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interested in obtaining efficiently yi = sum(i). Sometimes we are also interested
in finding the largest yi ≤ v given v, that is, search(v) = max{i, sum(i) ≤ v}.
Let us call S = sum(n) from now on.

3 Previous Work

From the previous section, we end up with a sequence of n concatenated variable-
length codes. Being usually prefix, there is no problem in decoding them in
sequence. We now outline several solutions to the problem of giving direct access
to them, that is, extracting any pi efficiently, given i. Let us call N the length
in bits of the encoded sequence.

The classical solution samples the sequence and stores absolute pointers only to
the sampled elements, that is, to each h-th element of the sequence. Access to
the (h + d)-th element, for 0 ≤ d < h, is done by decoding d codewords starting
from the h-th sample. This involves a space overhead of �n/h��logN� bits and
a time overhead of O(h) to access an element, assuming we can decode each
symbol in constant time. The partial sums problem is also solved by storing
some sampled yi values, which are directly accessed for sum or binary searched
for search, and then summing up the pis from the last sample.

A dense sampling is used by Ferragina and Venturini [6]. It represents pi using
just its �log(pi + 1)� bits, and sets pointers to every element in the encoded
sequence, giving the ending points of the codewords. By using two levels of
pointers (absolute ones every Θ(log N) values and relative ones for the rest) the
extra space for the pointers is O(n log log N

log N ), and constant-time access is possible.

Sparse bitmaps solve the direct access and partial sums problems when the
differences are strictly positive. The bitmap B[1, S] has a 1 at positions yi.

We make use of two complementary operations that can operate in constant
time after building o(S)-bit directories on top of B [12,2,16]: rank(B, i) is the
number of 1s in B[1, i], and select(B, i) is the position in B of the ith 1 (similarly,
select0(B, i) finds the ith 0). Then yi = select(B, i) and search(v) = rank(B, v)
easily solve the partial sums problem, whereas xi = select(B, i)−select(B, i−1)
solves our original access problem. We can also accommodate zero-differences
by setting bits i + yi in B[1, S + n], so yi = select(B, i) − i, search(v) =
rank(B, select0(B, v)), and xi = select(B, i) − select(B, i − 1) − 1.

A drawback of this solution is that it needs to represent B explicitly, thus it
requires S + o(S) bits, which can be huge. There has been much work on sparse
bitmap representations that can lighten space requirements [19,10,18].

4 Our Technique: Reordered Vbytes

We make use of the generalized Vbyte coding described in Section 2. We first
encode the pis into a sequence of (b+1)-bit chunks. Next we separate the different
chunks of each codeword. Assume pi is assigned a codeword Ci that needs r
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Fig. 1. Example of reorganization of the chunks of each codeword

chunks Ci,r, . . . , Ci,2, Ci,1. A first stream, C1, will contain the n1 = n least
significant chunks (i.e., rightmost) of every codeword. A second one, C2, will
contain the n2 second chunks of every codeword (so that there are only n2

codewords using more than one chunk). We proceed similarly with C3, and so
on. As the pis add up to S, we need at most � log S

b � streams Ck (usually less).
Each stream Ck will be separated into two parts. The lowest b bits of the

chunks will be stored contiguously in an array Ak (of b · nk bits), whereas the
highest bits will be concatenated into a bitmap Bk of nk bits. Figure 1 shows
the reorganization of the different chunks of a sequence of five codewords. The
bits in each Bk identify whether there is a chunk of that codeword in Ck+1.

We set up rank data structures on the Bk bitmaps, which answer rank in
constant time using O(nk log log N

log N ) extra bits of space, being N the length in
bits of the encoded sequence1. Solutions to rank are rather practical, obtaining
excellent times using 37.5% extra space on top of Bk, and decent ones using up
to 5% extra space [8,18].

The overall structure is composed by the concatenation of the Bks, that of
the Aks, and pointers to the beginning of the sequence of each k. These pointers
need at most � log S

b ��log N� bits overall, which is negligible. In total there are
∑

k nk = N
b+1 chunks in the encoding (note N is a multiple of b + 1), and thus

the extra space for the rank data structures is just O(N log log N
b log N ).

Extraction of the i-th value of the sequence is carried out as follows. We start
with i1 = i and get its first chunk b1 = B1[i1] : A1[i1]. If B1[i1] = 0 we are
done with pi = A1[i1]. Otherwise we set i2 = rank(B1, i1), which sends us to
the correct position of the second chunk of pi in B2, and get b2 = B2[i2] : A2[i2].
If B2[i2] = 0, we are done with pi = A1[i1] + A2[i2] · 2b. Otherwise we set
i3 = rank(B2, i2) and so on2.

Extraction of a random codeword requires � N
nb� accesses; the worst case is

at most � log S
b � accesses. Thus, in case the numbers to represent come from

a statistical variable-length coding, and the sequence is accessed at uniformly

1 This is achieved by using blocks of 1
2

log N bits in the rank directories [12,2,16].
2 To avoid the loss of a value in the highest chunk we use in our implementation the

variant of Vbytes we designed for text compression called ETDC [1].
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distributed positions, we have the additional benefit that shorter codewords are
accessed more often and are cheaper to decode.

4.1 Partial Sums

The extension to partial sums is as for the classical method: We store in a vector
Y [0, n/s] the accumulated sum at regularly sampled positions (say every hth
position). We store in Y [j] the accumulated sum up to phj . The extra space
required by Y is thus �n/h��logS� bits. With those samples we can easily solve
the two classic operations sum(i) and search(v).

We compute sum(i) by accessing the last sampled Y [j] before pi, that is
j = �i/h� and adding up all the values between phj+1 and pi. To add those values
we first sequentially add all the values between A1[hj+1] and A1[i]. We compute
s1 = hj + 1 and e1 = i and Acc1 =

∑
s1≤r≤e1

A1[r]; then we compute s2 =
rank(B1, s1 − 1) + 1 and e2 = rank(B1, e1) and again Acc2 =

∑
s2≤r≤e2

A2[r];
and so on for the following levels. The final result is Y [j] +

∑
Acck · 2b(k−1).

Notice that for a sampling step h this operation costs at most O(h log S
b ).

To perform search(v) we start with a binary search for v in vector Y . Once we
find the sample Y [j] with the largest value not exceeding v, we start a sequential
scanning and addition of the codewords until we reach v. That is, we start with
total = Y [j], b1 = hj+1, b2 = rank(B1, b1−1)+1, b3 = rank(B2, b2−1)+1 and
so on. The value of each new codeword is computed using its different chunks
at levels k = 1, 2, . . ., adding Ak[bk] · 2b(k−1) and incrementing bk, as long as
k = 1 or Bk−1[bk−1 − 1] = 1. Once computed, the value is added to total until
we exceed the desired value v; then search(v) = b1 − 1. Notice that we compute
only one rank operation per sequence Bk, as the next chunks to read in each Bk

follow the current one. The total cost for a search operation is O(log n
h ) for the

binary search in the samples array plus O(h log S
b ) for the sequential addition of

the codewords following the selected sample Y [j].

5 Applications and Experiments

We detail now some applications of our scheme, and compare it with the current
solutions used in those applications. This section is not meant to be exhaustive,
but rather a proof of concept, illustrative of the power and flexibility of our idea.

We implemented our technique with b values chosen manually for each level
(in many cases the same b for all). We prefer powers of 2 for b, so that faster
aligned accesses are possible. We implemented rank using the 37.5%-extra space
data structure by González et al. [8] (this is space over the Bk bitmaps).

Our machine is an Intel Core2Duo E6420@2.13Ghz, with 32KB+32KB L1
Cache, 4MB L2 Cache, and 4GB of DDR2-800 RAM. It runs Ubuntu 7.04 (kernel
2.6.20-15-generic). We compiled with gcc version 4.1.2 and the options -m32 -09.

5.1 High-Order Compressed Sequences

Ferragina and Venturini [6] gave a simple scheme (FV) to represent a sequence
of symbols S = s1s2 . . . sn so that it is compressed to its high-order empirical
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Table 1. Space for encoding the 2-byte blocks and individual access time

Method Space (% of original file) Time (nanosec per extraction)
Dense sampling (FV, c = 20) 94.34% 298.4
Sparse sampling (h = 14) 68.44% 557.2
Vbyte (b = 7) sampling (h = 14) 75.90% 305.7
Ours (b = 8) 68.46% 216.1

entropy and any O(log n)-bit substring of S can be decoded in constant time.
This is extremely useful because it permits replacing any sequence by its com-
pressed variant, and any kind of access to it under the RAM model of compu-
tation retains the original time complexity.

The idea is to split S into blocks of 1
2 log n bits, and then sort the blocks by

frequency. Once the sequence of their positions pi is obtained, it is stored using
a dense sampling, as explained in Section 3. We compare their dense sampling
proposal with our own representation of the pi numbers, as well as a classical
variant using sparse sampling (also explained in Section 3).

We took the first 512 MB of the concatenations of collections FT91 to FT94
(Financial Times) from trec-2 (http://trec.nist.gov), and chose 2-byte
blocks, thus n = 229 and our block size is 16 bits.

We implemented scheme FV, and optimized it for this scenario. There are
5,426 different blocks, and thus the longest block description has 12 bits. We
stored absolute 32-bit pointers every c = 20 blocks, and relative pointers of
�log((c − 1) · 12)� = 8 bits for each block. This was the setting giving the best
space, and let us manage pointers using integers and bytes, which is faster.

We also implemented the classical alternative of Huffman-encoding the dif-
ferent blocks, and setting absolute samples every h codewords. This gives us a
space-time tradeoff, which we set to h = 14 to achieve space comparable to our
alternative. In addition, we implemented a variant with the same parameters
but using Vbyte-encoding, with b = 7 (i.e., using bytes as chunks).

We used our technique with b = 8, which lets us manipulate bytes and thus
is faster. The space was almost the same with b = 4, but time was worse.

Table 1 shows the results. We measure space as a fraction of the size of the
original 512 MB text, and time as nanoseconds per extraction, where we average
over the time to extract all the blocks of the sequence in random order.

The original FV method poses much space overhead (achieving almost no
compression). This, as expected, is alleviated by the sparse sampling, but the
access times increase considerably. Yet, our technique achieves much better space
and noticeable better access times than FV. When using the same space of a
sparse sampling, on the other hand, our technique is three times faster. Sparse
sampling can achieve 54% space (just the bare Huffman encoding), at the price of
higher access times. The Vbyte alternative is both larger and slower than ours. In
fact, the Vbyte-encoding itself, without the sampling overhead, occupies 67.8%
of the original sequence, very close to our representation (which will be similar
to an Vbyte encoding using b = 8).
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Table 2. Space for encoding the differential Ψ array and individual sum time under
different schemes. The b sequences refer to the (different) consecutive b values used in
the arrays C1, C2, etc. “Ours∗” uses 5% extra space for rank on the bitmaps.

Method Space (% of original file) Time (nanosec per Ψ computation)
Sadakane’s 66.72% 645.5
Ours b = 8 148.06% 629.0
Ours b = 4 103.44% 675.6
Ours b = 2 85.14% 919.8
Ours b = 0, 2, 4, 8 73.96% 757.1
Ours∗ b = 0, 2, 4, 8 67.88% 818.7
Ours b = 0, 4, 8 76.85% 742.7

5.2 Compressed Suffix Arrays

Sadakane [20] proposed to represent the so-called Ψ array, useful to compress
suffix arrays [9,17], by encoding its consecutive differences along the large ar-
eas where Ψ is increasing. A γ-encoding is used to gain space, and the classical
alternative of sampling plus decompression is used in the practical implemen-
tation. We compare now this solution to our proposal, using the implementa-
tion obtained from Pizza&Chili site3 and setting one absolute sample every 128
values.

We took trec-2 collection CR, of about 47 MB, generated its Ψ array, and
measured the time to compute Ψ i(x), for 1 ≤ i < n, where x is the suffix array
position pointing to the first text character. This simulates extracting the whole
text by means of function Ψ without having the text at hand.

As the differences are strictly positive, we represent in our method the differ-
ences minus 1 (so access to Ψ [i] is solved via sum(i)+ i). This time we use b = 0
for the first level of our structure, and other b values for the rest. This seemingly
curious choice lets us spend one bit (in B1, as A1 is empty) to represent all the
areas of Ψ where the differences are 1. This is known to be the case on large
areas of Ψ for compressible texts [17], and is also a good reason for Sadakane to
have chosen γ-codes. We set one absolute sample every 128 values for our sum.
Apart from the usual rank version that uses 37.5% of space over the bitmaps,
we tried a slower one that uses just 5% [8].

Table 2 shows the results. We measure space as a fraction of the size of
the original text, and time as nanoseconds per sum, as this is necessary to
obtain the original Ψ values from the differential version. We only show some
examples of fixed b, and how using different b values per level can achieve better
results.

This time our technique does not improve upon Sadakane’s representation,
which is carefully designed for this specific problem and known to be one of the
best implementations [5]. Nevertheless, it is remarkable that we get rather close
(e.g., same space and 27% slower, or 15% worse in space and time) with a general
and elegant technique. It is also a good opportunity to illustrate the flexibility
of our technique, which lets us use different b values per level.

3 Mirrors http://pizzachili.dcc.uchile.cl and http://pizzachili.di.unipi.it.
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6 Conclusions

We have introduced a data reordering technique that, when applied to a particu-
lar class of variable-length codes, enables easy and direct access to any codeword,
bypassing the heavyweight methods used in current schemes. This is an impor-
tant achievement because the need of random access to variable-length codes is
ubiquitous in many sorts of applications.

We have shown experimentally that our technique competes successfully, in
several immediate applications. We have also compared our proposal with the
best solutions for sparse bitmaps [18], but we have omitted it in Section 5 due
to space limitations: Except for the search operation, we achieved better space
and time results when the distribution of the gaps was skewed, and comparable
performance otherwise (uniform distribution).

We have used the same b for every level, or manually chose it at each level to
fit our applications. This could be refined and generalized to use the best b at
each level, in terms of optimizing compression. The optimization problem can
be easily solved by dynamic programming in just O(n log S) time.
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Abstract. In this paper we introduce a high-precision query classifica-
tion method to identify the intent of a user query given that it has been
seen in the past based on informational, navigational, and transactional
categorization. We propose using three vector representations of queries
which, using support vector machines, allow past queries to be classified
by user’s intents. The queries have been represented as vectors using two
factors drawn from click-through data: the time users take to review the
documents they select and the popularity (quantity of preferences) of
the selected documents. Experimental results show that time is the fac-
tor that yields higher precision in classification. The experiments shown
in this work illustrate that the proposed classifiers can effectively identify
the intent of past queries with high-precision.

1 Introduction

With advances in technology and world wide access to Internet, user needs have
gone beyond simple informational needs. The web, growing in size and com-
plexity, offers more resources and services that make it more difficult for search
engines to find precise results for their users. In this sense, the attention of the
web community has focused on identifying the intent of a user query. With this,
the goal is for search engines to use different ranking functions depending on the
type of intent detected.

To develop a coherent framework that points to the intent of a user query, also
known as user goals, through the queries they make, several authors have risen
to the challenge of defining web search taxonomies. In a first approximation,
Broder [3], and later Rose and Levinson [15], have consolidated widely-accepted
taxonomies of intents of user queries. These advances have concluded that the
intents of user queries are related to the type of interaction or use the users wish
to have with the selected resource.

Later, works based on these taxonomies have taken on the problem of cons-
tructing query classifiers. Using different information sources, among them, text
[11,1], click-through data [14], or combinations of both sources [12], have shown
results with diverse outcomes.
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1.1 Contributions

In this work we propose three vector representations of queries based on text and
click-through data that allow for query classification by intent. We will consider
the taxonomy proposed by Broder (informational, navigational, transactional)
and for the classification process we will use techniques based on support vector
machines (SVMs) that learn to classify past queries. We will show that the
proposed methods achieve high-precision results for all the categories considered.

1.2 Outline

The rest of this work is organized as follows: In section 2 we review related
work. In section 3 the vector representations of the queries presented in this
work are introduced and the characteristics of the classification technique used
are described in detail. In section 4 the experimental design is presented, along
with analysis of the results obtained. Finally, conclusions are drawn and future
work outlined in Section 5.

2 Related Work

When a user formulates a query in a search engine, their objective is not just
to find information about a certain topic, but also to find a site or interact in
some way with the suggested results (e.g. read a document, download files, pur-
chase a book, among other interactions). Considering this, Broder [3] proposed
a taxonomy of web searches consisting of three categories: informational, navi-
gational and transactional. Broder understood that informational queries were
those where the user’s intents was to find information related to a specific topic.
Navigational queries were those where the user’s intents was to find a certain
site. Finally, transactional queries were those where the user’s intents was to
complete some type of transaction on a website, that is, download a resource, or
make a purchase, among others. Through an experiment based on the opinion of
experts, a set of queries were classified using the proposed categories. As a result,
the navigational, informational, and transactional categories were distributed in
20%, 50% and 30%, respectively. Later this taxonomy was extended by Rose and
Levinson [15], who developed a framework for classification of search goals and
illustrated how to use this framework to manually classify web queries from a
search engine.

Once the categories were consolidated by Broder and subsequently by Rose
and Levinson, the design and implementation of methods for the automatic cla-
ssification of queries according to their intents became an important part of many
investigations. Kang and Kim [11] proposed the construction of classifiers that
characterized queries according to the distribution of query terms. To achieve
this, over a set of queries classified by experts, they obtained two collections
of terms frequently used in writing informational and navigational queries. By
measuring mutual information between the two collections and features such
as the distance between the terms in a query and the terms in the titles and
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snippets of the selected documents, they were able to determine if a query is for
general use or if it is informational or navigational. Despite the 80% precision
rate this classifier reached, the results can not be considered conclusive because
of the small volume of data used (only 200 queries were extracted and labeled
from the TREC collection).

Lee et al. [12] enumerated bias levels in click distributions as classification
features. Intuitively, an informational query should have more clicks concentrated
in lower-ranked items, as opposed to navigational queries which are expected to
have more clicks in the highest-ranking positions and, in general, they have only
one click if they are successful. Using a set of queries classified by a group of
experts, they evaluated the precision of a classifier based on these features and
obtained a 54% precision for 50 queries manually labeled.

A similar focus was used by Liu et al. [14] to build a query classifier. They
proposed two features based on click-through data that allowed query charac-
terization: nRS (number of query sessions that register clicks before a position
n in the ranking data) and nCS (number of query sessions registering less than
n clicks). Using a decision tree as a classifier, their precision rate achieved was
almost 80% for a set of 400 manually labeled queries.

Baeza-Yates et al. [1] proposed to analyze three categories: informational,
equivalent to the category defined by Broder, non-informational, which conside-
red Broder’s navigational and transactional categories; and an ambiguous cate-
gory that included queries whose intention was difficult to perceive based solely
on the query terms, such as polysemic queries. Through an experiment based on
expert opinion, a set of queries were classified using the proposed categories. As
a result, the informational, non-informational, and ambiguous categories were
distributed in 61%, 21% and 18% respectively. Later they establish the intent
of a user query by analyzing the relationship between queries and 16 catego-
ries from the Open Web Directory (ODP). Using techniques such as Support
Vector Machines (SVMs) and Probabilistic Latent Semantic Analysis (PLSA),
they reached 60% precision (approximately) on a dataset of 6,000 queries semi-
automatically classified into the Broder categories (the vector representations
were clustered and then those clusters were labeled).

Recently, Jansen et al. [10], using a classifier based on query features drawn
from logs, such as query terms, IP numbers, and length of the query, achieved a
precision of 74% using a training data set of 400 queries classified by experts.

3 The Classifiers

In this section we introduce three vector representations of queries, based on a
combination of two information sources: text and click-through data. The idea is
to be able to represent queries in the vector space formed by the collection of query
terms and the descriptive terms of the documents selected in the query sessions.
The vector representations consider variables extracted from click-through data
as influential factors for each term. Our idea is to model queries by means of the
variables that influence user preferences. In order to do this we will consider only
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the terms that the user read before their selections, considering also the time spent
reading the selected documents and the clicks that the documents register in the
query sessions. These variables are combined differently to see their effect on the
precision of the classifiers. Finally, in this section we will detail the characteristics
most relevant to the classification technique used.

3.1 Vector Representation Based on Descriptive Text and Clicks

Following Wen et al. [17], a query session consist of a query instance and the
URLs the user clicked on. Thus:

querySession :=< query,(clickedURL)∗>.

In the strict sense of the definition, each query session represents a query
instance formulated by an anonymous user in a defined point of time. As an
extension to this idea, we will represent queries by means of the set of query
sessions where the query was formulated.

The list of results shown by a search engine to a user describes each recom-
mended page / site with the following three text components: the page / site
title, the URL and the snippet or extract of the document content, often the
header or dynamic summary. If at least one of the three components is related
to the meaning of the query, this will be selected. According to this idea, we pro-
pose using a vector representation of queries based on a variation of the Tf−Idf
schema, where the vocabulary will be generated by the terms in the titles, URLs
and snippets of the selected documents.

Given a query q, we use Sq to denote the set of sessions in which q has
been formulated. Let DS be the set of documents selected in Sq. The influence
of each descriptive term on the vector representation of q will be proportional
to the number of occurrences of that term in each document d of DS (factor
Tf). It will also be proportional to the fraction of clicks of each document d of
DS calculated over the clicks registered in Sq (factor Popd,q). Based on these
facts, the component associated with the i-th vocabulary term in the vector
representation of a query q will be given by:

q[i] =
∑

d∈DS

Popd,q ·
Tfi,d

maxl Tfl,d
, (1)

where the second quotient is the factor Tf normalized by the maximum frequency
calculated for all the terms mentioned in the descriptive text of d, and Popd,q

is the fraction of clicks to d in the clicks registered in Sq. According to this
vector representation, a term would have greater influence for q to the degree
that the term has a greater number of occurrences in the descriptive text of
the document (factor Tf) and the document registers more preferences in the
sessions of q (factor Popd,q). That is, Popd,q plays the role of Idf in the well-
known Tf− Idf weighting scheme for the vector model. Finally, the component
q[i] is calculated considering all the documents selected in the sessions of q where
the term was used.
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3.2 Vector Representation Based on Descriptive Text and Reading
Time

Claypool et al. [5], in the context of general web browsing, show how implicit
interest measures are related to the interests of users. Comparing data about
implicit interest indicators and explicit judgments of Web pages visited, they
found that the time spent on a page has a strong correlation with explicit interest.
In the same sense, Fox et al. [8] showed that the time spent on the search result
page and the click-through data are the best predictors of user’s satisfaction.
Moreover, they proved that combinations of these implicit relevance feedback
measures are useful to predict the quality of search results.

From the above, we will introduce a new vector representation of queries
that combines both descriptive text and the time spent reading each selected
document. In this section we will combine only descriptive terms and reading
time. In the following section we will use these variables with the Popd,q factor
introduced in Equation 1. The same as in the vector representation introduced
previously, the vocabulary we will represent in the queries will be formed by all
the terms that make up the page titles, URLs, and snippets.

Given a query q and the set of sessions Sq in which q has been formulated;
D represents the collection of documents selected and registered in the log; ND

represents the size of D; and DS is the set of documents selected in Sq. Let Q
be the set of queries formulated and registered in the log and NQ be the size of
Q. With td we refer to the average reading time spent on document d calculated
over Sq sessions. tS represents the total duration of all the sessions in Sq. The
q[i] component associated with the i-th term in the vocabulary of the vector
representation of q will be given by:

q[i] =
(

0.5 + 0.5
Tfi,q

maxl Tfl,q

)
× log

NQ

ni,Q

+
∑

d∈DS

Tfi,d

maxk Tfk,d
× td

tS
× log

ND

ni,D
, (2)

where Tfi,q and Tfi,d represent the number of occurrences of the term in query
q and in document d, respectively, and ni,Q and ni,D represent the number of
queries and the number of documents in which the term appears, respectively.

The first part of Equation 2 corresponds to the modified schema Tf-Idf for
queries introduced by Salton and Buckley [16], which allow us to incorporate
query terms such as descriptive text. The second part represents the effect of
the page’s descriptive text on reading time. Intuitively, a term will have greater
influence on the vector representation of q as the term has more occurrences
in the descriptive text of the selected document (factor Tf) and the user has
invested more time in reading it (factor td

tS
). As the time spent in each query

differs by query type (for example, the time spent viewing the answers of a
closed-class question like “Barack Obama’s 47th birthday” is less than a general
information query like “History of United States”), we normalize td using tS ,
calculating the time factor as the fraction of time spent in d over the time spent
in the sessions of q.
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Finally, in Equation 2, the inverse frequency of the term in the collection D
(factor Idf) has been considered to give more or less relevance to the terms with
greater or lesser frequency in the set. The influence q[i] is calculated considering
all the documents selected in the sessions of q where the term is used.

3.3 Vector Representation Based on Descriptive Text, Reading
Time and Clicks

This query representation corresponds to a combination of the factors conside-
red in Equations 1 and 2. For this representation we have also considered the
vocabulary formed by the page’s descriptive text (titles, URLs and snippets).
Regarding this set of terms, we have considered the variables of reading time
and clicks. The same as in the representation of Equation 2, the descriptive text
models the attraction effect that triggers the selection. The incorporation of fac-
tor Popd,q aims to give greater relevance to the terms used in documents that
have been selected in other sessions. Also, the reading time variable is still consi-
dered to give more influence to the terms used in documents that have attracted
more user attention.

According to the above, the component q[i] associated to the i-th term in the
vector representation of q is given by:

q[i] =
(

0.5 + 0.5
Tfi,q

maxl Tfl,q

)
× log

NQ

ni,Q

+
∑

d∈DS

Tfi,d

maxk Tfk,d
× td

tS
× Popd,q × log

ND

ni,D
, (3)

The second sum in the expression represents the influence of the term according
to the attractiveness of the descriptive text in the document selections. Ac-
cording to this representation, a term will have greater influence on the vector
representation of q in so far as it has more occurrences in the descriptive text of
d, the average reading time of d is significant with respect to tS , and d registers
an important amount of preferences in the sessions of q.

3.4 Classification Technique

Since the vector representations in Equations 1, 2, and 3 are calculated based
on large term collections, it is necessary to use a classification technique that
behaves well with high-dimensional data. In this context the support vector
machines (SVMs) [6] have proven to be useful in processing high-dimensional
vectors (over 106 features) even when the vectors are sparse, such as in the case
of text [2]. Leopold and Kindermann [13] showed that SVMs even perform well
in categorizing documents without pre-selecting features (pre-filtering), which
means they compare favorably to other techniques like Decision Trees (e.g. C4.5),
Artificial Neural Networks (ANN) or Bayesian Networks. Due to the fact that
we are using high dimensional term vectors we will use SVMs.

As has been argued in previous works [13,2,1], it is recommendable to use
radial basis function as a kernel for the setup of the SVM function, since this
has shown good performance in text categorization.
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4 Experimental Results

4.1 Data Set

For this paper we have processed a commercial search engine log. The file corres-
ponds to a period of 3 months from the year 2006 and contains 594,564 queries
associated to 765,292 sessions. The log also contains 1,124,664 clicks on 374,349
different URLs. To construct the query vector representations based on text,
the queries and descriptive text have been processed, eliminating accent marks,
punctuation, and the top-50 stopwords. Using the log file we also estimate the
time spent in each document visit, calculating the time gap between consecutive
selections in the same query session. For the last click, we estimate the reading
time as the average time spent in the query session.

Experts from our labs have manually classified a set of 2,000 queries consider-
ing the categories proposed by Broder. The queries considered are the top-2,000
most frequent queries of the query log analyzed. They are associated to 126,287
sessions. The experts had to respond to questions focused on identifying the
intent of a user query, similar to those formulated in Broder’s experiments. The
questions asked were able to identify if the intent was to find a particular site
or topic, if the desired results should be found in one website or in many, and
finally, if the goal of the query was to read the results obtained or to inter-
act in some other way with the resource, allowing later categorization in the
taxonomies considered in this experiment.

The results obtained have been used in the following way: the definitive set
of queries considered in the experiments is formed by those that have been
classified in the same categories by all the experts. That is, those whose intent
has been determined by consensus. Those queries that were classified in two
or more categories were revised again by the experts in a second review. As
a result of the classification process, 1,953 queries were labeled by consensus,
distributed in the different categories as follows: the informational, navigational
and transactional categories were distributed in 52%, 33% and 15%, respectively.

70% (1,367 queries) of the manually classified queries were considered as train-
ing data, leaving the remaining 30% for evaluation (586 queries). This parti-
tion was calculated using a simple random sample in each category in order to
preserve the original distribution determined by the experts.

4.2 SVM Tuning

The SVM implementation called LIBSVM, developed by Chang & Lin [4], which
is freely available, was used. The version of SVM used is that proposed by Cortes
and Vapnik [6] known as C-SVM since the associated optimization problem is
parameterized by a penalty factor C, C > 0. Since we will use radial basis func-
tions (K(x, y) = e−γ‖x−y‖2

, γ > 0) where the variables (x, y) represent labeled
instances of the data (queries in our case), a second parameter is added to the
problem, γ, which models the length of the radial basis.

The parameter tuning process proposed by Hsu et al. [9] was followed. This
process consists in exhaustive cross-validation testing that yields the best (C, γ)
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pair. As the query vector representations introduced in this paper are variants
of the well known Tf− Idf model, we will compare our performance results
considering the Tf− Idf query vector representation as a baseline. Table 1 shows
the values found for each proposed query representation and for the baseline.

Table 1. SVM tuning results for the Broder’s taxonomy

Method c γ

(0) tf-idf 2048 3.0517578e-05
(1) tf-pop 8192 3.0517578e-05
(2) tf-idf-time 2048 3.0517578e-05
(3) tf-idf-pop-time 2048 3.0517578e-05

4.3 Performance Evaluation

In a first analysis and in order to evaluate the overall performance of the classi-
fiers, we compare the nominal and predicted categories for each query, tabulating
error rates per category (the proportion of errors over the whole set of instances).
These results are shown in Table 2.

Table 2. Overall performance for the classifiers (error rates). Bold fonts indicate the
best error rate for each category.

Method Inf. Nav. Tran.

tf-idf 19.8% 19.28% 2.9%
tf-pop 25.8% 12.8% 55.1%
tf-idf-time 8.9% 1.6% 59.5%
tf-idf-pop-time 24% 0.5% 28.6%

As we can see in Table 2, for the navigational category the best performance
is reached by the tf− idf− pop− time method. It seems that for the identi-
fication of transactional queries the text is the most useful information source,
being the tf− idf method the one which reaches the best results. We can ob-
serve also in Table 2 that the vector query representation defined from Equation
2 achieves the best result for the informational category. In general, the worst
result is obtained in the transactional category of the Broder’s taxonomy and
the best result is obtained in the navigational category.

We expect that the third method outperforms the other methods for all the
categories considered in the experiments because it considers all the factors (pop-
ularity, reading time and text) but this is not true for the informational category.
We intend to illustrate with one example why the second method outperforms
the third method in the informational category. The query “buyer of ingersoll
rand compressed air dryer” was manually classified in the informational cate-
gory. The predicted categories for the methods 2 and 3 were informational and
transactional. The error of the third method suggests that the use of the Popd,q
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variable in the vector query representation from Equation 3 introduces noise in
the weight of the term “buyer”, which matchs with instances classified in the
transactional category. When we see the whole evaluation data set, we can ob-
serve that this kind of error is very frequent for the third method. The confusion
between transactional and informational categories represents an error of 19.5%
obtained by this classifier in the informational category (over the 90% of the
error rate obtained by the third method in this category). On the other hand,
this kind of error achieves only the 3% for the second method.

Following the analysis and in order to count the classification costs we consider
the four possible cases presented when comparing the nominal class with the
predicted class: true positives (tp), false positives (fp), false negatives (fn), and
true negatives (tn). We calculate the following measures for each classifier of the
evaluation set: Precision ( tp

tp+fp ), FP rate ( fp
fp+tn ), TP rate or Recall ( tp

tp+fn ),

and F-measure (2×Precision×Recall
Precision+Recall ). In the case of the F-measure we have

specifically considered the version F1 equivalent to the harmonic average of the
Precision and Recall measures given that it establishes a compromise between
both criteria (it only has high values if both measures are high).

Given that this decision problem is multiclass, we will use the generalized ver-
sion of the analysis based on two classes. Following Fawcett [7], we will consider
each category as a reference class and will conduct the evaluation comparing it
to the other classes. Let C be the set of all the classes considered in the decision
problem and let ci be the reference class upon which we will conduct the eva-
luation. Let Pi and Ni be the positive and negative classes of the performance
analysis based on two classes. Thus for every ci ∈ C we will consider:

Pi = ci,

Ni =
⋃

j�=i

cj ∈ C.

Then, for each reference class ci ∈ C, we calculate the measures based on
the analysis of both classes using the new classes Pi and Ni. This way, each
classifier can be analyzed as a binary classifier according to its performance for
the reference class. The results of this analysis can be revised in Table 3.

Table 3 shows the results obtained for the pairs of reference / other classes
comparison, considering all the categories of the analyzed taxonomy. Using this
we obtain the Informational / Other classes, Navigational / Other Classes, Trans-
actional / Other classes for the Broder’s taxonomy. The measures have been
calculated for each classifier, with the baseline being identified as tf− idf, with
the one from Equation 1 being identified as tf− pop, the one from Equation 2
as tf− idf− time and that from Equation 3 as tf− idf− pop− time. As we
can see in Table 3, the baseline reaches very good rates for false positives for
the informational and transactional categories. On the other hand, the baseline
reaches the worst FP-rate for the navigational category. Regarding the predictive
capacity of the baseline, it reaches low TP Rates for the informational category
being more competitive in the case of navigational queries. The classifier with
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Table 3. Performance evaluation of the proposed classifiers. Bold fonts indicate the
best result for each evaluation.

Method Measures
TP Rate FP Rate Precision F-Measure

Informational - Other

(0) tf-idf 0.6538 0.0292 0.9623 0.7786
(1) tf-pop 0.58576 0.13281 0.84186 0.69084
(2) tf-idf-time 0.92614 0.05141 0.89071 0.90808
(3) tf-idf-pop-time 0.65000 0.23711 0.31138 0.42105

Navigational - Other

(0) tf-idf 0.9655 0.2597 0.6109 0.7483
(1) tf-pop 0.92131 0.13475 0.88088 0.90064
(2) tf-idf-time 0.99485 0.06870 0.87727 0.93237
(3) tf-idf-pop-time 0.45455 0.01603 0.83333 0.58824

Transactional - Other

(0) tf-idf 0.91 0.0165 0.9192 0.9146
(1) tf-pop 0.75692 0.05344 0.94615 0.84103
(2) tf-idf-time 0.98438 0.05316 0.90000 0.94030
(3) tf-idf-pop-time 0.70000 0.13153 0.41880 0.52406

the best performance in terms of TP Rate was tf− idf− time, which is the
one that obtained the best proportion of positives over the total. The previous
measure indicates that the classifier based on the tf− idf− time represen-
tation has the most predictive capacity. It should be noted that the classifier
tf− pop obtains a precision greater than tf− idf− time for the Navigational
and Transactional reference classes, but in the global analysis poorer perfor-
mance is registered because the values for TP Rate are considerably less that
those reached by tf− idf− time in these categories. Evaluating the Precision
/ Recall tradeoff, and considering the measurement F1, the classifier based on
the tf− idf− time representation also obtained the best performance.

5 Conclusion

In this paper we have explored the use of query classifiers according to the
intent of a user query. For this, we have proposed three vector representations
for queries based on click-through data and descriptive text, identifying four
relevant factors: frequency of terms, (Tf), inverse frequency in documents (Idf),
user preferences (Pop), and reading time of selected documents (Time). Using
SVMs we have evaluated the performance of the three representations over a set
of queries categorized by experts.

The experimental results show that the third method reaches good results
when we consider overall performance measures such as error rates. When we
consider the cost of making wrong decisions incorporating to the analysis false
positives and false negatives, the second method outperforms the other proposed
methods. The most relevant reason that explains this performance is its ability
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to identify informational and navigational queries, which represent a significant
proportion of the whole data set. Finally, when we considerate costs into the
analysis, the poor result obtained for the transactional category considering the
plain error rate was minimized.

One of the most relevant characteristics of the second method is its high
predictive / discriminative capacity. Furthermore, the quality of their results
depends on the intent that their are identifying. Our approach has an advantange
in this sense because we reach higher precision results for all the categories
considered in the experiments. Among the factors that explain the success of the
proposal we emphasize the incorporation of new factors drawn from click-through
data such as time, which was considered for the first time in this problem.

Our classifiers consider only queries that appears in the query-log. We are work-
ing on extensions to deal with new queries submitted by users. In order to do this,
we have to address the problem of determining distance functions that achieve
good results measuring distances between queries with partial information (e.g.
query terms) and our query vector representations. If this is possible, we could
represent a new query with a close query registered in the query-log file.

Another problem is to conduct an analysis that will allow us to determine why
the combination of factors tf− idf− time outperforms tf− idf− pop− time.
This work showed that the Pop factor allows for greater precision of the classifiers
for the Navigational and Transactional classes and that the factor Time achieves
the same but for the Informational class. This suggests that the user preferences
are a relevant source of information for navigational and transactional queries,
and that the time factor is more relevant for the informational class. This is
intuitive in the sense that the reading time allows us to identify resources that
capture attention based on content, usually pages, as opposed to clicks which
would tend to concentrate more on sites than pages, making them more related
to transactional and navigational queries.
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Abstract. We consider the problem of retrieving sentence level restate-
ments. Formally, we define restatements as sentences that contain all
or some subset of information present in a query sentence. Identifying
restatements is useful for several applications such as multi-document
summarization, document provenance, text reuse and novelty detection.
Spurious partial matches and term dependence become important issues
for restatement retrieval in these settings. To address these issues, we
focus on query models that capture relative term importance and se-
quential term dependence. In this paper, we build query models using
syntactic information such as subject-verb-objects and phrases. Our ex-
perimental results on two different collections show that syntactic query
models are consistently more effective than purely statistical alternatives.

1 Introduction

We describe and evaluate the task of finding restatements – sentences that match
a query sentence, either in part or entirely. That is, starting from some sentence
as a query, we define other sentences as relevant if they describe some or all of
the same information units. Identifying sentences that contain overlapping infor-
mation is a key challenge for several language applications such as tracking text
reuse, summarization and novelty detection. Tracking information flow [14] and
local text reuse [18] studied in the context of information provenance and pla-
giarism detection, focus on identifying sentence level information overlap. Also,
extractive summarization techniques and novelty-based ranking often measure
redundancy across sentences to avoid repeating information [1],[17],[23].

Cast as a sentence retrieval problem, the main challenge for restatement re-
trieval is that the query sentences are long: they usually contain multiple units
of information (clauses), each of which could effectively be a query on its own.
To effectively handle long queries, retrieval techniques must be able to identify
key components of a query sentence [10],[11] and avoid spurious partial matches
– accidentally flagging a match because a sentence includes partial information
from different clauses. For document retrieval using keyword queries, the pop-
ular query likelihood (QL) model utilizes the frequency of query terms in the
document, the length of the document and the collection frequency of the query
terms. However, for sentence retrieval using long queries, the frequency of query
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terms in a sentence or in the collection does not provide adequate information to
discriminate between relevant and spurious partial matches. Table 1 shows ex-
amples of spurious and relevant partial matches. Figure 1 illustrates the partial
matches problem for query likelihood (QL) retrieval. At the top of the ranked list
(the left of the figure) we have complete restatements – sentences which include
all information units in the query and which tend to be identical to the query.
However, as we go down the ranked list of sentences (to the right), we can see
that there are several cases where the non-relevant sentences match more query
terms than the relevant sentences.

Table 1. Partial Matches and Term Dependence: Square brackets enclose noun phrases
with modifiers. Italicized words in the partial matches indicate query term matches.

Query Sentence
[Jordanian security officials] on Sunday, announced the arrest of an [Iraqi woman],
closely linked to the [terrorist leader Abu Musab al-Zarqawi] as a [fourth bomber] in
the [Amman hotel attacks] and they broadcast a [taped confession] showing her wear-
ing a [translucent suicide explosive belt], packed with [ball bearings] and describing
how she had tried unsuccessfully to blow herself up.

Spurious partial match
Abu Musab al-Zarqawi briefly survived the bomb attack that killed him Wednesday
night, a military spokesman said Friday, describing the al-Qaida leader turning away
and mumbling when American troops approached the stretcher that he had been
placed on by Iraqi police officers.

Relevant partial match
While a videotaped confession showing Rishawi wearing the disarmed suicide belt
was being broadcast around the world, details about her life, motivation and role in
the attacks that killed 57 people began to emerge in Jordan and Iraq.
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Fig. 1. Number of term matches for rele-
vant and non-relevant sentences for an ex-
ample query. Term matches for unjudged
sentences in top 100 ranks are not shown.

Also, term independence assump-
tions can add to the partial matches
problem. Consider the query shown
in Table 1. Under term independence
assumptions, non-relevant sentences
that match many words in the pha-
rases Jordanian security officials or
the terrorist leader, Abu Musab Al-
Zarqawi can receive higher query like-
lihood scores compared to relevant
sentences which only match parts of
these phrases. Addressing sequential
term dependence – i.e., finding runs of
adjacent terms that should be treated
as a unit – can also help capture en-
tities and concepts, moving us closer
to semantic matching without actu-
ally trying to handle the semantics.
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In practice, spurious partial matches can lead to a large number of false alarms
for identifying local text reuse. In extractive summarization and novelty detec-
tion, related but different events and news stories often use overlapping vocabu-
lary inducing spurious partial matches that affect coverage of new information.
In this paper, we investigate the partial term matches and term dependence
problems in the restatement retrieval setting. In a sentence retrieval framework,
we show that query models that emphasize the relative importance of query
terms and capture sequential term dependence can improve retrieval effective-
ness for our task. We compare syntactic query models to purely statistical alter-
natives and show that the syntactic models are more effective for restatement
retrieval.

2 Related Work

The TREC Novelty Detection track focused on retrieval of novel on-topic sen-
tences. The novelty detection techniques cannot be readily inverted to retrieve
restatements; the typically poor precision of novelty detection [20], will lead to
poor recall in retrieving restatements, especially the partial restatements. On the
other hand, improvement in redundant information detection can help novelty
detection by improving precision. Also, systems that used syntactic and seman-
tic features for novelty detection improved precision. In a similar fashion, we
believe that using syntactic features will help improve restatement retrieval.

Textual entailment is defined as the task of determining whether a given
sentence entails an hypothesis [7]. Successful entailment systems often extract
syntactic and semantic features from sentences and candidate hypotheses and
utilize machine learning techniques to verify entailment [8]. While this task is
similar to finding restatements, we focus on finding explicit restatements which
are a subset of sentences that can entail a hypothesis. Moreover, the query
sentences that we are interested in often contain multiple units of information
unlike the sentences used for the entailment tasks.

In the context of document retrieval, Allan et al [2] studied the effect of
extracting key components of TREC style queries and more recently, Bendersky
et al [4] showed the utility of identifying key concepts in verbose description
queries using a supervised learning approach to detect concepts – noun phrases
– and weight them. Similarly, we believe the use of syntactic information will
yield more effective query models for sentence retrieval.

For sentence matching, Metzler et al [14] showed that simple query likelihood
(QL) model outperformed other word overlap based techniques such as TF-IDF
for identifying sentences at various levels of similarity. Murdock [16] proposed
translation based models for identifying sentence level similarity. Balasubrama-
nian et al [3] showed that advanced language modeling techniques such as de-
pendence models and relevance models can be combined to provide significant
improvements over query likelihood baselines for finding redundant information.
For sentence retrieval, Cai et al [5] used parse tree based features of candidate
sentences to model term dependence in keyword queries for retrieving topically
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related sentences. In addition to using syntactic dependencies, we also use the
subject-verb-object information to build query models and avoid parsing candi-
date sentences.

3 Query Models

Statistical approaches such as relevance models (RM) [12] and sequential de-
pendence models (SDM) [15], can be used to model term importance and term
dependence, respectively. For sentence retrieval, Balasubramanian et al [3] used
relevance models based on term frequencies in source documents and showed
that a combination model (DMRM) using dependence model queries to perform
initial retrieval and then building relevance model queries provides additional
improvements over either method.

However, there are some known issues with these purely statistical approaches.
First, relevance models add new words to the query and rely upon a good quality
initial retrieval. Instead of relying on an initial retrieval to build query models,
syntactic analysis can be used to directly estimate the relative importance of
terms. Furthermore, a better query model will improve the quality of the initial
results and in-turn improve the quality of the relevance models. Second, term
dependencies often span multiple terms and for long queries a full dependence
model does not scale. Also, the simple sequential term dependence model is
a brute force enumeration of all possible pairs of adjacent query terms. For
keyword queries in document retrieval, this indiscriminate enumeration does not
result in too many spurious matches. However, for long query sentences, it can
cause spurious matches adding to the partial matches problem. Using syntactic
dependencies we can avoid the problem of brute force enumeration of spurious
dependencies.

The query sentences that we consider are well formed grammatical sentences
that are amenable to automatic natural language analysis such as parsing tech-
niques [6, 13, 22]. One approach to finding restatements would be to rank can-
didate sentences by measuring the alignment of their parse trees with that of
the query sentence. However, this approach involves parsing entire text collec-
tions and performing computationally intensive alignment and is less robust
since parsing can sometimes fail on candidate sentences. We propose to parse
the query sentences alone to build effective query models for sentence retrieval.
Thus, we leverage the benefits of syntactic information through parsing and the
robustness of a retrieval framework to improve effectiveness of sentence matching
in an efficient manner.

4 Syntactic Query Models

We use syntactic information to build query models for query likelihood retrieval.
Specifically, we propose three syntactic query models to a] emphasize the rel-
ative importance of terms and b] capture the syntactic dependencies between
query terms. We also build a combination model that leverages the benefits of
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these two models. Given a query sentence, we first parse the sentence using the
Stanford Dependence parser [13] to obtain the syntactic dependencies. Then, we
create extended noun phrases by grouping noun phrases, their adjectival modi-
fiers and basic dependencies. We experimented with other types of modifiers and
dependencies but found the adjectival modifiers to be most useful.

SVO Weighting (SW)

Given a query sentence Q, we identify the extended noun phrases and words
{c1, c2, · · · , cm} ∈ Q, and extract the set of subjects and objects, the verbs and
the remaining phrases. Then, we formulate the query weights as follows:

∀c ∈ Q, w(c) =

⎧
⎪⎪⎨

⎪⎪⎩

δ(|c|) + λph if c ∈ Phrases(Q)
δ(|c|) + λso if c ∈ Subj-Objs(Q)

λv if c ∈ Verbs(Q)
1.0 otherwise

(1)

where |c| is the number of words in unit c. For our experiments we chose a δ to be
a simple increasing function, δ(n) = 0.1n. Finally, the weighted Indri query [21]
is composed as follows:

SW (Q) = #weight(w(c1) c1 w(c2) c2 · · · w(cm) cm) (2)

Initially, we found that even a fixed choice of values greater than 1 for the λs
provides improvements. However, learning the parameters from a corpus allows
us to tune the weights on the single word verbs in relation to the subjects, objects
and other phrases which often span multiple words.

Syntactic Phrase Matching (SD)

We use the syntactic dependencies obtained by parsing to effectively model
sequential term dependencies of varying lengths. We create term dependence
queries by modifying the sequential dependence model query described by Met-
zler et al [15]. Given the extended noun phrases extracted from the query sen-
tence, {c1, c2, · · · , cm} where ci = {qi

1, q
i
2, · · ·}, we construct an unordered window

query for each extended noun phrase in the query and interpolate it with the
original query sentence as follows:

SD(Q) = β(Q) ∪ (1 − β)

⎧
⎪⎪⎨

⎪⎪⎩

#uwδ1(c1)
#uwδ2(c2)
· · ·
#uwδm(cm)

⎫
⎪⎪⎬

⎪⎪⎭

(3)

where δi = |ci| + 2. #uwδ(c) represents an un-ordered window query which
estimates the likelihood of the words in the phrase c, occurring within a window
of length δ. Figure 3 shows example Indri queries for the syntactic query models.

Syntactic Sub-Queries (SSQ)

We can extend the term dependence to larger units of information contained in
the query sentence. We analyzed the parse trees of some query sentences and
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Fig. 2. Sub-queries: Tree on the left is an example parse of a query sentence. Colored
nodes in the middle and right trees indicate words in the two possible sub-queries.

Query

The International Atomic Energy Agency and its chief Mohamed ElBaradei on Friday won the Nobel Peace Prize for 2005 for 
their work in stopping the spread of nuclear weapons.

SW

#weight(
0.90 #combine( 
international atomic energy agency chief 
mohamed elbaradei friday won nobel peace prize 
2005 work stopping spread nuclear weapons)
0.10 #weight(
  1.70 #weight( 0.85 weapons  0.85 nuclear ) 
  1.00 #combine(spread) 
  1.00 #combine(work) 
  1.50 #combine(won) 
  1.80 #weight( 0.6 elbaradei  0.6 chief  0.6 mohamed ) 
  2.65 #weight( 0.66 agency  0.66 energy  0.66 atomic
                        0.66 international ) 
  1.00 #combine(friday) 
  1.50 #combine(stopping) 
  2.55 #weight( 0.85 prize  0.85 peace  0.85 nobel ) 
  1.00 #combine(2005) 
 )
)

SSQ

#weight(
0.9 #combine( international atomic energy agency chief 
mohamed elbaradei 
friday won nobel peace prize 2005 work stopping spread 
nuclear weapons)

0.033 #combine(stopping agency energy atomic international 
prize peace nobel won spread weapons nuclear)
0.033 #combine(stopping agency energy atomic international 
prize peace nobel won elbaradei chief mohamed friday)
0.033 #combine(stopping agency energy atomic international 
prize peace nobel won work 2005)

)

SD

#weight(

0.90 #combine( 
international atomic energy agency chief 
mohamed elbaradei friday won nobel peace prize 
2005 work stopping spread nuclear weapons)

0.10 #combine(
   #uw4( weapons  nuclear ) 
   #uw5( elbaradei  chief  mohamed )
   #uw5( prize  peace  nobel ) 
   #uw6( agency  energy  atomic  international ) 
   spread work won friday stopping 2005
)
)

Fig. 3. Example Syntactic Query Models

observed that the root and the first level of the parse tree often contained infor-
mation central to the query sentence. The different units seemed to correspond
to the different sub-trees of the nodes in the first level. Therefore, for each query
we generate a list of sub-queries one for each node in first level of the parse tree
as follows: Extract nodes from the node’s sub-tree and add them to the core
of the query (the root and all the nodes in the first level). Figure 2 shows the
sub-queries generated by our heuristic from a parse.

Combination Models (SWD and SWD-RM)

We experimented with various combinations of the query models. A linear in-
terpolation of SW and SD models turned out to be the most useful combination
and we refer to this model as Syntactic Combination (SWD). We also created
a combination of the Syntactic Combination and the relevance model queries
(SWD-RM) by using Syntactic Combination for initial retrieval and adding the
Syntactic Combination query to the relevance model query, similar to the combi-
nation of dependence and relevance models (DMRM) [3]. This combination will
demonstrate the utility of combining syntactic and purely statistical methods.

5 Experiments

To evaluate restatement retrieval we constructed a test bed from english newswire
documents. First, we extracted 50 query sentences from the collection. The query
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sentences were chosen such that a) they could be potential responses to some ac-
tual query and b) many query sentences contained multiple units of information.
Next, two annotators were asked to construct their own queries and find as many
restatements as possible for each query sentence. Then, the restatements found
in the first stage were used as surrogate queries and the results of a query likeli-
hood sentence retrieval on the original query and the surrogate queries were used
to create a pool of sentences for judging. Finally, we removed easy queries with QL
MAP of 1.0 for the partial restatements category and hard queries that have no
relevant judgments for the complete restatements category. Table 2 summarizes
the details of the resulting collection (Restatements Collection). We also report re-
sults on a test collection consisting of 49 queries created for identifying redundant
information [3](Redundant Information Collection).

Table 2. Collection Details

Collection Documents Sentences Queries Judged sentences Restatements

English Newswire 79210 2,849,683 35 4340 647

We compare our syntactic approaches to statistical alternatives for building
query models including the query likelihood baseline (QL) and the state-of-art
document retrieval models – relevance models (RM) and sequential dependence
models (DM). We also compare our combination model (SWD-RM) to the com-
bination of relevance models and dependence models (DMRM) [3]. To train pa-
rameters for the query models, we performed grid search using cross-validation.
For the Restatements collection we performed 5-fold cross validation and for
the Redundant information collection we used 7-fold cross validation. Table 3
shows the training parameters for the various methods. DM and Syntactic Phrase
Matching were tuned to optimize precision@10 to gain better generalization per-
formance over MAP.

Table 3. Training parameters: a) λ - JM smoothing parameter b) β - Original query
interpolation weight c) λph - Phrase weight d) λso - Subject/Object weight e) λv - Verb
weight f) γsvo - SVO Query weight g) γph - Syntactic Phrase Query weight h) fbt, fbd:
Feedback terms and documents. i) w - interpolation weight.

QL DM RM DMRM SW SD SWD SWD-RM

λ λ, β λ, β DM, RM + w λ, β, λsv, λv, λph λ, β λ, β, γsvo, γph SW,SD+w
fbt, fbd

6 Results

6.1 Restatements collection

Table 4 shows results for the statistical and syntactic query models. The syntactic
query models are consistently better than the statistical alternatives except for
the Syntactic Sub Queries .
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Table 4. 5-fold Cross Validation results on Restatements collection - Sig entries in-
dicate significant improvements over the corresponding methods using paired t-test.
(q:QL, r:RM, d:DM, dr:DMRM, sw:SW,sd:SD). Underlines indicate the best score.

Method P@5 P@10 P@20 MAP Sig. (in MAP)

QL 0.7086 0.5686 0.4514 0.6373

DM 0.7086 0.5743 0.4429 0.6407

RM 0.7086 0.5657 0.4443 0.6374

DMRM 0.7200 0.5857 0.4500 0.6509 q,r

SW 0.7371 0.5971 0.4614 0.6660 q

SD 0.7200 0.5771 0.4471 0.6564 q

SWD 0.7543 0.6000 0.4629 0.6732 q,d,r

SSQ 0.7086 0.5714 0.4500 0.6358

SWD-RM 0.7486 0.6057 0.4586 0.6788 q,d,r,dr, SW, SD

Statistical Query Models. In contrast to their known value for document re-
trieval, RM and DM do not provide any significant improvements in MAP over
the query likelihood baseline. We observed that RM roughly helped half the
queries and was detrimental to the other half. In addition to failures due to poor
retrieval, even when baseline retrieval effectiveness was high, relevance models
can add words from sentences that are only partial restatements of the original
query sentence. This actually worsens the partial matches problem and lowers the
overall effectiveness. For the DM, the poorly performing queries often overem-
phasize the match of a long noun phrase. For example, in the query fragment,
Iranian President Mahmoud Ahmadinejad, the corresponding long noun phrase
match iran’s president, mahmoud ahmadinejad is amplified in the dependence
model query by having multiple ordered window matches and a larger number
of unordered window matches. The combination of dependence and relevance
models, DMRM, provides good improvements over either model by leveraging
their individual strengths [3]. Overall, the purely statistical approaches do not
yield substantial improvements for restatement retrieval.

SVOWeighting and Syntactic Phrase Matching . Intuitively, SVO Weight-
ing weights the key components of the query sentence and balances the relative
weights of these components. For query sentences with long noun phrases, the pres-
ence of the noun phrases alone can significantly boost the likelihood score of candi-
date sentences. Tuning the weights on phrases and verbs together provides a way to
moderate the impact of matching long noun phrases alone and serves to improve
the importance of verbs in candidate sentences. Table 5 displays a non-relevant
sentence that matches the long noun phrase in the query sentence and some rele-
vant sentences that only contain a portion of the long noun phrase but contain all
the other key components of the query sentence. The difference in ranking accord-
ing to dependence models and the SVO Weighting demonstrates the strength of
the syntactic model in balancing the relative query term weights.

Syntactic Phrase Matching emphasizes the dependence between terms in the
query sentence. By grouping noun phrases and their modifiers in an unordered
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Table 5. Example illustrating benefits of SW compared to DM. Italicized words indi-
cate term matches. DM and SW entries indicate ranks in corresponding methods.

Query: Iranian President Mahmoud Ahmadinejad called the holocaust a “myth”

DM SW Rel. Text

21 38 NR tel aviv, israel – with iran’s president, mahmoud ahmadinejad, call ing
for israel to be “wiped off the map,” israeli officials have special reasons
for concern now that iran has defied the west and said it will resume
enriching uranium.

22 14 R charlotte knobloch, president of the central council of jews in germany,
noted that ahmadinejad has called the holocaust a “myth”.

88 18 R ahmadinejad produced outrage in the west last year when he threatened
israel and called the holocaust a “myth”.

97 19 R ahmadinejad has generated international scorn by dismissing the holo-
caust as a myth and call ing for the destruction of israel.

window query it favors phrase matches thereby capturing entities and other
important concepts in the query. Also, the syntactic grouping ensures that only
valid dependencies are captured and spurious dependencies that are possible in
a brute force enumeration are avoided. Compared to brute force DM queries,
Syntactic Phrase Matching queries are more effective at modeling sequential
term dependence and are also more efficient.

Syntactic Sub Queries. Syntactic Sub Queries did not provide any improve-
ments over QL. This is mainly due to sub-queries that add only one or two
unimportant words to the top level of the tree thus creating bad sub-queries
that cause spurious matches. Furthermore, for some queries the top portion of
the parse tree is not central to the query as assumed by our heuristic. However,
we believe that by systematically capturing larger syntactic structures such as
clauses, we can create more meaningful sub-queries.

Syntactic Combination Models. The combination model SWD provides
small improvements over either model used in the combination. However, the
combination now consistently outperforms the DM and RM baselines. Similar
to the combination method DMRM, the SVO Weighting and Syntactic Phrase
Matching provide different types of evidences for relevance and their combination
provides significant improvements. The SWD-RM provides minor improvements
over SWD but it outperforms DMRM, SVO Weighting and Syntactic Phrase
Matching thus showing that syntactic and statistical query models can be com-
bined to obtain additional improvements. Finally, we note that the small im-
provements due to the combinations add up to an absolute 4 point improvement
in MAP over the QL baseline.

6.2 Redundant Information

Table 6 shows results for this collection. The statistical query models follow the
trends observed in [3]. Both SVO Weighting and Syntactic Phrase Matching
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outperform the QL baseline and DM significantly and the combination models
SWD and SWD-RM significantly outperform all the statistical models except for
DMRM. The results clearly confirm the trends we observed in our collection but
the actual improvements are smaller. We believe that this is due to the differences
in the types of queries in the collections. In comparison to Redundant information
collection , the query sentences in Restatements collection are more complex, in
terms of average length (17 versus 21 average words per query) and number of
SVO elements. Overall, we expect the syntactic query models to benefit complex
query sentences more. Although we did not observe any solid trends in terms
of complexity versus the benefit of the syntactic methods, we observed that the
benefits of using syntactic query models were limited in another noisy collection
with simple queries.

To summarize, we see that utilizing syntactic information to build query mod-
els consistently outperforms purely statistical methods for term weighting and
the brute force sequential dependence models.

Table 6. Redundant information - 5-fold Cross Validation results on 49 queries. Sig col-
umn entries indicate significant improvements in MAP over the corresponding methods
(q:QL, r:RM, d:DM, dr:DMRM, sw:SW,sd:SD) using paired t-test.

Method P@5 P@10 P@20 MAP Sig.

QL 0.6122 0.5041 0.3500 0.5207

DM 0.6204 0.4878 0.3510 0.5253

RM 0.6245 0.5082 0.3500 0.5308 q,d

DMRM 0.6122 0.5041 0.3561 0.5279

SW 0.6204 0.5143 0.3643 0.5338 q,d

SD 0.6327 0.5082 0.3622 0.5376 q,d

SWD 0.6380 0.5082 0.3622 0.5380 q,d,SW

SWD-RM 0.6286 0.5020 0.3643 0.5387 q,d,r,SW

7 Syntactic Features for Discriminative Training

We also conducted experiments on the Restatements collection to investigate
the utility of syntactic features in a discriminative setting for sentence retrieval.
Nallapati et al devised some language modeling based features for a discrimina-
tive classifier to rank documents. We adopted the same set of text based features
(T) and investigated the use of parser based features such as, presence of sub-
ject, verb, object and distance based measures on the parse tree (P). Our initial
results (see Table 7) shows that ranking and binary SVM [9] using text only
features (T) perform comparably to that of the traditional retrieval approaches.
More importantly, we see that adding the parser based features improves the
performance of both ranking and binary SVMs similar to the improvements we
observed with the syntactic query models. These results clearly show that there
is potential for investigating syntactic features in a discriminative setting. We
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Table 7. SVM based learning for restatement retrieval on Restatements collection

Method P@5 P@10 P@20 MAP

RankSVM (T) 0.6971 0.5829 0.4514 0.6349

BinarySVM (T) 0.6914 0.5686 0.4443 0.6304

BinarySVM (P) 0.5143 0.3771 0.2774 0.3966

RankSVM (P + T) 0.7086 0.5857 0.4571 0.6520

BinarySVM (P+ T) 0.7314 0.5829 0.4586 0.6528

plan to extend our work to directly incorporate the syntactic dependencies and
model more complex relationships amongst the features for ranking.

8 Conclusions

In this paper, we described the problem of partial term matches and term depen-
dence for a general restatement retrieval task. We showed that query models that
address the partial matches and sequential term dependencies, provide consistent
gains in effectiveness. We find that syntactic query models are consistently more
effective than purely statistical alternatives. Avoiding spurious partial matches
is a key challenge for several natural language applications and syntactic query
models provide an effective and efficient query dependent solution. Using syn-
tactic query models, we leverage the benefits of both syntactic information as
well as the robustness and efficiency of a retrieval framework by avoiding pitfalls
due to parser failures and inaccuracies. Natural language applications often use
syntactic and semantic features in a machine learning framework. Our initial ex-
periments with a discriminative approach for retrieving restatements also shows
promise for integration in such settings.

For long queries, indiscriminately expanding all query words can hurt effec-
tiveness. We believe that syntactic information can lead to some selective expan-
sion techniques that leverage the term importance and dependence in the query.
Sentence simplification [19] techniques use syntactic information to break query
and candidate sentences into simpler sentences. Another extension to our work is
to consider sentence simplification for matching query and candidate sentences.
Also, we intend to explore the effect of modeling the term dependencies more
directly in a machine learning framework for restatement retrieval.
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Abstract. The annotation or extraction of temporal information from text 
documents is becoming increasingly important in many natural language proc-
essing applications such as text summarization, information retrieval, question 
answering, etc.. This paper presents an original method for easy recognition  
of temporal expressions in text documents. The method creates semantically 
classified temporal patterns, using word co-occurrences obtained from training 
corpora and a pre-defined seed keywords set, derived from the used language 
temporal references. A participation on a Portuguese named entity evaluation 
contest showed promising effectiveness and efficiency results. This approach 
can be adapted to recognize other type of expressions or languages, within other 
contexts, by defining the suitable word sets and training corpora. 

1   Introduction 

The Web is actually a key information source for our daily lives. Search engines  
are essential to use efficiently the information available at the Web. Therefore, there 
is an intensive academic and industrial research effort to improve the efficiency and 
effectiveness of underlying Web Information Retrieval (IR) models. 

Temporal information is a key piece on most information system applications and, 
consequently, in Web based applications. Nevertheless, it has not been the focus of a 
systematic and deep work on IR applications. The temporal dimension is an important 
element of the user’s information need context, and if used effectively it would improve 
the relevance of documents response set. The most effective temporal entities recogni-
tion programs on free (or semi-structured) text are heavily dependent on the natural lan-
guage used in those texts. The typical approaches are based on intensive hand-crafted 
rules. Another set of solutions are based on natural language independent stochastic 
models which assigns probabilities to strings in a given language L allowed by the use 
of a training corpus. Between these two approaches there are a variety of mixed ones. 
The stochastic approaches are best suitable (and simpler) for multilingual context such 
as the Web. Additionally, another important requirement for huge Web applications is 
the efficiency, which can be achieved by improving simplicity of the used models. 

In most applications, unigrams, bigrams or trigrams are used due to its simplicity 
and because they are hard to beat by more complex n-grams. However, the nature of 
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natural languages is such that many words combinations are infrequent and can even 
do not appear in a given training corpus. This point to the need for smoothing tech-
niques to overcome zero probability strings on maximum likelihood estimation. 

This work proposes a method for annotating temporal information to be included in 
a temporal aware Web IR model. The experimental scenario used is a Portuguese text 
collection but we believe that the proposed approach can be easily adapted to other 
languages. This method uses simple probabilistic based techniques to recognize tem-
poral entities. Temporal entities are detected using temporal expression patterns  
derived from the higher probability temporal reference word co-occurrence from 
training corpora. Less frequent and unseen expressions are ignored. The main advan-
tage of the proposed approach is the simplicity and efficiency improving, preserving a 
promising effectiveness. 

The structure of the paper is as follows: section 2 presents the related work on tem-
poral entities recognition, section 3 details the proposed model, section 4 discusses the 
results obtained from experimental evaluation and section 5 concludes the paper. 

2   Related Work 

Although a plethora of works exists for the area of temporal references extraction  
in English texts, to the best of our knowledge, none of them creates automatically a 
set of expression patterns and applies it for temporal entities recognition. Expression 
patterns matching require sentence-by-sentence processing. However, Natural Lan-
guage Processing systems are mainly based on term-by-term processing, using term 
linguistic characteristics for its identification, such as techniques presented in [1]. An 
annotation scheme to represent dates and time, based on a variety of hand-crafted and 
machine-discovered rules, was proposed in [2]. This approach uses finite-state auto-
mata, a common technique in this area. A very different approach was proposed  
in [3]: the temporal expressions identification in French documents is based on a  
context-scanning strategy (CSS).  

Unlike the English language, Portuguese text language extraction area has not been 
much explored. In particular, temporal information has not been the focus of any sys-
tematic work reported in the literature. PALAVRAS, for instance, is an automatic 
grammar and lexicon-based parser for unrestricted Portuguese text [4]. This system is 
an important tool for Portuguese text annotation, even though using a generic ap-
proach to handle temporal expressions. More recently, a temporal processor called 
XTM (XIP Temporal Module) was developed by Hagège and Tannier [5, 6] support-
ing Portuguese language processing, among others languages, such as, English and 
French. XTM is rule-based, relying on a word-by-word processing. 

The novelty of our proposal relies on having lexical patterns automatically gener-
ated from Portuguese texts and follows an inductive empirical approach which starts 
from the data to the knowledge, unlike the work reviewed above. 

3   Annotating Temporal Information 

In this section, we present our approach for the recognition of temporal entities.  
Despite other possible applications for entities recognizing in other contexts and  
languages, Portuguese language is the focus of our experiments. 
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The method relies on a set of temporal patterns, based on regular expressions, used 
to identify and classify the temporal expressions found in Portuguese texts. The pat-
terns are created using words co-occurrence, determined from a set of seed keywords, 
which are Portuguese temporal references. Our method is based on a two-stage ap-
proach, each stage being carried out by a different module: the first stage is executed 
by the Co-occurrence processor module (henceforth COP) and the second stage is 
carried out by the Annotator module. The modules work as follows. Firstly, the COP 
module creates the temporal patterns, based on the training corpora and on the set of 
reference words which are divided in two sets: lexical markers and grammatical 
markers. Then, these patterns are used by the Annotator module to perform the anno-
tation of the Portuguese temporal expressions. Fig. 1 shows a diagram of the model 
architecture and module interconnection. 

Temporal Keywords

Corpus
(INPUT)

Annotator
Corpus 

Annotated
(OUTPUT)

COPTraining 
Corpora

Lexical 
markers

Grammatical 
markers StopWords

Temporal 
Expression

Patterns

 

Fig. 1. Model architecture and module interconnection 

3.1   Annotation Scheme 

The temporal expressions are annotated accordingly as the temporal guidelines  
defined by the organization and the participants of the Second HAREM1 [7]. The 
classification of temporal expressions defined in these guidelines was supported by 
the annotation scheme TimeML [8]. The annotation comprises a unique identification, 
a category which is TIME, a type (calendar_ref, duration or frequency) and a subtype 
only for the type CALENDAR_REF (date, time or interval). A detailed specification 
of the annotation scheme can be found in [7]. Some examples are presented below. 
The first sentence exemplifies a date expression and the second sentence represents a 
temporal expression which expresses a repetition in the time. 

(1) I was in Berlin <EM ID="1" CATEG="TIME" TYPE="CALENDAR_REF" 
SUBTYPE="DATE">in 2008</EM>. 

(2) I visit my parents<EM ID="2" CATEG="TIME" 
TYPE="FREQUENCY">every day</EM>. 

3.2   Co-occurrence Processor 

The task of the COP module is to create a set of temporal patterns that will be used by 
the Annotator module. COP can be easily executed over various corpora, yielding a 

                                                 
1 Second evaluation contest of Named Entities Recognizer system, in Portuguese language 

document collections. 
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considerable number of patterns that enrich the annotation stage. It is worth noting 
that the COP module is only needed to get the set of patterns and once the patterns are 
established the COP module is not used anymore. Nevertheless, the patterns can be 
fine tuned later on to improve the identification of temporal expressions.  

The COP module analyzes the input training corpora, determines the words combi-
nation and its frequency, and uses a statistical approach to decide which patterns must 
be created according to the co-occurrences found. COP module has several execution 
steps. The first step creates a list composed by the temporal expressions found and 
their frequency. These expressions were found using the lexical markers. These mark-
ers must be composed by all Portuguese words from which temporal expressions can 
be composed (e.g. months, seasons, weekdays, units of temporal measure like day, 
week, month, year, …). This set of words is used to detect their co-occurrences which 
are present in a maximum of n words before and/or n words after. An example of 
temporal expressions using the Portuguese temporal word ano (year) and n=2: "No 
ano passado" (In the last year), "No próximo ano de 2010" (In the next year 2010). 

In the second step the list of expressions is pruned. Specifically, the expressions 
which do not make semantically sense in a language context are removed from the 
list, using the grammatical markers. However, the expressions that just contain lexical 
markers and grammatical markers are kept in the list, as long as no stopword exists in 
neighborhood. For example, in the sentence “A rua 1 de Maio” (The 1st May street) 
the expression “1st May” is not a temporal expression because it is the name of a 
street. As the word “street” is a stopword, it is excluded. 

The next step aggregates temporal expressions found in the previous step according to 
the following rules. First, the temporal expressions are aggregated if they contain a date 
or time references. For example, “Em Abril” (in April) and “Em Maio” (in May) are ag-
gregated in a single expression with a special tag “Em tag_MONTH” (In tag_MONTH). 
Second and last one, the temporal expressions are aggregated if they contain more than 
one co-occurrence with the same temporal word at the same position. For example, the 
expressions “No ano passado” (In the last year) and “No ano seguinte” (In the follow-
ing year) are aggregated in “No ano passado | seguinte” (In the last | following year). 
The frequency of the aggregated expressions is the sum of the frequency of each expres-
sion. The resulting list is ordered by frequency (greater to less). Some expressions can be 
excluded by a previously defined minimum frequency threshold. 

Finally, the patterns are defined by regular expressions. For each pattern is associ-
ated the classification according to the temporal guidelines of the Second HAREM 
(see section 3.1). 

3.3   Annotator 

The objective of the Annotator module is to identify and classify Portuguese temporal 
expressions with the relative annotation written in the original text, through the pat-
terns defined by COP. After the text split into sentences, each of one is processed in 
five steps. The first step is introduced to improve performance by excluding all the sen-
tences that cannot have a temporal expression. Only sentences with date and time ref-
erences and/or temporal words from Portuguese language defined in a keyword list 
(see Fig. 1) are processed. For example, the sentence ‘Lisbon is the capital of Portugal’ 
is not processed. However, the sentence ‘Today is sunshine’ is processed. 
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The generation of candidate temporal expressions is done in second step. First, it 
identifies time expressions and date expressions which can be complete or incomplete 
dates. Then, these expressions are tagged with a “special tag” such as tag_DATE, 
tag_MONTH¸ tag_YEAR, tag_WEEK.  

In the third step, the method verifies if the sentences match any temporal pattern. 
In this case, each sentence is annotated with semantic classification corresponding to 
the matching pattern (fourth step). Finally, the “special tags” are replaced by the 
original text. 

4   Evaluation 

Knowing there is a huge amount of documents to process in common application sce-
narios, one of the key decisions is to achieve the best tradeoff between efficiency and 
effectiveness in temporal expressions identification. As our option is to favor effi-
ciency to some extent, with the used configuration the system may not find all tempo-
ral expressions (even for a trained human reader, it would be difficult to identify all 
the temporal expressions, as the notion of time is often subtly embedded in the text). 

Our primary goal was to evaluate the performance of the method in a restricted en-
vironment. Therefore, the COP was configured only to create patterns of simple tem-
poral expressions, expressions composed by only one temporal word or one date or 
time, and a maximum of n words before and/or n words after (n=2). The lexical 
markers were restricted to: months, seasons, weekdays, holidays (Natal (Christmas), 
Páscoa (Easter) and Carnaval (Carnival)) and the following words2: década, século, 
ano, mês, semana, dia, hora, minuto, ontem, anteontem, amanhã, hoje, manhã, noite, 
tarde. Furthermore, were included in the temporal patterns a set of limited grammati-
cal markers 3  composed by prepositions {à(s), de, em, durante, desde, pelas, no, 
naquele, (n)este, (n)esse}, ordinal adjectives {anterior, seguinte, próximo, passado, 
último} and haver (to have) verb conjugations. Note that in the pruning step, the 
stopwords were not considered yet. 

Using the prototype implementation for our method, we have carried out a set of 
experiments and participated in the evaluation contest Second HAREM with a prom-
ising effectiveness and efficiency for the first results obtained (72% precision and 
53% recall).  

The experiments were performed in a Personal Computer with 1GB RAM memory 
and an Intel Core 2 E6600 2.4GHz processor, running with Microsoft Windows XP 
Professional version 2002 SP 2.  

We divided the experiments in two tasks: identification and classification. In the 
identification task, the goal was to obtain complete temporal expressions, while in the 
classification task the idea was to assign the type and subtype specification. In order 
to clarify this, we show below some examples with mistakes, accordingly as the tem-
poral guidelines (see section 3.1). The expression ‘1909-1955’ is correctly identified. 

                                                 
2 English version: decade, century, year, month, week, day, hour, minute, yesterday, the day  

before, tomorrow, today, morning, night, afternoon. 
3 English version: prepositions {in, the, during, for, since, by, (in) this, (in) that}, ordinal  

adjectives {previous, following, next, past, last}. 
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However, the classification is wrong, as the subtype must be INTERVAL. The ex-
pression ‘2009’ is incomplete. The correct identification must be ‘in 2009’, but the 
classification is right. 

(1) CATEG="TIME" TYPE="CALENDAR_REF"  
SUBTYPE="DATE">1909-1955</EM> 

(2) in CATEG="TIME" TYPE="CALENDAR_REF" SUBTYPE="DATE">2009</EM> 

For efficiency purposes, we measure the time spent on the Annotator module to 
identify and classify the temporal expressions in test collection. For effectiveness, we 
calculate the three usual metrics: precision, recall, and the harmonic mean F (F-
measure), using the evaluated collection. The formula used to calculate the classifica-
tion was defined in [9]. 

4.1   The Collections 

The Second HAREM Collection (2ndHC) was the corpus used in our experiments 
which texts are structured in different genres, such as journalistic, blog, FAQ, literary, 
etc., and are written in two Portuguese variants: Portuguese from Portugal and Portu-
guese from Brazil. The 2ndHC is the test collection that is composed by 1040 docu-
ments with 33,712 sentences and 668,817 words. The evaluation test is the Time Gold 
Collection (TGC), a subset of 2ndHC (30 documents, 622 sentences and 12,992 
words) and their documents were manually annotated following time HAREM guide-
lines [7]. The training collection (TC) was another subset of 2ndHC which is com-
posed by all documents of 2ndHC that do not belong to the TGC. The 2ndHC and 
TGC collections are available through Linguateca4 and properly detailed in [9]. 

4.2   Results 

The result of TC processing by COP was 289 patterns which can detect more than 289 
different temporal expressions because some of them have more than one combina-
tion. Note also that about 17% of these patterns permit the identification of dates and 
times in different formats. 

The execution time of the Annotator module was calculated in two scenarios. Sce-
nario 1 – skipped the first step of the Annotator, but all the sentences are processed by 
every other steps of this module; Scenario 2 – all steps are executed, therefore, only 
sentences which we believe could indicate the presence of a temporal reference are 
processed (see section 3.3). In scenario 2, only 17,525 of 33,712 sentences (52%) 
proceed to the next step, the processing finishes here to the other sentences and the 
execution time decreases about 27.5% justified by the missing pattern matching step 
with the remaining sentences. This way, the performance was improved and the An-
notator module processed the test collection with an output rate of about 22KB per 
second. 

The effectiveness results are presented in Table 1. We can observe that the results 
of the two tasks obtained by our system do not have significant differences, which 
means that the Annotator module shows the same behavior in the two tasks. So, we  
 

                                                 
4 Available at HAREM site http://www.linguateca.pt/HAREM 
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Table 1. Annotation results: our system versus XIP-L2F/Xerox system 

 Identification Task Classification Task 

 
(1) 

Our system 
(2) XIP-L2F/
Xerox system 

(1) 
Our system 

(2) XIP-L2F/ 
Xerox system 

Precision 84,27% 75,31% 83,05% 73,76% 

Recall 64,10% 77,59% 64,23% 75,80% 

F-measure 72,82% 76,43% 72,44% 74,77% 

 
can conclude that if this module identifies a given temporal expression, then it will 
achieve a good success in its subsequent classification. Table 1 also shows the results 
obtained by the XIP-L2F/Xerox system using the same collections. This system was 
ranked in the first place in the Second HAREM and its results are presented in [6]. 
Our approach matches the results of the top system concerning precision, but it shows 
lower recall. This is mainly due to the restricted set of lexical and grammatical mark-
ers used by COP to generate the patterns, which affects recall. However, we believe 
that we can improve recall by increasing the restricted set used by the COP module. 
We plan to exploit this in future work. 

Although, the COP was configured with n=2, which means that the expressions 
was limited to 5 words, only approximately 12% of TGC expressions have more than 
two words before and/or after the lexical marker (see Table 2). Furthermore, the n>4 
only exists about 1% of these expressions. It is our intention to carefully study the 
variation of the n value, since increasing this parameter makes the COP module more 
complex. 

Table 2. TGC temporal expressions 

# words between temporal word and  
the expression begin/ending 

 n=2 n=3 n=4 n=5 n=6 n=7 
# temporal expressions 205 18 8 1 1 0 

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7
n  value

Recall

Precision

 

Fig. 2. Precision and Recall values with 2≤ n ≤7 
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In the precision calculation, the temporal expressions partially correct are not  
considered. Our system found 178 temporal expressions of which 150 are correctly 
identified. Indeed, the incorrect expressions are only 3 of 28; the others are incomplete 
because one or more words are missing in the annotated expression. We analyze the 
precision variation with n ranging from 3 to 7 (see Fig. 2). We observe that the preci-
sion improves with n, namely when n goes from 2 to 3. Improvement is still seen from 
with n>3, but at a lower rate. This means that having COP creating temporal patterns 
with n>2 and one more temporal word improves precision and recall. However, the re-
call achieved is about 80%. As we said above, the improvement of this metric can be 
done by increasing the restricted set of markers used by the COP module. 

5   Conclusions 

The main contribution of this paper is an original method for temporal named entities 
recognition. The approach creates semantically classified temporal patterns, based on 
regular expressions, using word co-occurrences obtained from training corpora and a 
pre-defined seed keywords set, derived from temporal references. The prototype im-
plementation of the proposed method is composed by two modules and some configu-
ration files including temporal reference words and a set of temporal keywords (only 
used to improve efficiency). 

As this temporal named entities recognizer is intended for use in huge Web IR ap-
plications, the need for a careful tradeoff between effectiveness and efficiency is the 
justification for the deliberate simplification of the used approach. Even with a set of 
limitations and simplifications of a prototype implementation, our method has shown 
promising results in identification and classification of temporal named entities. 

As further work, the most obvious research direction is the variation of used pa-
rameters: n (number of maximum words on the temporal expression) and low fre-
quency threshold. Additionally, we plan to tune the lexical and grammatical markers 
and to improve the pruning step resorting to stopwords to lower the rate of false posi-
tives. The method can be also evaluated with foreign languages (English, for instance) 
and another application contexts (other kind of named entities recognition). To do this, 
a previous study of the chosen language and context, based on a careful statistical 
analysis, is needed to define the lexical and grammatical markers. 
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Abstract. This paper proposes the use of algorithms for mining association 
rules as an approach for Cross-Language Information Retrieval. These algo-
rithms have been widely used to analyse market basket data. The idea is to map 
the problem of finding associations between sales items to the problem of find-
ing term translations over a parallel corpus. The proposal was validated by 
means of experiments using queries in two distinct languages: Portuguese and 
Finnish to retrieve documents in English. The results show that the performance 
of our proposed approach is comparable to the performance of the monolingual 
baseline and to query translation via machine translation, even though these 
systems employ more complex Natural Language Processing techniques. The 
combination between machine translation and our approach yielded the best  
results, even outperforming the monolingual baseline.  

1   Introduction 

Cross-Language Information Retrieval (CLIR) is the retrieval of documents in one 
natural language, based on a query formulated in another natural language, e.g. re-
trieval of documents written in English based on a set of keywords in Spanish. The 
need for exploring content in foreign languages has increased with the explosive 
growth of the Internet. The Web has content in many languages and the distribution of 
this content by language is very different from the distribution of the Internet access 
by language. While English is still dominant in terms of content (~66%) [7], the per-
centage of users that access the Internet in English is less than 30% [21].  

In CLIR, terms in the query cannot be matched directly to terms in the documents. 
Thus, some mapping between languages is needed. It may be necessary to translate 
the queries, or the documents or even both. Throughout the years, many approaches 
for mapping terms across languages were proposed. Such approaches may include 
machine translation systems (MT), dictionaries or thesauri. Dictionaries and thesauri 
can be automatically constructed using techniques that analyse multilingual corpora to 
extract the information needed to map concepts between different languages.  

All CLIR methods have drawbacks. MT systems typically pick only one translation 
for each term. Since queries tend to be very short, the MT system may not have 



166 A.P. Geraldo, V.P. Moreira, and M.A. Gonçalves 

enough context to enable the choice of the correct sense of the keywords. Machine 
readable dictionaries (MRDs) are built for human use. Therefore, inflected word 
forms will most probably be missing from them. Multilingual thesauri are expensive 
to build; and corpus-based approaches tend to produce translation resources that are 
domain-specific. It is generally agreed that the combination of a corpus-based  
approach with MRD or MT yields better results. 

The challenge in building a CLIR system based on multilingual corpora is to effi-
ciently analyse large text collections and generate good mappings between concepts 
across languages. Algorithms for mining association rules (ARs) are widely used to 
analyse large databases of sales transactions. Their output is a set of implications with 
measures that reflect the degree of association between the sales items. Our proposal 
is to map the problem of finding ARs between items in a market-basket scenario to 
the problem of finding cross-linguistic equivalents between a pair of languages over a 
parallel corpus. To the best of our knowledge, this is the first work that proposes the 
use of ARs for CLIR. One of the main advantages of our proposed approach is its 
simplicity. Yet our results are superior to other co-occurrence based methods. In addi-
tion, experimental results show that the performance of our approach is not statisti-
cally different from the monolingual baseline. This shows that ARs can be effectively 
used to map concepts between languages. 

2   Related Work 

The first research on CLIR was done by Salton [16], who showed that CLIR systems 
could perform nearly as well as monolingual systems, using a good quality thesaurus. 

According to Grefenstette [9], CLIR involves basically three problems: (i) know-
ing how a term expressed in one language might be written in another, i.e., crossing 
the language barrier; (ii) deciding which of the possible translations should be re-
tained. Retaining more than one translation is useful in promoting recall. However, 
using wrong translations will reduce precision; and (iii) deciding how to properly 
weight the importance of translation alternatives when more than one is retained.  

Many approaches have been proposed to solve these problems. These solutions 
typically use resources such as MT systems, MRD, thesauri or multilingual corpora.  

The approach for CLIR we propose is statistical. Other statistical approaches have 
been previously presented. Nie et al. [12] and Kraaij et al. [10] propose a probabilistic 
translation model which extracts translation probabilities from parallel corpora mined 
from the web. Their results are comparable to query translation using Systran. 

CLIR systems that achieve the best results do so by combining several techniques, 
such as good quality translation resources, stemming (or decompounding), more 
elaborate weighting schemes, query expansion and relevance feedback [3, 17]. 

3   Association Rules for CLIR 

An association rule (AR) is an implication of the form X ⇒ Y, where X = 
{x1,x2,…,xn}, and Y = {y1,y2,…,ym} are sets of items. The problem of mining ARs in 
market-basket data was firstly investigated by Agrawal et al. [1]. In the rule “90% of 
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customers that purchase bread also purchase milk”, the antecedent is bread and the 
consequent is milk. The number 90% is the confidence factor (conf) of the rule, which 
is calculated according to equation 1. The confidence of the rule can be interpreted as 
the probability that the items in the consequent will be purchased given that the items 
in the antecedent are purchased. An AR also has a support level associated to it. The 
support (sup) of a rule refers to how frequently the sets of items X ∪ Y occur in the 
database. Equation 2 shows how the support of an AR is calculated. 
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where n is the number of transactions and N is the total number of transactions. 
Mining ARs means to generate all rules that have support and confidence greater 

than predefined thresholds. We used the Apriori Algorithm [2] to mine the ARs.  
Our proposal is to map the problem of finding ARs between items in a market-

basket scenario to the problem of finding cross-linguistic equivalents on a parallel 
corpus. A parallel corpus provides documents in a language B that are exact transla-
tions of documents in a language A. The approach is based on co-occurrences and 
works under the assumption that cross-linguistic equivalents would co-occur a sig-
nificant number of times over a parallel corpus. In this work, the transaction database 
is replaced by a text collection; the items that the customer buys correspond to the 
terms in the text; and the shopping transactions are represented by documents.  

The proposed approach to use algorithms for mining ARs for CLIR is divided into 
the following five phases:  

(i) Pre-processing: The inputs for this phase are a collection of parallel documents and 
the original query in the source language. During this phase, the original text and its 
equivalent in the other language are initially treated separately. We remove stop-
words, apply stemming, and break the documents into sentences. The output of this 
phase is a set of pre-processed parallel sentences. During this phase, an inverted in-
dex containing all stems in the document collection and the list of sentences in 
which they appear is also built. The inverted index will be used in the next phase to 
enable selection of the sentences over which the Apriori algorithm is run.  

(ii) Mining ARs: This step consists in generating ARs for the terms in the query. We 
run the Apriori Algorithm over the pre-processed parallel sentences. In order to 
speed up rule generation, only sentences that contain the query terms are consid-
ered. The output of this phase is a set of ARs for each query term. 

(iii) Rule Filtering: The aim of this step is to keep the rules that most likely map a 
term to its translation. Rule filtering is based on the following heuristics:  

a) Select the AR with the highest confidence. Such a rule will be called M and it 
has the greatest chance of being the correct mapping.  

b) Select the ARs that have confidence of at least 80% of M. 
c) Select ARs with confidence equal to (100 – M ± 0.1). The rationale is that 

when word in language A is translated to two words in language B, the confi-
dences of the ARs tend to be complementary to 100%. 
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(iv) Query Translation: Each term in the original query is replaced by all possible 
translations that remain after the filtering process. 

(v) Query Execution: The last step is to execute the queries in a search engine. At 
this stage, the CLIR problem has been reduced to monolingual retrieval.  

Some preliminary experiments we did for CLEF [6] showed encouraging results. 
Our approach was ranked amongst the top scoring methods. The test was done using 
collection of library catalogues in English and the query topics were in Spanish. The 
experiments described here use a different test collection and different languages for 
the query topics. In addition, we compare our proposed approach to MT and test the 
combination of the two. We also provide a deeper analysis of the results. 

There are two basic strategies for generating the ARs to create a bilingual lexicon: 
(i) eager – mining rules for all terms in the collection a priori; and (ii) lazy – mining 
rules on demand for query terms only prior to query processing. Our approach mines 
the ARs on demand, according to a lazy strategy as advocated by Veloso et al. [20]. In 
their work, the lazy strategy brings improvements in terms of the quality of the rules 
that are generated. However, in our work the gain is in the number of ARs that are 
generated, as we only mine rules for the terms in the query. On the other hand, this 
strategy slightly delays querying. To speed up this process, we could build a cache of 
ARs. Only words that were not in the lexicon would need mining at query time. 

The main advantage of our approach is that it is simpler than other co-occurrence 
based methods [10, 12, 13, 22] and yet the results are comparable or superior. The 
method does not require the generation of a term by document matrix, which is costly. 
The pruning of the itemsets that are below the thresholds for support and confidence, 
carried out by the Apriori algorithm, allows for efficiency in terms of memory man-
agement. It is also simpler than MT systems, which typically need more complex 
Natural Language Processing (NLP) capabilities. 

4   Experiments 

The aim of the experiments is to test the feasibility of our proposed approach for us-
ing ARs to map concepts between languages. We compare the quality of query trans-
lation using ARs to two MT systems and to the monolingual baseline. 

4.1   Experimental Setup 

We carried out standard ah-hoc IR experiments using the LA Times test collection 
which is part of the CLEF Test Suite and can be purchased from ELDA [4]. The col-
lection contains 113,046 news articles from 1994. All articles are in English only. 

We used the query topics from CLEF 2002. There are 50 queries in total. However, 
only 42 of those have relevant documents in the collection. Only the “Title” and  
“Description” fields were used. The original queries had on average 18.92 terms.  

In order to show that our proposed approach is language-independent, we have cho-
sen two languages with different morphologies to be used in the queries: Portuguese 
and Finnish.  
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The procedure used for the runs in which ARs are employed is the same as de-
scribed in Section 3. Since our approach needs a sample of parallel documents and the 
LA Times collection is in English only, the following alternatives were implemented:  

• Automatically translating a sample of the collection using Google Translator [8] to 
generate a synthetic parallel corpus. The sample size was 20% of the collection. One 
in every five editions of the newspaper was picked for translation into Portuguese 
and Finnish. We did not consider any relevance information in order to choose 
which documents to translate, thus not including any bias. The experimental runs 
that employ this procedure were tagged as AR-LATimes.  

• Using distinct corpora for deriving the ARs and querying. We automatically trans-
lated a sample of the Glasgow Herald collection from English into Portuguese and 
Finnish to generate a synthetic parallel corpus. This collection contains 56,472 news 
articles from 1995, of which 11,437 were translated. Although it covers news from a 
different year and different geographical region, the Glasgow Herald is on the same 
domain as the corpus used for querying. These runs are tagged as AR-GH. 

• Using a corpus from a different domain to generate the ARs. The idea is to test the 
feasibility of using a good quality (i.e. hand translated) corpus to derive the ARs. 
The corpus used was the EuroParl [5], which contains data extracted from the  
proceedings of the European Parliament. These runs are tagged as AR-EuroParl. 

Aiming at having some means for comparison between the AR approach and MT-
based approaches, we translated the topics from Finnish and Portuguese into English 
using Google translator [8] and Systran [19]. Since Systran does not support Finnish, 
we used it only for Portuguese. These runs are tagged MT-Google, and MT-Systran. 

In order to test whether ARs and MT could be used in conjunction to improve re-
sults, we have also tested the combination of the best AR strategy (i.e. AR-LATimes) 
with the best MT run. The combination was done by performing a set union of the 
query terms generated from both strategies. These runs are tagged MT+AR. 

So as to have a basis for comparison that enables us to assess how much is lost 
when our approach is used, we also executed a monolingual run. This was our base-
line and was tagged as Mono. 

We removed stop-words and used the Porter Stemmer[15, 18]. Zettair [23] was the 
IR system adopted. The similarity measure was Okapi BM25. The time taken to run 
all 50 queries is approximately 12 seconds including the mining of the ARs, rule fil-
tering, query translation and processing by the search engine. The time taken varies 
according to the size of the corpus used to generate the ARs. Terms that had no trans-
lations were omitted from the query. 

4.2   Results 

The results of the experimental runs are summarised in Table 1, which contains the 
Mean Average Precision (MAP) for each run and two other statistics that are useful 
for analysis: the number of terms used in the queries and the number of terms that 
were missing from the parallel collection.  

One way to evaluate a CLIR approach is to compare it to the performance of the 
equivalent monolingual baseline. Bilingual runs that employ algorithms for mining 
ARs to generate a bilingual lexicon achieve up to 88% of monolingual performance, 
which is comparable to the state-of-the art.  
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The best scoring AR runs were the ones in which the corpus used for mining the 
ARs is a sample of the corpus used for querying. A T-test has shown no significant 
difference between the monolingual run the bilingual runs (p-values of 0.08 for Por-
tuguese and 0.06 for Finnish). The results also show that the performance of the AR-
LATimes runs is consistent for different languages as the results for Portuguese and 
Finnish are very similar. A manual analysis of the rules generated for AR-LATimes 
showed that only about 8% of the terms are translated incorrectly.  

AR runs that employ different corpora for training and querying yielded poorer re-
sults. AR-EuroParl was significantly inferior to the monolingual baseline for both 
Portuguese and Finnish. AR-GH was superior to AR-EuroParl, indicating that the 
domain of the documents plays a very important role. 

Table 1. Summary of the results. Bold indicates no signifficant different from monolingual. 

RunId Source Language MAP (%mono) #Terms MissingTerms 
Mono EN    0.4423 946 ⎯ 
AR-LATimes PT 0.3787 (86%) 848 64 
AR-GH PT 0.3392 (77%) 869 80 
AR-EuroParl PT 0.1954 (44%) 632 67 
MT-Google PT 0.4181 (95%) 956 ⎯ 
MT-Systran PT 0.3247 (73%) 914 ⎯ 
MT+AR PT 0.4942 (112%) 1064 ⎯ 
AR-LATimes FN 0.3895 (88%) 650 103 
AR-GH FN 0.3695 (84%) 628 118 
AR-EuroParl FN 0.2288 (52%) 497 21 
MT-Google FN 0.3782 (86%) 868 ⎯ 
MT+AR FN 0.3981 (90%) 910 ⎯ 

 
 
MT runs using Google Translator have outperformed AR runs in Portuguese, but 

not in Finnish. However, in both cases, no statistical difference was found between 
AR-LAtimes and MT-Google for Portuguese (p-value = 0.36) and for Finnish  
(p-value = 0.58). Intuitively, MT systems were expected to perform better than ARs 
as they employ much more sophisticated NLP methods. This lack of significant  
difference favours our simpler proposal. 

The fourth column in Table 1 shows the number of terms used in each query. 
When the number of query terms in the translation is smaller than number of original 
query terms, there is an indication that no translation was found for some of the terms. 
We found a correlation of 0.70 between MAP and the number of query terms, i.e. the 
more terms used in the query, the better the result. Looking at the results for AR-
EuroParl, noticeably the scores for Finnish are better than the scores for Portuguese. 
This can be explained by the number of query terms that were missing from the Eng-
lish/Portuguese parallel collection (67) as opposed to the number of terms that were 
missing from the English/Finnish parallel corpus (21). 

The best bilingual results were obtained when combining MT and ARs. For Portu-
guese, this run was significantly better than all other bilingual runs and even outper-
formed the monolingual baseline. This gain can be attributed to the query expansion 
effect brought by our approach. For Finnish, the gain in performance was significant 
only compared to AR-EuroParl. It is worth pointing out that for Finnish, the only runs 
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with performances comparable to the monolingual baseline were the ones involving 
our AR approach (AR-LATimes and MT+AR). 

Performing a fair comparison between our results and other groups’ requires that 
they have used the same test collection, the same query topics which should be writ-
ten in the same language. We are aware of only two studies that satisfy these require-
ments: Orengo & Huyck [13] and McNamee [11]. ARs significantly outperform a 
Latent Semantic Indexing-based approach presented in [13]. They have also used a 
MT system to simulate a parallel corpus and achieved MAP scores of 0.2088 which 
represent 87% of the equivalent monolingual performance.  

On a topic-by-topic analysis we observed that some topics were helped by our ap-
proach and others were harmed. Comparing AR-LATimes and MT-Google, we ob-
served that the MT system achieves better results in 18 topics, ARs are superior for 15 
topics and the approaches tie for 9 topics. One general tendency is that ARs tend to 
outperform MT-based approaches in topics with larger number of keywords. 

Because we are not restricted to choosing a single translation, in some topics our 
performance was superior to MT and even to the monolingual baseline. For example, 
in topic 122 the term “internacional” was translated to “international” and “global”. 
This had the effect of query expansion and improved MAP by 426% in relation to 
MT-Google and 288% in relation to the monolingual baseline.  

The reason for the highest drops in performance was the choice of a wrong transla-
tion, e.g. in query 114 “líder”, which means “leader”, was translated to “drive”. 

Acronyms have also been a problem for our approach. Their equivalent in the other 
language was not always found in the parallel corpus, and if they were in their ex-
panded form they were not recognised as a multiword expression since we are not 
treating phrases at the moment.  

Another reason for poor performance was missing translations. In such cases the 
problem was that the corpus used for mining the ARs did not have any occurrences of 
the term. This happened mostly with proper names such as “Eurofighter” (topic 93) 
and “Ames” (topic 100). Our approach performs worse than MT in queries that have 
named entities. Currently, we are giving a uniform treatment to all terms. This could 
be solved by using a dictionary containing named entities and their translations.  

5   Conclusions 

This work proposes the use of algorithms for mining ARs to the problem of finding 
term translations for CLIR. Our approach requires a parallel corpus to serve as the 
basis for the mining process.  

In the experimental analysis, the LATimes test collection was used to retrieve 
documents in response to queries in Portuguese and in Finnish. Different alternatives 
were tested for parallel corpora: (i) a synthetic parallel corpus created by translating a 
sample of the collection used for querying; (ii) a synthetic parallel corpus created by 
translating a sample of a collection on the same domain as the one used for querying; 
and (iii) a real parallel corpus from a different domain. Our results are comparable to 
the monolingual baseline and to the results of MT systems applied to the purpose of 
translating queries, even though MT systems apply much more complex NLP tech-
niques. This indicates ARs can be effectively used as an approach to CLIR. We have 
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also investigated the combination of MT and our AR-based approach. The results 
were very positive, and even surpassed the monolingual baseline for the Portuguese 
topics. 

Despite the encouraging results obtained with our approach, there is still room for 
many improvements. So far, we only considered the translation of single terms. How-
ever, often, a single term in one language translates into two (or more) terms in an-
other language. This situation can also be addressed by generating rules with two (or 
more) terms in the antecedent.  

Our biggest cause for poor performance was that there were no translations for some 
terms. An alternative to be examined is to treat untranslatable words as proposed by 
Pirkola et al. [14]. The idea is to decompose the word into semantic units and then 
using these units combined to the other query terms for retrieving the documents. 
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Abstract. Although automatic syllabification is an important compo-
nent in several natural language tasks, little has been done to compare
the results of data-driven methods on a wide range of languages. This
article compares the results of five data-driven syllabification algorithms
(Hidden Markov Support Vector Machines, IB1, Liang’s algorithm, the
Look Up Procedure, and Syllabification by Analogy) on nine European
languages in order to determine which algorithm performs best over all.
Findings show that all algorithms achieve a mean word accuracy across
all lexicons of over 90%. However, Syllabification by Analogy performs
better than the other algorithms tested with a mean word accuracy of
96.84% (standard deviation of 2.93) whereas Liang’s algorithm, the stan-
dard for hyphenation (used in TEX), produces the second best results
with a mean of 95.67% (standard deviation of 5.70).

Keywords: Natural language processing, machine learning, automatic
syllabification.

1 Introduction

The capability to automatically determine the syllable boundaries in a word
is useful for such applications as grapheme-to-phoneme (G2P) conversion and
text-to-speech synthesis [1,2]. Data-driven methods are an attractive option to
perform automatic syllabification because they are not language specific (unlike
syllabification rules), simply requiring a lexicon of syllabified words for training.
However, the best method for this task is undetermined.
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At best, recent work has only compared algorithms using one language [3,4].
This work compares data-driven automatic syllabification algorithms across nine
European languages (Basque, Dutch, English, French, Frisian, German, Italian,
Norwegian, and Spanish) in both the spelling and pronunciation domains.

2 Algorithms Compared

The problem of syllabification can be viewed as the task of determining whether
or not a syllable boundary exists between each pair of contiguous symbols (let-
ters or phonemes) in a word. A syllable boundary either exists between two
symbols (a juncture) or it does not. The syllabification of the entire word can be
understood as a structured classification problem because it is formed from the
compilation of all juncture classifications. Therefore, the classification of individ-
ual junctures in a word are not independent. This is not taken into account in the
IB1 and Look-up Procedure algorithms. In contrast, Liang’s algorithm, Hidden
Markov Support Vector Machines and Syllabification by Analogy incorporate
structure information into training and testing.

2.1 Hidden Markov Support Vector Machines

This extension of the general structure SVM framework [5] was introduced by
Altun, Tsochantaridis and Hofmann [6]. Intended for structured classification
problems like syllabification, the Hidden Markov Support Vector Machine (HM-
SVM) approach has produced better results than Syllabification by Analogy on
English spelling domain words [3]. This work used the SV Mhmm 3.10 package1.

This method uses a Hidden Markov approach by applying a Viterbi-like al-
gorithm to determine the juncture classification, given previous classifications.
The weight vector used in the function that discriminates between possible clas-
sification sequences is learned using a Support Vector Machine approach. The
best classification sequence gives the maximal output for this function [6].

Training and testing require features for each word juncture. These are all pos-
sible substrings within a window of five characters on each side of the juncture.
Features are binary values indicating the presence or absence of substrings at
each window position. This formulation, along with the classification of junctures
using numbered NB (non-boundary or boundary) tags, and the use of 0.12 and
0.5 for the C and ε parameters, respectively, were based on Bartlett’s results [3].

2.2 IB1

When applied to syllabification, the IB1 algorithm (from the instance-based
learning algorithm family) compares letter N-grams to determine the appropri-
ate syllabification for each juncture. During training, an N-gram is stored for
1 This is available from www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html

(last accessed 9 June, 2009).
2 For SV Mhmm 3.10, the C parameter must be multiplied by the training set size.
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each juncture in a word. An N-gram for each juncture in the testing word is
then compared to those stored during training to infer the syllabification of the
juncture (in the testing word) from the most similar.

A distance measure is used to determine how closely two N-grams match [7,8].
Three feature weighting functions: information gain (IB1-IG), gain ratio (IB1-
GR)3, and chi-squared (IB1-χ2) can be used to set the values of the weights
required for the distance function [8]. Each of these approaches assigns feature
weights after training is complete. The values of features in the training data
are used to compute the relevance of each feature to classification.

A variety of N-gram sizes were tested to determine which was best. From two
characters to the left and right of the juncture (a 4-gram), the size was increased
by two on each side up to a 20-gram (the limit of the TiMBL implementation4),
keeping the number of characters equal on both sides of the juncture.

2.3 Liang’s Hyphenation Algorithm

Since Liang formulated his TEX hyphenation algorithm, it has been a standard
in the field [9]. Like syllabification, hyphenation is the segmentation of words
into substrings.

During training, the patgen [9] program is used to generate a set of patterns
for the hyphenation of new words5. These patterns differ from those used for
IB1 and the Look Up Procedure; their length is not restricted and one pattern
may contain information for multiple junctures. Once created, they are applied
to the words to be syllabified [10].

The algorithm uses many parameters to create patterns, making it impossible
to test all parameter settings. Specifically, these parameters are the number of
training iterations (between 1 and 9) and, for each iteration, the minimum and
maximum substring lengths of the generated patterns (from 1 to 15 characters)
along with three values (good, bad, and threshold) used to determine desirable
patterns (these may all range from 1 to ∞, in theory). According to Antoš [10],
how to tune these parameters is an open problem.

Therefore, this work used parameters selected in previous studies on English
hyphenation [9, Table 5], Czech hyphenation [11, Tables 4–9], German compound
word hyphenation [12, Tables 4 and 5], and Thai segmentation [10, Table 7], [13,
Tables 12.1 and 12.2] for syllabification. A freely available method developed by
Ned Batchelder in July of 20076 was used to syllabify test words based on the
generated patterns. The code was modified slightly to allow for the processing
of lists of words using any set of patterns.

3 This convention is not always followed in the literature and the name IB1-IG is
sometimes used to refer to both the Information Gain and the Gain Ratio versions
of this algorithm [8].

4 This is available from ilk.uvt.nl/timbl/ (last accessed 5 June, 2009).
5 A version of the program is included by default in Linux distributions.
6 This is available from nedbatchelder.com/code/modules/hyphenate.html (last

accessed 9 June, 2009).
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2.4 Look Up Procedure

Originally presented as a simpler and superior method to NETtalk for G2P con-
version [14], the Look Up Procedure (LUP) has since been applied to automatic
syllabification [7]. Except for feature weighting, it operates identically to IB1.

The Look Up Procedure weights are predetermined before testing and the
weight set used determines the N-gram size. The 15 sets tested were the same
weights used in previous syllabification studies [4] and were originally given by
Weijters [14, Figure 2].

2.5 Syllabification by Analogy

Unlike other methods, Syllabification by Analogy (SbA) retains the training set
in its entirety. Directed graphs compile the relevant syllabification information
obtained lexical entries and are used to syllabify test words. Instances of all
test word substrings from the training set are used to create the graph. Graph
vertices and edges are labeled with the lexical syllabifications of the substrings
(along with the corresponding number of occurences): the substring’s initial and
final characters form vertex labels and connecting edges are labeled with the
intermediate information. The concatenation of the labels of all vertices and
edges forming a complete path from the start to the end vertex thus provides a
candidate syllabification for the test word.

Only the shortest pathes (without regard to edge weights) are considered and
a combination of up to five scoring strategies is used to select the best shortest
path. These strategies are the product of the edge weights (these correspond to
the substring frequencies in the training data), the standard deviation of val-
ues associated with the path structure, the frequency of the same syllabification
amongst the shortest paths, the number of differences between one candidate syl-
labification and all others, and the minimum edge weights. Each scoring strategy
may be used independently or with other strategies to rank paths [15]. Because
the best of the 31 possible scoring strategies combinations is unknown, all pos-
sible combinations were tested.

3 Languages and Lexicons Used

Nine languages were selected due to the availability of lexicons containing marked
syllable boundaries. Entries which were clearly non-words, contained non-
alphabetic characters or were in any way incomplete were removed. Addition-
ally, proper nouns were removed and homophones and homographs with differing
syllabifications to maintain consistency with previous automatic syllabification
studies [4]. Because the number of similar entries was a concern, only the in-
finitive form of verbs and the singular form of nouns were retained in the Ital-
ian lexicon. Table 1 summarizes the sources and original and final sizes of the
lexicons.
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Table 1. The sources and sizes of the lexicons used in this work. S and P denote the
domains for which lexicons were used (spelling and pronunciation).

Number of Entries
Language Source Original Final Domain

Basque EuskalHitzak [16] 100,079 98,913 S,P
Dutch CELEX [17] 124,136 115,182 S,P
English CELEX [17] 52,447 31,467 S,P
French Lexique3 [18] 138,175 31,156 S,P
Frisian Jelske Dijkstra [19] 63,247 63,219 P
German CELEX [17] 51,728 20,351 S,P
Italian Italian Festival [20] 440,084 44,720 S,P
Norwegian Terje Kristensen [21] 66,992 66,480 S
Spanish BuscaPalabras [22] 31,491 31,364 S,P

4 Results

Training and testing were performed using 10-fold cross-validation using the
same word length distribution in each lexicon fold. Results were computed using
word accuracy: the percentage of words automatically syllabified according to the
lexicon. After selecting the best parameter setting for each algorithm using the
mean word accuracies over all lexicons, the results of each of the five algorithms
were compared.

The IB1 algorithm obtained over 80% word accuracy on most lexicons. The
highest average word accuracy was given by IB1 IG and the three largest N-
gram sizes gave similar results with the best performance (94.36%) achieved
using 12-grams.

The mean word accuracies from Liang’s algorithm for each parameter set span
a wide range of values; from 2.45% to 95.48% . Overall, the parameter settings
previously used for Czech hyphenation [11, Table 9] give the best average word
accuracy (95.48%).

Like the results of Liang’s algorithm, those given by the Look Up Procedure
range from 11.89% to 91.44%. Best average word accuracy across lexicons is
achieved using the weights [1, 4, 16, 64, 16, 5, 1] which occur most in the top
three for word accuracy for each lexicon (14 times). Average word accuracy using
these weights is 91.44%.

In the case of HM-SVM, only one parameter setting was tested. These results
give an average word accuracy of 95.17%.

All 31 scoring strategy combinations were tested for SbA. The best (using
the frequency of the same syllabification and the largest minimum edge weight)
achieved a mean word accuracy of 96.70%. At the individual lexicon level, this
same combination again rose above the others with 11 occurrences in the top
three scores for each lexicon.

Of the 16 lexicons tested, Liang’s algorithm gave the best results for eight,
and both IB1 and SbA performed best for four. Interestingly, although the IB1
algorithm treats each juncture classification as independent, it still produces the
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Fig. 1. Comparison of the minimum, mean and standard deviation word accuracy
results of each algorithm

most accurate results for some lexicons. In fact, for nine of the 16 lexicons, the
IB1 results are better than at least one of the algorithms that included structure
information in the classification process. This difference in the algorithms does
not seem to be the main key to accurate automatic syllabification.

These results point to Liang’s algorithm as the best choice for automatic
syllabification. However, for three lexicons, this approach provides the worst
syllabifications. The poor performance of this algorithm on the French spelling
domain (81.02%) and Spanish pronunciation domain (83.26%) point to why this
algorithm does not give the overall best mean word accuracy (Figure 1).

Figure 1 also shows the minimum word accuracies and standard deviations
of the mean word accuracies of the algorithms. Except for Liang’s algorithm,
which obtained minimum word accuracy in the French spelling domain, the En-
glish spelling domain lexicon was the source of the minimum word accuracies.
This is not surprising, given that English syllabification is thought to be more
complex (allowing a wider variety of syllabic structures) than other languages.
HM-SVM and SbA have lower standard deviations and much higher minimum
word accuracies than the other three algorithms because these methods are bet-
ter able to model the syllabification task regardless of the differing language
characteristics. Of the two, SbA gives the highest mean word accuracy which is
also significantly better than Liang’s algorithm (χ2

obt = 1735.17, p < 0.0001).
These results differ from previous findings which showed that the HM-SVM

method outperformed SbA for automatic syllabification in the English spelling
domain [3]. This may be because training and test methods used were different
(prior work used a training set of 14,000 words and a test set of 25,000 words
from CELEX [17]).

Overall, these results point to SbA as a better choice for a syllabification
algorithm.
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5 Conclusions and Future Work

This work has shown, using a wide range of languages in both the spelling and
pronunciation domains, that some data-driven algorithms automatically syllab-
ify words better regardless of the lexicon characteristics. All algorithms achieve
mean word accuracies over 90% but, from these results, the Syllabification by
Analogy approach appears to be the best choice for automatic syllabification
tasks. Although not producing as high word accuracy, Hidden Markov Support
Vector Machines have also been shown to be more consistent in syllabification
results. Liang’s algorithm, although performing well for some lexicons, also syl-
labifies much less accurately for some lexicons. This same variability in results
across lexicons is seen in the IB1 and Look-up Procedure algorithms.

Deeper investigation into how optimal parameters can be chosen is especially
necessary for Liang’s algorithm and the Look Up Procedure, given the large
feature spaces of these two methods. Furthermore, by nature, data-driven algo-
rithms require a lexicon of syllabified words in order to be used but the impact
of lexicon size is unknown. Testing increasing lexicon sizes in each language
and for each algorithm would provide insight into which algorithm is capa-
ble of learning syllable boundaries, given as little data as possible. Finally, it
has been demonstrated that automatic syllabification information improves En-
glish grapheme-to-phoneme conversion accuracy [1]. Testing this with additional
languages would clarify whether this finding generalizes to other languages.
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Abstract. In the document retrieval problem [9], we are given a collec-
tion of documents (strings) of total length D in advance, and our target
is to create an index for these documents such that for any subsequent in-
put pattern P , we can identify which documents in the collection contain
P . In this paper, we study a natural extension to the above document
retrieval problem. We call this top-k frequent document retrieval, where
instead of listing all documents containing P , our focus is to identify the
top k documents having most occurrences of P . This problem forms a
basis for search engine tasks of retrieving documents ranked with TFIDF
metric.

A related problem was studied by [9] where the emphasis was on re-
trieving all the documents whose number of occurrences of the pattern P
exceeds some frequency threshold f . However, from the information re-
trieval point of view, it is hard for a user to specify such a threshold value
f and have a sense of how many documents will be outputted. We develop
some additional building blocks which help the user overcome this limi-
tation. These are used to derive an efficient index for top-k frequent doc-
ument retrieval problem, answering queries in O(P +log D log log D +k)
time and taking O(D log D) space. Our approach is based on novel use
of the suffix tree called induced generalized suffix tree (IGST).

1 Introduction

String matching problems have been studied for more than three decades [2, 4, 5].
In the simplest form, we are given a relatively long character string, called text,
and a relatively short character string, called pattern, in which our target is
to locate all occurrences of the pattern within the text. In some applications,
the text is given in advance, and we may preprocess it and create an auxiliary
data structure—called an index—for the text, so that any subsequent pattern
matching query can be answered more efficiently. For instance, if suffix tree [8,
12]—a linear-space index—for the text is created, locating all occ occurrences of
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a pattern P of length |P | can be done in optimal O(|P |+ occ) time, irrespective
of the length of the text.

In string databases or in string retrieval systems, we have a collection Δ of
multiple documents(strings) instead of just one text string. In this case, the
basic problem is to retrieve all the documents in which the query pattern P
occurs. This is known as document retrieval problem and has been studied by
Matias et al [7] and Muthukrishan [9]. The main issue here is that there may
be many occurrences of the pattern over the entire collection Δ, but the overall
number of documents in which the pattern occurs might be much smaller. Thus,
the naive method of finding all the occurrences first and then reporting unique
documents is far from efficient. Muthukrishnan [9] gave an optimal O(D) space
data structure which answers the document retrieval query in O(|P | + output),
where output is the number of documents which have the pattern P . This has
been a popular approach of many subsequent papers [10, 11] which attempted
to derive succinct/compressed data structures for this problem.

A more interesting variant was also proposed in [9] where we need to retrieve
only those documents which have more than K occurrences of the pattern. This
was called K-mine problem. In terms of information retrieval this is a more inter-
esting query because it attempts to obtain only those document which are highly
relevant. The notion of relevance here is simply the term frequency. Sadakane
[10] also gave a method to compute TFIDF scores of each retrieved document.
However, what is lacking here is the notion of top-k highest TFIDF documents.
In [10] one needs to retrieve all the documents first, and then only the scores are
computed. Related to document retrieval, a more general problem of position-
restricted substring matching was introduced by [3, 6]. Also, the study of top-k
indexing and rank sensitive data structures was carried by [1]. None of these
results are directly applicable here.

The problem considered in this paper is closely related to the K-mine prob-
lem. In our case, we directly find top-k documents having the maximum number
of occurrences for the given pattern. We build novel primitives like inverse doc-
ument mine query, which quickly allows us to find a threshold K which is the
frequency of the pattern in kth frequent document. Based on this we can draw
strong connections with the K-mine problem. The main component of our so-
lution is called induced generalized suffix tree (IGST), which is structurally the
same as the index proposed by [9]. However, we show novel application to the
IGST where we “linearize” it and combined it with successor searching function-
ality to obtain the desired performance.

For the sake of completeness we mention here that if theoretical performance
guarantees are not important then such problems are practically solved using in-
verted indexes [14]. However, inverted indexes either only allow efficient search-
ing for certain predefined pattern, or they take a lot more space (if they were
to answer for arbitrary patterns). Our solution provides theoretical guarantees
but can also be seen as a modification of inverted index where the lists for the
patterns (which are contained within some other patterns) are smartly combined
to reduce space.
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1.1 Our Problems

In this paper, we study two natural extensions to the above document retrieval
problems. The first one is called the inverse document mining problem, which
is defined as follows:

Problem 1: Inverse Document Mining Problem
Given: A collection Δ of documents, with total length D;
Target: Create an index for Δ to support the following query efficiently:

On given any input pattern P and any input integer k, find the frequency f
such that ρf+1 < k ≤ ρf , where ρf denotes the number of documents in Δ
containing at least f occurrences of P . In other words, we want to find the
largest f such that there are k documents with f occurrences of P .
We denote the above query by inverse mine(P, k).

Example. Suppose there are five documents, T1, T2, T3, T4, and T5, in the set
Δ. Also, the number of times a pattern P occurring in these documents are
15, 24, 3, 3, 1, respectively. On the query inverse mine(P, 2), we should return
f = 15. ��

The second extension is called the top-k document retrieval problem, which is
motivated by the need of finding the “most relevant” documents in the output
of a document retrieval query. Here, we assume that the relevance of a document
with respect to a pattern P is measured by the number of times P occurring in
the document. Our problem is then defined as follows:

Problem 2: Top-k Document Retrieval Problem
Given: A collection Δ of documents, with total length D;
Target: Create an index for Δ to support the following query efficiently:

On given any input pattern P and any input integer k, find the k documents
in Δ which contain the most occurrences of P . We assume tie is broken
arbitrarily in case two documents contain the same number of P .
We denote the above query by top document(P, k).

Example. Suppose there are five documents, T1, T2, T3, T4, and T5, in the set
Δ. Also, the number of times a pattern P occurring in these documents are
15, 24, 3, 3, 1, respectively. On the query top document(P, 2), we should return
{T1, T2}. However, on the query top document(P, 3), we may return either
{T1, T2, T3} or {T1, T2, T4}, as tie is broken arbitrarily among documents with
the same number of occurrences of P . ��
By adapting Muthukrishnan’s O(D log D)-space indexes [9], the queries in the
above two problems can readily be supported in O(|P | log D) time and O(|P | log
D + k) time, respectively. In this paper, we propose alternative indexes with the
same space, so that the queries are supported in O(|P |+log D log log D) time and
O(|P | + log D log log D + k) time, respectively. These indexes thus outperform



Efficient Index for Retrieving Top-k Most Frequent Documents 185

the naive extension of Muthukrishnan’s index whenever P is sufficiently long;
precisely, when |P | = ω(log log D).

The core of our indexes, called the induced generalized suffix trees, are struc-
turally equivalent to the core of the indexes proposed in [9]; the major difference
lies in the information being stored. Consequently, we are able to support the new
types of query, and alter the searching methods to obtain the desired trade-off
in query times.

1.2 Paper Organization

The remainder of the paper is as follows. Section 2 introduces two basic tools
which form the building blocks of our indexes. Section 3 describes the induced
generalized suffix trees (IGST), with which we can construct the index for the
inverse document mining problem. In Section 4, we show how to adapt the IGST
slightly to solve the top-k document retrieval problem. We conclude in Section 5
with some open problems.

2 Basic Tools

2.1 Generalized Suffix Tree

Let Δ = {T1, T2, . . . , Tm} denote a set of documents. Each document is a char-
acter string with characters drawn from a common alphabet Σ whose size |Σ|
can be unbounded. For notation purpose, we assume that for each i, the last
character of document Ti is marked by a special character $i, which is unique
among all characters in all documents.1 The generalized suffix tree [8, 12] (GST)
for Δ is a compact trie storing all suffixes of each Ti. Precisely, each suffix of
each document corresponds to a distinct leaf in the GST. Each edge is labeled
by a sequence of characters, such that for each leaf representing some suffix s,
the concatenation of the edge labels along the root-to-leaf path is exactly s. In
addition, for any internal node u, the edges incident to its children all differ by
the first character in the corresponding edge labels, so that the children of u
are ordered according to the alphabetical order of such a first character. The
following property of the GST is immediate:

Lemma 1. Consider all suffixes of all documents in Δ. The jth smallest suffix
corresponds to the jth leftmost leaf in GST.

Next, we define an important concept called suffix range:

Definition 1. Consider the subtree of a node u in the GST. Let v and w be
the leftmost and the rightmost leaves in this subtree. Furthermore, let � and r
denote the rank of v and the rank of w among all leaves in the GST, respectively;
precisely, v is the �th leftmost leaf and w is the rth leftmost leaf in GST. Then,
the range [�, r] is called the suffix range of u.

1 When the context is clear, we shall simply denote each $i by the same character $.
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A simple observation is shown as follows:

Lemma 2. Let u and v be two nodes in the GST, and let [�u, ru] and [�v, rv] be
their suffix ranges, respectively. The two ranges are disjoint if and only if there
is no ancestral-descendant relationship between u and v. In case u is an ancestor
of v, we have �u ≤ �v ≤ rv ≤ ru.

For each node v, we use path(v) to denote the concatenation of edge labels along
the path from root to v. Then, we define the concept of locus as follows:

Definition 2. For any string Q, the locus of Q in the GST is defined to be the
highest node v (i.e., nearest to the root) such that Q is a prefix of path(v). In
case no v satisfies the condition, the locus of Q is null.

Note that the locus of Q can be determined in O(|Q|) time by traversing the
GST and matching characters of Q from the beginning to the end.

It is easy to see that if a pattern P occurs at position j in a text T , P must
be a prefix of the suffix of T which starts at position j. The converse is also true.
Based on this, we have the following lemma which captures the power of GST
in pattern matching:

Lemma 3. A pattern P occurs in some document of Δ if and only if the locus
of P is not null. In addition, each leaf in the subtree rooted at the locus of P
corresponds to a distinct occurrence of P , and vice versa.

2.2 Optimal Index for Colored Range Query

Let A[1..n] be an array of length n, with each entry storing a color drawn from
C = {1, 2, . . . , c}. A colored range query, denoted by CRQ(i, j), receives two
input integers i and j with 1 ≤ i ≤ j ≤ n, and outputs the set of colors contained
in the subarray A[i..j]. For instance, suppose A has seven entries, which are
colored by 1, 3, 2, 6, 2, 4, and 5, respectively. Then, the query CRQ(2, 5) requests
the set of colors in the subarray A[2..5], which should return {2, 3, 6}.

An index is proposed in [9] for answering colored range query in an output-
sensitive manner; the performance of the index is summarized in the following
lemma:

Lemma 4. We can create an index for the array A, using O(n)-space of storage,
such that for any i and j, the colored range query CRQ(i, j) can be answered in
O(γ) time, where γ denotes the number of (distinct) colors in the output set.

2.3 Y-Fast Trie for Efficient Successor Query

Let S be a set of n distinct integers taken from [1, D]. Given an input x, a
successor query on S reports the smallest integer in S that is greater than or
equal to x. An efficient index for this query, called y-fast trie, was proposed
by [13], whose performance is summarized as follows:
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Lemma 5. We can create an index for the set S of n integers, using O(n)-
space of storage, such that for any input x, the successor query succ(S, x) can
be answered in O(log log D) time, where D denotes the universe where integers
of S are chosen from.

3 Induced Generalized Suffix Tree

This section defines the induced generalized suffix tree for frequency f , or IGST-
f , which can be used to count the number of documents with P occurring at
least f times. Then, we give an array representation of IGST-f , and show how
to support inverse mine(P, k) query efficiently.

3.1 IGST-f : The IGST for Frequency f

First, we define a tree induced from the GST, called pre-IGST-f , as follows:

Definition 3. Consider the GST for Δ and an integer f with 1 ≤ f ≤ D.
Suppose each leaf of GST is labeled by the origin (document) of the corresponding
suffix. For each internal node v of the GST, we say v is f -frequent if in the
subtree rooted at v, at least f leaves have the same label. The induced subtree of
GST formed by retaining all f -frequent nodes is called the pre-IGST-f .

Definition 4. Let v be a node in the pre-IGST-f , so that v is an internal node
in the GST. We use count(f, v)2 to denote the number of distinct document with
at least f leaves labeled by it in the subtree rooted at v in the GST.

The following two lemmas demonstrate the pattern matching power of pre-IGST-
f , which can both be proved easily based on Lemma 3:

Lemma 6. A pattern P occurs at least f times in some document of Δ if and
only if the locus of P in pre-IGST-f is not null.

Lemma 7. Let ρf denote the number of documents in Δ with pattern P oc-
curring at least f times. If the locus of P in pre-IGST-f is null, then ρf = 0;
otherwise, ρf = count(v), where v is the locus of P .

Next, we describe IGST-f , which is in fact a simplified version of pre-IGST-f .

Definition 5. Consider the pre-IGST-f . For each internal node v, we say v is
redundant if (i) v is a degree-1 node and (ii) count(v) = count(child(v)), where
child(v) denotes the unique child of v. The induced tree formed by contracting
all redundant nodes in the pre-IGST-f is called the IGST-f .

Observe that when a node v in the pre-IGST-f is redundant, the set of the
count(v) documents corresponding to v (where each of them has at least f
labels in the subtree rooted at v in the GST) is exactly the same as the set of
the count(child(v)) documents corresponding to child(v), so that the two counts
are the same. This observation immediately leads to the following lemma:
2 Or, we simply use count(v) instead when context is clear.
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Lemma 8. The locus of a pattern P in pre-IGST-f is not null if and only if
the locus of P in IGST-f is not null. In case the locus is not null, let v and w
denote the locus of P in pre-IGST-f and the locus of P in IGST-f , respectively.
Then, count(v) = count(w).

The structure of our IGST-f is equivalent to the structure of the index proposed
by Muthukrishnan [9] to solve the document mining problem. If we assume that
the value of count(v) is stored for each node v in the IGST-f (which is not
required in [9]), we obtain the following theorem:

Theorem 1 (Adaptation of Muthukrishnan’s Index). By storing IGST-
1, IGST-2, . . ., and IGST-D, we can answer inverse mine(P, k) query, for any
input pattern P and input integer k, in O(|P | log D) time.

Proof. For any f , we can find the locus of P in IGST-f in O(|P |) time, analo-
gous to finding locus in the GST. Then, we can determine the number of doc-
uments containing at least f occurrences of P , based on Lemma 6. To answer
inverse mine(P, k), it is sufficient to search for O(log D) IGSTs, based on a
binary search of f , thus using O(|P | log D) time in total.

3.2 Array Representation of IGST-f

In Theorem 1, answering the inverse mine query requires finding the locus of
P in each IGST during the binary search. This could be time-consuming when
P is long. In the following, we propose a simple alternative scheme that allows
each locus-finding step to be done in O(log D) time instead of O(|P |) time, thus
giving a trade-off in the query time.

Our scheme is to make use of the suffix ranges. Firstly, suppose that the
suffix range of the locus of P is already computed. Let [�P , rP ] denote this range
if the locus exists. Next, suppose each node in IGST-f is associated with the
suffix range of the corresponding node in the GST. Then, we have the following
observation:

Lemma 9. The locus of P in IGST-f , if exists, is the node v such that (i) the
associated suffix range of any descendant of v (including v) is a subrange of
[�P , rP ], and (ii) the associated suffix range of its parent node is not a subrange
of [�P , rP ].

Proof. By definition, P is a prefix of path(v), so that by Lemma 2 and by the
definition of IGST, the associated suffix range of v, and also any of its descendant,
must be a subrange of [�P , rP ]. On the other hand, the associated suffix range
of the parent of v must not be a subrange of [�P , rP ], since otherwise, v is not
the node nearest to the root having P as a prefix of path(v), contradicting the
definition of locus.

Next, consider performing a pre-order traversal on the IGST-f , and enumerating
the associated suffix range of a node as it is visited. Let [�(z), r(z)] denote the
suffix range of the zth node enumerated during the traversal. Now, suppose that
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the locus of P in IGST-f (assuming exists) is the jth node in the pre-order
traversal of IGST-f . That is, the locus of P in IGST-f has associated suffix
range [�(j), r(j)]. Further, suppose that we examine [�(z), r(z)] for some z. The
theorem below is the heart of our proposed index, which gives a simple way to
determine the relationship between j and z: 3

Theorem 2. The following statements are true, and cover all possible relation-
ship between �P , rP , �(z), and r(z):

1. if rP < �(z), then j < z;
2. if �P > r(z), then j > z;
3. if [�(z), r(z)] is a subrange of [�P , rP ], then j ≤ z;
4. if [�P , rP ] is a subrange of [�(z), r(z)], then j ≥ z.

Proof. All the four statements can be proven based on Lemma 8. For State-
ment 1, if rP < �(z), the associated suffix range of the zth node, and all nodes vis-
ited after the zth node in the pre-order traversal, must be disjoint with [�P , rP ],
so that none of them can be the locus of P . Thus, the desired locus must be
visited earlier, so that j < z. Similarly, for Statement 2, if �P > r(z), then j > z.
For Statement 3, the desired locus must be an ancestor of the zth visited node,
so that it is either the zth visited node itself, or a node visited earlier in the
traversal. This implies j ≤ z. Similarly, for Statement 4, the desired locus must
be a descendant of the zth visited node, so that j ≥ z.

Let c(z) denote the count value of the zth node visited during the pre-order
traversal of IGST-f . Instead of storing the IGST-f as a tree structure in Theo-
rem 1, we are going to represent it by an array I, such that the zth entry of I,
I[z], stores the 3-tuple (�(z), r(z), c(z)).

Based on the previous theorem, we can obtain the value j, using binary search
on the array I, such that [�(j), r(j)] is the associated suffix range of the locus
of P . Then, the value c(j) thus stores the number of documents with at least f
occurrences of P .4 Since the number of nodes in IGST-f is O(D), the array I
is of length O(D), so that the binary search takes O(log D) time. This gives the
following theorem:

Theorem 3. By storing the GST, and the I-arrays for each IGST-1, IGST-2,
. . ., and IGST-D, we can answer inverse mine(P, k) query, for any input pattern
P and input integer k, in O(|P | + log2 D) time.

Proof. The GST is used to compute [�P , rP ] in O(|P |) time. Then, we can deter-
mine the number of documents containing at least f occurrences of P in O(log D)
time, by binary searching the I-array of IGST-f . To answer inverse mine(P, k),
it is sufficient to search for O(log D) I arrays of the IGSTs. The total time is
thus O(|P | + log2 D).

3 Recall that [�P , rP ] denote the suffix range of the locus of P in the GST.
4 If the locus of P in IGST-f does not exist, there is no z such that [�(z), r(z)] is a

subrange of [�P , rP ]; consequently the binary search will correctly detect this.
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Indeed, we can further speed up the query time by replacing each binary search
in the IGST arrays with a single successor query in a slightly modified array.
Consequently, the time spent in each visited IGST is reduced from O(log D) to
O(log log D) time. The idea is as follows. First, we observe that each node in the
IGST has a natural correspondence in the original GST; precisely, a node u with
suffix range [�, r] exists in the IGST implies that a node u′ with the same suffix
range exists in the original GST. Next, we perform a pre-order traversal in the
original GST, so that each node v receives the first time α(v) and the last time
β(v) visited during the traversal.5 Then, each node u in the IGST is augmented
with the information α(u′) and β(u′) where u′ is its correspondence in the GST.
After that, for each IGST, we collect the set of α values of the nodes, and store
a y-fast trie so that the successor query on the α values can be answered in
O(log log D) time.

Now, to perform searching, we first obtain the locus of P in the original GST,
say uP , whose pre-order traversal times are α(uP ) and β(uP ). Since traversal
times has a nice nested property, to search for the locus of P in IGST-f , it is
equivalent to finding the successor of α(uP ) in the set of α values of IGST-f .
Precisely, let u be the node in IGST-f with α(u) being the successor of α(uP ). It
is easy to check that β(u) ≤ β(uP ) if and only if the locus of P exists in IGST-
f , with u being the locus. After the above successor query, we can check the
corresponding 3-tuple (�, r, c) of u to determine how many documents contain
at least f occurrences of P . This gives the following theorem.

Theorem 4 (Our Proposed Index). By storing the GST, and the I-arrays
for each IGST-1, IGST-2, . . ., and IGST-D, we can answer inverse mine(P, k)
query, for any input pattern P and input integer k, in O(|P | + log D log log D)
time.

As shown in [9], the number of nodes in IGST-f is O(D/f) for any f . Briefly
speaking, each leaf or each degree-1 node in IGST-f corresponds to a disjoint
set of at least f suffixes of the documents in Δ, so that there are O(D/f) of
them. On the other hand, the number of remaining nodes cannot exceed the total
number of leaves and degree-1 nodes, so that there are O(D/f) of them. Thus,
the total number of nodes is O(D/f). This gives the following space complexity
result:

Theorem 5. The total space of the indexes in Theorem 1, Theorem 3, or
Theorem 4, is O(D log D).

Proof. The theorem follows since
∑D

f=1 D/f = O(D log D).

Remarks. In the above discussion, we have focussed on the design of the index
and have not mentioned the construction time. In fact, the index of Theorem 1,
which is equivalent to the index in [9] with count value augmented to each node,
can be constructed in O(D log2 D) time by a simple adaptation of the construc-
tion algorithm in [9]. Once the count information in each node is available, the

5 We assume a global time which is incremented by 1 whenever a node is visited.
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index of Theorem 3 can be constructed in O(D log D) extra time to traverse
each IGST and build the corresponding array. The index of Theorem 4 requires
the construction of the y-fast trie, which in turn can be done in randomized
O(D log D) extra time. Thus, although the query time by the index of Theo-
rem 3 is slightly slower than that of Theorem 4, the former index has a slight
advantage (worst-case guarantee) in its construction time.

4 Efficient Index for Top-k Document Retrieval Problem

Once we have obtained an index for answering the inverse mine query, we can
find the set of documents in top document(P, k), that is, those k documents with
the most occurrences of P , by the following framework:

Solving top document(P, k):
1. Find f∗ such that f∗ = inverse mine(P, k);

/* Consequently, there are at least k documents with
at least f∗ occurrences of P, but there are less
than k documents with at least f∗ + 1 occurrences of
P */

2. Output all documents with at least f∗ + 1 occurrences of P .
Let k′ be the number of such documents;

3. Output k − k′ extra documents, distinct from those obtained
in Step 2, which have at least f∗ occurrences of P .

One way to solve Step 2 is to augment each node v of IGST-f by the list of
the associated count(v) documents, each of which has at least f labels in the
subtree rooted at v. Then, it is easy to see that in order to answer Step 2, we
can just find the locus of P in IGST-(f∗ + 1), and output the list of documents
in the locus. This method takes optimal O(k′) time in reporting the documents.
Unfortunately, in the worst case, the extra space we need for the augmentation
is O(Dm log D), where m denotes the number of documents in Δ. We refer this
method as Heuristic I.

A better way to solve Step 2 is to apply Muthukrishnan’s index for colored
range query (Lemma 4 in Section 2) as an auxiliary data structure, as it is used
in [9] for solving the document mining problem. The idea is that: For each node
v in IGST-f , we only store the sublist of the associated count(v) documents,
where each such document does not appear in the list of the proper descendant
of v in IGST-f . Next, we perform a pre-order traversal, and concatenate the list
of the visited node into a single list L. Then, it is easy to check that each node
v will correspond to a subrange in the list L, such that its associated count(v)
documents will correspond exactly to the count(v) distinct documents in the
subrange.

Thus, if we use Muthukrishnan’s index for storing L, and for each node, we
store the starting and ending positions in L for the associated subrange, Step 2
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can also be answered optimally in O(k′) time, as in Heuristic I, but with a smaller
O(D log D) space requirement.6

Step 3 can be solved similarly as in Step 2. We observe that any k documents
with at least f occurrences of P , together with the k′ documents obtained in
Step 2, must contain a desired set of k documents for our top document(P, k)
query. So in Step 3, we will arbitrarily select a set of k documents with at least
f occurrences of P , from which we further select k − k′ documents that are not
obtained in Step 2. A simple way to solve the latter part is by sorting, taking
O(min{m, k log k}) time. To speed up, we maintain an extra bit-vector of m
bits, where the ith bit corresponds the document Ti, with all bits initialized to
0 at the beginning. When Step 2 is done, we mark each bit corresponding to
the k′ documents by 1. Then, in Step 3, when a document is examined in the
latter procedure, we can check this bit-vector to see whether a document has
been obtained in Step 2 already, so that we can easily obtain the desired set
of extra k − k′ documents. After Step 3, we can simply reset the bit-vector in
O(k) time by referring to the final output. Thus, we have completely solved the
top document query, and have obtained the following theorem:

Theorem 6 (Our Proposed Index). We can maintain an O(D log D)-space
index for Δ, such that for any input pattern P and input integer k, top document
(P, k) query can be answered in O(|P | + log D log log D + k) time.

Remark. Although Heuristic I does not guarantee good worst-case space bound,
as our preliminary experiments shown, its space may be better than storing the
color-range-query index in practice. We defer the details to the full paper.

5 Conclusion and Open Problems

We have proposed the inverse document mining and the top-k document retrieval
problems, and provided indexes which support the required queries in near-
optimal time.

The core of our indexes, called the induced generalized suffix trees, are adapted
from the ones in [9], where we store new sets of data to support our desired
queries. In addition, we devise a simple, yet novel, array representation to or-
ganize our data, which consequently leads to an interesting way to answer our
queries.

In the future, we would like to conduct a thorough experimental studies for
the practicality of our index and (the adapted version of) Muthukrishnan’s in-
dexes, and to run on queries obtained from the actual web searching applications.
We would like to compare our performance with that of inverted index based
approach for arbitrary patterns. Another interesting direction is to consider the
case where k is fixed, and see if we can achieve better time/space bounds.

6 It is easy to check that the list L in IGST-f has O(D/f) entries, since each entry
corresponds a distinct f labels from the same document. Thus, the total space is∑

f D/f = O(D log D).
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In addition, a main open question in this field is that: Is there a linear space
index taking just O(D) space or even better only the space close to the com-
pressed form of the text? Many extensions of these basic functionalities can be
considered, such as retrieving top-k documents based on TFIDF when there are
multiple patterns involved.
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Abstract. We show how a half-inverted index can be constructed twice
as fast as an ordinary inverted index. As shown in a series of recent
works, the half-inverted index enables very fast prefix search, which in
turn is the basis for very fast processing of many other types of ad-
vanced queries. Our construction algorithm is truly single-pass in that
every posting (word occurrence) is touched (read and written) only once
in the whole construction by avoiding an expensive merge of the index.
The algorithm has been carefully engineered, with special attention paid
to cache-efficiency and disk cost. We compared our algorithm against the
state-of-the-art index construction from Zettair.

1 Introduction

The inverted index is still the standard indexing data structure for full-text
search, and for good reasons: it can be stored in little space compared to the
size of the original text (20% - 60%, or more, depending on whether positional
information is considered or not [1,2]), it can be constructed fast, and it enables
very fast full-text search. It has one major shortcoming however, in that only
basic keyword queries (find all documents that contain all or some of the given
query words) are supported efficiently.

In [3], an alternative index data structure, called HYB, was proposed that was
shown to be as compressible as the inverted index, called INV in the following,
but provides efficient support for a certain kind of prefix search (see Sect. 1.2
for an example). It was also shown in that and a series of subsequent works (see
[4] for a summary), how the special kind of prefix search supported, allows fast
processing of a large class of advanced queries, including: faceted search, query
expansion with a large number of synonyms, error-tolerant search and semantic
search. It should be noted that prefix search and all these advanced types of
queries are notoriously hard for INV.

1.1 Our Contribution

The one question that was left open in these works was that of an efficient con-
struction of the HYB index. The construction described in [3] actually works by
first constructing and then post-processing an ordinary inverted index, yielding
a total index construction for HYB that is about twice as much as that of INV.
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In this paper we show that with careful algorithm engineering the HYB can
actually be constructed twice as fast as INV. This is remarkable in two respects.
First, because HYB is much more powerful than INV with regard to efficient
support of advanced queries. Second, because fast index construction for INV
has been the subject of extensive research, leaving with little room for further
improvement of the state of the art (see Sect. 2).

As we will see, our index construction is truly single-pass in the sense that
every posting is read only once from disk in the whole process. The best con-
struction algorithms for INV claim to be single-pass, too, but that is only true
in the sense that they make a single pass over the original text data, whereas
later passes of already (inverted and) compressed versions of that data are not
counted as additional passes.

1.2 The HYB Index

We briefly recapitulate from [3] what is necessary to know about the HYB index
for this paper. Both documents and words have contiguous ids. Word-ids are
assigned to words in lexicographical order; this is key for the fast processing of
prefix queries with HYB. A posting for HYB is a quadruple of document id,
word-id, position, and score. HYB then consists of so-called blocks of postings,
sorted by document id and position (not by word-id). The blocks are defined
by a sequence of block boundary words w0, . . . , wk such that block i contains all
words in the range (wi−1, wi], where w0 is some word smaller than all words
in the collection. One of the key results from [3] is that if these blocks are of
roughly equal volume ε · n, where n is the number of documents and ε is some
constant, then HYB can be stored in space 1 + ε times that of INV. Here is an
example of a block that corresponds to the word range (abl, abt]:

(doc ids) D401 D1701 D1701 D1701 D1892

abl - abt (word-ids) ablaze abroad abnormal abnormality abscess
(positions) 5 3 12 54 4
(scores) 0.3 0.7 0.4 0.3 0.1

In this example, the first list entry says that the word “ablaze” occurs in a
document with id D401 at position 5 with a score of 0.3. The basic queries
that the HYB index can efficiently compute are the so called context-sensitive
auto-completion queries, or more informally all completions of the query words
that would lead to good hits (including the matching documents and scores).
These lists are computed instantly, with every letter being typed. For example,
promising completions for the query algo engin might be algorithm engineering,
algorithmic engine, algorithm engineer etc.1

1.3 Overview of Our Construction Algorithm

Our algorithm poses three major challenges. The first challenge is to compute
the block boundaries, so that at parsing time we can determine the block to
which a given word-id belongs. This could be trivially done by a full pass over
the data, counting the frequency of each word and then computing the prefix
1 An on-line application of the HYB index (DBLP bibliography search with extended

capabilities) can be found at http://dblp.mpi-inf.mpg.de/dblp-mirror/
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sums. Inspired by parallel sorting algorithms, in Sect. 3 we show how to com-
pute very good estimates of the optimal block boundaries by sampling only a
logarithmic number of random passages in the given document collection.

The second challenge is a cache-efficient and truly single-pass construction of
the index that does not require index merging. We will show these two, even
though not pointed out in previous work, can be efficiency bottlenecks of the
construction. This is dealt with in Sect. 4.

Note that the word-ids are part of the postings and have to be stored in
the index. Unlike the inverted index construction, this requires a permanent in-
memory word to word-id mapping. Section 4 makes the simplifying assumption
that the vocabulary fits in main memory. The final challenge is to get rid of
this requirement. In Sect. 4.6 we propose refinement of our basic algorithm that
addresses this issue.

In Sect. 5, we experimentally compare our construction against the very fast
and well engineered state-of-the art inverted index construction of Zettair [5],
which will be described in more detail in the next section. A more complete
on-line version of this paper, including proofs for some of the lemmas can be
found at www.mpi-inf.mpg.de/~bast/papers/hyb-index-construction.pdf

2 Related Work

An extensive amount of research has been done on static inverted index con-
struction with many inversion approaches proposed, however only few scalable
in practice [1]. We compare ourselves against the state-of-the-art inverted in-
dex construction proposed in [5] (referred to as the single-pass approach) which
improves the well known sort-based approach, considered as one of the most
efficient approaches described in the literature [5,1].

Both approaches are in-memory (opposed to the inferior disk-based approaches
[6,5]), as the inversion is done in main memory, and single-pass, as only one pass
over the uncompressed data is required (note that out definition of single-pass is
stricter). Two-pass approaches on the other hand are slow but memory efficient
since the number of postings per indexed word is known and hence the sizes of
all in-memory and on-disk vectors can be easily calculated and effective compres-
sion schemes applied [5,1]. An extensive amount of collected work on inversion
approaches can be found in [1].

The sort-based approach consists of the following basic steps: (i) word to
word-id mapping is maintained through hashing and the available memory is
filled with postings that come from the incoming parsing stream; (ii) when the
main memory limit is reached, the postings are sorted, compressed and a new
run is written to disk; (iii) after the whole collection has been processed multi-
way merge is performed to obtain the final index. The merging can be performed
either in-place, for additional index permuting cost [7,1], or with a temporary
file roughly twice larger than the size of the index.

The single-pass approach from [5] modifies steps (i) and (ii) as follows. First,
a dynamic bit-vector that accumulates the postings from the posting stream is
assigned to every index word; and second, words instead of word-ids are included
in the runs and thus no word to word-id mapping is required. The advantage
of the modified version is that sorting of large amount of in-memory postings is
avoided and that the vocabulary can be flushed out whenever a new run gets
written on disk. The reported improvement ranges from 15% up to 20%.
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3 Computing Block Boundaries

In this section we show how to compute block boundaries by only a logarithmic
number of accesses to the given collection, an idea related to splitter selection
in the parallel sorting literature (Samplesort, [8]). Let n be the collection size in
total number of occurrences and let k be the number of HYB blocks. The sam-
pling lemma below shows how to compute block boundaries from a sample of
word occurrences so that the resulting blocks are of size less than a · n

k with high
probability (a > 1 and n/k is the ideal block size). Note, however, that sampling
from disk can be still expensive as one random access per word occurrence is
required. We provide an alternative proof of the lemma with somewhat tighter
upper bound that for the same failure probability permits close to twice smaller
sample than that known in the literature.

Lemma 1 (Sampling Lemma). Pick s · k numbers from the range 1..n uni-
formly at random and independently from each other. Sort these numbers and
consider the k integers x1, ..., xk whose rank in the sorted sequence is a multiple
of s. Let b1, ..., bk be the block sizes induced by splitting the range 1...n according
to x1, ..., xk. Let bmax = min {b1, ..., bk}. Then

Pr(bmax > a · n/k) ≤ n · exp(−s · K) (1)

where K ≈ a − ln(a) − 1.

Proof. Call the s · k random numbers picked in the beginning splitters. Let the
maximum block size be bmax. We consider the event that bmax is larger than some
b. Then there must be a sub-range of size b that contains strictly less that s split-
ters. There are n−b+1 ≤ n such sub-ranges in total which means that Pr(bmax >
b) ≤ n · p, where p is the probability that a fixed sub-range of size b contain less
than s splitters. This probability is equal to

∑s−1
i=0

(
sk
i

)
(b/n)i (1 − b/n)sk−i. We

will derive an upper bound on the probability p(s) that exactly s splitters fall
into a fixed range of size b and from there derive Equation 1. After plugging
b = a ·n/k into p(s) and applying the inequalities

(
sk
s

) ≤ (ek)s, 1−x < exp(−x);
by simple transformations we obtain p(s) ≤ exp ((1 + ln(a) − a · (k − 1)/k) · s)
which can be written as exp(−C · s). This inequality is satisfied for all practical
values of k (e.g. k > 1000), provided that a > 1. To complete the proof we
will use the inequality p ≤ s · p(s) provided that p(s) ≥ p(s − 1) ≥ ... ≥ p(0).
For binomial distribution the latter holds if s is no larger than the mode of the
distribution M as p(s) is maximized when s = M . In our case this condition is
satisfied as M = �sk · b/n� ≥ sk · a/k = s · a, which is larger than s if a > 1. By
plugging in the obtained inequality for p(s) in the latter inequality we attain an
upper bound on p that can be written as exp(−K · s). Again, K > 0 for small
values of a > 1 and all practical values of k which concludes the proof.

Lemma 2 (Query Time). The expected HYB query processing time with per-
fect boundaries is asymptotically equal to that with boundaries computed accord-
ing to Lemma 1 with high probability.

4 Block Building

Given the sequence of block boundaries, a straightforward approach to build
the HYB blocks with a single-pass would be as follows. Maintain a dynamically



198 M. Celikik and H. Bast

growing in-memory data structure of postings for each block (e.g. linked lists),
and for each word parsed, append the corresponding posting to the array of the
block to which it belongs. When all words have been parsed, compress the blocks
one after the other, and write them to disk.

Likewise the inverted index construction, the first obvious problem is that
the size of the in-memory data structures will by far exceed the total available
memory. An obvious solution is to process the blocks in runs by imposing a limit
on their in-memory size. However, unlike the inverted index construction, our al-
gorithm avoids a merge of the temporary runs by writing the partial in-memory
blocks to their corresponding positions on the fly, without any fragmentation.
This is dealt in more details in Sect. 4.1 and Sect. 4.4.

An efficiency issue not considered in the previous work of [5] is the cache ef-
ficiency of the in-memory inversion. Namely, even though well approximated by
a Zipfian distribution and hence with a good locality of reference, a significant
fraction of the word occurrences will impose cache misses when appended to
their inverted lists (HYB blocks). This is due to the fact that the number of in-
verted lists is typically much larger than the number of L1-cache lines. We show
in Sect. 4.2 and experimentally confirm in Sect. 5.2 that this can significantly
affect the inversion performance.

Since the word-ids are part of the postings, they have to be compressed as
well. Note, that the word-ids cannot be gap-encoded as they come in random
order and have to be entropy-encoded instead. Near entropy-optimal but inef-
ficient compression could be, for example, achieved by arithmetic encoding [1].
In Sect. 4.3 we propose a fast two-pass compression scheme for the price of only
slightly worsen compression ratio.

4.1 Posting Accumulation

Once a dynamic in-memory array to each HYB block has been assigned, the post-
ings from the posting stream are accumulated and compressed on the fly with
Elias-gamma code for the doc-gaps, position-gaps and word-frequencies and Zipf
compression (see Sect. 4.3) for the word-ids. An interesting observation from [9]
shows that by maintaining the dynamic array’s growth, additional saving can be
achieved close to that when the array size is known in advance.

To maintain the word to word-id mapping, a fast hash-table based vocabulary
[10] is employed (an alternative to permanent vocabulary is discussed in Sect. 4.6).
As assigning lexicographic word-ids on the fly is not easy, a non-lexicographic to
lexicographic word-id permutation (obtained by sorting the vocabulary) is stored
at the end of the construction. To determine the corresponding HYB block for
each posting, a fast in-memory data structure is employed that computes the HYB
block and then stores this information in the word’s vocabulary entry so that the
computation is done only once per distinct word.

Note that on the one hand, unlike the single-pass approach, the HYB construc-
tion does not require sorting of words and on the other the word boundaries are
already precomputed and in fixed (lexicographic) order. Moreover, the postings
that correspond to a certain HYB block are already in doc-id order and require no
sorting either. This means that overall our algorithm requires almost no sorting.

4.2 Cache Efficiency

To address the cache inefficiency of the in-memory inversion we propose a multi-
level posting accumulation scheme by grouping consecutive HYB blocks in sets
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so that the total number of sets is close to the number of cache lines of the
L1-cache. The postings from each set are further recursively assigned to next
level of sets until each set comprises a single HYB block. The number of cache
misses will be minimized if the number of sets per level is equal, i.e. l

√
k (l is the

number of levels). The price paid for this procedure is multiple copies of each
posting. Note, however, that a cache hit can be from 5 up to 100 times faster
than a cache miss. The best results in practice were achieved for l = 2 (two-level
posting accumulation).

Let us for simplicity assume a fully associative cache of size c and equally sized
HYB blocks. Then regardless of the replacement policy, the expected number of
cache misses for l = 1 and l = 2 respectively is n · (1− c/k) and 2n · (1− c/

√
k)+.

The number of cache misses for l = 2 will be less than the number of cache
misses for l = 1 if (k−c)/(2

√
k · (√k−c)+) > 1. This inequality is almost always

satisfied if k < 4 ·c2, with number of cache misses many times smaller for
√

k ∼ c
and essentially 0 for

√
k ≤ c. The latter is in fact a realistic scenario given that

the number of blocks is typically less than 10,000 and that todays L1 caches are
larger than 8 KB (a typical 8 KB L1 cache with 64 B cache lines has c = 128,
where

√
k is usually less than 100).

Fig. 1. Throughput (given in MiB/s) of HYB and inverted index posting accumulation
approaches (defined in Sect. 4) to in-memory invert a run of 100 million occurrences

Figure 1 shows that the efficiency of the simple HYB block posting accumu-
lation approaches that of the inverted index when the number of HYB block
is large. The efficiency of two-level posting accumulation on the other hand is
not affected. This is due to to the fact that the number of HYB sets remains
smaller than the number of cache lines. Note that the above model even though
simplified, matches Fig. 1.
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4.3 Fast Word-id Compression

Our compression scheme is based on the assumption that the input (word-ids)
have near Zipfian distribution. Given this, it is not hard to show that universal
encoding [11] with ∼ log x bits for number x of the ranks of the words sorted in
order of descending frequency, is entropy optimal too. We refer to this scheme as
Zipf compression. An obvious drawback here is that a full sort of a large number
of word-ids is required to obtain the ranks. Assume that instead of sorting,
the rank of each word is obtained by a MTF (move-to-front) transform over
the input, with the intuition that frequent word-ids are likely to end up near
the front of the list and thus get smaller ranks. This will allow us an efficient
compression algorithm for the price of a very small loss in the compression ratio.

Lemma 3. Given a Zipfian distribution of the input, the ranks obtained by
a MTF-transform have expected values that are not far from the true ranks
(determined by the skewness of the Zipfian distribution of the input).

The loss in compression ratio on our two test collections in practice was surpris-
ingly small: less than 1% on Wikipedia and about 1% on the TREC Terabyte
(see Sect. 5.1). We note that this compression scheme is almost as fast as coding
with gaps and Elias gamma code.

4.4 Writing the Blocks

Once the memory limit for the in-memory HYB blocks has been reached, each
set of HYB blocks is decompressed and each individual HYB block restored, op-
tionally re-compressed (this time the doc-ids are compressed with Golomb code)
and written out on the fly to its corresponding position on disk. As the latter
requires knowing the correct block sizes (in compressed format) in advance, we
first compute an initial estimation for each block size by running an in-memory
version of our algorithm on a random sample of documents. The problem of
miss-estimated and potentially overflowing blocks is addressed in Sect. 4.5 by a
procedure called space-propagation.

In the following we specify and compare the construction disk cost of the
inverted and that of the HYB index. Let Ru be the cost to sequentially read
the uncompressed collection, Rc be the cost to sequentially read the compressed
temporary file, Wc be the cost to sequentially write the temporary compressed
file, n be the total number of runs for both algorithms and ts be the average disk
seek time2. To reduce the number of disk seeks, a buffer of size B is allocated for
each on-disk run. The total disk cost for the inverted index construction is then
roughly equal to Ru + Wc +

(
Rc + Wc + max

{
Wc

B , n
} · ts

)
+ (Rc + Wc) where

the second and the third word correspond to the cost to merge and permute the
merged file. If twice more disk space than the size of the index file is allowed
(merge is not in-situ), then the third term should be skipped (note that our
approach does not require additional disk space, see Sect. 5.3). The total disk
cost for the HYB construction is equal only to Ru +(Wc + n · k · ts). The second
term in the brackets corresponds to the total seek time as each block requires a
single disk seek for each run. Note that the above formula is pessimistic since it
ignores the fact that the disk seek time depends on the track distance [12]. Our
2 Note that the authors interchangeably use disk seek time and disk access time. In

both cases we mean the full disk access time.
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Table 1. Average random and equidistant seek time over 2000 disk seeks

File size 100 MB 1 GB 10 GB 100 GB

Average random seek 1.5 ms 5.2 ms 11.1 ms 14.5 ms
Average equidistant seek 0.8 ms 4.7 ms 5.6 ms 6.2 ms

algorithm makes equidistant jumps from one block to the adjacent, keeping this
distance small e.g. not larger than 5 MB for a 10 GB collection. Table 1 shows
this empirically (in the same time pointing out a slight inherent non-linearity of
the disk cost, to some extent reflected in Table 2).

As an example, on a 50 GB collection (with 20 GB index), disk throughput
of 50 MB/s with 5 ms seek time and a memory limit of 512 MB (= 40 runs), the
disk cost for INV and HYB respectively is 3072 and 1833 secs. Note that writing
the HYB blocks on the fly is possible since they are of roughly equal size and of
reasonably large number. For the inverted index, where the number of inverted
lists is in the order of millions, this is obviously impossible to achieve.

4.5 Space Propagation

We already mentioned the problem that blocks with initially underestimated
sizes might overflow and overwrite the neighboring blocks. Note that no matter
how good the initial estimation is, roughly half of the blocks will be initially un-
derestimated. Also note that once the block writing started, further movement
of the blocks is not possible. To address this problem we allow the underesti-
mated blocks to make use of the space of the overestimated blocks, yet without
splitting them in two parts. Below we give the basic description and provide
theoretical evidence that the procedure fails with small probability given that
certain assumptions are satisfied.

The idea is to “shift” the unused space of the overestimated blocks towards
the underestimated by permitting an underestimated block to “borrow” some
space from its neighbor. If the lender block is not large enough to fit its data and
the data of the borrower in the same time, it becomes a borrower of the next
neighbor. Hence a cascade of blocks borrowing space can be formed, stopping
when blocks with enough free space to amortize for the propagated space demand
are reached. To determine if a certain block will overflow, re-estimation of the
block sizes takes place after significant fraction of the data has been processed
(e.g. 70% - 80%). All blocks are initially sorted with respect to their initial size
to increase the chance that neighboring blocks are of similar size and hence do
not interrupt the propagation.

To provide theoretical evidence that supports this procedure we propose the
following model. Let ε be the estimation error of each block size given in per-
cents. Let assume that the initial estimated size of each block varies from its
true size with Gaussian error with mean μ = 0 and variance σ2. Let the correct
block size be B and let assume that 1 − r percents of the block size (equal to
e.g. 70% - 80%) is enough to provide reliable estimation for the whole block. We
also assume that there are enough runs so that the propagation “converges”. Let
consider k out of some larger number of blocks. In theory the propagation will
fail if the total space demand of these blocks is larger than the available space,
i.e. if 2 · B · r +

∑k
i=1 B · εi is negative, where the second term corresponds to
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Fig. 2. Value of the z argument of the space propagation failure probability (defined
in Sect. 4.5) for two directional propagation and 3 block space blow-up factors. (note
that for z=-4, the propagation failure probability p(z) is already less than 10−8).

the available propagation space (either positive or negative) of the k blocks and
the first term corresponds to the additional (borrowable) space of the first and
the k-th block. To avoid propagation failure the above space should be positive,
i.e. we are interested in Pr(

∑k
i=1 εi + 2 · r < 0). Since

∑k
i=1 εi has Gaussian

distribution with mean k · μ and variance k · σ2, the latter probability can be
written as p(z) = 1

2 (1+erf(z(k))) where erf() is the Gaussian error function and
z(k) = −2r−kμ

σ
√

2k
. Note that p(z) is a strictly increasing function of z(k), meaning

that p(z)’s behaviour is solely determined by z(k). Obviously if μ = 0, then z(k)
strictly increases with k, resulting in a failure probability that approaches 1/2
for k = 2000 (see Fig. 2). However, if μ > 0 (a small blow-up in the block sizes),
then z(k) starts to decrease for k > 2·r

μ (∼ 24), resulting in extremely small
values of p(z) for large k (e.g. 2000). Figure 2 plots the z(k) value against the
number of blocks k with different space blow-up factors.

4.6 Large Hash Keys

Our basic algorithm assumes that the entire vocabulary fits into main memory.
Given that the vocabulary of TREC Terabyte takes roughly 600 MB, this is a
realistic assumption. Still, for the case one wants to get rid of it, we propose
the following refinement: instead of permanently storing (word, word-id) pairs,
compute the word-ids with an additional hash function, making flushing to disk
possible once the vocabulary size approaches the memory limit. At the end of
the inversion the sorted vocabulary fractions3 are merged into a final vocabulary
(without fully reading them in memory). To avoid word-id collisions, by similar
arguments as in the birthday paradox, one can show that by providing a universal
family of hash-functions with large enough hash keys, the expected number of
3 The vocabulary is sorted before flushing it to disk.
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collisions can be kept below 1. Let V be the vocabulary size and r = 264 be the
range size of the hash function (i.e. 64-bit hash keys). Then the expected number
of collision is

∑V
k=1 1−((r−1)/r)k−1 which is equal to V −r+r((r−1)/r)V , where

the expression inside the sum is the probability that the hash of the k-th word
collides with an earlier word. A simple calculation shows that the latter is less
than 1 as long as V is smaller than ∼ 6 billions (the TREC Terabyte collection
has roughly 50 million distinct terms). The overhead imposed by this procedure
in practice amounts to only about 10% of the total indexing time (see Table 3).

5 Experiments

We compare the performance of our HYB index construction algorithm to a
state-of-the-art inverted index construction algorithm, namely the one imple-
mented as part of Zettair4, which essentially implements the ideas from [5],
slightly varying from the original single-pass approach by using log-10 partition-
ing. According to the large study from [13], Zettair’s index construction is indeed
the fastest on the open source market to date.

All our code is written in C++ and compiled with GCC 4.1.2 with the -O3
flag. All experiments were performed on a machine with 16 GB of RAM (with
contents flushed before every execution), 4 dual-core AMD Opteron 2.8 GHz pro-
cessors (we used only one core at a time), operating in 32 bit mode and running
Debian 4.1.1-19 with a standard ATA (Hitachi Deskstar) hard drive with 7200
RPM and reported average access time of 12.9 ms. We used the latest (0.9.3)
version of Zettair.

5.1 Test Collections

Our experiments were carried out on two collections:

Wikipedia: A dump of the English Wikipedia, with a raw size of 12.7 GB,
2,874,500 million documents, 795 million word occurrences, and a vocabulary of
8 million distinct words.

TREC Terabyte: The TREC GOV2 corpus with a raw size of 426 GB, 25,204,
103 documents, 23 billion word occurrences, and a vocabulary of 57 million dis-
tinct words. To get a better picture on the scalability of both algorithms we run
the experiments on subsets of size 25%, 50% and 100% of the full collection. To
ensure that both parsers produce the same sequence of words we replaced all
sequences of non-word characters in the collections by a single space each.

5.2 Index Construction Time

Compared to Zettair, our HYB index builder is faster by a factor of 1.6 (on
Wikipedia) to 2.1 (on Terabyte). For both algorithms, we imposed a mem-
ory limit of 500 MB for the in-memory posting accumulation (we used the
--big-and-fast option on Zettair) without taking into account the additional
memory usage of the vocabulary and other auxiliary data structures. In all ex-
periments we picked the HYB block sizes as N/5, where N here is the number
of documents in the collection (see [3]).
4 http://www.seg.rmit.edu.au/zettair/
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Table 2. Elapsed index construction time in minutes to construct a word-level index
with our HYB builder and Zettair on all our test collections

Wikipedia
TREC Terabyte

25% 50% 100%

HYB 4.7 min 43.0 min 75.1 min 155.8 min
Zettair 7.3 min 92.3 min 146.4 min 288.9 min

Table 3. Increase in the HYB construction time on one quarter of the TREC Terabyte
collection when different in-memory vocabulary size limits are used (see Sect. 4.6). The
total number of distinct words was roughly 28.5 millions and the construction (without
vocabulary limit) took 43 mins.

Vocabulary size limit in % 50% 33% 25% 20%

Increase in construction time +7% +10% +12% +11%

Table 4. Break-down of the total elapsed index construction time in four major steps
for the TREC Terabyte collection

Parse & Look-up Accumulate Compress Disk I/O Sampling

32% 16% 20% 29% 3%

Table 4 shows a break-down of the running time of our HYB builder. The most
expensive phase is the parsing and looking-up of word-ids which takes roughly
one third of the total cost. While Zettair spends one third of its time merging
runs, our index builder spends only one fifth of its time on block writing. This is
due to the fact that Zettair has to fully read and fully write the temporary index
file more than once. We note that the actual bottleneck in the index merging
are not the disk seeks but rather reading and writing large amount of data. As a
consequence, the index partitioning improvement proposed in the last section of
[5] (aiming to reduce the number of disk seeks) showed only marginal speed-up
in practice.

Only about 16% of the time of our index construction is spent on posting ac-
cumulation, that is, in-memory inversion. As suggested by both, Fig. 1 and the
figures shown in [5], this cost for the inverted index is more than twice higher.
The latter points out that cache misses seriously affect the efficiency of the
in-memory inversion of the single-pass approach. For whatever reason, posting
accumulation costs are not reported in the elapsed-time figures of [5].

5.3 Temporary Disk Space

The additional disk requirement of our HYB construction is very small and comes
from the overflowed blocks. The total size of the overflowed space depends on the
quality of the initial estimation of the block sizes (see Sect. 4.4). The peak disk
space usage in our experiments varied from 100% of the size of the final index
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file on small to medium-size collections, up to 103% on the full TREC Terabyte
(i.e. up to 3% overhead).

The reported additional temporary disk usage in [5] is about 26% for document-
level inverted index and about 8% for word-level inverted index. However,we found
out that during the parsing and merging phase the peak space usage of Zettair on
the TREC Terabyte was correspondingly about 165% and about 143% of the fi-
nal size of the index file. We note that in a setting where the input data is very
large and streamed, using significantly more space than the final index might be
undesirable.

6 Conclusions

We have carefully designed and engineered a construction algorithm for the pow-
erful HYB index from [3], that is twice as fast as the state-of-the-art inverted
index construction from Zettair. Our algorithm is simple to implement, and,
unlike for an inverted index, does not require additional data structures for ex-
ternal sorting. Our approach is truly single-pass in that the bulk of the word
occurrences are touched only once each, it is cache-efficient, does not require
in-memory or external sorting and during construction uses no more space than
the final compressed index.
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Abstract. Term-partitioned indexes are generally inefficient for the
evaluation of conjunctive queries, as they require the communication
of long posting lists. On the other side, document-partitioned indexes
incur in excessive overheads as the evaluation of every query involves
the participation of all the processors, therefore their scalability is not
adequate for real systems. We propose to arrange a set of processors
in a two-dimensional array, applying term-partitioning at row level and
document-partitioning at column level. Choosing the adequate number
of rows and columns given the available number of processors, together
with the selection of the proper ways of partitioning the index over that
topology is the subject of this paper.

1 Introduction

Inverted files [2] are used as index data structures to efficiently solve queries
upon huge text collections. An inverted file is composed of a vocabulary table
and a set of posting lists. The vocabulary table contains the set of relevant
terms found in the text collection. Each of these terms is associated with a
posting list which contains the document identifiers where the term appears in
the collection along with additional data used for ranking purposes. To solve
a query, it is necessary to get the set of documents associated with the query
terms and then perform a ranking of these documents in order to select the top-
K documents as the query answer. From the literature we can learn of a number
of methods for distributing the inverted file onto P processors or computers and
their respective query processing strategies [1,4,6,9,10,11,14,18]. Distributing an
index consists of splitting the document collection and/or the index itself among
the computers. There are different ways of doing this splitting, mainly variants
of two basic dual approaches: document-based partition (a.k.a local indexes) and
term-based partition (a.k.a global indexes). Variants of these two basic schemes
have been proposed in [7,13,15].

The ranking of documents can be performed upon either intersection or union
of posting lists. For queries requiring such intersection, the global indexes tend to
be inefficient as they require sending complete posting lists among processors. To
alleviate this problem, it has been proposed to concentrate together in the same
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processor terms that usually appear together in queries, reducing the probability
of having to transfer posting lists. Different methods have been proposed in
[5,16,17]. On the other side, when using a local index, document IDs are assigned
to unique processors and thereby the intersection of posting lists does not require
communication. However, all processors must participate in the evaluation of
each query: as the number of processors grows, the overhead associated with each
query grows linearly, so the improvement in the throughput is not proportional
to the number of processors. The reason is that each active query being processed
is replicated P times on the P processors and, in each processor, they demand
the use of hardware resources which do not come for free in terms of latency.

A natural idea to overcome the problems of these two approaches is to use a
two-dimensional scheme trying to benefit from the advantages of the two extreme
distributed indexes. The idea is to arrange a set of P = R × C processors
as a matrix of R rows and C columns, applying term-partition at row level
and document-partition at column level. In few words, the document collection
is partitioned in C sub-collections, each of which is allocated to a “column”
of R processors, which will hold the index of that collection in a term-based
partitioning. The point for conjunctive queries is the following: for any concrete
policy used to partition and group terms, the probability of co-residence of a
pair of terms of a query increases as the number of processors decreases, so the
communication cost tends to decrease with the number of rows of the matrix
(the optimal being an arrangement of one single row and P columns, that is
a normal document-partitioned system). At the same time, when the number
of columns increases, so does the overhead typical of local indexes, so one can
expect that there is an optimal configuration somewhere in between the extreme
approaches. The proposal of this paper is, therefore, to analyze the performance
of different configurations for a fixed number P of processors, ranging from P
rows and one column (term partition) to one row and P columns.

2 A Two-Dimensional Partitioning Index

The processors form a two-dimensional array of R rows and C columns; in one
of the dimensions (the rows) the index is seen as partitioned by terms, in the
other dimension (columns) as partitioned by documents. The document collec-
tion is partitioned therefore in C sub-collections, each of which is allocated to
a “column” of R processors, which will hold the index of that collection with
a term-based partitioning. This two-dimensional scheme brings about different
ways of evaluating a query. The one studied in this paper is to first distribute
the query among the columns (the processors that contain query terms in each
column) as with a local index. Then, at each column, the intersection must be
resolved as in a global index by invoking the processors of the column that hold
the required terms, and finally merging the results obtained at each column.

In the case R = 1, C = P (document partitioned index), each processor holds
the posting lists of the whole set of terms appearing in the documents assigned to
it. Conversely, when the index is term partitioned (R = P, C = 1), the documents
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are considered as an indivisible package. As soon as we leave these extreme cases
to consider a 2D scheme with more than one row and more than one column,
the need appears of dealing simultaneously with term and document partitions.
The question that arises is: once that C and R are fixed, how the two kind of
partitions can be optimized? This question regards not only which technique or
criteria is used to optimize each of them but, and this is a novelty specific to the
two-dimensional partitioning of the index, how the two partitions are combined.
For example, the partition of the terms could be done independently of how
the documents will be partitioned. Or the terms could be partitioned taking
into account the information of the document partition. Also we could partition
first the terms and then the documents, and many other possibilities. To make
things more complex, in each of those schemes one can use different algorithms
for term and document partition, yielding an enormous amount of possibilities.
There is a wide literature regarding how these partitions can be optimized (see
for example [5,7,12,13,15,16]). The different trade-offs must be evaluated upon a
baseline cost model which we develop in the following. In Section 3 we describe
the particular algorithms we used to partition both terms and documents.

Basic Cost. The processing of a query can be decomposed in a series of op-
erations that are executed in different processors. These are the primitive oper-
ations such as broadcast or communication, list intersection, merging, ranking,
etc. Each of these operations has a cost, and their sum conforms the computa-
tion and communication cost of a query. In addition, each processor incurs in
a certain overhead due to hardware use, network access and system scheduling
tasks among others. The weight of these overheads in the total cost turns out to
be high, so it cannot be neglected. In a local index the number of participating
processors per query is much greater than in the global scheme.

In the following we will assume that a certain number q of queries are initially
presented at every processor and then new queries arrive as the system delivers
answers for previous queries. So, at every moment there are q ∗ P live queries in
the system. In that framework, providing that a good load balance is obtained,
we can assume that the whole set of P processors can work in parallel, and there
will not be idle times. To simplify, from now on we will consider only two-term
queries of the form t1 ∧ t2. We will use the following notation:

– ti(x, y): Expected time employed by a processor to compute the intersection
of two lists of lengths x and y respectively.

– tm(x): Expected time employed by a processor to merge a set of lists of total
length x.

– tr(x): Expected time employed by a processor to rank a list of length x.
– I(x, y) : the expected length of the intersection of two lists of length x

and y.
– γ: time employed to transmit a unit of information from one processor to

another.

Let � be the expected length of a posting list (considering all the files of the
system). We will assume that to prepare a result list of K results using a local
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index distributed among P processor, each processor will send to the originator
of the query its best 2K/P postings and that the 2K results obtained that way
are, with high probability, enough to answer the query. Was that not the case,
another extra request would be generated for a subset of the processors, but we
ignore that in this paper.

Local Index. The sequence of tasks performed in parallel at each of the P pro-
cessors for a set of q queries, and their corresponding costs, can be described as
follows:

Action Cost
Broadcast the q queries of each processor to all other processors q(P − 1)γ
For each query two lists of expected length �/P are intersected qP ti( �

P
, �

P
)

For each of the q ∗ P queries, the resulting lists are ranked qP tr(I( �
P

, �
P

))
For each query, send 2k

P
results to the originator of the query qP 2k

P
γ

For each query originated at that proc., merge the P lists received qtm(2K)

Global Index. Let �min be the expected length of the shortest among the two
posting lists of the terms of a query. Let α(X) be the probability of co-residence
of the two terms of a query given that the terms are partitioned in X processors.
With probability (1 − α(P )) the query should be distributed among two proces-
sors, so we need to broadcast the two terms to the two processors holding them,
and the processor holding the shortest among the two lists send it to the other
one. With probability α(P ) the two terms are co-resident in one processor, so
the query must just be sent to it. In both cases, the processing is completed by
intersecting the two lists, ranking the result and sending the best K elements to
the originator of the query. All this can be summarized in the following table.
Recall that we are assuming that q queries are submitted to each processor, so
the probabilities α(P ) and (1−α(P )) can be interpreted as fractions of the total
number of queries.

Action Cost
(Non co-residence) Send the terms to their two processors (1 − α(P ))q2γ

(Non co-residence) The shortest list is sent to the other processor (1 − α(P ))qγ�min

(Co-residence) Send the two terms to one processor α(P )qγ
Intersect the two lists l qti(�, �)
Rank the resulting list qtr(I(�, �))
The best K elements of the resulting list are sent to the originator qKγ

2D Index. We will analyze this model assuming we have R rows and C =
P/R columns. The sequence of tasks to be developed at each processor (always
assuming q queries per processor) starts with the broadcast of the q queries to
each of the C columns (to a random processor at the column). The R processors
of each column must then resolve a total of qP queries, so each one of them
will hold expectedly qP

R = qC queries. So this part will be executed in parallel
by the C columns, and within each column by the R processors of the column,
therefore we can think that the P processors are working in parallel. In each
column the terms may be co-resident at the same processor (row) or not, with
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probabilities respectively α(R) and (1−α(R)), so different tasks will be executed
for the corresponding fraction of the queries. After that, always at column level,
but with the C columns working in parallel, intersection and ranking of the lists
(q ∗ C queries at each processor). Finally, each column (actually, the processor
in the column that has computed and ranked the intersection) must send its
results to the originator of the query, that will merge the results.

Action Cost
Broadcast the q queries to a random processor in each column qCγ

(Non co-residence) Send the two terms and then send the shortest
list from one processor to the other one

(1 − α(R))∗
(qC2γ + qCγ�min)

(Co-residence) Send the two terms to their processors α(R)qCγ

q ∗ C intersections of lists of expected length �/C qCti(�/C)
q ∗ C rankings of the lists at each processor qCtr(I(�/C, �/C))
For each of the qC queries, send 2K

C
results to its originator qC 2K

C
γ

Merge the C lists of length 2K/C received in each processor qtm(2K)

Overhead. To compute the real cost associated with a query we have to add to
the expressions developed in the previous section a fixed cost or overhead (that
we will denote as β). This will be counted for every processor participating in
a query. In a local index each query will have an overhead of P ∗ β. In a global
index the terms may be co-resident or not at each column, so the overhead may
be seen as a random variable with expected value (α(P ) + (1 − α(P )) ∗ 2) ∗ β.
Finally, in the general 2D case with R rows, one or two processors participate at
each column so the expected value of the overhead is C∗(α(R)+(1−α(R))∗2)∗β.

3 Experimental Evaluation

For term partition we used a term-clustering heuristic oriented to reducing com-
munication cost and at the same time maintaining the load balance of the system.
This heuristic, based on the one used in [8], tries to assign to the same machine
pairs of terms of high cost (a function of the relative frequency and length of
the shortest posting lists of its terms). We will refer to this heuristic as TCH.
The basic heuristic that we used for document clustering tries to group similar
documents (cosine measure) and assign them to the same processor. It starts
with a certain number of documents that are chosen initially as cluster centers.
These cluster centers are selected so that they are sufficiently different from
each other. Then we insert into each cluster the documents that are closer to
each cluster center. Finally, the clusters are assigned to the different machines
in a round-robin fashion [3]. We will refer to this heuristic as DCH. For docu-
ment partitioning we also consider a simple Random partition (DRH). The first
two-dimensional heuristics we considered were to partition terms and documents
independently, using TCH for terms and either DRH or DCH for the documents.
We will refer to these heuristics as 1.a and 1.b respectively.

Another family of heuristics consists in partitioning first the documents, using
either DRH or DCH, and then the terms using TCH separately for each column,
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taking into account the documents that were assigned to each column (heuristics
2.a and 2.b respectively). Also by first partitioning documents we could use the
information of that partition to produce one single partition for the terms to
be used across all the columns. These heuristics will be referred to as 3.a (with
DRH) and 3.b (with DCH).

A different approach may be taken if we first partition the terms and then
the documents. Given as input an initial partition of the terms, the heuristic
4 tries to distribute the documents among the columns so as to minimize the
communication cost. We consider only pairs of non co-resident terms (as co-
resident pairs will not require further communication). The intuition behind the
heuristic is to try to minimize in two ways the lengths of the posting lists that
must be transfered: (a) separating in different columns documents that are not
part of the intersection of popular pairs, and (b) minimizing the length of the
shortest posting list at each column by increasing the variance of the lengths of
the lists. The (last) heuristic 5 constructs the partitions of terms and documents
simultaneously, considering pairs of queries one by one, in decreasing order of
cost. For each query, it decides whether to consider it to group together its terms,
or to separate the documents of their posting lists.

The final expression for the cost of a single query will be obtained by considering
the computation and communication costs plus the overhead incurred by every
participating processor. For that, we need to adapt the values given in Section 2
to an individual query instead of a set of q queries, getting a per-query cost of:

Cγ + (1 − α(R))(C2γ + C�minγ + 2Cβ) + α(R)(Cγ + Cβ) + (1)

Cti(�/C) + Ctr(I(�/C, �/C)) + C
2K

C
γ + tm(2K)

This formula is valid for the case in which the term partition is uniform across
all the columns (i.e. the two terms of a query are assigned to the same row at
each column), and therefore are co-resident or not uniformly in all the columns.

We did our experiments on two inputs: Collection 1 is a sample of the Chilean
web with ≈ 160K documents, Collection 2 contains a subset of ≈ 2M documents
of a 1.5TB sample of the UK’s web and ≈ 250K queries taken from a one-year log
of a major search engine’s site. We simulated and measured the performance of
every heuristic with different configurations on P = 256 processors. The number
of rows ranged from 1 (local indexing) to 256(global-indexing) using successive
powers of two.

For the simulation we defined particular costs for the different primitive func-
tions, based on benchmarking runs we did on the same collections. The val-
ues are expressed relative to a base-line in terms of ranking time defined as
tr(x) = x. Intersection and merge operations require in average ti(x, y) =
min(x log(y), x + y)/4 and tm(x) = x/4 respectively. The values for β and γ
were chosen to achieve proper agreement with what we have observed using
two actual implementations of document- and term-partitioned inverted files for
disjunctive queries. We run experiments on the two indexes, in which the pure
global index resulted on average 20% more efficient than the pure local one, so
the values for β and γ were chosen so as to satisfy that relation.
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Fig. 1. Normalized costs as a function of number of columns, for different heuristics

The graphics in figure 1 summarizes the results of our simulation. It shows
total costs (processing+communication+overhead) as a function of the number
of columns, for the two collections. All the costs were normalized by dividing
them by the maximum cost, that occurs for all the heuristics when the number
of columns is 256 (i.e. when the 2D index becomes a simple local index). We
observe that an important improvement in the cost is achieved by arranging the
256 processors in a two-dimensional array, of 8 × 32 or 4 × 64, for all heuristics.
Therefore, the main claim that an improvement can be obtained with a 2D index
against the classical local and global indexes is verified.

It may be observed that there is not a big difference in the performances of the
heuristics, although heuristics 4 and 5 behave consistently better than the others
in almost all configurations (the latter being a bit better in general). Note that
heuristics 4 and 5 cannot be applied for simple local and global indexes. These seem
to be the only heuristics that take advantage of the two-dimensional structure and
the possibility of combining clustering techniques for terms and documents. The
results shown in the figure were computed for particular values of the parameters
β and γ. The difference between the best and worst configurations is of more than
20%.

4 Conclusions and Further Work

The preliminary results obtained in our simulations are a positive signal towards
the continuation of our study in that direction. An immediate task we have to
focus on is the realization of further and deeper experiments, with real executions
in real environments, with larger document collections and query logs. Those
experiments should include the usage of different total number P of processors.

An interesting subject of further research regards the possibility of dynami-
cally reconfiguring the arrangement of the processors to adapt to different types
of queries, and also the use of non rectangular arrangements (rows or columns
of different length). Finally, we plan to analyze how do different ranking policies
at row and column level may affect the performance of the system.
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Abstract. We introduce two new index structures based on the q-gram
index. The new structures index substrings of variable length instead of
q-grams of fixed length. For both of the new indexes, we present a method
based on the suffix tree to efficiently choose the indexed substrings so
that each of them occurs almost equally frequently in the text. Our
experiments show that the resulting indexes are up to 40 % faster than
the q-gram index when they use the same space.

1 Introduction

We consider indexing a text for exact and approximate string matching. Given a
text T = t1t2 . . . tn, a pattern P = p1p2 . . . pm, and an integer k, the approximate
string matching problem is to find all substrings of the text such that the edit
distance between the substrings and the pattern is at most k. The edit distance
of two strings is the minimum number of character insertions, deletions, and
substitutions needed to transform one string into the other. We treat exact
string matching as a subcase of approximate string matching with k = 0.

Partitioning into exact search is a popular technique for approximate string
matching both in the online case [1,2,11,13], where the text is not preprocessed,
and in indexing approaches [3,4,7,10,12], where an index of the text is built.
Suppose that the edit distance between two strings, S and R, is at most k. If we
split S into k + 1 pieces, then at least one piece must have an exact occurrence
in R. In the online approach, we thus split the pattern into k + 1 pieces, search
for all the pieces in the text, and verify all the matches found for approximate
occurrences of the whole pattern using a dynamic programming algorithm that
runs in O(m2) time per verification. In the indexing approach we have two
options. If we index all text positions, we can proceed as in the online case: split
the pattern into k +1 pieces, search for all the pieces in the index, and verify all
the matches found. Another option is to index the text at fixed intervals. Now we
search for all pattern substrings of corresponding length in the index and verify
� Supported in part by Millennium Institute for Cell Dynamics and Biotechnology

(ICDB), Grant ICM P05-001-F, Mideplan, Chile.
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1 2 3 4 5 6 7 8 9 0 1

a a a b a a b b a a $

2-gram positions difference coded positions

aa 1, 2, 5, 9 1, 1, 3, 4
ab 3, 6 3, 3
a$ 10 10
ba 4, 8 4, 4
bb 7 7

Fig. 1. The 2-grams and the 2-gram index of the text T = “aaabaabbaa$”

the matches found to obtain the approximate occurrences of the whole pattern.
The q-gram index of Navarro and Baeza-Yates [7] takes the former approach,
while the q-samples index of Sutinen and Tarhio [12] utilizes the latter technique.

A problem of the q-gram index is that some q-grams may be much more
frequent than others, which raises verification costs. A technique to choose the
k + 1 optimal pieces [7] was designed to alleviate this problem. In this work we
develop two new indexes, the prefix free and the prefix coalesced index, based
on the q-gram index [7]. The new indexes index substrings of variable length
instead of q-grams of fixed length. The goal is to achieve roughly similar lengths
in all position lists. In the prefix free index the set of indexed substrings forms a
prefix free set, whereas in the prefix coalesced index this restriction is lifted. The
experimental results show that the new indexes are up to 40% faster than the
q-gram index for the same space. Alternatively, the new indexes achieve as good
search times as the q-gram index using less space. For example, when m = 20
and k = 2 the new indexes are as fast as the q-gram index using 30% less space.

2 q-Gram Index

In this section we review previous work on the q-gram index [7], which indexes all
q-grams of the text and uses partitioning into exact search to locate occurrences
of a pattern. The value of q is fixed at construction time, and the q-grams that
occur in the text form the vocabulary of the index. Together with each q-gram
the index stores a list of positions where the q-gram occurs in the text. To save
space the position lists are difference coded and compressed with variable length
integer coding. The q-gram index can be built in O(n) time [7]. Figure 1 shows
the 2-grams of the text “aaabaabbaa$” and the corresponding 2-gram index.

To search for a pattern P with at most k differences, we first extract k+1 non-
overlapping q-grams from the pattern. We then search for all these q-grams in the
index and finally use dynamic programming to verify the positions returned by
this search. For example, to search for the pattern P = “abbab” with at most k =
1 difference in the 2-gram index of Fig. 1, we first extract two non-overlapping
2-grams from the pattern: “ab” and “ba”. Search on the index returns positions
3 and 6 for “ab” and positions 4 and 8 for “ba”. Verifying around these positions
we obtain the occurrences starting at positions 3 and 6.

In real texts some q-grams occur much more frequently than others, and if the
pattern is longer than (k+1)q, we have several different ways of choosing the k+1
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1. for (i = 1; i ≤ m; i++)
2. P [i, 0] = R[i, m + 1]
3. C[i, 0] = m + 1
4. for(r = 1; r ≤ k; r++)
5. for(i = 1; i ≤ m − r; i++)
6. P [i, r] = min(R[i, j] + P [j, r − 1] | i < j ≤ m − r + 1)
7. C[i, r] = j that minimizes the above expression

Fig. 2. The dynamic programming algorithm for the optimal partitioning of the pattern

non-overlapping q-grams. Therefore we can speed up verification considerably by
choosing the q-grams carefully. Furthermore, the pieces do not need to have the
exact length q. If a piece is shorter than q, we find all q-grams starting with the
piece in the index and verify all their positions. If the piece is longer than q, we
search for the first q-gram of the piece in the index. By allowing pieces shorter
than q, we can also search for patterns shorter than (k + 1)q.

Navarro and Baeza-Yates [7] give the following method for finding the optimal
partitioning of the pattern. It is relatively fast to compute the number of verifica-
tions a pattern piece will trigger. We use binary search to locate the q-gram(s) in
the index and obtain a contiguous region of q-grams. If we store the accumulated
list lengths, the number of verifications can easily be calculated by subtracting
the accumulated list lengths at the endpoints of the region. By performing this
search for all pattern pieces, we obtain a table R where R[i, j] gives the number of
verifications for the pattern piece pi . . . pj−1. Based on this table, we use dynamic
programming to compute the table P [i, k], which gives the total number of trig-
gered verifications for the best partitioning for pi . . . pm with k differences, and
the table C[i, k], which gives the position where the next piece starts in order to
get P [i, k]. We then find the smallest entry P [�0, k] for 1 ≤ �0 ≤ m−k, which gives
the final number of verifications. The pattern pieces that give this optimal num-
ber of verifications begin at �0, �1 = C[�0, k], �2 = C[�1, k − 1] . . . �k = C[�k−1, 1].
Figure 2 gives the pseudo code for the dynamic programming algorithm to find
the optimal partitioning of the pattern. It runs in O(km2) time, whereas R is
easily built in O(qm log n) time, which can be reduced to O(qm log σ), where σ
is the alphabet size, if the q-gram vocabulary is stored in trie form.

3 Prefix Free Index

Our new variants of the q-gram index index substrings of varying length instead
of q-grams of fixed length. The indexed substrings form the vocabulary of the
index. The aim is to choose the vocabulary so that each position of the text is
indexed and the lengths of the position lists are as uniform as possible. In the
first variant, the prefix free index, we further require that the vocabulary is a
prefix free set, i.e. no indexed substring is a prefix of another indexed substring.

Let α be the threshold frequency and let the frequency of a string be the
number of occurrences it has in the text T . Note that the frequency of the empty
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substring positions difference coded
positions

aaa 1 1
aab 2, 5 2, 3
aa$ 9 9
ab 3, 6 3, 3
a$ 10 10
b 4, 7, 8 4, 3, 1

(a) Prefix free index

substring positions difference coded
positions

aa 1, 9 1, 8
aab 2, 5 2, 3
ab 3, 6 3, 3
a$ 10 10
ba 4, 8 4, 4
bb 7 7

(b) Prefix coalesced index

Fig. 3. A prefix free index and a prefix coalesced index for the text T = “aaabaabbaa$”

string is n. The vocabulary now consists of all such substrings S = s1 . . . si of
the text that the frequency of S is at most α and the frequency of the prefix
s1 . . . si−1 is greater than α. This choice ensures that the vocabulary is a prefix
free set and no position list is longer than α. Again the position lists are difference
coded and compressed with variable length integer coding. Figure 3(a) shows an
example of a prefix free index with threshold frequency three.

To search for a pattern P with at most k differences, we first split the pattern
into k +1 pieces and search for each piece in the index. If the indexed substrings
starting with the piece are longer than the piece, we return all positions associ-
ated with any substring starting with the piece. If an indexed substring is a prefix
of the piece, we return the positions associated with that indexed substring. The
positions returned by this search are then verified with the O(m2) dynamic pro-
gramming algorithm to find the approximate occurrences of the pattern. As an
example consider searching for the pattern P = “abbab” in the prefix free index
of Fig. 3(a) with at most k = 1 difference. We start by splitting the pattern into
two pieces: “ab” and “bab”. The search for “ab” in the index returns positions
3 and 6 and the search for “bab” returns positions 4, 7, and 8. We then verify
around these positions and find the occurrences starting at positions 3 and 6.

Although the lengths of the position lists are more uniform than in the q-gram
index, we still benefit from computing the optimal partitioning of the pattern.
First of all, the lengths of the position lists still vary, and thus the number of
verifications can be reduced by choosing pattern pieces with short position lists.
Secondly, if the pattern is too short to be partitioned into long enough pieces
such that we would get only one position list per pattern piece, it is not clear
how to select the pieces without the optimal partitioning technique.

Finding the optimal partitioning of the pattern works similarly to the q-gram
index. We first use binary search to locate the indexed substring(s) corresponding
to each pattern piece pi . . . pj−1 for 1 ≤ i < j ≤ m + 1. This search returns
a contiguous region of indexed substrings. If we again store the accumulated
position list lengths, we can determine the number of triggered verifications fast.
This number is stored in the table R[i, j]. We then compute the tables P [i, k]
and C[i, k] and obtain from these tables the optimal partitioning of the pattern.
The overall time to find the optimal partitioning is O(m2(log n + k)).
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To choose the vocabulary of the index, we use a simplified version of the
technique of Klein and Shapira [5] for constructing fixed length codes for com-
pression of text. Their technique is based on the suffix tree of the text. A cut in
a suffix tree is defined as an imaginary line that crosses exactly once each path
in the suffix tree from the root to one of the leaves. The lower border of a cut
is defined to be the nodes immediately below the imaginary line that forms the
cut. Klein and Shapira show that a lower border of a cut forms a prefix free set
and a prefix of each suffix of the text is included in the lower border. Thus the
lower border of a cut can be used as a vocabulary in the prefix free index.

We choose the vocabulary as follows. First we build the suffix tree of the text
and augment it with the frequencies of the nodes. The frequency of a node is
the frequency of the corresponding substring of the text. We then traverse the
suffix tree in depth first order. If the frequency of a node is at most the threshold
frequency α, we add the corresponding string S to the vocabulary and we also
add the corresponding leaves to the position list of the string S.

The suffix tree can be built in O(n) time. The traversal of the tree also takes
O(n) time and we do O(1) operations in each node. After the traversal the posi-
tion lists are sorted, which takes O(n log α) total time. Finally the position lists
are difference coded and compressed taking O(n) total time. Thus the construc-
tion of the prefix free index takes O(n log α) time.

4 Prefix Coalesced Index

In the second new variant of the q-gram index, the prefix coalesced index, we
require that the vocabulary includes some prefix of each suffix of the text, and
if the vocabulary contains two strings S and R such that R is a proper prefix of
S, then all positions of the text starting with S are assigned only to the position
list of S. Again the position lists are difference coded and the differences are
compressed with variable length integer coding.

To choose the vocabulary, we build the suffix tree of the text and augment it
with the frequencies of the nodes. The suffix tree is traversed in depth first order
so that the children of a node are traversed in descending order of frequency.
When we encounter a node whose frequency is at most the threshold frequency
α, we add the corresponding string to the vocabulary, subtract the original fre-
quency of this node from the frequency of its parent node and reconsider adding
the string corresponding to the parent node to the vocabulary. When a string is
added to the vocabulary, we also add the leaves to its position list. Figure 3(b)
shows an example of a prefix coalesced index with threshold frequency two.

The suffix tree can again be built in O(n) time. Because we need to sort the
children of each node when traversing the suffix tree, the traversal now takes
O(n log σ) time, where σ is the size of the alphabet. After the traversal the
handling of the position lists takes O(n log α) as in the prefix free index. Thus
the construction of the prefix coalesced index takes O(n(log α + log σ)) time.

We refine the searching procedure as follows. We again start by splitting the
pattern into k + 1 pieces and search the index for each piece. If the piece is a
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prefix of several indexed substrings, we return all position lists associated with
these indexed substrings. If an indexed substring is a proper prefix of the piece,
we return only this position list. Otherwise searching on the index and optimal
partitioning of the pattern work exactly the same way as in the prefix free index.

5 Experimental Results

To save space our implementations of the prefix free and the prefix coalesced
indexes use a suffix array [6] instead of a suffix tree when constructing the index.
The traversal of the suffix tree is simulated using binary search on the suffix array.

For compressing the position lists in all the indexes, we use bytewise compres-
sion of the differences. In this scheme, the highest bit is 0 in the last byte of the
coding and 1 in other bytes. The integer is formed by concatenating the seven
lowest bits of all the bytes in the coding.

The experiments were run on a 1.0 GHz AMD Athlon dual core processor with
2 GB of memory, running Linux 2.6.23. The code is in C and compiled with gcc
using -O2 optimization. We used the 200 MB English text from the PizzaChili
site, http://pizzachili.dcc.uchile.cl, and the patterns are random sub-
strings of the text. For each pattern length, 1,000 patterns were generated.

Figure 4 shows the search times for the q-gram index and the prefix free and
prefix coalesced indexes for various pattern lengths and values of k. The q-gram
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Fig. 4. Search times for the different indexes for various values of k and m. The space
fraction includes that of the text, so it is of the form 1 + index size

text size
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Fig. 5. The vocabulary size and the construction time of the q-gram index and the
prefix free and prefix coalesced indexes as a function of space usage

index was tested with 5 values of q: 4, 5, 6, 7, and 8. The prefix free index was
tested with 7 values for the threshold frequency α: 200, 500, 1,000, 2,000, 5,000,
10,000, and 20,000. The prefix coalesced index was also tested with 7 values for
the threshold frequency α: 100, 200, 500, 1,000, 2,000, 5,000, and 10,000. We see
that the new indexes generally achieve the same performance as the q-gram index
using less space. The prefix coalesced index allows more flexibility in selecting
the vocabulary, and so the position list lengths are more uniform than in the
prefix free index. Thus the search times in the prefix coalesced index are slightly
lower than in the prefix free index. However, when we reduce the available space
the prefix free index becomes faster than the prefix coalesced index.

Figure 5 shows the vocabulary size for the different indexes. We see that the
vocabulary of the q-gram index is much larger than the vocabulary of the prefix
free and the prefix coalesced indexes. Some of the q-grams are very frequent
in the text and their long position lists compress very efficiently, allowing the
q-gram index to use a larger vocabulary. In the prefix free and prefix coalesced
indexes the position lists have a more uniform length, and thus these lists do not
compress as well, so the vocabulary is much smaller. We can also see that the
vocabulary of the prefix free index is larger than the vocabulary of the prefix
coalesced index, again reflecting the lengths of the position lists.

Figure 5 also shows the construction time for the different indexes. The con-
struction time of the prefix free and prefix coalesced indexes increases only little
when space usage is increased because the most time consuming phase of their
construction is the construction of the suffix array, which takes the same time
regardless of the space usage of the final index.

6 Conclusions and Further Work

We have presented two new indexes for exact and approximate string matching
based on the q-gram index. They index variable length substrings of the text
to achieve more uniform lengths of the position lists. The indexed substrings in
the prefix free index form a prefix free set, whereas in the prefix coalesced index
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this restriction is lifted. Our experiments show that the new indexes are up to
40% faster than the q-gram index for the same space. This shows that lists of
similar length are definitely beneficial for the search performance, although they
are not as compressible and thus shorter substrings must be indexed.

Our techniques receive a parameter α, giving the maximum allowed list length,
and produce the largest possible index that fulfills that condition. Instead, we
could set the maximum number of substrings to index, and achieve the most
uniform possible index of that vocabulary size. For this we would insert the
suffix tree nodes into a priority queue that sorts by frequency, and extract the
most frequent nodes (with small adaptations depending on whether the index is
prefix free or prefix coalesced). The construction time becomes O(n log n).

Future work involves extending more sophisticated techniques based on q-
grams and q-samples, such as those requiring several nearby pattern pieces to be
found before triggering a verification, and/or based on approximate matching of
the pattern pieces in the index [8,9].
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Abstract. We study a problem related to the extraction of over-
represented words from a given source text x, of length n. The words
are allowed to occur with k mismatches, and x is produced by a source
over an alphabet Σ according to a Markov chain of order p. We propose
an online algorithm to compute the expected number of occurrences of
a word y of length m in O(mk|Σ|p+1). We also propose an offline algo-
rithm to compute the probability of any word that occurs in the text
in O(k|Σ|2) after O(nk|Σ|p+1) pre-processing. This algorithm allows us
to compute the expectation for all the words in a text of length n in
O(kn2|Σ|2+nk|Σ|p+1), rather than in O(n3|Σ|p+1) that can be obtained
with other methods. Although this study was motivated by the motif dis-
covery problem in bioinformatics, the results find their applications in
any other domain involving combinatorics on words.

1 Introduction

The problem of extracting unusually frequent or rare patterns from observed
sequences has been the subject of much study in Molecular Biology. The prob-
lem can be set up under different assumption about the model of the patterns
to discover, called motifs, and the algorithmic approach (see [3,6,9] and refer-
ences within). The inherent variability of biological sequences brings about the
problem of how to account for mutations, insertions or deletions, and how one
should define the motif search space [8]. Profile-based models are often used with
maximum-likelihood approaches [2], while pattern-based models exploit signifi-
cance measures such as z-scores or p-values [5,7] to discern between interesting
and uninteresting patterns. We are specifically interested in this latter case when
the variability is measured by Hamming distance. About the definition of the
search space, a general framework would consider as a valid motif any string
generated from the given alphabet. This approach is very rigorous, but it suf-
fers from an intrinsic exponential complexity. An alternative framework, called
sequence based, would consider as valid motifs only those strings that actually
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occur at least once in the sequence to analyze. Indeed, it is reasonable to expect
that at least one instance of the motif, or part of it that can be used as an
anchor, occurs exactly in the sequence under analysis.

Here the problem under study is the computation of the expected frequency
with mismatches of motifs that occur in the input sequence at least once. The
background distribution is a Markov chain. This is a more realistic framework
than independent and identically distributed (i.i.d.). In Sec.2 we give basic defi-
nitions and previous work. In Sec.3 we present Algorithm 1 for the online compu-
tation of the expected frequency of a single word of length m with k mismatches
in O(mk|Σ|p+1) for a Markov chain of order p. In Sec.4 we present Algorithm 2 to
compute the expected frequency of any word in a text of length n in O(k2|Σ|) af-
ter O(nk|Σ|p+1) preprocessing. This algorithm computes the expected frequency
with k mismatches of all the words in the text in O(nk|Σ|p+1 + n2k2|Σ|) versus
O(n3|Σ|p+1) of existing methods or direct application of Algorithm 1.

2 Preliminaries

We are interested in computing the expectation of the substrings of the text.
These could next be used to compute some kind of z -score based on the com-
parison of actual and expected frequency.

2.1 Basic Definitions

Let us consider a text string X = X1X2 . . . Xn, randomly generated by a source
that emits symbols from an alphabet Σ according to a given probability distri-
bution ℘. Given an arbitrary fixed pattern y = y1y2 . . . ym, with m ≤ n, and a
fixed number of mismatches k ≤ m, then the indicator variable Zi takes value 1
if y occurs starting at position i in X , 0 otherwise. Then Z =

∑m−n+1
i=1 Zi is the

random variable that counts the number of occurrences of y in X .
If the Xi are identically distributed, i.e. P (Xi = yj) = pj for every i, where

pj is the probability of the symbol yj according to ℘, and independent, then the
expected probability for y to occur at position i is:

E(Zi|y) = P (Xi = y1, . . . , Xi+m−1 = ym) =
m∏

j=1

P (Xi+j−1 = yj) =
m∏

j=1

pj = p̂

Thus, the expected number of occurrences is E(Z|y) = (n − m + 1)p̂.
If we assume that the Xi are dependent according to a Markov chain of order

M , then we will have a similar formula, but with conditional probabilities. For
example, for order M = 1 we have:

E(Zi|y) = p1

m∏

j=2

(pj |pj−1)
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2.2 Previous Work on Expectation with Mismatches

The expected number of occurrences with k mismatches for a word y is given
by the summation of the expectation of all the words that belong to the neigh-

bor at distance k from y. This neighborhood has size
(

m
k

)

|Σ − 1|k, and the

computation of each probability takes m steps.
In [1] a dynamic programming approach is proposed to compute the expected

probability with k mismatches, under i.i.d. hypothesis, for words that occur in a
text of length n. The expectation of any word in the text is computed in O(k2)
time after O(kn) pre-processing. The expectation of all the words of fixed length
m is computed in O(kn), hence amortized O(k) time per word.

In [4] a different approach is proposed that computes the expectation of a
generic word y ∈ Σ∗, in time O(|y|k) under i.i.d. hypothesis, and O(|y|k|Σ|p+1)
under Markov chain of order p.

3 Expectation with Mismatches: Algorithm 1

The naive approach consists in the enumeration of all the possible ways to dis-
tribute the k mismatches among the m position of the pattern, hence it has the
same time complexity than for the i.i.d. naive approach: O(mk+1|Σ|k), that is
exponential in the number of mismatches.

3.1 Online Algorithm 1

Here we describe an algorithm for Markov chains of the first order that runs in
O(mk|Σ|2). Our approach consists in the generation of all possible distribution
of mismatches, rather than all possible patterns in the k-neighborhood of y. In
practice we consider an alphabet Λ = {C, W}, where ‘C’ is correct, and ‘W’ is
wrong, i.e. a mismatch. For example, the string “CCWCWC” means that, in a
pattern of length six, two mismatches occur at positions three and five. A string
w ∈ Λm is called (m,k)-mismatch pattern or simply mismatch pattern when m
and k are clear from the context.

Building the (m,k)-Tree. Let us consider a pattern y = y1y2 . . . ym, and k
mismatches. To visualize all possible mismatch patterns we build a tree T of
height m, called (m, k)-Tree. Each node of the tree has at most two children. A
node at height h (depth from the root m− h + 1) is associated with the symbol
yh+1. If the node is the left child of its parent then position h is correct, otherwise
it is the site of a mismatch. For ease of visualization we labeled the arcs with the
symbols taken from Λ, so that the mismatch patterns can be spelt out by the
concatenation of the arc labels on the paths from any leaf up to the root node.

Whenever a mismatch occurs, any of the |Σ| − 1 symbols that are different
from the correct one can replace it. Hence, the expectation of the pattern with
mismatches depends on which symbol was chosen for the substitution. Since
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Fig. 1. An example of (m, k)-Tree for patterns of length m = 6 and k = 4 mismatches

we must consider all possible substitutions we associate each node to a vector
v=[v1v2 . . . v|Σ|]. The vector associated with a node u at height h will store
the probability of y1 . . . yh to occur with a number of mismatches given by the
number of right children in the path from u to any of its leaves. In particular
vi will store the contribution to this probability given by the strings that have
the ith symbol of the alphabet Σ in their last position. The overall probability
is given by |v|.
Example for aabcab
Let us consider the node 14 in Fig.1. This node is associated with the strings
āabc̄, aābc̄, and aab̄c̄. Assuming that a is the first symbol of Σ, b the second, and
so on, we will have that v1 will store the probability of having either āab, aāb,
and aab̄ in the first three positions of the pattern, and a in the fourth position.
Similarly, v2 will store the probability of having either āab, aāb, and aab̄ in the
first three positions of the pattern, and b in the fourth position, and so on.

3.2 The Algorithm

To obtain the overall probability of y with k mismatches under the first order
Markov chain hypothesis we proceed bottom up, from the leaves to the root. At
each step for a generic node u we sum the vectors of the left child vl and of the
right child vr, to obtain a vector t = vl + vr. This vector is multiplied by a
matrix that gives conditional probabilities with respect to the symbol assigned
to the node u. Finally, we sum up the content of the vector at the root node to
obtain the value of the expectation. We explain the algorithm with the help of
the example in Fig.2, where a (3,2)-Tree is built for y = abb and Σ = {a, b, c, d}.
Initial Set Up. Consider a leaf that is a left child of its parent. This means that
the first letter of y, an a in our example, is correct, hence the vector v of the
leaf must be initialized with the value [Pa, 0, 0, 0]. This is the case of node 9. On
the other hand, a leaf that is a right child of its parent must be initialized with
[0, Pb, Pc, Pd]. This is the case of both nodes 7 and 8.

Propagation. Consider now a generic node u. First of all the vectors of its children
nodes must be summed to obtain the vector t. This takes O(|Σ|) time. Next we
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   [P(a|a),P(a|b),P(a|c),P(a|d)]    [Pa]
   [  0   ,  0   ,   0  ,   0  ]    [0 ] 
n6=[P(c|a),P(c|b),P(c|c),P(c|d)] *  [0 ] 
   [P(d|a),P(d|b),P(d|c),P(d|d)]    [0 ] 

C =(b)

C =(b)

C =(a)

W = (not b)

W = (not b)

W = (not a)

W =(not b)

W =(not a)

1

2 3

4 5 6

7 8 9

n7=[0,Pb,Pc,Pd] n8=[0,Pb,Pc,Pd] n9=[Pa,0,0,0]

   [P(a|a),P(a|b),P(a|c),P(a|d)]    [         P(a|a)Pa         ]
   [  0   ,  0   ,   0  ,   0  ]    [P(b|b)Pb+P(b|c)Pc+P(b|d)Pd] 
n3=[P(c|a),P(c|b),P(c|c),P(c|d)] *  [         P(c|a)Pa         ] 
   [P(d|a),P(d|b),P(d|c),P(d|d)]    [         P(d|a)Pa         ]

   [  0   ,  0   ,   0  ,   0  ]    [0 ]
   [P(b|a),P(b|b),P(b|c),P(b|d)]    [Pb]
n5=[  0   ,  0   ,   0  ,   0  ]  * [Pc] 
   [  0   ,  0   ,   0  ,   0  ]    [Pd] 

   [P(a|a),P(a|b),P(a|c),P(a|d)]    [0 ]
   [  0   ,  0   ,   0  ,   0  ]    [Pb] 
n4=[P(c|a),P(c|b),P(c|c),P(c|d)] *  [Pc] 
   [P(d|a),P(d|b),P(d|c),P(d|d)]    [Pd] 

   [  0   ,  0   ,   0  ,   0  ]    [P(a|b)Pb+P(a|c)Pc+P(a|d)Pd]
   [P(b|a),P(b|b),P(b|c),P(b|d)]    [            0             ] 
n2=[  0   ,  0   ,   0  ,   0  ] *  [P(c|b)Pb+P(c|c)Pc+P(c|d)Pd] 
   [  0   ,  0   ,   0  ,   0  ]    [P(d|b)Pb+P(d|c)Pc+P(d|d)Pd] 

Fig. 2. An example of bottom-up propagation of the conditional probabilities from the
leaves to the root node. The sum of the elements of the vector at the root node gives
the total probability of having y = abb with 2 mismatches.

must consider whether u is a left or a right child, and what is the symbol s
associated with its height.

If u is a left child, then the symbol s is correct in this path. We compute
the product between t and the vector p = (P (s|s1), P (s|s2), . . . , P (s|s|Σ|)) of
conditional probabilities of s. This takes time O(|Σ|).

If u is a right child, then the symbol s is a mismatch in this path. In this case
we have to perform the same computation as before for all the symbols s′ ∈ Σ,
with s′ �= s. This takes time O(|Σ|2).

We can generalize the procedure described above, without increasing the
asymptotic time complexity, considering each step as the product of the vector
t by a matrix M|Σ|×|Σ|. The matrix M is built differently depending whether
the symbol s associated with the node is considered a mismatch or not.

If the symbol is correct (left children), all the rows corresponding to symbols
s′ �= s will be set at 0, while the row corresponding to s will hold the values
P (s|s1), P (s|s2), . . . , P (s|s|Σ|). If the symbol is a mismatch, then its row is 0 and
all the other rows will hold the conditional probabilities of the corresponding
mismatch symbols. The final vector for a node is given by Mst or Ms̄t.

3.3 Analysis of Complexity in the Tree

We want to compute the number of nodes in a (m, k)-Tree.

The Number of Arcs
The number of right arcs of a (m, k)-Tree is:

R(m, k) = 1 + R(m − 1, k) + R(m − 1, k − 1) (1)

The basis of the recurrence are: R(m, m) = m, since if we want to distribute
m mismatches in a string of length m, all positions are mismatches and there is
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a single path in the tree in which all nodes have right children; and R(m, 0) = 0,
since if no mismatch occurs, we have only one path in the tree in which all nodes
are left children.

To build a tree for a string of length m we can proceed recursively: we create
a root node with two children. The left child tells us that the added position
is correct, so we need to have a subtree for a string of length m − 1 and still k
mismatches. On the other hand, the right child tells us that in the new position
we have a mismatch, hence the subtree on the right must be built on a string of
length m − 1 with k − 1 mismatches. The number of arcs of the subtree rooted
at the left child is R(m−1, k), while the number of arcs of the subtree rooted at
the left child is R(m− 1, k− 1). To obtain the total number of right arcs for the
tree we need to add the arc from the root to the right subtree, thus obtaining
Equation (1).

Lemma 1. The number of right arcs R(m, k) is:

R(m, k) =
(

m + 1
k

)

− 1

Proof. The proof is by induction.

Basis.

k = 0 : R(m, 0) =
(

m + 1
0

)

− 1 = 1 − 1 = 0

k = m : R(m, m) =
(

m + 1
m

)

− 1 = m + 1 − 1 = m

Induction.

Let us assume as inductive hypothesis that R(m, k) =
(

m + 1
k

)

− 1 and prove

our formula for m + 1.

R(m + 1, k) = 1 + R((m + 1) − 1, k) + R((m + 1) − 1, k − 1)

= 1 +
(

m + 1
k

)

− 1 +
(

m + 1
k − 1

)

− 1 =
(

(m + 1) + 1
k

)

− 1 ��

Following a similar discussion for the left arcs:

L(m, k) = 1 + L(m − 1, k) + L(m − 1, k − 1)

with dual basis L(m, m) = 0, and L(m, 0) = m and lemma. The proof follows
the same steps as for R(m, k).

Lemma 2. The number of left arcs L(m, k) is:

L(m, k) =
(

m + 1
k + 1

)

− 1

Theorem 1. The total number of nodes in the (m, k)-Tree is
(

m + 2
k + 1

)

− 1.
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Proof. Since the number of nodes is N(m, k) = R(m, k)+ L(m, k)+ 1 (the root)
we have from Lemma 1 and Lemma 2:

N(m, k) = R(m, k) + L(m, k) + 1 =
(

m + 2
k + 1

)

− 1 ��

At each node we have O(|Σ|2) operations, hence the overall time complexity is

O(
(

m + 2
k + 1

)

|Σ|2).

3.4 Reducing the Time Complexity

The (m, k)-Tree allows us to consider only once the parts of the paths that are
shared among some subsets of all the possible distributions of mismatches. For
example, in Fig.1, the distributions CWWWCW (node 44) and CWWWWC
(node 45) share the common path CWWW from root to node 18, that is com-
puted only once. Although with respect to the naive approach we eliminated the
exponential factor |Σ|k reducing it to |Σ|2, we still have exponential dependency
of the string length m with respect to the number of mismatches k.

C
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Fig. 3. Pruned Tree for “aabcda”

W

1

2 3

4 5 7

9 10 14

17 18 25

29 30

44 45

C

C

C

C

CC

C

C

C

C

W

W

W

W

W

W

W

W

W

W

W

W

1

2 3

4 5 7

9 10 14

17 18 25

29 30

44 45

C

C

C

C

CC

C

C

C

C

W

W

W

W

W

W

W

W

W

W

W

Fig. 4. Graph and DAG for “aabcda”

However, if we look carefully at Fig.1 we notice that many subtree structures
in the tree are repeated. For example, the subtree rooted at node 5 holds the same
mismatch distributions than the subtree rooted at node 6. The same happens for
the subtrees rooted at node 10,12, and 13. If we redraw the tree in Fig.1 by taking
into account these redundancies, we obtain a rather cleaner picture in which the
dotted arcs represent the links to the equivalent nodes (see Fig.3). If we further
collapse the equivalent nodes we obtain a graph of (m− k + 1)× (k + 1) nodes.
Giving an orientation to the arcs in such a way that they follow the direction of
the computation we obtain a directed acyclic graph (see Fig.4). It can be noticed
that only 16 nodes are needed to build the DAG. Given a word y of length m,
every path from the bottom corner (nodes 44 and 45) to the upper corner node
(node 1) has length m, and represents a way to distribute the k mismatches in
the pattern y. In fact, every horizontal move corresponds to a correct character,
while every vertical move corresponds to a mismatch. To reach the node 1 from
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either node 44 or 45, we need to traverse exactly k vertical edges, and exactly
m−k horizontal edges, hence we will describe a pattern of length m with exactly
k mismatches.

To perform the computation described before we can map our graph in a
table with k+1 rows and m−k+1 columns. The cell (i, j) holds the probability
related to the prefix of y of length i + j, when i mismatches occur. Let ti,j be
the vector holding the partial probabilities, we have:

ti,j = Myi+jti−1,j + Mȳi+jti,j−1

The table must be filled row by row. The number of cells is (m−k+1)×(k+1),
and for each cell we spend O(|Σ|2) time. The total complexity is O(mk|Σ|2). This
algorithm is polynomial in both the string length and the number of mismatches.

The procedure we just described can be generalized for a Markov chain of
order p. In this case the matrix M has size |Σ|p × |Σ|, so the complexity is
O(mk|Σ|p+1).

4 Expectation with Mismatches: Algorithm 2

In this section we propose an algorithm that after O(nk|Σ|p+1) preprocessing,
computes the expectation with k mismatches of any word in the text in O(k2|Σ|)
time. We explain the algorithm for the case p = 1 for ease of discussion.

4.1 Preprocessing

In this phase we build a table V where the entry corresponding to the pair (i, j),
denoted by V i,j = (vij

t )t=1...|Σ|, is the vector of the expectations of the prefix
Pj = x1 . . . xj with i mismatches. The single entry vij

t is the contribution to the
expectation Eij when considering strings w1 . . . wj in the neighborhood Ni(Pj)
at distance i from Pj such that wj = st ∈ Σ: Eij =

∑|Σ|
t=1 vij

t . The values of V i,j

are computed by dynamic programming:

V i,j = MxjV
i,j−1 + Mx̄jV

i−1,j−1

Table V is built in O(nk|Σ|2) for Markov chains of order p = 1. The gener-
alization takes O(nk|Σ|p+1). We also build an array A in which A[i] stores the
probability of the prefix of length i according to the given symbols distribution.
This array is built in O(n): A[1] = px1 , A[j] = pxj |xj−1A[j − 1] for 1 < j ≤ n.

4.2 Processing

Given table V and array A, a pair of indexes (s, e), and a number of mismatches
k, we want to compute the expectation with k mismatches of xs . . . xe. The
contributions to the expectation of x1 . . . xe with i mismatches are stored in
V i,e. Starting from these values we need to get rid of the contribution to the
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expectation of the prefix x1 . . . xs−1. We need to pay attention at position s,
where a mismatch will affect both ps+1|s and ps|s−1. In order to manipulate
the contribution we take Eie and build another vector U ie = (uie

t ) where each
component uie

t stores the contribution to Eie when the first symbol of the pattern
we are interested in (i.e. position s in x) is the symbol st. The corresponding
contribution to the expectation between s and e will be denoted by Ci,s,e

st
. It is

straightforward to observe that C0,s,e = A[e]/A[s] and Exp(0, s, e) = C0,s,epxs .
We will then proceed increasing the number of mismatches, computing Uie and
Ci,s,e for i = 1 . . . k. We first describe the procedure step-by-step for i = 1 and
i = 2, and then we generalize the processing.

4.3 Computing U1,e in O(|Σ|)
To calculate the components of U1,e we have to deal with two cases:

a. A mismatch occurs at position s (st �= xs)

u1,e
t = P1...s−1pst|xs−1pxs+1|st

Ps+2...e

= (px1px2|x1 . . . pxs−1|xs−2)pst|xs−1pxs+1|st
(pxs+2|xs+1 . . . pxe|xe−1)

= A[s − 2]pst|xs−1pxs+1|st
A[e]/A[s + 1]

b. A match occurs at position s (st = xs)

u1,e
t =

|Σ|∑

t=1

v1,e
t −

∑

t:st�=xs

u1,e
t = E1e −

∑

t:st�=xs

u1,e
t

The time complexity is O(|Σ|).

How to Compute C1,s,e. The probability of x1 . . . xe with 1 mismatch is:

P (x1 . . . xe, 1) = P (x1 . . . xs−1, 1)P (xs . . . xe, 0) + P (x1 . . . xs−1, 0)P (xs . . . xe, 1)

We are interested in computing P (xs . . . xe, 1):

P (xs . . . xe, 1) = [P (x1 . . . xe, 1) − P (x1 . . . xs−1, 1)P (xs . . . xe, 0)]/P (x1 . . . xs−1, 0)

The probability P (x1 . . . xe, 1) can be taken from U1,e = (u1,e
t )t∈Σ .

The values of P (x1 . . . xs−1, 1) can be taken from V 1,s−1 = (v1,s−1
t )t∈Σ .

Each v1,s−1
t needs to be multiplied by pxs|st

, that depends on t, and then by
pxs+1|xs

. . . pxe|xe−1 . All these contributions refer to the case in which xs is not
a site for a mismatch, hence they will be subtracted from u1,e

xs
.

Moreover, for all the components u1,e
st

we have to get rid of the contribution
of the prefix of length s − 1. Each component needs to be divided by pst|xs−1 ,
which depends on t and then all of them are divided by px1 . . . pxs−1|xs−2 .
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In summary:

C1,s,e =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1,e
1 /ps1|xs−1

u1,e
2 /ps2|xs−1

. . .

(u1,e
xs

− ∑|Σ|
t=1 (v1,s−1

t pxs|st)(pxs+1|xs . . . pxe|xe−1)/pxs|xs−1

. . .

u1,e
|Σ|/ps|Σ||xs−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1

px1 . . . pxs−1|xs−2

That can be re-written as:

C1,s,e =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1,e
1 /ps1|xs−1

u1,e
2 /ps2|xs−1

. . .
(u1,e

xs
− v1,s

xs
c0,s,e)/pxs|xs−1

. . .

u1,e
|Σ|/ps|Σ||xs−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
px1 . . . pxs−1|xs−2

The computation of each component requires O(1), hence O(|Σ|) time overall.
The final value of expectation is: Exp1(s, e) =

∑|Σ|
t=1 c1

t pst .

Computing U2,e. We assume to have at hand V 1,e, V 2,e, U1,e, C1,s,e.
If st �= xs there is 1 mismatch at position s, so the contributions to the

expectation of x1 . . . xe with 2 mismatches that involve st are:

1 . . . s − 1 s s + 1 . . . e

1 mismatch x 0 mismatch
0 mismatch x 1 mismatch

u2,e
t = (

∑|Σ|
i=1 v1,s−1

i pst|si
)pxs+1|st

(pxs+2|xs+1 . . . pxe|xe−1)
+(

∑|Σ|
i=1 c1,s+1,e

i psi|st
)(px1 . . . pxs−1|xs−2)pst|xs−1

= v1,s
st

c1,s,e
st

+ c1,s,e
st

c1,1,s
st

The computation requires O(1) for each st �= xs.
If st = xs the mismatches must occur at positions other than s.

1 . . . s − 1 s s + 1 . . . e

2 mismatches = 0 mismatch
1 mismatch = 1 mismatch
0 mismatch = 2 mismatches

As before we can compute this component directly:

u2,e
t =

∑

t∈Σ

v2,e
i −

∑

t:st�=xs

u2,e
t = E2e −

∑

t:st�=xs

u2,e
t

The overall time needed to compute U2,e is O(|Σ|).
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How to Compute C2,s,e. The probability of x1 . . . xe with 2 mismatch is:

P (x1 . . . xe, 2) = P (x1 . . . xs−1, 0)P (xs . . . xe, 2)+
+P (x1 . . . xs−1, 1)P (xs . . . xe, 1)+
+P (x1 . . . xs−1, 2)P (xs . . . xe, 0)

We are interested in computing P (xs . . . xe, 2):

P (xs . . . xe, 2) = [P (x1 . . . xe, 2) − P (x1 . . . xs − 1, 2)P (xs . . . xe, 0)+
−P (x1 . . . xs − 1, 1)P (xs . . . xe, 1)]/P (x1 . . . xs − 1, 0)

For ease of notation we assign letters to the factors:

P (xs . . . xe, 2) = [A − BC − DE]/F

The factor A is taken from U2,e. The product BC assumes that xs is correct, so
it will contribute only to the value of u2,e

xs
.

|Σ|∑

i=1

v2,s−1
i pxs|xsi

(pxs+1|xs
. . . pxe|xe−1) = v2,s

xs
C0,s,e

xs

In the product DE there might or might not be a mismatch at position s.
Hence we need to consider separately the two cases.

If s is a site of a mismatch the other mismatch must occur in the prefix of
length s − 1. The contribution to subtract to each st �= xs is:

(
|Σ|∑

i=1

v1,s−1
i pst|si

)pxs+1|st
(pxs+2|xs+1 . . . pxe|xe−1) = v2,s

st
C1,s,e

st

If s is not the site for a mismatch, then one mismatch occurs in the prefix of
length s− 1 and the other must occur between s+1 and e. Such contribution is:

|Σ|∑

i=1

v1,s−1
i pxs|si

|Σ|∑

j=1

pxj |xs
C1,s+1,e

sj
= v1,s

xs
C1,s,e

xs

In summary:

C2,s,e =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(u2,e
1 − v2,s

s1
C1,s,e

s1
)/ps1|xs−1

(u2,e
2 − v2,s

s2
C1,s,e

s2
)/ps2|xs−1

. . .
(u2,e

xs
− v2,s

xs
C0,s,e

xs
− v1,s

xs
C1,s,e

xs
)/pxs|xs−1

. . .

(u2,e
|Σ| − v2,s

s|Σ|C
1,s,e
s|Σ| )/ps|Σ||xs−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
px1 . . . pxs−1|xs−2
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1 . . . s − 1 s s + 1 . . . e 1 . . . s − 1 s s + 1 . . . e
1 mismatch x i-2 mismatches 1 mismatches = i-1 mismatches
2 mismatches x i-3 mismatches 2 mismatches = i-2 mismatches
. . . x . . . . . . = . . .
i-1 mismatches x 0 mismatches i mismatches = 0 mismatches

4.4 Generalization for i Mismatches

When i mismatches occur, if st �= xs there is 1 mismatch at position s. The other
i − 1 mismatches can be distributed in any of the i − 1 combinations (Table -
left) that we need to subtract to the components of Uk,e. If st = xs the ways
to distribute the mismatches are k (Table - right). The time complexity for the
component st = xs when i mismatches occur needs i operations, while for the
remaining components it needs i − 1. In both cases it is O(i), so the overall
complexity is O(i|Σ|). Indeed we need to compute the expectation for all i ≤ k
if we want the expectation for a fixed number of mismatches k. So for the total
complexity we need to sum up:

k∑

i=1

i|Σ| = |Σ|k(k + 1)
2

= O(|Σ|k2)

If we are interested in the computation of the expectation of all the words in
a text this takes O(kn2|Σ|2 + nk|Σ|p+1), rather than in O(n3|Σ|p+1) obtained
by application of Algorithm 1 or of the algorithm in [4] to each word.
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Abstract. The consensus string problem is finding a representative
string (consensus) of a given set S of strings. In this paper we deal with
the consensus string problems optimizing both distance sum and radius,
where the distance sum is the sum of (Hamming) distances from the
strings in S to the consensus and the radius is the longest (Hamming)
distance from the strings in S to the consensus. Although there have
been results considering either distance sum or radius, there have been
no results considering both as far as we know.

We present two algorithms to solve the consensus string problems
optimizing both distance sum and radius for three strings. The first al-
gorithm finds the optimal consensus string that minimizes both distance
sum and radius, and the second algorithm finds the bounded consensus
string such that, given constants s and r, the distance sum is at most s
and the radius is at most r. Both algorithms take linear time.

1 Introduction

The multiple string comparison problem is one of fundamental research topics
in computational biology and combinatorial pattern matching [1,9,10]. Finding
a representative string of a given set S of strings, called a consensus string (or
closest string or center string), is a major problem in multiple string comparison,
which is closely related to the motif recognition problem. Among the conditions
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that a string should satisfy to be accepted as a consensus, the two most important
conditions are

1. to minimize the sum of (Hamming) distances from the strings in S to the
consensus, and

2. to minimize the longest distance (or radius) from the strings in S to the
consensus.

In this paper we deal with two related but different problems about finding a
consensus string. The first one is finding an optimal consensus string minimizing
both distance sum and radius as follows.

Problem 1. Optimal consensus
Given a set S = {S1, . . . , Sk} of k strings of length n, find a string X (if any)
that minimizes both

∑
1≤i≤k d(X, Si) and max1≤i≤k d(X, Si) where d(A, B) is

the Hamming distance between strings A and B.

If such an optimal consensus string exists, it can be accepted as a consensus string
of S. However, sometimes such a string does not exist and a string satisfying loose
conditions may be sought for as follows.

Problem 2. Bounded consensus
Given a set S = {S1, . . . , Sk} of k strings of length n and two positive inte-
gers s and r, find a string X (if any) satisfying both

∑
1≤i≤k d(X, Si) ≤ s and

max1≤i≤k d(X, Si) ≤ r.

Although minimizing both distance sum and radius from a consensus is impor-
tant, researchers have only focused on finding a consensus minimizing either the
distance sum or the radius. Minimizing the distance sum is rather easy. We can
find a string X that minimizes the distance sum by selecting the character occur-
ring most often in each position of the strings in S. However, minimizing the radius
is a hard problem in general. For general k, the problem of finding a string X such
that max1≤i≤k d(X, Si) ≤ r is NP-hard even when characters in strings are drawn
from the binary alphabet [4]. Thus, attention has been restricted to approximation
solutions [2,5,6,11,12,13,14] and fixed-parameter solutions [7,8,14,15].

For fixed-parameter solutions, Stojanovic [15] proposed a linear-time algo-
rithm for r = 1. Gramm et al. [7,8] proposed the first fixed-parameter algorithm
running in O(kn+krr+1) time for finding a string X such that max1≤i≤k d(X, Si)
≤ r. Ma and Sun [14] presented another algorithm running in O(kn+kr(16|Σ|)r)
time, where Σ denotes the alphabet. Furthermore, there have been some algo-
rithms for a small constant k. Gramm et al. [7] proposed a direct combinatorial
algorithm for finding a string X that minimizes the radius for three strings. Sze
et al. [16] showed a condition for the existence of a string whose radius is less
than or equal to r. Boucher et al. [3] proposed an algorithm for finding a string
X such that max1≤i≤4 d(X, Si) ≤ r for four binary strings. For brief surveys
on approximation solutions, readers are referred to [3,14]. However, as far as we
know, there have been no results on finding a consensus string minimizing both
distance sum and radius.



236 A. Amir et al.

In this paper we present the first algorithms to solve the consensus string
problems minimizing both distance sum and radius for the set of three strings
(i.e., when k = 3).

– We present an algorithm to solve the optimal consensus string problem
(Problem 1). The algorithm finds a string X that minimizes both distance
sum (

∑
1≤i≤3 d(X, Si)) and radius (max1≤i≤3 d(X, Si)) if such a string ex-

ists. Otherwise, the algorithm returns a string with the minimum distance
sum among the strings whose radii are minimum. On top of the powerful
functionalities of the algorithm, the algorithm is very efficient. It takes only
O(n) time to do all the computation above.

– We present an algorithm to solve the suboptimal consensus problem (Prob-
lem 2). The algorithm returns a string X (if any) satisfying both

∑
1≤i≤3

d(X, Si) ≤ s and max1≤i≤3 d(X, Si) ≤ r for given s and r. This algo-
rithm runs in O(n) time. In addition, the algorithm can be modified for
faster execution if input strings are given in advance and r and s are given
later. The modified algorithm computes the minimum of

∑
1≤i≤3 d(X, Si) +

max1≤i≤3 d(X, Si) for any string X . The minimum can be computed from
the input strings even before r and s are given. Later, when r and s are given,
the problem can be solved in O(1) by using the minimum. This is very useful
when r and s are given later or when several problems with different pairs
of r and s are asked on the same input strings.

This paper is organized as follows. In Section 2, we give some definitions and
notations. We present our algorithms for the consensus problems in Section 3.
Finally we give concluding remarks in Section 4.

2 Preliminaries

For a string S, let S[i] denote the ith character of S. For two strings X and
Y , d(X, Y ) is defined as the Hamming distance between X and Y . Let S =
{S1, . . . , Sk} be a set of k strings of equal length n. Given a string X , the (con-
sensus) radius of X for S, denoted by RS(X), is defined as max1≤p≤k d(X, Sp)
and the (consensus) distance sum of X for S, denoted by ES(X), is defined as∑

1≤p≤k d(X, Sp). We omit the set notation S if not confusing. Then, Problem
1 is finding a string X that minimizes both E(X) and R(X), and Problem 2
is finding a string Y such that E(Y ) ≤ s and R(Y ) ≤ r. We call a solution of
Problem 1 an optimal consensus string and a solution of Problem 2 a bounded
consensus string.

Consider the alignment of a string X and the strings in S. Because the Ham-
ming distance allows only substitutions, X [i] is aligned with Sp[i]’s (1 ≤ p ≤ k).
Thus, S can be regarded as a k×n character matrix, where the ith column con-
sists of the ith characters of the k strings. For each column, we call the majority
the character occurring most often and the minority the character occurring
most seldom.

If we only consider the distance sum, that is, we want to find a string X with
the minimum distance sum, X can be found easily by choosing the majority in
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each column. However, the problem of finding a string Y such that R(Y ) ≤ r is
NP-hard even when restricted to a binary alphabet [4]. Thus, Problems 1 and 2
are also NP-hard in general.

3 Consensus String for Three Strings

In this section we consider the consensus string problems for S = {S1, S2, S3}.
We first describe an algorithm for computing a string X with the minimum
radius and show that X computed by the algorithm also minimizes the distance
sum (Problem 1). Then, we show how to compute a bounded consensus string
Y from X (Problem 2).

3.1 String with the Minimum Radius

Consider the alignment of the three strings S1, S2, and S3. The column in every
position i is divided into the following five types. See Figure 1.

– Type 0: S1[i] = S2[i] = S3[i] (all matches).
– Type 1: S1[i] �= S2[i] = S3[i] (S1[i] is the minority).
– Type 2: S2[i] �= S1[i] = S3[i] (S2[i] is the minority).
– Type 3: S3[i] �= S1[i] = S2[i] (S3[i] is the minority).
– Type 4: S1[i] �= S2[i], S2[i] �= S3[i], and S3[i] �= S1[i] (all mismatches).

Let cj (0 ≤ j ≤ 4) denote the number of columns for type j. Without loss of
generality, we assume that c1 ≥ c2 ≥ c3.

Let Emin be the smallest sum of Hamming distances of S1, S2, S3 from any
string X ′, i.e., Emin = minX′

∑
1≤p≤3 d(X ′, Sp). Obviously, the minimum dis-

tance sum Emin = c1+c2+c3+2c4. Let Rmin be the smallestmax of Hamming dis-
tances of S1, S2, S3 from any string X ′. i.e., Rmin = minX′ max1≤p≤3 d(X ′, Sp).
The following lemma gives a lower bound for the minimum radius Rmin.

Lemma 1. Rmin ≥ max(L1, L2), where L1 = (c1 + c2 + c4)/2 and L2 = (c1 +
c2 + c3 + 2c4)/3.

Proof. First, Rmin is greater than or equal to half of the distance between two
farthest strings (i.e., S1 and S2) by Hamming distance. That is, Rmin ≥ (c1 +
c2 + c4)/2 = L1. Moreover, Rmin ≥ Emin/3 = L2. Indeed if there exists a string
X ′ such that R(X ′) < Emin/3, then E(X ′) < Emin, which is a contradiction. �

Type 0 Type 1 Type 2 Type 3 Type 4
S1: � � × × × × × � � � � � × × ×
S2: � � � � � � � × × × � � × × ×
S3: � � � � � � � � � � × × × × ×

c0 = 2 c1 = 5 c2 = 3 c3 = 2 c4 = 3

Fig. 1. Types of columns in the alignment of 3 strings, where � and × represent match
and mismatch characters at each position, respectively
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Remark. Because Rmin is an integer, L1 is exactly �(c1 + c2 + c4)/2� and L2

is �(c1 + c2 + c3 + 2c4)/3�. Throughout the paper, the ceiling function or the
floor function should be applied to all fractional expressions including L1 and
L2. For simplicity, however, we assume that values of all fractional expressions
are integers.

By comparing the two lower bounds L1 and L2, we get the following.

Corollary 1. Rmin ≥ L2 if c1 + c2 ≤ 2c3 + c4, and Rmin ≥ L1 otherwise.

Thus, if an algorithm computes a string whose radius is L2 when c1+c2 ≤ 2c3+c4

and L1 when c1 + c2 > 2c3 + c4, the algorithm always computes a string with
the minimum radius.

Now we describe how to compute a string X with the minimum radius and
show that the radius of X is max(L1, L2). Basically, we select one of S1[i], S2[i],
and S3[i] in each position i. We always select the majority in every column of
type 0. In columns of other types, we select characters in the following way. We
have two cases.

I. When c1 + c2 ≤ 2c3 + c4, i.e., L1 ≤ L2.

Let c41 = (c4 + 2c1 − c2 − c3)/3, c42 = (c4 + 2c2 − c1 − c3)/3, and c43 =
(c4 +2c3− c1− c2)/3. Obviously, c41 + c42 + c43 = c4. Then, we compute a string
X in the following way.

– In every column of Types 0-3, select the majority.
– In columns of type 4, select c41 characters of S1, c42 characters of S2, and

c43 characters of S3.

Now, we prove (1) that c41, c42, and c43 are nonnegative and (2) that the
string X is a string with the minimum radius by showing that its radius is L2.

– c41, c42, and c43 are nonnegative.
• c43 is nonnegative by the condition c1 + c2 ≤ 2c3 + c4.
• c42 is nonnegative if inequality c1 + c3 ≤ 2c2 + c4 is satisfied. Since we

assume that c3 ≤ c2, c1 + c3 ≤ c1 + c2 and 2c3 + c4 ≤ 2c2 + c4, and thus
c1 + c3 ≤ 2c2 + c4 by the condition c1 + c2 ≤ 2c3 + c4.

• The proof that c41 is nonnegative is similar to the proof that c42 is
nonnegative.

– The radius of X is L2.
The distances of strings S1, S2, and S3 from X are as follows:
• d(S1, X) = c1+c42+c43 = c1+(c4+2c2−c1−c3)/3+(c4+2c3−c1−c2)/3

= (c1 + c2 + c3 + 2c4)/3 = L2.
• d(S2, X) = c2+c41+c43 = c2+(c4+2c1−c2−c3)/3+(c4+2c3−c1−c2)/3

= (c1 + c2 + c3 + 2c4)/3 = L2.
• d(S2, X) = c3+c41+c42 = c3+(c4+2c1−c2−c3)/3+(c4+2c2−c1−c3)/3

= (c1 + c2 + c3 + 2c4)/3 = L2.

Sinced(S1, X)=d(S2, X)=d(S3, X)=L2, the radius (i.e.max1≤p≤3 d(X, Sp))
is L2.



Consensus Optimizing Both Distance Sum and Radius 239

II. When c1 + c2 > 2c3 + c4, i.e., L1 > L2.

We separate this case into two subcases c1 − c2 < c4 and c1 − c2 ≥ c4.

(a) When c1 − c2 ≤ c4.
Let c41 = (c4 + c1 − c2)/2, c42 = (c4 − c1 + c2)/2, and c43 = 0. Obviously,

c41 + c42 + c43 = c4. Then, we compute a string X in the following way.

– In every column of Types 0-3, select the majority.
– In columns of type 4, select c41 characters of S1, c42 characters of S2, and

c43 characters of S3.

Now, we prove (1) that c41 and c42 are nonnegative and (2) that the string X is
a string with the minimum radius by showing that its radius is L1.

– c41, c42, and c43 are nonnegative.
• c41 is nonnegative by the assumption c1 ≥ c2.
• c42 is nonnegative by the condition c1 − c2 ≤ c4.

– The radius of X is L1.
The distances of strings S1, S2, and S3 from X are as follows:
• d(S1, X) = c1 + c42 + c43 = c1 +(c4 − c1 + c2)/2 = (c4 + c1 + c2)/2 = L1.
• d(S2, X) = c2 + c41 + c43 = c2 +(c4 + c1 − c2)/2 = (c4 + c1 + c2)/2 = L1.
• d(S3, X) = c3+c41+c42 = c3+c4 < L1. (One can show L1−(c3+c4) > 0

using the condition c1 + c2 > 2c3 + c4.)
Thus the radius of X is L1.

(b) When c1 − c2 > c4.
Let c11 = (c1 + c2 + c4)/2 (nonnegative trivially) and c12 = (c1 − c2 − c4)/2

(nonnegative due to c1− c2 > c4). Then, we compute a string X in the following
way.

– In every column of Types 0, 2, and 3, select the majority.
– In columns of type 1, select c11 majority characters and c12 minority char-

acters (i.e. characters of S1).
– In every column of type 4, select the character of S1.

Now, we prove that the string X is a string with the minimum radius by showing
that its radius is L1.

– d(S1, X) = c11 = (c1 + c2 + c4)/2 = L1.
– d(S2, X) = c12 + c2 + c4 = (c1 − c2 − c4)/2 + c2 + c4 = (c1 + c2 + c4)/2 = L1.
– d(S3, X) = c12+c3+c4 = (c1−c2−c4)/2+c3+c4 = (c1−c2+2c3+c4)/2 ≤ L1.

(One can show L1− (c1−c2 +2c3 +c4)/2 ≥ 0 using the assumption c2 ≥ c3.)

Thus, the radius of X is L1.
Conclusively, the algorithm computes a string with the minimum radius.

Lemma 2. Given the string set S, a string with the minimum radius for S can
be found in O(n) time.
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Proof. We have already shown that the radius of string X computed by the
algorithm is minimum. Consider the time complexity. The types of columns and
ci (0 ≤ i ≤ 4) can be determined by scanning three strings once. Furthermore,
other computations can be done in constant time and character selections in
every column can be done by scanning the strings once. Thus, the algorithm
takes O(n) time. �

3.2 Optimal Consensus String

Consider the relation between the radius and the distance sum. In cases I and II
(a), X is a string with the minimum distance sum as well as with the minimum
radius because we select the majority in every column. In case II (b), however,
X is not a string with the minimum distance sum. We can decrease the distance
sum by reducing the number of minority selections in columns of type 1. If
so, however, the radius increases as much as the distance sum decreases. The
following lemma shows the relation between the radius and the distance sum in
case II (b).

Lemma 3. In case of II (b), R(Z) + E(Z) ≥ Rmin + Emin + M for any string
Z, where M = (c1 − c2 − c4)/2.

Proof. Recall that Rmin = L1 = (c1 + c2 + c4)/2 and Emin = c1 + c2 + c3 + 2c4.
Let Z be a string such that E(Z) = Emin + t, where t is the number of minority
selections in all columns when constructing Z. Then, we prove this lemma by
showing that R(Z) ≥ Rmin + M − t = c1 − t. Let mj (1 ≤ j ≤ 3) be the
number of minority selections (i.e., characters of Sj) in columns of type j when
constructing Z. Obviously, m1 + m2 + m3 = t. Let m4j (1 ≤ j ≤ 3) be the
number of characters of Sj selected in columns of type 4 when constructing Z.
Then,

d(S1, Z) = c1 − m1 + m2 + m3 + m42 + m43

= c1 − t + 2m2 + 2m3 + m42 + m43 (using m1 = t − m2 − m3)
≥ c1 − t.

Thus, R(Z) = max(d(Z, S1), d(Z, S2), d(Z, S3)) ≥ c1 − t. �

Corollary 2. The string X computed by the above algorithm is a string that
minimizes R(X) + E(X).

Lemma 4. The above algorithm computes an optimal consensus string if exists.

Proof. We have already shown that the radius of string X is minimum. In cases
I and II (a), X is also a string with the minimum distance sum. In case II (b),
there is no optimal consensus string by Lemma 3 because c1 − c2 − c4 > 0. �

Lemma 5. There is no optimal consensus string if and only if both c1 + c2 >
2c3 + c4 and c1 − c2 > c4 (case II (b)).
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Lemma 6. If there is no optimal consensus string, the above algorithm com-
putes a string X whose distance sum is smallest among all strings with the
minimum radius.

Proof. The radius of string X is minimum. By Corollary 2, the distance sum of
X is smallest among strings whose radius is R(X). �

3.3 Bounded Consensus String

We show how to compute a bounded consensus string Y from X (Problem 2). In
cases I and II (a), a solution is easy. Because R(X) = Rmin and E(X) = Emin,
X is a bounded consensus string if R(X) ≤ r and E(X) ≤ s, and there is no
bounded consensus string otherwise. Consider case II (b). If R(X) > r, E(X) >
s, or R(X) + E(X) > r + s (by Corollary 2), there is no bounded consensus
string. Otherwise, we can find a bounded consensus string by decreasing the
number of minority selections when constructing X .

Lemma 7. A bounded consensus string can be found in O(n) time if exists.

Lemma 8. Let M = (c1 − c2− c4)/2 if c1 + c2 > 2c3 + c4 and c1 − c2 > c4 (case
II (b)), and M = 0 otherwise. Then, there exists a bounded consensus string if
and only if Rmin ≤ r, Emin ≤ s, and Rmin + Emin + M ≤ r + s,

By Lemmas 2, 4 and 8, we get the following theorem.

Theorem 1. Problems 1 and 2 for three strings can be solved in O(n) time.

4 Concluding Remarks

We considered the consensus string problem optimizing both distance sum and
radius, and proposed a linear-time algorithm for three strings. Moreover, we
studied the conditions for which there exists an optimal consensus string or a
bounded consensus string for three strings. It remains an open problem to find a
consensus string for k ≥ 4 strings. Another open problem is to find a consensus
string when strings are compared by the edit distance. This problem doesn’t
look easy even for three strings.
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Abstract. A set of sequences S is pairwise bounded if the Hamming dis-
tance between any pair of sequences in S is at most 2d. The Consensus
Sequence problem aims to discern between pairwise bounded sets that
have a consensus, and if so, finding one such sequence s∗, and those that
do not. This problem is closely related to the motif-recognition problem,
which abstractly models finding important subsequences in biological
data. We give an efficient algorithm for sampling pairwise bounded sets,
referred to as MarkovSampling, and show it generates pairwise bounded
sets uniformly at random. We illustrate the applicability of MarkovSam-
pling to efficiently solving motif-recognition instances. Computing the
expected number of motif sets has been a long-standing open problem
in motif-recognition [1,3]. We consider the related problem of counting
the number of pairwise bounded sets, give new bounds on number of
pairwise bounded sets, and present an algorithmic approach to counting
the number of pairwise bounded sets.

1 Introduction

Given a number of DNA sequences, motif-recognition is the task of discovering
similar subsequences without prior knowledge of the consensus or their place-
ment within the sequence. The following combinatorial formulation of motif-
recognition is due to Pevzner and Sze [16]: let S = {S1, . . . , Sn} be a set of
m-length sequences, and s∗ be the consensus sequence, a fixed and unknown se-
quence of length l that is contained in each Si as a subsequence but is corrupted
with at most d substitutions. The aim is to determine s∗ and the location of the
motif instances in each sequence.

Motif-recognition is NP-complete and thus, unlikely to be solved in polyno-
mial time, unless P = NP [9]. Li et al. proved the existence of a PTAS for motif-
recognition, however, this result is only of theoretical interest due to the high
degree in the polynomial complexity of the associated algorithm [13]. Nonethe-
less, there are numerous algorithms developed to solve specific instances of the
problem, including PROJECTION [1], Winnower [16], pattern driven approaches
[19], MITRA [8], PSM1 [17], PMSprune [3], the Voting algorithm [2] and several
others.
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Closely related to motif-recognition is the Consensus Sequence1 problem
that is defined as follows: given a parameter d and a set of sequences S =
{s1, . . . , sn} each of length l, does there exist a (consensus) sequence s∗ that has
Hamming distance at most d from each sequence in S. We denote the Hamming
distance between sequences si and sj as H(si, sj). Consensus Sequence is
NP-complete even when interest is restricted to the binary alphabet [10]. A set
of sequences S is pairwise bounded if the distance between any pair sequences si

and sj in S is at most 2d. Hence, the Consensus Sequence problem essentially
reduces to separating pairwise bounded sets with a consensus, and if so, finding
one such sequence s∗, from those that do not. A set of sequences S is a motif set
if there exists a consensus sequence, s∗; S is a decoy set if it is pairwise bounded
but does not have a consensus.

Improving upon existing algorithms for Consensus Sequence would assist
in developing algorithms that solve the combinatorial model of motif-recognition.
If the weight of a set of sequences S, defined as the sum of the Hamming distance
of each pair of sequences in S (i.e.

∑
∀{si,sj}∈S H(si, sj)), can heuristically de-

termine whether S is a motif set then we could significantly improve upon many
existing motif-recognition algorithms. Crucial for this heuristic to solve Con-
sensus Sequence is knowledge of the probability distribution of the weight
of a random motif set and that of a random decoy set; a separation between
these distributions is necessary in order to use the weight as an indicator to the
existence of a consensus sequence. There exists a trivial algorithm to generate
valid motif sets – simply choose any l-length sequence as the consensus sequence
and sample with replacement from the set of all sequences that are of distance
at most d from that sequence. Unfortunately, there does exist a methodology to
determine the probability distribution of the weight of a random decoy set, nor
does there exist an efficient algorithm that solves the related problem of generat-
ing pairwise bounded sets uniformly at random (u.a.r.), or even near-uniformly
at random. The existence of an algorithm to generate pairwise bounded sets
u.a.r. could be used to determine the probability distribution of the weight of
a random decoy set by sampling pairwise bounded sets u.a.r. and rejecting the
motif sets.

The focus of this paper is on the investigation of sampling and counting pair-
wise bounded sets. Efficiently counting and sampling elements from a compli-
cated distribution is a well-investigated area and has been instrumental in the
study of several NP-complete problems, including the sampling and counting
versions of the following problems: graph colouring [5,12,14], perfect matchings
in a graph [18], Hamiltonian path [6], knapsack problems [4], and independent
set [7].

Many motif-recognition programs (including PROJECTION [1], Winnower
[16], PSM1 [17], PMSi, and PMSP [3]) enumerate through all, or almost all,
pairwise bounded sets and therefore, the efficiency of these applications is closely
tied to the number of pairwise bounded sets. An important open problem is to

1 Consensus Sequence problem is also referred as the Radius Decision problem
[10] and the Closest String problem [11].
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determine a bound on the expected number of pairwise bounded sets. A related
problem of determining the expected number of motif sets has been studied by
Buhler and Tompa [1] and Davila et al. [3]. We consider the following counting
problem:

#Pairwise Bounded
Instance: Parameters n, l and d.
Output: The number of distinct pairwise bounded sets of sequences.

We denote S(n, l, d) as the number of distinct pairwise bounded sets with respect
to the parameters n, l, and d. We give new deterministic bounds on S(n, l, d)
and discuss an algorithmic method that approximately counts the number of
pairwise bounded sets.

To our knowledge, there does not exist any known methods to generate
pairwise bounded sets u.a.r. We present a first approach to sampling pairwise
bounded sets that is based on random walks. Intuitively, the problem with using
a random walk in order to sample pairwise bounded sets is that the probability
distribution of the specific sequences is unknown. We give an improvement to the
standard random walk technique that mitigates this effect and show this method
efficiently produces a uniform sample. We show how this sampling algorithm can
be used to algorithmically count the number of pairwise bounded sets and give
new bounds on the number of pairwise bounded sets.

2 Sampling Pairwise Bounded Sets

2.1 An Inefficient Sampling Method

The most natural sampling method to generate observations from a distribution
is that of rejection sampling, where an element is generated at random from
a sample space containing the target sample, it is determined whether the set
is contained in the target sample and if not, it is omitted from the sample.
Rejection sampling is most efficient when the number of elements to be rejected is
minimized. The following rejection sampling method samples pairwise bounded
sets u.a.r.: select n random sequences from the set of all |Γ |l sequences, if the
set is pairwise bounded then include it in the sample, and otherwise reject it.
Although, rejection sampling generates pairwise bounded sets u.a.r.this method
is intractable when n, l, and d become significantly large. Unfortunately, to
determine the exact inefficiency of rejection sampling we are required to know
something about the probability that a set of sequences is a pairwise bounded
set, which is the very question we aim to answer. Without further knowledge
about the probability of the occurrence of pairwise bounded sets, it is unlikely
a tight bound on the efficiency of this sampling method can be determined.

2.2 A Sampling Method Using Random Walks

We develop a sampling method, referred to as MarkovSampling, that restricts
the sampling to pairwise bounded sets. It will be useful to view a set of l-
length sequences of size n as a matrix where each column is a set of n symbols;
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hence, we denote a set of n sequences as [c1c2 . . . cl], where each ci is a n-length
column vector. Rather than constructing a pairwise bounded set by selecting n
sequences, as in rejection sampling, we generate the matrix column by column
while ensuring the pairwise bounded condition holds.

Given columns c1, . . . , ck where k ≤ l, we let Xi,j be equal to 1 if the distance
between sequences si and sj up to the first k columns is equal to 2d; otherwise
we let Xi,j be equal to 0. We define a graph G such that exists a vertex vi for
each sequence si, and an edge between vi and vj if and only if Xi,j = 1. The
(k + 1)th column, ck+1 must have the property that if Xi,j = 1 then si and sj

are equal to the same alphabet symbol in ck+1 (otherwise the distance between
si and sj will go above 2d) and if Xi,j = 0 then it does not matter if si and sj

mismatch in ck+1. Therefore, a column vector ck+1 is feasible to add if and only
if si and sj match whenever vi and vj are in the same component of G. It is
trivial to generate a random feasible column c: just find the components of G and
randomly assign any symbol of Γ to each component. All these computations
can be done in time polynomial in n and d.

Unfortunately, this does not solve the sampling problem right away. We aug-
ment this approach slightly to obtain a more uniform sample. Given that k
columns have been obtained, the probability si and sj will match at the k+1 col-
umn is 1/|Γ | if Xi,j = 0. In rejection sampling, a l-length sequence s is generated
at random and n sequences are selected at random from the set of all sequences
that have Hamming distance at most 2d away from s; the probability that se-
quences si and sj match, which we denote as pi,j, is

(
(l−di)(l−dj)

l2

)
+
(

didj

l2(|Γ |−1)

)
,

where H(si, s) = di and H(sj , s) = dj . We augment the sampling algorithm
defined above as follows: initially, we select a random di for each si within the
set {0, . . . , 2d} then columns are generated as above but instead of any two se-
quences si and sj mismatching with probability 1/|Γ | (when Xi,j = 0), they
mismatch with probability 1 − pi,j . When Xi,j becomes equal to 1 we replace
di and dj with �(di + dj)/2�. We define this procedure of generating a pairwise
bounded set as GeneratePairwiseBoundedSet.

The main drawback of this approach is that we do not know the proba-
bility distribution of the columns. GeneratePairwiseBoundedSet will generate
a random pairwise bounded set according to a distribution but the resulting
distribution will not necessarily be u.a.r. Instead, we iterate GeneratePairwise-
BoundedSet N times and construct a generation tree, denoted as T , containing
all N pairwise bounded sets. Level i of T corresponds to column number i (i.e.
level 0 corresponds to the root of T when there exists no columns yet generated,
level 1 is the first column). Each time column i is generated in GeneratePair-
wiseBoundedSet it is added to level i of T . After N pairwise bounded samples
are generated and added to T , a pairwise bounded set can then be generated at
random by taking a random walk on this generation tree. This is a Markov chain
where, at each step the number of neighbours can be calculated in an efficient
way. We refer to this sampling method as MarkovSampling, where k pairwise
bounded sets are generated in O(n2lN +kl) time. Next, we consider the number
of samples required to ensure T is well representative of the set of all pairwise



Faster Algorithms for Sampling and Counting Biological Sequences 247

Table 1. Data illustrating the difference mean and standard deviation of the samples
produced by MarkovSampling and rejection sampling

(n, l, d, N) μ σ μMS σMS (n, l, d, N) μ σ μMS σMS

(10, 10, 3, 100) 142 23.8 142 56.6 (20, 10, 3, 100) 549 65.7 542 182
(10, 10, 3, 500) 143 22.6 143 42.2 (20, 10, 3, 500) 549 66.3 547 99
(10, 10, 3, 1000) 142 22.9 143 22.3 (20, 10, 3, 1000) 549 66.1 548 67.4
(10, 10, 3, 1500) 143 22.3 142 23.9 (20, 10, 3, 1500) 548 63 549 66.3
(10, 10, 3, 2000) 143 24 142 23.6 (20, 10, 3, 2000) 549 66.1 549 66.4

(10, 15, 4, 100) 194 30.4 192 50.7 (20, 15, 4, 100) 740 85.7 742 150.2
(10, 15, 4, 500) 194 31.7 194 43.1 (20, 15, 4, 500) 742 87.7 744 98.2
(10, 15, 4, 1000) 191 32.1 193 31 (20, 15, 4, 1000) 739 85.6 740 84.5
(10, 15, 4, 1500) 194 30.7 194 30 (20, 15, 4, 1500) 739 86 739 85.5
(10, 15, 4, 2000) 193 30.7 192 31.4 (20, 15, 4, 2000) 740 85.4 739 86.2

(10, 18, 6, 100) 322 41.6 324 81.2 (20, 18, 6, 100) 1305 125 1302 221
(10, 18, 6, 500) 321 41.7 321 75 (20, 18, 6, 500) 1295 125 1298 180.1
(10, 18, 6, 1000) 324 41.5 325 41 (20, 18, 6, 1000) 1298 126 1296 124.1
(10, 18, 6, 1500) 325 42.9 324 40.5 (20, 18, 6, 1500) 1296 126.8 1294 125.3
(10, 18, 6, 2000) 321 41.3 322 42.4 (20, 18, 6, 2000) 1300 125.2 1296 126.6

bounded sets. In this next Section we show experimentally that MarkovSampling
achieves a uniform sample of pairwise bounded sets for relatively small value of
N (i.e. N = 1000).

Algorithm 1. MarkovSampling
Input: parameters N , n, l, d, and k.
Output: a set of k pairwise bounded sets
1. Run GeneratePairwiseBoundedSet to generate a tree T of N pairwise bounded
sets.
2. Randomly walk from the root of T down to a leaf of T , by selecting a neighbour
at random at each step.
3. Repeat step 2 k times.

2.3 Experimental Evaluation

We compare the distribution of the weight of the sample sets produced by re-
jection sampling and MarkovSampling, and show the existence of a dichotomy
in the distributions of the weight of a random motif set and that of a random
decoys set. Let μ denote the mean weight for the sample of pairwise bounded
sets produced by rejection sampling, and σ denote the associated standard de-
viation. We define μMS and σMS similarly for the sample of pairwise bounded
sets produced by MarkovSampling. For several values of l, d and n we varied N
and generated 1000 samples using both MarkovSampling (with the associated
parameter N) and rejection sampling, and calculated μ and σ, and μMS and
σMS .
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Table 1 shows the change in μMS and σMS as N increases; rejection sampling
is not dependent on N and therefore, we expect no change in μ and σ as N
changes. Table 1 illustrates three sets of data: l = 10 and d = 3, when l = 15
and d = 4, and when l = 18 and d = 6. For each (l, d) pair, we consider when the
number of sequences (i.e. parameter n) is equal to 10 and 20. The data show that
when N is equal to 1000 the difference between the μ and μMS , and σ and σMS

is minimal, for when n = 10 and n = 20. For values of N smaller than 1000, the
standard deviation for MarkovSampling (i.e. σMS) was significantly larger than
the standard deviation computed for rejection sampling (i.e. σ). For different
values of l, d and n this trend is also witnessed. Hence, for the remainder of our
experiments we set N equal to 1000.

Fig. 1. An histogram of the weights of the 5000 samples generated by MarkovSampling
and rejection sampling. The values of l and d were varied and the size of the set of
sequences n was set to 20.

We consider the distribution of the weight of samples produced by MarkovSam-
pling with N = 1000 and rejection sampling. For several values of l and d, and
n = 20 we generated 5000 pairwise bounded sets using the two sampling methods
and considered the distribution of the weights of the pairwise bounded sets; Figure
illustrates these distributions. For all values of n, l, and d the difference between
the distribution of the weights for the samples produced by rejection sampling
and MarkovSampling were minimal; the probability distribution of the weight of
a random pairwise bounded set produced by MarkovSampling was indistinguish-
able from that of rejection sampling. There was no noticeable difference in the
mean weight computed for MarkovSampling and rejection sampling.
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2.4 Application of MarkovSampling to Motif-Recognition

A key motivation for the development of algorithms to generate pairwise bounded
sets u.a.r. is the development of efficient algorithms for motif-recognition. Ma-
jority of motif-recognition programs detect “candidate” motif sets then use a
refinement stage to determine if any candidate set is a valid motif set. Almost
all motif-recognition programs require solving the Consensus Sequence prob-
lem a number of times. In the previous section, we showed the existence of a
separation between the probability distribution of the weight of a random motif
set and that of a random decoy set. By exploiting this separation we can effi-
ciently find motif sets – namely, the separation would allow decoy sets and motifs
sets to be quickly discerned by using the weight as an indicator. The weight can
trivially be calculated in O(n2l) time.

For varied values of n, l and d, we used MarkovSampling to generate 1000 valid
motif sets and 1000 decoy sets. More specifically, to generate a motif set (or decoy
set) using MarkovSampling we generated a pairwise bounded set, determine
whether it contains a consensus sequence, and include the set in the sample if
a consensus sequence exists (or does not exist). We investigated when (l, d) is
equal to (15, 4) and (18, 6), for each (l, d) we set n to be 20 and then 50. Figure
2 illustrates this data. Clearly, a dichotomy exists between the distribution of
the weight of valid motif sets and decoy sets. As the value of n increases, the
separation between the distributions becomes more prevalent the distribution
becomes more centralized around the mean; an increase in the value of n leads
to an increase in certainty that the weight can be used as an indicator. When n
is even moderately large the weight can determine if the set is a motif set with
high accuracy.

3 Determining the Number of Pairwise Bounded Sets

3.1 Analytical Bounds on the Number of Pairwise Bounded Sets

Buhler and Tompa [1] determined an estimation for the expected number of
motifs that will occur in a given motif-recognition instance; given the parameters
n, m, l, and d, the expected number of such sets was estimated to be 4l(1− (1−
pl,d)m−l+1)m, where pl,d is defined as

∑d
i=0

(
l
i

) (
3
4

)i (1
4

)l−i. The above formula
does not take into account that motif instances may overlap and therefore, is only
estimation; this estimate is not accompanied by any approximation guarantee.
Nonetheless, it is claimed to give an estimate of the computational difficulty of
specific motif-recognition instances [1].

As previously mentioned, many motif-recognition programs must enumerate
through all (or almost all) pairwise bounded sets and therefore, determining the
expected number of pairwise bounded sets is an important aspect of determining
computational hardness of specific motif-recognition instances. We consider the
problem of determining an accurate bound on the number of pairwise bounded
sets, with respect to n, l, and d. An accurate count of the number of pairwise
bounded sets will, in turn, lead to determining the expected number of pairwise
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Fig. 2. An illustration of the distribution of the weights of the 1000 valid motif sets
and 1000 decoy sets for varied values of n, l, and d. The histograms in black (white)
represent the distribution of the weights of decoy sets (motif sets).

bounded sets in a given data set. Proposition 1 gives some initial bounds on the
number of pairwise bounded sets. Studying the existence of tighter bounds on
S(n, l, d) warrants further investigation. We note that mod denotes the modulo
function

Proposition 1. Let S(n, l, d) be the number of unique pairwise bounded sets for
given values of n, l, d, and alphabet Γ . Then S(n, l, d) is at least

|Γ |l
⎛

⎝�l/2d�
2d∑

i=1

(
2d

i

)

(|Γ | − 1)i +
d̄∑

i=1

(
d̄

i

)

(|Γ | − 1)i + 1

⎞

⎠

where d̄ = l mod 2d and is at most |Γ |l
(∑2d

i=0

(
l
i

)
(|Γ | − 1)i

)n−1

.

Proof. The upper bound for S(n, l, d) is obtained by considering the number of
possible sets obtained by choosing one sequence s at random (from the set of all
l-length sequences) then randomly selecting n − 1 sequences from the set of all
sequences that have distance at most 2d from s. Trivially, this encompasses the
set of all pairwise bounded sets since any pairwise bounded set can be described
in this manner.

The lower bound requires more careful construction to ensure that we count
each unique set only once. There exists �l/2d� non-overlapping partitions of the
l positions into 2d size blocks. We choose a sequence s at random from all |Γ |l
possible l-length sequences, and count the number sequences that have between
1 and 2d mismatches with s in one of the associated blocks. We restrict the
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mismatches to be only within one of the 2d-size partitions since we want to ensure
we do not over-count. Therefore, since there are �l/2d� possible partitions, there
exists at least �l/2d�|Γ |l∑2d

i=1

(
2d
i

)
(|Γ | − 1)i pairwise bounded sets. In addition,

there exists |Γ |l possible sets where all n sequences match and hence, to obtain
a tighter lower bound we add |Γ |l.

S(n, l, d) ≥ |Γ |l
(

�l/2d�
2d∑

i=1

(
2d

i

)

(|Γ | − 1)i + 1

)

We account for the l mod 2d remaining positions. Similarly, there exists at
least |Γ |l∑d̄

i=1

(
d̄
i

)
(|Γ | − 1)i pairwise bounded sets that contain at least one

mismatch in the l mod 2d remaining positions, where d̄ = l mod 2d. We obtain
the required lower bound by adding this last term to our previous count. �

3.2 Algorithmically Counting Pairwise Bounded Sets

There exists little information as to the number of decoy sets or the number
of pairwise bounded sets. This lack of information is partially due to the fact
that there currently does not exist a combinatorial characterization of a pairwise
bounded set beyond the rudimentary combinatorial definition. We consider algo-
rithmic approaches to solving #Consensus Sequence. We develop an approx-
imate counting algorithm, referred to as ApproxCount, using MarkovSampling.
An advantage of this method of using sampling algorithms is that the running
time and accuracy can be adjusted easily be adjusted.

Algorithm 2. ApproxCount
Input: T obtained from ConstructGenerationTree
Output: estimation of upper and lower bounds to S(n, l, d)
Repeat N times:

Random walk from the root of T down to a leaf
Calculate

∏n
i=1 δi, δ1, δ2, . . . δn be the degrees of the vertices encountered

Calculate αl and αh

Store the values αl ·
∏n

i=1 δi and αh ·∏n
i=1 δi in lower and upper, respectively.

Return the average of the values stored in lower and upper.

The sampling algorithm described in Section 2.2 will generate a tree struc-
ture T , which represents the sample set of sequences obtained in the sampling
algorithm. The number of pairwise bounded sets can be estimated by computing
several random walks from the root of T to a leaf and determining the degrees
δ1, . . . , δn of the vertices as encountered. Since all |Γ |n sets of n symbols are pos-
sible choices for the 2d columns without the pairwise bounded condition being
violated, a tree representing all pairwise bounded sets is such that all vertices at
levels 0 to 2d will have degree |Γ |n. Hence, to estimate the number of pairwise
bounded sets from T , we multiple

∏n
i=1 δi by appropriate values based on the

degrees of the vertices witnessed; for each random walk from the root of T to a
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leaf, let αl be the minimum value in the set {|Γ |n/δ1, |Γ |n/δ2, . . . , |Γ |n/δ2d} and
similarly, αh be the maximum value in the set {|Γ |n/δ1, |Γ |n/δ2, . . . , |Γ |n/δ2d}.
We obtain an estimate of the lower and upper bounds for the number of pairwise
bounded sets based on this random walk as: αl ·

∏n
i=1 δi and αh ·

∏n
i=1 δi, respec-

tively. In order to obtain tight bounds we repeat this random walk procedure N
times, each time producing the values αl ·

∏n
i=1 δi and αh ·∏n

i=1 δi, and take an
average of all the estimates for the upper and lower bounds.

4 Conclusions and Future Work

In this paper, we develop an efficient algorithm for generating pairwise bounded
sets, and empirically show that the distribution of the weights of the sample
sets produced by MarkovSampling is indistinguishable from that of rejection
sampling. MarkovSampling illustrates the existence of a dichotomy between the
distribution of the weight of a random motif set and that of a random decoy set–
such a separation can be exploited to efficiently solve Consensus Sequence.
We discuss counting the number of pairwise bounded sets, prove bounds on
the number of pairwise bounded sets, and develop an algorithmic method to
count the number of pairwise bounded sets. Our focus has been on the combi-
natorial model of motif-recognition and while this is indeed an important and
well-investigated problem, further investigation is needed into the applicability
of this model in discovering motifs in real biological data.

This is the first study on this topic that the authors are aware of and, as
such, there exists many practical and theoretical problems left for open for in-
vestigation. Proof of the existence (or non-existence) of a fully polynomial almost
uniform sampler (FPAUS) for sampling pairwise bounded sets u.a.r. warrants
investigation. The development of a rapidly mixing Markov chain Monte Carlo
(MCMC) algorithm could show the existence of an algorithm for u.a.r. genera-
tion of pairwise bounded sets and should be further explored. MCMC methods
have been successful in producing a sampling method for some combinatorial
sampling problems. Lastly, proving the existence of a tighter (upper or lower)
bound on the number of pairwise bounded sets remains open.
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Abstract. Many applications have a need for indexing unstructured
data. It turns out that a similar ad-hoc method is being used in many
of them - that of considering small particles of the data.

In this paper we formalize this concept as a tiling problem and consider
the efficiency of dealing with this model. We present an efficient algorithm
for the one dimension tiling problem, and prove the two dimension problem
is hard. We then develop an approximation algorithm with an approxima-
tion ratio converging to 2. We show that the “one-and-a-half” dimensional
version of the problem is also hard.

1 Motivation

The proliferation of digital data is staggering. Even with the speed of current
computers, sequential search is impossible in many applications. If efficient in-
dexing techniques are not available, the data is, for all intents and purposes,
lost.

Dictionaries and concordances were in use by scholars for generations. By
the late 1940’s the field of Information Retrieval was created. For many years
that information was mostly textual, and a large body of scientific work has
been established in the field [21,8,17]. With the advent of Computational Bi-
ology, digital libraries, and the Web, indexing of non-textual data is becoming
increasingly more crucial. Some examples are provided below.

Computational Biology

The three dimensional structure of the protein plays an important role in its func-
tionality and as F. Cohen [2] writes “... similar sequences yield similar structures,
but quite distinct sequences can produce remarkably similar structures” [10].
Searching the growing database of protein structures for structure similarity
is, therefore, an important task. In essence, a good indexing method is neces-
sary. Unfortunately, the rate of growth of the protein database exceeds the rate
of development of indexing methods. The processes that most state-of-the-art
methods use to-date extract various local features, such as curvature or torsion
angles, and index by these features. This is both time-consuming and limited by
the selected features. Current methods can not efficiently index protein structure
for more than a few thousands proteins. Consequently, the methods aggregate
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proteins with some rough similarity, find a group that is “roughly similar” to
the given protein and then check within this group. The disadvantage of this
method is that it blurs local features that may actually be important, and thus
may point the search algorithm to the wrong group. Recently, a new approach
(for example [13]) is taken, where the protein structure is represented as letter
strings using structural alphabets.

Linguistics. Lexical categorization is an important task of Natural Language
Processing. The idea is to correctly tag parts of speech (e.g. as verbs, nouns).
Sets of constraints have been suggested as possible aids in the task of lexical
categorization [12]. Parikh mappings have been used for identifying such sets [1].
(A Parikh mapping is a function counting for each letter of an alphabet the
occurrences of this letter in a word w [19].) In seeking the Parikh mapping, one
is interested in the content of a substring, but in a scrambled order. In [1]
some interesting techniques were developed, and it was apparent that problems
that have known efficient solutions in the traditional pattern matching context,
are still open for exploration. In particular, can a text be efficiently indexed for
Parikh mapping?

Computer Vision

Indexing images is one of the important challenges of web retrieval. Currently,
image searches in all search engines are actually textual searches. The image
captions are indexed and not the images themselves. Not only is it impossible to
scan a picture and ask to find all “similar” pictures, but even such a mundane
task as, given a picture, finding the image from which the given picture has been
cropped, is not efficiently doable. State-of-the-Art methods of indexing images
index features that group a set of images into a similar prototype, e.g. having
the same color histogram. Nevertheless, as in the case of Biology, such methods
are not capable of finding images that are similar to the input image by some
other feature.

Audio Indexing

Indexing large audio archives has emerged recently [15] as an important research
topic as large audio archives now exist. There are several possible goals to au-
dio indexing – speaker indexing and speech indexing. Both are important for a
variety of commercial and security applications. As in the applications above,
the methods of use are preprocessing the corpus by selecting a set of features
that roughly describe similar inputs, and then hierarchically seeking the closest
match to an input segment. The method suffers from the same weakness as the
computer vision and biological structure indexing.

The above applications all point to the need of breaking up data to small
particles and using them as identifiers of the data.
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2 Intuition of Main Idea

We will describe below in a general “hand-wavy” manner the intuition of an idea
that has been applied in the various domains we had discussed. We will then
give the combinatorial abstraction of the idea and outline our results.

The main idea we would like to explore is the following. Since we do not want
to commit ourselves a-priori to any particular shape, model, or relation, we slice
the object into a very large amount of small pieces. Intuitively, when we get the
jumbled pieces of two objects, we consider only those pieces that occur in both
piles. If there are many of these, we have a potential similarity. However, even a
large number of pieces in the intersection may not mean that their sources are
similar. As an extreme example consider two black and white matrices A and
B. A is a checkerboard and B has a black top and a white bottom. If we slice
the matrices into squares the size of a square in the checkerboard we will end
up with exactly the same small pieces in both jumbled matrices, but they are
clearly very different.

Thus, we go a step further. Every model has a set of rules whereby two pieces
can be judged as adjacent. If we can piece together large sub-objects from the
similar pieces of both objects, we expect the given objects to be, indeed, similar.
For example, an image of a car in the desert and a car in the forest would have
the car in common.

The above idea has been used successfully in computer vision. Ullman and his
groups used such “image fragments” for object classification(e.g. [20,4]), since
such fragmentation gives implicit spatial information. The computer vision world
has indeed embraced the patches model. The idea has also been employed in the
graphics community (see e.g. [22]).

The more primitive idea of comparing just the number of “small pieces”
is quite old. Color histogram has been used for decades as a crude index for
content-based image retrieval systems [23]. It has been used in Natural Language
Processing as well (e.g. [12]).

The human genome projects [6,5] and other genomes discoveries are based
on a similar idea. Namely, the input are short sequences taken from copies of
the DNA of the same cell, and the goal is to assemble one copy of this DNA
sequence.

In this paper, we seek to combinatorially define the idea of patches, and rig-
orously analyse its possibilities. This paper is devoted to the model definitions
and initial technical results. When modeling real life applications, one needs to
“clean up” and abstract many phenomena. For example, the shape, size, and
dimension of the fragments, as well as the criteria for attaching adjacent pieces
are application dependent.

For simplicity we assume an “exact match” in joining pieces. The major func-
tion necessary for a patch metric, is constructing the full object from its frag-
ments. This task is interesting in its own right and has drawn attention in the
pattern recognition community [25].
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3 Combinatorial Definition

Our first task developing a combinatorial definition for the “real world” problem
of pattern matching in a patch model. The definition below abstracts the problem
to the combinatorial realm.

Definition 1. Given matrix M,

⎛
⎜⎜⎝

m0,0 · · · · · · · · ·m0,n

· · · · · · · · · · · ·
· · · · · · · · · · · ·

mn,0 · · · · · · · · ·mn,n

⎞
⎟⎟⎠

AisadivisionofMtopatches ifA = {a0,0, · · · a0,n−1, · · · · · · an−1,0, · · ·an−1,n−1}
and ∀i, j ai,j =

[
mi,j , mi,j+1

mi+1,j , mi+1,j+1

]
.

The problem we are concerned with is the inverse.

Definition 2. The problem of constructing an image from patches is defined as
follows:

INPUT: A = {a0, · · · , an2−1} be a set of 2 × 2 matrices over alphabet Σ.

OUTPUT: Construct an (n+1)×(n+1) matrix M =

⎛
⎜⎜⎝

m0,0 · · · · · · · · ·m0,n

· · · · · · · · · · · ·
· · · · · · · · · · · ·

mn,0 · · · · · · · · ·mn,n

⎞
⎟⎟⎠

such that A is the division of M to patches, if such a matrix exists. Otherwise
report that no matrix can be constructed from the input.

Example. A={
[
a, b
a, a

]
,

[
a, a
b, a

]
,

[
a, a
a, a

]
,

[
b, b
a, b

]
,

[
b, b
a, a

]
,

[
a, b
a, a

]
,

[
a, a
b, b

]
,

[
b, a
b, a

]
,

[
b, a
a, b

]
}

The patches in set A can be constructed into text M , M =

⎛
⎜⎜⎝

a b b a
a a a b
b b a a
a b a a

⎞
⎟⎟⎠.

It seems from the definition that we have reduced our problem to a tiling
problem. Tiling problems are quite old in Combinatorics and Computer Science,
starting from geometrical tiling problems (e.g. [16,3]), through Computability
issues (e.g. [24]), and ending in the complexity of various tiling problems [9,18].
To our knowledge, the version we are proposing has only been used by Levin [14],
and that to prove NP-completeness.

Nevertheless, we believe the version defined in this paper models an extremely
important indexing problem and thus its complexity issues ought to be more
thoroughly studied. This paper takes some preliminary steps in this direction.

4 One Dimension Tiling

We start by simplifying the problem to one dimension.
LetΣ be an alphabet.Denote byα=< x, y > a pair over alphabetΣ2, (x, y∈Σ).
Let A be a set A = {α1, ..., αn}, αj ∈ Σ2; j = 1, ..., n.
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Definition 3. A is called a tiling if its elements can be arranged in order α1, ...,
αn such that ∀i, 1 ≤ i ≤ n − 1, yi = xi+1.

4.1 One Dimension Algorithm

We provide an algorithm for solving the one dimension tiling problem.

Definition 4. Let α, β ∈ A. There is a connection between α and β if there
exists A1 ⊆ A, such that A1 is a tiling, and α, β ∈ A1.

Let a ∈ Σ. Denote by ||a||x (||a||y) the number of times a appears in the left
(right) side of a pair in A.

Let α ∈ A. Denote by xα ∈ Σ (yα ∈ Σ) the symbol on the left (right) side of
pair α,

A tiling α1, ..., αn is cyclic if xα1 = yαn .

Note that a cyclic tiling can actually start at any pair in the tiling, since the last
pair can be connected to the first pair.

Example. < a, b >, < b, c >, < c, d >, < d, a > is can also be tiled as < b, c >,
< c, d >, < d, a >, < a, b > and as < c, d >, < d, a >, < a, b >, < b, c >.

The following lemma gives necessary and sufficient conditions for tiling.

Lemma 1. Let Σ be the alphabet symbols occurring in A. A is a tiling iff:

(a.1) At least |Σ| − 2 characters a, fulfill the condition ||a||x = ||a||y
(a.2) ∀a ∈ Σ, ||a||y − 1 ≤ ||a||x ≤ ||a||y + 1
(a.3) If there is an a ∈ Σ, such that ||a||x = ||a||y + 1, then there exists b ∈ Σ

such that ||b||x + 1 = ||b||y.
(b) ∀α, β ∈ A there is a connection between α and β.

Proof. ⇒ simple.
⇐ Our problem is reducible to the directed version of Euler’s Königsberg

Bridge problem. We define the the problem below.

Definition 5. The Directed Königsberg Bridge problem is defined as follows:

INPUT: A directed multi-graph G = (V, E).
OUTPUT: Find a path that traverses all edges of the graph, visiting every edge
exactly once (it is permissible to visit a vertex multiple times).

Euler [7] showed a necessary condition for solving the undirected version of the
problem, and Hierholzer [11] proved that the undirected version of the problem
can be solved if and only if the graph is connected, and there are exactly two or
zero nodes of odd degree.

The reduction is as follows: Construct a directed multi-graph G = (V, E),
whose vertices are the alphabet letters of Σ. For pair α =< x, y > there is a
directed edge from vertex x to vertex y.

A proof that our conditions, indeed, cause the graph to be connected, and
that considers the directed version will be provided in the final version.
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4.2 Pattern Matching

The tiled pattern matching problem is defined as follows.

Definition 6. Tiled pattern matching of P in A is:

INPUT: A = {α1, ..., αn}, P = {τ1, ..., τm}, αi, τj ∈ Σ2, i = 1, ..., n; j = 1, ..., m
OUTPUT: Decide if ∃ tiling of A and tiling of P such that P tiling is a substring
of A tiling.

Since P must be a substring of A, then P ⊆ A. In the first stage check if P itself
is a tiling.

If P is cyclic, we can check A with all possible beginnings of P . However,
another strategy is better. It suffices to check if A \ P is a tiling and if there is
a common alphabet symbol to P and A \ P . If P is not cyclic, let τ1, τk be the
first and last pairs of P , respectively. Let α1, ..., αj be a tiling of A \P . There is
a tiled matching of P in A if either xα1 = yτk

, yαj = xτ1 , or if there exist two
pairs αi, αi+1 ∈ A \ P , where yαi = xτ1 , and xαi+1 = yτk

.

5 Two Dimensional Tiling

In this section we show that two dimensional tiling is hard and find an approxi-
mation algorithm.

5.1 Two Dimensional Tiling is NP-Hard

Theorem 1. The problem of constructing an image from patches as defined in
Definition 2, is hard.

Proof. By reduction from Levin’s tiling problem [14].

Definition 7. A patch A may be placed to the right (left, top, bottom) of patch
B if the pair of letters on the right (left, top, bottom) side of B are the same as
the pair on the left (right, bottom, top) of patch A.

A tiled square descriptor f is a function that, given a square of patches placed
next to each other, outputs its first row and the list of patches used.

Levin’s tiling problem is inverting the tiled square descriptor, i.e.

INPUT: A row R of n patches placed next to each other, and a multiset S of
(n − 1)n patches.
DECIDE: Whether there exists a square of patches placed next to each other,
whose first row is R and where the rest of the tiles used are exactly those in the
multiset S. We call such a square a Levin Square.

Levin showed [14] that Levin’s tiling problem is NP-complete.
We polynomially reduce Levin’s tiling problem to our two-dimensional image

construction problem as follows.
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Given the input for Levin’s tiling problem, and let the first row R be the n
patches {x0, · · · , xn}.

We have two tasks ahead of us. The first is to show that the problem of
placing patches next to each other in Levin’s tiling problem is equivalent to that
of constructing an image from overlapping patches. The second challenge is to
force the patches in row R to be the first row in the image constructed from our
patches.

Definition 8. The Square Tiling Problem is defined as follows:

INPUT: A multiset S of n2 patches.
DECIDE: Whether there exists a square of patches placed next to each other,
whose patches are exactly those in the multiset S.

The equivalence of Square Tiling and our Image Construction problem is estab-
lished by the following lemma.

Lemma 2. n2 patches can be placed in an n×n Levin Square iff those n2 patches
can be used to construct an (n + 1) × (n + 1) image. (Note that the size of the
Levin Square is given in patches and the size of the image is given in pixels.)

Proof. An n× n Levin square constructs a 2n× 2n matrix of symbols. Erasing
all even columns and rows, excluding the last even column and row, produces
an (n + 1) × (n + 1) image constructed from the given patches.

Conversely, given an (n + 1) × (n + 1) image, doubling all columns and rows
excluding the first and last, produces a Levin Square constructed from the given
patches. 	

We now reduce Levin’s tiling problem to the Square Tiling problem. Assume
the first row is {x0, · · · , xn}. Replace this set of patches by n new patches
{x′

0, · · · , x′
n} where the symbols on the top of x0, · · · , xn are changed to new

symbols which do not exist in the alphabet, but that cause x′
0, · · · , x′

n to be
placed next to each other in that order. Specifically, let {a1, ..., an+1} be new
symbols not in Σ, replace the top symbols of patch xi by ai, ai+1.

Example: If the first row is:

{
[
1, 2
3, 4

]
,

[
2, 5
4, 6

]
,

[
5, 3
6, 3

]
,

[
3, 7
3, 0

]
}

then change it to:

{
[
a1, a2

3, 4

]
,

[
a2, a3

4, 6

]
,

[
a3, a4

6, 3

]
,

[
a4, a5

3, 0

]
}

where a1, a2, a3, a4, a5 �∈ Σ.
Now, every construction of a Levin Square is forced to put on top in the given

order, the patches x′
1, ..., x

′
n, and is thus a solution to Levin’s tiling problem. No

solution to our problem means no solution to Levin problem. 	
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5.2 Matching Equal Symbols

Lemma 2 allows us to consider the problem of matching patches when their
borders match, without recourse to an overlap. We have seen that the image re-
construction problem is NP-hard. It is therefore natural to ask whether relaxing
the condition that allows placing two patches next to each other yields a more
tractable problem.

Definition 9. Let Σ = {1, 2, · · · , |Σ|}. A patch A may be closely placed to the
right (left, top, bottom) of patch B if the pair of symbols < b1, b2 > on the right
(left, top, bottom) side of B satisfy |a1 − b1| ≤ k and |a2 − b2| ≤ k, where
< a1.a2 > is the pair on the left (right, bottom, top) of patch A, and k is a given
fixed constant.

The Near Square Tiling problem is defined as follows:

INPUT: A multiset S of n2 patches.
DECIDE: Whether there exists a square of patches closely placed next to each
other, whose patches are exactly those in the multiset S.

Theorem 2. The Near Square Tiling Problem is NP-hard.

Proof. Given input n patches over alphabet Σ, multiply every symbol in
the alphabet by k getting a new alphabet Σ′ = {1, ...|Σ|k}. Now the only so-
lution to the Near Square Tiling problem is the solution to the Square Tiling
problem. 	


5.3 An Approximation Algorithm

Having established the hardness of the image reconstruction problem, we now
seek ways to approximate the image. We need to decide first what it is we
are trying to approximate. Granted that we can not efficiently reconstruct the
image, we can try to develop an efficient algorithm that reconstructs the largest
square it can from the patches. Another possibility, and this is the one we took,
is reconstructing an image from all the patches, but allowing errors, where two
patches that are placed next to each other but whose symbols don’t match,
introduce an error. The square tiling of n patches actually has 2n−2

√
n matches.

The algorithm below constructs a square with at most n matches, thus we have
an algorithm that approximates the matches within a factor that converges to 2
as n grows to infinity.

We would like to construct
√

n matching rows. If that were done, we would
have n−√

n matches. Unfortunately, we will not be able to guarantee matching
rows. Rather, there will be an additional

√
n errors within the rows.

For simplicity of exposition, we consider a pair of symbols < x, y >, x, y ∈ Σ,
as a single new symbol in a new alphabet Π = Σ × Σ. Each column of two
symbols in a two-dimensional patch becomes a new symbol, converting every
two-dimensional patch into a one-dimensional patch.
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Example.
[
a, b
c, d

]
will be written as

[
ac bd

]
.

Notation. Call symbols which occur the same number of times on the right
and left side of a tile, circular symbols. Symbols for which ||a||x �= ||a||y , we call
uncircular.

Algorithm’s Idea

The algorithm has four stages:

1. Finding Uncircular Symbols Phase: Find the set U of uncircular sym-
bols in Π . Because of Lemma 1 we know that for such symbols ||a||x = ||a||y+
ia, where Σa∈U ia ≤ √

n. Furthermore, we also know that
∑

ia = s ≤ √
n.

2. Uncircular Rows Construction Phase: For each symbol a ∈ U for which
||a||x = ||a||y+ia, start constructing ia row in a greedy fashion as in Lemma 1
until it is impossible to continue. We now have x rows, x ≤ √

n, whose first
(and possibly last) element are not circular. If no patches remain we go to
the Row Length Adjusting Phase. If there are remaining patches, they are
all circular. We go to the Circular Rows Construction Phase.

3. Circular Rows Construction Phase: As in Lemma 1 construct, in a
greedy fashion, rows starting in circular symbols. Because of the reasons
proven in Lemma 1, all these rows are circular, i.e., begin and end in the
same symbol. At this point, insert all circular rows, wherever possible, into
other rows, until no more such insertions are possible. We prove below that
the total number of remaining rows, both circular and uncircular, are no
greater than

√
n. The problem is that some of them may have length greater

than
√

n and some may have a shorter length.
4. Row Length Adjusting Phase: For each row whose length exceeds

√
n,

cut it to as many rows of length
√

n as possible. All these rows are now
complete. The remaining subrow of length less than

√
n, is added to one of

the incomplete rows whose length is less than
√

n (possibly introducing a
mismatch).

Iterate on this phase as long as there remain incomplete rows. Note that
there are no more than

√
n iterations, and each one introduces at most one

mismatch.
At the end of this phase we have exactly

√
n rows of length exactly

√
n

each, and at most
√

n mismatches within these rows. Placing these rows one
on top of the other in any sequence gives a

√
n × √

n matrix with at most√
n mismatches within the rows and (

√
n − 1)

√
n mismatches between the

rows for a total of
√

n
2 = n mismatches.

Time. Phase 1 can be done in time O(n log n) by sorting. Phase 2 can be done
in linear time. Phase 3’s most complex part is a union-find which can be imple-
mented in time O(nα(n), where α(x) is the inverse Ackerman function. Phase 4
can be implemented in linear time. Thus the total algorithm time is O(n log n).
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Correctness

The correctness hinges on Lemma 1, and on the fact that the patches were
produced from a

√
n×√

n image. This guarantees that there is equal number of
circular symbols on the left side and the right side of the patches, and thus an
equal number of uncircular symbols on the left and right sides of the patches.
Therefore, all rows constructed during Phase 2, start and end with uncircular
symbols, and there are no more than

√
n such rows.

Lemma 3 proves that the total number of rows after Phase 3 is no larger than√
n. Now Phase 4 is clear.

Lemma 3. Given k one dimensional rows, the greedy algorithm reconstructs at
most k rows.

Proof. Will be provided in the final version.

5.4 Largest Common Image

So far we have discussed the problem of constructing an image from patches.
Patches can be used as a method for indexing images. In this context it is
necessary to find the largest sub-image common to two given images.

Definition 10. Let A and B be two sets of patches, each of size n. The largest
common image of A and B is the largest set of patches in the intersection of A
and B that can be placed in a square.

Theorem 3. Computing the largest common image is NP-hard.

Proof. By reduction from the Square Tiling problem. Let S be the set of n
patches that are input to the Square Tiling problem, Take A = B = S. The
Largest Common Image of A and B is A iff there is a Square Tiling of S. 	


5.5 “One and a Half” Dimensions

We have seen that a one dimensional image, where each patch connects to two
neighbors, one on its right and one on its left, can be efficiently reconstructed.
We have seen that a two dimensional image, where a patch connects to four
neighbors - top, bottom, left and right - is NP-hard. What happens in “one and
a half” dimensions, i.e., where each patch connects to three neighbors?

The case of a patch connecting to three neighbors is possible if the patches
are equilateral triangles, rather than squares. Equilateral triangles can still tile
the plane (see Figure 1) but there are only three neighbors to every patch. Does
the reduction of a degree of freedom make the tiling efficiently computable, or
is it still NP-hard?

It turns out that there is still one other equilateral polygon that can tile
the plane - the hexagon. Since the hexagon has 6 neighbors, we expect that
reconstructing an image from hexagons is hard. We will, indeed, see that this is
the case. However, the hexagon tiling helped us solve the triangular tiling case.
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Fig. 1. triangles tiling the plane

Theorem 4. The Hexagonal Tiling Problem and the Triangle Tiling Problem
are NP-hard.

Proof. Will be provided in the final version.

6 Conclusion and Open Problems

We gave a combinatorial model for a common ad-hoc technique used by many
application domains for indexing. This is a specific version of square tiling. We
also took some tentative initial steps in studying this model.

We presented an efficient algorithm for the one dimension tiling problem, and
proved the two dimension problem is hard. We then developed an approximation
algorithm with an approximation ratio converging to 2. We have barely begun
to scratch the surface of these problems, and much research with potential ap-
plications is still left to be done.

Some interesting examples of open problems that need to be tackled in order
to understand the applicability of this model to indexing are approximating the
largest contiguous sub-image of a given set of patches, and studying the tiling
problem of non-square tiles for special forms.
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Abstract. We consider the problem of estimating the frequency count of
data stream elements under polynomial decay functions. In these settings
every element arrives in the stream is assigned with a time decreasing
weight, using a non increasing polynomial function. Decay functions are
used in applications where older data is less significant \ interesting \ re-
liable than recent data. We propose 3 poly-logarithmic algorithms for the
problem. The first one, deterministic, uses O( 1

ε2
log N(log log N +log U))

bits. The second one, probabilistic, uses O( 1
ε2

log 1
εδ

log N) bits and the
third one, deterministic in the stochastic model, uses O( 1

ε2
log N) bits.

In addition we show that using additional additive error can improve,
in some cases, the space bounds. This variant of the problem is impor-
tant and has many applications. To our knowledge it was never studied
before.

1 Introduction

Processing large data is a significant subject in nowadays research. In the in-
ternet epoch, we have mass amount of data to process, in the size of Terabytes
or even Petabytes. Many applications, such as IP communication management,
audio and video streaming, sensor reading and stock exchange tracking are char-
acterized by data arriving in mass amounts, sequentially and rapidly. Most of
the frameworks for these applications don’t have enough workspace to process
the data and store it entirely. Thus, most of the algorithms typically store a
synopsis of the data using much less space than the amount of the arriving data.
Using the synopsis, the algorithm should be able to answer queries regarding
the data and clearly, there is a tradeoff between the size of the synopsis and
the precision of the returned answers. As an outcome, there is a constant need
to develop new algorithms, more accurate and efficient, for online management
and monitoring of these applications. These settings introduced, a decade ago,
a model of computation called data stream (Streaming).

In the streaming model each arriving data item has the same relative contri-
bution, i.e. weights the same. However, in many applications older data is less
significant \ interesting \ reliable than recent data. Therefore, we would like to
weight newer data more heavily than older data. This can be done using decay
functions, which are non increasing functions, that assign weight to each arriving
item. Each weight is constantly updated as a function of the time elapsed since
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the item was first observed in the stream. There are few types of commonly
used decay functions, such as Sliding window, Polynomial and Exponential de-
cay. When we consider Sliding window decay, each data item in the window is
assigned with one unit weight, while all the others, outside the window, are dis-
counted. Other types of decay functions assign each item with different weight,
diminishes as a function of the time elapsed.

For many applications needs, both sliding window and exponential decay
aren’t sufficient. The advantage of polynomial decay is that the weights de-
crease in a smoother way. Namely, the ratio between two different elements is
constant, as will be elaborated in the sequel.

In this work we propose 3 sketch based algorithms for estimating data stream
elements decayed frequencies under polynomial decay. The first one, is deter-
ministic, the second one is probabilistic and the third one, is deterministic in
the stochastic model. Our work serves both theoretical and practical aspects.
Specifically, we address a variant of the frequency count problem that to our
knowledge was never studied before, in an efficient and simple way. Moreover,
multiple sketches of the deterministic algorithm can be joined together easily,
which is an advantage for the distributed streaming scenario. In addition, this
variant can be suitable for applications where other types of decay are too rigid.

One application that can utilize this work is caching system for web servers.
There are many replacements policies for caching, where the most commonly
used are the LRU (Least Recently Used) policies. However, it isn’t the case for
caching web servers [1,2]. Results of researches show that using LFU (Least Fre-
quently Used) replacement policies with aging mechanism (i.e. frequency count
with decay) perform much better [1]. There are more frequency based caching
algorithms like in [3].

1.1 Decay Functions

We represent the definitions given by Cohen and Strauss in [4]. Consider a stream
where f(t) ≥ 0 is the item value of the stream obtained at time t. For simplicity
we assume our stream only receives values at discrete times, and therefore, t is
integral. We define a decay function g(x) ≥ 0 for x ≥ 0 to be a non-increasing
function. At time T the weight of an item that arrived at time t ≤ T is g(T − t)
and the decayed value of that item is f(t)g(T − t). The decayed sum (DSP)
under the decay function g(x) is defined as: Vg(T ) =

∑
t≤T f(t)g(T − t). When

f(t) receives only binary values, we refer to Vg(T ) as decay count (DCP), since
it aggregates under decay the number of positive bits.

As mentioned above, there are 3 types of commonly used decay functions:
Sliding Window, Exponential and Polynomial Decay. Formally, the Sliding Win-
dow decay for a window size W , assigns weights ∀ 0 ≤ x ≤ W g(x) = 1 and
g(x) = 0 otherwise. Exponential Decay (ExpD) for a given parameter λ > 0,
assigns weights g(x) = exp (−λx). Polynomial Decay (PolyD) for a given param-
eter α > 0, assigns weights g(x) = 1

xα .
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1.2 Model and Problem Definition

Consider a data stream of N elements drawn from a universe U . Each is assigned
at arrival with a time decreasing weight. Elements constantly arrive and due to
the size of the stream, it is only allowed to perform one pass over the data.
Furthermore, the storage available is poly-logarithmic in N and the data should
be processed in minimum time.

Let Ñ be the sum of weights assigned to the elements, such that Ñ =∑N
i=1 g(i), and ε ∈ (0, 1) be the error factor. Our goal is to approximate, up

to error of εÑ , the decayed frequency of each element observed in the stream,
i.e. we would like to approximate the decayed count (DCP) of each element with
error less then εÑ .

1.3 Related and Previous Work

As was mentioned above, to our knowledge, this variant of the problem was not
studied before.

Cohen and Strauss in [4] introduced the time decay sum and time decay
average under general decay function. In addition, they developed a data struc-
ture (sketch) - Weight Based Merging Histograms (WBMH) - that guarantees
(1 ± ε) multiplicative approximation for the sum of values of the elements ob-
served in the stream, under polynomial decay. This structure uses at most
O(1

ε log N log log N) bits of space, where ε ∈ (0, 1) and N denotes the length
of the stream. They also showed a lower bound of Ω(log N) bits for this prob-
lem. Kopelowitz and Porat in [5] proposed an improved algorithm - Altered
Exponential Histograms (AEH) - matching the lower bound from [4]. Their al-
gorithm combines WBMH [4] and Exponential Histograms (EH) [6]. They also
proposed another model where additive error is allowed. For more details see the
sequel.

Cormode et al [7] proposed a time decay sketch technique for summarizing
decayed streaming data. The sketch can give estimates for various decayed ag-
gregates. It is mainly targeted to the distributed streaming scenarios, such as
sensor networks, since it is duplicate insensitive - meaning that re-insertion of
the same data will not affect the estimates of the aggregates. Furthermore, mul-
tiple sketches computed over distributed data can be combined without losing
accuracy.

In another paper, Cormode et al [8] proposed deterministic algorithm for
approximating several decayed aggregates in out of order streams. Under these
settings, elements do not necessarily arrive in the order of their appearance in the
stream. The algorithm works with Sliding window, Polynomial and Exponential
decay.

Not a lot of work was done on estimating decayed stream aggregates, however,
many algorithms were proposed for approximating stream aggregates in general
and frequency count in particular. For a more detailed description of the work
that was done see [9].
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The first deterministic algorithm, which provides additive approximation for
the frequencies of data streams elements, is the Misra-Gries Algorithm [10]. This
algorithm uses m counters, where the size of m depends on the approximation
accuracy, and provides O(1) amortized processing time per element. The same al-
gorithm was rediscovered by Demaine et al [11] and Karp et al [12], who reduced
the processing time to O(1) in the worst case. In order to get approximation with
maximum error εN where N denotes the length of the stream, we set m = � 1

ε �.
Demaine et al [11] also developed algorithm for the stochastic model.

Manku and Motwaniet [13] proposed 2 algorithms for computing frequencies
of elements. The first one, StickySampling, is probabilistic algorithm which
identifies all items that their true frequency exceeds (s − ε)N with probability
1 − δ, where N denotes the length of the stream, s ∈ (0, 1) is a user specified
threshold and ε ∈ (0, 1) is the maximum error. The expected number of counters
is at most O(1

ε log(s−1δ−1)). The second algorithm, LossyCounting is a deter-
ministic algorithm. It guarantees the same precision using at most O(1

ε log(εN))
counters, regardless of s.

Arasu and Manku [14] proposed 2 algorithms for calculating frequency count
over Sliding Window decay. The first one, deterministic, uses O(1

ε log2(1
ε )) coun-

ters and the second one, probabilistic, provides approximation with probability
at least (1 − δ) by using O(1

ε log(εδ)−1) counters.
Cormode and Muthukrishnan in [15] introduced the Count-Min sketch. They

developed a poly-logarithmic data structure for summarizing data streams, uti-
lizing pair-wise independent hash functions. Each arriving element is mapped
from the universe U to entries in the sketch. At query time, the result of the
query is the minimum value of the entries mapped to the element. The size of the
sketch is O(1

ε log 1
δ ) and the error guarantee per query is εL1 with probability

1 − δ, where L1 denotes the sum of frequencies of the elements observed. For
further details see the sequel.

2 Deterministic Algorithm

2.1 Weight Based Merging Histograms

The Weight Based Merging Histograms were introduced by Cohen and Strauss in
[4]. These histograms provide ε− multiplicative approximation for Poly Decay
count using O(1

ε log N log log N) bits of space (where N denotes the stream’s
length).

Weight Based Histograms (WBMH) as other types of histograms, such as
Exponential histograms [6], aggregate values into buckets. The main difference
is that in WBMH the boundaries of the buckets are dependent on the decay
function, and not on a particular stream instance. This means that the buckets’
timestamps don’t need to be stored in the buckets explicitly.

WBMH utilize the fact that if a decay function has the property that
g(x)/g(x + Δ) is non-increasing with x for any time frame Δ, then the ratio of
two items remains fixed, or approaches one as time advances. This means that
as time progresses, elements in larger vicinities have the same decayed weight
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up to a multiplicative factor. WBMH utilize this property by grouping together
in the same bucket, values with similar weights. Buckets boundaries are deter-
mined in the following way. Let b0 = 1 and b1 be the maximum value such that
(1 + ε)g(b1 − 1) ≥ g(b0). In the same manner, let bi be the maximum value such
that (1 + ε)g(bi − 1) ≥ g(bi−1). Furthermore, the number of elements in each
bucket depends on the stream, but the boundaries don’t. The range [bi, bi+1− 1]
is referred as a region.

In order to approximate the decay count (DCP) of the stream, WBMH work
in the following way. When a new element arrives it is added to the “current”
(first) bucket. At any time T where T ≡ 0(mod b1) the “current” bucket is
sealed, and a new one is opened. Whenever there exist an i and two buckets,
such that the two buckets are within a region [bi, bi+1 − 1], they are merged into
one. The DCP is the sum of the buckets multiplied by their region boundary.

Notice that the decay weight of each element in the same bucket is within 1±ε
factor. Thus, the decayed count can be computed by multiplying the number of
non-zero values in the bucket, with the bucket’s corresponding region bound-
ary. Since keeping an exact counter for the number of non-zero values in the
bucket is costly, an estimated counter in the size of O(log log N) bits is used.
The approximated decayed count of the stream can be computed by summing
the approximated decayed count of every bucket. It was showed in [4] that under
Poly Decay there are O(1

ε log N) different bis for every function. Since 2 buckets
within the same region are merged, the total number of buckets is O(1

ε log N).

2.2 Algorithm

In this section, we describe a deterministic process that approximates the decayed
frequency counts of data stream elements, under Poly Decay, with maximum error
of εÑ per element. The space used in this process is O( 1

ε2 log N(log log N +logU))
storage bits, where N denotes the length of the stream.

For this process we will exploit the property that polynomial decay divides
the stream to O(1

ε log N) boundaries and the way buckets are constructed in [4]
as was explained above. Since elements in a bucket have almost the same weight,
the approximated decayed frequency of a single element in a bucket, is the num-
ber of times it appears multiply by the bucket’s corresponding region boundary.
Thus, the approximated decayed frequency of an element over the entire stream,
is the sum of the approximated decayed frequencies over all the buckets. For-
mally, denote Fe as the DCP of element e, f̃ i

e as the approximated number of
appearances of element e in bucket i and wi as the weight corresponding to
the region of bucket i. The approximated decayed frequency of element e over
the stream is

∑O( 1
ε log N)

i=1 f̃ i
ewi. Notice that we suffer from two approximation

factors.
Our algorithm works as follows. We approximate in each bucket, the frequen-

cies of the elements observed by it. In order to do so we utilize the Misra-Garies
algorithm [10](or others as described in [11,12] ) as a black box in each bucket.
Notice that since we require approximation of ε, there should be O(1

ε ) counters
in each black box. The buckets are constructed the same way as in WBMH.
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Whenever a new element e arrives, it is added to the current bucket by sending
it to the bucket’s corresponding black box. At any time T where T ≡ 0(mod b1)
the current bucket is sealed and a new one is opened.

Whenever there exist an i and two buckets that are within a region [bi, bi+1−1]
they are merged into one. Merge operation is preformed in the following manner.
Suppose we need to merge buckets i and j. Denote by Ni the elements observed
by bucket i and by Nj the elements observed by bucket j. In each bucket there are
O(1

ε ) counters corresponding to the O(1
ε ) elements with the highest frequencies.

In the new bucket, created during the merge, we keep the O(1
ε ) elements, with the

highest frequencies from both buckets. We can merge the buckets in a straight
forward way (without considering the decay), since both buckets are in the same
region and thus the elements’ weights are roughly the same. Notice that, the
number of elements allegedly observed by the new bucket is Ni + Nj and the
maximum errors in the old buckets i and j are εNi and εNj respectively. We get
that the maximum error in the new merged bucket is ε(Ni + Nj), therefore, the
ε approximation guarantee is preserved.

Whenever we are asked to retrieve the elements decayed frequencies we scan
the buckets and for each element we sum it’s frequencies multiplied by the bucket
corresponding boundary.

Theorem 1. Let g(.) be a polynomial decay function such that g(x)/g(x + 1)
is non increasing with x. The data structure uses O( 1

ε2 log2N) storage bits and
provides approximation with maximum error of εÑ , for the elements decayed
frequencies.

Proof. In each bucket we use an instance of the Misra-Garies algorithm as a
“black box” with error parameter ε′. In addition, we pick our boundaries using
the given decay function with error parameter ε′′, formally ∀i (1+ ε′′)g(bi −1) ≥
g(bi−1). Since in each boundary there can be at most 2 buckets, we get that
the total number of buckets is O( 1

ε′′ log N). Adding the “black box” to each
bucket yields a total of O( 1

ε′ε′′ log
2N) storage bits. Notice that for each element

monitored by a counter, we need to maintain it’s ID using O(log U) bits, but
usually log U ≤ log N and thus bounded by O(log N).

Recall that our algorithm suffers from two approximation factors: the first
one is from the way we approximate the frequencies in each bucket and the
second is from using boundaries instead of exact decay weights. Combing these
approximations together we get (1 ± ε′′)(Fe ± ε′Ñ) = Fe ± ε′Ñ ± ε′′Fe ± ε′′ε′Ñ .
Notice that ε′′Fe ≤ ε′′Ñ . Choosing ε ≥ ε′ + ε′′ + ε′ε′′ by setting ε′ = ε′′ = ε

3

provides the desired approximation guarantee and yields total of O( 1
ε2 log2 N)

storage bits. 	

Lemma 1. Under polynomial decay, O(1) processing operations are required in
amortized per element observed in the stream.

Proof. We use amortization argument for proving the lemma. Let c = � 1
ε2 log N�.

We hold a buffer of size c and build the sketch in steps. At the first step,
when c becomes full we iterate over it and build the sketch structure. The
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cost of this operation is c. The number of buckets created in the sketch is
O(1

ε log( 1
ε2 log N)) = O(1

ε log log N). We do the same at every round, but in
addition we have to append and merge the old sketch at the end of the new
sketch. Since the old sketch has O(1

ε log log N) buckets each of size O(1
ε ), the

merge operation is bounded by O( 1
ε2 log log N). Thus, the processing time is

bounded by the size of the buffer, namely, O( 1
ε2 log N). Since we do this opera-

tion every c time units, we get that the amortized processing time is O(1). 	

We can further reduce the space by allowing additional multiplicative approxima-
tion. It can be done by using estimated counters, in each black box. It is sufficient
to save the exponent, using O(log log N) bits and in addition the most significant
O(log 1

ε +log log N) bits, for each counter. This extra relaxation is possible since
the number of merge operations, for each bucket, bounded by O(log N). This
reduces the overall size of the structure to O( 1

ε2 log N(log log N + log U)). Due
to lack of space, further details are omitted, see [4] for a similar counter method.

Using this structure, multiple histograms can be joined together quiet easily
without losing approximation guarantees. Joining two histograms can be done
by iterating over the regions and merging 2 buckets at a time (merging buckets
as explained above). This property is an advantage when considering distributed
streams.

3 Probabilistic Algorithm

In this section, we describe a probabilistic algorithm that approximates with
high probability (1 − δ), the decayed frequency count under Poly Decay, with
maximum error εÑ . The space used by this algorithm is O( 1

ε2 log 1
εδ log N) bits,

where N denotes the current length of the stream and ε, δ ∈ (0, 1). Our algorithm
utilizes Altered Exponential Histograms [5] and Count-Min sketches [15].

3.1 Count-Min Sketch

As mentioned above, the Count-Min sketch is a poly-logarithmic space data
structure for summarizing data streams. The idea of the sketch is to model the
stream as a vector X of |U | dimensions, where U denotes the universe. The cur-
rent state of the vector (stream) at time t is X(t) = [X1(t), ..., Xi(t), ..., X|U|(t)].
Initially, X is the zero vector: ∀i Xi(0) = 0. When element i ∈ U arrives
in the stream at time t, it is modeled as if the vector’s i’th entry is updated
(incremented). The value of the i’th entry at time t, i.e. Xi(t), is the frequency
of element i. The user specifies 2 parameters (ε, δ), where ε denotes the error
parameter and δ is the probability of failure. Since it isn’t possible to maintain
the entire vector, a vector sketch is constructed. The sketch is represented as
a two-dimensional array of size wd, denotes by count[ , ], where w = � e

ε � and
d = �ln 1

εδ �. The accuracy estimates for individual query in the sketch depends
on the L1 norm of vector X at any time t.

One of the queries to the sketch is the point query, denotes by Q(i). It returns
the approximated frequency of element i ∈ U at any time t. Formally, for any
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time t, Xi(t) is the frequency of element i and let X̃i(t) be the approximated
frequency of element i. The query retrieves frequency estimation such that Xi ≤
X̃i and with probability at least 1 − δ, X̃i ≤ Xi + ε||X(t)||1.

3.2 Algorithm

Our idea adapts the Count-Min sketch structure and combines Alter Exponential
Histograms (AEH) as a black box in each sketch entry. The function of the AEH
is to calculate each entry value under the Poly decay function. The sketch uses
wd two-dimensional array, initially set to zero. In addition, d hash functions
: h1...hd : 1...|U | → 1...w, are chosen uniformly at random from a pairwise-
independent family.

When an element i arrives in the stream at time t, the data structure is
updated by adding “1” bit, to the AEH corresponding to each entry mapped to
the element. Formally, ∀ 1 ≤ j ≤ d, count[j, hj(i)]. AEH. increment(1).

In order to retrieve decayed frequency estimation of element i, the entry with
the minimum value of all the entries mapped to the element is returned. Formally,
Q(i) = minj count[j, hj(i)]. AEH. value().

Notice that under these settings Xi denotes the decayed frequency of element
i and X̃i denotes the approximated decayed frequency of element i. In addition,
recall that we are calculating the frequency by estimating the DCP for each
observed element. For any polynomial decay function g(.), we set the accuracy
estimates to be dependent on Ñ , since this is the sum of the decayed weights of
the elements. Thus, the maximum frequency error expected per element, is set
to be εÑ with high probability.

Theorem 1. Let g(.) be a polynomial decay function such that g(x)/g(x + 1)
is non increasing with x. The data structure uses O( 1

ε2 log 1
εδ log N) storage bits

and provides approximation for single element decayed frequency (Point Query),
such that Xi ≤ X̃i ; and with probability at least (1 − εδ) , X̃i ≤ Xi + εÑ . The
processing time per element is O(log 1

εδ ).

Proof. We use a Count-Min sketch with parameters ε′, δ. We put in each entry of
the sketch an instance of AEH with error parameter ε′′. ε′, ε′′ will be determined
later. Under these settings, the total space consumption is O( 1

ε′ε′′ log 1
ε′δ log N)

bits.
First we consider the error in each Point Query, overlooking the error factor

from the AEH. The query proof is actually an adaptation of the proof from [15]
and therefore we only sketch it. By pairwise independence of the hash functions
we get that the probability of collision, for each entry in a row, is less then
1/range(hj) = ε′

e . In [15] the authors showed that the expected error in each
sketch entry is less then ε′

e L1, which equal ε′
e Ñ in these settings. In addition,

by pairwise independence of hj and linearity of expectations, it was shown that
Pr[X̃i ≥ Xi + ε′L1] ≤ ε′δ.

Combing the AEH, we suffer from 2 errors. The first one, multiplicative error
of (1 ± ε′′) from the AEH and the second one, additive error of ε′Ñ from the
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Count-Min structure. Setting ε′ = ε′′ = ε
3 , provides the desired approximation

guarantee and a total space consumption of O( 1
ε2 log 1

εδ log N) bits.
As for the processing time, whenever an element arrives we update O(log 1

ε′δ )
rows in the two-dimensional array. In each update we increment the histogram
which cost O(1) in amortized per update [5]. 	

Using the above theorem we can now present an algorithm for decayed frequency
count, which follows an idea from [16,15]. For each element, we use the Count-
Min data structure to estimate its count, and keep a heap of the top � 1

ε � elements
seen so far.

Given a data stream, for each element i observed at time t we do the following:

1. Update the entries mapped to i in the Count-Min sketch
2. Retrieve the decayed frequency of element i by running Q(i) query
3. If i is in the heap, increment its count (by adding “1” to it’s histogram)
4. Else, if Q(i) is greater then the smallest value in the heap then,

(a) Generate AEH instance equal the the histogram corresponding to Q(i)
(b) Pop the heap (remove the smallest value)
(c) Add the newly created AEH instance to the heap

At query time the heap is scanned and all elements in the heap with estimated
count above εÑ are output. The probability that an element will not be properly
estimated during a point query is less than εδ. Since an improper estimation of an
element is only when the approximation is above the εÑ threshold, an improper
estimation in the decayed frequency count algorithm can be caused only by
one of the 1

ε elements in the heap. Applying union bound shows that the total
probability of error in the algorithm is bounded by δ.

In the heap we keep � 1
ε � elements. Each element is associated with AEH of

size O(1
ε log N) bits and O(log U) bits for it’s ID. Since usually log U ≤ log N ,

the total space of the heap is O( 1
ε2 log N) bits. We conclude that the total space

consumption of the algorithm is O( 1
ε2 log 1

εδ log N) bits.

4 Deterministic Algorithm in the Stochastic Model

In this section we present an algorithm for decayed frequency count in the
stochastic model. In this model, an arbitrary probability distribution specifies
the relative frequencies of the elements and the order the elements occur in the
stream is uniformly random.

Algorithm for frequency count in the stochastic model was proposed by De-
maine et al in [11]. The algorithm divides the stream into rounds. At the begin-
ning of each round, the first distinct m elements are sampled, which is equivalent
to sampling m elements uniformly at random. At the end of the first round the
top m

2 elements (with highest frequencies) are saved and the others are dis-
counted. At the next rounds, only m

2 counters are used for sampling. At the
end of each round, total of m

2 elements with the highest frequencies, from the
current and the previous rounds are saved. Applying Chernoff bounds show that
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the counts obtained during a round are close to the actual frequencies of the
elements. For further details and completeness see [11].

We adapt this idea but instead of using m binary counters we use histograms,
namely the AEH histograms. As was mentioned above, each histogram is of size
O(1

ε log N) bits. We get that the total size of the structure is O(m 1
ε log N). It is

sufficient to set m = � 1
ε � for getting good approximation with high probability.

5 Decay with Additional Additive Error

The AEH approximates the DCP by (1 ± ε) multiplicative approximation. We
now consider another model in which in addition to the multiplicative error, an
additive error of ε2 ∈ (0, 1) is allowed (in the AEH). This kind of relaxation,
was discussed in [5]. It was shown that when considering binary streams with
polynomial decay, there is a need to differentiate between 2 cases. In the first
case where α > 1, it is sufficient to maintain only the last 1

ε2
elements observed

by the stream. It can be done by saving them in AEH and therefore reduce the
space to O(log( 1

ε2
)) per histogram. In the second case where 0 ≤ α ≤ 1, a lower

bound was proved showing that it isn’t possible to do better.
Since we can calculate the decayed frequencies using the AEH, allowing this

extra relaxation can reduce the space consumption. Namely, using this method
in the probabilistic algorithm (see section 3), reduces the space consumption
to O(1

ε log 1
ε2

log 1
εδ log N) bits. Similarly can be done to the algorithm in the

stochastic model.
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Abstract. The problem of finding the Shortest Common Supersequence
(SCS) of an arbitrary number of input strings is a well-studied problem.
Given a set L of k strings, s1, s2, . . ., sk, over an alphabet Σ, we say that
their SCS is the shortest string that contains each of the input strings
as a subsequence. The problem is known to be NP-hard [8] even over
binary alphabet [12]. In this paper we focus on approximating two NP-
hard variants of the SCS problem. For the first variant, where all input
strings are of length 2, we present a 2 − 2

1+log n log log n
approximation

algorithm, where |Σ| = n. This result immediately improves the 2− 4
n+1

approximation algorithm presented in [17]. Moreover, we present a 7
6

(≈ 1.1666̄) approximation algorithm for the restricted variant (but still
NP-hard) where all input strings are of length 2 and every character in
Σ has at most 3 occurrences in L.

1 Introduction

The problem of finding the Shortest Common Supersequence (SCS) of a finite
set of strings, L, is a well-studied problem [7,8,10,14,15,16]. An SCS of a set L
is a shortest string that is a supersequence of every string in L.

The SCS problem is known to be NP-hard [8] even in the case of a binary
alphabet [12]. However, if the number of input strings is fixed, their SCS can be
found in polynomial running time [15,16].

The SCS problem has several applications in various areas, such as data com-
pression, text editing and computational biology.

Many results regarding the hardness and the approximabilty of the SCS prob-
lem were presented during the last two decades, see [1,6,7,17]. Also, several
heuristics and computational experiments can be found [2,3,4,11].

Throughout this paper we use the following notations. Given a set L of k
strings, s1, s2, . . ., sk, over an alphabet Σ of size n, we denote by SCSl, the
problem of finding Shortest Common Supersequence, where all input strings are
of length l. Moreover, we denote by SCSl(r), the problem of finding SCS, where
all input strings are of length l and every character in Σ has at most r occurrences
in L.

Timkovsky [16] showed that both SCS2(3) and SCS3(2) are NP-hard prob-
lems. On the other hand, SCS2(2) can be solved in polynomial running time.
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In this paper we focus on approximating the SCS2 and the SCS2(3) problems.
We define the approximation version of the SCS problem as follows. Let OPTscs

be the optimal solution for the SCS problem and let APPscs be the result of the
approximation algorithm APP (such that APPscs is a common supersequence
of s1, s2, . . ., sk). The approximation ratio of the APP algorithm will be the
smallest ratio between |APPscs| and |OPTscs| over every possible input set L.

For the SCS2 problem we present a 2 − 2
1+log n log log n approximation algo-

rithm. This result immediately improves the 2 − 4
n+1 approximation algorithm

presented in [17]. Moreover, we present a 7
6 (≈ 1.1666̄) approximation algorithm

for the SCS2(3) problem.

2 Approximating SCS2

In this section we present a simple approximation algorithm for the SCS2 prob-
lem. Our algorithm utilizes the close relation between the SCS2 problem and
the classical Minimum Feedback Vertex Set problem. Our algorithm consists of
the following three stages:

(i) Given a set L, construct a corresponding directed graph G(V, E).
(ii) Find an approximated Minimum Feedback Vertex Set on G(V, E).
(iii) Construct a common supersequence of L, based on the Feedback Vertex Set
from the second stage.

In the first stage of the algorithm, we transfer the input strings of the SCS2
instance, L, into a corresponding directed graph G(V, E). Every character ci ∈ Σ
represents a vertex vi in G(V, E). Then, we set a directed edge from vi to vj iff
cicj ∈ L. See Figure 1 as an example of the above construction.

The following corollary, regarding the above construction, is crucial to the
analysis of our algorithm.

cba

=bd

=de4S

3S=ab

=ce2S =bf8S

=cd7S1S

=eb6S

=fa5S

ef d

Fig. 1. From an SCS2 instance into a directed graph
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Corollary 1. Let L be an SCS2 instance and let G(V, E) be its corresponding
directed graph. Denote by VMFV S the Minimum Feedback Vertex Set of G(V, E).
The following must hold:

(i) The SCS of the set L is of length n + |VMFV S |.
(ii) The SCS of a set L that corresponds to an acyclic graph can be found in
polynomial running time, using a topological sorting [13].

In the second stage of the algorithm, we use the classical log n log log n approxi-
mation algorithm [5] for the Minimum Feedback Vertex Set problem in order to
find a feedback vertex set in G(V, E). Using this set of vertices we divide Σ into
two distinct groups, which will be used in the last stage of the algorithm, where
we construct a common supersequence of L.

Let V ′ ⊆ V be the feedback vertex set that we found over G(V, E) and
let F ⊆ Σ be a the set characters that corresponds to V ′, according to the
construction of G(V, E). We denote with P an arbitrary permutation of F .

Given a vertex v, we denote with E(v) the set of all edges that v is one of their
endpoints. Similarly, we denote with E(V ′), the set of all edges that vi ∈ V ′ is
one of their endpoints. Note that G(V \V ′, E\E(V ′)) is an acyclic directed graph,
and thus, according to Corollary 1, its SCS can be found. Let us denote this
common supersequence by P ′.

We then output P · P ′ · P as a common supersequence of L, where ’·’ stands
for the concatenation of two strings.

2.1 Approximation Ratio Analysis

Let VMFV S be the Minimum Feedback Vertex Set of G(V, E). Since we use a
log n log log n-approximation algorithm for the Minimum Feedback Vertex Set
problem, we can conclude that |V ′| ≤ |VMFV S | log n log log n.

Now, according to Corollary 1, |OPTscs| = n + |VMFV S |. Moreover, we can
bound the length of P · P ′ · P by min(n + |VMFV S | log n log log n, 2n). Thus, we
can conclude that our algorithm yields an approximation ratio of 2n

n+ n
log n log log n

= 2 log n log log n
1+log n log log n = 2 − 2

1+log n log log n .

2.2 Time and Correctness Analysis

First we prove that P · P ′ · P is a common supersequence of L. To do so, we
divide the strings of L into four groups:

(1) Input strings such that both characters ∈ F
(2) Input strings such that only their first character ∈ F
(3) Input strings such that only their second character ∈ F
(4) Input strings such that both characters /∈ F

Now, we show that every string (of length 2) that belongs to one of those
groups must be a subsequence of P ·P ′ ·P . Clearly, every string in (1) must be a
subsequence of P ·P . Moreover every string in (2) or (3) must be a subsequence
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of P · P ′ or P ′ · P , respectively. In addition, according to Corollary 1 and the
construction of G(V, E), every string that belongs to the fourth group must be
a subsequence of P ′.

Clearly the running time of the algorithm is polynomial in L. Note that we
construct G(V, E) in linear time and we use a polynomial time approximation
algorithm for the Minimum Feedback Vertex Set problem. Moreover, as already
mentioned, the topological sorting of G(V \V ′, E\E(V ′)) is also done in polyno-
mial running time.

3 Approximating SCS2(3)

In this section we present a 7
6 -approximation algorithm for the SCS2(3) problem.

Similarly to our algorithm for the SCS2 problem, we utilize the close relation
between the SCS2(3) and the Minimum Feedback Vertex Set problems. Our
algorithm consists of the same three stages as in the previous algorithm, but
with a major change regarding the Feedback Vertex Set that we find during the
second stage.

Given a directed graph G(V, E) and a vertex vi ∈ V , we denote by din(vi),
dout(vi) and d(vi) its in-degree, out-degree and total-degree, respectively.

As mentioned, the first stage of the algorithm where we construct G(V, E)
based on L is identical to the first stage of the above-described algorithm. After-
wards, we use the following algorithm, Algorithm 1, in order to find a Feedback
Vertex Set, V ′, over G(V, E).

Algorithm 1: Approximated Minimum Feedback Vertex Set(G(V,E))
V ′ = Ø;
Perform a cleanup process on G;
while G contains a anchored cycle Cj and an anchor vi do

Remove vi and E(vi) from G;
V ′ = V ′ ∪ vi;
Perform a cleanup process on G;

while ∃ a vertex vi that satisfies: din(vi) = 2 do
Along the path starting from vi, find the first vertex vj such that d(vj) = 3;
Remove vi, vj , E(vi) and E(vj) from G;
V ′ = V ′ ∪ vj ;
Perform a cleanup process on G;
while G contains an anchored cycle Cj and an anchor vi do

Remove vi and E(vi) from G;
V ′ = V ′ ∪ vi;
Perform a cleanup process on G;

output V ′;

We use the following definitions in order to simplify the description and the
analysis of our algorithm.

Definition 1. Given a directed graph G(V, E), a cleanup process is the removal
of all edges and vertices of G that are not part of any cycle.
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Fig. 2. Cycle ’abcd’, non-anchored versus anchored

Definition 2. Given a directed graph G(V, E), a cycle Cj in G and a vertex
vi ∈ Cj. We say that Cj is an anchored cycle and that vi is its anchor iff after
performing a cleanup process on G(V \vi, E \E(vi)), the graph does not contain
any of the Cj vertices.

We use the following corollary, regarding the anchored cycles, in order to show
that Algorithm 1 must stop.

Corollary 2. Given a directed graph G(V, E), where each vertex has a bounded
degree of three, and cycleCj inG. IfCj contains atmost one vertexwith in-degree =
2 or at most one vertex with out-degree = 2 then Cj is an anchored cycle.

Notice that an anchored cycle might have more than one anchor. In Figure 2 we
can see that the cycle ’abcd’ is not an anchored cycle in the left graph, while it
is an anchored cycle in the right graph (where vertex d acts as its anchor).

Algorithm 1 is initialized by setting V ′ to Ø and by performing a cleanup process.
Afterwards, as long as G contains an anchored cycle, we attach its anchor (or one
of them) to V ′ and we remove it from G. We then perform a cleanup process on G.

Note that, at the end of the first part of the algorithm, the graph does not
contain any anchored cycles. Therefore, in the second part we handle the non-
anchored cycles as follows.

As long as G contains a vertex vi such that din(vi) = 2 (and clearly d(vi) = 3)
we perform the following process. We search for the first vertex, vj , along the
path (starting from vi) that satisfies: d(vj) = 3. We then attach vj to V ′, we
remove vi and vj from G and perform a cleanup process on G. In case that G
contains anchored cycles, we handle them (one after the other) according to the
first stage of the algorithm. If no anchored cycle exists, we search for another
vertex with in-degree of two, in order to start the above process again.

The algorithm stops iff G is empty. Note that, at the end of the second part
of Algorithm 1, G does not contain:

(i) A vertex vi such that din(vi) = 2.
(ii) An anchored cycle.
(iii) Vertices or edges that are not part of any cycle.
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According to (i), (ii) and Corollary 2, we can conclude that G does not contain
cycles at all. Thus, we can conclude from (iii) that G must be empty at the end
of the second stage.

We now turn to the SCS2(3) problem. Similarly to the previous section, let
V ′ be a Feedback Vertex Set, let P be an arbitrary permutation of F (the set of
characters that corresponds to V ′) and let P ′ be the SCS of the acyclic directed
graph G(V \V ′, E\E(V ′)).

We then output P · P ′ · P as a common supersequence of L.

3.1 Approximation Ratio Analysis

In this subsection we prove that the above approximation algorithm for the
SCS2(3) problem yields an approximation ratio of 7

6 . To do so, we show that |V ′| ≤
|VMFV S | + n

6 (where VMFV S is the Minimum Feedback Vertex Set of G(V, E)).
We classify the vertices of V ′ into two distinct groups:

(i) ANCHORS - vertices attached to V ′ as anchors of anchored cycles.
(ii) NON-ANCHORS - the rest of V ′ vertices.

The following lemma provides an upper bound on |ANCHORS|.
Lemma 1. |ANCHORS| ≤ |VMFV S |
Proof. Let x be the maximum number of vertex disjoint cycles in G(V, E). Notice
that after attaching an anchor into V ′, we perform a cleanup process. Thus, we
remove all the vertices and all the edges of an anchored cycle from G. Therefore,
|ANCHORS| ≤ x ≤ |VMFV S |. ��
The following Lemma provides an upper bound on |NON-ANCHORS|.
Lemma 2. |NON-ANCHORS| ≤ n

6

Proof. Let vj ∈ NON-ANCHORS and let y be the number of degree 3 vertices
in G (clearly y ≤ n). We now show that after attaching vj into V ′ we reduce y
by at least 6.

Recall that we only attach a non-anchor vertex into V ′ during the second
part of Algorithm 1. In that case, we select an arbitrary vertex vi such that
din(vi) = 2 and then we search for the first vertex, vj , along the path (starting
from vi) that satisfies d(vj) = 3. We then attach vj to V ′, we remove vi and vj

from G and we perform a cleanup process on G.
Since we remove vi and vj from G, y is already reduced by 2. We now focus

on the cleanup process. Different from the previous cleanup processes, here we
detail how the process works in order to achieve tighter bounds.

Let e1 ∈ E(vi) be an edge that is not part of the path from vi to vj . We
start the cleanup process by deleting e1 from G. We then continue travelling
(backwards) along the path that ends with e1. We remove all the vertices and
all the edges along this path until we face a vertex vk that satisfies: d(vk) = 3
and dout(vk) = 2. In this case we only remove a single outgoing edge of vk. If
we did not face such a vertex then we already removed an anchored cycle from
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G, which contradicts the assumption that G does not contain such cycles. Thus,
we can conclude that we must face such a vertex vk which is not of degree 3
anymore. Therefore, we can reduce y by one.

We do the same for additional three edges: e2 ∈ E(vi) and e3, e4 ∈ E(vj).
Note that in case of forward travelling (instead of backwards) we continue until
we face a vertex vk that satisfies: d(vk) = 3 and din(vk) = 2. Therefore, during
the cleanup process we reduce y by at least 4.

Altogether, for every vertex vj ∈ NON-ANCHORS we must reduce y by at
least 6 and thus, |NON-ANCHORS| ≤ n

6 . ��
Now, according to Corollary 1, |OPTscs| = n + |VMFV S |. Moreover, according
to Lemma 1 and Lemma 2, we can bound |P ·P ′ ·P | by min(7n

6 + |VMFV S |, 2n).
Thus, we can conclude that our algorithm for the SCS2(3) problem yields an
approximation ratio of 7

6 .

3.2 Time and Correctness Analysis

As long as the output of Algorithm 1 is a Feedback Vertex Set, the correctness
analysis from the previous section must also holds for this case.

Since in every step of the algorithm we only remove edges and vertices that
are not part of any cycle in G(V \ V ′, E \ E(V ′)), we can conclude that the
output must be a Feedback Vertex Set.

Note that the running time of Algorithm 1 is polynomial in L and thus, our
running time analysis from the previous section must also holds for this case.

4 Conclusion and Open Questions

In this paper, we presented a 2 − 2
1+log n log log n approximation algorithm for

the SCS2 problem, which immediately improves the 2 − 4
n+1 approximation

algorithm presented in [17]. We also presented a 7
6 -approximation algorithm for

the SCS2(3) problem.
Our algorithms are based on the close relation between the SCS and the

Minimum Feedback Vertex Set problems. To tighten this close relation, it is easy
to see that using our construction of G(V, E), any γ-approximation algorithm for
the Minimum Feedback Vertex Set problem can lead to a 2− 2

γ+1 approximation
algorithm for the SCS2 problem.

A natural open question is whether there are better approximation algorithms
for the the SCS2 and the SCS2(3) problems, which improves the above approx-
imation factors ?
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Abstract. In the classical pattern matching problem, one is given a
text and a pattern, both of which are sequences of letters, and is re-
quired to find all occurrences of the pattern in the text. We study two
modifications of the classical problem, where each letter in the text and
pattern is a set (Set Intersection Matching problem) or a sequence (Se-
quence Matching problem). Two “letters” are considered to be match
if the intersection of the two corresponding sets is not empty, or if the
two sequences have a common element in the same index. We show the
first known non-trivial and efficient algorithms for these problems, for
the case the maximum set/sequence size is small. The first, randomized,
that takes Θ

(
2dn ln n log m

)
time, where d is the maximum set/sequence

size, and can also fit, with slight modifications, for the case one is also
interested in up to k mismatches. The second is deterministic and takes
Θ

(
4dn log m

)
. The third algorithm, also deterministic, is able to count

the number of matches at each index of the text in total running time

Θ
(∑d

i=1

(|Σ|
i

)
n log m

)
.

1 Introduction and Related Work

The classic pattern matching problem is defined as follows: We are given a text
T = t1, t2, t3, ..., tn of size n and a pattern P = p1, p2, p3, ..., pm of size m, which
are both sequences of letters belonging to a pre-defined set — the alphabet
Σ = u1, u2, u3, ..., ul. We are required to find all occurrences of the pattern in
the text. Linear time solutions were given in [7,8].

Two forms of approximation for the problem which are commonly researched
involves don’t cares and mismatch count. The first is about the presence of a wild-
card letter, which matches any other letter, was first solved in Θ (n log m log |Σ|)
time [4], and later in Θ (n log m) time [11,10]. The second is match/mismatch
count, e.g. get the number of matching letters when comparing the pattern to
the text at location i, for all locations. This mismatch count (at each location
compared) is actually the Hamming distance between the text and the pattern,
and was given an Θ (n|Σ| logm) time solution in [4].

The subset matching problem, first introduced by Cole and Hariharan [1],
extends that classic string matching problem and defines both the pattern and
text to be sequences of sets of characters. Formally, each text location ti and
each pattern location pi is a set of characters, not a single character, taken from
a certain alphabet. Pattern P is said to match text T at location i, if pj ⊆ ti+j
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for all j, 0 ≤ j < m. Cole and Hariharan proposed a near-linear time randomized
algorithm [1], and improved it [2] to a deterministic one. Amihood, Porat and
Lewenstein proposed [3] approximate version with don’t cares.

Generalized strings over alphabet Σ are sequences of sets, where each set is a
subset of sigma, which are possibilities for letters in that position. For example,
the generalized string [{a,b},{b,d}] matches the strings ab, ad, bb, bd. This type
of strings is used in [6], and while specifying the pattern to look for in regular
expressions.

As the subset matching problem, the two problems studied in this paper define
the pattern and text to be sequences of sets (or sequences) too, but a match
between two ‘letters’ is when the intersection of the two sets is not empty, in the
Set Intersection Matching problem, or when the two sequences have a common
element in the same place, in the Sequence Matching problem (formal definitions
are given in the next section). The Set Intersection Matching problem is actually
searching for a generalized string inside another one.

Sample applications for the algorithms in this paper are when there is possible
errors in both the pattern and the text. For example, consider the case when both
the pattern and the text were acquired using an OCR algorithm that reports
few options for each letter. One can create a set of all possible letters for each
such letter, and then run Set Intersection Matching algorithm in order to get
the occurrences of such faulty pattern in the text.

1.1 Overview

Section 2 defines the two problems formally. Then, sections 3,4,5 presents the
three different algorithms for the problem. Finally, section 6 concludes and pro-
poses future work.

2 Preliminary

2.1 Problem Definition

In the Set Intersection Matching problem, each letter is actually a set, and two
of those ‘letters’ match if the intersection between them is not empty.

more formally:

Definition 1. The Set Intersection Matching Problem
Input:

– Alphabet Σ = u1, u2, u3, ..., ul

– Text T = t1, t2, t3, ..., tn, where each ti is a set of letters from the alphabet
Σ, and |ti| is the size of the set ti.

– Pattern P = p1, p2, p3, ..., pm, where each pi is a set of letters from the
alphabet Σ, and |pi| is the size of the set pi.

– d — maximum set size. Formally: d = max
(
maxi∈[1,m] |pi| , maxj∈[1,n] |tj |

)

Output: All locations 1 ≤ i ≤ n − m + 1, such that for all 0 ≤ j ≤ m − 1 :
ti+j ∩ pj �= ∅
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Example 1. Consider the text T = [{a,b}, {b,c,d}, {a,d}, {a,c,d}, {b}] and the
pattern P = [{a,b}, {a,c}, {c,d}]. The matches for all possible locations in the
text are described in Table 1.

Table 1. Set Intersection example

Intersection (j)
Index (i) 1 2 3 Match

1 {a,b} {c} {d} √
2 {b} {a} {c,d} √
3 {a} {a,c} ∅ ×

Note that the above definition ignores the order of the elements inside each set.
In contrast, the Sequence Matching problem does consider the order. In this
problem, both the pattern and the text are composed of sequences of letters
from the alphabet, and a match between two sequences occurs when there is at
least one index where both sequences have the same letter. Formally:

Definition 2. The Sequence Matching Problem
Input:

– Alphabet Σ = u1, u2, u3, ..., ul

– Text T = t1, t2, t3, ..., tn, where each ti is a sequence of letters from the
alphabet Σ, and |ti| is the size of the sequence ti.

– Pattern P = p1, p2, p3, ..., pm , where each pi is a sequence of letters from
the alphabet Σ, and |pi| is the size of the sequence pi.

– d — maximum sequence size. Formally:
d = max

(
maxi∈[1,m] |pi| , maxj∈[1,n] |tj |

)

Output: All locations 1 ≤ i ≤ n − m + 1, such that for all 0 ≤ j ≤ m − 1, there
exists 1 ≤ k ≤ min (|ti+j |, |pj |) : ti+j [k] = pj[k]

Example 2. Consider the text T = [[a,b], [b,c,d], [a,d], [a,c,d], [b]] and the pattern
P = [[a,b], [a,c], [c,d]]. The matches for all possible locations in the text are
described in Table 2.

Table 2. Sequence Matching example

Matching? (j)
Index (i) 1 2 3 Match

1 [1,0] [0,1,0] [0,1]
√

2 [0,0,0] [1,0] [0,0,0] ×
3 [1,0] [1,1] [0,0] ×
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The two problems are equivalent, up to a small difference in efficiency. Thus, we
will allow ourselves to solve in the sequel only one of the following.

To reduce Set Intersection to Sequence Matching one can replace each of the
elements in each sequence with a couple represents the element and its index.
For example: [{a, b}, {b, c, d}] ⇒ [{(a, 1), (b, 2)}, {(b, 1), (c, 2), (d, 2)}]. By doing
so, the intersection can contain only elements that are in the same index, which
is actually the definition of the Sequence Matching problem. The price we pay
for it is the enlargement of the alphabet size — Σ, where the new size is bounded
by Σ × d.

To reduce Sequence Matching to Set Intersection one should first repeat the
text set’s letters d times each. Then, he should pad the patters set’s letters and
repeat the new set (including the padding) d times. This causes the intersection
to appear in the same index of both the pattern and the text. For example: T =
[[a, b], [b, c, d]], P = [[a, b], [a, c]] ⇒ T = [[a, a, a, b, b, b], [b, b, b, c, c, c, d, d, d]], P =
[[a, b, X, a, b, X, a, b, X ], [a, c, X, a, c, X, a, c, X ]] for d=3 and X a padding letter.
In this case the price is the squaring of d.

2.2 Hardness of the Problem

As one can easily see, the problem can be trivially solved in time Θ
(
nmd2

)
.

The main hardness in the above problems lies in the lack of the following
transitive property, which is the base for fast pattern matching algorithms. The
transitive relation states that if a = b and b = c then a = c, and these al-
gorithms use this property in order to avoid comparing elements which their
matching could be concluded. As this property does not hold in those problems,
the existing algorithms cannot be used.

3 Randomized Algorithm

In this section we show a randomized algorithm for the Set Intersection Matching
problem. We start by giving a ‘bad’ randomized algorithm - an algorithm that
is wrong with very high probability, and then we reduce the failure probability
by running the algorithm several times.

The algorithm works as follows: First, we choose a random hash function
h : Σ → {0, 1}. Then, we build a new text Th using linear phase which scans the
original text T , and writes at position i of Th one of 0, 1 or φ (where φ stand for
don’t care) depending on the value of T at position i − ti. We write 0 if for all
x ∈ ti h(x) = 0, 1 if for all x ∈ ti h(x) = 1, and φ if ∃x, y ∈ ti h(x) = 0 h(y) = 1.
We build Ph from the original pattern P using the same way.

The idea of the algorithm is based on the following two trivial lemmata:

Lemma 1. If ti+j ∩ pj �= ∅ then for any hash function, the resulting letters will
not match.

Lemma 2. If ti+j ∩ pj = ∅ the probability that these two places will not match
is 2−(|ti+j|+|pj |).



Set Intersection and Sequence Matching 289

Our ‘bad’ random algorithm will run regular pattern matching algorithm on
binary alphabet to match between Th and Ph. If we want only to test for match
or not, we could use two convolutions (which are O(n log m)). For the case we
also interested in up to k errors (up to k sets that does not intersect), we can
run the algorithm from [5] which will return the places of the mismatch in time
O(nk log2 m). Note that the algorithm, in either case, fails to return the true
answer with high probability.

Theorem 1. If we run the ‘bad’ random algorithm 3
24d lnn times the failure

probability of the algorithm will be less than 1
n .

Proof. We deal with the following cases separately: Testing for an intersection
match or not, and counting the number of places that does not intersect up
to k.

In the first case, look on a specific shift in which we check whether the pat-
tern matches the text. If the pattern matches at this position, our algorithm
will always return that it matches. If the pattern does not match on that lo-
cation, then with probability higher than 2−2d+1 each iteration reports that it
does not match. Therefore, with probability less then (1 − 2−2d+1)

3
24d ln n = 1

n3

we will obtain a false match. As we do the same for less than n shifts, the overall
probability that there exist a shift which our algorithm fail on it is bounded
by 1

n2 .
If we want to count the non intersect groups up to k, assume that ti+j∩pj = ∅.

The probability to miss it at each iteration is less than 1 − 2−2d+1. There-
fore the probability that we will miss it in all of the iterations is bounded by
(1 − 2−2d+1)

3
24d ln n = 1

n3 . We have at most nm pairs for which ti+j ∩ pj = ∅,
hence the probability to miss one of them is bounded by m

n2 < 1
n .

4 Deterministic Algorithm

4.1 Sequence Matching Algorithm

In this section we first show simple algorithm for the Sequence Matching problem
in the case d = 2, and then generalize it for d > 2.

4.2 Simple Case Study (d = 2)

Assume the length of all sequences is lesser than or equal 2. It is easy to see that
one can pad all the sequences which are smaller than 2 with unused letters (one
for text sequences, and another one for pattern sequences), in order to get all
sequences to be of the same length, so we can assume that all sequences are of
length 2.

Theorem 2. The sequence matching problem, in the case where for all 1 ≤ i ≤
m |pi| ≤ 2 and for all 1 ≤ i ≤ n |ti| ≤ 2, can be solved in Θ (n log m) time.
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Proof. Denote the sequences of the text T = t1, t2, t3, ..., tn by ti = [xi, yi], and
the sequences of the pattern P = p1, p2, p3, ..., pm by pi = [ai, bi], and mind the
following formula for a pre-defined i:

m−1∑

j=0

[(xi+j − aj) (yi+j − bj)] (1)

Each of the summand in (1) equals 0 if and only if xi+j = aj or yi+j = bj ,
which means the two sequences match. Thus equals 0 if the text matches the
pattern at index i.

Expanding each summand yields:

m−1∑

j=0

(xi+jyi+j − ajyi+j − bjxi+j + ajbj) (2)

In order to solve the problem one should get the value of the formula for all
1 ≤ i ≤ n − m + 1, and this can be done by calculating each of the four parts
independently, and sum it up afterwards. The first and last parts can be easily
calculated for all i’s in Θ (n + m) time, by one pass over the text and pattern
and handling a window. The two other parts can be easily calculated for all i’s
as well, in Θ (n log m) time using convolutions [4].

Notice that the sum for few i’s can be 0 by chance. In order to avoid that
one should calculate the sum of squares of the formula. For details see the next
subsection.

4.3 The General Solution

We now generalize the previous algorithm for cases where d > 2. As in the former
case, it is easy to see that one can pad all the sequences which are smaller than
d with unused letters, in order to get all sequences to be of the same length, so
we can assume that all sequences are of size d. The following theorem with its
proof shows that there is an algorithm for solving the problem in Θ

(
4dn log m

)
:

Theorem 3. The sequence matching problem, in the case where for all 1 ≤ i ≤
m |pi| ≤ d and for all 1 ≤ i ≤ n |ti| ≤ d, can be solved in Θ

(
4dn log m

)
time.

Proof. Denote the sequences of the text and pattern by ti = [xi1 , xi2 . . . xid
]

and pi = [ai1 , ai2 . . . aid
], respectively, and consider the following formula for a

pre-defined i:

m−1∑

j=0

[(
xi+j1

− aj1

) (
xi+j2

− aj2

)
. . .

(
xi+jd

− aid

)]
(3)

As before, each summand in (3) equals 0 if and only if xi+j1
= aj1 or xi+j2

=
aj2 or . . . or xi+jd

= ajd
, which means the two sequences match. Hence the



Set Intersection and Sequence Matching 291

sum of the formula, which is the result of summation of m contiguous such parts,
equals 0 if there is a match at index i.

Expanding each summand yields:

m−1∑

j=0

(
xi+j1xi+j2 . . . xi+jd

− xi+j1xi+j1 . . . xi+jd−1ajd . . . + (−1)d aj1aj2 . . . ajd

)

(4)

In order to solve the problem one should get the value of the formula for all
1 ≤ i ≤ n−m+1, and this can be done by calculating each term independently,
and sum it up later. Notice that the formula consists of 2d terms, where each
of them are multiplication of text elements of a specific sequence, and pattern
elements of another sequence. For each part, the multiplication between elements
from the text can be calculated for all i’s in linear time, and the same for
multiplication between elements from the pattern, using a window as in the
previous subsection. Then, using convolutions we can get the term’s value for all
1 ≤ i ≤ n − m, in total time Θ

(
2dn log m

)
.

As before, in order to avoid getting 0 by chance, one should calculate the sum
of squares of the formula. All parts of formula (3) will be squared, and the result
is 22d = 4d parts in the extracted formula, with similar structure.

5 Deterministic Algorithm with Mismatch Count

In this section we present another deterministic algorithm for the Set Intersection
Matching problem, which is also able to count the number of mismatches between
the pattern and any location in the text.

Theorem 4. The Set Intersection Matching problem, can be solved in
time Θ

(∑d
i=1

(|Σ|
i

)
n log m

)
(which is bounded by O

(|Σ|dn logm
)
).

Proof. We define (S, i)-match-count for a set S of letters from Σ, and index i in
the pattern, to be the number of times S is in the intersection, when checking
for intersection match at index i of the text. Formally,

Definition 3. (S, i)-match-count: for S ⊆ Σ and 0 < i ≤ n − m + 1, (S, i)-
match-count = |{j | 0 ≤ j < m and S ⊆ ti+j ∩ pj+1}|

We denote (S, i)-match-count by Φ(S, i). The value of Φ(S, i) for a given S
subset of Σ can be calculated in Θ (n log n) for all i’s in the following way:
First, we replace each set in the text and the pattern with 1 if S is a subset
of it, and 0 otherwise. Then, we use the convolution method to get the desired
result.

In addition, we need the following result from the binomial expansion: by
setting x = −1 in the binomial expansion (1 + x)n =

∑n
k=0

(
n
k

)
xk we get
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0 =
n∑

k=0

(
n

k

)
(−1)k

s ⇒ −
(

n

0

)
(−1)0 =

n∑

k=1

(
n

k

)
(−1)k

⇒ −1 =
n∑

k=1

(
n

k

)
(−1)k

⇒ 1 =
n∑

k=1

(
n

k

)
(−1)k+1 (5)

Now, consider the case where one is trying to match the pattern P to the text
T at location i. We now show that

Lemma 3. The number of set intersection matches at location i is equal to
∑

S⊆Σ,|S|≤d

(−1)|S|+1 Φ(S, i) (6)

The value of formula (6) is summation of all (S, i)-match-count for all subsets
S of odd size of Σ, minus all (S, i)-match-count for all subsets S of even size.
Thus, for each of the locations we intersect and test for match (e.g. ti against
p1, ti+1 against p2, etc.), the formula counts the number of odd subsets of the
intersection minus the number of even subsets of it, and sum it all up afterwards.
Assuming the intersection size in such location is k, we get

∑k
i=1

(
k
i

)
(−1)i+1,

which equals 1 using (5). Notice that for locations where the intersection is
empty the formula counts nothing, hence we get that formula (6) equals ex-
actly the number of set intersection matches at location i, as claimed by the
lemma.

The proof of the theorem is now trivial, as we already see that Φ(S, i) can
be calculated in time Θ (n logm), and the number of elements summed up in
the lemma is exactly

∑d
i=1

(|Σ|
i

)
(Note that d ≤ |Σ|, as all sets are subsets

of Σ).

Example 3. Consider the text T = [{a,b}, {b,c,d}, {a,d}, {a,c,d}, {b}] and the
pattern P = [{a,b}, {a,c}, {c,d}]. (S, i)-match-count for all possible indexes i,
and for all relevant subsets S ⊆ Σ are described in Table 3. One can see that the
result is exactly the mismatch count of the Set Intersection Matching problem,
for each matching location i.

Example 4. Consider the case one is trying to calculate the match count between
the above pattern to the above text at location 3 of the text. Analysis of cor-
rectness of the algorithm for that case is described in Table 4. The last column,
which sums up the rows, is exactly the same as the last column of the previous
example. By summing up columns (odd size - even size) we get 1 for each index
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Table 3. Set Intersection match count example

S (S, 1)-match-count (S, 2)-match-count (S, 3)-match-count

{a} 1 1 2

{b} 1 1 0

{c} 1 1 1

{d} 1 1 0

{a,b} 1 0 0

{a,c} 0 0 1

{a,d} 0 0 0

{b,c} 0 0 0

{b,d} 0 0 0

{c,d} 0 1 0

sum(odd)-sum(even) 3 3 2

Table 4. Set Intersection match count analysis

Intersection (j)
S {a, d} ∩ {a, b} {a, c, d} ∩ {a, c} {b} ∩ {c, d} (S, 3)-

= {a} = {a, c} = ∅ match-count

{a} 1 1 0 2

{b} 0 0 0 0

{c} 0 1 0 1

{d} 0 0 0 0

{a,b} 0 0 0 0

{a,c} 0 1 0 1

{a,d} 0 0 0 0

{b,c} 0 0 0 0

{b,d} 0 0 0 0

{c,d} 0 0 0 0

sum(odd)-sum(even) 1 2 − 1 = 1 0 3 − 1 = 2

where the intersection is not empty, and 0 otherwise. Hence it is clear why we
get the match count, which is 2, when summing up the last column (odd size -
even size).

6 Conclusions and Future Work

We studied the Set Intersection Matching and Sequence Matching problems,
and presented first known non-trivial and efficient (for the case the maximum
set/sequence size is small) algorithms for solving those problem: randomized
one for the Set Intersection problem, deterministic for the Sequence Matching
problem, and another deterministic with match count for the Set Intersection
problem. The time complexity of all of the algorithms is exponential in the size
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of the largest sequence/set. We also presented reductions between the problems,
hence all of the above algorithms can solve both problems (with the cost of the
reduction).

Future work is required in order to develop efficient algorithms for the case
the sequences/sets and the alphabet are big, or in order to prove hardness and
that such algorithm does not exist.
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Abstract. Given a pattern p over an alphabet Σp and a text t over an
alphabet Σt, we consider the problem of determining a mapping f from
Σp to Σ+

t such that t = f(p1)f(p2) . . . f(pm). This class of problems,
which was first introduced by Amir and Nor in 2004, is defined by dif-
ferent constraints on the mapping f . We give NP-Completeness results
for a wide range of conditions. These include when f is either many-to-
one or one-to-one, when Σt is binary and when the range of f is limited
to strings of constant length. We then introduce a related problem we
term pattern matching with string classes which we show to be solv-
able efficiently. Finally, we discuss an optimisation variant of generalised
matching and give a polynomial-time min(1,

√
k/OPT)-approximation

algorithm for fixed k.

1 Introduction

We consider a class of pattern matching problems where individual characters
in the pattern are permitted to match entire substrings of the text. When the
substrings are restricted to have length exactly one, then the problems of find-
ing efficient search algorithms are exactly those typically found in the rich and
successful literature of combinatorial pattern matching. Our interest here lies
when the substrings may have length greater than one. In many cases, it has not
been known up to this point even whether polynomial-time pattern matching
algorithms exist.

The problems we analyse take the following general form. The input is a
pattern p = p1p2 . . . pm and a text t = t1t2 . . . tn. We wish to find a map-
ping f from Σp to Σ+

t (substrings of t of length at least one) so that t =
f(p1)f(p2) . . . f(pm) = f(p). For example, if p = aba and t = xyyx then if f
maps a → x, b → yy, we say that there is a match. However if t = xyyz, then no
such mapping can be found. The first results in this model were given by Amir
and Nor [2,3] who considered a problem called generalised function matching
(GFM) with wildcards. Here single character wildcards may occur in the input
and f is allowed to be any function. They show that if the pattern alphabet has
constant size, then a polynomial algorithm can be found but that the problem
is NP-Complete otherwise. The problem of generalised parameterised matching

J. Karlgren, J. Tarhio, and H. Hyyrö (Eds.): SPIRE 2009, LNCS 5721, pp. 295–301, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(GPM) is also defined in an analogous way to GFM except that f is now re-
quired to be an injection. That is if p = aba and t = xxx then there is a GFM
match but not a GPM match as a and b cannot both map to x in a generalised
parameterised match. As the names suggest, these problems arise from a natu-
ral extension of parameterised matching, introduced by Baker [4] in 1993, and
function matching, which was considered by Amir et al. [1].

Our contributions are twofold. Primarily, we answer a number of open prob-
lems posed by Amir and Nor in their initial work. Namely, we prove that both
GFM and GPM are NP-Complete with or without wildcards (Sections 2 and
3) and give a min(1,

√
k/OPT)-approximation for a Hamming distance based

variant of GFM for fixed k (Section 5). We also extend the work to include a new
variant of generalised matching based on pattern matching with string classes
(Section 4). Due to space constraints, some of the proofs are omitted.

2 GFM Is NP-Complete

In this Section we show that the problem of generalised function matching is
NP-Complete (with or without wildcards) via a reduction from 3-SAT. Specifi-
cally, given an instance of 3-SAT with N variables and M clauses we show how
to construct an instance of GFM (with length polynomial in M) which has a so-
lution if and only if the 3-SAT instance is satisfiable. In the process we show that
the reduction is valid even for quite severely restricted versions of the problem.

The construction starts by prepending two $ symbols to the beginning of both
the pattern and the text. The text alphabet Σt has only two symbols, $ and 0
with $ serving as a delimiter in both the pattern and text. The pattern alphabet
Σp will include the delimiter, a pair ai and Ai for each variable and a distinct
symbol ci for each clause. The Ai’s represent the negation of the variables ai.
The constructed pattern and text will contain an equal number of $ characters
which forces $ to map to $ under any valid function, since any other mapping
of $ must contain $$ as a prefix, breaking the equality assumption.

For each variable ai, we add to the text the string $000$ and to the pattern
$aiAi$. In this way a variable can be mapped to 00 or 0. To fix notation we say
that 0 represents True and 00 represents False. For each clause, we add to the
text the string $000000$ (6 zeros) and to the pattern the string $xyzci$ where
x, y, z are the variables from the clause (or their negations, as appropriate) and
ci is a different symbol for each clause.

Theorem 1. The generalised function matching problem is NP-Complete.

Proof. GFM is in NP as any candidate mapping function f can be checked in
polynomial time. To show NP-Hardness, take a 3-SAT instance φ and use the
above construction to produce a pattern and text, called p and t respectively.
We prove that there is a GFM solution for p and t if and only if φ is satisfiable.

If there is a GFM solution then we know that the $ symbol in the pattern is
matched to the same symbol in the text. The variable gadgets also ensure that
variables have consistent assignments. The clause gadgets ensure that at least



Generalised Matching 297

one of the three literals in each clause is assigned to the value 0, representing
True. Therefore, it suffices to read the mapping found to give an assignment of
truth values to variables which satisfies φ.

If φ is satisfiable, then there must be a GFM solution for p and t. This follows
as we are guaranteed that not all the symbols from a clause can be mapped to
00 and therefore ci will be able to be matched to a nonempty substring in each
clause gadget.

Finally, we observe that, with a small modification, the proof still holds under
two severe restrictions:

Corollary 1. Generalised function matching remains NP-Complete when Σt

contains only two distinct symbols and we restrict f so that |f(x)| ≤ 2 for all
x ∈ Σp.

3 GPM Is NP-Complete

Generalised parameterised matching adds an extra constraint to the conditions
set by GFM. The mapping f must now be injective.

It is instructive first to see why we cannot simply translate the reduction for
GFM. The problem is that all “variable characters” are mapped to 0 or 00 in
the GFM reduction so a GPM solution could never occur with more than two
variables. Therefore we need to design new gadgets to overcome this difficulty.

We present a reduction from 1-in-3 SAT, an NP-Complete variant of 3-SAT [6].
1-in-3 SAT is defined as 3-SAT but with the additional constraint that in a
satisfying assignment, each clause must contain exactly one True literal, instead
of at least one for 3-SAT. Given an instance of 1-in-3 SAT, φ, with N variables
named a1, a2 . . . aN and M clauses, we construct an instance of GPM which
matches if and only if φ is satisfiable. The instance has the form, t = $$VtCt and
p = $$VpCp. Here Vt and Vp encode the variables in φ, and Ct and Cp encode
the clauses. As in Section 2, the $$ symbols ensure that $ maps to $.

We will often say that f({a, b}) = {x, y}, by which we mean that (f(a) = x
and f(b) = y) or (f(a) = y and f(b) = x) and also define 0k to be a string of 0s
of length k. For example, 03 = 000.

Each variable results in a pair of strings Pi, Ti. We then concatenate these to
form variable gadgets Vp = P1P2 . . . PN and Vt = T1T2 . . . TN . The components
Pi, Ti are defined as Pi = $aiAi$ and Ti = $04i−1$.

As with the variables, each clause results in a pair of strings, P ′
i and T ′

i .
These are concatenated as gadgets Cp = P ′

1P
′
2 . . . P ′

M and Ct = T ′
1T

′
2 . . . T ′

M

respectively. Suppose the ith clause is (vj ∨ vk ∨ vl), with vx ∈ {ax, Ax} for
x ∈ {j, k, l}. We then define P ′

i = $vjvkvl$ and T ′
i = $02(j+k+l)−1$.

Lemma 1. The mapping f gives a GPM match for pattern $$Vp$Cp and text
$$Vt$Ct iff for all i, f({ai, Ai}) = {02i−1, 02i} and f(Cp) = Ct.

Lemma 1 allows us to consider only a restricted set of functions in the proof
of our reduction below. The proof of the Lemma is by induction on the set of



298 R. Clifford et al.

mapped strings in a matching function. We will let 0x represent True iff x is odd.
This can be seen as a generalisation of the GFM reduction where 0 represented
True and 00 represented False.

Theorem 2. Generalised parameterised matching is NP-Complete.

Proof. Given an instance of 1-in-3 SAT φ we construct pattern p = $$Vp$Cp and
text t = $$Vt$Ct as described above. We show that p GPM matches t iff there
exists a 1-in-3 satisfying assignment for φ.

We define a function, fσ for each assignment of truth values, σ. First set
fσ($) = $. For each i, if variable ai is True then let fσ(ai) = 02i−1 and fσ(Ai) =
02i. Otherwise let fσ(ai) = 02i and fσ(Ai) = 02i−1. It follows from Lemma 1
that any f which creates a GPM match is equal to fσ for some σ. Thus we do
not need to consider other functions.

Assume that σ satisfies φ. Consider the i-th clause, (vj ∨ vk ∨ vl) and, wlog,
assume vj is True and vk, vl are False. Therefore, f(P ′

i ) equals,

f($)fσ(vj)fσ(vk)fσ(vl)f($) = $02i−102j02l$ = $02(i+j+l)−1$ = T ′
i

as required. As i was arbitrary, this holds for all clauses so CP GPM matches
CT under fσ. Thus, by Lemma 1, p GPM matches t under fσ.

Conversely, assume that p GPM matches t under some function fσ. Again,
consider the i-th clause, (vj∨vk∨vl). As fσ($) = $, P ′

i GPM matches T ′
i . Assume

for a contradiction that all three literals are False,

fσ(vj) = 02j , fσ(vj) = 02k and fσ(vj) = 02l

fσ(P ′
i ) = $fσ(vj)fσ(vk)fσ(vl)$ = $02(j+k+l)$ �= T ′

i .

Similarly, if one or zero literals are False then fσ(Ti) = 02(j+k+l)−2 or fσ(Ti) =
02(j+k+l)−3 respectively. Therefore, exactly one literal is True and the clause is
1-in-3 satisfied. Again, as i was arbitrary, σ satisfies φ.

We might now ask if the GPM problem can be restricted in the same way as
GFM in Corollary 1:

Corollary 2. GPM remains NP-Complete when Σt contains only two distinct
symbols or when we restrict f so that |f(x)| ≤ 2 for all x ∈ Σp (but not both).

4 Generalised Pattern Matching with String Classes

We now discuss a variant of generalised function matching which does permit a
polynomial-time solution. The input is specified by a pattern, p, a text, t, and a
set of string classes defined by a function C from characters in the pattern to sets
of strings over the text alphabet. Pattern p matches text t if and only if t can be
written as s1s2 . . . sm where si ∈ C(pi). As we will see, an important feature of
the problem definition is that different occurrences of the same character in the
pattern can match to different substrings if the substrings are in the same class.
The problem can be seen as a generalisation of the problem known as pattern
matching with character classes [5].
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Example 1. If the text is t = banana, the pattern is p = ABA and the classes
are C(A) = {ban, ba, n, an, na} and C(B) = {anan, na, b, a}, then we say that p
matches t. A possible matching is a mapping A1 → ba, B → na and A2 → na
where Ai denotes the ith A in the pattern.

We present an O(nmk log n) solution to this problem, where k is the length of the
longest string from any class. The solution is based on dynamic programming.
Let d(i, j) be 1 if the first j characters of p match the first i characters of t and
0 otherwise. If d(n, m) = 1 then p matches t. The recurrence formula is:

d(i, j) = 1 iff ∃0 ≤ � < i s.t. d(�, j − 1) = 1 and t[� + 1..i] ∈ C(pj),

where t[�+1..i] = t�+1t�+2 . . . ti and C(pj) is the character class of pj. We define
d(0, 0) to be 1. We then calculate all d(i, j) values using generalised suffix trees
for the classes which have been precomputed in a preprocessing stage.

Theorem 3. Assume k is the length of the longest substring in any of the classes
and |C| is the total length of all the substrings classes. The pattern matching
problem with string classes can be solved in O(nmk log n) time with O(|C| log n)
preprocessing of the pattern.

5 An Approximation Algorithm for GFM

In this Section we will introduce an optimisation version of GFM for which we
are able to provide a polynomial-time approximation algorithm. Our motivation
is to give a measure of how close two strings are to having a GFM match.

Hamming similarity. We define the Hamming similarity between two strings of
the same length to be the number of positions in which the two strings are equal.
For input text t and pattern p, we are interested in the maximum Hamming
similarity between p and any string p′ of the same length which has a GFM
match with t. As the original GFM problem is NP-Complete, this optimisation
problem is NP-Hard.

When changing a symbol at a position in the pattern, we can choose a char-
acter that does not occur elsewhere. The new unique character will therefore be
permitted to match any non-empty substring of the text. We write such unique
characters using the wildcard symbol ‘∗’ in order to emphasise their role in any
matching.

Example 2. If p = aba and t = xyyz, then we can keep at most two positions
in the pattern unchanged in order to have a GFM match. Hence the Hamming
similarity is 2. One option is modify the pattern so that p = ab∗.
We present a polynomial-time approximation algorithm that achieves a
min(1,

√
k/OPT) approximation ratio for the Hamming similarity problem, for

fixed k. The algorithm is as follows.
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1. Select all S ⊂ Σp with |S| = k. There are
(|Σp|

k

) ≤ mk such S.
(a) For each i = 1, . . . , m, set pS

i to pi if pi ∈ S or to the wildcard symbol,
otherwise.

(b) Let HS denote the Hamming similarity between pS and t.
2. Let M = maxS HS .
3. Output max(M, |Σp|).

We claim that that OPT ≥ max(M, |Σp|) ≥ min(OPT,
√

k · OPT) = OPT ·
min(1,

√
k/OPT). In other words,

Lemma 1. The algorithm given above achieves an approximation ratio of
min(1,

√
k/OPT) for the Hamming GFM similarity problem.

Proof. We know that OPT ≤ M |Σp|/k as M is the maximum for any set
of k characters. Therefore kOPT ≤ M |Σp|. It follows that either M or
|Σp| is ≥ √

kOPT. Therefore, the approximation ratio follows immediately as√
kOPT/OPT =

√
k/OPT.

We now describe how to perform the first step of the algorithm in polynomial
time. We choose all subsets of k characters from Σp and all subsets of k substrings
of t and solve the problem for each independently. We fix for the moment the
set of characters to be a1, . . . ak and the set of substrings that these are mapped
to be s1, . . . , sk.

The solution is based on dynamic programming. We define the function f(i, j)
to be the best solution to the problem for t1t2 . . . tj and p1p2 . . . pi. We define
f(0, i) = 0 ∀i and f(i, j) = 0 ∀i > j. The Hamming GFM similarity of the entire
string is f(m, n). We now show how we compute f(i, j) when i ≤ j.

1. If pi �∈ {a1, . . . , ak} ,then
f(i, j) = max{f(i − 1, j − 1), f(i − 1, j − 2), . . . , f(i − 1, i − 1)}.

2. If ∃z s.t. pi = az, then
f(i, j) = maxk{f(i − 1, j − k) + I(tj−k+1 . . . tj = sz)},
where I is the indicator function.

Theorem 4. For any k there is an algorithm that runs in time nO(k) and
achieves an approximation ratio of min(1,

√
k/OPT) for the Hamming GFM

similarity problem.

We must first show that the dynamic programming procedure computes the right
function and then that it runs in polynomial time. We can see immediately that
f(0, i) = 0 ∀i because in this case the pattern is empty. Also, f(i, j) = 0 ∀i > j
because every character of the pattern must map at least one character from
the text, even if it is replaced by a wildcard. The computation of f(i, j) has two
cases.

– pi �∈ {a1, . . . , ak}. In this case we cannot increase the number of characters
in our set that can be mapped. However we know that pi will be set to
a wildcard and therefore we find the maximum of the previous results for
different length substrings that the wildcard maps to.
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– ∃z s.t pi = az. We can either map pi to sz and increase the number of
mapped characters by one, which can only happen if tj−|sz |+1 . . . tj = sz or
we do the same as in the previous case.

The running time of the approximation algorithm is polynomial in n and m
for constant k, since there are

(|Σp|
k

) ≤ (
m
k

)
ways of selecting k characters of Σp

and at most
(
n2

k

)
k! ways of choosing k substrings of t.
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Abstract. The Longest Common Extension problem considers a string s
and computes, for each of a number of pairs (i, j), the longest substring
of s that starts at both i and j. It appears as a subproblem in many
fundamental string problems and can be solved by linear-time prepro-
cessing of the string that allows (worst-case) constant-time computation
for each pair. The two known approaches use powerful algorithms: either
constant-time computation of the Lowest Common Ancestor in trees or
constant-time computation of Range Minimum Queries (RMQ) in ar-
rays. We show here that, from practical point of view, such complicated
approaches are not needed. We give two very simple algorithms for this
problem that require no preprocessing. The first needs only the string
and is significantly faster than all previous algorithms on the average.
The second combines the first with a direct RMQ computation on the
Longest Common Prefix array. It takes advantage of the superior speed
of the cache memory and is the fastest on virtually all inputs.

1 Introduction

The longest common extension (LCE) problem takes as input a string s and
many pairs (i, j) and computes, for each pair (i, j), the longest substring of s
that occurs both starting at position i and at j in s. That is, the longest common
prefix of the suffixes of s that start at positions i and j, respectively. Sometimes
the problem receives two strings as input, s and t, and is required to compute,
for each pair (i, j), the longest common prefix of the ith suffix of s and jth suffix
of t. This reduces to the previous problem by considering the string s$t, where
$ is a letter that does not appear in s and t.

The LCE problem appears as a subproblem in many fundamental string prob-
lems, such as k-mismatch problem and k-difference global alignment [14, 18], com-
putation of (exact or approximate) tandem repeats [7, 13, 15], or computing palin-
dromes and matching with wild cards [6]. Very efficient algorithms are obtained
and it is not clear how to solve those problems without employing LCE solutions.

The LCE problem can be optimally solved by linear-time preprocessing of
the string s so that the answer for each pair (i, j) can be computed in constant
� Research supported in part by NSERC.
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time. Two powerful algorithms are employed to achieve this bound. The first is
the constant-time computation of the Lowest Common Ancestor in trees (with
linear-time preprocessing) [2, 3, 8, 19]. When applied to the suffix tree [6] of
the string s, it easily yields the solution for the LCE problem. The second uses
constant-time computation of Range Minimum Queries (RMQ) in arrays (with
linear-time preprocessing) [2, 3, 5, 17]. Applied to the longest common prefix ar-
ray (LCP) of s (that is part of the suffix array data structure of s, see Section 2),
this gives again a solution of the LCE problem. The RMQ-based solution is more
efficient in practice [5].

In this paper we look at the LCE problem from a practical point of view. Our
aim is to provide simple and efficient algorithms. As it is often the case, the best
worst-case algorithms need not be the fastest in practice. Indeed, already [5]
considered a simplified algorithm that resolves each (i, j) pair in O(log n) time
(with linear-time preprocessing); this algorithm performs the best in practice.

Our starting point is the observation that, on the average, the LCE values
are very small. We give the precise limit of this average, for a given alphabet
size, when the string length goes to infinity. An important consequence is that
the algorithm that directly compares the suffixes starting at positions i and j is
optimal on the average and significantly faster in practice, on the average, than
all previous ones. It needs only the string s; no preprocessing.

This new algorithm is the fastest for all pairs (i, j) except when the positions
corresponding to i and j in the suffix array are very close (as that implies a
very long common extension). For those cases we employ an algorithm that uses
direct computation of RMQ. The combination of the two, added by the superior
speed of the cache memory, produces an algorithm that, while still very simple
(no preprocessing required; uses only the existing LCP array), is the fastest on
virtually all inputs.

All proofs have been omitted due to lack of space.

2 Basic Definitions

Let A be an alphabet with card(A) = � ≥ 2. Let s ∈ A∗ be a string of length |s| =
n. For any 1 ≤ i ≤ n, the ith letter of s is s[i] and s[i . . j] = s[i]s[i + 1] · · · s[j].
In this notation s = s[1 . . n]. Let also sufi denote the suffix s[i . . n] of s. For
1 ≤ i �= j ≤ n, the length of the longest common prefix of the strings sufi
and sufj is called the longest common extension of the two suffixes, denoted by
LCEs[i, j]. When s is understood, it will be omitted.

Assuming a total order on the alphabet A, the suffix array of s, [16], denoted
SA, gives the suffixes of s sorted ascendingly in lexicographical order, that is,
sufSA[1] < sufSA[2] < · · · < sufSA[n]. The suffix array of the string abbababba is
shown in the second column of Fig. 1. The suffix array is often used in combina-
tion with another array, the longest common prefix (LCP) array that gives the
length of the longest common prefix between consecutive suffixes of SA, that is,
LCP[i] = LCE[SA[i − 1], SA[i]]; see the fourth column of Fig. 1 for an example.
By definition, LCP[1] = 0.
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i SA[i] suffSA[i] LCP[i]
1 9 a 0
2 4 ababba 1
3 6 abba 2
4 1 abbababba 4
5 8 ba 0
6 3 bababba 2
7 5 babba 3
8 7 bba 1
9 2 bbababba 3

a

1

9

4
6

8

3

5

7

2

a

b

a
b

b
a

a
b

b
a
b
b
a

b

a b
a

b

b

a
b

a
b

b
a
b
b
a

LCA(2,3)

Fig. 1. The SA and LCP arrays (left) and the suffix tree (right) for the string abbababba.
We have LCE(2, 3) = RMQLCP(SA−1[3] + 1, SA−1[2]) = RMQLCP(7, 9) = 1; this is also
the depth of the node LCA(3, 2) in the suffix tree.

The suffix array of a string of length n over an integer alphabet can be com-
puted in O(n) time by any of the algorithms in [9, 11, 12]. The longest common
prefix array can be computed also in O(n) time by the algorithm of [10].

The LCE problem is: given a string s and a set of pairs (i, j), compute LCE(i, j)
for each pair. It can be solved by preprocessing the string s in linear time so that
each LCE(i, j) is computed in constant time. The first solution uses constant-time
computation of the Lowest Common Ancestor [2, 3, 8, 19] applied to the suffix
tree; see an example in Figure 1. The second, more efficient, uses constant-time
computation of Range Minimum Queries (RMQ) in arrays [2, 3, 5, 17] applied to
the LCP array. In general, we have LCE(i, j) = RMQLCP(SA−1[i] + 1, SA−1[j]).
Note the need for the inverse suffix array SA−1; an example is shown in Figure 1.

We shall denote the LCE algorithm of [5] based on constant-time RMQ com-
putation by RMQconst. The practically most efficient algorithm of [5] computes
each LCE(i, j) in (suboptimal) O(log n) time; it will be denoted by RMQlog.

3 An Average-Case Optimal Algorithm for LCE

The starting point of our approach is the observation that most LCE values are
very small. The main result of this section estimates the average value of the
LCE over all strings of a given length n, that is,

Avg LCE(n, �) =
1
�n

∑

s∈An

( 1(
n
2

)
∑

1≤i<j≤n

LCEs(i, j)
)

Theorem 1. (i) For any � ≥ 2, lim
n→∞ Avg LCE(n, �) =

1
� − 1

.

(ii) For any n ≥ 2 and � ≥ 2, Avg LCE(n, �) <
1

� − 1
.

The result in Theorem 1 has an important implication for our purpose, that is, no
sophisticated algorithms are necessary for computing LCEs. Direct comparison
of the two suffixes requires, on average, only one comparison and therefore our
DirectComp algorithm (see Figure 2) is optimal on the average.
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DirectComp(s, i, j)

1. t← 0
2. while

(
(j + t ≤ n) and (s[i + t] = s[j + t])

)
do

3. t← t + 1
4. return t

Fig. 2. Computing LCE by direct comparison

Table 1. Files from Canterbury (five largest ones), Manzini, and Pizza&Chili corpora
and some randomly generated with various sizes and number of letters. The first six
columns contain, in order: file source, file name, size (in megabytes), alphabet size,
average LCE, maximum LCE. The last three contain the average running times for
solving the LCE problem using RMQconst, RMQlog, and DirectComp, resp., given in
microseconds per input pair.

File size alph. Avg LCE max LCE RMQconst RMQlog DirectComp

book1 0.7 82 0.0736 104 1.34 1.11 0.07
kennedy.xls 1 256 0.3946 18 1.37 1.17 0.11
E.coli 4.4 4 0.3371 2815 1.43 1.12 0.21

C
a
n
te

rb
u
ry

bible.txt 3.9 63 0.0915 551 1.28 1.00 0.21
world192.txt 2.3 93 0.0693 543 1.41 1.21 0.20

chr22.dna1 33 4 0.3419 1777 1.46 1.17 0.20

M
a
n
zi

n
i

etext99 100 146 0.0732 286352 1.53 1.20 0.21
howto 38 197 0.0909 70720 1.51 1.20 0.21
jdk13c 66 113 0.0444 37334 1.44 1.16 0.22
rctail96 109 93 0.0692 26597 1.50 1.21 0.22
rfc 111 120 0.2140 3445 1.50 1.21 0.21
sprot34.dat 105 66 0.0860 7373 1.49 1.20 0.22
w3c2 99 256 0.0341 990053 1.50 1.22 0.21

sources 201 230 0.0497 307871 — — 0.20
pitches 53 133 0.0420 25178 1.63 1.28 0.20
proteins 1129 27 0.0625 647051 — — 0.20

P
iz

za
&

C
h
il
i

DNA 385 16 0.3500 1378596 — — 0.21
English 2108 239 0.0753 4735603 — — 0.22
XML 282 96 0.0538 1084 — — 0.20

rand 100 2 100 2 1.0000 52 1.51 1.23 0.29
rand 100 4 100 4 0.3333 26 1.52 1.22 0.27

ra
n
d
o
m rand 100 20 100 20 0.0526 11 1.48 1.23 0.28

rand 1000 2 1000 2 1.0000 55 — — 0.31
rand 1000 4 1000 4 0.3333 29 — — 0.30
rand 1000 20 1000 20 0.0526 13 — — 0.30
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We tested the DirectComp, RMQconst, and RMQlog algorithm for the text
files in the Canterbury1, Manzini2, and Pizza&Chili3 corpora, as well as for
some random files we generated. The results are shown in the last three columns
of Table 1. All tests were done on a Sun Fire V440 Server, using one Ul-
traSPARC IIIi processor at 1593MHz, 1MB L2 Cache, 4GB RAM, running
SunOS 5.10. The programs were compiled using gcc 3.4.3 with options -O3
-fomit-frame-pointer. One million random (i, j) pairs were generated and all
three algorithms were run on those. Each experiment was repeated three times
and the average times are shown. The preprocessing times for RMQconst and
RMQlog were not counted.

In general, our algorithm is roughly five times faster than RMQlog, the pre-
vious fastest algorithm. (Our comparison between RMQconst and RMQlog gives
results similar to [5].) Due to the additional space needed (for a file of size n,
more than 24n bytes are needed), the RMQ-based algorithms could not handle
files large than 160 MB (see also Table 2).

Table 2. Preprocessing and memory requirements for a file of size n; we assume an
integer is represented on 4 bytes

Algorithm RMQconst RMQlog DirectMin DirectComp

Preprocessing RMQ data structures, SA−1, LCP SA−1, LCP —

Memory (bytes) 24n+ 8n n

4 The Worst Case

As seen in the previous section, our DirectComp algorithm performs signifi-
cantly better than the best ones to date on the average. However, when counting
the expected number of operations performed by each algorithm, the difference
should be even bigger. That is due to the lower speed of RAM compared to cache
memory. Most of the time is spent on accessing the large arrays. We turn this
property into our advantage by trying to do better not only on the average but
also in the worst case.

In this section we give first a number of results that help us get an idea of
how large the maximum LCE is expected to be as well as an estimate on how
many “large” LCE values are expected. Denoting max LCE(s) = max

i,j
lcps(i, j),

we have the following theorem:

Theorem 2. For any n ≥ 2 and � ≥ 2, we have

(i) For any s ∈ An, max LCE(s) > log�(n) − 2.
(ii) There exists an s ∈ An such that max LCE(s) < log�(n).
1 http://corpus.canterbury.ac.nz/
2 http://web.unipmn.it/ manzini/lightweight/corpus/
3 http://pizzachili.dcc.uchile.cl/
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(iii) The average maximum LCE, Avg max LCE(n, �), satisfies

log�(n) − 2 ≤ Avg max LCE(n, �) ≤ 2 log�(n) .

(iv) The average number of pairs (i, j) with LCE(i, j) ≥ log�(n) is less than n/2.
(v) The average number of pairs (i, j) with LCE(i, j) ≥ 2 log�(n) is less

than 1/2.

The implications of these results are that most LCE values are expected to be
small and therefore our DirectComp algorithm performs better for most pairs.
For the remaining few, we look for a different solution in the sequel. The maxi-
mum LCE can be much larger than expected (see the sixth column of Table 1)
but our solution avoids the large LCE values.

The RMQ-based algorithms are better for a very small fraction of the input
(i, j) pairs, namely those for which the difference between SA−1[i] and SA−1[j] is
very small, as that usually implies large LCE[i, j] value. But, for such cases, there
is another, very simple, algorithm, already considered by [5], that performs the
best. It requires no preprocessing. Instead, it computes directly the minimum
of the values LCP[SA−1[i] + 1 . . SA−1[j]]. This algorithm, called DirectMin, is
described below.

DirectMin(LCP, i, j)

1. low ← min(SA−1[i], SA−1[j])
2. high← max(SA−1[i], SA−1[j])
3. t← LCP[low + 1]
4. for k from low + 2 to high do
5. if LCP[k] < t then t← LCP[k]
6. return t

Fig. 3. Direct computation of the range minimum

Table 2 contains a summary of the memory and preprocessing requirements for
each of the four algorithms: RMQconst, RMQlog, DirectMin, and DirectComp.
The first two require the SA−1 array to compute the corresponding positions in
the LCP array and the data structures necessary for the constant-(logarithmic-
, resp.) time computation of the RMQ values. DirectMin requires SA−1 and
LCP for the same reason but no additional space. DirectComps needs only the
text.

We tested the performance of all four algorithms discussed for the files in
Table 1. We run them on pairs at a given distance, step = | SA−1[j] − SA−1[i]|,
in the suffix array, represented on the abscissa in logarithmic scale; the ordinate
gives the time in microseconds. All pairs at a given distance have been considered
for each computation. The results are given in Figure 4.
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Fig. 4. In row-wise order, the first three plots give the behavior of the four algorithms
we discuss, DirectMin, DirectComp, RMQconst, and RMQlog, on the files book1,
chr22.dna, and jdk13c, resp. For files of size less than 1MB, DirectComp is the best
on all inputs. The behavior of the four algorithms for the files from Canterbury corpus
as well as for the smaller random files is in-between book1 and chr22.dna; for the files in
Manzini corpus and pitches from Pizza&Chile the behavior is in-between chr22.dna

and jdk13c. The file jdk13c is the only one where the combination DirectComp-
DirectMin is slightly slower than RMQlog on a very small interval. The last plot
gives the behavior of DirectComp on rand 1000 2, English and proteins; it is the
only algorithm that can handle those. The performance is impressive; only at distance
2 some of the times are higher; such a case would be very easily handled by DirectMin
given enough space for the SA−1 and LCP arrays.

5 Conclusions

We gave very simple algorithms for the LCE problem that are the best in practice
with respect to both time and space. When the pairs are randomly distributed,
DirectComp should be used. If the performance on every single input matters,
then the combination DirectComp-DirectMin should be used. Only Direct-

Comp can handle very large files and the performance on those is very good.
Further applications of our approach are to be investigated. For instance, our

algorithms might be used to reduce the space required by the pattern search
algorithm based on the Enhanced Suffix Array [1]. This is theoretically the most
efficient algorithm and has good performance in practice.
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Abstract. We propose a method to evaluate queries using a last-resort
semantic cache in a distributed Web search engine. The cache stores a
group of frequent queries and for each of these queries it keeps mini-
mal data, that is, the list of machines that produced their answers. The
method for evaluating the queries uses the inverse frequency of the terms
in the queries stored in the cache (Idf) to determine when the results
recovered from the cache are a good approximation to the exact answer
set. Experiments show that the method is effective and efficient.

1 Introduction

Current Web search engines are built upon the concept of search nodes in which
each node holds a fraction of the document collection and contains an inverted
file that allows fast determination of the documents that best match a given
query. First a broker machine receives the query and broadcasts it to all search
nodes and then it receives their local top-k documents to produce the top-k
documents that globally best match the query. This scheme is convenient for
maintenance and indexing purposes. However, every single query hits the whole
set of search nodes which can degrade query throughput and limit scalability.

A number of caching strategies have been developed to reduce the average
number of nodes involved in the solution of queries. On the broker side we can
have a query answer cache or result cache that prevents sending the most frequent
queries to the search nodes. For each query, this cache stores the complete answer
presented to the user. On the nodes side, we can have a cache of inverted lists
(which reduces secondary memory activity) and/or a cache of pre-computed
results such as document scores or intersection of inverted lists (which reduces
the running time cost of queries).

Another (complementary) way of reducing the number of nodes hit by a given
query is to send the query to a selected group of nodes. To achieve this it is
necessary to perform document clustering and evenly distribute those clusters of
documents onto the search nodes. For the sake of practicality, the clusters can
be built from a subset of the whole document collection whilst the remaining
documents are distributed at random. The subset can be taken from a large
query log and queries themselves can be used to correlate documents during the
clustering process. In addition, a certain representation of the nodes contents
is required to determine the target group of nodes where to send each query.
However, now those nodes can only deliver an approximation to the exact answer
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of queries which can be acceptable when the search engine is operating at a very
high traffic of queries. In this paper we put ourselves in such a scenario and the
state of the art work in this case is the one presented in [14,15], which is based
on document clustering and representation of node contents.

Differently to [15] we work on the idea of keeping at the broker machine a
compact cache that we call last-resort cache (LCache). Our method has the
advantage of both being able to reduce the number of nodes and yet providing
exact query results, and delivering good approximated results in cases of high
traffic of queries. Both strategies in combination are expected to improve overall
query throughput at the expense of a modest increase in memory requirements
on the broker machine. Nevertheless our method can be accommodated in the
extra space demanded by [15] with the advantage that the computations involved
in the determination of candidate nodes are less demanding.

The LCache is meant to contain the most minimal data about the answer of
each cached query, namely the list of search nodes IDs from which each docu-
ment in the global top-k results come from, and it can be administered with
any existing caching policy [16]. Notice that if we distribute related document
clusters into the same nodes and the remaining ones (sorted by centers similarity
distance) in contiguous-ID nodes, then the lists of nodes stored in the LCache
are highly compressible. Moreover the length of the list of node IDs is expected
to be smaller than k. Notice that the LCache can also work in a setting in which
documents are distributed at random onto the search nodes. Here small memory
space is still feasible since for large scale systems the number of nodes is expected
to be larger than the number of top results for queries. In other words, an entry
in the LCache requires much less space than a corresponding entry in the result
cache.

The LCache works in tandem with the result cache kept at the broker side and
it has the following two uses. The first one is as a scheme able to further improve
query throughput whilst it still allows the broker to provide exact answers to
queries. This can be made in at least two alternative ways. Firstly, as argued in
[16], storing a query in the result cache should consider the cost of computing
its answer upon the search nodes since the main objective of the result cache
is improving query throughput. Queries requiring a comparatively less amount
of computing time can be prevented from being stored in the result cache. We
suggest using the LCache for storing those queries which can lead to a potential
gain in throughput as they can now be sent directly to the nodes capable of
providing the global top-k results.

Secondly, independent of the kind of queries stored in the LCache, their com-
puting time can be further reduced at the cost of more memory per LCache
entry by storing k pairs (nodeID, docID) corresponding to the global top results
of the respective query. The idea is to use each LCache entry to go directly
to the node and retrieve the specific document in order to get the snippet and
other data required to construct the answer presented to the user. This only re-
quires secondary memory operations and no documents ranking is necessary. The
pairs (nodeID, docID) are also highly compressible since we can re-numerate the
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document IDs at each node following the order given by the document clusters
stored in them. In any case, the source node IDs are necessary to support the
semantic part of the LCache discussed next and developed in the remaining sec-
tions of this paper (the study of the trade-offs for the alternative uses of the
LCache is out of scope in this paper and will be developed in a future work.)
Notice that the list of node IDs corresponding to the query answers stored in the
result cache should be also kept in the LCache to improve its semantic properties.

The second use of the LCache is as a semantic cache that can reduce the
number of search nodes involved in the determination of approximated answers
to queries not found in either cache at the broker side. This is useful when the
search engine is under high query traffic and less hardware resources are required
to be assigned to the processing of individual queries so as to avoid throughput
degradation. In this case we send the query to the nodes referenced by LCache
entries that share query terms. In this paper we propose a method to achieve
this at a reasonable recall. The reader is referred to [15] for an efficient method
to deal with high query traffic situations.

A semantic cache allows the search engine to respond to new queries using the
answers from previous queries stored in the cache. To do this, lists of answers
from queries similar to the new query are utilized, elaborating a list of similar
answers (search nodes in our case). Generally, the similarity between the queries
is measured based on the quantity of terms that both queries have in common.
Despite the fact that the list of answers from a semantic cache is not exact, in
many cases it is precise enough to be presented to the user. Our method uses
the inverse frequency of the terms stored in the cache to estimate whether the
approximated answer covers a significant quantity of relevant documents. If not,
the query is broadcast to all search nodes for full evaluation.

The rest of the paper is organized as follows. In Section 2 we review related
work. In Section 3 we introduce the strategy of evaluation of queries using the
last-resort semantic cache. In Section 4 we show experimental results. Finally,
we conclude in Section 5.

2 Related Work

In the method proposed in [14,15], a large query log is used to form P clusters
of documents (one per search node) and Q clusters of queries by using the co-
clustering algorithm proposed in [5]. This defines a matrix where each entry
Vc,d contains a measure of how pertinent the query cluster c is to the document
cluster d. In addition, for each query cluster c a text file containing all the terms
found in the queries of cluster c is maintained. Upon reception of a query q the
broker computes how pertinent the query q is to the Q query clusters by using
the BM25 cosine similarity method. These values Vq,c are used in combination
with the matrix entries Vc,d to compute a ranking of document clusters so that
the first one is the most likely to contain an important fraction of the exact
answer to the query q. The second one further improves the approximation and
so on.
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The basic assumption is that under low query traffic the exact answer to a
query q is obtained by sending q to all nodes. However, when the query traffic is
high enough, this may not be feasible since it can overload the system, so their
strategy consists of using the above values Vq,c and Vc,d to determine which of
the P nodes can provide the best approximated answer to the query q and send
q to this node only. The results from this node are then cached at the broker side
and passed back to the user. Afterwards when query traffic is restored to normal,
the approximated answers kept in the cache can be further improved until they
are the exact ones by sending the associated query to the remaining nodes one
by one, in descending order of the ranking of document clusters. During that
time interval the broker responds users with the current approximated answers
stored in the cache.

Regarding caching strategies, one of the first ideas studied in literature was hav-
ing a static cache of results which stores queries identified as frequent from an anal-
ysis of a query log file. Markatos et al. [13] showed that the performance of the static
caches is generally poor mainly due to the fact that the majority of the queries
put into a search engine are not the frequent ones and therefore, the static cache
reaches a low number of hits. In this sense, dynamic caching techniques based on
replacement policies like LRU or LFU achieved a better performance. Along the
same lines, Lempel and Moran [11] calculate a score for the queries that allows
for an estimation of how probable it is that a query will be made in the future, a
technique called Probability Driven Caching (PDC). Lately, Fagni et al. [6] have
proposed a structure for caching where they maintain a static collection and a dy-
namic one, achieving good results, called Static-Dynamic Caching (SDC). In SDC,
the static part stores frequent queries and the dynamic part handles replacement
techniques like LRU or LFU. With this, SDC achieved a hit ratio higher than 30%
in experiments conducted on a log from Altavista. Long and Suel [12] have shown
that upon storing pairs of frequent terms determined by the co-occurrence in the
query logs, it is possible to better increase the hit ratio. For those, the authors
proposed putting the pairs of frequent terms at an intermediate level of caching
in between the broker cache and the end-server caches. Baeza-Yates et al. [2] have
shown that caching posting lists is also possible, obtaining higher hit rates than
when just doing results and/or terms. Recently, Gan and Suel [16] have studied
weighted result caching in which the cost of processing queries is considered at the
time of deciding the admission of given query to the result cache. They propose
eviction policies which are consequent with that additional feature.

Godfrey and Gryz [8] provide a framework for identifying the distinct cases
that are presented to evaluate queries in semantic caches. Fundamentally, they
identify cases that they call semantic overlap, in those which it is possible for the
probe query to obtain a list of answers from the cache with a good recall. The
semantic caching techniques have been tested with partial success in relational
databases [9], due to some cases of semantic overlap where it is possible to find
expressions in SQL for probe queries and remainder queries. However, cases also
exist where the problem is algorithmically intractable.



314 F. Ferrarotti, M. Marin, and M. Mendoza

In the context of web search engines, the queries correspond fundamentally to
a conjunction of terms, for which the problem is algorithmically tractable. This
reduces the problem to set containment of the number of objects in the cache
that could satisfy some condition of semantic overlap being verifiable in linear
time. In this context, Chidlovskii et al. [4] have proposed evaluation methods for
web queries using semantic caches. The proposed methods store clusters of co-
occurring answers identified as regions, each of these associated to a signature.
New frequent queries are also associated to signatures, where regions with similar
signatures are able to develop their answer. The author’s measured recall and
value of false positives (regions identified as similar but that do not provide
results relevant to the queries) denoted as the FP-rate, with differing rates of
success depending on the type of case analyzed. In some sense this is the closest
work in spirit to our paper. Our method differs on the use of a compact last-
resort cache which stores search nodes instead of actual results. To deal with
this kind of cache, we have to adapt the known evaluation methods for semantic
cache to this new setting. Among others things, given a query q to be evaluated
by the semantic cache, we use the Idf of the terms in the cache to decide which
queries are relevant to q. Up to our knowledge, this is the first time that the
concept of Idf is used in semantic caching.

Amiri et al. [1] deal with the problem of the scalability of the semantic caching
methods for the query containment case. These are queries whose results are
stored in regions of the cache that also recommend non-relevant results, raising
the FP-rate. The authors are able to reduce the FP-rate for query containment
introducing a data structure called Merged Aggregated Predicates (MAP) that
stores conjunctions of frequent terms which are each directed towards the regions
of the semantic cache that contain them. In this way, a new query is searched
first in the MAP and later directed to the cache. The main disadvantage of
this method is that it uses additional space to store the MAP structure and in
the overhead introduced to maintain it updated. Recently, Falchi et al. [7] has
proposed the use of caching techniques based on the similarity of queries from the
perspective of metric spaces. The authors propose the evaluation of a similarity
function between queries to determine the regions of the cache relevant to an
evaluated query. Conducting experiments on a Content Based Image Retrieval
system (CBIR), they were able to attain a hit ratio of 20% reducing the average
cost of processing queries by 20%.

3 The Semantic Caching Strategy

The aimof this paper is, given a querywhich is not present in the LCache but shares
some of its terms with terms of queries in the cache, to identify a small subset of
machines that produce most of the top-k results for the query. To do this, we need
to distribute the document collection over an array of search nodes by means of a
document clustering algorithm as we will see in the experiments section.

A last-resort cache must satisfy two fundamental constraints: the evaluation
of the queries in the cache must be light in terms of computation and in terms of
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Fig. 1. Semantic overlap cases. (A) Exact query containment, (B), Approximated query
containment, (C) Region containment, and (D) N-terms difference.

the space needed to store each cache entry. This means, among other things, that
we must only use information available in the cache or that we can eventually
add to the cache without considerably increasing its size.

Following Godfrey y Gryz [8], given a conjunctive query q to be evaluated
in the cache, we will call a situation that produces a non-empty intersection
between one of the cache machine lists and the machine list that allows an exact
answer for q to be calculated, a semantic overlap.

There are four fundamental types of semantic overlaps [3]. A) Exact query
containment : The answer to q lies in the intersection of the answers to two
or more queries in the cache. B) Approximated query containment : There is a
query in the cache whose answer strictly includes the answer to q. C) Region
containment : The answer to q is a superset of the union of the answer to one
or more queries in the cache. D) N-terms difference: There is a query in the
cache whose answer has a nonempty intersection with the answer to q. Figure 1
describes these four cases of semantic overlap.

Note that, for case (A) it could seem at first sight that we could calculate
the exact list of machines needed to retrieve the top-k results for q by simply
taking the intersection of the list of machines of the relevant queries from the
cache. However, since we only have the machines needed to retrieve the top-k
results for those queries, it may actually happen that the set of machines in the
intersection of their corresponding lists, is not the exact set of machines needed
to retrieve all the top-k results for q. A similar observation also holds for case
(B). For instance, the list of machines which has the top k-results for a query in
query caching in Figure 1 may not include all machines needed to retrieve the
top-k results for a query in semantic query caching.
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On the other hand, the fact that with our method of semantic caching we have
to find only the machines that potentially have the top-k results for q, instead
of the actual top-k documents, considerably increases our chances of success.
Indeed, as shown in our experiments we are able to recover most of the top-k
results even for cases (C) and (D) in which the set of actual answers for the
relevant queries in the cache does not cover the result set for q.

The cases of semantic overlap can be detected by using computationally cheap
syntactic comparisons of query terms. Since we are dealing with conjunctive
queries, we will consider a query as a set of terms. Let q be the conjunctive
query that we want to evaluate, let C be the set of queries in the cache, and let
C|q = {qi ∈ C|qi ∩ q �= ∅}, i.e., C|q is the set of queries in the cache that overlap
with q. We determine which cases of semantic-overlap apply to q as follows:

– Case (A): There is an S ⊆ C|q such that |S| ≥ 2 and q =
⋃

qi∈S qi.
– Case (B): There is a qi ∈ C|q such that qi ⊂ q.
– Case (C): There is an S ⊆ C|q such that q ⊂ ⋃

qi∈S qi.
– Case (D): There is a qi ∈ C|q such that q∩ qi, qi \ q and q \ qi are not empty.

Note that a given query q to be evaluated in the cache may be a match for more
than one of the four semantic-overlap cases. In fact, it could be a match with
all four cases. In such situations, we process the query following the strategy
associated with the case which has the highest precedence. In our approach the
precedence order of cases is A (highest), B, C and D (lowest).

In more detail, given a query q which is not found in the LCache, our semantic
caching algorithm proceeds as follows. First, it determines if there is a case of
semantic-overlap that applies to q. If not, q is sent to all machines. Otherwise,
the algorithm chooses the highest precedence case that applies to q. For each
case the algorithm applies a different course of action.

– Case (A) –Exact query containment case– Only the machines which are in
the intersection of the sets of machines corresponding to the relevant queries
form the cache (i.e., corresponding to the queries in S), are visited.

– Case (B) –Approximated query containment case– The algorithm visits the
machines listed for the queries in {qi ∈ C|q | qi ⊂ q and for every qj ∈
C|q for which qj ⊂ q, it holds that |qi| ≥ |qj |}.

For the final two cases we apply a novel idea in this context which consists of
using the inverse frequency (Idf) of the terms associated with the queries stored
in the LCache. This is made to decide if it is useful to send the query just to the
subset of machines obtained with the following two cases (we calculate the Idf
of the terms using Salton’s standard formula).

– Case (C) –Region containment case– Visit the machines listed for the queries
in {qi ∈ S | for every tj ∈ qi \ q it holds that Idf(tj) < threshold}. If this
set is empty, then q is sent to all machines.

– Case (D) –N-terms difference case– Visit the machines listed for the queries
in {qi ∈ C|q | qi ∩ q, qi \ q, and q \ qi are not empty, and for every tj ∈ qi \
q it holds that Idf(tj) < threshold}. If this set is empty, then q is sent to
all machines.



A Last-Resort Semantic Cache for Web Queries 317

The idea in these two cases is to discriminate which of those queries in the
LCache that have semantic overlap with q, are relevant to approximate the list
of machines which store the top-k documents for q. Given a query q′ from the
LCache that shares some terms with q, if the Idf of the terms in q′ \ q is lower
than an experimental threshold, that indicates that those terms are very general
and thus the ability to discriminate the relevant documents for q is determined
by the terms that are shared with q. In such a case we consider that the machines
listed for those candidate queries are relevant for the query q.

An important aspect in this scheme is to determine the Idf threshold under
which a term is considered with little ability to discriminate relevant documents.
We determine this threshold in the next section. Note that to store this extra
information, we only need to add one bit for each term in the cache. The bit is
set to 1 if the Idf of the term is below the experimental threshold, otherwise it
is set to 0.

4 Experimental Results

In the experiments for this work we used a 10 million documents sample of the
Web UK. We used a very large query log containing queries submitted into this
domain. From this log we took 100,000 unique and randomly selected queries,
and for each one of these queries we calculated the top-100 documents by exe-
cuting the BM25 ranking method upon the set which results from intersecting
the inverted lists associated with each query term. We used this set of queries
and results to group the documents into 32 clusters. Each of these clusters was
then assigned to a different search nodes. The clustering was done using the
standard k-means method as realized in CLUTO [10]. The input for the cluster-
ing algorithm was a set of query-vectors. The query-vector of a document d is an
m-dimensional vector (a1, . . . , am), where m is the number of available queries
and, for 1 ≤ j ≤ m, aj = 1 iff the document d is among the top-k candidate do-
cuments for the j-th query in the cache. The documents in the collection which
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did not appear among the top-100 documents of any of the 100,000 queries in
the log, were distributed evenly among the machines using a random strategy.

From the large query log we determined the frequency of occurrence of the
100,000 unique queries. We initialized the LCache with the top-10,000 most
frequent queries. Each entry in the cache stores the set of machines that have
the top-20 results for the corresponding query. That is, we set the exact answer
to a query q to be the top-20 results for q. We found that 66, 810 queries out
of the 90, 000 remaining queries not included in the cache, matched at least
one of the four cases of semantic-overlap defined in the Section 3. This was the
set of queries we evaluated in our experiments. In a real setting the remaining
90, 000− 66, 810 queries (25.76%) would be sent to all search nodes.

The 10, 000 queries stored in the LCache contain 7, 900 different terms. To
evaluate our method we calculated the Idf of each of these terms upon the
text collection. In Figure 2, we show the distribution of these Idf values. Given
this distribution, we decided to study the behavior of our method using Idf
thresholds of 1, 3, 5, 7, 9, and 11.

The LCache matched 41.09%, 45.40%, 48.88%, 50.57%, 51.35% and 51.54%
of the query testing collection, for Idf threshold values of 1, 3, 5, 7, 9 and 11,
respectively. A summary of the distribution of the queries in each case is detailed
in Table 1.

The remaining queries (note that 74.24% of the testing queries share at least
one term with the LCache) are evaluated by our method sending them to all the
machines. This is due to the effect of the Idf threshold filter (see the last row
of Table 1).

Table 1. Percentage of queries in each case

Case Percentage

Exact Qu. Cont. 1.74
Empty Intersection 0.17

Total A 1.91

App. Qu. Cont. (1-term diff.) 24.23
App. Qu. Cont. (2-terms diff.) 9.04
App. Qu. Cont. (3-terms diff.) 2.68
App. Qu. Cont. (N-terms diff.) 1.18

Total B 37.14

Idf Threshold 1 3 5 7 9 11

Total C 0.02 0.09 0.19 0.26 0.27 0.27

1-term Diff. 1.17 3.68 5.82 6.87 7.43 7.56
2-terms Diff. 0.64 1.91 2.83 3.28 3.45 3.49
3-terms Diff. 0.17 0.54 0.78 0.87 0.90 0.92
N-terms Diff. 0.04 0.13 0.21 0.24 0.25 0.25

Total D 2.02 6.26 9.64 11.26 12.03 12.22

Total LCache 41.09 45.40 48.88 50.57 51.35 51.54

Queries filtered by the method 33.15 28.84 25.36 23.67 22.89 22.70
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Fig. 3. Recall curves: (a) Exact/Approx. containment cases, (b) Region containment
case, (c)-(e) N-terms difference: (c) N = 1, (d) N = 2, (e) N = 3, and (f) N ≥ 4

The recall curves for the approximated query containment (case B) and exact
query containment (case A) are shown in Figure 3 (a). Note that for the exact
query containment case (case A), the average number of top-20 answers for the
queries that are found in the search nodes recommended by our method, is 60%,
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Table 2. Percentage of visited search nodes for cases (C) and (D)

Idf Case C Case D
Threshold Reg. Cont. 1term 2terms 3terms Nterms

1 10.24 14.68 11.78 08.60 7.81
3 12.25 16.74 20.27 22.62 23.96
5 12.07 18.88 22.17 24.03 24.79
7 12.55 20.13 23.26 25.72 25.65
9 12.72 20.27 23.37 25.82 25.46
11 12.72 20.41 23.43 25.76 25.16

Oracle 28.91 29.53 28.28 28.54 26.97

approximately. For the case B, the recall is lower. The recall curves for region
containment are shown in Figure 3 (b). As expected, higher Idf thresholds give
higher recall values. In Figure 3 (c)-(e), we show the recall curves for the N-terms
difference case for N = 1, 2, 3, and for N ≥ 4. The recall curves show that our
semantic caching method is quite effective for this case, recovering in average
60% of the exact answers for threshold values over 3. Higher recall values are
achieved for an Idf threshold equals to 9.

For the case A we need to visit only the 24.90% of the search nodes. In
average we visit the 11% to solve the case (B). More precisely, the method visit
the 11.96%, 11.85%, 12.02% and 12.26% of the search nodes when the query has
1, 2, 3 or more than 3 terms of difference with the query storaged in the LCache.

In Table 2 we show the percentage of search nodes visited for the cases (C)
and (D). These results show that when the Idf threshold increases its value,
the average number of nodes to be visited also increases. The last row shows the
percentage of nodes determined by an optimal method, namely an oracle at the
broker side capable of telling us the exact search nodes required for producing
the top-20 results for each query.

Our results are very promising. For example, in case (A) we visit only the 24.9%
of the search nodes achieving recall values closed to 60%. In case (D), for an Idf
threshold equals to 9we also reach a recall value closed to 60% visiting only the 20%
of the search nodes (for N = 1). In case (B) the method visits 11% of the machines
reaching a recall close to 40%. A similar situation is observed in the case (C).

5 Conclusions

We have proposed a method for reducing the number of search nodes involved
in the solution of queries submitted to a Web search engine. The method is
based on the use of a compact cache that we have called LCache, which stores
the search node IDs that produced the top-k results for previous queries. This
cache can be used to produce the top-k results for new queries that are found
in the LCache and were not located in the standard result cache kept at the
broker machine. This certainly improves query throughput and we have left the
evaluation of the feasible improvement for future work.
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Instead, the focus of this paper was on how to use the data stored in the
LCache under a situation of high query traffic. In this case it is desirable to
reduce the visited search nodes even for queries not found in any of the two
caches maintained in the broker. To cope with this situation we have proposed a
method to use the LCache as a semantic cache which instructs the broker to send
queries to the most promising search nodes. The experimental results suggest
that the method can reduce the number of visited search nodes per query sharing
cache terms, visiting only a small fraction of the search nodes in a range that
goes from 11% to 25% achieving recall values between 40% and 60%.

A key issue to be further investigated is how to use the query answer data
stored in the result cache to achieve node reduction at a reasonably good recall.
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A Task-Based Evaluation of an Aggregated

Search Interface
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Abstract. This paper presents a user study that evaluated the effective-
ness of an aggregated search interface in the context of non-navigational
search tasks. An experimental system was developed to present search
results aggregated from multiple information sources, and compared to
a conventional tabbed interface. Sixteen participants were recruited to
evaluate the performance of the two interfaces. Our results suggest that
the aggregated search interface is a promising way of supporting non-
navigational search tasks. The quantity and diversity of the retrieved
items which participants accessed to complete a task, increased in the
aggregated interface. Participants also found the aggregated presenta-
tion easier to access to retrieved items and to find relevant information,
compared to the conventional interface.

1 Introduction

A recent study reported that 80% of queries submitted to search engines are
non-navigational [14]; people are often seeking general information on a broad
topic such as “global warming” or “nutrition”. Information needs behind such
non-navigational queries are often satisfied by relevant information collected
from multiple documents in different genres. Due to the increased quantity and
diversity of multimedia contents available on the web, images, audio, movies
are also becoming relevant to many queries. A conventional way of gathering
relevant information from several information sources (e.g., web, image, news,
wiki) is to browse the search results of individual sources separately available in
search engines.

However, a new paradigm of search result presentation has been emerging;
aggregated search interfaces. An aggregated search interface is designed to in-
tegrate retrieval results from different information sources into a single result
page. In this paradigm, users do not have to visit separate pages to browse the
search results to access a range of retrieved items. There appears to be two types
of integration; blended and non-blended. A blended integration tends to present
a single ranked list based on multiple sources, while a non-blended integration
tends to present multiple sources in a separate panel in the same page.

Although a log analysis suggested a potential need of aggregated search in-
terfaces [19], there are many unexplored research questions in this paradigm.
One such question is the effectiveness of aggregated search interfaces in sup-
porting non-navigation search tasks. In this paper, we present a task-based user
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study which compares the performance of an aggregated search interface to a
conventional interface.

The outline of the paper is as follows. Section 2 discusses background and re-
lated work. Our experimental design is described in Section 3. Section 4 presents
the results of our study, and their analysis. Finally, Section 5 discusses our find-
ings and future work.

2 Background and Related Work

The search interfaces such as Grouper [5] and Flamenco [3] are some of the
conventional ways of organizing retrieved documents or an entire document col-
lection. The former is based on the clustering approach whereas the later follows
the faceted browsing approach. Clustering aims to group similar documents to-
gether so that users can see multiple aspects from a set of retrieved documents.
Whereas, the faceted browsing approach enables users to navigate along the
structure of the collection, for example, according to the age, style or school,
and creator for an art gallery collection [3]. Users can submit a query but also
can browse other items via related facets. Although these approaches are useful
for getting multiple aspects of a given query, they are typically single source
applications.

Federated search, distributed information retrieval, and metasearch engines
are the techniques that aim at providing results from various sources. With the
former two, a broker receives the query from the user and selects a relevant
sub-set of collections for that query. The top ranked results returned from the
selected collections are merged into a single list. Current collection selection
methods compare the query with the summary of each collection (term statistics
[11] or sample documents [17,16]) and rank collections accordingly.

A metasearch engine sends a user query to several other search engines and/or
databases and aggregates the results into a single list or displays them according
to their source. Metasearch engines enable users to enter search criteria once
and access several search engines simultaneously. They operate on the premise
that the web is too large for any one search engine to index it all and that more
comprehensive search results can be obtained by combining results from several
search engines. This also may save the user from having to use multiple search
engines separately.

An aggregated search can be seen as an extension of metasearch as it also pro-
vides information from different sources. However, the distinction of information
sources is more apparent in aggregated search interfaces since the individual in-
formation sources retrieve items from very different collections. Yahoo! alpha1

and Naver2 are an example of such aggregation approach. These two systems
use the non-blended integration where individual sources are presented in a
dedicated panel within a single result page, while other search engines adapt a
blended integration.
1 http://au.alpha.yahoo.com/
2 http://www.naver.com/
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In order to support users with a broad query or ambiguous information need,
providing diverse information to users has become necessary. More attention is
now being paid towards providing diverse results to the users (see e.g. [1,2]). For
example, a study to measure the diversity within image search results can be
seen in [4].

Aggregated search also attempts to achieve diversity by presenting results
from different information sources (image, video, web, news, etc) on one result
page. Here, the aim is to provide diversity across information sources. However,
evaluation outcomes regarding the effectiveness and usefulness of aggregated
search have been limited in the literature, which we intent to remedy with our
work. In this paper, we describe a task-based evaluation of an aggregated search
interface.

3 Experimental Design

A within subject experiment design was used in our study, where two search
interfaces (controlled and experimental) were tested by sixteen participants, per-
forming two search tasks with each interface.

In the following subsections we define the research hypotheses of this study
and discuss the experiment designed to investigate the hypotheses.

3.1 Research Hypotheses

The overall hypothesis of our study is that an aggregated presentation can fa-
cilitate non-navigational search tasks by offering diversified search results. More
specifically, we formulate the following sub-hypotheses to investigate:

H1 An aggregated presentation can increase the quantity and diversity of doc-
uments viewed by users to complete a task.

H2 An aggregated presentation can increase the quantity and diversity of rele-
vant information collected by users to complete a task.

H3 An aggregated presentation can improve users’ perceptions on the search
system.

While an increased number of clicks can be seen as a sign of confusion in
navigational queries, informational search tasks often require to view a range of
documents to complete the task. Therefore, an effective interface should be able
to facilitate the browsing of retrieved documents (H1). This should also affect
the relevant information collected to complete a task (H2). Finally, participants
were expected to have a positive perception on the system that enabled them to
perform a task successfully (H3).

3.2 Search Interfaces

Two search interfaces, called DIGEST system, were devised to address our re-
search hypotheses. Both interfaces used the same back-end search engine (Yahoo!
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Fig. 1. Controlled System (Tabbed)

Fig. 2. Experimental System (Aggregated)

search API). For a given query, the API was set to retrieve the top 30 items from
four information sources, in this paper, Web, Image, News, and Wiki. The dif-
ference between the two interfaces was the presentation of retrieved items.

Figure 1 shows the controlled system where the results from the four sources
were presented in a separate tab. The default source was set to the Web tab,
and users can click other tabs at the top of the interface to view the results from



326 S. Sushmita, H. Joho, and M. Lalmas

other sources. This represented a conventional vertical presentation of search
results available in major search engines. The controlled system presented the
first 10 results for every selected information source with an option of “more
results” at the bottom to view the remaining 20 results (in chunks of 10).

Figure 2 presents the experimental system where the results from the four
sources were integrated into a single page. This represented an aggregated pre-
sentation of search results. The first 10 web results, 12 image results, 10 wiki
results and 5 news results, were shown, in each corresponding panel. Every infor-
mation source on the experimental system also had an option of “more results”
(similar to the controlled system) in order to view the remaining results. The
layout of the four sources was arbitrarily designed and fixed throughout the
experiment. A formal study to determine an optimal layout is left for future
work.

3.3 Task

Participants of our user study were asked to perform non-navigational search
tasks using the interfaces described above. Each search task was based on the
simulated work task situation framework proposed by [10]. The framework was
designed to encourage participants to engage with an artificial task by giving a
situational background scenario of the task. Figure 3 shows an example of the
search scenario. As can be seen, our search tasks required to browse several doc-
uments and collect relevant information from multiple sources. Participants were
asked to copy and paste relevant texts, URLs, and images to a word process-
ing software during the task. We used the software as an electronic notebook.
Examples of notebooks made by participants are shown in Figure 4.

We prepared 6 search scenarios so that participants could choose the scenarios
based on their interest. This design aimed to facilitate participants engagement
with the artificial search tasks. Participants were given 15 minutes to complete

Topic: European verses American football

Task: Your friend shared her experience of her recent visit to
a state in US, and mentioned about an American football match
to which she was invited to watch. Having only watched European
soccer in her life, she was surprised to see that American football
was quite different from European football matches she had
watched. She found rules and the game to be completely different
from what she expected and was quite confused during the match.
You decided to help her by explaining the difference between
them. Your task is to collect information on American and
European football, their rules, the game, their origin, etc. You may
also show her some pictures of both the games, pictures of some
popular sports person from both, etc. It would be nice to update
her about any recent event or news about these games.

Fig. 3. An example of a simulated task
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(a) (b)

(c) (d)

Fig. 4. Sample information collected during search tasks by participants

each task. Each participant performed four search tasks, two with the experi-
mental system and two with the controlled system. The order of the systems
was rotated to reduce learning effects.

3.4 Participants

The experiment was carried out with 11 males and 5 females from our university.
Out of 16 participants, 7 were undergraduate students, 2 postgraduate students,
3 PhD students, and 4 were research staff members. The participants were from
various educational fields, namely, computing, business management, arts and
commerce. The participants were recruited through our call for participation
email distributed to several lists. An entry questionnaire established that 82% of
participants stated that they had accessed more than one information source to
complete a search task. Therefore, our participants were not totally unfamiliar
with search tasks that require multiple sources. However, none had used our
interfaces or tasks before.

3.5 Procedure

For each participant, the experiment was performed in the following manner.
When they arrived at the experiment site, they were welcomed and explained
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the overall aim of the experiment. When they agreed to participate, a consent
form was signed. Then, they were asked to fill in an entry questionnaire to
capture their profile and search background. Next, they had a training session
with both interfaces using a sample search task. The training session typically
lasted for five minutes.

Then, they were asked to perform the first search task by selecting the most
interesting scenario from the six scenarios. During the task, the system automat-
ically logged participants’ interaction with the interface. When the first task was
completed, they were asked to fill in a post-task questionnaire to capture their
subjective assessments on the system and task. Then, participants were informed
of the change of the interface, and the second scenario was selected. This was
repeated four times. After the completion of the four tasks, they were asked to
fill in an exit questionnaire to capture their perceptions of systems and tasks as
a whole. Participants were rewarded fifteen pounds for their participation after
the experiment.

4 Results

This section presents the results of our experiment based on the research hy-
potheses stated in Section 3.1. We had a total of 32 search sessions per system
in the analysis. To measure the statistical significance of the results, we applied
both t-test (parametric) and Wilcoxon signed rank test (non-parametric) to the
difference between the controlled and experimental systems. All tests were paired
and two-sided, and critical value was set to 0.05, unless otherwise stated.

4.1 Quantity and Diversity of Documents Viewed

The first hypothesis H1 looked at the effect of an aggregated presentation on
the quantity and diversity of documents participants viewed to complete a task.
To examine this hypothesis, we first analysed participants’ click-through data
on different information sources. The results are shown in Table 1.

The bottom row of the table shows the average number of retrieved items
viewed to complete a task. As can be seen, participants viewed a significantly
larger number of items in the experimental system when compared to the con-
trolled system. The breakdown of the information sources suggests that the

Table 1. Frequency of participants’ clicks per information sources (N=32)

Source Controlled system Experimental system T-Test Wilcoxon-Test
Mean SD Mean SD p-value p-value

Web 7.7 6.7 8.6 5.9 .3696 .1847
News 1.7 1.7 1.0 1.2 .0663 .1039
Wiki 1.0 1.5 2.7 2.2 .0002 .0005
Image 2.4 3.2 6.8 7.7 .0013 .0004

All 12.8 8.8 19.1 12.1 .0002 .0024
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Table 2. Combination of information sources, where W=web, I= image, N=news and
Wi= wiki

Diversity Sources Controlled system Experimental system

1 W 4 0
2 W+I 2 3
2 W+N 1 2
2 W+Wi 1 2
2 I+Wi 0 1
3 W+I+N 12 1
3 W+N+Wi 3 1
3 W+I+Wi 1 9
4 W+I+N+Wi 8 13

Total 32 32

difference was due to the significantly different frequency in the Wiki and Image
sources. These results provide a support for that the aggregated presentation
increased the quantity of retrieved items viewed.

We also looked at the combination of information sources accessed by partic-
ipants to complete a task. The results are shown in Table 2. As can be seen, in
five more sessions, participants accessed all four information sources in the ex-
perimental system when compared to the controlled system. Also, more sessions
were completed by a single source (Web) in the controlled system. This suggests
that the aggregated presentation encouraged participants to view more diversi-
fied sources from search results. We also noticed that the frequent source was
different in the two systems. When we looked at the diversity score 3, the sources
of Web, Image, and News was the most popular combination in the controlled
system while the Web, Image, and Wiki were the most common combination in
the experimental system. We will discuss this aspect later.

Overall, our results provided some evidence to support H1.

4.2 Quantity and Diversity of Relevant Information Collected

The second hypothesis examined whether or not an aggregated presentation
increased the quantity and diversity of relevant information collected by partic-
ipants to complete a task. To answer this hypothesis, we performed a similar
analysis to the previous section but on the number of texts, images, and URLs
collected in the notebook. The number of texts was counted based on the number
of paragraphs. The results of the analysis are shown in Table 3.

Again, the bottom row of the table shows the average number of collected
items to complete a task. As can be seen, participants collected five more items in
the experimental system when compared to the controlled system. The difference
was found to be significant by the Wilcoxon test. The breakdown of collected
items shows that participants tended to collect more items in all three types
(Texts, Images, and URLs) when they used the experimental system. However,
no difference was found to be significant.



330 S. Sushmita, H. Joho, and M. Lalmas

Table 3. Information collection using Controlled & Experimental systems

Controlled system Experimental system T-Test Wilcoxon-Test
Mean SD Mean SD p-value p-value

Text 7.8 13.2 10.8 21.4 .3657 .3211
Images 3.3 2.8 4.6 3.4 .1140 .0815
URLs 6.1 5.3 7.4 7.1 .1956 .3250

All 17.3 12.7 22.7 18.6 .1173 .0409

Table 4. Information collected using Controlled & Experimental systems for text,
image and ulr combinations. Here, I=image, T= text and U = url.

Diversity Information Type Controlled system Experimental system

1 I 0 2
1 U 2 0
2 I+T 9 6
2 I+U 11 1
2 T+U 0 12
3 I+T+U 10 11

Total 32 32

Table 4 shows the combination of the collected items. As can be seen, the
number of sessions where all three types were collected (diversity score 3) was
similar across the systems. The frequency in the other two diversity scores (di-
versity score 1 and 2) was also found to be comparable. However, there was some
noticeable difference in the combinations. More specifically, the combination of
Image and Text (I+U) and combination of Text and URLs (T+U) had a very
different frequency across the systems. The cause of this difference is not entirely
clear to us. We are currently examining the log files to get further insight into
this phenomenon.

To summarise, our results provided partial evidence to support the quantity
aspect of H2, but no obvious evidence was found to support the diversity aspect
of the hypothesis.

4.3 User Perceptions

The last hypothesis looked at the effect of the aggregated presentation on par-
ticipants’ perceptions of the systems. To answer this hypothesis, we analysed
participants’ subjective assessments on the systems, which were captured by a
5-point Likert scale in the exit questionnaire. More specifically, we asked their
agreement on the two following statements for each of the two systems.

Q1 The system was useful to complete my search tasks (1 = Strongly agree;
5 = Strongly disagree).

Q2 It was easy to find relevant information with the system (1 = Strongly agree;
5 = Strongly disagree).
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Table 5. Users’ perceptions on the systems (N=16)

Controlled system Experimental system T-Test Wicoxon-Test
Mean SD Mean SD p-value p-value

Q1 2.4 1.1 1.9 1.1 .1311 .1771

Q2 2.4 1.0 1.8 0.9 .0430 .0466

Since our hypotheses expected the experimental system to have a better as-
sessment than the controlled system, the statistical tests were applied with paired
but one-tailed where an alternative was set to be greater. Note that a lower value
represented a higher degree of agreement in our analysis. The results are shown
in Table 5. As can be seen, participants tended to find the experimental system
easier to find relevant information to complete a task. Although participants
tended to give a better score on the experimental system regarding the useful-
ness, the difference was not found to be significant.

We also asked participants which system was easier to access search results
in the exit questionnaire. 75% of participants selected the experimental system
for the question. Overall, these results provide partial evidence to support H3.

5 Discussion and Future Work

Aggregation is an emerging paradigm of the search result presentation. There
are many unexplored questions in this area. In this paper, we performed a task-
based user study to compare the effectiveness of an aggregated presentation
to a conventional presentation. In particular, we investigated the effect of the
aggregated presentation on the quantity and diversity of information objects
accessed by users in non-navigational search tasks. This section first discusses
the limitation of our study, followed by the implications of our results on the
design of aggregated search interfaces.

There are some limitations in our study. First, we used only one back-end
search engine to test the effectiveness of the interfaces. Although this made
the comparison fair, the implication of our results is limited to this particular
engine. Second, we tested the systems with a small number of topics compared to
a system-centred evaluation. Other types of tasks such as a decision-making task
will also give us a better understanding of the effect of aggregated presentation.
Third, the collected items were based on perceived relevance and the quality of
collected items was not assessed. Finally, the layout of aggregation was fixed in
our experiment. This seems to have an implication on participants’ information
seeking behaviour, which will be discussed next.

Beaulieu [9] observed the trade-off between the complexity of search inter-
faces and cognitive load of the users. This applies to the design of aggregated
search interfaces, too. Our experimental system used a more complex presenta-
tion than the controlled system to integrate multiple information sources in a
single page. Therefore, the aggregated interface could increase the cognitive load
of the end-users. However, our experimental results suggested that participants
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were capable of interacting with an aggregated presentation, and tended to find
the experimental system easier to find relevant information when compared to
the controlled system. This might be due to the fact that the controlled sys-
tem still required extra effort to select information sources to access a range of
retrieved items.

Another implication was that the layout of aggregation was likely to affect
people’s selection of information sources. In Section 4.1, we found that the com-
bination of the Web, Image, and News was the most common selection in the
controlled system while the Web, Image, and Wiki were the popular selection in
the experimental system. They were exactly the same order of the sources in the
interfaces. The tab on the top of the controlled interface listed the sources in the
order of Web, Image, News, and Wiki. The top three panels of the aggregated
interface were the Web, Image, and Wiki. This suggests that people’s browsing
of information sources can be sequential, and their attention moves horizontally
rather than scrolling down the result page vertically. This also implies that an
aggregated search interface might be able to offer an effective support by opti-
mising the order of information sources for different tasks or queries.

The last point leads us to formulate our future work which will be address-
ing research questions such as “Is there an optimal combination and order of
information sources?”, “How can we model the optimal combination and order
of information sources for a given query or task?”, “Is the effect of layout strong
enough to affect task performance?”

In conclusion, our study provided empirical evidence to support that an aggre-
gated presentation of information sources can increase the quantity and diversify
of the retrieved items accessed to complete non-navigational search tasks. Par-
ticipants tended to find the aggregated presentation easier to access retrieved
items and to find relevant information. Although these positive effects were not
strong enough to increase the number of relevant information collected, we spec-
ulate that an intelligent way of organising information sources is a key to achieve
such a goal.
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Abstract. Recent book digitization initiatives have facilitated the access and 
search of millions of books. Although OCR remains essential for retrieving 
printed documents, OCR engines remain limited in the languages they handle 
and are generally expensive to build. This paper proposes a language independ-
ent approach that enables search through printed documents in a way that com-
bines image-based matching with conventional IR techniques without using 
OCR. While image-based matching can be effective in finding similar words, 
complementing it with efficient retrieval techniques allows for sub-word match-
ing, term weighting, and document ranking. The basic idea is that similar con-
nected elements in printed documents are clustered and represented with ID’s, 
which are then used to generate equivalent textual representations. The resultant 
representations are indexed using an IR engine and searched using the equiva-
lent ID’s of the connected elements in queries. Though, the main benefit of the 
proposed approach lies in languages for which no OCR exists, the technique 
was tested on English and Arabic to ascertain the relative effectiveness of the 
approach. The approach achieves more than 61% relative effectiveness com-
pared to using OCR for both languages. While the reported numbers are lower 
than that of OCR-based approaches, the proposed method is fully automated, 
does not require any supervised training, and allows documents to be searchable 
within a few hours.  

Keywords: Printed Documents Retrieval, Image Based Retrieval, OCR. 

1   Introduction 

Recent initiatives have focused on digitizing large repositories of legacy books [2][32]. 
Such initiatives have been successful in digitizing millions of books in a variety of 
languages, and search has been one of the leading services for these digitized books. 
Optical Character Recognition (OCR) is the most common approach for generating 
searchable versions of the books; however, this process typically introduces errors in 
the textual representations of books depending on several factors, such as quality  
of paper, printing, font, OCR training, and scanning. Further, morphological and  
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orthographic features of some languages, such as connected characters, diacritics, dots, 
and word compounds complicate the OCR process considerably.  These factors com-
plicate the development of OCR engines and make the engines generally language 
dependent. 

This paper introduces a technique for searching printed documents based on 
matching between text queries and scanned documents in an intermediate representa-
tion, avoiding matching in the text domain, availing the need for OCR, and avoiding 
matching in the image domain with the inherent computational inefficiencies and 
blunted ability to properly weigh documents.  Briefly, connected components in 
scanned documents, which may be single characters or multiple connected characters, 
are extracted and clustered based on their shapes; each cluster is assigned an ID; and 
intermediate representations of documents, based on the ID’s corresponding to con-
nected components, are generated and indexed.  When a user issues a text query, the 
text is rendered into an image; the connected components in the rendered image are 
matched with the connected components from the documents; an intermediate repre-
sentation of the query, based on the ID’s corresponding to connected components, is 
generated; and the intermediate representation of the query is used to query indexed 
documents.  This approach has the advantage of being computationally tractable, 
effective for documents for which no OCR exists, generally language independent, 
applicable for sub-word matching, and with proper query formulation can use existing 
weighting formulas.  The technique is tested on document images in Arabic and Eng-
lish, which have mature OCR’s and whose OCR’s provide solid baselines to compare 
against, to show that the proposed approach works on languages with dramatically 
different orthographies.  The paper is organized as follows: Section 2 surveys related 
work; Section 3 describes the proposed approach; Section 4 describes experimental 
setup; Section 5 discusses the results; and Section 6 concludes and suggests future 
work. 

2   Related Work 

Retrieval of OCR degraded text documents has been reported on for many languages, 
including English [7][10][30], Chinese [33], and Arabic [4]. Generally, retrieval ef-
fectiveness is adversely affected by increased degradation and decreased redundancy 
of search terms in documents [9]. 

To overcome the effects of OCR errors, several techniques were proposed includ-
ing character n-gram indexing [4][7], OCR error correction [14][15][20], query gar-
bling [3], fusing multiple OCR outputs [16], or avoiding the OCR stage altogether. 

Word spotting is a method for avoiding OCR in searching printed documents. It 
involves transforming query text into an image and matching the image against the 
document images. This approach was used to search the George Washington collec-
tion [24][26], a set of handwritten manuscripts, and to search document images in 
several languages [18]. This approach is suitable for documents where automatic 
character recognition generally yields poor results or when no OCR exists.  One of the 
major disadvantages of word spotting is the computational demand, especially when 
performed at query time [18]. Hence, some work has focused on optimizing the spot-
ting process by clustering similar words into defined classes, assigning an ASCII 
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equivalent to each cluster manually, and then searching the ASCII equivalent using 
the text of the query [17] utilizing user feedback [12] or a training set [25].  Kumar et 
al. [13] improved efficiency using locality sensitive hashing to efficiently find nearest 
neighbors.  Another attempt involved using preset “keywords” rendered into images 
and matched against words document images [28].  Although more efficient, the list 
of “keywords” inherently limits the number of words that can found.  Another draw-
back stems from the limited ability to compute word statistics such as term and 
document frequencies, which are important for ranking.  Although some attempts 
were made to compute such statistics [28], many of the word spotting papers report 
precision and recall for finding single word tokens in document images on rather 
small datasets and/or a small number of keywords [12][13][28].  Lastly, word spotting 
handles whole words and not characters, even though retrieval of degraded documents 
using character n-grams is known to be better than retrieval using words.   

A hybrid approach tries to integrate information from word spotting and automati-
cally recognized text to achieve better search results [29].  Although these techniques 
proved their effectiveness in retrieving information from the image domain, they 
suffer from: scalability issues, compared to OCR based techniques, the limited ability 
to use text statistics to aid ranking, and the inability to perform sub-word matching.  
These issues are addressed in this work.  Also, images of words need to be segmented 
prior to matching, which is not a requirement for this work.  Further, this paper com-
pares retrieval effectiveness of the technique against retrieval effectiveness on ground 
truth (or near ground truth) data as a reference.  Such comparison is absent from most 
word spotting papers. Finally, this paper investigates the issue of having multiple 
fonts, which is not addressed in most previous work.  

As for Arabic, upon which the proposed technique is tested, several challenges ex-
ist including different letter shapes according to position and optional use of word 
elongations and ligatures are prevalent.  Most letters contain dots that distinguish 
them from other letters and optional diacritics may exist.  The attachment of pronouns 
and coordinating conjunctions to words leads to an estimated 60 billion possible word 
surface forms [1].  There are several commercial Arabic OCR systems [8][11]. 

3   Approach 

This paper introduces a technique for searching printed documents based on matching 
between text queries and scanned documents in an intermediate representation.  As in 
Figure 1, a set of printed document images are segmented into a set of elements, 
where an element is a connected shape representing a character or a group of con-
nected characters, as in Arabic.  These elements (shapes) are clustered according to 
measurable features to group similar elements together.  Each cluster is assigned a 
unique cluster ID, along with a feature vector representing the mean of the vectors of 
features in a cluster. Then each element in every document image is replaced with the 
corresponding cluster ID in the same reading order of the text in the document image 
to generate an alternative representation of the document.  Clustering and document 
translation are insensitive to language features.  Note that depending on the language 
of a document, reading order could be left to right, right to left, or top down.  In this 
paper, the reading order of the language is manually provided, namely right-to-left for 
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Arabic and left-to-right in English. The resulting documents in the alternative repre-
sentation are indexed. 

Segmentation of a document image into elements is carried out using connected 
component analysis [5].  Elements smaller than a certain size, namely dots, Hamza, 
and diacritics in Arabic, are neglected, because they are not independent characters 
and they are often confused with speckle and dust.  Although removing diacritics and 
Hamza helps retrieval, removing dots adversely affects retrieval and requires further 
investigation to avoid their removal.  Each segmented element is represented by the 
pixel pattern in a bounding box around the element. A scale and translation invariant 
pattern matching method is used to compare elements to one another with summation 
of absolute difference as the similarity measure. To improve clustering and matching 
efficiency, the ratio of width to height is first compared, allowing up to 20% differ-
ence in ratio.  Scale invariance is achieved through normalizing the size of each ele-
ment to a height of 54 pixels in order to overcome the variations in width to height 
ratio and font size. This is especially important for headers, typically in larger sizes. 
Translational invariance is introduced in element matching by allowing a shift of up 
to two pixels. Clustering is done using a fast sequential clustering algorithm that re-
portedly produces acceptable clustering called BSAS [31].  BSAS uses two parame-
ters:  a thresholdθ that decides when to form a new cluster, and the maximum number 
of clusters. A value of 0.13 is used for θ (based on side experiments) with no limit on 
the number of clusters to make the clustering adaptive to any collection or language at 
hand. To avoid the input order dependence on the final clusters found, the BSAS 
algorithm is run twice on the dataset. The representative prototype for each cluster is 
chosen to be the mean (centroid) for computational efficiency.  Once clustering is 
done, a document image is converted to the new representation using the cluster ID’s.  
No attempt is done to segment words, as word segmentation is language dependent 
and is often error-prone.  A phrase operator is utilized at query time to compensate for 
lack of segmentation.  One of the issues that arise is that an element may be assigned 
to the wrong cluster.  To overcome this problem, each element is used to search 
through the clusters and the closest clusters are generated, potentially replacing an 
element by more than 1 cluster ID.  Ideally, the search engine would be modified to 
allow for multiple representations (or equivalents) of a token to be indexed as one 
token as in [22].  However, most retrieval engines do not support such indexing and 
the situation is remedied in part via the use of proximity operators as described later.  
In case multiple fonts are used in a book, the clustering technique would normally 
generate separate clusters for each font automatically. At query time, a query would 
be rendered in more than one font to match the fonts in the document images.  Cur-
rently, the closest fonts are determined manually.  The rendered query image is then 
segmented into elements and each element is matched to the clusters in the document 
images.  To increase robustness to errors, for each element, a set of candidate clusters 
ID’s is generated, and the ID’s are considered as “synonyms”.  A query consisting of 
an ordered set of IDs is formulated given the candidate cluster IDs for each element. 
For example, given the query “this”, after rendering the query and segmenting it into 
elements (where the elements are just the characters in this example), the elements 
could match the candidate cluster IDs {12, 23}, {10, 32, 291}, {102, 34, 44}, and 
{61} for “t”, “h”, “i”, and “s” respectively. Consequently, the formulated query would  
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Fig. 1. Overall overview of the system 

 
be “#phrase(#synonym(12, 23) #synonym (10, 32, 291) #synonym (102, 34, 44) 61)”.  
Although using multiple cluster ID’s for each element increases ambiguity, retrieval 
engines are generally tolerant to ambiguity [27].  The phrase operator would insure 
proper ordering elements in a document without performing word segmentation. 

4   Experimental Setup 

Two data sets are used to test the proposed technique.  The first is the ZAD collection 
which consists of 2,730 documents, which are obtained from a classical religious 
Arabic book [4].  The ZAD collection has the advantage of having an error-free 
(clean) text copy and a document image version that is scanned at 300x300 dpi and an 
OCR’ed version that was OCR’ed using Sakhr’s Automatic Reader, with a word error 
rate of approximately 39%.   The collection has 25 topics and relevance judgments, 
which were built by exhaustively searching the collection.  The number of relevant 
documents per topic ranges from 3 to 72, averaging 20.  The average query length is 
5.4 words [4].  Despite the relatively small size of the ZAD collection, the clean ver-
sion of the ZAD collection has the advantage of behaving in a manner similar to the 
largest existing standard test collection, namely the TREC 2002 Cross Language 
Retrieval Track collection [4][21].   

The second collection is an English collection composed of 701 images from the 
second volume of the Engineering Encyclopedia that was published in 1942 and is 
available from the Internet Archive1.  Since no query relevance judgments (qrels) are 
available for this book, the authors extracted a set of 200 entry titles that were subjec-
tively judged as non-repeating in the encyclopedia and used them as queries.  The 
average number of words per query is 2.1 words.  The queries are intended to emulate 
a known-item retrieval task.  The book was scanned at 300x300 dpi and OCR is pro-
vided by the Internet Archive.  Although exact character and word error rates are not 
available for the OCR of the book, the OCR is subjectively estimated to be nearly 
error free.  There are two fonts being used in the printed book, namely one that is 
similar to Times New Roman, which constitutes the body of the entries, and another 
that is similar to Arial Round, which constitutes entry headings.  The collection is 
henceforth referred to as the ENG collection.  The authors opted to develop their own 
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test collection, because although the document images for the documents in TREC 
confusion track exist, the start and end of actual OCR’ed documents for the track do 
not match the boundaries of the available document images [10].  Therefore, the con-
fusion track qrels cannot be used directly.  For efficiency, since the number of English 
characters is limited, each character was rendered individually in lower and upper-
cases in the two fonts and each variation was assigned cluster ID’s.  The varying ID’s 
were used as synonyms at query time. 

Indexing and retrieval was done using the Indri retrieval toolkit, which combines 
inference network models with language modeling [19].  Indri query language in-
cludes a synonym operator, #syn(…) [23], and a proximity operator that behaves 
similar to a phrase operator, #N(…), to restrict the sequence order of elements in one 
word in the query, where N is the number of inserted elements within a sequence.  At 
query time, for the Arabic text, a query word is just the surface form of the query, 
while for English a word is the sequence of character 3 to 5-grams [7]2.  In case of 
replacing each element with the best matching ID in the indexing phase, N is set to 1 
(no insertions are allowed).  When replacing elements with more than one ID in the 
indexing phase, N is set to 2 * (No. of Equivalents – 1) + 1.   

Mean average precision (MAP) and Mean Reciprocal Rank (MRR) are used as the 
figures of merit for testing retrieval effectiveness for the ZAD collection and the ENG 
respectively.  When needed, a paired two tailed t-test with p-value of 0.05 is used to 
indicate statistical significance. The t-test is sufficiently reliable though the normality 
condition might not be met [27]. 

5    Results and Discussion 

For the ZAD collection, the clustering of elements in the document images yields 
12,058 clusters, which is very close to the number of unique elements in the clean 
text, namely 11,152 unique elements. During the indexing step, each element in the 
document images is assigned M ID’s corresponding to the nearest clusters and M is 
varied between 1 and 3.  Similarly, when query elements are transformed into ID’s, 
each element is replaced by N ID’s of closest element clusters, where N ranges be-
tween 1 and 5, and the resulting N ID’s for a single element are placed inside the Indri 
synonym operator.  Although increasing the values of M and N would increase ambi-
guity, the increase would help alleviate mismatch errors and moderate use of syno-
nyms is tolerable [3][22][23].  Table 1 reports the mean average precision (MAP) 
over 25 queries for varying values of M and N.  

Table 1 indicates that the optimal values of M and N are 3, leading to a MAP of 
0.23.  It is worth noting that some of the 25 queries are relatively long with up to 10 
words. Nonetheless, the retrieval process usually takes few milliseconds without care-
ful optimization.  There are 4 baselines experimental setups, namely retrieval against 
the clean version and OCR’ed versions of the ZAD collection with and without dots 
that distinguish letters from each other. To remove dots, letters that have the same 
shape, but different dots, are conflated.  The runs where dots are removed are  
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 Side experiments have shown that using a combination of 3, 4, 5-grams produced the best 
results. 
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Table 1. MAP for the ZAD collection with varying values of M and N 

 N = 1 N = 2 N = 3 N = 4 N = 5 
M = 1 0.15 0.16 0.19 0.19 0.20 
M = 2 0.12 0.16 0.20 0.19 0.19 
M = 3 0.12 0.16 0.23 0.21 0.21 

 
Table 2. MAP of the proposed technique compared to the baselines 

 
Best from Table 1 Clean Clean (no dots) OCR OCR (no dots) 

0.23 0.45 0.33 0.38 0.25 

 
Table 3. MRR for the ENG collection with varying values of M and N using Arial Round, 
Times New Roman, and combined runs 

 
  N = 2 N = 3 N = 4 N=5 N=6 

M = 1 0.49 0.53 0.50 0.51 0.49 
M = 2 0.43 0.44 0.37 0.35 0.32 

Arial 
Round 

M = 3 0.42 0.39 0.32 0.27 0.25 
M = 1 0.24 0.32 0.36 0.39 0.37 
M = 2 0.32 0.32 0.34 0.33 0.28 

Times 
New 

Roman M = 3 0.32 0.27 0.27 0.28 0.22 
M = 1 0.50 0.54 0.55 0.58 0.59 
M = 2 0.48 0.48 0.46 0.46 0.42 

Combined 
runs 

M = 3 0.51 0.44 0.41 0.39 0.35 

 
designed to simulate the situation where dots could not be used to disambiguate letters 
or when a language uses few or no dots.  Table 2 compares the proposed technique 
with all 4 baselines. 

The results in Table 2 show that the proposed technique achieves 61% relative ef-
fectiveness compared to OCR, primarily because dots are ignored.  However, when 
dots are eliminated from the OCR text, the proposed technique achieves 92% relative 
effectiveness (the difference is statistically significant).  Notably, most languages do 
not use dots to disambiguate letters as in Arabic or other languages such as Farsi, 
Urdu, and Kurdish.  Also, despite the connected characters in Arabic leading to  
a large number of different elements, the proposed approach achieves acceptable 
retrieval effectiveness. 

For the ENG collection, the clustering of elements in the document images yields 
309 clusters, which is more than the actual number of unique elements in the text 
(roughly 200 – including lower and uppercase letters, different fonts, punctuation, 
etc.).  Since the number of elements in English is limited to just a few hundred, only 
the first 50 document images are used to generate the clusters.  During indexing, each 
element in the document images is assigned M ID’s corresponding to the nearest 
clusters and M is varied between 1 and 3.  Similarly, when query elements are trans-
formed into ID’s, each element is replaced by N ID’s of closest element clusters, 
where N ranges between 2 and 4, and the resulting N ID’s for a single element are 
placed inside the Indri synonym operator.  Each element in the query is generated in 
uppercase and lowercase forms.  Also, since the text of the book is written using two 
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different fonts, the queries are constructed using Arial Round once and using Times 
New Roman a second time.  Table 3 reports MRR values over the 200 queries for 
varying values of M and N using Arial Round, Times New Roman, and combined 
runs, for which the score of each document in the ranked list(s) is the average score 
from both ranked lists or is the score given by either (if it existed in only one). 

The results show that indexing more than one variation is not as good as using the 
synonym operator at query time. This could be due to having too few natural clusters 
of elements in English, compared to Arabic, or to the fact that elements are consti-
tuted of one character in English, compared to multiple characters in Arabic. Both 
factors can yield to greater ambiguity in English that may adversely affect the use of 
the proximity operator at query time. Ideally, it would be better to have IR engine 
support for indexing multiple variants as 1 token. Also, results in Tables 3 show the 
sensitivity of the technique to the choice of font with which the query is rendered, 
where a good choice would lead to better matching with existing clusters and better 
retrieval and vice versa.  Although retrieval might have been better if the entire book 
had 1 font, using multiple fonts and matching them in document images can be useful.  
The proposed technique allows for many processing steps that are not easily possible 
using image-based matching including: character n-gram matching, case folding, 
multiple font handling, and term weighting.   

The proposed approach achieves 63% relative effectiveness compared to a OCR-
based system, which yielded an MRR of 0.93, over the same set of 200 queries.  The 
relative effectiveness for English is consistent with the relative effectiveness achieved 
for Arabic, suggesting that the technique is fairly language independent. 

6   Conclusion and Future Work 

This paper introduces a language independent approach for performing IR on printed 
documents. The approach combines image matching with text retrieval techniques to 
perform efficient retrieval of document images without OCR.  Experimental results 
show that the proposed approach can achieve more than 61% relative effectiveness 
compared to using OCR-based techniques.  The proposed technique is intended to 
address retrieval for languages for which there is no good OCR and without the ex-
tensive effort required to build an OCR system.  The technique was applied to Arabic 
and English to compare the technique to OCR based retrieval.  The proposed tech-
nique achieves a comparable level of efficiency in search, compared to OCR based 
retrieval, while being language independent and while allowing for multiple language 
scripts, which would cluster independently, provided that multi-lingual queries are 
rendered properly.  Unlike many of the previous word spotting techniques, the pro-
posed approach does not require full word matching, makes use of the retrieval engine 
facilities such as ranking, synonym operators, and proximity operators, does not re-
quire word segmentation, does not require training data, and is capable of handling a 
limited number of fonts simultaneously.  For future work, some issues linger related 
to image processing and IR.  For image processing, different matching techniques can 
be tested that can be more effective and allow font-independent matching. Also, other 
clustering techniques can be tested for more accurate clusters generations.  As for IR, 
a search engine can be built that allows the indexing of synonyms with different 
weights for each, which would reflect on the image matching candidates. 
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Abstract. Collaborative filtering (CF) shares information between
users to provide each with recommendations. Previous work suggests us-
ing sketching techniques to handle massive data sets in CF systems, but
only allows testing whether users have a high proportion of items they
have both ranked. We show how to determine the correlation between
the rankings of two users, using concise “sketches” of the rankings. The
sketches allow approximating Kendall’s Tau, a known rank correlation,
with high accuracy ε and high confidence 1− δ. The required sketch size
is logarithmic in the confidence and polynomial in the accuracy.

1 Introduction

Recommender provide a user with recommendations regarding information items
she is likely to find interesting. These systems compare user profiles to reference
characteristics. Sometimes these characteristics are obtained from the content
of the item (in the content based approach), and sometimes from information
regarding the tastes of other users, in the collaborative filtering (CF) approach.

We consider a CF domain, where each user ranks the items she examined.
Consider Alice, who asks the CF system to give a prediction for a certain item.
The CF system must search for users who have ranked many of the items Alice
has ranked. Then, the system should consider their rankings, and decide whether
these users’ tastes are similar to Alice’s. A naive way to do this is to store the
complete item lists and rankings for each user. However, this requires storing an
enormous amount of data.The work [2] proposed a sketching technique for com-
puting the proportional intersection (PI) of the ranked item lists. Rather than
storing the full information they suggested very concise descriptions of ranked
item lists, called sketches. Give a target accuracy ε > 0 and a target confidence
δ, their method returned an approximation x̂ to the actual PI x, such that with
probability of at least 1−δ the approximation is accurate enough, so |x̂−x| ≤ ε.
The major shortcoming of [2] is that it did not allow computing a correlation
grade between the rankings. Even if there are many items ranked by both users,
it is hard to construct a recommendation based solely on this information, as
they may have given very different ratings these items. This work extends [2]
and provides methods for computing the correlation between the rankings using
sketching techniques. We construct an extremely concise representation of the
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user’s item rankings, called a rank correlation sketch. Our sketches are designed
to approximate Kendall’s Tau [8], a well known rank correlation grade, while
maintaining an only a small fraction of the information.

Consider Alice and Bob, who have each examined and ranked a set of n items,
giving the item liked most has a rank of 1, the second best has a rank of 2, and
so on until the worst item with the rank n. A known statistic to measure the
correspondence between two rankings is Kendall’s Tau [8]. Given the rankings of
Alice and Bob, and given two items, A and B, we call the items a concordant pair
if Alice and Bob agree on their order (i.e. if both Alice and Bob prefer A over
B or if both prefer B to A). When Alice and Bob disagree on these items they
are called a discordant pair. Given two rankings, we denote by nc the number of
concordant pairs, and by nd the number of discordant pairs. Every pair is either
concordant or discordant, so nc = n − nd.

Definition 1. Kendall’s Tau of ra and rb is: τra,rb
= nc−nd

1
2n(n−1)

The total number of pairs is 1
2n(n − 1), so P (C) = nc

1
2n(n−1)

is the probability
of a uniformly randomly chosen pair to be a concordant, and P (D) = nd

1
2n(n−1)

is the probability for a discordant pair. Thus Kendall’s Tau can be expressed as
τra,rb

= p(C) − P (D) = P (C) − (1 − P (C)) = 2P (C) − 1.
Consider the users of the CF system, a1, . . . , am. Each ai has a ranking ri of

the items she had experience with. Under our model, we only maintain a sketch
Si of each ranking.

A sketching framework allows approximating Kendall’s Tau τri,rj between any
two users, with a target confidence and accuracy.

Definition 2. A rank correlation sketching framework with confidence δ and
accuracy ε maintains only S1, S2, . . . , Sm, and for any two users, ai and aj,
allows computing τri,rj with accuracy of at least ε and with confidence of at least
1 − δ. That is, the framework returns an approximation ˆτi,j for τri,rj such that
with probability of at least 1 − δ we have |τri,rj − ˆτi,j | ≤ ε.

2 Sketches for Approximating Rank Correlation

Our sketching framework extends [2], so we first review that technique. Consider
Alice and Bob, with the set C1 of items that Alice has rated, and the set C2

of items that Bob has rated, from the universe U of items, where |C1| = |C2|.
Consider a sketch Si that is the identity of a single item chosen uniformly at
random from Ci. The probability of choosing the same item in S1 and S2 depends
on |C1∩C2|

|C1| , and is small. One insight comes from deciding to let the sketch Si be
the minimal item from Ci. If the minimal item in C1 ∪C2 is in C1 ∩C2 = T , we
are guaranteed to find the item in S1 ∩ S2. However, always using the minimal
item always generates the same S1, S2. The methods in [2] overcome this by
using min-wise independent hashes. Let H be a family of functions such that
each h ∈ H is a function h : X → Y , where Y is completely ordered. We say
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H is min-wise independent if, when randomly choosing h ∈ H , for any subset
C ⊆ X , any x ∈ C has an equal probability of being the minimal under h.

Definition 3. H is min-wise independent, if for all C ⊆ X, for any x ∈ C,
Prh∈H [h(x) = mina∈Ch(a)] = 1

|C| .

The work [7] constructs such families. The work in [2] uses them to build sketches
for approximating the PI. In that work they use integers to define the identity of
items in U (where |U | = u), so any subset of items C ⊆ U , is represented as a
list of |C| integers in [u] ([u] denoting {1, 2, . . . , u}). They use a family H of min-
wise independent functions from [u] to [n2]. Thus, although the domain is the huge
universe of [u] items, the hashed values are in the smaller range of [n2] items1. The
methods of [2] consider users a1, a2, each with a list Ci of examined items, such
that |C1| = |C2|. The sketches they propose approximate the PI between the two
users, p1,2 = |C1∩C2|

|C1| = |C1∩C2|
|C2| . These sketches are based on randomly choosing

hashes from H . Given h ∈ H , we can apply h on all the integers in C1 and examine
the minimal integer we get, mh

1 = minx∈C1h(x). We can do the same to C2 and
examine mh

2 = minx∈C2h(x). The following Lemma is proved in [2].

Lemma 1. Prh∈H [mh
1 = mh

2 ] = p1,2
2−p1,2

.

We refer to the the sketches used by [2] as item sketches. They are defined as
follows. Let vk = 〈h1, h2, . . . , hk〉 be a tuple of k randomly chosen functions from
the min-wise independent family H , and let Ci be the set of items that user ai

has examined. Denote the minimal item in Ci under hj as m
hj

i = minx∈Cihj(x).

Definition 4 (Item Sketches). The Hk sketch of Ci, S(Ci), is the list of
minimal items in Ci under the k randomly chosen functions from h: Sk(Ci) =
(mh1

i , mh2
i , . . . , mhk

i ).

There are several key observations regarding item sketches. First, since H is
min-wise independent, each sketch S(Ci) on its own is a list of k random items
from Ci (after applying a hash function on each item). Second, due to Lemma
1, randomly choosing a function h ∈ H and testing whether mh

1 = mh
2 is a

Bernoulli trial, with success probability of α = pa,b

2−pa,b
. We denote by Xi the

random variable of the Bernoulli trial using hash hi, so Xi = 1 if mhi
a = mhi

b ,
and Xi = 0 otherwise. Given an item sketch of k hashes, we get k such Bernoulli
trials, X1, . . . , Xk, and can estimate α = pa,b

2−pa,b
as

∑ k
i=1 Xi

k . Since α = pa,b

2−pa,b
,

we have pa,b = 2α
1+α , so given an estimate α̂ for α, we can estimate pa,b as

ˆpa,b = 2α̂
1+α̂ . The work [2] shows that to approximate the PI pa,b within accuracy

ε and confidence 1 − δ, it is enough to use k = ln 2
δ

2 ε2
9

hashes. The methods in [2]

do not show how to compute the correlation between the rankings.
1 The methods of [2] build on the results of [7], which show that using a range of n2

integers mitigates the effect of collisions in the hashed values. Thus, the probability
of two different items in [u] to be mapped to the same value after applying the hash
(a collision) is very small.
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2.1 Rank Correlation Sketches

We now describe our method for constructing a rank correlation sketching frame-
work. We first return to Alice and Bob. Now suppose we have a set of items I
that both Alice and Bob have ranked, from the universe U of items. Denote by
n the size of I, so |I| = n. We are interested in approximating τra,rb

, Kendall’s
Tau rank correlation between Alice’s ranking of the items in I and Bob’s rank-
ing. We denote by nc the number of concordant pairs, and by nd the number
of discordant pairs, so τra,rb

= nc−nd
1
2n(n−1)

. As noted in Section 1, the probability
P (C) = nc

1
2n(n−1)

is closely relate to Kendall’s Tau, and τra,rb
= 2P (C) − 1.

Lemma 2 (Approximating P (C) and Kendall’s Tau). Approximating
P (C) with accuracy ε

2 gives an approximation to Kendall’s Tau with accuracy ε.

Proof. We use the approximation ˆP (C) for P (C) to approximate Kendall’s Tau.
Our approximation for τra,rb

is ˆτra,rb
= 2 ˆP (C)−1. If our error in our estimation

of P (C) is at most ε
2 , we have |P (C)− ˆP (C)| ≤ ε

2 , so |τra,rb
− ˆτra,rb

| = |2P (C)−
1−(2 ˆP (C)−1)| = |2(P (C)− ˆP (C))| ≤ 2 · ε

2 = ε. Thus, to approximate Kendall’s
Tau with accuracy ε it is enough to approximate P (C) with accuracy ε

2 .

We now consider a pair of items chosen uniformly at random from I, x, y ∈ I.
Given Alice’s and Bob’s rankings, we can test whether this is a concordant
pair. This is a Bernoulli trial, with a success probability of P (C). We define the

random variable of this Bernoulli trial as: X1 =

{
1 if x, y is a concordant pair
0 if x, y is a discordant pair

Given kp such pairs, we have a sequence of kp such Bernoulli trials, X1, . . . , Xkp .
Let X be the number of successes in this series of Bernoulli trials, X =

∑kp

j=1 Xj .
We have chosen the pairs uniformly at random, so the Xis are identical but inde-
pendent. Thus X has the Binomial distribution X ∼ B(k, α), and the maximum
likelihood estimator for P (C) is ˆP (C) = X

kp
. We now derive the required number

of random item pairs required to approximate P (C) with accuracy εc and confi-
dence δc. To achieve the desired accuracy and confidence, the number of sampled
pairs, kp, must be large enough. We find the appropriate kp by using Hoeffding’s
inequality [6].

Theorem 1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent ran-
dom variables, where all Xi are bounded so that Xi ∈ [ai, bi], and let
X =

∑n
i=1 Xi. Then the following inequality holds: Pr(|X − E[X ]| ≥ nε) ≤

2 exp
(
− 2 n2 ε2∑

n
i=1(bi−ai)2

)
.

Let X1, . . . , Xkp be the series kp of Bernoulli trials, as defined above. Again, let
X =

∑kp

j=1 Xj , and take ˆP (C) = X
kp

as an estimator for P (C). All Xi are either
0 or 1 (so they are bounded between these values), and E[X ] = kp ·P (C). Thus,
the following holds: Pr(|X−kpP (C)| ≥ kεc) ≤ 2e−2kp ε2c . Therefore the following
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also holds: Pr(| ˆP (C) − P (C)| ≥ εc) ≤ 2e−2kp ε2c . We now extract the number of
pairs required so that this probability is below some required confidence level δc.

Theorem 2 (Pair Samples for Approximating P (C)). A confidence inter-
val for P (C) is [ ˆP (C)− εc, ˆP (C)+ εc]. This interval holds the correct P (C) with
probability of at least 1−δc. The required number of pair samples to perform this

is kc =
ln 2

δc

2 ε2c
.

Proof. We use Hoeffding’s inequality to bound the error below our target confi-
dence level δc, and get: Pr(| ˆP (C)−P (C)| ≥ εc) ≤ 2 e−2kc ε2c ≤ δc. We extract εc

and kc: −2 kc ε2c ≤ ln δc

2 . Equivalently: ε2c ≥ − ln δc
2

2 k . Finally we get the following:

εc ≥
√

1
2kc

ln 2
δc

and kc ≥ ln 2
δC

2 ε2c
.

The required number of pairs in Theorem 2 considered approximating P (C) and
not Kendall’s Tau. However, due to Lemma 2 we get the following corollary.

Corollary 1 (Pair Samples for Approximating Kendall’s Tau). The fol-
lowing is an approximation for Kendall’s Tau: ˆτra,rb

= 2 ˆP (C) − 1. In order for
it to have accuracy εt and confidence δt the required number of random pairs

samples is kt =
2 ln 2

δt

ε2t
.

2.2 From Item Sketches to Rank Correlation Sketches

We now augment the sketches of [2] to approximate Kendall’s Tau. The PI
sketches of [2] approximate the PI. When the CF system attempts to provide
Alice (with items Ca) with a recommendation, it filters out users who do not
have a high enough PI with her, so only users with a PI exceeding a threshold,
p∗, remain. Consider a candidate, Bob (with item set Cb), where the PI of Alice
and Bob is pa,b. By definition of the PI, pa,b = |Ca∩Cb|

|Ca| = |Ca∩Cb|
|Cb|

2, and since
Bob has passed the filtering stage we have pa,b ≥ p∗. The item sketch from
Definition 4 randomly chooses k hashes from H , and lists the minimal items
under these k hashes. By definition of H as a min-wise independent family, for
any user’s set of items C, any item has an equal probability of being minimal
under the hash, so Prh∈H [h(x) = mina∈Ch(a)] = 1

|C| . Let h ∈ H be a randomly
chosen hash function from H . We denote the minimal item in Ci under h as
mh

i = minx∈Cih(x). We show that if Alice and Bob have a PI of at least p∗, the
probability of having the same value at each sketch location is at least p∗

2−p∗ .

Lemma 3 (Probability Of The Same Item Appearing In Two
Sketches). Let Alice and Bob be two users with a PI of at least p∗, Alice with
item set Ca and Bob with item set Cb. Then Prh∈H [mh

a = mh
b ] ≥ p∗

2−p∗ (i.e.
the probability of Alice and Bob having same minimal item under h is at least

p∗

2−p∗ ).

2 Note that we are still assuming the same size of item set per user.
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Proof. We denote the PI of Alice and Bob as pa,b ≥ p∗. Due to Lemma 1 we have
Prh∈H [mh

a = mh
b ] = pa,b

2−pa,b
, and since f(x) = x

2−x is monotonically increasing

in the domain [0, 1] we have Prh∈H [mh
a = mh

b ] ≥ p∗

2−p∗ .

Consider Alice and Bob, with a PI of at least p∗. Lemma 3 states that any
location i has a probability of at least ps = Prhi∈H [mhi

a = mhi

b ] ≥ p∗

2−p∗ to
contain the same value in Alice’s sketch and in Bob’s sketch. Since the range
of the hashes in H is [n2] (where n is the number of items examined by each
user), having the same minimal item under h, mhi

a = mhi

b , indicates with high
probability that this is the same item, so |{x ∈ Ca|hi(x) = mhi

a }| = |{y ∈
Cb|hi(y) = mhi

b }| = 1, and both Ca and Cb contain only one item x (so x ∈ Ca

and x ∈ Cb) such that hi(x) = mhi
a = mhi

b .
Let hi be the hash for the i’th location in the item sketch. The augmenting

part of the sketch includes the rank of the item that is minimal under h. We
denote the ranking of user a over the items in Ca as ra, so ra maps items from
Ca to their rank in [n] (where |Ca| = n). Thus ra : Ca → [n] is reversible. We
randomly choose a hash for each sketch location. Given the hash hi for location i,
we consider the items who are minimal under hi, i.e. M = {x ∈ Ca|hi(x) = mhi

a }.
If |M | = 1 we denote M = {m}, and denote gi

a = ra(m). If |M | ≥ 1, which occurs
with a very low probability, we denote m′ to be the minimal item in M (under
the original ordering, not under hi), and denote gi

a = ra(m′). The sketch for user
a in the i’th location contains the minimal item in Ca under hi, and its ranking
in user a’s eyes.

Definition 5 (Rank Correlation Sketches). The Hk rank correlation sketch
of Ca, Sk(Ca), contains the both the item sketch and the rank sketch. As before,
the item sketch is just the list of minimal items in Ca under the k randomly
chosen hashes, so Sk

items(Ca) = (mh1
a , mh2

a , . . . , mhk
a ), and the rank sketch con-

tains the ranks of these items, so Sk
ranks(Ca) = (g1

a, . . . gn
a ). The rank correlation

sketch is simply the concatenation of these two sketches.

Consider two locations i and j where the item sketch for both Alice and Bob
is the same, i.e where mhi

a = mhi

b and m
hj
a = m

hj

b . Each such location is called
a sketch collision. Given two such collisions, with high probability the ranking
sketch at these two locations refers to the same items, i.e. there are two items
x, y such that x, y ∈ Ca and x, y ∈ Cb, and such that gi

a = ra(x), gi
b = rb(x), gj

a =
ra(y), gj

b = rb(y). Since any item has an equal probability to be minimal under
a random hash h ∈ H (as H is min-wise independent), the sketches in these
locations provide us with Alice’s and Bob’s rankings for a pair of items chosen
uniformly at random from Ca ∩ Cb. Corollary 1 gives the required number of
pairs to approximate Kendall’s Tau, but each pair requires two independent
collisions3. Thus, approximating Kendall’s Tau is reduced to finding a sketch
that would have the required number of collisions with high probability.

3 Notice that given m sketch collisions we can generate m(m−1)
2

pairs, but these pairs
would not be independent.
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2.3 Collisions and Sketch Size

Consider Alice, who seeks a recommendation from the CF system. The CF sys-
tem has a PI threshold p∗, and selects only candidates who have a higher PI
with her. As shown in [2], in order to compute the PI with accuracy εi and con-

fidence δp, it is enough to use a sketch based on kp =
ln 2

δp

2
ε2p
9

hashes. After filtering

out candidates with too low a PI, the CF system remains with candidates, and
computes Kendall’s Tau for each of them, with accuracy εt and confidence 1−δt.

Lemma 3 shows that the probability of a collision in each location is at least
p = p∗

2−p∗ . Thus each location is a Bernoulli trial, with success probability of at
least p (success being a collision). Theorem 1 shows that approximating Kendall’s

Tau with accuracy εt and confidence δt requires 2kt =
4 ln 2

δt

ε2t
sketch collisions.

We determine the size of the sketch needed to have such a required number of
collisions with probability of at least 1−δc. Given a sketch based on m hashes, the
number of collisions X has the Binomial distribution with parameters m, p. We
require k = 2kt collisions, and thus are interested in the cumulative distribution
function F (k, m, p) = P (X ≤ k) =

∑
i = 0k

(
m
i

)
pi(1 − p)n−i. We find a sketch

size m that is high enough that F (k, m, p) is below our confidence level δc, using
the following result from [3]:

Theorem 3 (Binomial Distribution Tail Bound)

F (k, m, p) ≤ exp
(
−2 (mp−k)2

n

)

Theorem 4 (Rank Correlation Sketch Size). A rank correlation sketching
framework for users with PI of at least p∗, where p = p∗

2−p∗ , requires sketch size

of m ≥ k
p +

ln 1
δc

4p2 (1 + 3
√

k), where k = 2kt =
4 ln 2

δt

ε2t
.

Proof. We require a sketch size m such that F (k, m, p) ≤ exp
(
−2 (mp−k)2

n

)
≤ δc.

Thus we require −2(mp−k)2

n ≤ ln δc, or that (mp−k)2

m ≥ ln 1
δc

2 . We denote d =
ln 1

δc

2 .
The requirement is thus that p2m2+(−2pk−d)m+k2 ≥ 0. Solving the quadratic

equation (and taking the bigger solution) we get m ≥ 2pk+d+
√

4pkd+d2

2p2 or that

m ≥ k
p + d

2p2 +
√

4pkd+d2

2p2 . An even strong requirement is that m ≥ k
p + d

2p2 (1 +√
4k + 1), or even that m ≥ k

p + d
2p2 (1 +

√
9k) = k

p + d
2p2 (1 + 3

√
k). We finally

get that the requirement is m ≥ k
p +

ln 1
δc

4p2 (1 + 3
√

k).

Thus the sketch size is polynomial in the accuracy, and logarithmic in the
confidence4.
4 There are two confidence levels, δt the maximal probability of mis-approximating

Kendall’s Tau, and δc, the maximal probability of not having enough sketch colli-
sions. From the union bound, the probability of having a bad approximation is at
most δc + δt, and the sketch size is logarithmic in both.
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3 Related Work

There are many examples of CF systems, such as GroupLens [9] and Ringo [11].
[9] uses the Pearson correlation, while [11] uses other measures. This paper tack-
les the problem of handling the massive data sets in CF systems. We suggested
sketching to approximate rank correlations. One example of a sketching tech-
nique is [4]. We extend [2] to compute rank correlations, using a min-wise inde-
pendent family of hashes. Such families were treated in [7]. Our methods fits
in the Locally Sensitive Hashing (LSH) [5] framework, but is specialized for CF
systems. Similar approach are Random Projections [1] and Semantic/Spectral
Hashing [10,12].

4 Conclusion

A challenge in CF systems is handling huge amounts of information. We have
suggested a sketching approach to approximate the rank correlation with a
given accuracy and confidence. The sketch size is logarithmic in the confidence,
and polynomial in the accuracy. There are many directions for future research.
Our methods only allow computing Kendall’s Tau and not other rank correla-
tions, such as Spearman’s Rho. Also, we assume a complete ranking over items,
and do not allow for ties. Another shortcoming of our analysis here is that it
is only theoretical. It would be desirable to test these methods on real data
sets.
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Gil-Costa, Veronica 206
Gog, Simon 51
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