
Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1471

Jtirgen Dix Luis Moniz Pereira
Teodor C. Przymusinski (Eds.)

Logic Programming and
Knowledge Representation

Third International Workshop, LPKR '97
Port Jefferson, New York, USA, October 17, 1997
Selected Papers

Springer

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
JOrg Siekmann, University of Saarland, Saarbrticken, Germany

Volume Editors

Jtirgen Dix
Universit~it Koblenz-Landau, Institut fur Informatik
Rheinau 1, D-56075 Koblenz, Germany
E-mail: dix @uni-koblenz.de

Luis Moniz Pereira
Universidade Nova de Lisboa, Departamento de Inform~itica
P-2825 Monte da Caparica, Portugal
E-mail: lmp@di.fct.unl.pt

Teodor C. Przymusinski
University of California at Riverside
College of Engineering, Department of Computer Science
E-mail: teodor@cs.ucr.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Logic programming and knowledge representat ion : third
international workshop ; selected papers / LPKR '97, Port Jefferson,
New York, USA, October 17, 1997. Jiirgen Dix ... (ed.). - Berlin ;
Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998

(Lecture notes in computer science ; Vol. 1471 : Lecture notes in
artificial intelligence)
ISBN 3-540-64958-1

CR Subject Classification (1991): 1.2.3-4, F.4.1, D.1.6

ISBN 3-540-64958-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesetting: Camera ready by author
SPIN 10638651 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

This book is the outcome of the compilation of extended and revised versions of selected
papers presented at the workshop on Logic Programming and Knowledge Representation
held in Port Jefferson (NY), USA, on October 17, 1997. A total of 15 papers were
resubmitted, 8 of which were finally accepted by the PC and published in this volume.
Background to this book is furnished through an invited introduction on knowledge
representation with logic programs, by Brewka and Dix,

The development of machines that are able to reason and act intelligently is one
of the most challenging and desirable tasks ever attempted by humanity. It is there-
fore not surprising that the investigation of techniques for representing and reasoning
about knowledge has become an area of paramount importance to the whole field of
Computer Science. Due to logic programming's declarative nature, and its amenability
to implementation, it has quickly become a prime candidate language for knowledge
representation and reasoning.

The impressive research progress of the last few years as well as the significant
advances made in logic programming implementation techniques now provide us with
a great opportunity to bring to fruition computationally efficient implementations of the
recent extensions to logic programming and their applications.

This workshop is the third (after ICLP '94 and JICSLP '96) in a series of workshops
which we have been organizing in conjunction with Logic Programming conferences.
However, as shown by the following list of suggested topics in the call for papers, its
scope is significantly broader than the previous ones:

LP Functionalities: abduction, communication, contradiction removal, declarative de-
bugging, knowledge and belief revision, learning, reasoning about actions, updates,

LP Integrations: coupling knowledge sources, combining functionalities, logical agent
architecture, multi-agents architecture,

LP Language Extensions: constructive default negation, disjunctive programs, default
and epistemic extensions, metalevel programming, object-oriented programming,
paraconsistency, reactive rules, strong and explicit negation,

LP Applications to Knowledge Representations: heterogeneous databases, model-based
diagnosis, modeling production systems, planning, reactive databases, relations to
non-monotonic formalisms, software engineering,

LP Implementations: computational procedures, implementations.

We would like to warmly thank the authors, the members of the program committee,
and the additional reviewers listed below. They all have made this book possible and
ensured its quality.

June 1998 Jiirgen Dix, Koblenz
Lufs Moniz Pereira, Lisboa

Teodor C. Przymusinski, Riverside

VI

Papers in thisBook

In order to facilitate reading of this volume, we now present a brief overview of the
content of the presented papers. The aim of the first paper, invited by the organizers, is
to serve as an introductory overview on the topic, and as a guide for the other articles.

Di~unctive Semantics

Three papers are concerned with disjunctive semantics. While Greco et al. introduce
nested rules in the heads of rules to increase the expressivity, D. Seipel defines vari-
ants of the answer set semantics to remove the inconsistency problem. Yuan et al. use
autoepistemic reasoning to classify disjunctive semantics with negation.

S. Greco et al.: The authors present an extension of disjunctive Datalog programs by
allowing nested rules in the disjunctive head. They show that such programs allow
one to naturally model several real-world situations. In fact they show that this
enlarged class of programs has an increased expressivity: the full second level of the
polynomial hierachy is captured.

D. Seipel: This paper considers the inconsistency problem of the stable and the partial
stable semantics. It is well known that such models do not exist for all disjunctive
deductive databases. The problem solved in the paper is to define an extension of
these semantics such that (1) the new semantics coincides with the original if the
original semantics is consistent, and (2) models always exist for the new semantics.
The author also investigated abstract properties of the new semantics and compares
them with the classical semantics.

L.-Y. Yuan et al.: The paper gives a classification of various semantics for disjunctive
logic programs by using autoepistemic reasoning. Consistency-based as well as
minimal-model-based semantics are shown to correspond to suitable introspection
policies. The authors also observe three main semantical viewpoints (well-founded,
stable, and partial stable) and thus propose a classification into six categories.

Abduction

The three papers involving abduction concern themselves with learning (E. Lamina et
ai.), describing action domains (R. Li et al.), and the semantics of disjunctive logic
programs (K. Wang and H. Chert).

E. Lamina et al.: A system for learning abductive logic programs from an abductive
background theory and examples is presented. It can make assumptions to cover
positive examples and to avoid coverage of negative ones, and these assumptions
can be further used as new training data. The system can be applied for learning in
the context of incomplete knowledge, and for learning exceptions to classification
rules.

VII

R. Li et al.: The authors present an abductive methodology for describing action do-
mains, starting from incomplete actions theories, i.e., those with more than one
model. By performing tests to obtain additional information, a complete theory can
be abduced. A high level language is used to describe incomplete domains and tests,
and its sound and complete translation into abductive logic programs is provided.
Via tests and abduction the original domain description can be refined to become
closer to reality. The methodology, which has been implemented, allows for abduc-
tive planning, prediction, and explanation.

K. Wang and H. Chen: The authors treat argumentation in disjunctive logie program-
ruing as abduction, within a semantic framework in which disjuncts of negative liter-
als are taken as possible assumptions. Three semantics are defined, by as many kinds
of acceptable hypotheses, to represent credulous, moderate, and skeptical reason-
ing. The framework is defined for a broader class than disjunctive logic programs,
thereby integrating and extending many key semantics such as minimal models,
EGCWA, WFS, and SM, and serving as a unifying semantics for disjunctive logic
programming.

Priorities

M. Oelfond and T.C. Son: A methodology for reasoning with prioritized defaults in
logic programs under answer sets semantics is investigated. The paper presents,
in a simple language, domain independent axioms for doing so in conjunction with
particular domain descriptions. Sufficient conditions for consistency are given, and
various examples from the literature are formalized. They show that in many cases
the approach leads to simpler and more intuitive formalizations. A comparative
discussion of other approaches is included.

Upda tes

J. Leite and L. M. Pereira: The paper defines what it is to update one logic program with
another logic program defining the update. Furthermore, it shows how to obtain a
third program as a result, whose semantics are as intended. The resulting program
can in turn be updated. The classes of programs to be updated are those of extended
programs under answer sets semantics, and of normal programs under stable model
semantics. The concept of program update generalizes that of interpretation update,
and solves important problems arising with the latter approach. Program updating
opens up a whole new range of applications of logic programming, as well as the
incremental approach to programming.

VIII

Organization

Previous Related Workshops

1990 WS at NACLP '90, U.S.A. 1991 WS at ILPS '91, U.S.A.
1993 WS at ILPS '93, U.S.A. 1994 WS at ICLP '94, Italy
1995 WS at ICLP '95, Japan 1996 WS at JICSLP '96, Germany
1997 WS at ILPS '97, U.S.A.

Sponsors

ESPRIT Compulog Network of Excellence, University of Koblenz

Organizing Committee

Jiirgen Dix University of Koblenz
Lufs Moniz Pereira Universidade Nova de Lisboa
Teodor Przymusinski University of California at Riverside

Program Committee

Jiirgen Dix University of Koblenz, Germany
Phan Minh Dung AIT, Bangkok, Thailand
Vladimir Lifschitz University of Texas, U.S.A.
Jack Minker University of Maryland, U.S.A.
Lufs Moniz Pereira Universidade Nova de Lisboa, Portugal
Teodor Przymusinski University of California at Riverside, U.S.A.
Chiaki Sakama University of Wakayama, Japan
Mirek Truszczynski University of Kentucky at Lexington, U.S.A.
David S. Warren SUNY at Stony Brook, U.S.A.

Additional Referees

C. Aravindan, P. Baumgartner, E Toni, H. Turner

Table of Contents

Introduction
Knowledge Representation with Logic Progre_ms . 1

G. Brewka and J. Dix

Disjunctive Semantics
DATALOG with Nested Rules . 52

S. Greco, N. Leone, and F. Scarcello
Partial Evidential Stable Models for Disjunctive Deductive Databases 66

D. Seipel
Disjunctive Logic Programming and Autoepistemic Logic . 85

L.-Y Yuan, J.-H. You, and R. Goebel

Abduct ion
A System for Abductivr Learning of Logic Programs . 102

E. Lamma, P. Mello, M. Milano, and E Riguzzi

Refining Action Theories through Abductivr Logic Programming 123
R. Li, L. Moniz Pereira, and E Dahl

Abduction, Argumentation and Bi-Disjunctivr Logic Programs 139
K. Wang and H. Chen

Priorities
Reasoning with Prioritized Defaults . 164

M. Gelfond and Z C. Son

Updates
Generalizing Updates: From Models to Programs . 224

J. A. Leite and L. Moniz Pereira

Knowledge Representation with Logic Programs?

Gerhard Brewka1 and Jürgen Dix2

1 Universität Leipzig, Institut für Informatik
Augustusplatz 10/11, D-04109 Leipzig

brewka@informatik.uni-leipzig.de
2 Universität Koblenz-Landau, Institut für Informatik,

Rheinau 1, D-56075 Koblenz
dix@mailhost.uni-koblenz.de

Abstract. In this overview we show how Knowledge Representation
(KR) can be done with the help of generalized logic programs. We start
by introducing the core of PROLOG, which is based on definite logic
programs. Although this class is very restricted (and will be enriched by
various additional features in the rest of the paper), it has a very nice
property for KR-tasks: there exist efficient Query-answering procedures
— a Top-Down approach and a Bottom-Up evaluation. In addition we
can not only handle ground queries but also queries with variables and
compute answer-substitutions.
It turns out that more advanced KR-tasks can not be properly handled
with definite programs. Therefore we extend this basic class of programs
by additional features like Negation-as-Finite-Failure, Default-Negation,
Explicit Negation, Preferences, and Disjunction. The need for these ex-
tensions is motivated by suitable examples and the corresponding seman-
tics are discussed in detail.
Clearly, the more expressive the respective class of programs under a cer-
tain semantics is, the less efficient are potential Query-answering meth-
ods. This point will be illustrated and discussed for every extension. By
well-known recursion-theoretic results, it is obvious that there do not
exist complete Query-answering procedures for the general case where
variables and function symbols are allowed. Nevertheless we consider it
an important topic of further research to extract feasible classes of pro-
grams where answer-substitutions can be computed.

1 Knowledge Representation with Non-classical Logic

One of the major reasons for the success story (if one is really willing to call it a
success story) of human beings on this planet is our ability to invent tools that
help us improve our — otherwise often quite limited — capabilities. The inven-
tion of machines that are able to do interesting things, like transporting people
from one place to the other (even through the air), sending moving pictures and

? This is a short version of Chapter 6 in D. Gabbay and F. Guenthner (editors), Hand-
book of Philosophical Logic, 2nd Edition, Volume 6, Methodologies, Reidel Publ., 1999

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 1–51, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

2 Gerhard Brewka and Jürgen Dix

sounds around the globe, bringing our email to the right person, and the like,
is one of the cornerstones of our culture and determines to a great degree our
everyday life.

Among the most challenging tools one can think of are machines that are
able to handle knowledge adequately. Wouldn’t it be great if, instead of the
stupid device which brings coffee from the kitchen to your office every day at
9.00, and which needs complete reengineering whenever your coffee preferences
change, you could (for the same price, admitted) get a smart robot whom you
can simply tell that you want your coffee black this morning, and that you need
an extra Aspirin since it was your colleague’s birthday yesterday? To react in the
right way to your needs such a robot would have to know a lot, for instance that
Aspirin should come with a glass of water, or that people in certain situations
need their coffee extra strong.

Building smart machines of this kind is at the heart of Artificial Intelligence
(AI). Since such machines will need tremendous amounts of knowledge to work
properly, even in very limited environments, the investigation of techniques for
representing knowledge and reasoning is highly important.

In the early days of AI it was still believed that modeling general purpose
problem solving capabilities, as in Newell and Simon’s famous GPS (General
Problem Solver) program, would be sufficient to generate intelligent behavior.
This hypothesis, however, turned out to be overly optimistic. At the end of
the sixties people realized that an approach using available knowledge about
narrow domains was much more fruitful. This led to the expert systems boom
which produced many useful application systems, expert system building tools,
and expert system companies. Many of the systems are still in use and save
companies millions of dollars per year1.

Nevertheless, the simple knowledge representation and reasoning methods
underlying the early expert systems soon turned out to be insufficient. Most of
the systems were built based on simple rule languages, often enhanced with ad
hoc approaches to model uncertainty. It became apparent that more advanced
methods to handle incompleteness, defeasible reasoning, uncertainty, causality
and the like were needed.

This insight led to a tremendous increase of research on the foundations
of knowledge representation and reasoning. Theoretical research in this area has
blossomed in recent years. Many advances have been made and important results
were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under-
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians’ game more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this overview, that is research aiming at interesting combinations of ideas from

1 We refer the interested reader to the recent book [104] which gives a very detailed
and nice exposition of what has been done in AI since its very beginning until today.

Knowledge Representation with Logic Programs 3

logic programming and nonmonotonic reasoning, provides an important step into
this direction.

1.1 Some History

Historically, logic programs have been considered in the logic programming com-
munity for more than 20 years. It began with [51,82,115] and led to the definition
and implementation of PROLOG , a by now theoretically well-understood pro-
gramming language (at least the declarative part consisting of Horn-clauses:
pure PROLOG). Extensions of PROLOG allowing negative literals have been
also considered in this area: they rely on the idea of negation-as-finite-failure,
we call them Logic-Programming-semantics (or shortly LP-semantics).

In parallel, starting at about 1980, Nonmonotonic Reasoning entered into
computer science and began to constitute a new field of active research. It was
originally initiated because Knowledge Representation and Common-Sense Rea-
soning using classical logic came to its limits. Formalisms like classical logic are
inherently monotonic and they seem to be too weak and therefore inadequate
for such reasoning problems.

In recent years, independently of the research in logic programming, people
interested in knowledge representation and nonmonotonic reasoning also tried to
define declarative semantics for programs containing default or explicit negation
and even disjunctions. They defined various semantics by appealing to (different)
intuitions they had about programs.

This second line of research started in 1986 with the Workshop on the
Foundations of Deductive Databases and logic programming organized by Jack
Minker: the revised papers of the proceedings were published in [88]. The strati-
fied (or the similar perfect) semantics presented there can be seen as a splitting-
point: it is still of interest for the logic programming community (see [43]) but
its underlying intuitions were inspired by nonmonotonic reasoning and therefore
much more suitable for knowledge representation tasks. Semantics of this kind
leave the philosophy underlying classical logic programming in that their pri-
mary aim is not to model negation-as-finite-failure, but to construct new, more
powerful semantics suitable for applications in knowledge representation. Let us
call such semantics NMR-semantics.

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz,
Przymusinski and others, very close relationships between these two independent
research lines became evident. Methods from logic programming, e.g. least fix-
points of certain operators, can be used successfully to define NMR-semantics.

The NMR-semantics also shed new light on the understanding of the classical
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various
versions of Circumscription. In addition, the investigation of possible semantics
for logic programs seems to be useful because

1. parts of nonmonotonic systems (which are usually defined for full predicate
logic, or even contain additional (modal)-operators) may be “implemented”
with the help of such programs,

4 Gerhard Brewka and Jürgen Dix

2. nonmonotonicity in these logics may be described with an appropriate treat-
ment of negation in logic programs.

1.2 Non-Monotonic Formalisms in KR

As already mentioned above, research in nonmonotonic reasoning has begun at
the end of the seventies. One of the major motivations came from reasoning
about actions and events. John McCarthy and Patrick Hayes had proposed their
situation calculus as a means of representing changing environments in logic. The
basic idea is to use an extra situation argument for each fact which describes
the situation in which the fact holds. Situations, basically, are the results of
performing sequences of actions. It soon turned out that the problem was not
so much to represent what changes but to represent what does not change when
an event occurs. This is the so-called frame problem. The idea was to handle the
frame problem by using a default rule of the form

If a property P holds in situation S then P typically also holds in the
situation obtained by performing action A in S.

Given such a rule it is only necessary to explicitly describe the changes induced
by a particular action. All non-changes, for instance that the real color of the
kitchen wall does not change when the light is turned on, are handled implicitly.
Although it turned out that a straightforward formulation of this rule in some
of the most popular nonmonotonic formalisms may lead to unintended results
the frame problem was certainly the challenge motivating many people to join
the field.

In the meantime a large number of different nonmonotonic logics have been
proposed. We can distinguish four major types of such logics:

1. Logics using nonstandard inference rules with an additional consistency
check to represent default rules. Reiter’s default logic and its variants are of
this type.

2. Nonmonotonic modal logics using a modal operator to represent consistency
or (dis-) belief. These logics are nonmonotonic since conclusions may depend
on disbelief. The most prominent example is Moore’s autoepistemic logic.

3. Circumscription and its variants. These approaches are based on a preference
relation on models. A formula is a consequence iff it is true in all most
preferred models of the premises. Syntactically, a second order formula is
used to eliminate all non-preferred models.

4. Conditional approaches which use a non truth-functional connective |∼ to
represent defaults. A particularly interesting way of using such conditionals
was proposed by Kraus, Lehmann and Magidor. They consider p as a default
consequence of q iff the conditional q |∼ p is in the closure of a given condi-
tional knowledge base under a collection of rules. Each of the rules directly
corresponds to a desirable property of a nonmonotonic inference relation.

The various logics are intended to handle different intuitions about nonmono-
tonic reasoning in a most general way. On the other hand, the generality leads to

Knowledge Representation with Logic Programs 5

problems, at least from the point of view of implementations and applications. In
the first order case the approaches are not even semi-decidable since an implicit
consistency check is needed. In the propositional case we still have tremendous
complexity problems. For instance, the complexity of determining whether a for-
mula is contained in all extensions of a propositional default theory is on the
second level of the polynomial hierarchy. As mentioned earlier we believe that
logic programming techniques can help to overcome these difficulties.

Originally, nonmonotonic reasoning was intended to provide us with a fast
but unsound approximation of classical reasoning in the presence of incomplete
knowledge. Therefore one might ask whether the higher complexity of NMR-
formalisms (compared to classical logic) is not a real drawback of this aim? The
answer is that NMR-systems allow us to formulate a problem in a very compact
way as a theory T . It turns out that any equivalent formulation in classical logic
(if possible at all) as a theory T ′ is much larger: the size of T ′ is exponential in the
size of T ! We refer to [74] and [41,42,40] where such problems are investigated.

2 Knowledge Representation with Definite Logic
Programs

In this section we consider the most restricted class of programs: definite logic
programs, programs without any negation at all. All the extensions of this basic
class we will introduce later contain at least some kind of negation (and perhaps
additional features). But here we also allow the occurrence of free variables as
well as function symbols.

In Section 2.1 we introduce as a representative for the Top-Down approach
the SLD-Resolution. Section 2 presents the main competing approach of SLD:
Bottom-Up Evaluation. This approach is used in the Database community and
it is efficient when additional assumptions are made (finiteness-assumptions, no
function symbols). Finally in Section 2.2 we present and discuss two important
examples in KR: Reasoning in Inheritance Hierarchies and Reasoning about Ac-
tions. Both examples clearly motivate the need of extending definite programs
by a kind of default-negation “not ”.

First some notation used throughout this paper. A language L consists of
a set of relation symbols and a set of function symbols (each symbol has an
associated arity). Nullary functions are called constants. Terms and atoms are
built from L in the usual way starting with variables, applying function symbols
and relation-symbols.

Instead of considering arbitrary L-formulae, our main object of interest is a
program:

Definition 1 (Definite Logic Program).
A definite logic program consists of a finite number of rules of the form

A← B1, . . . , Bm,

6 Gerhard Brewka and Jürgen Dix

where A,B1, . . . , Bm are positive atoms (containing possibly free variables). We
call A the head of the rule and B1, . . . , Bm its body. The comma represents
conjunction ∧.
We can think of a program as formalizing our knowledge about the world and
how the world behaves. Of course, we also want to derive new information, i.e. we
want to ask queries:

Definition 2 (Query).
Given a definite program we usually have a definite query in mind that we want
to be solved. A definite query Q is a conjunction of positive atoms C1 ∧ . . . ∧Cl

which we denote by
?- C1, . . . , Cl.

These Ci may also contain variables. Asking a query Q to a program P means
asking for all possible substitutions Θ of the variables in Q such that QΘ follows
from P . Often, Θ is also called an answer to Q. Note that QΘ may still contain
free variables.

Note that if a program P is given, we usually assume that it also determines
the underlying language L, denoted by LP , which is generated by exactly the
symbols occurring in P . The set of all these atoms is called the Herbrand base
and denoted by BLP or simply BP . The corresponding set of all ground terms
is the Herbrand universe.

How are our programs related to classical predicate logic? Of course, we
can map a program-rule into classical logic by interpreting “←” as material
implication “⊃” and universally quantifying. This means we view such a rule as
the following universally quantified formula

B1 ∧ . . . ∧Bm ⊃ A.

However, as we will see later, there is a great difference: a logic program-rule
takes some orientation with it. This makes it possible to formulate the following
principle as an underlying intuition of all semantics of logic programs:

Principle 01 (Orientation)
If a ground atom A does not unify with some head of a program rule of P , then
this atom is considered to be false. In this case we say that “not A” is derivable
from P to distinguish it from classical ¬A.

The orientation principle is nothing but a weak form of negation-by-failure. Given
an intermediate goal not A, we first try to prove A. But if A does not unify with
any head, A fails and this is the reason to derive not A.

2.1 Top-Down versus Bottom-Up

SLD-Resolution2 is a special form of Robinson’s general Resolution rule. While
Robinson’s rule is complete for full first order logic, SLD is complete for definite
logic programs (see Theorem 1).
2 SL-resolution for Definite clauses. SL-resolution stands for Linear resolution with

Selection function.

Knowledge Representation with Logic Programs 7

Definite programs have the nice feature that the intersection of all Herbrand-
models exists and is again a Herbrand model of P . It is denoted by MP and
called the least Herbrand-model of P . Note that our original aim was to find
substitutions Θ such that QΘ is derivable from the program P . This task as
well as MP is closely related to SLD:

Theorem 1 (Soundness and Completeness of SLD).
The following properties are equivalent:

– P |= ∀ QΘ, i.e. ∀ QΘ is true in all models of P ,
– MP |= ∀ QΘ,
– SLD computes an answer τ that subsumes3 Θ wrt Q.

Note that not any correct answer is computed, only the most general one is
(which of course subsumes all the correct ones).

The main feature of SLD-Resolution is its Goal-Orientedness. SLD automati-
cally ensures (because it starts with the Query) that we consider only those rules
that are relevant for the query to be answered. Rules that are not at all related
are simply not considered in the course of the proof.

Bottom-Up

We mentioned in the last section the least Herbrand model MP . The bottom-up
approach can be described as computing this least Herbrand model from below.

To be more precise we introduce the immediate consequence operator TP

which associates to any Herbrand model another Herbrand model.

Definition 3 (TP).
Given a definite program P let TP : 2BP 7−→2BP ; I 7−→TP (I)

TP (I) := {A ∈ BP : there is an instantiation of a rule in P
s.t. A is the head of this rule and all
body-atoms are contained in I }

It turns out that TP is monotone and continuous so that (by a general theorem
of Knaster-Tarski) the least fixpoint is obtained after ω steps. Moreover we have

Theorem 2 (TP and MP).
MP = TP↑ω = lfp(TP).

This approach is especially important in Database applications, where the
underlying language does not contain function symbols (DATALOG) — this
ensures the Herbrand universe to be finite. Under this condition the iteration
stops after finitely many steps. In addition, rules of the form

p← p

3 i.e. ∃σ : Qτσ = QΘ.

8 Gerhard Brewka and Jürgen Dix

do not make any problems. They simply can not be applied or do not produce
anything new. Note that in the Top-Down approach, such rules give rise to infi-
nite branches! Later, elimination of such rules will turn out to be an interesting
property. We therefore formulate it as a principle:

Principle 02 (Elimination of Tautologies)
Suppose a program P has a rule which contains the same atom in its body as
well as in its head (i.e. the head consists of exactly this atom). Then we can
eliminate this rule without changing the semantics.

Unfortunately, such a bottom-up approach has two serious shortcomings.
First, the goal-orientedness from SLD-resolution is lost: we are always computing
the whole MP , even those facts that have nothing to do with the query. The
reason is that in computing TP we do not take into account the query we are
really interested in. Second, in any step facts that are already computed before
are recomputed again. It would be more efficient if only new facts were computed.
Both problems can be (partially) solved by appropriate refinements of the naive
approach:

– Semi-naive bottom-up evaluation ([39,114]),
– Magic Sets techniques ([16,113]).

2.2 Why going beyond Definite Programs?

So far we have a nice query-answering procedure, SLD-Resolution, which is goal-
oriented as well as sound and complete with respect to general derivability. But
note that up to now we are not able to derive any negative information. Not
even our queries allow this. From a very pragmatic viewpoint, we can consider
“not A” to be derivable if A is not. Of course, this is not sound with respect to
classical logic but it is with respect to MP .

In KR we do not only want to formulate negative queries, we also want to
express default-statements of the form

Normally, unless something abnormal holds, then ψ implies φ.

Such statements were the main motivation for nonmonotonic logics, like Default
Logic or Circumscription). How can we formulate such a statement as a logic
program? The most natural way is to use negation “ not ”

φ ← ψ, not ab

where ab stands for abnormality . Obviously, this forces us to extend definite
programs by negative atoms.

A typical example for such statements occurs in Inheritance Reasoning. We
take the following example from [10]:

Knowledge Representation with Logic Programs 9

Example 1 (Inheritance Hierachies).
Suppose we know that birds typically fly and penguins are non-flying birds. We
also know that Tweety is a bird. Now an agent is hired to build a cage for Tweety.
Should the agent put a roof on the cage? After all it could be still the case that
Tweety is a penguin and therefore can not fly, in which case we would not like to
pay for the unnecessary roof. But under normal conditions, it should be obvious
that one should conclude that Tweety is flying.

A natural axiomatization is given as follows:

PInheritance : flies(x) ← bird(x), not ab(r1, x)
bird(x) ← penguin(x)
ab(r1, x) ← penguin(x)
make top(x)← flies(x)

together with some particular facts, like e.g. bird(Tweety) and penguin(Sam).
The first rule formalizes our default-knowledge, while the third formalizes that
the default-rule should not be applied in abnormal or exceptional cases. In our
example, it expresses the famous Specificity-Principle which says that more spe-
cific knowledge should override more general one ([110,112,76]).

For the query “make top(Tweety)” we expect the answer “yes” while for the
query “make top(Sam)” we expect the answer “no”.

Another important KR task is to formalize knowledge for reasoning about
action. We again consider a particular important instance of such a task, namely
temporal projection. The overall framework consists in describing the initial state
of the world as well as the effects of all actions that can be performed. What we
want to derive is how the world looks like after a sequence of actions has been
performed.

The common-sense argument from which this should follow is the

Law of Inertia: Things normally tend to stay the same.

Up to now we only have stated some very “natural” axiomatizations of
given knowledge. We have motivated that something like default-negation “not ”
should be added to definite programs in order to do so and we have explicitly
stated the answers to particular queries. What is still missing are solutions to
the following very important problems

– How should an appropriate query answering mechanism handling default-
negation “ not ” look like?

– What is the formal semantics that such a procedural mechanism should be
checked against?

Such a semantics is certainly not classical predicate logic because of the default
character of “not ” — not is not classical ¬. Both problems will be considered
in detail in Section 3.

10 Gerhard Brewka and Jürgen Dix

2.3 What is a Semantics?

In the last sections we have introduced two principles (Orientation and Eli-
mination of Tautologies) and used the term semantics of a program in a loose,
imprecise way. We end this section with a precise notion of what we understand
by a semantics.

As a first attempt, we can view a semantics as a mapping that associates
to any program a set of positive atoms and a set of default atoms. In the case
of SLD-Resolution the positive atoms are the ground instances of all derivable
atoms. But sometimes we also want to derive negative atoms (like in our two
examples above). Our Orientation-Principle formalizes a minimal requirement
for deriving such default-atoms.

Of course, we also want that a semantics SEM should respect the rules of
P , i.e. whenever SEM makes the body of a rule true, then SEM should also
make the head of the rule true. But it can (and will) happen that a semantics
SEM does not always decide all atoms. Some atoms A are not derivable nor are
their default-counterparts not A. This means that a semantics SEM can view
the body of a rule as being undefined .

This already happens in classical logic. Take the theory

T := {(A ∧B) ⊃ C, ¬A ⊃ B}.
What are the atoms and negated atoms derivable from T , i.e. true in all models of
T? No positive atom nor any negated atom is derivable! The classical semantics
therefore makes the truthvalue of A ∧B undefined in a sense.

Suppose a semantics SEM treats the body of a program rule as undefined.
What should we conclude about the head of this rule? We will only require
that this head is not treated as false by SEM — it could be true or undefined
as well. This means that we require a semantics to be compatible with the
program viewed as a 3-valued theory — the three values being “true”, “false”
and “undefined”. For the understanding it is not necessary to go deeper into
3-valued logic. We simply note that we interpret “←” as the Kleene-connective
which is true for “undefined← undefined” and false for “false← undefined”.

Definition 4 (SEM).
A semantics SEM is a mapping from the class of all programs into the powerset
of the set of all 3-valued structures. SEM assigns to every program P a set of
3-valued models of P :

SEM(P) ⊆ MODLP

3−val(P).

This definition covers both the classical viewpoint (classical models are 2-
valued and therefore special 3-valued models) as well as our first attempt in the
beginning of this section.

Formally, we can associate to any semantics SEM in the sense of Definition 4
two entailment relations

sceptical: SEMscept(P) is the set of all atoms or default atoms that are true in
all models of SEM(P).

Knowledge Representation with Logic Programs 11

credulous: SEMcred(P) is the set of all atoms or default atoms that are true
in at least one model of SEM(P).

3 Adding Negation

In the last section we have illustrated that logic programs with negation are
very suitable for KR — they allow a natural and straightforward formalization
of default-statements. The problem still remained to define an appropriate se-
mantics for this class and, if possible, to find efficient query-answering methods.
Both points are addressed in this section.

We can distinguish between two quite different approaches:

LP-Approach: This is the approach taken mainly in the Logic Programming
community. There one tried to stick as close as possible to SLD-Resolution
and treat negation as “Finite-Failure”. This resulted in an extension of SLD,
called SLDNF-Resolution, a procedural mechanism for query answering. For
a nice overview, we refer to [6].

NML-Approach: This is the approach suggested by non-monotonic reasoning
people. Here the main question is “What is the right semantics?” I.e. we are
looking first for a semantics that correctly fits to our intuitions and treats
the various KR-Tasks in the right (or appropriate) way. It should allow us
to jump to conclusions even when only little information is available. Here
it is of secondary interest how such a semantics can be implemented with a
procedural calculus. Interesting overviews are [89] and [61].

The LP-Approach is dealt with in Section 3.1. It is still very near to clas-
sical predicate logic — default negation is interpreted as Finite-Failure. To get
a stronger semantics, we interpret “not ” as Failure in Section 3.2. The main
difference is that the principle Elimination of Tautologies holds. We then intro-
duce a principle GPPE which is related to partial evaluation. In KR one can see
this principle as allowing for definitional extensions — names or abbreviations
can be introduced without changing the semantics.

All these principles do not yet determine a unique semantics — there is still
room for different semantics and a lot of them have been defined in the last years.
We do not want to present the whole zoo of semantics nor to discuss their merits
or shortcomings. We refer the reader to the overview articles [6] and [61] and the
references given therein. We focus on the two main competing approaches that
still have survived. These are the Wellfounded semantics WFS (Section 3.3) and
the Stable semantics STABLE (Section 3.4).

3.1 Negation-as-Finite-Failure

The idea of negation treated as finite-failure can be best illustrated by still
considering definite programs, but queries containing default-atoms. How should
we handle such default-atoms by modifying our SLD-resolution? Let us try this:

12 Gerhard Brewka and Jürgen Dix

– If we reach a default-atom “not A” as a subgoal of our original query, we
keep the current SLD-tree in mind and start a new SLD-tree by trying to
solve “A”.

– If this succeeds, then we falsified “not A”, the current branch is failing and
we have to backtrack and consider a different subquery.

– But it can also happen that the SLD-tree for “A” is finite with only failing
branches. Then we say that A finitely fails, we turn back to our original
SLD-tree, consider the subgoal “not A” as successfully solved and go on
with the next subgoal in the current list.

It is important to note that an SLD-tree for a positive atom can fail without
being finite. The SLD-tree for the program consisting of the single rule p ← p
with respect to the query p is infinite but failing (it consists of one single infinite
branch).

Although this idea of Finite-Failure is very procedural in nature, there is a
nice model theoretical counterpart — Clark’s completion comp(P) ([50]). The
idea of Clark was that a program P consists not only of the implications, but
also of the information that these are the only ones. Roughly speaking, he argues
that one should interpret the “←”-arrows in rules as equivalences “≡” in classical
logic.

Definition 5 (Clark’s Completion comp(P)).
Clark’s semantics for a program P is given by the set of all classical models of
the theory comp(P).

We can now see the classical theory comp(P) as the information contained in
the program P . comp(P) is like a sort of closed world assumption applied to
P . We are now able to derive negative information from P by deriving it from
comp(P). In fact, the following soundness and completeness result for definite
programs P and definite queries Q =

∧
iAi (consisting of only positive atoms)

holds:

Theorem 3 (COMP and Fair FF-Trees).
The following conditions are equivalent:

– comp(P) |= ∀¬Q
– Every fair SLD-tree for P with respect to Q is finitely failed.

Note that in the last theorem we did not use default negation but classical
negation ¬ because we just mapped all formulae into classical logic. We need
the fairness assumption to ensure that the selection of atoms is reasonably well-
behaving: we want that every atom or default-atom occurring in the list of
preliminary goals will eventually be selected.

But even this result is still very weak — after all we want to handle not
only negative queries but programs containing default-atoms. From now on we
consider programs with default-atoms in the body. We usually denote them by

A← B+ ∧ not B−,

Knowledge Representation with Logic Programs 13

where B+ contains all the positive body atoms and not B− all default atoms
“not C”.

Our two motivating examples in Section 2.2 contain such default atoms.
This gives rise to an extension of SLD, called SLDNF, which treats negation as
Finite-Failure

SLDNF = SLD + not L succeeds, if L finitely fails.

The precise definitions of SLDNF-resolution, tree, etc. are very complex: we
refer to [85,5]. Recently, Apt and Bol gave interesting improved versions of these
notions: see [6, Section 3.2]. In order to get an intuitive idea, it is sufficient to
describe the following underlying principle:

Principle 03 (A “Naive” SLDNF-Resolution)
If in the construction of an SLDNF-tree a default-atom not Lij is selected in the
list Li = {Li1, Li2, . . .}, then we try to prove Lij.
If this fails finitely (it fails because the generated subtree is finite and failing),
then we take not Lij as proved and we go on to prove Li(j+1).
If Lij succeeds, then not Lij fails and we have to backtrack to the list Li−1 of
preliminary subgoals (the next rule is applied: “backtracking”).

Does SLDNF-Resolution properly handle Example 1? It does indeed:

Inheritance: The query make top(Tweety) generates an SLD-tree with one
main branch, the nodes of which are:

flies(Tweety),
bird(Tweety), not ab(r1, Tweety),
not ab(r1, Tweety),
Success.

The third node has a sibling-node penguin(Tweety), not ab(r1, Tweety)
which immediately fails because Tweety does not unify with Sam. The
Success-node is obtained from not ab(r1, Tweety) because the correspond-
ing SLD-tree for the atom ab(r1, Tweety) fails finitely (this tree consists only
of ab(r1, Tweety) and penguin(Tweety)).

Up to now it seems that SLDNF-resolution solves all our problems. It handles
our examples correctly, and is defined by a procedural calculus strongly related
to SLD. There are two main problems with SLDNF:

– SLDNF can not handle free variables in negative subgoals,
– SLDNF is still too weak for Knowledge Representation.

The latter problem is the most important one. By looking at a particular exam-
ple, we will motivate in Section 3.2 the need for a stronger semantics. This will
lead us in the remaining sections to the well founded and the stable semantics.

For the rest of this section we consider the first problem, known as the Floun-
dering Problem. This problem will also occur later in implementations of the well

14 Gerhard Brewka and Jürgen Dix

<-- p(x,c), ~q(x), r(f(x)

<-- ~q(c), r(f(c))

test

<-- r(f(c)

success

)

)

"Success"

<-- p(x,c), ~q(x), r(f(x)

test

)

<-- q(c)

fail

<-- q(x)

{x/b}

successfail

"Fail"

Fig. 1. The Floundering-Problem

founded or the stable semantics. We consider the program Pflounder consisting
of the three facts

p(c, c), q(b), r(f(c)).

Our query is ?- p(x, c), not q(x), r(f(x)) that is, we are interested in instan-
tiations of x such that the query follows from the program. The situation is
illustrated in Figure 1. Let us suppose that we always select the first atom or
default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial ex-
ample is linear and has three nodes: the first node is the query itself

?- p(x, c), not q(x), r(f(x))

the second node is ?- not q(c), r(f(c)) Now, we enter the negation-as-failure
mode and ask ?- q(c) This query immediately fails (the generated tree exists, is
finite and fails) so that we give back the answer “yes, the default atom not q(c)
succeeds and can be skipped from the list”. The last node is ?- r(f(c)) which
immediately succeeds.

Note that in the last step, the test for ?-q(c) has to be finished before the
tree can be extended. If we get no answer, the SLDNF-tree simply does not exist:
this can not happen with SLD-trees.

So far everything was fine. But what happens if we select the second atom
in the first step

?-p(x, c), not q(x), r(f(x))

Example 2 (Floundering).
We again consider the program Pflounder consisting of the three facts

p(c, c), q(b), r(f(c)).

Our query is ?-p(x, c), not q(x), r(f(x)) and in the first step we will select the
second default-atom, i.e. one with a free variable. Thus we enter the negation-
as-failure mode with the query ?- not q(x) In this case, x may be instantiated

Knowledge Representation with Logic Programs 15

to b so that we have to give back the answer “no, the default-atom not q(x)
fails” and the whole query will fail. This is because SLDNF treats the subgoal as
“∀xnot q(x)” instead of “∃xnot q(x)” which is intended. There exist approaches
to overcome this shortcoming by treating negation as constructive negation:
see [44,45,67].

3.2 Negation-as-Failure

Let us first illustrate that SLDNF answers quite easily our requirements of a se-
mantics SEM (stated explicitly in Definition 4). We can formulate these require-
ments as two program-transformations (they will be used later for computing a
semantics). We call them Reductions for obvious reasons.

Principle 04 (Reduction)
Suppose we are given a program P with possibly default-atoms in its body. If a
ground atom A does not unify with any head of the rules of P , then we can delete
in every rule any occurrence of “not A” without changing the semantics.

Dually, if there is an instance of a rule of the form “B ← ” then we can
delete all rules that contain “not B” in their bodies.

It is obvious that SLDNF “implements” these two reductions automatically. The
weakness of SLDNF for Knowledge Representation is in a sense inherited from
SLD. When we consider rules of the form “p ← p”, then SLD resolution gets
into an infinite loop and no answer to the query ?-p can be obtained. This has
often the effect that when we enter into negation-as-failure mode, the SLD-tree
to be constructed is not finite, although it is not successful and therefore should
be considered as failed.

Let us discuss this point with a more serious example.

Example 3 (The Transitive Closure).
Assume we are given a graph consisting of nodes and edges between some of
them. We want to know which nodes are reachable from a given one. A natural
formalization of the property “reachable” would be

reachable(x)← edge(x, y), reachable(y).

What happens if we are given the following facts

edge(a, b), edge(b, a), edge(c, d)

and reachable(c)? Of course, we expect that neither a nor b are reachable because
there is no path from c to either a or b.

But SLDNF-Resolution does not derive “not reachable(a)”!

How does this result relate to Theorem 3? Note that our query has exactly the
form as required there. Clark’s completion of our program rule is

reachable(x) ≡ (x .= c ∨ ∃y (reachable(y) ∧ edge(y, x)))

16 Gerhard Brewka and Jürgen Dix

from which, together with our facts about the edge-relation, ¬reachable(a) is
indeed not derivable. This is due to the well known fact that transitive closure
is not expressible in first order predicate logic.

Note also that our Principle 02 does not help, because it simply does not
apply. It turns out that we can augment our two principles by a third one,
that constitutes together with them a very nice calculus handling the above ex-
ample in the right way. This principle is related to Partial Evaluation, hence
its name GPPE4. Let us motivate this principle with the last example. The
query “not reachable(a)” leads to “reachable(a) ← edge(a, b), reachable(b)”
and “reachable(b)” leads to “reachable(b) ← edge(b, a), reachable(a)”. Both
rules can be seen as definitions for reachable(a) and reachable(b) respectively.
So it should be possible to replace in these rules the body atoms of reachable
by their definitions. Thus we obtain the two rules

reachable(a)← edge(a, b), edge(b, a), reachable(a)
reachable(b)← edge(b, a), edge(a, b), reachable(b)

that can both be eliminated by applying Principle 02. So we end up with a
program that does neither contain reachable(a) nor reachable(b) in one of the
heads. Therefore, according to Principle 01 both atoms should be considered
false. The precise formulation of this principle is as follows:

Principle 05 (GPPE,[22,106])
We say that a semantics SEM satisfies GPPE, if the following transformation
does not change the semantics. Replace a rule A ← B+ ∧ not B− where B+

contains a distinguished atom B by the rules

A ← (B+ \ {B}) ∪ B+
i ∧ not

(B− ∪ B−
i

)
(i = 1, . . . , n)

where B ← B+
i ∧ not B−

i (i = 1, . . . , n) are all rules with head B.

Note that any semantics SEM satisfying GPPE and Elimination of Tautolo-
gies can be seen as extending SLD by doing some Loop-checking . We will call
such semantics NMR-semantics in order to distinguish them from the classi-
cal LP-semantics which are based on SLDNF or variants of Clark’s completion
comp(P):

– NMR-Semantics = SLDNF + Loop-check.

The following, somewhat artificial example illustrates this point.

Example 4 (COMP vs. NMR).

4 Generalized Principle of Partial Evaluation

Knowledge Representation with Logic Programs 17

PNMR : p← p
q ← not p

comp(PNMR) : p ≡ p
q ≡ ¬p

?-q: No (COMP).
Yes (NMR).

P ′
NMR : p← p

q ← not p
r ← not r

comp(P ′
NMR) : p ≡ p

q ≡ ¬p
r ≡ ¬r

?-p: Yes (COMP).
No (NMR).

For both programs, the answers of the completion-semantics do not match our
NMR-intuition! In the case of PNMR we expect q to be derivable, since we expect
not p to be derivable: the only possibility to derive p is the rule p ← p which,
obviously, will never succeed. But q 6∈Th({q ≡ ¬p}) = comp(PNMR)! In the case
of P ′

NMR we expect p not to be derivable, for the same reason: the only possibility
to derive p is the rule p← p. But p ∈ Fml = Th({r ≡ ¬r}) = comp(P ′

NMR)!
Note that the answers of the completion-semantics agree with the mechanism

of SLDNF: p ← p represents a loop. The completion of P ′ is inconsistent: this
led Fitting to consider the three-valued version of comp(P) mentioned at the
end of Section 3.1. This approach avoids the inconsistency (the query ?-p is not
answered “yes”) but it still does not answer “no” as we would like to have.

The last principle in this section is related to Subsumption: we can get rid of
non-minimal rules by simply deleting them.

Principle 06 (Subsumption)
In a program P we can delete a rule A← B+∧ not B− whenever there is another
rule A← B′+ ∧ not B′− with

B′+ ⊆ B+ and B′− ⊆ B−.

As a simple example, the rule A ← B,C, not D, not E is subsumed by the 3
rules A← C, not D, not E or A← B,C, not E and by A← C, not E.

3.3 The Well founded Semantics: WFS

We call a semantics

SEM1 weaker than SEM2, written SEM1 ≤k SEM2,

if for all programs P and all atoms or default-atoms l the following holds:
SEM1(P) |= l implies SEM2(P) |= l. I.e. all atoms derivable from SEM1 with re-
spect to P are also derivable from SEM2. The notion ≤k refers to the knowledge
ordering in three-valued logic.

In fact, there exists a weakest semantics (as it turns out, this semantics is
identical to the well founded semantics, originally introduced in [116]) satisfying
our 4 principles (see [30,29,60]):

18 Gerhard Brewka and Jürgen Dix

Theorem 4 (WFS, [30]).
There exists the weakest semantics satisfying our four principles Elimination of
Tautologies, Reduction, Subsumption and GPPE. This semantics is called well
founded semantics WFS.

It can also be shown, that for propositional programs, our transformations can
be applied to compute this semantics.

Theorem 5 (Confluent Calculus for WFS,[29]).
The calculus consisting of these four transformations is confluent, i.e. whenever
we arrive at an irreducible program, it is uniquely determined. The order of the
transformations does not matter.

For finite propositional programs, it is also terminating: any program P is
therefore associated a unique normalform res(P). The well founded semantics
of P can be read off from res(P) as follows

WFS(P) = {A : A← ∈ res(P)} ∪ {not A : A is in no head of res(P)}

We note that the size of the residual program is in general exponential in the
size of the original program. Recently it was shown in [34,31] how a small modi-
fication of the residual program, which still satisfies the nice characterization of
computing WFS as given in Theorem 5, results in a polynomial computation.

Therefore the well founded semantics associates to every program P with
negation a set consisting of atoms and default-atoms. This set is a 3-valued
model of P . It can happen, of course, that this set is empty. But it is always
consistent, i.e. it does not contain an atom A and its negation not A. Moreover, it
extends SLDNF: whenever SLDNF derives an atom or default-atom and does not
flounder, then WFS derives it as well. Therefore the two examples of Section 2.2
are handled in the right way. But also for Example 3 we get the desired answers.

As we said above, loop-checking is in general undecidable. Therefore WFS
is in the most general case where variables and function-symbols are allowed,
undecidable. Only for finite propositional programs it is decidable. In fact, it is
of quadratic complexity see [31].

Let us end this section with another example, which contains negation.

Example 5 (Van Gelder’s Example).
Assume we are describing a two-players game like checkers. The two players
alternately move a stone on a board. The moving player wins when his opponent
has no more move to make. We can formalize that by

– wins(x) ← move from to(x,y), not wins(y)

meaning that

– the situation x is won (for the moving player A), if he can lead over5 to a
situation y that can never be won for B.

5 With the help of a regular move, given by the relation move from to/2.

Knowledge Representation with Logic Programs 19

We also have move from to(a, b), move from to(b, a) and move from to(b, c)
as facts. Our query to this program Pgame is ?-wins(b) Here we have no problems
with floundering, but using SLDNF we get an infinite sequence of oscillating
SLD-trees (none of which finitely fails).

WFS, however, derives the right results

WFS(Pgame) = {not wins(c), wins(b), not wins(a)}

which matches completely with our intuitions.

3.4 The Stable Semantics: STABLE

We defined WFS as the weakest semantics satisfying our four principles. This
already indicates that there are even stronger semantics. One of the main compe-
ting approaches is the stable semantics STABLE. The stable semantics associates
to any program P a set of 2-valued models, like classical predicate logic. STABLE
satisfies the following property, in addition to those that have been already
introduced:

Principle 07 (Elimination of Contradictions)
Suppose a program P has a rule which contains the same atom A and not A in
its body. Then we can eliminate this rule without changing the semantics.

This principle can be used, in conjunction with the others to define the stable
semantics

Theorem 6 (STABLE,[28]).
There exists the weakest semantics satisfying our five principles Elimination of
Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradictions.

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-valued
models ([28]). The underlying idea of STABLE is that any atom in an intended
model should have a definite reason to be true or false. This idea was made
explicit in [19,20] and, independently, in [73]. We use the latter terminology and
introduce the Gelfond-Lifschitz transformation: for a program P and a model
N ⊆ BP we define

PN := {ruleN : rule ∈ P}
where rule := A← B1, . . . , Bn, not C1, . . . , not Cm is transformed as follows

(rule)N :=
{
A← B1, . . . , Bn, if ∀j : Cj 6∈N ,
t, otherwise.

Note that PN is always a definite program. We can therefore compute its least
Herbrand model MP N and check whether it coincides with the model N with
which we started:

20 Gerhard Brewka and Jürgen Dix

Definition 6 (STABLE).
N is called a stable model6 of P if and only if MP N = N .

What is the relationship between STABLE and WFS? We have seen that
they are based on rather identical principles.

– Stable models N extend WFS: l ∈WFS(P) implies N |= l.
– If WFS(P) is two-valued, then WFS(P) is the unique stable model.

But there are also differences. We refer to Example 5 and consider the program
P consisting of the clause

wins(x) ← move from to(x, y), not wins(y)

together with the following facts: move from to(a, b), move from to(b, a), as
well as move from to(b, c), and move from to(c, d). In this particular case we
have two stable models: {wins(a), wins(c)} and {wins(b), wins(c)} and there-
fore

WFS(P) = {wins(c), not wins(d)} =
⋂

N a stable model of P

N .

This means that the 3-valued well founded model is exactly the set of all atoms
or default-atoms true in all stable models. But this is not always the case, as the
program of Psplitting shows:

Example 6 (Reasoning by cases).

Psplitting : a← not b
b← not a
p← a
p← b

Although neither a, nor b can be derived in any semantics based on two-valued
models (as STABLE for example), the disjunction a ∨ b, thus also p, is true.
In this way the example is handled by the completion semantics, too. WFS(P),
however, is empty; if the WFS cannot decide between a or not a, then a is
undefined.

The main differences between STABLE and WFS are

– STABLE is not always consistent,
– STABLE does not allow for a goal-oriented implementation.

The inconsistency comes from odd, negative cycles

STABLE(p← not p) = ∅.
6 Note that we only consider Herbrand models.

Knowledge Representation with Logic Programs 21

The idea to consider 2-valued models for a semantics necessarily implies its
inconsistency ([24]). Note that WFS(p← not p) = {∅} which is quite different!
Sufficient criteria for the existence of stable models are contained in [68,70].

That STABLE does not allow for a Top-Down evaluation is a more serious
drawback and has nothing to do with inconsistency.

We end this section with another description of WFS and STABLE that will
be useful in later sections. It was introduced in [11,12]:

Definition 7 (Antimonotone Operator γP).
For a program P and a set N ⊂ BP we define an operator γP mapping Herbrand-
structures to Herbrand structures:

γP (N) := MP N .

It is easy to see that γP is antimonotone. Therefore its twofold application γ2 is
monotone ([109]).

Obviously, the stable models of a program P are exactly the fixpoints of γP .
This is just a reformulation of Definition 6. WFS is related to γ as follows

Theorem 7 (WFS and γ2).
A positive atom A is in WFS(P) if and only if A ∈ lfp(γ2

P). A default-atom
not A is in WFS(P) if and only if A 6∈gfp(γ2

P):

WFS(P) = lfp(γ2
P) ∪ {not A : A 6∈gfp(γ2

P)}.
Atom or default-atoms that do occur in neither of the two sets are undefined.

4 Adding Explicit Negation

So far we have considered programs with one special type of negation, namely
default negation. Default negation is particularly useful in domains where com-
plete positive information can be obtained. For instance, if one wants to represent
flight connections from Budapest to the US it is very convenient to represent
all existing flights and to let default negation handle the derivation of negative
information. There are domains, however, where the lack of positive informa-
tion cannot be assumed to support (or support with enough strength) that this
information is false. In such domains it becomes important to distinguish be-
tween cases where a query does not succeed and cases where the negated query
succeeds. The following example was used by McCarthy to illustrate the issue.
Assume one wants to represent the rule: cross the railroad tracks if no train is ap-
proaching. The straightforward representation of this rule with default negation
would be

crosstracks← not train

It seems obvious that in many practical settings the use of such a rule would not
lead to intended behavior, in fact it might even have disastrous consequences.
What seems to be needed here is the possibility of using a different negation

22 Gerhard Brewka and Jürgen Dix

symbol representing a stronger form of negation. This new negation — we will
call it explicit negation — should be true only if the corresponding negated
literal can actually be derived. We will use the classical negation symbol ¬ to
represent explicit negation. The track crossing rule will be represented as

crosstracks← ¬train

The idea is that this latter rule will only be applicable if ¬train has been proved,
contrary to the first rule which is applicable whenever train is not provable.

In the next section we will shortly discuss that explicit negation is (or should
not be) classical negation and how it should interfere with default negation.
In the two following subsections we will generalize the semantics STABLE and
WFS, respectively, to programs with explicit negation.

4.1 Explicit vs. Classical and Strong Negation

First we define the language we are using more precisely.

Definition 8 (Extended Logic Program).
An extended logic program consists of rules of the form

c← a1, . . . , an, not b1, . . . , not bm

where the ai, bj and c are literals, i.e., either propositional atoms or such atoms
preceded by the classical negation sign. The symbol “not ” denotes negation by
failure (default negation), “¬” denotes explicit negation.

We have already motivated the need of a second kind of negation “¬” different
from “not ”. What should the semantics of “¬” be? Should it be just like in
classical logic? Note that classical negation satisfies the law of excluded middle

A ∨ ¬A.

The following example taken from [4] shows that classical negation is sometimes
inappropriate for KR-tasks.

Example 7 (Behavior of Classical Negation).
Suppose an employer has several candidates that apply for a job. Some of them
are clearly qualified while others are not. But there may also be some candidates
whose qualifications are not clear and who should therefore be interviewed in
order to find out about their qualifications. If we express the situation by

hire(X) ← qualified(X) and reject(X) ← ¬qualified(X)

then, interpreting “¬” as classical negation, we are forced to derive that every
candidate must either be hired or rejected! There is no room for those that
should be interviewed. Also, applying the law of excluded middle has a highly
non-constructive flavor.

Knowledge Representation with Logic Programs 23

Let us now consider again the example crosstracks ← ¬train from the be-
ginning of this section. Suppose that we replace ¬train by free track. We obtain

crosstracks← free track.

From this program, “not crosstracks” will be derivable for any semantics. There-
fore we should make sure that “ not crosstracks” is also derivable from

crosstracks← ¬train

After all, the second program is obtained from the first one by a simple syntactic
operation. This means we have to make sure that default negation “ not ” treats
positive and negative atoms symmetrically.

Such a negation, we will call it explicit will be introduced in the next two sec-
tions. Sometimes explicit negation is also called strong negation and denotes still
a variant of our explicit negation. In [4] the authors introduce both a strong and
explicit negation and discuss their relation with classical and default negation
at length.

4.2 STABLE for Extended Logic Programs

The extension of STABLE to extended logic programs is based on the notion
of answer sets which generalize the original notion of stable models in a rather
straightforward manner. Let us first introduce some useful notation. We say a
rule r = c ← a1, . . . , an, not b1, . . . , not bm ∈ P is defeated by a literal l iff
l = bi for some i ∈ {1, . . . ,m}. We say r is defeated by a set of literals X if X
contains at least one literal that defeats r. Furthermore, we call the rule obtained
by deleting weakly negated preconditions from r the monotonic counterpart of r
and denote it with Mon(r). We also apply Mon to sets of rules with the obvious
meaning.

Definition 9 (X-reduct).
Let P be an extended logic program, X a set of literals. The X-reduct of P ,
denoted PX , is the program obtained from P by

– deleting each rule defeated by X, and
– replacing each remaining rule r with its monotonic counterpart Mon(r).

Definition 10 (Consequences of Rules).
Let R be a set of rules without negation as failure. Cn(R) denotes the smallest
set of literals that is

1. closed under R, and
2. logically closed, i.e., either consistent or equal to the set of all literals.

24 Gerhard Brewka and Jürgen Dix

Definition 11 (Answer set).
Let P be an extended logic program, X a set of literals. Define the operator γP

as follows:
γP (X) = Cn(PX)

X is an answer set of P iff X = γP (X).

The definition of answer sets is thus based on a natural generalization of the
operator γP (see Definition 7) to extended logic programs.

A literal l is a consequence of a program P under the new semantics, denoted
l ∈ STABLE(P), iff l is contained in all answer sets of P .

It is not difficult to see that for programs without explicit negation stable
models and answer sets coincide. Here is an example involving both types of
negation. The example describes the strategy of a certain college for awarding
scholarships to its students. It is taken from [10]:

Pel : (1) eligible(x) ← highGPA(x)
(2) eligible(x) ← minority(x), fairGPA(x)
(3) ¬eligible(x) ← ¬fairGPA(x),¬highGPA(x)
(4) interview(x)← not eligible(x), not ¬eligible(x)

Assume in addition to the rules above the following facts about Anne are given:

fairGPA(Anne),¬highGPA(Anne)

We obtain exactly one answer set, namely

{fairGPA(Anne),¬highGPA(Anne), interview(Anne)}

Anne will thus be interviewed before a decision about her eligibility is made. If
we use the above rules together with the facts

minority(Mike), fairGPA(Mark)

then the program entails eligible(Mike).
We obtain the following result [83]:

Lemma 1 (Program Types).
Let P be an extended logic program. P satisfies exactly one of the following
conditions:

– P has no answer sets,
– P has an answer set, and all its answer sets are consistent,
– the only answer set for P is Lit,

A program is consistent if the set of its consequences is consistent, and incon-
sistent otherwise. The former corresponds to the second case, the latter to the
other two.

Knowledge Representation with Logic Programs 25

It should be noted that extended logic programs under answer set semantics
can be reduced to general logic programs as follows: for any predicate p occur-
ring in a program P we introduce a new predicate symbol p′ of the same arity
representing the explicit negation of p. We then replace each occurrence of ¬p
in the program with p′, thus obtaining the general logic program P ′. It can be
proved that a consistent set of literals S is an answer set of P iff the set S′ is a
stable model of P ′, where S′ is obtained from S by replacing ¬p with p′.

4.3 WFS for Extended Logic Programs

We now show how the second major semantics for general logic programs, WFS,
can be extended to logic programs with explicit negation. For our purposes the
characterization of WFS given in Theorem 7 will be useful. WFS is based on
a particular three-valued model. To simplify our presentation in this section we
will restrict ourselves to the literals which are true in this three-valued model.
The literals which are false will be left implicit. They can be added in a canonical
way as follows: let T , the set of true literals, be defined as the least fixed point
of a monotone operator composed of two antimonotone operators op1op2. Then
the literals which are false in the three-valued model are exactly those which are
not contained in op2(T). Given this canonical extension to the full three-valued
model we can safely leave the false literals implicit from now on.

A natural idea is to use the characterization of WFS in terms of the least fixed
point of γ2

P , as in Theorem 7, where γP now is the new generalized operator from
Definition 4.2 [10,83]. This works in some cases, but often leads to very weak
results.

Consider the following program P0 which has also been discussed by Baral
and Gelfond [10]:

P0 : (1) b ← not ¬b
(2) a ← not ¬a
(3) ¬a← not a

The least fixed point of γ2 is empty since γP0(∅) equals Lit, the set of all lit-
erals, and the Lit-reduct of P0 contains no rule at all. This is surprising since,
intuitively, the conflict between (2) and (3) has nothing to do with ¬b and b.

This problem arises whenever the following conditions hold:

1. a complementary pair of literals is provable from the monotonic counterparts
of the rules of a program P , and

2. there is at least one proof for each of the complementary literals whose rules
are not defeated by Cn(P ′), where P ′ consists of the “strict” rules in P , i.e.,
those without negation as failure.

In this case well-founded semantics concludes l iff l ∈ Cn(P ′). It should be
obvious that such a situation is not just a rare limiting case. To the contrary, it
can be expected that many common sense knowledge bases will give rise to such
undesired behavior.

26 Gerhard Brewka and Jürgen Dix

A minor reformulation of the fixpoint operator can overcome this weakness
and leads to better results. Consider the following operator

γ?
P (X) = Cl(PX)

where Cl(R) denotes the minimal set of literals closed under the (classical) rules
R. Cl(R) is thus like Cn(R) without the requirement of logical closedness. Now
define a monotone operator as follows:

Γ ?
P (X) = γP (γ?

P (X))

With this operator well founded semantics can be defined.

Definition 12 (WFS for extended programs).
Let P be an extended logic program. The set of well-founded conclusions of P ,
denoted WFS(P), is the least fixpoint of Γ ?

P .

Consider the effects of this modification on our example P0:

γ?
P0

(∅) = {a,¬a, b}.

Rule (1) is contained in the {a,¬a, b}-reduct of P0 and thus Γ ?
P0

(∅) = {b}. Since
b is also the only literal contained in all answer sets of P0 WFS actually coincides
with answer set semantics in this case.

It can be shown that every well-founded conclusion is a conclusion under
the answer set semantics. Well-founded semantics can thus be viewed as an
approximation of answer set semantics.

An alternative, somewhat stronger approach, was developed by Pereira and
Alferes [98,2,3], the semantics WFSX. This semantics implements the intuition
that a literal with default negation should be derivable from the corresponding
explicitly negated literal. The authors call this the coherence principle. To satisfy
the principle they use the seminormal version of a program P , denoted S(P),
which is obtained from P by replacing each rule

c← a1, . . . , an, not b1, . . . , not bm

by the rule
c← a1, . . . , an, not b1, . . . , not bm, not −c

where −c is the complement of c, i.e. ¬c if c is an atom and a if c = ¬a. Based
on this notion Pereira and Alferes consider the following monotone operator:

ΩP (X) = γ?
P γ

?
S(P)(X)

The use of the seminormal version of the program in the first application of γ?

guarantees that a literal l is not considered a potential conclusion whenever the
complementary literal is already known to be true. In the general case S(P)X

contains fewer rules than PX . Therefore, fewer literals are considered as potential

Knowledge Representation with Logic Programs 27

conclusions and thus more conclusions are obtained in each iteration of the
monotone operator. Here is an example [10]:

PWFSX : (1) a ← not b
(2) b ← not a
(3) ¬a←

The original version of WFS does not conclude b. In WFSX the set X = {¬a}
is obtained after the first iteration of the monotone operator. Since rule (1) is
not contained in the X-reduct of the seminormal version of the program the
monotonic counterpart of (2) produces b after the second iteration.

Although a number of researchers consider WFSX to be the more adequate
extension of well-founded semantics to extended logic programs the original for-
mulation is still very often found in the literature. For this reason we will base
our treatment of preferences in the next section on the earlier formulation based
on Γ ?.

For the next section a minor reformulation turns out to be convenient. In-
stead of using the monotonic counterparts of undefeated rules we will work with
the original rules and extend the definitions of the two operators Cn and Cl ac-
cordingly, requiring that default negated preconditions be neglected, i.e., for an
arbitrary set of rules P with default negation we define Cn(P) = Cn(Mon(P))
and Cl(P) = Cl(Mon(P)). We can now equivalently characterize γP and γ?

P by
the equations

γP (X) = Cn(PX)

γ?
P (X) = Cl(PX)

where PX denotes the set of rules not defeated by X.
An alternative characterization of Γ ?

P will also turn out to be useful in the
next section. It is based on the following notion:

Definition 13 (X-SAFE).
Let P be a logic program, X a set of literals. A rule r is X-safe wrt. P (r ∈
SAFEX(P)) if r is not defeated by γ?

P (X) or, equivalently, if r ∈ Pγ?
P

(X).

With this new notion we can obviously characterize Γ ?
P as follows:

Γ ?
P (X) = Cn(Pγ?

P
(X)) = Cn(SAFEX(P))

It is this last formulation that we will modify. More precisely, the notion of
X-safeness will be weakened to handle preferences adequately.

5 Adding Preferences

In this section we describe an extension of well-founded semantics for logic pro-
grams with two types of negation where information about preferences between
rules can be expressed in the logical language. Conflicts among rules are resolved
whenever possible on the basis of derived preference information.

28 Gerhard Brewka and Jürgen Dix

After giving some motivation in Section 5.1 we introduce our treatment of
preferences in Section 5.2. We show that our conclusions are, in general, a super-
set of the well-founded conclusions. Section 5.3 illustrates the expressive power
of our approach using a legal reasoning example.

5.1 Motivation

Preferences among defaults play a crucial role in nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity [99,110,111]
— we already discussed it in Example 1. In case of a conflict between defaults
we tend to prefer the more specific one since this default provides more reli-
able information. E.g., if we know that students are adults, adults are normally
employed, students are normally not employed, we want to conclude “Peter is
not employed” from the information that Peter is a student, thus preferring the
student default over the conflicting adult default.

Specificity is an important source of preferences, but not the only one, and
at least in some applications not necessarily the most important one. In the legal
domain it may, for instance, be the case that a more general rule is preferred since
it represents federal law as opposed to state law [100]. In these cases preferences
may be based on some basic principles regulating how conflicts among rules are
to be resolved. Also in other application domains, like model based diagnosis or
configuration, preferences play a fundamental role.

The relevance of preferences is well-recognized in nonmonotonic reasoning,
and prioritized versions for most of the nonmonotonic logics have been pro-
posed, e.g., prioritized circumscription [84], hierarchic autoepistemic logic [81],
prioritized default logic [35]. In these approaches preferences are handled in an
“external” manner in the following sense: some ordering among defaults is used
to control the generation of the nonmonotonic conclusions. For instance, in the
case of prioritized default logic this information is used to control the generation
of extensions. However, the preference information itself is not expressed in the
logical language.

Here we want to go one step further and represent also this kind of infor-
mation in the language. This makes it possible to reason not only with but
also about preferences. This is necessary in legal argumentation, for instance,
where preferences are context-dependent, and the assessment of the preferences
among involved conflicting laws is a crucial (if not the most crucial) part of the
reasoning.

The presentation in this section is based on [37]. A treatment of prioritized
logic programs under answer set semantics is described in [38].

5.2 Handling Preferences

In order to handle preferences we need to be able to express preference infor-
mation explicitly. Since we want to do this in the logical language we have to
extend the language. We do this in two respects:

Knowledge Representation with Logic Programs 29

1. we use a set of rule names N together with a naming function name to be
able to refer to particular rules,

2. we use a special (infix) symbol ≺ that can take rule names as arguments to
represent preferences among rules.

Intuitively, n1 ≺ n2 where n1 and n2 are rule names means the rule with name
n1 is preferred over the rule with name n2.7

Definition 14 (Prioritized Program).
A prioritized logic program is a pair (R,name) where

– R is a set of rules containing all ground instances of the schemata

N1 ≺ N3 ← N1 ≺ N2, N2 ≺ N3

and
¬(N2 ≺ N1)← N1 ≺ N2

where Ni are parameters for names, and
– name a a partial injective naming function that assigns a name n ∈ N to

some of the rules in R.

Note that not all rules do necessarily have a name. The reason is that names
will only play a role in conflict resolution among defeasible rules, i.e., rules with
weakly negated preconditions. For this reason names for strict rules, i.e., rules
in which the symbol not does not appear, won’t be needed.

In our examples we leave the instances of the schemata for ≺ implicit. We
also assume that N and the function name are given implicitly. We write:

ni : c← a1, . . . , an, not b1, . . . , not bm

to express that name(c← a1, . . . , an, not b1, . . . , not bm) = ni.
Before introducing our new definitions we would like to point out how we

want the new explicit preference information to be used. Our approach follows
two principles:

1. We want to extend well-founded semantics, i.e. we want that every WFS-
conclusion remains a conclusion in the prioritized approach.

2. We want to use preferences to solve conflicts whenever this is possible without
violating principle 1.

Let us first explain what we mean by conflict here. Rules may be conflicting
in several ways. In the simplest case two rules may have complementary literals
in their heads. We call this a type-I conflict.

Definition 15 (Type-I Conflict).
Let r1 and r2 be two rules. We say r1 and r2 are type-I conflicting iff the head
of r1 is the complement of the head of r2.
7 Note that for historical reasons we follow the convention that the minimal rules are

the preferred ones.

30 Gerhard Brewka and Jürgen Dix

Conflicts of this type may render the set of well-founded conclusions inconsistent,
but do not necessarily do so. If, for instance, a precondition of one of the rules
is not derivable or a rule is defeated the conflict is implicitly resolved. In that
case the preference information will simply be neglected. Consider the following
program P1:

n1 : b← not c
n2 : ¬b← not b
n3 : n2 ≺ n1

There is a type-I conflict between n1 and n2. Although the explicit preference
information gives precedence to n2 we want to apply n1 here to comply with the
first of our two principles. Technically, this means that we can apply a preferred
rule r only if we are sure that r’s application actually leads to a situation where
literals defeating r can no longer be derived.

The following two rules exhibit a different type of conflict:

a← not b
b← not a

The heads of these rules are not complementary. However, the application of one
rule defeats the other and vice versa. We call this a direct type-II conflict. Of
course, in the general case the defeat of the conflicting rule may be indirect, i.e.
based on the existence of additional rules.

Definition 16 (Type-II Conflict).
Let r1 and r2 be rules, R a set of rules. We say r1 and r2 are type-II conflicting
wrt. R iff

1. Cl(R) neither defeats r1 nor r2,
2. Cl(R+ r1) defeats r2, and
3. Cl(R+ r2) defeats r1

Here R+r abbreviates R∪{r}. A direct type-II conflict is thus a type-II conflict
wrt. the empty set of rules. Note that the two types of conflict are not disjoint,
i.e. two rules may be in conflict of both type-I and type-II. Consider the following
program P2, a slight modification of P1:

n1 : b← not c, not ¬b
n2 : ¬b← not b
n3 : n2 ≺ n1

Now we have a type-II conflict between n1 and n2 (more precisely, a direct
type-II and a type-I conflict) that is not solvable by the implicit mechanisms of
well-founded semantics alone. It is this kind of conflict that we try to solve by
the explicit preference information. In our example n2 will be used to derive ¬b.
Note that now the application of n2 defeats n1 and there is no danger that a
literal defeating n2 might become derivable later. Generally, a type-II conflict
between r1 and r2 (wrt. some undefeated rules of the program) will be solved

Knowledge Representation with Logic Programs 31

in favor of the preferred rule, say r1, only if applying r1 excludes any further
possibility of deriving an r1-defeating literal.

After this motivating discussion let us present the new definitions. Our treat-
ment of priorities is based on a weakening of the notion of X-safeness (Defini-
tion 13). In Section 4 we considered a rule r as X-safe whenever there is no
proof for a literal defeating r from the monotonic counterparts of X-undefeated
rules. Now in the context of a prioritized logic program we will consider a rule
r as X-safe if there is no such proof from monotonic counterparts of a certain
subset of the X-undefeated rules. The subset to be used depends on the rule
r and consists of those rules that are not “dominated” by r. Intuitively, r′ is
dominated by r iff r′ is

1. known to be less preferred than r and
2. defeated when r is applied together with rules that already have been estab-

lished to be X-safe.

It is obvious that whenever there is no proof for a defeating literal from all X-
undefeated rules there can be no such proof from a subset of these rules. Rules
that were X-safe according to our earlier definition thus remain to be X-safe.
Here are the precise definitions:

Definition 17 (Dominated Rules).
Let P = (R,name) be a prioritized logic program, X a set of literals, Y a set
of rules, and r ∈ R. The set of rules dominated by r wrt. X and Y , denoted
DomX,Y (r), is the set

{r′ ∈ R | name(r) ≺ name(r′) ∈ X and Cl(Y + r) defeats r′}

Note that DomX,Y (r) is monotonic in both X and Y . We can now define the
X-safe rules inductively:

Definition 18 (SAFEpr
X (P)).

Let P = (R,name) be a prioritized logic program, X a set of literals. The set of
X-safe rules of P , denoted SAFEpr

X (P), is defined as follows: SAFEpr
X (P) =⋃∞

i=0Ri, where

R0 = ∅, and for i > 0,
Ri = {r ∈ R | r not defeated by Cl(RX \DomX,Ri−1(r))}

Note that X-safeness is obviously monotonic in X. Based on this notion we
introduce a new monotonic operator Γ pr

P :

Definition 19 (WFSpr).
Let P = (R,name) be a prioritized logic program, X a set of literals. The oper-
ator Γ pr

P is defined as follows:

Γ pr
P (X) = Cn(SAFEpr

X (P))

32 Gerhard Brewka and Jürgen Dix

As before we define the (prioritized) well-founded conclusions of P , denoted
WFSpr(P), as the least fixpoint of Γ pr

P . If a program does not contain preference
information at all, i.e., if the symbol ≺ does not appear in R, the new semantics
coincides with WFS since in that case no rule can dominate another rule. In
the general case, since the new definition of X-safeness is weaker than the one
used earlier we may have more X-safe rules and for this reason obtain more
conclusions than via Γ ?

P .
Consider the following prioritized program P :

n1 : b← not c
n2 : c← not b
n3 : n2 ≺ n1

We first apply Γ pr
P to the empty set. Besides the instances of the transitivity

and anti-symmetry schema that we implicitly assume only n3 is in SAFEpr
∅ (P).

We thus obtain
S1 = {n2 ≺ n1,¬(n1 ≺ n2)}

We next apply Γ pr
P to S1. Since n2 ≺ n1 ∈ S1 we have n1 ∈ DomS1,∅(n2).

n2 ∈ SAFEpr
S1

(P) since Cl(PS1 \ {n1}) does not defeat n2 and we obtain

S2 = {n2 ≺ n1,¬(n1 ≺ n2), c}

Further iteration of Γ pr
P yields no new literals, i.e. S2 is the least fixpoint. Note

that c is not a conclusion under the original well-founded semantics.
The following nondeterministic algorithm computes the least fixed point of

Γ pr
P with time complexity of O(n3), where n is the number of rules:

Procedure WFSpr

Input: A prioritized logic program P = (R,name) with |R| = n
Output: the least fixed point of Γ pr

P

S0 := ∅;
R0 := ∅;
for i = 1 to n do

if there is a rule r ∈ RSi−1 \Ri−1 such that
Cl(RSi−1 \DomSi−1,Ri−1(r)) does not defeat r
then Ri := Ri−1 + r;Si := Cn(Ri)
else return Si−1

endfor
end WFSpr

5.3 A Legal Reasoning Example

In this section we show how our approach can be applied to legal reasoning
problems. We will use an example first discussed by Gordon [75].

Example 8 (Legal Reasoning).
Assume a person wants to find out if her security interest in a certain ship is

Knowledge Representation with Logic Programs 33

perfected. She currently has possession of the ship. According to the Uniform
Commercial Code (UCC, §9-305) a security interest in goods may be perfected
by taking possession of the collateral. However, there is a federal law called the
Ship Mortgage Act (SMA) according to which a security interest in a ship may
only be perfected by filing a financing statement. Such a statement has not been
filed. Now the question is whether the UCC or the SMA takes precedence in this
case. There are two known legal principles for resolving conflicts of this kind.
The principle of Lex Posterior gives precedence to newer laws. In our case the
UCC is newer than the SMA. On the other hand, the principle of Lex Superior
gives precedence to laws supported by the higher authority. In our case the SMA
has higher authority since it is federal law.

The available information can nicely be represented in our approach. To make
the example somewhat shorter we use the notation

c⇐ a1, . . . , an, not b1, . . . , not bm

as an abbreviation for the rule

c← a1, . . . , an, not b1, . . . , not bm, not c′

where c′ is the complement of c, i.e. ¬c if c is an atom and a if c = ¬a. Such
rules thus correspond to semi-normal or, if m = 0, normal defaults in Reiter’s
default logic [103].

We use the ground instances of the following named rules to represent the
relevant article of the UCC, the SMA, Lex Posterior (LP), and Lex Superior
(LS). The symbols d1 and d2 are parameters for rule names:

UCC : perfected⇐ possession
SMA : ¬perfected⇐ ship,¬fin-statement
LP (d1, d2) : d1 ≺ d2 ⇐ more-recent(d1, d2)
LS(d1, d2) : d1 ≺ d2 ⇐ fed-law(d1), state-law(d2)

The following facts are known about the case and are represented as rules without
body (and without name):

possession
ship
¬fin-statement
more-recent(UCC, SMA)
fed-law(SMA)
state-law(UCC)

Let’s call the above set of literals H. Iterated application of Γ pr
P yields the

following sequence of literal sets (in each case Si = (Γ pr
P)i(∅)):

S1 = H
S2 = S1

34 Gerhard Brewka and Jürgen Dix

The iteration produces no new results besides the facts already contained in
the program. The reason is that UCC and SMA block each other, and that
no preference information is produced since also the relevant instances of Lex
Posterior and Lex Superior block each other. The situation changes if we add
information telling us how conflicts between the latter two are to be resolved.
Assume we add the following information:8

LS(SMA,UCC) ≺ LP (UCC, SMA)

Now we obtain the following sequence:

S1 = H ∪ {LS(SMA,UCC) ≺ LP (UCC, SMA),
¬LP (UCC, SMA) ≺ LS(SMA,UCC)}

S2 = S1 ∪ {SMA ≺ UCC,¬UCC ≺ SMA}
S3 = S2 ∪ {¬perfected}
S4 = S3

This example nicely illustrates how in our approach conflict resolution strategies
can be specified declaratively, by simply asserting relevant preferences among
the involved conflicting rules.

6 Adding Disjunction

In this section we will extend our programs to disjunctive statements. In Know-
ledge Representation it often occurs that we know A ∨ B ∨ C without being
sure which of these propositions hold. In fact, such a disjunction leaves it open:
there might be states in the world where A holds or B or C or any combination
thereof. Nevertheless, we can have information that A implies D and B implies
D and C implies D from which we would like to derive that D holds for sure.
It has been shown that even with disjunctive programs without negation we can
already express relations which belong to the second level of the polynomial
hierarchy.

Concerning the right semantics for such programs, we are in the same situ-
ation as in Section 3 — for positive programs there is general agreement while
for disjunctive programs with default-negation there exist several competing ap-
proaches.

We present in Section 6.1 the generalized closed world assumption introduced
by Minker. In Section 6.2 we show that our definition of WFS from Section 3.3
immediately carries over to the disjunctive case. The original definition of STA-
BLE (Definition 6) also carries over — we present it in Section 6.3.

6.1 GCWA

GCWA was defined by Minker ([87]) and can bee seen as a refined version of the
CWA introduced by Reiter ([102]):
8 In realistic settings one would again use a schema here. In order to keep the example

simple we use the relevant instance of the schema directly.

Knowledge Representation with Logic Programs 35

Definition 20 (CWA).

CWA(DB) = DB ∪ {¬P (t) : DB 6|= P (t)} ,
where P (t) is a ground predicate instance.

That is, if a ground term cannot be inferred from the database, its negation is
added to the closure. A weakness of CWA is that already for very simple theories,
like A ∨B it is inconsistent. Since neither A nor B is derivable, we have to add
both their negations which makes the whole set inconsistent.

GCWA is defined for positive disjunctive programs consisting of rules of the
form

A1 ∨ . . . ∨An ← B1, . . . , Bm

by declaring all the minimal models to be the intended ones:

Definition 21 (GCWA).
The generalized closed world assumption GCWA of P is the semantics given by
the set of all minimal Herbrand models of P :

GCWA(P) := Min-MOD(P)

GCWA is very important because it plays the same role for positive disjunc-
tive programs as the least Herbrand model MP does for definite programs.

Note also that as far as we consider deriving positive disjunctions, we stay
entirely within classical logic — a positive disjunction is true in GCWA if and
only if it follows from the program considered as a classical theory. Therefore
this task can be accomplished be methods and techniques developed in theorem
proving in the last 30 years. In fact this was one of the main starting points of
the DisLoP-project in Koblenz (see Section 7.2).

In Sections 2 and 3 we have introduced the general notion of a semantics and
various principles. Do they carry over to the disjunctive case? Fortunately, the
answer is yes. In addition, GCWA not only satisfies all these properties, it is also
uniquely characterized by them as the next theorem shows (we will introduce
these properties in the next section).

Theorem 8 (Characterization of GCWA, [28]).
Let SEM be a semantics satisfying GPPE and Elimination of Tautologies.

a) Then: SEM(P) ⊆ Min-MOD2−val(P) for positive disj. programs P .
I.e. any such semantics is already based on 2-valued minimal models. In
particular, GCWA is the weakest semantics with these properties.

b) If SEM is non-trivial and satisfies in addition9 Isomorphy and Relevance,
then it coincides with GCWA on positive disjunctive programs.

We end this section with the discussion of a well-known example that can
not be handled adequately by Circumscription:
9 See Section 7.1 for the precise definitions of Relevance and Isomorphy.

36 Gerhard Brewka and Jürgen Dix

Example 9 (Poole’s Broken Arm).
Usually, a person’s left arm is usable. But if the left arm is broken, it is an
exception. The same statement holds for the right arm. Suppose that we saw
Fred yesterday with a broken arm but we do not remember if it was the left or
the right one. We also know that Fred can make out a cheque if he has at least
one usable arm (he is ambidextrous) but that he is completely disabled if both
arms are broken. Here is the natural formalization:

left use(x) ← not ab(left, x)
ab(left, x) ← left brok(x)
right use(x) ← not ab(right, x)
ab(right, x) ← right brok(x)
left brok(Fred) ∨ right brok(Fred)←
make cheque(x) ← left use(x)
make cheque(x) ← right use(x)
disabled(x) ← left brok(x), right brok(x)

Of course, we expect that Fred is able to make out a cheque even without know-
ing which arm he is actually using. Also we derive that he is not (completely)
disabled.

For general Circumscription, the problem is to rule out the unintended model
where both arms are broken and Fred is disabled. As we will see later, both
D-WFS and DSTABLE derive that Fred is not disabled but only DSTABLE is
strong enough to also conclude that Fred can make out a cheque.

6.2 D-WFS

Before we can state the definition of D-WFS we have to extend our principles
to disjunctive programs with default-negation. We abbreviate general rules

A1 ∨ . . . ∨Ak ← B1, . . . , Bm, not C1, . . . , not Cn,

by
A ← B+, not B−

where A := {A1, . . . , Ak}, B+ := {B1, . . . , Bm}, B− := {C1, . . . , Cn}. We also
generalize our notion of a semantics slightly:

Definition 22 (Operator |∼, Semantics S|∼).
By a semantic operator |∼ we mean a binary relation between logic programs and
pure disjunctions which satisfies the following three arguably obvious conditions:

1. Right Weakening: If P |∼ ψ and ψ ⊆ ψ′10, then P |∼ ψ′.
2. Necessarily True: If A← true ∈ P for a disjunction A, then P |∼ A.

10 I. e. ψ is a subdisjunction of ψ′.

Knowledge Representation with Logic Programs 37

3. Necessarily False: If A 6∈Head atoms(P)11 for L-ground atom A, then P |∼
not A.

Given such an operator |∼ and a logic program P , by the semantics S|∼(P) of P
determined by |∼ we mean the set of all pure disjunctions derivable by |∼ from
P , i.e., S|∼(P) := {ψ | P |∼ ψ}.
In order to give a unified treatment in the sequel, we introduce the following
notion:

Definition 23 (Invariance of |∼ under a Transformation).
Suppose that a program transformation Trans : P 7→Trans(P) mapping logic
programs into logic programs is given. We say that the operator |∼ is invariant
under Trans (or that Trans is a |∼-equivalence transformation) iff

P |∼ ψ ⇐⇒ Trans(P) |∼ ψ
for any pure disjunction ψ and any program P .

All our principles introduced below can now be naturally extended.

Definition 24 (Elimination of Tautologies, Non-Minimal Rules).
Semantics S|∼ satisfies a) the Elimination of Tautologies, resp. b) the Elimina-
tion of Non-Minimal Rules iff |∼ is invariant under the following transforma-
tions:

a) Delete a rule A ← B+ ∧ not B− with A ∩ B+ 6= ∅.
b) Delete a rule A ← B+ ∧ not B− if there is another rule
A′ ← B+′ ∧ not B−′ with A′ ⊆ A, B+′ ⊆ B+, and B−′ ⊆ B−.

Our partial evaluation principle has now to take into account disjunctive heads.
The following definition was introduced independently by Sakama/Seki and
Brass/Dix ([22,28,106]):

Definition 25 (GPPE).
Semantics S|∼ satisfies GPPE iff it is invariant under the following transfor-
mation: Replace a rule A ← B+ ∧ not B− where B+ contains a distinguished
atom B by the rules

A ∪ (Ai \ {B}
) ← (B+ \ {B}) ∪ B+

i ∧ not
(B− ∪ B−

i

)
(i = 1, . . . , n)

where Ai ← B+
i ∧ not B−

i (i = 1, . . . , n) are all the rules with B ∈ Ai.

Note that we are free to select a specific positive occurrence of an atom B
and then perform the transformation. The new rules are obtained by replacing
B by the bodies of all rules r with head literal B and adding the remaining head
atoms of r to the head of the new rule.

Here is the analogue of Principle 04:
11 We denote by Head atoms(P) the set of all (instantiations of) atoms ocurring in

some rule-head of P .

38 Gerhard Brewka and Jürgen Dix

Definition 26 (Positive and Negative Reduction).
Semantics S|∼ satisfies a) Positive, resp. b) Negative Reduction iff |∼ is invari-
ant under the following transformations:

a) Replace A ← B+ ∧ not B− by A ← B+ ∧ not
(B− ∩Head atoms(P)

)
.

b) Delete A ← B+ ∧ not B− if there is a rule A′ ← true with A′ ⊆ B−.

Now the definition of a disjunctive counterpart of WFS is straightforward:

Definition 27 (D-WFS).
There exists the weakest semantics satisfying positive and negative Reduction,
GPPE, Elimination of Tautologies and non-minimal Rules. We call this seman-
tics D-WFS.

As it was the case for WFS, our calculus of transformations is also confluent
([25,27]).

Theorem 9 (Confluent Calculus for D-WFS, [29]).
The calculus consisting of our four transformations is confluent and terminating
for propositional programs. I.e. we always arrive at an irreducible program, which
is uniquely determined. The order of the transformations does not matter.

Therefore any program P is associated a unique normalform res(P). The
disjunctive well founded semantics of P can be read off from res(P) as follows

ψ ∈ D-WFS(P) ⇐⇒ there is A ⊆ ψ with A ← true ∈ res(P) or
there is not A ∈ ψ and A 6∈Head atoms(res(P)).

Note that the original definition of WFS, or any of its equivalent characteriza-
tions, does not carry over to disjunctive programs in a natural way.

Let us see how Example 9 is handled by D-WFS. Applying GPPE and Re-
duction gives us the following residual program (we consider just the Fred-
instantiations):

left use(F) ← not ab(left, F)
ab(left, F) ∨ right brok(F) ←
right use(F) ← not ab(right, F)
ab(right, F) ∨ left brok(F) ←
left brok(F) ∨ right brok(F)←
make cheque(F) ← not ab(left, F)
make cheque(F) ← not ab(right, F)

Therefore we derive not disabled(F), because it does not appear in any head of
the residual program. All the remaining atoms are undefined.

Two properties of D-WFS are worth noticing

– For positive disjunctive programs, D-WFS coincides with GCWA.
– For non-disjunctive programs with negation, D-WFS coincides with WFS.

Knowledge Representation with Logic Programs 39

6.3 DSTABLE

Unlike the well founded semantics, the original definition of stable models carries
over to disjunctive programs quite easily:

Definition 28 (DSTABLE).
N is called a stable model12 of P if and only if N ∈ Min-Mod(PN).

In the last definition PN is the positive disjunctive program obtained from P by
applying the Gelfond/Lifschitz transformation (as introduced before Definition 6
— its generalization to disjunctive programs is obvious).

Analogously to D-WFS the following two properties of DSTABLE hold:

– For positive disjunctive programs, DSTABLE coincides with GCWA.
– For non-disjunctive programs, DSTABLE coincides with STABLE.

What about our transformations introduced to define D-WFS? Do they hold
for DSTABLE? Yes, they are indeed true. The most difficult proof is the one for
GPPE. It was proved in [26,106] independently that stable models are preserved
under GPPE. Moreover, Brass/Dix proved in [24] that STABLE can be almost
uniquely determined by GPPE:

Theorem 10 (Characterization of DSTABLE, [28]).
Let SEM be a semantics satisfying GPPE, Elimination of Tautologies, and Eli-
mination of Contradictions. Then: SEM(P) ⊆ STABLE(P).

Moreover, DSTABLE is the weakest semantics satisfying these properties.

DSTABLE is stronger than D-WFS as can be seen from Example 9. There
we have exactly two stable models

1. left use(F), not ab(left, F), ab(right, F), not right use(F),
right brok(F), not left brok(F), make cheque(F), not disabled(F),

2. right use(F), not ab(right, F), ab(left, F), not left use(F),
left brok(F), not right brok(F), make cheque(F), not disabled(F).

In all of them, Fred is not disabled and can make out a cheque.
Of course, DSTABLE inherits the shortcomings of STABLE such as incon-

sistency and no goal-orientedness.

7 What Do We Want and What Is Implemented?

In this part we first consider the question Is there an optimal semantics?
(Section 7.1) and give in Section 7.2 an overview of all the existing implemen-
tations we are aware of. We also describe theoretical approaches that have not
yet been implemented.

12 Note that we only consider Herbrand models.

40 Gerhard Brewka and Jürgen Dix

7.1 What is the Best Semantics?

Most probably there is no definite answer to the question in the title. Different
knowledge representation tasks may ask for different semantics. Some might be
better suited in special domains than others. What are reasonable properties
that semantics should be checked against?

While many people defined in the last years new semantics by considering
only few examples and appealing to their own personal intuitions they had about
how these few examples should be handled, Dix tried to adjust and investigate
abstract properties known in general nonmonotonic reasoning to semantics of
logic programs ([56,58,59,60]). He showed for example that WFS is cumulative
and rational and that a semantics defined independently by Schlipf and Dix is
the weakest extension of WFS satisfying Cut and Supraclassicality .

Besides such properties (which he calls strong) he defined also weak properties
— these are conditions that any reasonable semantics should satisfy ([57,60]).
The principles we have introduced in Sections 2, 3 belong to this sort. Let us
take a closer look into some weak properties already mentioned (but not yet
defined). We start with a property that is satisfied for any semantics we know:

Definition 29 (Isomorphy).
A semantics SEM satisfies Isomorphy, if and only if

SEM(I(P)) = I(SEM(P))

for all programs P and isomorphisms I on the Herbrand base BP .

Isomorphy formalizes the intuition that a renaming of the program should have
no influence on the semantics, as long as we also apply this same renaming to
the semantics.

The next property gives a formal definition of the notion Goal-Orientedness.
To state these conditions, we need the classical notion of the Dependency-Graph
and the two definitions

– dependencies of(X) := {A : X depends on A}, and
– rel rul(P,X) is the set of relevant rules of P with respect to X, i.e. the set

of rules that contain an A ∈ dependencies of(X) in their head.

Given any semantics SEM and a program P , it is perfectly reasonable that
the truthvalue of a literal L, with respect to SEM(P), only depends on the
subprogram formed from the relevant rules of P with respect to L.13 This idea
is formalized by:

Definition 30 (Relevance).
The principle of Relevance states: L ∈ SEM(P) iff L ∈ SEM(rel rul(P,L)).

13 Let dependencies of(not X) := dependencies of(X), and rel rul(P, not X) :=
rel rul(P,X).

Knowledge Representation with Logic Programs 41

Note that the set of relevant rules of a program P with respect to a literal L con-
tains all rules, that could ever contribute to L’s derivation (or to its nonderivabil-
ity). In general, L depends on a large set of atoms: dependencies of(L) := {A :
L depends on A}. But rules that do not contain these atoms in their heads,
will never contribute to their derivation or non-derivation. Therefore, these rules
should not affect the meaning of L in P . STABLE does not satisfy this principle.
This is due to the nonexistence of stable models by adding a clause “c← not c”
to a program.

We have already introduced GPPE above. In fact, even a weaker property is
not satisfied for the semantics defined by Minker and his group:

Example 10 (Extension-by-Definition, [56]).
We consider the following two programs:

PGWFS : p ← not b
a← not b
b ← c
c ← p, not a

PGWFSc : p ← not b
a← not b
b ← p, not a
c ← p, not a

GWFS(PGWFS) entails not c, because Min-MOD(PGWFS) = { {p, a}, {b} } and
thus also (by simple negation-as-failure reasoning) not b, p and a. Also we have
the identity Min-MOD(PGWFSc)={ {p, a}, {b} } but negation-as-failure can not
be applied like before. Therefore GWFS(PGWFSc) does not entail not b, nor p
nor a.

PGWFSc partial evaluates PGWFS : the last but one clause was transformed
into another one by expanding the definition of c. Obviously, a semantics should
assign the same meaning to these programs: unfortunately GWFS does not!

Typical results of Dix are

– WFS is the weakest semantics satisfying some of these weak properties,
– WFS can be uniquely characterized if some strong properties are added.

We conclude with Table 1: an overview of the properties of some semantics
mentioned above.

The bad properties of the PMS (failure of Relevance) stem from the fact
that it was originally based on stable models. But the underlying idea of PMS is
to transform disjunctive programs into non-disjunctive ones and then applying
a semantics for non-disjunctive programs. By choosing semantics different from
STABLE, PMS inherits other properties (see [105]).

7.2 Query-Answering Systems and Implementations

In this section we give a rough overview of what semantics have been imple-
mented so far and where they are available. As already mentioned our NMR-
semantics are undecidable in general. Nevertheless we think it is very important
to have running systems that

42 Gerhard Brewka and Jürgen Dix

Properties of Logic-Programming Semantics
Semantics Reference Domain Taut. GPPE Red. NMin. Rel.
comp Cla78 Nondis. — • • • —
GCWA Min82 Pos. • • • • •
WGCWA RosTop88 Pos. — • • — •
DSTABLEGelLif91 Dis. • • • • —
WFS vGeld.etal88 Nondis. • • • • •
ST N Prz91 Dis. • • • • •
STATIC Prz95 Dis. • • • • •
D-WFS BraDix95 Dis. • • • • •
DWFS Dix92 Dis. • • • • •
Str. WFS Ros92 Dis. — — • — •
WD-WFS BraDix95 Dis. — • • — •
WDWFS Dix92 Dis. — • • — •
PMS SakIno94 Dis. — — • — —

Table 1. Semantics and Their Equivalence-Transformations

1. can handle programs with free variables, and
2. are Goal-Oriented.

To ensure completeness (or termination) we need then additional requirements
like allowedness (to prevent floundering, see Section 3.1) and no function sym-
bols.

Although these restrictions ensure the Herbrand-universe to be finite (and
thus we are really considering a propositional theory) we think that such a system
has great advantages over a system that can just handle ground programs. For
a language L, the fully instantiated program can be quite large and difficult to
handle effectively.

The goal-orientedness (or Relevance as introduced in Section 7.1) is also
important — after all this was one reason of the success of SLD-Resolution. As
noted above, such a goal-oriented approach is not possible for STABLE.

LP-Semantics Various commercial PROLOG-systems perform variants of SLD-
NF-Resolution. Chan’s constructive negation has also been implemented as part
of the master-theses [86,117].

Currently, a library of implemented logic programming systems and interest-
ing test-cases for such systems is collected as a project of the artificial intelligence
group at Koblenz. We refer to |http://www.uni-koblenz.de/ag-ki/LP/¿—.

Non-Disjunctive NMR-Semantics There are many theoretical papers that
deal with the problem of implementation ([21,80,53,71]) but only few running
systems. The problem of handling and representing ground programs given a
non-ground one has also been adressed [78,79,69].

Knowledge Representation with Logic Programs 43

In [17,18] the authors showed how the problem of computing stable models
can be transformed to an Integer-Linear Programming Problem. This has been
extended in [64] to disjunctive programs.

Inoue et. al. show in [77] how to compute stable models by transforming
programs into propositional theories and then using a model-generation theorem
prover.

In Berne, Switzerland, a group around G. Jäger is building a non-monotonic
reasoning system which incorporates various monotonic and non-monotonic log-
ics. We refer to |http://lwbwww.unibe.ch:8080/LWBinfo.html—.

Extended logic programs under the well-founded semantics are considered by
Pereira and his colleagues: [97,1,3]. The REVISE system, which deals with con-
tradiction removal for paraconsistent programs in this semantics, can be found
in |¡http://www.uni-koblenz.de/ag-ki/LP/¿— too.

In [96], an implementation of WFS and STABLE with a special eye on com-
plexity is described.

The most advanced system has been implemented by David Warren and his
group in Stony Brook based on OLDT-algorithm of [108]. They first developed
a meta-interpreter (SLG, see [49]) in PROLOG and then directly modified the
WAM for a direct implementation of WFS (XSB). They use tabling-methods and
a mixture of Top-Down and bottom-up evaluation to detect loops. Their system
is complete and terminating for non-floundering DATALOG. It also works for
general programs but termination is not guaranteed. This system is described in
[47,46,48], and is available by anonymous ftp from |ftp.cs.sunysb.edu/pub/XSB—.

Disjunctive NMR-Semantics There are theoretical descriptions of imple-
mentations that have not yet been implemented: [72,90,52]. Also Sakama and
Seki describe an approach for first-order disjunctive programs ([107]).

Here are some implemented systems. Inoue et. al. show in [77] how to compute
stable models for extended disjunctive programs in a bottom-up-fashion using a
theorem prover.

The approach of Bell et. al. ([93]) was used by Dix/Müller to implement
versions of the stationary semantics of Przymusinski ([101]): [92,63,91].

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DATA-
LOG programs ([23]14). An implementation of static semantics is described in
[33]15.

Seipel has implemented in his DisLog-system various (modified versions of)
semantics of Minker and his group. His system is publicly available at the URL
|http://sunwww.informatik.uni-tuebingen.de:8080/dislog/dislog.tar.Z—.
However we again point to the very irregular behaviour of these semantics illus-
trated by Example 10.

Finally, there is the DisLoP project undertaken by the Artificial Intelligence
Research Group at the University of Koblenz and headed by J. Dix and U. Fur-
bach ([54,8,9]). This project aims at extending certain theorem proving concepts,
14 |ftp://ftp.informatik.uni-hannover.de/software/index.html—
15 |ftp://ftp.informatik.uni-hannover.de/software/static/static.html—

44 Gerhard Brewka and Jürgen Dix

such as restart model elimination [13] and hyper tableaux [14] calculi, for dis-
junctive logic programming. The hyper tableaux calculus can handle positive
queries with respect to positive disjunctive logic programs and seems to facil-
itate minimal model generation. Restart model elimination calculus does not
use any contrapositives of the given clauses and thus allows for their procedural
reading. Moreover, it is answer complete for positive queries [15]. Thus, they are
suitable for implementing an interpreter for positive progams and the DisLoP
system extends this further for non-monotonic negations too.

Currently, DisLoP system can perform minimal model reasoning based on
GCWA, WGCWA. Minimal model reasoning is an important problem to tackle,
since any well-known semantics for negation is a conservative extension of that.
DisLoP can perform minimal model reasoning in both top-down and bottom-
up manners. The bottom-up approach employs the hyper tableaux calculus to
generate potential minimal models and then uses a novel technique to check
the minimality of the generated model without any reference to other models.
This approach is described in [94,95]. The top-down approach is based on an
abductive framework studied in [7]. This introduces an inference rule, negation
as failure to explain, which allows us to assume the negation of a sentence if
there are no abductive explanations for that. The DisLoP system uses a mod-
ified restart model elimination calculus to generate abductive explanations of
the given sentence and employs negation-as-failure-to-explain inference rule for
minimal model reasoning.

This system can be extended to handle non-monotonic semantics such as
D-WFS, STATIC etc. In particular, an implementation of D-WFS for general
disjunctive programs which works in polynomial space is available ([32]). Cur-
rently, an extension to first-order programs is on its way ([65,66]). Information
on the DisLoP project and related publications can be obtained from the WWW
page |¡http://www.uni-koblenz.de/ag-ki/DLP/¿—.

An important outcome of the Dagstuhl Seminar 9627 ([62]) was to construct
a web page to collect and disseminate information on various logic programming
systems that concentrate on non-monotonic aspects (different kinds of negation,
disjunction, abduction etc.). This web page is actively maintained at the URL
|¡http://www.uni-koblenz.de/ag-ki/LP/¿—. In addition the Logic Programming
and Nonmonotonic Reasoning-conference 1997 ([55]) contains a special track on
implementations and working systems.

References

1. J. J. Alferes, Carlos Viegas Damasio, and L. M. Pereira. A logic programming
system for non-monotonic reasoning. Journal of Automated Reasoning, 14(1):93–
147, 1995.

2. Jose Julio Alferes and Luiz Moniz Pereira. An argumentation theoretic seman-
tics based on non-refutable falsity. In J. Dix, L. Pereira, and T. Przymusinski,
editors, Nonmonotonic Extensions of Logic Programming, LNAI 927, pages 3–22.
Springer, Berlin, 1995.

Knowledge Representation with Logic Programs 45

3. Jose Julio Alferes and Luiz Moniz Pereira, editors. Reasoning with Logic Pro-
gramming, LNAI 1111, Berlin, 1996. Springer.

4. Jose Julio Alferes, Luiz Moniz Pereira, and Teodor Przymusinski. Strong and
Explicit Negation in Non-Monotonic Reasoning and Logic Programming. In J.J
Alferes, L.M. Pereira, and E. Orlowska, editors, Logics in Artificial Intelligence
(JELIA ’96), LNCS 1126, pages 143–163. Springer, 1996.

5. Krzysztof R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, chapter 10, pages 493–574. Elsevier Science
Publishers, 1990.

6. Krzysztof R. Apt and Roland N. Bol. Logic Programming and Negation: A Survey.
Journal of Logic Programming, 19-20:9–71, 1994.

7. Chandrabose Aravindan. An abductive framework for negation in disjunctive logic
programming. In J. J. Alferes, L. M. Pereira, and E. Orlowska, editors, Proceedings
of Joint European workshop on Logics in AI, number 1126 in Lecture Notes in
Artificial Intelligence, pages 252–267. Springer-Verlag, 1996. A related report is
available on the web from <http://www.uni-koblenz.de/∼arvind/papers/>.

8. Chandrabose Aravindan, Jürgen Dix, and Ilkka Niemelä. Dislop: A research
project on disjunctive logic programming. AI Communications, 10(3/4):151–165,
1997.

9. Chandrabose Aravindan, Jürgen Dix, and Ilkka Niemelä. DisLoP: Towards a
Disjunctive Logic Programming System. In J. Dix, U. Furbach, and A. Nerode,
editors, Logic Programming and Non-Monotonic Reasoning, Proceedings of the
Fourth International Conference, LNAI 1265, pages 342–353, Berlin, June 1997.
Springer.

10. Chitta Baral and Michael Gelfond. Logic Programming and Knowlege Represen-
tation. Journal of Logic Programming, 19-20:73–148, 1994.

11. Chitta Baral and V.S. Subrahmanian. Dualities between Alternative Semantics
for Logic Programming and Non-monotonic Reasoning. In Anil Nerode, Wiktor
Marek, and V. S. Subrahmanian, editors, Logic Programming and Non-Monotonic
Reasoning, Proceedings of the first International Workshop, pages 69–86, Cam-
bridge, Mass., July 1991. Washington D.C, MIT Press.

12. Chitta Baral and V.S. Subrahmanian. Stable and Extension Class Theory for
Logic Programs and Default Logics. Journal of Automated Reasoning, 8, No.
3:345–366, 1992.

13. P. Baumgartner and U. Furbach. Model Elimination without Contrapositives and
its Application to PTTP. Journal of Automated Reasoning, 13:339–359, 1994.
Short version in: Proceedings of CADE-12, Springer LNAI 814, 1994, pp 87–101.

14. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. JELIA
96, number 1126 in LNAI. European Workshop on Logic in AI, Springer, 1996.
(Long version in: Fachberichte Informatik , 8–96, Universität Koblenz-Landau).

15. P. Baumgartner, U. Furbach, and F. Stolzenburg. Model Elimination, Logic Pro-
gramming and Computing Answers. In Proceedings of IJCAI ’95, 1995. (to ap-
pear, Long version in: Research Report 1/95, University of Koblenz, Germany).

16. Catril Beeri and Raghu Ramakrishnan. On the power of magic. The Journal of
Logic Programming, 10:255–299, 1991.

17. Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Implement-
ing Stable Semantics by Linear Programming. In Luis Moniz Pereira and Anil
Nerode, editors, Logic Programming and Non-Monotonic Reasoning, Proceedings
of the Second International Workshop, pages 23–42, Cambridge, Mass., July 1993.
Lisbon, MIT Press.

46 Gerhard Brewka and Jürgen Dix

18. Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Mixed Inte-
ger Programming Methods for Computing Non-Monotonic Deductive Databases.
Journal of the ACM, 41(6):1178–1215, November 1994.

19. Nicole Bidoit and Christine Froidevaux. General logical Databases and Programs:
Default Logic Semantics and Stratification. Information and Computation, 91:15–
54, 1991.

20. Nicole Bidoit and Christine Froidevaux. Negation by Default and unstratifiable
logic Programs. Theoretical Computer Science, 78:85–112, 1991.

21. Roland N. Bol and L. Degerstedt. Tabulated resolution for well–founded seman-
tics. In Proc. Int. Logic Programming Symposium’93, Cambridge, Mass., 1993.
MIT Press.

22. Stefan Brass and Jürgen Dix. A disjunctive semantics based on unfolding and
bottom-up evaluation. In Bernd Wolfinger, editor, Innovationen bei Rechen- und
Kommunikationssystemen, (IFIP ’94-Congress, Workshop FG2: Disjunctive Logic
Programming and Disjunctive Databases), pages 83–91, Berlin, 1994. Springer.

23. Stefan Brass and Jürgen Dix. A General Approach to Bottom-Up Computation of
Disjunctive Semantics. In J. Dix, L. Pereira, and T. Przymusinski, editors, Non-
monotonic Extensions of Logic Programming, LNAI 927, pages 127–155. Springer,
Berlin, 1995.

24. Stefan Brass and Jürgen Dix. Characterizations of the Stable Semantics by Partial
Evaluation. In A. Nerode, W. Marek, and M. Truszczyński, editors, Logic Pro-
gramming and Non-Monotonic Reasoning, Proceedings of the Third International
Conference, LNCS 928, pages 85–98, Berlin, June 1995. Springer.

25. Stefan Brass and Jürgen Dix. D-WFS: A Confluent calculus and an Equivalent
Characterization. Technical Report TR 12/95, University of Koblenz, Department
of Computer Science, Rheinau 1, September 1995.

26. Stefan Brass and Jürgen Dix. Disjunctive Semantics based upon Partial and
Bottom-Up Evaluation. In Leon Sterling, editor, Proceedings of the 12th Int.
Conf. on Logic Programming, Tokyo, pages 199–213. MIT Press, June 1995.

27. Stefan Brass and Jürgen Dix. Characterizing D-WFS: Confluence and Iterated
GCWA. In L.M. Pereira J.J. Alferes and E. Orlowska, editors, Logics in Artificial
Intelligence (JELIA ’96), LNCS 1126, pages 268–283. Springer, 1996. (Extended
version will appear in the Journal of Automated Reasoning in 1998.).

28. Stefan Brass and Jürgen Dix. Characterizations of the Disjunctive Stable Seman-
tics by Partial Evaluation. Journal of Logic Programming, 32(3):207–228, 1997.
(Extended abstract appeared in: Characterizations of the Stable Semantics by
Partial Evaluation LPNMR, Proceedings of the Third International Conference,
Kentucky , pages 85–98, 1995. LNCS 928, Springer.).

29. Stefan Brass and Jürgen Dix. Characterizations of the Disjunctive Well-founded
Semantics: Confluent Calculi and Iterated GCWA. Journal of Automated Rea-
soning, 20(1):143–165, 1998. (Extended abstract appeared in: Characterizing D-
WFS: Confluence and Iterated GCWA. Logics in Artificial Intelligence, JELIA
’96 , pages 268–283, 1996. Springer, LNCS 1126.).

30. Stefan Brass and Jürgen Dix. Semantics of (Disjunctive) Logic Programs Based on
Partial Evaluation. Journal of Logic Programming, accepted for publication, 1998.
(Extended abstract appeared in: Disjunctive Semantics Based upon Partial and
Bottom-Up Evaluation, Proceedings of the 12-th International Logic Programming
Conference, Tokyo, pages 199–213, 1995. MIT Press.).

31. Stefan Brass, Jürgen Dix, Burkhard Freitag, and Zukowski. Transformation-based
bottom-up computation of the well-founded model. Journal of Logic Program-
ming, to appear, 1999.

Knowledge Representation with Logic Programs 47

32. Stefan Brass, Jürgen Dix, Ilkka Niemelä, and Teodor. C. Przymusinski. A Com-
parison of the Static and the Disjunctive Well-founded Semantics and its Imple-
mentation. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Sixth Interna-
tional Conference (KR ’98), pages 74–85. San Francisco, CA, Morgan Kaufmann,
May 1998. appeared also as TR 17/97, University of Koblenz.

33. Stefan Brass, Jürgen Dix, and Teodor. C. Przymusinski. Super Logic Programs.
In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifth International Conference
(KR ’96), pages 529–541. San Francisco, CA, Morgan Kaufmann, 1996.

34. Stefan Brass, Ulrich Zukowski, and Burkhardt Freitag. Transformation Based
Bottom-Up Computation of the Well-Founded Model. In J. Dix, L. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, LNAI
1216, pages 171–201. Springer, Berlin, 1997.

35. G. Brewka. Adding priorities and specificity to default logic. In Logics in Artificial
Intelligence, Proc. JELIA-94, York. Springer, 1994.

36. Gerd Brewka, Jürgen Dix, and Kurt Konolige. Nonmonotonic Reasoning: An
Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA, 1997.

37. Gerhard Brewka. Well-founded semantics for extended logic programs with dy-
namic preferences. Journal of Artificial Intelligence Research, 4:19–36, 1996.

38. Gerhard Brewka and Thomas Eiter. Preferred answer sets. In Anthony Cohn,
Lenhart Schubert, and Stuart Shapiro, editors, Proceedings of the 6th Conference
on Principles of Knowledge Representation and Reasoning, Trent, Italy, pages
86–97. Morgan Kaufmann, 1998.

39. François Bry. Query evaluation in recursive databases: bottom-up and top-down
reconciled. Data & Knowledge Engineering, 5:289–312, 1990.

40. M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size of a revised
knowledge base. In PODS ’95, pages 151–162, 1995.

41. Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is intractability of non-
monotonic reasoning a real drawback? Artificial Intelligence Journal, 88:215–251,
1996.

42. Marco Cadoli, Francesco M. Donini, Marco Schaerf, and Riccardo Silvestri. On
compact representations of propositional circumscription. Theoretical Computer
Science, 182:183–202, 1997. (Extended abstract appeared in: On Compact Repre-
sentations of Propositional Circumscription. STACS ’95 , pages 205–216, 1995.).

43. L. Cavedon and J.W. Lloyd. A Completeness Theorem for SLDNF-Resolution.
Journal of Logic Programming, 7:177–191, 1989.

44. David Chan. Constructive negation based on the completed database. In Proc.
1988 Conf. and Symp. on Logic Programming, pages 111–125, September 1988.

45. David Chan and Mark Wallace. An Experiment with programming using pure
Negation. Technical Report TR, ECRC, July 1989.

46. Weidong Chen, Terrance Swift, and David S. Warren. Efficient Top-Down Com-
putation of Queries under the Well-Founded Semantics. Journal of Logic Pro-
gramming, 24(3):219–245, 1995.

47. Weidong Chen and David S. Warren. A Goal Oriented Approach to Computing
The Well-founded Semantics. Journal of Logic Programming, 17:279–300, 1993.

48. Weidong Chen and David S. Warren. Computing of Stable Models and its In-
tegration with Logical Query Processing. IEEE Transactions on Knowledge and
Data Engineering, 17:279–300, 1995.

49. Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General
Logic Programs. Journal of the ACM, 43(1):20–74, January 1996.

48 Gerhard Brewka and Jürgen Dix

50. Keith L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic
and Data-Bases, pages 293–322. Plenum, New York, 1978.

51. A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de commu-
nication homme-machine en français. Technical report, Groupe de Intelligence
Artificielle Universite de Aix-Marseille II, 1973.

52. Stefania Costantini and Gaetano A. Lanzarone. Static Semantics as Program
Transformation and Well-founded Computation. In J. Dix, L. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, LNAI
927, pages 156–180. Springer, Berlin, 1995.

53. Lars Degerstedt and Ulf Nilsson. Magic Computation of Well-founded Semantics.
In J. Dix, L. Pereira, and T. Przymusinski, editors, Nonmonotonic Extensions of
Logic Programming, LNAI 927, pages 181–204. Springer, Berlin, 1995.

54. J. Dix and U. Furbach. The DFG-Project DisLoP on Disjunctive Logic Program-
ming. Computational Logic, 2(2):89–90, 1996.

55. J. Dix, U. Furbach, and A. Nerode, editors. Logic Programming and Nonmono-
tonic Reasoning, LNAI 1265, Berlin, 1997. Springer.

56. Jürgen Dix. Classifying Semantics of Logic Programs. In Anil Nerode, Wiktor
Marek, and V. S. Subrahmanian, editors, Logic Programming and Non-Monotonic
Reasoning, Proceedings of the first International Workshop, pages 166–180, Cam-
bridge, Mass., July 1991. Washington D.C, MIT Press.

57. Jürgen Dix. A Framework for Representing and Characterizing Semantics of
Logic Programs. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR ’92), pages 591–602. San Mateo, CA, Morgan Kaufmann, 1992.

58. Jürgen Dix. Classifying Semantics of Disjunctive Logic Programs. In K. R. Apt,
editor, LOGIC PROGRAMMING: Proceedings of the 1992 Joint International
Conference and Symposium, pages 798–812, Cambridge, Mass., November 1992.
MIT Press.

59. Jürgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: I.
Strong Properties. Fundamenta Informaticae, XXII(3):227–255, 1995.

60. Jürgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: II.
Weak Properties. Fundamenta Informaticae, XXII(3):257–288, 1995.

61. Jürgen Dix. Semantics of Logic Programs: Their Intuitions and Formal Proper-
ties. An Overview. In Andre Fuhrmann and Hans Rott, editors, Logic, Action
and Information – Essays on Logic in Philosophy and Artificial Intelligence, pages
241–327. DeGruyter, 1995.

62. Jürgen Dix, Donald Loveland, Jack Minker, and David. S. Warren. Disjunctive
Logic Programming and databases: Nonmonotonic Aspects. Technical Report
Dagstuhl Seminar Report 150, IBFI GmbH, Schloß Dagstuhl, 1996.

63. Jürgen Dix and Martin Müller. Abstract Properties and Computational Complex-
ity of Semantics for Disjunctive Logic Programs. In Proc. of the Workshop W1,
Structural Complexity and Recursion-theoretic Methods in Logic Programming,
following the JICSLP ’92, pages 15–28. H. Blair and W. Marek and A. Nerode
and J. Remmel, November 1992. also available as Technical Report 13/93, Uni-
versity of Koblenz, Department of Computer Science.

64. Jürgen Dix and Martin Müller. Implementing Semantics for Disjunctive Logic
Programs Using Fringes and Abstract Properties. In Luis Moniz Pereira and Anil
Nerode, editors, Logic Programming and Non-Monotonic Reasoning, Proceedings
of the Second International Workshop, pages 43–59, Cambridge, Mass., July 1993.
Lisbon, MIT Press.

Knowledge Representation with Logic Programs 49

65. Jürgen Dix and Frieder Stolzenburg. Computation of Non-Ground Disjunctive
Well-Founded Semantics with Constraint Logic Programming (preliminary re-
port). In J. Dix, L. Pereira, and T. Przymusinski, editors, Nonmonotonic Exten-
sions of Logic Programming, LNAI 1216, pages 202–226. Springer, Berlin, 1997.

66. Jürgen Dix and Frieder Stolzenburg. A Framework to incorporate Nonmonotonic
Reasoning into Constraint Logic Programming. Journal of Logic Programming,
35(1,2,3):5—37, 1998. Special Issue on Constraint Logic Programming, Guest
Editors: Kim Marriott and Peter Stuckey.

67. Wlodzimierz Drabent. What is failure? A constructive approach to negation. Acta
Informatica, 32(1):27–29, 1994.

68. P. M. Dung. On the relations between stable and wellfounded semantics of logic
programs. Theoretical Computer Science, 105:7–25, 1992.

69. T. Eiter, J. Lu, and V. S. Subrahmanian. Computing Non-Ground Represen-
tations of Stable Models. In J. Dix, U. Furbach, and A. Nerode, editors, Logic
Programming and Non-Monotonic Reasoning, Proceedings of the Fourth Interna-
tional Conference, LNAI 1265, pages 198–217, Berlin, July 1997. Springer.

70. F. Fages. Consistency of Clark’s completion and existence of stable models. Meth-
ods of Logic in Computer Science, 2, 1993.

71. J. A. Fernández, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive LP
+ Integrity Constraints = Stable Model Semantics. Annals of Mathematics and
Artificial Intelligence, 8(3-4), 1993.

72. J. A. Fernández and J. Minker. Bottom-Up Computation of Perfect Models for
Disjunctive Theories. Journal of Logic Programming, 25(1):33–51, 1995.

73. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

74. Goran Gogic, Christos Papadimitriou, Bart Selman, and Henry Kautz. The Com-
parative Linguistics of Knowledge Representation. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence, pages 862–869, Montreal,
Canada, August 1995. Morgan Kaufmann Publishers.

75. T. F. Gordon. The Pleadings Game: An Artificial Intelligence Model of Procedural
Justice. PhD thesis, TU Darmstadt, 1993.

76. Jeff Horty, Richmond Thomason, and D. S. Touretzky. A skeptical Theory of
Inheritance in Nonmonotonic Semantic Networks. Artificial Intelligence, 42:311–
348, 1990.

77. Katsumi Inoue, M. Koshimura, and R. Hasegawa. Embedding negation-as-failure
into a model generation theorem prover. In Deepak Kapur, editor, Automated
Deduction — CADE-11, number 607 in LNAI, Berlin, 1992. Springer.

78. Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing Definite Logic
Programs by Partial Instantiation. Annals of Pure and Applied Logic, 67:161–182,
1994.

79. Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing Minimal Models
by Partial Instantiation. Theoretical Computer Science, 155:157–177, 1995.

80. David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Magic Sets and Bottom-
Up Evaluation of Well-Founded Models. In Vijay Saraswat and Kazunori Ueda,
editors, Proceedings of the 1991 Int. Symposium on Logic Programming, pages
337–351. MIT, June 1991.

81. Kurt Konolige. Partial Models and Non-Monotonic Reasoning. In J. Richards,
editor, The Logic and Aquisition of Knowledge. Oxford Press, 1988.

82. R.A. Kowalski. Predicate logic as a programming language. In Proceeedings IFIP’
74, pages 569–574. North Holland Publishing Company, 1974.

50 Gerhard Brewka and Jürgen Dix

83. V. Lifschitz. Foundations of declarative logic programming. In G. Brewka, editor,
Principles of Knowledge Representation, chapter 3, pages 69–128. CSLI, 1996.

84. Vladimir Lifschitz. Computing Circumscription. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, Los Angeles, California, pages
121–127, 1985.

85. John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987. 2nd
edition.

86. Bertram Ludäscher. CNF-Prolog: A Meta-Interpreter for Chan’s Constructive
Negation, Implementation. Technical report, Master Thesis, Karlsruhe University
(in german), 1991.

87. Jack Minker. On indefinite databases and the closed world assumption. In Pro-
ceedings of the 6th Conference on Automated Deduction, New York, pages 292–
308, Berlin, 1982. Springer.

88. Jack Minker. Foundations of Deductive Databases. Morgan Kaufmann, 95 First
Street, Los Altos, CA 94022, 1st edition, 1988.

89. Jack Minker. An Overview of Nonmonotonic Reasoning and Logic Programming.
Journal of Logic Programming, Special Issue, 17(2/3/4):95–126, 1993.

90. Jack Minker and Carolina Ruiz. Computing stable and partial stable models of
extended disjunctive logic programs. In J. Dix, L. Pereira, and T. Przymusinski,
editors, Nonmonotonic Extensions of Logic Programming, LNAI 927, pages 205–
229. Springer, Berlin, 1995.

91. Martin Müller. Examples and Run-Time Data from KORF, 1992.
92. Martin Müller and Jürgen Dix. Implementing Semantics for Disjunctive Logic

Programs Using Fringes and Abstract Properties. In Luis Moniz Pereira and Anil
Nerode, editors, Logic Programming and Non-Monotonic Reasoning, Proceedings
of the Second International Workshop, pages 43–59, Cambridge, Mass., July 1993.
Lisbon, MIT Press.

93. Anil Nerode, Raymond T. Ng, and V.S. Subrahmanian. Computing Circumscrip-
tive Deductive Databases. CS-TR 91-66, Computer Science Dept., Univ. Mary-
land, University of Maryland, College Park, Maryland, 20742, USA, December
1991.

94. Ilkka Niemelä. Implementing circumscription using a tableau method. In
W. Wahlster, editor, Proceedings of the European Conference on Artificial In-
telligence, pages 80–84, Budapest, Hungary, August 1996. John Wiley.

95. Ilkka Niemelä. A tableau calculus for minimal model reasoning. In P. Miglioli,
U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods, pages
278–294, Terrasini, Italy, May 1996. LNAI 1071, Springer-Verlag.

96. Ilkka Niemelä and Patrik Simons. Efficient Implementation of the Well-founded
and Stable Model Semantics. In M. Maher, editor, Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming, pages 289–303,
Bonn, Germany, September 1996. The MIT Press.

97. L. M. Pereira, J. N. Apaŕicio, and J. J. Alferes. Non-Monotonic Reasoning with
Logic Programming. Journal of Logic Programming, 17:227–264, 1993.

98. L.M. Pereira and J.J. Alferes. Well founded semantics for logic programs with
explicit negation. In Bernd Neumann, editor, Proc. of 10th European Conf. on
Artificial Intelligence ECAI 92, pages 102–106. John Wiley & Sons, 1992.

99. D. Poole. On the comparison of theories: Preferring the most specific explanation.
In Proc. IJCAI-85, Los Angeles, 1985.

100. H. Prakken. Logical Tools for Modelling Legal Argument. PhD thesis, VU Ams-
terdam, 1993.

Knowledge Representation with Logic Programs 51

101. Teodor Przymusinski. Stationary Semantics for Normal and Disjunctive Logic
Programs. In C. Delobel, M. Kifer, and Y. Masunaga, editors, DOOD ’91, Pro-
ceedings of the 2nd International Conference, Berlin, December 1991. Muenchen,
Springer. LNCS 566.

102. Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 55–76, New York, 1978. Plenum.

103. Raymond Reiter. A Logic for Default-Reasoning. Artificial Intelligence, 13:81–
132, 1980.

104. Stuart Russel and Peter Norvig. Artificial Intelligence — A Modern Approach.
Prentice Hall, New Jersey 07458, 1995.

105. Ch. Sakama and K. Inoue. An Alternative Approach to the Semantics of Disjunc-
tive Logic Programs and Deductive Databases. Journal of Automated Reasoning,
13:145–172, 1994.

106. Chiaki Sakama and Hirohisa Seki. Partial Deduction of Disjunctive Logic Pro-
grams: A Declarative Approach. In Logic Program Synthesis and Transformation
– Meta Programming in Logic, LNCS 883, pages 170–182, Berlin, 1994. Springer.

107. Chiaki Sakama and Hirohisa Seki. Partial Deduction in Disjunctive Logic Pro-
gramming. Journal of Logic Programming, 32(3):229–245, 1997.

108. H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Proceedings of
the Third International Conference on Logic Programming, London, LNAI, pages
84–98, Berlin, June 1986. Springer.

109. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

110. D. S. Touretzky. The Mathematics of Inheritance. Research Notes in Artificial
Intelligence. Pitman, London, 1986.

111. D. S. Touretzky, R. H. Thomason, and J. F. Horty. A skeptic’s menagerie: Con-
flictors, preemptors, reinstaters, and zombies in nonmonotonic inheritance. In
Proc. 12th IJCAI, Sydney, 1991.

112. David S. Touretzky, Jeff Horty, and Richmond Thomason. A Clash of Intuitions:
The current State of Nonmonotonic Multiple IHS. In Proceedings IJCAJ, 1988.

113. Jeffrey D. Ullman. Bottom-up Beats Top-down for Datalog. In Proc. of the
Eight ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Philadelphia, Pennsylvania, pages 140–149. ACM Press, March 1989.

114. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 2.
Computer Science Press, Rockville, 1989.

115. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. JACM, 23:733–742, 1976.

116. Allen Van Gelder, Kenneth A. Ross, and J. S. Schlipf. Unfounded Sets and well-
founded Semantics for general logic Programs. In Proceedings 7th Symposion on
Principles of Database Systems, pages 221–230, 1988.

117. Martin Vorbeck. CNF-Prolog: A Meta-Interpreter for Chan’s Constructive Nega-
tion, Theory. Technical report, Master Thesis, Karlsruhe University (in german),
1991.

Knowledge Representation with Logic Programs*

Gerhard Brewka 1 and Jiirgen Dix 2

1 Universit~t Leipzig, Institut fuer Informatik
Augustusplatz 10/11, D-04109 Leipzig

brewka~informatik.uni-leipzig.de

2 Universit~t Koblenz-Landau, Institut ftir Informatik,
Rheinau 1, D-56075 Koblenz
dix~mailhost.uni-koblenz.de

Abs t r ac t In this overview we show how Knowledge Representation
(KR) can be done with the help of generalized logic programs. We start
by introducing the core of PROLOG, which is based on definite logic
programs. Although this class is very restricted (and will be enriched by
various additional features in the rest of the paper), it has a very nice
property for KR-tasks: there exist efficient Query-answering procedures
- - a Top-Down approach and a Bottom-Up evaluation. In addition we
can not only handle ground queries but also queries with variables and
compute answer-substitutions.
It turns out that more advanced KR-tasks can not be properly handled
with definite programs. Therefore we extend this basic class of programs
by additional features like Negation-as-Finite-Failure, Default-Negation,
Explicit Negation, Preferences, and Disjunction. The need for these ex-
tensions is motivated by suitable examples and the corresponding seman-
tics are discussed in detail.
Clearly, the more expressive the respective class of programs under a cer-
tain semantics is, the less efficient are potential Query-answering meth-
ods. This point will be illustrated and discussed for every extension. By
well-known recursion-theoretic results, it is obvious that there do not
exist complete Query-answering procedures for the general case where
variables and function symbols are allowed. Nevertheless we consider it
an important topic of further research to extract feasible classes of pro-
grams where answer-substitutions can be computed.

1 Knowledge Representation with Non-classical Logic

One of the major reasons for the success story (if one is really willing to call it a
success story) of human beings on this planet is our ability to invent tools that
help us improve our - - otherwise often quite limited - - capabilities. The inven-
tion of machines that are able to do interesting things, like transporting people
from one place to the other (even through the air), sending moving pictures and

* This is a short version of Chapter 6 in D. Gabbay and F. Guenthner (editors), Hand-
book of Philosophical Logic, ~nd Edition, Volume 6, Methodologies, Reidel Publ., 1999

2 Gerhard Brewka and J/irgen Dix

sounds around the globe, bringing our email to the right person, and the like,
is one of the cornerstones of our culture and determines to a great degree our
everyday life.

Among the most challenging tools one can think of are machines that are
able to handle knowledge adequately. Wouldn't it be great if, instead of the
stupid device which brings coffee from the kitchen to your office every day at
9.00, and which needs complete reengineering whenever your coffee preferences
change, you could (for the same price, admitted) get a smart robot whom you
can simply tell that you want your coffee black this morning, and that you need
an extra Aspirin since it was your colleague's birthday yesterday? To react in the
right way to your needs such a robot would have to know a lot, for instance that
Aspirin should come with a glass of water, or that people in certain situations
need their coffee extra strong.

Building smart machines of this kind is at the heart of Artificial Intelligence
(AI). Since such machines will need tremendous amounts of knowledge to work
properly, even in very limited environments, the investigation of techniques for
representing knowledge and reasoning is highly important.

In the early days of AI it was still believed that modeling general purpose
problem solving capabilites, as in Newell and Simon's famous GPS (General
Problem Solver) program, would be sufficient to generate intelligent behaviour.
This hypothesis, however, turned out to be overly optimistic. At the end of
the sixties people realized that an approach using available knowledge about
narrow domains was much more fruitful. This led to the expert systems boom
which produced many useful application systems, expert system building tools,
and expert system companies. Many of the systems are still in use and save
companies millions of dollars per year 1.

Nevertheless, the simple knowledge representation and reasoning methods
underlying the early expert systems soon turned out to be insufficient. Most of
the systems were built based on simple rule languages, often enhanced with ad
hoc approaches to model uncertainty. It became apparent that more advanced
methods to handle incompleteness, defeasible reasoning, uncertainty, causality
and the like were needed.

This insight led to a tremendous increase of research on the foundations
of knowledgerepresentation and reasoning. Theoretical research in this area has
blossomed in recent years. Many advances have been made and important results
were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under-
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians' game more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this overview, that is research aiming at interesting combinations of ideas from

1 We refer the interested reader to the recent book 104 which gives a very detailed
and nice exposition of what has been done in AI since its very beginning until today.

Knowledge Representation with Logic Programs 3

logic programming and nonmonotonic reasoning, provides an important step into
this direction.

1.1 Some History

Historically, logic programs have been considered in the logic programming com-
munity for more than 20 years. It began with 51,82, 115 and led to the defini-
tion and implementation of PROLOG, a by now theoretically well-understood
programming language (at least the declarative part consisting of Horn-clauses:
pure PROLOG). Extensions of PROLOG allowing negative literals have been
also considered in this area: they rely on the idea of negation-as-finite-failure,
we call them Logic-Programming-semantics (or shortly LP-semantics).

In parallel, starting at about 1980, Nonmonotonic Reasoning entered into
computer science and began to constitute a new field of active research. It was
originally initiated because Knowledge Representation and Common-Sense Rea-
soning using classical logic came to its limits. Formalisms like classical logic are
inherently monotonic and they seem to be too weak and therefore inadequate
for such reasoning problems.

In recent years, independently of the research in logic programming, people
interested in knowledge representation and nonmonotonic reasoning also tried to
define declarative semantics for programs containing default or explicit negation
and even disjunctions. They defined various semantics by appealing to (different)
intuitions they had about programs.

This second line of research started in 1986 with the Workshop on the
Foundations of Deductive Databases and logic programming organized by Jack
Minker: the revised papers of the proceedings were published in 88. The strati-
fied (or the similar perfect) semantics presented there can be seen as a splitting-
point: it is still of interest for the logic programming community (see 43) but
its underlying intuitions were inspired by nonmonotonic reasoning and therefore
much more suitable for knowledge representation tasks. Semantics of this kind
leave the philosophy underlying classical logic programming in that their pri-
mary aim is not to model negation-as-finite-failure, but to construct new, more
powerful semantics suitable for applications in knowledge representation. Let us
call such semantics NMR-semantics.

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz,
Przymusinski and others, very close relationships between these two indepen-
dent research lines became evident. Methods from logic programming, e.g. least
fixpoints of certain operators, can be used successfully to define NMR-semantics.

The NMR-semantics also shed new light on the understanding of the classical
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various
versions of Circumscription. In addition, the investigation of possible semantics
for logic programs seems to be useful because

1. parts of nonmonotonic systems (which are usually defined for full predicate
logic, or even contain additional (modal)-operators) may be "implemented"
with the help of such programs,

4 Gerhard Brewka and Jfirgen Dix

2. nonmonotonicity in these logics may be described with an appropriate treat-
ment of negation in logic programs.

1.2 Non.monotonic Formalisms in KR

As already mentioned above, research in nonmonotonic reasoning has begun at
the end of the seventies. One of the major motivations came from reasoning
about actions and events. John McCarthy and Patrick Hayes had proposed their
situation calculus as a means of representing changing environments in logic. The
basic idea is to use an extra situation argument for each fact which describes
the situation in which the fact holds. Situations, basically, are the results of
performing sequences of actions. It soon turned out that the problem was not
so much to represent what changes but to represent what does not change when
an event occurs. This is the so-called frame problem. The idea was to handle the
frame problem by using a default rule of the form

I f a property P holds in situation S then P typically also holds in the
situation obtained by per/orming action A in S.

Given such a rule it is only necessary to explicitly describe the changes induced
by a particular action. All non-changes, for instance that the real colour of the
kitchen wall does not change when the light is turned on, are handled implicitly.
Although it turned out that a straightforward formulation of this rule in some
of the most popular nonmonotonic formalisms may lead to unintended results
the frame problem was certainly the challenge motivating many people to join
the field.

In the meantime a large number of different nonmonotonic logics have been
proposed. We can distinguish four major types of such logics:

1. Logics using nonstandard inference rules with an additional consistency
check to represent default rules. Reiter's default logic and its variants are of
this type.

2. Nonmonotonic modal logics using a modal operator to represent consistency
or (dis-) belief. These logics are nonmonotonic since conclusions may depend
on disbelief. The most prominent example is Moore's autoepistemic logic.

3. Circumscription and its variants. These approaches are based on a preference
relation on models. A formula is a consequence iff it is true in all most
preferred models of the premises. Syntactically, a second order formula is
used to eliminate all non-preferred models.

4. Conditional approaches which use a non truth-functional connective b, to
represent defaults. A particularly interesting way of using such conditionals
was proposed by Krans, Lehmann and Magidor. They consider p as a default
consequence of q iff.the conditional q ~ p is in the closure of a given condi-
tional knowledge base under a collection of rules. Each of the rules directly
corresponds to a desirable property of a nonmonotonic inference relation.

The various logics are intended to handle different intuitions about nonmono-
tonic reasoning in a most general way. On the other hand, the generality leads to

Knowledge Representation with Logic Programs 5

problems, at least from the point of view of implementations and applications. In
the first order case the approaches are not even semi-decidable since an implicit
consistency check is needed. In the propositional case we still have tremendous
complexity problems. For instance, the complexity of determining whether a for-
mula is contained in all extensions of a propositional default theory is on the
second level of the polynomial hierarchy. As mentioned earlier we believe that
logic programming techniques can help to overcome these difficulties.

Originally, nonmonotonic reasoning was intended to provide us with a fast
but unsound approximation of classical reasoning in the presence of incomplete
knowledge. Therefore one might ask whether the higher complexity of NMR-
formalisms (compared to classical logic) is not a real drawback of this aim? The
answer is that NMR-systems allow us to formulate a problem in a very compact
way as a theory T. It turns out that any equivalent formulation in classical logic
(if possible at all) as a theory T' is much larger: the size of T' is exponential in the
size of T! We refer to 74 and 41, 42, 40 where such problems are investigated.

2 K n o w l e d g e R e p r e s e n t a t i o n w i t h D e f i n i t e Logic
P r o g r a m s

In this section we consider the most restricted class of programs: definite logic
programs, programs without any negation at all. All the extensions of this basic
class we will introduce later contain at least some kind of negation (and perhaps
additional features). But here we also allow the ocurrence of free variables as
well as function symbols.

In Section 2.1 we introduce as a representative for the Top-Down approach
the SLD-Resolution. Section 2.1 presents the main competing approach of SLD:
Bottom-Up Evaluation. This approach is used in the Database community and
it is efficient when additional assumptions are made (finiteness-assumptions, n o

function symbols). Finally in Section 2.2 we present and discuss two important
examples in KR: Reasoning in Inheritance Hierarchies and Reasoning about Ac-
tions. Both examples clearly motivate the need of extending definite programs
by a kind of defuult-negation "not "

First some notation used throughout this paper. A language s consists of
a set of relation symbols and a set of function symbols (each symbol has an
associated arity). Nullary functions are called constants. Terms and atoms are
built from s in the usual way starting with variables, applying function symbols
and relation-symbols.

Instead of considering arbitrary E-formulae, our main object of interest is a
program:

Definition 1 (Definite Logic Program).
A definite logic program consists of a finite number of rules of the form

A ~- B1,. . . ,Bin,

6 Gerhard Brewka and Jiirgen Dix

where A, B 1 , . . . , Bm are positive atoms (containing possibly free variables). We
call A the head of the rule and B 1 , . . . , B m its body. The comma represents
conjunction A.

We can think of a program as formalizing our knowledge about the world and
how the world behaves. Of course, we also want to derive new information, i.e. we
want to ask queries:

De f in i t i on 2 (Q ue ry) .
Given a definite program we usually have a definite query in mind that we want

to be solved. A definite query Q is a conjunction of positive atoms C1 A . . . A Ct
which we denote by

? - C 1 , . . . , C ~ .

These Ci may also contain variables. Asking a query Q to a program P means
asking for all possible substitutions ~9 of the variables in Q such that Q~9 follows
from P. Often, ~9 is also called an answer to Q. Note that Q~9 may still contain
free variables.

Note that if a program P is given, we usually assume tha t it also determines
the underlying language/ : , denoted by s which is generated by exactly the
symbols ocurring in P. The set of all these atoms is called the Herbrand base
and denoted by Bs or simply Bp. The corresponding set of all ground terms
is the Herbrand universe.

How are our programs related to classical predicate logic? Of course, we
can map a program-rule into classical logic by interpreting "+--" as material
implication "D" and universally quantifying. This means we view such a rule as
the following universally quantified formula

B 1 A . . . A B m D A.

However, as we will see later, there is a great difference: a logic program-rule
takes some orientation with it. This makes it possible to formulate the following
principle as an underlying intuition of all semantics of logic programs:

P r inc ip l e 01 (O r i e n t a t i o n)
If a ground atom A does not unify with some head of a program rule of P, then
this atom is considered to be false. In this case we say that "not A" is derivable
from P to distinguish it from classical -~A.

The orientation principle is nothing but a weak form of negation-by-failure. Given
an intermediate goal not A, we first try to prove A. But if A does not unify with
any head, A fails and this is the reason to derive not A.

2.1 T o p - D o w n v e r s u s B o t t o m - U p

SLD-Resolution 2 is a special form of Robinson's general Resolution rule. While
Robinson's rule is complete for full first order logic, SLD is complete for definite
logic programs (see Theorem 1 on the facing page).

2 SL-resolution for Definite clauses. SL-resolution stands for Linear resolution with
Selection function.

Knowledge Representation with Logic Programs 7

Definite programs have the nice feature that the intersection of all Herbrand-
models exists and is again a Herbrand model of P . It is denoted by M p and
called the least Herbrand-model of P . Note that our original aim was to find
substitutions O such that QO is derivable from the program P. This task as
well as M p is closely related to SLD:

T h e o r e m 1 (S o u n d n e s s a n d C o m p l e t e n e s s o f S L D) .
The following properties are equivalent:

- P ~ V QO, i.e. V QO is true in all models of P ,
- M p ~ V Q O ,
- SLD computes an answer r that subsumes 3 0 wrt Q.

Note that not any correct answer is computed, only the most general one is
(which of course subsumes all the correct ones).

The main feature of SLD-Resolution is its Goal-Orientedness. SLD automat-
ically ensures (because it starts with the Query) tha t we consider only those
rules tha t are relevant for the query to be answered. Rules tha t are not at all
related are simply not considered in the course of the proof.

B o t t o m - U p

We mentioned in the last section the least Herbrand model Mp. The bot tom-up
approach can be described as computing this least Herbrand model from below.

To be more precise we introduce the immediate consequence operator T p
which associates to any Herbrand model another Herbrand model.

Def in i t ion 3 (T p) .

Given a definite program P let Tp : 2 By ~ ~ 2BY; Z f ~ Tp(Z)

Tp(Z) := {A E Bp : there is an instantiation of a rule in P
s.t. A is the head of this rule and all
body-atoms are contained in Z }

It turns out that Tp is monotone and continuous so that (by a general theorem
of Knaster-Tarski) the least fixpoint is obtained after w steps. Moreover we have

T h e o r e m 2 (Tp and M p) .
M p = Tp~ ~ = l fp (Tp) .

This approach is especially important in Database applications, where the
underlying language does not contain function symbols (DATALOG) - - this
ensures the Herbrand universe to be finite. Under this condition the iteration
stops after finitely many steps. In addition, rules of the form

a i.e. 3a : Qra = QO.

p + - p

8 Gerhard Brewka and Jiirgen Dix

do not make any problems. They simply can not be applied or do not produce
anything new. Note that in the Top-Down approach, such rules give rise to infi-
nite branches! Later, elimination of such rules will turn out to be an interesting
property. We therefore formulate it as a principle:

Principle 02 (Elimination of Tautologies)
Suppose a program P has a rule which contains the same atom in its body as
well as in its head (i.e. the head consists of exactly this atom). Then we can
eliminate this rule without changing the semantics.

Unfortunately, such a bot tom-up approach has two serious shortcomings.
First, the goal-orientedness from SLD-resolution is lost: we are always computing
the whole MR, even those facts that have nothing to do with the query. The
reason is tha t in computing Tp we do not take into account the query we are
really interested in. Second, in any step facts that are already computed before
are recomputed again. It would be more efficient if only new facts were computed.
Both problems can be (partially) solved by appropriate refinements of the naive
approach:

- Semi-naive bottom-up evaluation (39, 114),
- Magic Sets techniques (16,113).

2.2 Why Going Beyond Definite Programs?

So far we have a nice query-answering procedure, SLD-Resolution, which is goal-
oriented as well as sound and complete with respect to general derivability. But
note that up to now we are not able to derive any negative information. Not
even our queries allow this. From a very pragmatic viewpoint, we can consider
"no t A" to be derivable if A is not. Of course, this is not sound with respect to
classical logic but it is with respect to Mp.

In KR we do not only want to formulate negative queries, we also want to
express default-statements of the form

Normally, unless something abnormal holds, then r implies r

Such statements were the main motivation for nonmonotonic logics, like Default
Logic or Circumscription). How can we formulate such a statement as a logic
program? The most natural way is to use negation "n o t "

r +-- r notab

where ab stands for abnormality. Obviously, this forces us to extend definite
programs by negative atoms.

A typical example for such statements occurs in Inheritance Reasoning. We
take the following example from 10:

Knowledge Representation with Logic Programs 9

Example 1 (Inheritance Hierachies).
Suppose we know that birds typically fly and penguins are non-flying birds. We
also know that Tweety is a bird. Now an agent is hired to build a cage for
Tweety. Should the agent put a roof on the cage? After all it could be still the
case that Tweety is a penguin and therefore can not fly, in which case we would
not like to pay for the unneccessary roof. But under normal conditions, it should
be obvious that one should conclude that Tweety is flying.

A natural axiomatization is given as follows:

Pznhcritance : f l ies(x) +- bird(x),
bird(x) +- penguin(x)
ab(rl, x) +- penguin(x)
make_top(x) e- f l ies(x)

not ab(rl, x)

together with some particular facts, like e.g. bird(Tweety) and penguin(Sam).
The first rule formalizes our default-knowledge, while the third formalizes that
the default-rule should not be applied in abnormal or exceptional cases. In our
example, it expresses the famous Specificity-Principle which says that more spe-
cific knowledge should override more general one (110, 112, 76).

For the query "make_top(Tweety)" we expect the answer "yes" while for the
query "make_top(Sam)" we expect the answer "no".

Another important KR task is to formalize knowledge for reasoning about
action. We again consider a particular important instance of such a task, namely
temporal projection. The overall framework consists in describing the initial state
of the world as well as the effects of all actions that can be performed. What we
want to derive is how the world looks like after a sequence of actions has been
performed.

The common-sense argument from which this should follow is the

Law of Iner t ia : Things normally tend to stay the same.

Up to now we only have stated some very "natural" axiomatizations of
given knowledge. We have motivated that something like default-negation "not "
should be added to definite programs in order to do so and we have explicitly
stated the answers to particular queries. What is still missing are solutions to
the following very important problems

- How should an appropriate query answering mechanism handling default-
negation "not " look like. ~

- What is the formal semantics that such a procedural mechanism should be
checked against?

Such a semantics is certainly not classical predicate logic because of the default
character of "not " - - not is not classical -~. Both problems will be considered
in detail in Section 3.

10 Gerhard Brewka and Jiirgen Dix

2.3 What Is a Semantics?

In the last sections we have introduced two principles (Orientation and Elim-
ination of Tautologies) and used the te rm semantics of a program in a loose,
imprecise way. We end this section with a precise notion of what we understand
by a semantics.

As a first a t tempt , we can view a semantics as a mapping tha t associates
to any program a set of positive atoms and a set of default atoms. In the case
of SLD-Resolution the positive atoms are the ground instances of all derivable
atoms. But sometimes we also want to derive negative a toms (like in our two
examples above). Our Orientation-Principle formalizes a minimal requirement
for deriving such defanlt-atoms.

Of course, we also want tha t a semantics SEM should respect the rules of
P , i.e. whenever SEM makes the body of a rule true, then SEM should also
make the head of the rule true. But it can (and will) happen tha t a semantics
SEM does not always decide all atoms. Some atoms A are not derivable nor are
their default-counterparts not A. This means tha t a semantics SEM can view
the body of a rule as being undefined.

This already happens in classical logic. Take the theory

T : = { (A A B) D C , - ~ A D B } .

Wha t are the atoms and negated atoms derivable from T, i.e. t rue in all models of
T? No positive a tom nor any negated a tom is derivable! The classical semantics
therefore makes the truthvalue of A A B undefined in a sense.

Suppose a semantics SEM treats the body of a p rogram rule as undefined.
Wha t should we conclude about the head of this rule? We will only require
tha t this head is not t reated as false by SEM - - it could be t rue or undefined
as well. This means tha t we require a semantics to be compatible with the
program viewed as a 3-valued theory - - the three values being "true", "false"
and "undefined". For the understanding it is not neccessary to go deeper into
3-valued logic. We simply note tha t we interpret "+--" as the Kleene-connective
which is t rue for "unde f ined +-- undef ined" and false for " fa lse +-- undefined/ ' .

Definit ion 4 (SEM).
A semantics SEM is a mapping from the class of all programs into the powerset
of the set of all 3-valued structures. S EM assigns to every program P a set of
3-valued models of P:

SEM(P) C_C_ MOD~3f_val(P).

This definition covers both the classical viewpoint (classical models are 2-
valued and therefore special 3-valued models) as well as our first a t t empt in the
beginning of this section.

Formally, we can associate to any semantics SEM in the sense of Definition 4
two entailment relations

s cep t i ca l : SEMSCePt(P) is the set of all a toms or default a toms tha t are true in
all models of SEM(P) .

Knowledge Representation with Logic Programs 11

credulous: SEMCred(P) is the set of all atoms or default atoms that are true
in at least one model of SEM(P).

3 A d d i n g N e g a t i o n

In the last section we have illustrated that logic programs with negation are
very suitable for KR - - they allow a natural and straightforward formalization
of default-statements. The problem still remained to define an appropriate se-
mantics for this class and, if possible, to find efficient query-answering methods.
Both points are adressed in this section.

We can distinguish between two quite different approaches:

LP-Approach: This is the approach taken mainly in the Logic Programming
community. There one tried to stick as close as possible to SLD-Resolution
and treat negation as "Finite-Failure'. This resulted in an extension of SLD,
called SLDNF-Resolution, a procedural mechanism for query answering. For
a nice overview, we refer to 6.

NML-Approach: This is the approach suggested by non-monotonic reasoning
people. Here the main question is "What is the right semantics?" I.e. we are
looking first for a semantics that correctly fits to our intuitions and treats
the various KR-Tasks in the right (or appropriate) way. It should allow us
to jump to conclusions even when only little information is available. Here
it is of secondary interest how such a semantics can be implemented with a
procedural calculus. Interesting overviews are 89 and 61.

The LP-Approach is dealt with in Section 3.1. It is still very near to clas-
sical predicate logic - - default negation is interpreted as Finite-Failure. To get
a stronger semantics, we interpret "no t " as Failure in Section 3.2. The main
difference is that the principle Elimination of Tautologies holds. We then intro-
duce a principle GPPE which is related to partial evaluation. In KR one can see
this principle as allowing for definitional extensions - - names or abbreviations
can be introduced without changing the semantics.

All these principles do not yet determine a unique semantics - - there is still
room for different semantics and a lot of them have been defined in the last years.
We do not want to present the whole zoo of semantics nor to discuss their merits
or shortcomings. We refer the reader to the overview articles 6 and 61 and the
references given therein. We focus on the two main competing approaches that
still have survived. These are the Wellfounded semantics WFS (Section 3.3) and
the Stable semantics STABLE (Section 3.4).

3.1 Negation-as-Finlte-Failure

The idea of negation treated as finite-failure can be best illustrated by still
considering definite programs, but queries containing default-atoms. How should
we handle such default-atoms by modifying our SLD-resolution? Let us t ry this:

12 Gerhard Brewka and Jiirgen Dix

- If we reach a defanlt-atom "no t A" as a subgoal of our original query, we
keep the current SLD-tree in mind and star t a new SLD-tree by trying to
solve "A".

- If this succeeds, then we falsified "no t A", the current branch is falling and
we have to backtrack and consider a different subquery.

- But it can also happen that the SLD-tree for "A" is finite with only failing
branches. Then we say that A finitely fails, we turn back to our original
SLD-tree, consider the subgoal "no t A" as successfully solved and go on
with the next subgoal in the current list.

It is important to note that an SLD-tree for a positive atom can fall without
being finite. The SLD-tree for the program consisting of the single rule p +- p
with respect to the query p is infinite but failing (it consists of one single infinite
branch).

Although this idea of Finite-Failure is very procedural in nature, there is
a nice modeltheoretical counterpart - - Clark's completion cornp(P) (50). The
idea of Clark was that a program P consists not only of the implications, but
also of the information that these are the only ones. Roughly speaking, he argues
that one should interpret the "+-"-arrows in rules as equivalences " - " in classical
logic.

D e f i n i t i o n 5 (C l a r k ' s C o m p l e t i o n camp(P)).
Clark's semantics for a program P is given by the set of all classical models of
the theory camp(P).

We can now see the classical theory camp(P) as the information contained in
the program P. camp(P) is like a sort of closed world assumption applied to
P. We are now able to derive negative information from P by deriving it from
camp(P). In fact, the following soundness and completeness result for definite
programs P and definite queries Q - Ai Ai (consisting of only positive atoms)
holds:

T h e o r e m 3 (C O M P a n d Fa i r F F - T r e e s) .
The following conditions are equivalent:

- comB(P) ~ V-~Q
- Every fair SLD-tree for P with respect to Q is finitely failed.

Note that in the last theorem we did not use default negation but classical
negation -~ because we just mapped all formulae into classical logic. We need
the fairness assumption to ensure that the selection of atoms is reasonably well-
behaving: we want tha t every atom or default-atom occurring in the list of
preliminary goals will eventually be selected.

But even this result is still very weak - - after all we want to handle not
only negative queries but programs containing default-atoms. From now on we
consider programs with default-atoms in the body. We usually denote them by

A +-- 13 + A not I3-,

Knowledge Representation with Logic Programs 13

where B + contains all the positive body atoms and not /3- all default atoms
" not C".

Our two motivating examples in Section 2.2 contain such default atoms.
This gives rise to an extension of SLD, called SLDNF, which treats negation as
Finite-Failure

SLDNF = SLD + not L succeeds, if L finitely fails.

The precise definitions of SLDNF-resolution, tree, etc. are very complex: we
refer to 85, 5. Recently, Apt and Bol gave interesting improved versions of these
notions: see 6, Section 3.2. In order to get an intuitive idea, it is sufficient to
describe the following underlying principle:

Principle 03 (A "Naive" SLDNF-Resolut ion)
If in the construction of an SLDNF-tree a default-atom not Lij is selected in the
list ~.i = {Li l ,Li2 , . . . } , then we try to prove Lij.
If this fails finitely (it fails because the generated subtree is finite and failing),
then we take not Lij as proved and we go on to prove Li(j+l).
I f Lij succeeds, then not Lij fails and we have to backtrack to the list f~i-t of
preliminary subgoals (the next rule is applied: "backtracking").

Does SLDNF-Resolution properly handle Example 1? It does indeed:

Inher i tance : The query make_top(Tweety) generates an SLD-tree with one
main branch, the nodes of which are:

f l ies(Tweety),
bird(Tweety), not ab(rl , Tweety),
not ab(rl , Tweety),
Success.

The third node has a sibling-node penguin(Tweety), not ab(rl,Tweety)
which immediately fails because Tweety does not unify with Sam. The
Success-node is obtained from not ab(rl, Tweety) because the correspond-
ing SLD-tree for the atom ab(rl, Tweety) fails finitely (this tree consists only
of ab(rl,Tweety) and penguin(Tweety)).

Up to now it seems that SLDNF-resolution solves all our problems. It handles
our examples correctly, and is defined by a procedural calculus strongly related
to SLD. There are two main problems with SLDNF:

- SLDNF can not handle free variables in negative subgoals,
- SLDNF is still too weak for Knowledge Representation.

The latter problem is the most important one. By looking at a particular exam-
ple, we will motivate in Section 3.2 the need for a stronger semantics. This will
lead us in the remaining sections to the wellfounded and the stable semantics.

For the rest of this section we consider the first problem, known as the Floun-
dering Problem. This problem will also occur later in implementations of the

14 Gerhard Brewka and Jfirgen Dix

<-- p(x,c), ~q(x), r(f(x)) <-- p(x,c),

<-- ~q(c), r(f(c))

I test

SUCCESS

<-- r(f(c))

"SucceSS"

~q(x), r(f(x))

I test

<-- q(c)

I "Fail"
fail

fail

<-- q(x)

I
S u c c e s s

{x/b}

Figure l . The Floundering-Problem

wellfounded or the stable semantics. We consider the program Pftounder consist-
ing of the three facts

p(c,c), q(b), r(f(c)).

Our query is ?- p(x,c), not q(x),r(/(x)) that is, we are interested in instan-
tiations of x such that the query follows from the program. The situation is
illustrated in Figure 1. Let us suppose that we always select the first atom or
default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial ex-
ample is linear and has three nodes: the first node is the query itself

?- p(x, c), not q(x), r (f (x))

the second node is ?- not q(c),r(f(c)) Now, we enter the negation-as-failure
mode and ask ?- q(c) This query immediately fails (the generated tree exists, is
finite and fails) so that we give back the answer "yes, the default atom not q(c)
succeeds and can be skipped from the list". The last node is ?- r (f (c ~ which
immediately succeeds.

Note that in the last step, the test for ?-q(c) has to be finished before the
tree can be extended. If we get no answer, the SLDNF-tree simply does not exist:
this can not happen with SLD-trees.

So far everything was fine. But what happens if we select the second atom
in the first step

c), not q(x), r(f(x))

Example 2 (Floundering).
We again consider the program PIlounder consisting of the three facts

p(c,c), q(b), r(f(c)).

Our query is ?-p(x,c), not q(x),r(f(x)) and in the first step we will select the
second default-atom, i.e. one with a free variable. Thus we enter the negation-
as-failure mode with the query ?-not q(x) In this case, x may be instantiated

Knowledge Representation with Logic Programs 15

to b so that we have to give back the answer "no, the default-atom not q(x)
fails" and the whole query will fail. This is because SLDNF treats the subgoal as
"Vx not q(x)" instead of "3x not q(x)" which is intended. There exist approaches
to overcome this shortcoming by treating negation as constructive negation:
see 44, 45, 67.

3.2 Negation-as-Failure

Let us first illustrate that SLDNF answers quite easily our requirements of a
semantics SEM (stated explicitly in Definition 4 on page 10). We can formulate
these requirements as two program-transformations (they will be used later for
computing a semantics). We call them Reductions for obvious reasons.

P r i n c i p l e 04 (R e d u c t i o n)
Suppose we are given a program P with possibly default-atoms in its body. I f a
ground atom A does not uni~y with any head of the rules of P, then we can delete
in every rule any occurrence of "not A" without changing the semantics.

Dually, if there is an instance of a rule of the form "B ~ " then we can
delete all rules that contain "not B " in their bodies.

It is obvious that SLDNF "implements" these two reductions automatically. The
weakness of SLDNF for Knowledge Representation is in a sense inherited from
SLD. When we consider rules of the form "p +- p", then SLD resolution gets
into an infinite loop and no answer to the query ?-p can be obtained. This has
often the effect that when we enter into negation-as-failure mode, the SLD-tree
to be constructed is not finite, although it is not successful and therefore should
be considered as failed.

Let us discuss this point with a more serious example.

Example 3 (The Transitive Closure).
Assume we are given a graph consisting of nodes and edges between some of
them. We want to know which nodes are reachable from a given one. A natural
formalization of the property "reachable" would be

reachable(x) +- edge(x, y), reachable(y).

What happens if we are given the following facts

edge(a, b), edge(b, a), edge(c, d)

and reachable(c)? Of course, we expect tha t neither a nor b are reachable because
there is no path from c to either a or b.

But SLDNF-Resolution does not derive "no t reachable(a)"!

How does this result relate to Theorem 3 on page 12? Note that our query has
exactly the form as required there. Clark's completion of our program rule is

reachable(x) - (x - c V 3y (reachable(y) A edge(y, x)))

16 Gerhard Brewka and Jiirgen Dix

from which, together with our facts about the edge-relation, -~reachable(a) is
indeed not derivable. This is due to the wellknown fact tha t transitive closure is
not expressible in first order predicate logic.

Note also that our Principle 02 on page 8 does not help, because it simply
does not apply. It turns out that we can augment our two principles by a third
one, that constitutes together with them a very nice calculus handling the above
example in the right way. This principle is related to Partial Evaluation, hence
its name G P P E a. Let us motivate this principle with the last example. The
query "not reachable(a)" leads to "reachable(a) 4- edge(a,b),reachable(b)"
and "reachable(b)" leads to "reachable(b) 4- edge(b,a),reachable(a)". Both
rules can be seen as definitions for reachable(a) and reachable(b) respectively.
So it should be possible to replace in these rules the body atoms of reachable
by their definitions. Thus we obtain the two rules

reachable(a) 4- edge(a, b), edge(b, a), reachable(a)
reachable(b) 4- edge(b, a), edge(a, b), reachable(b)

that can both be eliminated by applying Principle 02 on page 8. So we end up
with a program that does neither contain reachable(a) nor reachable(b) in one
of the heads. Therefore, according to Principle 01 on page 6 both atoms should
be considered false. The precise formulation of this principle is as follows:

Principle 05 (GPPE,22,106)
We say that a semantics SEM satisfies GPPE, if the following transformation
does not change the semantics. Replace a rule A 4- B + A not B - where B +
contains a distinguished atom B by the rules

A U (A i \ { B }) 4- (B + \ { B }) U B + A not (B - U B ~) (i = l , . . . , n)

where B 4-- B + A not B~- (i = 1 , . . . , n) are all rules with head B.

Note that any semantics SEM satsfying G P P E and Elimination of Tautolo-
gies can be seen as extending SLD by doing some Loop-checking. We will call
such semantics NMR-semantics in order to distinguish them from the classi-
cal LP-semantics which are based on SLDNF or variants of Clark's completion
comp(P):

- NMR-Semantics = SLDNF + Loop-check.

The following, somewhat artificial example illustrates this point.

Example 4 (COMP vs. NMR).

4 Generalized Principle of Partial Evaluation

Knowledge Representation with Logic Programs 17

PNMR : P 6- P P~iMR : P 6- P
q 6- not p q +- not p

r 6- not r

comp(PNMR) : p -- p eomp(P~vMR) : p -- p
q =_ -~p q =_ -,p

r -- "~r

?-q: No (COMP). ?-p: Yes (COMP).
Yes (NMR). No (NMR).

For both programs, the answers of the completion-semantics do not match our
NMR-intuition! In the case of PNMR w e expect q to be derivable, since we expect
not p to be derivable: the only possibility to derive p is the rule p 6- p which,
obviously, will never succeed. But q r T h ({ q - -~p}) = comp(PNMR)! In the case
of P~CMR w e expect p not to be derivable, for the same reason: the only possibility
to derive p is the rule p 6- p. But p E F m l = T h ({ r - -~r}) = comp(P~cMR)

Note that the answers of the completion-semantics agree with the mechanism
of SLDNF: p 6- p represents a loop. The completion of PI is inconsistent: this
led Fitting to consider the three-valued version of c a m p (P) mentioned at the
end of Section 3.1. This approach avoids the inconsistency (the query ?-p is not
answered "yes") but it still does not answer "no" as we would like to have.

The last principle in this section is related to Subsumption: we can get rid of
non-minimal rules by simply deleting them.

Principle 06 (Subsumption)
In a program P we can delete a rule A 6-/3+ A not B - whenever there is another
rule A 6- B '+ ^ not B I- with

B '+ C_ 13 + and 13'- C 13-.

As a simple example, the rule A 6- B , C, not D, not E is subsumed by the 3
rules A 6- C, not D, not E or A ~- B , C, not E and by A 6- C, not E.

3.3 The Wellfounded Semantics: W F S

The wellfounded semantics, originally introduced in 116, is the weakest seman-
tics satisfying our 4 principles (see 30, 29, 60). We call a semantics

SEM1 weaker than SEM2, written SEM1 _<k SEM2,

if for all programs P and all atoms or default-atoms 1 the following holds:
SEMi(P) ~ l implies SEM2(P) ~ 1. I.e. all atoms derivable from SEM1 with
respect to P are also derivable from SEM2. The notion _<k refers to the knowl-
edge ordering in three-valued logic. This is a nice theorem and gives rise to the
following definition:

18 Gerhard Brewka and Jfirgen Dix

T h e o r e m 4 (W F S , 30) .
There exists the weakest semantics satisfying our four principles Elimination
of Tautologies, Reduction, Subsumption and GPPE. This semantics is called
wellfounded semantics WFS.

It can also be shown, tha t for propositional programs, our transformations can
be applied to compute this semantics.

T h e o r e m 5 (C o n f l u e n t Ca l cu lu s for W F S , 2 9) .
The calculus consisting of these four transformations is confluent, i.e. whenever
we arrive at an irreducible program, it is uniquely determined. The order of the
transformations does not matter.

For finite propositional programs, it is also terminating: any program P is
therefore associated a unique normalform tea(P). The wellfounded semantics of
P can be read off from res(P) as follows

W E S (P) = (A : A +- E r e s (P) } U (n o t A : A is in no head o f res (P)}

We note that the size of the residual program is in general exponential in the
size of the original program. Recently it was shown in 34, 31 how a small mod-
ification of the residual program, which still satisfies the nice characterization of
computing WFS as given in Theorem 5, results in a polynomial computation.

Therefore the wellfounded semantics associates to every program P with
negation a set consisting of atoms and defanlt-atoms. This set is a 3-valued
model of P. It can happen, of course, tha t this set is empty. But it is always
consistent, i.e. it does not contain an atom A and its negation not .A. Moreover, it
extends SLDNF: whenever SLDNF derives an atom or default-atom and does not
flounder, then WFS derives it as well. Therefore the two examples of Section 2.2
are handled in the right way. But also for Example 3 on page 15 we get the
desired answers.

As we said above, loop-checking is in general undecidable. Therefore WFS
is in the most general case where variables and function-symbols are allowed,
undecidable. Only for finite propositional programs it is decidable. In fact, it is
of quadratic complexity see 31.

Let us end this section with another example, which contains negation.

Example 5 (Van Gelder's Example).
Assume we are describing a two-players game like checkers. The two players
alternately move a stone on a board. The moving player wins when his opponent
has no more move to make. We can formalize that by

- wins(x) e- move_from_to(x,y), not wins(y)

meaning that

- the situation x is won (for the moving player A), if he can lead over 5 to a
situation y that can never be won for B.

With the help of a regular move, given by the relation move_from_to~2.

Knowledge Representation with Logic Programs 19

If we also have move_from_to(a, b), move_from_to(b, a) and move_from_to(b, c).
Our query to this program Pgame is ?-wins(b) Here we have no problems with
floundering, but using SLDNF we get an infinite sequence of oscillating SLD-
trees (none of which finitely fails).

WFS, however, derives the right results

W FS(Pa~me) = { not wins(c), wins(b), not wins(a)}

which matches completely with our intuitions.

3.4 T h e S t a b l e S e m a n t i c s : S T A B L E

We defined WFS as the weakest semantics satisfying our four principles. This
already indicates tha t there are even stronger semantics. One of the main com-
peting approaches is the stable semantics STABLE. The stable semantics asso-
ciates to any program P a set of 2-vaiued models, like classical predicate logic.
STABLE satisfies the following property, in addition to those tha t have been
already introduced:

Principle 07 (Elimination of Contradictions)
Suppose a program P has a rule which contains the same atom A and not A in
its body. Then we can eliminate this rule without changing the semantics.

This principle can be used, in conjunction with the others to define the stable
semantics

Theorem 6 (STABLE,J28).
There exists the weakest semantics satisfying our five principles Elimination of
Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradictions.

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-valued
models (28). The underlying idea of STABLE is that any atom in an intended
model should have a definite reason to be true or false. This idea was made
explicit in 19, 20 and, independently, in 73. We use the latter terminology and
introduce the Gelfond-Lifschitz transformation: for a program P and a model
N C_ Bp we define

p N := (rule N : rule E P}

where rule := A +- B1 , . . . , Bn, not C1 , . . . , not Cm is transformed as follows

A ~ B 1 , . . . , B n , i fVj : Cj !~N,
(rule)N := t, otherwise.

Note that p N is always a definite program. We can therefore compute its least
Herbrand model MpN and check whether it coincides with the model N with
which we started:

20 Gerhard Brewka and Jiirgen Dix

D e f i n i t i o n 6 (S T A B L E) .
N is called a stable model 6 of P if and only if MpN = N.

What is the relationship between STABLE and WFS? We have seen that
they are based on rather identical principles.

- Stable models N extend WFS: l E WFS(P) implies N ~ l.
- If WFS(P) is two-valued, then WFS(P) is the unique stable model.

But there are also differences. We refer to Example 5 on page 18 and consider
the program P consisting of the clause

wins(x) +-move_from_to(x,y), not wins(y)

together with the following facts: move_from_to(a, b), move_from_to(b, a), as
well as move_from_to(b, c), and move_from_to(c, d). In this particular case we
have two stable models: {wins(a), wins(c)} and {wins(b), wins(c)} and there-
fore

WFS(P) = {wins(c), not wins(d)} = A A/'.
A/" a s t a b l e m o d e l o f P

This means that the 3-valued wellfounded model is exactly the set of all atoms
or default-atoms true in all stable models. But this is not always the case, as the
program of Psplitting shows:

Example 6 (Reasoning by cases).

espl i t t ing : a ~-- n o t b
b +- nora
p+--a
p+--b

Although neither a, nor b can be derived in any semantics based on two-valued
models (as STABLE for example), the disjunction a V b, thus also p, is true.
In this way the example is handled by the completion semantics, too. WFS(P) ,
however, is empty; if the WFS cannot decide between a or not a, then a is
undefined.

The main differences between STABLE and WFS are

- STABLE is not always consistent,
- STABLE does not allow for a goal-oriented implementation.

The inconsistency comes from odd, negative cycles

S T A B L E (p ~- not p) = 0.

6 Note that we only consider Herbrand models.

Knowledge Representation with Logic Programs 21

The idea to consider 2-valued models for a semantics neccessarily implies its
inconsistency (24). Note that WFS(p ~- not p) = {0} which is quite different!
Sufficient criteria for the existence of stable models are contained in 68, 70.

That STABLE does not allow for a Top-Down evaluation is a more serious
drawback and has nothing to do with inconsistency.

We end this section with another description of WFS and STABLE that will
be useful in later sections. It was introduced in 11,12:

Defini t ion 7 (A n t i m o n o t o n e O p e r a t o r 7P).
For a program P and a set N C Bp we define an operator 7P mapping Herbrand-
structures to Herbrand structures:

7p(N) := MpN.

It is easy to see that 7P is antimonotone. Therefore its twofold application 72 is
monotone (109).

Obviously, the stable models of a program P are exactly the fixpoints of 7P.
This is just a reformulation of Definition 6 on the preceding page. WFS is related
to 7 as follows

T h e o r e m 7 (W F S and 72).
A positive atom A is in WFS(P) if and only if A 6 l fp(72). A default-atom
not A is in WFS(P) if and only if A r gfP(7~):

W F S (P) = lfp(7~) U {not A: A C gfP(7~)}.

Atom or default-atoms that do occur in neither of the two sets are undefined.

4 Adding Explicit Negation

So far we have considered programs with one special type of negation, namely
default negation. Default negation is particularly useful in domains where com-
plete positive information can be obtained. For instance, if one wants to represent
flight connections from Budapest to the US it is very convenient to represent
all existing flights and to let default negation handle the derivation of negative
information. There are domains, however, where the lack of positive informa-
tion cannot be assumed to support (or support with enough strength) that this
information is false. In such domains it becomes important to distinguish be-
tween cases where a query does not succeed and cases where the negated query
succeeds. The following example was used by McCarthy to illustrate the issue.
Assume one wants to represent the rule: cross the railroad tracks if no train is ap-
proaching. The straightforward representation of this rule with default negation
would be

crosstracks +-- not train

It seems obvious that in many practical settings the use of such a rule would not
lead to intended behaviour, in fact it might even have disasterous consequences.

22 Gerhard Brewka and Jiirgen Dix

What seems to be needed here is the possibility of using a different negation
symbol representing a stronger form of negation. This new negation - - we will
call it explicit negation - - should be true only if the corresponding negated
literal can actually be derived. We will use the classical negation symbol -~ to
represent explicit negation. The track crossing rule will be represented as

crosstracks +-- -~train

The idea is that this latter rule will only be applicable if -~train has been proved,
contrary to the first rule which is applicable whenever train is not provable.

In the next section we will shortly discuss that explicit negation is (or should
not be) classical negation and how it should interfere with default negation.
In the two following subsections we will generalize the semantics STABLE and
WFS, respectively, to programs with explicit negation.

4.1 Explicit vs. Classical and Strong Nega t ion

First we define the language we are using more precisely.

Defini t ion 8 (Ex tended Logic P rogram) .
An extended logic program consists of rules of the form

c Jc- a l , . . . ,an , not b l , . . . , n o t bm

where the ai, bj and c are literals, i.e., either propositional atoms or such atoms
preceded by the classical negation sign. The symbol "not " denotes negation by
failure (default negation), '%" denotes explicit negation.

We have already motivated the need of a second kind of negation "-~" different
from "not ". What should the semantics of "-~" be? Should it be just like in
classical logic? Note that classical negation satisfies the law of excluded middle

A V ~ A .

The following example taken from 4 shows that classical negation is sometimes
inappropriate for KR-tasks.

Example 7 (Behaviour of Classical Negation).
Suppose an employer has several candidates that apply for a job. Some of them
are clearly qualified while others are not. But there may also be some candidates
whose qualifications are not clear and who should therefore be interviewed in
order to find out about their qualifications. If we express the situation by

hire(X) e- qualified(X) and reject(X) +-- ~quali f ied(X)

then, interpreting "-~" as classical negation, we are forced to derive that every
candidate must either be hired or rejected! There is no room for those that
should be interviewed. Also, applying the law of excluded middle has a highly
non-constructive flavor.

Knowledge Representation with Logic Programs 23

Let us now consider again the example crosstracks ~ -,train from the be-
ginning of this section. Suppose that we replace ~train by free_track. We obtain

crosstracks +- free_track.

From this program, "no t crosstracks" will be derivable for any semantics. There-
fore we should make sure that "no t crosstracks" is also derivable from

crosstracks +- -~train

After all, the second program is obtained from the first one by a simple syntactic
operation. This means we have to make sure that default negation "not " treats
positive and negative atoms symmetrically.

Such a negation, we will call it explicit will be introduced in the next two sec-
tions. Sometimes explicit negation is also called strong negation and denotes still
a variant of our explicit negation. In 4 the authors introduce both a strong and
explicit negation and discuss their relation with classical and default negation
at length.

4.2 S T A B L E for Extended Logic P r o g r a m s

The extension of STABLE to extended logic programs is based on the notion
of answer sets which generalize the original notion of stable models in a rather
straightforward manner. Let us first introduce some useful notation. We say a
rule r = c ~ a l , . . . , a n , not b l , . . . , not bm E P is defeated by a literal l iff
l = bi for some i E {1 , . . . , m). We say r is defeated by a set of literals X if X
contains at least one literal that defeats r. Furthermore, we call the rule obtained
by deleting weakly negated preconditions from r the monotonic counterpart of r
and denote it with Man(r) . We also apply Man to sets of rules with the obvious
meaning.

De f in i t i on 9 (X- r educ t) .
Let P be an extended logic program, X a set of literals. The X-reduct of P,
denoted p X , is the program obtained from P by

- deleting each rule defeated by X , and
- replacing each remaining rule r with its monotonic counterpart Man(r) .

Definition 10 (Consequences of Rules) .
Let R be a set of rules without negation as failure. Cn(R) denotes the smallest
set of literals that is

1. closed under R, and
2. logically closed, i.e., either consistent or equal to the set of all literals.

Definition 11 (Answer set).
Let P be an extended logic program, X a set of literals. Define the operator 7P
as follows:

7 p (X) = C n (P x)

X is an answer set o f P i f f X = 7p (X) .

24 Gerhard Brewka and Jiirgen Dix

The definition of answer sets is thus based on a natural generalization of the
operator ~,p (see Definition 7 on page 21) to extended logic programs.

A literal 1 is a consequence of a program P under the new semantics, denoted
l E STABLE(P) , iff I is contained in all answer sets of P .

It is not difficult to see that for programs without explicit negation stable
models and answer sets coincide. Here is an example involving both types of
negation. The example describes the strategy of a certain college for awarding
scholarships to its students. It is taken from 10:

Pet : (1) eligible(x) +- highGPA(x)
(2) eligible(x) +-- minority(x), fa irGPA(x)
(3)-~eligible(x) +--~fairGPA(x),-~highGPA(x)
(4) interview(x) +-- not eligible(x), not ~eligible(x)

Assume in addition to the rules above the following facts about Anne are given:

f airG P A (Anne), -~hi g hG P A (Anne)

We obtain exactly one answer set, namely

{ fa i rGPA (Anne), ~highGPA (Anne), interview (Anne) }

Anne will thus be interviewed before a decision about her eligibility is made. If
we use the above rules together with the facts

minority(Mike), fa irGPA(Mark)

then the program entails eligible(Mike).
We obtain the following result 83:

L e m m a 1 (P r o g r a m T y p e s) .
Let P be an extended logic program. P satisfies exactly one of the following
conditions:

- P has no answer sets,
- P has an answer set, and all its answer sets are consistent,
- the only answer set for P is Lit,

A program is consistent if the set of its consequences is consistent, and incon-
sistent otherwise. The former corresponds to the first two cases listed in the
proposition, the latter to the third case.

It should be noted that extended logic programs under answer set semantics
can be reduced to general logic programs as follows: for any predicate p occur-
ring in a program P we introduce a new predicate symbol p~ of the same arity
representing the explicit negation of p. We then replace each occurrence of -~p
in the program with p', thus obtaining the general logic program P ' . It can be
proved that a consistent set of literals S is an answer set of P iff the set S' is a
stable model of P ' , where S ~ is obtained from S by replacing -~p with p~.

Knowledge Representation with Logic Programs 25

4.3 W F S for Extended Logic Programs

We now show how the second major semantics for general logic programs, WFS,
can be extended to logic programs with explicit negation. For our purposes the
characterization of WFS given in Theorem 7 on page 21 will be useful. WFS is
based on a particular three-valued model. To simplify our presentation in this
section we will restrict ourselves to the literals which are true in this three-valued
model. The literals which are false will be left implicit. They can be added in a
canonical way as follows: let T, the set of true literals, be defined as the least
fixed point of a monotone operator composed of two antimonotone operators
oplop2. Then the literals which are false in the three-valued model are exactly
those which are not contained in op2 (T). Given this canonical extension to the
full three-valued model we can safely leave the false literals implicit from now
o n .

A natural idea is to use the characterization of WFS in terms of the least fixed
point of V~, as in Theorem 7 on page 21, where VP now is the new generalized
operator from Definition 4.2 on page 23 10, 83. This works in some cases, but
often leads to very weak results.

Consider the following program P0 which has also been discussed by Baral
and Gelfond 10:

P0 : (1) b +- not ~b
(2) a +- not-~a
(3) -~a +- not a

The least fixed point of 72 is empty since 7Po (0) equals Lit, the set of all lit-
erals, and the Lit-reduct of P0 contains no rule at all. This is surprising since,
intuitively, the conflict between (2) and (3) has nothing to do with -~b and b.

This problem arises whenever the following conditions hold:

1. a complementary pair of literals is provable from the monotonic counterparts
of the rules of a program P, and

2. there is at least one proof for each of the complementary literals whose rules
are not defeated by Cn(P~), where P ' consists of the "strict" rules in P, i.e.,
those without negation as failure.

In this case well-founded semantics concludes l iff 1 E Cn(P~). It should be
obvious that such a situation is not just a rare limiting case. To the contrary, it
can be expected that many commonsense knowledge bases will give rise to such
undesired behaviour.

A minor reformulation of the fixpoint operator can overcome this weakness
and leads to better results. Consider the following operator

v~(X) = Cl(P x)

where Cl(R) denotes the minimal set of literais closed under the (classical) rules
R. Cl(R) is thus like Cn(R) without the requirement of logical closedness. Now
define a monotne operator as follows:

r a (x) = -Mv;,(x))

26 Gerhard Brewka and J/irgen Dix

With this operator well founded semantics can be defined.

De f in i t i on 12 (W F S for e x t e n d e d p r o g r a m s) .
Let P be an extended logic program. The set o/ well-founded conclusions of P,
denoted W F S (P) , is the least fixpoint of F~.

Consider the effects of this modification on our example P0:

~ o (0) = {a, ~a, b}.

Rule (1) is contained in the {a, -~a, b}-reduct of P0 and thus F~0 (0) = {b}. Since
b is also the only literal contained in all answer sets of P0 WFS actually coincides
with answer set semantics in this case.

It can be shown that every well-founded conclusion is a conclusion under
the answer set semantics. Well-founded semantics can thus be viewed as an
approximation of answer set semantics.

An alternative, somewhat stronger approach, was developed by Pereira and
Alferes 98, 2, 3, the semantics WFSX. This semantics implements the intuition
that a literal with default negation should be derivable from the corresponding
explicitly negated literal. The authors call this the coherence principle. To satisfy
the principle they use the seminormal version of a program P, denoted S(P),
which is obtained from P by replacing each rule

c + - a l , . . . , a n , not b l , . . . , not bm

by the rule
c~---al, . . . ,an, not b l , . . . , not bin, not - c

where - c is the complement of c, i.e. -~c if c is an atom and a if c = -~a. Based
on this notion Pereira and Alferes consider the following monotone operator:

r i p (x) =

The use of the seminormal version of the program in the first application of 7"
guarantees that a literal 1 is not considered a potential conclusion whenever the
complementary literal is already known to be true. In the general case S(P) x
contains fewer rules than pX. Therefore, fewer literals are considered as potential
conclusions and thus more conclusions are obtained in each iteration of the
monotone operator. Here is an example 10:

PWFSX : (1) a +- not b
(2) b ~ not a
(3) +-

The original version of WFS does not conclude b. In WFSX the set X = {-~a}
is obtained after the first iteration of the monotone operator. Since rule (1) is
not contained in the X-reduct of the seminormal version of the program the
monotonic counterpart of (2) produces b after the second iteration.

Knowledge Representation with Logic Programs 27

Although a number of researchers consider WFSX to be the more adequate
extension of well-founded semantics to extended logic programs the original for-
mulation is still very often found in the literature. For this reason we will base
our t reatment of preferences in the next section on the earlier formulation based
on T'*.

For the next section a minor reformulation turns out to be convenient. In-
stead of using the monotonic counterparts of undefeated rules we will work with
the original rules and extend the definitions of the two operators Cn and Cl ac-
cordingly, requiring that default negated preconditions be neglected, i.e., for an
arbi t rary set of rules P with default negation we define Cn(P) = Cn(Mon(P))
and Cl(P) = Cl(Mon(P)) . We can now equivalently characterize 7P and ~/~ by
the equations

v p (X) = Cn(Px)

7~,(X) = Cl(Px)

where Px denotes the set of rules not defeated by X.
An alternative characterization o f / ~ will also turn out to be useful in the

next section. It is based on the following notion:

D e f i n i t i o n 13 (X - S A F E) .
Let P be a logic program, X a set of literals. A rule r is X-sa/e wrt. P (r E
S A F E x (P)) if r is not defeated by 7~(X) or, equivalently, if r e P ~ (x) .

With this new notion we can obviously characterize Y~, as follows:

F~(X) = Cn(P~;,(x)) = C n (S A F E x (P))

It is this last formulation that we will modify. More precisely, the notion of
X-safeness will be weakened to handle preferences adequately.

5 Adding Preferences

In this section we describe an extension of well-founded semantics for logic pro-
grams with two types of negation where information about preferences between
rules can be expressed in the logical language. Conflicts among rules are resolved
whenever possible on the basis of derived preference information.

After giving some motivation in Section 5.1 we introduce our t reatment of
preferences in Section 5.2. We show that our conclusions are, in general, a super-
set of the well-founded conclusions. Section 5.3 illustrates the expressive power
of our approach using a legal reasoning example.

5.1 M o t i v a t i o n

Preferences among defaults play a crucial role in nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity 99, 110,111
- - we already discussed it in Example 1 on page 9. In case of a conflict between

28 Gerhard Brewka and Jiirgen Dix

defaults we tend to prefer the more specific one since this default provides more
reliable information. E.g., if we know that students are adults, adults are nor-
really employed, students are normally not employed, we want to conclude "Peter
is not employed" from the information that Peter is a student, thus preferring
the student default over the conflicting adult default.

Specificity is an important source of preferences, but not the only one, and
at least in some applications not necessarily the most important one. In the legal
domain it may, for instance, be the case that a more general rule is preferred since
it represents federal law as opposed to state law 100. In these cases preferences
may be based on some basic principles regulating how conflicts among rules are
to be resolved. Also in other application domains, like model based diagnosis or
configuration, preferences play a fundamental role.

The relevance of preferences is well-recognized in nonmonotonic reasoning,
and prioritized versions for most of the nonmonotonic logics have been pro-
posed, e.g., prioritized circumscription 84, hierarchic autoepistemic logic 81,
prioritized default logic 35. In these approaches preferences are handled in an
"external" manner in the following sense: some ordering among defaults is used
to control the generation of the nonmonotonic conclusions. For instance, in the
case of prioritized default logic this information is used to control the generation
of extensions. However, the preference information itself is not expressed in the
logical language.

Here we want to go one step further and represent also this kind of infor-
mation in the language. This makes it possible to reason not only with) but
also about preferences. This is necessary in legal argumentation, for instance,
where preferences are context-dependent, and the assessment of the preferences
among involved conflicting laws is a crucial (if not the most crucial) part of the
reasoning.

The presentation in this section is based on 37. A t reatment of prioritized
logic programs under answer set semantics is described in 38.

5.2 Handling Preferences

In order to handle preferences we need to be able to express preference infor-
mation explicitly. Since we want to do this in the logical language we have to
extend the language. We do this in two respects:

1. we use a set of rule names N together with a naming function name to be
able to refer to particular rules,

2. we use a special (infix) symbol -~ tha t can take rule names as arguments to
represent preferences among rules.

Intuitively, nl -~ n2 where nl and n2 are rule names means the rule with name
nl is preferred over the rule with name n2. T

Note that for historical reasons we follow the convention that the minimal rules are
the preferred ones.

Knowledge Representation with Logic Programs 29

Definition 14 (Prioritized Program).
A prioritized logic program is a pair (R, name) where

- R is a set of rules containing all ground instances of the schemata

NI -< N3 e- NI -< N2,N2 -~ N3

and

where Ni are parameters for names, and
- name a a partial injective naming function that assigns a name n E N to

some of the rules in R.

Note that not all rules do necessarily have a name. The reason is that names
will only play a role in conflict resolution among defeasible rules, i.e., rules with
weakly negated preconditions. For this reason names for strict rules, i.e., rules
in which the symbol not does not appear, won't be needed.

In our examples we leave the instances of the schemata for -< implicit. We
also assume that N and the function n a m e are given implicitly. We write:

ni : e + - a l , . . . , a n , not b l , . . .~ not bm

to express tha t name(c +-- e l , . . . , an, not b l , . . . , not bin) = ni.
Before introducing our new definitions we would like to point out how we

want the new explicit preference information to be used. Our approach follows
two principles:

1. We want to extend well-founded semantics, i.e. we want that every W F S * -
conclusion remains a conclusion in the prioritized approach.

2. We want to use preferences to solve conflicts whenever this is possible without
violating principle 1.

Let us first explain what we mean by conflict here. Rules may be conflicting
in several ways. In the simplest case two rules may have complementary literals
in their heads. We call this a type-I conflict.

Definition 15 (T y p e - I Conf l i c t) .
Let rl and r2 be two rules. We say rl and r2 are type-I conflicting iff the head
of rl is the complement of the head of r2.

Conflicts of this type may render the set of well-founded conclusions inconsistent,
but do not necessarily do so. If, for instance, a precondition of one of the rules
is not derivable or a rule is defeated the conflict is implicitly resolved. In tha t
case the preference information will simply be neglected. Consider the following
program P1:

nl : b +-- not c
n2 : -~b +-- not b
n3 : n2 -~ nl

30 Gerhard Brewka and Jfirgen Dix

There is a type-I conflict between nl and n2. Although the explicit preference
information gives precedence to n2 we want to apply nl here to comply with the
first of our two principles. Technically, this means that we can apply a preferred
rule r only if we are sure that r 's application actually leads to a situation where
literals defeating r can no longer be derived.

The following two rules exhibit a different type of conflict:

a +- not b
b +-- not a

The heads of these rules are not complementary. However, the application of one
rule defeats the other and vice versa. We call this a direct type-II conflict. Of
course, in the general case the defeat of the conflicting rule may be indirect, i.e.
based on the existence of additional rules.

D e f i n i t i o n 16 (T y p e - I I Conf l i c t) .
Let rl and r2 be rules, R a set of rules. We say rl and r2 are t ype-H conflicting
wrt. R i

1. C l (R) nei ther defeats rl nor r2,
2. C I (R + r l) defeats r2, and
3. C l (R + r2) defeats rl

Here R + r abbreviates R U {r}. A direct type-II conflict is thus a type-II conflict
wrt. the empty set of rules. Note that the two types of conflict are not disjoint,
i.e. two rules may be in conflict of both type-I and type-II. Consider the following
program P2, a slight modification of P1:

nl : b <-- not c, not -~b
n2 : -~b +- not b
n3 : n2 -'< nl

Now we have a type-II conflict between nl and n2 (more precisely, a direct
type-II and a type-I conflict) tha t is not solvable by the implicit mechanisms of
well-founded semantics alone. It is this kind of conflict tha t we t ry to solve by
the explicit preference information. In our example n2 will be used to derive -lb.
Note that now the application of n2 defeats nl and there is no danger that a
literal defeating n2 might become derivable later. Generally, a type-II conflict
between r l and r2 (wrt. some undefeated rules of the program) will be solved
in favour of the preferred rule, say r l , only if applying r l excludes any further
possibility of deriving an rl-defeating literal.

After this motivating discussion let us present the new definitions. Our treat-
ment of priorities is based on a weakening of the notion of X-safeness (Defini-
tion 13 on page 27). In Section 4 we considered a rule r as X-safe whenever
there is no proof for a literal defeating r from the monotonic counterparts of
X-undefeated rules. Now in the context of a prioritized logic program we will
consider a rule r as X-safe if there is no such proof from monotonic counterparts
of a certain subset of the X-undefeated rules. The subset to be used depends on
the rule r and consists of those rules tha t are not "dominated" by r. Intuitively,
r ~ is dominated by r iff r ~ is

Knowledge Representation with Logic Programs 31

1. known to be less preferred than r and
2. defeated when r is applied together with rules tha t already have been estab-

lished to be X-safe.

It is obvious that whenever there is no proof for a defeating literal from all X-
undefeated rules there can be no such proof from a subset of these rules. Rules
tha t were X-safe according to our earlier definition thus remain to be X-safe.
Here are the precise definitions:

Definition 17 (Dominated Rules).
Let P = (R, name) be a prioritized logic program, X a set of literals, Y a set
of rules, and r E R. The set of rules dominated by r wrt. X and Y , denoted
Domx ,y (r) , is the set

{r' E R I name(r) -~ name(r') E X and C l (Y + r) defeats r'}

Note that Domx ,y (r) is monotonic in both X and Y. We can now define the
X-safe rules inductively:

Definition 18 (SAFEPr(P)) .
Let P = (R, name) be a prioritized logic program, X a set of literals. The set of
X-sale rules of P, denoted SAFEPxr(P), is defined as follows: SAFEPxr(P) =

o~ R Ui=o i, where

Ro = O, and for i > O,
Ri = {r e R I r not defeated by CI (Rx \ Domx,R,_l (r))}

Note that X-safeness is obviously monotonic in X. Based on this notion we
introduce a new monotonic operator F~r:

Definition 19 (WFSPr) .
Let P = (R, name) be a prioritized logic program, X a set of literals. The oper-
ator F~ r is defined as follows:

FPr(X) = Cn(SAFEPr(P))

As before we define the (prioritized) well-founded conclusions of P , denoted
WFSPr(P) , as the least fixpoint of F~ r. If a program does not contain preference
information at all, i.e., if the symbol -~ does not appear in R, the new semantics
coincides with W F S since in tha t case no rule can dominate another rule. In
the general case, since the new definition of X-safeness is weaker than the one
used earlier we may have more X-safe rules and for this reason obtain more
conclusions than via F~.

Consider the following prioritized program P:

n~ :b+-- not c
n2 : c ~ not b
n3 : n2 -~ nl

32 Gerhard Brewka and Jiirgen Dix

We first apply T'~ r to the empty set. Besides the instances of the transitivity
and anti-symmetry schema that we implicitly assume only n3 is in SAFESt(P).
We thus obtain

`91 = {n2 -~ nl,--(nl -~ n2)}

We next apply F~ r to ,91. Since n2 -~ nl E 9̀1 we have nl E Domsl,~(n2).
n2 E `gAFE~(P) since CI(Ps~ \ {nl)) does not defeat n2 and we obtain

`92:{n2 ~ n l ,~(n l ~ n2),c}

Further iteration of F~ r yields no new literals, i.e. $2 is the least fixpoint. Note
that c is not a conclusion under the original well-founded semantics.

The following nondeterministic algorithm computes the least fxed point of
F~ r with time complexity of O(n3), where n is the number of rules:

P rocedu re WFS pr
Input : A prioritized logic program P = (R, name) with R = n
Ou tpu t : the least fixed point of F~ r
S0 :=0;
R0 :=~;
for i = 1 to n do

if there is a rule r E Rs~_I \ Ri-1 such that
Cl(Rs~_~ \ Doms~_I,R,_~ (r)) does not defeat r
then Ri := Ri-1 + r; Si := Cn(Ri)
else return Si-1

endfor
end WFS pr

5.3 A Legal Reason ing Example

In this section we show how our approach can be applied to legal reasoning
problems. We will use an example first discussed by Gordon 75.

Example 8 (Legal Reasoning).
Assume a person wants to find out if her security interest in a certain ship is
perfected. She currently has possession of the ship. According to the Uniform
Commercial Code (UCC, w a security interest in goods may be perfected
by taking possession of the collateral. However, there is a federal law called the
Ship Mortgage Act (SMA) according to which a security interest in a ship may
only be perfected by filing a financing statement. Such a statement has not been
filed. Now the question is whether the UCC or the SMA takes precedence in this
case. There are two known legal principles for resolving conflicts of this kind.
The principle of Lex Posterior gives precedence to newer laws. In our case the
UCC is newer than the SMA. On the other hand, the principle of Lex Superior
gives precedence to laws supported by the higher authority. In our case the SMA
has higher authority since it is federal law.

Knowledge Representation with Logic Programs 33

The available information can nicely be represented in our approach. To make
the example somewhat shorter we use the notation

c r not b l , . . . , not bm

as an abbreviation for the rule

e t - - a l , . . . , a n , not b l , . . . , not bin, not c t

where c ~ is the complement of c, i.e. -~c if c is an atom and a if c -- -~a. Such
rules thus correspond to semi-normal or, if m = 0, normal defaults in Reiter's
default logic 103.

We use the ground instances of the following named rules to represent the
relevant article of the UCC, the SMA, Lex Posterior (LP), and Lex Superior
(LS). The symbols dl and d2 are parameters for rule names:

UCC : perfected ~ possession
S M A : -~perfected r ship, -~fin-statement
LP(dl , d2) : dl -~ d2 ~ more-recent(d1, d2)
LS(dl , d2) :d l -g d2 r fed-law(d1), state-law(d2)

The following facts are known about the case and are represented as rules without
body (and without name):

possession
ship
-~ f in-statement
more-recent(U CC, S M A)
fed- law(SMA)
state-law(UCC)

Let's call the above set of literals H. I terated application o f / , ~ r yields the
following sequence of literal sets (in each case S{ = (F~r)i(0)):

S I = H
$2 = $1

The iteration produces no new results besides the facts already contained in
the program. The reason is that UCC and SMA block each other, and that
no preference information is produced since also the relevant instances of Lex
Posterior and Lex Superior block each other. The situation changes if we add
information telling us how conflicts between the latter two are to be resolved.
Assume we add the following information: s

L S (S M A , UCC) -~ LP(UCC, S M A)

s In realistic settings one would again use a schema here. In order to keep the example
simple we use the relevant instance of the schema directly.

34 Gerhard Brewka and Jiirgen Dix

Now we obtain the following sequence:

$1 = H U {LS(SMA, UCC) -~ LP(UCC, SMA),
~LP(UCC, SMA) -< LS(SMA, UCC)}

$2 = $1 U {SMA -< UCC,-,UCC -< S M A)
$3 = $2 U {-.perfected}
& = Ss

This example nicely illustrates how in our approach conflict resolution strategies
can be specified declaratively, by simply asserting relevant preferences among
the involved conflicting rules.

6 Adding Disjunction

In this section we will extend our programs to disjunctive statements. In Knowl-
edge Representation it often occurs that we know A V B V C without being
sure which of these propositions hold. In fact, such a disjunction leaves it open:
there might be states in the world where A holds or B or C or any combination
thereof. Nevertheless, we can have information that A implies D and B implies
D and C implies D from which we would like to derive that D holds for sure.
It has been shown that even with disjunctive programs without negation we can
already express relations which belong to the second level of the polynomial
hierarchy.

Concerning the right semantics for such programs, we axe in the same situ-
ation as in Section 3 - - for positive programs there is general agreement while
for disjunctive programs with default-negation there exist several competing ap-
proaches.

We present in Section 6.1 the generalized closed world assumption introduced
by Minker. In Section 6.2 we show that our definition of WFS from Section 3.3
immediately carries over to the disjunctive case. The original definition of STA-
BLE (Definition 6 on page 20) also carries over - - we present it in Section 6.3.

6.1 G C W A

GCWA was defined by Minker (87) and can bee seen as a refined version of the
CWA introduced by Reiter (102):

D e f i n i t i o n 20 (C W A) .

CWA(DB) = DB U {-~P(t) : DB ~ P (t) } ,

where P(t) is a ground predicate instance.

That is, if a ground term cannot be inferred from the database, its negation is
added to the closure. A weakness of CWA is that already for very simple theories,
like A V B it is inconsistent. Since neither A nor B is derivable, we have to add
both their negations which makes the whole set inconsistent.

Knowledge Representation with Logic Programs 35

GCWA is defined for positive disjunctive programs consisting of rules of the
form

A 1 V . . . V A m +- B 1 , . . . , B , ~

by declaring all the minimal models to be the intended ones:

Definit ion 21 (G C W A) .
The generalized closed world assumption GCWA of P is the semantics given by
the set of all minimal Herbrand models of P:

GCWA(P) :-- Min-MOD(P)

GCWA is very important because it plays the same role for positive disjunc-
tive programs as the least Herbrand model MR does for definite programs.

Note also that as far as we consider deriving positive disjunctions, we stay
entirely within classical logic - - a positive disjunction is true in GCWA if and
only if it follows from the program considered as a classical theory. Therefore
this task can be accomplished be methods and techniques developed in theorem
proving in the last 30 years. In fact this was one of the main starting points of
the DisLoP-project in Koblenz (see Section 7.2).

In Sections 2 and 3 we have introduced the general notion of a semantics and
various principles. Do they carry over to the disjunctive case? Fortunately, the
answer is yes. In addition, GCWA not only satisfies all these properties, it is also
uniquely characterized by them as the next theorem shows (we will introduce
these properties in the next section).

Theorem 8 (Characterization of GCWA, 28).
Let SEM be a semantics satisfying G P P E and Elimination of Tautologies.

a) Then: SEM(P) C_ Min-MOD2-va~(P) for positive disj. programs P.
I.e. any such semantics is already based on 2-valued minimal models. In
particular, GCWA is the weakest semantics with these properties.

b) If SEM is non-trivial and satisfies in addition 9 Isomorphy and Relevance,
then it coincides with GCWA on positive disjunctive programs.

We end this section with the discussion of a well-known example that can
not be handled adequately by Circumscription:

Example 9 (Poole's Broken Arm).
Usually, a person's left arm is useable. But if the left arm is broken, it is an
exception. The same statement holds for the right arm. Suppose that we saw
Fred yesterday with a broken arm but we do not remember if it was the left or
the right one. We also know that Fred can make out a cheque if he has at least

9 See Section 7.1 for the precise definitions of Relevance and Isomorphy.

36 Gerhard Brewka and Jiirgen Dix

one useable arm (he is ambidextrous) but that he is completely disabled if both
arms axe broken. Here is the natural formalization:

left_use(x) +- not ab(left, x)
ab(le f t , x) +-- le ft_brok(x)
right_use(x) +- not ab(right, x)
ab(right, x) +- right_brok(x)
le ft_brok(Fred) V right_brok(Fred)
make_cheque(x) ~ left_use(x)
make_cheque(x) +-- right_use(x)
disabled(x) +-- le ft_brok(x), right_brok(x)

Of course, we expect that Fred is able to make out a cheque even without know-
ing which axm he is actually using. Also we derive that he is not (completely)
disabled.

For general Circumscription, the problem is to rule out the unintended model
where both arms axe broken and Fred is disabled. As we will see later, both
D-WFS and DSTABLE derive that Fred is not disabled but only DSTABLE is
strong enough to also conclude that Fred can make out a cheque.

6.2 D - W F S

Before we can state the definition of D-WFS we have to extend our principles
to disjunctive programs with default-negation. We abbreviate general rules

A1 V . . . V Ak +- B 1 , . . . , B m , not C1 , . . . , not Ca,

by
A +- B +, not 13-

where ,4 := {A1, . . . , Ak}, B + := {B1 , . . . , Bin}, I3- := {C1, . . . , Cn}. We also
generalize our notion of a semantics slightly:

D e f i n i t i o n 22 (O p e r a t o r ~ , S e m a n t i c s S ~) .
By a semantic operator ~ we mean a binary relation between logic programs and
pure disjunctions which satisfies the following three arguably obvious conditions:

1. Right Weakening: If P .. r and r C r then P ~ Ct.
2. Necessarily True: If ,4+-true E P for a disjunction ,4, then P ~ ,4.
3. Necessarily False: I rA ~. Head_atoms(P) 11/or ~-ground atom A, then P

not A.

Given such an operator ~ and a logic program P, by the semantics 8~(P) o/ P
determined by ~ we mean the set of all pure disjunctions derivable by ~ from
P, i.e., Sb~(P) := { e l F ~ r

10 I. e. r is a subdisjunction of r
lz We denote by Head_atoms(P) the set of all (instantiations of) atoms ocurring in

some rule-head of P.

Knowledge Representation with Logic Programs 37

In order to give a unified treatment in the sequel, we introduce the following
notion:

Defini t ion 23 (Invariance of ~ unde r a Trans format ion) .
Suppose that a program transformation Trans : P ~-+ Trans(P) mapping logic
programs into logic programs is given. We say that the operator ~., is invariant
under Trans (or that Trans is a ~-equivalence transformation) iff

P ~ r .'. '.. Trans(P) ~ r

for any pure disjunction r and any program P.

All our principles introduced below can now be naturally extended.

Defini t ion 24 (El imina t ion of Tautologies, N o n - M i n i m a l Rules) .
Semantics S H satisfies a) the Elimination of Tautologies, resp. b) the Elimina-
tion of Non-Minimal Rules iff ~ is invariant under the following transforma-
tions:

a) Delete a rule A +--/3 + A not 13- with A N B + # 0.
b) Delete a rule A +--/3 + A not 13- if there is another rule

A' +-- B +1 A not B -~ with A' C_ A, B +l C_ B +, and 13-' C B - .

Our partial evaluation principle has now to take into account disjunctive heads.
The following definition was introduced independently by Sakama/Seki and
Srass/Dix (22, 28, 106):

Defini t ion 25 (G P P E) .
Semantics 8b~ satisfies GPPE iff it is invariant under the following transfor-
mation: Replace a rule .4 +- B + A not 13- where B + contains a distinguished
atom B by the rules

A U (A , \ { B }) +-- (B + \ { B }) U B + A n o t (B - U B ~ -) (i = l , . . . , n)

where Ai +-- B + A not B~- (i = 1, . . . , n) are all the rules with B E Ai.

Note that we are free to select a specific positive occurrence of an atom B
and then perform the transformation. The new rules are obtained by replacing
B by the bodies of all rules r with head literal B and adding the remaining head
atoms of r to the head of the new rule.

Here is the analogue of Principle 04 on page 15:

Defini t ion 26 (Posit ive and Negat ive Reduc t ion) .
Semantics 8b~ satisfies a) Positive, resp. b) Negative Reduction iff ~ is invari-
ant under the following transformations:

a) Replace ,4 +-- B + A not 13- by .A +--/3 + A not (13- fl Head_atoms(P)).
b) Delete A +-- B + A not B - if there is a rule .4 ~ +- true with .4 ~ C_ 13-.

Now the definition of a disjunctive counterpart of WFS is straightforward:

38 Gerhard Brewka and Jfirgen Dix

Definit ion 27 (D - W F S) .
There exists the weakest semantics satisfying positive and negative Reduction,
GPPE, Elimination of Tautologies and non-minimal Rules. We call this seman-
tics D- WFS.

As it was the case for WFS, our calculus of transformations is also confluent
(25,27).

Theorem 9 (Confluent Calculus for D-WFS, 29).
The calculus consisting of our four transformations is confluent and terminating
for propositional programs. L e. we always arrive at an irreducible program, which
is uniquely determined. The order of the transformations does not matter.

Therefore any program P is associated a unique normalform res(P). The
disjunctive wellfounded semantics of P can be read off from res(P) as follows

r E D-WFS(P) ~ there is ,4 C r with ,4 ~- true E res(P) or
there is not A E ~b and A r Head_atoms(res(P)).

Note that the original definition of WFS, or any of its equivalent characteriza-
tions, does not carry over to disjunctive programs in a natural way.

Let us see how Example 9 on page 35 is handled by D-WFS. Applying G P P E
and Reduction gives us the following residual program (we consider just the
F r ed-instantiations) :

left_use(F) +-
ab(left, F) V right_brok(F) +--
right_use(F) +--
ab(right, F) V left_brok(F) +-
left_brok(F) V right_brok(F) +-
make_cheque(F) ~-
make_cheque(F) +--

not ab(left, F)

not ab(right, F)

not ab(le f t , F)
not ab(right, F)

Therefore we derive not disabled(F), because it does not appear in any head of
the residual program. All the remaining atoms are undefined.

Two properties of D-WFS are worth noticing

- For positive disjunctive programs, D-WFS coincides with GCWA.
- For non-disjunctive programs with negation, D-WFS coincides with WFS.

6.3 DSTABLE

Unlike the wellfounded semantics, the original definition of stable models carries
over to disjunctive programs quite easily:

Definit ion 28 (D S T A B L E) .
N is called a stable model 12 of P if and only if N E Min-Mod(Pg).

12 Note that we only consider Herbrand models.

Knowledge Representation with Logic Programs 39

In the last definition pN is the positive disjunctive program obtained from P by
applying the Gelfond/Lifschitz transformation (as introduced before Definition 6
on page 20 - - its generalization to disjunctive programs is obvious).

Analogously to D-WFS the following two properties of DSTABLE hold:

- For positive disjunctive programs, DSTABLE coincides with GCWA.
- For non-disjunctive programs with negation, DSTABLE coincides with STA-

BLE.

What about our transformations introduced to define D-WFS? Do they hold
for DSTABLE? Yes, they are indeed true. The most difficult proof is the one for
GPPE. It was proved in 26,106 independently that stable models are preserved
under GPPE. Moreover, Brass/Dix proved in 24 that STABLE can be almost
uniquely determined by GPPE:

Theorem 10 (Characterization of DSTABLE, 28).
Let SEM be a semantics satisfying GPPE, Elimination of Tautologies, and Elim-
ination of Contradictions. Then: SEM(P) C_ STABLE(P).

Moreover, DSTABLE is the weakest semantics satisfying these properties.

DSTABLE is stronger than D-WFS as can be seen from Example 9 on
page 35. There we have exactly two stable models

1. left_use(F), not ab(left, F), ab(right, F), not right_use(F),
right_brok(F), not le ft_brok(F), make_cheque(F), not disabled(F),

2. right_use(F), not ab(right, F), ab(left, F), not left_use(F),
left_brok(F), not right_brok(F), make_cheque(F), not disabled(F).

In all of them, Fred is not disabled and can make out a cheque.
Of course, DSTABLE inherits the shortcomings of STABLE such as incon-

sistency and no goal-orientedness.

7 W h a t D o W e W a n t a n d W h a t Is I m p l e m e n t e d ?

In this part we first consider the question Is there an optimal semantics ? (Sec-
tion 7.1) and give in Section 7.2 an overview of all the existing implementations
we are aware of. We also describe theoretical approaches that have not yet been
implemented.

7.1 What Is the Best Semantics?

Most probably there is no definite answer to the question in the title. Different
knowledge representation tasks may ask for different semantics. Some might be
better suited in special domains than others. What are reasonable properties
that semantics should be checked against?

While many people defined in the last years new semantics by considering
only few examples and appealing to their own personal intuitions they had about

40 Gerhard Brewka and Jiirgen Dix

how these few examples should be handled, Dix tried to adjust and investigate
abstract properties known in general nonmonotonic reasoning to semantics of
logic programs (56, 58-60). He showed for example that WFS is cumulative
and rational and that a semantics defined independently by Schlipf and Dix is
the weakest extension of WFS satisfying Cut and Supraclassicality.

Besides such properties (which he calls strong) he defined also weak properties
- - these are conditions that any reasonable semantics should satisfy (57, 60).
The principles we have introduced in Sections 2, 3 belong to this sort. Let us
take a closer look into some weak properties already mentioned (but not yet
defined). We start with a property that is satisfied for any semantics we know:

Definition 29 (Isomorphy).
A semantics SEM satisfies Isomorphy, if and only if

SEM(Z(P)) = Z(SEM(P))

/or all programs P and isomorphisms Z on the Herbrand base Bp.

Isomorphy formalizes the intuition that a renaming of the program should have
no influence on the semantics, as long as we also apply this same renaming to
the semantics.

The next property gives a formal definition of the notion Goal-Orientedness.
To state these conditions, we need the classical notion of the Dependency-Graph
and the two definitions

- dependencies_of(X) := {A : X depends on A}, and
- rel_rul(P, X) is the set of relevant rules of P with respect to X, i.e. the set

of rules that contain an A E dependencies_of(X) in their head.

Given any semantics SEM and a program P, it is perfectly reasonable that
the truthvalue of a literal L, with respect to SEM(P), only depends on the
subprogram formed from the relevant rules of P with respect to L. 13 This idea
is formalized by:

Definition 30 (Relevance).
The principle of Relevance states: L E S E M (P) iff L E SEM(rel_rul(P, L)).

Note that the set of relevant rules of a program P with respect to a literal L con-
tains all rules, that could ever contribute to L's derivation (or to its nonderivabil-
ity). In general, L depends on a large set of atoms: dependencies_of(L) := {A :
L depends on A}. But rules that do not contain these atoms in their heads,
will never contribute to their derivation or non-derivation. Therefore, these rules
should not affect the meaning of L in P. STABLE does not satisfy this principle.
This is due to the nonexistence of stable models by adding a clause "c e- not c"
to a program.

We have already introduced GPPE above. In fact, even a weaker property is
not satisfied for the semantics defined by Minker and his group:

la Let dependencies_of(not X) := dependencies_of(X), and rel_rul(P, not X) :=
rel_rul(P, X).

Knowledge Representation with Logic Programs 41

Example 10 (Extension-by-Definit ion, 56).
We consider the following two programs:

P a W F S : P +-- not b
a ~-- not b
b+--c
c +- p, not a

P a w F s c : P +-- not b
a +-- not b
b +- p, not a
v +- p, not a

G W F S (P G w F S) entai ls not c, because M i n - M O D (P G w F s) = { {p, a}, (b }) and
thus also (by simple negat ion-as-fa i lure reasoning) not b, p and a. Also we have
the ident i ty M i n - M O D (P c w F s o) = ((p, a}, (b) } bu t negat ion-as- fa i lure can not

be applied like before. Therefore G W F S (P G w F s o) does no t entai l not b, nor p

nor a.

P a W F S c partial evaluates PaWFS: the last bu t one clause was t r ans fo rmed
in to ano ther one by expand ing the defini t ion of c: Obviously, a semant ics should
assign the same mean ing to these programs: un fo r t una t e l y G W F S does not!

Typica l results of Dix are

- W F S is the weakest semantics sat isfying some of these weak propert ies ,
- W F S can be un ique ly character ized if some s t rong proper t ies are added.

Properties of Logic-Programming Semantics

Semantics Reference
comp Cla78
GCWA Min82
WGCWA RosTop88
DSTABLEGelLif91
WFS vGeld.eta188
STAr Prz91
STATIC Prz95
D-WFS BraDix95
DWFS Dix92
Str. WFS Ros92
WD-WFS BraDix95
WDWFS Dix92
PMS SakIno94

Domain Taut. G P P E Red. NMin. Rel.
Nondis.- - - - �9 �9 �9 - - - -
Pos. �9 �9 �9 �9 �9
Pos. �9 �9 �9
Dis. �9 �9 �9 �9
Nondis. �9 �9 �9 �9 �9
Dis. �9 �9 �9 �9 �9
Dis. �9 �9 �9 �9 �9
Dis. �9 �9 �9 �9 �9
Dis. �9 �9 �9 �9 �9
Dis. - - �9 �9
Dis. �9 �9 �9
Dis. �9 �9 �9
Dis. - - �9

T a b l e l . Semantics and Their Equivalence-Transformations

We conclude wi th Table 1: an overview of the proper t ies of some semant ics

men t ioned above.
The bad propert ies of the PMS (failure of Relevance) s tem from the fact

t h a t it was original ly based on s table models. Bu t the unde r ly ing idea of P M S is
to t r ans fo rm dis junct ive programs in to non-d is junc t ive ones and then app ly ing

42 Gerhard Brewka and Jfirgen Dix

a semantics for non-disjunctive programs. By choosing semantics different from
STABLE, PMS inherits other properties (see 105).

7.2 Query-Answering Systems and Implementations

In this section we give a rough overview of what semantics have been imple-
mented so far and where they are available. As already mentioned our NMR-
semantics are undecidable in general. Nevertheless we think it is very important
to have running systems that

1. can handle programs with free variables, and
2. are Goal-Oriented.

To ensure completeness (or termination) we need then additional requirements
like aUowedness (to prevent floundering, see Section 3.1) and no function sym-
bols.

Although these restrictions ensure the Herbrand-universe to be finite (and
thus we are really considering a propositional theory) we think that such a system
has great advantages over a system that can just handle ground programs. For
a language/:, the fully instantiated program can be quite large and difficult to
handle effectively.

The goal-orientedness (or Relevance as introduced in Section 7.1) is also
important - - after all this was one reason of the success of SLD-Resolution. As
noted above, such a goal-oriented approach is not possible for STABLE.

LP-Semantics Various commercial PROLOG-systems perform variants of SLDNF-
Resolution. Chan's constructive negation has also been implemented as part of
the master-theses 86, 117.

Currently, a library of implemented logic programming systems and interest-
ing test-cases for such systems is collected as a project of the artificial intelligence
group at Koblenz. We refer to ht tp: / /www, uni -koblenz , de /ag-k i /LP/>.

Non-Disjunctive NMR-Semantics There are many theoretical papers that
deal with the problem of implementation (21, 80, 53, 71) but only few running
systems. The problem of handling and representing ground programs given a
non-ground one has also been adressed 78, 79, 69.

In 17, 18 the authors showed how the problem of computing stable models
can be transformed to an Integer-Linear Programming Problem. This has been
extended in 64 to disjunctive programs.

Inoue et. al. show in 77 how to compute stable models by transforming
programs into propositional theories and then using a model-generation theorem
prover.

In Berne, Switzerland, a group around G. J" ager is building a non-monotonic
reasoning system which incorporates various monotonic and non-monotonic log-
ics. We refer to http://lwbwww, unibe, ch: 8080/LWBinfo. html.

Knowledge Representation with Logic Programs 43

Extended logic programs under the well-founded semantics are considered
by Pereira and his colleagues: 97, 1, 3. The REVISE system, which deals with
contradiction removal pro paraconsistent programs in this semantics, can be
found in <http://www. uni-koblenz, de/ag-ki/LP/> too.

In 96, an implementation of WFS and STABLE with a special eye on com-
plexity is described.

The most advanced system has been implemented by David Warren and his
group in Stony Brook based on OLDT-algorithm of 108. They first developed
a meta-interpreter (SLG, see 49) in PROLOG and then directly modified the
WAM for a direct implementation of WFS (XSB). They use tabling-methods and
a mixture of Top-Down and bottom-up evaluation to detect loops. Their system
is complete and terminating for non-floundering DATALOG. It also works for
general programs but termination is not guaranteed. This system is described in
47, 46, 48, and is available by anonymous ftp from f t p . cs. sunysb, edu/pub/
XSB/.

Dis junct ive N M R - S e m a n t i c s There are theoretical descriptions of imple-
mentations that have not yet been implemented: 72, 90, 52. Also Sakama and
Seki describe an approach for first-order disjunctive programs (107).

Here are some implemented systems. Inoue et. al. show in 77 how to compute
stable models for extended disjunctive programs in a bottom-up-fashion using a
theorem prover.

The approach of Bell et. al. (93) was used by Dix/Miiller to implement
versions of the stationary semantics of Przymusinski (101): 92, 63, 91.

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DAT-
ALOG programs (23114). An implementation of static semantics is described in
33 15

Seipel has implemented in his DisLog-system various (modified versions of)
semantics of Minker and his group. His system is publicly available at the
URL http://sunwww, informatik, uni-tuebingen, de: 8080/dislog/dislog.
t a r . Z. However we again point to the very irregular behaviour of these semantics
illustrated by Example 10 on page 41.

Finally, there is the DisLoP project undertaken by the Artificial Intelligence
Research Group at the University of Koblenz and headed by J. Dix and U. Fur-
bach (54, 8, 9). This project aims at extending certain theorem proving con-
cepts, such as restart model elimination 13 and hyper tableaux 14 calculi, for
disjunctive logic programming. The hyper tableaux calculus can handle positive
queries with respect to positive disjunctive logic programs and seems to facilitate
minimal model generation. Restart model elimination calculus does not use any
contrapositives of the given clauses and thus allows for their procedural reading.
Moreover, it is answer complete for positive queries 15. Thus, they are suitable
for implementing an interpreter for positive progams and the DisLoP system
extends this further for non-monotonic negations too.

14 ftp://ftp, informatik, uni-hannover, de/software/index, html
15 ftp://ftp, informatik, uni-hannover, de/software/static/static, html

44 Gerhard Brewka and Jfirgen Dix

Currently, DisLoP system can perform minimal model reasoning based on
GCWA, WGCWA. Minimal model reasoning is an important problem to tackle,
since any well-known semantics for negation is a conservative extension of that.
DisLoP can perform minimal model reasoning in both top-down and bottom-
up manners. The bottom-up approach employs the hyper tableaux calculus to
generate potential minimal models and then uses a novel technique to check
the minimality of the generated model without any reference to other models.
This approach is described in 94, 95. The top-down approach is based on an
abductive framework studied in 7. This introduces an inference rule, negation
as failure to explain, which allows us to assume the negation of a sentence if
there are no abductive explanations for that. The DisLoP system uses a mod-
ified restart model elimination calculus to generate abductive explanations of
the given sentence and employs negation-as-failure-to-explain inference rule for
minimal model reasoning.

This system can be extended to handle non-monotonic semantics such as
D-WFS, STATIC etc. In particular, an implementation of D-WFS for general
disjunctive programs which works in polynomial space is available (32). Cur-
rently, an extension to first-order programs is on its way (65, 66). Information
on the DisLoP project and related publications can be obtained from the W W W
page <http://www. uni-koblenz, de/ag-ki/DLP/>.

An important outcome of the Dagstuhl Seminar 9627 (62) was to construct
a web page to collect and disseminate information on various logic programming
systems that concentrate on non-monotonic aspects (different kinds of nega-
tion, disjunction, abduction etc.). This web page is actively maintained at the
URL < h t t p : / / w w w . u n i - k o b l e n z . d e / a g - k i / L P / > . In addition the Logic Pro-
gramming and Nonmonotonic Reasoning-conference 1997 (55) contains a spe-
cial track on implementations and working systems.

R e f e r e n c e s

1. J. J. Alferes, Carlos Viegas Daxnasio, and L. M. Pereira. A logic programming
system for non-monotonic reasoning. Journal of Automated Reasoning, 14(1):93-
147, 1995.

2. Jose Julio Alferes and Luiz Moniz Pereira. An argumentation theoretic seman-
tics based on non-refutable falsity. In J. Dix, L. Pereira, and T. Przymusinski,
editors, Nonmonotonic Extensions of Logic Programming, LNAI 927, pages 3-22.
Springer, Berlin, 1995.

3. Jose Julio Alferes and Luiz Moniz Pereira, editors. Reasoning with Logic Pro-
gramming, LNAI 1111, Berlin, 1996. Springer.

4. Jose Julio Alferes, Luiz Moniz Pereira, and Teodor Przymusinski. Strong and
Explicit Negation in Non-Monotonic Reasoning and Logic Programming. In J.J
Alferes, L.M. Pereira, and E. Orlowska, editors, Logics in Artificial Intelligence
(JELIA '96), LNCS 1126, pages 143-163. Springer, 1996.

5. Krzysztof R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, chapter 10, pages 493-574. Elsevier Science
Publishers, 1990.

Knowledge Representation with Logic Programs 45

6. Krzysztof R. Apt and Roland N. Bol. Logic Programming and Negation: A Survey.
Journal o/Logic Programming, 19-20:9-71, 1994.

7. Chandrabose Aravindan. An abductive framework for negation in disjunctive logic
programming. In J. J. Alferes, L. M. Pereira, and E. Orlowska, editors, Proceedings
of Joint European workshop on Logics in AI, number 1126 in Lecture Notes in
Artificial Intelligence, pages 252-267. Springer-Verlag, 1996. A related report is
available on the web from <http://www.uni-koblenz.de/,.,arvind/papers/>.

8. Chandrabose Aravindan, Jiirgen Dix, and Ilkka Niemel~i. Dislop: A research
project on disjunctive logic programming. AI Communications, 10(3/4):151-165,
1997.

9. Chandrabose Aravindan, Jiirgen Dix, and Ilkka Niemel~i. DisLoP: Towards a
Disjunctive Logic Programming System. In J. Dix, U. Furbach, and A. Nerode,
editors, Logic Programming and Non-Monotonic Reasoning, Proceedings of the
Fourth International Conference, LNAI 1265, pages 342-353, Berlin, June 1997.
Springer.

10. Chitta Baral and Michael Gelfond. Logic Programming and Knowlege Represen-
tation. Journal of Logic Programming, 19-20:73-148, 1994.

11. Chitta Baral and V.S. Subrahmanian. Dualities between Alternative Semantics
for Logic Programming and Non-monotonic Reasoning. In Anil Nerode, Wiktor
Marek, and V. S. Subrahmanian, editors, Logic Programming and Non-Monotonic
Reasoning, Proceedings of the first International Workshop, pages 69-86, Cam-
bridge, Mass., July 1991. Washington D.C, MIT Press.

12. Chitta Baral and V.S. Subrahmanian. Stable and Extension Class Theory for
Logic Programs and Default Logics. Journal of Automated Reasoning, 8, No.
3:345-366, 1992.

13. P. Banmgartner and U. Furbach. Model Elimination without Contrapositives and
its Application to PTTP. Journal of Automated Reasoning, 13:339-359, 1994.
Short version in: Proceedings of CADE-12, Springer LNAI 814, 1994, pp 87-101.

14. P. Baumgartner, U. Furbach, and I. Niemel~. Hyper Tableaux. In Proc. JELIA
96, number 1126 in LNAI. European Workshop on Logic in AI, Springer, 1996.
(Long version in: Fachberichte Informatik, 8-96,'Universit~t Koblenz-Landau).

15. P. Baumgartner, U. Furbach, and F. Stolzenburg. Model Elimination, Logic Pro-
gramming and Computing Answers. In Proceedings of IJCAI '95, 1995. (to ap-
pear, Long version in: Research Report 1/95, University of Koblenz, Germany).

16. Catril Beeri and Raghu Ramakrishnan. On the power of magic. The Journal of
Logic Programming, 10:255-299, 1991.

17. Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Implement-
ing Stable Semantics by Linear Programming. In Luis Moniz Pereira and Anil
Nerode, editors, Logic Programming and Non-Monotonic Reasoning, Proceedings
of the Second International Workshop, pages 23-42, Cambridge, Mass., July 1993.
Lisbon, MIT Press.

18. Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. Mixed Inte-
ger Programming Methods for Computing Non-Monotonic Deductive Databases.
Journal of the ACM, 41(6):1178-1215, November 1994.

19. Nicole Bidoit and Christine Froidevaux. General logical Databases and Programs:
Default Logic Semantics and Stratification. Information and Computation, 91:15-
54, 1991.

20. Nicole Bidoit and Christine Froidevanx. Negation by Default and unstratifiable
logic Programs. Theoretical Computer Science, 78:85-112, 1991.

46 Gerhard Brewka and Jfirgen Dix

21. Roland N. Bol and L. Degerstedt. Tabulated resolution for well-founded seman-
tics. In Proc. Int. Logic Programming Symposium'g3, Cambridge, Mass., 1993.
MIT Press.

22. Stefan Brass and Jiirgen Dix. A disjunctive semantics based on unfolding and
bottom-up evaluation. In Bernd Wolfmger, editor, Innovationen bei Rechen- und
Kommunikationssystemen, (IFIP '94-Congress, Workshop FG2: Disjunctive Logic
Programming and Disjunctive Databases), pages 83-91, Berlin, 1994. Springer.

23. Stefan Brass and Jiirgen Dix. A General Approach to Bottom-Up Computation of
Disjunctive Semantics. In J. Dix, L. Pereira, and T. Przymusinski, editors, Non-
monotonic Extensions of Logic Programming, LNAI 927, pages 127-155. Springer,
Berlin, 1995.

24. Stefan Brass and Jfirgen Dix. Characterizations of the Stable Semantics by Partial
Evaluation. In A. Nerode, W. Marek, and M. TruszczyIiski, editors, Logic Pro-
gramming and Non-Monotonic Reasoning, Proceedings of the Third International
Conference, LNCS 928, pages 85-98, Berlin, June 1995. Springer.

25. Stefan Brass and Jfirgen Dix. D-WFS: A Confluent calculus and an Equivalent
Characterization. Technical Report TR 12/95, University of Koblenz, Department
of Computer Science, Rheinau 1, September 1995.

26. Stefan Brass and Jiirgen Dix. Disjunctive Semantics based upon Partial and
Bottom-Up Evaluation. In Leon Sterling, editor, Proceedings of the 12th Int.
Conf. on Logic Programming, Tokyo, pages 199-213. MIT Press, June 1995.

27. Stefan Brass and Jfirgen Dix. Characterizing D-WFS: Confluence and Iterated
GCWA. In L.M. Pereira J.J. Alferes and E. Orlowska, editors, Logics in Artificial
Intelligence (JELIA '9fi), LNCS 1126, pages 268-283. Springer, 1996. (Extended
version will appear in the Journal of Automated Reasoning in 1998.).

28. Stefan Brass and Jfirgen Dix. Characterizations of the Disjunctive Stable Seman-
tics by Partial Evaluation. Journal of Logic Programming, 32(3):207-228, 1997.
(Extended abstract appeared in: Characterizations of the Stable Semantics by
Partial Evaluation LPNMR, Proceedings of the Third International Conference,
Kentucky, pages 85-98, 1995. LNCS 928, Springer.).

29. Stefan Brass and Jfirgen Dix. Characterizations of the Disjunctive Well-founded
Semantics: Confluent Calculi and Iterated GCWA. Journal of Automated Rea-
soning, 20(1):143-165, 1998. (Extended abstract appeared in: Characterizing D-
WFS: Confluence and Iterated GCWA. Logics in Artificial Intelligence, JELIA
'g6, pages 268-283, 1996. Springer, LNCS 1126.).

30. Stefan Brass and Jfirgen Dix. Semantics of (Disjunctive) Logic Programs Based on
Partial Evaluation. Journal of Logic Programming, accepted for publication, 1998.
(Extended abstract appeared in: Disjunctive Semantics Based upon Partial and
Bottom-Up Evaluation, Proceedings of the 12-th International Logic Programming
Conference, Tokyo, pages 199-213, 1995. MIT Press.).

31. Stefan Brass, Jiirgen Dix, Burkhard Freitag, and Zukowski. Transformation-based
bottom-up computation of the well-founded model. Journal of Logic Program-
ming, to appear, 1999.

32. Stefan Brass, Jfirgen Dix, Ilkka Niemels and Teodor. C. Przymusinski. A Com-
parison of the Static and the Disjunctive Well-founded Semantics and its Imple-
mentation. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Sixth Interna-
tional Conference (KR '98), pages 74-85. San Francisco, CA, Morgan Kaufmann,
May 1998. appeared also as TR 17/97, University of Koblenz.

Knowledge Representation with Logic Programs 47

33. Stefan Brass, Jiirgen Dix, and Teodor. C. Przymusinski. Super Logic Programs.
In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifth International Conference
(KR '96), pages 529-541. San Francisco, CA, Morgan Kaufmann, 1996.

34. Stefan Brass, Ulrich Zukowski, and Burkhardt Freitag. Transformation Based
Bottom-Up Computation of the Well-Founded Model. In J. Dix, L. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, LNAI
1216, pages 171-201. Springer, Berlin, 1997.

35. G. Brewka. Adding priorities and specificity to default logic. In Logics in Artificial
Intelligence, Proc. JELIA-94, York. Springer, 1994.

36. Gerd Brewka, Jiirgen Dix, and Kurt Konolige. Nonmonotonic Reasoning: An
Overview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA, 1997.

37. Gerhard Brewka. Well-founded semantics for extended logic programs with dy-
namic preferences. Journal of Artificial Intelligence Research, 4:19-36, 1996.

38. Gerhard Brewka and Thomas Eiter. Preferred answer sets. In Anthony Cohn,
Lenhart Schubert, and Stuart Shapiro, editors, Proceedings of the 8th Conference
on Principles of Knowledge Representation and Reasoning, Trent, Italy, pages
86-97. Morgan Kaufmann, 1998.

39. Franqois Bry. Query evaluation in recursive databases: bottom-up and top-down
reconciled. Data ~ Knowledge Engineering, 5:289-312, 1990.

40. M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size of a revised
knowledge base. In PODS '95, pages 151-162, 1995.

41. Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is intractability of non-
monotonic reasoning a real drawback? Artificial Intelligence Journal, 88:215-251,
1996.

42. Marco Cadoli, Francesco M. Donini, Marco Schaerf, and Riccardo Silvestri. On
compact representations of propositional circumscription. Theoretical Computer
Science, 182:183-202, 1997. (Extended abstract appeared in: On Compact Repre-
sentations of Propositional Circumscription. STAGS '95, pages 205-216, 1995.).

43. L. Cavedon and J.W. Lloyd. A Completeness Theorem for SLDNF-Resolution.
Journal of Logic Programming, 7:177-191, 1989.

44. David Chan. Constructive negation based on the completed database. In Proc.
1988 Conf. and Symp. on Logic Programming, pages 111-125, September 1988.

45. David Chan and Mark Wallace. An Experiment with programming using pure
Negation. Technical Report TR, ECRC, July 1989.

46. Weidong Chen, Terrance Swift, and David S. Warren. Efficient Top-Down Com-
putation of Queries under the Well-Founded Semantics. Journal of Logic Pro-
gramming, 24(3):219-245, 1995.

47. Weidong Chen and David S. Warren. A Goal Oriented Approach to Computing
The Well-founded Semantics. Journal of Logic Programming, 17:279-300, 1993.

48. Weidong Chen and David S. Warren. Computing of Stable Models and its In-
tegration with Logical Query Processing. IEEE Transactions on Knowledge and
Data Engineering, 17:279-300, 1995.

49. Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General
Logic Programs. Journal of the ACM, 43(1):20-74, January 1996.

50. Keith L. Clark. Negation as Failure. In H. Gallalre and J. Minker, editors, Logic
and Data-Bases, pages 293-322. Plenum, New York, 1978.

51. A. Colmeraner, H. Kanoui, R. Pasero, and P. Roussel. Un syst~me de commu-
nication homme-machine en franw Technical report, Groupe de Intelligence
Artificielle Universite de Aix-Marseille II, 1973.

48 Gerhard Brewka and Jiirgen Dix

52. Stefania Costantini and Gaetano A. Lanzarone. Static Semantics as Program
Transformation and Well-founded Computation. In J. Dix, L. Pereira, and
T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, LNAI
927, pages 156-180. Springer, Berlin, 1995.

53. Lars Degerstedt and Ulf Nilsson. Magic Computation of Well-founded Semantics.
In J. Dix, L. Pereira, and T. Przymusinski, editors, Nonmonotonic Extensions of
Logic Programming, LNAI 927, pages 181-204. Springer, Berlin, 1995.

54. J. Dix and U. Furbach. The DFG-Project DisLoP on Disjunctive Logic Program-
ming. Computational Logic, 2(2):89-90, 1996.

55. J. Dix, U. Furbach, and A. Nerode, editors. Logic Programming and Nonmono.
tonic Reasoning, LNAI 1265, Berlin, 1997. Springer.

56. Jiirgen Dix. Classifying Semantics of Logic Programs. In Anil Nerode, Wiktor
Marek, and V. S. Subrahmanian, editors, Logic Programming and Non-Monotonic
Reasoning, Proceedings of the first International Workshop, pages 166-180, Cam-
bridge, Mass., July 1991. Washington D.C, MIT Press.

57. Jiirgen Dix. A Framework for Representing and Characterizing Semantics of
Logic Programs. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference (KR '92), pages 591-602. San Mateo, CA, Morgan Kaufmann, 1992.

58. Jiirgen Dix. Classifying Semantics of Disjunctive Logic Programs. In K. R. Apt,
editor, LOGIC PROGRAMMING: Proceedings of the 1992 Joint International
Conference and Symposium, pages 798-812, Cambridge, Mass., November 1992.
MIT Press.

59. Jiirgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: I.
Strong Properties. l~'~ndamenta Informaticae, XXII(3):227-255, 1995.

60. Jiirgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: II.
Weak Properties. Fundamenta Informaticae, XXII(3):257-288, 1995.

61. Jiirgen Dix. Semantics of Logic Programs: Their Intuitions and Formal Proper-
ties. An Overview. In Andre Fuhrmann and Hans Rott, editors, Logic, Action
and Information - Essays on Logic in Philosophy and Artificial Intelligence, pages
241-327. DeGruyter, 1995.

62. Jiirgen Dix, Donald Loveland, Jack Minker, and David. S. Warren. Disjunctive
Logic Programming and databases: Nonmonotonic Aspects. Technical Report
Dagstuhl Seminar Report 150, IBFI GmbH, Schlot Dagstuhl, 1996.

63. Jiirgen Dix and Martin Miiller. Abstract Properties and Computational Complex-
ity of Semantics for Disjunctive Logic Programs. In Proc. of the Workshop W1,
Structural Complexity and Recursion-theoretic Methods in Logic Programming,
following the JICSLP '92, pages 15-28. H. Blair and W. Marek and A. Nerode
and J. Remmel, November 1992. also available as Technical Report 13/93, Uni-
versity of Koblenz, Department of Computer Science.

64. Jiirgen Dix and Martin Miiller. Implementing Semantics for Disjunctive Logic
Programs Using Fringes and Abstract Properties. In Luis Moniz Pereira and Anil
Nerode, editors, Logic Programming and Non-Monotonic Reasoning, Proceedings
of the Second International Workshop, pages 43-59, Cambridge, Mass., July 1993.
Lisbon, MIT Press.

65. Jiirgen Dix and Frieder Stolzenburg. Computation of Non-Ground Disjunctive
Well-Founded Semantics with Constraint Logic Programming (preliminary re-
port). In J. Dix, L. Pereira, and T. Przymusinski, editors, Nonmonotonic Exten-
sions of Logic Programming, LNAI 1216, pages 202-226. Springer, Berlin, 1997.

Knowledge Representation with Logic Programs 49

66. Jiirgen Dix and Frieder Stolzenburg. A Framework to incorporate Nonmonotonic
Reasoning into Constraint Logic Programming. Journal of Logic Programming,
35(1,2,3):5--37, 1998. Special Issue on Constraint Logic Programming, Guest
Editors: Kim Marriott and Peter Stuckey.

67. Wlodzimierz Drabent. What is failure? A constructive approach to negation. Acta
Informatica, 32(1):27-29, 1994.

68. P. M. Dung. On the relations between stable and wellfounded semantics of logic
programs. Theoretical Computer Science, 105:7-25, 1992.

69. T. Eiter, J. Lu, and V. S. Subrahmanian. Computing Non-Ground Represen-
tations of Stable Models. In J. Dix, U. Furbach, and A. Nerode, editors, Logic
Programming and Non-Monotonic Reasoning, Proceedings of the Fourth Interna-
tional Conference, LNAI 1265, pages 198-217, Berlin, July 1997. Springer.

70. F. Fages. Consistency of Clark's completion and existence of stable models. Meth-
ods of Logic in Computer Science, 2, 1993.

71. J. A. Fern~mdez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive LP
+ Integrity Constraints = Stable Model Semantics. Annals of Mathematics and
Artificial Intelligence, 8(3-4), 1993.

72. J. A. Fernandez and J. Minker. Bottom-Up Computation of Perfect Models for
Disjunctive Theories. Journal of Logic Programming, 25(1):33-51, 1995.

73. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

74. Goran Gogic, Christos Papadimitriou, Bart Selman, and Henry Kautz. The Com-
parative Linguistics of Knowledge Representation. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence, pages 862-869, Montreal,
Canada, August 1995. Morgan Kanfmann Publishers.

75. T. F. Gordon. The Pleadings Game: An Artificial Intelligence Model of Procedural
Justice. PhD thesis, TU Darmstadt, 1993.

76. Jeff Horty, Richmond Thomason, and D. S. Touretzky. A skeptical Theory of
Inheritance in Nonmonotonic Semantic Networks. Artificial Intelligence, 42:311-
348, 1990.

77. Katsumi Inoue, M. Koshimura, and R. Hasegawa. Embedding negation-as-failure
into a model generation theorem prover. In Deepak Kaput, editor, Automated
Deduction -- CADE-11, number 607 in LNAI, Berlin, 1992. Springer.

78. Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing Definite Logic
Programs by Partial Instantiation. Annals of Pure and Applied Logic, 67:161-182,
1994.

79. Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing Minimal Models
by Partial Instantiation. Theoretical Computer Science, 155:157-177, 1995.

80. David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Magic Sets and Bottom-
Up Evaluation of Well-Founded Models. In Vijay Saraswat and Kazunori Ueda,
editors, Proceedings of the 1991 Int. Symposium on Logic Programming, pages
337-351. MIT, June 1991.

81. Kurt Konolige. Partial Models and Non-Monotonic Reasoning. In J. Richards,
editor, The Logic and Aquisition of Knowledge. Oxford Press, 1988.

82. R.A. Kowalski. Predicate logic as a programming language. In Proeeeedings IFIP'
74, pages 569-574. North Holland Publishing Company, 1974.

83. V. Lifschitz. Foundations of declarative logic programming. In G. Brewka, editor,
Principles of Knowledge Representation, chapter 3, pages 69-128. CSLI, 1996.

50 Gerhard Brewka and Jfirgen Dix

84. Vladimir Lifschitz. Computing Circumscription. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, Los Angeles, California, pages
121-127, 1985.

85. John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987. 2nd
edition.

86. Bertram Lud~cher. CNF-Prolog: A Meta-Interpreter for Chan's Constructive
Negation, Implementation. Technical report, Master Thesis, Karlsruhe University
(in german), 1991.

87. Jack Minker. On indefinite databases and the closed world assumption. In Pro-
ceedings of the 6th Conference on Automated Deduction, New York, pages 292-
308, Berlin, 1982. Springer.

88. Jack Minker. Foundations of Deductive Databases. Morgan Kaufmann, 95 First
Street, Los Altos, CA 94022, 1st edition, 1988.

89. Jack Minker. An Overview of Nonmonotonic Reasoning and Logic Programming.
Journal of Logic Programming, Special Issue, 17(2/3/4):95-126, 1993.

90. Jack Minker and Carolina Ruiz. Computing stable and partial stable models of
extended disjunctive logic programs. In J. Dix, L. Pereira, and T. Przymusinski,
editors, Nonmonotonic Extensions of Logic Programming, LNAI 927, pages 205-
229. Springer, Berlin, 1995.

91. Martin Miiller. Examples and Run-Time Data from KORF, 1992.
92. Martin Mfiller and Jfirgen Dix. Implementing Semantics for Disjunctive Logic

Programs Using Fringes and Abstract Properties. In Luis Moniz Pereira and Anil
Nerode, editors, Logic Programming and Non-Monotonic Reasoning, Proceedings
of the Second International Workshop, pages 43-59, Cambridge, Mass., July 1993.
Lisbon, MIT Press.

93. Anil Nerode, Raymond T. Ng, and V.S. Subrahmanian. Computing Circumscrip-
tive Deductive Databases. CS-TR 91-66, Computer Science Dept., Univ. Mary-
land, University of Maryland, College Park, Maryland, 20742, USA, December
1991.

94. Ilkka Niemel$. Implementing circumscription using a tableau method. In
W. Wahlster, editor, Proceedings of the European Conference on Artificial In-
telligence, pages 80-84, Budapest, Hungary, August 1996. John Wiley.

95. Ilkka Niemel~i. A tableau calculus for minimal model reasoning. In P. Miglioli,
U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the Fifth Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods, pages
278-294, Terrasini, Italy, May 1996. LNAI 1071, Springer-Verlag.

96. Ilkka Niemel~i and Patrik Simons. Efficient Implementation of the Well-founded
and Stable Model Semantics. In M. Maher, editor, Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming, pages 289-303,
Bonn, Germany, September 1996. The MIT Press.

97. L. M. Pereira, J. N. Apar~cio, and J. J. Alferes. Non-Monotonic Reasoning with
Logic Programming. Journal of Logic Programming, 17:227-264, 1993.

98. L.M. Pereira and J.J. Alferes. Well founded semantics for logic programs with
explicit negation. In Bernd Neumann, editor, Proc. of lOth European Conf. on
Artificial Intelligence ECAI 92, pages 102-106. John Wiley & Sons, 1992.

99. D. Poole. On the comparison of theories: Preferring the most specific explanation.
In Proc. IJCAI-85, Los Angeles, 1985.

100. H. Prakken. Logical Tools for Modelling Legal Argument. PhD thesis, VU Ams-
terdam, 1993.

Knowledge Representation with Logic Programs 51

101. Teodor Przymusinski. Stationary Semantics for Normal and Disjunctive Logic
Programs. In C. Delobel, M. Kifer, and Y. Masunaga, editors, DOOD '91, Pro-
ceedings of the 2nd International Conference, Berlin, December 1991. Muenchen,
Springer. LNCS 566.

102. Raymond Reiter. On closed world data bases. In Herv~ Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 55-76, New York, 1978. Plenum.

103. Raymond Reiter. A Logic for Default-Reasoning. Artificial Intelligence, 13:81-
132, 1980.

104. Stuart Russel and Peter Norvig. Artificial Intelligence -- A Modern Approach.
Prentice Hall, New Jersey 07458, 1995.

105. Ch. Sakama and K. Inoue. An Alternative Approach to the Semantics of Disjunc-
tive Logic Programs and Deductive Databases. Journal of Automated Reasoning,
13:145-172, 1994.

106. Chiaki Sakama and Hirohisa Seki. Partial Deduction of Disjunctive Logic Pro-
grams: A Declarative Approach. In Logic Program Synthesis and Transformation

- Meta Programming in Logic, LNCS 883, pages 170-182, Berlin, 1994. Springer.
107. Chiaki Sakama and Hirohisa Seki. Partial Deduction in Disjunctive Logic Pro-

gramming. Journal of Logic Programming, 32(3):229-245, 1997.
108. H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Proceedings of

the Third International Conference on Logic Programming, London, LNAI, pages
84-98, Berlin, June 1986. Springer.

109. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

110. D. S. Touretzky. The Mathematics of Inheritance. Research Notes in Artificial
Intelligence. Pitman, London, 1986.

111. D. S. Touretzky, R. H. Thomason, and J. F. Horty. A skeptic's menagerie: Con-
flictors, preemptors, reinstaters, and zombies in nonmonotonic inheritance. In
Proc. 12th IJCAI, Sydney, 1991.

112. David S. Touretzky, Jeff Horty, and Richmond Thomason. A Clash of Intuitions:
The current State of Nonmonotonic Multiple IHS. In Proceedings IJCAJ, 1988.

113. Jeffrey D. Ullman. Bottom-up Beats Top-down for Datalog. In Proc. of the
Eight ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Philadelphia, Pennsylvania, pages 140-149. ACM Press, March 1989.

114. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 2.
Computer Science Press, Rockville, 1989.

115. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. JACM, 23:733-742, 1976.

116. Allen Van Gelder, Kenneth A. Ross, and J. S. Schlipf. Unfounded Sets and well-
founded Semantics for general logic Programs. In Proceedings 7th Symposion on
Principles of Database Systems, pages 221-230, 1988.

117. Martin Vorbeck. CNF-Prolog: A Meta-Interpreter for Chart's Constructive Nega-
tion, Theory. Technical report, Master Thesis, Karlsruhe University (in german),
1991.

DATALOG with Nested Rules*

Sergio Greco 1, Nicola Leone 2, and Francesco Scarcello 3

1 DEIS
Universit~ della Calabria

1-87030 Rende, Italy
email: greco@si.deis.unical.it

2 Institut fiir Informationssysteme
Technische Universit~t Wien

Paniglgasse 16, A-1040 Wien, Austria
email: leone@dbai.tuwien.ac.at

3 ISI-CNR
c/o DEIS, Universit~ della Calabria

1-87030 l~ende, Italy
email: scarcello~unical.it

Abs t r ac t . Thispaper presents an extension of disjunctive datalog (Data-
log v) by nested rules. Nested rules are (disjunctive) rules where elements
of the head may be also rules. Nested rules increase the knowledge repre-
sentation power of Datalog v both from a theoretical and from a practical
viewpoint. A number of examples show that nested rules allow to nat-
urally model several real world situations that cannot be represented in
Datalog v. An in depth analysis of complexity and expressive power of
the language shows that nested rules do increase the expressiveness of
Datalog V without implying any increase in its computational complexity.

1 I n t r o d u c t i o n

In this paper, we propose an extension of Datalog v by nested rules tha t we call
Datalog v , ~ . Informally, a Datalog v ' ~ rule is a (disjunctive) rule where rules
may occur in the head. For instance, r : A V (B +-~ C) +-- D, where A and B
are atoms and C and D are conjunctions of a toms is a Data logV,~ rule. The
intuitive meaning of r is the following: if D is true, then A or B could be derived
from r; however, B can be derived from r only if C is also true, i.e., B cannot
be derived from rule r if C is false.

Example 1. The organizer of a par ty wants to invite either susan or john and,
in addition, either mary or paul. This situation can be expressed by means of

* This work has been supported in part by FWF (Austrian Science Funds) under the
project PI1580-MAT "A Query System for Disjunctive Deductive Databases"; by the
Istituto per la Sistemistica e l'Informatica, ISI-CNR; and by a MURST grant (40%
share) under the project "Interdata."

DATALOG with Nested Rules 53

the following disjunctive Datalog program

susan V john +-
mary V paul +-

This program has four stable models giving all possible solutions: M1 = (susan,
mary }, Ms -- (susan,paul} , M3 = (john, mary} and Ma = (john,paul} .

Suppose now that you know that john will attend the party only if mary
will attend the party too; this means that if mary will not attend the meeting,
john will not attend the meeting too (therefore, inviting john makes sense only
if also mary has been invited). This situation cannot be naturally expressed
in disjunctive Datalog whereas can be naturally expressed by means of nested
rules.

susan V (john ~-~ mary) +-
mary V paul +-

The new program has only three stable models, namely M1, Ms and M3 (see
Section 2), that represent the three reasonable alternative sets of l~ersons to be
invited. O

Thus, the addition of nested rules allows us to represent real world situations
that cannot be represented in plain Datalog v programs.

R e m a r k s .

- We point out that a nested rule a +-" b, appearing in the head of a rule r,
does not constraint the truth of a (to b) globally (it is not logically equivalent
to -~b -+ -~a); rather, a +-~ b constraints the derivation of a from the rule r.
For instance, the program consisting of rule (a ~ b) +-- and of fact a +- has
only the stable model {a}, where a is true even if b is false.

- It is worth noting that nested rules could be simulated by using (possibly
unstratified) negation; however, in cases like the example above, a nested
rule allows us a more direct representation of the reality and it is therefore
preferable.

- In this paper we will contrast disjunctive Datalog with nested rules (Data-
log v,~) mainly against plain (i.e., negation free) disjunctive Datalog (Data-
logV), in order to put in evidence the types of disjunctive information that
become expressible thanks to the introduction of nested rules.

The main contributions of the paper are the following:

- We addnested rules to disjunctive Datalog and define an elegant declarative
semantics for the resulting language. We show that our semantics generalizes
the stable model semantics 22, 11 of disjunctive Datalog programs. More-
over, we show how nested rules can be used for knowledge representation
and commonsense reasoning.

- We analyze the complexity and the expressive power of Datalog v,~. It ap-
pears that, while nested rules do not affect the complexity of the language,

54 Sergio Greco, Nicola Leone, and Francesco Scarcello

they do increase its expressive power. Indeed, as for Datalog v, brave rea-
soning is E2P-complete for Datalog v , ~ (that is, the complexity is the same).
However, Datalog v allows to express only a strict subset of Z2 P (e.g., even
the simple even query, 1 asking whether a relation has an even number of el-
ements, is not expressible) 7, while Datalog v , ~ expresses exactly E2 P (that
is, it allows to represent all and only the properties that are computable in
polynomial time by a nondeterministic Turing machine endowed with an NP
oracle).

To our knowledge this is the first paper proposing an extension of disjunc-
tive Datalog with nested rules. Related to our work can be considered papers
presenting other extensions of logic programming like, for instance, 2, 15, 20, 4,
12. Related results on complexity and expressive power of Knowledge Repre-
sentation languages are reported in 8, 13, 5, 18, 24, 23.

The sequel of the paper is organized as follows. Section 2 describes the Data-
log v,~,~ language formally. The syntax is first given, then an elegant definition
of the stable model semantics, based on the notion of unfounded set is provided;
results proving that our notions generalize the classical definitions of unfounded
set and stable model are also given in this section. Section 3 presents the results
on complexity and expressive power of our language. Some examples on the use
of nested rules for representing knowledge are reported in Section 4. Finally,
Section 5 draws our conclusions and addresses ongoing work.

2 T h e D a t a l o g v,-~,~ L a n g u a g e

In this section, we extend disjunctive Datalog by nested rules. For the sake
of generality, we will consider also negation in the rules' bodies (defining the
language DatalogV'~,~).

2.1 S y n t a x

A term is either a constant or a variable 2. An atom is a(t l , . . . , tn), where a is a
predicate of arity n and t l , ..., tn are terms. A literal is either a positive literal
p or a negative literal -~p, where p is an atom.

A nested rule is of the form:

A ~-' b l , - . . , b~,-~bk+l,.. . , ~bm, m > 0

where A, b l , . . . , bm are atoms. If m = 0, then the implication symbol "e -~" can
be omitted.

A rule r is of the form

A 1 V . . ' V A , +-bl,. . . ,bk,'~bk+l,.. . ,-~bm, n > 0 , m > 0

1 See example 9.
2 Note that function symbols are not considered in this paper.

DATALOG with Nested Rules 55

where b l , ' " , b m are atoms, and A 1 , . . . , A n are nested rules. The disjunction
A1 V . . . V An is the head of r, while the conjunction bl, ..., bk, ~bk+l, ...,-'bin is
the body of r; we denote the sets {A1, . . . ,An} and {bl, ...,b~, -~b&+l, ...,-~bm}
by Head(r) and Body(r), respectively; moreover, we denote {bl,...,bk} and
{-~bk+l,.--,-~bm} by Body+(r) and Body-(r), respectively. Notice that atoms
occurring in Head(r) stand for nested rules with an empty body. If n -- 1 (i.e.,
the head is V-free), then r is normal; if no negative literal appear in r (r is
-~-free), then r is positive; if A1,... ,An are atoms, then r is fiat. We will use
the notation Body(r) and Head(r) also if r is a nested rule. A Datalog v , ' , ~
program P is a set of rules; P is normal (resp., positive, fiat) if all rules in P are
normal (resp. positive, fiat). We denote by: (i) Datalog v ,~ , (ii) Datalog v , ' , and
(iii) Datalog v, the fragments of Datalog v '~ '~ where we disallow: (i) negation
in the body, (ii) nested implication in the head, and (rio both negation in the
body and nested implication in the head, respectively. Moreover, if negation is
constrained to be stratified 21, then we will use the symbol -~8 instead of -~
(e.g., Datalog v ' '~ will denote disjunctive Datalog with stratified negation).

Example 2. A rule may appear in the head of another rule. For instance,

rl : a V (b +-~ -~c) +-- d

is an allowed Datalog v,-~,~ rule. Moreover,

r2 : a V (b 4-' c) +-- d

is a Datalog v , ~ rule as well. Neither, r l nor r2 belong to DatalogV; while

r3 : aVb+--d

is in Datalog v.

2.2 S e m a n t i c s

Let :P be a Datalog v,~,~ program. The Herbrand universe Up of P is the set
of all constants appearing in P. The Herbrand base Bp of P is the set of all
possible ground atoms constructible from the predicates appearing in P and the
constants occurring in Up (clearly, both Up and Bp are finite). The instantiation
of the rules in P is defined in the obvious way over the constants in Up, and is
denoted by ground(P).

A (total) interpretation for P is a subset I of Bp. A ground positive literal
a is true (resp., false) w.r.t. I if a E I (resp., a ~ I). A ground negative literal
-,a is true (resp., false) w.r.t. I if a ~ I (resp., a E I).

Let r be a ground nested rule. We say that r is applied in the interpretation
I if (i) every literal in Body(r) is true w.r.t. I, and (ii) the atom in the head of r
is true w. r . t . I . A rule r E ground(P) is satisfied (or true) w.r.t. I if its body is
false (i.e., some body literal is false) w.r.t. I or an element of its head is applied.
(Note that for fiat rules this notion coincides with the classical notion of truth).

56 Sergio Greco, Nicola Leone, and Francesco Scarcello

Example 3. The nested rule b +-~ -~c +-- is applied in the interpretation I =
{b, d}, as its body is true w.r.t. I and the head atom b is in I. Therefore, rule
rl : a V (b +-" -~c) ~ d is satisfied w . r . t . I , r l is true also in the interpretation
I = {a, d}; while it is not satisfied w.r.t, the interpretation I = {c, d}.

A model for 79 is an interpretation M for 79 which satisfies every rule r E
ground(79).

Example 4. For the fiat program 79 = {a V b +-} the interpretations {a}, {b}
and {a, b} are its models.

For the program 79 = {a V b +--; c V (d e-' a) +-} the interpretations {a, d},
{a, c}, {b, c}, {a, b, d}, {a, b, c}, {a, c, d}, {a, b, c, d} are models. {b, d} is not a
model, as rule c V (d e -~ a) +- has a true body but neither c nor d +-" a are
applied w.r.t. {b, d} (the latter is not applied because a is not true).

As shown in 19, the intuitive meaning of positive (disjunctive) programs
(i.e., Datalog V programs) is captured by the set of its minimal models (a model
M is minimal if no proper subset of M is a model). However, in presence of
negation and nested rules, not all minimal models represent an intuitive meaning
for the programs at hand. For instance, the program consisting of the rule aV(b +-
c) +- has two minimal models: M1 = {a} and M2 = {b, c}. However, the model
M2 is not intuitive since the atom c cannon be derived from the program.

To define a proper semantics of Datalog v,~,~ programs, we define next a
suitable notion of unfounded sets for disjunctive logic programs with nested rules
which extends in a very natural way the analogous notion of unfounded sets given
for normal and disjunctive logic programs in 26 and 16, 17, respectively.

Unfounded sets with respect to an interpretation I are essentially set of
atoms that are definitely not derivable from the program (assuming I), and, as
a consequence, they can be declared false according to the given interpretation.

Def in i t ion 1. Let 7 9 be a Datalog v,-~,~ program and I C_ BT~ an interpretation
for 79. X C_ Bp is an unfounded set for 79 w.r.t. I if, for each a E X , every rule
r with a nested rule r' : a +-~ Body(r') in Head(r), 3 satisfies at least one of the
following conditions (we also say r has a witness of unfoundness):

1. Body(r) U Body(r') is false w.r.t. I, i.e., at least one literal in Body(r) U
Body(r') is false w.r.t. I;

2. (Body+(r) USody+(r ')) M X ~ 0;
3. some nested rule in Head(r) is applied w.r.t. I - X .

Informally, if a model M includes any unfounded set, say X, then, in a sense,
we can get a better model, according to the closed world principle, by declaring
false all the atoms in the set X. Therefore, a "supported" model must contain no
unfounded set. This intuition is formalized by the following definition of stable
models.

a An atom A in Head(r) is seen as a nested rule with empty body a +-~.

DATALOG with Nested Rules 57

Definition 2. Let 7) be a Datalog v,€ program and M C_ B7~ be a model for
7). M is a stable model for 7) if it does not contain any non empty unfounded
set w.r.t. M (i.e., if both X C M and X ~ 0 hold, then X is not an unfounded
set for 7) w.r.t. M).

Example 5. Let 7) = {a V b +- c, b +-- -~a, -~c, a V c +- -~b}. Consider
I = {b}. It is easy to verify that {b} is not an unfounded set for 7) w . r . t . I .
Indeed, rule b +- -~a, -~c has no witness of unfoundedness w . r . t . I . Thus, as I is
a model for 7), then I is a stable model for 7) according to Definition 1.

Let 7) = {a Y (b +-~ -~c) +- d, d V c +--}. Consider the model I --- {b, d}.
It is easy to verify tha t {b, d} is not an unfounded set w.r.t. I and neither {a}
nor {b} is an unfounded set for 7) w . r . t . I . Therefore, I is a stable model of 7).

It is easy to see that the stable models of the program 7) = {susanY (john +-~
mary) +--, mary V paul ~ } of example 1 are: M1 = {susan, mary}, M2 =
{susan,paul}, and M3 = {john, mary}.

We conclude this section by showing that the above definitions of unfounded
sets and stable models extend the analogous notions given for normal and dis-
junctive logic programs.

Proposition 1. Let I be an interpretation for a fiat program 7). X C BT~ is an
unfounded set for 7) w.r.t. I according to 16, 17 if and only if X is an unfounded
set for ~ w.r.t. I according to Definition 1.

P r o o f . For a flat program P , every nested rule r ~ is of the form a +-~. Con-
sequently, Condition 1 and Condition 2 of Definition 1 correspond exactly to
the analogous conditions of the definition of unfounded set given in 16,17 (as
Body(r ~) = 0). Moreover, in absence of nested rules with nonempty bodies, Con-
dition 3 of Definition 1 just says that some head atom is t rue w.r.t. I - X (which
corresponds to Condition 3 of the definition of unfounded set given in 16, 17).•

As a consequence, if 7) is a non disjunctive flat program, then the notion of
unfounded set does coincide with the original one given in 26.

C o r o l l a r y 1. Let I be an interpretation for a normal fiat program 7). X C BT~
is an unfounded set for 7) w.r.t. I according to 26 if and only if X is an
unfounded set for 7) w.r.t. I according to Definition 1.

P r o o f . In 16,17, it is shown that the Definition of unfounded sets given there,
coincides on normal programs with the classical definition of unfounded sets of
26. The result therefore follows from Proposition 1.

T h e o r e m 1. Let 7) be a fiat program and M a model for 7). Then, M is a
stable model for 7) according to 22, 11 if and only if M is a stable model for 7)
according to Definition 2.

P r o o f . It follows from Proposition 1 and the results in 16,17.

Moreover, if 7) is a positive flat program, then the set of its stable models
coincides with the set of its minimal models. Hence, for positive flat programs

58 Sergio Greco, Nicola Leone, and Francesco Scarcello

our stable models semantics coincide with minimal model semantics proposed
for such programs in 19.

In fact the stable model semantics defined above, is a very natural extension
of the widely accepted semantics for the various (less general) classes of logic pro-
grams, since it is based on the same concepts of minimality and supportedness,
which follow from the closed world assumption.

3 C o m p l e x i t y a n d E x p r e s s i v e n e s s

3.1 P r e l i m i n a r i e s

In the context of deductive databases, some of the predicate symbols correspond
to database relations (the extensional (EDB) predicates), and are not allowed
to occur in rule heads; the other predicate symbols are called intensional (IDB)
predicates. Actual database relations are formed on a fixed countable domain U,
from which also possible constants in a Datalog v '~ '~ program are taken.

More formally, a Datalog v'-~'~ program 7) has associated a relational database
scheme 7)Bp = {r I r is an EDB predicate symbol of 7)}; thus EDB predicate
symbols are seen as relation symbols. A database D on T ~ is a set of finite
relations on U, one for each r in T~p , denoted by D(r) ; note tha t D can be seen
as a first-order structure whose universe consists of the constants occurring in D
(the active domain of D).4 The set of all databases on 723~, is denoted by D~.

Given a database D E Dp , 7)D denotes the following program:

7)D = 7) U {r(t) +-- I r E lYB~ A t E D(r)} .

Def in i t ion 3. A (bound Datalog v , ' , ~) query Q is a pair (7), G), where 7) is
a Datalog v ,€ program and G is a ground literal (the query goal). Given a
database D in Dp , the answer of Q on D is true if there exists a stable model
M o 7)D such that G is true w.r.t. M , and false otherwise. 5

Constraining 7) on fragments of Datalog v '~ '~ , we obtain smaller sets of
queries. More precisely, we say that Q = (7),G) is a Datalog x query, where
X C_ {V, +-~, -~}, if 7) is a Datalog x program (and G is a ground literal). Clearly,
-~ could also be replaced by -~8 to obtain queries of stratified fragments of
DatalogV,-~, ~ .

The constants occurring in 7)D and G define the active domain of query
Q = (7), G) on the database D. Observe that , in general, two queries (7), G)
and (7), -~G) on the same database need not give symmetric answers. Tha t is, if

4 We use here active domain semantics (cf. 1), rather then a setting in which a
(finite) universe of D is explicitly provided 9, 6, 27. Note that Fagin's Theorem and
all other results to which we refer remain valid in this (narrower) context; conversely,
the results of this paper can be extended to that setting.

5 We consider brave (also called possibility) semantics in this paper; however, com-
plexity and expressiveness of cautious (also called skeptical) semantics can be easily
derived from it.

DATALOG with Nested Rules 59

e.g. (7), G) answers yes for D, it may be possible that also (P,-~G) answers yes
for D.

A bound query defines a Boolean C-generic query of 1, i.e., a mapping
from D~ to (true, false). As common, we focus in our analysis of the expressive
power of a query language on generic queries, which are those mappings whose
result is invariant under renaming the constants in D with constants from U.
Genericity of a bound query (:P, G) is assured by excluding constants in ~P and
G. As discussed in 1, p. 421, this issue is not central, since constants can be
provided by designated input relations; moreover, any query goal G = (--)p(...)
can be easily replaced by a new goal G' = (~)q and the rule q +- p(. . .) , where
q is a propositional letter. In the rest of this paper, we thus implicitly assume
that constants do not occur in queries.

Def in i t ion 4. Let Q = (7 ~, G) be a (constant-free) query. Then the database
collection of Q, denoted by gXP(Q), is the set of all databases D in Dp for
which the answer of Q is true.

The expressive power of Datalog X (X C_ (V , +-~, -,)) , denoted gXP(DatalogX),
is the family of the database collections of all Datalog X queries, i.e.,

gXPDatalog x = (GYP(Q) I Q is a constant-free Datalog x query).

The expressive power will be related to database complexity classes, which
are as follows. Let C be a Turing machine complexity class (e.g., P or NP), R be
a relational database scheme, and D be a set of databases on R. 6 Then, D is C-
recognizable if the problem of deciding whether D E D for a given database D on
t t is in C. The database complexity class DB-C is the family of all C-recoguizable
database collections. (For instance, DB-P is the family of all database collections
that are recognizable in polynomial time). If the expressive power of a given
language (fragment of Datalog v,-~,~) s coincides with some class DB-C, we say
that the given language captures C, and denote this fact by GYPg = C.

Recall that the classes E P , / - /P of the polynomial hierarchy 25 are defined

by ~ P = P, ziP1 = NP m~, and /-//P = co-Z f , for all i _> 0. In particular,
Ho P = P, Z ~ = NP, a n d / / P = co-NP.

3.2 Resu l t s

T h e o r e m 2. gXPDatalog v,~' C_ gXPDatalog v,+=

Proof . We will show that every Datalog v , ' ' query can be rewritten into an
equivalent Datalog v,+-" query.

It can be easily verified that every Datalog v,-~~ program (i.e., disjunctive
Datalog program with stratified negation) can be polynomially rewritten in a
program where negative literals appear only in the body of rules of the form

r : p(X) +-- q(?) , -~s(Z)

6 As usual, adopting the data independence principle, it is assumed that D is generic,
i.e., it is closed under renamings of the constants in U.

60 Sergio Greco, Nicola Leone, and Francesco Scarcello

where p and s are not mutually recursive and r is the only rule having p as head
predicate symbol. Let (P, G) be a Datalog v'~" query. Following the observation
above, we assume that every rule r E 7 ~ such that r contains negative literals has
the syntactic form just described. This means that, given any database D E DT,,
a stable model M for 7~D, and a ground instance ~ : p(~) +-- q(b),-~s(~) of r,
we have p(~) is derivable from ~ if and only if q(b) is true and s(~) is not true.
Moreover, the rule ~ cannot be used to prove that the atom s(~) is true.

Now, given the Datalog v'~" program 7 ~, we define a Datalog v ' ~ program pi
such that, for any given database D E DT,, :P~ has the same set of stable models
as 7~D. We obtain such a program 7 ~ from the program 7 ~ by simply replacing
any rule of /~ having the form of the rule r above by the following Datalog v ,~
rule rq

r ' : p(X) V (s(Z) +-' s(Z)) ~-- q(Y)

Now, apply to r I the substitution that yields ~ from r. The resulting instance
is ~ : p(~) V (s(U) +.o s(~)) e- q(b). From the semantics of nested rules, we
have that p(~) is derivable from ~ if and only if q(b) is true and s(U) is false
(exactly like for ~) - note that a crucial role is played by the fact that s belongs
to a stratum lower than p so that s is already evaluated when p is considered
(e.g., if s(~) is true, then the nested rule s(~) +-~ s(~) is already applied and ~'
cannot be used to derive p(~)). Thus, r and r ~ have exactly the same behaviour.
Consequently, given a database D in Dp , we have that an interpretation M is
a stable model for :PD if and only if M is a stable model for 7~D.

Corollary 2. `UP _C gXPDatalog v,+=

Proof . From 7, `UP _C gXPDatalogV,-,. Therefore, the result follows from
Theorem 2.

C o r o l l a r y 3. gXPDatalog v C gXPDatalog v'~

Proo f . From 7, Datalog v can express only a strict subset of ,U P (e.g., the
simple even query, deciding whether the number of tuples of a relation is even
or odd, is not expressible in Datalog v 7). Therefore, the result follows from
Corollary 2.

We next prove that the inclusion of Corollary 2 is not proper.

Theorem 3. gA'PDatalog v' ' '~ C 27 P.

Proo f . To prove the theorem, we have to show that for any Datalog v,-',*=
query Q - (:P, G), recognizing whether a database D is in gASO(Q) is in `U~.

Observe first that recognizing whether a given model M of a Datalog v,-~,~
program is stable can be done in co-NP. Indeed, to prove that M is not stable,
it is sufficient to guess a subset X of M and check that it is an unfounded set.
(Note that, since Q is fixed, ground(7~D) has size polynomial in D, and can be
constructed in polynomial time.)

Now, D is in gAP(Q) iff there exists a stable model M of Pv such that
G E M. To check this, we may guess an interpretation M of 7~D and verify that:
(i) M is a stable model of PD, and (ii) G E M. From the observation above,

DATALOG with Nested Rules 61

(i) is done by a single call to an NP oracle; moreover, (ii) is clearly polynomial.
Hence, this problem is in E P. Consequently, recognizing whether a database D
is in SAP(Q) is in ~2 P.

Corol lary 4. SAPDatalog v,-''~ = $APDatalog v'~ = $APDatalog v'-' =

Proof . It follows from Corollary 2, from Theorem 3, and from the results in
7.

The above results show that full negation, stratified negation and nested
rules in disjunctive rules have the same expressivity. Moreover, the choice of the
constructs which should be used depends on the context of the applications.

4 S o m e E x a m p l e s

In this section we present some examples to show that classical graph prob-
lems can be expressed in Datalog v '~ . For the sake of presentation we shall use
the predicate ~ which can be emulated by Datalog v,+-'. Assuming that the the
database domain is denoted by the unary predicate d, the following two rules
define the binary predicate neq (not equal):

neq(X, Y) V (eq(X, Y) +- X = Y) +- d(X), d(Y).
eq(X,X)

Thus, a tuple neq(x, y) is true if let x and y two elements in the database is
x ~ y. Observe that also stratified negation could be emulated by Datalog v '~ .
In the following examples we assume to have the graph G = (V, E) stored by
means of the unary relation v and the binary relation e.

Example 6. Spanning tree. The following program computes a spanning tree
rooted in the node a for a graph G -- (V, E). The set of arcs in the spanning
tree are collected by means of the predicate st.

st(root, a).
st(X, Y) V (no_st(X, Y) +-~ no_st(X, Y)) +-- st(_, X), e(X, Y).
no_st(x, Y) . - st(x', Y), x # x' .

Observe that the nested rule forces to select for each value of Y a unique tuple
for st(X, Y). Indeed, if some stable model M contains two tuples of the form
tl = st(xl ,y) and t2 = st(x2,y), from the last rule, M must contain also the
tuples no_st(x1, y) and no_st(x2, y). But this implies that also the interpretation
N C M - {ti} for ti E {tl, t2} is a stable model and, therefore, M is not minimal.
On the other side, assume now that there is some stable model M containing
a tuple no_st(x',y) but not containing tuples of the form st(x,y) for x ~ x'.
This means that the tuple no_st(x', y) cannot be derived from the last rule and,
therefore, it must belong to some unfounded set w.r . t .M.

Thus, there is a one-to-one correspondence between the stable models of the
program and the spanning trees rooted in a of the graph.

62 Sergio Greco, Nicola Leone, and Francesco Scarcello

Example Z Simple path. In this example we compute a simple path in a graph
G, i.e., a path passing through every node just once (if any). The set of tuples
in the simple path are collected by means of the predicate sp below defined:

sp(root, X) V (no_sp(root, X) e ~ no_sp(root, X)) ~- e (X , _).
sp(X, Y) V (no_sp(X, Y) +-~ no_sp(X, Y)) +- sp(W, X), e(X, Y).

no_sp(X, Y) +-- sp(X', Y), X ' # X.
no_sp(X, Y) +- sp(X, Y'), Y' # Y.

As for the program computing a spanning tree, the nested rule forces to select
for each value of X a unique tuple for sp(X, Y) and for each value of Y a unique
tuple for sp(X, Y). The nested rules impose the constraint that the set of tuples
for sp defines a chain. Thus, the first nested rule is used to select the starting
node of the simple path, whereas the second nested rule is used to select the set
of arcs belonging to the simple path.

The above program can be used to define the hamiltonian path problem
checking if a graph G has simple path passing through all nodes (hamiltonian
path). Therefore, the hamiltonian graph problem can be defined by adding the
check that all nodes in G are in the simple path.

Example 8. Shortest path. In this example we assume to have a weighted directed
graph G = (V, E). We assume that the database domain contains a finite subset
of the integer numbers and that the weight argument of the arcs takes values
from this domain. We assume also that the minimum weight of all paths between
two nodes takes values from this domain. The arcs of the graph are stored by
means of tuples of the form e(x, y, c) where c is the weight of the arc from x to
y. The minimum weights of the paths from a source node a to every node in the
graph can be defined as follows:

mp(a, 0).
rap(Y, C) V (no_mp(Y, C) +-~ no_rap(Y, C)) +-- rap(X, C1), e(X, Y, C2),

c = c~ + c2.
no_rap(Y, C) +-- rap(Y, C'), C' < C.

The predicate mp computes, for each node x, the minimum distance from the
source node a to the node x. A stable model M contains for each tuple rap(y, ~)
in M all tuples of the form no_rap(y, c) with c > c'. Thus, a tuple rap(y, c) is in
M iff there is no tuple no_rap(y, c) in M, i.e., if all tuples in no_rap with first
argument y have cost greater than c.

Example 9. Even query. We are given a relation d and we want to check whether
its cardinality is even or not. This can be done by first defining a linear order on
the elements of the relation and, then, checking whether the number of elements
in the ordering is even.

succ(root, root).
succ(X, Y) V (uo_succ(X, Y) +-" no_succ(X, Y)) +- succ(_, X), d(Y).

DATALOG with Nested Rules 63

no_succ(X, Y) +-- succ(X, Y'), Y' # Y, Y' # root, d(Y).
no_succ(X, Y) e- succ(X', Y), X' # X, d(X).

odd(X) e- suec(root, X), X # root.
even(X) +-- odd(Z), succ(Z, X).
odd(X) +-- even(Z), succ(Z, Y).
even_tel +-- even(X), ~has_a_succ(X).
has_a_succ(X) ~- d(X), succ(X, _).

The first four rules define a linear order on the elements of the relation d (by
using a nested implication). Once a linear order has been defined on the domain
it is easy to check, by a simple stratified program, whether the cardinality is
even. Thus, the predicate even. te l is true iff the relation d has an even number
of elements.

Therefore, Datalog v ' ~ expresses the even query, 7 while it cannot be ex-
pressed in Datalog v 7.

We conclude by observing that the problems of the above examples could be
expressed by means of disjunctive datalog with (unstratified) negation. However,
programs with unstratified negation are neither intuitive nor efficiently com-
putable (while Datalog v ,~ has nice computational properties - see Section 5).

5 C o n c l u s i o n

We have presented an extension of Disjunctive Datalog by nested rules. We have
shown the suitability of the language to naturally express complex knowledge-
based problems, which are not expressible by Datalog v. A formal definition of
the semantics of Datalog v '~,~ programs has been provided, and we have shown
that it is a generalization of the classical stable model semantics. Finally, we have
carefully analyzed both data-complexity and expressiveness of Datalog v , ' ' ~ un-
der the possibility (brave) semantics.

The results on the data-complexity and the expressiveness of Datalog v,-~'~
are compactly represented in Table 1. s

Expressive Power

Data Complexity

Datalog v,~ DatalogV,~, ~

h

,U P -complete ,U~-complete `u2P-complete ,U~-complete

T a b l e 1. Expressibility and complexity results on Datalog v'~'~

T Recall that both r and stratified negation are used for simplicity, bu they can be
easily emulated in Datalog v '~ .

s Note that the results on data-complexity are immediately derived from the express-
ibility results of Section 3.2.

64 Sergio Greco, Nicola Leone, and Francesco Scarcello

Each column in Table 1 refers to a specific fragment of Datalog v,''+-'. The
table clearly shows that the addition of nested rules does not increase the com-
plexity of disjunctive Datalog; indeed, brave reasoning for Datalog v ' ~ is ZP-
complete as for Datalog v. Nevertheless, nested rules do increase the expres-
sive power, as Datalog v ,~ allows to express all Z2 P database properties; while,
Datalog v expresses only a strict subset of them (e.g., the simple even query, that
decides whether a relation has an even number of tuples, cannot be expressed in
DatalogV).

Clearly, the power of Datalog v ,~ does not exceed that of Datalog v'~, as
nested rules could be simulated by means of unstratified negation. However,
the increase of expressiveness w.r.t. Datalog v confirms that nested rule allow to
express some useful forms of disjunctive information which are not expressible
in plain disjunctive Datalog.

Ongoing work concerns the definition of a fragment of Datalog v ' ~ for which
one stable model can be computed in polynomial time; this fragment, under
nondeterministic semantics, allows to express all polynomial time properties.
Moreover, the investigation of abstract properties of Datalog v ,~ would also be
interesting to see whether this language can be characterized as for the stable
model semantics 3. We conclude by mentioning that nested rules have been re-
cently used as a vehicle for binding propagation into disjunctive rules to optimize
the computation of standard disjunctive queries. 14

References

1. Abiteb0ul, S., Hull, R., Vianu, V. (1995), Foundations of Databases. Addison-
Wesley.

2. Baral, C. and Gelfond, M. (1994), Logic Programming and Knowledge Represen-
tation Journal of Logic Programming, 19/20, 73-148.

3. S. Brass and J. Dix (1997), Characterizations of the Stable Semantics by Partial
Evaluation. Journal of Logic Programming, 32(3):207-228.

4. S. Brass, J. Dix, and T.C. Przymusinski (1996), Super Logic Programs. In "Proc.
of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR'96)", Cambridge, MA, USA, Morgan Kanfmann, pp. 529-540.

5. M. Cadoli and M. Schaerf (1993), A Survey of Complexity Results for Non-
monotonic Logics, Journal of Logic Programming, Vol. 17, pp. 127-160.

6. Chandra, A., Harel, D. (1982), Structure and Complexity of Relational Queries.
Journal of Computer and System Sciences, 25:99-128.

7. Eiter, T., Gottlob, G. and Mannila, H. (1994), Adding Disjunction to Datalog,
Proc. ACM PODS-94, pp. 267-278.

8. T. Eiter and G. Gottlob and H. Mannila (1997), Disjunctive Datalog, ACM Trans-
actions on Database Systems, 22(3):364-418.

9. Fagin R. (1974), Generalized First-Order Spectra and Polynomial-Time Recogniz-
able Sets, Complexity of Computation, SIAM-AMS Proc., Vol. 7, pp. 43-73.

10. Gelfond, M., Lifschitz, V. (1988), The Stable Model Semantics for Logic Program-
ming, in Proc. of Fifth Con. on Logic Programming, pp. 1070-1080, MIT Press.

11. Gelfond, M. and Lifschitz, V. (1991), Classical Negation in Logic Programs and
Disjunctive Databases, New Generation Computing, 9, 365-385.

DATALOG with Nested Rules 65

12. Gelfond, M. and Son, T.C., Reasoning with Prioritized Defaults, Proc. of the Work-
shop Logic Programming and Knowledge Representation - LPKR'97, Port Jeffer-
son, New York, October 1997.

13. Gottlob, G., Complexity Results for Nonmonotonic Logics, Journal of Logic and
Computation, Vol. 2, N. 3, pp. 397-425, 1992.

14. Greco, S.(1990), Binding Propagation in Disjunctive Databases, Proc. Int. Conf.
on Very Large Data Bases, New York City.

15. Herre H., and Wagner G. (1997), Stable Models Are Generated by a Stabel Chain,
Journal of Logic Programming, 30(2): 165-177.

16. Leone, N., Rullo, P., Scarcello, F. (1995) Declarative and Fixpoint Characteriza-
tions of Disjunctive Stable Models, in " Proceedings of International Logic Pro-
gramming Symposium (ILPS'95)", Portland, Oregon, pp. 399-413, MIT Press.

17. Leone, N., Rullo, P., Scarcello, F. (1997) Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics and Computation, Information and Computation, Aca-
demic Press, Vol. 135, No. 2, June 15, 1997, pp. 69-112.

18. Marek, W., Truszczyfiski, M., Autoepistemic Logic, Journal of the ACM, 38, 3,
1991, pp. 518-619.

19. Minker, J. (1982), On Indefinite Data Bases and the Closed World Assumption, in
"Proc. of the 6 th Conference on Automated Deduction (CADE-82)," pp. 292-308.

20. L. Pereira, J. Alferes, and J. Aparicio (1992), Well founded semantics for logic
programs with explicit negation. In "Proc. of European Conference on Ar'.

21. Przymusinski, T. (1988), On the Declarative Semantics of Deductive Databases and
Logic Programming, in "Foundations of deductive databases and logic program-
ming," Minker, J. ed., ch. 5, pp.193-216, Morgan Kanfman, Washington, D.C.

22. Przymusinski, T. (1991), Stable Semantics for Disjunctive Programs, New Gener-
ation Computing, 9, 401-424.

23. D. Sacc~. The Expressive Powers of Stable Models for Bound and Unbound DAT-
ALOG Queries. Journal of Computer and System Sciences, Vol. 54, No. 3, June
1997, pp. 441-464.

24. Schlipf, J.S., The Expressive Powers of Logic Programming Semantics, Proc. ACM
Symposium on Principles of Database Systems 1990, pp. 196-204.

25. Stockmeyer, L.J. (1977), The Polynomial-Time Hierarchy. Theoretical Computer
Science, 3:1-22.

26. Van Gelder, A., Ross, K. A. and Schlipf, J. S. (1991), The Well-Founded Semantics
for General Logic Programs, Journal of ACId, 38(3), 620-650.

27. Vardi, M. (1982), Complexity of relational query languages, in "Proceedings 14th
ACM STOC," pp. 137-146.

Partial Evidential Stable Mode l s
for Disjunct ive Deduct ive Databases

Dietmar Seipel

University of Wfirzburg
Am Hubland,

D - 97074 Wiirzburg, Germany
seipel~informatik.uni-wuerzburg.de

Abs t r ac t . In this paper we consider the basic semantics of stable and
partial stable models for disjunctive deductive databases (with default
negation), cf. 9, 16l. It is well-known that there are disjunctive deduc-
tive databases where no stable or partial stable models exist, and these
databases are called inconsistent w.r.t, the basic semantics.

We define a consistent variant of each class of models, which we call ev-
idential stable and partial evidential stable models. It is shown that if a
database is already consistent w.r.t, the basic semantics, then the class
of evidential models coincides with the basic class of models. Otherwise,
the set of evidential models is a subset of the set of minimal models of the
database. This subset is non-empty, if the database is logically consis-
tent. It is determined according to a suitable preference relation, whose
underlying idea is to minimize the amount of reasoning by contradiction.

The technical ingredients for the construction of the new classes of mod-
els are two transformations of disjunctive deductive databases. First, the
evidential transformation is used to realize the preference relation, and to
define evidential stable models. Secondly, based on the tu-transformation
the result is lifted to the three-valued case, that is, partial evidential sta-
ble models are defined.

K e y w o r d s

disjunctive logic programming, non-monotonic reasoning, stable and part ial sta-
ble models, handling inconsistency, p rogram transformations

1 I n t r o d u c t i o n

The semantics of stable and partial stable models, cf. Gelfond, Lifschitz 9, 10
and Przymusinski 16, are among the most prominent semantics for disjunctive
databases. Unfortunately, there are databases which are logically consistent, but
are inconsistent w.r.t, these semantics. For normal databases, i.e. databases tha t
may contain negation but do not contain disjunctions, however, the part ial stable
models semantics is always consistent, and it is equivalent to the well-founded
semantics of van Gelder, Ross and Schlipf 21.

Partial Evidential Stable Models for Disjunctive Deductive Databases 67

For large databases, small inconsistent parts can prohibit the existence of
stable models, and even of partial stable models. Thus, we will introduce two
new variants of the stable model semantics, which are always consistent if the
database is logically consistent: First, the two-valued semantics of evidential
stable models, which is stronger than minimal model but weaker than stable
model semantics. Secondly, a three-valued version, called partial evidential stable
models, which for normal databases coincides with the well-founded semantics.
For stratified-disjunctive databases both evidential semantics coincide with the
perfect model semantics.

Consider the disjunctive database :P = {r} consisting of one rule r = q +--
nora. Among its two minimal models M1 = {q} and M2 = {a}, the first model
is preferred to the second. Intuitively, the reason is that in M2 the truth of "a"
has been derived by contradiction, i.e. r has been fulfilled by making its body
false. In contrast, in M1 the truth of "q" is derived constructively from the head
of r. Thus, M1 is the so-called perfect model of T ~, and it is considered to be the
intended model.

The evidential transformation C7) is a positive-disjunctive database that is
derived from P by moving default negated body literals to the rule heads and
prefixing them with "C". Thus, the rule r is translated to q V Ca. Additionally,
rules relating atoms and evidential atoms are introduced: Cq +-- q, Ca ~ a. A
similar construction has been used by Fernandez et al., cf. 7, to characterize
the stable models of ~. But our use of evidences has a different interpretation,
and moreover we use additional normality rules, which are not needed in 7.
Evidential stable models are defined as minimal models M of CP which also
minimize the set of atoms that are derived by contradiction solely: such atoms
A are false in M, but CA is true in M. Then we call CA an E-violation. In
our example, the minimal models of CP are M~ = { q, Cq } and M~ = { Ca }. In
M~ there is no C-violation, whereas in M~ there is the E-violation "Ca". Thus,
M~ is the unique evidential stable model of P. We will show, that for databases
which have stable models the evidential stable models coincide with the stable
models, when evidential atoms CA are interpreted as atoms A. Furthermore,
evidential stable models always exist for logically consistent databases. E.g. the
database P' = { a +- not a }, which does not have any stable models, has the
unique evidential stable model M' = {Ca}, which is interpreted as the model
M = {a} of P.

The second type of transformation we use is the to-transformation ~,t- of
a disjunctive database :P, which suitably annotates the atoms in T' by the two
truth values true ("t") and undefined ("u"), cf. 19. We state a characterization
of the partial stable models of ~' in terms of the stable models of ~t,,. Then,
partial evidential stable models are defined based on the evidential stable models
of :ptu, where the characterization for partial stable models motivates the new
definition. As in the two-valued case, partial evidential stable models always
exist for a logically consistent database. If there exist partial stable models of
the database, then the partial evidential stable models coincide with the partial
stable models, when evidential atoms are interpreted as atoms.

68 Dietmax Seipel

The paper is organized as follows: In Sections 2 and 3 we review the basic def-
initions and notation for disjunctive databases, partial Herbrand interpretations
and partial stable models. In Section 4 we introduce the evidential transforma-
tion and the evidential stable models of a disjunctive database 79. In Section 5
we define the tu-transformation 79tu of 79 and we state a characterization of the
partial stable models of 79 in terms of the total stable models of 79t.. This moti-
vates the definition of partial evidential stable models in Section 6. In Sections 7
and 8 we compare the new semantics with other approaches known from the
literature, and we briefly comment on some of their abstract properties.

2 Basic Definit ions and Notat ions

Given a first order language/ : , a disjunctive database 7 9 consists of logical infer-
ence rules of the form

r = AI V . . . V Ak +-- B1 A . . . A B m A not C1 A . . . A not Cn, (1)

where Ai, 1 < i < k, Bi, 1 < i < m, and Ci, 1 < i < n, axe atoms in the language
/:; k, m, n E ~r~r0, and not is the negat ion-by-defaul t operator. 1 A rule is called
a fact if m = n = 0. The set of all ground instances of the rules and facts in
7 9 is denoted by gnd (79). A rule (or database) is called posi t ive-disjunct ive if it
does not contain default negation (i.e. n = 0). A rule r of the form (1) above is
denoted for short as:

r = a +-- ~ A not . 7, (2)

where ~ = A: V . . . V Ak, 13 = B: A . . . A B m, and 7 = C: V . . . V Cn. 2

H e r b r a n d I n t e r p r e t a t i o n s a n d P a r t i a l H e r b r a n d I n t e r p r e t a t i o n s

The Herbrand base HBT~ of a disjunctive database 7 ~ contains all ground atoms
over the language of 79. A partial Herbrand interpretation of 7 ~ is given by a
mapping I: HBp ~ {t, f, u} that assigns a t ru th value "t" (true), "t ~' (false) or "u"
(undefined) to each ground atom in HBT~. Thus, partial Herbrand interpretations
are also called three-valued Herbrand interpretations. I is called a total or total
Herbrand interpretation, if all atoms A E HB~ are mapped to classical t ru th
values t or f.

Equivalently, a partial Herbrand interpretation I can be represented by using
the concept of annotated atoms. Given an atom A = p (t : , . . . , t n) and a t ru th
value v e { t ,f , u }, we define A v = p v (t : , . . . , tn) , where pV is taken to be a new
predicate symbol. We will use two ways of representing I as a set of annotated
atoms, either by specifying the true and false atoms or by specifying the true
and undefined atoms:

1 By SV+ we denote the set { 1, 2, 3, . . . } of positive natural numbers, whereas iWo
denotes the set { 0, 1, 2, . . . } of all natural numbers.

2 Note that 3' is a disjunction, and, according to De Morgan's law, not. 7 is taken to
be a conjunction.

Partial Evidential Stable Models for Disjunctive Deductive Databases 69

if-Representation: Itf = It U I f,
tu-Representation: I t" = I t O I",

where It , I u and I f are given by:

It = {A t A C H B ~ A I (A) = t } ,
If = { Af I A E HBt, A I (A) = f } ,
IU= { A U l A E HB~" A (I (A) = t V I(A) = u) }.

Note that in the to-representation every true atom A is recorded as A t and as
A u, which will become important later. Note also that the if-representation is
essentially the same as the conventional representation of I as a set of literals,
where A t becomes the atom A itself and A f becomes the negative literal -,A. For
a set Z of partial Herbrand interpretations we will use the same notations for
v E { t f , tu }: 2Y = { I v I E 27 }. By 27 =v ,7, we denote that J = 2Y is the
v-representation of 27.

Consider for instance the Herbrand base HBp = {a, b, c, d}. Then the partial
Herbrand interpretation I with I(a) = t, I(b) = t, I(c) = f, and I(d) = u, is
represented as follows:

i t f = { a t ,b t , e f}, I t U = { a t , a u,b t , b - , d u}.

Obviously, a total Herbrand interpretation I can simply be represented by
the set J = { A E HB~ I(A) = t } of true atoms. Conversely, any set J C_ HB~
of ground atoms induces a total Herbrand interpretation J ~ where J<>(A) = t
iff A E J. For a set ,7 of sets of atoms, f ro = { j o j E J }.

Truth Ordering and Knowledge Ordering

There are two common partial orderings on truth values, the t ruth ordering and
the knowledge ordering, cf. Fitting 8, which are shown by Figure 1:

Truth Ordering _<t: f _<t u, o _<t t,
Knowledge Ordering _<k: U _<k f, U _<k t.

Given two truth values Vl,V2 E { t , f ,u }, by vl _>• v2 we denote the fact that
v2 <• vl, for x E { t, k }.

These partial orderings have been generalized (pointwise) to partial orderings
on partial Herbrand interpretations as follows. For x E { t, k }:

I1 <x I2, iff (VA C HBT, : II(A) <x I2(A)).

The truth ordering on partial Herbrand interpretations corresponds to the sub-
set ordering on their tu-representations: I1 <t 12 iff I~" _C U2". The knowl-
edge ordering corresponds to the subset ordering on the if-representations:
xl _<k 12 iff _c

The Boolean operations "V", "A" and "-," on t ruth values are defined based
on the t ruth ordering, cf. Figure 2. The t ruth value of a disjunction Vl V v2 and

70 Dietmar Seipel

_<k

f

\ /
U

i t

Fig. 1. Truth Ordering and Knowledge Ordering

 ltfu t f u t t t
f f f t f u
u f u t u u

t f
f t
U U

Fig. 2. Boolean operations in three-valued logic

a conjunction vl A v2 of t ru th values are constructed by taking the maximum
and the minimum of vl and v2, respectively. "V" and "A" both are commutative
and associative, and thus can be generalized to disjunctions and conjunctions,
respectively, of more than one t ru th value.

Models and Partial Models , Minimality

Let M be a partial Herbrand interpretation of a disjunctive database :P. For
A~ �9 HBT~, 1 < i < k, and a connective | �9 ~V, A) w e define M(A1 |174) =
M(A1) | | M(Ak). For k = 0, the empty disjunction (i.e. @ = V) evaluates
to f, whereas the empty conjunction (i.e. | = A) evaluates to t. M is called a
partial model of a ground rule r = a +- ~ A not. 7 if

M(a) _>t M(f~) A -~M(7). (3)

M is called a partial model of 7 ~ if M is a partial model of all ground instances
r �9 gnd (7)) of all rules of P . This is denoted by M ~3 7 ~.

Minimality of partial models is defined w.r.t, the t ru th ordering. M is called
a partial minimal model of P if M is a partial model of 7 ~ and there is no other
partial model I of 7) such that I _<t M. The set of all partial minimal models of
7 ~ is denoted by A4A43 (7~). A partial model M of a disjunctive database 7 ~ that
is total is called a model of 7 ~. This is denoted by M ~2 7 ~. A partial minimal
model M of 7 ~ that is total is called a minimal model of 7 ~. The set of all minimal
models of 7 ~ is denoted by ~th42(7~).

Partial Evidential Stable Models for Disjunctive Deductive Databases 71

3 Stable and Partial Stable Models

The Gelfond-Lischitz transformation (GL-transformation) of a disjunctive data-
base 7) w.r.t, a partial Herbrand interpretation M is obtained from the ground
instance gnd (7)) of 7) by replacing in every rule the negative body by its t ruth
value M(not. 7) = -,M(7) w . r . t .M. 3

Definition 1 (Gelfond-Lifschitz Transformation, 9, 16).
Let M be a partial Herbrand interpretation of a disjunctive database 7).

1. For r = a +- ~ A not. 7 E gnd (7)) we define r M -- a +-- f~ A -~M(7).
2. The Gelfond-Lilschitz transformation of 7) is 7)M = { r M I r E gnd (7)) }.

The GL-transformation 7)M is a ground positive-disjunctive database that
has as additional atoms the t ruth values t, f and u. Note that these t ruth values
must evaluate to themselves under all partial Herbrand interpretations I of 7)M.

Definition 2 (Partial Stable Models, Stable Models, 9, 16).
Let M be a partial Herbrand interpretation of a disjunctive database 7).

1. M is called a partial stable model of 7) if M E JMA43 (7)M). The set of all
partial stable models of 7) is denoted by ST~tBs

2. A partial stable model M of 7) that is total is called a stable model of P.
The set of all stable models of 7 ~ is denoted by STA~s

It can be shown that ST,4Bs _C STABs for all disjunctive databases.
That is, the semantics of stable models is always stronger than the semantics of
partial stable models. The following databases will be used as running examples
throughout the paper.

Example 1 (Partial Stable Models).

1. For the disjunctive database

7)1 = { a V b , q+--bAnota, q + - a A n o t b } ,

we get the following set of partial stable models:

STABs =tf { { a t, qt, b f }, { b t, qt, a f } }.

E.g. for M t~ = {a t, qt, b f} we get the GL-transformation :pM = { aVb, q
bAf , q +-- a A t }, and .Aft.A43(7) M) : t f { M tf, Ntf }, for g tf = { bt, af, qf}.
Here all partial stable models are also stable models, i.e. STABC~3(7)I) =
ST.4BCZ2(7)x). Since 7)1 is stratified, the stable models coincide with the per-
eet models.

3 If this truth value is "t", then "t" can be deleted from the body. If it is 'T', then the
whole rule can be deleted from pM.

72 Dietmar Seipel

2. For the disjunctive database

/)2 = { a <-- not b, b +-- not c, c +- not a },

there is a unique partial stable model, which is not stable:

8T-4BEs = t f { 0 }, ST.AB~:~2(/)2) : t f 0,

3. The disjunctive database/)3 = /)2 U { aVbVc }, cf. also 16, is inconsistent
w.r.t, the semantics of stable and part ial stable models, i.e. S T . 4 B f ~ 3 (/) 3) -~-

8T~sLC2(/)3) = 0.

4 Evident ia l Stable Models

Given an a tom A = p (t l , . . . , t n) , we define the corresponding evidential atom
CA = C p (t l , . . . , t n) , where Cp is taken to be a new predicate symbol. For a
disjunction a = A1 V . . . V Ak and a conjunction f~ = B1 A . . . A Bm of a toms we
define Ca = CA1 V . . . V CA~ and C/~ = CB1 A . . . A CBm.

Definition 3 (Evidential Transformation).
L e t /) be a disjunctive database.

1. For a rule r = c~ +- 3 A not. ~/E 7) we define

Cr = c~ V C~ <-- ~, C2r = Ca V C'), +-- C/~.

2. The evidential transformation o f /) is

s { C r l r E /) } U { C~r l r E /) } U { CA +-- AI A E HBp }.

A rule Cr describes that , if the positive body/~ of r is true, then this gives
rise to deriving either the head c~ "constructively" or an evidence for 9, "by con-
tradiction". The rules C2r could be compared with the normality rules from the
autoepistemic logic ol belie#, cf. 17, and the rules CA +-- A with the necessita-
tion rules. For an implementation, C/) can be optimized: facts C2r = Cc~ V Cq,
obtained from rules r = c~ e- not.~, E /) with an empty positive body are
redundant, since they are implied by Cr = c~ V C~/and the necessitation rules.

Example 2 (Evidential Transformation).
For the disjunctive database 7)1 of Example 1 we get the following CPl , where
the fact Ca V Eb is redundant:

E/)I = { a V b , q V Ea +-b, q V E b + - a } U

{ Ca V Cb, Cq V Ca +-- Cb, Cq V Cb +- Ca } U

{ Ca +-- a, Cb +-- b, Cq +- q }.

Partial Evidential Stable Models for Disjunctive Deductive Databases 73

Every pair of total Herbrand interpretations J and K of P induces a total
Herbrand interpretation I of C79, denoted by J U CK, where for A E HBp:

(J U CK)(A) = J(A), (g O CK)(CA) = K(A).

Conversely, every total Herbrand interpretation I of C79 can be represented as JU
CK. The total Herbrand interpretation K of P , that determines I on evidential
atoms, will be denoted by K~(I), i .e. /C(J U CK) = K. /C(I) will be considered to
be the total Herbrand interpretation of 79 that corresponds to I . It ignores the
part J , and interprets evidential atoms as (regular) atoms. For a set Z of total
Herbrand interpretations of CP we define E(27) = {/C(I) I E Z }.

Based on a similar transformation ~'79 = { Crr 6 79 }u{ CA +-- AA 6 HBT~ },
which is a subset of C79, and the set CP = { +-- CA A not A A 6 HBp } of test
constraints, a characterization of stable models has been given by Fernandez et
al.:

Theorem 1 (Characterization of Stable Models, 7).
Given a disjunctive database 7 9, then

This characterization of stable models can also be proven for CP instead of 9rP. It
does not refer to the "normality rules" C2r, since they are fulfilled automatically,
if I strictly fulfills all of the test constraints in CP. In our approach, however,
they will be needed to guarantee tha t /C(I) is a model of 79 if I is a model of
CP.

We propose the new concept of evidential stable models, which are minimal
Herbrand models I of C79, such tha t /C(I) E A4.M2(79). The strict requirement
given by C79 is relaxed to a preference relation: I ~ is preferred to I , if)(I~) C
)(I), where 12(1) denotes the set of violations of test constraints.

Def in i t i on 4 (Ev iden t i a l S t ab l e Mode l s) .
Given a disjunctive database 79 and a set 27 of total Herbrand interpretations of
CP.

1. The set of C-violations of I E Z is given by

1)(1) = { C A l l ~2 CA and I W=2 A },

and minv(Z) = { I E 27 I ~II E 27 : I ~ I ~ A 12(11) ~ l;(1) } denotes the set
of)-minimal interpretations in 27.

2. The set of evidential stable models of P is

EST".aBs = rainy((I E .M.M2(E79) I K:(I) E A43,42(P) }),

and we further define ST-~tm:e2+(79) = IC.(ESTAB~.e2(79)).

74 Dietmar Seipel

The name evidential stable models has been chosen, since an evidential stable
model I E ESTABs)) contains evidential atoms, and it can be shown that
C(I) is a stable model of a suitably, minimally transformed database, where all
atoms A, such that EA is an E-violation in I, are moved from negative rule
bodies to rule heads (see 7)~ below).

An evidential stable model I provides more information than just about the
truth of atoms A, namely the information of whether A was derived construc-
tively, or solely by contradiction (i.e., CA is an C-violation in I). In the models
C(I) E STA~s however, this information is ignored.

Example 3 (Evidential Stable Models).

1. For the disjunctive database/)1 we get

ST Le 2(Pl) = STABLe2*(7),) C (7)1).

2. For the disjunctive database 7)2 we get the following 87)2, where redundant
facts have been left out:

E7)2 = {aV~b, bVEc, c V ~ a } U { ~a+--a, Eb+-b ,~c+-c} .

From ~r the first three models are 1-minimal:

AdA42(ET)2) -= { { a, Ea, Cc }, { b, Eb, Ca }, { c, Ec,~b }, { Ea, Eb, Ec } }<>.

E.g. for I = { a, Ea, Ec }o and I' -- { Ca, Eb, Ec }o we get

v(I) = { Ec } c+ v (r) = { Ea, Eb, Ec }.

The meaning of I is that "a" is true, but there is only an evidence that "c"
is true, i.e. "c" has been derived by contradiction:

ST.a~s = { {a,c}, {a,b}, {b,c} }o = A4A42(7)2).

Finally, C(I) = { a, c }o is a stable model of the suitably, minimally trans-
formed database 7~ for I:

7)~ = { a+-notb, bVc, c+--nora}.

3. For the disjunctive database 7)3 we get STABs = ST~s

The following theorem relates the evidential stable models of a disjunctive
database to the minimal and the stable models.

T h e o r e m 2 (Charac te r i za t ion of Evident ia l Stable Models) .
Given a disjunctive database 7), then

1. If.~(~.42(7)) ~ 0, then STAB~(7)) ~ ~.
2. If STA~Z.~2(7)) # 0, then STAnzaS(7)) = ST~tBc~(7~).

Partial Evidential Stable Models for Disjunctive Deductive Databases 75

Proof.

1. Assume A4~42(:P) ~ 0. Every minimal model M E A4A42(:P) of 7 ~ induces a
Herbrand interpretation M U CM, which obviously is a model of E7 ~. Thus,
there exists a minimal model I E AJA42(EP), such tha t I = J U E K C_
M U EM. a Since E K must be a model of 7 ~' = { E2r I r E 7 ~ }, and CM
is a minimal model of 7 ~', and E K C CM, we get tha t K = M. Thus,
I = J U ~ M E A4.A42(E7 ~) and C(I) = M e A4M2(:P). This means that the
set of interpretations which we minimize is not empty, i.e. STABs ~) ~ 0.

2. The test condition (A) I ~2 C7 ~ is equivalent to (B) Y(I) = 0. Thus, for a
stable model K of P , the Herbrand interpretation I = K U E K of EP always
is minimal w.r.t, violation, and thus I is evidential stable. Moreover, if there
exists any stable model of P , then all evidential stable models I of P must
fulfill (B), i.e. they are of the form I = K U EK, such tha t K E ST.aez.~2(7~).

3. First, the inclusion STA~Lc2*(:P) C_ A4~42(7)) holds by definition. Secondly,
the inclusion ST.aBr~(P) C ST.aBs)) is an immediate consequence of
part 2.

Note tha t the concept of evidential stable models cannot be lifted to the
three-valued case by simply taking partial minimal models of EP. The reason is
tha t for positive-disjunctive databases (without default negation), such as EP,
the partial minimal models coincide with the minimal models.

5 Annota t ion of Databases and Partial Stable Models

We will use a special concept of annotating disjunctive rules, which encodes
the condition that partial Herbrand models have to fulfill in terms of their t u -
representation. Given a t ru th value v E {t, u}, for a disjunction c~ = A1V. . .YAk
and a conjunction ;3 - B1 A . . . A Bm of atoms we define c~ v -- A v V . . . V A~ and
;3v = BI' ^ . . . ^

D e f i n i t i o n 5 (A n n o t a t i o n o f D a t a b a s e s) .

1. For a disjunctive rule r = a +- ;3 A not. "y we define the annotated rules

r t = (~ t + _ ; 3 t A n o t . 7 u, r u__ (~u+_ ;3uAno t .7 t.

2. For a disjunctive database P we define p t = { r t I r E :P }, pu = { r u r E :P },
and the annotated database ptu = ,pt U pu U { A u ~- A t I A E Hep }.

Example 4 (Annotation ol Databases).
For the disjunctive database Pl of Example 1 we get

qt a t b u T ~t { a t V b t, q t + - b t A n o t a U , +- A n o t } ,

7~ = { aUVb u, qU +._bUAnota t, a u +_.qUAnotbt },

7~ tu = 7~l t U 7~ U { a u ~ a t, b u ~ b t, qU +_ qt }.

4 Note that in this proof, total Herbrand interpretations are treated as their sets of
true atoms, and they are compared like sets.

76 Dietmar Seipel

The construction of ptu is motivated by the condition given in Equation (3),
which every partial Herbrand model M of a ground rule r = a ~- fl A not. 7 must
fulfill. This condition can be encoded in the annotated rules r t and r u, since it
is equivalent to the following:

((M (~) _ > t t A " (M (7) _ > t u) ==~ M (a) _ > t t) A

((M (/ 3) _>t " A - ' (M(7) _>t t) ==~ M (a) _>t u).

The rules A" +-- A t are due to the fact tha t we want to perceive the Herbrand
models of p t , as Herbrand models of P in tu-representation.

Propert ies o f the Annota ted Database

It can be shown that annotation preserves stratification: Given a disjunctive
database P , the annotated disjunctive database p t . is stratified if and only if
is stratified. Based on this, one can give an alternative proof of the well-known
fact (see 16) that the partial stable models of a stratified-disjunctive database
P coincide with the perfect models of P. This fact implies in particular that the
partial stable models of a stratified-disjunctive database P are total.

The annotated database p t , can be represented as a database over two pred-
icate symbols "t" and "u". Then, annotated atoms A t and A u in rules can be
represented by atoms t(A) and u(A), respectively, where "A" is seen as a term
now. In this representation the (possibly infinite) set { A u +- A t A E HB~, }
of rules can simply be represented by one rule u(X) +-- t (X) , where "X" is a
variable symbol for atoms. Then ptu has the size of 2 . n + 1 rules if 7 ~ consists
of n rules. This compact representation has been used for an implementation
dealing with :ptu.

Characterization of Partial Minimal and Partial Stable Models

The following theorem shows that the partial stable models of a disjunctive
database P correspond to the total stable models of the annotated database
p t . . For any total Herbrand interpretation I of ptu we introduce the notation
I v for the partial Herbrand interpretation of P that is induced by I , i.e. for
A E HB~,

t i f I (A t) - - t
IV(A) = u if I(A") = t a n d / (A t) = f

f if X(A") = f

For a set Z of total Herbrand interpretations of T TM, let Z v = { I v I I E Z }.

Theorem 3 (P a r t i a l Minimal and Partial Stable Models , 19).
Given a disjunctive database 7), then

2. 8TA3Lf.3(7 2~) : 8TABlY.s V.

Partial Evidential Stable Models for Disjunctive Deductive Databases 77

E x a m p l e 5 (Par t ia l Stable Models) .

1. For the disjunctive database P l of Example 1, whose annotated database
p~u has been given in Example 4, we get

STABLeS(~O1) =tu { { a t, a u, qt, qU }, { b t, b u, qt, q, } }.

2. For the disjunctive database :P2 of Example 1, we get the annotated database

7)t~ u = { a t +- no t b u, b t ~-- no t c u, c t +- no t a u,

a u +-- no t b t, b u +-- no t c t, c u +--'not a t,

a u +-_a t, b u ~-.-b t, C u t - -C t }.

Thus, we get
sr ,Le (p2) { { a", b", e } }.

For the restricted case of normal databases, i.e. databases that may contain
negation but do not contain disjunctions, other characterizations of partial stable
models are given in 4, 22. The characterization of 4 is also based on the concept
of annotation, but it needs more than the two t ruth values that we are annotating
with here.

6 P a r t i a l E v i d e n t i a l S t a b l e M o d e l s

For defining partial evidential stable models we can use the techniques described
in the previous two sections. Partial evidential stable models are defined based
on the evidential stable models of the tu-transformation of the database, i.e.
Theorem 3 for partial stable models motivates the following definition.

Definition 6 (Partial Evidential Stable Models) .
The set of part ial ev ident ia l stable models of a disjunctive database P is

ESTABLeS(7 ~) = ESTABs V,

and we further define STA~s (7 ~) = C(ESTA~Les(P)).

Thus, for constructing partial evidential stable models we need the evidential
transformation E(P t") of the tu-transformation of P. 5 As a consequence of its
definition, for each rule r = a ~ fl A not . "y E P , it contains two evidence rules
~'r u , ~'r t, and two normality rules E2r" , ~'2rt :

Cr" = c~" V E7 t +- f~", Ert = s t V ET" +-- f~t,
~2ru = ~O~ u V ~ t ~ ~'~u, ~r = ~O~ t V ~',~u /.._ ~'~t.

Note that in an implementation, ~(ptu) can be represented compactly as a dis-
junctive database over four predicate symbols "t, u, Ct, Eu".

5 We can identify evidential atoms g(A v) of g(7 ~t") with annotated atoms (gA) v of
(EP) t". But note that - even with this identification - the databases s and
(~,~)tu are different if there is negation in P.

78 Dietmar Seipel

<k

f g t '

\ / /
~U ,i U

<_t

Fig. 3. Correlation between Annotated Atoms

The correlation between the four different types of atoms is specified by four
generic rules in E(~otu), cf. Figure 3: First, the rule r = A u +-- A t E ~tu gives rise
to the two evidential rules g r = r and g2r = CA u +-- CA t. Secondly, we get the
two necessitation rules CA t / - A t and CA u +-- A u, for A t and A u, respectively.

Analogously to evidential stable models, a partial evidential stable model I
provides more information than just about the t ruth or undefinedness of atoms
A, namely the information of whether an annotated atom A v was derived con-
structively, or solely by contradiction !i.e. CA v E)(I) is an g-violation in I).
Again, in the models/C(I) E 8TAns s (P) this information is ignored, i.e., an
evidential atom CA v provides the same knowledge as a regular atom A v (cf. the
knowledge levels in Figure 3).

Example 6 (Partial Evidential Stable Models).

1. For the disjunctive database 7~2 of Example 1 we get

8TABLe:(~)2) ----- 8TABs163

2. For the disjunctive database P3 of Example 1 we get g(:P~u), where the
redundant facts g2r for rules r E p~u with empty positive bodies have been
left out:

C(~O~ u) -- { a t V b t V c t, a t V gb u, b t V Cc u, c t V Ca u } U

{ a u V b u V c u, a u V Cb t, b u V gc t, c u V Ca t } U

{ A u ~-- A t, CA u +-- CA t, CA t ~-- A t, CA u +-- A u A E HBp 3 }.

We get the set

A4A42 (C(7~u)) = { I1 (a, b, c) , /2 (a, b, c), I1 (C, a, b), /2 (c, a, b),

Ii(b,c,a), I2(b,c,a) }

of minimal models, where for A, B, C E HBps:

Iz (A, B, C) = { A t, CA t, A u, CA u, B", CB u, g C u }o,

I2(A,B,C) = {A t, CA t, A u, CA", CC t, CC")o.

Partial Evidential Stable Models for Disjunctive Deductive Databases 79

Here, l)(/1 (A, B, C)) = { EC u } C l)(I2 (A, B, C)) = { EC t, EC u }. Thus,
we get

STABs =tu { {at, aU,bU, cu }, {ct, cU,aU, bu }, {bt, bU, cU,a u } }.

3. For the (partial) evidential stable models of P3, it turns out that for each
evidential stable model I2 E STABLE~(P3) there is a corresponding partial
evidential stable model I3 E 8TABL:~'(P3) that is weaker in the knowledge
ordering: e.g. for I~ TM = { a t, a u, c t, c u } and I~ u -- { a t, a u, b u, c u } we ge t /3 _<k
12, since I~ f = { a t } C { a t, b f, c t } = I tf.

The following theorem relates the partial evidential stable models of a dis-
junctive database to the partial minimal and the partial stable models. It is a
consequence of Definitions 4 and 6, and Theorems 2 and 3.

Theorem 4 (Characterization o f Partial Evidential Stable Models) .
Given a disjunctive database P, then

1. /f.VtA43(79) r 0, then 8TABZ.e~(P) # 1~.
2. If STAI~Zes(P) r 0, then STABs = STAI~Z.eZ(P).
3. ST.~BCe3(P) g 8T.48Ce3*(P) C_ J~tM3(P).

(STABs (ptu)) V = ST-ABs (P).

Proof.
First, we will show that

(4)

Due to Definition 4, (ST~s v = (E(EST.~ns v. It is possible
to switch: (E(CST.am:e2(ptu))) v = 1C(EST.aBLz2(ptu)V). According to Defini-
tion 6,

/C(ESTABs v) = C(ESTA~s = 5%4Bz:e3~(P).

1. Assume .~4.A43(P) ~ 0. According to Theorem 3, part 1, this implies that

(A4h42(Tvtu)) v i~ 0. With Theorem 2, part 1, we get (STABs163162 0.
Using Equation (4), 8TJt~z:e3*(P) r 0 can be concluded.

2. Assume ST.aBZes(7)) ~ 0. According to Theorem 3, part 2, this implies that
(STABs163 v ~ 0. With Theorem 2, part 2, we get

($TABZ:e~(7~tu)) v = (STABs 2(Ptu)) v.

Using Equation (4) and Theorem 3, part 2, the desired result follows.
3. From Theorem 2, part 3, we get an inclusion chain, that is preserved by "V":

(STABEE2(~Dtu)) V C__ (ST.ABLE2@(~tu)) v C_ (j~ /~2(p tu)) v . Applying Theo-
rem 3, parts 1 and 2, to (.Ad.M2(ptu)) V and (STABs v, respectively,

and applying Equation (4) t o ($TAB~E2~(~)tu)) v, we get the desired chain of
inclusions.

80 Dietmar Seipel

Partial evidential stable models provide a "consistent extension" of the well-
founded semantics from normal databases to disjunctive databases P, namely the
set $7-xss) of partial Herbrand interpretations. For stratified-disjunctive
databases, this extension coincides with the perfect models if there exist perfect
models of P (which is for instance guaranteed for databases without denial rules).

7 Comparison with Other Approaches

Regular Models

The semantics of regular models has been introduced by You and Yuan, cf. 24,
25: A regular model M is a justifiable model which has a minimal set M u of
undefined atoms. A justifiable model M is a minimal model of a variant ~M of
the three-valued Gelfond-Lifschitz transformation, where only those rules are
selected whose negative bodies are true w.r.t. M (rather than undefined or false).

For a large class of disjunctive databases - including all examples considered
so far in this paper - the partial evidential stable models coincide with the
regular models. But, using an example database from 6, it can be shown that
the regular models do not always coincide with the (partial) evidential stable
models, neither with the (partial) stable models.

L-Stable and M-Stab le Models

Eiter, Leone and Sacca 6 have investigated several interesting subsets of the set
of partial stable models, like the least undefined and the maximal partial stable
models, which they call L-stable and M-stable models, respectively. 6 For normal
databases (without disjunctions), the M-stable models coincide with the regular
models of You and Yuan.

Since L-stable and M-stable models always are partial stable models, they do
not give a consistent interpretation for databases without partial stable models
(like P3), while (partial) evidential stable models do so if the databases are
logically consistent.

It tuns out that the concepts of minimizing undefinedness and maximizing
knowledge can be combined with our concept of partial evidential stable models.
That is, since SWASL:E3*(P) is a set of partial Herbrand interpretations, it makes
sense to look for the least undefined elements in that set, and also for the elements
with maximal knowledge.

Abduct ive Variants of Stable Models

Given a disjunctive database :P, and a set A _C Hs~ of ground atoms, called
abducibles. A total Herbrand model I of 7) is called an A-belief model, if there

6 Within the set of all partial stable models, an L-stable model M must have a minimal
set M u of undefined atoms, whereas an M-stable model must have a maximal set
M tf of knowledge.

Partial Evidential Stable Models for Disjunctive Deductive Databases 81

exists a set .4i _C .4 of abducibles, such that I is a stable model of P U AMI. ~"
is called an AM-stable model of 7 ~, if its set AMI is minimal among all AM-belief
models (i.e., if there exists no other AM-belief model I ' such that ,41, C AMI).

This construction had been suggested by Gelfond 7, who allowed all ground
atoms to be abducibles (i.e. AM = HBp). A slightly different variant had been
proposed by Inoue and Sakama 11, who minimize the amount of abducibles in
an AM-stable model I by additionally requiring that AMI = { A E AM I I (A) = t }
must hold for AM-belief models.

In general, both definitions are different from evidential stable models. If
there exist stable models, then Gelfond's approach also derives these stable mod-
els, but otherwise it does not necessarily derive only minimal models, s The ap-
proach of Inoue and Sakama is depending on particular useful sets of abducibles -
for .4 = 0 it derives the stable models, and for .4 = HB~ it derives all minimal
models.

There are, of course, similarities to evidential stable models, where the g -
violations (i.e. the atoms that are derived by contradiction solely) play the role
of abducibles which must occur in negative bodies of ground rules.

Disjunctive Wel l -Founded Semantics

For achieving a consistent interpretation of disjunctive databases, several types
of well-founded semantics have been proposed, cf. 1, 2, 14. It seems that the
semantics of evidential stable models are stronger than the semantics D-WFS of
Brass and Dix 2, and still they are consistent.

8 Abstract Propert ies of the Evident ia l Semant ics

In the following we will give a brief analysis of the two evidential semantics
according to several abstract properties of semantics, cf. Brass and Dix 3. A
summary is given by Figure 4.

First, both evidential semantics have the property of independence. They
even have the stronger property of modularity. This means that if a database
can be decomposed into separate components that do not have any atoms in
common, then the (partial) evidential stable models can be computed on the
components separately. As a consequence, only on those parts of a disjunctive
database that are inconsistent w.r.t. (partial) stable models we have to compute
(partial) evidential stable models. On the consistent part of a database - which
usually will be the main part - we can compute the basic (partial) stable model
semantics.

7 in discussions
s E.g., the disjunctive database 79 = {q +-- nora A notq, a ~-- b} has two evidential

stable models I tf = { qt, a f, b f} and Qf = { a t, b f, qf }. According to Gelfond's defini-
tion, besides I1 and 12 we get an extra .A-stable model I3 a = { a t, b $, qf }, which is
not minimal (,4 = { a, b, q }, A11 = { q }, Jti2 = { a }, fl*Is = { b }).

82 Dietmar Seipel

STAB s163 2

STAB s163 3

STABs ~

STABEE f

D-WFS

Regular

Taut. Contr. GPPE Indep. Supra.
+ q- +

+

+ q- q-

q- §

q- § §

§ +

q-

+

Fig. 4. Abstract properties of semantics

Secondly, evidential stable model semantics is supraclassical, i.e., it derives
more consequences - by sceptical reasoning - than classical logic, since eviden-
tial stable models are also minimal models, cf. Theorems 2. On the other hand,
partial evidential stable model semantics is not supraclassical, since for normal
databases it is equivalent to the well-founded semantics, which is not supraclas-
sical.

Thirdly, both evidential semantics allow for the elimination of tautologies.
The semantics of evidential stable models also allows for the elimination of con-
tradictions, whereas partial evidential stable models do not. This well matches
with the conjecture of 3 that elimination of contradictions should be given up for
(three-valued) semantics of general - i.e. non-stratified - disjunctive databases.

Fourth, both evidential semantics do not satisfy the generalized property of
partial evaluation (GPPE) . For partial evidential stable models this can be shown
by an example that originally was used for showing that partial stable models
do not satisfy G P P E 19. Given the fact that evidential stable models satisfy
elimination of tautologies and elimination of contradictions, using a theorem of
3 it can be concluded that evidential stable models cannot satisfy G P P E - the
reason is that otherwise the set of evidential stable models always would have
to be a subset of the set of stable models.

Finally, note that as a consequence of Theorem 3, the technique of partial
evaluation can still be applied to the tu- t ransformation of a database - rather
than the database itself - for computing its partial stable models, and conse-
quently also the superset of partial evidential stable models.

9 C o n c l u s i o n s

The evidential semantics presented in this paper can be seen as a special case of
the general framework or revising non-monotonic theories that was introduced
by Witteveen and van der Hoek in 23. In that case, the intended models would
be the (partial) stable models, and the backup models - from among which the
models are chosen if there exist no intended models - would be the (partial)
minimal models, cf. Theorems 2 and 4.

Partial Evidential Stable Models for Disjunctive Deductive Databases 83

The computat ion of (partial) evidential stable model semantics has been
implemented within the system DISLOG for efficient reasoning in disjunctive
databases, cf. 20. It can be shown that the time cdmplexity of computing (par-
tial) evidential stable models is on the second level of the polynomial hierarchy,
namely E P, just as for computing (partial) stable models.

The detailed investigation of the properties and possible implementations of
evidential stable models and partial evidential stable models will be the subject
of future work.

A c k n o w l e d g e m e n t s

The author would like to thank Adnan Yahya and J ia-Huai You for their com-
ments on earlier drafts of this paper, and the anonymous referees for their useful
remarks.

R e f e r e n c e s

1. C. Baral, J. Lobo, J. Minker: WF3: A Semantics for Negation in Normal Dis-
junctive Logic Programs, Proc. Intl. Symposium on Methodologies for Intelligent
Systems (ISMIS'91), Springer LNAI 542, 1991, pp. 490--499.

2. S. Brass, J. Dix: A Disjunctive Semantics Based upon Partial and Bottom-Up
Evaluation, Proc. Intl. Conference on Logic Programming (ICLP'95), MIT Press,
1995, pp. 199-213.

3. S. Brass, J. Dix: Characterizations of the Disjunctive Stable Semantics by Partial
Evaluation, Proc. Third Intl. Conf. on Logic Programming an Non-Monotonic
Reasoning (LPNMR'95), Springer LNAI 928, 1995, pp. 85-98, and: Journal of
Logic Programming, vol. 32(3), 1997, pp. 207-228.

4. C.V. Damdsio, L.M. Pereira: Abduction over 3-valued Extended Logic Programs,
Proc. Third Intl. Conf. on Logic Programming an Non-Monotonic Reasoning
(LPNMR'95), Springer LNAI 928, 1995, pp. 29-42.

5. T. Eiter, N. Leone, D. Sacca: The Expressive Power of Partial Models for Disjunc-
tive Deductive Databases, Proc. Intl. Workshop of Logic in Databases (LID'96),
Springer LNCS 1154, 1996, pp. 245-264.

6. T. Eiter, N. Leone, D. Sacca: On the Partial Semantics for Disjunctive Deductive
Databases, Annals of Mathematics and Artificial Intelligence, to appear.

7. J.A. Ferndndez, J. Lobo, J. Minker, V.S. Subrahmanian: Disjunctive LP § In-
tegrity Constrains -- Stable Model Semantics, Annals of Mathematics and Artifi-
cial Intelligence, vol. 8 (3-4), 1993, pp. 449-474.

8. M. Fitting: Bilattices and the Semantics of Logic Programs, Journal of Logic Pro-
gramming, vol. 11, 1991, pp. 91-116.

9. M. Gelfond, V. Lifschitz: The Stable Model Semantics for Logic Programming,
Proc. Fifth Intl. Conference and Symposium on Logic Programming (ICSLP'88),
MIT Press, 1988, pp. 1070-1080.
M. Gelfond, V. Lifschitz: Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing, vol. 9, 1991, pp. 365-385.
K. Inoue, C. Sakama: A Fixpoint Characterization of Abductive Logic Programs,
Journal of Logic Programming, vol. 27(2), 1996, pp. 107-136.

10.

11.

84 Dietmar Seipel

12. N. Leone, R. Rullo, F. Scarcello: Stable Model Checking for Disjunctive Logic
Programs, Proc. Intl. Workshop of Logic in Databases (LID'96), Springer LNCS
1154, 1996,pp. 265-278.

13. J.W. Lloyd: Foundations of Logic Programming, second edition, Springer, 1987.
14. J. Lobo, J. Minker, A. Rajasekar: Foundations of Disjunctive Logic Programming,

MIT Press, 1992.
15. L Niemel~, P. Simons: Efficient Implementation of the Well-founded and Stable

Model Semantics, Proc. Joint Intl. Conference and Symposium on Logic Program-
ming (JICSLP'96), MIT Press, 1996, pp. 289-303.

16. T.C. Przymusinski: Stable Semantics for Disjunctive Programs, New Generation
Computing, vol. 9, 1991, pp. 401-424.

17. T.C. Przymusinski: Static Semantics for Normal and Disjunctive Logic Programs,
Annals of Mathematics and Artificial Intelligence, vol. 14, 1995, pp. 323-357.

18. D. Seipel, J. Minker, C. Ruiz: Model Generation and State Generation for Disjunc-
tive Logic Programs, Journal of Logic Programming, vol. 32(1), 1997, pp. 48-69.

19. D. Seipel, J. Minker, C. Ruiz: A Characterization of Partial Stable Models for
Disjunctive Deductive Databases, Proc. Intl. Logic Programming Symposium
(ILPS'97), MIT Press, 1997, pp. 245-259.

20. D. Seipel: DIsLoG - A Disjunctive Deductive Database Prototype, Proc. Twelfth
Workshop on Logic Programming (WLP'97), 1997, pp. 136-143.
DIsLoG is available on the WWW at
"http://www-infol.informatik.uni-wuerzburg.de/databases/DisLog".

21. A. Van Gelder, K.A. Ross, J.S. Schlipf:, Unfounded Sets and Well-Founded Se-
mantics for General Logic Programs, Proc. Seventh ACM Symposium on Principles
of Database Systems (PODS'88), 1988, pp. 221-230.

22. C. Witteveen, G. Brewka: Skeptical Reason Maintenance and Belief Revision, Jour-
nal of Artificial Intelligence, vol. 61, 1993, pp. 1-36.

23. C. Witteveen, W. van der Hoek: A General Framework for Revising Nonmonotonic
Theories, Proc. Fourth Intl. Conf. on Logic Programming an Non-Monotonic Rea-
soning (LPNMR'97), Springer LNAI 1265, 1997, pp. 258-272.

24. J.H. You, L.Y. Yuan: Three-Valued Formalisms of Logic Programming: Is It
Needed ?, Proc. Ninth ACM Symposium on Principles of Database Systems
(PODS'90), 1990, pp. 172-182.

25. J.H. You, L.Y. Yuan: On the Equivalence of Semantics for Normal Logic Programs,
Journal of Logic Programming, vol. 22(3), 1995, pp. 211-222.

Disjunctive Logic Programming and
Autoepistemic Logic

Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Department of Computer Science
University of Alberta

Edmonton, Canada T6G 2H1
{yuan, you, goebel}~cs.ualberta.ca

Abstract . In this paper, we use autoepistemic reasoning semantics to
classify various semantics for disjunctive logic programs with default
negation. We have observed that two different types of negative intro-
spection in autoepistemic reasoning present two different interpretations
of default negation: consistency-based and minimal-model-based. We also
observed that all logic program semantics fall into three semantical points
of view: the skeptical, stable, and partial-stable. Based on these two ob-
servations, we classify disjunctive logic program semantics into six dif-
ferent categories, and discuss the relationships among various semantics.

1 Introduction

Recently the study of theoretical foundations of disjunctive logic programs with
default negation has attracted considerable attention. This is mainly because
the additional expressive power of disjunctive logic programs significantly sim-
plifies the problem of modeling disjunctive statements of various nonmonotonic
formalisms in the framework of logic programming, and consequently facilitates
using logic programming as an inference engine for nonmonotonic reasoning.

One of the major challenges is how to define a suitable semantics for var-
ious applications. A semantics of logic programs is usually specified by how
default negation is justified. Different ways of justification lead to different se-
mantics. Though many promising semantics for disjunctive programs have been
proposed, such as the answer set semantics 12, the static semantics 16, and
the well-founded and stable circumscriptive semantics 22, searching for suit-
able semantics for disjunctive programs proved to be far more difficult than for
normal programs (logic programs without disjunction) whose semantics is fairly
well understood now.

Three major semantical points of view have been established for logic pro-
grams: the skeptical, stable, and partial-stable.

A skeptical semantics justifies a default negation not(~ with respect to a
program T / i f and only if a cannot possibly be derived from H under any cir-
cumstance 1

1 We say a cannot be derived from T/under any circumstance if a cannot be derived
from T/N for any set N of default negations. Note that//~v is a program obtained

86 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

A stable semantics is based on the idea of perfect introspection, in that the
semantics entails n o t a if and only if it does not entails a. Obviously, a sta-
ble semantics disallows any undefined atoms. (Note that an atom a in a given
semantics is considered undefined if neither a nor n o r a is true in the semantics.

A stable semantics characterizes an ideal (credulous) semantics for logic pro-
grams but a stable semantics of many less-than-ideal programs may not be con-
sistent. For example, / / = {a ~ nora) has no stable models. This motivates
the introduction of the third semantical point of view: the partial-stable seman-
tics. A partial-stable semantics can be viewed as a relaxed stable semantics tha t
allows a minimum number of undefined atoms.

The standard semantics in three semantical categories for normal programs
are the well-founded semantics 9, the stable semantics 11, and the regular
semantics 20, respectively.

Not surprisingly, many semantics for disjunctive programs have been pro-
posed in each of these three semantical categories. For example, the static se-
mantics, the well-founded circumscriptive semantics, and the disjunctive well-
founded semantics 2-4 and the skeptical well-founded semantics 23 are rep-
resentatives of the skeptical semantical category; and the answer set semantics
and the stable extension semantics 14 (based on the autoepistemic translation
of logic programs) are representatives of the stable semantical category. For the
partial-stable semantical category, there are the partial-stable model semantics
15, the regular model semantics 20, and the maximal stable model semantics
8. These three partial-stable semantics, as well as many others, defined weaker
stable semantics for disjunctive programs but experienced various difficulties 8.
A notable new entry in the field is the the partial-stable assumption semantics
19. The partial-stable assumption semantics extends the answer set seman-
tics into the partial-stable semantical category in the same way as the regular
semantics extends the stable semantics for normal programs.

In addition to three semantical points of view, it has also been realized that
the interpretations for default negation can be divided into two camps: those in
default logic and autoepistemic logic, which are consistency-based, and those in
circumscription and the like, which are minimal-model-based 13. In the former
case, default assumptions are made on the basis of certain hypotheses being
consistent with a current theory; in the latter case, default assumptions are
made on the basis of their being true in all minimal models of a current theory.

In this paper, we use autoepistemic logic as a tool to classify disjunctive pro-
gram semantics into six different semantical categories, according to three seman-
tical points of view and two interpretations of default negation. We demonstrate
tha t all the six semantics have been proposed earlier in various frameworks and
that all promising semantics either coincide with, or are essentially the same as,
one of these six semantics.

We also address computational aspects of various semantics, which is an-
other important issue in the study of logic program semantics. In fact, we have

from / / by replacing all negations with their truth values in N. See Section 2 for
details

Disjunctive Logic Programming and Autoepistemic Logic 87

shown that among all six semantics, the consistency-based skeptical semantics
has the lowest computational complexity: pNP, which is not surprising be-
cause minimal-model entailment is inherently more difficult to compute than
(consistency-based) classical entailment.

We use autoepistemic logic as a tool for classifying disjunctive logic pro-
gram semantics for the following two reasons. First, default negation in logic
programming and many other nonmonotonic reasoning frameworks can be pre-
cisely characterized by negative introspection, which is a process for a rational
agent to derive disbeliefs according to the agent's perspective of the world, in au-
toepistemic reasoning 10. Second, we have observed that the difference between
consistency-based and minimal-model-based interpretations of default negation
lies in the use of an axiom - a C -"Ba, where ~ B a standing for "not believ-
ing c~" (or nora) , in autoepistemic logic, which is quite interesting. In fact, we
show that a minimal-model-based semantics can be precisely defined by the cor-
responding consistency-based semantics with one simple axiom in the context
of autoepistemic logic semantics. The following example demonstrates the dif-
ference between the two interpretations of default negation and how they are
related by the above axiom.

Example 1. Consider the following program Hi:

driving V flying ~-
fixing_car +- not flying
reserving_seat +- notdriving

Iii can be represented by an autoepistemic theory A1 below:

driving V flying
fixing_car C -"B flying
reserving_seat C -"Bdriving

The answer set semantics, which adopts the minimal-model-based default nega-
tion, of/ /1 has two answer sets, one conclude

{driving; fixing_car; not flying; notresering_seat }

and the other

{flying; reserving_seat; notdriving; not fixing_car}.

The stable extension semantics 14, which is consistency-based, of A1, on the
other hand, contains a unique stable extension which concludes

{driving V flying; fixing_car; reserving_seat; -"Bdriving; -,B flying}

Let Aim be obtained from A1 by adding instantiated formulas of axiom --a C
--Ba, i.e., Aim = A1 (3 {-.driving C -.Bdriving; -.flying C -.B flying}. Then
the stable extension semantics of Aim contains two stable extensions, one con-
cludes

{driving; fixing_car; -,B/lying; -.Bresering_seat }

88 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

and the other

(flying; reserving_seat; -~Bdriving; -~B f ixing_car } ,

which coincides with the answer set semantics of / I1 .

Our study provides much needed insights into the theoretical foundations of logic
programming with default negation.

The rest of the paper is organized as follows: Section 2 and 3 briefly review
logic program semantics and autoepistemic logic respectively. Section 4 defines
three autoepistemic expansions according to three different semantical points of
view. The six different semantics are redefined in Section 5. Semantical analysis
and comparisons are given in Section 6.

2 Logic Programs with Default Negation

We consider instantiated programs in a finite language containing the binary
connectives V, A, +-, and a unary connective no t . A logic program is a set of
clauses of the form

A1 V ... V Aq +- B1, . . . ,Bm,no tC1 , . . . , n o t c h ,

where A~,Bj,Ck are atoms, notCk are default negations, also called assumed
negations, and q > 1. FI is considered a normal program if q -- 1; and a positive
program if n = 0. We use/-/~- ~ to denote the fact tha t ~ can be derived from
/ / i n the sense of classical entailment.

Assume H is a program. A negation set N is defined as a set of default
negations that appear in H, which represents a possible interpretation (values)
of default negations contained in H. The GL-translation /-IN is defined as a
program obtained f r o m / / b y first deleting all n o t c j s if n o t c j E N and then
deleting all clauses with notck in the body if notck r N.

The main challenge is how to define a suitable semantics for logic programs.
Since a negation set specifies a set of default negations being assumed true and
the intended meaning o f / / u n d e r a given negation set N is determined b y / / g
2, a semantics of H is usually given by one or more negation sets. Therefore,
searching for a semantics of H is a process of searching for a negation set that
can be justified under a certain semantical point of view.

There are three major semantical points of view: the skeptical, stable, and
partial-stable.

A skeptical semantics is the most conservative semantics in tha t it justifies
a default negation n o t s if and only if ~ cannot be derived from the current
program in any circumstance, meaning c~ is not true with respect to H g for
any negation set N. Both stable and partial-stable semantics justify a default

2 Given H and N, an atom a is considered true with respect to/-/N if either/-/N ~ C~
as in a consistency-based semantics, or (//N U {-~;3 notfl E N}) ~ a as in the
answer set semantics. See Section 5 for details.

Disjunctive Logic Programming and Autoepistemic Logic 89

negation n o t a only if c~ cannot be derived from the current program under the
given negation set. The difference between the stable and partial-stable is that
the former assigns a definite value, being true or assumed false, to each and
every atom while the latter allows a minimum number of undefined atoms.

Consider normal (non-disjunctive) programs first. The following table lists
all the major semantics proposed for normal programs.

Skept ica l S tab le par t i a l - s tab le

Well-Founded
Semantics 9

Stable Semantics 11
'Regular Semantics 20
Preferential Semantics 7
Maximum Partial-Stable
Semantics 17 1
Stable-Class Semantics

Let f i be a normal program, and M and N negation sets of H. We say M is
compatible wrt N if f iN ~= a for any n o t a E M. Then N is justifiable wrt f i
if n o t a E N if and only i f / I M ~= ~ for any M that is compatible wrt N. This
leads to the following definition.

Defini t ion 1. Let f i be a normal program. A negation set N is said to be

1. a partial-stable set of H if
(a) N is compatible wrt itself, and
(b) Y = {noto~/-/{n~ /-/N~} V= ~/~.

2. a stable set of 1-I if N = {notc~ H ~= a}.

From this definition we can see that a partiai-stable set N is a set of all default
negations that can be justified under the rule of negation as failure. That is,
n o t a E N if and only if c~ cannot be derived from f i even all default negations
n o t e E {no te I f IN ~ ~} are assumed false. Obviously, a stable set is a partial-
stable set, but not vice versa. A program has at least one partial-stable set,
though it may not have any stable set. Further, it is easy to show that among
all partial-stable sets o f / - / there exists the least stable set in the sense of set
inclusion. The following proposition reveals that almost all semantics of normal
programs can be characterized by partial-stable sets.

P r o p o s i t i o n 1. (21)

1. The well-founded semantics is characterized by the least partial-stable set.
2. The stable semantics is characterized by the set of all stable sets.
3. The regular semantics, preferential semantics, maximum partial-stable se-

mantics, and normal stable-class semantics coincide and are characterized
by the set of maximal partial-stable sets, in the sense of set inclusion.

This proposition demonstrates that the well-founded, stable, and the regular
(including all other equivalent) semantics are the standard semantics for their
respective categories.

While the normal program semantics is fairly understood, searching for suit-
able disjunctive programs proved to be much more difficult.

The following table lists all major semantics proposed for disjunctive pro-
grams.

90 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Skept ica l S tab le Pa r t i a l -S tab le
Well-founded Circums- Stable Circums- Partial-stable
criptive Semantics 22 criptive Semantics 22 Model Semantics 15
Static Semantics Answer Set Regular Semantics
16 Semantics 12 20
Disjunctive Well-
founded Semantics 2, 4
Skeptical Well-
founded Semantics 23

Stable Extension
Semantics 14

Maximal Stable
Model Semantics 8
Partial-stable
Assumption Semantics 19
Regularly-justified
Set Semantics 23

Both the static and the well-founded circumscriptive semantics were defined
based on the same idea of minimai-model-based negative introspection. The spe-
cific form of this introspection was given in 22. In fact, the first three skeptical
semantics listed above are essentially the same 5. The difference between the
first three skeptical semantics and the skeptical well-founded semantics lies in
the interpretation of default negation. The former adopts minimal-model-based
default negation while the latter consistency-based default negation.

Example P. Consider a simple program//2 below:

bird +-; f ly V abnormal +- bird; f ly +- bird, notabnormal

Since abnormal is true in a minimal model of/ /2 with notabnormal being false
while abnormal cannot be derived from//2 regardless of notabnormal being true
or false, notabnormal can be justified under consistency-based default negation
but not under minimal-model-based default negation.

The skeptical well-founded semantics adopts consistency-based default nega-
tion and thus concludes notabnormal and ly. On the other hand, the static
as well as the well-founded circumscriptive and disjunctive well-founded se-
mantics adopt minimai-model-based default negation and thus conclude neither
notabnormal nor fly.

The answer set semantics is defined for extended logic programs that allow clas-
sical negation in both head and body while the stable circumscriptive semantics
is defined for general autoepistemic theories, including the translated logic pro-
grams with default negation. Both semantics adopt minimal-model-based default
negation and coincide in the context of disjunctive logic programs. On the other
hand, the stable extension semantics and the stable set semantics 23 are a
stable semantics that adopt consistency-based default negation.

Example 3. (Example 2 continued) The answer set semantics (as well as the sta-
ble circumscriptive semantics) of II2 is defined by two sets, the first one contains
the set {bird, fly, notabnormal) and the second {bird, abnormal, not /y) .

The stable set semantics, on the other hand, is defined by a unique negation
set {notabnormal) and therefore implies bird Aly.

Disjunctive Logic Programming and Autoepistemic Logic 91

All the partial-stable semantics, except the regularly-justified set semantics which
is consistency-based, listed above are minimal-model-based but are different from
each other. See 8 for detailed comparisons. The recently proposed partial-stable
assumption semantics seems the only semantics that extends the answer set se-
mantics in the same way as the regular semantics extends the stable semantics
for normal programs 19.

Example 4. Consider the following program I/4

work V sleep v tired +-
work 4- nottired
sleep +- notwork
tired ~-- notsleep

Both partial-stable and maximal stable model semantics, listed in the table,
o f / / 4 are inconsistent while the partial-stable assumption semantics and the
regularly-justified set semantics are characterized by an empty negation set N =
q} which implies nothing but work V sleep V tired.

The difference between the partial-stable assumption and regularly-justified
set semantics lies in the interpretation of default negation. For example, consider
//2 in Example 2. The partial-stable assumption semantics of / /2 coincides with
the answer set semantics of I/2 while the regularly-justified set semantics of/ /2
coincides with both the skeptical well-founded and the stable set semantics of
//2.
Another important feature of a semantics is its computational complexity. Be-
cause of the inherent difficulty of computing minimal-model entailment, the
computational complexity of consistency-based semantics is lower than that of
minimal-model-based semantics.

3 Autoepistemic Logic

We consider here a propositional language augmented with a modal operator B.
An atomic formula (atom) is either a propositional symbol, or an epistemic atom,
also called belief atom, Ba, where c~ is a (well-formed) formula defined as usual.
The intended meaning of B a is "a is believed". For convenience, we also use
not(~, called disbelief atom, interchangeably for -~Bc~, meaning c~ is disbelieved.
(not(~ is also viewed by many authors as a default negation.) An belief theory
(or a theory for short) is a set of well-formed formulae, and a formula (or a
theory) is objective if it contains no epistemic atoms, otherwise it is subjective.
We denote by P+(A) and P - (A) the set of all propositions and the set of all
negative literals that appear in A, and by B+(A) and B - (A) the set of all belief
atoms and the set of all disbelief atoms that appear in A, respectively.

The logic has the following axioms and rules of inference.

Axioms.
PL. All propositional tautologies.
g. B(a D ~) D (Ba D B~).
D. ~B (false)

92 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Inference rules.

Modus Ponens (MP). a D/3,

A rational agent does not belief inconsistent conclusions which is expressed by
D. K means that if a conditional and its antecedent are both believed, then so
is the consequent. The importance of K is evidenced by the fact that K imposes
a constraint of normality on the language: B a - B~ whenever ~ -- f~. (Note
tha t by ~ _-- 13 we mean (a C t3) A (13 C (~).) MP is a usual inference rule for
propositional logic.

Let A be a theory and c~ a formula. By A I-KD Ol we mean a can be derived
from A based on the aforementioned axioms and rules of inference. A is incon-
sistent if there exists a formula (~ such that A F-Ko c~ and A F-/~D -~(~; otherwise,
it is consistent.

3.1 Belief Interpretation

A belief theory A is used to describe the knowledge base of a rational agent. Due
to incomplete information, an agent may have to hold a set of possible states
of epistemic belief, each of which represents a complete description about the
agent's belief. A (restricted) belief interpretation is thus introduced to charac-
terize such a complete state of belief. Formally,

Definition 2. 1. A restricted belief interpretation, or belief interpretation for
short, of A is a set I of belief atoms and disbelief atoms such that for any
belief atom Ba appearing in A, either Ba E I or -~Ba E I (not both).

2. A restricted belief model, or belief model for short, of A is a belief interpre-
tation I of A such that A U I is consistent.

Obviously, a theory is consistent if and only if it has at least one belief model.
Let A be a belief theory and I a belief model of A. An (objective) perspective

theory of A, denoted by A I, is defined as an objective theory obtained from A
by replacing each belief atom in A with their corresponding t ruth value in I.
Obviously, a belief theory may have more than one perspective theory and each
of them represent the agent's perspective with respect to one restricted belief
model.

Example 5. The following autoepistemic theory is obtained f rom/ /2 in Exam-
ple 2 above

A5 = {bird; f l y V abnormal C bird; f l y C bird A -,Babnormal).

A5 has two belief models and two corresponding perspective theories:

I1 = {Babnormal) and A51 = {bird; f l y V abnormal C bird);
I2 = {-~Babnormal) and A52 = {bird; f l y V abnormal C bird; f l y C bird).

Disjunctive Logic Programming and Autoepistemic Logic 93

3.2 Introspection

Introspection is a process of revising the agent' belief according to his perspective
of the world. For example, Moore 14 uses the stable expansion T of A

T = {r I AU {Ba c~ e T} U {--Ba I a r T} ~-KDaa r

where ~'KD45 denotes derivation under logic KD45, to model introspective rea-
soning. The terms {Ba I ~ E T} and {--Ba I c~ r T} express the positive and
negative introspection of an agent respectively.

It is generally agreed that positive introspection is a process of concluding
belief B~ if c~ can be derived while negative introspection is a process of con-
cluding disbelief -~B~ (or B-~a) if c~ cannot be derived. Positive introspection is
usually achieved by introducing the necessitatibn rule: derive Ba if a has been
proved, as follows:

Necessitation (N). a
J , J

Ba
The interpretation of non-derivability for negative introspection, however, varies
quite diversely. Two typical approaches are:

1. consistency-based introspection:
deriving -~Ba if - a is consistent with A, (or equivalently, A ~KO a); and

2. minimal-model-based p-introspection:
deriving -~Ba if -~a is true in every minimal model of every perspective
theory of A.

The closed world assumption, default logic, and Moore's autoepistemic logic
use consistency-based negative introspection. This approach usually results in
stronger negative introspection in that more disbeliefs may be concluded, and
as such, many reasonable theories do not possess consistent introspective expan-
sions. Minimal-model-based introspection, on the other hand, suffers from the
inherent difficulties associated with minimal-model entailment 8.

In 24, we have argued that introspection should be consistency-based and
be with respect to each and every possible belief world:

Deriving -~Ba if -~a is consistent with A U I for every belief model I of
A.

In the following we will formally define the inference rules of introspection. First
we need to identify the classical entailment with respect to all possible belief
worlds.

Definition 3. Let A be a theory and ~ a formula.

1. A ~ a if A U I ~'KD Ol for every belief model I of A, and
2. A ~ ol if A U I VKD Ol for every belief model I of A.

(Note that AU ~/KD a if and only if - ~ is consistent with A U I .)

94 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

If A has two belief models/1 and/2 such that A U 11 ~-KD a and A U I2 F/KD a
then neither A ,~ a nor A "~l a. Further, if A is inconsistent then A ,~ a and
A ,q a for every formula a.

Now we are in a position to introduce the following two rules of inference
for positive and negative introspection with respect to all possible belief worlds
respectively.

Positive Introspection (PI).

Negative Introspection (NI).

B a

--Bet

PI states that deriving B a whenever A ~ a and NI that deriving --Ba whenever
A . q a.

Remarks Because A I,~ a if and only if A ~-KD OL, PI is the same as the
necessitation rule N. We list P I as a rule of inference for positive introspection
here to emphases its role in introspection. N I is not a usual inference rule in that
its premise takes into account of the whole axioms. Rather, it is a content-based
meta rule of inference.

It is easy to see that PI is monotonic while NI is nonmonotonic. However,
it has been shown that N I is cumulative in that F U {-,Bfl} derives -,Ba, for
any formula fl, whenever F derives both ~ B a and --Bfl. Therefore, NI can be
recursively applied in any ordering, which enable us to define a logic that is
nonmonotonic in general but monotonic with respect to all belief and disbelief
atoms, as follows.

Definit ion 4. Assume A is a belief theory and a a formula. We say A intro-
spectively implies a, denoted as A ~1~:D a, if a can be derived from A by the
following axioms and rules of inference:

Axioms: PL, K, D
Inference rule: MP, PI, NI.

Example 6. Consider A5 in Example 5 again. Since A5 ,q abnormal, A5 ~IKD
-,Babnormal. Consequently, A5 F-IKD f l y as well as A5 ~IKD B f ly .

The well-defined-ness of the epistemic entailment is evidenced by the fact that
~'IKD is belief-monotonic, as described below.

Definit ion 5. A relation b between a belief theory T and a formula a is said to
be belief-monotonic if for any formula fl, T U {Bj3} F- a if T F- a and T U
{-BZ} a if T a.

The introspective implication characterizes both positive and negative introspec-
tion, which is naturally nonmonotonic, but still remains belief monotonic. There-
fore, the computation of the introspective logic can be carried out incrementally
in any order, as long as the derived beliefs are preserved in the derivation.

Disjunctive Logic Programming and Autoepistemic Logic 95

The following example demonstrates that not every consistent theory is also
consistent under introspective entailment.

Example Z Let A7 = {a C -~Bb;-~a C -~Bb}. Since Ar ,q b, Ar ~-IKD -Bb, but
Ar t_J {-~Bb} is not consistent. Note that A7 is consistent for {Bb} is a restricted
belief model of AT.

A theory A is said to be introspectively consistent if there exists no formula a
such that A }-IKD a and A }-XKD -~a. Even though it is inherently difficult to
check if a given theory is introspectively consistent, there exists a large class of
theories that are introspectively consistent. For example, as discussed in Section
6, all belief theories representing disjunctive logic programs with negation are
introspectively consistent.

The following observation, a direct consequence of axiom K, demonstrates
the normal behavior of introspective logic. That is, for any formulae a and/~,

~-IKD Ba A Bfl = B(a A fl); ~-zKD B a V B~ D B(a V fl).

4 I n t r o s p e c t i v e E x p a n s i o n s

In this section, we define three classes of introspective expansions, in order to
express the three semantical points of view in the context of autoepistemic logic.

Definition 6. A belief theory T is said to be an introspective expansion of A if
it satisfies the following fixpoint equation

T = { r 1 6 2

The introspective expansion characterizes the introspective reasoning process by
expanding a given theory A using both rules of PI and NI.

It is worth noting that only the negative introspection {-~Ba I T ~1 a} is used
in the above fixpoint equation. The use of inappropriate positive introspection in
the equation, as indicated by Schwartz 18, may lead to ungrounded expansions.

Among all introspective expansions, the following three are of special interest.

Definition 7. An introspective expansion T of A is said to be

1. the ground expansion of A if it is a subset of any introspective expansion;
2. a stable expansion of A if T is epistemically complete in that for any formula

a, T contains either Ba or ",Ba; and
3. a regular expansion of A if there exists no introspective expansion T' of A

such that T' ~ T.

In fact, these three classes of expansions are defined to express the three seman-
tical points of view, first developed in the context of normal programs.

Obviously, any stable expansion is a regular expansion, but not vice versa. For
convenience we use CnIIcD(A) to denoted the set of all formulas introspectively
implied by A, i.e., CnlKD(A) = {a I A ~-IKD 0~).

96 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Example 8. Consider

A5 = {bird; f l y Y abnormal C bird; f l y C bird A "~Babnormal}

in Example 5 again. A5 has exactly one introspective expansion T = CnIKD (As),
which is also a stable expansion of A~.

Example 9. Consider A9 = {a C Ba, b C --Ba}. Then A9 has two introspective
expansions, that is, T1 = CnlKD(Ag) = {r f-~rKD r that contains neither
Ba nor --Ba, and T2 = CnIKD(A9 U {--Ba}).

Note that T3 = CnlKD(A9 U {Ba}) is not an introspective expansion of A9
since a cannot be derived from A9 with any set of disbelief atoms.

It turns out that any theory has the ground (least) expansion, though not nec-
essarily a consistent one. Furthermore, the ground expansion is just the set of
all introspective consequences of A.

Theorem 1. 1. T = {r ~'IKD r i8 the ground expansion of A.
2. I f A is introspectively consistent then any introspective expansion of A is

consistent.

The proof of the theorem is straightforward and thus omitted.

5 L o g i c P r o g r a m S e m a n t i c s a n d I n t r o s p e c t i v e E x p a n s i o n s

In this section, we will define various semantics of logic programs based on
autoepistemic expansions.

5.1 Default Negation and Disbelief

Defini t ion 8. Let 1-f be a logic program. Then AE(11) is defined as an autoepis-
temic theory obtained from 1I by translating each clause in 11 into a formula o
the form 10

A1 V " . " V Aq C BI h . . . A Bm A -,BC~ A . . . A n o t B C ,

Example 10. Consider

112 = {bird e-; f l y V abnormal ~-- bird; f l y +- bird, no tabnormal)

again. Then AE(11) = {bird; f l y V abnormal C bird; f l y C birdA- ,Babnormal} .

Similar to negative introspection, default negations in disjunctive programs can
also be interpreted in two different ways: consistency-based and minimal-model
based. The former assumes n o t a if -~a is consistent with the current program
while the latter assumes nora if -,a is true in every minimal model of the current
program.

Disjunctive Logic Programming and Autoepistemic Logic 97

Example 11. (Example 10 continued) By consistency-based default negation,
notabnormal can be justified since abnormal cannot be derived from 112 no
matter whether notabnormal is true or false. On the other hand, by minimal-
model based default negation, notabnormal cannot be justified since abnormal
is true in one of the minimal models of//2 when notabnormal is not assumed.

Consistency-based default negation can be easily characterized by the transla-
tion given in Definition 8 since negative introspection of autoepistemic logic is
consistency-based. The following translation is introduced to capture minimal-
model based default negation.

Definit ion 9. Let II be a logic program, and AE(11) be the autoepistemic theory
of 11. Then, the M-autoepistemic theory o/11, denoted as MAE(I I) is defined
a s

AE(II) U(-~(~c'~B(~ l a is an atom in 11}

MAE(I I) is also viewed as AE(II) augmented with an axiom -~a C -.Ba.

Example 12. Consider 112 in Example 10 again. Then MAE(112) contains the
following formulas:

bird;
f l y V abnormal C bird;
f l y C bird A -"Babnormal;
-"bird C -~Bb/rd;
-..fly C -~B.fly;
-.abnormal C -.Babnormal}.

Now, we are in a position to define declarative semantics of disjunctive programs
in terms of translated autoepistemic theories of 11. Because each program has two
different translated autoepistemic theories, corresponding to consistency-based
and minimal-model based default negations, and each autoepistemic theory may
have three different types of introspective expansions, corresponding to the skep-
tical, stable, and partial-stable semantical points of view, six different semantics
are given below.

Defini t ion 10. Let 1-1 be a disjunctive program, AE(11) and MAE(11) the cor-
responding autoepistemic theories o 1I. Then we define

1. the C-ground (standing for consistency-based ground), C-stable (standing for
consistency-based stable), and C-regular (standing for Consistency-based reg-
ular) semantics of l I by the ground expansion, the set of all stable expansions,
and the set of all regular expansions, of AE(H) respectively; and

2. the ground, stable, and partial-stable semantics of 1-1 by the ground expan-
sion, the set of all stable expansions, and the set of all regular expansions,
o M AE(II) respectively.

98 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

By saying that a semantics is characterized by an introspective expansion we
mean that (1) an objective formula ~ is true in the semantics if and only if c~
is contained in the expansion, and (2) a default negation n o t a is true in the
semantics if and only if -~Ba is contained in the expansion.

The following table summarizes all six different semantics.

Consis-
tency
based

Skeptical
C-Ground Semantics:
the ground expansion
of AE(II)

Stable
C-Stable Semantics:

Partial-Stable
C-l~egular Semantics:
all the regular
expansions of AE(II)

all the stable
expansions of AE(II)

Minimal- Ground Semantics: Stable Semantics: Partial-stable Semantics:
model the ground expansion all the stable all the regular
based of MAE(H) expansions of MAE(II) expansions of MAE(H)

It is straightforward to show that for normal programs, consistency-based and
minimal-model based semantics coincide, simply because an atom is true in
the set of all minimal models of a Horn program if and only if it is a logical
consequence of the program.

Example 13. Consider II2 in Example 10 again.
First, consider consistency-based default negation. Since abnormal cannot

be derived from AE(//~) in any circumstance, AE(//2) has a unique expansion
containing -~Babnormal. Thus, all three semantics, including the C-ground, C-
stable, and C-regular, coincide and imply fly.

Now consider minimal-model based default negation. The skeptical semantics
does not imply -~Babnormal since I = {Bbird,-~Bfly, Babnormal} is a belief
model of MAE(/ /2) and MAE(/ /2)UI ~-KD abnormal. So the ground semantics
does not imply fly either. In fact, it coincides with the static semantics.

The stable semantics, which coincide with the partial-stable semantics, of//2
is defined by two stable expansions, one contains {Bbird,-~Babnormal, B f ly}
and the other contains {Bbird, Babnormal, -~Bfly}.

6 F u r t h e r A n a l y s i s

In this section, we will analyze relationships between various semantics.
First for normal programs, it is easy to show that both minimal-model-based

and consistency-based semantics coincide.

P r o p o s i t i o n 2. A s s u m e / / i s a normal program. Then

1. The well-founded, C-ground, and ground semantics of 171 coincide.
2. The stable and C-stable semantics coincide.
3. The regular, C-regular, and partial-stable semantics coincide.

Both the answer set semantics and stable circumscriptive semantics are minimal-
model-based and coincide with the stable semantics; and both the stable exten-
sion semantics and the stable set semantics are consistency-based and coincide
with the C-stable semantics, as shown below. Again, the proof is straightforward
and thus omitted.

Disjunctive Logic Programming and Autoepistemic Logic 99

Proposition 3. 1. Both the answer set and stable circumscriptive semantics
coincide with the stable semantics.

2. Both the stable extension semantics and the stable set semantics coincide
with the C-stable semantics.

Among all the minimal-model-based semantics in the partial-stable category,
the recently proposed partial-stable assumption semantics 19 coincides with
the partial-stable semantics. Further, the C-partial-stable semantics coincides
with the stable set semantics.

Proposition 4. 1. The partial-stable semantics coincides with the partial-stable
assumption semantics.

2. The C-partial-stable semantics coincides with the regularly-justified set se-
mantics.

Proof. (1) It follows the following two facts.
First, the partial-stable assumption semantics utilizes an additional meta rule

of inference av/~,not/~B while the partial-stable semantics utilizes a minimal-model
axiom -,a C -,B~, which are essentially the same.

Second, the partial-stable assumption semantics is defined using the alternat-
ing fixpoint theory while the partial-stable semantics is defined using negative
introspection with respect to all belief models. However, it is easy to show that,
in the context of logic programming, the two are the same.

(2) It follows that the justification of default negation under the alternating
fixpoint theory coincide with negative introspection with respect to all belief mod-
els. Note that the regularly-justified set semantics justifies a regular set using the
alternating fixpoint theory.

Both the static and ground semantics are defined using minimal-model based
introspection and thus are very much the same. The subtle difference between
the two is due to the fact that the autoepistemic theory MAE(I I) uses -~Ba to
represent n o t a while the static semantics uses B-~a to represent no ta .

6.1 Computational Complexity

It is a well-known fact that the computational complexity 3 of the well-founded
semantics for normal program is polynomial while that of both the stable and
regular semantics is NP-complete. Furthermore, it has been shown that the com-
putational complexities for the answer set semantics and many other minimal-
model-based partial-stable semantics are z P 8. This implies that the computa-
tional complexity of both the stable and partial-stable semantics for disjunctive
programs are Z~.

The ground semantics and the static semantics have the same computational
complexity which are also ZP-complete 6.

By the computational complexity we mean the data complexity under possibility
inference, i.e., the complexity of deciding if a given query is true in one partial-stable
set under the given semantics 8

100 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

The following proposition shows that the computational complexity of the
consistency-based ground semantics is pgP which is the lowest among all the
semantics for disjunctive logic programs in the polynomial hierarchy.

P r o p o s i t i o n 5. The computational complexity of the consistency-based ground
semantics is pNP.

Proof. Let AE(II) be a disjunctive theory and F a formula. We need only to
show that deciding if AE(TI) }-IKD F is pNP.

Let M1 contain all disbeliefs and M2 all beliefs. Then both M1 and M2 are
belief models of AE(II) . ~r the rmore , let B1 and/32 are objective perspective
theories of B with respect to M1 and M2 respectively. Then for any formula a,
AE(II) ~ ~ if and only if 132 ~'IKD ol and AE(II) ~ ~ if and only if B1 ~IIKD 0l.
This implies that a visit to an oracle for classical inference can determine the
status of any -~BCi under the positive (or negative) introspection. Therefore, a
linear calls to oracle are sufficient enough to determine if AE(II) }-IKD F.

This result is by no means surprising because (consistency-based) classical en-
tailment is inherently more efficient to compute than minimal-model-based en-
tailment.

R e f e r e n c e s

1. C. R. Baral and V. S. Subrahmanian. Stable and extension class theory for logic
programs and default logics. Journal of Automated Reasoning, 8:345-366, 1992.

2. S. Brass and J. Dix. Stefan Brass and Jiirgen Dix. A disjunctive semantics based
on unfolding and bottom-up evaluation. In Bernd Wolfinger, editor, Innovationen
bei Rechen- und Kommunikationssystemen, (IFIP '94-Congress, Workshop FG2:
Disjunctive Logic Programming and Disjunctive Databases), pages 83-91, Berlin,
1994. Springer.

3. Stefan Brass and Jfirgen Dix. Characterizations of the Disjunctive Stable Seman-
tics by Partial Evaluation. Journal of Logic Programming, 32(3):207-228, 1997.
(Extended abstract appeared in: Characterizations of the Stable Semantics by
Partial Evaluation LPNMR, Proceedings of the Third International Conference,
Kentucky, pages 85-98, 1995. LNCS 928, Springer.).

4. Stefan Brass and Jfirgen Dix. Characterizations of the Disjunctive Well-founded
Semantics: Confluent Calculi and Iterated GCWA. Journal of Automated Reason-
ing, 20(1):143-165, 1998. (Extended abstract appeared in: Characterizing D-WFS:
Confluence and Iterated GCWA. Logics in Artificial Intelligence, JELIA '96, pages
268-283, 1996. Springer, LNCS 1126.).

5. Stefan Brass, Jiirgen Dix, Ilkka Niemel~i, and Teodor. C. Przymusinski. A Com-
parison of the Static and the Disjunctive Well-founded Semantics and its Imple-
mentation. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixth International
Conference (KR '98), pages 74-85. San Francisco, CA, Morgan Kanfmann, May
1998. appeared also as TR 17/97, University of Koblenz.

6. J. Dix and T. Eiter. Personal communication.
7. P. M. Dung. Negations as hypotheses: An abductive foundation for logic program-

ming. In Proceedings of the 8th ICLP, pages 3-17, 1991.

Disjunctive Logic Programming and Autoepistemic Logic 101

8. Thomas Eiter, Nicola Leone, and Domenico Sacc. The expressive power of partial
models in disjunctive deductive databases. In Logic in Databases, pages 245-264,
1996.

9. A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. JA CM, 38:620-650, 1991.

10. M. Gelfond. On stratified autoepistemic theories. In Proceedings of AAAI-87,
pages 207-211. Morgan Kaufmann Publishers, 1987.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of the 5th ICLP, pages 1070-1080, 1988.

12. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-386, 1991.

13. H. J. Levesque. All i know: A study in autoepistemic logic. AI, 42:263-309, 1990.
14. R. C. Moore. Semantic considerations on non-monotonic logic. AI, 25:75-94, 1985.
15. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation

Computing, 9:401-424, 1991.
16. T. C. Przymusinski. Static semantics for normal and disjunctive logic programs.

Annals o/Mathematics and Artificial Intelligence, 14:323-357, 1995.
17. D. Sacc~ and C. Zaniolo. Stable models and non-determinism in logic programs

with negation. In Proceedings of the 9th ACM PODS, pages 205-217, 1990.
18. G. Schwarz. Bounding introspection in nonmonotonic reasoning. KR'92, pages

581-590, 1992.
19. J.-H. You, X. Wang, and L.-Y. Yuan. Disjunctive logic programming as con-

strainted inferences. In Proc. of International Conference on Logic Programming,
1997.

20. J.-H. You and L.-Y. Yuan. A three-valued semantics of deductive databases and
logic programs. Journal of Computer and System Sciences, 49:334-361, 1994. A
preliminary version appears in the Proc. of the 9th ACM PODS, page 171-182,
1990.

21. J.-H. You and L.-Y. Yuan. On the equivalence of semantics for normal logic pro-
grams. Journal of Logic Programming, 22(3):209-219, 1995.

22. L.-Y. Yuan and J.-H. You. Autoepistemic circumscription and logic programming.
Journal of Automated Reasoning, 10:143-160, 1993.

23. L.-Y. Yuan and J.-H. You. On the extension of logic programming with negation
though uniform proofs. In Proe. of the 3rd International Conerenee on Logic
Programming and Nonmonotonic Reasoning, 1995.

24. L.-Y. Yuan and J.-H. You. An introspective logic of belief. In Proc. o the Workshop
on Logic Programming and Knowledge Representation, ILPS'97, pages 15.7-170,
1997.

A System for Abductive Learning of
Logic Programs

Evelina Lamina 1, Paola Mello 2, Michela Milano 1 , and Fabrizio Riguzzi 1

1 DEIS, Universit~ di Bologna,
Viale Risorgimento 2, 1-40136 Bologna, Italy,
{elamma,mmilano, friguzzi}~deis, unibo, it

2 Dip. di Ingegneria, Universit~ di Ferrara,
Via Saragat 1, 1-44100 Ferrara, Italy

pmello@ing, unife, it

Abstract . We present the system LAP (Learning Abductive Programs)
that is able to learn abductive logic programs from examples and from a
background abductive theory. A new type of induction problem has been
defined as an extension of the Inductive Logic Programming framework.
In the new problem definition, both the background and the target the-
ories are abductive logic programs and abductive derivability is used as
the coverage relation.
LAP is based on the basic top-down ILP algorithm that has been suit-
ably extended. In particular, coverage of examples is tested by using the
abductive proof procedure defined by Kakas and Mancarella 24. As-
sumptions can be made in order to cover positive examples and to avoid
the coverage of negative ones, and these assumptions can be used as
new training data. LAP can be applied for learning in the presence of
incomplete knowledge and for learning exceptions to classification rules.

Keywords: Abduction, Learning.

1 I n t r o d u c t i o n

Abductive Logic Programming (ALP) has been recognized as a powerful knowl-
edge representation tool 23. Abduction 22, 36 is generally understood as rea-
soning from effects to causes or explanations. Given a theory T and a formula
G, the goal of abduction is to find a set of atoms A (explanation) that , together
with T, entails G and that is consistent with a set of integrity constraints IC.
The atoms in A are abduced: they are assumed true in order to prove the goal.
Abduction is specially useful to reason in domains where we have to infer causes
from effects, such as diagnostic problems 3. But ALP has many other applica-
tions 23: high level vision, natural language understanding, planning, knowledge
assimilation and default reasoning. Therefore, it is desirable to be able to au-
tomatically produce a general representation of a domain starting from specific
knowledge about single instances. This problem, in the case of s tandard Logic

A System for Abductive Learning of Logic Programs 103

Programming, has been deeply studied in Inductive Logic Programming (ILP)
7, the research area covering the intersection of Machine Learning 33 and
Logic Programming. Its aim is to devise systems that are able to learn logic
programs from examples and from a background knowledge. Recently, in this re-
search area, a number of works have begun to appear on the problem of learning
non-monotonic logic programs 4, 16, 8, 32.

Particular attention has been given to the problem of learning abductive
logic programs 21,26,29,30,27 and, more generally, to the relation existing
between abduction and induction and how they can integrate and complement
each other 15,17, 2. Our work addresses this topic as well. The approach for
learning abductive logic programs that we present in this paper is doubly useful.
On one side, we can learn abductive theories for the application domains men-
tioned above. For example, we can learn default theories: in Section 5.1 we show
an example in which we learn exceptions to classification rules. On the other
side, we can learn theories in domains in which there is incomplete knowledge.
This is a very frequent case in practice, because very often the data available is
incomplete and/or noisy. In this case, abduction helps induction by allowing to
make assumptions about unknown facts, as it is shown in the example in Sec-
tion 5.2. In 29 we defined a new learning problem called Abductive Learning
Problem. In this new framework we generate an abductive logic program from
an abductive background knowledge and from a set of positive and negative ex-
amples of the concepts to be learned. Moreover, abductive derivability is used
as the example coverage relation instead of Prolog derivability as in ILP.

We present the system LAP (Learning Abductive Programs) that solves this
new learning problem. The system is based on the theoretical work developed
in 21, 29 and it is an extension of a basic top-down algorithm adopted in ILP
7. In the extended algorithm, the proof procedure defined in 24 for abductive
logic programs is used for testing the coverage of examples in substitution of
the deductive proof procedure of logic programming. Moreover, the abduced
literals can be used as new training data for learning definitions for the abducible
predicates.

The paper is organized as follows: in Section 2 we recall the main concepts of
Abductive Logic Programming, Inductive Logic Programming, and the definition
of the abductive learning framework. Section 3 presents the learning algorithm
while its properties are reported in Section 4. In Section 5 we apply LAP to
the problem of learning exceptions to rules and learning from incomplete knowl-
edge. Related works are discussed in Section 6. Section 7 concludes and presents
directions for future works.

2 Abduct ive and Inductive Logic Programming

2.1 Abductive Logic Programming

An abductive logic program is a triple (P, A, IC) where:

- P is a normal logic program;

104 Evelina Lamina, Paola Mello, Michela Milano, and Fabrizio Riguzzi

- A is a set of abducible predicates;
- IC is a set of integrity constraints in the form of denials, i.e.:

+- A1, . . . , Am, not Am+l , . . . , not Am+n.

Abducible predicates (or simply abducibles) are the predicates about which as-
sumptions (or abductions) can be made. These predicates carry all the incom-
pleteness of the domain, they can have a partial definition or no definition at
all, while all other predicates have a complete definition.

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-
tained by transforming the program into its positive version: each negative literal
not p(t), where t is a tuple of terms, is replaced by a literal not_p(t), where not_p
is a new predicate symbol. Moreover, for each predicate symbol p in the program,
a new predicate symbol not_p is added to the set A and the integrity constraint
+-- p(X) , not_p(X) is added to IC, where X is a tuple of variables. Atoms of the
form not_p(t) are called default atoms. In the following, we will always consider
the positive version of programs. This allows us to abduce either the truth or
the falsity of atoms.

Given an abductive theory AT = (P, A, IC) and a formula G, the goal of
abduction is to find a (possibly minimal) set of ground atoms A (abductive
explanation) of predicates in A which, together with P, entails G, i.e., PUA ~ G.
It is also required that the program P U A be consistent with respect to IC, i.e.
P U A ~ IC. When there exists an abductive explanation for G in AT, we say
that AT abduetively entails G and we write AT ~ A G.

As model-theoretic semantics for ALP, we adopt the abductive model seman-
tics defined in 9. We do not want to enter into the details of the definition,
we will just give the following proposition which will be useful throughout the
paper.

We indicate with s the set of all atoms built from the predicates of A
(called abducible atoms), including also default atoms.

P ropos i t ion 1. Given an abductive model M for the abductive program AT =
(P, A, IC), there exists a set of atoms H C s such that M is the least Herbrand
model of P U H.

Proof. Straightforward from the definition of abductive model (definition 5.7 in

91).

In 24 a proof procedure for abductive logic programs has been defined. This
procedure starts from a goal and a set of initial assumptions A~ and results in
a set of consistent hypotheses (abduced literals) Ao such that Ao _D A i and Ao
together with the program P allow deriving the goal. The proof procedure uses
the notion of abductive and consistency derivations. Intuitively, an abductive
derivation is the standard Logic Programming derivation suitably extended in
order to consider abducibles. As soon as an abducible atom 5 is encountered,
it is added to the current set of hypotheses, and it must be proved that any
integrity constraint containing 5 is satisfied. For this purpose, a consistency
derivation for 5 is started. Since the constraints are denials only (i.e., goals), this

A System for Abductive Learning of Logic Programs 105

corresponds to proving that every such goal fails. Therefore, 5 is removed from
all the constraints containing it, and we prove that all the resulting goals fail.
In this consistency derivation, when an abducible is encountered, an abductive
derivation for its complement is s tar ted in order to prove the abducible's failure,
so that the initial constraint is satisfied. When the procedure succeeds for the
goal G and the initial set of assumptions A~, producing as output the set of
assumptions Ao, we say that T abductively derives G or that G is abductively
derivable from T and we write T ~-~ G.

In 9 it has been proved that the proof procedure is sound and weakly com-
plete with respect to the abductive model semantics defined in 9 under a number
of restrictions. We will present these results in detail in Section 4.

2 . 2 I n d u c t i v e L o g i c P r o g r a m m i n g

The ILP problem can be defined as 6:
G i v e n :

- a set P of possible programs
- a set E + of positive examples
- a set E - of negative examples
- a logic program B (background knowledge)

F i n d :

- a logic program P 6 P such that
�9 Ve + E E +, B U P ~ e + (completeness)
�9 Ve- E E - , B U P ~/e- (consistency).

Let us introduce some terminology. The program P that we want to learn is the
target program and the predicates which are defined in it are target predicates.
The sets E + and E - are called training sets and contain ground atoms for the
target predicates. The program B is called background knowledge and contains
the definitions of the predicates that are already known. We say that the pro-
gram P covers an example e if P U B ~- e 1, i.e. if the theory "explains" the
example. Therefore the conditions that the program P must satisfy in order to
be a solution to the ILP problem can be expressed as "P must cover all positive
examples and must not cover any negative example". A theory that covers all
positive examples is said to be complete while a theory that does not cover any
negative example is said to be consistent. The set P is called the hypothesis
space. The importance of this set lies in the fact that it defines the search space
of the ILP system. In order to be able to effectively learn a program, this space
must be restricted as much as possible. If the space is too big, the search could
result infeasible.

i In the ILP literature, the derivability relation is often used instead of entailment be-
cause real systems adopt the Prolog interpreter for testing the coverage of examples,
that is not sound nor complete.

106 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

The language bias (or simply bias in this paper) is a description of the hy-
pothesis space. Many formalisms have been introduced in order to describe this
space 7, we will consider only a very simple bias in the form of a set of literals
which are allowed in the body of clauses for target predicates.

Initialize H := 0
repeat (Covering loop)

Generate one clause c
Remove from E + the e + covered by c
Add c to H

until E + = 0 (Sufficiency stopping criterion)

Generate one clause c:
Select a predicate p that must be learned
Initialize c to be p(X) +-.
repeat (Specialization loop)

Select a literal L from the language bias
Add L to the body of c
if c does not cover any positive example

then backtrack to different choices for L
until c does not cover any negative example (Necessity stopping criterion)
return c
(or fail if backtracking exhausts all choices for L)

Fig. 1. Basic top-down ILP algorithm

There are two broad categories of ILP learning methods: bottom-up methods
and top-down methods. In bot tom-up methods clauses in P are generated by
starting with a clause that covers one or more positive examples and no nega-
tive example, and by generalizing it as much as possible without covering any
negative example. In top-down methods clauses in P are constructed starting
with a general clause that covers all positive and negative examples and by spe-
cializing it until it does no longer cover any negative example while still covering
at least one positive. In this paper, we concentrate on top-down methods. A ba-
sic top-down inductive algorithm 7, 31 learns programs by generating clauses
one after the other. A clause is generated by starting with an empty body and
iteratively adding literals to the body. The basic inductive algorithm, adapted
from 7 and 31, is sketched in Figure 1.

2.3 T h e N e w L e a r n i n g F r a m e w o r k

We consider a new definition of the learning problem where both the background
and target theory are abductive theories and the notion of deductive coverage
above is replaced by abductive coverage.

A System for Abductive Learning of Logic Programs 107

Let us first define the correctness of an abductive logic program T with
respect to the training set E +, E - . This notion replaces those of completeness
and consistency for logic programs.

Definition 1 (Correc tness) . An abductive logic program T is correct, with
respect to E + and E - , iff there exists A C_ f A such that

T ~-~ E+,not_E -

where not_E- = {not_e-ie- E E - } and E +, not_E- stands for the conjunction
of each atom in E + and not_E-

Defini t ion 2 (A b d u c t i v e Learning P r o b l e m) .
Given:

- a set 7" of possible abductive logic programs
- a set of positive examples E +
- a set of negative examples E -
- an abductive program T = (P, A, IC) as background theory

Find:
A new abductive program T' = (P U pe, A, I C I such that T ~ E 7" and T' is

correct wrt E + and E - .

We say that a positive example e + is covered if T F-~ e +. We say that a
negative example e - is not covered (or ruled out) if T ~ not_e-. By employing
the abductive proof procedure for the coverage of examples, we allow the system
to make assumptions in order to cover positive examples and to avoid the cover-
age of negative examples. In this way, the system is able to complete a possibly
incomplete background knowledge. Integrity constraints give some confidence in
the correctness of the assumptions made.

Differently from the ILP problem, we require the conjunction of examples,
instead of each example singularly, to be derivable. In this way we ensure that
the abductive explanations for different examples axe corlsistent with each other.

The abductive program that is learned can contain new rules (possibly con-
taining abducibles in the body), but not new abducible predicates and new
integrity constraints.

3 An Algorithm for Learning Abductive Logic Programs

In this section, we present the system LAP that is able to learn abductive logic
programs according to definition 2. The algorithm is obtained from the basic
top-down ILP algorithm (Figure 1), by adopting the abductive proof procedure,
instead of the Prolog proof procedure, for testing the coverage of examples.

As the basic inductive algorithm, LAP is constituted by two nested loops: the
covering loop (Figure 2) and the specialization loop (Figure 3). At each iteration
of the covering loop, a new clause is generated such that it covers at least one

108 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

p r o c e d u r e LAP(
i n p u t s : E +, E - : training sets,

A T = (T, A, IC) : background abductive theory,
o u t p u t s : H : learned theory, A : abduced literals)

H:=@
A : = 0
repeat

GenerateRule(in: AT, E +, E - , H, A; out: Rule, E+Rule , A Rule)
Add to E + all the positive literals of target predicates in Aa~le
Add to E - all the atoms corresponding to

negative literals of target predicates in AR~l~
E + := E + - E+u~e

H := H U {Rule}
A : = A U AR~l~

unt i l E + = 0 (Sufficiency stopping criterion)
o u t p u t H

Fig. 2. The covering loop

p r o c e d u r e GenerateRule(
i n p u t s : AT, E +, E - , H, A
o u t p u t s : Rule : rule,

E+~le : positive examples covered by Rule,
AR~ze : abduced literals

Select a predicate to be learned p
Let Rule = p (X) +- true.
r e p e a t (specialization loop)

select a literal L from the language bias
add L to the body of Rule
TestCoverage(in: Rule, AT, H, E +, E - , AI,

out: E+uze, E ~ z e , AR~le)
if E+uze = 0

backtrack to a different choice for L
unt i l E ~ l e = @ (Necessity stopping criterion)
o u t p u t Rule, E+~le, A R~le

Fig. 3. The specialization loop

A System for Abductive Learning of Logic Programs 109

procedure TestCoverage(
inputs : Rule, AT, H, E +, E - , A

. } . - - , outputs: ER~,I,, ER~z,. examples covered by Rule
AR~, : new set of abduced literals

E + Rule ---- ER~,~e = 0
A~ = Zl
for each e + E E + do

if AbductiveDerivation(+-- e +, (T 0 H U (Rule}, A, I C) , Ai,~ , Ao~,t)
succeeds then Add e + to E+~l~; A~ = Ao~

endfor
for each e- E E - do

if AbductiveDerivation(+-- not.e-, (T 0 H tJ (Rule}, A, I C), A~,~, Ao~)
succeeds then Ain = Aou~

else Add e- to E~ule
endfor
ARule = Ao~ t -- A
output E+~t,, E~**, AR~t,

Fig. 4. Coverage testing

positive example and no negative one. The positive examples covered by the rule
are removed from the training set and a new iteration of the covering loop is
started. The algorithm ends when the positive training set becomes empty. The
new clause is generated in the specialization loop: we star t with a clause with an
empty body, and we add literals to the body until the clause does not cover any
negative example while still covering at least one positive. The basic top-down
algorithm is extended in the following respects.

First, in order to determine the positive examples E+,~le covered by the gen-
erated rule Rule (procedure TestCoverage in Figure 4), an abductive derivation
is s tarted for each positive example. This derivation results in a (possibly empty)
set of abduced literals. We give as input to the abductive procedure also the set
of literals abduced in the derivations of previous examples. In this way, we en-
sure tha t the assumptions made during the derivation of the current example
are consistent with the assumptions for other examples.

Second, in order to check that no negative example is covered (E ~ l e = 0
in Figure 3) by the generated rule Rule, an abductive derivation is started for
the default negation of each negative example (+- not_e-). Also in this case,
each derivation starts from the set of abducibles previously assumed. The set of
abducibles is initialized to the empty set at the beginning of the computation,
and is gradually extended as it is passed on from derivation to derivation. This
is done as well across different clauses.

Third, after the generation of each clause, the literals of target predicates
tha t have been abduced are added to the training set, so tha t they become new
training examples. For each positive abduced literal of the form abd(c +) where
c + is a tuple of constants, the new positive example abd(c +) is added to E +

110 Evelina Lamina, Paola Mello, Michela Milano, and Fabrizio Riguzzi

set, while for each negative literal of the form not_abd(c-) the negative example
abd(c-) is added to E - .

In order to be able to learn exceptions to rules, we include a number of
predicates of the form not_abnormi/n in the bias of each target predicate of
the form p/n. Moreover, abnormdn and not_abnormdn are added to the set of
abducible predicates and the constraint

abnormi (X) , not_abnormi (X) .

is added to the background knowledge. In this way, when the current partial rule
in the specialization loop still covers some negative examples and no other literal
can be added that would make it consistent, the rule is specialized by adding the
literal not_abnorm~(X) to its body. Negative examples previously covered are
ruled out by abducing for them facts of the form abnormi(c-), while positive
examples will be covered by abducing the facts not_abnormi (c +) and these facts
are added to the training set.

We are now able to learn rules for abnormdn , thus resulting in a definition
for the exceptions to the current rule. For this purpose, predicates abnormJn
are considered as target predicates, and we define a bias for them. Since we may
have exceptions to exceptions, we may also include a number of literals of the
form not_abnormj (X) in the bias for abnormdn.

The system has been implemented in Prolog using Sicstus Prolog 3#5.

4 Properties of the Algorithm

LAP is sound, under some restrictions, but not complete. In this section we give
a proof of its soundness, and we point out the reasons of incompleteness.

Let us first adapt the definitions of soundness and completeness for an induc-
tive inference machine, as given by 7, to the new problem definition. We will
call Abductive Inductive Inference Machine (AIIM) an algorithm that solves the
Abductive Learning Problem. If M is an AIIM, we write M (T , E +, E - , B) = T
to indicate that, given the hypothesis space 7", positive and negative examples
E + and E - , and a background knowledge B, the machine outputs a program
T. We write M(7", E +, E - , B) = _l_ when M does not produce any output.

With respect to the abductive learning problem (definition 2), the definitions
of soundness and completeness are:

Defini t ion 3 (Soundness) . An AIIM M is sound iff if M (T , E +, E - , B) = T,
then T E 7" and T is correct with respect to E + and E - .

Definition 4 (Completeness). An AIIM M is complete iff if M(7", E +, E- , B) =
.l., then there is no T E 7" that is correct with respect to E + and E - .

The proof of LAP soundness is based on the theorems of soundness and weak
completeness of the abductive proof procedure given in 9. We will first present
the results of soundness and completeness for the proof procedure and then we
will prove the soundness of our algorithm.

A System for Abductive Learning of Logic Programs 111

The theorems of soundness and weak completeness (theorems 7.3 and 7.4 in
9) have been extended by considering the goal to be proved as a conjunction of
abducible and non-abducible atoms (instead of a single non-abducible atom) and
by considering an initial set of assumptions Ai. The proofs are straightforward,
given the original theorems.

T h e o r e m 1 (Soundness) . Let us consider an abductive logic program T. Let
L be a conjunction of atoms. If T t -a~ L, then there exists an abductive model
M o f T s u c h t h a t M ~ L a n d A o C M n C A.

T h e o r e m 2 (Weak completeness) . Let us consider an abductive logic pro-
gram T. Let L be a conjunction of atoms. Suppose that every selection of rules in
the proof procedure for L terminates with either success or failure. I f there exists
an abductive model M of T such that M ~ L, then there exists a selection of
rules such that the derivation procedure for L succeeds in T returning A, where
A C_ M A s ~.

We need as well the following lemma.

L e m m a 1. Let us consider an abductive logic program T = (P, A, I). Let L be
a conjunction of atoms. If T b~ L then lhm(P U A) ~ L, where lhm(P U A) is
the least Herbrand model of P U A.

Proof. Follows directly from theorem 5 in 18.

The theorems of soundness and weak completeness for the abductive proof pro-
cedure axe true under a number of assumptions:

- the abductive logic program must be ground
- the abducibles must not have a definition in the program
- the integrity constraints are denials with at least one abducible in each con-

straint.

Moreover, the weak completeness theorem is limited by the assumption that the
proof procedure for L always terminates.

The soundness of LAP is limited as well by these assumptions. However, they
do not severely restrict the generality of the system. In fact, the requirement that
the program is ground can be met for programs with no function symbols. In this
case the Herbrand universe is finite and we obtain a finite ground program from
a non-ground one by grounding in all possible ways the rules and constraints
in the program. This restriction is also assumed in many ILP systems (such as
FOIL 37, RUTH 1, 11).

The restriction on the absence of a (partial) definition for the abducible does
not reduce the generality of the results since, when abducible predicates have
definitions in T, we can apply a transformation to T so that the resulting program
T' has no definition for abducible predicates. This is done by introducing an
auxiliary predicate Ja/n for each abducible predicate a/n and by adding the
clause:

a(x) +-

112 Evelina Lamina, Paola Mello, Michela Milano, and Fabrizio Riguzzi

The predicate a/n is no longer abducible, whereas 5a/n is now abducible. In this
way, we are able to deal as well with partial definitions for abducible predicates,
and this is particularly important when learning from incomplete data, because
the typical situation is exactly to have a partial definition for some predicates,
as will be shown in Section 5.2.

The requirement that each integrity constraint contains an abducible literal
is not restrictive because we use constraints only for limiting assumptions and
therefore a constraint without an abducible literal would be useless.

The most restrictive requirement is the one on the termination of the proof
procedure. However, it can be proved that the procedure always terminates for
call-consistent programs, i.e. if no predicate depends on itself through an odd
number of negative recursive calls (e.g., p +- not_p).

We need as well the following theorem. It expresses a restricted form of
monotonicity that holds for abductive logic programs.

T h e o r e m 3~ Let T (P,A,I) and T' = (P U P ' ,A , I) be abductive logic pro-
grams. If T L1 and T ~ k ~ L2, where L1 and L2 are two conjunctions of
atoms, then T k~ 2 L1 A L2.

Proof. From T k21 L1 and lemma 1 we have that

lhm(P U A1) ~ Lx

From the definition of abductive proof procedure we have that A1 _C A 2. Since
we consider the positive version of programs, P U A1 and P U P ' U A2 are definite
logic programs. From the monotonicity of definite logic programs lhra(PUA1) C_
lhm(P U P~ U A2) therefore

lhm(P U pt U A2) ~ L1

From T' k ~ L2, by the soundness of the abductive proof procedure, we have
that there exists an abductive model M2 such that M2 ~ L2 and A2 C M2As A.
From proposition 1, there exists a set//2 C s such that M2 = Ihm(PUP'UH2).
Since abducible and default predicates have no definition in P U P', we have that
M2 n s =/-/2 and A2 C/-/2. Therefore M2 D lhm(P n P ' n A2) and

M2 ~ L 1

From M2 ~ L2 and from the weak completeness of the abductive proof proce-
dure, we have that

z~2 L1 A L2 T t k~l

We can now give the soundness theorem for our algorithm.

T h e o r e m 4 (Soundness) . The AIIM LAP is sound.

Proof. Let us consider first the case in which the target predicates are not ab-
ducible and therefore no assumption is added to the training set during the

A System for Abductive Learning of Logic Programs 113

computation. In order to prove that the algorithm is sound, we have to prove
that, for any given sets E + and E - , the program T' that is output by the
algorithm is such that

T ~ F-~ E +, not_E-

LAP learns the program T' by iteratively adding a new clause to the current
hypothesis, initially empty. Each clause is tested by trying an abductive deriva-
tion for each positive and for the complement of each negative example. Let
E + = {e+. . . e+o } be the set of positive examples whose conjunction is covered
by clause c and let E - = {e~-... e~}. Clause c is added to the current hypothesis
H when:

3E + C_E+: E + Vie{1...n~}: PUHU{c}l-aa _et

a'7 not_e-~ V j e { 1 . . . m } : PUHU{c}F-~ ._ ,

where A0 + = AH, A+_I C_ A+ and Ao = A+o. By induction on the examples
and by theorem 3 with P' = {~, we can prove that

(PU H U {c},A, IC) ~_~u{c} E+,not_E -

where AHu{c } = Am. At this point, it is possible to prove that

r' u... u

by induction on the clauses and by theorem 3. From this and from the sufficiency
stopping criterion (see Figure 2) we have that E + U . . . O E + = E +.

We now have to prove soundness when the target predicates are abducible
as well and the training set is enlarged during the computation. In this case, if
the final training sets are E + and E~, we have to prove that

T' t- 2 E+,not-EF

If a positive assumption is added to E +, then the resulting program will contain
a clause that will cover it because of the sufficiency stopping criterion. If a
negative assumption not_e- is added to E - obtaining E ~-, clauses that are added
afterwards will derive not_E ~-. We have to prove also that clauses generated
before allow not_E ~- to be derived. Consider a situation where not_e- has been
assumed during the testing of the last clause added to H. We have to prove that

(PU H, A, IC) t-~ E+,not_E - =# (PU H, A, IC) I-~ E+,notJE '-

where not_e- �9 A and e- �9 E ~-. From the left part of the implication and for
the soundness of the abductive proof procedure, we have that there exists an
abductive model M such that A _C M N s From not_e- �9 A, we have that
not_e- �9 M and therefore by weak completeness

(P U H, A, IC) F-~ not_e-

By induction and by theorem 3, we have the right part of the implication.

114 Evelina Lamina, Paola Mello, Michela Milano, and Fabrizio Riguzzi

We turn now to the incompleteness of the algorithm. LAP is incomplete because
a number of choice points have been overlooked in order to reduce the computa-
tional complexity. The first source of incompleteness comes from the fact that,
after a clause is added to the theory, it is never retracted. Thus, it can be the
case that a clause not in the solution is learned and the restrictions imposed on
the rest of the learning process by the clause (through the examples covered and
their respective assumptions) prevent the system from finding a solution even if
there is one. In fact, the algorithm performs only a greedy search in the space
of possible programs, exploring completely only the smaller space of possible
clauses. However, this source of incompleteness is not specific to LAP because
most ILP systems perform such a greedy search in the programs space.

The following source of incompleteness, instead, is specific to LAP. For each
example, there may be more than one explanation and, depending on the one
we choose, the coverage of other examples can be influenced. An explanation A1
for the example el may prevent the coverage of example e:, because there may
not be an explanation for e~ that is consistent with A1, while a different choice
for A1 would have allowed such a coverage. Thus, in case of a failure in finding
a solution, we should backtrack on example explanations.

We decided to overlook these choice points in order to obtain an algorithm
that is more effective in the average case, but we might not have done so. In
fact, these choice points have a high computational cost, and they must be
considered only when a high number of different explanations is available for
each example. However, this happens only for the cases in which examples are
highly interrelated, i.e., there are relations between them or between objects
(constants) related to them. This case is not very common in concept learning,
where examples represent instances of a concept and the background represents
information about each instance and its possible parts. In most cases, instances
are separate entities that have few relations with other entities.

5 E x a m p l e s

5.1 Learning Exceptions

In this section, we show how LAP learns exceptions to classification rules. The
example is taken from 16.

Let us consider the following abductive background theory B = (P, A, IC I
and training sets E + and E- :

P = {bird(X) +- penguin(X).
penguin(X) +- superpenguin(X).
bird(a), bird(b), penguin(e), penguin(d).
superpenguin(e), superpenguin(f).}

A = (abnorml/1, abnorm2/1, not_abnorml/1, not_abnorrn2/1}
IC = {+- abnorml (X), not_abnorml (X).

+- abnorm~ (X) , not_abnorm2 (X) . }
+- f l ies(X), not_flies(X).}

A System for Abductive Learning of Logic Programs 115

E + = {f l ies(a) , f l ies(b), f l ies(e) , f l i e s (f) }
E - = { / l i e s (c) , f l ies (d)}

Moreover, let the bias be:

flies(X) +- a where a C {superpenguin(X),penguin(X), bird(X),
not_abnorm l (X), not_abnorm2 (X) }

abnorml(X) +-/3 and abnorm2(X) +-/3 where
/3 C {superpenguin(X),penguin(X), bird(X)}

The algorithm first generates the following rule (R1):
f l ies(X) +-- superpenguin(X).

which covers flies(e) and f l ies(f) that are removed from E +. Then, in the
specialization loop, the rule R2 = flies(X) +- bird(X), is generated which covers
all the remaining positive examples flies(a) and flies(b), but also the negative
ones. In fact, the abductive derivations for not_flies(e) and not_flies(d) fail.
Therefore, the rule must be further specialized by adding a new literal. The
abducible literal not_abnorml is added to the body of R2 obtaining Ra:

flies(X) +- bird(X), not_abnorml (X).
Now, the abductive derivations for the negative examples flies(a) and flies(b)
succeed abducing {not_abnorml (a), not_abnorml (b) } and the derivations
not_flies(c) and not_flies(d) succeed abducing {abnorml (c), abnorml (d)}.

At this point the system adds the literals abduced to the training set and
tries to generalize them, by generating a rule for abnorml/1. Positive abduced
literals for abnorml/1 form the set E +, while negative abduced literals form the
set E - . The resulting induced rule is (R4):

abnorml (X) +- penguin(X).
No positive example is now left in the training set therefore the algorithm ends
by producing the following abductive rules:

f l ies(X) +- superpenguin(X).
flies(X) +- bird(X), not_abnorml (X).
abnorml (X) +- penguin(X).

A result similar to ours is obtained in 16, but exploiting "classical" negation and
priority relations between rules rather than abduction. By integrating induction
and abduction, we obtain a system that is more general than 16.

5.2 Learning from Incomplete Knowledge

Abduction is particularly suitable for modelling domains in which there is incom-
plete knowledge. In this example, we want to learn a definition for the concept
father from a background knowledge containing facts about the concepts parent
and male. Knowledge about male is incomplete and we can make assumptions
about it by considering it as an abducible. We have the abductive background
theory B = (P, A, IC) and training set:

116 Evelina Lamina, Paola MeUo, Michela Milano, and Fabrizio Riguzzi

P = { parent(john, mary), male(john).
parent(david, steve), parent(kathy, ellen).
female(kathy).}

A = {male/1, female/1}
IC = {+- male(X),female(Z).}
E + = {father(john, mary),father(david, steve)}
E- = {father(john, steve), father(kathy, ellen)}

Moreover, let the bias be

father(X, Y) +- a where ~ C {parent(X, Y), parent(Y, X),
male(X), male(Y), female(X), female(Y)}

At the first iteration of the specialization loop, the algorithm generates the rule

father(X, Y) +-.
which covers all the positive examples but also all the negative ones. Therefore
another iteration is started and the literal parent(X, Y) is added to the rule

father(X, Y) +-- parent(X, Y).
This clause also covers all the positive examples but also the negative example

father (kathy, ellen).
Note that up to this point no abducible literal has been added to the rule,
therefore no abduction has been made and the set A is still empty. Now, an
abducible literal is added to the rule, male(X), obtaining

father(X, Y) +-- parent(X, Y), male(X).
At this point the coverage of examples is tested, father(john, mary) is covered
abducing nothing because we have the fact male(john) in the background. The
other positive example, father(david, steve), is covered with the abduction of
the following set: {male(david), not_female(david)}.

Then the coverage of negative examples is tested by starting the abductive
derivations

+-- not_father(john, steve).
+- not_father(kathy, ellen).

The first derivation succeeds with an empty explanation while the second suc-
ceeds abducing not_male(kathy) which is consistent with the fact female(kathy)
and the constraint +- male(X), female(X). Now, no negative example is cov-
ered, therefore the specialization loop ends. No atom from A is added to the
training set because the predicates of abduced literals are not target. The pos-
itive examples covered by the rules are removed from the training set which
becomes empty. Therefore also the covering loop terminates and the algorithm
ends, returning the rule

father(X, Y) +- parent(X, Y), male(X).
and the assumptions

A = {male(david), not_female(david), not_male(kathy) }.

A System for Abductive Learning of Logic Programs 117

6 Related Work

We will first mention our previous work in the field, and then related work by
other authors.

In 29 we have presented the definition of the extended learning problem and
a preliminary version of the algorithm for learning abductive rules.

In 30 we have proposed an algorithm for learning abductive rules obtained
modifying the extensional ILP system FOIL 37. Extensional systems differ
from intensional ones (as the one presented in this paper) because they employ
a different notion of coverage, namely extensional coverage. We say that the
program P extensionally covers example e if there exists a clause of P, l +-
l l , . . . , In such that l = e and for all i, li E E + Ulhm(B) . Thus examples can
be used also for the coverage of other examples. This has the advantage of
allowing the system to learn clauses independently from each other, avoiding
the need for considering different orders in learning the clauses and the need for
backtracking on clause addition. However, it has also a number of disadvantages
(see 13 for a discussion about them). In 30 we have shown how the integration
of abduction and induction can solve some of the problems of extensional systems
when dealing with recursive predicates and programs with negation.

In 17 the authors discuss various approaches for the integration of abduc-
tion and induction. They examine how abduction can be related to induction
specifically in the case of Explanation Based Learning, Inductive Learning and
Theory Revision. The authors introduce the definition of a learning problem
integrating abduction (called Abductive Concept Learning) that has much in-
spired our work. Rather than considering it as the definition of a problem to be
solved and presenting an algorithm for it, they employ the definition as a general
framework where to describe specific cases of integration.

Our definition differs from Abductive Concept Learning on the condition
that is imposed on negative examples: in 17 the authors require that negative
examples not be abductively entailed by the theory. Our condition is weaker
because it requires that there be an explanation for not_e-, which is easier to
be met than requiring that there is no explanation for e- . In fact, if there is
an explanation for not_e-, this does not exclude that there is an explanation
also for e - , while if there is no explanation for e- then there is certainly an
explanation for not_e-. We consider a weaker condition on negative examples
because the strong condition is difficult to be satisfied without learning integrity
constraints. For example, in section 5.2, the learned program also satisfies the
stronger condition of 17, because for the negative example father(kathy, ellen)
the only abductive explanation {male(kathy)} is inconsistent with the integrity
constraint ~- male(X), female(X) . However, if that constraint was not available
in the background, the stronger condition would not be satisfiable.

Moreover, in 17 the authors suggest another approach for the integration of
abduction in learning that consists in explaining the training data of a learning
problem in order to generate suitable or relevant background data on which to
base the inductive generalization. Differently from us, the authors allow the use
of integrity constraints for rule specialization, while we rely only on the addition

118 Evelina Lamina, Paola Mello, Michela Milano, and Fabrizio Riguzzi

of a literal to the body of the clause. Adding integrity constraints for specializing
rules means that each atom derived by using the rules must be checked against
the constraints, which can be computationally expensive. Moreover, the results
of soundness and weak completeness can not be used anymore for the extended
proof procedure.

In 2 an integrated abductive and inductive framework is proposed in which
abductive explanations that may include general rules can be generated by incor-
porating an inductive learning method into abduction. The authors transform
a proof procedure for abduction, namely SLDNFA, into a proof procedure for
induction, called SLDNFAI. Informally, SLDNFA is modified so that abduction
is replaced by induction: when a goal can not be proven, instead of adding it
to the theory as a fact, an inductive procedure is called that generates a rule
covering the goal. However, the resulting learning is not able to a learn a rule
and, at the same time, make specific assumptions about missing data in order
to cover examples.

The integration of induction and abduction for knowledge base updating
has been studied in 11 and 1. Both systems proposed in these papers perform
incremental theory revision: they automatically modify a knowledge base when it
violates a newly supplied integrity constraint. When a constraint is violated, they
first extract an uncovered positive example or a covered negative example from
the constraint and then they revise the theory in order to make it consistent with
the example, using techniques from incremental concept learning. The system
in 11 differs from the system in 1 (called RUTH) because it relies on an
oracle for the extraction of examples from constraints, while RUTH works non
interactively. Once the example has been extracted from the constraint, both
systems call similar inductive operators in order to update the knowledge base.
In 11 the authors use the inductive operators of Shapiro's MIS system 38.

In 28, we have shown that LAP can be used to perform the knowledge
base updating tasks addressed by the systems in 11 and 1, by exploiting the
abductive proof procedure in order to extract new examples from a constraint
on target predicates. While systems in 11, 1 can generate examples that violate
other integrity constraints and new inconsistencies have to be recovered at the
next iteration of the learning loop, in 28 we are able to select the examples that
allow the minimal revision of the theory. Another relevant difference is that our
system is a batch learner while the systems in 11, 1 are incremental learners:
since we have all the examples available at the beginning of the learning process,
we generate only clauses that do not cover negative examples and therefore
we do not have to revise the theory to handle covered negative examples, i.e.,
to retract clauses. As regards the operators that are used in order to handle
uncovered positive examples, we are able to generate a clause that covers a
positive example by also making some assumptions, while in 11 they can cover
an example either by generating a clause or by assuming a fact for covering it,
but not the two things at the same time. RUTH, instead, is able to do this, and
therefore would be able to solve the problem presented in Section 5.2. Moreover,

A System for Abductive Learning of Logic Programs 119

RUTH considers abduced literals as new examples, therefore it would be able to
solve as well the problems in Section 5.1.

As concerns the treatment of exceptions to induced rules, it is worth men-
tioning that our treatment of exceptions by means of the addition of a non-
abnormality literal to each rule is similar to the one in 35. The difference is
that the system in 35 performs declarative debugging, not learning, therefore
no rule is generated. In order to debug a logic program, in 35 the authors first
transform it by adding a different default literal to each rule in order to cope with
inconsistency, and add a rule (with an abducible in the body) for each predicate
in order to cope with predicate incompleteness. These literals are then used as
assumptions of the correctness of the rule, to be possibly revised in the face of
a wrong solution. The debugging algorithm determines, by means of abduction,
the assumptions that led to the wrong solution, thus identifying the incorrect
rules.

In 5 the authors have shown that is not possible, .in general, to preserve cor-
rect information when incrementally specializing within a classical logic frame-
work, and when learning exceptions in particular. They avoid this drawback by
using learning algorithms which employ a nonmonotonic knowledge represen-
tation. Several other authors have also addressed this problem, in the context
of Logic Programming, by allowing for exceptions to (possibly induced) rules
16, 10. In these frameworks, nonmonotonicity and exceptions are dealt with by
learning logic programs with negation. Our approach in the treatment of excep-
tions is very related to 16. They rely on a language which uses a limited form
of "classical" (or, better, syntactic) negation together with a priority relation
among the sentences of the program 25. However, in 20 it has been shown
that negation by default can be seen as a special case of abduction. Thus, in
our framework, by relying on ALP, we can achieve greater generality than 16:
besides learning exceptions, LAP is able to learn from incomplete knowledge and
to learn theories for abductive reasoning.

In what concerns learning from incomplete information, many ILP systems
include facilities in order to handle this problem, for example FOIL 37, Progol
34, mFOIL 19. The approach that is followed by all these systems is funda-
mentally different with respect to ours: they are all" based on the use of heuristic
necessity and sufficiency stopping criteria and of special heuristic functions for
guiding the search. The heuristic stopping criteria relaxes the requirements of
consistency and completeness of the learned theory: the theory must cover (not
cover) "most" positive (negative) examples, where the exact amount of "most" is
determined heuristically. These techniques allow the systems to deal with imper-
fect data in general, including noisy data (data with random errors in training
examples and in the background knowledge) and incomplete data. In this sense,
their approach is more general than ours, because we are not able to deal with
noisy data. Their approach is equivalent to discarding some examples, consider-
ing them as noisy or insufficiently specified, while in our approach no example is
discarded, the theory must be complete and consistent (in the abductive sense)
with each example.

120 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

7 C o n c l u s i o n s a n d F u t u r e W o r k

We have presented the system LAP for learning abductive logic programs. We
consider an extended ILP problem in which both the background and target the-
ory are abductive theories and coverage by deduction is replaced with coverage
by abduction.

In the system, abduction is used for making assumptions about incomplete
predicates of the background knowledge in order to cover the examples. In this
way, general rules are generated together with specific assumptions relative to
single examples. If these assumptions regard an abnormality literal, they can be
used as examples for learning a definition for the class of exceptions.

LAP is obtained from the basic top-down ILP algorithm by substituting,
for the coverage testing, the Prolog proof procedure with an abductive proof
procedure. LAP has been implemented in Sicstus Prolog 3#5: the code of the
system and of the examples shown in the paper are available at <URL:http:
//www- lia. deis. unibo, it/Staff/FabrizioRiguzzi/LAP, html}>.

In the future, we will test the algorithm on real domains where there is
incompleteness of the data. As regards the theoretical aspects, we will investigate
the problem of extending the proposed algorithm in order to learn full abductive
theories, including integrity constraints as well. The integration of the algorithm
with other systems for learning constraints, such as Claudien 12 and ICL 14,
as proposed in 27, seems very promising in this respect.

Our approach seems also promising for learning logic programs with two
kinds of negation (e.g., default negation and explicit negation), provided that
positive and negative examples are exchanged when learning a definition for the
(explicit) negation of a concept, and suitable integrity constraints are added to
the learned theory so as to ensure non-contradictoriness. This is also subject for
future work.

A c k n o w l e d g m e n t

We would like to thank the anonymous referees and participants of the post-
ILPS97 Workshop on Logic Programming and Knowledge Representation for
useful comments and insights on this work. Fabrizio Riguzzi would like to thank
Antonis Kakas for many interesting discussions on the topics of this paper they
had while he was visiting the University of Cyprus.

R e f e r e n c e s

1. H. Ad~ and M. Denecker. RUTH: An ILP theory revision system. In Proceedings of
the 8th International Symposium on Methodologies for Intelligent Systems, 1994.

2. H. Adfi and M. Denecker. AILP: Abductive inductive logic programming. In
Proceedings of the l~th International Joint Conference on Artificial Intelligence,
1995.

A System for Abductive Learning of Logic Programs 121

3. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111
of LNAL SV, Heidelberg, 1996.

4. M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,
Inductive Logic Programming, chapter 7, pages 145-161. Academic Press, 1992.

5. M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,
Inductive Logic Programming, pages 145-161. Academic Press, 1992.

6. F. Bergadano and D. Gunetti. Learning Clauses by Tracing Derivations. In Pro-
ceedings gth Int. Workshop on Inductive Logic Programming, 1994.

7. F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1995.
8. F. Bergadano, D. Gunetti, M. Nicosia, and G. Ruffo. Learning logic programs

with negation as failure. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 107-123. IOS Press, 1996.

9. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic
programming with non-monotonic reasoning. Theoretical Computer Science, 184:1-
59, 1997.

10. L. De Raedt and M. Bruynooghe. On negation and three-vaiued logic in interactive
concept learning. In Proceedings of the 9th European Conference on Artificial
Intelligence, 1990.

11. L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and
queries. Artificial Intelligence, 53:291-307, 1992.

12. L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence, 1993.

13. L. De Raedt, N. Lavra~, and S. D~eroski. Multiple predicate learning. In S. Mug-
gleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic
Programming, pages 221-240. J. Stefan Institute, 1993.

14. L. De Raedt and W. Van Lear. Inductive constraint logic. In Proceedings of the
5th International Workshop on Algorithmic Learning Theory, 1995.

15. M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of ECAI96
Workshop on Abductive and Inductive Reasoning. Catholic University of Leuven,
1996.

16. Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs: Learning
Exceptions. In Proceedings of the 8th European Conference on Machine Learning,
1995.

17. Y. Dimopoulos and A. Kakas. Abduction and inductive learning. In Advances in
Inductive Logic Programming. IOS Press, 1996.

18. P.M. Dung. Negation as hypothesis: An abductive foundation for logic program-
ming. In K. Furukawa, editor, Proceedings of the 8th International Conference on
Logic Programming, pages 3-17. MIT Press, 1991.

19. S. D~.eroski. Handling noise in inductive logic programming. Master's thesis,
Faculty of Electrical Engineering and Computer Science, University of Ljubljana,
1991.

20. K. Eshghi and R.A. Kowalski. Abduction compared with Negation by Failure. In
Proceedings of the 6th International Conference on Logic Programming, 1989.

21. F. Esposito, E. Lamina, D. Malerba, P. Mello, M. Milano, F. Riguzzi, and G. Se-
meraro. Learning abductive logic programs. In Denecker et al. 15.

22. C. Hartshorne and P. Weiss, editors. Collected Papers of Charles Sanders Peirce,
1931-1958, volume 2. Harvards University Press, 1965.

23. A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2:719-770, 1993.

122 Evelina Lamina, Paola Mello, Michela Milano, and Fabrizio Riguzzi

24. A.C. Kakas and P. Mancarella. On the relation between truth maintenance and
abduction. In Proceedings of the 2nd Pacific Rim International Conference on
Artificial Intelligence, 1990.

25. A.C. Kakas, P. Mancarella, and P.M. Dung. The acceptability semantics for logic
programs. In Proceedings of the 11th International Conference on Logic Program-
ming, 1994.

26. A.C. Kakas and F. Riguzzi. Learning with abduction. Technical Report TR-96-15,
University of Cyprus, Computer Science Department, 1996.

27. A.C. Kakas and F. Rignzzi. Learning with abduction. In Proceedings of the 7th
International Workshop on Inductive Logic Programming, 1997.

28. E. Lamina, P. Mello, M. Milano, and F. Rignzzi. Integrating induction and abduc-
tion in logic programming. To appear on Information Sciences.

29. E. Lamina, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and Ab-
duction in Logic Programming. In P. P. Wang, editor, Proceedings of the Third
Joint Conference on Information Sciences, volume 2, pages 203-206, 1997.

30. E. Lamina, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into
(Extensional) Inductive Logic Programming Systems. In M. Lenzerini, editor,
AI*IA97, Advances in Artificial Intelligence, Proceedings of the 5th Congress of
the Italian Association for Artificial Intelligence, number 1321 in LNAI. Springer-
Verlag, 1997.

31. N. Lavra(5 and S. D~eroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

32. L. Martin and C. Vrain. A three-valued framework for the induction of general
logic programs. In Advances in Inductive Logic Programming. IOS Press, 1996.

33. R. Michalski, J.G. Carbonell, and T.M. Mitchell (eds). Machine Learning - An
Artificial Intelligence Approach. Springer-Verlag, 1984.

34. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

35. L. M. Pereira, C. V. Dam~sio, and J. J. Alferes. Diagnosis and debugging as con-
tradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings of the
2nd International Workshop on Logic Programming and Non-monotonic Reason-
ing, pages 316-330. MIT Press, 1993.

36. D.L. Poole. A logical framework for default reasoning. Artificial Intelligence, 32,
1988.

37. J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL and
Related Systems. New Generation Computing, 13:287-312, 1995.

38. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Ref in ing A c t i o n Theor ies t h r o u g h
A b d u c t i v e Logic P r o g r a m m i n g

Renwei Li 1, Luis Moniz Pereira 1, and Veronica Da.hl 2

1 Center for Artificial Intelligence (CENTRIA)
Department of Computer Science

Universidade Nova de Lisboa
2825 Monte de Caparica, Portugal

{renwei,lmp} ~di.fct .unl.pt

School of Computing Science
Simon Fraser University

Burnaby, B.C. V5A 1S6, Canada
veronica~cs.sfu.ca

Abstract. Reasoning about actions and changes often starts with an
action theory which is then used for planning, prediction or explanation.
In practice it is sometimes not simple to give an immediately available
action theory. In this paper we will present an abductive methodology
for describing action domains. We start with an action theory which
is not complete, i.e., has more than one model. Then, after some tests
are done, we can abduce a complete action theory. Technically, we use
a high level action language to describe incomplete domains and tests.
Then, we present a translation from domain descriptions to abductive
logic programs. Using tests, we then abductively refine an original do-
main description to a new one which is closer to the domain in reality.
The translation has been shown to be both sound and complete. The
result of this paper can be used not only for refinement of domain de-
scriptions but also for abductive planning, prediction and explanation.
The methodology presented in this paper has been implemented by an
abductive logic programming system.

1 Introduction

When reasoning about actions and changes, we often assume that an action
theory has been given and described in a formal language or in a framework,
e.g. situation calculus 15, event calculus 10, action description languages A
7 and ADL 26,

the fluent-features framework (FFF) 19, and their variants or extensions.
But little work has been reported on how to obtain an action theory. Assume
that we want to generate a plan to make the world in a definite state (goal), but
we are not certain about the initial state and the effects of available actions. For
example, let's consider Vladimir Lifschitz' challenge problem1:

1 Vladimir Lifschitz's email message to lmp~di.fct.unl.pt and renwei~di.fct.unl.pt on
March 25, 1996.

124 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

The room has two lamps, say Big and Small, and two light switches, say
Left and Right. A switch controls one and only one light. Both lights are
off. Initially we don't know whether the wiring is this way or the other
way around, but we can find out by toggling a switch.

In this example, we have two actions: to toggle the left switch and to toggle
the right switch, denoted by toggle(left) and toggle(right), and we have two
fluents: the big light is on and the small light is on, denoted by on(big) and
on(small). If we knew the way in which the circuit is connected, then we could
generate plans, predict the future, or explain the past. The problem is that no
such an immediately available theory exists. An intelligent agent should be able
to perform some tests and then obtain a complete action theory. In this paper we
will present an abductive methodology for reasoning about actions and changes
starting from an incomplete action theory, i.e., an action theory with more than
one model, then refining it by testing and abductive reasoning so as to have
a complete action theory, which can then be used for planning, predicting and
explaining. Our methodology consists of a high-level action description language
.A +, a translation from .4 + to abductive logic programs, and an abductive logic
programming system used as the underlying inference engine for refinement.

Now suppose that we have an action description language obtained by extend-
ing ,4 7 with propositional conjunctions and disjunctions on effect propositions.
Then, the above domain can be described by the following propositions:

{toggle(left) causes on(big) i f -~on(big)
Atoggle(le ft) causes -,on(big) i f on(big))}

{toggle(left) causes on(small) i f -,on(small)
Atoggle(le ft) causes -~on(small) i f on(small))}

{toggle(right)
Atoggle(right)

{toggle(right)
Atoggle(right)

causes on(big) i f -,on(big)
causes -~on(big) i f on(big))}

causes on(small) i f -~on(small)
c a u s e s ~on(smaU) i f on(small))}

{toggle(left) causes on(big) i f -,on(big)
Atoggle(le ft) causes -,on(big) i f on(big))}

{toggle(right) causes on(big) i f -,on(big)
Atoggle(right) causes -~on(big) i f on(big))}

{toggle(left) c a u s e s on(small) i f -~on(smaU)
Atoggle(left) causes -~on(small) i f on(small))}

{toggle(right) causes on(small) i f -~on(smaU)
Atoggle(right) causes -~on(smaU) i f on(small)))

Refining Action Theories through Abductive Logic Programming 125

It can be seen that finite uncertainties have been represented by exclusive dis-
junction ~/. Intuitively, one of the following two domain descriptions should be
real.

toggle(left) c a u s e s on(small) if -~on(small)
toggle(left) causes -~on(small) if on(small)
toggle(right) causes on(big) if -~on(big)
toggle(right) causes -~on(big) if on(big)

and
toggle(left) causes on(big) if -~on(big)
toggle(left) causes -~on(big) if on(big)
toggle(right) causes on(small) i f ~on(small)
toggle(right) causes -~on(small) if on(small)

Later we will see that our methodology works well and produces what is intu-
itively acceptable. The rest of the paper is organized as follows. In Section 2
we present an action description language, denoted A +, which is an extension
to ,4. The reason we choose ,4 is simply that ,4 has been shown to be a sim-
ple, extensible and expressive action description language, and to be equivalent
to other three major formalisms 9 proposed by Pednault 16, Reiter 18 and
Baker 2, respectively. In Section 3 we will present a translation from domain
descriptions in A + to abductive logic programs. This translation will serve to
bridge the reasoning about actions and abductive logic programming. Generally
it is not easy or simple to refine action theories or to predict and explain in `4+.
The translation will effectively reduce working in `4+ to working in an abductive
logic programming system, thereby being automated. In Section 4 we will show
that our translation is both sound and complete. In Section 5 we will discuss
tests and refinements by using abductive logic programming. In Section 6 we
return to Lifschitz' challenge problem. In Section 7 we conclude this paper with
a few remarks.

2 D o m a i n D e s c r i p t i o n s

In this section we present an action description language A +, an extension to ,4
of 7.

2.1 Syn tax

We begin with three disjoint non-empty sets of symbols, called proposition
names, fluent names, and action names, respectively. For convenience we will
also use parameterized names. Actions and propositions are defined to be action
names and proposition names, respectively. A fluent expression, or simply fluent,
is defined to be a fluent name possibly preceded by --. A fluent expression is also
called a positive fluent if it only consists of a fluent name; otherwise it is called
a negative fluent.

126 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

In .4 +, a domain description is defined to be a set of effect assertions and
constraints. An effect assertion is defined to be a s ta tement of the form

A c a u s e s F i f P 1 , . . . , P m , Q 1 , . . . , Q n

where A is an action, each of F, P1, . . . , Pm (m _> 0) is a fluent expression, and
each of Q1 , . . . ,Qm (n > 0) is a proposition name. If m = n = 0, then we will
simply write it as A causes F. A constraint is defined as follows:

- A proposition name is an atomic constraint.
- A statement of the form

F a f t er A 1 , . . . , A n

where F is a fluent and Ai is an action, is an atomic constraint, also called
wa/ue assertion. When n = 0, the value assertion above is abbreviated to
in i t i a l ly F.

- If C1 and C2 are constraints, then -~C1, C1 A C2, C1 V C2 are constraints,
called complex constraints. Other propositional connectives can be defined
in terms of them as derived connectives.

It can be seen that .4+ is an extension of .4 by allowing propositions and more
types of constraints. However, the detailed discussion on relations between .4
and .4+ is out of this paper.

2 .2 R e m a r k s

It seems that we would increase the expressive power if we defined the effect
assertions in the following way: (1) A basic effect assertion is a s tatement of the
form A c a u s e s F i f C1 , . . . ,Cn; (2) An effect assertion is a s tatement of the
form (El l A . . . A E I m l) V . . . V (Enl A.. .AEnm,~), where each Eiy is a basic effect
assertion. In fact, combining with proposition names, we can reduce the above
complex effect assertion to simpler ones of .4 + . We can systematically do so by
introducing a few new proposition names and then transform effect assertions.
For example, consider:

(A1 c a u s e s /;'1 i f Cll,. . . ,Clnl)
V o . .

V(Arn c a u s e s Frn i f Cml,...,Cmn)

Let hi, 1 < i < m be m new proposition symbols. Then, the above complex
effect assertions can be transformed into m basic effect assertions and a new
constraint as follows:

A1 c a u s e s F1 i f Cll, . . . ,Clnl,hl
. ~

Am c a u s e s F,n i f Crnl,...,C~n,~,hm
hi V. . . V hm

Refining Action Theories through Abductive Logic Programming 127

On the other hand, it also seems that we would increase the expressive power
if we allowed general well-formed propositional formulas in the preconditions of
effect assertions. For example, let A be an action, P1 a fluent, and Q1, Q2, Q3 be
proposition names. Consider

A c a u s e s F i f P1, (Q1 A Q2) v -~Q3

This kind of seemingly more expressive effect assertions can also be reduced to
effect assertions in .4 +. Let Q4 be a new proposition name. The following effect
assertion and a constraint is equivalent to the above assertion:

A c a u s e s F i f P1, Q4

Q4 ~ (Q1 A Q2) v -~Q3

2 . 3 S e m a n t i c s

The semantics of a domain description is defined by using proposition assign-
ment, states, and transitions.

A proposition assignment a is a set of proposition names. Given a proposition
name P and an assignment a, we say that P is t rue if P E a, and -~P is true if
P r a. A s ta te is a set of fluent names. Given a fluent name F and a state ~,
we say that F holds in a if F E a; -~F holds in a if F f~ a. A transi t ion fimction

is a mapping from the set of pairs (A, a), where A is an action expression and
a is a state, to the set of states.

An in terpreta t ion s t ruc ture is a triple (c~,ao,~), where c~ is an assign-
ment, ao is a state, called the initial s ta te of (ao,~) , and �9 is a transition
function. For any interpretation structure M = (~, ao, ~) and any sequence of
action expressions A1; . . . ; A m in M, by ~(A1; . . . ; A m , Cro) we denote the state
r ~ (A m - 1 , . . . , ~ (A1 , ~o) . . .)).

Given an interpretation structure (a, a0, ~), a constraint C is said to be true
with respect to it iff

- if C is a proposition name, then C E a;
- if C is a value assertion of the form F a f t e r A1, . . . , A n , then F holds in

the state ~ (A1 ; . . . ;Amao);
- if C is a complex constraint, then it is true according to the usual proposi-

tional connective evaluation method.

An interpretation structure (a, ao, ~) is a mode l of a domain description D
iff

- Every constraint is true with respect to the interpretation structure.
- For every action A, every fluent name F, and every state a: (i) If D in-

cludes an effect assertion A c a u s e s F i f P 1 , . . . , Pro, Q t , . . . , Qn, such that
fluents P1, . . . , Pm hold in a and propositions Q 1 , . . . ,Qn are true with re-
spect to (c~, a0, ~), then F E ~(A, a); (ii) If D includes an effect assertion
A c a u s e s --F i f P 1 , . . . , Pro, Q I , . . . , Qn, such that fluents P1, . . . , P,~ hold

128 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

in a and propositions Q 1 , . . - , Q n are true with respect to (a, a0, ~), then
F r ~(A,a) ; (iii) If D does not include any such effect assertions, then
F e ~(A, a) if F ~ a.

A domain description is consistent if it has a model. A domain description is
complete if it has exactly one model. A domain description D entails a value
assertion V if V is t rue in all models of D. It can be shown that different mod-
els of the same domain description differ only in different initial states and /or
proposition assignments. In addition, the interpretation of a proposition name
is independent of states.

In reality a practical domain should have only one model. The task of refining
domain descriptions is to construct a new domain description which has fewer
models than the original domain description. We will achieve this purpose by first
performing some actions and observing their outcome, then we will abductively
infer the t ru th values of propositions and initial states. We will make use of
abductive logic programming for the purpose of abductive reasoning.

3 Translation into Abductive Programs

In this section we will present a translation from domain descriptions into abduc-
tive logic programs. An abductive logic program is a triple < P, IC, A >, where
P is a set of logic programming rules, I C is a set of first-order sentences as con-
straints, and A is a set of predicates, called abducible predicates. An abductive
answer ~ to a query Q in < P, IC, A > is a finite subset of ground instances of A
such that (i) Q E S E M (P U {a +-- : a E 5},IC); (ii) P U {a +-- : a E 6} u I C is
consistent according to definition of S E M ; (iii) 5 is minimal in the sense that no
subset of it satisfies the previous two conditions, where S E M (P , IC) denotes the
semantics of the program P with constraints IC. There have been a few com-
peting semantics in the literature: predicate completion semantics, stable model
semantics, and well-founded model semantics. Later we will see that our logic
program translations are acyclic, and thus all of these major semantics agree.
Therefore we will define the semantics of logic programs as the predicate com-
pletion semantics. For abductive logic programs, we will complete all predicates
except the abducible ones 3.

Let D be a domain description. The translation ~rD includes a set of pro-
gramming rules and a set of constraints defined as follows:

1. Initialization: holds(F, So) +- ini t ial ly(F).
2. Law of Inertia:

holds(F, result(A, S)) +- holds(F, S), not noninertial(F, S, A).

where not is the negation-as-failure operator. By the law of inertia, F is
t rue at a new situation by doing A on S if it was t rue at S.

3. Each effect assertion a causes / i f p l , . . . , Pro, q l , . . . , q n , with / being
positive, Pi being a fluent, and qi being a proposition, is translated into

holds(/ , result(a, S)) +-- holds(p1, S), . . . , holds(pro, S), ql, . . . , qn.

Refining Action Theories through Abductive Logic Programming 129

where holds(-~p, S) with p being positive stands for not holds(p, S). This
convention is also used in the rest of this paper.

4. Each effect assertion a causes -~f if P l , . . . , Pro, q l , . . . ,qn, with f being
positive, pi being a fluent, and qi being a proposition, is translated into

n o n in e r t i a l (f , S, a) +- holds(p1, S) , . . . , holds(pro, S) , ql , . . . , qn.

5. For every constraint C of D: (i) if C is a proposition name, ~rC - C; (ii) if C
is f a f te r al, .. . , an with f being positive, then ~rC = ho lds (f , result(a1;
�9 ..; an,so)); (iii) if C is -~f af ter al, . . . , a n , with f being positive, then
~rC = -~holds(f, r e s u l t (a 1 ; . . . ;an, So)); (iv) ~r(-~C1) = -~(~rC1), ~r(C1 A C2)
= A V = V 7rC .

We will define abducible predicates to be i n i t ia l l y (F) and all proposition names.
The semantics of ~TD, denoted by Comp(~rD), is defined to be the first-order
theory by completing all predicates except i n i t i a l l y (F) and proposition names,
jointly with Clark's theory of equality, and the constraints 3, 6.

T h e o r e m 31 Let D be any domain description in .4 +. ~rD is an acyclic logic
program with first-order constraints in the sense of 1.

P r o o f It suffices to give a level mapping ~ for all ground atoms. Note that
i n i t i a l l y (f) and all propositions appear only on the right-hand side of +- , and
thus can be assigned to 0. Observe that the number of occurrences of resul t in
holds(F, S) on the left-hand side of +- is more than right-hand side of +- .
Hence, a level mapping)~ can be defined as follows:

 (XnitiaUy(f)) = 0

= 0

)~(holds(f , resul t (a , s))) = 2

A (non iner t i a l (f , a, s)) = 2

for any proposition p

x Isl + i

x Isl + 2

where Isl denotes the number of occurrences of resul t plus 1. Then it is straight-
forward to verify the above)~ is a level mapping. We should point out that the
above level mapping is a slight modification of that in 5, 6.

Coro l la ry 32 The completion semantics CompOrD) o ~rD agrees with its gen-
eralized stable model semantics 8 and generalized weU-ounded model semantics
pz .

P r o o f Since 7rD is an acyclic logic program, According to 5, the completion
semantics of any acyclic abductive logic program with constraints coincides with
its generalized stable model semantics 8 and generalized well-founded model
semantics 17.

The above corollary means that the result of this paper can be experimented
with any abductive logic programming system with one of the three major se-
mantics. The detailed proof follows from 5. A short summary of partial results
of 5 can also be found in 6.

130 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

4 Soundness and Completeness

In general it is very difficult to reason about actions in .4 + . The purpose of the
translation is to reduce the reasoning work in .4+ to abductive querying in an
abductive logic programming system. This section will show that reasoning in .4+
is equivalent to abductive querying through two technical results, whose proofs
are slight modifications of 5 by consolidating c~ component in the interpretation
structure.

T h e o r e m 41 The translation 7r is sound. That is, for any domain description
D and any value assertion V, if Comp(TrD) ~ 7rV, then D entails V.

P r o o f If the domain description is not consistent, the above theorem holds
trivially since there is no model. Now assume D is consistent. We want to show
every model of D is also a model of V. It suffices to prove that for every model
(a, a0, ~) of D, there is a model M of ~rD such that V is true in (a, a0, ~) iff 7rV
holds in M. The same technique of 5 can be used to construct such a model
M from (a, a0, ~). The only difference is that 5 does not consider a. In order
to have a, just let it be the same in both (a, ao,~) and M.

D e f i n i t i o n 42 A domain description D is effect consistent iff for each pair of
effect assertions,

A c a u s e s F i f C 1 , . . . , C m

A causes --F i f C m + l , . . . , C n

in D, there exists i, 1 < i < m, and j , m + 1 < j < n, such that C~ is the
complement of Cj.

Note that if C1 , . . . , Cm contain complement elements, then effect assertion
A causes F i f C1 , . . . , Cm in a domain description has no effect on its models.
And thus, in this paper we assume that any domain description does not have
such kind of effect assertions.

T h e o r e m 43 The translation Ir is complete for any effect consistent domain
descriptions. That is, .for any effect consistent domain description D and any
value assertion V, if D entails V, then Comp(~rD) ~ 7rV.

P r o o f Since D is effect consistent, there is a unique translation �9 which satisfies
the effect assertions when i~ is given. Then it suffices to prove that for each model
M of 7rD there is a model (a, a0,~) of D such that for each value assertion
V, M ~ 7rV iff V holds in (c~,a0,~). This will immediately implies all value
assertions of D hold in (a, a0,~/i) since M is a model of 7rV for every value
assertion of D. We can still follow 5 to show it.

The requirement for a domain description to be effect consistent is necessary.
If a domain description D is not effect consistent, no transition functions exist
to satisfy its effect assertions, thus it has no models, and hence it entails every

Refining Action Theories through Abductive Logic Programming 131

value assertion. On the other hand, its translation is consistent and thus has at
least one model which entails a proper subset of what D entails.

The above soundness and completeness theorems signify that our transla-
tion can actually be used for the general purposes of reasoning about actions
and changes such as abductive planning, prediction, explanation. Tha t is to say,
our result of this paper goes beyond refinement of action theories. But we will
not delve into detailed discussion on how to use our translation for abductive
planning, temporal prediction and explanation. In the next section we will con-
centrate on refinement of action theories.

5 R e f i n e m e n t

Let D be a domain description. D may have more than one model. If D has
more than one model, we may only predict a disjunctive future instead of a
definite future. That is to say, after a sequence of actions is done, we cannot
predict whether a fluent is definitely t rue or not. When a domain description is
complete, we can always predict whether a fluent is true or not after an action
is done. This is sometimes a very important factor in reasoning about actions,
as shown as in 14.

When a domain description is not complete, all its models differ in their initial
states and /o r proposition assignments. In order to determine initial states and
proposition assignments, one may perform some tests: doing some actions, ob-
serving their effects, and then abductively determining initial states and propo-
sition names.

Now suppose that we are given a domain description Do. We want to refine
it. The way to do it, as said as before, is to perform some actions and observe
their effects. This process is called test. The purpose of tests is to generate new
value assertions. And thus we can formally define a test to be a set of value
assertions.

D e f i n i t i o n 51 A test T in an action domain is a set of value assertions. Let D
be a domain description. The pair (D, T) is called a refinement problem.

T h e o r e m 52 Let D be a domain description, and ~- a test. Then, eve~l model
of D U r is a model of D.

P r o o f Let M be any model of D U r . It is straightforward to see that all effect
assertions and constraints are true with respect to M. And thus M is also a
model of D. D

Note that the converse of the above theorem does not hold in general cases.
The above theorem means that simply adding tests to a domain description will
definitely give a bet ter and new domain description. But syntactically D U I- is
more complicated than D. We may prefer simpler and finer descriptions. Note
tha t in an interpretation structure, all proposition names will be either t rue or
false. In the reality, all these proposition names can and can only be either t rue or
false. When we do enough tests, the refinement of the domain will be closer and

132 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

closer to a complete domain description. This implies that the complete domain
description is a limit of all refinements of domain descriptions. When the domain
description has only one model, all proposition names can be removed from
the domain description by substituting them with their truth values, and thus
syntactically simplifying the domain description. Hence, we have the following
definition of refinements:

Defini t ion 53 Let D1 and D2 be two domain descriptions. D2 is said to be a
refinement of D1 iff the following conditions are satisfied:

- Every model of D2 is a model o D1;
- There is no proposition name in D2 which is true in every model of D2;
- There is no proposition name in D2 which is false in every model of D~.

In what follows we want to show how to compute refinements with abductive
logic programming. In Section 3 we presented a translation from domain de-
scriptions to abductive logic programs. However, many existing abductive logic
programming systems do not directly support our constraints. Instead, they sup-
port constraints of the form

_L +-- L 1 , . . . , L n

First we need to translate all constraints into the above form.
The translation, still denoted by ~r, is as follows. Let C be a constraint in the

program ~rD. Then C can be equivalently transformed into a conjunctive normal
form:

(6'11V... V Clml) A... A (Cml V... V Cmn)

Then, it will be translated into

.L +--

~

l +-

not C l l , . . . , not Clml

n o t C m l , . . . , n o t C m n

_L +- not C n , . . . , n o t Clm,

1 +- not C ~ l , . . . , n o t Cmn

where not ",L is taken as L.
After constraints are translated into a logic program, we can run it in any

abductive logic programming system. Before proceeding, we need to guarantee
that the correctness of the translation is preserved.

T h e o r e m 54 The translation 7r is both sound and complete/or any effect con-
sistent domain descriptions.

P r o o f By the use of the soundness and completeness theorems of the last
section, it is sufficient to show that the handing of constraints does not change
the semantics. For this purpose, completing

Refining Action Theories through Abductive Logic Programming 133

we will have

_L A . . . A V

. . .V

(cml A . . . A

It is equivalent to

v . . . v A i) A . . . A v . . . v c n)

Thus the translation of the constraints does not change its semantics. Therefore,
the semantics of new programs is the same as before. O

Let T = {Vi , . . . , Vn} be a test. Then, T Can be transformed into a query:

+- ~r V1, . . . , ~r Vn

where for each i, 7rV/is defined as follows: Let V /be F a f t e r A i , . . . ,An in 7-.
If F is positive, then 7rV~ is defined to be holds(F, resul t (A1; . . . ;An, so)); if F
is negative and equal to -~G, then 7rV/ is defined to be not holds(G, result(Ai;
�9 .. ;An,s0)).

Submitting the query to an abductive logic programming system, we will
get abductive answers to it. In what follows we will write 7"s T) to stand for
the set of all abductive answers to the query +-- ~r~- against the abductive logic
program 7rD. Now we are in a position to define the procedure of refining action
theories.

Definit ion 55 Let D be a domain description and T a test. Let R (D ,T) =
{ R1, . . . , P~ }. Perform:

1. For every proposition name P, if P f Ri U. . .URN, remove from D all effect
assertions containing P in the precondition list, and replace P with false in
every constraint of D;

2. For every proposition name P, if P E R 1 A . . . ARn, remove P from all effect
assertions of D, and replace P with true in every constraint of D;

3. Simplify constraints of D in the usual way by using of true and fa lse in
the formulas. For example, if C is of the form -~false or C1 V true, C is
removed.

Then, Define S(D, T) to be the set of the resulting effect assertions, constraints,
and the test T.

The following theorem says that the new domain description S(D, T) is a
refinement of D.

T h e o r e m 56 Let D be a domain description, T a test. Then, S (D, ~-) is a re-
finement of D.

P r o o f To show that S(D, T) is a refinement of D, we need to show

134 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

(a) Every model of S(D, v) is a model of D;

(b) There is no proposition name in S(D, r) which is true in every model of
S(D, T);

(C) There is no proposition name in S(D, T) which is false in every model of
S (D , r) .

To see (a), note that it suffices to show that every model of S(D,T) is a model
of D U T according to Theorem 5.2. Let 7~(D, T) = {R1,..., Rn}. Since Ri is an
abductive answer to 7rT, we have

Comp(~rD U a +- : a E P,4) ~ zr~"

Thus for every proposition P, if P r R1 U . . . t.J Rn, it is always assigned to
"false" in c~ since our model is two-valued. Since it is always false, if a dis-
junct on the right-hand side of a completion equivalence of holds(F, S) and
noninertial(F, A, S) contains it, it can be removed from Comp(TrD). Removing
it amounts to removing the corresponding effect assertion which has P as one of
preconditions. And thus the corresponding effect assertion can be deleted from
D. This is what Step 1 does in Def.5.5. On the other hand, if P E R1 N . . . N Rn,
it is always assigned to "true", and thus can be vacuumly removed from all
the disjuncts on the right-hand side of a completion equivalence of holds(F, S)
and noninertial(F, A, S). This amounts to removing the occurrence of P from
Comp(TrD). And thus, P can be removed from the corresponding effect asser-
tions. This is what Step 2 does in Def.5.5. Note that Step 3 in Def.5.5 is in
fact an equivalence transformation in logic, and thus does not change models of
Comp(TrD). Therefore, every model of S(D, T) is a model of D 9 T.

To see (b), suppose that P is true in every model of S(D,r). Since P is an
abducible predicate, it must appear in R1 N . . . N Rn as {R1, . . . ,Rn} is the set
of all abductive answers, and is thus deleted in Step 2, and hence cannot appear
in S(D, r).

To see (c), suppose that P is false in every model of S(D, r). Then we would
have P r R1 U . . . URn. And thus all effect assertions with it as a precondition
would have been deleted in Step 1, and hence cannot appear in S(D, T).

6 An Example

Now we return to the example in the Introduction. Let controls(S,L) be a
parameterized proposition name to denote that switch S controls light L. Then,
we can have the following domain description D:

Refining Action Theories through Abductive Logic Programming 135

controls(left, small) ++ controls(right, big)
controls(left, big) ~-~ controls(right, small)
controls(left, small)~/ controls(le ft, big)
controls (right, small) ~/controls (right, big)
toggle(left) causes on(small) i f -~on(smaU), controls(left, small)
toggle(left) causes -~on(small) i f on(small), controls(left, small)
toggle(right) causes on(small) i f -~on(small), controls(right, small)
toggle(right) causes -~on(smaU) i f on(small),controls(right, small)
toggle(left) causes on(big) i f -~on(b/g), controls(left, big)
toggle(left) causes -~on(b/g) i f on(b/g), controls(left, big)
toggle(right) causes on(big) i f -~on(big), controls(right, big)
toggle(right) causes -~on(big) i f on(big), controls(right, big)
i n i t i a l ly -~on (b/ g)
i n i t i a l ly -~on(small)

Then, we have an abductive logic program ~rD. Now suppose we have a test ~-
= {on(b/g) a f t e r toggle(left)}. Then we can evaluate it in an abductive logic
programming system. The following is the version of ~rD and Irv in the abductive
logic programming system REVISE 4:

~the following are translations of \pi D.
holds(F, init) <- initially(F).
holds(F, result(A, S))

<- holds(F, S), not noninertial(F, S, A).
holds(on(small), result(toggle(left), S))

<- controls(left, small), not holds(on(small), S).
noninertial(on(small), S, toggle(left))

<- controls(left, small), holds(on(small), S).
holds(on(small), result(toggle(right), S))

<- controls(right, small), not holds(on(small), S).
noninertial(on(small), S, toggle(right))

<- controls(right, small), holds(on(small), S) .
holds(on(big), result(toggle(left), S))

<- controls(left, big), not holds(on(big), S).
noninertial(on(big), S, toggle(left))

<- controls(left, big), holds(on(big), S).
holds(on(big), result(toggle(right), S))

<- controls(right, big), not holds(on(big), S)
noninertial(on(big), S, toggle(right))

<- controls(right, big), holds(on(big), S).
the following are constraints

<- controls(left, small), not controls(right, big).
<- not controls(left, small), controls(right, big).
<- controls(left, big), not controls(right, small).
<- not controls(left, big), controls(right, small).

136 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

<- controls(left, big), controls(left, small).
<- not controls(left, big), not controls(left, small).
<- controls(right, big), controls(right, small).
<- not controls(right, big), not controls(right, small).
<- holds(on(small), init).
<- holds(on(big), init).
7. The following are declarations of abducible predicates
:- revisable(initially(_)).
�9 - revisable(controls(_, _)).
7. The following is the translation of the test.
<- not holds(on(big), result(toggle(left), init)).

In the REVISE system, the following answer ~(D, T) will be output by issuing
the solution command:

{ (controls (right, small), controls (left, big)))

Then, by definition we have the following new domain description S(D, 7-):

toggle(right) causes on(small) if ~on(smaU)
toggle(right) causes ~on(small) if on(small)
toggle(left) causes on(big) i f -~on(big)
toggle(left) causes -~on(big) if on(big)
ini t ial ly -~on(big)
ini t ial ly -~on(smaU)

on(big) af ter toggle(left)

Thus we have obtained a complete domain description which enables us to gen-
erate plan, to predict the future, or to explain the past, as what we expected
and intended.

7 C o n c l u d i n g R e m a r k s

In this paper we have presented an experiment on using the abductive logic
programming paradigm to refine an action theory in line with 11, 12 start-
ing from 7. An action theory, also called domain description, describes effects
of actions and initial states in a dynamic domain. A complete action theory
should enable us to determine which fluent will be true and which fluent will
be false after an action is performed. A complete action theory can be used for
planning, prediction and explanation. In practice we may encounter incomplete
domains with finite uncertainties. The finite uncertainties may be removed by
doing some tests and abductive reasoning. Technically we presented an action
description language ,4 + for domain descriptions, then we presented a transla-
tion from .A + to abductive logic programs. The translation has been shown to
be both sound and complete. Thus, the task of reasoning about actions in A +

Refining Action Theories through Abductive Logic Programming 137

amounts to abductive query evaluation in abductive logic programming systems.
We also indicate that our abductive logic program is acyclic, and thus we can use
any abductive query evaluation procedure, no mat ter whether their semantics is
based on predicate completion, stable models, or well-founded models. The test
on a domain is a set of observed effects of a sequence of specific actions. The
test can be used to determine t ru th values of proposition names which serve to
represent uncertainties. This has been tested with the latest version of a meta-
interpreter of abductive logic programs 4. To the best of our knowledge, there
is no similar work in this topic, although there have been many reports on ,4
family languages. In general, the refinement of action theories can be regarded
as learning. But this kind of learning is different from the main-trend work on
learning, where generalization, specialization, and induction is often used as the
inference mechanism. In this paper we have used abduction as the underlying
inference mechanism. The result of this paper is currently used to develop in-
telligent situated agent 13, which is able to observe, act and reason in the real
world.

Acknowledgement

This work was partially supported by JNICT of Portugal under PRAXIS 2/2.1/
TIT/1593 /95 and PRAXIS XXI /BPD/4165 /94 and NSERC of Canada under
31-611024. We have benefited from discussions with Vladimir Lifschitz in the
early stage of this work. We would also like to thank the anonymous referees for
their comments on an early version of this paper.

References

1. K. R. Apt and M. Bezem. Acyclic programs. In Proc. of ICLP 90, pages 579-597.
MIT Press, 1990.

2. A. B. Baker. Nonmonotonic reasoning in the framework of situation calculus.
Artificial Intelligence, 49:5-23, 1991.

3. L. Console, D. T. Dupre, and P. Torasso. On the relationship between abduction
and deduction. Journal of Logic and Computation, 1(5):661-690, 1991.

4. C. V. Dam~sio, L.M. Pereira, and W. Nejdle. Revise: An extended logic program-
ming system for revising knowledge bases. In Proc. of KR'94, 1994.

5. M. Denecker. Knowledge representation and reasoning in incomplete logic pro-
gramming. Ph.D. thesis, Department of Computer Science, K.U.Leuven, 1993.

6. M. Denecker, and D. Schreye. Representing incomplete knowledge in abductive
logic programming. In Proc. of ILPS'93, 1993, pp. 147-163

7. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301-322, 1993.

8. A.C. Kakas and P. Mancarella. Generalized stable models: A semantics for abduc-
tion. In Proc. of ECAI'90, 1990.

9. G.N. Kartha. Soundness and completeness theorems for three formalizations of
action. In Proc. IJCAI93, pages 712-718. MIT Press, 1993.

10. R.A. Kowalski and F. Sadri. The situation calculus and event calculus compared.
In Proc. of ILPS 94, pages 539-553. MIT Press, 1994.

138 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

11. 1%. Li and L.M. Pereira. Temporal reasoning with abductive logic programming.
In W. Wahsler, editor, Proc. of ECAI'g6, pages 13-17. John Wiley & Sons, 1996.

12. R. Li and L.M. Pereira. What is believed is what is explained (sometimes). In
Proe. of AAAI'96, pages 550-555, 1996.

13. R. Li and L.M. Pereira. Knowledge-based situated agents among us. In J. P.
Muller, M. J. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III -
Proc. of the Third International Workshop on Agent Theories, Architectures, and
Languages (ATAL-96), LNAI 1193, pages 375-389. Springer, 1997.

14. F. Lin and Y. Shoham. Provably correct theories of actions: preliminary report.
In Proc. of AAAI-91, 1991.

15. J. McCarthy and P.J. Hayes. Some philosophical problems from the stand-point of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 4, pages 463-502, Edinburgh, 1969.

16. E. P. D. Pednault. Adl: Exploring the middle ground between strips and the
situation calculus. In R. J. Brachman, H. Levesque, and 1%. 1%eiter, editors, Proc.
of KR'89, pages 324-332. Morgan Kaufmann Publishers, Inc., 1989.

17. L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Nonmonotonic reasoning with well
founded semantics. In K. Furukawa, editor, Proc. of 8th ICLP, pages 475-489.
MIT Press, 1991.

18. R. 1%eiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in Honor of
John McCarthy, pages 359-380. Academic Press, San Diego, CA, 1991.

19. E. Sandewall. Features and Fluents: The Representation of Knowledge about Dy-
namic Systems, Vol. 1. Oxford University Press, 1994.

Abduction, Argumentation and
Bi-Disjunctive Logic Programs

Kewen Wang and Huowang Chen

School of Computer
Changsha Institute of Technology

410073, P.I~. China
E-mall: wkw@nudt.edu.cn

Abs t rac t . We study the relationship between argumentation (abduc-
tion) and disjunctive logic programming. Based on the paradigm of
argumentation, an abductive semantic framework for disjunctive logic
programming is presented, in which the disjunctions of negative liter-
als are taken as possible assumptions rather than only negative liter-
als as the case of non-disjunctive logic programming. In our framework,
three semantics PDH, CDH and WFDH are defined by three kinds of
acceptable hypotheses to represent credulous reasoning, moderate rea-
soning and skeptical reasoning in AI, respectively. On the other hand,
our semantic framework could be established in a broader class than
that of disjunctive programs (called bi-disjunctive logic programs) and,
hence, the corresponding abductive framework is abbreviated as BDAS
(Bi-Disjunctive Argumentation-theoretic Semantics). Besides its rich ex-
pressive power and nondeterminism, BDAS integrates and naturally ex-
tends many key semantics, such as the minimal models, EGCWA, the
well-founded model, and the stable models. In particular, a novel and in-
teresting argumentation-theoretic characterization of EGCWA is shown.
Thus the framework in this paper does not only provides a new way
of performing argumentation (abduction) in disjunctive logic program-
ming, but also is a simple, intuitive and unifying semantic framework for
disjunctive logic programming.

1 Introduct ion

In our everyday life as well as in various artificial intelligence (AI) applications,
we are often required to deal with disjunctive information. It suffices to enu-
merate only a few areas of using disjunctive information: reasoning by cases,
approximate reasoning, legal reasoning, diagnosis, and natural language under-
standing 10, 26. For example, if we know only that 'Mike will work in Havard
or in Stanord ' but we do not know exactly in which university he will work,
then this information can be conveniently transformed into a rule of disjunctive
logic programs. In fact, it is known that disjunctive programs have more ex-
pressive power than non-disjunctive programs and permit a direct and natural
representation of disjunctive information from natural language and informal

140 Kewen Wang and Huowang Chen

specifications. To conveniently and properly handle the representation and rea-
soning of disjunctive information in logic programming, a great deal of efforts
have been given to the problem of finding suitable extensions of logic program-
ming. The problem of defining an intended (declarative) meaning for disjunctive
logic programs, however, has been proved to be more difficult than the case of
non-disjunctive logic programs. The semantics of stratified non-disjunctive pro-
grams leads to unique minimal model (that is, the perfect model) 1, which
is well accepted as the intended meaning of stratified programs. However, this
is not the case when we consider the class of non-stratified programs or dis-
junctive programs (even positive disjunctive programs) and a lot of approaches
have been proposed to determine semantics for non-stratified programs and/or
disjunctive programs. Though some of semantics, such as the well-founded se-
mantics for non-disjunctive programs 19, the extended generalized closed world
assumption (EGCWA) for positive disjunctive programs 41land the stable se-
mantics for non-disjunctive/disjunctive logic programs 18, 28 etc., are widely
studied and shown to be promising in deductive databases, and nonmonotonic
reasoning, but also they are often criticized in the literature for their short-
comings. For example, the problem of the (disjunctive) stable semantics is its
incompleteness: some disjunctive programs do not possess any stable models;
the well-founded semantics is not able to express the nondeterministic nature
of non-stratified programs. The diversity of various approaches in semantics for
(disjunctive) logic programs shows that there is probably not a unique suitable
semantics for applications in logic programming. Therefore, in our opinion, a
suitable semantic framework rather than only a single semantics for disjunctive
logic programming should be provided, in which most of the existing key se-
mantics should be embedded and their shortcomings be overcome. In addition,
a suitable semantic framework for disjunctive logic programming can provide a
unifying mechanism for the implementation of various disjunctive semantics as
well as it is used in studying the relationship between different formalisms of
nonmonotonic reasoning.

On the other hand, the paradigm of disjunctive logic programming is still not
expressive enough to give direct representation for some problems in common-
sense reasoning. Thus, it would be also desirable that the syntax of disjunctive
programs should be extended to a broader class of logic programs so that the
syntax of this class resembles that of traditional logic programs and the new class
should include disjunctive programs as a subclass. Brass, Dix and Przymusinki
10 propose a generalization for the syntax of disjunctive programs (called super
logic programs) and the static semantics 30 of super logic programs is discussed.
However, argumentation does not be treated in their work. In fact, as far as we
know, the problem of performing argumentation-based abduction in disjunctive
logic programming is rarely discussed 6.

Abduction is usually defined as inferring the best or most reasonable expla-
nation (or hypothesis) for a given set of facts. Moreover, it is a form of non-
monotonic reasoning, since explanations which are consistent in a given context
may become inconsistent when new information is obtained. In fact, abduction

Abduction, Argumentation and Bi-Disjunctive Logic Programs 141

plays an important role in much of human inference. It is relevant in our everyday
commonsense reasoning as well as in many expert problem-solving tasks. Several
efforts have been recently devoted to extending non-disjunctive logic program-
ming to perform abductive reasoning, such as 15, 20, 22, 37. Two key forms of
approaches to abduction are consistency~based and argumentation-based ones.
The first kind of approaches exploit a certain logical consistency and an ac-
ceptable hypothesis is specified as the corresponding consistent sets (some other
constraints might also be applied), such as 2, 3, 11,17, 23; the latter kind of ap-
proches depend on an attack relation among hypotheses and acceptable hypothe-
ses are defined through a kind of stability conditions 14, 15, 36, 37. However, the
approaches to argumentation-based abduction in logic programming are mainly
concentrated on non-disjunctive logic programs and these approaches can not
be directly extended to the class of disjunctive programs.

Since argumentation has applications in areas such as law and practical rea-
soning, it should be investigated and implemented in the setting of disjunc-
tive logic programming. And more, as the results of this paper will show, an
argumentation-theoretic framework can suggest many new semantics for disjunc-
tive programs and can overcome the shortcomings of some major semantics. In
this paper, we mainly concentrate on two problems: (1) The relationship between
argumentation-based abduction and various semantics for disjunctive programs
(the consistency-based abduction has been studied by some authors such as 3,
11, 34; (2) The extension of disjunctive logic programming from both syntax
(allowing disjunction in the bodies of program clauses) and semantics (by argu-
mentation). For this purpose, we first define a moderate extension for the syntax
of disjunctive logic programs (referred to as bi-disjunctive logic programs) by al-
lowing the disjunctions of negative literals to appear in the bodies of program
clauses. We shall see that the class of bi-disjunctive programs is broader than that
of traditional disjunctive programs and can be considered as a subclass of super
logic programs. More importantly, an argumentation-theoretic semantic frame-
work for (bi-)disjunctive logic programs is presented, called the bi-disjunctive
argumentation-theoretic semantics (abbreviated as BDAS), which is a general-
ization of Dung's preferred scenarios 14, 15 and Torres' non-deterministic well-
founded semantics 36, 37. In fact, this paper is heavily influenced by their work.
Our work also shows that this is a non-trivial generalization. The basic idea of
this paper is to introduce a specialresolution for default negation and interpret-
ing the disjunctions of negative literals as abducibles (or, assumptions) rather
than only negative literals as the case of non-disjunctive programs. As a result,
we transform a given bi-disjunctive program P into an argument framework
Fp -~(P, DBp,.,.zp >, where DBp is the set of all disjunctions of (ground)
negative literals in P, a subset AI of DBp is called a disjunctive hypothesis (or
simply, hypothesis) of P , and -.~p is an attack relation among the hypotheses
of P. An admissible hypothesis A is one that can attack every hypothesis which
attacks it. Based on this basic idea, we introduce mainly three subclasses of
admissible hypotheses: preferred disjunctive hypothesis (PDH); complete dis-
junctive hypothesis (CDH); well-founded disjunctive hypothesis (WFDH). Each

142 Kewen Wang and Huowang Chen

of these subclasses defines an abductive semantics for bi-disjunctive programs
and they are all complete for disjunctive programs, that is, every disjunctive
program has at least one corresponding hypothesis. BDAS can not only handle
the problems of commonsense reasoning properly, but many interesting results
are obtained. In particular, we show that BDAS characterizes and extends many
key semantics. For example, our Theorem 6.2 states that WFDH extends both
the well-found semantics for non-disjunctive logic programs 19 and the ex-
tended generalized closed world assumption (EGCWA) 41 (and thus provides
a unifying characterization for these two different semantics by abduction). This
theorem has many implications and it might be one of the most interesting re-
sults in this paper; we will also show that PDH extends the stable models 18
for (disjunctive) logic programs to the whole class of disjunctive logic programs.
As noted in 15, the skepticism and credulism are two major semantic intuitions
for knowledge representation. A skeptical reasoner does not infer any conclusion
in uncertainty conditions, but a credulous reasoner tries to give conclusions as
much as possible. BDAS integrates these two opposite semantic intuitions and, in
particular, PDH and WFDH characterize credulism and skepticism, respectively.

The rest of this paper is arranged as follows: Section 2 will briefly define some
necessary notions and definitions for disjunctive logic programming; In Section
3 we extends the class of disjunctive programs to bi-disjunctive programs. By in-
troducing a natural attack relation and a special resolution for default negation,
our basic argument framework BDAS is established; In Section 4, three inter-
esting acceptable hypotheses (PDH, CDH, WFDH) for bi-disjunctive programs
are identified and hence they are three declarative semantics for disjunctive logic
programming; Some fundamental properties of BDAS axe shown in Section 5;
Section 6 studies the relationship between BDAS and some key approaches for
non-disjunctive/disjunctive programs; Section 7 is our conclusion, in which some
future work is pointed out. The proofs axe omitted here and can be found in 39.

2 Basic Notions and Definitions

In this section, we first introduce some necessary definitions and notions. Since
only Herbrand models of logic programs are mentioned, without loss of gen-
erality, we consider only propositional logic programs, this means that a logic
program is often understood as its ground instantiation.

Throughout the paper we will refer to the following different classes of logic
programs:

A Horn logic program is a set of Horn clauses of the form

a ~-- a l , . �9 . , a m ,

where a and ai (i = 1 , . . . , m) are atoms and m _> 0.
A non-disjunctive logic program is a set of non-disjunctive clauses of the form

~ a l , . . . , a s , ~ a s + l , . . . , r ' ~ ar

Abduction, Argumentation and Bi-Disjunctive Logic Programs 143

where a and ai (i = 1 , . . . , t) are atoms and t > s > 0. The symbol ~ denotes
negation by default, rather than classical negation.

A disjunctive logic program is a set of disjunctive clauses of the form

all "" lar 4-- at+l, . . . ,as, "~ as+l, . . . , " " at,

where a~ (i = 1 , . . . , t) are atoms and t > s _> r > 0. The symbol I is the
disjunction, sometimes called the epistemic disjunction to distinguish it from
the classical disjunction V.

A positive disjunctive logic program is a set of positive disjunctive clauses of
the form

a l l . . , tar +- a t + l , . . . , a,,
where as (i = 1 , . . . , s) are atoms and s > r > 0.

As usual, Bp denotes the Herbrand base of disjunctive logic program P, that
is, the set of all (ground) atoms in P. The set DB + of all disjuncts of the atoms
in P is called the disjunctive Herbrand base of P; the set DB~ of all disjuncts
of the negative literals in P is called the negative disjunctive Herbrand base of
P. 3. denotes the empty disjuncts.

If S is an expression, then atoms(S) is the set of all atoms appearing in S.
For ~,/g 6 DB +, if atoms(a) C atoms(fl) then we say a implies ;3, denoted as

a =~/~. For example, alb =~ alblc. I fa 6 DB +, then the smallest factor sfac(a) of
a is the disjunction of atoms obtained from a by deleting all repeated occurrence
of atoms in a (if a is not propositional, the definition will not be so simple, see
24). For instance, the smallest factor of atbla is alb. For S C D B +, s/ac(S) =
{sfac(a) : a 6 S}. The ezpansionofa is defined as II a II = {fl 6 DB + : a =~/3};
the expansion of S is II S I1= {/3 6 DB + : there exists a E S such that ~ =~ fl}.

The canonical form of S is defined as can(S) = { a 6 s f ac(S) : there exists no
a' 6 sfac(S)such that a ' =~ a and a ' ~ a}.

For a 6 DB~ and S C_ DBp, the notions of sfac(a), sfac(S), II a IJ and
1 S H can be defined similarly.

A subset of D B + is called a state of the disjunctive logic program P; a state
pair of P is defined as S =< S+;S - >, where S + C_ D B + and S - C_ DBp.

The minimal models and the least model state are two important declara-
tive semantics for positive disjunctive programs, both of which extend the least
model theory of Horn logic programs. The minimal model semantics captures the
disjunctive consequences from a positive disjunctive program as a set of models.
The least model state captures the disjunctive consequences as a set of disjuncts
of atoms and leads to a unique 'model' characterization.

Let P be a positive disjunctive program, then the least model state of P is
defined as

ms(P) = {a 6 DB+ : P ~ a},

where }- is the inference of the first-order logic and P is considered as the corre-
sponding first-order formulas. For example, the corresponding first-order formu-
lae of disjuncts az l"" lain and ... all"" I "" am are al V.. "Vain and -~az V.. "V-,am,
respectively.

144 Kewen Wang and Huowang Chen

The least model state ms(P) of a positive disjunctive P can be characterized
by the operator Tp S : 2 DB+ -+ 2DB+: for any J C_ DB +,

T~(J) = {(~ E D B + : there exists a disjunctive clause a~ +- a l , . . . , an in P
and ail(~i E J,i = 1 , . . . , n , such that a " = a ' la l l . - - I (~n, where a l , . . . , a ~ E
D B + 0 {_t_}, and a = sfac(a")} .

Minker and Rajasekar 27 have shown that Tp S has the least fixpoint l fp(Tfi)
= Tp s 1" w, and the following result:

T h e o r e m 2.1. Let P be a positive disjunctive program, then ms(P) =11 T~
w II, and ms(P) has the same set of minimal models as P.

3 A r g u m e n t a t i o n in B i -d i s junc t ive Logic P r o g r a m s

As noted in the introduction, we know that some disjunctive information should
be given a more direct and more convenient representation than with only tra-
ditional disjunctive programs (this will be further explained later). Another mo-
tivation of extending the syntax of disjunctive programs is that , when we set
to study the relationship between argumentation (abduction) and disjunctive
logic programming, we found that our argumentation-theoretic framework for
disjunctive programs seems more natural in the case of bi-disjunctive logic pro-
grams. Now, we f r s t introduce the class of bi-disjunctive logic programs and
then the basic argumentation-theoretic framework for bi-disjunctive programs is
established.

Definit ion 3.1. A bi-disjunctive clause C is a rule of the form

all "'" lar +-- at+l, . . . ,a,,/~,+l,... ,/~t,

where ai (i = 1 , . . . , s) are atoms,/3 5 (j = s + 1 , . . . , t) are disjuncts of negative
literals, and t > s > r > 0, where I is the epistemic disjunction and ,,~ is default
negation.

A bi-disjunctive logic program P is defined as a set of bi-disjunctive clauses.

For example, the following program is a bi-disjunctive program:

alb +-
elc +- d, ~ al ~ b

d + - , ~ e

We consider another example.

E x a m p l e 3.1 Suppose that we have a knowledge base consisting of the fol-
lowing four rules (a variant of an example in 10):

R1 Mike is able to visit London or Paris
R2 If Mike is able to visit London, he will be happy
R3 I /Mike is able to visit Paris, he will be happy
R4 If Mike is not able to visit both London and Paris, he will be prudent
It is easy to see that the knowledge base can be easily expressed as the

following bi-disjunctive logic program:

Abduction, Argumentation and Bi-Disjunctive Logic Programs 145

rl : V i s i t - LondonIVis i t - Par i s +-
r2 : Happy ~- V i s i t - London
r3 : Happy +- V i s i t - Par i s
r4 : Pruden t +- ~, V i s i tLondon I ~, V i s i t P a r i s

Notice that the rule R4 possesses a more direct transformation with bi-
disjunctive logic programs than with traditional disjunctive programs.

We again stress the difference between the epistemic disjunction I and the
classical disjunction V. For example, a V -~a is a tautology but the truth of
the disjunction a I .~ a is unknown in the disjunctive program P = (ab ~--}
since both of them may be unknown. In particular, the intended meaning of a
disjunction ~ -=~ b l l " " I ~ bn of negative literals is similar to the default atom

(bl A.- . Abn) in super logic programs 10. That is, ~ means that bl, . . . , and
bn can not be proved at the same time. Therefore, bi-disjunctive programs can
be regarded as a subclass of super programs.

It is obvious that the following inclusions hold:
Super Logic Programs D Bi-Disjunctive Programs D Disjunctive Programs D

Non-disjunctive Programs
Notice that we can also allow positive disjunctions to appear in the bodies of

bi-disjunctive clauses as well as negative disjunctions. The semantic framework
in this paper can be similarly defined for such bi-disjunctive programs by only
trivially generalizing the notion of the least model state 25. For simplicity, we
will not make such a generalization here.

In general, argumentation-based abduction is based on argument frameworks
defined as triples F = < K, H , ~ >, where K is a first order theory representing
the given knowledge, H is a set of first order formulae representing the possible
hypotheses, and ~.~ is an attack relation among the hypotheses.

Given a bi-disjunctive program P, an assumption of P is an element of D B~;
a hypothesis of P is defined a subset A of D B p such that A is expansion-
closed: II A I1= A. In this paper, we will consider a bi-disjunctive program P
as an argument framework F p =< P, H (P) , . , z p > , where H (P) is the set of all
hypotheses of P, and -x~p is a binary relation on H (P) , called the attack relation
of Fp (or P).

To define the attack relation of Fp, similar to GL-transformation 18, we
first introduce a generalized GL-transformation for the class of bi-disjunctive
programs, by which a positive disjunctive program P+ is obtained from any
given bi-disjunctive program P with a (disjunctive) hypothesis zl of P.

Defini t ion 3.2. Let A be a hypothesis of a bi-disjunctive program P, then
(1) For each bi-disjunctive clause C in P, delete all the disjuncts of negative

literals in the body of C that belong to A. The resulting bi-disjunctive program
is denoted as Pzi;

(2) The positive disjunctive program consisting of all the positive disjunctive
clauses of P~ is denoted as P+, and is called the generalized GL-transormation
of P.

146 Kewen Wang and Huowang Chen

Example 3.2. Let P be the following bi-disjunctive program:

alb ~-
elc ~- d, N a I ,~ b

d + - , , , e

If A1 =H ,~ a I ,,~ b II, then Pa l = {alb +-; elc e- d; d ~ e}, and P+I =

{ab +-; eic +- d}. If A2 ----I,~ a I ,~ b, ,~ e II, then P+2 = P~2 = {alb e-; elc ~--
d; d +--}.

Based on the above transformation, we can define a special resolution ~-p for
default-negation, which can be intuitively illustrated as the following principle:

I f there is an agent who
(1) holds the assumptions ,,, bl, . . . ,,', bin;and
(2) can 'derive' bll . . . Ibmlbm+ll . . . bn f rom the knowledge base P with

these assumptions.
Then the disjunctive information bm+l l . . . Ibn is obtained.

The following definition precisely formulates this principle with bi-disjunctive
programs.

De f in i t i on 3.3. Let A be a (disjunctive) hypothesis of a bi-disjunctive pro-
gram P, ~ E D B + and ,,~ bl, . . . , ,~ bm E A such that the following two condi-
tions are satisfied:

(1) = lbll... Ibm; and
(2) Z e

Then we call A is a supporting hypothesis for a, denoted as AI-poL.

The condition (2) above means that ~ is a logical consequence of P+ with
respect to the least model state. The set of all disjuncts of positive literals that
are supported by A is denoted as V p (A) . That is,

V p (A) = {(~ e D B + : A~-pa} .

In Example 3.2, Vp(A1) =11 al b iP, V p (A u) =1 alb, e ,d 1.

Def in i t i on 3.4. Let A be a hypothesis of P, then S ~ =<1 V p (A) ll; A > is
called a supported state pair of P.

Though each hypothesis A corresponds to a state pair of P, not every state
pair represent the intended meaning of P. For example P = {alb ~ , ~ a, ,~ b}. If
A _--II~ a, ,~ b II, then V p (A) = {alb } and thus S ~ =<ll alb II; II "~ a,,~ b II>. It
is obvious that Sa does not represent the correct meaning of P. This is similar
to the problem caused by the closed world assumption (CWA) which is first
observed by Minker 25.

To derive suitable hypotheses for a given bi-disjunctive program, some con-
straints will be required, which can be realized though the following definition.

De f in i t i on 3.5. Let A and A' be two hypotheses of a bi-disjunctive program
P. If at least one of the following conditions holds:

Abduction, Argumentation and Bi-Disjunctive Logic Programs 147

(1) There exists f? --~ b l l ' " I "~ b,n E A' ,m > 0, such that A~-pbi, i = 1 , . . . ,m;
o r

(2) There exist ,~ b l , . . . , ~" bm E A' , rn > 0, such that AF-pbll . . . Ibm.

Then we say A attacks A t, and denoted as A -.~p A'.

Intuitively, A -,zp A ~ means that A causes the direct contradiction with A',
which may come from any one of the above two cases.

E x a m p l e 3.3. Let P be the bi-disjunctive program of Example 3.2. Take
A =11" al ~ b, ,~ e II, ,5' --I1.~ c I ..~ d II. Since Vp(A) = {alb, c,d}, that is,
At-pc, d thus A -~p A', but not A ~ -.ze A.

This example shows that the relation -,-+p is not symmetric. Otherwise, the
attack relation would have no much use.

In the remaining of this subsection, we seek to define suitable constraints on
(disjunctive) hypotheses by using the above fundamental definition (Definition
3.5).

Consider again the logic program P -- {alb +-,~ a I ,~ b} and A =ll~. a I ~ b II,
it is not hard to see that A . ~ p A, this means that A attacks itself.

Firstly, a plausible hypothesis should not attack itself.

De f in i t i on 3.6. A hypothesis A of a bi-disjunctive program P is self-consistent
if A-/zpA.

The empty hypothesis 0 is always self-consistent, called trivial hypothesis.
The above example shows that there exist non-trivial hypotheses that are not
self-consistent.

The following easy corollary will be often used in proofs of some results in
subsequent sections.

C o r o l l a r y 3.1. A hypothesis A of P is not self-consistent if and only if there
exists ,~ b l l " " I "~ bn E A such that AF-pbi, i = 1 , . . . , n .

Def in i t i on 3.7. For any self-consistent hypothesis A of a bi-disjunctive program
P, the corresponding state pair SA is called a self-consistent state pair of P.

By Definition 3.3 and 3.5, it is not hard to see that the self-consistency of a
hypothesis guarantees that there exists no direct contradiction within the corre-
sponding state pair of this hypothesis. That is, given a self-consistent hypothesis
A of P, neither of the following two conditions hold for the state S of A:

(1) there exist a l , . . . ,at E S +, such that ~- a l l " " I ~" ar e S - ; or

(2) there exists a l l ' " lar E S +, such tha t -~ a l , . . . , "~ ar E S - .

Def in i t i on 3.8. A state pair S = < S+; S - > is consistent if the set of the
corresponding first-order formulas of S + U S - is consistent.

A self-consistent state pair is not necessarily consistent though there is no
direct contradiction within it.

148 Kewen Wang and Huowang Chen

E x a m p l e 3.4. Let P be the following disjunctive program:

a{b +--
b}c *-
c{a t---

Take A ={{,~ a{ ~ b, ,~ b{ ~ c, ,-~ c{ -~ a {{, then A is a self-consistent hypothesis.
However, Vp(A) = {a{b, b{c, c{a} and {{ Vp(A) { UA being considered as a set of
first-order formulas is not consistent, thus the state pair S a =<lJ Vp(A) {{; A >
is not consistent.

In particular, in many cases, self-consistency of state pairs can still not pro-
vide suitable constraints for abductive semantics of bi-disjunctive programs. For
example, the disjunctive program P consisting of

SleepinglListeningFootbaUGameByRadio +- ,,~ ElectricitySupplied
PossessGoodTV +--

This disjunctive program has two self-consistent hypotheses A1 ={{N Electricity
Supplied {> and A2 ={~ Sleeping, ~ ListeningFootballGameByRadio, {{. But
it is widely accepted that A1 rather than Z~2 is the acceptable hypothesis of P .

How can we determine the self-consistent hypotheses of P that capture the
intended semantics. In other words, we must specify when a hypothesis of P is
acceptable. To accomplish this task, we need to exploit an intuitive and useful
principle in argument reasoning: If one hypothesis can attack each hypothesis that
attacks it, then this hypothesis is acceptable. ReL16 illustrates this principle by
some examples and study its application in non-disjunctive logic programming.

Now, we formulate this principle in the setting of bi-disjunctive logic pro-
gramming, which can really provide a suitable criteria for specifying acceptable
hypotheses for bi-disjunctive programs and forms the basis of our argumentation-
theoretic framework for disjunctive logic programming.

For short, if f~ = ~ bl{..-{ ~ bm E DB~, and A' is a hypothesis such that
A ~ F-p bi, for any i = 1 , . . . , m, then we say A' denies ~ .

D e f i n i t i o n 3.9. Let A be a hypothesis of a bi-disjunctive program P , an
assumption ~ of P is admissible with respect to A if A U R A ' holds for any
hypothesis A' of P such that A' denies ~. Write Ap(A) = {~ E DBp :
f~ is admissible wrt. A}.

Consider the bi-disjunctive program in Example 3.2 and the hypothesis A1 of
P . It is easy to see that ~ a{ ,~ b is admissible, since any hypothesis A' of P that
denies ,,~ a{ ~ b must contain the hypothesis {l" a, ,,~ b {I but A1 ~,zp{{~ a, ,-~ b {{.

A p has the following two properties, which are fundamental to the main
results in this paper:

C o r o l l a r y 3.2. I f A and A' are two hypotheses of disjunctive program P,
then

(1) {{ A p (A) {l= A p (A) , that is, A p (A) is a hypothesis o /P;
(2) I A C_ A', then A p (A) C_ Ap (A ') . This means that A p is a monotonic

operator.

Abduction, Argumentation and Bi-Disjunctive Logic Programs 149

Intuitively, an acceptable hypothesis should be such one whose assumptions
are all admissible with respect to it. Thus the following definition is in order.

Def in i t ion 3.10. A hypothesis A of a bi-disjunctive program P is said to be
admissible if A is self-consistent and A C Ap(A). An admissible (disjunctive)
hypothesis of P will be abbreviated as ADH.

An intuitive and equivalent definition for admissible hypotheses will be shown
in Section 5 (Theorem 5.1). Before giving examples, we first show a simple
lemma.

L e m m a 3.1. Let A be a hypothesis of a disjunctive program P. I f an as-
sumption ~ =,~ bl . . . ~ br of P is admissible with respect to /1, then 8' ="~
bl l"" I ~ brl "" br+l l"" I "~ bn is also admissible with respect to /1 for any atoms
br+l , . . . , bn in P and r <_ n.

This lemma is useful when we want to show that a hypothesis of a disjunctive
program is admissible: To show that a hypothesis A =1 ~1,.-. ,~n I is admissi-
ble, it suffices to show that all assumptions fli (i = 1 , . . . , n) (the representatives
of A) are admissible with respect to/1.

Ex ample 3.5. Consider the following disjunctive program P:

a + - ~ a

b+-

P has five possible hypotheses:/1o = 0,/11 : l l ~ a II,/12 = l l " b II,/13 ---I "~ al "~
b 1,/14 =1 ~ a, ,,, b 1, among which/11,/12 and/14 axe not self-consistent. Since
/11~-*pA3 but /137/*p/11, /13 is not an ADH of P, thus P has only one ADH
/1o = 0 and the corresponding state pair Sn0 =<ll b I; ~ >.

Ex ample 3.6. The disjunctive program P = {ab +--~ a} also has five possible
hypotheses as the program in Example 3.5. For/11 =11 ~ a , the assumption ,,~ a
is admissible with respect to/11, since/14 =H ~ a, ,,~ b II is the only hypothesis
that can attack/11 and/11 "~P/14.

Now we have established the basic argumentation-theoretic framework BDAS
for bi-disjunctive logic programs, in which various semantics for performing
argumentation-based abduction with bi-disjunctive programs can be defined.
Each semantics in our framework will be specified as a subclass of admissible
hypotheses (equivalently, admissible state pairs).

4 Some Important Classes of Hypotheses for
Bi-disjunctive Programs

As mentioned in Section 1, a suitable semantic framework rather than a single
semantics should be defined, in which most of the existing key semantics could be
embedded and their shortcomings could be overcome. As well as investigating
the inherent relationship between argumentation (abduction) and disjunctive
logic programming, we shall attempts to show that our abductive framework

150 Kewen Wang and Huowang Chen

defined in section 2 can provide a (at least potentially) suitable framework, in
a certain extent, for disjunctive logic programming by defining some abductive
semantics and relating to some important semantics, such as the well-founded
model, minimal models, stable models and EGCWA.

Def ini t ion 4.1. Let A be a hypothesis of a bi-disjunctive program P:

(1) A preferred disjunctive hypothesis (PDH) A of P is defined as a maximal
ADH of P with respect to set inclusion;

(2) If A is self-consistent and A = Ap(Z~), then A is called a complete disjunc-
tive hypothesis (CDH) of P;

(3) If the hypothesis A p 1" w is self-consistent, then it is called the well-founded
disjunctive hypothesis of P , denoted as W F D H (P) .

If A is an ADH (res. PDH, CDH, WFDH), then the corresponding state pair
S~ is called an ADS (res. PDS, CDS, WFDS) of P.

Defini t ion 4.2. The ADH (res. PDH, CDH, WFDH) semantics for a bi-
disjunctive program P is defined as the class of its all ADS (res. PDS, CDS,
WFDS).

It follows easily from the above definition that a CDH must be an ADH; In
Section 5 we will show that a PDH is a CDH. However, the converses do not
hold.

E x a m p l e 4.1. P consists of only one program clause: alb +-. Take A0 = 0,
then Ap(Ao) =I ,~ a ,,, b . Hence Ao is an ADH of P but not a CDH. If
A 1 =IN a ~ b , then Ap(A1) = A1 and thus A1 is a CDH of P but not a
PDH, since A2 =~ a is an ADH of P and A1 C A2.

Since 0 is always an admissible hypothesis, each bi-disjunctive program has
at least one PDH.

T h e o r e m 4.1. The semantics ADH is complete for the class of hi-disjunctive
programs. That is, each bi-disjunctive program has at least one PDH.

The completeness of CDH and WFDH will be delayed to Section 5. In the
remaining of this section, by some examples, we will show the difference of BDAS
from other semantics and illustrate behaviors of our argumentation-theoretic
semantic framework BDAS in knowledge representation.

Ex ample 4.2. Let P be the following disjunctive program:

alb +-
a ~----

Most of semantics for disjunctive programs assign the truth of b to false with
respect the above program (credulous reasoning), , except the possible model
semantics 33 and the WGCWA 31 (skeptical reasoning). In BDAS, P has three
admissible hypotheses A1 = ~, A2 =,~ a ,~ b and A 3 =,~ b . In particular,
the WFDS of P is S1 =<11 a 1; 0 > and the PDH is <I a ; 1,,~ b I1>. Thus,

Abduction, Argumentation and Bi-Disjunctive Logic Programs 151

b is unknown with respect to WFDH but is true with respect to P D H , and
this implies that both the skeptical and credulous reasoning of P can all be
represented in BDAS.

E x a m p l e 4.3. Let P be the program :

b e -

We know from Example 3.5 that P has only one ADH Ao = 0 and the corre-
sponding state pair Sao =< b I; 0 >. This conclusion coincides our intuition
on P, that is, P provides no information about a for us and thus, from P, we
can infer neither a nor ~- a, but can infer b. This example shows that BDAS
can handle the inconsistency of disjunctive programs properly. Notice that the
Clark completion of P is not consistent and P has no stable model.

5 Characterizations of B D A S

As the basis for further investigation, this section is devoted to s tudy some fun-
damental properties of BDAS. First, we give an intuitive and equivalent charac-
terization of admissible hypotheses, which will be often used as an alternative
definition for Definition 3.10.

T h e o r e m 5.1. Let A be a self-consistent hypothesis of a bi-disjunctive program
P. Then A is an A D H of P if and only if A,-,zpA' or any hypothesis A t of P
satisfying A~.~ p A.

This theorem shows that an ADH is such a hypothesis tha t can attack any
hypothesis tha t attacks it.

In the following we will characterize ADHs in another way.

D e f i n i t i o n 5.1. Let A and A J be two ADHs of a bi-disjunctive program P.
If A C N , then A ~ is called an admissible extension of A. In particular, N is
called a non-trivial admissible extension of A if A ~ A J.

D e f i n i t i o n 5.2.
Let A be an ADH of a bi-disjunctive program P. If A t satisfies the following

two conditions:
(1) A U A ~ is self-consistent; and
(2) ~x' g A~(zX u ~').

Then N is called a plausible hypothesis with respect to A.

The following three corollaries can be easily obtained by Definition 5.1 and
Definition 5.2.

C o r o l l a r y 5.1. I f A ' is a plausible hypothesis wrt an A D H A , then A U A ~ is
an ADH.

C o r o l l a r y 5.2. A ~ is an admissible extension of A if and only if A C A ~ and
A ~ \ A is plausible with respect to A.

152 Kewen Wang and Huowang Chen

C o r o l l a r y 5.3. For any bi-disjunctive program P, the following statements
are equivalent:

(1) A is an ADH of P;
(2) A is an admissible extension of the empty hypothesis O;
(3) A is plausible with respect to 9.

Definition 5.3. An admissible sequence of a bi-disjunctive program P is a
sequence A1, A2 , . . . , An , . . . of ADHs of P such that An C_ An+ 1 for any n > 0.

The following proposition states that the sequences of bi-disjunctive program
P possess the property of completeness.

Proposition 5.1. For any admissible sequence A 1 , A 2 , . . . , An , . . . of a bi-
o o disjunc- tive program P, the hypothesis A = Un=l A n is an ADH of P.

In particular, we have the following result:

C o r o l l a r y 5.4. Every ADH o a bi-disjunctive program P is contained in a
PDH.

The following proposition is fundamental and our many results in BDAS for
disjunctive programs will be based on it.

Proposition 5.2. For any ADH A o a disjunctive program P, if a E DB~
is admissible wrt. A, that is, a E Ap(A) , then A I --II AU{c~} II is also an ADH
oIP .

This result guarantees that, for any ADH A of a disjunctive program P, if
a is admissible wrt. A and a r A then we can obtain a non-trivial admissible
extension of A by simply adding a to A.

As a direct corollary of Theorem 5.1, it is not hard to see that a PDH of a
disjunctive program must be a CDH.

Proposition 5.3. I A is a PDH of a disjunctive program P, then A is also
a CDH of P.

C o r o l l a r y 5.5. Each disjunctive program has at least one CDH. That is, se-
mantics CDH is complete or the class o all disjunctive programs.

In the rest of this section, we will show the existence and completeness of
WFDH. P will be a disjunctive program if it is not stated explicitly. H(P) is
the set of all disjunctive hypotheses of P and it can be easily verified that the
partial order set (H(P) , C_) is a complete lattice. From Definition 3.9, Ap can
be considered as an operator on H(P) , called the admissible operator of P, and
we will show that Ap is continuous.

L e m m a 5.1. For any disjunctive program P, its admissible operator A p :
H(P) -+ H(P) is continuous. That is, or any directed subset D of H(P) , the
following holds:

A p (U { A : A E D }) = U { A p (A) : A E D } .

Abduction, Argumentation and Bi-Disjunctive Logic Programs 153

Remark: A subset D of a complete lattice is directed if every finite subset of
D has an upper bound in D.

It follows from Lemma 5.1 and Tarski's theorem 35 that A p has the least
fixpoint l fp (Ap) and l fp (Ap) = A p ~ w, that is, the closure cardinal of Ap is
w. Therefore, the following theorem is obtained.

Theorem 5.2. Every disjunctive program P possesses the unique well-founded
disjunctive hypothesis (WFDH).

From Theorem 4.1, Corollary 5.5 and Theorem 5.2, it follows that the three
semantics PDH, CDH and WFDH are all complete for disjunctive programs.

6 Relationship Between BDAS and Some Other
Approaches

In this section we investigate the relationship between BDAS and some other
semantics for (disjunctive) logic programs. The main results of this section can
be summarized as the following:

(1) PDH coincides with the stable semantics for an extensive subclass of
disjunctive programs.

(2) WFDH for non-disjunctive programs coincides with the well-founded se-
mantics.

(3) In particular, we show that the WFDH provides a quite new characteri-
zation of EGCWA 41 by argumentation (abduction).

Thus, WFDH integrates and extends both the well-founded semantics for
non-disjunctive logic programs and EGCWA for positive disjunctive programs.
As a result, EGCWA can be used to implement argumentative reasoning in
deductive databases.

6.1 BDAS for Non-disjunctive Programs

As a special case, we consider the BDAS of non-disjunctive logic programs. In
this subsection, P will be a non-disjunctive program. Let A be a (disjunctive)
hypothesis of P, that is, A C DBp, and L(A) denotes the set of all negative
literals in Zi.

Definition 6.1. A hypothesis A of P is a non-disjunctive hypothesis of P if
L(A) = can(A). That is, the set of representatives of a non-disjunctive hypoth-
esis consists of only negative literals.

It follows from Definition 3.3 that, for any non-disjunctive program P and
a E Bp,

e Min(P+) a

Corollary 6.1. I f A is a CDH of non-disjunctive program P, then L(A) =
can(A), that is, the CDHs of a non-disjunctive program are non-disjunctive.

154 Kewen Wang and Huowang Chen

It follows from Corollary 6.1 and the result in Ref.21, 22 that, for any non-
disjunctive program P, we will get the equivalent definition of Definition 3.5
if the basic inference /1}-pa is replaced by P t2/1 }- a. This means that our
CDH and Dung's complete extension are equivalent concepts for the class of
non-disjunctive programs.

Theorem 6.1. If~1 is a non-disjunctive hypothesis of non-disjunctive program
P, then the following two statements are equivalent:

(1) /1 is a CDH of P;
(2) P U L(/1) is a complete extension.

This theorem shows that BDAS generalizes the frameworks of Dung 15 and
Torres 37.

6.2 BDAS for Positive Disjunctive Programs

In this subsection we investigate the relationship between BDAS and some se-
mantics for positive disjunctive programs (without negation in the bodies of
program clauses). In particular, we show that the well-founded disjunctive hy-
potheses (WFDHs) provide a quite new characterization of EGCWA by argu-
mentation (abduction). As a result, WFDH integrates and extends both the
well-founded semantics for non-disjunctive logic programs and EGCWA for pos-
itive disjunctive programs.

If we do not state explicitly, P will denote a positive disjunctive program in
this subsection.

Proposition 6.1. I f ms(P) is the least model state of a positive disjunc-
tive program P, then the state pair corresponding to the A DH 0 is SO =<
ms(P); O >.

This result shows that the ADH 0 characterizes the least model state for
positive disjunctive programs.

Proposition 6.2. Let A be a hypothesis of a positive disjunctive program P:
(1) I rA is a PDH of P and A is consistent (i. e. the first-order formulas Vp(A)U
A is consistent}, then Iza = Bp \ {a E Bp ,~ a E A} is a minimal model of P;
(2) I f I is a minimal model of P then A =11~ f II is a PDH of P, where f = B p \ I
and ~ i = {,,~ a I a E i} .

We believe that the condition '/1 is consistent 'is unnecessary. Moreover, we
guess that the ADHs (including the PDHs, CDHs, and WFDHs) are all consistent
but we have not found such a precise proof at present.

For any positive disjunctive program P, its WFDH does not only exist, but
also can be obtained by one step iteration of Ap from 0.

Proposition 6.3. Let P be a positive disjunctive program, then the closure
ordinal of A p is 1, that is, the (unique) WFDH of P is Ap(0).

Abduction, Argumentation and Bi-Disjunctive Logic Programs 155

To characterize EGCWA in BDAS, we first give the model-theoretic definition
of EGCWA 41.

Definition 6.2. Let P be a positive disjunctive program, then

E G C W A (P) = {fl e D B p : P ~min •}

The following theorem shows that E G C W A coincides with W F D H for the
class of positive disjunctive programs.

Theorem 6.2.(Characterization of EGCWA by Argumentation) For positive
disjunctive program P, E G C W A (P) = W F D H (P) .

As noted before, this theorem may be the most interesting result in this paper
in that it is not only quite intuitive but also useful in performing argumentation
(abduction) in deductive databases by exploiting EGCWA.

The following corollaries are directly obtained from Theorem 6.2 and the
results in Ref.24, 41.

Coro l la ry 6.2. For any positive disjunctive program P, its WFDH is consis-
tent.

The generalized closed world assumption (GCWA) can also be characterized
by WFDH.

Corol la ry 6.3. G C W A (P) = L (W F D H (P)) = {,~ a : ,,~ a E W F D H (P) } .

Corol la ry 6.4. M is a minimal model of P if and only i M is a minimal
model of P U W F D H (P) .

6.3 The Relationship Between P D H and the Disjunctive Stable
Semantics

Both the disjunctive stable semantics and our PDH represents credulous rea-
soning in disjunctive logic programming but the former is not complete. In this
section we will study PDH and its relation to the disjunctive stable semantics.
To this end, we first define a program transformation L f t 38, 40 for disjunctive
logic programs (called the least fixpoint transformation) and then, an extensive
class of disjunctive programs, called the strongly stable disjunctive programs, are
introduced, for which we show that PDHs and stable models have a one-to-one
correspondence. Hence the abductive semantics PDH is not only complete but
can also be considered as a natural and complete extension of the disjunctive
stable semantics. Moreover, L f t also provides an optimization technique for the
computation of various semantics in BDAS (including many semantics that can
be embedded in BDAS).

The program transformation L f t is based on the idea of Dung and Kanchan-
sut 13 and Bry 12. It is also independently defined by Brass and Dix 8, 7. To
define L f t for disjunctive programs, we first extend the notion of the Herbrand
base Bp to the generalized disjunctive base GDBp of a disjunctive logic program
P.

156 Kewen Wang and Huowang Chen

G D B p is defined as the set of all negative disjunctive programs whose atoms
are in Bp:

G D B p = { a l l " " lar ~ ' ~ bl , . . . , "~ b8 : ai, bj E B p , i = 1 , . . . , r ; j = 1, . . . ,s}

and +-- the empty clause.
Thus, we can introduce an immediate consequence operator Tp c for general

disjunctive program P, which is similar to the immediate consequence operator
T~, for positive program P ' . The operator Tp v will provide a basis for defining
our program transformation L f t .

Def in i t i on 6.3. For any disjunctive program P, the generalized consequence
operator Tp a : 2 GDBP -+ 2 GDBP is defined as, for any J C_ G D B p ,

Tap(J) = {C 6 G D B p : There exist a disjunctive clause a' ~-- b l , . . . , bin, "~ bm+l

, . . . ,"~ bs and C1 , . . . , Cra 6 G D B p lJ {e--} such that (l) bihead(Ci) ~ body(Ci)

is in J, for all i = 1 , . . . ,m; (2) C is the clause can(a'head(C1)l. . . head(Gin))

+- body(C1), . . . , body(Cm), ~ bin+l , . . . , "~ 58}.

This definition looks a little tedious at first sight. In fact, its intuition is quite
simple and it defines the following form of resolution:

0~' +'- b l , . . . ,bm,/~l, . . . ,~s; blal +-- ~11,-.. , ~ l t l ; " ' " ;bmarn +- ~ml , . . . ,~rntm
o '1o 11''' flrntm, i l l , . . .

where as with subscripts are positive disjunctive literals and/~s with subscripts
are negative disjunctive literals.

E x a m p l e 6.1. Suppose that P = {alia= ~ a3, ,~ a4; aaa5 +--N a6} and
J = Tg(#). Then Tg(O) = {a3as +-~ a6}; If J ' = Tg(Tg(O)). Then T g (J ') =
Tg(Tg(O)) = {aala5 +-'"~ a6; alla2la5 +-"~ a4, ~ a6}.

Notice that T~ is a generalization of T fl if a disjunctive program clause
a l l " " an ~ is treated as the disjunct all �9 �9 �9 an. The following proposition shows
that T~ possesses the least fixpoint.

L e m m a 6.1. For any disjunctive program P, its generalized consequence op-
erator Tap is continuous and hence possesses the least fixpoint Tap ~ w.

It is obvious that the least fixpoint of Tp c does not only exist but also is
computable. Since Tp c 1" w is a negative disjunctive program, Tp a results in a
computable program transformation which will be defined in the next definition.

Definit ion 6.4. Denote Tap ~ w as L f t (P) , then L f t : P -~ L f t (P) defines a
transformation from the set of all disjunctive programs to the set of all negative
disjunctive programs, and we say that L f t (P) is the least fixpoint transformation
of P.

Abduction, Argumentation and Bi-Disjunctive Logic Programs 157

The following lemma asserts that L f t (P) has the same least model-state as
P and it is fundamental to prove some invariance properties of L f t under various
semantics for disjunctive programs.

L e m m a 6.2 For any hypothesis A of disjunctive program P, (L f t (P) +) pos-
sesses the same least model-state as P+ :

ms(L f t (P) +) = ms(P+).

Firstly, we show that the program transformation L I t (P) preserves our ab-
ductive semantics.

T h e o r e m 6.3. For any disjunctive program P, P is equivalent to its least
fixpoint transormation L f t (P) with respect to BDAS. As a result, L f t (P) has
the same ADH (res. CDH, PDH) as P.

The following proposition, which is also independently given by Brass and
Dix in 7, shows that the least fixpoint transformation also preserves the (dis-
junctive) stable models.

For any disjunctive program P, and M C Bp. Set

P / M = {a l l " " at +- at+l , . . . , a8 : there exists a clause of P : a l l " " lar +-

ar+l , �9 �9 �9 as, ~ a s + l , . . . , "~ at such that as+i , . . . , at ~- M}.

If M is a minimal model of P/M, then it is a (disjunctive) stable model of P .
The disjunctive stable semantics of P is defined as the set of its all disjunctive
table models.

P r o p o s i t i o n 6.4. For any disjunctive program P, P is equivalent to its least
fixpoint transformation L f t (P) with respect to the stable semantics. That is, P
has the same set o the stable models as L f t (P) .

Let A be a hypothesis of disjunctive program P, P~ is defined as the dis-
junctive program obtained by the following transformations:

1. For any clause C in P , if a E head(C) and .~ a E A, then delete a from
the head of C; if ~, b E body(C) and ~ b e A , then delete .-~ b from the body of
C;

2. From the program obtained by the step 1, delete all the clauses that have
empty heads;

3. For any a E Bp such that all the clauses containing a or ,~ a have been
deleted by the above two steps, add a new clause a +-- a.

Notice that the step 3 is technical, which is to keep P~ has the same Herbrand
base as P. But the step 2 is necessary and it can guarantees tha t P~ has a stable
model if P has at least one. For example, if P = {alb ~ c} and A =ll N a, ..~ b I,
then P will be transformed to the program (+-- c}, which has no stable model.

D e f i n i t i o n 6.5. A disjunctive program P is strongly stable if, for any A E
H(P) , P~ possesses at least one stable model.

158 Kewen Wang and Huowang Chen

It is obvious that positive disjunctive programs are strongly stable. More
generally, the class of (local) stratified disjunctive programs axe strongly stable.
Thus, the class of strongly stable disjunctive programs is extensive enough.

The main theorem of this subsection can be stated as follows.

T h e o r e m 6.4. Suppose that disjunctive program P is strongly stable and its
all PDHs are consistent:

1. I f "4 is a PDH of P, then Iza = {a E Bp : ~ a ~ "4} is a stable model of
P .

2. I f M is a stable model of P , then A M --II {~ a : a ~ Bp \ M} II is a PDH
o I P .

As mentioned before, we believe that the condition 'the PDHs of P axe con-
sistent' is unnecessary.

This theorem establishes a one-one correspondence between the PDHs and
the stable models for any strongly stable programs. Therefore, PDH extends
the stable semantics to the whole class of disjunctive programs. Moreover, this
result reveals the relationship between credulous argumentation and the stable
semantics for disjunctive logic programming.

Coro l la ry 6.5. Any (local) stratified disjunctive program P has the unique
PDH.

6 .4 R e l a t i o n s to S o m e O t h e r A p p r o a c h e s

Becides the semantics discussed in the previous subsections of Section 6, there
have been proposed some other interesting approaches of defining semantics for
disjunctive logic programs, such as the static semantics 30, the D-WFS 7, 9.
In this subsection we will compare our BDAS to these semantics.

E x a m p l e 6.2. Consider disjunctive program P:

aJb ~-
c < - . - ~ a

c ~ - - ~ b

We need to consider only the following seven assumptions of P:

~ a , ~ b , ~ c , ~ a ~b, , .~b I ~ c,.~ c I ~ a , , ~ a ~ b I ~ c .

The possible hypotheses of P has 19:

.4 0 ~--- ~ ,

"42 =11 ~ b I,
"4a =ll "~ a ,'-, b II,
"46 = 1 1 " al ~ c II,
A s ---II ~ a , ~ b II,
"41o = 1 1 " b, ~ c II,
"41z = l l ~ al ~ c, ~ b II,
"41a =11 ~ al ~ b, ~ cl ~ a II,
"416 - -I1" bl ~ c, ~ cl ~ a II,
"418

"41 =l l ~ a II,
"43 = l l ~ c It,
"45 =H ~ bl ~ c If,
AT =-I1~ a I ~ b ~ c II,
"49 = l l ~ a , ~ c II,
"411 =lJ ~ a , ~ bl ~ c H,
A13 = 1 ~ al ~ b, ~ c I,
A15 = 1 1 ~ al ~ b, ~ bl ~ c II,
A l r = l l ~ a , ,'-, b, ,~, c I1,

=11 ~ al ~ b, ,-- bl ~ c, ~ cl " a II,

Abduction, Argumentation and Bi-Disjunctive Logic Programs 159

where Ao,A1,A2,A4,A117 are all the ADHs of P; A1,A~,A4 are CDHs; the
PDHs A1, As correspond to the stable models {b, c} and {a, c}. WFDH of P is
A4 and the state pair W F D H (P) = Sa4 --< ab ; ~ a ~ b >.

The least stationary model 29 and the static model of P coincide and equal
to S ---< ab,c I, "~ a ~ b >. It is obvious that W F D H (P) - = S - but c can
not be inferred in WFDH from P.

This example has been used by many authors to show the suitability of
their semantics. It is known that, from this program, the extended well-founded
semantics 32 and the GDWFS 4 do not infer c to be true; but the static se-
mantics 30 and the disjunctive stable semantics 28 infer a to be true. This
phenomenon is caused because different semantics provide deferent meaning for
the disjunction. An interesting problem is that: Can these two disjunctions (clas-
sical and epistemic) be represented in the bodies of rules by one single semantics
for disjunctive logic programming. To solve this problem, it is necessary that
the syntax should be extended. Now, we show this problem can be treated in
our WFDH semantics for bi-disjunctive programs. In particular, the classical
disjunction in program P1 = {c +--,,, aV ,,, b} can be represented by changing P1
into {c ~ a; c ~,,~ b} and the program P2 = {c +--,-~ a ,-~ b} represents the
epistemic disjunction of ,,, a ~ b.

Example 6.3. Let P~ be the bi-disjunctive program:

ab +--
c+-- ~a,,~b

Similar to Example 6.2, it can be shown that W F D H (P ') =<1 ab, c 1, I "~
a I -~ b H>. It is obvious that we can infer c from pi.

By Theorem 6.4, the relationship between the stationary semantics and PDH
can be formulated as the following result.

Coro l la ry {}.6. For any strongly stable disjunctive program P, stationary mod-
els coincide with preferred disjunctive state-pairs (PDSs).

Dix and Brass 7 propose an interesting and general approach to define
semantics for disjunctive programs simply by postulating some semantic prop-
erties. In particular, they define a generalization of the well-founded semantics
called D-WFS. Though D-WFS and WFDH have quite different intuitions, D-
WFS bears some similarities with our WFDH: (1) it extends the well-founded
model for non-disjunctive programs and (E)GCWA for positive disjuntive pro-
grams; (2) it represents also a form of skeptical reasoning in disjunctive logic
programming. However, we will show that WFDH is different from D-WFS. In
fact, D-WFS is more skeptical than WFDH.

As shown by Dix and Brass in 7, for any disjunctive program P, the negative
disjunctive program Lf t (P) can be further reduced to the so-called residual
program res(P).

160 Kewen Wang and Huowang Chen

Lemma 6.3. For any disjunctive program P, P is equivalent to res(P) wrt.
BDAS. In particular, W F D H (P) = W F D H (r e s (P)) .

By Lemma 6.3, it is direct to prove the following result.

P ropos i t i on6 .5 . WFDH is less skeptical than D-WFS. That is, D - W F S (P) C
W F D H (P) but 'C_ 'can not be replaced by % 'in general.

Notice that D-WFS and WFDH have some other differences. For example,
if a --.-~ a l l~ ar is a disjunctive hypothesis of P with a E D - W F S then
there exists at least one i(1 < i < r) such that ~ ai E D - W F S (P) . However,
WFDH allows one concludes 'true 'disjunctive information. Take P = {ab <--},
it is not hard to see that D - W F S (P) contains no negative (disjunctive) literals.
However, ~ a ~ b E W F D H (P) even though neither ..~ a E W F D H (P) nor
,~ b e W F D H (P) .

Moreover, W F D H (P) and D - W F S (P) may have distinct sets of non-disjunc-
tive literals as the following example shows.

Example 6.4. Let P consist of only one clause:

alb +-- ~. a

Since P = res(P), it is easy to see that ,~ a e W F D H (P) but ~ a ~ D-
W F S (P) . For this program, it seems that WFDH should be the intended mean-
ing of negation as failure.

Consider another similar example.

Example {}.5. Let P be the following disjunctive program:

ab +--
C 4 - - , ~ a

Then it can be verified that W F D H (P) ---< b, c ; IN a > and D - W F S (P) =

<11 alb II; 0 >.
Thus, our result further convinces that D-WFS is the most skeptical seman-

tics for disjunctive logic programs.

7 C o n c l u s i o n

In this paper, we have provided an extension of disjunctive logic programming
both from semantics and syntax. Syntactically, the class of bi-disjunctive pro-
grams is defined, which includes disjunctive programs and can be considered
as a subclass of super logic programs; Semantically, an argumentation-theoretic
framework BDAS for bi-disjunctive programs is established, which is a simple,
unifying and intuitive framework for disjunctive logic programming. In BDAS
three semantics PDH, CDH and WFDH for bi-disjunctive programs are de-
fined by three kinds of admissible hypotheses to represent credulous reasoning,
moderate reasoning and skeptical reasoning in AI, respectively. Besides its rich
expressive power and nondeterminism, BDAS integrates and naturally extends

Abduction, Argumentation and Bi-Disjunctive Logic Programs 161

many key semantics, such as the minimal models, EGCWA, the well-founded
model, and the stable models.

Besides the unifying frameworks mentioned in the previous sections, Bonatti
5 has also defined a unifying framework for disjunctive logic programs by view-
ing a disjunctive program as an epistemic theory. In our opinion, this framework
and some of existing ones are not so intuitive as BDAS and argumentation is
not treated. An interesting problem to be further investigated is the relation-
ship between BDAS and some other major semantics for disjunctive programs.
Some of the most interesting applications of BDAS have to also be left for future
work. Another problem that has not been touched in this paper is the relation-
ship between argumentation and extended disjunctive logic programming. Since
the situation becomes quite complicated when the explicit negation is allowed
in BDAS, this problem has to be discussed in a separate paper. A weak form of
cumulativity of nonmonotonic reasoning defined by WFDH is given in 38 and
further work is needed.

Acknowledgements
We would like to thank Juergen Dix, Teodor Przymusinski and the two anony-
mous referees for their useful comments. This work has been partially supported
by the National High Tech. Development Program of China (863-306).

R e f e r e n c e s

1. Apt,K., Blair,H, and Walker,A., "Towards a theory of declarative knowledge ", in
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann,
San Mateo, CA, pp.89-148, 1988.

2. Alfereira,J.and Pereira,L.,"An argumentation theoretic semantics based on non-
refutable falsity.", in Proceedings of International Workshop on Nonmonotonie
Extensions of Logic Programming (LNCS), 1994.

3. Aravindan,C., "An abductive framework for negation in disjunctive logic program-
ming, "Tech. report, University of Koblenz-Landau, 1996.

4. Baral,C., Lobo,J., and Minker,J., "Generalized disjunctive well-founded semantics
for logic programs. "Annals of Math and AI, 5, pp.89-132, 1992

5. Bonatti,P., "Autoepistemic logics as a unifying framework for the semantics of logic
programs ", in Proceedings of the Joint International Conference and Symposium
on Logic Programming, MIT Press, pp.69-86, 1992

6. Bondarenko,A., Toni,F. and Kowalski,R., "An assumption-based framework for
non-monotonic reasoning, "in Proceedings of the 2nd International Workshop on
LNMR, MIT Press, pp.171-189, 1993.

7. Brass,S. and Dix J. Semantics of disjunctive logic programs based on partial evalua-
tion. Journal of Logic Programming(to appear), 1998. Extended abstract appeared
in Disjunctive semantics based upon partial and bottom-up evaluation. In Pro-
ceedings of the 12th International Logic Programming Conference, MIT Press, pp.
199-213, 1995.

8. Brass,S. and Dix J. Characterizations of the disjunctive stable semantics by par-
tial evaluation. Journal of Logic Programming, 32(3), pp.207-228, 1997. Extended

162 Kewen Wang and Huowang Chen

abstract appeared in: Characterizations of the stable semantics by partial evalu-
ation, in LPNMR, Proceedings of the Third International Conference (LNCS928),
Springer, pp.85-98, 1995.

9. Brass,S. and Dix J. Characterizations of the disjunctive well-founded semantics:
confluent calculi and iterated GCWA. Journal of Automated Reasoning, 20(1),
pp.143-165, 1998. Extended abstract appeared in: Characterizing DWFS: Conflu-
ence and Iterated GCWA, in Logics in Artificial Intelligence, JELIA '96 (LNCS
1126), Springer, pp. 268-283, 1996.

10. Brass,S.,Dix, J. and Przymusinki,T., "Super logic programs, "in Principles of
Knowledge Representation and Reasoning: Proceedings of the Fifth International
Conference (KR '96), (L. C. Aiello and J. Doyle and S. C. Shapiro, editors), Mor-
gan Kaufmann, pp. 529-541, 1996.

11. Brewka,G.,"An abductive framework for generalized logic programs,"in Proceed-
ings of the Znd Workshop on Logic Programming and Nonmonotonie Reasoning
(Marek, W. and Subrahmanian,V. eds.), MIT Press, pp. 266-282, 1993.

12. Bry, F., "Negation in logic programming: A formalization in constructive logic,'in
Information Systems and Artificial Intelligence: Integration Aspects (Karagiannis
D.ed.), Springer, pp.30-46, 1990.

13. Dung, P., Kanchansut K., "A fixpoint approach to declarative semantics of logic
programs,"in Proceedings of North American Conference (Lnsk E. and Overbeek
R. eds.), MIT Press, 1989.

14. Dung,P., "Negation as hypothesis: an abductive foundation to logic program-
ming,"in Proceedings of the 8th International Conference on Logic Programming,
MIT Press, pp.3-17, 1991.

15. Dung,P., "An argumentation-theoretic foundation for logic programming," J. Logic
Programming, 24, pp.151-177, 1995.

16. Dung,P, "On the acceptability of arguments and its fundamental roles in non-
monotonic reasoning and n-person games ", Artificial Intelligence, 77, pp.321-357,
1995.

17. Eshghi,K. and Kowalski,R., "Abduction compared with negation by failure,"in
Proceedings of the 6th International Conference on Logic Programming, MIT Press,
pp.234-255, 1989.

18. Gelfond,M. and Lifschitz,J., "The stable model semantics for logic program-
ming,"in Proceedings of the 5th Symposium on Logic Programming, MIT Press,
pp.1070-1080,1988.

19. van Gelder,A., Ross,K. and Schlipf, J., "Unfounded sets and well-founded seman-
tics for general logic programs,"in Proceedings of the 7th ACM Symposium on
Principles Of Database Systems, pp.221-230,1988. Full version in J. AGM, 38, pp.
620-650,1992.

20. Kakas,A., Kowalski,R. and Toni,F., "Abductive logic programming,"J. Logic and
Computation, 2, pp.719-770,1992.

21. Kakas,A. and Mancarella,P., "Generalized stable models: a semantics for abduc-
tion,"in Proceedings of the 9th European Conference Artificial Intelligence, pp.385-
391, 1990.

22. Kakas,A. and Mancarella,P., "Negation as stable hypotheses,"in Proceedings of the
1st Workshop on Logic Programming and Nonmonotonie Reasoning (Marek, W.
and Subrahmanian,V. eds.), MIT Press, pp. 275-288, 1991.

23. Lifschitz,V. and Turner,H, "From disjunctive programs to abduction,"in Proceed-
ings of the Workshop on Nonmonotonie Extensions of Logic Programming, (Dix,J.,
Pereira,L. and Przymunski,T. eds.), pp. 111-125, 1994.

Abduction, Argumentation and Bi-Disjunctive Logic Programs 163

24. Lobo,J., Minker,J. and Rajasekar,A., Foundations of Disjunctive Logic Program.
ruing, MIT Press, 1992.

25. Minker,J., "On indefinite databases and the closed world assumption ", in LNCS
138, Springer, pp.292-308, 1982.

26. Minker,J., "Overview of disjunctive logic programming," Ann. Math. AL, 12, pp.1-
24, 1994.

27. Minker,J. and Rajasekar,A., A fixed point semantics for disjunctive logic programs,
"J. Logic Programming, 9, 45-74, 1990.

28. Przymunski,T., "Stable semantics for disjunctive programs," New Generation Com-
puting, 9, pp.401-424, 1991.

29. Przymunski,T., "Stationary semantics for disjunctive logic programs and deductive
databases,"in Proceedings of the North American Conference on Logic Program-
ming (Debray, S. and Hemenegildo,M. eds.), MIT Press, pp. 42-59,1991.

30. Przymunski,T., "Static semantics of logic programs," Ann. Math. AL, 14, 323-357,
1995.

31. P~ajasekar,A., Lobo,J., and Minker,J., "Weak Generalized Closed World assump-
tion ", Journal of Automated Reasoning, 5, pp.293-307, 1989.

32. Ross,K. "Well-founded semantics for disjunctive logic programming. "Proceedings
of the first Conference on Deductive and Object-Oriented Databases, pp.337-351,
1989.

33. Sakama,C., "Possible model semantics for disjunctive databases ", in Proc. the
First Int'l Conf. on Deductive and Object Oriented Databases, pp.1055-1060, 1989.

34. Sakama,C. and Inoue,K., "On the equivalence between disjunctive and abductive
logic programming,"in Proceedings of the 11th International Conference on Logic
Programming (Van Hentenryck ed.), MIT Press, pp.489-503, 1994.

35. Tarski,A., "A lattice-theoretic fixpoint theorem and its applications," Pacific J.
Math., 5, pp.285-309, 1955.

36. Torres,A., "Negation as failure to support,"in Proceedings of the 2nd International
Workshop on Logic Programming and Nonmonotonic Reasoning (Marek, W. and
Subrahmanian,V. eds.), MIT Press, pp.223-243, 1993.

37. Torres,A., "A nondeterministic semantics,"J. Math. AL, 14, pp.37-73, 1995.
38. Wang,K, "Abduction and Disjunctive Logic Programming," Ph. D. Thesis (in Chi-

nese, Abstract in English), Nankai University, March 1996.
39. Wang, K., "An argumentation-based semantic framework for bi-disjunctive logic

programs,"Tech, report NUDT97-14, Changsha Institute of Technology, 1997.
40. Wang, K., Chen H. and Wu Q., "The least fixpoint transformation for disjunctive

logic programs, "Journal of Computer Science and Technology, 13(3), pp.193-201.
41. Yahya,A. and Henschen,L., "Deduction in non-Horn databases," J. Automated Rea-

soning, 1, pp.141-160, 1985.

Reasoning with Prioritized Defaults

Michael Gelfond and Tran Cao Son

Computer Science Department
University of Texas at E1 Paso

El Paso, Texas 79968
{mgelfond, tson}@cs, utep. edu

Abst rac t . The purpose of this paper is to investigate the methodology
of reasoning with prioritized defaults in the language of logic programs
under the answer set semantics. We present a domain independent sys-
tem of axioms, written as an extended logic program, which defines rea-
soning with prioritized defaults. These axioms are used in conjunction
with a description of a particular domain encoded in a simple language
allowing representation of defaults and their priorities. Such domain de-
scriptions are of course domain dependent and should be specified by
the users. We give sufficient conditions for consistency of domain de-
scriptions and illustrate the use of our system by formalizing various
examples from the literature. Unlike many other approaches to formal-
izing reasoning with priorities ours does not require development of the
new semantics of the language. Instead, the meaning of statements in
the domain description is given by the system of (domain independent)
axioms. We believe that in many cases this leads to simpler and more
intuitive formalization of reasoning examples. We also present some dis-
cussion of differences between various formalizations.

1 I n t r o d u c t i o n

The purpose of this paper is to investigate the methodology of reasoning with
prioritized defaults in the language of logic programs under the answer set se-
mantics. Information about relative strengths of defaults can be commonly found
in natural language descriptions of various domains. For instance, in legal rea-
soning it is often used to state preference of some laws over others, e.g., federal
laws in the U.S. can, in some cases, override the laws of a particular state. Prefer-
ences are also used in reasoning with expert 's knowledge where they are assigned
in accordance with the degree of our confidence in different experts. Sometimes
preferences in the natural language description of the domain are given implicitly,
e.g., a conflict between two contradictory defaults can be resolved by selecting
the one which is based on more specific information. All these examples suggest
tha t it may be useful to consider knowledge representation languages capable of
describing defaults and preferences between them. There is a sizeable body of
l i terature devoted to design and investigation of such languages 1, 5-7, 11, 23,
30, 32, 33, 36. The work is too diverse and our knowledge of it is not sufficient

Reasoning with Prioritized Defaults 165

to allow a good classification but we will try to mention several important dif-
ferences in approaches taken by the different authors. To shorten the discussion
we limit our attention to approaches based on logic programming and default
logics.

Many differences in design seem to be caused by the ambiguity of the very notion
of default. Sometimes defaults are understood as statements of natural language,
of the form "Elements of a class C normally (regularly, as a rule) satisfy prop-
erty P ' . Sometimes this understanding is broadened to include all statements
with defensible conclusions. The following example is meant to illustrate the
difference.

Suppose we are given a list t of people and want to define the class of people not
listed in t. This, of course, can be done by the rule

rl. unlisted(X) +- not t(X).

The conclusion of this statement can be defeated by expanding the table t but
cannot be defeated by adding a fact of the form -~unlisted(x) where x r t. The
attempt to do the latter will (justifiably) lead to contradiction. The statement
r l is not a default according to the first, narrow view. It is rather a universally
true statement which does not allow exceptions and can not be defeated by other
(preferred) statements; of course, according to the second view, r l is a default.
Notice, that the statement "Table unlisted normally contains all the people not
contained in t" is a default according to the both views. Its logic programming
representation can have a form

r2. unlisted(X) e- not t(X), not -~unlisted(X).

This time the addition of ~unlisted(x) where x ~ t cause no contradiction.

This (and similar) differences in understanding of defaults seems to sometimes
determine the syntax of the corresponding "default" languages. The first view
seems to lead to introducing special syntax for defaults while the second uses
standard logic programming syntax augmented by the preference relation among
the rules. According to the second view it seems to be also more natural to
consider static preference relation, i.e., to prohibit occurrence of the preference
relation in the rules of the program.

Even more important differences can be found on determining the correct modes
of default reasoning. To demonstrate the problem let us accept a narrow view
of defaults and consider the theory consisting of three defaults:

dl. "Normally a";

d2. "Normally b"

dl. "Normally c"

and three rules

rl . "b's are always -~a's";

166 Michael Gelfond and Tran Cao Son

r2. "b's are always d's";

r3. "a's are always d's";

There seems to be at least three equally reasonable ways to deal with this theory.
We can assume that it is inconsistent and entail everything (or nothing); We
can be cautious and refuse to apply defaults dl and d2. In this case the only
conclusion is c. We can be less cautious and reason by cases entailing d supported
by two different arguments. With preference relation the situation will become
even less clear since we will have an additional difficult question of defining what
we mean by a conflict between defaults.

Different choices made by the authors of default languages are expressed in their
semantics given by defining the entailment and/or the derivability relation for
the language. The corresponding new logics can often be viewed as "prioritized"
versions of the existing general purpose non-monotonic formalisms 1, 5-7, 32, 28
with new level of complexity added in fixpoint (or other) constructions defining
the semantics. The viability of new logics is normally demonstrated by using it
for formalization of some examples of default reasoning aimed to illustrate special
features of the logic and the inadequacy of other formalisms. This process, even
though useful and necessary, is often complicated by our collective lack of expe-
rience in representing knowledge about defaults and their preferences. It is often
unclear for instance, if unintuitive answers to queries given by various formalisms
can be blamed on the formalism itself or on the inadequate representation of the
original problem. Moreover, it is often unclear what is the "common-sense",
natural language description of the original problem of which the corresponding
formal theory claims to be a representation. This, together with technical com-
plexity of definitions, lack of the developed mathematical theories for new logics
and the absence of clearly understood parameters which determine the choice
of the semantics make their use for knowledge representation a rather difficult
task.

This paper is the result of the authors attempts to understand some of the issues
discussed above. We wanted to design a simple language, s capable of expressing
and reasoning with prioritized defaults satisfying (among others) the following
requirements:

�9 Understand defaults in a narrow sense as statements of the form a's are nor-
mally b's.

�9 Allow dynamic priorities, i.e., defaults and rules about the preference relation.

�9 Give semantics o f / : without developing new general purpose nonmonotonic
formalism.

�9 Make sure that changes in informal parameters of the language such as proper-
ties of the preference relation, the definitions of conflicting defaults, cautiousness
or bravery in reasoning are reflected by comparatively simple changes in the for-
malism.

Reasoning with Prioritized Defaults 167

�9 Make sure that some inference mechanism is available to reason with theories
of s and some mathematical theory is available to prove properties of these
theories.

We achieve these goals by mapping theories of s (also called domain descriptions)
into a class of extended logic programs under the answer sets semantics 21. This
is done by presenting a logic program :P consisting of (domain independent)
axioms defining the use of prioritized defaults; viewing domain descriptions of s
as collections of atoms; and defining the notion of entailment between query q and
a domain description :D in s via answer set entailment in logic programming. In
other words, we say that a domain description :D entails a query q if q is entailed
by the logic program :P U :D.

This approach appears to be similar in principle to the one suggested recently in
11 (which was not yet published when this work was completed). The result-
ing formalisms however axe quite different technically. The precise relationship
between the two is not yet fully investigated.

The use of the language will be illustrated by various examples from the lit-
erature. All the examples were run using the SLG inference engine 9, 10. We
believe that the study of the class of logic programs described by P0 and its
variants can complement the existing work and help to understand reasoning
with prioritized defaults.

The paper is organized as follows. In the next section, we introduce the language
of prioritized defaults s and present a collection of axioms :Po. In Section 3 we
show examples of the use of domain descriptions in/:0. Section 4 contains the
brief discussion of several extensions of :Do. Section 5 is devoted to the class of
hierarchical domain descriptions. Finally, in Section 6, we discuss the relationship
between our work and that of Brewka.

2 The Language of Prioritized Defaults

We start with describing the class s of languages used for representing
various domains of discourse./:0 (a) is parameterized by a multi-sorted signature
a containing names for objects, functions and relations of the user's domain.
By lit(g) and atoms(a) we denote the set of all (ground) literals and atoms
of a. Literal -~-~I will be identified with I. We assume that atoms(g) contain
two special collections of atoms, called default names and rule names which
will be used to name defaults and strict (non-defeasible) rules of the language.
Domain knowledge in s will be described by a collection of literals of a
(called a-literals) together with statements describing strict rules, defaults, and
preferences between defaults. The syntax of such descriptions is given by the
following definitions:

Def in i t ion 1.

- a-literals are literals of s

168 Michael Gelfond and Tra~ Cao Son

- if d, dl,d2 are default names, lo,. . . ,In are literals of s and is the list
operator of Prolog then

rule(r, lo, l l , . . . , lm); (z:0.1)

defaul t (d, lo, 11, . . . , lrnl); (Z:o.2)

conflict(d1, d2); (/:0-3)

prefer(d1, d2); (/:o-4)

are literals of s (a).

A set D of ground literals of / :o(a) will be called domain description (with
underlying signature a).

We assume that symbols defaul t , rule, conf l ic t and p re f e r do not belong to a.
Relations, denoted by these symbols will be called domain independent.

A set S of s literals containing variables (ranging over objects of various
types) will be viewed as a shorthand for the set of all (properly typed) ground
instantiations of literals from S. Statements (/:o.1) and (/:o.2) will be called
definitions of rule r and default d respectively. Intuitively, the statement (/:o.1)
defines the rule r which says that if literals 11, . . . , lm are true in a domain
description 2) then so is the literal lo. It can be viewed as a counterpart of the
logic programming rule

lo 4"- l l , . . . ,Ira.

Literals lo and 11,. . . , lm are called the head and the body of r and are denoted
by head(r) and body(r) respectively.

The statement (E0.2) is a definition of the default d which says that normMly, if
l l , . . . , lm are true in 2) then lo is true in 2:). The logic programming counterpart
of d is the rule

lo +- /1 , . . - , ira, not -~lo.

As before we refer to lo as the head of d (head(d)) and to l l , . . . , lm as its body
(body(d)).

The statement (/:o.3) indicates that dl and d2 are conflicting defaults. In many
interesting cases confl ict(dl ,d2) will be true iff heads of defaults dl and d2
are contrary literals, but other defaults can also be declared as conflicting by
the designer of the domain description. Finally, the statement (/:o.4) stops the
application of default d2 if defaults dl and d2 are in conflict with each other and
the default dl is applicable.

Reasoning with Prioritized Defaults 169

This informal explanation of the meaning of domain independent relations of
s (a) will be replaced by the precise definition in the next section. But first we
will attempt to clarify this meaning with the following examples.

Example 1. Let us assume that we are given complete lists of students enrolled
in various university departments. We know that in general, students can not
write computer programs and that computer science students do it regularly.
Let us represent this information by a domain description :Do.

The underlying signature ~ of Do contains student names, mary, mike, sam,
..., department names cs, cis, art, ..., appropriately typed predicate symbols
is_in(S, D) and can_progr(S) read as "Student S is in department D" and "Stu-
dent S can program", and default names of the form dl (S), d2(S), and d3(S, D).

The defaults from our informal description can be represented by statements

de fault(dl (S), -~can_progr(S), student(S)).
de fault(d2(S), can_progr(S), student(S), is_in(S, cs)).

Finally, the lists of students mentioned in the informal description will be rep-
resented by the collection F of facts:

student(mary), dept(cs), is_in(mary, cs).
student(mike), dept(art), is_in(mike, art).
student(sam), dept(cis), is_in(sam, cis).

We also need the closed world assumption 34 for is_in, written as the default

default(d3(S, D), -~is_in(S, D),).

Relations student and dept are, of course, not necessary. They are playing the
role of types and will later allow us to avoid floundering when applying the SLG
inference engine to this example.

We will assume that our domain description contain statements of the form
conlict(dl, d2) for any two defaults with contrary heads and that the relation
conflict is symmetric. This will guarantee that :Do will contain
conflict(d1 (X), d2 (X)) and conflict (d2 (X), dl (X)). (These assumptions will be
of course enforced later by the corresponding axioms).

Informally, the domain description T~o should allow us to conclude that Mike
and Sam do not know how to program, while we should remain undecided about
programming skills of Mary. This is the case only as long as we do not assume
that the second default overrides the first one, due to the specificity principle.
We can use the relation prefer from our language to record this preference by
stating

pre f er(d2(X), dl(X)).

From the new domain description 7)1 we should be able to conclude that Mary
can write programs.

170 Michael Gelfond and Tran Cao Son

The next example is meant to illustrate the behavior of conflicting defaults in
the presence of strict rules.

Example 2. Consider the domain description 7)2 consisting of two defaults

default(all, p, ~)

default(d2, q, Jr),

the rules

rule(rl,-~p, q)

rule(r2,-~q, p)

and the fact

r .

(Intuitively, the logic programming counterpart of I12 consists of the rules
p ~-- not -~p
q +-- r, not -~q
"~p ~ q
-~q +- p

Notice that the last two rules can be viewed as a translation into the logic
programming language of the conditional q's are always not p's.)

The intended meaning of 112 should sanction two alternative sets of conclusions:
one, containing p and -~q, and another containing q and -~p. If we expand 112 by

conflict(d2, dl)

prefer(d2, dl)

the application of dl should be blocked and the new domain description 7)3
should entail q and -~p. Notice, that if conflict(d2,dl) were not added to the
domain description then addition of prefer(d2, dl) would not alter the conclu-
sions of 7)2. This is because preference only influences application of conflicting
defaults.

More examples of the use of the language C0 for describing various domains will
be found in the following sections. In the next section we give a precise definition
of entailment from domain descriptions of s

2.1 Axioms of ~o

In this section we present a collection :P0,~ of axioms defining the meaning of
the domain independent relations of Co(a). The axioms are stated in the lan-
guage of logic programs under the answer set semantics. They are intended
to be used in conjunction with domain descriptions of /:o(a) and to define
the collection of statements which (strictly and/or defeasibly) follow from a

Reasoning with Prioritized Defaults 171

given domain description 7). More precisely, we consider two basic relations
holds(1) and holds_by_default(l) defined on literals of s which stand for
"strictly holds" and "defeasibly holds", respectively. The query language associ-
ated with domain descriptions of s (a) will consist of ground atoms of the form
holds_by_default(l), holds(1), and their negations. In what follows, by laws(l))
we denote the set of statements of the forms (s and (s from definition 1
which belong to 7); facts(7)) = 7) \ laws(7)).

Definit ion 2. We say that a domain description 7) entails a query q (7) ~ q)
if q belongs to every answer set of the program 7~o,a(7)) = 7)o,a U (holds(l) I I E
facts(z))} u la s(7)).

Program P0 t consists of the following rules:

Non-defeas ible Inference:

holds(L) +- rule(R, L, Body), (7)o.1)

hold(Body).

hold(). (Po.2)

hold(HIT) +- holds(H), (7~0.3)

hold(T).

The first axiom describes how the rules can be used to prove that a s (a) literal
1 is non-defeasibly true in a domain description 7). The next two axioms define
similar relation on the lists of literals in s i.e., hold(Ill,... ,ln) iff all the
l's from the list are true in 7).

Defeasible Inference:

hol ds_by Me f aul t (L) ~ holds(L). (Po.4)

holds_by_default(L) +- rule(R, L, Body), (7~o.5)

hold_by_default(Body).

holds_by.default(L) ~ default(D, L, Body), (Po.6)

hold_by_default(Body),

1 In what follows we assume that a is fixed and omit reference to it whenever possible.

172 Michael Gelfond and Tran Cao Son

not defeated(D),
not holds_by_de f ault(-~ L).

hold_by_default().

hold_by_default(HIT) +- holds_by_default(H),
hold_by_default(T).

(po.7)

The first axiom in this group ensures that strictly true statements are also true
by default. The next one allows application of rules for defeasible inference. The
third axiom states that defaults with proven premises imply their conclusions
unless they are defeated by other rules and defaults of the domain description.
The condition not holds_by_default(~L) is used when the domain contains two
undefeated defaults dl and d2 with conflicting conclusions. In this case :P0(T))
will have multiple answer sets, one containing the conclusion of dl and the other
containing the conclusion of d2. The alternative solution here is to stop appli-
cations of both defaults, but we believe that in some circumstances (like those
described by the extended "Nixon Diamond") our solution is preferable.

The last two rules from this group define relation hold_by_default(List) which
holds if all literals from the list hold by default.

Defea t ing defaults:

defeated(D) +-- default(D, L, Body),
holds(~L).

defeated(D) +- default(D, L, Body),
default(D1, L1, Bodyl),
holds(conflict(D1, D)),
holds_by_default(prefer(D1, D)),

hold_by_default (B odyl) ,
not defeated(D1).

('Po-9)

(P0.10)

These axioms describe two possible ways to defeat a default d. The first axiom
describes a stronger type of defeat when the conclusion of the default is proven
to be false by non-defeasible means. The axiom (P0.10) allows defeating of d by
conflicting undefeated defaults of higher priority. They represents the "bravery"
approach in the application of defaults. In the next section, we show how our
axioms can be expanded or changed to allow other ways of defeating defaults.

Reasoning with Prioritized Defaults 173

Now we are left with the task of defining conflicts between defaults. There are
several interesting ways to define this notion. Different definitions will lead to
different theories of default reasoning. The investigation of ramifications of dif-
ferent choices is, however, beyond the limits of this paper. Instead we introduce
the following three axioms which constitute the minimal requirement for this
relation.

holds(conflict(all, d2)) +- default(d1, L1, Body1),
default(d2, L2, Body2),
contrary (L1, L2).

(9o.11)

for any two defaults with contrary literals in their heads and for any two defaults
whose heads are of the form prefer(di, dj) and prefer(dj, di) respectively. The
precise definition of contrary is given by the rules (90.21) and (~Vo.22).

-~hol ds (con f l ict (D , D)) .

holds(conflict(D1, D2)) +- holds(conflict(D2, D1)).

(79o.12)

(9o.13)

Finally, we include axioms stating asymmetry of the preference relation:

-~holds(pre f er(D1, D2)) e- holds(prefer(D2, Dl)),

D1 ~ 192.

-~holds.by_de f ault(pre f er(D1, D~)) +- holds_by_default(prefer(D2, DI)),
D1 ~ D2.

(90.14)

(~0.15)

Without the loss of generality we can view these axioms as schemes where D1
and D2 stand for defaults present in 7:). The equality used in these axioms is
interpreted as identity. Notice, that our minimal requirements on the preference
relation do not include transitivity. On the discussion of nontransitive preference
relations see 18, 25.

U n i q u e n e s s of names for defaults and rules:

These three axioms guarantee uniqueness of names for defaults and rules used
in the domain description.

174 Michael Gelfond and Tran Cao Son

~rule(R, F1, BI) +- default(R, F2, B2).

-~rule(R, F1, B1) +- rule(R, F2, B2),

rule(R, F1, B1) ~ rule(R, F2, B2)

-~default(D, F1, B1) +- default(D, F2, B2),

default(D, F1, B1) ~ default(D, F2, B2).

(po.16)

(po.17)

(Po.18)

Addition of these axioms is needed only to make domain descriptions con-
taining statements default(d, 11, F1) and default(d, 12, F2), rule(rl, 11, F1) and
rule(rl, 12, F2), etc, inconsistent.

Auxiliary

Finally we have the axioms

~holds(L) +- holds(-~L).

-~holds_by_de fault(L) +- holds_by_de f ault(-~L).

(P0.19)

(Po.20)

contrary(L,-~L).

contrary(prefer(D1, D2),prefer(D2, D1)) +- D1 # D2.

(Po.21)

(Po.22)

whose meaning is self-explanatory.

We believe that :Po (:D) captures a substantial part of our intuition about rea-
soning with prioritized defaults and therefore deserves some study.

3 U s i n g t h e A x i o m s

In this section we illustrate the use of our approach by formalizing several ex-
amples of reasoning with priorities. In what follows we will refer to running our
programs using SLG inference engine. Since the syntax of SLG does not allow
"-," we treat it as a new function symbol and consider only those stable models
of P0(T)) which do not contain literals of the form a and ned(a).

Reasoning with Prioritized Defaults 175

Example 3. (Example 1 revisited)
It is easy to check that the program :P0(:D0) (where Do is the domain description
from Example 1) has two answer sets, containing

-~hd(can_pr ogr (mary)) , -~hd(can_pr ogr (m i ke)) , -,hd(can_pr ogr (sam)) }

and

(hd(can_progr(mary)), -~hd(ean_progr(mike)), -~hd(can_progr(sam))),

respectively, where hd is a shorthand for holds_by_default. Hence, we can con-
clude that Mike and Sam do not know how to program but we have to stay
undecided on the same question about Mary.

If we expand the domain by adding the statement prefer(d2, dl) then the first
answer set will disappear which of course corresponds exactly to our intention.
It may be instructive to expand our domain by the following information: "Bad
students never know how to program. Bob is a bad computer science student".
This can be represented by facts

student(bob).
bad(bob).
is_in(bob, es) .

and the rule

rule(r2 (S), -~can_progr(S), student(S), bad(S)).

The new domain description D4 will correctly entail that Bob does not know
how to program. Notice, that if the above rule were changed to the default

de fault(d3(S), -~can_progr(S), student(S), bad(S))

we would again get two answer sets with contradictory conclusions about Bob,
and that again the conflict could be resolved by adding, say,

prefer(d3 (S) , d2 (S)). 0

The previous example had an introductory character and could have been nicely
formalized without using the preference relation. The next example (from 5,
which attributes it to 24) is more sophisticated: Not only does it require the
ability to apply preferences to resolve conflicts between defaults, but also the
ability of using defaults to reason about such preferences. Brewka in 5 argues
that the ability to reason about preferences between defaults in the same lan-
guage in which defaults are stated is important for various applications. In legal
reasoning similar arguments were made by Gordon, Prakken, and Sartor 24, 32.
On the other hand, many formalisms developed for reasoning with prioritized
defaults treat preferences as something statically given and specified separately
from the corresponding default theory.

176 Michael Gelfond and Tran Cao Son

Example J. (Legal Reasoning 5) Assume that a person wants to find out if her
security interest in a certain ship is perfected. She currently has possession of
the ship. According to the Uniform Commercial Code (UCC) a security interest
in goods may be perfected by taking possession of the collateral. However, there
is a federal law called Ship Mortgage Act (SMA) according to which a security
interest in a ship may only be perfected by filing a financing statement. Such
a statement has not been filed. Now, the question is whether the UCC or the
SMA takes precedence in this case. There are two known legal principles for
resolving conflicts of this kind. The principle of Lex Posterior gives preference
to newer law. In our case the UCC is newer than the SMA. On the other hand,
the principle of Lex Superior gives precedence to laws supported by the higher
authority. In our case the SMA has higher authority since it is federal law.

Let us build the domain description 7)5 which represents the above information.
We will follow the formalization from 5 which uses symbols possession for "ship
is a possession of the lady from the above story", perfected for "the ownership
of the ship is perfected", and filed for "financial statement about possession of
the ship is flied". The domain also contains symbols state(D), federal(D), and
more_recent(D1, D2) representing properties and relations between legal laws.

The UCC and SMA defaults of 7)5 can be represented by

default(d1, perfected, ~ossession).
default(d2,-.perfected, -. f ile~).

The two legal principles for resolving conflicts are represented by the next two
defaults:

de f ault(d3 (D1, D2), prefer(D1, D2), more_recent(D1, D2)).
de fault(d4 (D1, D2) , prefer(D1, D2), federal(D1), state(D2)).

The next defaults will express the closed world assumptions for relations
more_recent, federal and state. Presumably, a reasoning legal agent must have
complete knowledge about the laws. The following defaults are added to 7)5 to
represent this CWA assumption.

default(dh(D1, D2), -.more_recent(D1, D~),).
default(d6(D), ~federal(D),).
de fault(dT(D), -.state(D),).

To complete our formalization we need the following facts:

-.filed.
possession.
more_recent(d1, d2).
federal(d2).
state(d1).

It is not difficult to check (using SLG if necessary) that the program ~o0(7)5) has
two answer sets where

Reasoning with Prioritized Defaults 177

(i) holds_by_default(perfected)

belongs to one answer set and

(ii) -~holds_by_de f ault(per f ected)

belongs to the other�9 This is because we have two defaults dl and d2: the former
supports the first conclusion, the latter - the second one, and preference between
them cannot be resolved using defaults d3 and da. Thus, neither (i) nor (ii) is
entailed by P0(~5). This is also Brewka's result in 5�9

However, if we know that d4 has a preference over d3 the situation changes; To
see that, let us expand our domain description by

pre f er(d4(D1, D2), d3(D2, O1)).

and denote the new domain description by ~P6; as a result, program ~0(~P6) has
then only one answer set, which contains (ii). This is again the desired behavior,
according to 5�9 It may be worth noticing that the closed world assumptions
ds, d6 and d7 have no role in the above arguments and could be removed from
the domain description. They are important, however, for general correctness of
our representation�9 The example can be substantially expanded by introducing
more realistic representation of the story and by using more complex strategies
of assigning preferences to conflicting defaults. We found that the corresponding
domain descriptions remain natural and correct.

Example 5. (Simple Inheritance Hierarchy) Now let us consider a simple inher-
itance hierarchy of the form depicted in fig (1).

�9

Figure 1. The Inheritance Hierarchy of D7

A simple hierarchy consists of two parts: an acyclic graph representing the proper
subclass relation between classes of objects and a collection of positive and neg-
ative defaults from these subclasses to properties of objects. In fig (1) we have
three class nodes, a, b, and c. The strict link between the class nodes, say, a

178 Michael Gelfond and Tran Cae Son

and b can be read as "a is a proper subclass of b". Dotted lines from b and c
to property p represent positive and negative defaults respectively. The simple
hierarchy is used in conjunction with a collection of statements is_in(x, c) read
as "x is an elements of a class c". For simplicity we assume completeness of in-
formation about relations subclass and is_in. (For discussion of hierarchies with
incomplete information, see 20).

The encoding of simple hierarchies will consists of two parts: the first representing
a particular graph and the second containing general properties of a hierarchy
together with the inheritance principle. Notice, that the second part is common
to all simple hierarchies.

In our case, the domain description 7:)7 encoding the hierarchy from fig (1) con-
sists of domain dependent axioms

subclass(a, b).
subclass(c, b).
is_in(x1, a)
is_in(x2, c)
default(d1 (X), has(X, p), is_in(X, b))
default(d2 (X), -~has(X, p), is_in(X, c))

(where has(X, P) stands for "element X has a property P") and the domain
independent axioms

rule(r1 (Co, C2), subclass(Co, C2), subclass(Co, C1), subclass(C1, C2)).
rule(r2 (X, C1), is_in(X, C1), subclass(Co, C1), is_in(X, Co)).
rule(r3 (91 (X), D2 (X)), prefer(D1 (X), D2 (X)), d(Dl (X), _, is(X, A)),

d(D2 (X), _, is(X, B)),
subclass(A,B)).

default(d3 (X), -~is_in(X), D).
default(d4, -~subclass(A, B), ~).

(where d stands for default and _ is used where names are not important). The
first two rules represent general properties of subclass and is_in. The next rule
is an encoding of the inheritance principle. The last two defaults express the
closed world assumptions for simple hierarchies.

It is easy to check that T)~ is consistent and that the logic program P0(7~7) has
the unique answer set containing holds_by_default(has(x1, p)) and
holds_by_default(-~has(x2,p)). Consistency result can be easily expanded to
"rule-consistent" domains representing simple hierarchies.

We use the next example from Brewka 7 to illustrate differences between our
theory and several other formalisms dealing with prioritized defaults.

Example 6. (Gray Area) Brewka considers the following defaults:

1. "Penguins normally do not fly;",
2. "Birds normally fly;", and

Reasoning with Prioritized Defaults 179

3. "Birds that can swim are normally penguins;",

under the assumption that default (1) is preferred over (2), and (2) is preferred
over (3). (Notice, that Brewka assumes transitivity of the preference relation).

These defaults are represented in his formalism by a program

bird.
swims.
(dl) -,flies ~- not flies,penguin.
(d2) f l ies +-- not -,flies, bird.
(d3) penguin +- not -~penguin, bird, swims.

According to Brewka, the prioritized default theories from 1, 5, 28 are applicable
to this case and produce single extension E1 = {swims, bird, flies, penguin}
which seems contrary to intuition. According to the semantics from 7 the corre-
sponding program has one prioritized answer set, E2 = {swims, bird, penguin,
-,flies} which is a more intuitive result. The information above is naturally
encoded in the domain description 798 by the following statements

bird.
swims.

default(d1,-~flies, ~penguin).
default(d2, flies, bira~).
default(d3, penguin, bird, swims).

prefer (dl, d2).
prefer (d2, d3).
prefer (dl, dz).

The program Po(79s) has only one answer set which contains
$1 = {holds_by_default(bird), holds_by_default(swim),

holds_by_default(penguin), -~holds_by_de fault(flies) }.
which coincides with the approach from 7. This happens because the default
d3 is in conflict with neither dl nor d2 and therefore its application is not influ-
enced by the preference relation. If we expand the domain description 798 by a
statement

conflict(d2, d3)

the situation changes. Now we will have the second answer set,

$2 = {holds_by.default(bird), holds_by_default(swim), holds_by_default(flies)}.

which corresponds to the following line of reasoning: We are initially, confronted
with "ready to fire" defaults (d2) and (d3). Since (d2) has a higher priority and
d2 and d3 are conflicting defaults, d2 wins and we conclude flies. Now, (dl) is
not applicable and hence we stop.

180 Michael Gelfond and Tran Cao Son

To obtain $1, we can apply defaults (dl) and (d3). Since (d2) is then defeated
by (dl) it will not block (d3). Q

We realize of course that this example belongs to the gray area and can be
viewed differently. The main lesson from this observation is that in the process
of expressing ourself (while programming or otherwise) we should try to avoid
making unclear statements. Of course, we hope that further work on semantics
will help to clarify some statements which so far remain unclear. We also hope
that the reader is not left with the impression that we claim success in following
our own advice.

4 E x t e n d i n g ~:o(O')

In this section we briefly outline and discuss several extensions of the language
E0(a). We show how to extend the language and the corresponding collection
of axioms to allow the representation of more powerful defaults and default
defeaters.

4.1 Beyond Normal Defaults

The domain descriptions of s contain defaults whose logic programming
counterparts are of the form

(ND) lo +- 11,... ,In,not -~lo.

These rules can be viewed as normal defaults in the sense of Reiter 35. Even
though the ability to express priorities between the defaults gives the domain
descriptions of s (a) expressive power that exceeds that of default theories of
Reiter consisting of (ND)-rules, this power is not sufficient for some applications.
In this section we expand the language s (a) and the corresponding system of
axioms to make it possible to represent more general types of defaults. To this
end we replace the definition of default description in s (see s in the
Definition 1) by the more powerful construct

default(d, lo, l l , . . . , Ira, Ira+l,..., l=l) (s

The intuitive meaning of this statement is that normally, if 11,..., Im are true in
T) and there is no reason to believe that Ira+l,..., In are true in :D then 10 is true
in :D. In other words, the statement (s corresponds to the logic programming
rule

lo ~- 11,... ,lrn,not /~n+l,... ,not In,not -~lo.

Literals l l , . . . , l,~ and/re+l, �9 �9 In are called positive and negative preconditions
of d respectively. Both sets of preconditions will be sometimes referred to as the
body of statement (s

Reasoning with Prioritized Defaults 181

Our set of axioms 7)0 will be modified as follows: axioms (7)0.6) and (7)0.10) will
be replaced by axioms

holds_by_default(L) +- holds(default(D, L, Positive, Negative)),
hold_by_default(Positive),
fail_by_default(Negative),
not defeated(D),
not -~holds_by_de fault(L).

(7).6)

defeated(D) +- holds(default(D1, L, Positive, Negative)),
holds_by_default(prefer(D1, D)),
hold_by_default(Positive),
fail_by_default(Negative),
not defeated(D1).

where fail_by_default is defined as follows:

(7).10)

fail_by_default(). (7).23)

f ail_by_de f ault(HIT) +- not holds_by_default(H), (7).24)

fail_by_default(T).

We hope that the modification is self-explanatory.

The following example, taken from 32, illustrates the use of the new language.

Example 7. 33 Consider the following two legal default rules:

1. Normally, a person who cannot be shown to be a minor has the capacity to
perform legal acts.

2. In order to exercise the right to vote the person has to demonstrate that he
is not a minor.

The first default can be represented as

de fault(dz (x), has_legal_capacity(x), , minor(x))

which requires a negative precondition. The second default has the form

default(d2 (x), has_right_to_vote(x), -~minor(x),).

These defaults, used in conjunction with statement ~minor(jim) entail that J im
has legal capacity and the right to vote. If the system is asked the same questions
about Mary whose legal age is not known it will conclude that Mary has legal

182 Michael Gelfond and Trail Cao Son

capacity but will remain in the dark about Mary's right to vote. If we expand
our domain description by the closed world assumption for has_right_to_vote

de f ault(d3 (x), -~has_right_to_vote(x), ,)

then the answer to the last question will be no. Q

4.2 Weak Excep t ions to Defaul t s

So far our language allowed only strong exceptions to defaults, i.e., a default
d could be defeated by rules and by defaults conflicting with d. Many authors
argued for a need for so called weak exceptions - statements of the form "do
not apply default d to objects satisfying property p". (For the discussion of
the difference between weak and strong exceptions see, for instance, 2.) Weak
exceptions of this type can be easily incorporated in our language. First we
expand the language by allowing literals of the form

exception(d(xl, . . . , Xk), 11,..., ln, I/n+1,..-, ln+m)

read as "the default d is not applicable to x l , . . . , xk which satisfy 11,..., In and
not In+l,... , not ln+m". The formal meaning of this statement is defined by an
axiom

defeated(D) +- exception(D, Positive, Negative), (7~.25)

hold_by_default(Positive),
fail_by_default(Negative).

added to P0.

Consider a domain description/)9.

de/ault(d(X),p(X), q(X),).
exception(d(X), r(X),).
q(xl).

r(x2).

It is easy to check, that the corresponding program :P0(7)9) (and hence 7)9)
entails p(xl) but remains undecided about p(x2). Notice, that we were able to
entail p(xl) even though Xl may satisfy property r, i.e. 7)0 ~: -~r(xl). In some
cases we need to be able to say something like "do not apply d to x if x may
satisfy property r". This can be achieved by replacing the exception clause in
7)9 by

exception(d(X), , -~r(X)). (s

Reasoning with Prioritized Defaults 183

The new domain description entails neither p(xl) nor p(x2).

We will denote the language and the system of axioms described in this section
by/~ and 79 respectively. We believe that the system is useful for reasoning with
prioritized defaults and deserves careful investigation. In this paper however we
present only several illustrative results about 790 . A more detailed analysis of 79
will be done elsewhere. Before presenting these results we would like to mention
another possible extension/modification of the system.

i

4.3 Changing the Mode of Reasoning

In our theory 790 we formalized a " brave" mode of applying defaults. In this
section we briefly mention how the axioms can be changed to allow for cautious
reasoning. This can be achieved by adding to 79o the axiom

defeated(D) +- default(D, L, Body),
default(D1, L1, Body1),
holds(conflict(D1, D)),
not holds_by_default(prefer(D1, D)) ,
not holds_by_default(prefer(D, D1)),

hold_by_default(Body),
hold_by_default(Body1)

(79.26)

Let us denote the resulting program by 790,c. Now let us consider the domain
description D10 consisting of defaults and conditionals mentioned in the intro-
duction

default(d1, a, ~).
default(d2, b, ~).
default(d3, e, ~).
conflict(d1, d2).
rule(r1,-~a, b).
rule(r2, d, b).
rule(r3, d, a).

rule(rl, a).
rule(,
 ute(r , -a,

It is easy to check that 79o(7910) has two answer sets containing {c, a, d, -~b} and
{c, b, d, -~a} and therefore entails d and c. In contrast 790,c(:D10) has one answer
set containing c and not containing d.

It is worth mentioning that it may be possible in this framework to introduce
two types of defaults - those requiring brave and cautious reasoning and add the
above axiom for the latter.

184 Michael Gelfond and Tran Cao Son

5 H i e r a r c h i c a l D o m a i n D e s c r i p t i o n s

D e f i n i t i o n 3. We will say that a domain description 79 is consistent if 790 (79)
is consistent, i.e., has a consistent answer set.

Obviously, not all domain descriptions are consistent; 79 = {p,-~p,q), for in-
stance, is not.

(Notice that this is the intended meaning. We believe that the question of draw-
ing conclusions in the presence of inconsistency is somewhat orthogoned to the
problem we address in this paper and should be studied separately.)

In the next example inconsistency is slightly less obvious.

Example 8. The domain description 7911 consists of the following three literals:

default(d, a, D).
rule(r1,-~c, a).
C.

It is easy to see that 79o(79n) does not have a consistent answer set. This happens
because nothing prevents rule (790.6) of 790 from concluding that a holds by
default. This conclusion, together with fact c and rule rl from 7911 leads to
inconsistency. Notice, that addition of the rule

rule(r2,-~a, c).

blocks the application of (790.6) and restore consistency.

In this section we give a simple condition guaranteeing consistency of domain
descriptions of Z:o. The condition can be expanded to domain descriptions of s
but we will not do it in this paper. From now on, by domain descriptions we will
mean domain descriptions of f~o.

We will need the following definitions.

D e f i n i t i o n 4. The domain description 79 is said to be rule-consistent if the
non-defeasible part of 790 (79) has a consistent answer set. (By the non-defeasible
part of 790(79) we mean the program 79~(79) consisting of the set {holds(l) I l e
facts (79))Ulaws(79) and nondefeasible rules (rules (790.1)- (79o.3), (79o.9), (79o.12)-
(790.14), (79o.16)-(79o.19), and (79o.21)-(790.22) of 790).

D e f i n i t i o n 5. A domain description 79 over signature a will be called hierar-
chical if it satisfies the following conditions:

1. 7) is rule-consistent;
2. 79 does not contain statements of the form s (i.e., there are no conflicts

except those specified in 790);
3. heads of defaults in 79 are a-literals or literals of the form prefer(d1, d2);
4. no literal from the head of a default in 79 belongs to the body of a rule in 79;

Reasoning with Prioritized Defaults 185

5. there is a function rank from the set heads(7)) of literals belonging to the
heads of defaults in 7) to the set of ordinals such that

(a) if 1 E head(7)) and -~l E head(7)) then rank(l) = rank(-~l);

(b) if prefer(d1, dg)) e head(7)) and prefer(d2, dl) E head(7)) then
rank(prefer(al l , d2)) = rank(pre fer (d2 , dl));

(c) if de faul t (d , l, 11, . . . , ln) e 7) and li e heads(7)) then rank(1) > rank(li);

(d) if prefer(al l ,d2) e heads(7)) and dl ,d2 e 7) then
rank(head(di)) > rank(pre fer (d1 , d2)) for i = 1, 2;

It is easy to check that domain descriptions :Do, 7)1, 7)4, and 7)6 are hierarchical
while D2,7)3,7)7 are not. In 7)2 and 7)7, the condition (4) is violated while
(2) is not true in /)3. Domain description 7)5 is also hierarchical. The rank
function for /)5 can be given by rank(l) = 1 for l • (per f ec ted , - .per f ec ted} ,
rank(per fec ted) = rank(-~per fected) = 4, and rank(pre f er(dl (X), d2(X))) =
r a n k (p r e f e r (d 2 (X) , dl (X))) = 2.

T h e o r e m 1. Hierarchical domain descriptions are consistent.

P r o o f . (Sketch) To prove the theorem we first simplify the program 7)o(7)) by

(i) replacing all the occurrences of literals of the form ho ld (l l , . . . , In)
and hold_by_defaul t (I l l , . . . , ln) in the bodies of the rules from 7)o(:D) by
holds(ll) , . . . , holds(In) and holds_by_de f ault(l l) , . . . , holds_by_default(In) respec-
tively and

(ii) dropping the rules with these literals in the heads.

It is easy to verify that 7)0(7)) is a conservative extension of the resulting
program P2 (D) (whose language does not contain predicate symbols hold and
hold_by_default).

Now let us notice that, since 7) is a hierarchical domain description, the non-
defeasible part 7~(D) of 7)0(/)) has a unique consistent answer set, say H. This
answer set can be used to further simplify ;~ (D) by eliminating all the occur-
rences of literals from H. This is done by using the splitting set theorem of 27
and removing some useless rules. Finally, we drop the rule (:P0.20) and replace
the occurrences of holds_by_default(1) and deeated(d) in t)o(7)) by I and d

186 Michael Gelfond and Tran Cao Son

respectively. We call the resulting program Q(9) the deeasible counterpart of
9 .

Q (9) =

I. if holds(t) e H (1)

l +- l l , . . . , l,~, (2)
not d,
not -~l.

42 ~-

-,prefer(dl, d2) +--

if default(d,l, l l , . . . , ln) e ~)
and holds(t) r H,
and holds(-,l) r H

l l , . . �9 , I n ,
prefer(d1, d2),
not dl.

if d2 E 9 ,
de f ault(dl , l, 11, . . . , l,~) e V,
holds(con flict(dl , d2)) e H
and holds(l) r H
and holds(-~l) r H,

prefer (d2, dl).

if holds(prefer(d1, d2)) r H
and holds(prefer(d2, dl)) • H
and dl,d2 E 9

(3)

(4)

Using the splitting sequence theorem, and the assumption that 9 is hierarchical,
we can prove that for any a-literal I

7~o(V) ~ holds_by_default(t) iff Q(D) ~ I.

In the last part of the proof we show that Q(9) is consistent. This implies the
consistency of 500(9).

The detailed proof of the theorem 1 can be found in appendix A.

The last example in this section demonstrates the importance of the requirement
for existence of the rank function in definition 5.

Example 9. Let us consider the following domain description, ~12.

de f auU(dl, l, D).
default(d2,-~l, If).
prefer (d2, dl).

Reasoning with Prioritized Defaults 187

It is easy to see that l)12 has no rank function. To show that Z)12 is inconsistent
it suffices to verify that ~o0(:D12) is consistent iff the following program R is
consistent:

l +-- not dl, not -~l
-,l +- 1,not d2,not l
dl +-- l, not d2

Obviously, R is inconsistent. <)

It is worth mentioning that the domain description Z)13 which is obtained from
Z)12 by removing the preference prefer(d2, dl) is consistent. This demonstrates
the difference between prioritized defaults and preferential model approaches
(see e.g. 22). In these approaches existence of preferred models is guaranteed if
the original theory has a model and the preference relation is transitive.

6 Domain Descriptions and Prioritized Logic Programs

In this section we discuss the relationship between our theory of prioritized de-
faults and the prioritized logic programs recently introduced by G. Brewka 7.
In Brewka's approach, a domain description is represented by a prioritized logic
program (P, <) where P is a logic program with the answer set semantics rep-
resenting the domain without preferences and < is a preference relation among
rules of P. The semantics of (P, <) is defined by its preferred answer set - answer
sets of P satisfying some conditions determined by <.

We will recall the notion of preferred answer sets from 7 and show that for a
restricted class of hierarchical domain descriptions Brewka's approach and our
approach are equivalent. In what follows, we will use the following terminology.

A binary relation R on a set S is called strict partial order (or order) if R is
irreflexive and transitive. An order R is total if for every pair a, b E S, either
(a, b) E R or (b, a) e R; R is well-founded if every set X C S has a minimal
element; R is well-ordered if it is total and well-founded.

Let P be a collection of rules of the form

r : lo +- l l , . . . , lm,not lm+l , . . . ,not In

where li's are ground literals. Literals l t , . . . , l~ are called the prerequisites of r.
If m = 0 then r is said to be prerequisite free. A rule r is defeated by a literal
l if I = li for some i E {m + 1 , . . . , n); r is defeated by a set of literal X if X
contains a literal that defeats r. A program P is prerequisite free if every rule in
P is prerequisite free.

For a program P and a set of literals X, the reduct of P with respect to X ,
denoted by X p , is the program obtained from P by

- deleting all rules with prerequisite l such that l ~ X; and

188 Michael Gelfond and Tran Cao Son

- deleting all prerequisites of the remaining rules.

De f in i t i on 6. (Brewka 7) Let (P, <) be a prioritized logic program where P
is prerequisite free and < is a total order among rules of P. Let
C< (P) = Ui~176 Si where

S 0 = 0

f Sn-1 if rn is defeated by Sn-1
Sn = Sn-1 U {head(rn)} otherwise

and rn is the n th rule in the order <. Then

- An answer set A of P is called a preferred answer set 2 of (P, <) if A = C< (P).
- For an arbitrary prioritized logic program (P, <), a set of literals A is called

a preferred answer set of (P, <) if it is an answer set of P and A = C<, (Ap)
for some total order <r that extends <.

- A prioritized program (P, <) entails a query q, denoted by (P, <) ~ q, if for
every preferred answer set A of (P, <), q E A.

There are several substantial differences between domain descriptions of s and
prioritized logic programs. To compare the two approaches we need to limit our-
self to domain descriptions without dynamic priorities whose preference relation
is transitive and is defined only on conflicting defaults. More precisely:

De f in i t i on 7. A domain description :D of Lo is said to be static if it satisfies
the following conditions:

- laws of :D do not contain occurrences of the predicate symbol prefer;
- the transitive closure of the preference relation {(dl, d2) : dl, d2 are defaults

in :D such that prefer(dl,d2) E Z)}, denoted by preferS, is an order on
defaults of :D;

- for every literal of the form prefer(dl, d2) E :D, head(d1) and head(d2) are
contrary literals.

A static domain description Z) can be naturally encoded by a prioritized logic
p rogram/ /C D) = (B(:D), <v) defined as follows.

 / s(v) =

//(Z)) = d :

dl < v d2

2 Strongly preferred answer set in Brewka's terminology.

if l is a a-literal in :D

+'- l l , . . . , l n .

i f rule(r, l, l l , . . . , ln) E D

(1)

(2)

l +-- 11,..., ln, not -q. (3)
if default(d, l, ll,. �9 �9 ln) E l)

if (dl,d2) E prefer~ (4)

Reasoning with Prioritized Defaults 189

We say that a domain description D entails a a-literai l in the sense of Brewka
if//(:D) ~ q.

The following theorem shows that for static and hierarchical domain descriptions
Brewka's approach coincides with ours.

T h e o r e m 2. For every hierarchical and static domain description :D and for
every a-literal l,

l) ~ holds_by_default(1) if and only if //(:D) ~ 1.

P roof . (Sketch) First, by "partially evaluating" :D with respect to non-defeasible
information and removing various useless statements we reduce/3 to a simpler
domain description DN with the following property:

(i) :D ~ holds_by_default(l) iff :D ~ holds(1) or DN ~ holds_by_default(l) and

(ii)//(:D) ~ l iff D ~ holds(l) or H(:DN) ~,~ I.

The domain description :D g c a n be represented by the program Ti(:DN) consist-
ing of the rules

Ts d2 +- l l , . . . , ln ,nOt dl.

I t , . . . , ln, not d, not ~l. (1)

if default(d, l, 11,..., ln) E DN

(2)

if d2 E :DN,
default(dl, l, l l , . . . , ln) E :DN,
prefer(d1, d2) E DN,
and head(d2) = -~l

and the set pref = {prefer(d1, d2) : prefer(d1, d2) E T~N}.

~)g can also be represented by the prioritized logic program
/-/(:DN) = (BCDN), <~N) where •(T)N) consists of the following rules:

l 11 , . . . , not (1)
B(DN) / if default(d, l, l l , . . . , ln) E DN

We then show that

(iii) for each answer set A of 7~(:DN), the set B = ANlit(a) is a preferred answer
set of/~(~)N); and

(iv) for each preferred answer set A of -/(~)g) there exists an answer set B of
7~(~9) such that B N lit(a) = A.

The conclusion of the theorem follows from (i)-(iv).

190 Michael Gelfond and Trail Cao Son

Detailed proof of the theorem can be found in appendix B.

The theorem 2 can be used to better understand properties of both formal-
izations. It implies, for instance, that queries to Brewka's prioritized programs
corresponding to domain descriptions of s can be answered by the SLG in-
ference engine. It can also be used for a simple proof of the fact that static,
hierarchical domain descriptions are monotonic with respect to p r e f e r , i.e. for
any such :D and :D' with preference relations P and P ' if P C_ P ' and :D ~ l then
~' ~l.

The next example demonstrates differences between reasoning with domain de-
scriptions and prioritized logic programs.

Example 10. Let us consider the domain description/)14 which consists of the
following/:o-literals:

rule(r1, ~ll,II2).
rule(r2,-q2, ll).
defaul t (d1, ll, D).
default(d2,12, ~).
conflict(all , d2) .
pre fer (d2 , dl).

It is easy to see that in this domain description d2 is applicable, dl is defeated
and hence, the program 7~0(:D14) has a unique answer set containing 12 and -~ll.

The prioritized logic program B(:D14) which corresponds to :/:)14 consists of the
following rules:

rl : -~11 4- 12.
r2 : -~12 4- 11.
dl : ll 4- not -~ll.
d2 : 12 4- not -~12.
d2 < d l .

and has two preferred answer sets: {12,-~ll } and {ll,-~12 }. The former corresponds
to the preference orders in which r2 < rl and the latter to the preference order
r l < r 2 < d 2 < d l . (~

The above example shows that Brewka's approach differs from ours in the way
priority is dealt with. In our approach, we distinguish rules from defaults and
only priority between defaults are considered and enforced. This is not so in
Brewka's approach where priority is defined among rules of the logic program
representing the domain in consideration. The completion of the preference order
could "overwrite" the preference order between defaults as the above example
has shown.

Reasoning with Prioritized Defaults 191

7 Conclusions

In this paper we

�9 introduced a language s capable of expressing strict rules, defaults with
exceptions, and the preference relation between defaults;

�9 gave a collection of axioms, :P, defining the entailment relation between domain
descriptions of l:(a) and queries of the form holds(l) and holds_by_default(l);

�9 demonstrated, by way of examples, that the language and the entailment rela-
tion is capable of expressing rather complex forms of reasoning with prioritized
defaults;

�9 gave sufficient conditions for consistency of domain descriptions;

�9 described a class of domain descriptions for which our treatment of prioritized
defaults coincides with that suggested by G. Brewka in 7.

Defining reasoning with prioritized defaults via axioms of :P allows to use logic
programming theory to prove consistency and other properties of domain de-
scriptions of l:. Logic programming also provides algorithms for answering queries
to such domain descriptions. This work can be extended in several directions.
First, the results presented in the paper can be generalized to much broader
classes of theories of s We also plan a more systematic study of the class of
logic programs defined by 7 ~ (i.e., programs of the form 7 ~ tJT~). It may be inter-
esting and useful to check if cautious monotony 19 or other general properties
of defeasible inference (26, 12-14) hold for this class of programs. Another in-
teresting class of questions is related to investigating the relationship between
various versions of 7 ~. Under what conditions on :D, for instance, we can guar-
antee that :P(D) is equivalent to 7~0(:D)? What is the effect of expanding 7 ~ by
the transitivity axiom for prefer? Should this axiom to be made defeasible? etc.
Finally, we want to see if a better language can be obtained by removing from
it the notion of conflict. In the current language the statement prefer(d1, d2)
stops the application of default d2 if defaults dl and d2 are in conflict with
each other and the default dl is applicable. It may be more convenient to make
prefer(d1, d2) simply mean that d2 is stoped if dl is applicable. More experience
with both languages is needed to make a justified design decision. We hope that
answers to these and similar questions will shed new light on representation and
reasoning with prioritized defaults.

Acknowledgment

We are grateful to Gerhard Brewka for an illuminating discussion on reasoning
with prioritized defaults. We also would like to thank Alfredo Gabaldon for useful
discussions and help with running our examples on SLG. Special thanks also to
Vladik Kreinovich who helped us to better understand the use of priorities in
the utility theory and hence our own work. This work was partially supported
by United Space Allience under contract # NAS9-20000.

192 Michael Gelfond and Trail Ca~ Son

Appendix A

In this appendix we prove theorem 1. We need the following lemmas.

L e m m a 1. 3Let 7" be a logic program and

q+--F1
q+--F2
. , .

be the collection of all rules of 7" with the head q. Then the program Q obtained
from 7" by replacing rules of the form

p 6- A1, q, A2

by the set of rules

p +-- A1,F1, A 2
p ~ A1,F2,A~2

. . o

is equivalent to 7", i.e., 7- and Q have the same consistent answer sets.

P r o o f . Let us denote the set of all rules removed from 7- by S and let

R = Q u S .

7~ can be viewed as a union of 7" and the set of new rules obtain from 7" by
the application of the cut inference rule. Since the cut is sound with respect to
constructive logic N2 31 which is an extension of the logic N from 29, 7" and
T~ are equivalent in N2. As shown in 31, programs equivalent in N2 have the
same consistent answer sets, i.e.,

(a) programs T and T~ are equivalent.

This means that to prove our lemma it suffices to show equivalence of T~ and Q.

Let QA and S A be reducts of Q and S with respect to set A of literals (as in
the definition of answer sets). We show that A is the minimal set closed under
~A if it is the minimal set closed under ~A U 8 A.

(b) Let A be the minimal set dosed under QA. We show that it is closed under
S A .

Consider a rule

A A sA p +-" A l ,q, A 2 E

AA s.t. { 1, q, AA} C_ A. (Here by A A we denote the result of removing from Ai all
the occurrences of not I s.t. I • A. Obviously, AA's above do not contain not .)
From the assumption of (b) and the fact that q E A we have that there is i s.t.
a rule

a This is a well-know property of logic programs called "partial evaluation" in 3, 4.
We were, however, unable to find a proof of it for an infinite P.

Reasoning with Prioritized Defaults 193

qe-r e QA

with T 'A C_ A. This implies tha t there is a rule

A A I~A A A QA
P + - ~ l , ' i ,~'2 E

whose body is satisfied by A, and therefore p E A. This implies tha t A is the
minimal set closed under QA U S A.

(c) Let A be the minimal set closed under ~A U S A. We will show that it is the
minimal set closed under QA.

A is obviously closed under QA. Suppose that there is B C A closed under QA.
As was shown above it would be also closed under S A which contradicts our
assumption.

From (b), (c) and the definition of answer set we have that T~ and Q are equiv-
alent, which, together with (a), proves the lemma. 0

To formulate the next lemma we need the following notation: Let T be a (ground)
logic program not containing negative literals ~l and let p be a unary predicate
symbol from the language of T. By T* we denote the result of replacing all
occurrences of atoms of the form p(t) in T by t. Notice, tha t 7"* can be viewed as a
propositional logic program with different terms viewed as different propositional
letters. Let us also assume that terms of the language of T do not belong to the
set of atoms in this language.

L e m m a 2. Let 7" and p be as above. Then A is an answer set of T if A* is an
answer set of T*.

P r o o f . If T does not contain not the lemma is obvious. Otherwise, notice that
by definition of answer set, A is an answer set of T if it is an answer set of T A.
Since T A does not contain not this happens iff A* is the answer set of (TA) *.
To complete the proof it remains to notice that (TA) * --~ (7-*) A* .

L e m m a 3. Let 7) be a domain description. By 7)2(7)) we denote the program
obtained from 7~0 (7)) by

- replacing all occurrences of literals hold(l l , . . . , ln)
and hold_by_default(l l , . . . ,in) in the bodies of the rules from 7~0(7)) by
holds (11), �9 �9 �9 holds (ln) and holds_by_de f ault(ll), . . . , holds_by_default(In) re-
spectively (we denote the resulting program by P1 (7)));

- Dropping the rules with heads formed by literals hold and hold_by_default.

Then

(a) if A is an answer set of :P0(7)) then A \ lit({hold, hold_by_default}) is an
answer set of :P2 (7));

194 Michael Gelfond and Tran Cae Son

(b) if A is an answer set of 79~ (79) then
A U {hold(ll,...,ln): holds(ll),...,holds(ln) e A} U

{ hold_by_de f ault(ll, . . . , ln) : holds_by_de f ault(ll) E A, . . . ,
holds_by.default(In) E A}

is an answer set of 79o (D).

Proof . First notice that by Lemma 1, programs 790(:D) and 791 (D) are equivalent.
Then observe that atoms formed by predicate symbols hold and hold_by_default
form the complement of a splitting set of program 791. The conclusion of the
lemma follows immediately from the splitting set theorem (27) and the fact
that rules defining hold and hold_by_default contains neither not nor -~.

L e m m a 4. Let 79 be a hierarchical domain description over signature a and

H = {holds(l): 79~(D) ~ holds(l)} U {defeated(d): 79~(D) ~ defeated(d)}.

By 7)3 (:D) we denote the program consisting of the following rules

holds_by_default(l).

holds_by_default(l) +-

de f eated(dz)

if holds(l) E H

holds_by_de f ault(ll),

holds_by_default(In),

not defeated(d),

not holds_by_default(-4).

if default(d, l, I l l , . . . , /hi) E 7)

and holds(l) r H,

and holds(-~l) ~ H

holds_by_de fault(ll),

holds_by_default(In),

holds_by_default(prefer(d1, d2))

not defeated(d1).

if d2 E ~),

default(all, l, l l , . . . , ln) E ~,

holds(conflict(d1, d2)) E H,

(i)

(2)

(3)

Reasoning with Prioritized Defaults 195

and holds(l) r H,
and holds(-,l) r H

holds_by_default(-~prefer(dl, d2)) +-- holds_by_default(prefer(d2, all))(4)

if holds(prefer(dl, d2)) • H,

and holds(prefer(d2, dl)) r H,

and dl , d2 G T)

-~holds_by_de f ault(1) +-- holds_by_de f ault(-~l). (5)

Then, A is an answer set of 7)2(7:)) iffA = laws(7))UHUB where B is an answer
set of 7)3(:D).

Proof . Let Uo be the set of literals formed by predicate symbols holds, rule
and default. Uo is a splitting set of program 7)2(T)) and hence A is an answer
set of 7)2(T)) iff A = Ao U A1 where Ao is the answer set of program bvo (7)o(T~))
consisting of rules of 7)2 (D) whose heads belong to Uo and A1 is an answer set
of the partial evaluation, 7~ = evo (tVo (7)0(9)), A0), of the rest of the program
with respect to Uo and Ao. It is easy to see that the program 7~ consists of the
rules of 7)3 (D) and

(a) rules of the type (2) where holds(l) or holds(-~l) is in H;

(b) rules of the type (3) where holds(l) e H or holds(-~l) e H;

(c) rules of the type

holds_by_default(l) ~- holds_by.de f ault(ll),
. . .

holds_by_default(In),

for each rule rule(r, 1, l l , . . . , l,) E 7);

(d) rules of the type (4) where holds(prefer(d1, d2)) E H
or holds(prefer(d2, dl)) E H;

(e) facts of the type defeated(d) where d is a default in T) with the head I s.t.
holds(-~l) e H.

From the rule (7)0.9) of program 7)0 we have that facts of the type (e) belong
to H and hence to prove the lemma it is enough to show that the rules of the
type (a)-(d) can be eliminated from T~ without changing its answer sets. To
do that let us first make the following simple observation. Consider a program
Q1 containing a rule p ~- F and the fact p and let Q~ be obtained from Q1
by removing the rule. Q1 and Q2 are obviously equivalent in the logic N2 and

196 Michael Gelfond and Tran Cao Son

hence have the same answer sets. Similarly, we can show that a rule whose body
contradicts a fact of the program can be removed from the program.

(la) Consider a rule r of 7~ of the type (a).
If holds(l) E H then, from rule (4) of Po we have that holds_by_default(l) E 7~.
Hence, by the above observation, r can be removed from T/wi thout changing its
answer sets.
If holds(~l) E H then from rule (4) of Po we have that holds_by_default(-,l) E 7~
which contradicts the body of r. Hence r is useless and can be safely removed.

(lb) Now consider a rule r of the type (b). We will show that its head, defeated(d2),
is a fact of T~.

First notice that , if holds(-~l) E H then 7a~(7)) ~ defeated(d1). Therefore,
defeated(all) E Ao and hence, in this case, r r T~.

Suppose now that holds(l) E H. Consider two cases:

(i) The head I of d2 is a literal.
By definition of rules of type (b) we have that holds(conflict(d1, d2)) E H.
From condition (2) of definition 5 of hierarchical domain description and the
rules (Po. l l) , (7)o.21), and (Po.22) of Po we conclude that the head of default
dl is literal -~l. Since r is of type (b), this means that holds(-~l) E H and, from
the rule (P0.9) of Po we have that defeated(d2) E H.

(ii) The head l of d2 is of the form prefer(&, dj).
From conditions (2), (3) of definition 5 and the rule (Po. l l) , (Po.21), and (Po.22)
of 7) we have that the head of dl is prefer(dj, di). From rule (Po.14) of P0 we
have that -~prefer(d~,dj) E H. Finally, from rule (Po.9) of P0 we have that
defeated(d2) E H.
This demonstrates that the rules of the type (b) can be removed from T~ without
changing its answer sets.

(lc) It is easy to check that by the condition (4) of definition 5 the body of a
rule of the type (d) is satisfied iff holds(ll),...,holds(In) �9 H and hence the
head of such a rule is in H or the rule is useless.

(ld) Similar argument can be used for the rules of the type (c). The conclusion of
the lemma follows now from the observation above and the splitting set theorem.
<>

Let us consider a logic program Q(7)) obtained from program/)3(7)) by

(a) removing rules of the type (5);

(b) replacing literals of the form holds_by_default(1) and defeated(d) by l and
d respectively.

Reasoning with Prioritized Defaults 197

The program Q(:D) is called the defeasible counterpart of/:) and consists the
following rules:

Q(D) =

1. if holds(l) 6 H

4-- l l , . . . , l n ,
not d,
not -~I.

if default(d, l, l l , . . . , In) 6/P
and holds(l) r H,
and holds(-4) f~ H

d2 4- l l , . . . , ln ,
prefer(d1, d2)
not dl.

if d2 e/P,
default(d1, l, 11,..., In) 6 1~,
holds(conflict(d1, d2)) 6 H
and holds(1) f H
and holds(-~l) f H

-~prefer(dl, d2) +- prefer(d2, dl).

if holds(prefer(d1, d2)) • H
and holds(prefer(d2, dl)) r H
and dl,d2 6 1)

(I)

(2)

(3)

(4)

L e m m a 5. Let /P be a hierarchical domain description over signature a and
let H be the set of literals defined as in Lemma 4. Then the program Q(:D) is
consistent.

Proof. First let us notice that the set F of facts of the form (1) from the program
Q(/P) form a splitting set of this program. Since :D is rule-consistent so is F. This
implies that Q(:D) is consistent iff the result Qo of partial evaluation of Q(/))
with respect to F is consistent. Let Q1 be the result of removal from Q0 all the
rules whose bodies contain literals not belonging to the heads of rules from Q0.
Obviously, Q(/)) is equivalent to Q1.

To prove consistency of Q1 we construct its splitting sequence and use the split-
ting sequence theorem from 27.

Since/P is hierarchical it has a rank function rank. Let p be the smallest or-
dinal number such that rank(l) < # for every l from the domain of rank. Let
heads(Q1) be the set of literals from the heads of rules in Q1 and

198 Michael Gelfond and Tran Cao Son

Ua = {l : l E lit(a) A heads(Q1) s.t. rank(l) < a)U
{d E heads(Qa) : rank(head(d)) < (~}U
{prefer(da, d2) E heads(Q1) : rank(prefer(dl, d2)) < a}U
{-~prefer(dl, d2) : prefer(d2, dl) E heads(Q1), rank~arefer(d2, dl)) < ~}

The sequence U = {Us)a<u is monotone (Us C Uf~ whenever a < /3) and
continuous (for each limit ordinal c~ < #, Us = .JZ<a U~). Using the property
of the rank function from the definition of hierarchical domain description it is
not difficult to check that for each a < #, Us is a splitting set of Q1 and that
-Js<u Ua is equal to the set of all literals occurring in Qi. Hence, U is a splitting
sequence of Qt. By the splitting sequence theorem existence of an answer set of
Q1 follows from existence of a solution to Q1 (with respect to U). Let Ts be a
collection of all the rules from Qt whose heads belong to Us. To show existence
of such a solution it suffices to

(i) assume that for (~ such that ~ + 1 < # the program Ts has a consistent answer
set As;

(ii) use this assumption to show that Ts+l also has a consistent answer set;

(iii) show that Ja<~ As is consistent.

Let us show (ii) and (iii). Let T be the result of partial evaluation of the program
Ta+l with respect to the set An. T can be divided into three parts consisting of
rules of the form

(a) d2 ~- not dl.

and

(b) l ~- not d, not -~l where l is a a-literal

and

(cl) prefer(di, dj) ~-- not d, not -~prefer(di, dj)

(c2) -~prefer(dra, dn) +-- prefer(dn, din).

respectively.

To show consistency of the program T(a) consisting of rules (a) we first observe
that, by construction, if a rule r of type (a) is in T then dl, d2 are conflict-
ing defaults and hence, by condition 2 of definition 5 and the rule (:P0.11),
(P0.21), and (P0.22) of To, their heads are either contrary a-literals or of the
form prefer(&, dj) and prefer(dj, di) where i ~ j . Consider the dependency
graph D of $1. D obviously does not contain cycles with positive edges. We will
show that it does not contain odd cycles with negative edges. (Programs with
this property are called call-consistent). Suppose that d l , . . . , d2n+l, dl is such a
cycle. Since dl and di+l (i = 1 , . . . , 2n) are conflicting defaults we have that dl
and d2n+l have the same heads (clause (2) of the definition and rules (:P0.11),

Reasoning with Prioritized Defaults 199

(:P0.21), and (7~0.22) of :P0). Since dl and d2n+l are conflicting their heads must
be different. Hence our program has no odd cycles. As was shown by Fages 17
(see also 15), call consistent programs with dependency graphs without positive
cycles have an answer set.

To show consistency of the program T(a, b) consisting of rules (a) and (b) of T it
suffices to take an arbitrary answer set of program T(a) and use the splitting set
theorem. The corresponding reduct R will consist of rules of the form l +- not -~l.
Let X0 be the set of all positive literals from the heads of R and X1 be the set
of negative literals of the form -~l from the heads of R such tha t I r X0. It is
easy to see that the set X0 U X1 is a consistent answer set of R.

Now we need to show consistency of the partial evaluation Tr of T with respect
to some answer set of T(a, b). Tr consists of rules

pre f er(di, dj) +- not -~pre f er(di, dj)

and

-~prefer(dm, dn) +" prefer(dn, dm).

Let heads(Tr) be the set of the heads of the rules of Tr and let us assume that
each default is associated with a unique index i. Consider a set X0

Xo = {prefer(di, dj) : prefer(di, dj) e heads(Tr),prefer(dj, di) ~. heads(Tr))U
{prefer(di,dj) : i < j if prefer(di,dj) e heads(Tr) and prefer(dj,di) e

heads(Tr))

Now let

X = Xo U {-~prefer(dn, din) : prefer(dm, dn) e X0}

Obviously, X is consistent. To show that it is a consistent answer set of Tr let
us construct T x and show tha t

prefer(di,dj) e Tr x iff prefer(di,dj) �9 Z .

Let

prefer(di, dj) �9 X.

Then, by construction of X,

prefer(dj, di) r X , hence

-~prefer(dl, dj) r X , i.e.

prefer(di, dj) �9 Tr x .

Similar argument demonstrates equivalence in the opposite direction. This im-
plies that X is a consistent answer set of Tr. By the splitting set theorem we
conclude consistency of T and Ta+l. Statement (iii) follows immediately from the
above construction of answer set of T~+I and hence, from the splitting sequence
theorem we have that Q(/)) is consistent. 0

200 Michael Gelfond and Tran Cao Son

L e m m a 6. Let 7) be a hierarchical domain description over signature a and let
@(23) be the program defined as in Lemma 5. Then for any literal I of/:o(a)

l) ~ holds_by_default(1) iff @(23) ~ I.

Proof . By definition,

1.23 ~ holds_by_default(1) iff :P0(23) ~ holds_by_default(l).

From (1) and lemma 3 we have that

2.23 ~ holds_by_default(1) iff P2(23) ~ holds_by_default(1).

From (2) and lemma 4 we have that

3.23 ~ holds_by_default(1) iff P3(23) ~ holds_by_default(l).

Let 7~4 (23) be the program obtained from the program :P3 (23) by removing the
rules of type (5) from :P3 (23). It is easy to see that Pa (23) is the bottom program
of P3 (23) with respect to the splitting set consisting of all positive literals of the
program P~ (79).

Now let us consider the program Qp(23) obtained from Q(23) by replacing every
negative literal I = -~p(t) by the atom 7 = ~(t) where p is a new predicate symbol.

From (3) and lemma 2 we have that

4. 7~4(23) ~ holds_by_default(l) iff Qp(9) ~ l.

As was shown in 21 answer sets of Q(23) coincide with answer sets (stable
models) of Qp(23) which do not contain pairs of atoms of the form l, 7. Let us
show that no answer set A of Qp(23) contains such literals. Consider two cases:

(i) l is a a-literal. Suppose that l E A. Obviously there is no rule of the type
(2) in Qp(23) whose head is 7 and whose body is satisfied by A. Since 7) is
rule-consistent r Qp(23) and hence 7 r A.

(ii) l = prefer(di, dj). There axe free types of rules in Qp(23) which contain
literals formed by prefer in the heads:

(a). prefer(di, dj).

from rule (1) of @(23)

(b). prefer(di, dj) <- F, not prefer(dl, dj).

from rule (2) of @(23) and

(c). prefer(di, dj) +-- prefer(dj, di).

from rule (2) of @(23).

Suppose that prefer(di,dj) E A. Then, from the rule consistency of 23 we
have that prefer(dj, di) does not belong to (a). Since, by rule (c) we have that
pre f er(dj , di) e A and hence pre f er(dj , di) r A. This implies that pre f er(di, dj) r
A.

Reasoning with Prioritized Defaults 201

Hence, we have that

5. Qp() l ifr l .

It follows from (5) and (4) that

6. ~:~4(~) ~ holds_by_default(l) iff Q(:D) ~ I.

Since QC D) is consistent, we can conclude that no answer set of 7~4 (D) containing
holds_by_default(l) and holds_by_default(-,l). By the splitting theorem, we have
that Ps(:D) is consistent and moreover,

7. i~ (:D) ~ holds_by_default(l) iff 7~4(:D) ~ holds_by_default(l).

The proof of the lemma follows from (7), (6), and (3).

The proof of the theorem 1 follows immediately from Lemmas 5 and 6.

A p p e n d i x B

In this appendix we prove the theorem 2. By Lemma 6, we have that for any
a-literal l

~ holds_by_default(l) iff Q(:D) ~ !

where Q(D) is the program defined in Lemma 5. Hence, to prove the theorem,
it suffices to show that

Q(~) ~ l ifr n (~) ~ l.

Let us introduce some useful terminology and notation. Let l:) be a hierarchical
domain description and

U(D) = {l: l is a / :0(a) literal and P~(:D) ~ holds(l)}

where 7P~(D) is the non-defeasible part of P0(D).

To simplify the proof let us assume that the set of defaults in :D has the cardi-
nality less than or equal to w and that the minimal value of the rank function
of :D is 1. Let :DN be the domain description obtained from 7) as follows:

(i) removing all rules and a-literals from l:);
(ii) removing all defaults d E :D such that head(d) e U(I)) or ahead(d) E U(I));

(iii) removing every occurrence of a-literal l E U(:D) from the bodies of the
remaining defaults of :D; We denote the resulting domain description Do.

(iv) Let ~)M ~--- nrW----0~)r where Dr is obtained from :Dr-1 by removing from it
every default of the rank r whose body contains a literal not belonging to
the head of any default in :Dr-l; :DN is obtained from :DM by removing all
literals of the form prefer(dl,d2) such that dl ~ ~)M or d 2 ~ ~)M-

202 Michael Gelfond and Tran Cao Son

The domain description DN will be called the normalization of 2).

A hierarchical domain description l) is said to be normalized if D = :DN.

Let Q(:D) be the defeasible counterpart of a static domain description :D and let
7~(T)) be obtained from Q(D) by

(a) removing rules of the type (4);
(b) performing partial evaluation of the resulting program with respect to U(D).

This construction, together with the following simple lemma, will be frequently
used in our proof.

L e m m a 7. For any static and hierarchical domain description :D and a-literal
l r v(p),

Proof . First notice that since :D is static "~prefer(dl, d2) E U(T)) or
prefer(d2, da) • U(D). Hence the program Qa(D) obtained from Q(D) by step
(a) has the same answer sets as Q(:D).

Now notice that since :D is static the heads of rules of the type (2) in Q(:D)
belong to lit(a). By construction of Q(D) these heads do not belong to U(:D).
Therefore, U(O) is a splitting set of Qa(D) and conclusion of the lemma follows
from the splitting set theorem.

The proof of the theorem 2 will be based on the following lemmas.

L e m m a 8. Let DN be the normalization of a static and hierarchical domain
description D. Then, for every a-literal l such that I r U(:D)

~) ~ holds_by_default(l) iff T)N ~ holds_by_default(1).

Proof . Let l be a a-literal such that l r U(:D). Since :D is hierarchical we have
that by Lemma 6 it suffices to show that

a. Q(O) ~ l iff Q(ON) ~ I.

Domain descriptions :D and ON are static and hierarchical and hence, by Lemma
7 we have that (a) is true iff

b. 7~(D) ~ 1 iff R(DN) ~ l.

Let :D* be the domain description obtained from :D by performing the steps (i),
(ii), and (iii) in the construction of ~)Y. Obviously, DN C D*. We first prove
that

c. Ts and 7~(:D*) are identical.

Let

cl. r e T~(:D)

We consider two cases:

Reasoning with Prioritized Defaults 203

(i) head(r) e lit(a), i.e.,

r is of the form lo +- F, not d, not -lo

where T' consists of a-literals not belonging to U(2)). By construction of
T~(2)) and Q(2)) this is possible iff

c2. neither l0 nor -~lo is in U(2)) and there is a set of literals A C_ U(2))
such that default(d, lo, A, F) e 2).

From definition of DN we have that (c2) holds iff

c3. default(d, lo, F) E 2)*.

Notice also that, by the same definition, U(2)*) consists of literals formed by
prefer and conflict and hence do not contain a-literals. This implies that
(c3) holds iff

c4. r e Q(2)*).

Since 2) is static, literals from U(2)*) do not belong to rules (2) of Q(2)*).
This implies that (c4) holds iff

c5. r �9 7r
(ii) head(r) r lit(a), i.e.

r is of the form d2 +- F, not dt

where F consists of a-literals not belonging to U(2)).

By construction of T~(/)) this is possible iff

c6. default(all, lo, A, F), default(d2, --lo, AI,/"1) �9 D

for some A _C U(2)), A1 _C U(2)) and/ '1 consisting of a-literals not belonging
to U(D); lo, "~lo • U(D), and prefer(d1, d2) e 2).

It follows from definition of 2)* that (c6) holds iff

c7. default(d1, lo, F) �9 2)*, default(d2, -~lo, /"1) � 9 and
prefer(d1, d~) �9 2)*.

which holds iff

c8. r �9 •(2)*).

From (cl), (c5) and (c8) we have that T~(2)) and T~(7)*) are identical. Therefore,
to prove (b) we will show

d. n(2)*) ~ l iff n(2)N) ~ I.

Let

e. A be an answer set of T~(2)*).

Let

f. B = A \ {d: d �9 2)* \ 2)N}.

204 Michael Gelfond and Tran Cao Son

We will prove that

dl. B is an answer set of 7~(/9N).

By construction of 7~(7)*) and 7~(:DN) it is easy to see that

d2. (7~(DN)) B C_ (Tr A.

Hence,

d3. B is closed under the rules of (7~(:DN)) B.

Assume that there exists a set of literals C C B, which is closed under the rules
of (7"r B. Let

d4. D = (C N lit(a)) U (A \ lit(a)).

We will prove that

d5. D is closed under the rules of (T~(19")) A.

By construction of D,

d6. D is closed under the rules of (7~(79")) A whose heads do not belong to lit(a).

Consider a rule

e0. lo +-- F 6 (~-~(~)*))A such that

el. P C B.

By construction of (7~(D*)) A, this is possible if there exists a default d,

e2. default(d, lo, F) �9 D*,

e3. -~lo • B, d r A,

From (e2) and the fact that C is closed under the rules of (7~(Djv)) B, by con-
struction of :DN, we conclude that

e4. default(d, lo, P) �9 :DN.

which, together with (e3), implies that

e5. lo ~- F �9 (~(:DN)) B

Since C is closed under the rules of (~(:DN)) B, (e5) together with (el), implies
that l0 �9 C. This proves that D is closed under the rules of (7~(:D*)) A with a-
literals in their heads. This, together with (d6), implies (d5), and hence, implies
that, A is not an answer set of 7~(D*). This contradiction proves (dl).

Now, let

fl. A be an answer set of 7~(~)g) ,

and

f2. B = A U {d : d �9 79* \ ~)g, Sd ~ �9 ~)g, prefer(d ~, d) �9 19", body(d ~) C_ A}.

Reasoning with Prioritized Defaults 205

We will prove that B is an answer set of 7~(:D*) by showing that B is a minimal
set of literals closed under the rules of (T~(:D*)) B.

Since A is an answer set of 7~(:DN) we can conclude that

f3. for any d �9 T)* \ 2)g, body(d) is not satisfied by A.

This, together with the construction of B and the fact that every rule of (7~(:D*))B
is of the form 1 +-/~ or d e-/~ where/~ is the body of some default in :D*, implies
that

f4. B is closed under the rules of (7~(:D*)) B.

We need to prove the minimality of B. Assume the contrary, there exists a set
of literals C C B that is closed under the rules of (7~(:D*)) B. Let

f5. D = C \ (B \ A) .

Obviously, D C A. Since (T~(:DN)) A C_ (T~(~)*))B), it is easy to check that D
is closed under the rules of (T~(:DN)) A which contradicts the fact that A is an
answer set of 7~(:DN), i.e., we have proved that

f6. B is an answer set of 7~(:D*).

From (e), (dl), (fl), and (f6) we can conclude (d). which, together with (a), (b),
and (c) proves the lemma.

The next lemma shows that for a static and hierarchical domain description, the
program B(:D) can also be simplified.

L e m m a 9. Let :D be a static and hierarchical domain description and :DN be
its normalization. Then, for each a-literal I such that l r U(:D),

//(:D) ~ l if and only if II(I)N) ~ I.

Proof . First, observe the following for prioritized programs.

Let (Q, <) be a prioritized program where Q is a defeasible program without
facts, i.e., each rule in Q contains at least a negation-as-failure literal. Let P
be a strict program, i.e., no rule in P contains a negation-as-failure literal. Let
head(Q) be the set of literals belonging to the heads of Q and body(P) be the set
of literals belonging to the body of rules of P. Assume that head(Q) nbody(P) =
0. Then, we have that

(i) A is a preferred answer set of (P tA Q, <) iff A = Ap tA AO. where Ap is the
answer set of P and AQ is a preferred answer set of (Qp, <) where Qp is
the partial evaluation of Q with respect to Ap.

(ii) Let P' be a strict program equivalent to P. Then, (PUQ, <) and (P'uQ, <)
are equivalent.

(iii) Let R be the set of rules in Q such that for every r E R, P ~ head(r) or
P ~ -~head(r). Then, (P U Q, <) and (P U Q \ R, <) are equivalent.

206 Michael Gelfond and Trail Cao Son

Let us denote the program consisting of rules (3) of B(:D) by Q and P = BCD) \Q.
Obviously,

a. Q is a defeasible logic program without facts and P is a strict program.

Since 2) is hierarchical, we have that

b. head(Q) N body(P) = 0.

Let Uo (:D) be the set of a-literals belonging to U(:D). It is easy to see that U0 (:D) is
the unique answer set of P, i.e., U0(:D) and P are equivalent. Therefore, together
with (a) and (b), by (ii) we can conclude that

c. H(:D) ~ l iff (Uo(:D) tA Q, <~) ~-- I.

Let R be the set of rules in Q such that for every r 6 R, head(r) 6 Uo(:D) or
-~head(r) 6 Uo (:D), then by (iii) we know that

d. (Uo(:D) U Q, <~) ~ l iff (Uo(:D) U Q \ R, <v) ~ I.

It is easy to see that Uo (:D) is a splitting set of U0 (:D) O Q \ R. Let S be the
reduct of Uo(:D) U Q \ R with respect to Uo(:D).

As in the previous proof, let l)* be the domain description obtained from ~D by
performing the steps (i), (ii), and (iii) in the construction of :DN. We will prove
that S is identical to B(:D*). Let

e l . r 6 S.

It means that r has the form

e2. l ~ F, not -~l.

where/" is a set of a-literals containing no literals from Uo (1)). By construction
of S, (e2) holds iff

e3. I r Uo(:D), --I • U0(:D), and there exists a set of literals A C_ Uo(:D) such that
defaul t (d , l, IF, A) E :D.

From the definition of :D*, (e3) holds iff

e4. defaul t (d , l, F) E :D*

By definition of B(:D*) and the definition of :D*, (e4) holds iff

e5. r is a rule in B(:D*).

From (el) and (e5) we can conclude that

e. S is identical to B(:D*).

From (e), (i), (c), and (d), and the splitting set theorem, we have that

f. n (9) l i s I e u (9) o r / / (9 ") l.

This, implies that to prove the lemma, it suffices to show that

g./-/(T~*) ~-, l iff//(:DN) ~,, 1.

Reasoning with Prioritized Defaults 207

To prove (g) we first prove that

gl. B(D*) and B(DN) are equivalent.

Let

g2. A be an answer set of B(:D*).

Since :DN C_ Z)*, we have that

g3. (B(~N)) A C (8(~*)) A

which immediately implies that

g4. A is closed under the rules of (13(:DN)) A.

Furthermore, it is easy to prove that if B C A is closed under the rules of
(B(TIN)) A then B is closed under the rules of (B(Z)*)) A. This, together with
(g4), implies that

g5. A is an answer set of B(llN).

Now, let

g6. A be an answer set of B(T~N).

Since for any rule

gT. l r �9 A \ A

there exists a default d such that

g8. default(d, l, F) �9 9" \ DN.

Hence, we can conclude that

g9. if r is a logic programming rule in (B(:D*)) A \ (13(T)N)) A then body(r) is not
satisfied by A.

This, together with (g6) and the fact that (B(~)N)) A C_ (B(T)*)) A, implies that

gl0. A is an answer set of B(:D*).

From (g2), (g5), (g6), and (gl0) we can conclude (gl).

The conclusion (g) follows from (gl) and the fact that A(B(T~*) is identical to

The above two lemmas show that for any static and hierarchical domain descrip-
tion D and a-literai 1 • U(D)

(i) Q(Z)) ~ l if 7~(ZIN) ~ 1 and

(ii) H(Z)) ~ 1 iff II(Zlg) ~ I.

where :D N is the normalization of :D.

Furthermore, for 1 �9 U(D), Q(D) ~ 1 and//(:D) ~ I.

208 Michael Gelfond and Tran Cao Son

Therefore, to prove the theorem 2, we will show that for l r U(2)),
n(2)N) F l n(2)N) F 1.
The above observation shows that in proving theorem 2 we can limit ourself
to static and normalized domain descriptions. Since for a static and normalized
domain description 2), the programs T~(2)) and/ / (2)) are simpler than for general
cases, for future references, we define these programs before continuing with the
proof of theorem 2.

For a static and normalized domain description 2), the program 7~(2)) consists
of the following rules

n(2))

l +- 11, . . . , ln, not d, not -~l. (1)

if default(d, l, l l , . . . , ln) e 23

d2 ~- l l , . . . , ln ,not dl. (2)

if d2 E 2),
default(d1, l, l l , . . . , in) E 2),
pre fer(d l ,d2) E 2),
and head(d2) = -~l

and the program B(2)) of H(2)) consists of the following rules:

f I +-- l l , . . . , ln, not -~l.
B(2)) ! if defaul t (d, l, 11,..., ln) E 2)

To continue with the proof we need the following definitions.

(1)

We will need the following technical observations.

L e m m a 10. Let 2) be a static and normalized domain description. Let A be an
answer set of T~(2)) and default(d, l, F) be a default in 2) such tha t l r A and
F C A. Then, -~l E A.

P roo f . First notice that, since 2) is normalized, it is hierarchical. Therefore, in
virtue of theorem 1, 1) is consistent. By Lemmas 6 and 7 this implies tha t T~(2))
is consistent. As was shown in 21 every answer set of consistent program is
consistent which implies consistency of A.

Since l +- F, not d, not -~l is a rule in T~(2)),/" _C A, l ~ A, and A is a consistent
answer set of 7~(2)), we have two cases:

Definit ion 8. Let 2) be a static domain description with the preference relation
P0. Let P1 be a well-ordered order defined on defaults in l) which extends P0.
The domain description ~ = 2) 0 {prefer(dl ,d2) : (dl,d2) E P1} is called a
completion of 2).

Reasoning with Prioritized Defaults 209

(i) -~l E A; or
(ii) d E A.

Consider the second case: d E A. Then there exists a rule (2) of 7~(7)) with the
head d whose body is satisfied by A. From construction of 7~ this implies that
there exists a default

1. default(d1,-q, A) E 7:)

such that

2. A C_ A and dl tg A.

From (1) and construction of 7~ we can conclude that T~ contains the rule

3. -~l +- ,5, not dl, not l.

Recall, that , by condition of the lemma, l r A. This, together with (2), implies
that the body of the rule (3) is satisfied by A. Therefore, -~l E A.

Let X be a set of literals in the language of Ts By XIt we denote X M lit(a).

L e m m a 11. Let 7) be a static and normalized domain description and 7) be
one of its completions. Then, for every answer set .4 of Ts there exists an
answer set A of T~(:D) such that Air = Ail.

P roo f . Since the preference relation in ~ is a well-ordered order among defaults,
we can enumerate the set of defaults in 7) by the sequence do, d l , . . . , dn,4

Let .4 be an answer set of 7~(7)). It is easy to see that, since 7) is normalized, A
is consistent.

We define a sequence of sets of literals Ai~ o in the language of 7~(Z)) as follows:

Ao = Air

An+ 1 =

An U {dn+l } if there exists di s.t.
(0a) default(di,-~head(dn+l), F) E 7),
(0b) prefer(di , dn+l) E 7),
(Oc) .l-' C An, and
(0d) dl • An.

An otherwise

oo A Let A -- Ui= o i. Obviously, A is consistent. We will prove that A is an answer
set of T~(:D) and All -- -4z.

4 For simplicity, here and in the following lemmas we assume that the set of defaults
in ~ has the cardinality less than or equal to the ordinal number w. However, the
proofs presented in this paper can be expanded to the general case.

210 Michael Gelfond and Tran Can Son

By the construction of A, we have that All -- ,411. Hence, to prove the lemma we
need to prove that A is an answer set of TO(/)). To do that, we will show that A
is a minimal set of literals which is closed under the rules of (Tr A.

Since D is a normalized domain description, (7~(D)) A consists of the following
rules:

(n (D)) A = d2 +- 1".

if there is d s.t.
(la) default(d, l, r) e ~ ,
(lb) d C A , a n d ~ l C A

if there is dl s.t.
(2a) default(d1,-~head(d2), F) E Z),
(2b) prefer(d1, d2) E ~ , and
(2c) 41 • A.

(1)

(2)

Let r be a rule of (T~(~D)) A whose body is satisfied by A, i.e.,

a. FC_A.

We consider two cases:

(i) r is of the form (1).

Since A l = .zit, from (lb) and (a) we conclude that

b. -,l r ffl and F C_ fl.

By Lemma 10, this, together with (la) implies that l E .4 and hence l E A,
i.e.,

c. A is closed under the rules of type (1) of (Ti(D)) A.
(ii) r is of the form (2). From (2a)-(2c) and (a), by the construction of A, we

conclude that d2 E A, i.e.,

d. A is closed under the'rules of type (2) of (T~(D)) A.

From (c) and (d) we can conclude that

e. A is closed under the rules of (Ti(D)) A.

We now prove the minimality of A.

Assume that there exists a set B C A which is closed under the rules of (T~(:D)) A.
We consider two cases:

Reasoning with Prioritized Defaults 211

(i) Air \ Bit # 0.

Since 7) is hierarchical, there exists a rank function rank of 7:) that satisfies
the conditions of Definition 5.

Let l E AIz \ Bit such that

f. rank(l) = rain{rank(p) : p E Air \ Bit }.

Since l E A and All = -4It, we have that 1 E A. Let

ft. A + = {d: default(d, l, F) �9 :D, F C_ .4}.

Since .4 is an answer set of Tr we have that

Since the preference relation in ~ is well-ordered, there exists a minimal
element dj of A + such that

f3. prefer(dj, dk) �9 ~ for dk �9 A t \ {dj}.

We will prove that

g. dj CA.

Assume the contrary, dj �9 ii. By construction of Tr we conclude that
there exists a default dn such that

gl. default(dn,-,l, A) �9 :D,

g2. A C_ .zl, and

g3. prefer(dn, dj) �9 "D.

It follows from (f3) and (g3) and the fact that the preference order in ~ is
well-ordered that

g3. prefer(dn, d) �9 l) for d �9 A +.

This, together with (gl) and (g2), implies that

g4. d �9 ,zl for d �9 A +.

which, in turn, implies that there exists no rule with the head l in Tr
whose body is satisfied by A, i.e., l r .zl. This contradiction proves (g).

We now prove that

h. dj f A.

Assume that (h) does not hold, i.e.,

hl. d j � 9

Using the definition of A and the fact that A and A coincide on a-literals
we can easily check that there is di such that

52. default(di,-,l, F) �9

212 Michael Gelfond and Trail Cao Son

ha. prefer(di, dj) e 7)

h4. F C.4

From construction of Tr and conditions (h2), (h3) we have that

h5. dj +- F, not di �9 T~(7))

First assume that

h6: d~ t~

Then, from (h4), (h5), and the fact that A is an answer set of ~(7)) we
conclude that dj �9 A which contradicts (g). Therefore,

h7. di �9

This implies that there is a default dk of the form default(dk, l, A) �9 7)
such that

hS. A C . 4

h9. prefer(dk, di) �9 7)

Since the preference relation in 7) is total from (h3) and (h9) we conclude
that

hl0. prefer(d~, dj) �9 Z)

which contradicts dj being the minimal element of A +. This contradiction
proves (h).

Recall that head(dj) = I and let O be its body. Since dj is best for 1 in A
we have that

k. OC_A

Since l �9 A and A is consistent, -~l r A. This, together with (h), implies
that

1. l ~ O �9 (n (v)) A.

Since l r B and B is closed under the rules of (Tr A, from (1) we can
conclude that there exists a literal l ~ �9 O such that l ~ ~ B. This, together
with (k), implies that

m. ll E A \ B .

Since 7) is normalized and hence hierarchical, from condition 5 of Definition
5 we have that rank(l ~) < rank(1). This, together with (m), contradicts with
(f) which implies that All \ Bit = 0.

(ii) AI, = B~. Since B C A, there exists dj �9 A \ B. By the construction of A,

n. there exists a default di �9 7) of the form default(di,-~head(dj), F) such
that

nl. prefer(d~, dj) �9 7), di r A and

Reasoning with Prioritized Defaults 213

n2. F_C A.

(nl), together with the definition of (7E(7))) A implies that

n3. dj e- F e (n(D)) A.

This, together with the assumption that B is closed under the rules of
(TE(:D)) A and Bll = AI~ , implies tha t dj E B which contradicts the selection
ofd~.

We showed that no proper subset B of k is closed under the rules of (Ts A
and hence A is an answer set of Ts <>

The next lemma is the reverse of Lemma 11.

L e m m a 12. Let 7) be a static and normalized domain description and A be an
answer set of 7~(V). Then, there exists a completion 7) of 2) and an answer set
.4 of 7E(7)) such that ,4It = Air.

P roo f . We start with introducing some notation. Let P be a binary relation.
By P* we denote the transitive closure of P. For a a-literal l, we define,

A + = {d: de fau l t (d, l, F) e 7), F C_ A},

A~- = {d: default(d,-~l, IF) e 7), F C_ A},

Al = A + U A~-, and

A t = {d �9 D : head(d) �9 {1,-~I}}

By <l we denote the order induced on Az by the preference relation of 7).

In our further discussion we need the following well known result:

(*) if P is a well-founded strict partial order then there exists a well-founded
total order containing P.

Now we start our construction of 7). Notice that if I �9 A then, since <~ is well-
founded, it is easy to prove that there exists a default d �9 A + which is a minimal
element in Al. Let us denote such a default by d(1).

Let

Xl(l) = {prefer(d(l) , d): d �9 A~-).

X2(I) = {prefer(d1, d2): prefer(d1,42) �9 7), dl, d2 �9 At}.

For every atom p �9 lit(a) we define the set Xp as follows:

(XI(p) UX2(p))* i f p � 9

X v = ~ (Xl(-~p) U X2(p))* if -~p �9 A
/
, X2 (p) otherwise

214 Michael Gelfond and Tran Cao Son

It is easy to see that Xp is a well-founded, strict partial order on Av. Let Yp be
a well-founded, total order on AP which extends Xp (existence of Yp is ensured
by (*)). Obviously, Upeatom(a) Yp is a well-founded, strict partial order on the
set of defaults of 7) which extends the preference relation in 2).

Let Y be a well-founded, total order on the set of defaults of 7) which extends

Uve~to,~(.) Yr.
Let

~ = ~ u Y .

It is easy to see that Z) is a consistent completion of 7).

Now we will construct an answer set A of 7~(D) such that -411 = A~.

Ui = {l : l E lit(a) f3 heads(7~(~)) s.t. rank(l) < i}U
{d e heads(T~(l))) : rank(head(d)) < i}.

The sequence U = U0, U1, . . . is monotone and continuous. Using the property of
the rank function from the definition of hierarchical domain description it is not
difficult to check that each Ui is a splitting set of T~(~) and that U Ui is equal
to the set of all literals occurring in T~(~). Hence, U is a splitting sequence of
n (D) .

Let Ti be a collection of all the rules from 7E(~) whose heads belong to U/and
let Ai = A f3 Ui.

We define a sequence -40, A1, . . . such tha t

la. Ai is an answer set of Ti.

lb. -4ill = Ait

(i) Let Ao = Ao

Since both sets are empty conditions (la) and (lb) are satisfied.

(ii) assume that conditions (la) and (lb) are satisfied by the already constructed
set Ai Let T be the result of partial evaluation of the program Ti+l with respect
to the set -4i.

T will consists of the rules

(r2) l +- not d, not ~l where l is a a-literal.

and

(rl) d2 4-- not dl.

Using the argument from Lemma 6 we can show that the program consisting of
the rules of T of the form (rl) contains no negative odd cycles and therefore is
consistent. Let So be an answer set of this program and $1 = (Ai+l \ Ai)ll. We
will show that

Reasoning with Prioritized Defaults 215

2. S = S o U S 1

is an answer set of T. By the splitting set theorem it suffices to show that $1
is an answer set of the partial evaluation of rules of the type (r2) from T with
respect to So. We denote this partial evaluation by r . This, in turn, is true iff

3. S1 = 71 "S1.

To prove (3) let us first assume that

4. l E S 1 .

This implies that l e A and hence At ~ 0. Consider d E At which is minimal
with respect to well-ordering induced on At by the preference relation from 7).
It is easy to check that, since l e A, head(d) = 1 and body(d) C_ A. Since :D is
hierarchical we have that body(d) C_ Ai, and hence, by inductive hypothesis,

4a. body(d) C .4i.

Since d is minimal, by construction of 0 we have that there is no rule in T with
d in the head. Hence,

4b. d r So.

By construction of T~(0) and conditions (4a) and (4b) we have that

4c. l +- not -~l E ~r.

Since I E A and A is consistent we conclude that -~l r Ai+l. Therefore, -~l r $1.
Hence,

4d. l Elr sl

Suppose now that

5. l E r s l .

This implies that there is d and F _C A such that

default(d, l, F) E T).

From (4d) we have that -~l r A and hence, by Lemma 10 we conclude that I E A.
Therefore l E $1 which concludes the proof of (3).

By the splitting set theorem, -41+1 = -4i U S is an answer set of Ti+l. Obviously,
-4i+1 also satisfies condition (lb). Now let

i i = UAi .

From construction we have that Aiz = Ail. Using the splitting sequence theorem
it is easy to check that .4 is an answer set of 7~(75).

L e m m a 13. Let 7) be a static and normalized domain description and A be an
answer set of T~(/)). Then, All is an answer set of B(7)).

216 Michael Gelfond and Tran Cao Son

P r o o f . Since 79 is normalized, A is consistent, it suffices to prove that All is a
minimal set of literals closed under the rules of B(79) AI~ .

Let

a. I +- F E B(79) AI~

and

b. r C_ Az.

By construction of B(79) and of B(/)) Al~ , (a) implies that there exists a default
d E 79 such that

c. default(d, l, El) e 2) and -~l • Air.

Since A is an answer set of 7~(79), from (c), (b), and Lemma 10, we can conclude
that 1 E A and hence l E Air which proves that

d. All is closed under the rules of B(79) Ab.

We now prove the minimality of All.

Assume that there exists a set B c All which is closed under the rules of B(79) AI~ .
We will prove that the set of literals

C = B U {di :di e A}

is closed under the rules of (7~(79)) A.

Since C contains every d / i n A, C C A, and A is an answer set of (7~(79)) A, we
have that

e. C is closed under the rules of the form (2) of (~(79))A.

Let r be a rule of the form (1) of (T~(79)) A whose body is satisfied by C, i.e.,

f l . I ~-- F e (~r~(D))A and

f2. F C C .

By construction of (n(79)) A, (fl) implies that there exists a default d such that

gl . default(d, l, IF) e 79, and

g2. -~l r A.

By definition of B(79) and B(79) AI', and from (gl) and (g2) we conclude that

h. l +-- F is a rule of/~(79) AI' .

which, together with (f2) and the assumption that B is closed under rules of
(B(79)) AI~ implies that l E B and hence I E C which, in turn, implies that

j. C is closed under the rule of the form (1) of (7~(79)) A.

From (e) and (j) we can conclude that C is closed under the rules of (7~(79)) A
which together with C C A contradicts the fact that A is an answer set of T~(79).
This, together with (d), implies that All is an answer set of B(79).

Reasoning with Prioritized Defaults 217

L e m m a 14. Let :D be a static and normalized domain description with a well-
ordered preference order P and let A be an answer set of Ts Then, All is a
preferred answer set of / /CD).

P r o o f . Lemma 13 shows that AI~ is an answer set of B(:D). We need to show
that Air = Z where Z = C<~ (BCD)) and C<~ (B(:D)) is defined as in Definition
6.

Let do, d l , . . , be the sequence of defaults in :D, ordered by P .

Notice that

l ~-- not ~l E Az BCD)

if there exists a default d such that

0a. defau l t (d , l, El) e :D, and

0b. F C AI,.

(i) We first prove that Z C Air. Let

a. I E Z .

This implies that there exists a default di E :D such that

b l . di satisfies (0a) and (0b), and

b2. the rule l +-- not I is not defeated by Si-1. (see Definition 6).

Let i be the minimal integer such that

c. di satisfies (bl) and (b2).

From (c) and (b2) and the definition of Z, we can conclude that

d. there exists no j < i and A C_ AIz such that defaul t (d j , -~l , A) �9 :D.

By construction of 7~(:D) and (d), we conclude that there exists no rule of
7~(:D) with the head di whose body is satisfied by A, which implies that

e. d i C A .

Furthermore, for every default d~ such that i < k and
default(d~,-~l , A) �9 :D, it follows from (bl), (e), and the construction of
(7~(:D)) A that

f. d k E A .

This implies that

g. there exists no rule of (7~(:D)) A with the head -~l whose body is satisfied
byA.
This implies that

h.-~l CA.

From (h), (bl) , and Lemma 10, we can conclude that I �9 A and hence 1 E Air
which, together with (a) proves that

j. Z C_ AI,.

218 Michael Gelfond and Tran Cao Son

(ii) We now prove that All _c Z. Let

k. 1E All.

Since A is an answer set of T~(79), there exists a default d such that

I. default(d, l, F) e 79,

m. r ' C_ A, and -~l r A.

which implies that l ~ not -~l is a rule of AI~B(79). This indicates that

nl. I E Z or

n2. ~l E Z.

If (n2) holds, then, by (j), -~l E All, which, together with 1 E A, contradicts
the fact that All is consistent. Hence, (nl) holds, i.e., 1 E Z which, together
with (k) entails

o. All C Z.

The lemma is proved by (o) and (j).

We now prove the reverse of Lemma 14.

L e n a m a 15. Let 79 be a static and normalized domain description with a well-
ordered preference order P . Let A be a preferred answer set of II(79). Then,
there exists an answer set B of 7s such that Bit = A.

P r o o f . First, notice that since 79 is normalized, ~(79) is consistent and therefore,
by Lemma 14, B(79) is consistent. Thus, A is consistent.

Let d0 ,d l , . . , be the sequence of defaults in 79, ordered by P . We define a se-
quence of sets of literals B ~ I as follows.

Bo = B

B n + l ~-

Bn U {dn+l } if there exists i < n s.t.
(0a) default(di,-~head(dn+l), F) e D,
(0b) T' C Bn, and
(0c) di ~ Bn.

Bn otherwise

Reasoning with Prioritized Defaults 219

Let B = Ui=oB,.~ �9 Obviously B is consistent and BI~ = A. We prove that B is an
answer set of Tr i.e., B is a minimal set of literals closed under the rules of
(Tr B. By definition, (Tr B consists of the following rules:

l ~ - F .

(n (: D)) B = d2 4 - 1".

if there is d s.t.
(la) default(d, l, 1") e 9 ,
(lb) d r B, and -,l r B

if there is dl s.t.
(2a) default(d1, l, 1"1) e :D,
(2b) prefer(d1, d2) E 9 ,
(2c) head(d2)=-~l , and
(2d) dl • B.

(1)

(2)

Let r be a rule of (Tr B whose body is satisfied by B, i.e.,

a. 1"C_B.

We consider two cases:

(i) r is of the form (1).

By the construction of B(:D) we have that

b. l 4- 1", not -~l E B(D).

From Bl = A, (a), and (lb), we conclude that

c. 1" C_ A and ~l C. A.

Since A is an answer set of B(CD), from (b) and (c) we conclude that l E A
and hence, I E B, which proves that

d. B is closed under the rules of the form (1) of (TO(T))) B.
(ii) r is a rule of form (2).

By construction of B and from (a) and (2a)-(2d), we can conclude that
d2 E B which implies that

e. B is closed under the rules of the form (2) of (T~(T))) B.

It follows from (e) and (d) that

f. B is closed under the rules of (Ti(D)) B.

We now prove the minimality of B.

Assume that there exists a set of literals C C B and C is closed under the rules
of (Tr B. We will prove that

220 Michael Gelfond and Tran Cao Son

g. Cll is closed under the rules of B(79) A.

Let r be a rule of B(79) A whose body is satisfied by Cl, i.e., r is of the form

hl. l ~- F �9 (B(79)) A, and

h2. F _C Cll.

By construction of/3(79) A, we conclude that there exists a default di in 79:) such
that

j l . default(di, l, F) �9 79, and

j2. -~l r A.

(jl) and (h2) imply that the rule l +- not -~l belongs to A/3(79) which, together
with 02) and the assumption that A is a preferred answer set of H(79), implies
that l �9 A.

We will prove that

l .d~C_B.

Assume the contrary, i.e.,

m . d ~ e B .

By the construction of B, there exists j < i such that

nl . default(dj,-~l, A) �9 7),

n2. A _C B, and

n3. dj C B .

From (nl) and (n2) and the construction of A3(79), we can conclude that

p. ~l +-- not l is a rule of AB(79).

From l �9 A, the fact that A is a preferred answer set of / / (79) , and (p), we can
conclude that there exists a k < j such that

ql . default(dk, l, dg) �9 79,

q2. {9 _C A, and

q3. for every o, o < k, if default(do,-~l, A) �9 79, then A q: A.

From (q3) and the definition of ~(79)s we have that

r. d k C B .

From (r), (ql), (q2), and the construction of B we have that

s.d#�9 C_B

which contradicts with (n3), i.e., we have proved (1).

Reasoning with Prioritized Defaults 221

It follows from (jl), (j2), and (1) that l +-- F 6 (R(7))) B which, together with
the assumption that C is closed under the rules of (7~(7))) B and F _C C, implies
l E C, and hence, I E Cll which proves (g).

Since A is an answer set of B(7)), from (g) we can conclude that CIt = A, which,
together with the assumption that C C B, implies that there exists some di 6 7)
such that

t. d i E B \ C .

By the construction of B, (t) implies that there exists a j < i such that

ul . default(dj, ~l, A) 6 7),

u2. A _C B, and

u3. d i • B.

Since j < i, by the ordering P, we conclude that prefer(di,di) 6 7). This,
together with (ul) and (u3), implies that

v . di ~- A is a rule of (7~(7))) B.

It follows from (u2), (v), and the assumption that C is closed under the rule of
(7~(7))) B that d~ E C which contradicts with (t). In other words, B is a minimal
set of literals which is closed under (R(7))) B, i.e., B is an answer set of 7~(7)).
0

We are now ready to prove the Theorem 2.

P r o o f o f T h e o r e m 2. Let 7)N be the normalization of a static domain descrip-
tion 7). By Lemma 8, 7) ~ holds_by_default(1) iff

a. l e U(7)) or n(7)g) ~ l,

and by Lemma 9 , / / (7)) ~ l iff

b. 1 e U(7)) or II(7)g) ~ I.

By Lemmas 12-14, we have that

c. n(7)N) t n(7)N) t.

The conclusion of theorem 2 follows immediately from (a), (b), and (c). Q

R e f e r e n c e s

1. Baader, F. and Hollunder, B,: Priorities on Defaults with Prerequisite and their
Application in Treating Specificity in Terminological Default Logic, Journal of
Automated Reasoning, 15:41-68, 1995.

2. Baral, C. and Gelfond M.: Logic Programming and Knowledge Representation,
Journal of Logic Programming, 19,20: 73-148, 1994.

222 Michael Gelfond and Tran Cao Son

3. Brass, S. and Dix, J.: A disjunctive semantics based on unfolding and bottom-up
evaluation, in Bernd Wolfinger, editor, Innovationen bei Rechen- und Kommunika.
tionssystemen, (IFIP '94-Congress, Workshop FG2: Disjunctive Logic Program-
ming and Disjunctive Databases), pages 83-91, 1994, Springer.

4. Brass, S. and Dix, J.: Characterizations of the Disjunctive Stable Semantics by
Partial Evaluation, Journal of Logic Programming, 32(3):207-228, 1997.

5. Brewka, G.: Reasoning about Priorities in Default Logic, Proc. AAAI-94, Seattle,
1994

6. Brewka, G.: Adding Priorities and Specificity to Default Logic, Proc. JELIA 94,
Springer LNAI 838, 247-260, 1994

7. Brewka, G.: Preferred Answer Sets, Proc. ILPS'97 Postconference Workshop, 76-
88, 1997.

8. Covington M.A., Nute D., and Vellino A.: Prolog Programming in Depth, Prentice
Hall, N J, 1997.

9. Chen, W. and Warren, D.S.: Query Evaluation under the Well-Founded Semantics,
The Twelfth ACM Symposium on Principles of Database System, 1993.

10. Chen, W.: Extending Prolog with Nonmonotonic Reasoning, Journal of LP, 169-
183, 1996.

11. Delgrande, J.P., Schaub, T.H.: Compiling Reasoning with and about Preferences
into Default Logic, IJCAi'97, (1997).

12. Dix, J.: Classifying Semantics of Logics Programs. In Proc. of the International
Workshop in Logic Programming and Nonmonotonic Reasoning, 166-180, Wash-
ington, DC, 1991.

13. Jfirgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: I.
Strong Properties, Fundamenta Informaticae, XXII(3):227-255, 1995.

14. Jtirgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: II.
Weak Properties, Fundamenta Informaticae, XXII(3):257-288, 1995.

15. Dung, P.M.: On the Relations Between Stable and Well-Founded Semantics of
Logic Programming, Theoretical Computer Science 105:7-25 (1992).

16. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning and Logic Programming and N-person game. AI (77)
2:321-357 (1995).

17. Fages, F.: Consistency of Clark's Completion and Existence of Stable Models,
Technical Report 90-15, Ecole Normale Superieure, 1990.

18. Fishburn, P.C.: Nonlinear Preference and Utility Theory (Johns Hopkins University
Press, Baltimore, 1988).

19. Gabbay, D.: Theoretical Foundation for Nonmonotonic Reasoning in Experts Sys-
tem. In K. Apt, editor, Logics and models of Concurrent Systems, 439-457,
Springer Verlag, NY, 1985.

20. Gelfond, M., Gabaldon, A.: From Functional Specifications to Logic Programs,
355-370, Proc. of ILPS'97, 1997.

21. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases, New Generation of Computing 365-387, 1991.

22. Geffner, H., Pearl, J.: Conditional Entailment: Bridging two Approaches to Default
Reasoning, Artificial Intelligence 53, 209 - 244, 1992.

23. Grosof, B.N: Prioritized Conflict Handling for Logic Programs, 197-212, Proc. of
ILPS'97, 1997.

24. Gordon, T.: The Pleadings Game: An Artificial Intelligence Model of Procedural
Justice. Ph.D. Dissertation, TU Darmstadt.

25. Kosheleva, O.M. and Kreinovich, V.Ya.: Algorithm Problems of Nontransitive
(SSB) Utilities, Mathematical Social Sciences 21 (1991) 95-100.

Reasoning with Prioritized Defaults 223

26. Lehnmann, D., Kraus, S., and Magidor, M.: Nonmonotonic Reasoning, Preferential
Models and Cumulative Logics, AI (44) 1: 167-207, 1990.

27. Lifschitz, V., Turner, H.: Splitting a Logic Program, Proc. of ICLP, MIT Press,
1994.

28. Marek, W. and Truszczynski, M.: Nonmonotonic Logic: Context-Dependent Rea-
soning, Springer, 1993.

29. Nelson, D.: Constructible Falsity, JSL 14(1949), 16-26.
30. Nute, D.: A Decidable Quantified Defeasible Logic. In Prawitz, D., Skyrms, B., and

Westerstahl, D. (eds): Logic, Methodology and Philosophy of Science IX. Elsevier
Science B.V., 263-284, 1994.

31. Pearce, D.: A New Logical Characterization of Stable Models and Answer Sets,
NMELP'96, Springer, 57-70, 1997.

32. Prakken, H. and Sartor, G,: On the relation between legal language and legal
argument: assumptions, applicability and dynamic priorities. Proc. of the Fifth
International Conference on AI and Law, Maryland, College Park, MD USA, 1-
10, 1995.

33. Prakken, H. and Sartor, G.: Argument-based extended logic programming with
defeasible priorities. Journal of applied non-classical logics, 1,2 (7), 25-77, 1997.

34. Reiter, R.: On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and data bases, 55-76, 1978.

35. Reiter R.: A Logic for Default Reasoning in Readings in Nonmonotonic Reason-
ing, Edited by M. L. Ginsberg, Morgan Kaufmann Publishers, Inc., Los Altos,
California (1987) 68-93

36. Zhang, Y. and Foo , N.Y.: Answer Sets for Prioritized Logic Programs, 69-84,
Proc. of ILPS'97, 1997.

Generalizing Updates: From Models to Programs

J o ~ Alexandre Leite*,** and Luis Moniz Pereira**

Centro de Intelig~ncia Artificial (CENTRIA)
Departamento de Inform~tica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal
(jleitellmp~di.fct.unl.pt

Abstract. Recently the field of theory update has seen some improve-
ment, in what concerns model updating, by allowing updates to be spec-
ified by so-called revision programs. The updating of theory models is
governed by their update rules and also by inertia applied to those literals
not directly affected by the update program. Though this is important,
it remains necessary to tackle as well the updating of programs specify-
ing theories. Some results have been obtained on the issue of updating a
logic program which encodes a set of models, to obtain a new program
whose models are the desired updates of the initial models. But here the
program only plays the rSle of a means to encode the models.
A logic program encodes much more than a set of models: it encodes
knowledge in the form of the relationships between the elements of those
models. In this paper we advocate that the principle of inertia is advan-
tageously applied to the rules of the initial program rather than to the
individual literals in a model. Indeed, we show how this concept of pro-
gram update generalizes model or interpretation updates. Furthermore,
it allows us to conceive what it is to update one program by another, a
crucial notion for opening up a whole new range of applications concern-
ing the evolution of knowledge bases. We will consider the updating of
normal programs as well as these extended with explicit negation, under
the stable semantics.
Keywords: Updates

1 Introduct ion and Mot ivat ion

When dealing with modifications to a knowledge base represented by a proposi-
tional theory, two kinds of abs t rac t frameworks have been distinguished both by
Keller and Winslett in KW85 and by Katsuno and Mendelzon in KM91. One,
theory revision, deals with incorporating new knowledge about a static world.
The other, dealing with changing worlds, is known as theory update . This paper
concerns only theory update.

So far, most of the work accomplished in the field of theory update PT95
MT94 KM91has addressed the modification of models on a one by one basis,

* Partially supported by PRAXIS XXI scholarship no. BM/437/94.
** Partially supported by project MENTAL (PRAXIS XXI 2/2.1/TIT/1593/95.)

Generalizing Updates: From Models to Programs 225

by allowing updates to be specified by so-called revision programs. The field of
theory update has seen several major achievements, namely the embedding of
revision programs into logic programs MT94, arbitrary rule updates and, the
embedding into default logic PT95.

The update of models is governed by update rules and also by inertia applied
to the literals not directly affected by the update program. Though this is impor-
tant, it remains necessary to tackle as well the updating of programs specifying
theories, as opposed to updating its models. Some results have been obtained in
what concerns the updating of a logic program which encodes a set of models,
to obtain a new program whose models are the desired justified updates of the
initial models AP97. But here the program only plays the r61e of a means to
encode the models.

A logic program encodes much more than a set of models: it encodes knowl-
edge in the form of the relationships between the elements of those models. In
this paper we advocate that the principle of inertia is advantageously applied to
the rules of the initial program rather than to the individual literals in a model.
Indeed, we show how this concept of program update generalizes model or in-
terpretation updates. Furthermore, it allows us to conceive what it is to update
one program by another. A crucial notion for opening up a whole new range of
applications concerning the evolution of knowledge bases. We will consider the
updating of normal programs as well as these extended with explicit negation,
under the stable semantics.

To show that a logic program encodes relationships between the elements of
a model, which are lost if we simply envisage updates on a model by model basis,
as proposed in KM91, consider the following situation where an alarm signal
is present:

Example 1. Take the normal program P and its single stable model M:

P : go_home +- not money
go_restaurant ~- money
money +-

M = {money, go_restaurant}

Now consider an update program stating that the person has been robbed and
that a robbery leaves the person without any money:

U : out(money) +- in(robbed)
in(robbed) +-

According to MT94 and model updating we obtain as the single justified update
of M the following model:

M u = {robbed, go_restaurant}

Stating that, although we know that the person doesn't have any money, he/she
still goes to the restaurant and not home. In AP97 the authors propose a

226 Jo~ Alexandre Leite, Luis Moniz Pereira

program transformation that produces a new program whose models are exactly
the justified revisions of the models of the initial program, according to the
definition proposed in MT94, and so produces exactly the result above.

But looking at the program and at the update program, we arguably conclude
that My doesn't represent the intended meaning of the update of P by U for
a commonsensical reasoner. Since "go_restaurant" was true because the person
had "money", the removal of "money" should make one expect "go_restaurant"
to become false. The same kind of reasoner expects "go.home" to become true.
The intended update model of the example presumably is:

P

M v = {robbed, go_home} 0

Another symptomatic example, but using explicit negation is this:

Example 2. Given the statements:

- If I've seen something that is unexplainable then I've seen a miracle.
- If I've seen a miracle then God exists.
- I've seen something.
- It is not explainable.

They can be represented by the following extended logic program:

P : seen_miracle +-- seen_something, not explainable
god_exists +-- seen_miracle
seen_something ~-
-~explainable +--

whose answer-set M is:

M = (seen_something,-~explainable, seen_miracle, god_exists}

Now consider the following update program U stating that we now have an
explanation:

U : in(explainable) +--

According to model updating we obtain as the single justified update of M the
following model My:

My = {seen_something, explainable, seen_miracle, god_exists}

Once again we arguably conclude that this model doesn't represent the intended
meaning and that the correct model should be:

My = (seen_something, explainable} 0

The purpose of this paper is to generalize model updates to logic program
updates. The former are a special case of the latter since they can be coded as
factual programs. To do this we must first consider the rSle of inertia in updates.

Generalizing Updates: From Models to Programs 227

Newton's first law, also known as the law of inertia, states that: "every body
remains at rest or moves with constant velocity in a straight line, unless it is
compelled to change that state by an unbalanced force acting upon it" (adapted
from Principia). One often tends to interpret this law in a commonsensical way,
as things keeping as they are unless some kind of force is applied to them. This is
true but it doesn't exhaust the meaning of the law. It is the result of all applied
forces that governs the outcome. Take a body to which several forces are applied,
and which is in a state of equilibrium due to those forces canceling out. Later
one of those forces is removed and the body starts to move.

The same kind of behaviour presents itself when updating programs. Let us
make the parallel between a program rule and a physical body with forces applied
to it, the body of the rule being the forces applied to the head. In the same way
we have to determine whether the forces are still in a state of equilibrium, before
concluding that a physical body is at rest or moves with constant velocity in a
straight line due to inertia, when it comes to the updating of a program we have
to check if the truth value of a body which determines the truth value of a head
hasn't changed before concluding the truth value of the head by inertia. This is
so because the truth value of the body may change due to an update rule.

Going back to the previous example, before stating that "god_exists" is true
by inertia since it wasn't directly affected by the update program, one should
verify for instance whether "explained" is still not true, for otherwise there would
be no longer a way to prove "god_exists" and therefore its truth value would no
longer be 'true'.

To conclude, we argue that the truth of any element in the updated models
should be supported by some rule, i.e. one with a true body, either of the update
program or of the given program, in face of new knowledge.

The remainder of this paper is structured as follows: in Sect.2 we recapitulate
some background concepts necessary in the sequel; in Sect.3 we formalize the
normal logic program update process and present a transformation, reminiscent
of the one in AP97, providing the intended results; we conclude the section
by showing that the transformation generalizes the one set forth in PT95; in
Sect.4 we extend our approach to the case where the program to be updated is
a logic program extended with explicit negation, and in Sect.5 we conclude and
elaborate on future developments.

2 Review of Interpretation Updates

In this section we summarize some of the definitions related to the issue of theory
update. Some of these definitions will be slightly different, though equivalent to
the original ones, with the purpose of making their relationship clearer.

For self containment and to eliminate any confusion between updates and
revisions, instead of using the original vocabulary of revision rule, revision pro-
gram and justified revision, we will speak of update rule, update program and
justified update, as in AP97.

228 Jo~) Alexandre Leite, Luls Moniz Pereira

The language used is similar to that of logic programming: update programs
are collections of update rules, which in turn are built out of atoms by means of
the special operators: +-, in, out, and ", ".

Def ini t ion 1 (U p d a t e P rog rams) . MTg4 Let U be a countable set of atoms.
An update in-rule or, simply, an in-rule, is any expression of the form:

in(p) ~ in(q1), ..., in(qm), out(si), ..., out(Sn) (1)

where p, qi, 1 < i < m, and sj, 1 < j < n, are all in U, and rn, n > O.
An update out-rule or, simply, an out-rule, is any expression of the form:

out(p) +- in(q1), ..., in(qm) , out(s1), ..., out(sn) (2)

where p, qi, 1 < i < m, and sj, 1 <_ j <_ n, are all in U, andre, n >_ O. A
collection of in-rules and out-rules is called an update program (UP). Q

Definit ion 2 (Necessa ry Change) . MT94 Let P be an update program with
least model M (treating P as a positive Horn program). The necessary change
determined by P is the pair (Ip, OR), where

Ip = {a: in(a) e M} Op = {a: out(a) e M } (3)

Atoms in Ip (resp. OR) are those that must become true (resp. false). If l n O =
{} then P is said coherent. Q

Intuitively, the necessary change determined by a program P specifies those
atoms that must be added and those that must be deleted as a result of a given
update, whatever the initial interpretation.

Definit ion 3 (P-Jus t i f i ed U p d a t e) . MT94 Let P be an update program and
Ii and Iu two total interpretations. The reduct Px~lh with respect to Ii and Iu is
obtained by the following operations:

- Removing from P all rules whose body contains some in(a) and a ~ Iu;
- Removing from P all rules whose body contains some out(a) and a E Iu;
- Removing from the body of any remaining rules of P all in(a) such that

a e I~;
- Removing from the body of any remaining rules of P all out(a) such that

a r Ii.
Let (I , 0) be the necessary change determined by PI=II~. Whenever PI~tI~

is coherent, Iu is a P-justified update of Ii with respect to P iff the following
stability condition holds:

X~ = (s - O) U I <> (4)

The first two operations delete rules which are useless given I~. The stability
condition preserves the initial interpretation in the final one as much as possible.

Generalizing Updates: From Models to Programs 229

3 N o r m a l L o g i c P r o g r a m U p d a t i n g

As we've seen in the introduction, updating on the basis of models isn't enough
if we want to take advantage of the information encoded by a logic program and
not expressed in the set of its models.

When we generalize the notion of P-justified update, from interpretations to
the new case where we want to update programs, the resulting update program
should be made to depend only on the initial program and on the update pro-
gram, but not on any specific initial interpretation. An interpretation should be
a model of a normal logic program updated by an update program if the truth
of each of its literals is either supported by a rule of the update program with
true body in the interpretation or, in case there isn't one, by a rule of the initial
program whose conclusion is not contravened by the update program.

Another way to view program updating, and in particular the r61e of inertia,
is to say that the rules of the initial program carry over to the updated program,
due to inertia, instead of the truth of interpretation literals as in AP97, just
in case they are not overruled by the update program. This is to be preferred
because the rules encode more information than the literals. Inertia of literals is a
special case of rule inertia since literals can be coded as factual rules. Accordingly,
program updating generalizes model updating.

To achieve rule inertia we start by defining the sub-program of the initial
program which contains the rules that should persist in the updated program due
to inertia. We use this program together with the update program to characterize
the models of the resulting updated program, i.e. the program-justified updates,
whatever the updated program may be. Finally, we present a joint program
transformation of the initial and the update programs, which introduces inertia
rules, to produce an updated program whose models are the required program-
justified updates. Stable model semantics and its generalization to extended logic
programs GL90 will be used to define the models of programs.

We start by defining a translation of an update program written in a language
that does not contain explicit negation, into a normal logic program extended
with explicit negation.

Defini t ion 4 (In t e rp re t a t ion Res t r ic t ion) . Given a language g. that does
not contain explicit negation -~, let M-~ be an interpretation, of the language ~ ,
obtained by augmenting f~ with the set ~ = {-~A : A E f.}.

We define the corresponding restricted interpretation M, of ~, as:

M = M-, restricted to ~ (~ (5)

Defini t ion 5 (Transla t ion of UPs into LPs) . Given an update program UP,
in the language f~, its translation into an extended logic program U in the lan-
guage ~-~ is obtained from UP by replacing each in-rule (1) with the correspond-
ing rule:

P +'- ql, ...qm,not sl, ...,not Sn (6)

and similarly replacing each out-rule (2) with the corresponding rule:

~P +-ql, ...qm,not sl, ...,not sn ~ (7)

230 Jo~x) Alexandre Leite, Luis Moniz Pereira

From now onwards, and unless otherwise stated, whenever we refer to an up-
date program we mean its reversible translation into an extended logic program
according to the previous definition. Notice that such programs do not contain
explicitly negated atoms in the body of its rules.

Def in i t ion 6 (Iner t ia l Sub-Program) . Let P be a normal logic program in
the language f~, U an update program in the language ~-~ and M-~ an interpre-
tation of ~.-~. Let:

Rejected(M-.) = {A +- body e P : M-~ ~ body
and 3-~A +-- body I E U : M-~ ~ body' }

(8)

where A is an atom. We define Inertial Sub-Program PinerUat (M-~) as:

PinerUat (M-~) = P - Rejected(M~) 0 (9)

Intuitively, the rules for some atom A that belong to Rejected(M-.) are those
that belong to the initial program but, although their body is still verified by
the model, there is an update rule that overrides them, by contravening their
conclusion.

Def in i t ion 7 (<P ,U>-Jus t i f i ed Updates) . Let P be a normal logic program
in the language E., U an update program in the language ~-~, and M an inter-
pretation of the language E.. M is a <P,U>-Justified Update of P updated by
U, iff there is an interpretation M-~ orE.. such that M-~ is an answer-set of P*,
where

P* = Pinertiat (M~) + U 0 (10)

Notice that the new definition of program-justified update doesn't depend
on any initial model. Once again this is because inertia applies to rules and not
model literals. To achieve inertia of model literals it is enough to include them
as fact rules, as shown in the sequel.

The following example will show the r61e played by Rejected(M~) when
determining the <P,U>-Justified Updates.

Example 3. Consider program P stating that someone is a pacifist and that a
pacifist is a reasonable person. Later on, an update U states that it is not clear
whether we're at war or at peace, and that a state of war will make that person
no longer a pacifist:

P : paci f i s t +--
reasonable +-- pac i f i s t

U : -~pacifist +-- war
peace <--- not war
war +-- not peace

Intuitively, when performing the update of P by U, we should obtain two models,
namely

M1 = (paci f is t , reasonable,peace}
M 2 = {war}

Generalizing Updates: From Models to Programs 231

Let's check whether they are <P,U>-justified updates. M1 is M-~I restricted to
the language of P:

Since

M~I = {pacifist, reasonable,peace}

Rejected(M.1) = {}

P* = P + U - { }

M~I is an answer-set of P*, and so M1 is a <P,U>-justified update.
/I//2 is M-~2 restricted to the language of P:

M~s = {war,-~pacifist}

Since
Rejected(M~s) = {pacifist ~ }

P* = P + U - {pacifist +-}

M~s is an answer-set of P" and so Ms is a <P,U>-justified update.
Let's check if the model

M x = {reasonable, war}

is a <P,U>-justified update. Intuitively it should not be one because the truth
value of reasonable should be determined by the evaluation of the rule of P, rea-
sonablee-pacifist, on the strength of the truth of pacifist in the updated model,
and therefore should be false. Note, however, that this model would be a justified
update of the only stable model of P , determined according to interpretation
updating.

Once again M x is Max restricted to the language of P:

Since

M-~x = {reasonable, war, -~paci f i s t }

Rejected(M~x) = {pacifist ~-)

P* = P + U - {pacifist +--}

As expected, M~x is not an answer-set of P*, and therefore M x is not a <P,U>-
justified update.

Next we present a program transformation that produces an updated pro-
gram from an initial program and an update program. The answer-sets of the
updated program so obtained will be exactly the <P,U>-justified models, ac-
cording to Theorem 1 below. The updated program can thus be used to compute
them.

Defini t ion 8 (U p d a t e t r ans fo rma t ion of a n o r m a l p rog ram) . Consider
an update program U in the language ~-~. For any normal logic program P in the
language s its updated program Ptr with respect to U, written in the extended
language s + {A t, A v, -~A v : A E s is obtained via the operations:

232 Jo~o Alexandre Leite, Lu/s Moniz Pereira

- All rules of U and P belong to Pu subject to the changes:

�9 in the head of every rule of Pu originated in U replace literal L by a new
literal L u ;

�9 in the head of every rule of Pu originated in P replace atom A by a new
atom A~ ;

- Include in Pv , for every atom A of P or U, the defining rules:

A ~- A l ,no t -~A U A ~- A U ~ A +- -~A v (> (11)

The above definition assumes that in the language s there are no symbols of
the form L I and L v .Th is transformation is reminiscent of the one presented in
AP97, where the goal was to update a set of models encoded by a logic program.
In AP97, literals figuring in the head of a rule of U (but it could be for any
literal) originate replacement of the corresponding atom in both the head and
body of the rules of the initial program, whereas in the above transformation
this replacement occurs only in the head (for all rules). This has the effect of
exerting inertia on the rules instead of on the model literals because the original
rules will be evaluated in the light of the updated model. The defining rules
establish that, after the update, a literal is either implied by inertia or forced
by an update rule. Note that only update rules are allowed to inhibit the inertia
rule, in contrast to the usual inertia rules for model updates. In model updates
there are no rule bodies in the coding of the initial interpretation as fact rules,
so the conclusion of these rules cannot change, in contradistinction to the case
of program updates. Hence the new inertia rule, which applies equally well to
model updating (cf. justification in Theorem 2) and so is more general. Their
intuitive reading is: A can be true either by inertia or due to the update program.

Example 4. Consider the normal logic program P with a single stable model M:

P : a +- not b
d + - e
e ~ -

M = {a ,d ,e}

now consider the update program U:

U : c +- not a
b+-
"~e ~--- a

And the updated program P v is (where the rules for A stand for all their ground
instances):

c u +- not a a' +- not b A +-- AI ,no t -~A v
bY+ - a~ +--e A +- Atr
-~e v ~- a e I +- -~A +- -~A U

Generalizing Updates: From Models to Programs 233

whose only answer-set (modulo A ~ and A v atoms) is:

M{ = {b,c,d,e}

This corresponds to the intended result: the insertion of b renders a no longer
supported and thus false; since a is false, c becomes true due to the first rule
of the update program; the last rule of U is ineffective since a is false; e is still
supported and not updated, so it remains true by inertia; finally d remains true
because still supported by e. 0

If we consider this same example but performing the updating on a model
basis instead, we would get as the only U-justified update of M: M' = {a, b, d).
The difference, for example in what a is concerned, is that in M' a is true by
inertia because it is true in M and there are no rules for a in U. According to
our definition, since there aren't any rules (with a true body) in U for a, the rule
in P for a is still valid by inertia and re-evaluated in the final interpretation,
where since b is true a is false.

Example 5. Consider the P and U of example 3. The updated program Pu of P
by U is (where the rules for A stand for all their ground instances):

pacifist '
reasonable' +- pacifist
A +- A', not -~A v
A § A{

-~paci fist{ +- war
peace { +- not war
war{ +- not peace
-~A +- -~A v

whose answer-sets (modulo A', A{ and explicitly negated atoms) are:

M1 = {pacifist, reasonable,peace)
M2 = {war)

coinciding with the two <P,U>-justified updates determined in example 3.

The following theorem establishes the relationship between the models of the
update transformation of a program and its <P,U>-justified updates.

Theorem 1 (Correctness of the update transformation). Let P be a nor-
mal logic program in the language s and U a coherent update program in the
language s Modulo any primed and X v literals, the answer-sets of the updated
program Pv are exactly the <P, U>-dustified Updates of P updated by U. 0

Proof. Let P be a normal logic program consisting of rules of the form:

A +- Bi,not C~

and U an update program consisting of rules of the form:

A ~ Bj ,not Cj
-~A ~- Bk, not Ck

234 Jo~o Alexandre Leite, Luis Moniz Pereira

where A is an atom and each B and C is some finite set of a toms .
Let P~ be the program obtained according to Def. 7:

P~ = ~ + P ~ r , ~ z (U ~)

and note that P~ner~al (M-~) C. P.
Let Pv be the program obtained according to Def. 8:

Pv : A' ~- Bi, not C~
A r A', not -~A v
A + - A U
-~A +- -~A U
A U r B~, not r
-~A U ~- Bk, not Ck

for all rules from P

for all A

for all rules from U

We will show that Pv is equivalent to P~ for our purposes. Performing on Pu
a partial evaluation of A v and -~A v on the rules A ~ A v and -~A +-- -~A U we
obtain:

PU: A' r B~, not Ci (1)
A +-- A', not -~A U (2)
A ~- B j , not Cj (3)
-~A e- B~,not C~ (4)
A U ~ Bj , not Cj (5)
-~A U +- Bk, not Ck (6)

Note that rules (3) and (4) are exactly the update program.
These rules can be simplified. In particular we don't need the rules for A v

and -~A v . For some arbitrary A, consider first the case where - ,A v is false. We
can then perform the following simplifications on P~: replace in (2) A ~ by the
body of (1) and remove not -~A v to obtain (2"): A +- B i , n o t C~; now we no
longer need rule (6). Since we don't care about primed nor A v literals in the
updated models we can now remove rule (1), as well as rules (5) and (6)). The
so mutilated PV preserves the semantms of PU when -~A v m false, apart primed
and U literals, and looks like this:

A +-- Bi, not Ci (2.)
A ~ Bj , not Cj (3)
-~A e- Bk, not Ck (4)

which corresponds exactly to P~ when P~nertiaz(M-) = P when -~A v is false,
and hence their answer-sets are the same in that case.

For the case where -~A v is true, we can delete rule (2); rule (6) is also not
needed for we don't care about ~A v literals in the updated models. Since we
don't care about primed nor A U literals in the updated models, and A' and A v
don't appear in the body of remaining rules, we can delete rules (1) and (5). The
simplified P~ preserves the semantics of Pu when -~A U is true, apart primed and
U literals, and looks like this:

A ~- B j , not Cj (4)
-~A +-- Bk, not Ck (5)

Generalizing Updates: From Models to Programs 235

which is semantically equal to Pt~. Indeed, note that when -~A v is true, the
rules of P for A are rejected if M~ ~ Bi, not Ci and don't belong to Pt~- So
the only possible difference between the simplified P~: and P~ would be the
existence of some extra rules in Pt~ such that for any answer-set M~ we would
have M~ ~ Bi, not Ci, which does not affect the semantics

The next Theorem establishes the relationship between program update and
interpretation update. For this we begin by defining a transformation from an
interpretation into the arguably simplest normal logic program that encodes it.

Definit ion 9 (Factual LP). Let I be an interpretation of a language s We
define the normal logic program associated with I, P*(I), as:

P*(I) = {L 6-: L �9 I) ~ (12)

We also need the following closeness relationship:

Defini t ion 10 (Closeness re la t ionship) . Given three total interpretations I,
Iu and fu, we say that fu is closer to I than Iu if

(I' u \ I O I \ I'u) C (Iu \ I U I \ Iu) (> (13)

T h e o r e m 2 (Genera l iza t ion of Upda tes) . Let U be an update program and
I an interpretation. Then:

1. Every U-justified update of I is a <P*(I),U>-justified update.
2. A <P*(I), U>-justified update Iu is a U-justified update of I iff there is no

I' u closer to I than Iu, where I' u is a <P*(I) , V>-justified update. (>

Proof. 1. Let U be an update program consisting of rules of the form:

A 6- Bj ,not Cj
-~A 6- Bk, not Ck

where A is an atom and each B and C is some finite set of atoms.
According to AP97, an interpretation Iu is a U-justified update of I iff it is
a total (or two-valued) WFSX model (modulo primed and explicitly negated
elements) of the corresponding program Pu:

Pv : A' 6- for all A �9 I
A 6- A', not -,A

for all A
-~A 6- not A', not A

A 6- B j,-~Cj for all rules from U
-~A 6- B~,-~Ck

according to Def. 8, an interpretation fu is a <P*(I), U>-justified update
iff it is the restriction to the language of I of an answer-set of the program

236 Jo~o Alexandre Leite, Lufs Moniz Pereira

PU:
Pu : A' ~ for all A E I

A ~ A', not -~A v)
A t-- A~ / for all A
- .A +- -~A U

A v +-- B j , not Cj for all rules from U
-~A v +- Bk, not Ck

Notice the difference in the translation of update rules in what the kind of
negation used in their bodies is concerned. We will show that for every total
(or two-valued) WFSX model Iu of the program Pu, there is an answer-set
I' u of Pu such that Iu = I'~ restricted to the language of I.
Performing a partial evaluation of A U and - .A U on the rules A +- A t and
-~A ~ - .A U we obtain:

Pu : A' +-- (1)
A +-- A', not - .A U (2)
A +- Bj , not Cj (3)
-~A +- Bk, not Ck (4)
A U +- Bj , not Cj (5)
-~A U ~- B~, not Ck (6)

We can safely replace not -~A v by not ~A in rule (2), for the only rules for
- .A and -~A U have the same body. Now, and since we don't care about A v
and -.A v in the updated models, we can remove rules (5) and (6) and obtain
the following program Pu:

Pu :A' +- (1) Pry :A' +-
A +-- A~,not -.A (2) A +-- A~,not - .A

(3) - .A +- not A ' , n o t A
A ~ Bj , not Cj (4) A ~ Bj,--Cj
-~A +-- Bk, not Ck (5) -~A +- Bk,-~Ck

It is easy to see that the only differences between Pg and Pu are the kind
of negation used in the body of the rules from the update program, and the
extra rule (3) in Pv- Suppose that we add rule (3) to Pg: if rule (3) has a
true body, rule (2) must have a false body; since we are not concerned about
-~A in the final models, and -~A doesn't appear in the body of any other
rules, adding rule (3) to Pg wouldn't change the restricted models. Now,
the only difference is the kind of negation used, but since in answer-sets we
have that if ~C is true then not C is also true, we have that all total WFSX
models of Pu are also answer-sets of Pu.

2. There now remains to be proved the closeness part of the theorem, i.e. that
the set of interpretations S = Q - R, where

Q = {I~ : I~ is a < P* (I), U > -justified update}
R = (Iu : Iu is a U-justified update of I)

Generalizing Updates: From Models to Programs 237

is such that for every I'u in S, there is an Iu in R such tha t Iu is closer
to I than I'u, and thus eliminated by the closeness condition. According to
MT94, Iu is a U-justified update of I iff it satisfies the rules of U (as per
Def.1 and where I satisfies in(a) (resp. out(a)) i f a E I (resp. a ~ I)), and is
closest to I among such interpretations. From Definition 7, every <P, U>-
justified update must satisfy the rules of U, of the form:

A ~- Bj, not Cj (14)
-~A +- Bk, not C~

Since for any answer-set if -~a E I then a ~ I , we have tha t any <P, U>-
justified update, because it satisfies the rules of (14), must also satisfy the
update rules with in's and out's of the form (15)

in(A) e- in(Bj), out(Cj)
out(A) e- in(B~), out(Ck) (15)

Let X be the set of all interpretations that satisfy the rules of (15). Then the
interpretations in X - R are the ones eliminated by the closeness condition,
to obtain the U-justified updates, according to MT94. Since R C_ Q (first
part of the theorem), and every interpretation of Q satisfies the rules of (15),
we have that S c_ X and thus any interpretation in S is eliminated by the
closeness condition of this theorem.
Therefore the notion of program update presented here is a generalization of

the updates carried out on a model basis. Consequently, the program transforma-
tion above is a generalization of the program transformation in AP97, regarding
its 2-valued specialization. Elsewhere Lei97 the 3-valued case is generalised as
well.

Remark 1 (Extending the language of initial programs). We could allow for initial
programs to be of the same form as update programs, i.e. with explicit negated
literals in their heads only, as per Def.5. For this, we would have to change
Definitions 6 and 8 by replacing atom A there with objective literal L 1 (see
Lei97). However, note that , although both programs have explicit negation
in their heads, its use is limited, as explicit negation does not appear in rule
bodies. Indeed, all its occurrences can be replaced by allowing n o t in heads
instead, and then employing a semantics for such generalized programs such as
LW92,DP96.

1 An updated program can in turn be updated, once the inertia rule is generalized
for objective literals: L +-- L ~, not-~L. Because the inertia rule contains explicitely
negated literals in its body, the language of programs has to be extended, as per the
next section. However, the inertia rule itself does not need to be updated, only the
program and update rules. These will accumulate dashes in their heads as they are
updated. For the inertia rule to recurrently strip away successive dashes one needs
to introduce the equivalence (-~A)' = -~(A)', and define -~ and ' as operators to
allow unification to do its work. For the details of such a generalization the reader
is referred to Lei97.

238 Jo~o Alexandre Leite, Luis Moniz Pereira

4 Extended Logic Program Updating

When we update a normal logic program the result is an extended logic program.
In order to update these in turn we need to extend the results of the previous
section to cater for explicit negation in programs. Besides this obvious motiva-
tion, there is much work done on representing knowledge using extended logic
programs, and we want to be able to update them. We begin by extending the
definitions of the previous section to allow for the inclusion of explicit negation
anywhere in a normal program.

Definition 11 (Update Rules for Object ive Literals) . AP97Let E be a
countable set of objective literals. Update in-rules or, simply in-rules, and update
out-rules or, simply, out-rules, are as (1) and as (2), but with respect to this new
set E. 0

Also, for extended update programs their transformation into an extended
logic programs is now:

Definition 12 (Translation of extended UPs into ELPs) . AP97Given
an update program with explicit negation UP, its translation into the extended
logic program U is defined as foUows2 :

1. Each in-rule

.

in(Lo) e- in(L1), ..., in(Lm), out(Lm+l), ..., out(Ln) (16)

where m, n > O, and Li are objective literals, translates into:

L~ +- L1, ..., Lm, not Lm+l, ..., not Ln (17)

where L~ = A p i/ Lo = A, or L~ = A n if Lo = -~A;
Each out-rule

out(Lo) +- in(L1), ..., in(Lm), out(Lm+l), ..., out(Ln) (18)

where m, n > O, and Li are objective literals, translates into:

-~L~ +-L1, . . . ,Lm,not Lm+l, . . . ,not Ln (19)

where L~ = A v i / Lo = A, or L~ = A n if Lo = -~A;
3. For every objective literal L such that in(L) belongs to the head of some in-

rule o / U P , U contains -~L* ~- L where L* = A n i / L = A, or L* = Ap if
L = -~A;

4. For every atom A, U contains the rules A +- A p and -~A ~ A n.

2 This translation employs the results in DP96, namely the expressive power of WFSX
to capture the semantics of extended logic programs with default literals in the heads
of rules, via the program transformation P"~

Generalizing Updates: From Models to Programs 239

Intuitively, this transformation converts an atom A into a new atom A s and
an explicitly negated atom ~A into a new atom A n and ensures coherence. This
way, we no longer have explicitly negated atoms in the heads of the rules of
update programs and so we can use explicit negation -~L to code the out(L) in
the heads of rules, as for update programs without explicit negation. Operation
4 maps the A n and A s back to their original atoms.

Conversely, any extended logic program (ELP) can be seen as an update
program, possibly applied to an empty program. Indeed, translate each ELP
rule of the form

Lo +-- L1, . . . ,Lm,not Lm+l, ...,not Ln (20)

where Li axe objective literals, to

in(Lo) +- in(L1), ..., in(Lm), out(Lm+l), ..., out(Ln) (21)

It is easy to see that applying the above translation (Def.12) of such an up-
date program back into an ELP preserves the semantics of the original program
because of the read-out rules, A ~- A s and -~A +-- A n.

The language of update programs is more expressive than that of ELPs be-
cause one may additionally have out(Ao) and out(-~Ao). The semantics of such
ELPout programs can be defined simply by the ELP semantics of the translation
into an ELP of their corresponding update programs.

Then we can envisage any ELP (or ELPout) program as an update specifi-
cation for another ELP (or ELPout) program, albeit the empty one. Programs
can update one another, in succession.

Definit ion 13 (Ex tended In t e rp re t a t i on Res t r ic t ion) . Given a language
1C with explicit negation, let Mnp be the an interpretation of the language ICns,
obtained by augmenting C with the set s = {L n, L p : L E IC} (L n, L s and L are
objective literals).

We define the corresponding restricted interpretation M, of 1C, as:

M = Mv.p restricted to IC (22)

Defini t ion 14 (Iner t ia l Sub-Program) . Let P be an extended logic program
in the language IC, U an update program in the language ICns and Mns an in-
terpretation of lCnp. Let:

Rejected(Mnp) = {A ~ body E P : Mnp ~ body
and 3~A p ~ body' E U : Mns ~ body r }U
U{-~A e- body E P : Mnp ~ body
and ~-~A n +-- body I E U : Mnp ~ body I }

(23)

where A is an atom. We define Inertial Sub-Program Pin~rti~t(Mnp) as:

Pinert~al (Mnp) = P - Rejected(Mnp) ~ (24)

240 Jo~o Alexandre Leite, Lufs Moniz Pereira

Again, the rules for some objective literal L that belong to Rejected(Mnp) are
those that belong to the initial program but, although their body is still verified
by the model, there is an update rule that overrides them, by contravening their
conclusion. Note that a rule of P for atom A, with true body, is also countervened
by a rule of U with true body for A n (i.e. one translated from in(-~A)). Since
every U also contains the rules -~A p +-- -~A and ~A +- A '~, then -~A in --A p ~ -~A
is also true, and so that rule of P is rejected in this case too. Similarly for a rule
of P with head -~A, but now with respect to A p.

Defini t ion 15 (<P ,U>-Jus t i f i ed Updates) . Let P be an extended logic pro-
gram in the language C, U an update program in the language Cnp and M an
interpretation o the language C. M is a <P,U>-Justified Update of P updated
by U iff there is an interpretation Mnp such that Mnp is an answer-set of P*,
where

P* = Pinertial (Mnv) + U 0 (25)

Once again we should point out that the extended <P,U>-Justified Update
doesn't depend on any initial interpretation. As for the case of normal logic
programs, it is the rules that suffer the effects of inertia and not model literals
per se.

Example 6. Consider a recoding of the alarm example using explicit negation,
where P and UP are:

P : sleep ~-- -~alarm UP : in(-~alarm) +--
panic +-- alarm
alarm +--

the update program U obtained from UP is:

alarm n +-
-~alarm p +-- -~alarm
alarm +-- alarm p
-,alarm +-- alarm n

Intuitively, when performing the update of P by U, we should obtain a single
model, namely

M = (-~alarm, sleep}

Let's check whether M is an extended <P,U>-justified update. M is Mnp re-
stricted to the language of P:

Mnp = (-~alarm, sleep, alarm n, -~alarm p}

Since
Rejected(Mnp) = (alarm ~ }

P* = P + U - (alarm +--}

Mnp is an answer-set of P*, and so M is an extended <P,U>-justified update.

Generalizing Updates: From Models to Programs 241

Definition 16 (Upda te t r an s fo rma t ion of an ex t ended LP) . Given an
update program UP, consider its corresponding extended logic program U in
the language 1Cnp. For any extended logic program P in the language IC, its
updated program Pu with respect to U, written in the extended language ICnp +
{A ~, ~A ~, A nu, -~A nv, A pU, -~A pU : A E 1C} is obtained through the operations:

- All rules of U and P belong to Pv subject to the changes, where L is a literal:

�9 in the head of every rule of Pu originated in U, replace L p (resp. L n) by
a new literal L pU (resp. LUSt);

�9 in the head of every rule of Pu originated in P, replace literal L by a
new literal L';

- Include in Pu, for every atom A of P or U, the defining rules:

A n +- ~A ~, not -~A nU Ap +- A ~, not -~A pU
A n ~- Anv Ap ~- A pv
-~A n +- -~A nU ~A p e- ~ApU

(26)

As before, the transformation reflects that we want to preserve, by inertia,
the rules for those literals in P not affected by the update program. This is
accomplished via the renaming of the literals in the head of rules only, whilst
preserving the body, plus the inertia rules.

Theorem 3 (Correctness of the u p d a t e t r ans fo rma t ion) . Let P be an ex-
tended logic programand U a coherent update program. Modulo any primed, A v ,
AP and A n elements and their defaults, the answer-sets of the updated program
Pu of P with respect to U are exactly the <P, U>-Justified Updates of P updated
by U.

Proof. (sketch): Let P be an extended logic program consisting of rules of the
form:

A ~- B~, not Ci
~A , - Bj, not Ca

and U an update program consisting of rules of the form:

Ap +- Bk, not Ck A +- A p
-~A p ~- Bl, not Q -~A ~ A n
A n +- Bin, not Cm -~A n ~ A
- A n e- Bn, not Cn ~A p +-- -~A

where A is an atom and each B and C is some finite set of objective literals.
Let P~ be the program obtained according to Def. 7:

P~ = U + Pinertial (Mnp)

and note that Pinertial (Mnp) C P.

242 Jo~o Alexandre Leite, Lufs Moniz Pereira

Let Pv be the program obtained according to Def. 8:

P v : } for all rules from P
A' ~ Bi, not C~
- .A' ~ B j , not Cj
A p +-- A ~ not -~A pv
A n +- -~AI,not - .A nU

A p ~ A pv
-~A p +- -~ApU
A n +- A nU
-~A n +- -~A nU

A + - A p
~ A e- A n
A pU +- Bk, not Ck
-~A ptr +- Bl, not Ct
A n v +-- B ~ , not C.~

-~A nv +- Bn, not Cn
~ A nU +-- A
-~A pU +- ~ A

for all A

rules from U

We will show that Pv is equivalent to Pt3 for our purposes. Performing on Ptr
a partial evaluation of A pU, -~A pv, A nU and - A n v on the rules A p +-- A pv,
-~A p +-- -~A ptr, A n +- A nt and -,A n +-- - .Anv we obtain:

Pu : A' e- Bi, not Ci (1) ~A p +-- -~A (10)
-~A' +- B j , not Cj (2) A +-- A p (11)
A p +- A', not -~A pv (3) -,A +- A n (12)
A n +-- -~A',not -~A nv (4) A pU +-- B k , n o t Ck (13)
A p +- Bk, not Ck (5) "~A pU +-- Bl, not Ct (14)
-~A p +- Bt, not Ct (6) A n v ~ Bin, not Cm (15)
A n +- Bin, not Cm (7) -~A nU +- Bn, not Cn (16)
- .A n +-- Bn, not Cn (8) -~A nv +-- A (17)
-~A n +- A (9) -~A pv ~- -~A (18)

Note that rules (5)-(12) are exactly equal to the rules of the update program.

The structure of the remaining part of the proof is quite similar to the one
set forth in Theorem 1. Its details are slightly more extensive for we now have
to simplify P~ eliminating A pU, -~A pU, A nv and -~A nv whilst in Theorem 1 we
only had to consider A v and -~A u.

Example 7. Applying this transformation to the alarm example (Ex. 6)

P : sleep ~- - .alarm
panic +-- a larm
alarm +-

U : in(-~alarm) +-

Generalizing Updates: From Models to Programs 243

we obtain (where the rules for A and -~A stand for their ground instances):

Pv : sleep' +- - .alarm
pan i c +- alarm
alarm t +--
a larm ng ~--
-~alarm pU +- - .alarm
A e - A p
-~A ~ A n

with model (modulo U, L '~, L p, Lu):

A p +- A t, not -"ApV
A n +- - ,A t, not -"A nU
A p ~ A pv
-~A p +- -~A pU

A n +- AnU
-.A n +- - ,A nU

M u = {sleep,- ,alarm} 0

Definition 9 and Theorem 2 both now carry over to a language K with explicit
negation.

Defini t ion 17 (E x t e n d e d factual LP) . Let I be an interpretation of a lan-
guage C with explicit negation. We define the extended logic program associated
with I , P*(I) , as:

P*(I) = {L +--: L �9 I } (27)

where the Ls are objective literals. 0

It is worth pointing out that the translation of update programs into extended
logic programs, making use of explicit negation -- to code the out's in the heads
of update rules and default negation not to code the out's in the bodies of the
same rules, allows for some pairs of answer-sets, one of which will always be
closer than the other to the initial interpretation. This is best illustrated by the
following example:

Example 8. Let I = {a} and U = {--a +-- not a} where U is the translation of
U t = {out(a) +-- out(a)} according to Def.5. The updated program is:

B y : a t + -
a+- a t , n o t ~ a U

-~a U +-- n o t a

with two answer-sets whose restrictions are M1 = {a} and M2 = {}. Note that
M1 is closer to I than M2.

The closeness condition in Theorems 2 and 4 exists to eliminate such farther
models in order to obtain the U-justified updates only. As mentioned, this phe-
nomena is due to the translation of the update programs. This is also shared
by AP97 for the case of updates extended with explicit negation, and so their
soundness and completeness theorem should also make use of the closeness re-
lationship.

This translation has the virtue of not excluding such models, just in case they
are seen as desired. Another approach exists, mentioned in the conclusions, that
avoids the need for the closeness relation by excluding the non-closest updates
by construction.

244 Jo~o Alexandre Leite, Lu/s Moniz Pereira

T h e o r e m 4 (G e n e r a l i z a t i o n o f U p d a t e s) . Let U be an update program with
explicit negation and I an interpretation. Then:

1. Every U-justified update of I is a <P*(I) , U>-justif ied update.
2. A <P*(I) , U>-justified update I~ is a U-justified update of I iff there is no

I ' u closer to I than I~, where I ' u is a <P*(I) ,U>- jus t i f i ed update.

Proof. (sketch): Let U be an update program consisting of rules of the form:

A v ~- Bk, not Ck
."AP +- Bt, not Cl
A ~ e- B.~, not Cm
."A n ~ Bn, not C~

A + - A p
-~A e- A n
-~A n +-- A

~ A p ~'- ".A

where A is an atom and each B and C is some finite set of objective literals.
According to AP97, a total (or two-valued) WFSX model (modulo primed

and explicitly negated elements) of the program Pu is a U-justified update iff it
is closest to I, among all such models, where Pv is:

Pu : for all A E I
for all -~A E I

A I / -
-.A t ~-
A p ~- A t, not -~A p
."A p +- not A t, not A p
A n +- ."AI,not - .A n
."A n +-- not ."A t, not A n
A v - A V
"~A +- A n
."A n +- A

."A ~ ~ ."A
A p +- Bk, not Ck
."A p +-- Bl, not Ct
A n +- Bin, not Cm
."A n ~- Bn, not Cn

for all A

rules from U

P~ : A ' ~- Bi, not Ci (1) ."Ap +- ."A (10)
."A' ~- B j , not Cj (2) A +- A p (11)
AV e- A' , not ."A pU (3) ."A e- A n (12)
A n +-- ."A', not ."A ntr (4) A ptr +- Bk, not Ck (13)
A p +- Bk, not Ck (5) -~A pv'+-- Bt, not Ct (14)
."A p +-- Bt, not Ct (6) A nU +- Bin, not Cm (15)
A n +-- Bin, not Cm (7) -~A nU +- Bn, not Cn (16)
."A n +- Bn, not Cn (8) -~A ntr +- A (17)
-~A n +- A (9) -~A pU +- -~A (18)

! ,

according to Def. 8, an interpretation I~ is a < P (I), U>-justified update iff
it is the restriction of an answer-set of the program Pu (after the same partial
evaluation as done in the proof of Theorem 3):

Generalizing Updates: From Models to Programs 245

We will have to show that these two transformed programs have the same models,
apart from irrelevant elements.

Following similar, though slightly more complex, arguments as in the proof of
Theorem 2, we can replace A pU, -~A pU, A nu and -~A nU by A p, -~A p, A n and ~A n
in rules (3)-(6), and deleting rules (15)-(20). Also rules -~A p +- not A ~, not A p
and -~A n +- not -~A~,not A n of Pu are irrelevant for the only rules with -~A p
and -~A n in their body also have A ~ and -~A ~ in their body, respectively, which
could never be true. Removing those rules from Pu, it would be exactly equal
to P~, after the simplifications mentioned, thus proving the theorem.

5 C o n c l u s i o n s

In this paper we have generalized the notion of updates to the case where we
want to update programs instead of just their models. We have shown that since
a program encodes more information than a set of models, the law of inertia
should be applied to rules instead of to model literals, as had been done so far.
We presented a transformation which, given an initial program and an update
program, generates the desired updated program. Our results have been further
extended to allow for both programs and update programs extended with explicit
negation. This is important inasmuch as it permits our updated programs to be
updated in turn, and allows us to conceive what it is to successively update one
program by another, and so to define the evolution of knowledge bases by means
of updates 3.

Future foundational work involves dealing with partial interpretations and
non-coherent update programs and their contradiction removal requirements,
among other developments. Indeed, as the world changes, so must logic programs
that represent it. Program updating is a crucial notion opening up a whole
new range of applications, from specification of software updates to temporal
databases, from reasoning about actions to active databases, and in general as
a means for bet ter representing reasoning, including belief revision.

Acknowledgments We thank Jos~ Jfilio Alferes, Halina Przymusinska and Teodor
Przymusinski for their insightful discussions and suggestions, and the anonymous
referees for their comments. A joint paper together with them is well under way,
improving on and generalizing the results presented here, as well as exploring
some of the application areas mentioned above. (A Prolog implementation of
this more general theory is already available.)

a Iterated updates are made easier by a similar approach to that of Footnote 1, where
instead the equivalences (An) ~ = (X)~, (Ap) ~ -- (X)p, (A~) t --- (A~)~ and (AU) ~ --
(X)~ are introduced. Lack of space prevents us to elaborate further on iterated
updates, and garbage collection techniques to do away with rules rendered useless.
For the details on these topics the reader is referred to Lei97.

246 Jo~o Alexandre Leite, Lufs Moniz Pereira

References

lAP96 J. J. Alferes, L. M. Pereira. Reasoning with logic programming, LNAI 1111,
Berlin, Springer-Verlag, 1996.

AP97 J. J. Alferes, L. M. Pereira. Update-programs can update programs. In J. Dix,
L. M. Pereira and T. Przymusinski, editors, Selected papers from the ICLP'96 ws
NMELP'96, vol. 1216 of LNAI, pages 110-131. Springer-Verlag, 1997.

lAPP96 J. J. Alferes, L. M. Pereira and T. Przymusinski. Strong and Explicit Nega-
tion in Nonmonotonic Reasoning and Logic Programming. In J. J. Alferes, L. M.
Pereira and E. Orlowska, editors, JELIA '96, volume 1126 of LNAI, pages 143-163.
Springer-Verlag, 1996.

BD95 S. Brass and J. Dix. Disjunctive Semantics based upon Partial and Bottom-
Up Evaluation. In Leon Sterling, editor, Procs. of the 12th Int. Conf. on Logic
Programming, Tokyo, pag. 85-98, Berlin, June 1995. Springer-Verlag.

DP96 C. V. Dam~io and L. M. Pereira. Default negated conclusions: why not? In
R. Dyckhoff, H. Herre and P. Schroeder-Heister, editors, Procs. of ELP'96, volume
1050 of LNAI, pages 103-118. Springer-Verlag, 1996.

GLg0 M. Gelfond and V. Lifschitz. Logic Programs with classical negation. In Warren
and Szeredi, editors, 7th Int. Conf. on LP, pages 579-597. MIT Press, 1990.

KM91 H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In James Allen, Richard Fikes and Erik Sandewall, editors,
Principles of Knowledge Representation and Reasoning: Proc. of the Second Int'l
Conf. (KRgl), pages 230-237, Morgan Kaufmann 1991.

KW85 A. Keller and M. Winslett Wilkins. On the use of an extended relational model
to handle changing incomplete information. IEEE Trans. on Software Engineering,
SE-11:7, pages 620-633, 1985.

Lei97 Jofm A. Leite. Logic Program Updates. MSc dissertation, Universidade Nova de
Lisboa, 1997.

LW92 V. Lifschitz and T. Woo. Answer sets in general nonmonotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning, Proc. of the Third Int'l Conf (KR92),
pages 603-614. Morgan-Kaufmann, 1992

MT94 V.Marek and M. Truszczynski. Revision specifications by means of programs.
In C. MacNish, D. Pearce and L. M. Pereira, editors, JELIA '94, volume 838 of
LNAI, pages 122-136. Springer-Verlag, 1994.

Principia Isaaco Newtono. Philosophim Naturalis Principia Mathematica. Editio ter-
tia aucta & emendata. Apud Guil & Joh. Innys, Regiee Societatis typographos.
Londini, MDCCXXVI. Original quotation:"Corpus omne perseverare in statu suo
quiescendi vel movendi uniformiter in direetum, nisi quatenus illud a viribus im-
pressis cogitur stature suum mutare.".

PA92 L. M. Pereira and J. J. Alferes. Wellfounded semantics for logic programs with
explicit negation. In B. Neumann, editor, European Conf. on AI, pages 102-106.
John Wiley & Sons, 1992.

PT95 T. Przymusinski and H. Turner. Update by means of inference rules. In V.
Marek, A. Nerode, and M. Truszczynski, editors, LPNMR'95, volume 928 of LNAI,
pages 156-174. Springer-Verlag, 1995.

DATALOG with Nested Rules?

Sergio Greco1, Nicola Leone2, and Francesco Scarcello3

1 DEIS
Università della Calabria

I-87030 Rende, Italy
email: greco@si.deis.unical.it

2 Institut für Informationssysteme
Technische Universität Wien

Paniglgasse 16, A-1040 Wien, Austria
email: leone@dbai.tuwien.ac.at

3 ISI-CNR
c/o DEIS, Università della Calabria

I-87030 Rende, Italy
email: scarcello@unical.it

Abstract. This paper presents an extension of disjunctive datalog (Data-
log∨) by nested rules. Nested rules are (disjunctive) rules where elements
of the head may be also rules. Nested rules increase the knowledge repre-
sentation power of Datalog∨ both from a theoretical and from a practical
viewpoint. A number of examples show that nested rules allow to nat-
urally model several real world situations that cannot be represented in
Datalog∨. An in depth analysis of complexity and expressive power of
the language shows that nested rules do increase the expressiveness of
Datalog∨ without implying any increase in its computational complexity.

1 Introduction

In this paper, we propose an extension of Datalog∨ by nested rules that we call
Datalog∨,←↩. Informally, a Datalog∨,←↩ rule is a (disjunctive) rule where rules
may occur in the head. For instance, r : A ∨ (B ←↩ C) ← D, where A and B
are atoms and C and D are conjunctions of atoms is a Datalog∨,←↩ rule. The
intuitive meaning of r is the following: if D is true, then A or B could be derived
from r; however, B can be derived from r only if C is also true, i.e., B cannot
be derived from rule r if C is false.

Example 1. The organizer of a party wants to invite either susan or john and,
in addition, either mary or paul. This situation can be expressed by means of
the following disjunctive Datalog program

susan ∨ john←
mary ∨ paul←

? This work has been supported in part by FWF (Austrian Science Funds) under the
project P11580-MAT “A Query System for Disjunctive Deductive Databases”; by the
Istituto per la Sistemistica e l’Informatica, ISI-CNR; and by a MURST grant (40%
share) under the project “Interdata.”

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 52–65, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

DATALOG with Nested Rules 53

This program has four stable models giving all possible solutions: M1 = { susan,
mary }, M2 = {susan, paul}, M3 = {john, mary} and M4 = {john, paul}.

Suppose now that you know that john will attend the party only if mary
will attend the party too; this means that if mary will not attend the meeting,
john will not attend the meeting too (therefore, inviting john makes sense only
if also mary has been invited). This situation cannot be naturally expressed
in disjunctive Datalog whereas can be naturally expressed by means of nested
rules.

susan ∨ (john←↩ mary)←
mary ∨ paul←

The new program has only three stable models, namely M1, M2 and M3 (see
Section 2), that represent the three reasonable alternative sets of persons to be
invited. 2

Thus, the addition of nested rules allows us to represent real world situations
that cannot be represented in plain Datalog∨ programs.

Remarks.

– We point out that a nested rule a ←↩ b, appearing in the head of a rule r,
does not constraint the truth of a (to b) globally (it is not logically equivalent
to ¬b → ¬a); rather, a ←↩ b constraints the derivation of a from the rule r.
For instance, the program consisting of rule (a←↩ b)← and of fact a← has
only the stable model {a}, where a is true even if b is false.

– It is worth noting that nested rules could be simulated by using (possibly
unstratified) negation; however, in cases like the example above, a nested
rule allows us a more direct representation of the reality and it is therefore
preferable.

– In this paper we will contrast disjunctive Datalog with nested rules (Data-
log∨,←↩) mainly against plain (i.e., negation free) disjunctive Datalog (Data-
log∨), in order to put in evidence the types of disjunctive information that
become expressible thanks to the introduction of nested rules.

The main contributions of the paper are the following:

– We add nested rules to disjunctive Datalog and define an elegant declarative
semantics for the resulting language. We show that our semantics generalizes
the stable model semantics [22,11] of disjunctive Datalog programs. More-
over, we show how nested rules can be used for knowledge representation
and common sense reasoning.

– We analyze the complexity and the expressive power of Datalog∨,←↩. It ap-
pears that, while nested rules do not affect the complexity of the language,
they do increase its expressive power. Indeed, as for Datalog∨, brave rea-
soning is ΣP

2 -complete for Datalog∨,←↩ (that is, the complexity is the same).
However, Datalog∨ allows to express only a strict subset of ΣP

2 (e.g., even
the simple even query,1 asking whether a relation has an even number of el-
ements, is not expressible) [7], while Datalog∨,←↩ expresses exactly ΣP

2 (that
1 See example 9.

54 Sergio Greco, Nicola Leone, and Francesco Scarcello

is, it allows to represent all and only the properties that are computable in
polynomial time by a nondeterministic Turing machine endowed with an NP
oracle).

To our knowledge this is the first paper proposing an extension of disjunctive
Datalog with nested rules. Related to our work can be considered papers pre-
senting other extensions of logic programming like, for instance, [2,15,20,4,12].
Related results on complexity and expressive power of Knowledge Representa-
tion languages are reported in [8,13,5,18,24,23].

The sequel of the paper is organized as follows. Section 2 describes the Data-
log∨,¬,←↩ language formally. The syntax is first given, then an elegant definition
of the stable model semantics, based on the notion of unfounded set is provided;
results proving that our notions generalize the classical definitions of unfounded
set and stable model are also given in this section. Section 3 presents the results
on complexity and expressive power of our language. Some examples on the use
of nested rules for representing knowledge are reported in Section 4. Finally,
Section 5 draws our conclusions and addresses ongoing work.

2 The Datalog∨,¬,←↩ Language

In this section, we extend disjunctive Datalog by nested rules. For the sake
of generality, we will consider also negation in the rules’ bodies (defining the
language Datalog∨,¬,←↩).

2.1 Syntax

A term is either a constant or a variable2. An atom is a(t1, ..., tn), where a is a
predicate of arity n and t1, ..., tn are terms. A literal is either a positive literal
p or a negative literal ¬p, where p is an atom.

A nested rule is of the form:

A←↩ b1, · · · , bk,¬bk+1, · · · ,¬bm, m ≥ 0

where A, b1, · · · , bm are atoms. If m = 0, then the implication symbol ”←↩” can
be omitted.

A rule r is of the form

A1 ∨ · · · ∨An ← b1, · · · , bk,¬bk+1, · · · ,¬bm, n > 0, m ≥ 0

where b1, · · · , bm are atoms, and A1, · · · , An are nested rules. The disjunction
A1 ∨ · · · ∨ An is the head of r, while the conjunction b1, ..., bk,¬bk+1, ...,¬bm is
the body of r; we denote the sets {A1, · · · , An} and {b1, ..., bk, ¬bk+1, ..., ¬bm}
by Head(r) and Body(r), respectively; moreover, we denote {b1, ..., bk} and
{¬bk+1, ...,¬bm} by Body+(r) and Body−(r), respectively. Notice that atoms
occurring in Head(r) stand for nested rules with an empty body. If n = 1 (i.e.,
2 Note that function symbols are not considered in this paper.

DATALOG with Nested Rules 55

the head is ∨-free), then r is normal; if no negative literal appear in r (r is
¬-free), then r is positive; if A1, · · · , An are atoms, then r is flat. We will use
the notation Body(r) and Head(r) also if r is a nested rule. A Datalog∨,¬,←↩

program P is a set of rules; P is normal (resp., positive, flat) if all rules in P are
normal (resp. positive, flat). We denote by: (i) Datalog∨,←↩, (ii) Datalog∨,¬, and
(iii) Datalog∨, the fragments of Datalog∨,¬,←↩ where we disallow: (i) negation
in the body, (ii) nested implication in the head, and (iii) both negation in the
body and nested implication in the head, respectively. Moreover, if negation is
constrained to be stratified [21], then we will use the symbol ¬s instead of ¬
(e.g., Datalog∨,¬s will denote disjunctive Datalog with stratified negation).

Example 2. A rule may appear in the head of another rule. For instance,

r1 : a ∨ (b←↩ ¬c)← d

is an allowed Datalog∨,¬,←↩ rule. Moreover,

r2 : a ∨ (b←↩ c)← d

is a Datalog∨,←↩ rule as well. Neither, r1 nor r2 belong to Datalog∨; while

r3 : a ∨ b← d

is in Datalog∨. 2

2.2 Semantics

Let P be a Datalog∨,¬,←↩ program. The Herbrand universe UP of P is the set
of all constants appearing in P. The Herbrand base BP of P is the set of all
possible ground atoms constructible from the predicates appearing in P and the
constants occurring in UP (clearly, both UP and BP are finite). The instantiation
of the rules in P is defined in the obvious way over the constants in UP , and is
denoted by ground(P).

A (total) interpretation for P is a subset I of BP . A ground positive literal
a is true (resp., false) w.r.t. I if a ∈ I (resp., a /∈ I). A ground negative literal
¬a is true (resp., false) w.r.t. I if a /∈ I (resp., a ∈ I).

Let r be a ground nested rule. We say that r is applied in the interpretation
I if (i) every literal in Body(r) is true w.r.t. I, and (ii) the atom in the head of r
is true w.r.t. I. A rule r ∈ ground(P) is satisfied (or true) w.r.t. I if its body is
false (i.e., some body literal is false) w.r.t. I or an element of its head is applied.
(Note that for flat rules this notion coincides with the classical notion of truth).

Example 3. The nested rule b ←↩ ¬c ← is applied in the interpretation I =
{b, d}, as its body is true w.r.t. I and the head atom b is in I. Therefore, rule
r1 : a ∨ (b ←↩ ¬c) ← d is satisfied w.r.t. I. r1 is true also in the interpretation
I = {a, d}; while it is not satisfied w.r.t. the interpretation I = {c, d}. 2

A model for P is an interpretation M for P which satisfies every rule r ∈
ground(P).

56 Sergio Greco, Nicola Leone, and Francesco Scarcello

Example 4. For the flat program P = {a ∨ b ←} the interpretations {a}, {b}
and {a, b} are its models.

For the program P = {a ∨ b←; c ∨ (d←↩ a)←} the interpretations {a, d},
{a, c}, {b, c}, {a, b, d}, {a, b, c}, {a, c, d}, {a, b, c, d} are models. {b, d} is not a
model, as rule c ∨ (d ←↩ a) ← has a true body but neither c nor d ←↩ a are
applied w.r.t. {b, d} (the latter is not applied because a is not true). 2

As shown in [19], the intuitive meaning of positive (disjunctive) programs
(i.e., Datalog∨ programs) is captured by the set of its minimal models (a model
M is minimal if no proper subset of M is a model). However, in presence of
negation and nested rules, not all minimal models represent an intuitive meaning
for the programs at hand. For instance, the program consisting of the rule a∨(b←
c)← has two minimal models: M1 = {a} and M2 = {b, c}. However, the model
M2 is not intuitive since the atom c cannon be derived from the program.

To define a proper semantics of Datalog∨,¬,←↩ programs, we define next a
suitable notion of unfounded sets for disjunctive logic programs with nested rules
which extends in a very natural way the analogous notion of unfounded sets given
for normal and disjunctive logic programs in [26] and [16,17], respectively.

Unfounded sets with respect to an interpretation I are essentially set of
atoms that are definitely not derivable from the program (assuming I), and, as
a consequence, they can be declared false according to the given interpretation.

Definition 1. Let P be a Datalog∨,¬,←↩ program and I ⊆ BP an interpretation
for P. X ⊆ BP is an unfounded set for P w.r.t. I if, for each a ∈ X, every rule
r with a nested rule r′ : a←↩ Body(r′) in Head(r),3 satisfies at least one of the
following conditions (we also say r has a witness of unfoundness):

1. Body(r) ∪ Body(r′) is false w.r.t. I, i.e., at least one literal in Body(r) ∪
Body(r′) is false w.r.t. I;

2. (Body+(r) ∪Body+(r′)) ∩X 6= ∅;
3. some nested rule in Head(r) is applied w.r.t. I −X. 2

Informally, if a model M includes any unfounded set, say X, then, in a sense,
we can get a better model, according to the closed world principle, by declaring
false all the atoms in the set X. Therefore, a “supported” model must contain no
unfounded set. This intuition is formalized by the following definition of stable
models.

Definition 2. Let P be a Datalog∨,¬,←↩ program and M ⊆ BP be a model for
P. M is a stable model for P if it does not contain any non empty unfounded
set w.r.t. M (i.e., if both X ⊆M and X 6= ∅ hold, then X is not an unfounded
set for P w.r.t. M). 2

Example 5. Let P = {a ∨ b ← c, b ← ¬a,¬c, a ∨ c ← ¬b}. Consider
I = {b}. It is easy to verify that {b} is not an unfounded set for P w.r.t. I.
Indeed, rule b ← ¬a,¬c has no witness of unfoundedness w.r.t. I. Thus, as I is
a model for P, then I is a stable model for P according to Definition 1.
3 An atom A in Head(r) is seen as a nested rule with empty body a←↩.

DATALOG with Nested Rules 57

Let P = {a ∨ (b←↩ ¬c)← d, d ∨ c←}. Consider the model I = {b, d}.
It is easy to verify that {b, d} is not an unfounded set w.r.t. I and neither {a}
nor {b} is an unfounded set for P w.r.t. I. Therefore, I is a stable model of P.

It is easy to see that the stable models of the program P = {susan∨(john←↩
mary) ←, mary ∨ paul ←} of example 1 are: M1 = {susan, mary}, M2 =
{susan, paul}, and M3 = {john, mary}. 2

We conclude this section by showing that the above definitions of unfounded
sets and stable models extend the analogous notions given for normal and dis-
junctive logic programs.

Proposition 1. Let I be an interpretation for a flat program P. X ⊆ BP is an
unfounded set for P w.r.t. I according to [16,17] if and only if X is an unfounded
set for P w.r.t. I according to Definition 1.

Proof. For a flat program P, every nested rule r′ is of the form a ←↩. Con-
sequently, Condition 1 and Condition 2 of Definition 1 correspond exactly to
the analogous conditions of the definition of unfounded set given in [16,17] (as
Body(r′) = ∅). Moreover, in absence of nested rules with nonempty bodies, Con-
dition 3 of Definition 1 just says that some head atom is true w.r.t. I−X (which
corresponds to Condition 3 of the definition of unfounded set given in [16,17]).2

As a consequence, if P is a non disjunctive flat program, then the notion of
unfounded set does coincide with the original one given in [26].

Corollary 1. Let I be an interpretation for a normal flat program P. X ⊆ BP
is an unfounded set for P w.r.t. I according to [26] if and only if X is an
unfounded set for P w.r.t. I according to Definition 1.

Proof. In [16,17], it is shown that the Definition of unfounded sets given there,
coincides on normal programs with the classical definition of unfounded sets of
[26]. The result therefore follows from Proposition 1. 2

Theorem 1. Let P be a flat program and M a model for P. Then, M is a
stable model for P according to [22,11] if and only if M is a stable model for P
according to Definition 2.

Proof. It follows from Proposition 1 and the results in [16,17]. 2

Moreover, if P is a positive flat program, then the set of its stable models
coincides with the set of its minimal models. Hence, for positive flat programs
our stable models semantics coincide with minimal model semantics proposed
for such programs in [19].

In fact the stable model semantics defined above, is a very natural extension
of the widely accepted semantics for the various (less general) classes of logic pro-
grams, since it is based on the same concepts of minimality and supportedness,
which follow from the closed world assumption.

58 Sergio Greco, Nicola Leone, and Francesco Scarcello

3 Complexity and Expressiveness

3.1 Preliminaries

In the context of deductive databases, some of the predicate symbols correspond
to database relations (the extensional (EDB) predicates), and are not allowed
to occur in rule heads; the other predicate symbols are called intensional (IDB)
predicates. Actual database relations are formed on a fixed countable domain U ,
from which also possible constants in a Datalog∨,¬,←↩ program are taken.

More formally, a Datalog∨,¬,←↩ program P has associated a relational database
scheme DBP = {r| r is an EDB predicate symbol of P}; thus EDB predicate
symbols are seen as relation symbols. A database D on DBP is a set of finite
relations on U , one for each r in DBP , denoted by D(r); note that D can be seen
as a first-order structure whose universe consists of the constants occurring in D
(the active domain of D).4 The set of all databases on DBP is denoted by DP .

Given a database D ∈ DP , PD denotes the following program:

PD = P ∪ {r(t)← | r ∈ DBP ∧ t ∈ D(r)}.

Definition 3. A (bound Datalog∨,¬,←↩) query Q is a pair 〈P, G〉, where P is
a Datalog∨,¬,←↩ program and G is a ground literal (the query goal). Given a
database D in DP , the answer of Q on D is true if there exists a stable model
M of PD such that G is true w.r.t. M , and false otherwise. 5 2

Constraining P on fragments of Datalog∨,¬,←↩, we obtain smaller sets of
queries. More precisely, we say that Q = 〈P, G〉 is a DatalogX query, where
X ⊆ {∨,←↩,¬}, if P is a DatalogX program (and G is a ground literal). Clearly,
¬ could also be replaced by ¬s to obtain queries of stratified fragments of
Datalog∨,¬,←↩.

The constants occurring in PD and G define the active domain of query
Q = 〈P, G〉 on the database D. Observe that, in general, two queries 〈P, G〉
and 〈P,¬G〉 on the same database need not give symmetric answers. That is, if
e.g. 〈P, G〉 answers yes for D, it may be possible that also 〈P,¬G〉 answers yes
for D.

A bound query defines a Boolean C-generic query of [1], i.e., a mapping
from DP to {true, false}. As common, we focus in our analysis of the expressive
power of a query language on generic queries, which are those mappings whose
result is invariant under renaming the constants in D with constants from U .
Genericity of a bound query 〈P, G〉 is assured by excluding constants in P and

4 We use here active domain semantics (cf. [1]), rather then a setting in which a (finite)
universe of D is explicitly provided [9,6,27]. Note that Fagin’s Theorem and all other
results to which we refer remain valid in this (narrower) context; conversely, the
results of this paper can be extended to that setting.

5 We consider brave (also called possibility) semantics in this paper; however, com-
plexity and expressiveness of cautious (also called skeptical) semantics can be easily
derived from it.

DATALOG with Nested Rules 59

G. As discussed in [1, p. 421], this issue is not central, since constants can be
provided by designated input relations; moreover, any query goal G = (¬)p(· · ·)
can be easily replaced by a new goal G′ = (¬)q and the rule q ← p(· · ·), where
q is a propositional letter. In the rest of this paper, we thus implicitly assume
that constants do not occur in queries.

Definition 4. Let Q = 〈P, G〉 be a (constant-free) query. Then the database
collection of Q, denoted by EXP(Q), is the set of all databases D in DP for
which the answer of Q is true.

The expressive power of DatalogX (X ⊆ {∨,←↩,¬}), denoted EXP(DatalogX),
is the family of the database collections of all DatalogX queries, i.e.,

EXP[DatalogX] = {EXP(Q) | Q is a constant-free DatalogX query}. 2

The expressive power will be related to database complexity classes, which
are as follows. Let C be a Turing machine complexity class (e.g., P or NP), R be
a relational database scheme, and D be a set of databases on R.6 Then, D is C-
recognizable if the problem of deciding whether D ∈ D for a given database D on
R is in C. The database complexity class DB-C is the family of all C-recognizable
database collections. (For instance, DB-P is the family of all database collections
that are recognizable in polynomial time). If the expressive power of a given
language (fragment of Datalog∨,¬,←↩) L coincides with some class DB-C, we say
that the given language captures C, and denote this fact by EXP[L] = C.

Recall that the classes ΣP
k , ΠP

k of the polynomial hierarchy [25] are defined
by ΣP

0 = P, ΣP
i+1 = NPΣP

i , and ΠP
i = co-ΣP

i , for all i ≥ 0. In particular,
ΠP

0 = P, ΣP
1 = NP, and ΠP

1 = co-NP.

3.2 Results

Theorem 2. EXP[Datalog∨,¬s] ⊆ EXP[Datalog∨,←↩]
Proof. We will show that every Datalog∨,¬s query can be rewritten into an
equivalent Datalog∨,←↩ query.

It can be easily verified that every Datalog∨,¬s program (i.e., disjunctive
Datalog program with stratified negation) can be polynomially rewritten in a
program where negative literals appear only in the body of rules of the form

r : p(X)← q(Y), ¬s(Z)

where p and s are not mutually recursive and r is the only rule having p as head
predicate symbol. Let 〈P, G〉 be a Datalog∨,¬s query. Following the observation
above, we assume that every rule r ∈ P such that r contains negative literals has
the syntactic form just described. This means that, given any database D ∈ DP ,
a stable model M for PD, and a ground instance r : p(a) ← q(b),¬s(c) of r,
we have p(a) is derivable from r if and only if q(b) is true and s(c) is not true.
Moreover, the rule r cannot be used to prove that the atom s(c) is true.
6 As usual, adopting the data independence principle, it is assumed that D is generic,

i.e., it is closed under renamings of the constants in U .

60 Sergio Greco, Nicola Leone, and Francesco Scarcello

Now, given the Datalog∨,¬s program P, we define a Datalog∨,←↩ program P ′
such that, for any given database D ∈ DP , P ′D has the same set of stable models
as PD. We obtain such a program P ′ from the program P by simply replacing
any rule of P having the form of the rule r above by the following Datalog∨,←↩

rule r′:
r′ : p(X) ∨ (s(Z)←↩ s(Z))← q(Y)

Now, apply to r′ the substitution that yields r from r. The resulting instance
is r′ : p(a) ∨ (s(c) ←↩ s(c)) ← q(b). From the semantics of nested rules, we
have that p(a) is derivable from r′ if and only if q(b) is true and s(c) is false
(exactly like for r) – note that a crucial role is played by the fact that s belongs
to a stratum lower than p so that s is already evaluated when p is considered
(e.g., if s(c) is true, then the nested rule s(c) ←↩ s(c) is already applied and r′

cannot be used to derive p(a)). Thus, r and r′ have exactly the same behavior.
Consequently, given a database D in DP , we have that an interpretation M is
a stable model for PD if and only if M is a stable model for P ′D. 2

Corollary 2. ΣP
2 ⊆ EXP[Datalog∨,←↩]

Proof. From [7], ΣP
2 ⊆ EXP[Datalog∨,¬s]. Therefore, the result follows from

Theorem 2. 2

Corollary 3. EXP[Datalog∨] ⊂ EXP[Datalog∨,←↩]

Proof. From [7], Datalog∨ can express only a strict subset of ΣP
2 (e.g., the

simple even query, deciding whether the number of tuples of a relation is even
or odd, is not expressible in Datalog∨ [7]). Therefore, the result follows from
Corollary 2. 2

We next prove that the inclusion of Corollary 2 is not proper.

Theorem 3. EXP[Datalog∨,¬,←↩] ⊆ ΣP
2 .

Proof. To prove the theorem, we have to show that for any Datalog∨,¬,←↩

query Q = 〈P, G〉, recognizing whether a database D is in EXP(Q) is in ΣP
2 .

Observe first that recognizing whether a given model M of a Datalog∨,¬,←↩

program is stable can be done in co-NP. Indeed, to prove that M is not stable,
it is sufficient to guess a subset X of M and check that it is an unfounded set.
(Note that, since Q is fixed, ground(PD) has size polynomial in D, and can be
constructed in polynomial time.)

Now, D is in EXP(Q) iff there exists a stable model M of PD such that
G ∈M . To check this, we may guess an interpretation M of PD and verify that:
(i) M is a stable model of PD, and (ii) G ∈ M . From the observation above,
(i) is done by a single call to an NP oracle; moreover, (ii) is clearly polynomial.
Hence, this problem is in ΣP

2 . Consequently, recognizing whether a database D
is in EXP(Q) is in ΣP

2 . 2

Corollary 4. EXP[Datalog∨,¬,←↩] = EXP[Datalog∨,←↩] = EXP[Datalog∨,¬] =
ΣP

2

DATALOG with Nested Rules 61

Proof. It follows from Corollary 2, from Theorem 3, and from the results in
[7]. 2

The above results show that full negation, stratified negation and nested
rules in disjunctive rules have the same expressivity. Moreover, the choice of the
constructs which should be used depends on the context of the applications.

4 Some Examples

In this section we present some examples to show that classical graph prob-
lems can be expressed in Datalog∨,←↩. For the sake of presentation we shall use
the predicate 6= which can be emulated by Datalog∨,←↩. Assuming that the the
database domain is denoted by the unary predicate d, the following two rules
define the binary predicate neq (not equal):

neq(X, Y) ∨ (eq(X, Y)← X = Y)← d(X), d(Y).
eq(X, X)

Thus, a tuple neq(x, y) is true if let x and y two elements in the database is
x 6= y. Observe that also stratified negation could be emulated by Datalog∨,←↩.
In the following examples we assume to have the graph G = (V, E) stored by
means of the unary relation v and the binary relation e.

Example 6. Spanning tree. The following program computes a spanning tree
rooted in the node a for a graph G = (V, E). The set of arcs in the spanning
tree are collected by means of the predicate st.

st(root, a).
st(X, Y) ∨ (no st(X, Y)←↩ no st(X, Y))← st(, X), e(X, Y).
no st(X, Y) ← st(X ′, Y), X 6= X ′.

Observe that the nested rule forces to select for each value of Y a unique tuple
for st(X, Y). Indeed, if some stable model M contains two tuples of the form
t1 = st(x1, y) and t2 = st(x2, y), from the last rule, M must contain also the
tuples no st(x1, y) and no st(x2, y). But this implies that also the interpretation
N ⊆M−{ti} for ti ∈ {t1, t2} is a stable model and, therefore, M is not minimal.
On the other side, assume now that there is some stable model M containing
a tuple no st(x′, y) but not containing tuples of the form st(x, y) for x 6= x′.
This means that the tuple no st(x′, y) cannot be derived from the last rule and,
therefore, it must belong to some unfounded set w.r.t. M .

Thus, there is a one-to-one correspondence between the stable models of the
program and the spanning trees rooted in a of the graph. 2

Example 7. Simple path. In this example we compute a simple path in a graph
G, i.e., a path passing through every node just once (if any). The set of tuples
in the simple path are collected by means of the predicate sp below defined:

sp(root, X) ∨ (no sp(root, X)←↩ no sp(root, X))← e(X,).
sp(X, Y) ∨ (no sp(X, Y)←↩ no sp(X, Y)) ← sp(W, X), e(X, Y).

62 Sergio Greco, Nicola Leone, and Francesco Scarcello

no sp(X, Y)← sp(X ′, Y), X ′ 6= X.
no sp(X, Y)← sp(X, Y ′), Y ′ 6= Y.

As for the program computing a spanning tree, the nested rule forces to select
for each value of X a unique tuple for sp(X, Y) and for each value of Y a unique
tuple for sp(X, Y). The nested rules impose the constraint that the set of tuples
for sp defines a chain. Thus, the first nested rule is used to select the starting
node of the simple path, whereas the second nested rule is used to select the set
of arcs belonging to the simple path.

The above program can be used to define the Hamiltonian path problem
checking if a graph G has simple path passing through all nodes (Hamiltonian
path). Therefore, the Hamiltonian graph problem can be defined by adding the
check that all nodes in G are in the simple path. 2

Example 8. Shortest path. In this example we assume to have a weighted directed
graph G = (V, E). We assume that the database domain contains a finite subset
of the integer numbers and that the weight argument of the arcs takes values
from this domain. We assume also that the minimum weight of all paths between
two nodes takes values from this domain. The arcs of the graph are stored by
means of tuples of the form e(x, y, c) where c is the weight of the arc from x to
y. The minimum weights of the paths from a source node a to every node in the
graph can be defined as follows:

mp(a, 0).
mp(Y, C) ∨ (no mp(Y, C)←↩ no mp(Y, C))← mp(X, C1), e(X, Y, C2),

C = C1 + C2.
no mp(Y, C) ← mp(Y, C′), C ′ < C.

The predicate mp computes, for each node x, the minimum distance from the
source node a to the node x. A stable model M contains for each tuple mp(y, c′)
in M all tuples of the form no mp(y, c) with c > c′. Thus, a tuple mp(y, c) is in
M iff there is no tuple no mp(y, c) in M , i.e., if all tuples in no mp with first
argument y have cost greater than c. 2

Example 9. Even query. We are given a relation d and we want to check whether
its cardinality is even or not. This can be done by first defining a linear order on
the elements of the relation and, then, checking whether the number of elements
in the ordering is even.

succ(root, root).
succ(X, Y) ∨ (no succ(X, Y)←↩ no succ(X, Y))← succ(, X), d(Y).

no succ(X, Y) ← succ(X, Y ′), Y ′ 6= Y, Y ′ 6= root, d(Y).
no succ(X, Y) ← succ(X ′, Y), X ′ 6= X, d(X).

odd(X) ← succ(root, X), X 6= root.
even(X) ← odd(Z), succ(Z, X).
odd(X) ← even(Z), succ(Z, Y).
even rel ← even(X),¬has a succ(X).
has a succ(X)← d(X), succ(X,).

DATALOG with Nested Rules 63

The first four rules define a linear order on the elements of the relation d (by
using a nested implication). Once a linear order has been defined on the domain
it is easy to check, by a simple stratified program, whether the cardinality is
even. Thus, the predicate even rel is true iff the relation d has an even number
of elements.

Therefore, Datalog∨,←↩ expresses the even query,7 while it cannot be ex-
pressed in Datalog∨ [7]. 2

We conclude by observing that the problems of the above examples could be
expressed by means of disjunctive datalog with (unstratified) negation. However,
programs with unstratified negation are neither intuitive nor efficiently com-
putable (while Datalog∨,←↩ has nice computational properties – see Section 5).

5 Conclusion

We have presented an extension of Disjunctive Datalog by nested rules. We have
shown the suitability of the language to naturally express complex knowledge-
based problems, which are not expressible by Datalog∨. A formal definition of
the semantics of Datalog∨,¬,←↩ programs has been provided, and we have shown
that it is a generalization of the classical stable model semantics. Finally, we have
carefully analyzed both data-complexity and expressiveness of Datalog∨,¬,←↩ un-
der the possibility (brave) semantics.

The results on the data-complexity and the expressiveness of Datalog∨,¬,←↩

are compactly represented in Table 1. 8

Datalog∨,←↩ Datalog∨ Datalog∨,¬ Datalog∨,¬,←↩

Expressive Power = ΣP
2 ⊂ ΣP

2 = ΣP
2 = ΣP

2

Data Complexity ΣP
2 -complete ΣP

2 -complete ΣP
2 -complete ΣP

2 -complete

Table 1. Expressibility and complexity results on Datalog∨,¬,←↩

Each column in Table 1 refers to a specific fragment of Datalog∨,¬,←↩. The
table clearly shows that the addition of nested rules does not increase the com-
plexity of disjunctive Datalog; indeed, brave reasoning for Datalog∨,←↩ is ΣP

2 -
complete as for Datalog∨. Nevertheless, nested rules do increase the expres-
sive power, as Datalog∨,←↩ allows to express all ΣP

2 database properties; while,
Datalog∨ expresses only a strict subset of them (e.g., the simple even query, that
decides whether a relation has an even number of tuples, cannot be expressed in
Datalog∨).
7 Recall that both 6= and stratified negation are used for simplicity, but they can be

easily emulated in Datalog∨,←↩.
8 Note that the results on data-complexity are immediately derived from the express-

ibility results of Section 3.2.

64 Sergio Greco, Nicola Leone, and Francesco Scarcello

Clearly, the power of Datalog∨,←↩ does not exceed that of Datalog∨,¬, as
nested rules could be simulated by means of unstratified negation. However,
the increase of expressiveness w.r.t. Datalog∨ confirms that nested rule allow to
express some useful forms of disjunctive information which are not expressible
in plain disjunctive Datalog.

Ongoing work concerns the definition of a fragment of Datalog∨,←↩ for which
one stable model can be computed in polynomial time; this fragment, under
nondeterministic semantics, allows to express all polynomial time properties.
Moreover, the investigation of abstract properties of Datalog∨,←↩ would also be
interesting to see whether this language can be characterized as for the stable
model semantics [3]. We conclude by mentioning that nested rules have been re-
cently used as a vehicle for binding propagation into disjunctive rules to optimize
the computation of standard disjunctive queries. [14]

References

1. Abiteboul, S., Hull, R., Vianu, V. (1995), Foundations of Databases. Addison-
Wesley.

2. Baral, C. and Gelfond, M. (1994), Logic Programming and Knowledge Represen-
tation Journal of Logic Programming, 19/20, 73–148.

3. S. Brass and J. Dix (1997), Characterizations of the Stable Semantics by Partial
Evaluation. Journal of Logic Programming, 32(3):207–228.

4. S. Brass, J. Dix, and T.C. Przymusinski (1996), Super Logic Programs. In “Proc.
of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR’96)”, Cambridge, MA, USA, Morgan Kaufmann, pp. 529–540.

5. M. Cadoli and M. Schaerf (1993), A Survey of Complexity Results for Non-
monotonic Logics, Journal of Logic Programming, Vol. 17, pp. 127-160.

6. Chandra, A., Harel, D. (1982), Structure and Complexity of Relational Queries.
Journal of Computer and System Sciences, 25:99–128.

7. Eiter, T., Gottlob, G. and Mannila, H. (1994), Adding Disjunction to Datalog,
Proc. ACM PODS-94, pp. 267–278.

8. T. Eiter and G. Gottlob and H. Mannila (1997), Disjunctive Datalog, ACM Trans-
actions on Database Systems, 22(3):364–418.

9. Fagin R. (1974), Generalized First-Order Spectra and Polynomial-Time Recogniz-
able Sets, Complexity of Computation, SIAM-AMS Proc., Vol. 7, pp. 43-73.

10. Gelfond, M., Lifschitz, V. (1988), The Stable Model Semantics for Logic Program-
ming, in Proc. of Fifth Conf. on Logic Programming, pp. 1070–1080, MIT Press.

11. Gelfond, M. and Lifschitz, V. (1991), Classical Negation in Logic Programs and
Disjunctive Databases, New Generation Computing, 9, 365–385.

12. Gelfond, M. and Son, T.C., Reasoning with Prioritized Defaults, Proc. of the Work-
shop Logic Programming and Knowledge Representation - LPKR’97, Port Jeffer-
son, New York, October 1997.

13. Gottlob, G., Complexity Results for Nonmonotonic Logics, Journal of Logic and
Computation, Vol. 2, N. 3, pp. 397-425, 1992.

14. Greco, S.(1990), Binding Propagation in Disjunctive Databases, Proc. Int. Conf.
on Very Large Data Bases, New York City.

15. Herre H., and Wagner G. (1997), Stable Models Are Generated by a Stable Chain,
Journal of Logic Programming, 30(2): 165–177.

16. Leone, N., Rullo, P., Scarcello, F. (1995) Declarative and Fixpoint Characteriza-
tions of Disjunctive Stable Models, in “ Proceedings of International Logic Pro-
gramming Symposium (ILPS’95)”, Portland, Oregon, pp. 399–413, MIT Press.

DATALOG with Nested Rules 65

17. Leone, N., Rullo, P., Scarcello, F. (1997) Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics and Computation, Information and Computation, Aca-
demic Press, Vol. 135, No. 2, June 15, 1997, pp. 69-112.

18. Marek, W., Truszczyński, M., Autoepistemic Logic, Journal of the ACM, 38, 3,
1991, pp. 518-619.

19. Minker, J. (1982), On Indefinite Data Bases and the Closed World Assumption, in
“Proc. of the 6th Conference on Automated Deduction (CADE-82),” pp. 292–308.

20. L. Pereira, J. Alferes, and J. Aparicio (1992), Well founded semantics for logic
programs with explicit negation. In “Proc. of European Conference on AI”.

21. Przymusinski, T. (1988), On the Declarative Semantics of Deductive Databases and
Logic Programming, in “Foundations of deductive databases and logic program-
ming,” Minker, J. ed., ch. 5, pp.193–216, Morgan Kaufman, Washington, D.C.

22. Przymusinski, T. (1991), Stable Semantics for Disjunctive Programs, New Gener-
ation Computing, 9, 401–424.

23. D. Saccà. The Expressive Powers of Stable Models for Bound and Unbound DAT-
ALOG Queries. Journal of Computer and System Sciences, Vol. 54, No. 3, June
1997, pp. 441–464.

24. Schlipf, J.S., The Expressive Powers of Logic Programming Semantics, Proc. ACM
Symposium on Principles of Database Systems 1990, pp. 196-204.

25. Stockmeyer, L.J. (1977), The Polynomial-Time Hierarchy. Theoretical Computer
Science, 3:1–22.

26. Van Gelder, A., Ross, K. A. and Schlipf, J. S. (1991), The Well-Founded Semantics
for General Logic Programs, Journal of ACM, 38(3), 620–650.

27. Vardi, M. (1982), Complexity of relational query languages, in “Proceedings 14th
ACM STOC,” pp. 137–146.

Partial Evidential Stable Models
for Disjunctive Deductive Databases

Dietmar Seipel

University of Würzburg
Am Hubland,

D – 97074 Würzburg, Germany
seipel@informatik.uni-wuerzburg.de

Abstract. In this paper we consider the basic semantics of stable and
partial stable models for disjunctive deductive databases (with default
negation), cf. [9,16]. It is well–known that there are disjunctive deduc-
tive databases where no stable or partial stable models exist, and these
databases are called inconsistent w.r.t. the basic semantics.
We define a consistent variant of each class of models, which we call ev-
idential stable and partial evidential stable models. It is shown that if a
database is already consistent w.r.t. the basic semantics, then the class
of evidential models coincides with the basic class of models. Otherwise,
the set of evidential models is a subset of the set of minimal models of the
database. This subset is non-empty, if the database is logically consis-
tent. It is determined according to a suitable preference relation, whose
underlying idea is to minimize the amount of reasoning by contradiction.
The technical ingredients for the construction of the new classes of mod-
els are two transformations of disjunctive deductive databases. First, the
evidential transformation is used to realize the preference relation, and to
define evidential stable models. Secondly, based on the tu–transformation
the result is lifted to the three–valued case, that is, partial evidential sta-
ble models are defined.

Keywords

disjunctive logic programming, non–monotonic reasoning, stable and partial sta-
ble models, handling inconsistency, program transformations

1 Introduction

The semantics of stable and partial stable models, cf. Gelfond, Lifschitz [9,10]
and Przymusinski [16], are among the most prominent semantics for disjunctive
databases. Unfortunately, there are databases which are logically consistent, but
are inconsistent w.r.t. these semantics. For normal databases, i.e. databases that
may contain negation but do not contain disjunctions, however, the partial stable
models semantics is always consistent, and it is equivalent to the well–founded
semantics of van Gelder, Ross and Schlipf [21].

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 66–84, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Partial Evidential Stable Models for Disjunctive Deductive Databases 67

For large databases, small inconsistent parts can prohibit the existence of
stable models, and even of partial stable models. Thus, we will introduce two
new variants of the stable model semantics, which are always consistent if the
database is logically consistent: First, the two–valued semantics of evidential
stable models, which is stronger than minimal model but weaker than stable
model semantics. Secondly, a three–valued version, called partial evidential stable
models, which for normal databases coincides with the well–founded semantics.
For stratified–disjunctive databases both evidential semantics coincide with the
perfect model semantics.

Consider the disjunctive database P = {r} consisting of one rule r = q ←
not a. Among its two minimal models M1 = {q} and M2 = {a}, the first model
is preferred to the second. Intuitively, the reason is that in M2 the truth of “a”
has been derived by contradiction, i.e. r has been fulfilled by making its body
false. In contrast, in M1 the truth of “q” is derived constructively from the head
of r. Thus, M1 is the so–called perfect model of P, and it is considered to be the
intended model.

The evidential transformation EP is a positive–disjunctive database that is
derived from P by moving default negated body literals to the rule heads and
prefixing them with “E”. Thus, the rule r is translated to q ∨ Ea. Additionally,
rules relating atoms and evidential atoms are introduced: Eq ← q, Ea ← a. A
similar construction has been used by Fernández et al., cf. [7], to characterize
the stable models of P. But our use of evidences has a different interpretation,
and moreover we use additional normality rules, which are not needed in [7].
Evidential stable models are defined as minimal models M of EP which also
minimize the set of atoms that are derived by contradiction solely: such atoms
A are false in M , but EA is true in M . Then we call EA an E–violation. In
our example, the minimal models of EP are M ′

1 = { q, Eq } and M ′
2 = { Ea }. In

M ′
1 there is no E–violation, whereas in M ′

2 there is the E–violation “Ea”. Thus,
M ′

1 is the unique evidential stable model of P. We will show, that for databases
which have stable models the evidential stable models coincide with the stable
models, when evidential atoms EA are interpreted as atoms A. Furthermore,
evidential stable models always exist for logically consistent databases. E.g. the
database P ′ = { a ← not a }, which does not have any stable models, has the
unique evidential stable model M ′ = {Ea}, which is interpreted as the model
M = {a} of P.

The second type of transformation we use is the tu–transformation P tu of
a disjunctive database P, which suitably annotates the atoms in P by the two
truth values true (“t”) and undefined (“u”), cf. [19]. We state a characterization
of the partial stable models of P in terms of the stable models of P tu. Then,
partial evidential stable models are defined based on the evidential stable models
of P tu, where the characterization for partial stable models motivates the new
definition. As in the two–valued case, partial evidential stable models always
exist for a logically consistent database. If there exist partial stable models of
the database, then the partial evidential stable models coincide with the partial
stable models, when evidential atoms are interpreted as atoms.

68 Dietmar Seipel

The paper is organized as follows: In Sections 2 and 3 we review the basic def-
initions and notation for disjunctive databases, partial Herbrand interpretations
and partial stable models. In Section 4 we introduce the evidential transforma-
tion and the evidential stable models of a disjunctive database P. In Section 5
we define the tu–transformation P tu of P and we state a characterization of the
partial stable models of P in terms of the total stable models of P tu. This moti-
vates the definition of partial evidential stable models in Section 6. In Sections 7
and 8 we compare the new semantics with other approaches known from the
literature, and we briefly comment on some of their abstract properties.

2 Basic Definitions and Notations

Given a first order language L, a disjunctive database P consists of logical infer-
ence rules of the form

r = A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bm ∧ not C1 ∧ . . . ∧ not Cn, (1)

where Ai, 1 ≤ i ≤ k, Bi, 1 ≤ i ≤ m, and Ci, 1 ≤ i ≤ n, are atoms in the language
L; k, m, n ∈ IN0, and not is the negation–by–default operator.1 A rule is called
a fact if m = n = 0. The set of all ground instances of the rules and facts in
P is denoted by gnd (P). A rule (or database) is called positive–disjunctive if it
does not contain default negation (i.e. n = 0). A rule r of the form (1) above is
denoted for short as:

r = α← β ∧ not · γ, (2)

where α = A1 ∨ . . . ∨Ak, β = B1 ∧ . . . ∧Bm, and γ = C1 ∨ . . . ∨ Cn.2

Herbrand Interpretations and Partial Herbrand Interpretations

The Herbrand base HBP of a disjunctive database P contains all ground atoms
over the language of P. A partial Herbrand interpretation of P is given by a
mapping I: HBP → {t, f, u} that assigns a truth value “t” (true), “f” (false) or “u”
(undefined) to each ground atom in HBP . Thus, partial Herbrand interpretations
are also called three–valued Herbrand interpretations. I is called a total or total
Herbrand interpretation, if all atoms A ∈ HBP are mapped to classical truth
values t or f.

Equivalently, a partial Herbrand interpretation I can be represented by using
the concept of annotated atoms. Given an atom A = p(t1, . . . , tn) and a truth
value v ∈ { t, f, u }, we define Av = pv(t1, . . . , tn), where pv is taken to be a new
predicate symbol. We will use two ways of representing I as a set of annotated
atoms, either by specifying the true and false atoms or by specifying the true
and undefined atoms:
1 By IN+ we denote the set { 1, 2, 3, . . . } of positive natural numbers, whereas IN0

denotes the set { 0, 1, 2, . . . } of all natural numbers.
2 Note that γ is a disjunction, and, according to De Morgan’s law, not · γ is taken to

be a conjunction.

Partial Evidential Stable Models for Disjunctive Deductive Databases 69

tf–Representation: Itf = It ∪ I f ,
tu–Representation: Itu = It ∪ Iu,

where It, Iu and I f are given by:

It = {At |A ∈ HBP ∧ I(A) = t },
I f = {Af |A ∈ HBP ∧ I(A) = f },
Iu = {Au |A ∈ HBP ∧ (I(A) = t ∨ I(A) = u) }.

Note that in the tu–representation every true atom A is recorded as At and as
Au, which will become important later. Note also that the tf–representation is
essentially the same as the conventional representation of I as a set of literals,
where At becomes the atom A itself and Af becomes the negative literal ¬A. For
a set I of partial Herbrand interpretations we will use the same notations for
v ∈ { tf, tu }: Iv = { Iv | I ∈ I }. By I =v J , we denote that J = Iv is the
v–representation of I.

Consider for instance the Herbrand base HBP = {a, b, c, d}. Then the partial
Herbrand interpretation I with I(a) = t, I(b) = t, I(c) = f, and I(d) = u, is
represented as follows:

Itf = { at, bt, cf }, Itu = { at, au, bt, bu, du }.
Obviously, a total Herbrand interpretation I can simply be represented by

the set J = { A ∈ HBP | I(A) = t } of true atoms. Conversely, any set J ⊆ HBP
of ground atoms induces a total Herbrand interpretation J3, where J3(A) = t
iff A ∈ J . For a set J of sets of atoms, J 3 = { J3 | J ∈ J }.

Truth Ordering and Knowledge Ordering

There are two common partial orderings on truth values, the truth ordering and
the knowledge ordering, cf. Fitting [8], which are shown by Figure 1:

Truth Ordering ≤t: f ≤t u, u ≤t t,
Knowledge Ordering ≤k: u ≤k f, u ≤k t.

Given two truth values v1, v2 ∈ { t, f, u }, by v1 ≥x v2 we denote the fact that
v2 ≤x v1, for x ∈ { t, k }.

These partial orderings have been generalized (pointwise) to partial orderings
on partial Herbrand interpretations as follows. For x ∈ { t, k }:

I1 ≤x I2, iff (∀A ∈ HBP : I1(A) ≤x I2(A)).

The truth ordering on partial Herbrand interpretations corresponds to the sub-
set ordering on their tu–representations: I1 ≤t I2 iff Itu

1 ⊆ Itu
2 . The knowl-

edge ordering corresponds to the subset ordering on the tf–representations:
I1 ≤k I2 iff Itf

1 ⊆ Itf
2 .

The Boolean operations “∨”, “∧” and “¬” on truth values are defined based
on the truth ordering, cf. Figure 2. The truth value of a disjunction v1 ∨ v2 and

70 Dietmar Seipel

≤k

≤t

6

-

f t

u

Fig. 1. Truth Ordering and Knowledge Ordering

∧ t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

¬
t f
f t
u u

Fig. 2. Boolean operations in three–valued logic

a conjunction v1 ∧ v2 of truth values are constructed by taking the maximum
and the minimum of v1 and v2, respectively. “∨” and “∧” both are commutative
and associative, and thus can be generalized to disjunctions and conjunctions,
respectively, of more than one truth value.

Models and Partial Models, Minimality

Let M be a partial Herbrand interpretation of a disjunctive database P. For
Ai ∈ HBP , 1 ≤ i ≤ k, and a connective ⊗ ∈ {∨,∧} we define M(A1⊗. . .⊗Ak) =
M(A1)⊗ . . .⊗M(Ak). For k = 0, the empty disjunction (i.e. ⊗ = ∨) evaluates
to f, whereas the empty conjunction (i.e. ⊗ = ∧) evaluates to t. M is called a
partial model of a ground rule r = α← β ∧ not · γ if

M(α) ≥t M(β) ∧ ¬M(γ). (3)

M is called a partial model of P if M is a partial model of all ground instances
r ∈ gnd (P) of all rules of P. This is denoted by M |=3 P.

Minimality of partial models is defined w.r.t. the truth ordering. M is called
a partial minimal model of P if M is a partial model of P and there is no other
partial model I of P such that I ≤t M . The set of all partial minimal models of
P is denoted by MM3(P). A partial model M of a disjunctive database P that
is total is called a model of P. This is denoted by M |=2 P. A partial minimal
model M of P that is total is called a minimal model of P. The set of all minimal
models of P is denoted by MM2(P).

Partial Evidential Stable Models for Disjunctive Deductive Databases 71

3 Stable and Partial Stable Models

The Gelfond–Lifschitz transformation (GL–transformation) of a disjunctive data-
base P w.r.t. a partial Herbrand interpretation M is obtained from the ground
instance gnd (P) of P by replacing in every rule the negative body by its truth
value M(not · γ) = ¬M(γ) w.r.t. M .3

Definition 1 (Gelfond–Lifschitz Transformation, [9,16]).
Let M be a partial Herbrand interpretation of a disjunctive database P.

1. For r = α← β ∧ not · γ ∈ gnd (P) we define rM = α← β ∧ ¬M(γ).
2. The Gelfond–Lifschitz transformation of P is PM = { rM | r ∈ gnd (P) }.

The GL–transformation PM is a ground positive–disjunctive database that
has as additional atoms the truth values t, f and u. Note that these truth values
must evaluate to themselves under all partial Herbrand interpretations I of PM .

Definition 2 (Partial Stable Models, Stable Models, [9,16]).
Let M be a partial Herbrand interpretation of a disjunctive database P.

1. M is called a partial stable model of P if M ∈ MM3(PM). The set of all
partial stable models of P is denoted by STABLE3(P).

2. A partial stable model M of P that is total is called a stable model of P.
The set of all stable models of P is denoted by STABLE2(P).

It can be shown that STABLE2(P) ⊆ STABLE3(P) for all disjunctive databases.
That is, the semantics of stable models is always stronger than the semantics of
partial stable models. The following databases will be used as running examples
throughout the paper.

Example 1 (Partial Stable Models).

1. For the disjunctive database

P1 = { a ∨ b, q ← b ∧ not a, q ← a ∧ not b },

we get the following set of partial stable models:

STABLE3(P1) =tf { { at, qt, bf }, { bt, qt, af } }.

E.g. for M tf = {at, qt, bf} we get the GL–transformation PM
1 = { a∨b, q ←

b ∧ f, q ← a ∧ t }, and MM3(PM
1) =tf {M tf , N tf }, for N tf = { bt, af, qf }.

Here all partial stable models are also stable models, i.e. STABLE3(P1) =
STABLE2(P1). Since P1 is stratified, the stable models coincide with the per-
fect models.

3 If this truth value is “t”, then “t” can be deleted from the body. If it is “f”, then the
whole rule can be deleted from PM .

72 Dietmar Seipel

2. For the disjunctive database

P2 = { a← not b, b← not c, c← not a },

there is a unique partial stable model, which is not stable:

STABLE3(P2) =tf { ∅ }, STABLE2(P2) =tf ∅.

3. The disjunctive database P3 = P2 ∪ { a∨b∨c }, cf. also [16], is inconsistent
w.r.t. the semantics of stable and partial stable models, i.e. STABLE3(P3) =
STABLE2(P3) = ∅.

4 Evidential Stable Models

Given an atom A = p(t1, . . . , tn), we define the corresponding evidential atom
EA = Ep(t1, . . . , tn), where Ep is taken to be a new predicate symbol. For a
disjunction α = A1 ∨ . . .∨Ak and a conjunction β = B1 ∧ . . .∧Bm of atoms we
define Eα = EA1 ∨ . . . ∨ EAk and Eβ = EB1 ∧ . . . ∧ EBm.

Definition 3 (Evidential Transformation).
Let P be a disjunctive database.

1. For a rule r = α← β ∧ not · γ ∈ P we define

Er = α ∨ Eγ ← β, E2r = Eα ∨ Eγ ← Eβ.

2. The evidential transformation of P is

EP = { Er | r ∈ P } ∪ { E2r | r ∈ P } ∪ { EA← A |A ∈ HBP }.

A rule Er describes that, if the positive body β of r is true, then this gives
rise to deriving either the head α “constructively” or an evidence for γ “by con-
tradiction”. The rules E2r could be compared with the normality rules from the
autoepistemic logic of beliefs, cf. [17], and the rules EA← A with the necessita-
tion rules. For an implementation, EP can be optimized: facts E2r = Eα ∨ Eγ
obtained from rules r = α ← not · γ ∈ P with an empty positive body are
redundant, since they are implied by Er = α ∨ Eγ and the necessitation rules.

Example 2 (Evidential Transformation).
For the disjunctive database P1 of Example 1 we get the following EP1, where
the fact Ea ∨ Eb is redundant:

EP1 = { a ∨ b, q ∨ Ea← b, q ∨ Eb← a } ∪
{ Ea ∨ Eb, Eq ∨ Ea← Eb, Eq ∨ Eb← Ea } ∪
{ Ea← a, Eb← b, Eq ← q }.

Partial Evidential Stable Models for Disjunctive Deductive Databases 73

Every pair of total Herbrand interpretations J and K of P induces a total
Herbrand interpretation I of EP, denoted by J ∪ EK, where for A ∈ HBP :

(J ∪ EK)(A) = J(A), (J ∪ EK)(EA) = K(A).

Conversely, every total Herbrand interpretation I of EP can be represented as J∪
EK. The total Herbrand interpretation K of P, that determines I on evidential
atoms, will be denoted by K(I), i.e. K(J ∪ EK) = K. K(I) will be considered to
be the total Herbrand interpretation of P that corresponds to I. It ignores the
part J , and interprets evidential atoms as (regular) atoms. For a set I of total
Herbrand interpretations of EP we define K(I) = { K(I) | I ∈ I }.

Based on a similar transformation FP = {Er |r ∈ P}∪{EA← A|A ∈ HBP },
which is a subset of EP, and the set CP = { ← EA ∧ not A | A ∈ HBP } of test
constraints, a characterization of stable models has been given by Fernández et
al.:

Theorem 1 (Characterization of Stable Models, [7]).
Given a disjunctive database P, then

STABLE2(P) = K({ I ∈MM2(FP) | I |=2 CP }).

This characterization of stable models can also be proven for EP instead of FP. It
does not refer to the “normality rules” E2r, since they are fulfilled automatically,
if I strictly fulfills all of the test constraints in CP. In our approach, however,
they will be needed to guarantee that K(I) is a model of P if I is a model of
EP.

We propose the new concept of evidential stable models, which are minimal
Herbrand models I of EP, such that K(I) ∈ MM2(P). The strict requirement
given by CP is relaxed to a preference relation: I ′ is preferred to I, if V(I ′) (

V(I), where V(I) denotes the set of violations of test constraints.

Definition 4 (Evidential Stable Models).
Given a disjunctive database P and a set I of total Herbrand interpretations of
EP.

1. The set of E–violations of I ∈ I is given by

V(I) = { EA | I |=2 EA and I 6|=2 A },

and minV(I) = { I ∈ I | 6 ∃I ′ ∈ I : I 6= I ′ ∧ V(I ′) (V(I) } denotes the set
of V–minimal interpretations in I.

2. The set of evidential stable models of P is

ESTABLE2(P) = minV({ I ∈MM2(EP) | K(I) ∈MM2(P) }),

and we further define STABLE ✦
2 (P) = K(ESTABLE2(P)).

74 Dietmar Seipel

The name evidential stable models has been chosen, since an evidential stable
model I ∈ ESTABLE2(P) contains evidential atoms, and it can be shown that
K(I) is a stable model of a suitably, minimally transformed database, where all
atoms A, such that EA is an E–violation in I, are moved from negative rule
bodies to rule heads (see P ′

2 below).
An evidential stable model I provides more information than just about the

truth of atoms A, namely the information of whether A was derived construc-
tively, or solely by contradiction (i.e., EA is an E–violation in I). In the models
K(I) ∈ STABLE ✦

2 (P), however, this information is ignored.

Example 3 (Evidential Stable Models).

1. For the disjunctive database P1 we get

STABLE2(P1) = STABLE ✦
2 (P1) (MM2(P1).

2. For the disjunctive database P2 we get the following EP2, where redundant
facts have been left out:

EP2 = { a ∨ Eb, b ∨ Ec, c ∨ Ea } ∪ { Ea← a, Eb← b, Ec← c }.
From MM2(EP2), the first three models are V–minimal:

MM2(EP2) = { { a, Ea, Ec }, { b, Eb, Ea }, { c, Ec, Eb }, { Ea, Eb, Ec } }3.

E.g. for I = { a, Ea, Ec }3 and I ′ = { Ea, Eb, Ec }3 we get

V(I) = { Ec } (V(I ′) = { Ea, Eb, Ec }.
The meaning of I is that “a” is true, but there is only an evidence that “c”
is true, i.e. “c” has been derived by contradiction:

STABLE ✦
2 (P2) = { { a, c }, { a, b }, { b, c } }3 = MM2(P2).

Finally, K(I) = { a, c }3 is a stable model of the suitably, minimally trans-
formed database P ′

2 for I:

P ′
2 = { a← not b, b ∨ c, c← not a }.

3. For the disjunctive database P3 we get STABLE ✦
2 (P3) = STABLE ✦

2 (P2).

The following theorem relates the evidential stable models of a disjunctive
database to the minimal and the stable models.

Theorem 2 (Characterization of Evidential Stable Models).
Given a disjunctive database P, then

1. If MM2(P) 6= ∅, then STABLE ✦
2 (P) 6= ∅.

2. If STABLE2(P) 6= ∅, then STABLE ✦
2 (P) = STABLE2(P).

3. STABLE2(P) ⊆ STABLE ✦
2 (P) ⊆MM2(P).

Partial Evidential Stable Models for Disjunctive Deductive Databases 75

Proof.

1. Assume MM2(P) 6= ∅. Every minimal model M ∈MM2(P) of P induces a
Herbrand interpretation M ∪ EM , which obviously is a model of EP. Thus,
there exists a minimal model I ∈ MM2(EP), such that I = J ∪ EK ⊆
M ∪ EM .4 Since EK must be a model of P ′ = { E2r | r ∈ P }, and EM
is a minimal model of P ′, and EK ⊆ EM, we get that K = M . Thus,
I = J ∪ EM ∈MM2(EP) and K(I) = M ∈MM2(P). This means that the
set of interpretations which we minimize is not empty, i.e. STABLE ✦

2 (P) 6= ∅.
2. The test condition (A) I |=2 CP is equivalent to (B) V(I) = ∅. Thus, for a

stable model K of P, the Herbrand interpretation I = K ∪EK of EP always
is minimal w.r.t. violation, and thus I is evidential stable. Moreover, if there
exists any stable model of P, then all evidential stable models I of P must
fulfill (B), i.e. they are of the form I = K ∪EK, such that K ∈ STABLE2(P).

3. First, the inclusion STABLE ✦
2 (P) ⊆MM2(P) holds by definition. Secondly,

the inclusion STABLE2(P) ⊆ STABLE ✦
2 (P) is an immediate consequence of

part 2.
ut

Note that the concept of evidential stable models cannot be lifted to the
three–valued case by simply taking partial minimal models of EP. The reason is
that for positive–disjunctive databases (without default negation), such as EP,
the partial minimal models coincide with the minimal models.

5 Annotation of DataBases and Partial Stable Models

We will use a special concept of annotating disjunctive rules, which encodes
the condition that partial Herbrand models have to fulfill in terms of their tu–
representation. Given a truth value v ∈ {t, u}, for a disjunction α = A1∨ . . .∨Ak

and a conjunction β = B1 ∧ . . .∧Bm of atoms we define αv = Av
1 ∨ . . .∨Av

k and
βv = Bv

1 ∧ . . . ∧Bv
m.

Definition 5 (Annotation of DataBases).

1. For a disjunctive rule r = α← β ∧ not · γ we define the annotated rules

rt = αt ← βt ∧ not · γu, ru = αu ← βu ∧ not · γt.

2. For a disjunctive database P we define P t = {rt |r ∈ P }, Pu = {ru |r ∈ P },
and the annotated database P tu = P t ∪ Pu ∪ {Au ← At |A ∈ HBP }.

Example 4 (Annotation of DataBases).
For the disjunctive database P1 of Example 1 we get

P t
1 = { at ∨ bt, qt ← bt ∧ not au, qt ← at ∧ not bu },
Pu

1 = { au ∨ bu, qu ← bu ∧ not at, au ← qu ∧ not bt },
P tu

1 = P t
1 ∪ Pu

1 ∪ { au ← at, bu ← bt, qu ← qt }.
4 Note that in this proof, total Herbrand interpretations are treated as their sets of

true atoms, and they are compared like sets.

76 Dietmar Seipel

The construction of P tu is motivated by the condition given in Equation (3),
which every partial Herbrand model M of a ground rule r = α← β∧not·γ must
fulfill. This condition can be encoded in the annotated rules rt and ru, since it
is equivalent to the following:

((M(β) ≥t t ∧ ¬(M(γ) ≥t u) =⇒ M(α) ≥t t) ∧
((M(β) ≥t u ∧ ¬(M(γ) ≥t t) =⇒ M(α) ≥t u).

The rules Au ← At are due to the fact that we want to perceive the Herbrand
models of P tu as Herbrand models of P in tu–representation.

Properties of the Annotated Database

It can be shown that annotation preserves stratification: Given a disjunctive
database P, the annotated disjunctive database P tu is stratified if and only if P
is stratified. Based on this, one can give an alternative proof of the well–known
fact (see [16]) that the partial stable models of a stratified–disjunctive database
P coincide with the perfect models of P. This fact implies in particular that the
partial stable models of a stratified–disjunctive database P are total.

The annotated database P tu can be represented as a database over two pred-
icate symbols “t” and “u”. Then, annotated atoms At and Au in rules can be
represented by atoms t(A) and u(A), respectively, where “A” is seen as a term
now. In this representation the (possibly infinite) set { Au ← At | A ∈ HBP }
of rules can simply be represented by one rule u(X) ← t(X), where “X” is a
variable symbol for atoms. Then P tu has the size of 2 · n + 1 rules if P consists
of n rules. This compact representation has been used for an implementation
dealing with P tu.

Characterization of Partial Minimal and Partial Stable Models

The following theorem shows that the partial stable models of a disjunctive
database P correspond to the total stable models of the annotated database
P tu. For any total Herbrand interpretation I of P tu we introduce the notation
I∇ for the partial Herbrand interpretation of P that is induced by I, i.e. for
A ∈ HBP

I∇(A) =

t if I(At) = t
u if I(Au) = t and I(At) = f
f if I(Au) = f

For a set I of total Herbrand interpretations of P tu, let I∇ = { I∇ | I ∈ I }.
Theorem 3 (Partial Minimal and Partial Stable Models, [19]).
Given a disjunctive database P, then

1. MM3(P) =MM2(P tu)∇
.

2. STABLE3(P) = STABLE2(P tu)∇
.

Partial Evidential Stable Models for Disjunctive Deductive Databases 77

Example 5 (Partial Stable Models).

1. For the disjunctive database P1 of Example 1, whose annotated database
P tu

1 has been given in Example 4, we get

STABLE3(P1) =tu { { at, au, qt, qu }, { bt, bu, qt, qu } }.
2. For the disjunctive database P2 of Example 1, we get the annotated database

P tu
2 = { at ← not bu, bt ← not cu, ct ← not au,

au ← not bt, bu ← not ct, cu ← not at,

au ← at, bu ← bt, cu ← ct }.
Thus, we get

STABLE3(P2) =tu { { au, bu, cu } }.
For the restricted case of normal databases, i.e. databases that may contain

negation but do not contain disjunctions, other characterizations of partial stable
models are given in [4,22]. The characterization of [4] is also based on the concept
of annotation, but it needs more than the two truth values that we are annotating
with here.

6 Partial Evidential Stable Models

For defining partial evidential stable models we can use the techniques described
in the previous two sections. Partial evidential stable models are defined based
on the evidential stable models of the tu–transformation of the database, i.e.
Theorem 3 for partial stable models motivates the following definition.

Definition 6 (Partial Evidential Stable Models).
The set of partial evidential stable models of a disjunctive database P is

ESTABLE3(P) = ESTABLE2(P tu)∇
,

and we further define STABLE ✦
3 (P) = K(ESTABLE3(P)).

Thus, for constructing partial evidential stable models we need the evidential
transformation E(P tu) of the tu–transformation of P. 5 As a consequence of its
definition, for each rule r = α ← β ∧ not · γ ∈ P, it contains two evidence rules
Eru, Ert, and two normality rules E2ru, E2rt :

Eru = αu ∨ Eγt ← βu, Ert = αt ∨ Eγu ← βt,
E2ru = Eαu ∨ Eγt ← Eβu, E2rt = Eαt ∨ Eγu ← Eβt.

Note that in an implementation, E(P tu) can be represented compactly as a dis-
junctive database over four predicate symbols “t, u, Et, Eu”.
5 We can identify evidential atoms E(Av) of E(P tu) with annotated atoms (EA)v of

(EP)tu. But note that – even with this identification – the databases E(P tu) and
(EP)tu are different if there is negation in P.

78 Dietmar Seipel

≤k

≤t

6

-

f Et t

Eu u
	 	
�

�

Fig. 3. Correlation between Annotated Atoms

The correlation between the four different types of atoms is specified by four
generic rules in E(P tu), cf. Figure 3: First, the rule r = Au ← At ∈ P tu gives rise
to the two evidential rules Er = r and E2r = EAu ← EAt. Secondly, we get the
two necessitation rules EAt ← At and EAu ← Au, for At and Au, respectively.

Analogously to evidential stable models, a partial evidential stable model I
provides more information than just about the truth or undefinedness of atoms
A, namely the information of whether an annotated atom Av was derived con-
structively, or solely by contradiction (i.e. EAv ∈ V(I) is an E–violation in I).
Again, in the models K(I) ∈ STABLE ✦

3 (P) this information is ignored, i.e., an
evidential atom EAv provides the same knowledge as a regular atom Av (cf. the
knowledge levels in Figure 3).

Example 6 (Partial Evidential Stable Models).

1. For the disjunctive database P2 of Example 1 we get

STABLE ✦
3 (P2) = STABLE3(P2).

2. For the disjunctive database P3 of Example 1 we get E(P tu
3), where the

redundant facts E2r for rules r ∈ P tu
3 with empty positive bodies have been

left out:

E(P tu
3) = { at ∨ bt ∨ ct, at ∨ Ebu, bt ∨ Ecu, ct ∨ Eau } ∪
{ au ∨ bu ∨ cu, au ∨ Ebt, bu ∨ Ect, cu ∨ Eat } ∪
{ Au ← At, EAu ← EAt, EAt ← At, EAu ← Au | A ∈ HBP3 }.

We get the set

MM2(E(P tu
3)) = { I1(a, b, c), I2(a, b, c), I1(c, a, b), I2(c, a, b),

I1(b, c, a), I2(b, c, a) }
of minimal models, where for A, B, C ∈ HBP3 :

I1(A, B, C) = {At, EAt, Au, EAu, Bu, EBu, ECu }3,

I2(A, B, C) = {At, EAt, Au, EAu, ECt, ECu }3.

Partial Evidential Stable Models for Disjunctive Deductive Databases 79

Here, V(I1(A, B, C)) = { ECu } (V(I2(A, B, C)) = { ECt, ECu }. Thus,
we get

STABLE ✦
3 (P3) =tu { { at, au, bu, cu }, { ct, cu, au, bu }, { bt, bu, cu, au } }.

3. For the (partial) evidential stable models of P3, it turns out that for each
evidential stable model I2 ∈ STABLE ✦

2 (P3) there is a corresponding partial
evidential stable model I3 ∈ STABLE ✦

3 (P3) that is weaker in the knowledge
ordering: e.g. for Itu

2 = { at, au, ct, cu } and Itu
3 = { at, au, bu, cu } we get I3 ≤k

I2, since Itf
3 = { at } ({ at, bf, ct } = Itf

2 .

The following theorem relates the partial evidential stable models of a dis-
junctive database to the partial minimal and the partial stable models. It is a
consequence of Definitions 4 and 6, and Theorems 2 and 3.

Theorem 4 (Characterization of Partial Evidential Stable Models).
Given a disjunctive database P, then

1. If MM3(P) 6= ∅, then STABLE ✦
3 (P) 6= ∅.

2. If STABLE3(P) 6= ∅, then STABLE ✦
3 (P) = STABLE3(P).

3. STABLE3(P) ⊆ STABLE ✦
3 (P) ⊆MM3(P).

Proof.
First, we will show that

(STABLE ✦
2 (P tu))

∇
= STABLE ✦

3 (P). (4)

Due to Definition 4, (STABLE ✦
2 (P tu))

∇
= (K(ESTABLE2(P tu)))∇

. It is possible
to switch: (K(ESTABLE2(P tu)))∇ = K(ESTABLE2(P tu)∇). According to Defini-
tion 6,

K(ESTABLE2(P tu)∇) = K(ESTABLE3(P)) = STABLE ✦
3 (P).

1. Assume MM3(P) 6= ∅. According to Theorem 3, part 1, this implies that
(MM2(P tu))∇ 6= ∅. With Theorem 2, part 1, we get (STABLE ✦

2 (P tu))
∇6= ∅.

Using Equation (4), STABLE ✦
3 (P) 6= ∅ can be concluded.

2. Assume STABLE3(P) 6= ∅. According to Theorem 3, part 2, this implies that
(STABLE2(P tu))∇ 6= ∅. With Theorem 2, part 2, we get

(STABLE ✦
2 (P tu))

∇
= (STABLE2(P tu))∇

.

Using Equation (4) and Theorem 3, part 2, the desired result follows.
3. From Theorem 2, part 3, we get an inclusion chain, that is preserved by “∇”:

(STABLE2(P tu))∇ ⊆ (STABLE ✦
2 (P tu))

∇ ⊆ (MM2(P tu))∇
. Applying Theo-

rem 3, parts 1 and 2, to (MM2(P tu))∇ and (STABLE2(P tu))∇, respectively,
and applying Equation (4) to (STABLE ✦

2 (P tu))
∇

, we get the desired chain of
inclusions.

ut

80 Dietmar Seipel

Partial evidential stable models provide a “consistent extension” of the well–
founded semantics from normal databases to disjunctive databases P, namely the
set STABLE ✦

3 (P) of partial Herbrand interpretations. For stratified–disjunctive
databases, this extension coincides with the perfect models if there exist perfect
models of P (which is for instance guaranteed for databases without denial rules).

7 Comparison with Other Approaches

Regular Models

The semantics of regular models has been introduced by You and Yuan, cf.
[24,25]: A regular model M is a justifiable model which has a minimal set Mu

of undefined atoms. A justifiable model M is a minimal model of a variant PM
Y

of the three–valued Gelfond–Lifschitz transformation, where only those rules are
selected whose negative bodies are true w.r.t. M (rather than undefined or false).

For a large class of disjunctive databases – including all examples considered
so far in this paper – the partial evidential stable models coincide with the
regular models. But, using an example database from [6], it can be shown that
the regular models do not always coincide with the (partial) evidential stable
models, neither with the (partial) stable models.

L–Stable and M–Stable Models

Eiter, Leone and Sacca [6] have investigated several interesting subsets of the set
of partial stable models, like the least undefined and the maximal partial stable
models, which they call L–stable and M–stable models, respectively.6 For normal
databases (without disjunctions), the M–stable models coincide with the regular
models of You and Yuan.

Since L–stable and M–stable models always are partial stable models, they do
not give a consistent interpretation for databases without partial stable models
(like P3), while (partial) evidential stable models do so if the databases are
logically consistent.

It tuns out that the concepts of minimizing undefinedness and maximizing
knowledge can be combined with our concept of partial evidential stable models.
That is, since STABLE ✦

3 (P) is a set of partial Herbrand interpretations, it makes
sense to look for the least undefined elements in that set, and also for the elements
with maximal knowledge.

Abductive Variants of Stable Models

Given a disjunctive database P, and a set A ⊆ HBP of ground atoms, called
abducibles. A total Herbrand model I of P is called an A–belief model , if there
6 Within the set of all partial stable models, an L–stable model M must have a minimal

set Mu of undefined atoms, whereas an M–stable model must have a maximal set
M tf of knowledge.

Partial Evidential Stable Models for Disjunctive Deductive Databases 81

exists a set AI ⊆ A of abducibles, such that I is a stable model of P ∪ AI . I
is called an A–stable model of P, if its set AI is minimal among all A–belief
models (i.e., if there exists no other A–belief model I ′ such that AI′ (AI).

This construction had been suggested by Gelfond7, who allowed all ground
atoms to be abducibles (i.e. A = HBP). A slightly different variant had been
proposed by Inoue and Sakama [11], who minimize the amount of abducibles in
an A–stable model I by additionally requiring that AI = {A ∈ A | I(A) = t }
must hold for A–belief models.

In general, both definitions are different from evidential stable models. If
there exist stable models, then Gelfond’s approach also derives these stable mod-
els, but otherwise it does not necessarily derive only minimal models.8 The ap-
proach of Inoue and Sakama is depending on particular useful sets of abducibles –
for A = ∅ it derives the stable models, and for A = HBP it derives all minimal
models.

There are, of course, similarities to evidential stable models, where the E–
violations (i.e. the atoms that are derived by contradiction solely) play the role
of abducibles which must occur in negative bodies of ground rules.

Disjunctive Well–Founded Semantics

For achieving a consistent interpretation of disjunctive databases, several types
of well–founded semantics have been proposed, cf. [1,2,14]. It seems that the
semantics of evidential stable models are stronger than the semantics D-WFS of
Brass and Dix [2], and still they are consistent.

8 Abstract Properties of the Evidential Semantics

In the following we will give a brief analysis of the two evidential semantics
according to several abstract properties of semantics, cf. Brass and Dix [3]. A
summary is given by Figure 4.

First, both evidential semantics have the property of independence. They
even have the stronger property of modularity . This means that if a database
can be decomposed into separate components that do not have any atoms in
common, then the (partial) evidential stable models can be computed on the
components separately. As a consequence, only on those parts of a disjunctive
database that are inconsistent w.r.t. (partial) stable models we have to compute
(partial) evidential stable models. On the consistent part of a database – which
usually will be the main part – we can compute the basic (partial) stable model
semantics.
7 in discussions
8 E.g., the disjunctive database P = { q ← not a ∧ not q, a ← b } has two evidential

stable models I tf
1 = { qt, af, bf} and I tf

2 = { at, bf, qf }. According to Gelfond’s defini-
tion, besides I1 and I2 we get an extra A–stable model I tf

3 = { at, bt, qf }, which is
not minimal (A = { a, b, q }, AI1 = { q }, AI2 = { a }, AI3 = { b }).

82 Dietmar Seipel

Taut. Contr. GPPE Indep. Supra.

STABLE2 + + + — +

STABLE3 + — — — —

STABLE ✦
2 + + — + +

STABLE ✦
3 + — — + —

D-WFS + — + + —

Regular + + — — —

Fig. 4. Abstract properties of semantics

Secondly, evidential stable model semantics is supraclassical , i.e., it derives
more consequences – by sceptical reasoning – than classical logic, since eviden-
tial stable models are also minimal models, cf. Theorems 2. On the other hand,
partial evidential stable model semantics is not supraclassical, since for normal
databases it is equivalent to the well–founded semantics, which is not supraclas-
sical.

Thirdly, both evidential semantics allow for the elimination of tautologies.
The semantics of evidential stable models also allows for the elimination of con-
tradictions, whereas partial evidential stable models do not. This well matches
with the conjecture of [3] that elimination of contradictions should be given up
for (three–valued) semantics of general – i.e. non–stratified – disjunctive data-
bases.

Fourth, both evidential semantics do not satisfy the generalized property of
partial evaluation (GPPE). For partial evidential stable models this can be shown
by an example that originally was used for showing that partial stable models
do not satisfy GPPE [19]. Given the fact that evidential stable models satisfy
elimination of tautologies and elimination of contradictions, using a theorem of
[3] it can be concluded that evidential stable models cannot satisfy GPPE – the
reason is that otherwise the set of evidential stable models always would have
to be a subset of the set of stable models.

Finally, note that as a consequence of Theorem 3, the technique of partial
evaluation can still be applied to the tu–transformation of a database – rather
than the database itself – for computing its partial stable models, and conse-
quently also the superset of partial evidential stable models.

9 Conclusions

The evidential semantics presented in this paper can be seen as a special case of
the general framework for revising non–monotonic theories that was introduced
by Witteveen and van der Hoek in [23]. In that case, the intended models would
be the (partial) stable models, and the backup models – from among which the

Partial Evidential Stable Models for Disjunctive Deductive Databases 83

models are chosen if there exist no intended models – would be the (partial)
minimal models, cf. Theorems 2 and 4.

The computation of (partial) evidential stable model semantics has been
implemented within the system DisLog for efficient reasoning in disjunctive
databases, cf. [20]. It can be shown that the time complexity of computing (par-
tial) evidential stable models is on the second level of the polynomial hierarchy,
namely ΣP

2 , just as for computing (partial) stable models.
The detailed investigation of the properties and possible implementations of

evidential stable models and partial evidential stable models will be the subject
of future work.

Acknowledgments

The author would like to thank Adnan Yahya and Jia–Huai You for their com-
ments on earlier drafts of this paper, and the anonymous referees for their useful
remarks.

References

1. C. Baral, J. Lobo, J. Minker: WF 3: A Semantics for Negation in Normal Dis-
junctive Logic Programs, Proc. Intl. Symposium on Methodologies for Intelligent
Systems (ISMIS’91), Springer LNAI 542, 1991, pp. 490–499.

2. S. Brass, J. Dix: A Disjunctive Semantics Based upon Partial and Bottom–Up
Evaluation, Proc. Intl. Conference on Logic Programming (ICLP’95), MIT Press,
1995, pp. 199–213.

3. S. Brass, J. Dix: Characterizations of the Disjunctive Stable Semantics by Partial
Evaluation, Proc. Third Intl. Conf. on Logic Programming an Non–Monotonic
Reasoning (LPNMR’95), Springer LNAI 928, 1995, pp. 85–98, and: Journal of
Logic Programming, vol. 32(3), 1997, pp. 207–228.

4. C.V. Damásio, L.M. Pereira: Abduction over 3–valued Extended Logic Programs,
Proc. Third Intl. Conf. on Logic Programming an Non–Monotonic Reasoning
(LPNMR’95), Springer LNAI 928, 1995, pp. 29–42.

5. T. Eiter, N. Leone, D. Sacca: The Expressive Power of Partial Models for Disjunc-
tive Deductive DataBases, Proc. Intl. Workshop of Logic in DataBases (LID’96),
Springer LNCS 1154, 1996, pp. 245–264.

6. T. Eiter, N. Leone, D. Sacca: On the Partial Semantics for Disjunctive Deductive
DataBases, Annals of Mathematics and Artificial Intelligence, to appear.

7. J.A. Fernández, J. Lobo, J. Minker, V.S. Subrahmanian: Disjunctive LP + In-
tegrity Constrains = Stable Model Semantics, Annals of Mathematics and Artifi-
cial Intelligence, vol. 8 (3–4), 1993, pp. 449–474.

8. M. Fitting: Bilattices and the Semantics of Logic Programs, Journal of Logic Pro-
gramming, vol. 11, 1991, pp. 91–116.

9. M. Gelfond, V. Lifschitz: The Stable Model Semantics for Logic Programming,
Proc. Fifth Intl. Conference and Symposium on Logic Programming (ICSLP’88),
MIT Press, 1988, pp. 1070–1080.

10. M. Gelfond, V. Lifschitz: Classical Negation in Logic Programs and Disjunctive
DataBases, New Generation Computing, vol. 9, 1991, pp. 365–385.

84 Dietmar Seipel

11. K. Inoue, C. Sakama: A Fixpoint Characterization of Abductive Logic Programs,
Journal of Logic Programming, vol. 27(2), 1996, pp. 107–136.

12. N. Leone, R. Rullo, F. Scarcello: Stable Model Checking for Disjunctive Logic
Programs, Proc. Intl. Workshop of Logic in DataBases (LID’96), Springer LNCS
1154, 1996,pp. 265–278.

13. J.W. Lloyd: Foundations of Logic Programming, second edition, Springer, 1987.
14. J. Lobo, J. Minker, A. Rajasekar: Foundations of Disjunctive Logic Programming,

MIT Press, 1992.
15. I. Niemelä, P. Simons: Efficient Implementation of the Well–founded and Stable

Model Semantics, Proc. Joint Intl. Conference and Symposium on Logic Program-
ming (JICSLP’96), MIT Press, 1996, pp. 289–303.

16. T.C. Przymusinski: Stable Semantics for Disjunctive Programs, New Generation
Computing, vol. 9, 1991, pp. 401–424.

17. T.C. Przymusinski: Static Semantics for Normal and Disjunctive Logic Programs,
Annals of Mathematics and Artificial Intelligence, vol. 14, 1995, pp. 323–357.

18. D. Seipel, J. Minker, C. Ruiz: Model Generation and State Generation for Disjunc-
tive Logic Programs, Journal of Logic Programming, vol. 32(1), 1997, pp. 48–69.

19. D. Seipel, J. Minker, C. Ruiz: A Characterization of Partial Stable Models for
Disjunctive Deductive DataBases, Proc. Intl. Logic Programming Symposium
(ILPS’97), MIT Press, 1997, pp. 245–259.

20. D. Seipel: DisLog – A Disjunctive Deductive Database Prototype, Proc. Twelfth
Workshop on Logic Programming (WLP’97), 1997, pp. 136–143.
DisLog is available on the WWW at
”http://www-info1.informatik.uni-wuerzburg.de/databases/DisLog”.

21. A. Van Gelder, K.A. Ross, J.S. Schlipf:, Unfounded Sets and Well–Founded Se-
mantics for General Logic Programs, Proc. Seventh ACM Symposium on Principles
of Database Systems (PODS’88), 1988, pp. 221–230.

22. C. Witteveen, G. Brewka: Skeptical Reason Maintenance and Belief Revision, Jour-
nal of Artificial Intelligence, vol. 61, 1993, pp. 1–36.

23. C. Witteveen, W. van der Hoek: A General Framework for Revising Nonmonotonic
Theories, Proc. Fourth Intl. Conf. on Logic Programming an Non–Monotonic Rea-
soning (LPNMR’97), Springer LNAI 1265, 1997, pp. 258–272.

24. J.H. You, L.Y. Yuan: Three-Valued Formalisms of Logic Programming: Is It
Needed ?, Proc. Ninth ACM Symposium on Principles of Database Systems
(PODS’90), 1990, pp. 172–182.

25. J.H. You, L.Y. Yuan: On the Equivalence of Semantics for Normal Logic Programs,
Journal of Logic Programming, vol. 22(3), 1995, pp. 211–222.

Disjunctive Logic Programming and
Autoepistemic Logic

Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Department of Computer Science
University of Alberta

Edmonton, Canada T6G 2H1
{yuan, you, goebel}@cs.ualberta.ca

Abstract. In this paper, we use autoepistemic reasoning semantics to
classify various semantics for disjunctive logic programs with default
negation. We have observed that two different types of negative intro-
spection in autoepistemic reasoning present two different interpretations
of default negation: consistency-based and minimal-model-based. We also
observed that all logic program semantics fall into three semantical points
of view: the skeptical, stable, and partial-stable. Based on these two ob-
servations, we classify disjunctive logic program semantics into six dif-
ferent categories, and discuss the relationships among various semantics.

1 Introduction

Recently the study of theoretical foundations of disjunctive logic programs with
default negation has attracted considerable attention. This is mainly because
the additional expressive power of disjunctive logic programs significantly sim-
plifies the problem of modeling disjunctive statements of various nonmonotonic
formalisms in the framework of logic programming, and consequently facilitates
using logic programming as an inference engine for nonmonotonic reasoning.

One of the major challenges is how to define a suitable semantics for var-
ious applications. A semantics of logic programs is usually specified by how
default negation is justified. Different ways of justification lead to different se-
mantics. Though many promising semantics for disjunctive programs have been
proposed, such as the answer set semantics [12], the static semantics [16], and
the well-founded and stable circumscriptive semantics [22], searching for suit-
able semantics for disjunctive programs proved to be far more difficult than for
normal programs (logic programs without disjunction) whose semantics is fairly
well understood now.

Three major semantical points of view have been established for logic pro-
grams: the skeptical, stable, and partial-stable.

A skeptical semantics justifies a default negation notα with respect to a
program Π if and only if α cannot possibly be derived from Π under any cir-
cumstance 1.
1 We say α cannot be derived from Π under any circumstance if α cannot be derived

from ΠN for any set N of default negations. Note that ΠN is a program obtained

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 85–101, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

86 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

A stable semantics is based on the idea of perfect introspection, in that the
semantics entails notα if and only if it does not entails α. Obviously, a sta-
ble semantics disallows any undefined atoms. (Note that an atom α in a given
semantics is considered undefined if neither α nor notα is true in the semantics.

A stable semantics characterizes an ideal (credulous) semantics for logic pro-
grams but a stable semantics of many less-than-ideal programs may not be con-
sistent. For example, Π = {a ← nota} has no stable models. This motivates
the introduction of the third semantical point of view: the partial-stable seman-
tics. A partial-stable semantics can be viewed as a relaxed stable semantics that
allows a minimum number of undefined atoms.

The standard semantics in three semantical categories for normal programs
are the well-founded semantics [9], the stable semantics [11], and the regular
semantics [20], respectively.

Not surprisingly, many semantics for disjunctive programs have been pro-
posed in each of these three semantical categories. For example, the static se-
mantics, the well-founded circumscriptive semantics, and the disjunctive well-
founded semantics [2,3,4] and the skeptical well-founded semantics [23] are rep-
resentatives of the skeptical semantical category; and the answer set semantics
and the stable extension semantics [14] (based on the autoepistemic translation
of logic programs) are representatives of the stable semantical category. For the
partial-stable semantical category, there are the partial-stable model semantics
[15], the regular model semantics [20], and the maximal stable model semantics
[8]. These three partial-stable semantics, as well as many others, defined weaker
stable semantics for disjunctive programs but experienced various difficulties [8].
A notable new entry in the field is the the partial-stable assumption semantics
[19]. The partial-stable assumption semantics extends the answer set seman-
tics into the partial-stable semantical category in the same way as the regular
semantics extends the stable semantics for normal programs.

In addition to three semantical points of view, it has also been realized that
the interpretations for default negation can be divided into two camps: those in
default logic and autoepistemic logic, which are consistency-based, and those in
circumscription and the like, which are minimal-model-based [13]. In the former
case, default assumptions are made on the basis of certain hypotheses being
consistent with a current theory; in the latter case, default assumptions are
made on the basis of their being true in all minimal models of a current theory.

In this paper, we use autoepistemic logic as a tool to classify disjunctive pro-
gram semantics into six different semantical categories, according to three seman-
tical points of view and two interpretations of default negation. We demonstrate
that all the six semantics have been proposed earlier in various frameworks and
that all promising semantics either coincide with, or are essentially the same as,
one of these six semantics.

We also address computational aspects of various semantics, which is an-
other important issue in the study of logic program semantics. In fact, we have

from Π by replacing all negations with their truth values in N . See Section 2 for
details

Disjunctive Logic Programming and Autoepistemic Logic 87

shown that among all six semantics, the consistency-based skeptical semantics
has the lowest computational complexity: PNP , which is not surprising be-
cause minimal-model entailment is inherently more difficult to compute than
(consistency-based) classical entailment.

We use autoepistemic logic as a tool for classifying disjunctive logic pro-
gram semantics for the following two reasons. First, default negation in logic
programming and many other nonmonotonic reasoning frameworks can be pre-
cisely characterized by negative introspection, which is a process for a rational
agent to derive disbeliefs according to the agent’s perspective of the world, in au-
toepistemic reasoning [10]. Second, we have observed that the difference between
consistency-based and minimal-model-based interpretations of default negation
lies in the use of an axiom ¬α ⊂ ¬Bα, where ¬Bα standing for “not believ-
ing α” (or notα), in autoepistemic logic, which is quite interesting. In fact, we
show that a minimal-model-based semantics can be precisely defined by the cor-
responding consistency-based semantics with one simple axiom in the context
of autoepistemic logic semantics. The following example demonstrates the dif-
ference between the two interpretations of default negation and how they are
related by the above axiom.

Example 1. Consider the following program Π1:

driving ∨ flying ←
fixing car ← notflying
reserving seat← notdriving

Π1 can be represented by an autoepistemic theory A1 below:

driving ∨ flying
fixing car ⊂ ¬Bflying
reserving seat ⊂ ¬Bdriving

The answer set semantics, which adopts the minimal-model-based default nega-
tion, of Π1 has two answer sets, one conclude

{driving; fixing car;notflying;notresering seat}

and the other

{flying; reserving seat;notdriving;notfixing car}.

The stable extension semantics [14], which is consistency-based, of A1, on the
other hand, contains a unique stable extension which concludes

{driving ∨ flying; fixing car; reserving seat;¬Bdriving;¬Bflying}

Let A1m be obtained from A1 by adding instantiated formulas of axiom ¬α ⊂
¬Bα, i.e., A1m = A1 ∪ {¬driving ⊂ ¬Bdriving;¬flying ⊂ ¬Bflying}. Then
the stable extension semantics of A1m contains two stable extensions, one con-
cludes

{driving; fixing car;¬Bflying;¬Bresering seat}

88 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

and the other

{flying; reserving seat;¬Bdriving;¬Bfixing car},
which coincides with the answer set semantics of Π1.

Our study provides much needed insights into the theoretical foundations of logic
programming with default negation.

The rest of the paper is organized as follows: Section 2 and 3 briefly review
logic program semantics and autoepistemic logic respectively. Section 4 defines
three autoepistemic expansions according to three different semantical points of
view. The six different semantics are redefined in Section 5. Semantical analysis
and comparisons are given in Section 6.

2 Logic Programs with Default Negation

We consider instantiated programs in a finite language containing the binary
connectives ∨,∧,←, and a unary connective not. A logic program is a set of
clauses of the form

A1 ∨ · · · ∨Aq ← B1, . . . , Bm,notC1, . . . ,notCn,

where Ai, Bj , Ck are atoms, notCk are default negations, also called assumed
negations, and q ≥ 1. Π is considered a normal program if q = 1; and a positive
program if n = 0. We use Π ` α to denote the fact that α can be derived from
Π in the sense of classical entailment.

Assume Π is a program. A negation set N is defined as a set of default
negations that appear in Π, which represents a possible interpretation (values)
of default negations contained in Π. The GL-translation ΠN is defined as a
program obtained from Π by first deleting all notcjs if notcj ∈ N and then
deleting all clauses with notck in the body if notck 6∈N .

The main challenge is how to define a suitable semantics for logic programs.
Since a negation set specifies a set of default negations being assumed true and
the intended meaning of Π under a given negation set N is determined by ΠN

2, a semantics of Π is usually given by one or more negation sets. Therefore,
searching for a semantics of Π is a process of searching for a negation set that
can be justified under a certain semantical point of view.

There are three major semantical points of view: the skeptical, stable, and
partial-stable.

A skeptical semantics is the most conservative semantics in that it justifies
a default negation notα if and only if α cannot be derived from the current
program in any circumstance, meaning α is not true with respect to ΠN for
any negation set N . Both stable and partial-stable semantics justify a default

2 Given Π and N , an atom α is considered true with respect to ΠN if either ΠN |= α
as in a consistency-based semantics, or (ΠN ∪ {¬β | notβ ∈ N}) |= α as in the
answer set semantics. See Section 5 for details.

Disjunctive Logic Programming and Autoepistemic Logic 89

negation notα only if α cannot be derived from the current program under the
given negation set. The difference between the stable and partial-stable is that
the former assigns a definite value, being true or assumed false, to each and
every atom while the latter allows a minimum number of undefined atoms.

Consider normal (non-disjunctive) programs first. The following table lists
all the major semantics proposed for normal programs.

Skeptical Stable partial-stable
Regular Semantics [20]

Well-Founded Stable Semantics [11] Preferential Semantics [7]
Semantics [9] Maximum Partial-Stable

Semantics [17]
Stable-Class Semantics [1]

Let Π be a normal program, and M and N negation sets of Π. We say M is
compatible wrt N if ΠN 6|= α for any notα ∈ M . Then N is justifiable wrt Π
if notα ∈ N if and only if ΠM 6|= α for any M that is compatible wrt N . This
leads to the following definition.

Definition 1. Let Π be a normal program. A negation set N is said to be

1. a partial-stable set of Π if
(a) N is compatible wrt itself, and
(b) N = {notα|Π{notβ | ΠN 6|=β} 6|= α}.

2. a stable set of Π if N = {notα | ΠN 6|= α}.
From this definition we can see that a partial-stable set N is a set of all default
negations that can be justified under the rule of negation as failure. That is,
notα ∈ N if and only if α cannot be derived from Π even all default negations
notβ ∈ {notβ | ΠN 6|= β} are assumed false. Obviously, a stable set is a partial-
stable set, but not vice versa. A program has at least one partial-stable set,
though it may not have any stable set. Further, it is easy to show that among
all partial-stable sets of Π there exists the least stable set in the sense of set
inclusion. The following proposition reveals that almost all semantics of normal
programs can be characterized by partial-stable sets.

Proposition 1. ([21])

1. The well-founded semantics is characterized by the least partial-stable set.
2. The stable semantics is characterized by the set of all stable sets.
3. The regular semantics, preferential semantics, maximum partial-stable se-

mantics, and normal stable-class semantics coincide and are characterized
by the set of maximal partial-stable sets, in the sense of set inclusion.

This proposition demonstrates that the well-founded, stable, and the regular
(including all other equivalent) semantics are the standard semantics for their
respective categories.

While the normal program semantics is fairly understood, searching for suit-
able disjunctive programs proved to be much more difficult.

The following table lists all major semantics proposed for disjunctive pro-
grams.

90 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Skeptical Stable Partial-Stable
Well-founded Circums- Stable Circums- Partial-stable
criptive Semantics [22] criptive Semantics [22] Model Semantics [15]
Static Semantics Answer Set Regular Semantics
[16] Semantics [12] [20]
Disjunctive Well- Stable Extension Maximal Stable
founded Semantics [2,4] Semantics [14] Model Semantics [8]
Skeptical Well- Partial-stable
founded Semantics [23] Assumption Semantics [19]

Regularly-justified
Set Semantics [23]

Both the static and the well-founded circumscriptive semantics were defined
based on the same idea of minimal-model-based negative introspection. The spe-
cific form of this introspection was given in [22]. In fact, the first three skeptical
semantics listed above are essentially the same [5]. The difference between the
first three skeptical semantics and the skeptical well-founded semantics lies in
the interpretation of default negation. The former adopts minimal-model-based
default negation while the latter consistency-based default negation.

Example 2. Consider a simple program Π2 below:

bird←; fly ∨ abnormal← bird; fly ← bird,notabnormal

Since abnormal is true in a minimal model of Π2 with notabnormal being false
while abnormal cannot be derived from Π2 regardless of notabnormal being true
or false, notabnormal can be justified under consistency-based default negation
but not under minimal-model-based default negation.

The skeptical well-founded semantics adopts consistency-based default nega-
tion and thus concludes notabnormal and fly. On the other hand, the static
as well as the well-founded circumscriptive and disjunctive well-founded se-
mantics adopt minimal-model-based default negation and thus conclude neither
notabnormal nor fly.

The answer set semantics is defined for extended logic programs that allow clas-
sical negation in both head and body while the stable circumscriptive semantics
is defined for general autoepistemic theories, including the translated logic pro-
grams with default negation. Both semantics adopt minimal-model-based default
negation and coincide in the context of disjunctive logic programs. On the other
hand, the stable extension semantics and the stable set semantics [23] are a
stable semantics that adopt consistency-based default negation.

Example 3. (Example 2 continued) The answer set semantics (as well as the sta-
ble circumscriptive semantics) of Π2 is defined by two sets, the first one contains
the set {bird, fly,notabnormal} and the second {bird, abnormal,notfly}.

The stable set semantics, on the other hand, is defined by a unique negation
set {notabnormal} and therefore implies bird ∧ fly.

Disjunctive Logic Programming and Autoepistemic Logic 91

All the partial-stable semantics, except the regularly-justified set semantics which
is consistency-based, listed above are minimal-model-based but are different from
each other. See [8] for detailed comparisons. The recently proposed partial-stable
assumption semantics seems the only semantics that extends the answer set se-
mantics in the same way as the regular semantics extends the stable semantics
for normal programs [19].

Example 4. Consider the following program Π4
work ∨ sleep ∨ tired←
work ← nottired
sleep← notwork
tired← notsleep

Both partial-stable and maximal stable model semantics, listed in the table,
of Π4 are inconsistent while the partial-stable assumption semantics and the
regularly-justified set semantics are characterized by an empty negation set N =
∅ which implies nothing but work ∨ sleep ∨ tired.

The difference between the partial-stable assumption and regularly-justified
set semantics lies in the interpretation of default negation. For example, consider
Π2 in Example 2. The partial-stable assumption semantics of Π2 coincides with
the answer set semantics of Π2 while the regularly-justified set semantics of Π2
coincides with both the skeptical well-founded and the stable set semantics of
Π2.

Another important feature of a semantics is its computational complexity. Be-
cause of the inherent difficulty of computing minimal-model entailment, the
computational complexity of consistency-based semantics is lower than that of
minimal-model-based semantics.

3 Autoepistemic Logic

We consider here a propositional language augmented with a modal operator B.
An atomic formula (atom) is either a propositional symbol, or an epistemic atom,
also called belief atom, Bα, where α is a (well-formed) formula defined as usual.
The intended meaning of Bα is “α is believed”. For convenience, we also use
notα, called disbelief atom, interchangeably for ¬Bα, meaning α is disbelieved.
(notα is also viewed by many authors as a default negation.) An belief theory
(or a theory for short) is a set of well-formed formulae, and a formula (or a
theory) is objective if it contains no epistemic atoms, otherwise it is subjective.
We denote by P+(A) and P−(A) the set of all propositions and the set of all
negative literals that appear in A, and by B+(A) and B−(A) the set of all belief
atoms and the set of all disbelief atoms that appear in A, respectively.

The logic has the following axioms and rules of inference.
Axioms.

PL. All propositional tautologies.
K. B(α ⊃ β) ⊃ (Bα ⊃ Bβ).
D. ¬B (false)

92 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Inference rules.

Modus Ponens (MP). α ⊃ β, α

β

A rational agent does not belief inconsistent conclusions which is expressed by
D. K means that if a conditional and its antecedent are both believed, then so
is the consequent. The importance of K is evidenced by the fact that K imposes
a constraint of normality on the language: Bα ≡ Bβ whenever α ≡ β. (Note
that by α ≡ β we mean (α ⊂ β) ∧ (β ⊂ α).) MP is a usual inference rule for
propositional logic.

Let A be a theory and α a formula. By A `KD α we mean α can be derived
from A based on the aforementioned axioms and rules of inference. A is incon-
sistent if there exists a formula α such that A `KD α and A `KD ¬α; otherwise,
it is consistent.

3.1 Belief Interpretation

A belief theory A is used to describe the knowledge base of a rational agent. Due
to incomplete information, an agent may have to hold a set of possible states
of epistemic belief, each of which represents a complete description about the
agent’s belief. A (restricted) belief interpretation is thus introduced to charac-
terize such a complete state of belief. Formally,

Definition 2. 1. A restricted belief interpretation, or belief interpretation for
short, of A is a set I of belief atoms and disbelief atoms such that for any
belief atom Bα appearing in A, either Bα ∈ I or ¬Bα ∈ I (not both).

2. A restricted belief model, or belief model for short, of A is a belief interpre-
tation I of A such that A ∪ I is consistent.

Obviously, a theory is consistent if and only if it has at least one belief model.
Let A be a belief theory and I a belief model of A. An (objective) perspective

theory of A, denoted by AI , is defined as an objective theory obtained from A
by replacing each belief atom in A with their corresponding truth value in I.
Obviously, a belief theory may have more than one perspective theory and each
of them represent the agent’s perspective with respect to one restricted belief
model.

Example 5. The following autoepistemic theory is obtained from Π2 in Exam-
ple 2 above

A5 = {bird; fly ∨ abnormal ⊂ bird; fly ⊂ bird ∧ ¬Babnormal}.

A5 has two belief models and two corresponding perspective theories:

I1 = {Babnormal} and A51 = {bird; fly ∨ abnormal ⊂ bird};
I2 = {¬Babnormal} and A52 = {bird; fly ∨ abnormal ⊂ bird; fly ⊂ bird}.

Disjunctive Logic Programming and Autoepistemic Logic 93

3.2 Introspection

Introspection is a process of revising the agent’ belief according to his perspective
of the world. For example, Moore [14] uses the stable expansion T of A

T = {φ | A ∪ {Bα | α ∈ T} ∪ {¬Bα | α 6∈T} `KD45 φ},

where `KD45 denotes derivation under logic KD45, to model introspective rea-
soning. The terms {Bα | α ∈ T} and {¬Bα | α 6∈T} express the positive and
negative introspection of an agent respectively.

It is generally agreed that positive introspection is a process of concluding
belief Bα if α can be derived while negative introspection is a process of con-
cluding disbelief ¬Bα (or B¬α) if α cannot be derived. Positive introspection is
usually achieved by introducing the necessitation rule: derive Bα if α has been
proved, as follows:

Necessitation (N). α

Bα
The interpretation of non-derivability for negative introspection, however, varies
quite diversely. Two typical approaches are:

1. consistency-based introspection:
deriving ¬Bα if ¬α is consistent with A, (or equivalently, A 6 K̀D α); and

2. minimal-model-based p-introspection:
deriving ¬Bα if ¬α is true in every minimal model of every perspective
theory of A.

The closed world assumption, default logic, and Moore’s autoepistemic logic
use consistency-based negative introspection. This approach usually results in
stronger negative introspection in that more disbeliefs may be concluded, and
as such, many reasonable theories do not possess consistent introspective expan-
sions. Minimal-model-based introspection, on the other hand, suffers from the
inherent difficulties associated with minimal-model entailment [8].

In [24], we have argued that introspection should be consistency-based and
be with respect to each and every possible belief world:

Deriving ¬Bα if ¬α is consistent with A ∪ I for every belief model I of
A.

In the following we will formally define the inference rules of introspection. First
we need to identify the classical entailment with respect to all possible belief
worlds.

Definition 3. Let A be a theory and α a formula.

1. A |∼ α if A ∪ I `KD α for every belief model I of A, and
2. A ∼| α if A ∪ I 6 K̀D α for every belief model I of A.

(Note that A∪ 6 K̀D α if and only if ¬α is consistent with A ∪ I.)

94 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

If A has two belief models I1 and I2 such that A ∪ I1 `KD α and A ∪ I2 6 K̀D α
then neither A |∼ α nor A ∼| α. Further, if A is inconsistent then A |∼ α and
A ∼| α for every formula α.

Now we are in a position to introduce the following two rules of inference
for positive and negative introspection with respect to all possible belief worlds
respectively.

Positive Introspection (PI). |∼ α

Bα

Negative Introspection (NI). ∼| α
¬Bα

PI states that deriving Bα whenever A |∼ α and NI that deriving ¬Bα whenever
A ∼| α.

Remarks Because A |∼ α if and only if A `KD α, PI is the same as the
necessitation rule N. We list PI as a rule of inference for positive introspection
here to emphases its role in introspection. NI is not a usual inference rule in that
its premise takes into account of the whole axioms. Rather, it is a content-based
meta rule of inference.

It is easy to see that PI is monotonic while NI is nonmonotonic. However,
it has been shown that NI is cumulative in that F ∪ {¬Bβ} derives ¬Bα, for
any formula β, whenever F derives both ¬Bα and ¬Bβ. Therefore, NI can be
recursively applied in any ordering, which enable us to define a logic that is
nonmonotonic in general but monotonic with respect to all belief and disbelief
atoms, as follows.

Definition 4. Assume A is a belief theory and α a formula. We say A intro-
spectively implies α, denoted as A `IKD α, if α can be derived from A by the
following axioms and rules of inference:

Axioms: PL, K, D
Inference rule: MP, PI, NI.

Example 6. Consider A5 in Example 5 again. Since A5 ∼| abnormal, A5 `IKD

¬Babnormal. Consequently, A5 `IKD fly as well as A5 `IKD Bfly.

The well-defined-ness of the epistemic entailment is evidenced by the fact that
`IKD is belief-monotonic, as described below.

Definition 5. A relation ` between a belief theory T and a formula α is said to
be belief-monotonic if for any formula β, T ∪ {Bβ} ` α if T ` α and T ∪
{¬Bβ} ` α if T ` α.

The introspective implication characterizes both positive and negative introspec-
tion, which is naturally nonmonotonic, but still remains belief monotonic. There-
fore, the computation of the introspective logic can be carried out incrementally
in any order, as long as the derived beliefs are preserved in the derivation.

Disjunctive Logic Programming and Autoepistemic Logic 95

The following example demonstrates that not every consistent theory is also
consistent under introspective entailment.

Example 7. Let A7 = {a ⊂ ¬Bb;¬a ⊂ ¬Bb}. Since A7 ∼| b, A7 `IKD ¬Bb, but
A7 ∪{¬Bb} is not consistent. Note that A7 is consistent for {Bb} is a restricted
belief model of A7.

A theory A is said to be introspectively consistent if there exists no formula α
such that A `IKD α and A `IKD ¬α. Even though it is inherently difficult to
check if a given theory is introspectively consistent, there exists a large class of
theories that are introspectively consistent. For example, as discussed in Section
6, all belief theories representing disjunctive logic programs with negation are
introspectively consistent.

The following observation, a direct consequence of axiom K, demonstrates
the normal behavior of introspective logic. That is, for any formulae α and β,

`IKD Bα ∧Bβ ≡ B(α ∧ β); `IKD Bα ∨Bβ ⊃ B(α ∨ β).

4 Introspective Expansions

In this section, we define three classes of introspective expansions, in order to
express the three semantical points of view in the context of autoepistemic logic.

Definition 6. A belief theory T is said to be an introspective expansion of A if
it satisfies the following fixpoint equation

T = {φ | A ∪ {¬Bα | T ∼| α} `IKD φ}.

The introspective expansion characterizes the introspective reasoning process by
expanding a given theory A using both rules of PI and NI.

It is worth noting that only the negative introspection {¬Bα | T ∼| α} is used
in the above fixpoint equation. The use of inappropriate positive introspection in
the equation, as indicated by Schwartz [18], may lead to ungrounded expansions.

Among all introspective expansions, the following three are of special interest.

Definition 7. An introspective expansion T of A is said to be

1. the ground expansion of A if it is a subset of any introspective expansion;
2. a stable expansion of A if T is epistemically complete in that for any formula

α, T contains either Bα or ¬Bα; and
3. a regular expansion of A if there exists no introspective expansion T ′ of A

such that T ′ ⊃ T .

In fact, these three classes of expansions are defined to express the three seman-
tical points of view, first developed in the context of normal programs.

Obviously, any stable expansion is a regular expansion, but not vice versa. For
convenience we use CnIKD(A) to denoted the set of all formulas introspectively
implied by A, i.e., CnIKD(A) = {α | A `IKD α}.

96 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Example 8. Consider

A5 = {bird; fly ∨ abnormal ⊂ bird; fly ⊂ bird ∧ ¬Babnormal}
in Example 5 again. A5 has exactly one introspective expansion T = CnIKD(A5),
which is also a stable expansion of A5.

Example 9. Consider A9 = {a ⊂ Ba, b ⊂ ¬Ba}. Then A9 has two introspective
expansions, that is, T1 = CnIKD(A9) = {φ|A9 `IKD φ} that contains neither
Ba nor ¬Ba, and T2 = CnIKD(A9 ∪ {¬Ba}).

Note that T3 = CnIKD(A9 ∪ {Ba}) is not an introspective expansion of A9
since a cannot be derived from A9 with any set of disbelief atoms.

It turns out that any theory has the ground (least) expansion, though not nec-
essarily a consistent one. Furthermore, the ground expansion is just the set of
all introspective consequences of A.

Theorem 1. 1. T = {φ|A `IKD φ} is the ground expansion of A.
2. If A is introspectively consistent then any introspective expansion of A is

consistent.

The proof of the theorem is straightforward and thus omitted.

5 Logic Program Semantics and Introspective Expansions

In this section, we will define various semantics of logic programs based on
autoepistemic expansions.

5.1 Default negation and Disbelief

Definition 8. Let Π be a logic program. Then AE(Π) is defined as an autoepis-
temic theory obtained from Π by translating each clause in Π into a formula of
the form [10]

A1 ∨ · · · ∨Aq ⊂ B1 ∧ · · · ∧Bm ∧ ¬BC1 ∧ · · · ∧ notBCn

Example 10. Consider

Π2 = {bird←; fly ∨ abnormal← bird; fly ← bird,notabnormal}
again. Then AE(Π) = {bird; fly∨abnormal ⊂ bird; fly ⊂ bird∧¬Babnormal}.
Similar to negative introspection, default negations in disjunctive programs can
also be interpreted in two different ways: consistency-based and minimal-model
based. The former assumes notα if ¬α is consistent with the current program
while the latter assumes notα if ¬α is true in every minimal model of the current
program.

Disjunctive Logic Programming and Autoepistemic Logic 97

Example 11. (Example 10 continued) By consistency-based default negation,
notabnormal can be justified since abnormal cannot be derived from Π2 no
matter whether notabnormal is true or false. On the other hand, by minimal-
model based default negation, notabnormal cannot be justified since abnormal
is true in one of the minimal models of Π2 when notabnormal is not assumed.

Consistency-based default negation can be easily characterized by the transla-
tion given in Definition 8 since negative introspection of autoepistemic logic is
consistency-based. The following translation is introduced to capture minimal-
model based default negation.

Definition 9. Let Π be a logic program, and AE(Π) be the autoepistemic theory
of Π. Then, the M-autoepistemic theory of Π, denoted as MAE(Π) is defined
as

AE(Π) ∪ {¬α ⊂ ¬Bα | α is an atom in Π}
MAE(Π) is also viewed as AE(Π) augmented with an axiom ¬α ⊂ ¬Bα.

Example 12. Consider Π2 in Example 10 again. Then MAE(Π2) contains the
following formulas:

bird;
fly ∨ abnormal ⊂ bird;
fly ⊂ bird ∧ ¬Babnormal;
¬bird ⊂ ¬Bbird;
¬fly ⊂ ¬Bfly;
¬abnormal ⊂ ¬Babnormal}.

Now, we are in a position to define declarative semantics of disjunctive programs
in terms of translated autoepistemic theories of Π. Because each program has two
different translated autoepistemic theories, corresponding to consistency-based
and minimal-model based default negations, and each autoepistemic theory may
have three different types of introspective expansions, corresponding to the skep-
tical, stable, and partial-stable semantical points of view, six different semantics
are given below.

Definition 10. Let Π be a disjunctive program, AE(Π) and MAE(Π) the cor-
responding autoepistemic theories of Π. Then we define

1. the C-ground (standing for consistency-based ground), C-stable (standing for
consistency-based stable), and C-regular (standing for Consistency-based reg-
ular) semantics of Π by the ground expansion, the set of all stable expansions,
and the set of all regular expansions, of AE(Π) respectively; and

2. the ground, stable, and partial-stable semantics of Π by the ground expan-
sion, the set of all stable expansions, and the set of all regular expansions,
of MAE(Π) respectively.

By saying that a semantics is characterized by an introspective expansion we
mean that (1) an objective formula α is true in the semantics if and only if α
is contained in the expansion, and (2) a default negation notα is true in the
semantics if and only if ¬Bα is contained in the expansion.

The following table summarizes all six different semantics.

98 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Skeptical Stable Partial-Stable
Consis- C-Ground Semantics: C-Stable Semantics: C-Regular Semantics:
tency the ground expansion all the stable all the regular
based of AE(Π) expansions of AE(Π) expansions of AE(Π)
Minimal- Ground Semantics: Stable Semantics: Partial-stable Semantics:
model the ground expansion all the stable all the regular
based of MAE(Π) expansions of MAE(Π) expansions of MAE(Π)

It is straightforward to show that for normal programs, consistency-based and
minimal-model based semantics coincide, simply because an atom is true in
the set of all minimal models of a Horn program if and only if it is a logical
consequence of the program.

Example 13. Consider Π2 in Example 10 again.
First, consider consistency-based default negation. Since abnormal cannot

be derived from AE(Π2) in any circumstance, AE(Π2) has a unique expansion
containing ¬Babnormal. Thus, all three semantics, including the C-ground, C-
stable, and C-regular, coincide and imply fly.

Now consider minimal-model based default negation. The skeptical semantics
does not imply ¬Babnormal since I = {Bbird,¬Bfly,Babnormal} is a belief
model of MAE(Π2) and MAE(Π2)∪I `KD abnormal. So the ground semantics
does not imply fly either. In fact, it coincides with the static semantics.

The stable semantics, which coincide with the partial-stable semantics, of Π2
is defined by two stable expansions, one contains {Bbird,¬Babnormal,Bfly}
and the other contains {Bbird,Babnormal,¬Bfly}.

6 Further Analysis

In this section, we will analyze relationships between various semantics.
First for normal programs, it is easy to show that both minimal-model-based

and consistency-based semantics coincide.

Proposition 2. Assume Π is a normal program. Then

1. The well-founded, C-ground, and ground semantics of Π coincide.
2. The stable and C-stable semantics coincide.
3. The regular, C-regular, and partial-stable semantics coincide.

Both the answer set semantics and stable circumscriptive semantics are minimal-
model-based and coincide with the stable semantics; and both the stable exten-
sion semantics and the stable set semantics are consistency-based and coincide
with the C-stable semantics, as shown below. Again, the proof is straightforward
and thus omitted.

Proposition 3. 1. Both the answer set and stable circumscriptive semantics
coincide with the stable semantics.

2. Both the stable extension semantics and the stable set semantics coincide
with the C-stable semantics.

Disjunctive Logic Programming and Autoepistemic Logic 99

Among all the minimal-model-based semantics in the partial-stable category,
the recently proposed partial-stable assumption semantics [19] coincides with
the partial-stable semantics. Further, the C-partial-stable semantics coincides
with the stable set semantics.

Proposition 4. 1. The partial-stable semantics coincides with the partial-stable
assumption semantics.

2. The C-partial-stable semantics coincides with the regularly-justified set se-
mantics.

Proof. (1) It follows the following two facts.
First, the partial-stable assumption semantics utilizes an additional meta rule

of inference α∨β,notβ
β while the partial-stable semantics utilizes a minimal-model

axiom ¬α ⊂ ¬Bα, which are essentially the same.
Second, the partial-stable assumption semantics is defined using the alternat-

ing fixpoint theory while the partial-stable semantics is defined using negative
introspection with respect to all belief models. However, it is easy to show that,
in the context of logic programming, the two are the same.

(2) It follows that the justification of default negation under the alternating
fixpoint theory coincide with negative introspection with respect to all belief mod-
els. Note that the regularly-justified set semantics justifies a regular set using the
alternating fixpoint theory.

Both the static and ground semantics are defined using minimal-model based
introspection and thus are very much the same. The subtle difference between
the two is due to the fact that the autoepistemic theory MAE(Π) uses ¬Bα to
represent notα while the static semantics uses B¬α to represent notα.

6.1 Computational Complexity

It is a well-known fact that the computational complexity 3 of the well-founded
semantics for normal program is polynomial while that of both the stable and
regular semantics is NP-complete. Furthermore, it has been shown that the com-
putational complexities for the answer set semantics and many other minimal-
model-based partial-stable semantics are ΣP

2 [8]. This implies that the computa-
tional complexity of both the stable and partial-stable semantics for disjunctive
programs are ΣP

2 .
The ground semantics and the static semantics have the same computational

complexity which are also ΣP
2 -complete [6].

The following proposition shows that the computational complexity of the
consistency-based ground semantics is PNP which is the lowest among all the
semantics for disjunctive logic programs in the polynomial hierarchy.

Proposition 5. The computational complexity of the consistency-based ground
semantics is PNP .
3 By the computational complexity we mean the data complexity under possibility

inference, i.e., the complexity of deciding if a given query is true in one partial-stable
set under the given semantics [8]

100 Li-Yan Yuan, Jia-Huai You, and Randy Goebel

Proof. Let AE(Π) be a disjunctive theory and F a formula. We need only to
show that deciding if AE(Π) `IKD F is PNP .

Let M1 contain all disbeliefs and M2 all beliefs. Then both M1 and M2 are
belief models of AE(Π). Furthermore, let B1 and B2 are objective perspective
theories of B with respect to M1 and M2 respectively. Then for any formula α,
AE(Π) |∼ α if and only if B2 `IKD α and AE(Π) ∼| α if and only if B1 6 ÌKD α.
This implies that a visit to an oracle for classical inference can determine the
status of any ¬BCi under the positive (or negative) introspection. Therefore, a
linear calls to oracle are sufficient enough to determine if AE(Π) `IKD F .

This result is by no means surprising because (consistency-based) classical en-
tailment is inherently more efficient to compute than minimal-model-based en-
tailment.

References

1. C. R. Baral and V. S. Subrahmanian. Stable and extension class theory for logic
programs and default logics. Journal of Automated Reasoning, 8:345–366, 1992.

2. S. Brass and J. Dix. Stefan Brass and Jürgen Dix. A disjunctive semantics based
on unfolding and bottom-up evaluation. In Bernd Wolfinger, editor, Innovationen
bei Rechen- und Kommunikationssystemen, (IFIP ’94-Congress, Workshop FG2:
Disjunctive Logic Programming and Disjunctive Databases), pages 83–91, Berlin,
1994. Springer.

3. Stefan Brass and Jürgen Dix. Characterizations of the Disjunctive Stable Seman-
tics by Partial Evaluation. Journal of Logic Programming, 32(3):207–228, 1997.
(Extended abstract appeared in: Characterizations of the Stable Semantics by
Partial Evaluation LPNMR, Proceedings of the Third International Conference,
Kentucky , pages 85–98, 1995. LNCS 928, Springer.).

4. Stefan Brass and Jürgen Dix. Characterizations of the Disjunctive Well-founded
Semantics: Confluent Calculi and Iterated GCWA. Journal of Automated Reason-
ing, 20(1):143–165, 1998. (Extended abstract appeared in: Characterizing D-WFS:
Confluence and Iterated GCWA. Logics in Artificial Intelligence, JELIA ’96 , pages
268–283, 1996. Springer, LNCS 1126.).

5. Stefan Brass, Jürgen Dix, Ilkka Niemelä, and Teodor. C. Przymusinski. A Com-
parison of the Static and the Disjunctive Well-founded Semantics and its Imple-
mentation. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixth International
Conference (KR ’98), pages 74–85. San Francisco, CA, Morgan Kaufmann, May
1998. appeared also as TR 17/97, University of Koblenz.

6. J. Dix and T. Eiter. Personal communication.
7. P. M. Dung. Negations as hypotheses: An abductive foundation for logic program-

ming. In Proceedings of the 8th ICLP, pages 3–17, 1991.
8. Thomas Eiter, Nicola Leone, and Domenico Sacc. The expressive power of partial

models in disjunctive deductive databases. In Logic in Databases, pages 245–264,
1996.

9. A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. JACM, 38:620–650, 1991.

10. M. Gelfond. On stratified autoepistemic theories. In Proceedings of AAAI-87,
pages 207–211. Morgan Kaufmann Publishers, 1987.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of the 5th ICLP, pages 1070–1080, 1988.

Disjunctive Logic Programming and Autoepistemic Logic 101

12. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–386, 1991.

13. H. J. Levesque. All i know: A study in autoepistemic logic. AI, 42:263–309, 1990.
14. R. C. Moore. Semantic considerations on non-monotonic logic. AI, 25:75–94, 1985.
15. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation

Computing, 9:401–424, 1991.
16. T. C. Przymusinski. Static semantics for normal and disjunctive logic programs.

Annals of Mathematics and Artificial Intelligence, 14:323–357, 1995.
17. D. Saccà and C. Zaniolo. Stable models and non-determinism in logic programs

with negation. In Proceedings of the 9th ACM PODS, pages 205–217, 1990.
18. G. Schwarz. Bounding introspection in nonmonotonic reasoning. KR’92, pages

581–590, 1992.
19. J.-H. You, X. Wang, and L.-Y. Yuan. Disjunctive logic programming as con-

strainted inferences. In Proc. of International Conference on Logic Programming,
1997.

20. J.-H. You and L.-Y. Yuan. A three-valued semantics of deductive databases and
logic programs. Journal of Computer and System Sciences, 49:334–361, 1994. A
preliminary version appears in the Proc. of the 9th ACM PODS, page 171-182,
1990.

21. J.-H. You and L.-Y. Yuan. On the equivalence of semantics for normal logic pro-
grams. Journal of Logic Programming, 22(3):209–219, 1995.

22. L.-Y. Yuan and J.-H. You. Autoepistemic circumscription and logic programming.
Journal of Automated Reasoning, 10:143–160, 1993.

23. L.-Y. Yuan and J.-H. You. On the extension of logic programming with negation
though uniform proofs. In Proc. of the 3rd International Conference on Logic
Programming and Nonmonotonic Reasoning, 1995.

24. L.-Y. Yuan and J.-H. You. An introspective logic of belief. In Proc. of the Workshop
on Logic Programming and Knowledge Representation, ILPS’97, pages 157–170,
1997.

A System for Abductive Learning of
Logic Programs

Evelina Lamma1, Paola Mello2, Michela Milano1, and Fabrizio Riguzzi1

1 DEIS, Università di Bologna
Viale Risorgimento 2, I-40136 Bologna, Italy
{elamma,mmilano,friguzzi}@deis.unibo.it

2 Dip. di Ingegneria, Università di Ferrara
Via Saragat 1, I-44100 Ferrara, Italy

pmello@ing.unife.it

Abstract. We present the system LAP (Learning Abductive Programs)
that is able to learn abductive logic programs from examples and from a
background abductive theory. A new type of induction problem has been
defined as an extension of the Inductive Logic Programming framework.
In the new problem definition, both the background and the target the-
ories are abductive logic programs and abductive derivability is used as
the coverage relation.
LAP is based on the basic top-down ILP algorithm that has been suit-
ably extended. In particular, coverage of examples is tested by using the
abductive proof procedure defined by Kakas and Mancarella [24]. As-
sumptions can be made in order to cover positive examples and to avoid
the coverage of negative ones, and these assumptions can be used as
new training data. LAP can be applied for learning in the presence of
incomplete knowledge and for learning exceptions to classification rules.

Keywords: Abduction, Learning.

1 Introduction

Abductive Logic Programming (ALP) has been recognized as a powerful knowl-
edge representation tool [23]. Abduction [22,36] is generally understood as rea-
soning from effects to causes or explanations. Given a theory T and a formula
G, the goal of abduction is to find a set of atoms ∆ (explanation) that, together
with T , entails G and that is consistent with a set of integrity constraints IC.
The atoms in ∆ are abduced: they are assumed true in order to prove the goal.
Abduction is specially useful to reason in domains where we have to infer causes
from effects, such as diagnostic problems [3]. But ALP has many other applica-
tions [23]: high level vision, natural language understanding, planning, knowledge
assimilation and default reasoning. Therefore, it is desirable to be able to au-
tomatically produce a general representation of a domain starting from specific
knowledge about single instances. This problem, in the case of standard Logic
Programming, has been deeply studied in Inductive Logic Programming (ILP)

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 102–122, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

A System for Abductive Learning of Logic Programs 103

[7], the research area covering the intersection of Machine Learning [33] and
Logic Programming. Its aim is to devise systems that are able to learn logic
programs from examples and from a background knowledge. Recently, in this re-
search area, a number of works have begun to appear on the problem of learning
non-monotonic logic programs [4,16,8,32].

Particular attention has been given to the problem of learning abductive logic
programs [21,26,29,30,27] and, more generally, to the relation existing between
abduction and induction and how they can integrate and complement each other
[15,17,2]. Our work addresses this topic as well. The approach for learning abduc-
tive logic programs that we present in this paper is doubly useful. On one side,
we can learn abductive theories for the application domains mentioned above.
For example, we can learn default theories: in Section 5.1 we show an example
in which we learn exceptions to classification rules. On the other side, we can
learn theories in domains in which there is incomplete knowledge. This is a very
frequent case in practice, because very often the data available is incomplete
and/or noisy. In this case, abduction helps induction by allowing to make as-
sumptions about unknown facts, as it is shown in the example in Section 5.2. In
[29] we defined a new learning problem called Abductive Learning Problem. In
this new framework we generate an abductive logic program from an abductive
background knowledge and from a set of positive and negative examples of the
concepts to be learned. Moreover, abductive derivability is used as the example
coverage relation instead of Prolog derivability as in ILP.

We present the system LAP (Learning Abductive Programs) that solves this
new learning problem. The system is based on the theoretical work developed
in [21,29] and it is an extension of a basic top-down algorithm adopted in ILP
[7]. In the extended algorithm, the proof procedure defined in [24] for abductive
logic programs is used for testing the coverage of examples in substitution of
the deductive proof procedure of logic programming. Moreover, the abduced
literals can be used as new training data for learning definitions for the abducible
predicates.

The paper is organized as follows: in Section 2 we recall the main concepts of
Abductive Logic Programming, Inductive Logic Programming, and the definition
of the abductive learning framework. Section 3 presents the learning algorithm
while its properties are reported in Section 4. In Section 5 we apply LAP to
the problem of learning exceptions to rules and learning from incomplete knowl-
edge. Related works are discussed in Section 6. Section 7 concludes and presents
directions for future works.

104 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

2 Abductive and Inductive Logic Programming

2.1 Abductive Logic Programming

An abductive logic program is a triple 〈P, A, IC〉 where:

– P is a normal logic program;
– A is a set of abducible predicates;
– IC is a set of integrity constraints in the form of denials, i.e.:
← A1, . . . , Am, not Am+1, . . . , not Am+n.

Abducible predicates (or simply abducibles) are the predicates about which as-
sumptions (or abductions) can be made. These predicates carry all the incom-
pleteness of the domain, they can have a partial definition or no definition at
all, while all other predicates have a complete definition.

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-
tained by transforming the program into its positive version: each negative literal
not p(t), where t is a tuple of terms, is replaced by a literal not p(t), where not p
is a new predicate symbol. Moreover, for each predicate symbol p in the program,
a new predicate symbol not p is added to the set A and the integrity constraint
← p(X), not p(X) is added to IC, where X is a tuple of variables. Atoms of the
form not p(t) are called default atoms. In the following, we will always consider
the positive version of programs. This allows us to abduce either the truth or
the falsity of atoms.

Given an abductive theory AT = 〈P, A, IC〉 and a formula G, the goal of
abduction is to find a (possibly minimal) set of ground atoms ∆ (abductive
explanation) of predicates in A which, together with P , entails G, i.e., P∪∆ |= G.
It is also required that the program P ∪∆ be consistent with respect to IC, i.e.
P ∪∆ |= IC. When there exists an abductive explanation for G in AT , we say
that AT abductively entails G and we write AT |=A G.

As model-theoretic semantics for ALP, we adopt the abductive model seman-
tics defined in [9]. We do not want to enter into the details of the definition,
we will just give the following proposition which will be useful throughout the
paper.

We indicate with LA the set of all atoms built from the predicates of A
(called abducible atoms), including also default atoms.

Proposition 1. Given an abductive model M for the abductive program AT =
〈P, A, IC〉, there exists a set of atoms H ⊆ LA such that M is the least Herbrand
model of P ∪H.

Proof. Straightforward from the definition of abductive model (definition 5.7 in
[9]).

In [24] a proof procedure for abductive logic programs has been defined. This
procedure starts from a goal and a set of initial assumptions ∆i and results in
a set of consistent hypotheses (abduced literals) ∆o such that ∆o ⊇ ∆i and ∆o

together with the program P allow deriving the goal. The proof procedure uses

A System for Abductive Learning of Logic Programs 105

the notion of abductive and consistency derivations. Intuitively, an abductive
derivation is the standard Logic Programming derivation suitably extended in
order to consider abducibles. As soon as an abducible atom δ is encountered,
it is added to the current set of hypotheses, and it must be proved that any
integrity constraint containing δ is satisfied. For this purpose, a consistency
derivation for δ is started. Since the constraints are denials only (i.e., goals), this
corresponds to proving that every such goal fails. Therefore, δ is removed from
all the constraints containing it, and we prove that all the resulting goals fail.
In this consistency derivation, when an abducible is encountered, an abductive
derivation for its complement is started in order to prove the abducible’s failure,
so that the initial constraint is satisfied. When the procedure succeeds for the
goal G and the initial set of assumptions ∆i, producing as output the set of
assumptions ∆o, we say that T abductively derives G or that G is abductively
derivable from T and we write T `∆o

∆i
G.

In [9] it has been proved that the proof procedure is sound and weakly com-
plete with respect to the abductive model semantics defined in [9] under a number
of restrictions. We will present these results in detail in Section 4.

2.2 Inductive Logic Programming

The ILP problem can be defined as [6]:
Given:

– a set P of possible programs
– a set E+ of positive examples
– a set E− of negative examples
– a logic program B (background knowledge)

Find:

– a logic program P ∈ P such that
• ∀e+ ∈ E+, B ∪ P ` e+ (completeness)
• ∀e− ∈ E−, B ∪ P 6`e− (consistency).

Let us introduce some terminology. The program P that we want to learn is the
target program and the predicates which are defined in it are target predicates.
The sets E+ and E− are called training sets and contain ground atoms for the
target predicates. The program B is called background knowledge and contains
the definitions of the predicates that are already known. We say that the pro-
gram P covers an example e if P ∪ B ` e1, i.e. if the theory “explains” the
example. Therefore the conditions that the program P must satisfy in order to
be a solution to the ILP problem can be expressed as “P must cover all positive
examples and must not cover any negative example”. A theory that covers all
positive examples is said to be complete while a theory that does not cover any
1 In the ILP literature, the derivability relation is often used instead of entailment be-

cause real systems adopt the Prolog interpreter for testing the coverage of examples,
that is not sound nor complete.

106 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

negative example is said to be consistent. The set P is called the hypothesis
space. The importance of this set lies in the fact that it defines the search space
of the ILP system. In order to be able to effectively learn a program, this space
must be restricted as much as possible. If the space is too big, the search could
result infeasible.

The language bias (or simply bias in this paper) is a description of the hy-
pothesis space. Many formalisms have been introduced in order to describe this
space [7], we will consider only a very simple bias in the form of a set of literals
which are allowed in the body of clauses for target predicates.

Initialize H := ∅
repeat (Covering loop)

Generate one clause c
Remove from E+ the e+ covered by c
Add c to H

until E+ = ∅ (Sufficiency stopping criterion)

Generate one clause c:
Select a predicate p that must be learned
Initialize c to be p(X)← .
repeat (Specialization loop)

Select a literal L from the language bias
Add L to the body of c
if c does not cover any positive example

then backtrack to different choices for L
until c does not cover any negative example (Necessity stopping criterion)
return c
(or fail if backtracking exhausts all choices for L)

Fig. 1. Basic top-down ILP algorithm

There are two broad categories of ILP learning methods: bottom-up methods
and top-down methods. In bottom-up methods clauses in P are generated by
starting with a clause that covers one or more positive examples and no nega-
tive example, and by generalizing it as much as possible without covering any
negative example. In top-down methods clauses in P are constructed starting
with a general clause that covers all positive and negative examples and by spe-
cializing it until it does no longer cover any negative example while still covering
at least one positive. In this paper, we concentrate on top-down methods. A
basic top-down inductive algorithm [7,31] learns programs by generating clauses
one after the other. A clause is generated by starting with an empty body and
iteratively adding literals to the body. The basic inductive algorithm, adapted
from [7] and [31], is sketched in Figure 1.

A System for Abductive Learning of Logic Programs 107

2.3 The New Learning Framework

We consider a new definition of the learning problem where both the background
and target theory are abductive theories and the notion of deductive coverage
above is replaced by abductive coverage.

Let us first define the correctness of an abductive logic program T with
respect to the training set E+, E−. This notion replaces those of completeness
and consistency for logic programs.

Definition 1 (Correctness). An abductive logic program T is correct, with
respect to E+ and E−, iff there exists ∆ ⊆ LA such that

T `∆
∅ E+, not E−

where not E− = {not e−|e− ∈ E−} and E+, not E− stands for the conjunction
of each atom in E+ and not E−

Definition 2 (Abductive Learning Problem).
Given:

– a set T of possible abductive logic programs
– a set of positive examples E+

– a set of negative examples E−
– an abductive program T = 〈P, A, IC〉 as background theory

Find:
A new abductive program T ′ = 〈P ∪ P ′, A, IC〉 such that T ′ ∈ T and T ′ is

correct wrt E+ and E−.

We say that a positive example e+ is covered if T `∆
∅ e+. We say that a

negative example e− is not covered (or ruled out) if T `∆
∅ not e−. By employing

the abductive proof procedure for the coverage of examples, we allow the system
to make assumptions in order to cover positive examples and to avoid the cover-
age of negative examples. In this way, the system is able to complete a possibly
incomplete background knowledge. Integrity constraints give some confidence in
the correctness of the assumptions made.

Differently from the ILP problem, we require the conjunction of examples,
instead of each example singularly, to be derivable. In this way we ensure that
the abductive explanations for different examples are consistent with each other.

The abductive program that is learned can contain new rules (possibly con-
taining abducibles in the body), but not new abducible predicates and new
integrity constraints.

3 An algorithm for Learning Abductive Logic Programs

In this section, we present the system LAP that is able to learn abductive logic
programs according to definition 2. The algorithm is obtained from the basic

108 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

procedure LAP(
inputs : E+, E− : training sets,

AT = 〈T, A, IC〉 : background abductive theory,
outputs : H : learned theory, ∆ : abduced literals)

H := ∅
∆ := ∅
repeat

GenerateRule(in: AT, E+, E−, H, ∆; out: Rule, E+
Rule, ∆Rule)

Add to E+ all the positive literals of target predicates in ∆Rule

Add to E− all the atoms corresponding to
negative literals of target predicates in ∆Rule

E+ := E+ − E+
Rule

H := H ∪ {Rule}
∆ := ∆ ∪∆Rule

until E+ = ∅ (Sufficiency stopping criterion)
output H

Fig. 2. The covering loop

procedure GenerateRule(
inputs : AT, E+, E−, H, ∆
outputs : Rule : rule,

E+
Rule : positive examples covered by Rule,

∆Rule : abduced literals

Select a predicate to be learned p
Let Rule = p(X)← true.
repeat (specialization loop)

select a literal L from the language bias
add L to the body of Rule
TestCoverage(in: Rule, AT, H, E+, E−, ∆,

out: E+
Rule, E

−
Rule, ∆Rule)

if E+
Rule = ∅
backtrack to a different choice for L

until E−
Rule = ∅ (Necessity stopping criterion)

output Rule, E+
Rule, ∆Rule

Fig. 3. The specialization loop

A System for Abductive Learning of Logic Programs 109

procedure TestCoverage(
inputs : Rule, AT, H, E+, E−, ∆
outputs: E+

Rule, E
−
Rule: examples covered by Rule

∆Rule : new set of abduced literals

E+
Rule = E−

Rule = ∅
∆in = ∆
for each e+ ∈ E+ do

if AbductiveDerivation(← e+, 〈T ∪H ∪ {Rule}, A, IC〉, ∆in, ∆out)
succeeds then Add e+ to E+

Rule; ∆in = ∆out

endfor
for each e− ∈ E− do

if AbductiveDerivation(← not e−, 〈T ∪H ∪ {Rule}, A, IC〉, ∆in, ∆out)
succeeds then ∆in = ∆out

else Add e− to E−
Rule

endfor
∆Rule = ∆out −∆
output E+

Rule, E
−
Rule, ∆Rule

Fig. 4. Coverage testing

top-down ILP algorithm (Figure 1), by adopting the abductive proof procedure,
instead of the Prolog proof procedure, for testing the coverage of examples.

As the basic inductive algorithm, LAP is constituted by two nested loops: the
covering loop (Figure 2) and the specialization loop (Figure 3). At each iteration
of the covering loop, a new clause is generated such that it covers at least one
positive example and no negative one. The positive examples covered by the rule
are removed from the training set and a new iteration of the covering loop is
started. The algorithm ends when the positive training set becomes empty. The
new clause is generated in the specialization loop: we start with a clause with an
empty body, and we add literals to the body until the clause does not cover any
negative example while still covering at least one positive. The basic top-down
algorithm is extended in the following respects.

First, in order to determine the positive examples E+
Rule covered by the gen-

erated rule Rule (procedure TestCoverage in Figure 4), an abductive derivation
is started for each positive example. This derivation results in a (possibly empty)
set of abduced literals. We give as input to the abductive procedure also the set
of literals abduced in the derivations of previous examples. In this way, we en-
sure that the assumptions made during the derivation of the current example
are consistent with the assumptions for other examples.

Second, in order to check that no negative example is covered (E−
Rule = ∅

in Figure 3) by the generated rule Rule, an abductive derivation is started for
the default negation of each negative example (← not e−). Also in this case,
each derivation starts from the set of abducibles previously assumed. The set of
abducibles is initialized to the empty set at the beginning of the computation,

110 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

and is gradually extended as it is passed on from derivation to derivation. This
is done as well across different clauses.

Third, after the generation of each clause, the literals of target predicates
that have been abduced are added to the training set, so that they become new
training examples. For each positive abduced literal of the form abd(c+) where
c+ is a tuple of constants, the new positive example abd(c+) is added to E+

set, while for each negative literal of the form not abd(c−) the negative example
abd(c−) is added to E−.

In order to be able to learn exceptions to rules, we include a number of
predicates of the form not abnormi/n in the bias of each target predicate of
the form p/n. Moreover, abnormi/n and not abnormi/n are added to the set of
abducible predicates and the constraint

← abnormi(X), not abnormi(X).

is added to the background knowledge. In this way, when the current partial rule
in the specialization loop still covers some negative examples and no other literal
can be added that would make it consistent, the rule is specialized by adding the
literal not abnormi(X) to its body. Negative examples previously covered are
ruled out by abducing for them facts of the form abnormi(c−), while positive
examples will be covered by abducing the facts not abnormi(c+) and these facts
are added to the training set.

We are now able to learn rules for abnormi/n, thus resulting in a definition
for the exceptions to the current rule. For this purpose, predicates abnormi/n
are considered as target predicates, and we define a bias for them. Since we may
have exceptions to exceptions, we may also include a number of literals of the
form not abnormj(X) in the bias for abnormi/n.

The system has been implemented in Prolog using Sicstus Prolog 3#5.

4 Properties of the algorithm

LAP is sound, under some restrictions, but not complete. In this section we give
a proof of its soundness, and we point out the reasons of incompleteness.

Let us first adapt the definitions of soundness and completeness for an induc-
tive inference machine, as given by [7], to the new problem definition. We will
call Abductive Inductive Inference Machine (AIIM) an algorithm that solves the
Abductive Learning Problem. If M is an AIIM, we write M(T , E+, E−, B) = T
to indicate that, given the hypothesis space T , positive and negative examples
E+ and E−, and a background knowledge B, the machine outputs a program
T . We write M(T , E+, E−, B) = ⊥ when M does not produce any output.

With respect to the abductive learning problem (definition 2), the definitions
of soundness and completeness are:

Definition 3 (Soundness). An AIIM M is sound iff if M(T , E+, E−, B) = T ,
then T ∈ T and T is correct with respect to E+ and E−.

A System for Abductive Learning of Logic Programs 111

Definition 4 (Completeness). An AIIM M is complete iff M(T , E+, E−, B)
= ⊥, then there is no T ∈ T that is correct with respect to E+ and E−.

The proof of LAP soundness is based on the theorems of soundness and weak
completeness of the abductive proof procedure given in [9]. We will first present
the results of soundness and completeness for the proof procedure and then we
will prove the soundness of our algorithm.

The theorems of soundness and weak completeness (theorems 7.3 and 7.4 in
[9]) have been extended by considering the goal to be proved as a conjunction of
abducible and non-abducible atoms (instead of a single non-abducible atom) and
by considering an initial set of assumptions ∆i. The proofs are straightforward,
given the original theorems.

Theorem 1 (Soundness). Let us consider an abductive logic program T . Let
L be a conjunction of atoms. If T `∆o

∆i
L, then there exists an abductive model

M of T such that M |= L and ∆o ⊆M ∩ LA.

Theorem 2 (Weak completeness). Let us consider an abductive logic pro-
gram T . Let L be a conjunction of atoms. Suppose that every selection of rules in
the proof procedure for L terminates with either success or failure. If there exists
an abductive model M of T such that M |= L, then there exists a selection of
rules such that the derivation procedure for L succeeds in T returning ∆, where
∆ ⊆M ∩ LA.

We need as well the following lemma.

Lemma 1. Let us consider an abductive logic program T = 〈P, A, I〉. Let L be
a conjunction of atoms. If T `∆

∅ L then lhm(P ∪∆) |= L, where lhm(P ∪∆) is
the least Herbrand model of P ∪∆.

Proof. Follows directly from theorem 5 in [18].

The theorems of soundness and weak completeness for the abductive proof pro-
cedure are true under a number of assumptions:

– the abductive logic program must be ground
– the abducibles must not have a definition in the program
– the integrity constraints are denials with at least one abducible in each con-

straint.

Moreover, the weak completeness theorem is limited by the assumption that the
proof procedure for L always terminates.

The soundness of LAP is limited as well by these assumptions. However, they
do not severely restrict the generality of the system. In fact, the requirement that
the program is ground can be met for programs with no function symbols. In this
case the Herbrand universe is finite and we obtain a finite ground program from
a non-ground one by grounding in all possible ways the rules and constraints
in the program. This restriction is also assumed in many ILP systems (such as
FOIL [37], RUTH [1], [11]).

112 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

The restriction on the absence of a (partial) definition for the abducible does
not reduce the generality of the results since, when abducible predicates have
definitions in T , we can apply a transformation to T so that the resulting program
T ′ has no definition for abducible predicates. This is done by introducing an
auxiliary predicate δa/n for each abducible predicate a/n and by adding the
clause:

a(x)← δa(x).

The predicate a/n is no longer abducible, whereas δa/n is now abducible. In this
way, we are able to deal as well with partial definitions for abducible predicates,
and this is particularly important when learning from incomplete data, because
the typical situation is exactly to have a partial definition for some predicates,
as will be shown in Section 5.2.

The requirement that each integrity constraint contains an abducible literal
is not restrictive because we use constraints only for limiting assumptions and
therefore a constraint without an abducible literal would be useless.

The most restrictive requirement is the one on the termination of the proof
procedure. However, it can be proved that the procedure always terminates for
call-consistent programs, i.e. if no predicate depends on itself through an odd
number of negative recursive calls (e.g., p← not p).

We need as well the following theorem. It expresses a restricted form of
monotonicity that holds for abductive logic programs.

Theorem 3. Let T = 〈P, A, I〉 and T ′ = 〈P ∪ P ′, A, I〉 be abductive logic pro-
grams. If T `∆1

∅ L1 and T ′ `∆2
∆1

L2, where L1 and L2 are two conjunctions of
atoms, then T `∆2

∅ L1 ∧ L2.

Proof. From T `∆1
∅ L1 and lemma 1 we have that

lhm(P ∪∆1) |= L1

From the definition of abductive proof procedure we have that ∆1 ⊆ ∆2. Since
we consider the positive version of programs, P ∪∆1 and P ∪P ′∪∆2 are definite
logic programs. From the monotonicity of definite logic programs lhm(P ∪∆1) ⊆
lhm(P ∪ P ′ ∪∆2) therefore

lhm(P ∪ P ′ ∪∆2) |= L1

From T ′ `∆2
∆1

L2, by the soundness of the abductive proof procedure, we have
that there exists an abductive model M2 such that M2 |= L2 and ∆2 ⊆M2∩LA.
From proposition 1, there exists a set H2 ⊆ LA such that M2 = lhm(P∪P ′∪H2).
Since abducible and default predicates have no definition in P ∪P ′, we have that
M2 ∩ LA = H2 and ∆2 ⊆ H2. Therefore M2 ⊇ lhm(P ∩ P ′ ∩∆2) and

M2 |= L1

From M2 |= L2 and from the weak completeness of the abductive proof proce-
dure, we have that

T ′ `∆2
∆1

L1 ∧ L2

A System for Abductive Learning of Logic Programs 113

We can now give the soundness theorem for our algorithm.

Theorem 4 (Soundness). The AIIM LAP is sound.

Proof. Let us consider first the case in which the target predicates are not ab-
ducible and therefore no assumption is added to the training set during the
computation. In order to prove that the algorithm is sound, we have to prove
that, for any given sets E+ and E−, the program T ′ that is output by the
algorithm is such that

T ′ `∆
∅ E+, not E−

LAP learns the program T ′ by iteratively adding a new clause to the current
hypothesis, initially empty. Each clause is tested by trying an abductive deriva-
tion for each positive and for the complement of each negative example. Let
E+

c = {e+
1 . . . e+

nc
} be the set of positive examples whose conjunction is covered

by clause c and let E− = {e−
1 . . . e−

m}. Clause c is added to the current hypothesis
H when:

∃E+
c ⊆ E+ : E+

c 6= ∅, ∀i ∈ {1 . . . nc} : P ∪H ∪ {c} `∆+
i

∆+
i−1

e+
i

∀j ∈ {1 . . . m} : P ∪H ∪ {c} `∆−
j

∆−
j−1

not e−
j

where ∆+
0 = ∆H , ∆+

i−1 ⊆ ∆+
i and ∆−

0 = ∆+
nc

. By induction on the examples
and by theorem 3 with P ′ = ∅, we can prove that

〈P ∪H ∪ {c}, A, IC〉 `∆H∪{c}
∆H

E+
c , not E−

where ∆H∪{c} = ∆−
m. At this point, it is possible to prove that

T ′ `∆
∅ E+

c1
∪ . . . ∪ E+

ck
, not E−

by induction on the clauses and by theorem 3. From this and from the sufficiency
stopping criterion (see Figure 2) we have that E+

c1
∪ . . . ∪ E+

ck
= E+.

We now have to prove soundness when the target predicates are abducible
as well and the training set is enlarged during the computation. In this case, if
the final training sets are E+

F and E−
F , we have to prove that

T ′ `∆
∅ E+

F , not E−
F

If a positive assumption is added to E+, then the resulting program will contain
a clause that will cover it because of the sufficiency stopping criterion. If a
negative assumption not e− is added to E− obtaining E′−, clauses that are added
afterwards will derive not E′−. We have to prove also that clauses generated
before allow not E′− to be derived. Consider a situation where not e− has been
assumed during the testing of the last clause added to H. We have to prove that

〈P ∪H, A, IC〉 `∆
∅ E+

H , not E− ⇒ 〈P ∪H, A, IC〉 `∆
∅ E+

H , not E′−

where not e− ∈ ∆ and e− ∈ E′−. From the left part of the implication and for
the soundness of the abductive proof procedure, we have that there exists an

114 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

abductive model M such that ∆ ⊆ M ∩ LA. From not e− ∈ ∆, we have that
not e− ∈M and therefore by weak completeness

〈P ∪H, A, IC〉 `∆
∅ not e−

By induction and by theorem 3, we have the right part of the implication.

We turn now to the incompleteness of the algorithm. LAP is incomplete because
a number of choice points have been overlooked in order to reduce the computa-
tional complexity. The first source of incompleteness comes from the fact that,
after a clause is added to the theory, it is never retracted. Thus, it can be the
case that a clause not in the solution is learned and the restrictions imposed on
the rest of the learning process by the clause (through the examples covered and
their respective assumptions) prevent the system from finding a solution even if
there is one. In fact, the algorithm performs only a greedy search in the space
of possible programs, exploring completely only the smaller space of possible
clauses. However, this source of incompleteness is not specific to LAP because
most ILP systems perform such a greedy search in the programs space.

The following source of incompleteness, instead, is specific to LAP. For each
example, there may be more than one explanation and, depending on the one
we choose, the coverage of other examples can be influenced. An explanation ∆1
for the example e1 may prevent the coverage of example e2, because there may
not be an explanation for e2 that is consistent with ∆1, while a different choice
for ∆1 would have allowed such a coverage. Thus, in case of a failure in finding
a solution, we should backtrack on example explanations.

We decided to overlook these choice points in order to obtain an algorithm
that is more effective in the average case, but we might not have done so. In
fact, these choice points have a high computational cost, and they must be
considered only when a high number of different explanations is available for
each example. However, this happens only for the cases in which examples are
highly interrelated, i.e., there are relations between them or between objects
(constants) related to them. This case is not very common in concept learning,
where examples represent instances of a concept and the background represents
information about each instance and its possible parts. In most cases, instances
are separate entities that have few relations with other entities.

5 Examples

5.1 Learning exceptions

In this section, we show how LAP learns exceptions to classification rules. The
example is taken from [16].

Let us consider the following abductive background theory B = 〈P, A, IC〉
and training sets E+ and E−:

P = {bird(X) ← penguin(X).
penguin(X)← superpenguin(X).

A System for Abductive Learning of Logic Programs 115

bird(a). bird(b). penguin(c). penguin(d).
superpenguin(e). superpenguin(f).}

A = {abnorm1/1, abnorm2/1, not abnorm1/1, not abnorm2/1}
IC ={← abnorm1(X), not abnorm1(X).

← abnorm2(X), not abnorm2(X).}
← flies(X), not flies(X).}

E+ = {flies(a), f lies(b), f lies(e), f lies(f)}
E− = {flies(c), f lies(d)}
Moreover, let the bias be:

flies(X)← α where α ⊂ {superpenguin(X), penguin(X), bird(X),
not abnorm1(X), not abnorm2(X)}

abnorm1(X)← β and abnorm2(X)← β where
β ⊂ {superpenguin(X), penguin(X), bird(X)}

The algorithm first generates the following rule (R1):
flies(X)← superpenguin(X).

which covers flies(e) and flies(f) that are removed from E+. Then, in the
specialization loop, the rule R2 = flies(X)← bird(X). is generated which covers
all the remaining positive examples flies(a) and flies(b), but also the negative
ones. In fact, the abductive derivations for not flies(c) and not flies(d) fail.
Therefore, the rule must be further specialized by adding a new literal. The
abducible literal not abnorm1 is added to the body of R2 obtaining R3:

flies(X)← bird(X), not abnorm1(X).
Now, the abductive derivations for the negative examples flies(a) and flies(b)
succeed abducing {not abnorm1(a), not abnorm1(b)} and the derivations
not flies(c) and not flies(d) succeed abducing {abnorm1(c), abnorm1(d)}.

At this point the system adds the literals abduced to the training set and
tries to generalize them, by generating a rule for abnorm1/1. Positive abduced
literals for abnorm1/1 form the set E+, while negative abduced literals form the
set E−. The resulting induced rule is (R4):

abnorm1(X)← penguin(X).
No positive example is now left in the training set therefore the algorithm ends
by producing the following abductive rules:

flies(X)← superpenguin(X).
f lies(X)← bird(X), not abnorm1(X).
abnorm1(X)← penguin(X).

A result similar to ours is obtained in [16], but exploiting “classical” negation and
priority relations between rules rather than abduction. By integrating induction
and abduction, we obtain a system that is more general than [16].

5.2 Learning from incomplete knowledge

Abduction is particularly suitable for modelling domains in which there is incom-
plete knowledge. In this example, we want to learn a definition for the concept

116 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

father from a background knowledge containing facts about the concepts parent
and male. Knowledge about male is incomplete and we can make assumptions
about it by considering it as an abducible. We have the abductive background
theory B = 〈P, A, IC〉 and training set:

P = { parent(john, mary). male(john).
parent(david, steve). parent(kathy, ellen).
female(kathy).}

A = {male/1, female/1}
IC = {← male(X), female(X).}
E+ = {father(john, mary), father(david, steve)}
E− = {father(john, steve), father(kathy, ellen)}
Moreover, let the bias be

father(X, Y)← α where α ⊂ {parent(X, Y), parent(Y, X),
male(X), male(Y), female(X), female(Y)}

At the first iteration of the specialization loop, the algorithm generates the rule
father(X, Y)← .

which covers all the positive examples but also all the negative ones. Therefore
another iteration is started and the literal parent(X, Y) is added to the rule

father(X, Y)← parent(X, Y).
This clause also covers all the positive examples but also the negative example

father(kathy, ellen).
Note that up to this point no abducible literal has been added to the rule,
therefore no abduction has been made and the set ∆ is still empty. Now, an
abducible literal is added to the rule, male(X), obtaining

father(X, Y)← parent(X, Y), male(X).
At this point the coverage of examples is tested. father(john, mary) is covered
abducing nothing because we have the fact male(john) in the background. The
other positive example, father(david, steve), is covered with the abduction of
the following set: {male(david), not female(david)}.

Then the coverage of negative examples is tested by starting the abductive
derivations
← not father(john, steve).
← not father(kathy, ellen).

The first derivation succeeds with an empty explanation while the second suc-
ceeds abducing not male(kathy) which is consistent with the fact female(kathy)
and the constraint ← male(X), female(X). Now, no negative example is cov-
ered, therefore the specialization loop ends. No atom from ∆ is added to the
training set because the predicates of abduced literals are not target. The pos-
itive examples covered by the rules are removed from the training set which
becomes empty. Therefore also the covering loop terminates and the algorithm
ends, returning the rule

father(X, Y)← parent(X, Y), male(X).
and the assumptions

∆ = {male(david), not female(david), not male(kathy)}.

A System for Abductive Learning of Logic Programs 117

6 Related Work

We will first mention our previous work in the field, and then related work by
other authors.

In [29] we have presented the definition of the extended learning problem and
a preliminary version of the algorithm for learning abductive rules.

In [30] we have proposed an algorithm for learning abductive rules obtained
modifying the extensional ILP system FOIL [37]. Extensional systems differ
from intensional ones (as the one presented in this paper) because they employ
a different notion of coverage, namely extensional coverage. We say that the
program P extensionally covers example e if there exists a clause of P , l ←
l1, . . . , ln such that l = e and for all i, li ∈ E+ ∪ lhm(B). Thus examples can
be used also for the coverage of other examples. This has the advantage of
allowing the system to learn clauses independently from each other, avoiding
the need for considering different orders in learning the clauses and the need for
backtracking on clause addition. However, it has also a number of disadvantages
(see [13] for a discussion about them). In [30] we have shown how the integration
of abduction and induction can solve some of the problems of extensional systems
when dealing with recursive predicates and programs with negation.

In [17] the authors discuss various approaches for the integration of abduc-
tion and induction. They examine how abduction can be related to induction
specifically in the case of Explanation Based Learning, Inductive Learning and
Theory Revision. The authors introduce the definition of a learning problem
integrating abduction (called Abductive Concept Learning) that has much in-
spired our work. Rather than considering it as the definition of a problem to be
solved and presenting an algorithm for it, they employ the definition as a general
framework where to describe specific cases of integration.

Our definition differs from Abductive Concept Learning on the condition
that is imposed on negative examples: in [17] the authors require that negative
examples not be abductively entailed by the theory. Our condition is weaker
because it requires that there be an explanation for not e−, which is easier to
be met than requiring that there is no explanation for e−. In fact, if there is
an explanation for not e−, this does not exclude that there is an explanation
also for e−, while if there is no explanation for e− then there is certainly an
explanation for not e−. We consider a weaker condition on negative examples
because the strong condition is difficult to be satisfied without learning integrity
constraints. For example, in section 5.2, the learned program also satisfies the
stronger condition of [17], because for the negative example father(kathy, ellen)
the only abductive explanation {male(kathy)} is inconsistent with the integrity
constraint← male(X), female(X). However, if that constraint was not available
in the background, the stronger condition would not be satisfiable.

Moreover, in [17] the authors suggest another approach for the integration of
abduction in learning that consists in explaining the training data of a learning
problem in order to generate suitable or relevant background data on which to
base the inductive generalization. Differently from us, the authors allow the use
of integrity constraints for rule specialization, while we rely only on the addition

118 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

of a literal to the body of the clause. Adding integrity constraints for specializing
rules means that each atom derived by using the rules must be checked against
the constraints, which can be computationally expensive. Moreover, the results
of soundness and weak completeness can not be used anymore for the extended
proof procedure.

In [2] an integrated abductive and inductive framework is proposed in which
abductive explanations that may include general rules can be generated by incor-
porating an inductive learning method into abduction. The authors transform
a proof procedure for abduction, namely SLDNFA, into a proof procedure for
induction, called SLDNFAI. Informally, SLDNFA is modified so that abduction
is replaced by induction: when a goal can not be proven, instead of adding it
to the theory as a fact, an inductive procedure is called that generates a rule
covering the goal. However, the resulting learning is not able to a learn a rule
and, at the same time, make specific assumptions about missing data in order
to cover examples.

The integration of induction and abduction for knowledge base updating
has been studied in [11] and [1]. Both systems proposed in these papers perform
incremental theory revision: they automatically modify a knowledge base when it
violates a newly supplied integrity constraint. When a constraint is violated, they
first extract an uncovered positive example or a covered negative example from
the constraint and then they revise the theory in order to make it consistent with
the example, using techniques from incremental concept learning. The system
in [11] differs from the system in [1] (called RUTH) because it relies on an
oracle for the extraction of examples from constraints, while RUTH works non
interactively. Once the example has been extracted from the constraint, both
systems call similar inductive operators in order to update the knowledge base.
In [11] the authors use the inductive operators of Shapiro’s MIS system [38].

In [28], we have shown that LAP can be used to perform the knowledge
base updating tasks addressed by the systems in [11] and [1], by exploiting the
abductive proof procedure in order to extract new examples from a constraint
on target predicates. While systems in [11,1] can generate examples that violate
other integrity constraints and new inconsistencies have to be recovered at the
next iteration of the learning loop, in [28] we are able to select the examples that
allow the minimal revision of the theory. Another relevant difference is that our
system is a batch learner while the systems in [11,1] are incremental learners:
since we have all the examples available at the beginning of the learning process,
we generate only clauses that do not cover negative examples and therefore
we do not have to revise the theory to handle covered negative examples, i.e.,
to retract clauses. As regards the operators that are used in order to handle
uncovered positive examples, we are able to generate a clause that covers a
positive example by also making some assumptions, while in [11] they can cover
an example either by generating a clause or by assuming a fact for covering it,
but not the two things at the same time. RUTH, instead, is able to do this, and
therefore would be able to solve the problem presented in Section 5.2. Moreover,

A System for Abductive Learning of Logic Programs 119

RUTH considers abduced literals as new examples, therefore it would be able to
solve as well the problems in Section 5.1.

As concerns the treatment of exceptions to induced rules, it is worth men-
tioning that our treatment of exceptions by means of the addition of a non-
abnormality literal to each rule is similar to the one in [35]. The difference is
that the system in [35] performs declarative debugging, not learning, therefore
no rule is generated. In order to debug a logic program, in [35] the authors first
transform it by adding a different default literal to each rule in order to cope with
inconsistency, and add a rule (with an abducible in the body) for each predicate
in order to cope with predicate incompleteness. These literals are then used as
assumptions of the correctness of the rule, to be possibly revised in the face of
a wrong solution. The debugging algorithm determines, by means of abduction,
the assumptions that led to the wrong solution, thus identifying the incorrect
rules.

In [5] the authors have shown that is not possible, in general, to preserve cor-
rect information when incrementally specializing within a classical logic frame-
work, and when learning exceptions in particular. They avoid this drawback by
using learning algorithms which employ a nonmonotonic knowledge represen-
tation. Several other authors have also addressed this problem, in the context
of Logic Programming, by allowing for exceptions to (possibly induced) rules
[16,10]. In these frameworks, nonmonotonicity and exceptions are dealt with by
learning logic programs with negation. Our approach in the treatment of excep-
tions is very related to [16]. They rely on a language which uses a limited form
of “classical” (or, better, syntactic) negation together with a priority relation
among the sentences of the program [25]. However, in [20] it has been shown
that negation by default can be seen as a special case of abduction. Thus, in
our framework, by relying on ALP, we can achieve greater generality than [16]:
besides learning exceptions, LAP is able to learn from incomplete knowledge and
to learn theories for abductive reasoning.

In what concerns learning from incomplete information, many ILP systems
include facilities in order to handle this problem, for example FOIL [37], Progol
[34], mFOIL [19]. The approach that is followed by all these systems is funda-
mentally different with respect to ours: they are all based on the use of heuristic
necessity and sufficiency stopping criteria and of special heuristic functions for
guiding the search. The heuristic stopping criteria relaxes the requirements of
consistency and completeness of the learned theory: the theory must cover (not
cover) “most” positive (negative) examples, where the exact amount of “most” is
determined heuristically. These techniques allow the systems to deal with imper-
fect data in general, including noisy data (data with random errors in training
examples and in the background knowledge) and incomplete data. In this sense,
their approach is more general than ours, because we are not able to deal with
noisy data. Their approach is equivalent to discarding some examples, consider-
ing them as noisy or insufficiently specified, while in our approach no example is
discarded, the theory must be complete and consistent (in the abductive sense)
with each example.

120 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

7 Conclusions and Future Work

We have presented the system LAP for learning abductive logic programs. We
consider an extended ILP problem in which both the background and target the-
ory are abductive theories and coverage by deduction is replaced with coverage
by abduction.

In the system, abduction is used for making assumptions about incomplete
predicates of the background knowledge in order to cover the examples. In this
way, general rules are generated together with specific assumptions relative to
single examples. If these assumptions regard an abnormality literal, they can be
used as examples for learning a definition for the class of exceptions.

LAP is obtained from the basic top-down ILP algorithm by substituting, for
the coverage testing, the Prolog proof procedure with an abductive proof proce-
dure. LAP has been implemented in Sicstus Prolog 3#5: the code of the system
and of the examples shown in the paper are available at |¡URL:http://www-
lia.deis.unibo.it/Staff/FabrizioRiguzzi/LAP.html¿—.

In the future, we will test the algorithm on real domains where there is
incompleteness of the data. As regards the theoretical aspects, we will investigate
the problem of extending the proposed algorithm in order to learn full abductive
theories, including integrity constraints as well. The integration of the algorithm
with other systems for learning constraints, such as Claudien [12] and ICL [14],
as proposed in [27], seems very promising in this respect.

Our approach seems also promising for learning logic programs with two
kinds of negation (e.g., default negation and explicit negation), provided that
positive and negative examples are exchanged when learning a definition for the
(explicit) negation of a concept, and suitable integrity constraints are added to
the learned theory so as to ensure non-contradictoriness. This is also subject for
future work.

Acknowledgment

We would like to thank the anonymous referees and participants of the post-
ILPS97 Workshop on Logic Programming and Knowledge Representation for
useful comments and insights on this work. Fabrizio Riguzzi would like to thank
Antonis Kakas for many interesting discussions on the topics of this paper they
had while he was visiting the University of Cyprus.

References

1. H. Adé and M. Denecker. RUTH: An ILP theory revision system. In Proceedings of
the 8th International Symposium on Methodologies for Intelligent Systems, 1994.

2. H. Adé and M. Denecker. AILP: Abductive inductive logic programming. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
1995.

3. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111
of LNAI. SV, Heidelberg, 1996.

A System for Abductive Learning of Logic Programs 121

4. M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,
Inductive Logic Programming, chapter 7, pages 145–161. Academic Press, 1992.

5. M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,
Inductive Logic Programming, pages 145–161. Academic Press, 1992.

6. F. Bergadano and D. Gunetti. Learning Clauses by Tracing Derivations. In Pro-
ceedings 4th Int. Workshop on Inductive Logic Programming, 1994.

7. F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1995.
8. F. Bergadano, D. Gunetti, M. Nicosia, and G. Ruffo. Learning logic programs

with negation as failure. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 107–123. IOS Press, 1996.

9. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic
programming with non-monotonic reasoning. Theoretical Computer Science, 184:1–
59, 1997.

10. L. De Raedt and M. Bruynooghe. On negation and three-valued logic in interactive
concept learning. In Proceedings of the 9th European Conference on Artificial
Intelligence, 1990.

11. L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and
queries. Artificial Intelligence, 53:291–307, 1992.

12. L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence, 1993.

13. L. De Raedt, N. Lavrač, and S. Džeroski. Multiple predicate learning. In S. Mug-
gleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic
Programming, pages 221–240. J. Stefan Institute, 1993.

14. L. De Raedt and W. Van Lear. Inductive constraint logic. In Proceedings of the
5th International Workshop on Algorithmic Learning Theory, 1995.

15. M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of ECAI96
Workshop on Abductive and Inductive Reasoning. Catholic University of Leuven,
1996.

16. Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs: Learning
Exceptions. In Proceedings of the 8th European Conference on Machine Learning,
1995.

17. Y. Dimopoulos and A. Kakas. Abduction and inductive learning. In Advances in
Inductive Logic Programming. IOS Press, 1996.

18. P.M. Dung. Negation as hypothesis: An abductive foundation for logic program-
ming. In K. Furukawa, editor, Proceedings of the 8th International Conference on
Logic Programming, pages 3–17. MIT Press, 1991.

19. S. Džeroski. Handling noise in inductive logic programming. Master’s thesis,
Faculty of Electrical Engineering and Computer Science, University of Ljubljana,
1991.

20. K. Eshghi and R.A. Kowalski. Abduction compared with Negation by Failure. In
Proceedings of the 6th International Conference on Logic Programming, 1989.

21. F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, and G. Se-
meraro. Learning abductive logic programs. In Denecker et al. [15].

22. C. Hartshorne and P. Weiss, editors. Collected Papers of Charles Sanders Peirce,
1931–1958, volume 2. Harvards University Press, 1965.

23. A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2:719–770, 1993.

24. A.C. Kakas and P. Mancarella. On the relation between truth maintenance and
abduction. In Proceedings of the 2nd Pacific Rim International Conference on
Artificial Intelligence, 1990.

25. A.C. Kakas, P. Mancarella, and P.M. Dung. The acceptability semantics for logic
programs. In Proceedings of the 11th International Conference on Logic Program-
ming, 1994.

122 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

26. A.C. Kakas and F. Riguzzi. Learning with abduction. Technical Report TR-96-15,
University of Cyprus, Computer Science Department, 1996.

27. A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the 7th
International Workshop on Inductive Logic Programming, 1997.

28. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and abduc-
tion in logic programming. To appear on Information Sciences.

29. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and Ab-
duction in Logic Programming. In P. P. Wang, editor, Proceedings of the Third
Joint Conference on Information Sciences, volume 2, pages 203–206, 1997.

30. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into
(Extensional) Inductive Logic Programming Systems. In M. Lenzerini, editor,
AI*IA97, Advances in Artificial Intelligence, Proceedings of the 5th Congress of
the Italian Association for Artificial Intelligence, number 1321 in LNAI. Springer-
Verlag, 1997.

31. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

32. L. Martin and C. Vrain. A three-valued framework for the induction of general
logic programs. In Advances in Inductive Logic Programming. IOS Press, 1996.

33. R. Michalski, J.G. Carbonell, and T.M. Mitchell (eds). Machine Learning - An
Artificial Intelligence Approach. Springer-Verlag, 1984.

34. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

35. L. M. Pereira, C. V. Damásio, and J. J. Alferes. Diagnosis and debugging as con-
tradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings of the
2nd International Workshop on Logic Programming and Non-monotonic Reason-
ing, pages 316–330. MIT Press, 1993.

36. D.L. Poole. A logical framework for default reasoning. Artificial Intelligence, 32,
1988.

37. J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL and
Related Systems. New Generation Computing, 13:287–312, 1995.

38. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Refining Action Theories through
Abductive Logic Programming

Renwei Li1, Luis Moniz Pereira1, and Veronica Dahl2

1 Center for Artificial Intelligence (CENTRIA)
Department of Computer Science

Universidade Nova de Lisboa
2825 Monte de Caparica, Portugal

{renwei,lmp}@di.fct.unl.pt
2 School of Computing Science

Simon Fraser University
Burnaby, B.C. V5A 1S6, Canada

veronica@cs.sfu.ca

Abstract. Reasoning about actions and changes often starts with an
action theory which is then used for planning, prediction or explanation.
In practice it is sometimes not simple to give an immediately available
action theory. In this paper we will present an abductive methodology
for describing action domains. We start with an action theory which
is not complete, i.e., has more than one model. Then, after some tests
are done, we can abduce a complete action theory. Technically, we use
a high level action language to describe incomplete domains and tests.
Then, we present a translation from domain descriptions to abductive
logic programs. Using tests, we then abductively refine an original do-
main description to a new one which is closer to the domain in reality.
The translation has been shown to be both sound and complete. The
result of this paper can be used not only for refinement of domain de-
scriptions but also for abductive planning, prediction and explanation.
The methodology presented in this paper has been implemented by an
abductive logic programming system.

1 Introduction

When reasoning about actions and changes, we often assume that an action
theory has been given and described in a formal language or in a framework,
e.g. situation calculus [15], event calculus [10], action description languages A
[7] and ADL [16],

the fluent-features framework (FFF) [19], and their variants or extensions.
But little work has been reported on how to obtain an action theory. Assume
that we want to generate a plan to make the world in a definite state (goal), but
we are not certain about the initial state and the effects of available actions. For
example, let’s consider Vladimir Lifschitz’ challenge problem1:
1 Vladimir Lifschitz’s email message to lmp@di.fct.unl.pt and renwei@di.fct.unl.pt on

March 25, 1996.

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 123–138, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

124 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

The room has two lamps, say Big and Small, and two light switches, say
Left and Right. A switch controls one and only one light. Both lights are
off. Initially we don’t know whether the wiring is this way or the other
way around, but we can find out by toggling a switch.

In this example, we have two actions: to toggle the left switch and to toggle
the right switch, denoted by toggle(left) and toggle(right), and we have two
fluents: the big light is on and the small light is on, denoted by on(big) and
on(small). If we knew the way in which the circuit is connected, then we could
generate plans, predict the future, or explain the past. The problem is that no
such an immediately available theory exists. An intelligent agent should be able
to perform some tests and then obtain a complete action theory. In this paper we
will present an abductive methodology for reasoning about actions and changes
starting from an incomplete action theory, i.e., an action theory with more than
one model, then refining it by testing and abductive reasoning so as to have
a complete action theory, which can then be used for planning, predicting and
explaining. Our methodology consists of a high-level action description language
A+, a translation from A+ to abductive logic programs, and an abductive logic
programming system used as the underlying inference engine for refinement.

Now suppose that we have an action description language obtained by extend-
ing A [7] with propositional conjunctions and disjunctions on effect propositions.
Then, the above domain can be described by the following propositions:

{[toggle(left) causes on(big) if ¬on(big)]
∧[toggle(left) causes ¬on(big) if on(big))]}
∨̇
{[toggle(left) causes on(small) if ¬on(small)]
∧[toggle(left) causes ¬on(small) if on(small))]}

{[toggle(right) causes on(big) if ¬on(big)]
∧[toggle(right) causes ¬on(big) if on(big))]}
∨̇
{[toggle(right) causes on(small) if ¬on(small)]
∧[toggle(right) causes ¬on(small) if on(small))]}

{[toggle(left) causes on(big) if ¬on(big)]
∧[toggle(left) causes ¬on(big) if on(big))]}
∨̇
{[toggle(right) causes on(big) if ¬on(big)]
∧[toggle(right) causes ¬on(big) if on(big))]}

{[toggle(left) causes on(small) if ¬on(small)]
∧[toggle(left) causes ¬on(small) if on(small))]}
∨̇
{[toggle(right) causes on(small) if ¬on(small)]
∧[toggle(right) causes ¬on(small) if on(small))]}

Refining Action Theories through Abductive Logic Programming 125

It can be seen that finite uncertainties have been represented by exclusive dis-
junction ∨̇. Intuitively, one of the following two domain descriptions should be
real.

toggle(left) causes on(small) if ¬on(small)
toggle(left) causes ¬on(small) if on(small)
toggle(right) causes on(big) if ¬on(big)
toggle(right) causes ¬on(big) if on(big)

and
toggle(left) causes on(big) if ¬on(big)
toggle(left) causes ¬on(big) if on(big)
toggle(right) causes on(small) if ¬on(small)
toggle(right) causes ¬on(small) if on(small)

Later we will see that our methodology works well and produces what is intu-
itively acceptable. The rest of the paper is organized as follows. In Section 2
we present an action description language, denoted A+, which is an extension
to A. The reason we choose A is simply that A has been shown to be a sim-
ple, extensible and expressive action description language, and to be equivalent
to other three major formalisms [9] proposed by Pednault [16], Reiter [18] and
Baker [2], respectively. In Section 3 we will present a translation from domain
descriptions in A+ to abductive logic programs. This translation will serve to
bridge the reasoning about actions and abductive logic programming. Generally
it is not easy or simple to refine action theories or to predict and explain in A+.
The translation will effectively reduce working in A+ to working in an abductive
logic programming system, thereby being automated. In Section 4 we will show
that our translation is both sound and complete. In Section 5 we will discuss
tests and refinements by using abductive logic programming. In Section 6 we
return to Lifschitz’ challenge problem. In Section 7 we conclude this paper with
a few remarks.

2 Domain Descriptions

In this section we present an action description language A+, an extension to A
of [7].

2.1 Syntax

We begin with three disjoint non-empty sets of symbols, called proposition
names, fluent names, and action names, respectively. For convenience we will
also use parameterized names. Actions and propositions are defined to be action
names and proposition names, respectively. A fluent expression, or simply fluent,
is defined to be a fluent name possibly preceded by ¬. A fluent expression is also
called a positive fluent if it only consists of a fluent name; otherwise it is called
a negative fluent.

126 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

In A+, a domain description is defined to be a set of effect assertions and
constraints. An effect assertion is defined to be a statement of the form

A causes F if P1, . . . , Pm, Q1, . . . , Qn

where A is an action, each of F , P1, . . ., Pm (m ≥ 0) is a fluent expression, and
each of Q1, . . . , Qm (n ≥ 0) is a proposition name. If m = n = 0, then we will
simply write it as A causes F . A constraint is defined as follows:

– A proposition name is an atomic constraint.
– A statement of the form

F after A1, . . . , An

where F is a fluent and Ai is an action, is an atomic constraint, also called
value assertion. When n = 0, the value assertion above is abbreviated to
initially F .

– If C1 and C2 are constraints, then ¬C1, C1 ∧ C2, C1 ∨ C2 are constraints,
called complex constraints. Other propositional connectives can be defined
in terms of them as derived connectives.

It can be seen that A+ is an extension of A by allowing propositions and more
types of constraints. However, the detailed discussion on relations between A
and A+ is out of this paper.

2.2 Remarks

It seems that we would increase the expressive power if we defined the effect
assertions in the following way: (1) A basic effect assertion is a statement of the
form A causes F if C1, . . . , Cn; (2) An effect assertion is a statement of the
form (E11∧ . . .∧E1m1)∨ . . .∨ (En1∧ . . .∧Enmn), where each Eij is a basic effect
assertion. In fact, combining with proposition names, we can reduce the above
complex effect assertion to simpler ones of A+. We can systematically do so by
introducing a few new proposition names and then transform effect assertions.
For example, consider:

(A1 causes F1 if C11, . . . , C1n1)
∨ . . .
∨(Am causes Fm if Cm1, . . . , Cmn)

Let hi, 1 ≤ i ≤ m be m new proposition symbols. Then, the above complex
effect assertions can be transformed into m basic effect assertions and a new
constraint as follows:

A1 causes F1 if C11, . . . , C1n1 , h1
. . .
Am causes Fm if Cm1, . . . , Cmn, hm

h1 ∨ . . . ∨ hm

Refining Action Theories through Abductive Logic Programming 127

On the other hand, it also seems that we would increase the expressive power
if we allowed general well-formed propositional formulas in the preconditions of
effect assertions. For example, let A be an action, P1 a fluent, and Q1, Q2, Q3 be
proposition names. Consider

A causes F if P1, (Q1 ∧Q2) ∨ ¬Q3

This kind of seemingly more expressive effect assertions can also be reduced to
effect assertions in A+. Let Q4 be a new proposition name. The following effect
assertion and a constraint is equivalent to the above assertion:

A causes F if P1, Q4

Q4 ↔ (Q1 ∧Q2) ∨ ¬Q3

2.3 Semantics

The semantics of a domain description is defined by using proposition assign-
ment, states, and transitions.

A proposition assignment α is a set of proposition names. Given a proposition
name P and an assignment α, we say that P is true if P ∈ α, and ¬P is true if
P 6∈α. A state is a set of fluent names. Given a fluent name F and a state σ,
we say that F holds in σ if F ∈ σ; ¬F holds in σ if F 6∈σ. A transition function
Φ is a mapping from the set of pairs (A, σ), where A is an action expression and
σ is a state, to the set of states.

An interpretation structure is a triple (α, σ0, Φ), where α is an assign-
ment, σ0 is a state, called the initial state of (σ0, Φ), and Φ is a transition
function. For any interpretation structure M = (α, σ0, Φ) and any sequence of
action expressions A1; . . . ;Am in M , by Φ(A1; . . .; Am, σ0) we denote the state
Φ(Am, Φ(Am−1, . . . , Φ(A1, σ0) . . .)).

Given an interpretation structure (α, σ0, Φ), a constraint C is said to be true
with respect to it iff

– if C is a proposition name, then C ∈ α;
– if C is a value assertion of the form F after A1, . . . , An, then F holds in

the state Φ(A1; . . . ;An, σ0);
– if C is a complex constraint, then it is true according to the usual proposi-

tional connective evaluation method.

An interpretation structure (α, σ0, Φ) is a model of a domain description D
iff

– Every constraint is true with respect to the interpretation structure.
– For every action A, every fluent name F , and every state σ: (i) If D in-

cludes an effect assertion A causes F if P1, . . . , Pm, Q1, . . . , Qn, such that
fluents P1, . . ., Pm hold in σ and propositions Q1, . . . , Qn are true with re-
spect to (α, σ0, Φ), then F ∈ Φ(A, σ); (ii) If D includes an effect assertion
A causes ¬F if P1, . . . , Pm, Q1, . . . , Qn, such that fluents P1, . . ., Pn hold

128 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

in σ and propositions Q1, . . . , Qn are true with respect to (α, σ0, Φ), then
F 6∈Φ(A, σ); (iii) If D does not include any such effect assertions, then
F ∈ Φ(A, σ) iff F ∈ σ.

A domain description is consistent if it has a model. A domain description is
complete if it has exactly one model. A domain description D entails a value
assertion V if V is true in all models of D. It can be shown that different mod-
els of the same domain description differ only in different initial states and/or
proposition assignments. In addition, the interpretation of a proposition name
is independent of states.

In reality a practical domain should have only one model. The task of refining
domain descriptions is to construct a new domain description which has fewer
models than the original domain description. We will achieve this purpose by first
performing some actions and observing their outcome, then we will abductively
infer the truth values of propositions and initial states. We will make use of
abductive logic programming for the purpose of abductive reasoning.

3 Translation into Abductive Programs

In this section we will present a translation from domain descriptions into abduc-
tive logic programs. An abductive logic program is a triple < P, IC, ∆ >, where
P is a set of logic programming rules, IC is a set of first-order sentences as con-
straints, and ∆ is a set of predicates, called abducible predicates. An abductive
answer δ to a query Q in < P, IC, ∆ > is a finite subset of ground instances of ∆
such that (i) Q ∈ SEM(P ∪ {a ← : a ∈ δ}, IC); (ii) P ∪ {a ← : a ∈ δ} ∪ IC is
consistent according to definition of SEM ; (iii) δ is minimal in the sense that no
subset of it satisfies the previous two conditions, where SEM(P, IC) denotes the
semantics of the program P with constraints IC. There have been a few com-
peting semantics in the literature: predicate completion semantics, stable model
semantics, and well-founded model semantics. Later we will see that our logic
program translations are acyclic, and thus all of these major semantics agree.
Therefore we will define the semantics of logic programs as the predicate com-
pletion semantics. For abductive logic programs, we will complete all predicates
except the abducible ones [3].

Let D be a domain description. The translation πD includes a set of pro-
gramming rules and a set of constraints defined as follows:

1. Initialization: holds(F, s0) ← initially(F).
2. Law of Inertia:

holds(F, result(A, S)) ← holds(F, S),not noninertial(F, S, A).

where not is the negation-as-failure operator. By the law of inertia, F is
true at a new situation by doing A on S if it was true at S.

3. Each effect assertion a causes f if p1, . . ., pm, q1, . . . , qn, with f being
positive, pi being a fluent, and qi being a proposition, is translated into

holds(f, result(a, S)) ← holds(p1, S), . . . , holds(pm, S), q1, . . . , qn.

Refining Action Theories through Abductive Logic Programming 129

where holds(¬p, S) with p being positive stands for not holds(p, S). This
convention is also used in the rest of this paper.

4. Each effect assertion a causes ¬f if p1, . . ., pm, q1, . . . , qn, with f being
positive, pi being a fluent, and qi being a proposition, is translated into

noninertial(f, S, a) ← holds(p1, S), . . . , holds(pm, S), q1, . . . , qn.

5. For every constraint C of D: (i) if C is a proposition name, πC = C; (ii) if C
is f after a1, . . ., an with f being positive, then πC = holds(f , result(a1;
. . .; an, s0)); (iii) if C is ¬f after a1, . . . , an, with f being positive, then
πC = ¬holds(f , result(a1; . . . ;an, s0)); (iv) π(¬C1) = ¬(πC1), π(C1 ∧ C2)
= πC1 ∧ πC2, π(C1 ∨ C2) = πC1 ∨ πC2.

We will define abducible predicates to be initially(F) and all proposition names.
The semantics of πD, denoted by Comp(πD), is defined to be the first-order
theory by completing all predicates except initially(F) and proposition names,
jointly with Clark’s theory of equality, and the constraints [3,6].

Theorem 31 Let D be any domain description in A+. πD is an acyclic logic
program with first-order constraints in the sense of [1].

Proof It suffices to give a level mapping λ for all ground atoms. Note that
initially(f) and all propositions appear only on the right-hand side of ← , and
thus can be assigned to 0. Observe that the number of occurrences of result in
holds(F, S) on the left-hand side of ← is more than right-hand side of ← .
Hence, a level mapping λ can be defined as follows:

λ(Initially(f)) = 0
λ(p) = 0 for any proposition p

λ(holds(f, result(a, s))) = 2× |s|+ 1
λ(noninertial(f, a, s)) = 2× |s|+ 2

where |s| denotes the number of occurrences of result plus 1. Then it is straight-
forward to verify the above λ is a level mapping. We should point out that the
above level mapping is a slight modification of that in [5,6]. 2

Corollary 32 The completion semantics Comp(πD) of πD agrees with its gen-
eralized stable model semantics [8] and generalized well-founded model semantics
[17].

Proof Since πD is an acyclic logic program, According to [5], the completion
semantics of any acyclic abductive logic program with constraints coincides with
its generalized stable model semantics [8] and generalized well-founded model
semantics [17]. 2

The above corollary means that the result of this paper can be experimented
with any abductive logic programming system with one of the three major se-
mantics. The detailed proof follows from [5]. A short summary of partial results
of [5] can also be found in [6].

130 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

4 Soundness and Completeness

In general it is very difficult to reason about actions in A+. The purpose of the
translation is to reduce the reasoning work in A+ to abductive querying in an
abductive logic programming system. This section will show that reasoning inA+

is equivalent to abductive querying through two technical results, whose proofs
are slight modifications of [5] by consolidating α component in the interpretation
structure.

Theorem 41 The translation π is sound. That is, for any domain description
D and any value assertion V , if Comp(πD) |= πV , then D entails V .

Proof If the domain description is not consistent, the above theorem holds
trivially since there is no model. Now assume D is consistent. We want to show
every model of D is also a model of V . It suffices to prove that for every model
(α, σ0, Φ) of D, there is a model M of πD such that V is true in (α, σ0, Φ) iff πV
holds in M . The same technique of [5] can be used to construct such a model
M from (α, σ0, Φ). The only difference is that [5] does not consider α. In order
to have α, just let it be the same in both (α, σ0, Φ) and M . 2

Definition 42 A domain description D is effect consistent iff for each pair of
effect assertions,

A causes F if C1, . . . , Cm

A causes ¬F if Cm+1, . . . , Cn

in D, there exists i, 1 ≤ i ≤ m, and j, m + 1 ≤ j ≤ n, such that Ci is the
complement of Cj.

Note that if C1, . . . , Cm contain complement elements, then effect assertion
A causes F if C1, . . . , Cm in a domain description has no effect on its models.
And thus, in this paper we assume that any domain description does not have
such kind of effect assertions.

Theorem 43 The translation π is complete for any effect consistent domain
descriptions. That is, for any effect consistent domain description D and any
value assertion V , if D entails V , then Comp(πD) |= πV .

Proof Since D is effect consistent, there is a unique translation Φ which satisfies
the effect assertions when α is given. Then it suffices to prove that for each model
M of πD there is a model (α, σ0, Φ) of D such that for each value assertion
V , M |= πV iff V holds in (α, σ0, Φ). This will immediately implies all value
assertions of D hold in (α, σ0, Φ) since M is a model of πV for every value
assertion of D. We can still follow [5] to show it. 2

The requirement for a domain description to be effect consistent is necessary.
If a domain description D is not effect consistent, no transition functions exist
to satisfy its effect assertions, thus it has no models, and hence it entails every
value assertion. On the other hand, its translation is consistent and thus has at
least one model which entails a proper subset of what D entails.

Refining Action Theories through Abductive Logic Programming 131

The above soundness and completeness theorems signify that our transla-
tion can actually be used for the general purposes of reasoning about actions
and changes such as abductive planning, prediction, explanation. That is to say,
our result of this paper goes beyond refinement of action theories. But we will
not delve into detailed discussion on how to use our translation for abductive
planning, temporal prediction and explanation. In the next section we will con-
centrate on refinement of action theories.

5 Refinement

Let D be a domain description. D may have more than one model. If D has
more than one model, we may only predict a disjunctive future instead of a
definite future. That is to say, after a sequence of actions is done, we cannot
predict whether a fluent is definitely true or not. When a domain description is
complete, we can always predict whether a fluent is true or not after an action
is done. This is sometimes a very important factor in reasoning about actions,
as shown as in [14].

When a domain description is not complete, all its models differ in their initial
states and/or proposition assignments. In order to determine initial states and
proposition assignments, one may perform some tests: doing some actions, ob-
serving their effects, and then abductively determining initial states and propo-
sition names.

Now suppose that we are given a domain description D0. We want to refine
it. The way to do it, as said as before, is to perform some actions and observe
their effects. This process is called test. The purpose of tests is to generate new
value assertions. And thus we can formally define a test to be a set of value
assertions.

Definition 51 A test τ in an action domain is a set of value assertions. Let D
be a domain description. The pair (D, τ) is called a refinement problem.

Theorem 52 Let D be a domain description, and τ a test. Then, every model
of D ∪ τ is a model of D.

Proof Let M be any model of D ∪ τ . It is straightforward to see that all effect
assertions and constraints are true with respect to M . And thus M is also a
model of D. 2

Note that the converse of the above theorem does not hold in general cases.
The above theorem means that simply adding tests to a domain description will
definitely give a better and new domain description. But syntactically D ∪ τ is
more complicated than D. We may prefer simpler and finer descriptions. Note
that in an interpretation structure, all proposition names will be either true or
false. In the reality, all these proposition names can and can only be either true or
false. When we do enough tests, the refinement of the domain will be closer and
closer to a complete domain description. This implies that the complete domain
description is a limit of all refinements of domain descriptions. When the domain

132 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

description has only one model, all proposition names can be removed from
the domain description by substituting them with their truth values, and thus
syntactically simplifying the domain description. Hence, we have the following
definition of refinements:

Definition 53 Let D1 and D2 be two domain descriptions. D2 is said to be a
refinement of D1 iff the following conditions are satisfied:

– Every model of D2 is a model of D1;
– There is no proposition name in D2 which is true in every model of D2;
– There is no proposition name in D2 which is false in every model of D2.

In what follows we want to show how to compute refinements with abductive
logic programming. In Section 3 we presented a translation from domain de-
scriptions to abductive logic programs. However, many existing abductive logic
programming systems do not directly support our constraints. Instead, they sup-
port constraints of the form

⊥ ← L1, . . . , Ln

First we need to translate all constraints into the above form.
The translation, still denoted by π, is as follows. Let C be a constraint in the

program πD. Then C can be equivalently transformed into a conjunctive normal
form:

(C11 ∨ . . . ∨ C1m1) ∧ . . . ∧ (Cm1 ∨ . . . ∨ Cmn)

Then, it will be translated into

⊥ ← not C11, . . . ,not C1m1

. . .

⊥ ← not Cm1, . . . ,not Cmn

where not ¬L is taken as L.
After constraints are translated into a logic program, we can run it in any

abductive logic programming system. Before proceeding, we need to guarantee
that the correctness of the translation is preserved.

Theorem 54 The translation π is both sound and complete for any effect con-
sistent domain descriptions.

Proof By the use of the soundness and completeness theorems of the last
section, it is sufficient to show that the handing of constraints does not change
the semantics. For this purpose, completing

⊥ ← not C11, . . . ,not C1m1

. . .

⊥ ← not Cm1, . . . ,not Cmn

Refining Action Theories through Abductive Logic Programming 133

we will have

⊥ ↔ (¬C11 ∧ . . . ∧ ¬C1m1) ∨
. . . ∨
(¬Cm1 ∧ . . . ∧ ¬Cmn)

It is equivalent to

(C11 ∨ . . . ∨ C1m1) ∧ . . . ∧ (Cm1 ∨ . . . ∨ Cmn)

Thus the translation of the constraints does not change its semantics. Therefore,
the semantics of new programs is the same as before. 2

Let τ = {V1, . . . , Vn} be a test. Then, τ can be transformed into a query:

← πV1, . . . , πVn

where for each i, πVi is defined as follows: Let Vi be F after A1, . . . , An in τ .
If F is positive, then πVi is defined to be holds(F, result(A1; . . . ;An, s0)); if F
is negative and equal to ¬G, then πVi is defined to be not holds(G, result(A1;
. . . ;An, s0)).

Submitting the query to an abductive logic programming system, we will
get abductive answers to it. In what follows we will write R(D, τ) to stand for
the set of all abductive answers to the query ← πτ against the abductive logic
program πD. Now we are in a position to define the procedure of refining action
theories.

Definition 55 Let D be a domain description and τ a test. Let R(D, τ) =
{R1, . . . , Rn}. Perform:

1. For every proposition name P , if P 6∈R1∪ . . .∪Rn, remove from D all effect
assertions containing P in the precondition list, and replace P with false in
every constraint of D;

2. For every proposition name P , if P ∈ R1∩ . . .∩Rn, remove P from all effect
assertions of D, and replace P with true in every constraint of D;

3. Simplify constraints of D in the usual way by using of true and false in
the formulas. For example, if C is of the form ¬false or C1 ∨ true, C is
removed.

Then, Define S(D, τ) to be the set of the resulting effect assertions, constraints,
and the test τ .

The following theorem says that the new domain description S(D, τ) is a
refinement of D.

Theorem 56 Let D be a domain description, τ a test. Then, S(D, τ) is a re-
finement of D.

Proof To show that S(D, τ) is a refinement of D, we need to show

(a) Every model of S(D, τ) is a model of D;

134 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

(b) There is no proposition name in S(D, τ) which is true in every model of
S(D, τ);

(c) There is no proposition name in S(D, τ) which is false in every model of
S(D, τ).

To see (a), note that it suffices to show that every model of S(D, τ) is a model
of D ∪ τ according to Theorem 5.2. Let R(D, τ) = {R1, . . . , Rn}. Since Ri is an
abductive answer to πτ , we have

Comp(πD ∪ a ← : a ∈ Ri) |= πτ

Thus for every proposition P , if P 6∈R1 ∪ . . . ∪ Rn, it is always assigned to
”false” in α since our model is two-valued. Since it is always false, if a dis-
junct on the right-hand side of a completion equivalence of holds(F, S) and
noninertial(F, A, S) contains it, it can be removed from Comp(πD). Removing
it amounts to removing the corresponding effect assertion which has P as one of
preconditions. And thus the corresponding effect assertion can be deleted from
D. This is what Step 1 does in Def.5.5. On the other hand, if P ∈ R1 ∩ . . .∩Rn,
it is always assigned to ”true”, and thus can be vacuumly removed from all
the disjuncts on the right-hand side of a completion equivalence of holds(F, S)
and noninertial(F, A, S). This amounts to removing the occurrence of P from
Comp(πD). And thus, P can be removed from the corresponding effect asser-
tions. This is what Step 2 does in Def.5.5. Note that Step 3 in Def.5.5 is in
fact an equivalence transformation in logic, and thus does not change models of
Comp(πD). Therefore, every model of S(D, τ) is a model of D ∪ τ .

To see (b), suppose that P is true in every model of S(D, τ). Since P is an
abducible predicate, it must appear in R1 ∩ . . . ∩ Rn as {R1, . . . , Rn} is the set
of all abductive answers, and is thus deleted in Step 2, and hence cannot appear
in S(D, τ).

To see (c), suppose that P is false in every model of S(D, τ). Then we would
have P 6∈R1 ∪ . . . ∪Rn. And thus all effect assertions with it as a precondition
would have been deleted in Step 1, and hence cannot appear in S(D, τ). 2

6 An Example

Now we return to the example in the Introduction. Let controls(S, L) be a
parameterized proposition name to denote that switch S controls light L. Then,
we can have the following domain description D:

Refining Action Theories through Abductive Logic Programming 135

controls(left, small)↔ controls(right, big)
controls(left, big)↔ controls(right, small)
controls(left, small)∨̇controls(left, big)
controls(right, small)∨̇controls(right, big)
toggle(left) causes on(small) if ¬on(small), controls(left, small)
toggle(left) causes ¬on(small) if on(small), controls(left, small)
toggle(right) causes on(small) if ¬on(small), controls(right, small)
toggle(right) causes ¬on(small) if on(small), controls(right, small)
toggle(left) causes on(big) if ¬on(big), controls(left, big)
toggle(left) causes ¬on(big) if on(big), controls(left, big)
toggle(right) causes on(big) if ¬on(big), controls(right, big)
toggle(right) causes ¬on(big) if on(big), controls(right, big)
initially ¬on(big)
initially ¬on(small)

Then, we have an abductive logic program πD. Now suppose we have a test τ
= {on(big) after toggle(left)}. Then we can evaluate it in an abductive logic
programming system. The following is the version of πD and πτ in the abductive
logic programming system REVISE [4]:

%the following are translations of \pi D.
holds(F, init) <- initially(F).
holds(F, result(A, S))

<- holds(F, S), not noninertial(F, S, A).
holds(on(small), result(toggle(left), S))

<- controls(left, small), not holds(on(small), S).
noninertial(on(small), S, toggle(left))

<- controls(left, small), holds(on(small), S).
holds(on(small), result(toggle(right), S))

<- controls(right, small), not holds(on(small), S).
noninertial(on(small), S, toggle(right))

<- controls(right, small), holds(on(small), S) .
holds(on(big), result(toggle(left), S))

<- controls(left, big), not holds(on(big), S).
noninertial(on(big), S, toggle(left))

<- controls(left, big), holds(on(big), S).
holds(on(big), result(toggle(right), S))

<- controls(right, big), not holds(on(big), S) .
noninertial(on(big), S, toggle(right))

<- controls(right, big), holds(on(big), S).
% the following are constraints
<- controls(left, small), not controls(right, big).
<- not controls(left, small), controls(right, big).
<- controls(left, big), not controls(right, small).
<- not controls(left, big), controls(right, small).
<- controls(left, big), controls(left, small).

136 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

<- not controls(left, big), not controls(left, small).
<- controls(right, big), controls(right, small).
<- not controls(right, big), not controls(right, small).
<- holds(on(small), init).
<- holds(on(big), init).
% The following are declarations of abducible predicates
:- revisable(initially(_)).
:- revisable(controls(_, _)).
% The following is the translation of the test.
<- not holds(on(big), result(toggle(left), init)).

In the REVISE system, the following answer R(D, τ) will be output by issuing
the solution command:

{{controls(right, small), controls(left, big)}}

Then, by definition we have the following new domain description S(D, τ):

toggle(right) causes on(small) if ¬on(small)
toggle(right) causes ¬on(small) if on(small)
toggle(left) causes on(big) if ¬on(big)
toggle(left) causes ¬on(big) if on(big)
initially ¬on(big)
initially ¬on(small)

on(big) after toggle(left)

Thus we have obtained a complete domain description which enables us to gen-
erate plan, to predict the future, or to explain the past, as what we expected
and intended.

7 Concluding Remarks

In this paper we have presented an experiment on using the abductive logic
programming paradigm to refine an action theory in line with [11,12] starting
from [7]. An action theory, also called domain description, describes effects of
actions and initial states in a dynamic domain. A complete action theory should
enable us to determine which fluent will be true and which fluent will be false
after an action is performed. A complete action theory can be used for planning,
prediction and explanation. In practice we may encounter incomplete domains
with finite uncertainties. The finite uncertainties may be removed by doing some
tests and abductive reasoning. Technically we presented an action description
languageA+ for domain descriptions, then we presented a translation fromA+ to
abductive logic programs. The translation has been shown to be both sound and
complete. Thus, the task of reasoning about actions in A+ amounts to abductive
query evaluation in abductive logic programming systems. We also indicate that

Refining Action Theories through Abductive Logic Programming 137

our abductive logic program is acyclic, and thus we can use any abductive query
evaluation procedure, no matter whether their semantics is based on predicate
completion, stable models, or well-founded models. The test on a domain is a set
of observed effects of a sequence of specific actions. The test can be used to de-
termine truth values of proposition names which serve to represent uncertainties.
This has been tested with the latest version of a meta-interpreter of abductive
logic programs [4]. To the best of our knowledge, there is no similar work in this
topic, although there have been many reports on A family languages. In general,
the refinement of action theories can be regarded as learning. But this kind of
learning is different from the main-trend work on learning, where generalization,
specialization, and induction is often used as the inference mechanism. In this
paper we have used abduction as the underlying inference mechanism. The result
of this paper is currently used to develop intelligent situated agent [13], which
is able to observe, act and reason in the real world.

Acknowledgment

This work was partially supported by JNICT of Portugal under PRAXIS 2/2.1/
TIT/1593/95 and PRAXIS XXI/BPD/4165/94 and NSERC of Canada under
31-611024. We have benefited from discussions with Vladimir Lifschitz in the
early stage of this work. We would also like to thank the anonymous referees for
their comments on an early version of this paper.

References

1. K. R. Apt and M. Bezem. Acyclic programs. In Proc. of ICLP 90, pages 579–597.
MIT Press, 1990.

2. A. B. Baker. Nonmonotonic reasoning in the framework of situation calculus.
Artificial Intelligence, 49:5–23, 1991.

3. L. Console, D. T. Dupre, and P. Torasso. On the relationship between abduction
and deduction. Journal of Logic and Computation, 1(5):661–690, 1991.

4. C. V. Damásio, L.M. Pereira, and W. Nejdle. Revise: An extended logic program-
ming system for revising knowledge bases. In Proc. of KR’94, 1994.

5. M. Denecker. Knowledge representation and reasoning in incomplete logic pro-
gramming. Ph.D. thesis, Department of Computer Science, K.U.Leuven, 1993.

6. M. Denecker, and D. Schreye. Representing incomplete knowledge in abductive
logic programming. In Proc. of ILPS’93, 1993, pp. 147–163

7. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

8. A.C. Kakas and P. Mancarella. Generalized stable models: A semantics for abduc-
tion. In Proc. of ECAI’90, 1990.

9. G.N. Kartha. Soundness and completeness theorems for three formalizations of
action. In Proc. IJCAI93, pages 712–718. MIT Press, 1993.

10. R.A. Kowalski and F. Sadri. The situation calculus and event calculus compared.
In Proc. of ILPS 94, pages 539–553. MIT Press, 1994.

11. R. Li and L.M. Pereira. Temporal reasoning with abductive logic programming.
In W. Wahsler, editor, Proc. of ECAI’96, pages 13–17. John Wiley & Sons, 1996.

138 Renwei Li, Luis Moniz Pereira, and Veronica Dahl

12. R. Li and L.M. Pereira. What is believed is what is explained (sometimes). In
Proc. of AAAI’96, pages 550–555, 1996.

13. R. Li and L.M. Pereira. Knowledge-based situated agents among us. In J. P.
Muller, M. J. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III –
Proc. of the Third International Workshop on Agent Theories, Architectures, and
Languages (ATAL-96), LNAI 1193, pages 375–389. Springer, 1997.

14. F. Lin and Y. Shoham. Provably correct theories of actions: preliminary report.
In Proc. of AAAI-91, 1991.

15. J. McCarthy and P.J. Hayes. Some philosophical problems from the stand-point of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 4, pages 463–502, Edinburgh, 1969.

16. E. P. D. Pednault. Adl: Exploring the middle ground between strips and the
situation calculus. In R. J. Brachman, H. Levesque, and R. Reiter, editors, Proc.
of KR’89, pages 324–332. Morgan Kaufmann Publishers, Inc., 1989.

17. L. M. Pereira, J. J. Alferes, and J. N. Apaŕıcio. Nonmonotonic reasoning with well
founded semantics. In K. Furukawa, editor, Proc. of 8th ICLP, pages 475–489.
MIT Press, 1991.

18. R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in Honor of
John McCarthy, pages 359–380. Academic Press, San Diego, CA, 1991.

19. E. Sandewall. Features and Fluents: The Representation of Knowledge about Dy-
namic Systems, Vol. 1. Oxford University Press, 1994.

Abduction, Argumentation and
Bi-Disjunctive Logic Programs

Kewen Wang and Huowang Chen

School of Computer
Changsha Institute of Technology

410073, P.R. China
E-mail: wkw@nudt.edu.cn

Abstract. We study the relationship between argumentation (abduc-
tion) and disjunctive logic programming. Based on the paradigm of
argumentation, an abductive semantic framework for disjunctive logic
programming is presented, in which the disjunctions of negative liter-
als are taken as possible assumptions rather than only negative liter-
als as the case of non-disjunctive logic programming. In our framework,
three semantics PDH, CDH and WFDH are defined by three kinds of
acceptable hypotheses to represent credulous reasoning, moderate rea-
soning and skeptical reasoning in AI, respectively. On the other hand,
our semantic framework could be established in a broader class than
that of disjunctive programs (called bi-disjunctive logic programs) and,
hence, the corresponding abductive framework is abbreviated as BDAS
(Bi-Disjunctive Argumentation-theoretic Semantics). Besides its rich ex-
pressive power and nondeterminism, BDAS integrates and naturally ex-
tends many key semantics, such as the minimal models, EGCWA, the
well-founded model, and the stable models. In particular, a novel and in-
teresting argumentation-theoretic characterization of EGCWA is shown.
Thus the framework in this paper does not only provides a new way
of performing argumentation (abduction) in disjunctive logic program-
ming, but also is a simple, intuitive and unifying semantic framework for
disjunctive logic programming.

1 Introduction

In our everyday life as well as in various artificial intelligence (AI) applications,
we are often required to deal with disjunctive information. It suffices to enu-
merate only a few areas of using disjunctive information: reasoning by cases,
approximate reasoning, legal reasoning, diagnosis, and natural language under-
standing [10,26]. For example, if we know only that ‘Mike will work in Havard
or in Stanford ’ but we do not know exactly in which university he will work,
then this information can be conveniently transformed into a rule of disjunctive
logic programs. In fact, it is known that disjunctive programs have more ex-
pressive power than non-disjunctive programs and permit a direct and natural
representation of disjunctive information from natural language and informal

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 139–163, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

140 Kewen Wang and Huowang Chen

specifications. To conveniently and properly handle the representation and rea-
soning of disjunctive information in logic programming, a great deal of efforts
have been given to the problem of finding suitable extensions of logic program-
ming. The problem of defining an intended (declarative) meaning for disjunctive
logic programs, however, has been proved to be more difficult than the case of
non-disjunctive logic programs. The semantics of stratified non-disjunctive pro-
grams leads to unique minimal model (that is, the perfect model) [1], which
is well accepted as the intended meaning of stratified programs. However, this
is not the case when we consider the class of non-stratified programs or dis-
junctive programs (even positive disjunctive programs) and a lot of approaches
have been proposed to determine semantics for non-stratified programs and/or
disjunctive programs. Though some of semantics, such as the well-founded se-
mantics for non-disjunctive programs [19], the extended generalized closed world
assumption (EGCWA) for positive disjunctive programs [41]and the stable se-
mantics for non-disjunctive/disjunctive logic programs [18,28] etc., are widely
studied and shown to be promising in deductive databases, and nonmonotonic
reasoning, but also they are often criticized in the literature for their short-
comings. For example, the problem of the (disjunctive) stable semantics is its
incompleteness: some disjunctive programs do not possess any stable models;
the well-founded semantics is not able to express the nondeterministic nature
of non-stratified programs. The diversity of various approaches in semantics for
(disjunctive) logic programs shows that there is probably not a unique suitable
semantics for applications in logic programming. Therefore, in our opinion, a
suitable semantic framework rather than only a single semantics for disjunctive
logic programming should be provided, in which most of the existing key se-
mantics should be embedded and their shortcomings be overcome. In addition,
a suitable semantic framework for disjunctive logic programming can provide a
unifying mechanism for the implementation of various disjunctive semantics as
well as it is used in studying the relationship between different formalisms of
nonmonotonic reasoning.

On the other hand, the paradigm of disjunctive logic programming is still not
expressive enough to give direct representation for some problems in common
sense reasoning. Thus, it would be also desirable that the syntax of disjunctive
programs should be extended to a broader class of logic programs so that the
syntax of this class resembles that of traditional logic programs and the new class
should include disjunctive programs as a subclass. Brass, Dix and Przymusinki
[10] propose a generalization for the syntax of disjunctive programs (called super
logic programs) and the static semantics [30] of super logic programs is discussed.
However, argumentation does not be treated in their work. In fact, as far as we
know, the problem of performing argumentation-based abduction in disjunctive
logic programming is rarely discussed [6].

Abduction is usually defined as inferring the best or most reasonable expla-
nation (or hypothesis) for a given set of facts. Moreover, it is a form of non-
monotonic reasoning, since explanations which are consistent in a given context
may become inconsistent when new information is obtained. In fact, abduc-

Abduction, Argumentation and Bi-Disjunctive Logic Programs 141

tion plays an important role in much of human inference. It is relevant in our
everyday common sense reasoning as well as in many expert problem-solving
tasks. Several efforts have been recently devoted to extending non-disjunctive
logic programming to perform abductive reasoning, such as [15,20,22,37]. Two
key forms of approaches to abduction are consistency-based and argumentation-
based ones. The first kind of approaches exploit a certain logical consistency and
an acceptable hypothesis is specified as the corresponding consistent sets (some
other constraints might also be applied), such as [2,3,11,17,23]; the latter kind
of approaches depend on an attack relation among hypotheses and acceptable
hypotheses are defined through a kind of stability conditions [14,15,36,37]. How-
ever, the approaches to argumentation-based abduction in logic programming
are mainly concentrated on non-disjunctive logic programs and these approaches
can not be directly extended to the class of disjunctive programs.

Since argumentation has applications in areas such as law and practical rea-
soning, it should be investigated and implemented in the setting of disjunc-
tive logic programming. And more, as the results of this paper will show, an
argumentation-theoretic framework can suggest many new semantics for disjunc-
tive programs and can overcome the shortcomings of some major semantics. In
this paper, we mainly concentrate on two problems: (1) The relationship between
argumentation-based abduction and various semantics for disjunctive programs
(the consistency-based abduction has been studied by some authors such as
[3,11,34]; (2) The extension of disjunctive logic programming from both syntax
(allowing disjunction in the bodies of program clauses) and semantics (by argu-
mentation). For this purpose, we first define a moderate extension for the syntax
of disjunctive logic programs (referred to as bi-disjunctive logic programs) by al-
lowing the disjunctions of negative literals to appear in the bodies of program
clauses. We shall see that the class of bi-disjunctive programs is broader than that
of traditional disjunctive programs and can be considered as a subclass of super
logic programs. More importantly, an argumentation-theoretic semantic frame-
work for (bi-)disjunctive logic programs is presented, called the bi-disjunctive
argumentation-theoretic semantics (abbreviated as BDAS), which is a general-
ization of Dung’s preferred scenarios [14,15] and Torres’ non-deterministic well-
founded semantics [36,37]. In fact, this paper is heavily influenced by their work.
Our work also shows that this is a non-trivial generalization. The basic idea of
this paper is to introduce a special resolution for default negation and interpret-
ing the disjunctions of negative literals as abducibles (or, assumptions) rather
than only negative literals as the case of non-disjunctive programs. As a result,
we transform a given bi-disjunctive program P into an argument framework
FP =< P,DB−P ,;P >, where DB−P is the set of all disjunctions of (ground)
negative literals in P , a subset ∆ of DB−P is called a disjunctive hypothesis (or
simply, hypothesis) of P , and ;P is an attack relation among the hypotheses
of P . An admissible hypothesis ∆ is one that can attack every hypothesis which
attacks it. Based on this basic idea, we introduce mainly three subclasses of
admissible hypotheses: preferred disjunctive hypothesis (PDH); complete dis-
junctive hypothesis (CDH); well-founded disjunctive hypothesis (WFDH). Each

142 Kewen Wang and Huowang Chen

of these subclasses defines an abductive semantics for bi-disjunctive programs
and they are all complete for disjunctive programs, that is, every disjunctive
program has at least one corresponding hypothesis. BDAS can not only handle
the problems of common sense reasoning properly, but many interesting results
are obtained. In particular, we show that BDAS characterizes and extends many
key semantics. For example, our Theorem 6.2 states that WFDH extends both
the well-found semantics for non-disjunctive logic programs [19] and the ex-
tended generalized closed world assumption (EGCWA) [41] (and thus provides
a unifying characterization for these two different semantics by abduction). This
theorem has many implications and it might be one of the most interesting re-
sults in this paper; we will also show that PDH extends the stable models [18]
for (disjunctive) logic programs to the whole class of disjunctive logic programs.
As noted in [15], the skepticism and credulism are two major semantic intuitions
for knowledge representation. A skeptical reasoner does not infer any conclusion
in uncertainty conditions, but a credulous reasoner tries to give conclusions as
much as possible. BDAS integrates these two opposite semantic intuitions and, in
particular, PDH and WFDH characterize credulism and skepticism, respectively.

The rest of this paper is arranged as follows: Section 2 will briefly define some
necessary notions and definitions for disjunctive logic programming; In Section
3 we extends the class of disjunctive programs to bi-disjunctive programs. By in-
troducing a natural attack relation and a special resolution for default negation,
our basic argument framework BDAS is established; In Section 4, three inter-
esting acceptable hypotheses (PDH, CDH, WFDH) for bi-disjunctive programs
are identified and hence they are three declarative semantics for disjunctive logic
programming; Some fundamental properties of BDAS are shown in Section 5;
Section 6 studies the relationship between BDAS and some key approaches for
non-disjunctive/disjunctive programs; Section 7 is our conclusion, in which some
future work is pointed out. The proofs are omitted here and can be found in [39].

2 Basic notions and definitions

In this section, we first introduce some necessary definitions and notions. Since
only Herbrand models of logic programs are mentioned, without loss of gen-
erality, we consider only propositional logic programs, this means that a logic
program is often understood as its ground instantiation.

Throughout the paper we will refer to the following different classes of logic
programs:

A Horn logic program is a set of Horn clauses of the form

a← a1, . . . , am,

where a and ai (i = 1, . . . , m) are atoms and m ≥ 0.
A non-disjunctive logic program is a set of non-disjunctive clauses of the form

a← a1, . . . , as,∼ as+1, . . . ,∼ at,

Abduction, Argumentation and Bi-Disjunctive Logic Programs 143

where a and ai (i = 1, . . . , t) are atoms and t ≥ s ≥ 0. The symbol ∼ denotes
negation by default, rather than classical negation.

A disjunctive logic program is a set of disjunctive clauses of the form

a1| · · · |ar ← ar+1, . . . , as,∼ as+1, . . . ,∼ at,

where ai (i = 1, . . . , t) are atoms and t ≥ s ≥ r > 0. The symbol | is the
disjunction, sometimes called the epistemic disjunction to distinguish it from
the classical disjunction ∨.

A positive disjunctive logic program is a set of positive disjunctive clauses of
the form

a1| · · · |ar ← ar+1, . . . , as,

where ai (i = 1, . . . , s) are atoms and s ≥ r > 0.
As usual, BP denotes the Herbrand base of disjunctive logic program P , that

is, the set of all (ground) atoms in P . The set DB+
P of all disjuncts of the atoms

in P is called the disjunctive Herbrand base of P ; the set DB−P of all disjuncts
of the negative literals in P is called the negative disjunctive Herbrand base of
P . ⊥ denotes the empty disjuncts.

If S is an expression, then atoms(S) is the set of all atoms appearing in S.
For α, β ∈ DB+

P , if atoms(α) ⊆ atoms(β) then we say α implies β, denoted as
α⇒ β. For example, a|b⇒ a|b|c. If α ∈ DB+

P , then the smallest factor sfac(α) of
α is the disjunction of atoms obtained from α by deleting all repeated occurrence
of atoms in α (if α is not propositional, the definition will not be so simple, see
[24]). For instance, the smallest factor of a|b|a is a|b. For S ⊆ DB+

P , sfac(S) =
{sfac(α) : α ∈ S}. The expansion of α is defined as ‖ α ‖= {β ∈ DB+

P : α⇒ β};
the expansion of S is ‖ S ‖= {β ∈ DB+

P : there exists α ∈ S such that α⇒ β}.
The canonical form of S is defined as can(S) = {α ∈ sfac(S) : there exists no

α′ ∈ sfac(S)such that α′ ⇒ α and α′ 6= α}.
For α ∈ DB−P and S ⊆ DB−P , the notions of sfac(α), sfac(S), ‖ α ‖ and

‖ S ‖ can be defined similarly.
A subset of DB+

P is called a state of the disjunctive logic program P ; a state
pair of P is defined as S =< S+;S− >, where S+ ⊆ DB+

P and S− ⊆ DB−P .
The minimal models and the least model state are two important declara-

tive semantics for positive disjunctive programs, both of which extend the least
model theory of Horn logic programs. The minimal model semantics captures the
disjunctive consequences from a positive disjunctive program as a set of models.
The least model state captures the disjunctive consequences as a set of disjuncts
of atoms and leads to a unique ‘model’ characterization.

Let P be a positive disjunctive program, then the least model state of P is
defined as

ms(P) = {α ∈ DB+
P : P ` α},

where ` is the inference of the first-order logic and P is considered as the corre-
sponding first-order formulas. For example, the corresponding first-order formu-
lae of disjuncts a1| · · · |am and∼ a1| · · · | ∼ am are a1∨· · ·∨am and ¬a1∨· · ·∨¬am,
respectively.

144 Kewen Wang and Huowang Chen

The least model state ms(P) of a positive disjunctive P can be characterized
by the operator TSP : 2DB

+
P → 2DB

+
P : for any J ⊆ DB+

P ,
TSP (J) = {α ∈ DB+

P : there exists a disjunctive clause α′ ← a1, . . . , an in P
and ai|αi ∈ J, i = 1, . . . , n, such that α′′ = α′|α1| · · · |αn, where α1, . . . , αn ∈
DB+

P ∪ {⊥}, and α = sfac(α′′)}.
Minker and Rajasekar [27] have shown that TSP has the least fixpoint lfp(TSP)

= TSP ↑ ω, and the following result:

Theorem 2.1. Let P be a positive disjunctive program, then ms(P) =‖ TSP ↑
ω ‖, and ms(P) has the same set of minimal models as P .

3 Argumentation in Bi-disjunctive Logic Programs

As noted in the introduction, we know that some disjunctive information should
be given a more direct and more convenient representation than with only tra-
ditional disjunctive programs (this will be further explained later). Another mo-
tivation of extending the syntax of disjunctive programs is that, when we set
to study the relationship between argumentation (abduction) and disjunctive
logic programming, we found that our argumentation-theoretic framework for
disjunctive programs seems more natural in the case of bi-disjunctive logic pro-
grams. Now, we first introduce the class of bi-disjunctive logic programs and
then the basic argumentation-theoretic framework for bi-disjunctive programs is
established.

Definition 3.1. A bi-disjunctive clause C is a rule of the form

a1| · · · |ar ← ar+1, . . . , as, βs+1, . . . , βt,

where ai (i = 1, . . . , s) are atoms, βj (j = s+ 1, . . . , t) are disjuncts of negative
literals, and t ≥ s ≥ r > 0, where | is the epistemic disjunction and ∼ is default
negation.

A bi-disjunctive logic program P is defined as a set of bi-disjunctive clauses.

For example, the following program is a bi-disjunctive program:

a|b←
e|c← d,∼ a| ∼ b
d← ∼ e

We consider another example.

Example 3.1 Suppose that we have a knowledge base consisting of the fol-
lowing four rules (a variant of an example in [10]):

R1 Mike is able to visit London or Paris
R2 If Mike is able to visit London, he will be happy
R3 If Mike is able to visit Paris, he will be happy
R4 If Mike is not able to visit both London and Paris, he will be prudent
It is easy to see that the knowledge base can be easily expressed as the

following bi-disjunctive logic program:

Abduction, Argumentation and Bi-Disjunctive Logic Programs 145

r1 : V isit − London|V isit − Paris←
r2 : Happy ← V isit − London
r3 : Happy ← V isit − Paris
r4 : Prudent← ∼ V isitLondon| ∼ V isitParis

Notice that the rule R4 possesses a more direct transformation with bi-
disjunctive logic programs than with traditional disjunctive programs.

We again stress the difference between the epistemic disjunction | and the
classical disjunction ∨. For example, a ∨ ¬a is a tautology but the truth of
the disjunction a| ∼ a is unknown in the disjunctive program P = {a|b ←}
since both of them may be unknown. In particular, the intended meaning of a
disjunction β =∼ b1| · · · | ∼ bn of negative literals is similar to the default atom
∼ (b1 ∧ · · · ∧ bn) in super logic programs [10]. That is, β means that b1, . . . , and
bn can not be proved at the same time. Therefore, bi-disjunctive programs can
be regarded as a subclass of super programs.

It is obvious that the following inclusions hold:
Super Logic Programs ⊃ Bi-Disjunctive Programs ⊃ Disjunctive Programs ⊃

Non-disjunctive Programs
Notice that we can also allow positive disjunctions to appear in the bodies of

bi-disjunctive clauses as well as negative disjunctions. The semantic framework
in this paper can be similarly defined for such bi-disjunctive programs by only
trivially generalizing the notion of the least model state [25]. For simplicity, we
will not make such a generalization here.

In general, argumentation-based abduction is based on argument frameworks
defined as triples F =< K,H,; >, where K is a first order theory representing
the given knowledge, H is a set of first order formulae representing the possible
hypotheses, and ; is an attack relation among the hypotheses.

Given a bi-disjunctive program P , an assumption of P is an element of DB−P ;
a hypothesis of P is defined a subset ∆ of DB−P such that ∆ is expansion-
closed: ‖ ∆ ‖= ∆. In this paper, we will consider a bi-disjunctive program P
as an argument framework FP =< P,H(P),;P>, where H(P) is the set of all
hypotheses of P , and;P is a binary relation on H(P), called the attack relation
of FP (or P).

To define the attack relation of FP , similar to GL-transformation [18], we
first introduce a generalized GL-transformation for the class of bi-disjunctive
programs, by which a positive disjunctive program P+

∆ is obtained from any
given bi-disjunctive program P with a (disjunctive) hypothesis ∆ of P .

Definition 3.2. Let ∆ be a hypothesis of a bi-disjunctive program P , then
(1) For each bi-disjunctive clause C in P , delete all the disjuncts of negative

literals in the body of C that belong to ∆. The resulting bi-disjunctive program
is denoted as P∆;

(2) The positive disjunctive program consisting of all the positive disjunctive
clauses of P∆ is denoted as P+

∆ , and is called the generalized GL-transformation
of P .

146 Kewen Wang and Huowang Chen

Example 3.2. Let P be the following bi-disjunctive program:

a|b←
e|c← d,∼ a| ∼ b
d← ∼ e

If ∆1 =‖∼ a| ∼ b ‖, then P∆1 = {a|b ←; e|c ← d; d ←∼ e}, and P+
∆1

=
{a|b ←; e|c ← d}. If ∆2 =‖∼ a| ∼ b,∼ e ‖, then P+

∆2
= P∆2 = {a|b ←; e|c ←

d; d←}.
Based on the above transformation, we can define a special resolution `P for

default-negation, which can be intuitively illustrated as the following principle:

If there is an agent who
(1) holds the assumptions ∼ b1, . . . ,∼ bm;and
(2) can ‘derive’ b1| . . . |bm|bm+1| . . . |bn from the knowledge base P with

these assumptions.
Then the disjunctive information bm+1| . . . |bn is obtained.

The following definition precisely formulates this principle with bi-disjunctive
programs.

Definition 3.3. Let ∆ be a (disjunctive) hypothesis of a bi-disjunctive pro-
gram P , α ∈ DB+

P and ∼ b1, . . . ,∼ bm ∈ ∆ such that the following two condi-
tions are satisfied:

(1) β = α|b1| · · · |bm; and
(2) β ∈ can(ms(P+

∆)).
Then we call ∆ is a supporting hypothesis for α, denoted as ∆`Pα.

The condition (2) above means that β is a logical consequence of P+
∆ with

respect to the least model state. The set of all disjuncts of positive literals that
are supported by ∆ is denoted as VP (∆). That is,

VP (∆) = {α ∈ DB+
P : ∆`Pα}.

In Example 3.2, VP (∆1) =‖ a|b ‖, VP (∆2) =‖ a|b, c, d ‖.
Definition 3.4. Let ∆ be a hypothesis of P , then S∆ =<‖ VP (∆) ‖;∆ > is
called a supported state pair of P .

Though each hypothesis ∆ corresponds to a state pair of P , not every state
pair represent the intended meaning of P . For example P = {a|b←∼ a,∼ b}. If
∆ =‖∼ a,∼ b ‖, then VP (∆) = {a|b} and thus S∆ =<‖ a|b ‖; ‖∼ a,∼ b ‖>. It
is obvious that S∆ does not represent the correct meaning of P . This is similar
to the problem caused by the closed world assumption (CWA) which is first
observed by Minker [25].

To derive suitable hypotheses for a given bi-disjunctive program, some con-
straints will be required, which can be realized though the following definition.

Definition 3.5. Let ∆ and ∆′ be two hypotheses of a bi-disjunctive program
P . If at least one of the following conditions holds:

Abduction, Argumentation and Bi-Disjunctive Logic Programs 147

(1) There exists β =∼ b1| · · · | ∼ bm ∈ ∆′ , m > 0, such that ∆`P bi, i = 1, . . . , m;
or
(2) There exist ∼ b1, . . . ,∼ bm ∈ ∆′, m > 0, such that ∆`P b1| · · · |bm.
Then we say ∆ attacks ∆′, and denoted as ∆;P ∆

′.

Intuitively, ∆;P ∆
′ means that ∆ causes the direct contradiction with ∆′,

which may come from any one of the above two cases.

Example 3.3. Let P be the bi-disjunctive program of Example 3.2. Take
∆ =‖∼ a| ∼ b,∼ e ‖, ∆′ =‖∼ c| ∼ d ‖. Since VP (∆) = {a|b, c, d}, that is,
∆`P c, d thus ∆;P ∆

′, but not ∆′;P ∆.

This example shows that the relation ;P is not symmetric. Otherwise, the
attack relation would have no much use.

In the remaining of this subsection, we seek to define suitable constraints on
(disjunctive) hypotheses by using the above fundamental definition (Definition
3.5).

Consider again the logic program P = {a|b←∼ a| ∼ b} and ∆ =‖∼ a| ∼ b ‖,
it is not hard to see that ∆;P ∆, this means that ∆ attacks itself.

Firstly, a plausible hypothesis should not attack itself.

Definition 3.6. A hypothesis ∆ of a bi-disjunctive program P is self-consistent
if ∆ 6;P∆.

The empty hypothesis ∅ is always self-consistent, called trivial hypothesis.
The above example shows that there exist non-trivial hypotheses that are not
self-consistent.

The following easy corollary will be often used in proofs of some results in
subsequent sections.

Corollary 3.1. A hypothesis ∆ of P is not self-consistent if and only if there
exists ∼ b1| · · · | ∼ bn ∈ ∆ such that ∆`P bi, i = 1, . . . , n.

Definition 3.7. For any self-consistent hypothesis ∆ of a bi-disjunctive program
P , the corresponding state pair S∆ is called a self-consistent state pair of P .

By Definition 3.3 and 3.5, it is not hard to see that the self-consistency of a
hypothesis guarantees that there exists no direct contradiction within the corre-
sponding state pair of this hypothesis. That is, given a self-consistent hypothesis
∆ of P , neither of the following two conditions hold for the state S of ∆:

(1) there exist a1, . . . , ar ∈ S+, such that ∼ a1| · · · | ∼ ar ∈ S−; or
(2) there exists a1| · · · |ar ∈ S+, such that ∼ a1, . . . ,∼ ar ∈ S−.

Definition 3.8. A state pair S =< S+;S− > is consistent if the set of the
corresponding first-order formulas of S+ ∪ S− is consistent.

A self-consistent state pair is not necessarily consistent though there is no
direct contradiction within it.

148 Kewen Wang and Huowang Chen

Example 3.4. Let P be the following disjunctive program:

a|b←
b|c ←
c|a←

Take ∆ =‖∼ a| ∼ b,∼ b| ∼ c,∼ c| ∼ a ‖, then ∆ is a self-consistent hypothesis.
However, VP (∆) = {a|b, b|c, c|a} and ‖ VP (∆) ‖ ∪∆ being considered as a set of
first-order formulas is not consistent, thus the state pair S∆ =<‖ VP (∆) ‖;∆ >
is not consistent.

In particular, in many cases, self-consistency of state pairs can still not pro-
vide suitable constraints for abductive semantics of bi-disjunctive programs. For
example, the disjunctive program P consisting of

Sleeping|ListeningFootballGameByRadio ← ∼ ElectricitySupplied
PossessGoodTV ←

This disjunctive program has two self-consistent hypotheses ∆1 =‖∼ Electricity
Supplied ‖> and ∆2 =‖∼ Sleeping,∼ ListeningFootballGameByRadio, ‖. But
it is widely accepted that ∆1 rather than ∆2 is the acceptable hypothesis of P .

How can we determine the self-consistent hypotheses of P that capture the
intended semantics. In other words, we must specify when a hypothesis of P is
acceptable. To accomplish this task, we need to exploit an intuitive and useful
principle in argument reasoning: If one hypothesis can attack each hypothesis that
attacks it, then this hypothesis is acceptable . Ref.[16] illustrates this principle by
some examples and study its application in non-disjunctive logic programming.

Now, we formulate this principle in the setting of bi-disjunctive logic pro-
gramming, which can really provide a suitable criteria for specifying acceptable
hypotheses for bi-disjunctive programs and forms the basis of our argumentation-
theoretic framework for disjunctive logic programming.

For short, if β =∼ b1| · · · | ∼ bm ∈ DB−P , and ∆′ is a hypothesis such that
∆′ `P bi, for any i = 1, . . . , m, then we say ∆′ denies β .

Definition 3.9. Let ∆ be a hypothesis of a bi-disjunctive program P , an
assumption β of P is admissible with respect to ∆ if ∆;P∆

′ holds for any
hypothesis ∆′ of P such that ∆′ denies β. Write AP (∆) = {β ∈ DB−P :
β is admissible wrt. ∆}.

Consider the bi-disjunctive program in Example 3.2 and the hypothesis ∆1 of
P . It is easy to see that ∼ a| ∼ b is admissible, since any hypothesis ∆′ of P that
denies ∼ a| ∼ b must contain the hypothesis ‖∼ a,∼ b ‖ but ∆1 ;P‖∼ a,∼ b ‖.

AP has the following two properties, which are fundamental to the main
results in this paper:

Corollary 3.2. If ∆ and ∆′ are two hypotheses of disjunctive program P ,
then

(1) ‖ AP (∆) ‖= AP (∆), that is, AP (∆) is a hypothesis of P ;
(2) If ∆ ⊆ ∆′, then AP (∆) ⊆ AP (∆′). This means that AP is a monotonic

operator.

Abduction, Argumentation and Bi-Disjunctive Logic Programs 149

Intuitively, an acceptable hypothesis should be such one whose assumptions
are all admissible with respect to it. Thus the following definition is in order.

Definition 3.10. A hypothesis ∆ of a bi-disjunctive program P is said to be
admissible if ∆ is self-consistent and ∆ ⊆ AP (∆). An admissible (disjunctive)
hypothesis of P will be abbreviated as ADH.

An intuitive and equivalent definition for admissible hypotheses will be shown
in Section 5 (Theorem 5.1). Before giving examples, we first show a simple
lemma.

Lemma 3.1. Let ∆ be a hypothesis of a disjunctive program P . If an as-
sumption β =∼ b1| · · · | ∼ br of P is admissible with respect to ∆, then β′ =∼
b1| · · · | ∼ br| ∼ br+1| · · · | ∼ bn is also admissible with respect to ∆ for any atoms
br+1, . . . , bn in P and r ≤ n.

This lemma is useful when we want to show that a hypothesis of a disjunctive
program is admissible: To show that a hypothesis ∆ =‖ β1, . . . , βn ‖ is admissi-
ble, it suffices to show that all assumptions βi (i = 1, . . . , n) (the representatives
of ∆) are admissible with respect to ∆.

Example 3.5. Consider the following disjunctive program P :

a← ∼ a
b ←

P has five possible hypotheses:∆0 = ∅, ∆1 =‖∼ a ‖, ∆2 =‖∼ b ‖, ∆3 =‖∼ a| ∼
b ‖, ∆4 =‖∼ a,∼ b ‖, among which ∆1, ∆2 and ∆4 are not self-consistent. Since
∆1;P∆3 but ∆3 6;P∆1, ∆3 is not an ADH of P , thus P has only one ADH
∆0 = ∅ and the corresponding state pair S∆0 =<‖ b ‖; ∅ >.

Example 3.6. The disjunctive program P = {a|b←∼ a} also has five possible
hypotheses as the program in Example 3.5. For ∆1 =‖∼ a ‖, the assumption ∼ a
is admissible with respect to ∆1, since ∆4 =‖∼ a,∼ b ‖ is the only hypothesis
that can attack ∆1 and ∆1 ;P ∆4.

Now we have established the basic argumentation-theoretic framework BDAS
for bi-disjunctive logic programs, in which various semantics for performing
argumentation-based abduction with bi-disjunctive programs can be defined.
Each semantics in our framework will be specified as a subclass of admissible
hypotheses (equivalently, admissible state pairs).

4 Some Important Classes of Hypotheses for
Bi-disjunctive Programs

As mentioned in Section 1, a suitable semantic framework rather than a single
semantics should be defined, in which most of the existing key semantics could be
embedded and their shortcomings could be overcome. As well as investigating
the inherent relationship between argumentation (abduction) and disjunctive
logic programming, we shall attempts to show that our abductive framework

150 Kewen Wang and Huowang Chen

defined in section 2 can provide a (at least potentially) suitable framework, in
a certain extent, for disjunctive logic programming by defining some abductive
semantics and relating to some important semantics, such as the well-founded
model, minimal models, stable models and EGCWA.

Definition 4.1. Let ∆ be a hypothesis of a bi-disjunctive program P :

(1) A preferred disjunctive hypothesis (PDH) ∆ of P is defined as a maximal
ADH of P with respect to set inclusion;

(2) If ∆ is self-consistent and ∆ = AP (∆), then ∆ is called a complete disjunc-
tive hypothesis (CDH) of P ;

(3) If the hypothesis AP ↑ ω is self-consistent, then it is called the well-founded
disjunctive hypothesis of P , denoted as WFDH(P).

If ∆ is an ADH (res. PDH, CDH, WFDH), then the corresponding state pair
S∆ is called an ADS (res. PDS, CDS, WFDS) of P .

Definition 4.2. The ADH (res. PDH, CDH, WFDH) semantics for a bi-
disjunctive program P is defined as the class of its all ADS (res. PDS, CDS,
WFDS).

It follows easily from the above definition that a CDH must be an ADH; In
Section 5 we will show that a PDH is a CDH. However, the converses do not
hold.

Example 4.1. P consists of only one program clause: a|b ←. Take ∆0 = ∅,
then AP (∆0) =‖∼ a| ∼ b ‖. Hence ∆0 is an ADH of P but not a CDH. If
∆1 =‖∼ a| ∼ b ‖, then AP (∆1) = ∆1 and thus ∆1 is a CDH of P but not a
PDH, since ∆2 =‖∼ a ‖ is an ADH of P and ∆1 ⊂ ∆2.

Since ∅ is always an admissible hypothesis, each bi-disjunctive program has
at least one PDH.

Theorem 4.1. The semantics ADH is complete for the class of bi-disjunctive
programs. That is, each bi-disjunctive program has at least one PDH.

The completeness of CDH and WFDH will be delayed to Section 5. In the
remaining of this section, by some examples, we will show the difference of BDAS
from other semantics and illustrate behaviors of our argumentation-theoretic
semantic framework BDAS in knowledge representation.

Example 4.2. Let P be the following disjunctive program:

a|b←
a←

Most of semantics for disjunctive programs assign the truth of b to false with
respect the above program (credulous reasoning), , except the possible model
semantics [33] and the WGCWA [31](skeptical reasoning). In BDAS, P has three
admissible hypotheses ∆1 = ∅, ∆2 =‖∼ a| ∼ b ‖ and ∆3 =‖∼ b ‖. In particular,
the WFDS of P is S1 =<‖ a ‖; ∅ > and the PDH is <‖ a ‖; ‖∼ b ‖>. Thus,

Abduction, Argumentation and Bi-Disjunctive Logic Programs 151

∼ b is unknown with respect to WFDH but is true with respect to PDH , and
this implies that both the skeptical and credulous reasoning of P can all be
represented in BDAS.

Example 4.3. Let P be the program :

a← ∼ a
b ←

We know from Example 3.5 that P has only one ADH ∆0 = ∅ and the corre-
sponding state pair S∆0 =<‖ b ‖; ∅ >. This conclusion coincides our intuition
on P , that is, P provides no information about a for us and thus, from P , we
can infer neither a nor ∼ a, but can infer b. This example shows that BDAS
can handle the inconsistency of disjunctive programs properly. Notice that the
Clark completion of P is not consistent and P has no stable model.

5 Characterizations of BDAS

As the basis for further investigation, this section is devoted to study some fun-
damental properties of BDAS. First, we give an intuitive and equivalent charac-
terization of admissible hypotheses, which will be often used as an alternative
definition for Definition 3.10.

Theorem 5.1. Let ∆ be a self-consistent hypothesis of a bi-disjunctive program
P . Then ∆ is an ADH of P if and only if ∆;P∆

′ for any hypothesis ∆′ of P
satisfying ∆′;P∆.

This theorem shows that an ADH is such a hypothesis that can attack any
hypothesis that attacks it.

In the following we will characterize ADHs in another way.

Definition 5.1. Let ∆ and ∆′ be two ADHs of a bi-disjunctive program P .
If ∆ ⊆ ∆′, then ∆′ is called an admissible extension of ∆. In particular, ∆′ is
called a non-trivial admissible extension of ∆ if ∆ 6= ∆′.

Definition 5.2.
Let ∆ be an ADH of a bi-disjunctive program P . If ∆′ satisfies the following

two conditions:
(1) ∆∪∆′ is self-consistent; and
(2) ∆′ ⊆ AP (∆ ∪∆′).

Then ∆′ is called a plausible hypothesis with respect to ∆.

The following three corollaries can be easily obtained by Definition 5.1 and
Definition 5.2.

Corollary 5.1. If ∆′ is a plausible hypothesis wrt an ADH ∆, then ∆∪∆′ is
an ADH.

Corollary 5.2. ∆′ is an admissible extension of ∆ if and only if ∆ ⊆ ∆′ and
∆′ \∆ is plausible with respect to ∆.

152 Kewen Wang and Huowang Chen

Corollary 5.3. For any bi-disjunctive program P , the following statements
are equivalent:

(1) ∆ is an ADH of P ;
(2) ∆ is an admissible extension of the empty hypothesis ∅;
(3) ∆ is plausible with respect to ∅.

Definition 5.3. An admissible sequence of a bi-disjunctive program P is a
sequence ∆1, ∆2, . . . , ∆n, . . . of ADHs of P such that ∆n ⊆ ∆n+1 for any n > 0.

The following proposition states that the sequences of bi-disjunctive program
P possess the property of completeness.

Proposition 5.1. For any admissible sequence ∆1, ∆2, . . . , ∆n, . . . of a bi-
disjunc- tive program P , the hypothesis ∆ = ∪∞n=1∆n is an ADH of P .

In particular, we have the following result:

Corollary 5.4. Every ADH of a bi-disjunctive program P is contained in a
PDH.

The following proposition is fundamental and our many results in BDAS for
disjunctive programs will be based on it.

Proposition 5.2. For any ADH ∆ of a disjunctive program P , if α ∈ DB−P
is admissible wrt. ∆, that is, α ∈ AP (∆), then ∆′ =‖ ∆∪{α} ‖ is also an ADH
of P .

This result guarantees that, for any ADH ∆ of a disjunctive program P , if
α is admissible wrt. ∆ and α 6∈ ∆ then we can obtain a non-trivial admissible
extension of ∆ by simply adding α to ∆.

As a direct corollary of Theorem 5.1, it is not hard to see that a PDH of a
disjunctive program must be a CDH.

Proposition 5.3. If ∆ is a PDH of a disjunctive program P , then ∆ is also
a CDH of P .

Corollary 5.5. Each disjunctive program has at least one CDH. That is, se-
mantics CDH is complete for the class of all disjunctive programs.

In the rest of this section, we will show the existence and completeness of
WFDH. P will be a disjunctive program if it is not stated explicitly. H(P) is
the set of all disjunctive hypotheses of P and it can be easily verified that the
partial order set (H(P),⊆) is a complete lattice. From Definition 3.9, AP can
be considered as an operator on H(P), called the admissible operator of P , and
we will show that AP is continuous.

Lemma 5.1. For any disjunctive program P , its admissible operator AP :
H(P) → H(P) is continuous. That is, for any directed subset D of H(P), the
following holds:

AP (∪{∆ : ∆ ∈ D}) = ∪{AP (∆) : ∆ ∈ D}.

Abduction, Argumentation and Bi-Disjunctive Logic Programs 153

Remark: A subset D of a complete lattice is directed if every finite subset of
D has an upper bound in D.

It follows from Lemma 5.1 and Tarski’s theorem [35] that AP has the least
fixpoint lfp(AP) and lfp(AP) = AP ↑ ω, that is, the closure cardinal of AP is
ω. Therefore, the following theorem is obtained.

Theorem 5.2. Every disjunctive program P possesses the unique well-founded
disjunctive hypothesis (WFDH).

From Theorem 4.1, Corollary 5.5 and Theorem 5.2, it follows that the three
semantics PDH, CDH and WFDH are all complete for disjunctive programs.

6 Relationship between BDAS and Some Other
Approaches

In this section we investigate the relationship between BDAS and some other
semantics for (disjunctive) logic programs. The main results of this section can
be summarized as the following:

(1) PDH coincides with the stable semantics for an extensive subclass of
disjunctive programs.

(2) WFDH for non-disjunctive programs coincides with the well-founded se-
mantics.

(3) In particular, we show that the WFDH provides a quite new characteri-
zation of EGCWA [41] by argumentation (abduction).

Thus, WFDH integrates and extends both the well-founded semantics for
non-disjunctive logic programs and EGCWA for positive disjunctive programs.
As a result, EGCWA can be used to implement argumentative reasoning in
deductive databases.

6.1 BDAS for Non-disjunctive Programs

As a special case, we consider the BDAS of non-disjunctive logic programs. In
this subsection, P will be a non-disjunctive program. Let ∆ be a (disjunctive)
hypothesis of P , that is, ∆ ⊆ DB−P , and L(∆) denotes the set of all negative
literals in ∆.

Definition 6.1. A hypothesis ∆ of P is a non-disjunctive hypothesis of P if
L(∆) = can(∆). That is, the set of representatives of a non-disjunctive hypoth-
esis consists of only negative literals.

It follows from Definition 3.3 that, for any non-disjunctive program P and
a ∈ BP ,

∆`P a iff a ∈Min(P+
∆) iff a ∈Min(P+

L(∆)).

Corollary 6.1. If ∆ is a CDH of non-disjunctive program P , then L(∆) =
can(∆), that is, the CDHs of a non-disjunctive program are non-disjunctive.

154 Kewen Wang and Huowang Chen

It follows from Corollary 6.1 and the result in Ref.[21,22] that, for any non-
disjunctive program P , we will get the equivalent definition of Definition 3.5
if the basic inference ∆`P a is replaced by P ∪ ∆ ` a. This means that our
CDH and Dung’s complete extension are equivalent concepts for the class of
non-disjunctive programs.

Theorem 6.1. If ∆ is a non-disjunctive hypothesis of non-disjunctive program
P , then the following two statements are equivalent:

(1) ∆ is a CDH of P ;
(2) P ∪ L(∆) is a complete extension.

This theorem shows that BDAS generalizes the frameworks of Dung [15] and
Torres [37].

6.2 BDAS for Positive Disjunctive Programs

In this subsection we investigate the relationship between BDAS and some se-
mantics for positive disjunctive programs (without negation in the bodies of
program clauses). In particular, we show that the well-founded disjunctive hy-
potheses (WFDHs) provide a quite new characterization of EGCWA by argu-
mentation (abduction). As a result, WFDH integrates and extends both the
well-founded semantics for non-disjunctive logic programs and EGCWA for pos-
itive disjunctive programs.

If we do not state explicitly, P will denote a positive disjunctive program in
this subsection.

Proposition 6.1. If ms(P) is the least model state of a positive disjunc-
tive program P , then the state pair corresponding to the ADH ∅ is S∅ =<
ms(P); ∅ >.

This result shows that the ADH ∅ characterizes the least model state for
positive disjunctive programs.

Proposition 6.2. Let ∆ be a hypothesis of a positive disjunctive program P :
(1) If ∆ is a PDH of P and ∆ is consistent (i. e. the first-order formulas VP (∆)∪
∆ is consistent), then I∆ = BP \ {a ∈ BP | ∼ a ∈ ∆} is a minimal model of P ;
(2) If I is a minimal model of P then ∆ =‖∼ Ī ‖ is a PDH of P , where Ī = BP \I
and ∼ Ī = {∼ a| a ∈ Ī}.

We believe that the condition ‘∆ is consistent ’is unnecessary. Moreover, we
guess that the ADHs (including the PDHs, CDHs, and WFDHs) are all consistent
but we have not found such a precise proof at present.

For any positive disjunctive program P , its WFDH does not only exist, but
also can be obtained by one step iteration of AP from ∅.
Proposition 6.3. Let P be a positive disjunctive program, then the closure
ordinal of AP is 1, that is, the (unique) WFDH of P is AP (∅).

Abduction, Argumentation and Bi-Disjunctive Logic Programs 155

To characterize EGCWA in BDAS, we first give the model-theoretic definition
of EGCWA [41].

Definition 6.2. Let P be a positive disjunctive program, then

EGCWA(P) = {β ∈ DB−P : P |=min β}

The following theorem shows that EGCWA coincides with WFDH for the
class of positive disjunctive programs.

Theorem 6.2.(Characterization of EGCWA by Argumentation) For positive
disjunctive program P , EGCWA(P) = WFDH(P).

As noted before, this theorem may be the most interesting result in this paper
in that it is not only quite intuitive but also useful in performing argumentation
(abduction) in deductive databases by exploiting EGCWA.

The following corollaries are directly obtained from Theorem 6.2 and the
results in Ref.[24,41].

Corollary 6.2. For any positive disjunctive program P , its WFDH is consis-
tent.

The generalized closed world assumption (GCWA) can also be characterized
by WFDH.

Corollary 6.3. GCWA(P) = L(WFDH(P)) = {∼ a : ∼ a ∈WFDH(P)}.
Corollary 6.4. M is a minimal model of P if and only if M is a minimal
model of P ∪WFDH(P).

6.3 The Relationship Between PDH and the Disjunctive Stable
Semantics

Both the disjunctive stable semantics and our PDH represents credulous rea-
soning in disjunctive logic programming but the former is not complete. In this
section we will study PDH and its relation to the disjunctive stable semantics.
To this end, we first define a program transformation Lft [38,40] for disjunctive
logic programs (called the least fixpoint transformation) and then, an extensive
class of disjunctive programs, called the strongly stable disjunctive programs, are
introduced, for which we show that PDHs and stable models have a one-to-one
correspondence. Hence the abductive semantics PDH is not only complete but
can also be considered as a natural and complete extension of the disjunctive
stable semantics. Moreover, Lft also provides an optimization technique for the
computation of various semantics in BDAS (including many semantics that can
be embedded in BDAS).

The program transformation Lft is based on the idea of Dung and Kanchan-
sut [13] and Bry [12]. It is also independently defined by Brass and Dix [8,7]. To
define Lft for disjunctive programs, we first extend the notion of the Herbrand
base BP to the generalized disjunctive base GDBP of a disjunctive logic program
P .

156 Kewen Wang and Huowang Chen

GDBP is defined as the set of all negative disjunctive programs whose atoms
are in BP :

GDBP = {a1| · · · |ar ←∼ b1, . . . ,∼ bs : ai, bj ∈ BP , i = 1, . . . , r; j = 1, . . . , s}

and ← the empty clause.
Thus, we can introduce an immediate consequence operator TGP for general

disjunctive program P , which is similar to the immediate consequence operator
TSP ′ for positive program P ′. The operator TGP will provide a basis for defining
our program transformation Lft.

Definition 6.3. For any disjunctive program P , the generalized consequence
operator TGP : 2GDBP → 2GDBP is defined as, for any J ⊆ GDBP ,

TGP (J) = {C ∈ GDBP : There exist a disjunctive clause α′ ← b1, . . . , bm,∼ bm+1

, . . . ,∼ bs and C1, . . . , Cm ∈ GDBP ∪{←} such that(1) bi|head(Ci)← body(Ci)

is in J, for all i = 1, . . . , m; (2) C is the clause can(α′|head(C1)| · · · |head(Cm))

← body(C1), . . . , body(Cm),∼ bm+1, . . . ,∼ bs}.

This definition looks a little tedious at first sight. In fact, its intuition is quite
simple and it defines the following form of resolution:

α′ ← b1, . . . , bm, β1, . . . , βs; b1|α1← β11, . . . , β1t1; · · · ; bm|αm← βm1, . . . , βmtm
α′|α1| · · · |αm← β11, . . . , β1t1 , · · · , βm1, . . . , βmtm , β1, . . . , βs

where αs with subscripts are positive disjunctive literals and βs with subscripts
are negative disjunctive literals.

Example 6.1. Suppose that P = {a1|a2 ← a3,∼ a4; a3|a5 ←∼ a6} and
J = TGP (∅). Then TGP (∅) = {a3|a5 ←∼ a6}; If J ′ = TGP (TGP (∅)). Then TGP (J ′) =
TGP (TGP (∅)) = {a3|a5 ←∼ a6; a1|a2|a5←∼ a4,∼ a6}.

Notice that TGP is a generalization of TSP if a disjunctive program clause
a1| · · · |an← is treated as the disjunct a1| · · · |an. The following proposition shows
that TGP possesses the least fixpoint.

Lemma 6.1. For any disjunctive program P , its generalized consequence op-
erator TGP is continuous and hence possesses the least fixpoint TGP ↑ ω.

It is obvious that the least fixpoint of TGP does not only exist but also is
computable. Since TGP ↑ ω is a negative disjunctive program, TGP results in a
computable program transformation which will be defined in the next definition.

Definition 6.4. Denote TGP ↑ ω as Lft(P), then Lft : P → Lft(P) defines a
transformation from the set of all disjunctive programs to the set of all negative
disjunctive programs, and we say that Lft(P) is the least fixpoint transformation
of P .

Abduction, Argumentation and Bi-Disjunctive Logic Programs 157

The following lemma asserts that Lft(P) has the same least model-state as
P and it is fundamental to prove some invariance properties of Lft under various
semantics for disjunctive programs.

Lemma 6.2 For any hypothesis ∆ of disjunctive program P , (Lft(P)+
∆) pos-

sesses the same least model-state as P+
∆ :

ms(Lft(P)+
∆) = ms(P+

∆).

Firstly, we show that the program transformation Lft(P) preserves our ab-
ductive semantics.

Theorem 6.3. For any disjunctive program P , P is equivalent to its least
fixpoint transformation Lft(P) with respect to BDAS. As a result, Lft(P) has
the same ADH (res. CDH, PDH) as P .

The following proposition, which is also independently given by Brass and
Dix in [7], shows that the least fixpoint transformation also preserves the (dis-
junctive) stable models.

For any disjunctive program P , and M ⊆ BP . Set

P/M = {a1| · · · |ar ← ar+1, . . . , as : there exists a clause of P : a1| · · · |ar ←

ar+1, . . . , as,∼ as+1, . . . ,∼ at such that as+1, . . . , at 6∈M}.

If M is a minimal model of P/M , then it is a (disjunctive) stable model of P .
The disjunctive stable semantics of P is defined as the set of its all disjunctive
table models.

Proposition 6.4. For any disjunctive program P , P is equivalent to its least
fixpoint transformation Lft(P) with respect to the stable semantics. That is, P
has the same set of the stable models as Lft(P).

Let ∆ be a hypothesis of disjunctive program P , P ∗∆ is defined as the dis-
junctive program obtained by the following transformations:

1. For any clause C in P , if a ∈ head(C) and ∼ a ∈ ∆, then delete a from
the head of C; if ∼ b ∈ body(C) and ∼ b ∈ ∆ , then delete ∼ b from the body of
C;

2. From the program obtained by the step 1, delete all the clauses that have
empty heads;

3. For any a ∈ BP such that all the clauses containing a or ∼ a have been
deleted by the above two steps, add a new clause a← a.

Notice that the step 3 is technical, which is to keep P ∗∆ has the same Herbrand
base as P . But the step 2 is necessary and it can guarantees that P ∗∆ has a stable
model if P has at least one. For example, if P = {a|b← c} and ∆ =‖∼ a,∼ b ‖,
then P will be transformed to the program {← c}, which has no stable model.

Definition 6.5. A disjunctive program P is strongly stable if, for any ∆ ∈
H(P), P ∗∆ possesses at least one stable model.

158 Kewen Wang and Huowang Chen

It is obvious that positive disjunctive programs are strongly stable. More
generally, the class of (local) stratified disjunctive programs are strongly stable.
Thus, the class of strongly stable disjunctive programs is extensive enough.

The main theorem of this subsection can be stated as follows.

Theorem 6.4. Suppose that disjunctive program P is strongly stable and its
all PDHs are consistent:

1. If ∆ is a PDH of P , then I∆ = {a ∈ BP : ∼ a 6∈ ∆} is a stable model of
P .

2. If M is a stable model of P , then ∆M =‖ {∼ a : a ∈ BP \M} ‖ is a PDH
of P .

As mentioned before, we believe that the condition ‘the PDHs of P are con-
sistent’ is unnecessary.

This theorem establishes a one-one correspondence between the PDHs and
the stable models for any strongly stable programs. Therefore, PDH extends
the stable semantics to the whole class of disjunctive programs. Moreover, this
result reveals the relationship between credulous argumentation and the stable
semantics for disjunctive logic programming.

Corollary 6.5. Any (local) stratified disjunctive program P has the unique
PDH.

6.4 Relations to Some Other Approaches

Becides the semantics discussed in the previous subsections of Section 6, there
have been proposed some other interesting approaches of defining semantics for
disjunctive logic programs, such as the static semantics [30], the D-WFS [7,9].
In this subsection we will compare our BDAS to these semantics.

Example 6.2. Consider disjunctive program P :

a|b←
c← ∼ a
c← ∼ b

We need to consider only the following seven assumptions of P :

∼ a,∼ b,∼ c,∼ a| ∼ b,∼ b| ∼ c,∼ c| ∼ a, ,∼ a| ∼ b| ∼ c.
The possible hypotheses of P has 19:

∆0 = ∅, ∆1 =‖∼ a ‖,
∆2 =‖∼ b ‖, ∆3 =‖∼ c ‖,
∆4 =‖∼ a| ∼ b ‖, ∆5 =‖∼ b| ∼ c ‖,
∆6 =‖∼ a| ∼ c ‖, ∆7 =‖∼ a| ∼ b| ∼ c ‖,
∆8 =‖∼ a,∼ b ‖, ∆9 =‖∼ a,∼ c ‖,
∆10 =‖∼ b,∼ c ‖, ∆11 =‖∼ a,∼ b| ∼ c ‖,
∆12 =‖∼ a| ∼ c,∼ b ‖, ∆13 =‖∼ a| ∼ b,∼ c ‖,
∆14 =‖∼ a| ∼ b,∼ c| ∼ a ‖, ∆15 =‖∼ a| ∼ b,∼ b| ∼ c ‖,
∆16 =‖∼ b| ∼ c,∼ c| ∼ a ‖, ∆17 =‖∼ a,∼ b,∼ c ‖,

Abduction, Argumentation and Bi-Disjunctive Logic Programs 159

∆18 =‖∼ a| ∼ b,∼ b| ∼ c,∼ c| ∼ a ‖,

where ∆0, ∆1, ∆2, ∆4, ∆17 are all the ADHs of P ; ∆1, ∆2, ∆4 are CDHs; the
PDHs ∆1, ∆2 correspond to the stable models {b, c} and {a, c}. WFDH of P is
∆4 and the state pair WFDH(P) = S∆4 =<‖ a|b ‖; ‖∼ a| ∼ b ‖>.

The least stationary model [29] and the static model of P coincide and equal
to S̃ =<‖ a|b, c ‖, ‖∼ a| ∼ b ‖>. It is obvious that WFDH(P)− = S̃− but c can
not be inferred in WFDH from P .

This example has been used by many authors to show the suitability of
their semantics. It is known that, from this program, the extended well-founded
semantics [32] and the GDWFS [4] do not infer c to be true; but the static se-
mantics [30] and the disjunctive stable semantics [28] infer a to be true. This
phenomenon is caused because different semantics provide deferent meaning for
the disjunction. An interesting problem is that: Can these two disjunctions (clas-
sical and epistemic) be represented in the bodies of rules by one single semantics
for disjunctive logic programming. To solve this problem, it is necessary that
the syntax should be extended. Now, we show this problem can be treated in
our WFDH semantics for bi-disjunctive programs. In particular, the classical
disjunction in program P1 = {c←∼ a∨ ∼ b} can be represented by changing P1

into {c ←∼ a; c ←∼ b} and the program P2 = {c ←∼ a| ∼ b} represents the
epistemic disjunction of ∼ a| ∼ b.
Example 6.3. Let P ′ be the bi-disjunctive program:

a|b←
c← ∼ a| ∼ b

Similar to Example 6.2, it can be shown that WFDH(P ′) =<‖ a|b, c ‖, ‖∼
a| ∼ b ‖>. It is obvious that we can infer c from P ′.

By Theorem 6.4, the relationship between the stationary semantics and PDH
can be formulated as the following result.

Corollary 6.6. For any strongly stable disjunctive program P , stationary mod-
els coincide with preferred disjunctive state-pairs (PDSs).

Dix and Brass [7] propose an interesting and general approach to define
semantics for disjunctive programs simply by postulating some semantic prop-
erties. In particular, they define a generalization of the well-founded semantics
called D-WFS. Though D-WFS and WFDH have quite different intuitions, D-
WFS bears some similarities with our WFDH: (1) it extends the well-founded
model for non-disjunctive programs and (E)GCWA for positive disjuntive pro-
grams; (2) it represents also a form of skeptical reasoning in disjunctive logic
programming. However, we will show that WFDH is different from D-WFS. In
fact, D-WFS is more skeptical than WFDH.

As shown by Dix and Brass in [7], for any disjunctive program P , the negative
disjunctive program Lft(P) can be further reduced to the so-called residual
program res(P).

160 Kewen Wang and Huowang Chen

Lemma 6.3. For any disjunctive program P , P is equivalent to res(P) wrt.
BDAS. In particular, WFDH(P) = WFDH(res(P)).

By Lemma 6.3, it is direct to prove the following result.

Proposition 6.5. WFDH is less skeptical than D-WFS. That is, D-WFS(P) ⊆
WFDH(P) but ‘⊆’can not be replaced by ‘=’in general.

Notice that D-WFS and WFDH have some other differences. For example,
if α =∼ a1| · · · | ∼ ar is a disjunctive hypothesis of P with α ∈ D-WFS then
there exists at least one i(1 ≤ i ≤ r) such that ∼ ai ∈ D-WFS(P). However,
WFDH allows one concludes ‘true ’disjunctive information. Take P = {a|b←},
it is not hard to see that D-WFS(P) contains no negative (disjunctive) literals.
However, ∼ a| ∼ b ∈ WFDH(P) even though neither ∼ a ∈ WFDH(P) nor
∼ b ∈WFDH(P).

Moreover,WFDH(P) andD-WFS(P) may have distinct sets of non-disjunc-
tive literals as the following example shows.

Example 6.4. Let P consist of only one clause:

a|b← ∼ a

Since P = res(P), it is easy to see that ∼ a ∈ WFDH(P) but ∼ a 6∈ D-
WFS(P). For this program, it seems that WFDH should be the intended mean-
ing of negation as failure.

Consider another similar example.

Example 6.5. Let P be the following disjunctive program:

a|b←
c← ∼ a

Then it can be verified that WFDH(P) =<‖ b, c ‖; ‖∼ a ‖> and D-WFS(P) =
<‖ a|b ‖; ∅ >.

Thus, our result further convinces that D-WFS is the most skeptical seman-
tics for disjunctive logic programs.

7 Conclusion

In this paper, we have provided an extension of disjunctive logic programming
both from semantics and syntax. Syntactically, the class of bi-disjunctive pro-
grams is defined, which includes disjunctive programs and can be considered
as a subclass of super logic programs; Semantically, an argumentation-theoretic
framework BDAS for bi-disjunctive programs is established, which is a simple,
unifying and intuitive framework for disjunctive logic programming. In BDAS
three semantics PDH, CDH and WFDH for bi-disjunctive programs are de-
fined by three kinds of admissible hypotheses to represent credulous reasoning,
moderate reasoning and skeptical reasoning in AI, respectively. Besides its rich
expressive power and nondeterminism, BDAS integrates and naturally extends

Abduction, Argumentation and Bi-Disjunctive Logic Programs 161

many key semantics, such as the minimal models, EGCWA, the well-founded
model, and the stable models.

Besides the unifying frameworks mentioned in the previous sections, Bonatti
[5] has also defined a unifying framework for disjunctive logic programs by view-
ing a disjunctive program as an epistemic theory. In our opinion, this framework
and some of existing ones are not so intuitive as BDAS and argumentation is
not treated. An interesting problem to be further investigated is the relation-
ship between BDAS and some other major semantics for disjunctive programs.
Some of the most interesting applications of BDAS have to also be left for future
work. Another problem that has not been touched in this paper is the relation-
ship between argumentation and extended disjunctive logic programming. Since
the situation becomes quite complicated when the explicit negation is allowed
in BDAS, this problem has to be discussed in a separate paper. A weak form of
cumulativity of nonmonotonic reasoning defined by WFDH is given in [38] and
further work is needed.

Acknowledgments

We would like to thank Jürgen Dix, Teodor Przymusinski and the two anonymous
referees for their useful comments. This work has been partially supported by
the National High Tech. Development Program of China (863-306).

References

1. Apt,K., Blair,H., and Walker,A., “Towards a theory of declarative knowledge ”, in
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann,
San Mateo, CA, pp.89-148, 1988.

2. Alfereira,J.and Pereira,L.,“An argumentation theoretic semantics based on non-
refutable falsity.”, in Proceedings of International Workshop on Nonmonotonic
Extensions of Logic Programming (LNCS), 1994.

3. Aravindan,C., “An abductive framework for negation in disjunctive logic program-
ming, ”Tech. report, University of Koblenz-Landau, 1996.

4. Baral,C., Lobo,J., and Minker,J., “Generalized disjunctive well-founded semantics
for logic programs. ”Annals of Math and AI, 5, pp.89-132, 1992

5. Bonatti,P., “Autoepistemic logics as a unifying framework for the semantics of logic
programs ”, in Proceedings of the Joint International Conference and Symposium
on Logic Programming, MIT Press, pp.69-86, 1992

6. Bondarenko,A., Toni,F. and Kowalski,R., “An assumption-based framework for
non-monotonic reasoning, ”in Proceedings of the 2nd International Workshop on
LNMR, MIT Press, pp.171-189, 1993.

7. Brass,S. and Dix J. Semantics of disjunctive logic programs based on partial evalua-
tion. Journal of Logic Programming(to appear), 1998. Extended abstract appeared
in Disjunctive semantics based upon partial and bottom-up evaluation. In Pro-
ceedings of the 12th International Logic Programming Conference, MIT Press, pp.
199–213, 1995.

8. Brass,S. and Dix J. Characterizations of the disjunctive stable semantics by par-
tial evaluation. Journal of Logic Programming, 32(3), pp.207-228, 1997. Extended

162 Kewen Wang and Huowang Chen

abstract appeared in: Characterizations of the stable semantics by partial evalu-
ation, in LPNMR, Proceedings of the Third International Conference (LNCS928),
Springer, pp.85-98, 1995.

9. Brass,S. and Dix J. Characterizations of the disjunctive well-founded semantics:
confluent calculi and iterated GCWA. Journal of Automated Reasoning, 20(1),
pp.143–165, 1998. Extended abstract appeared in: Characterizing DWFS: Conflu-
ence and Iterated GCWA, in Logics in Artificial Intelligence, JELIA ’96 (LNCS
1126), Springer, pp. 268–283, 1996.

10. Brass,S.,Dix, J. and Przymusinki,T., “Super logic programs, ”in Principles of
Knowledge Representation and Reasoning: Proceedings of the Fifth International
Conference (KR ’96), (L. C. Aiello and J. Doyle and S. C. Shapiro, editors), Mor-
gan Kaufmann, pp. 529–541, 1996.

11. Brewka,G.,“An abductive framework for generalized logic programs,”in Proceed-
ings of the 2nd Workshop on Logic Programming and Nonmonotonic Reasoning
(Marek, W. and Subrahmanian,V. eds.), MIT Press, pp. 266-282, 1993.

12. Bry, F., “Negation in logic programming: A formalization in constructive logic,”in
Information Systems and Artificial Intelligence: Integration Aspects (Karagiannis
D. ed.), Springer, pp.30-46, 1990.

13. Dung, P., Kanchansut K., “A fixpoint approach to declarative semantics of logic
programs,”in Proceedings of North American Conference (Lusk E. and Overbeek
R. eds.), MIT Press, 1989.

14. Dung,P., “Negation as hypothesis: an abductive foundation to logic program-
ming,”in Proceedings of the 8th International Conference on Logic Programming,
MIT Press, pp.3-17, 1991.

15. Dung,P., “An argumentation-theoretic foundation for logic programming,”J. Logic
Programming, 24, pp.151-177, 1995.

16. Dung,P., “On the acceptability of arguments and its fundamental roles in non-
monotonic reasoning and n-person games ”, Artificial Intelligence, 77, pp.321-357,
1995.

17. Eshghi,K. and Kowalski,R., “Abduction compared with negation by failure,”in
Proceedings of the 6th International Conference on Logic Programming, MIT Press,
pp.234-255, 1989.

18. Gelfond,M. and Lifschitz,J., “The stable model semantics for logic program-
ming,”in Proceedings of the 5th Symposium on Logic Programming, MIT Press,
pp.1070-1080,1988.

19. van Gelder,A., Ross,K. and Schlipf,J., “Unfounded sets and well-founded seman-
tics for general logic programs,”in Proceedings of the 7th ACM Symposium on
Principles Of Database Systems, pp.221-230,1988. Full version in J. ACM, 38, pp.
620-650,1992.

20. Kakas,A., Kowalski,R. and Toni,F., “Abductive logic programming,”J. Logic and
Computation, 2, pp.719-770,1992.

21. Kakas,A. and Mancarella,P., “Generalized stable models: a semantics for abduc-
tion,”in Proceedings of the 9th European Conference Artificial Intelligence, pp.385-
391, 1990.

22. Kakas,A. and Mancarella,P., “Negation as stable hypotheses,”in Proceedings of the
1st Workshop on Logic Programming and Nonmonotonic Reasoning (Marek, W.
and Subrahmanian,V. eds.), MIT Press, pp. 275-288, 1991.

23. Lifschitz,V. and Turner,H., “From disjunctive programs to abduction,”in Proceed-
ings of the Workshop on Nonmonotonic Extensions of Logic Programming, (Dix,J.,
Pereira,L. and Przymunski,T. eds.), pp. 111-125, 1994.

Abduction, Argumentation and Bi-Disjunctive Logic Programs 163

24. Lobo,J., Minker,J. and Rajasekar,A., Foundations of Disjunctive Logic Program-
ming, MIT Press, 1992.

25. Minker,J., “On indefinite databases and the closed world assumption ”, in LNCS
138, Springer, pp.292-308, 1982.

26. Minker,J., “Overview of disjunctive logic programming,”Ann. Math. AI., 12, pp.1-
24, 1994.

27. Minker,J. and Rajasekar,A., A fixed point semantics for disjunctive logic programs,
”J. Logic Programming, 9, 45-74, 1990.

28. Przymunski,T., “Stable semantics for disjunctive programs,”New Generation Com-
puting, 9, pp.401-424, 1991.

29. Przymunski,T., “Stationary semantics for disjunctive logic programs and deductive
databases,”in Proceedings of the North American Conference on Logic Program-
ming (Debray,S. and Hemenegildo,M. eds.), MIT Press, pp. 42-59,1991.

30. Przymunski,T., “Static semantics of logic programs,”Ann. Math. AI., 14, 323-357,
1995.

31. Rajasekar,A., Lobo,J., and Minker,J., “Weak Generalized Closed World assump-
tion ”, Journal of Automated Reasoning, 5, pp.293-307, 1989.

32. Ross,K. “Well-founded semantics for disjunctive logic programming. ”Proceedings
of the first Conference on Deductive and Object-Oriented Databases, pp.337-351,
1989.

33. Sakama,C., “Possible model semantics for disjunctive databases ”, in Proc. the
First Int’l Conf. on Deductive and Object Oriented Databases, pp.1055-1060, 1989.

34. Sakama,C. and Inoue,K., “On the equivalence between disjunctive and abductive
logic programming,”in Proceedings of the 11th International Conference on Logic
Programming (Van Hentenryck ed.), MIT Press, pp.489-503, 1994.

35. Tarski,A., “A lattice-theoretic fixpoint theorem and its applications,”Pacific J.
Math., 5, pp.285-309, 1955.

36. Torres,A., “Negation as failure to support,”in Proceedings of the 2nd International
Workshop on Logic Programming and Nonmonotonic Reasoning (Marek, W. and
Subrahmanian,V. eds.), MIT Press, pp.223-243, 1993.

37. Torres,A., “A nondeterministic semantics,”J. Math. AI., 14, pp.37-73, 1995.
38. Wang,K., “Abduction and Disjunctive Logic Programming,”Ph. D. Thesis (in Chi-

nese, Abstract in English), Nankai University, March 1996.
39. Wang, K., “An argumentation-based semantic framework for bi-disjunctive logic

programs,”Tech. report NUDT97-14, Changsha Institute of Technology, 1997.
40. Wang, K., Chen H. and Wu Q., “The least fixpoint transformation for disjunctive

logic programs, ”Journal of Computer Science and Technology, 13(3), pp.193-201.
41. Yahya,A. and Henschen,L., “Deduction in non-Horn databases,”J. Automated Rea-

soning, 1, pp.141-160, 1985.

Reasoning with Prioritized Defaults

Michael Gelfond and Tran Cao Son

Computer Science Department
University of Texas at El Paso

El Paso, Texas 79968
{mgelfond,tson}@cs.utep.edu

Abstract. The purpose of this paper is to investigate the methodology
of reasoning with prioritized defaults in the language of logic programs
under the answer set semantics. We present a domain independent sys-
tem of axioms, written as an extended logic program, which defines rea-
soning with prioritized defaults. These axioms are used in conjunction
with a description of a particular domain encoded in a simple language
allowing representation of defaults and their priorities. Such domain de-
scriptions are of course domain dependent and should be specified by
the users. We give sufficient conditions for consistency of domain de-
scriptions and illustrate the use of our system by formalizing various
examples from the literature. Unlike many other approaches to formal-
izing reasoning with priorities ours does not require development of the
new semantics of the language. Instead, the meaning of statements in
the domain description is given by the system of (domain independent)
axioms. We believe that in many cases this leads to simpler and more
intuitive formalization of reasoning examples. We also present some dis-
cussion of differences between various formalizations.

1 Introduction

The purpose of this paper is to investigate the methodology of reasoning with
prioritized defaults in the language of logic programs under the answer set se-
mantics. Information about relative strengths of defaults can be commonly found
in natural language descriptions of various domains. For instance, in legal rea-
soning it is often used to state preference of some laws over others, e.g., federal
laws in the U.S. can, in some cases, override the laws of a particular state. Prefer-
ences are also used in reasoning with expert’s knowledge where they are assigned
in accordance with the degree of our confidence in different experts. Sometimes
preferences in the natural language description of the domain are given implic-
itly, e.g., a conflict between two contradictory defaults can be resolved by se-
lecting the one which is based on more specific information. All these examples
suggest that it may be useful to consider knowledge representation languages
capable of describing defaults and preferences between them. There is a size-
able body of literature devoted to design and investigation of such languages
[1,5,6,7,11,23,30,32,33,36]. The work is too diverse and our knowledge of it is
not sufficient to allow a good classification but we will try to mention several
important differences in approaches taken by the different authors. To shorten

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 164–222, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Reasoning with Prioritized Defaults 165

the discussion we limit our attention to approaches based on logic programming
and default logics.

Many differences in design seem to be caused by the ambiguity of the very notion
of default. Sometimes defaults are understood as statements of natural language,
of the form “Elements of a class C normally (regularly, as a rule) satisfy prop-
erty P”. Sometimes this understanding is broadened to include all statements
with defeasible conclusions. The following example is meant to illustrate the
difference.

Suppose we are given a list t of people and want to define the class of people not
listed in t. This, of course, can be done by the rule

r1. unlisted(X)← not t(X).

The conclusion of this statement can be defeated by expanding the table t but
cannot be defeated by adding a fact of the form ¬unlisted(x) where x 6∈t. The
attempt to do the latter will (justifiably) lead to contradiction. The statement
r1 is not a default according to the first, narrow view. It is rather a universally
true statement which does not allow exceptions and can not be defeated by other
(preferred) statements; of course, according to the second view, r1 is a default.
Notice, that the statement “Table unlisted normally contains all the people not
contained in t” is a default according to the both views. Its logic programming
representation can have a form

r2. unlisted(X)← not t(X), not ¬unlisted(X).

This time the addition of ¬unlisted(x) where x 6∈t cause no contradiction.

This (and similar) differences in understanding of defaults seems to sometimes
determine the syntax of the corresponding “default” languages. The first view
seems to lead to introducing special syntax for defaults while the second uses
standard logic programming syntax augmented by the preference relation among
the rules. According to the second view it seems to be also more natural to
consider static preference relation, i.e., to prohibit occurrence of the preference
relation in the rules of the program.

Even more important differences can be found on determining the correct modes
of default reasoning. To demonstrate the problem let us accept a narrow view
of defaults and consider the theory consisting of three defaults:

d1. “Normally a”;

d2. “Normally b”

d1. “Normally c”

and three rules

r1. “b’s are always ¬a’s”;

r2. “b’s are always d’s”;

r3. “a’s are always d’s”;

166 Michael Gelfond and Tran Cao Son

There seems to be at least three equally reasonable ways to deal with this theory.
We can assume that it is inconsistent and entail everything (or nothing); We
can be cautious and refuse to apply defaults d1 and d2. In this case the only
conclusion is c. We can be less cautious and reason by cases entailing d supported
by two different arguments. With preference relation the situation will become
even less clear since we will have an additional difficult question of defining what
we mean by a conflict between defaults.

Different choices made by the authors of default languages are expressed in their
semantics given by defining the entailment and/or the derivability relation for
the language. The corresponding new logics can often be viewed as “prioritized”
versions of the existing general purpose non-monotonic formalisms [1,5,6,7,32,28]
with new level of complexity added in fixpoint (or other) constructions defining
the semantics. The viability of new logics is normally demonstrated by using it
for formalization of some examples of default reasoning aimed to illustrate special
features of the logic and the inadequacy of other formalisms. This process, even
though useful and necessary, is often complicated by our collective lack of expe-
rience in representing knowledge about defaults and their preferences. It is often
unclear for instance, if unintuitive answers to queries given by various formalisms
can be blamed on the formalism itself or on the inadequate representation of the
original problem. Moreover, it is often unclear what is the “common-sense”,
natural language description of the original problem of which the corresponding
formal theory claims to be a representation. This, together with technical com-
plexity of definitions, lack of the developed mathematical theories for new logics
and the absence of clearly understood parameters which determine the choice
of the semantics make their use for knowledge representation a rather difficult
task.

This paper is the result of the authors attempts to understand some of the issues
discussed above. We wanted to design a simple language, L, capable of expressing
and reasoning with prioritized defaults satisfying (among others) the following
requirements:

• Understand defaults in a narrow sense as statements of the form a’s are nor-
mally b’s.

• Allow dynamic priorities, i.e., defaults and rules about the preference relation.

• Give semantics of L without developing new general purpose nonmonotonic
formalism.

•Make sure that changes in informal parameters of the language such as proper-
ties of the preference relation, the definitions of conflicting defaults, cautiousness
or bravery in reasoning are reflected by comparatively simple changes in the for-
malism.

• Make sure that some inference mechanism is available to reason with theories
of L and some mathematical theory is available to prove properties of these
theories.

Reasoning with Prioritized Defaults 167

We achieve these goals by mapping theories of L (also called domain descriptions)
into a class of extended logic programs under the answer sets semantics [21]. This
is done by presenting a logic program P consisting of (domain independent)
axioms defining the use of prioritized defaults; viewing domain descriptions of L
as collections of atoms; and defining the notion of entailment between query q and
a domain description D in L via answer set entailment in logic programming. In
other words, we say that a domain description D entails a query q if q is entailed
by the logic program P ∪ D.

This approach appears to be similar in principle to the one suggested recently in
[11] (which was not yet published when this work was completed). The result-
ing formalisms however are quite different technically. The precise relationship
between the two is not yet fully investigated.

The use of the language will be illustrated by various examples from the lit-
erature. All the examples were run using the SLG inference engine [9,10]. We
believe that the study of the class of logic programs described by P0 and its
variants can complement the existing work and help to understand reasoning
with prioritized defaults.

The paper is organized as follows. In the next section, we introduce the language
of prioritized defaults L0 and present a collection of axioms P0. In Section 3 we
show examples of the use of domain descriptions in L0. Section 4 contains the
brief discussion of several extensions of D0. Section 5 is devoted to the class of
hierarchical domain descriptions. Finally, in Section 6, we discuss the relationship
between our work and that of Brewka.

2 The Language of Prioritized Defaults

We start with describing the class L0(σ) of languages used for representing
various domains of discourse. L0(σ) is parameterized by a multi-sorted signature
σ containing names for objects, functions and relations of the user’s domain.
By lit(σ) and atoms(σ) we denote the set of all (ground) literals and atoms
of σ. Literal ¬¬l will be identified with l. We assume that atoms(σ) contain
two special collections of atoms, called default names and rule names which
will be used to name defaults and strict (non-defeasible) rules of the language.
Domain knowledge in L0(σ) will be described by a collection of literals of σ
(called σ-literals) together with statements describing strict rules, defaults, and
preferences between defaults. The syntax of such descriptions is given by the
following definitions:

Definition 1.

– σ-literals are literals of L0(σ);
– if d, d1, d2 are default names, l0, . . . , ln are literals of L0(σ) and [] is the list

operator of Prolog then

168 Michael Gelfond and Tran Cao Son

rule(r, l0, [l1, . . . , lm]); (L0.1)

default(d, l0, [l1, . . . , lm]); (L0.2)

conflict(d1, d2); (L0.3)

prefer(d1, d2); (L0.4)

are literals of L0(σ).

A set D of ground literals of L0(σ) will be called domain description (with
underlying signature σ).

We assume that symbols default, rule, conflict and prefer do not belong to σ.
Relations, denoted by these symbols will be called domain independent.

A set S of L0(σ) literals containing variables (ranging over objects of various
types) will be viewed as a shorthand for the set of all (properly typed) ground
instantiations of literals from S. Statements (L0.1) and (L0.2) will be called
definitions of rule r and default d respectively. Intuitively, the statement (L0.1)
defines the rule r which says that if literals l1, . . . , lm are true in a domain
description D then so is the literal l0. It can be viewed as a counterpart of the
logic programming rule

l0 ← l1, . . . , lm.

Literals l0 and l1, . . . , lm are called the head and the body of r and are denoted
by head(r) and body(r) respectively.

The statement (L0.2) is a definition of the default d which says that normally, if
l1, . . . , lm are true in D then l0 is true in D. The logic programming counterpart
of d is the rule

l0 ← l1, . . . , lm, not ¬l0.

As before we refer to l0 as the head of d (head(d)) and to l1, . . . , lm as its body
(body(d)).

The statement (L0.3) indicates that d1 and d2 are conflicting defaults. In many
interesting cases conflict(d1, d2) will be true iff heads of defaults d1 and d2
are contrary literals, but other defaults can also be declared as conflicting by
the designer of the domain description. Finally, the statement (L0.4) stops the
application of default d2 if defaults d1 and d2 are in conflict with each other and
the default d1 is applicable.

This informal explanation of the meaning of domain independent relations of
L0(σ) will be replaced by the precise definition in the next section. But first we
will attempt to clarify this meaning with the following examples.

Reasoning with Prioritized Defaults 169

Example 1. Let us assume that we are given complete lists of students enrolled
in various university departments. We know that in general, students can not
write computer programs and that computer science students do it regularly.
Let us represent this information by a domain description D0.

The underlying signature σ of D0 contains student names, mary, mike, sam,
..., department names cs, cis, art, ..., appropriately typed predicate symbols
is in(S, D) and can progr(S) read as “Student S is in department D” and “Stu-
dent S can program”, and default names of the form d1(S), d2(S), and d3(S, D).

The defaults from our informal description can be represented by statements

default(d1(S), ¬can progr(S), [student(S)]).
default(d2(S), can progr(S), [student(S), is in(S, cs)]).

Finally, the lists of students mentioned in the informal description will be rep-
resented by the collection F of facts:

student(mary). dept(cs). is in(mary, cs).
student(mike). dept(art). is in(mike, art).
student(sam). dept(cis). is in(sam, cis).
.

We also need the closed world assumption [34] for is in, written as the default

default(d3(S, D), ¬is in(S, D), []).

Relations student and dept are, of course, not necessary. They are playing the
role of types and will later allow us to avoid floundering when applying the SLG
inference engine to this example.

We will assume that our domain description contain statements of the form
conflict(d1, d2) for any two defaults with contrary heads and that the relation
conflict is symmetric. This will guarantee that D0 will contain
conflict(d1(X), d2(X)) and conflict(d2(X), d1(X)). (These assumptions will be
of course enforced later by the corresponding axioms).

Informally, the domain description D0 should allow us to conclude that Mike
and Sam do not know how to program, while we should remain undecided about
programming skills of Mary. This is the case only as long as we do not assume
that the second default overrides the first one, due to the specificity principle.
We can use the relation prefer from our language to record this preference by
stating

prefer(d2(X), d1(X)).

From the new domain description D1 we should be able to conclude that Mary
can write programs. ♦

The next example is meant to illustrate the behavior of conflicting defaults in
the presence of strict rules.

170 Michael Gelfond and Tran Cao Son

Example 2. Consider the domain description D2 consisting of two defaults

default(d1, p, [])

default(d2, q, [r]),

the rules

rule(r1,¬p, [q])

rule(r2,¬q, [p])

and the fact

r.

(Intuitively, the logic programming counterpart of D2 consists of the rules
p← not ¬p
q ← r, not ¬q
¬p← q
¬q ← p

Notice that the last two rules can be viewed as a translation into the logic
programming language of the conditional q’s are always not p’s.)

The intended meaning of D2 should sanction two alternative sets of conclusions:
one, containing p and ¬q, and another containing q and ¬p. If we expand D2 by

conflict(d2, d1)

prefer(d2, d1)

the application of d1 should be blocked and the new domain description D3
should entail q and ¬p. Notice, that if conflict(d2, d1) were not added to the
domain description then addition of prefer(d2, d1) would not alter the conclu-
sions of D2. This is because preference only influences application of conflicting
defaults. ♦

More examples of the use of the language L0 for describing various domains will
be found in the following sections. In the next section we give a precise definition
of entailment from domain descriptions of L0.

2.1 Axioms of P0

In this section we present a collection P0,σ of axioms defining the meaning of
the domain independent relations of L0(σ). The axioms are stated in the lan-
guage of logic programs under the answer set semantics. They are intended
to be used in conjunction with domain descriptions of L0(σ) and to define
the collection of statements which (strictly and/or defeasibly) follow from a
given domain description D. More precisely, we consider two basic relations
holds(l) and holds by default(l) defined on literals of L0(σ) which stand for
“strictly holds” and “defeasibly holds”, respectively. The query language associ-
ated with domain descriptions of L0(σ) will consist of ground atoms of the form

Reasoning with Prioritized Defaults 171

holds by default(l), holds(l), and their negations. In what follows, by laws(D)
we denote the set of statements of the forms (L0.1) and (L0.2) from definition 1
which belong to D; facts(D) = D \ laws(D).

Definition 2. We say that a domain description D entails a query q (D |= q)
if q belongs to every answer set of the program P0,σ(D) = P0,σ ∪ {holds(l) | l ∈
facts(D)} ∪ laws(D).

Program P0
1 consists of the following rules:

Non-defeasible Inference:

holds(L)← rule(R, L, Body), (P0.1)
hold(Body).

hold([]). (P0.2)

hold([H|T])← holds(H), (P0.3)
hold(T).

The first axiom describes how the rules can be used to prove that a L0(σ) literal
l is non-defeasibly true in a domain description D. The next two axioms define
similar relation on the lists of literals in L0(σ), i.e., hold([l1, . . . , ln]) iff all the
l’s from the list are true in D.

Defeasible Inference:

holds by default(L)← holds(L). (P0.4)

holds by default(L)← rule(R, L, Body), (P0.5)
hold by default(Body).

holds by default(L)← default(D, L, Body), (P0.6)
hold by default(Body),
not defeated(D),
not holds by default(¬L).

hold by default([]). (P0.7)
1 In what follows we assume that σ is fixed and omit reference to it whenever possible.

172 Michael Gelfond and Tran Cao Son

hold by default([H|T])← holds by default(H), (P0.8)
hold by default(T).

The first axiom in this group ensures that strictly true statements are also true
by default. The next one allows application of rules for defeasible inference. The
third axiom states that defaults with proven premises imply their conclusions
unless they are defeated by other rules and defaults of the domain description.
The condition not holds by default(¬L) is used when the domain contains two
undefeated defaults d1 and d2 with conflicting conclusions. In this case P0(D)
will have multiple answer sets, one containing the conclusion of d1 and the other
containing the conclusion of d2. The alternative solution here is to stop appli-
cations of both defaults, but we believe that in some circumstances (like those
described by the extended “Nixon Diamond”) our solution is preferable.

The last two rules from this group define relation hold by default(List) which
holds if all literals from the list hold by default.

Defeating defaults:

defeated(D)← default(D, L, Body), (P0.9)
holds(¬L).

defeated(D)← default(D, L, Body), (P0.10)
default(D1, L1, Body1),
holds(conflict(D1, D)),
holds by default(prefer(D1, D)),
hold by default(Body1),
not defeated(D1).

These axioms describe two possible ways to defeat a default d. The first axiom
describes a stronger type of defeat when the conclusion of the default is proven
to be false by non-defeasible means. The axiom (P0.10) allows defeating of d by
conflicting undefeated defaults of higher priority. They represents the “bravery”
approach in the application of defaults. In the next section, we show how our
axioms can be expanded or changed to allow other ways of defeating defaults.

Now we are left with the task of defining conflicts between defaults. There are
several interesting ways to define this notion. Different definitions will lead to
different theories of default reasoning. The investigation of ramifications of dif-
ferent choices is, however, beyond the limits of this paper. Instead we introduce

Reasoning with Prioritized Defaults 173

the following three axioms which constitute the minimal requirement for this
relation.

holds(conflict(d1, d2))← default(d1, L1, Body1), (P0.11)
default(d2, L2, Body2),
contrary(L1, L2).

for any two defaults with contrary literals in their heads and for any two defaults
whose heads are of the form prefer(di, dj) and prefer(dj , di) respectively. The
precise definition of contrary is given by the rules (P0.21) and (P0.22).

¬holds(conflict(D, D)). (P0.12)

holds(conflict(D1, D2))← holds(conflict(D2, D1)). (P0.13)

Finally, we include axioms stating asymmetry of the preference relation:

¬holds(prefer(D1, D2))← holds(prefer(D2, D1)),
D1 6= D2. (P0.14)

¬holds by default(prefer(D1, D2))← holds by default(prefer(D2, D1)),
D1 6= D2. (P0.15)

Without the loss of generality we can view these axioms as schemes where D1
and D2 stand for defaults present in D. The equality used in these axioms is
interpreted as identity. Notice, that our minimal requirements on the preference
relation do not include transitivity. On the discussion of nontransitive preference
relations see [18], [25].

Uniqueness of names for defaults and rules:

These three axioms guarantee uniqueness of names for defaults and rules used
in the domain description.

¬rule(R, F1, B1)← default(R, F2, B2). (P0.16)

¬rule(R, F1, B1)← rule(R, F2, B2), (P0.17)
rule(R, F1, B1) 6= rule(R, F2, B2)

¬default(D, F1, B1)← default(D, F2, B2), (P0.18)
default(D, F1, B1) 6= default(D, F2, B2).

174 Michael Gelfond and Tran Cao Son

Addition of these axioms is needed only to make domain descriptions con-
taining statements default(d, l1, Γ1) and default(d, l2, Γ2), rule(r1, l1, Γ1) and
rule(r1, l2, Γ2), etc, inconsistent.

Auxiliary

Finally we have the axioms

¬holds(L)← holds(¬L). (P0.19)

¬holds by default(L)← holds by default(¬L). (P0.20)

contrary(L,¬L). (P0.21)

contrary(prefer(D1, D2), prefer(D2, D1))← D1 6= D2. (P0.22)

whose meaning is self-explanatory.

We believe that P0(D) captures a substantial part of our intuition about rea-
soning with prioritized defaults and therefore deserves some study.

3 Using the Axioms

In this section we illustrate the use of our approach by formalizing several ex-
amples of reasoning with priorities. In what follows we will refer to running our
programs using SLG inference engine. Since the syntax of SLG does not allow
“¬” we treat it as a new function symbol and consider only those stable models
of P0(D) which do not contain literals of the form a and neg(a).

Example 3. (Example 1 revisited)
It is easy to check that the program P0(D0) (where D0 is the domain description
from Example 1) has two answer sets, containing

{¬hd(can progr(mary)),¬hd(can progr(mike)),¬hd(can progr(sam))}
and

{hd(can progr(mary)),¬hd(can progr(mike)),¬hd(can progr(sam))},
respectively, where hd is a shorthand for holds by default. Hence, we can con-
clude that Mike and Sam do not know how to program but we have to stay
undecided on the same question about Mary.

If we expand the domain by adding the statement prefer(d2, d1) then the first
answer set will disappear which of course corresponds exactly to our intention.

Reasoning with Prioritized Defaults 175

It may be instructive to expand our domain by the following information: “Bad
students never know how to program. Bob is a bad computer science student”.
This can be represented by facts

student(bob).
bad(bob).
is in(bob, cs).

and the rule

rule(r2(S), ¬can progr(S), [student(S), bad(S)]).

The new domain description D4 will correctly entail that Bob does not know
how to program. Notice, that if the above rule were changed to the default

default(d3(S), ¬can progr(S), [student(S), bad(S)])

we would again get two answer sets with contradictory conclusions about Bob,
and that again the conflict could be resolved by adding, say,

prefer(d3(S), d2(S)). ♦

The previous example had an introductory character and could have been nicely
formalized without using the preference relation. The next example (from [5],
which attributes it to [24]) is more sophisticated: Not only does it require the
ability to apply preferences to resolve conflicts between defaults, but also the
ability of using defaults to reason about such preferences. Brewka in [5] argues
that the ability to reason about preferences between defaults in the same lan-
guage in which defaults are stated is important for various applications. In legal
reasoning similar arguments were made by Gordon, Prakken, and Sartor [24,32].
On the other hand, many formalisms developed for reasoning with prioritized
defaults treat preferences as something statically given and specified separately
from the corresponding default theory.

Example 4. (Legal Reasoning [5]) Assume that a person wants to find out if her
security interest in a certain ship is perfected. She currently has possession of
the ship. According to the Uniform Commercial Code (UCC) a security interest
in goods may be perfected by taking possession of the collateral. However, there
is a federal law called Ship Mortgage Act (SMA) according to which a security
interest in a ship may only be perfected by filing a financing statement. Such
a statement has not been filed. Now, the question is whether the UCC or the
SMA takes precedence in this case. There are two known legal principles for
resolving conflicts of this kind. The principle of Lex Posterior gives preference
to newer law. In our case the UCC is newer than the SMA. On the other hand,
the principle of Lex Superior gives precedence to laws supported by the higher
authority. In our case the SMA has higher authority since it is federal law.

Let us build the domain description D5 which represents the above information.
We will follow the formalization from [5] which uses symbols possession for “ship
is a possession of the lady from the above story”, perfected for “the ownership
of the ship is perfected”, and filed for “financial statement about possession of

176 Michael Gelfond and Tran Cao Son

the ship is filed”. The domain also contains symbols state(D), federal(D), and
more recent(D1, D2) representing properties and relations between legal laws.

The UCC and SMA defaults of D5 can be represented by

default(d1, perfected, [possession]).
default(d2,¬perfected, [¬filed]).

The two legal principles for resolving conflicts are represented by the next two
defaults:

default(d3(D1, D2), prefer(D1, D2), [more recent(D1, D2)]).
default(d4(D1, D2), prefer(D1, D2), [federal(D1), state(D2)]).

The next defaults will express the closed world assumptions for relations
more recent, federal and state. Presumably, a reasoning legal agent must have
complete knowledge about the laws. The following defaults are added to D5 to
represent this CWA assumption.

default(d5(D1, D2),¬more recent(D1, D2), []).
default(d6(D),¬federal(D), []).
default(d7(D),¬state(D), []).

To complete our formalization we need the following facts:

¬filed.
possession.
more recent(d1, d2).
federal(d2).
state(d1).

It is not difficult to check (using SLG if necessary) that the program P0(D5) has
two answer sets where

(i) holds by default(perfected)

belongs to one answer set and

(ii) ¬holds by default(perfected)

belongs to the other. This is because we have two defaults d1 and d2: the former
supports the first conclusion, the latter - the second one, and preference between
them cannot be resolved using defaults d3 and d4. Thus, neither (i) nor (ii) is
entailed by P0(D5). This is also Brewka’s result in [5].

However, if we know that d4 has a preference over d3 the situation changes; To
see that, let us expand our domain description by

prefer(d4(D1, D2), d3(D2, D1)).

and denote the new domain description by D6; as a result, program P0(D6) has
then only one answer set, which contains (ii). This is again the desired behavior,
according to [5]. It may be worth noticing that the closed world assumptions

Reasoning with Prioritized Defaults 177

d5, d6 and d7 have no role in the above arguments and could be removed from
the domain description. They are important, however, for general correctness of
our representation. The example can be substantially expanded by introducing
more realistic representation of the story and by using more complex strategies
of assigning preferences to conflicting defaults. We found that the corresponding
domain descriptions remain natural and correct. ♦

Example 5. (Simple Inheritance Hierarchy) Now let us consider a simple inher-
itance hierarchy of the form depicted in fig (1).

m

m

m
6 6

...
...

...
...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

..�6

�
�

�
���

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

@
@

@
@@I

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

a c

b

d1

d2

p

x1 x2

Figure 1. The Inheritance Hierarchy of D7

A simple hierarchy consists of two parts: an acyclic graph representing the proper
subclass relation between classes of objects and a collection of positive and neg-
ative defaults from these subclasses to properties of objects. In fig (1) we have
three class nodes, a, b, and c. The strict link between the class nodes, say, a
and b can be read as “a is a proper subclass of b”. Dotted lines from b and c
to property p represent positive and negative defaults respectively. The simple
hierarchy is used in conjunction with a collection of statements is in(x, c) read
as “x is an elements of a class c”. For simplicity we assume completeness of in-
formation about relations subclass and is in. (For discussion of hierarchies with
incomplete information, see [20]).

The encoding of simple hierarchies will consists of two parts: the first representing
a particular graph and the second containing general properties of a hierarchy
together with the inheritance principle. Notice, that the second part is common
to all simple hierarchies.

In our case, the domain description D7 encoding the hierarchy from fig (1) con-
sists of domain dependent axioms

subclass(a, b).
subclass(c, b).
is in(x1, a)
is in(x2, c)
default(d1(X), has(X, p), [is in(X, b)])
default(d2(X),¬has(X, p), [is in(X, c)])

178 Michael Gelfond and Tran Cao Son

(where has(X, P) stands for “element X has a property P”) and the domain
independent axioms

rule(r1(C0, C2), subclass(C0, C2), [subclass(C0, C1), subclass(C1, C2)]).
rule(r2(X, C1), is in(X, C1), [subclass(C0, C1), is in(X, C0)]).
rule(r3(D1(X), D2(X)), prefer(D1(X), D2(X)), [d(D1(X), , [is(X, A)]),

d(D2(X), , [is(X, B)]),
subclass(A, B)]).

default(d3(X),¬is in(X), []).
default(d4,¬subclass(A, B), []).

(where d stands for default and is used where names are not important). The
first two rules represent general properties of subclass and is in. The next rule
is an encoding of the inheritance principle. The last two defaults express the
closed world assumptions for simple hierarchies.

It is easy to check that D7 is consistent and that the logic program P0(D7) has
the unique answer set containing holds by default(has(x1, p)) and
holds by default(¬has(x2, p)). Consistency result can be easily expanded to
”rule-consistent” domains representing simple hierarchies.

We use the next example from Brewka [7] to illustrate differences between our
theory and several other formalisms dealing with prioritized defaults.

Example 6. (Gray Area) Brewka considers the following defaults:

1. “Penguins normally do not fly;”,
2. “Birds normally fly;”, and
3. “Birds that can swim are normally penguins;”,

under the assumption that default (1) is preferred over (2), and (2) is preferred
over (3). (Notice, that Brewka assumes transitivity of the preference relation).

These defaults are represented in his formalism by a program

bird.
swims.
(d1) ¬flies← not flies, penguin.
(d2) flies← not ¬flies, bird.
(d3) penguin← not ¬penguin, bird, swims.

According to Brewka, the prioritized default theories from [1,5,28] are applicable
to this case and produce single extension E1 = {swims, bird, flies, penguin}
which seems contrary to intuition. According to the semantics from [7] the corre-
sponding program has one prioritized answer set, E2 = {swims, bird, penguin,
¬flies} which is a more intuitive result. The information above is naturally
encoded in the domain description D8 by the following statements

bird.
swims.

Reasoning with Prioritized Defaults 179

default(d1,¬flies, [penguin]).
default(d2, f lies, [bird]).
default(d3, penguin, [bird, swims]).

prefer(d1, d2).
prefer(d2, d3).
prefer(d1, d3).

The program P0(D8) has only one answer set which contains
S1 = {holds by default(bird), holds by default(swim),

holds by default(penguin),¬holds by default(flies)}.
which coincides with the approach from [7]. This happens because the default
d3 is in conflict with neither d1 nor d2 and therefore its application is not influ-
enced by the preference relation. If we expand the domain description D8 by a
statement

conflict(d2, d3)

the situation changes. Now we will have the second answer set,

S2 ={holds by default(bird), holds by default(swim), holds by default(flies)}.

which corresponds to the following line of reasoning: We are initially confronted
with “ready to fire” defaults (d2) and (d3). Since (d2) has a higher priority and
d2 and d3 are conflicting defaults, d2 wins and we conclude flies. Now, (d1) is
not applicable and hence we stop.

To obtain S1, we can apply defaults (d1) and (d3). Since (d2) is then defeated
by (d1) it will not block (d3). ♦

We realize of course that this example belongs to the gray area and can be
viewed differently. The main lesson from this observation is that in the process
of expressing ourself (while programming or otherwise) we should try to avoid
making unclear statements. Of course, we hope that further work on semantics
will help to clarify some statements which so far remain unclear. We also hope
that the reader is not left with the impression that we claim success in following
our own advice.

4 Extending L0(σ)

In this section we briefly outline and discuss several extensions of the language
L0(σ). We show how to extend the language and the corresponding collection
of axioms to allow the representation of more powerful defaults and default
defeaters.

180 Michael Gelfond and Tran Cao Son

4.1 Beyond normal defaults

The domain descriptions of L0(σ) contain defaults whose logic programming
counterparts are of the form

(ND) l0 ← l1, . . . , ln, not ¬l0.

These rules can be viewed as normal defaults in the sense of Reiter [35]. Even
though the ability to express priorities between the defaults gives the domain
descriptions of L0(σ) expressive power that exceeds that of default theories of
Reiter consisting of (ND)-rules, this power is not sufficient for some applications.
In this section we expand the language L0(σ) and the corresponding system of
axioms to make it possible to represent more general types of defaults. To this
end we replace the definition of default description in L0(σ) (see L0.2 in the
Definition 1) by the more powerful construct

default(d, l0, [l1, . . . , lm], [lm+1, . . . , ln]) (L.2)

The intuitive meaning of this statement is that normally, if l1, . . . , lm are true in
D and there is no reason to believe that lm+1, . . . , ln are true in D then l0 is true
in D. In other words, the statement (L.2) corresponds to the logic programming
rule

l0 ← l1, . . . , lm, not lm+1, . . . , not ln, not ¬l0.

Literals l1, . . . , lm and lm+1, . . . , ln are called positive and negative preconditions
of d respectively. Both sets of preconditions will be sometimes referred to as the
body of statement (L.2).

Our set of axioms P0 will be modified as follows: axioms (P0.6) and (P0.10) will
be replaced by axioms

holds by default(L)← holds(default(D, L, Positive, Negative)), (P.6)
hold by default(Positive),
fail by default(Negative),
not defeated(D),
not ¬holds by default(L).

defeated(D)← holds(default(D1, L, Positive, Negative)), (P.10)
holds by default(prefer(D1, D)),
hold by default(Positive),
fail by default(Negative),
not defeated(D1).

Reasoning with Prioritized Defaults 181

where fail by default is defined as follows:

fail by default([]). (P.23)

fail by default([H|T])← not holds by default(H), (P.24)
fail by default(T).

We hope that the modification is self-explanatory.

The following example, taken from [32], illustrates the use of the new language.

Example 7. [33] Consider the following two legal default rules:

1. Normally, a person who cannot be shown to be a minor has the capacity to
perform legal acts.

2. In order to exercise the right to vote the person has to demonstrate that he
is not a minor.

The first default can be represented as

default(d1(x), has legal capacity(x), [], [minor(x)])

which requires a negative precondition. The second default has the form

default(d2(x), has right to vote(x), [¬minor(x)], []).

These defaults, used in conjunction with statement ¬minor(jim) entail that Jim
has legal capacity and the right to vote. If the system is asked the same questions
about Mary whose legal age is not known it will conclude that Mary has legal
capacity but will remain in the dark about Mary’s right to vote. If we expand
our domain description by the closed world assumption for has right to vote

default(d3(x),¬has right to vote(x), [], [])

then the answer to the last question will be no. ♦

4.2 Weak Exceptions to Defaults

So far our language allowed only strong exceptions to defaults, i.e., a default
d could be defeated by rules and by defaults conflicting with d. Many authors
argued for a need for so called weak exceptions - statements of the form “do
not apply default d to objects satisfying property p”. (For the discussion of
the difference between weak and strong exceptions see, for instance, [2].) Weak
exceptions of this type can be easily incorporated in our language. First we
expand the language by allowing literals of the form

exception(d(x1, . . . , xk), [l1, . . . , ln], [ln+1, . . . , ln+m]) (L.5)

182 Michael Gelfond and Tran Cao Son

read as “the default d is not applicable to x1, . . . , xk which satisfy l1, . . . , ln and
not ln+1, . . . , not ln+m”. The formal meaning of this statement is defined by an
axiom

defeated(D)← exception(D, Positive, Negative), (P.25)
hold by default(Positive),
fail by default(Negative).

added to P0.

Consider a domain description D9.

default(d(X), p(X), [q(X)], []).
exception(d(X), [r(X)], []).
q(x1).
q(x2).
r(x2).

It is easy to check, that the corresponding program P0(D9) (and hence D9)
entails p(x1) but remains undecided about p(x2). Notice, that we were able to
entail p(x1) even though x1 may satisfy property r, i.e. D9 6|= ¬r(x1). In some
cases we need to be able to say something like “do not apply d to x if x may
satisfy property r”. This can be achieved by replacing the exception clause in
D9 by

exception(d(X), [], [¬r(X)]). (L.6)

The new domain description entails neither p(x1) nor p(x2).

We will denote the language and the system of axioms described in this section
by L and P respectively. We believe that the system is useful for reasoning with
prioritized defaults and deserves careful investigation. In this paper however we
present only several illustrative results about P0. A more detailed analysis of P
will be done elsewhere. Before presenting these results we would like to mention
another possible extension/modification of the system.

4.3 Changing the mode of reasoning

In our theory P0 we formalized a “ brave” mode of applying defaults. In this
section we briefly mention how the axioms can be changed to allow for cautious
reasoning. This can be achieved by adding to P0 the axiom

defeated(D)← default(D, L, Body), (P.26)
default(D1, L1, Body1),

Reasoning with Prioritized Defaults 183

holds(conflict(D1, D)),
not holds by default(prefer(D1, D)),
not holds by default(prefer(D, D1)),
hold by default(Body),
hold by default(Body1)

Let us denote the resulting program by P0,c. Now let us consider the domain
description D10 consisting of defaults and conditionals mentioned in the intro-
duction

default(d1, a, []).
default(d2, b, []).
default(d3, c, []).
conflict(d1, d2).
rule(r1,¬a, [b]). rule(r′

1,¬b, [a]).
rule(r2, d, [b]). rule(r′

2,¬b, [¬d]).
rule(r3, d, [a]). rule(r′

3,¬a, [¬d]).

It is easy to check that P0(D10) has two answer sets containing {c, a, d,¬b} and
{c, b, d,¬a} and therefore entails d and c. In contrast P0,c(D10) has one answer
set containing c and not containing d.

It is worth mentioning that it may be possible in this framework to introduce
two types of defaults - those requiring brave and cautious reasoning and add the
above axiom for the latter.

5 Hierarchical Domain Descriptions

Definition 3. We will say that a domain description D is consistent if P0(D)
is consistent, i.e., has a consistent answer set.

Obviously, not all domain descriptions are consistent; D = {p,¬p, q}, for in-
stance, is not.

(Notice that this is the intended meaning. We believe that the question of draw-
ing conclusions in the presence of inconsistency is somewhat orthogonal to the
problem we address in this paper and should be studied separately.)

In the next example inconsistency is slightly less obvious.

Example 8. The domain description D11 consists of the following three literals:

default(d, a, []).
rule(r1,¬c, [a]).
c.

184 Michael Gelfond and Tran Cao Son

It is easy to see that P0(D11) does not have a consistent answer set. This happens
because nothing prevents rule (P0.6) of P0 from concluding that a holds by
default. This conclusion, together with fact c and rule r1 from D11 leads to
inconsistency. Notice, that addition of the rule

rule(r2,¬a, [c]).

blocks the application of (P0.6) and restore consistency. ♦

In this section we give a simple condition guaranteeing consistency of domain
descriptions of L0. The condition can be expanded to domain descriptions of L
but we will not do it in this paper. From now on, by domain descriptions we will
mean domain descriptions of L0.

We will need the following definitions.

Definition 4. The domain description D is said to be rule-consistent if the
non-defeasible part of P0(D) has a consistent answer set. (By the non-defeasible
part of P0(D) we mean the program Ps

0(D) consisting of the set {holds(l) | l ∈
facts(D)}∪laws(D) and nondefeasible rules (rules (P0.1)-(P0.3), (P0.9), (P0.12)-
(P0.14), (P0.16)-(P0.19), and (P0.21)-(P0.22) of P0).

Definition 5. A domain description D over signature σ will be called hierar-
chical if it satisfies the following conditions:

1. D is rule-consistent;
2. D does not contain statements of the form L0.3 (i.e., there are no conflicts

except those specified in P0);
3. heads of defaults in D are σ-literals or literals of the form prefer(d1, d2);
4. no literal from the head of a default in D belongs to the body of a rule in D;
5. there is a function rank from the set heads(D) of literals belonging to the

heads of defaults in D to the set of ordinals such that
(a) if l ∈ head(D) and ¬l ∈ head(D) then rank(l) = rank(¬l);
(b) if prefer(d1, d2)) ∈ head(D) and prefer(d2, d1) ∈ head(D) then

rank(prefer(d1, d2)) = rank(prefer(d2, d1));
(c) if default(d, l, [l1, . . . , ln]) ∈ D and li ∈ heads(D) then rank(l)>rank(li);
(d) if prefer(d1, d2) ∈ heads(D) and d1, d2 ∈ D then

rank(head(di)) > rank(prefer(d1, d2)) for i = 1, 2;

It is easy to check that domain descriptions D0, D1, D4, and D6 are hierarchical
while D2,D3,D7 are not. In D2 and D7, the condition (4) is violated while
(2) is not true in D3. Domain description D5 is also hierarchical. The rank
function for D5 can be given by rank(l) = 1 for l 6∈ {perfected,¬perfected},
rank(perfected) = rank(¬perfected) = 4, and rank(prefer(d1(X), d2(X))) =
rank(prefer(d2(X), d1(X))) = 2.

Theorem 1. Hierarchical domain descriptions are consistent.

Reasoning with Prioritized Defaults 185

Proof. (Sketch) To prove the theorem we first simplify the program P0(D) by

(i) replacing all the occurrences of literals of the form hold([l1, . . . , ln])
and hold by default([l1, . . . , ln]) in the bodies of the rules from P0(D) by
holds(l1), . . . , holds(ln) and holds by default(l1), . . . , holds by default(ln),
respectively and

(ii) dropping the rules with these literals in the heads.

It is easy to verify that P0(D) is a conservative extension of the resulting
program P2(D) (whose language does not contain predicate symbols hold and
hold by default).

Now let us notice that, since D is a hierarchical domain description, the non-
defeasible part Ps

0(D) of P0(D) has a unique consistent answer set, say H. This
answer set can be used to further simplify P2(D) by eliminating all the occur-
rences of literals from H. This is done by using the splitting set theorem of [27]
and removing some useless rules. Finally, we drop the rule (P0.20) and replace
the occurrences of holds by default(l) and defeated(d) in P0(D) by l and d
respectively. We call the resulting program Q(D) the defeasible counterpart of
D.

Q(D) =

l. if holds(l) ∈ H (1)

l ← l1, . . . , ln, (2)
not d,
not ¬l.

if default(d, l, [l1, . . . , ln]) ∈ D
and holds(l) 6∈H,
and holds(¬l) 6∈H

d2 ← l1, . . . , ln, (3)
prefer(d1, d2),
not d1.

if d2 ∈ D,
default(d1, l, [l1, . . . , ln]) ∈ D,
holds(conflict(d1, d2)) ∈ H
and holds(l) 6∈H
and holds(¬l) 6∈H,

¬prefer(d1, d2)← prefer(d2, d1). (4)

if holds(prefer(d1, d2)) 6∈H
and holds(prefer(d2, d1)) 6∈H
and d1, d2 ∈ D

Using the splitting sequence theorem, and the assumption that D is hierarchical,
we can prove that for any σ-literal l

186 Michael Gelfond and Tran Cao Son

P0(D) |= holds by default(l) iff Q(D) |= l.

In the last part of the proof we show that Q(D) is consistent. This implies the
consistency of P0(D). ♦

The detailed proof of the theorem 1 can be found in appendix A.

The last example in this section demonstrates the importance of the requirement
for existence of the rank function in definition 5.

Example 9. Let us consider the following domain description, D12.

default(d1, l, []).
default(d2,¬l, [l]).
prefer(d2, d1).

It is easy to see that D12 has no rank function. To show that D12 is inconsistent
it suffices to verify that P0(D12) is consistent iff the following program R is
consistent:

l ← not d1, not ¬l
¬l← l, not d2, not l
d1 ← l, not d2

Obviously, R is inconsistent. ♦

It is worth mentioning that the domain description D13 which is obtained from
D12 by removing the preference prefer(d2, d1) is consistent. This demonstrates
the difference between prioritized defaults and preferential model approaches
(see e.g. [22]). In these approaches existence of preferred models is guaranteed if
the original theory has a model and the preference relation is transitive.

6 Domain Descriptions and Prioritized Logic Programs

In this section we discuss the relationship between our theory of prioritized de-
faults and the prioritized logic programs recently introduced by G. Brewka [7].
In Brewka’s approach, a domain description is represented by a prioritized logic
program (P, <) where P is a logic program with the answer set semantics rep-
resenting the domain without preferences and < is a preference relation among
rules of P . The semantics of (P, <) is defined by its preferred answer set - answer
sets of P satisfying some conditions determined by <.

We will recall the notion of preferred answer sets from [7] and show that for a
restricted class of hierarchical domain descriptions Brewka’s approach and our
approach are equivalent. In what follows, we will use the following terminology.

A binary relation R on a set S is called strict partial order (or order) if R is
irreflexive and transitive. An order R is total if for every pair a, b ∈ S, either
(a, b) ∈ R or (b, a) ∈ R; R is well-founded if every set X ⊆ S has a minimal
element; R is well-ordered if it is total and well-founded.

Reasoning with Prioritized Defaults 187

Let P be a collection of rules of the form

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where li’s are ground literals. Literals l1, . . . , lm are called the prerequisites of r.
If m = 0 then r is said to be prerequisite free. A rule r is defeated by a literal
l if l = li for some i ∈ {m + 1, . . . , n}; r is defeated by a set of literal X if X
contains a literal that defeats r. A program P is prerequisite free if every rule in
P is prerequisite free.

For a program P and a set of literals X, the reduct of P with respect to X,
denoted by XP , is the program obtained from P by

– deleting all rules with prerequisite l such that l 6∈X; and
– deleting all prerequisites of the remaining rules.

Definition 6. (Brewka [7]) Let (P, <) be a prioritized logic program where P
is prerequisite free and < is a total order among rules of P . Let
C<(P) =

⋃∞
i=1 Si where

S0 = ∅

Sn =
{

Sn−1 if rn is defeated by Sn−1
Sn−1 ∪ {head(rn)} otherwise

and rn is the nth rule in the order <. Then

– An answer set A of P is called a preferred answer set2 of (P, <) if A = C<(P).
– For an arbitrary prioritized logic program (P, <), a set of literals A is called

a preferred answer set of (P, <) if it is an answer set of P and A = C<′(AP)
for some total order <′ that extends <.

– A prioritized program (P, <) entails a query q, denoted by (P, <) |∼ q, if for
every preferred answer set A of (P, <), q ∈ A.

There are several substantial differences between domain descriptions of L0 and
prioritized logic programs. To compare the two approaches we need to limit our-
self to domain descriptions without dynamic priorities whose preference relation
is transitive and is defined only on conflicting defaults. More precisely:

Definition 7. A domain description D of L0 is said to be static if it satisfies
the following conditions:

– laws of D do not contain occurrences of the predicate symbol prefer;
– the transitive closure of the preference relation {〈d1, d2〉 : d1, d2 are defaults

in D such that prefer(d1, d2) ∈ D}, denoted by prefer∗
D, is an order on

defaults of D;

2 Strongly preferred answer set in Brewka’s terminology.

188 Michael Gelfond and Tran Cao Son

– for every literal of the form prefer(d1, d2) ∈ D, head(d1) and head(d2) are
contrary literals.

A static domain description D can be naturally encoded by a prioritized logic
program Π(D) = (B(D), <D) defined as follows.

Π(D) =

B(D) =

l. if l is a σ-literal in D (1)

l ← l1, . . . , ln. (2)
if rule(r, l, [l1, . . . , ln]) ∈ D

d : l ← l1, . . . , ln, not ¬l. (3)
if default(d, l, [l1, . . . , ln]) ∈ D

d1 <D d2 if 〈d1, d2〉 ∈ prefer∗
D (4)

We say that a domain description D entails a σ-literal l in the sense of Brewka
if Π(D) |∼ q.

The following theorem shows that for static and hierarchical domain descriptions
Brewka’s approach coincides with ours.

Theorem 2. For every hierarchical and static domain description D and for
every σ-literal l,

D |= holds by default(l) if and only if Π(D) |∼ l.

Proof. (Sketch) First, by “partially evaluating” D with respect to non-defeasible
information and removing various useless statements we reduce D to a simpler
domain description DN with the following property:

(i) D |= holds by default(l) iff D |= holds(l) or DN |= holds by default(l) and

(ii) Π(D) |∼ l iff D |= holds(l) or Π(DN) |∼ l.

The domain description DN can be represented by the program R(DN) consist-
ing of the rules

R(DN)

l ← l1, . . . , ln, not d, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ DN

d2 ← l1, . . . , ln, not d1. (2)

if d2 ∈ DN ,
default(d1, l, [l1, . . . , ln]) ∈ DN ,
prefer(d1, d2) ∈ DN ,
and head(d2) = ¬l

and the set pref = {prefer(d1, d2) : prefer(d1, d2) ∈ DN}.

Reasoning with Prioritized Defaults 189

DN can also be represented by the prioritized logic program
Π(DN) = (B(DN), <DN

) where B(DN) consists of the following rules:

B(DN)

l ← l1, . . . , ln, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ DN

We then show that

(iii) for each answer set A of R(DN), the set B = A∩ lit(σ) is a preferred answer
set of Π(DN); and

(iv) for each preferred answer set A of Π(DN) there exists an answer set B of
R(D) such that B ∩ lit(σ) = A.

The conclusion of the theorem follows from (i)-(iv). ♦

Detailed proof of the theorem can be found in appendix B.

The theorem 2 can be used to better understand properties of both formal-
izations. It implies, for instance, that queries to Brewka’s prioritized programs
corresponding to domain descriptions of L0 can be answered by the SLG in-
ference engine. It can also be used for a simple proof of the fact that static,
hierarchical domain descriptions are monotonic with respect to prefer, i.e. for
any such D and D′ with preference relations P and P ′ if P ⊆ P ′ and D |= l then
D′ |= l.

The next example demonstrates differences between reasoning with domain de-
scriptions and prioritized logic programs.

Example 10. Let us consider the domain description D14 which consists of the
following L0-literals:

rule(r1,¬l1, [l2]).
rule(r2,¬l2, [l1]).
default(d1, l1, []).
default(d2, l2, []).
conflict(d1, d2).
prefer(d2, d1).

It is easy to see that in this domain description d2 is applicable, d1 is defeated
and hence, the program P0(D14) has a unique answer set containing l2 and ¬l1.

The prioritized logic program B(D14) which corresponds to D14 consists of the
following rules:

r1 : ¬l1 ← l2.
r2 : ¬l2 ← l1.
d1 : l1 ← not ¬l1.
d2 : l2 ← not ¬l2.
d2 < d1.

190 Michael Gelfond and Tran Cao Son

and has two preferred answer sets: {l2,¬l1} and {l1,¬l2}. The former corresponds
to the preference orders in which r2 < r1 and the latter to the preference order
r1 < r2 < d2 < d1. ♦

The above example shows that Brewka’s approach differs from ours in the way
priority is dealt with. In our approach, we distinguish rules from defaults and
only priority between defaults are considered and enforced. This is not so in
Brewka’s approach where priority is defined among rules of the logic program
representing the domain in consideration. The completion of the preference order
could “overwrite” the preference order between defaults as the above example
has shown.

7 Conclusions

In this paper we

• introduced a language L(σ) capable of expressing strict rules, defaults with
exceptions, and the preference relation between defaults;

• gave a collection of axioms, P, defining the entailment relation between domain
descriptions of L(σ) and queries of the form holds(l) and holds by default(l);

• demonstrated, by way of examples, that the language and the entailment rela-
tion is capable of expressing rather complex forms of reasoning with prioritized
defaults;

• gave sufficient conditions for consistency of domain descriptions;

• described a class of domain descriptions for which our treatment of prioritized
defaults coincides with that suggested by G. Brewka in [7].

Defining reasoning with prioritized defaults via axioms of P allows to use logic
programming theory to prove consistency and other properties of domain de-
scriptions of L. Logic programming also provides algorithms for answering queries
to such domain descriptions. This work can be extended in several directions.
First, the results presented in the paper can be generalized to much broader
classes of theories of L. We also plan a more systematic study of the class of
logic programs defined by P (i.e., programs of the form P ∪D). It may be inter-
esting and useful to check if cautious monotony [19] or other general properties
of defeasible inference ([26,12,13,14]) hold for this class of programs. Another
interesting class of questions is related to investigating the relationship between
various versions of P. Under what conditions on D, for instance, we can guar-
antee that P(D) is equivalent to P0(D)? What is the effect of expanding P by
the transitivity axiom for prefer? Should this axiom to be made defeasible? etc.
Finally, we want to see if a better language can be obtained by removing from
it the notion of conflict. In the current language the statement prefer(d1, d2)
stops the application of default d2 if defaults d1 and d2 are in conflict with
each other and the default d1 is applicable. It may be more convenient to make

Reasoning with Prioritized Defaults 191

prefer(d1, d2) simply mean that d2 is stoped if d1 is applicable. More experience
with both languages is needed to make a justified design decision. We hope that
answers to these and similar questions will shed new light on representation and
reasoning with prioritized defaults.

Acknowledgment

We are grateful to Gerhard Brewka for an illuminating discussion on reasoning
with prioritized defaults. We also would like to thank Alfredo Gabaldon for useful
discussions and help with running our examples on SLG. Special thanks also to
Vladik Kreinovich who helped us to better understand the use of priorities in
the utility theory and hence our own work. This work was partially supported
by United Space Allience under contract # NAS9-20000.

Appendix A

In this appendix we prove theorem 1. We need the following lemmas.

Lemma 1. 3Let T be a logic program and

q ← Γ1
q ← Γ2
. . .

be the collection of all rules of T with the head q. Then the program Q obtained
from T by replacing rules of the form

p← ∆1, q, ∆2

by the set of rules

p← ∆1, Γ1, ∆2
p← ∆1, Γ2, ∆2
. . .

is equivalent to T , i.e., T and Q have the same consistent answer sets.

Proof. Let us denote the set of all rules removed from T by S and let

R = Q∪ S.

R can be viewed as a union of T and the set of new rules obtain from T by
the application of the cut inference rule. Since the cut is sound with respect to
constructive logic N2 [31] which is an extension of the logic N from [29], T and
R are equivalent in N2. As shown in [31], programs equivalent in N2 have the
same consistent answer sets, i.e.,

(a) programs T and R are equivalent.

3 This is a well-know property of logic programs called “partial evaluation” in [3,4].
We were, however, unable to find a proof of it for an infinite P .

192 Michael Gelfond and Tran Cao Son

This means that to prove our lemma it suffices to show equivalence of R and Q.

Let QA and SA be reducts of Q and S with respect to set A of literals (as in
the definition of answer sets). We show that A is the minimal set closed under
QA iff it is the minimal set closed under QA ∪ SA.

(b) Let A be the minimal set closed under QA. We show that it is closed under
SA.

Consider a rule

p← ∆A
1 , q, ∆A

2 ∈ SA

s.t. {∆A
1 , q, ∆A

2 } ⊆ A. (Here by ∆A
i we denote the result of removing from ∆i all

the occurrences of not l s.t. l 6∈A. Obviously, ∆A
i ’s above do not contain not .)

From the assumption of (b) and the fact that q ∈ A we have that there is i s.t.
a rule

q ← ΓA
i ∈ QA

with ΓA
i ⊆ A. This implies that there is a rule

p← ∆A
1 , ΓA

i , ∆A
2 ∈ QA

whose body is satisfied by A, and therefore p ∈ A. This implies that A is the
minimal set closed under QA ∪ SA.

(c) Let A be the minimal set closed under QA ∪ SA. We will show that it is the
minimal set closed under QA.

A is obviously closed under QA. Suppose that there is B ⊂ A closed under QA.
As was shown above it would be also closed under SA which contradicts our
assumption.

From (b), (c) and the definition of answer set we have that R and Q are equiv-
alent, which, together with (a), proves the lemma. ♦

To formulate the next lemma we need the following notation: Let T be a (ground)
logic program not containing negative literals ¬l and let p be a unary predicate
symbol from the language of T . By T ∗ we denote the result of replacing all
occurrences of atoms of the form p(t) in T by t. Notice, that T ∗ can be viewed as a
propositional logic program with different terms viewed as different propositional
letters. Let us also assume that terms of the language of T do not belong to the
set of atoms in this language.

Lemma 2. Let T and p be as above. Then A is an answer set of T iff A∗ is an
answer set of T ∗.

Proof. If T does not contain not the lemma is obvious. Otherwise, notice that
by definition of answer set, A is an answer set of T iff it is an answer set of T A.
Since T A does not contain not this happens iff A∗ is the answer set of (T A)∗.
To complete the proof it remains to notice that (T A)∗ = (T ∗)A∗

. ♦

Reasoning with Prioritized Defaults 193

Lemma 3. Let D be a domain description. By P2(D) we denote the program
obtained from P0(D)

– replacing all occurrences of literals hold([l1, . . . , ln])
and hold by default([l1, . . . , ln]) in the bodies of the rules from P0(D) by
holds(l1), . . . , holds(ln) and holds by default(l1), . . . , holds by default(ln),
respectively (we denote the resulting program by P1(D));

– Dropping the rules with heads formed by literals hold and hold by default.

Then

(a) if A is an answer set of P0(D) then A \ lit({hold, hold by default}) is an
answer set of P2(D);

(b) if A is an answer set of P2(D) then
A ∪ {hold([l1, . . . , ln]) : holds(l1), . . . , holds(ln) ∈ A} ∪

{hold by default([l1, . . . , ln]) : holds by default(l1) ∈ A, . . . ,
holds by default(ln) ∈ A}

is an answer set of P0(D).

Proof. First notice that by Lemma 1, programs P0(D) and P1(D) are equivalent.
Then observe that atoms formed by predicate symbols hold and hold by default
form the complement of a splitting set of program P1. The conclusion of the
lemma follows immediately from the splitting set theorem ([27]) and the fact
that rules defining hold and hold by default contains neither not nor ¬. ♦

Lemma 4. Let D be a hierarchical domain description over signature σ and

H = {holds(l) : Ps
0(D) |= holds(l)} ∪ {defeated(d) : Ps

0(D) |= defeated(d)}.

By P3(D) we denote the program consisting of the following rules

holds by default(l). if holds(l) ∈ H (1)

holds by default(l)← holds by default(l1), (2)
...
holds by default(ln),
not defeated(d),
not holds by default(¬l).

if default(d, l, [l1, . . . , ln]) ∈ D
and holds(l) 6∈H,

and holds(¬l) 6∈H

defeated(d2)← holds by default(l1), (3)

194 Michael Gelfond and Tran Cao Son

...
holds by default(ln),
holds by default(prefer(d1, d2))
not defeated(d1).

if d2 ∈ D,

default(d1, l, [l1, . . . , ln]) ∈ D,

holds(conflict(d1, d2)) ∈ H,

and holds(l) 6∈H,

and holds(¬l) 6∈H

holds by default(¬prefer(d1, d2))← holds by default(prefer(d2, d1))(4)

if holds(prefer(d1, d2)) 6∈H,

and holds(prefer(d2, d1)) 6∈H,

and d1, d2 ∈ D

¬holds by default(l)← holds by default(¬l). (5)

Then, A is an answer set of P2(D) iff A = laws(D)∪H∪B where B is an answer
set of P3(D).

Proof. Let U0 be the set of literals formed by predicate symbols holds, rule
and default. U0 is a splitting set of program P2(D) and hence A is an answer
set of P2(D) iff A = A0 ∪A1 where A0 is the answer set of program bU0(P0(D))
consisting of rules of P2(D) whose heads belong to U0 and A1 is an answer set
of the partial evaluation, R = eU0(tU0(P0(D)), A0), of the rest of the program
with respect to U0 and A0. It is easy to see that the program R consists of the
rules of P3(D) and

(a) rules of the type (2) where holds(l) or holds(¬l) is in H;

(b) rules of the type (3) where holds(l) ∈ H or holds(¬l) ∈ H;

(c) rules of the type

holds by default(l)← holds by default(l1),
. . .
holds by default(ln),

for each rule rule(r, l, [l1, . . . , ln]) ∈ D;

(d) rules of the type (4) where holds(prefer(d1, d2)) ∈ H
or holds(prefer(d2, d1)) ∈ H;

Reasoning with Prioritized Defaults 195

(e) facts of the type defeated(d) where d is a default in D with the head l s.t.
holds(¬l) ∈ H.

From the rule (P0.9) of program P0 we have that facts of the type (e) belong
to H and hence to prove the lemma it is enough to show that the rules of the
type (a)-(d) can be eliminated from R without changing its answer sets. To
do that let us first make the following simple observation. Consider a program
Q1 containing a rule p ← Γ and the fact p and let Q2 be obtained from Q1
by removing the rule. Q1 and Q2 are obviously equivalent in the logic N2 and
hence have the same answer sets. Similarly, we can show that a rule whose body
contradicts a fact of the program can be removed from the program.

(1a) Consider a rule r of R of the type (a).
If holds(l) ∈ H then, from rule (4) of P0 we have that holds by default(l) ∈ R.
Hence, by the above observation, r can be removed from R without changing its
answer sets.
If holds(¬l) ∈ H then from rule (4) of P0 we have that holds by default(¬l) ∈ R
which contradicts the body of r. Hence r is useless and can be safely removed.

(1b) Now consider a rule r of the type (b). We will show that its head, defeated
(d2), is a fact of R.

First notice that, if holds(¬l) ∈ H then Ps
0(D) |= defeated(d1). Therefore,

defeated(d1) ∈ A0 and hence, in this case, r 6∈ R.
Suppose now that holds(l) ∈ H. Consider two cases:

(i) The head l of d2 is σ literal.
By definition of rules of type (b) we have that holds(conflict(d1, d2)) ∈ H.
From condition (2) of definition 5 of hierarchical domain description and the
rules (P0.11), (P0.21), and (P0.22) of P0 we conclude that the head of default
d1 is literal ¬l. Since r is of type (b), this means that holds(¬l) ∈ H and, from
the rule (P0.9) of P0 we have that defeated(d2) ∈ H.

(ii) The head l of d2 is of the form prefer(di, dj).
From conditions (2), (3) of definition 5 and the rule (P0.11), (P0.21), and (P0.22)
of D we have that the head of d1 is prefer(dj , di). From rule (P0.14) of P0 we
have that ¬prefer(di, dj) ∈ H. Finally, from rule (P0.9) of P0 we have that
defeated(d2) ∈ H.
This demonstrates that the rules of the type (b) can be removed from R without
changing its answer sets.

(1c) It is easy to check that by the condition (4) of definition 5 the body of a
rule of the type (d) is satisfied iff holds(l1), . . . , holds(ln) ∈ H and hence the
head of such a rule is in H or the rule is useless.

(1d) Similar argument can be used for the rules of the type (c). The conclusion of
the lemma follows now from the observation above and the splitting set theorem.
♦

Let us consider a logic program Q(D) obtained from program P3(D) by

196 Michael Gelfond and Tran Cao Son

(a) removing rules of the type (5);

(b) replacing literals of the form holds by default(l) and defeated(d) by l and
d respectively.

The program Q(D) is called the defeasible counterpart of D and consists the
following rules:

Q(D) =

l. if holds(l) ∈ H (1)

l ← l1, . . . , ln, (2)
not d,
not ¬l.

if default(d, l, [l1, . . . , ln]) ∈ D
and holds(l) 6∈H,
and holds(¬l) 6∈H

d2 ← l1, . . . , ln, (3)
prefer(d1, d2)
not d1.

if d2 ∈ D,
default(d1, l, [l1, . . . , ln]) ∈ D,
holds(conflict(d1, d2)) ∈ H
and holds(l) 6∈H
and holds(¬l) 6∈H

¬prefer(d1, d2)← prefer(d2, d1). (4)

if holds(prefer(d1, d2)) 6∈H
and holds(prefer(d2, d1)) 6∈H
and d1, d2 ∈ D

Lemma 5. Let D be a hierarchical domain description over signature σ and
let H be the set of literals defined as in Lemma 4. Then the program Q(D) is
consistent.

Proof. First let us notice that the set F of facts of the form (1) from the program
Q(D) form a splitting set of this program. Since D is rule-consistent so is F . This
implies that Q(D) is consistent iff the result Q0 of partial evaluation of Q(D)
with respect to F is consistent. Let Q1 be the result of removal from Q0 all the
rules whose bodies contain literals not belonging to the heads of rules from Q0.
Obviously, Q(D) is equivalent to Q1.

To prove consistency of Q1 we construct its splitting sequence and use the split-
ting sequence theorem from [27].

Reasoning with Prioritized Defaults 197

Since D is hierarchical it has a rank function rank. Let µ be the smallest or-
dinal number such that rank(l) < µ for every l from the domain of rank. Let
heads(Q1) be the set of literals from the heads of rules in Q1 and

Uα = {l : l ∈ lit(σ) ∩ heads(Q1) s.t. rank(l) < α}∪
{d ∈ heads(Q1) : rank(head(d)) < α}∪
{prefer(d1, d2) ∈ heads(Q1) : rank(prefer(d1, d2)) < α}∪
{¬prefer(d1, d2) : prefer(d2, d1) ∈ heads(Q1), rank(prefer(d2, d1)) < α}

The sequence U = 〈Uα〉α<µ is monotone (Uα ⊂ Uβ whenever α < β) and
continuous (for each limit ordinal α < µ, Uα =

⋃
β<α Uβ). Using the property

of the rank function from the definition of hierarchical domain description it is
not difficult to check that for each α < µ, Uα is a splitting set of Q1 and that⋃

α<µ Uα is equal to the set of all literals occurring in Q1. Hence, U is a splitting
sequence of Q1. By the splitting sequence theorem existence of an answer set of
Q1 follows from existence of a solution to Q1 (with respect to U). Let Tα be a
collection of all the rules from Q1 whose heads belong to Uα. To show existence
of such a solution it suffices to

(i) assume that for α such that α+1 < µ the program Tα has a consistent answer
set Aα;

(ii) use this assumption to show that Tα+1 also has a consistent answer set;

(iii) show that
⋃

α<µ Aα is consistent.

Let us show (ii) and (iii). Let T be the result of partial evaluation of the program
Tα+1 with respect to the set Aα. T can be divided into three parts consisting of
rules of the form

(a) d2 ← not d1.

and

(b) l← not d, not ¬l where l is a σ-literal

and

(c1) prefer(di, dj)← not d, not ¬prefer(di, dj)

(c2) ¬prefer(dm, dn)← prefer(dn, dm).

respectively.

To show consistency of the program T (a) consisting of rules (a) we first observe
that, by construction, if a rule r of type (a) is in T then d1, d2 are conflict-
ing defaults and hence, by condition 2 of definition 5 and the rule (P0.11),
(P0.21), and (P0.22) of P0, their heads are either contrary σ-literals or of the
form prefer(di, dj) and prefer(dj , di) where i 6= j. Consider the dependency
graph D of S1. D obviously does not contain cycles with positive edges. We will
show that it does not contain odd cycles with negative edges. (Programs with

198 Michael Gelfond and Tran Cao Son

this property are called call-consistent). Suppose that d1, . . . , d2n+1, d1 is such a
cycle. Since di and di+1 (i = 1, . . . , 2n) are conflicting defaults we have that d1
and d2n+1 have the same heads (clause (2) of the definition and rules (P0.11),
(P0.21), and (P0.22) of P0). Since d1 and d2n+1 are conflicting their heads must
be different. Hence our program has no odd cycles. As was shown by Fages [17]
(see also [15]), call consistent programs with dependency graphs without positive
cycles have an answer set.

To show consistency of the program T (a, b) consisting of rules (a) and (b) of T it
suffices to take an arbitrary answer set of program T (a) and use the splitting set
theorem. The corresponding reduct R will consist of rules of the form l← not ¬l.
Let X0 be the set of all positive literals from the heads of R and X1 be the set
of negative literals of the form ¬l from the heads of R such that l 6∈X0. It is
easy to see that the set X0 ∪X1 is a consistent answer set of R.

Now we need to show consistency of the partial evaluation Tr of T with respect
to some answer set of T (a, b). Tr consists of rules

prefer(di, dj)← not ¬prefer(di, dj)

and

¬prefer(dm, dn)← prefer(dn, dm).

Let heads(Tr) be the set of the heads of the rules of Tr and let us assume that
each default is associated with a unique index i. Consider a set X0

X0 = {prefer(di, dj) : prefer(di, dj) ∈ heads(Tr), prefer(dj , di) 6∈heads(Tr)}∪
{prefer(di, dj) : i < j if prefer(di, dj) ∈ heads(Tr) and prefer(dj , di) ∈

heads(Tr)}
Now let

X = X0 ∪ {¬prefer(dn, dm) : prefer(dm, dn) ∈ X0}
Obviously, X is consistent. To show that it is a consistent answer set of Tr let
us construct TX

r and show that

prefer(di, dj) ∈ TX
r iff prefer(di, dj) ∈ X.

Let

prefer(di, dj) ∈ X.

Then, by construction of X,

prefer(dj , di) 6∈X, hence

¬prefer(di, dj) 6∈X, i.e.

prefer(di, dj) ∈ TX
r .

Similar argument demonstrates equivalence in the opposite direction. This im-
plies that X is a consistent answer set of Tr. By the splitting set theorem we
conclude consistency of T and Tα+1. Statement (iii) follows immediately from the

Reasoning with Prioritized Defaults 199

above construction of answer set of Tα+1 and hence, from the splitting sequence
theorem we have that Q(D) is consistent. ♦

Lemma 6. Let D be a hierarchical domain description over signature σ and let
Q(D) be the program defined as in Lemma 5. Then for any literal l of L0(σ)

D |= holds by default(l) iff Q(D) |= l.

Proof. By definition,

1. D |= holds by default(l) iff P0(D) |= holds by default(l).

From (1) and lemma 3 we have that

2. D |= holds by default(l) iff P2(D) |= holds by default(l).

From (2) and lemma 4 we have that

3. D |= holds by default(l) iff P3(D) |= holds by default(l).

Let P4(D) be the program obtained from the program P3(D) by removing the
rules of type (5) from P3(D). It is easy to see that P4(D) is the bottom program
of P3(D) with respect to the splitting set consisting of all positive literals of the
program P3(D).

Now let us consider the program Qp(D) obtained from Q(D) by replacing every
negative literal l = ¬p(t) by the atom l = p̄(t) where p̄ is a new predicate symbol.

From (3) and lemma 2 we have that

4. P4(D) |= holds by default(l) iff Qp(D) |= l.

As was shown in [21] answer sets of Q(D) coincide with answer sets (stable
models) of Qp(D) which do not contain pairs of atoms of the form l, l. Let us
show that no answer set A of Qp(D) contains such literals. Consider two cases:

(i) l is a σ-literal. Suppose that l ∈ A. Obviously there is no rule of the type
(2) in Qp(D) whose head is l and whose body is satisfied by A. Since D is
rule-consistent l 6∈ Qp(D) and hence l 6∈A.

(ii) l = prefer(di, dj). There are free types of rules in Qp(D) which contain
literals formed by prefer in the heads:

(a). prefer(di, dj).

from rule (1) of Q(D)

(b). prefer(di, dj)← Γ, not prefer(di, dj).

from rule (2) of Q(D) and

(c). prefer(di, dj)← prefer(dj , di).

from rule (2) of Q(D).

200 Michael Gelfond and Tran Cao Son

Suppose that prefer(di, dj) ∈ A. Then, from the rule consistency of D we
have that prefer(dj , di) does not belong to (a). Since, by rule (c) we have that
prefer(dj , di) ∈ A and hence prefer(dj , di) 6∈A. This implies that prefer(di, dj)
6∈A.

Hence, we have that

5. Qp(D) |= l iff Q(D) |= l.

It follows from (5) and (4) that

6. P4(D) |= holds by default(l) iff Q(D) |= l.

Since Q(D) is consistent, we can conclude that no answer set of P4(D) containing
holds by default(l) and holds by default(¬l). By the splitting theorem, we have
that P3(D) is consistent and moreover,

7. P3(D) |= holds by default(l) iff P4(D) |= holds by default(l).

The proof of the lemma follows from (7), (6), and (3). ♦

The proof of the theorem 1 follows immediately from Lemmas 5 and 6.

Appendix B

In this appendix we prove the theorem 2. By Lemma 6, we have that for any
σ-literal l

D |= holds by default(l) iff Q(D) |= l

where Q(D) is the program defined in Lemma 5. Hence, to prove the theorem,
it suffices to show that

Q(D) |= l iff Π(D) |∼ l.

Let us introduce some useful terminology and notation. Let D be a hierarchical
domain description and

U(D) = {l : l is a L0(σ) literal and Ps
0(D) |= holds(l)}

where Ps
0(D) is the non-defeasible part of P0(D).

To simplify the proof let us assume that the set of defaults in D has the cardi-
nality less than or equal to ω and that the minimal value of the rank function
of D is 1. Let DN be the domain description obtained from D as follows:

(i) removing all rules and σ-literals from D;
(ii) removing all defaults d ∈ D such that head(d) ∈ U(D) or ¬head(d) ∈ U(D);
(iii) removing every occurrence of σ-literal l ∈ U(D) from the bodies of the

remaining defaults of D; We denote the resulting domain description D0.

Reasoning with Prioritized Defaults 201

(iv) Let DM = ∩ω
r=0Dr where Dr is obtained from Dr−1 by removing from it

every default of the rank r whose body contains a literal not belonging to
the head of any default in Dr−1; DN is obtained from DM by removing all
literals of the form prefer(d1, d2) such that d1 6∈ DM or d2 6∈ DM .

The domain description DN will be called the normalization of D.

A hierarchical domain description D is said to be normalized if D = DN .

Let Q(D) be the defeasible counterpart of a static domain description D and let
R(D) be obtained from Q(D) by

(a) removing rules of the type (4);
(b) performing partial evaluation of the resulting program with respect to U(D).

This construction, together with the following simple lemma, will be frequently
used in our proof.

Lemma 7. For any static and hierarchical domain description D and σ-literal
l 6∈U(D),

Q(D) |= l iff R(D) |= l.

Proof. First notice that since D is static ¬prefer(d1, d2) ∈ U(D) or
prefer(d2, d1) 6∈U(D). Hence the program Qa(D) obtained from Q(D) by step
(a) has the same answer sets as Q(D).

Now notice that since D is static the heads of rules of the type (2) in Q(D)
belong to lit(σ). By construction of Q(D) these heads do not belong to U(D).
Therefore, U(D) is a splitting set of Qa(D) and conclusion of the lemma follows
from the splitting set theorem. ♦

The proof of the theorem 2 will be based on the following lemmas.

Lemma 8. Let DN be the normalization of a static and hierarchical domain
description D. Then, for every σ-literal l such that l 6∈U(D)

D |= holds by default(l) iff DN |= holds by default(l).

Proof. Let l be a σ-literal such that l 6∈U(D). Since D is hierarchical we have
that by Lemma 6 it suffices to show that

a. Q(D) |= l iff Q(DN) |= l.

Domain descriptions D and DN are static and hierarchical and hence, by Lemma
7 we have that (a) is true iff

b. R(D) |= l iff R(DN) |= l.

Let D∗ be the domain description obtained from D by performing the steps (i),
(ii), and (iii) in the construction of DN . Obviously, DN ⊆ D∗. We first prove
that

202 Michael Gelfond and Tran Cao Son

c. R(D) and R(D∗) are identical.

Let

c1. r ∈ R(D)

We consider two cases:

(i) head(r) ∈ lit(σ) , i.e.,

r is of the form l0 ← Γ, not d, not ¬l0

where Γ consists of σ-literals not belonging to U(D). By construction of
R(D) and Q(D) this is possible iff

c2. neither l0 nor ¬l0 is in U(D) and there is a set of literals ∆ ⊆ U(D)
such that default(d, l0, [∆, Γ]) ∈ D.

From definition of DN we have that (c2) holds iff

c3. default(d, l0, [Γ]) ∈ D∗.

Notice also that, by the same definition, U(D∗) consists of literals formed by
prefer and conflict and hence do not contain σ-literals. This implies that
(c3) holds iff

c4. r ∈ Q(D∗).

Since D is static, literals from U(D∗) do not belong to rules (2) of Q(D∗).
This implies that (c4) holds iff

c5. r ∈ R(D∗).
(ii) head(r) 6∈lit(σ), i.e.

r is of the form d2 ← Γ, not d1

where Γ consists of σ-literals not belonging to U(D).

By construction of R(D) this is possible iff

c6. default(d1, l0, [∆, Γ]), default(d2,¬l0, [∆1, Γ1]) ∈ D
for some ∆ ⊆ U(D), ∆1 ⊆ U(D) and Γ1 consisting of σ-literals not belonging
to U(D); l0,¬l0 6∈U(D), and prefer(d1, d2) ∈ D.

It follows from definition of D∗ that (c6) holds iff

c7. default(d1, l0, [Γ]) ∈ D∗, default(d2,¬l0, [Γ1]) ∈ D∗ and
prefer(d1, d2) ∈ D∗.

which holds iff

c8. r ∈ R(D∗).

Reasoning with Prioritized Defaults 203

From (c1), (c5) and (c8) we have that R(D) and R(D∗) are identical. Therefore,
to prove (b) we will show

d. R(D∗) |= l iff R(DN) |= l.

Let

e. A be an answer set of R(D∗).

Let

f. B = A \ {d : d ∈ D∗ \ DN}.
We will prove that

d1. B is an answer set of R(DN).

By construction of R(D∗) and R(DN) it is easy to see that

d2. (R(DN))B ⊆ (R(D))A.

Hence,

d3. B is closed under the rules of (R(DN))B .

Assume that there exists a set of literals C ⊂ B, which is closed under the rules
of (R(DN))B . Let

d4. D = (C ∩ lit(σ)) ∪ (A \ lit(σ)).

We will prove that

d5. D is closed under the rules of (R(D∗))A.

By construction of D,

d6. D is closed under the rules of (R(D∗))A whose heads do not belong to lit(σ).

Consider a rule

e0. l0 ← Γ ∈ (R(D∗))A such that

e1. Γ ⊆ B.

By construction of (R(D∗))A, this is possible if there exists a default d,

e2. default(d, l0, [Γ]) ∈ D∗,

e3. ¬l0 6∈B, d 6∈A,

From (e2) and the fact that C is closed under the rules of (R(DN))B , by con-
struction of DN , we conclude that

e4. default(d, l0, [Γ]) ∈ DN .

which, together with (e3), implies that

e5. l0 ← Γ ∈ (R(DN))B

204 Michael Gelfond and Tran Cao Son

Since C is closed under the rules of (R(DN))B , (e5) together with (e1), implies
that l0 ∈ C. This proves that D is closed under the rules of (R(D∗))A with σ-
literals in their heads. This, together with (d6), implies (d5), and hence, implies
that, A is not an answer set of R(D∗). This contradiction proves (d1).

Now, let

f1. A be an answer set of R(DN),

and

f2. B = A ∪ {d : d ∈ D∗ \ DN ,∃d′ ∈ DN , prefer(d′, d) ∈ D∗, body(d′) ⊆ A}.
We will prove that B is an answer set of R(D∗) by showing that B is a minimal
set of literals closed under the rules of (R(D∗))B .

Since A is an answer set of R(DN) we can conclude that

f3. for any d ∈ D∗ \ DN , body(d) is not satisfied by A.

This, together with the construction of B and the fact that every rule of (R(D∗))B

is of the form l← Γ or d← Γ where Γ is the body of some default in D∗, implies
that

f4. B is closed under the rules of (R(D∗))B .

We need to prove the minimality of B. Assume the contrary, there exists a set
of literals C ⊂ B that is closed under the rules of (R(D∗))B . Let

f5. D = C \ (B \A).

Obviously, D ⊂ A. Since (R(DN))A ⊆ (R(D∗))B), it is easy to check that D
is closed under the rules of (R(DN))A which contradicts the fact that A is an
answer set of R(DN), i.e., we have proved that

f6. B is an answer set of R(D∗).

From (e), (d1), (f1), and (f6) we can conclude (d). which, together with (a), (b),
and (c) proves the lemma. ♦

The next lemma shows that for a static and hierarchical domain description, the
program B(D) can also be simplified.

Lemma 9. Let D be a static and hierarchical domain description and DN be
its normalization. Then, for each σ-literal l such that l 6∈U(D),

Π(D) |∼ l if and only if Π(DN) |∼ l.

Proof. First, observe the following for prioritized programs.

Let (Q, <) be a prioritized program where Q is a defeasible program without
facts, i.e., each rule in Q contains at least a negation-as-failure literal. Let P
be a strict program, i.e., no rule in P contains a negation-as-failure literal. Let
head(Q) be the set of literals belonging to the heads of Q and body(P) be the set
of literals belonging to the body of rules of P . Assume that head(Q)∩body(P) =
∅. Then, we have that

Reasoning with Prioritized Defaults 205

(i) A is a preferred answer set of (P ∪Q, <) iff A = AP ∪ AQ where AP is the
answer set of P and AQ is a preferred answer set of (QP , <) where QP is
the partial evaluation of Q with respect to AP .

(ii) Let P ′ be a strict program equivalent to P . Then, (P ∪Q, <) and (P ′∪Q, <)
are equivalent.

(iii) Let R be the set of rules in Q such that for every r ∈ R, P |= head(r) or
P |= ¬head(r). Then, (P ∪Q, <) and (P ∪Q \R, <) are equivalent.

Let us denote the program consisting of rules (3) of B(D) by Q and P = B(D)\Q.
Obviously,

a. Q is a defeasible logic program without facts and P is a strict program.

Since D is hierarchical, we have that

b. head(Q) ∩ body(P) = ∅.
Let U0(D) be the set of σ-literals belonging to U(D). It is easy to see that U0(D) is
the unique answer set of P , i.e., U0(D) and P are equivalent. Therefore, together
with (a) and (b), by (ii) we can conclude that

c. Π(D) |∼ l iff (U0(D) ∪Q, <D) |∼ l.

Let R be the set of rules in Q such that for every r ∈ R, head(r) ∈ U0(D) or
¬head(r) ∈ U0(D), then by (iii) we know that

d. (U0(D) ∪Q, <D) |∼ l iff (U0(D) ∪Q \R, <D) |∼ l.

It is easy to see that U0(D) is a splitting set of U0(D) ∪ Q \ R. Let S be the
reduct of U0(D) ∪Q \R with respect to U0(D).

As in the previous proof, let D∗ be the domain description obtained from D by
performing the steps (i), (ii), and (iii) in the construction of DN . We will prove
that S is identical to B(D∗). Let

e1. r ∈ S.

It means that r has the form

e2. l← Γ, not ¬l.

where Γ is a set of σ-literals containing no literals from U0(D). By construction
of S, (e2) holds iff

e3. l 6∈U0(D), ¬l 6∈U0(D), and there exists a set of literals ∆ ⊆ U0(D) such that
default(d, l, [Γ, ∆]) ∈ D.

From the definition of D∗, (e3) holds iff

e4. default(d, l, [Γ]) ∈ D∗

By definition of B(D∗) and the definition of D∗, (e4) holds iff

e5. r is a rule in B(D∗).

206 Michael Gelfond and Tran Cao Son

From (e1) and (e5) we can conclude that

e. S is identical to B(D∗).

From (e), (i), (c), and (d), and the splitting set theorem, we have that

f. Π(D) |∼ l iff l ∈ U(D) or Π(D∗) |∼ l.

This, implies that to prove the lemma, it suffices to show that

g. Π(D∗) |∼ l iff Π(DN) |∼ l.

To prove (g) we first prove that

g1. B(D∗) and B(DN) are equivalent.

Let

g2. A be an answer set of B(D∗).

Since DN ⊆ D∗, we have that

g3. (B(DN))A ⊆ (B(D∗))A

which immediately implies that

g4. A is closed under the rules of (B(DN))A.

Furthermore, it is easy to prove that if B ⊂ A is closed under the rules of
(B(DN))A then B is closed under the rules of (B(D∗))A. This, together with
(g4), implies that

g5. A is an answer set of B(DN).

Now, let

g6. A be an answer set of B(DN).

Since for any rule

g7. l← Γ ∈ (B(D∗))A \ (B(DN))A

there exists a default d such that

g8. default(d, l, [Γ]) ∈ D∗ \ DN .

Hence, we can conclude that

g9. if r is a logic programming rule in (B(D∗))A \ (B(DN))A then body(r) is not
satisfied by A.

This, together with (g6) and the fact that (B(DN))A ⊆ (B(D∗))A, implies that

g10. A is an answer set of B(D∗).

From (g2), (g5), (g6), and (g10) we can conclude (g1).

The conclusion (g) follows from (g1) and the fact that A(B(D∗) is identical to
A(B(DN). ♦

Reasoning with Prioritized Defaults 207

The above two lemmas show that for any static and hierarchical domain descrip-
tion D and σ-literal l 6∈U(D)

(i) Q(D) |= l iff R(DN) |= l and

(ii) Π(D) |∼ l iff Π(DN) |∼ l.

where DN is the normalization of D.

Furthermore, for l ∈ U(D), Q(D) |= l and Π(D) |∼ l.

Therefore, to prove the theorem 2, we will show that for l 6∈U(D),
R(DN) |= l iff Π(DN) |∼ l.

The above observation shows that in proving theorem 2 we can limit ourself
to static and normalized domain descriptions. Since for a static and normalized
domain description D, the programsR(D) and Π(D) are simpler than for general
cases, for future references, we define these programs before continuing with the
proof of theorem 2.

For a static and normalized domain description D, the program R(D) consists
of the following rules

R(D)

l ← l1, . . . , ln, not d, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ D

d2 ← l1, . . . , ln, not d1. (2)

if d2 ∈ D,
default(d1, l, [l1, . . . , ln]) ∈ D,
prefer(d1, d2) ∈ D,
and head(d2) = ¬l

and the program B(D) of Π(D) consists of the following rules:

B(D)

l ← l1, . . . , ln, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ D
To continue with the proof we need the following definitions.

Definition 8. Let D be a static domain description with the preference relation
P0. Let P1 be a well-ordered order defined on defaults in D which extends P0.
The domain description D̃ = D ∪ {prefer(d1, d2) : 〈d1, d2〉 ∈ P1} is called a
completion of D.

We will need the following technical observations.

Lemma 10. Let D be a static and normalized domain description. Let A be an
answer set of R(D) and default(d, l, [Γ]) be a default in D such that l 6∈A and
Γ ⊆ A. Then, ¬l ∈ A.

208 Michael Gelfond and Tran Cao Son

Proof. First notice that, since D is normalized, it is hierarchical. Therefore, in
virtue of theorem 1, D is consistent. By Lemmas 6 and 7 this implies that R(D)
is consistent. As was shown in [21] every answer set of consistent program is
consistent which implies consistency of A.

Since l← Γ, not d, not ¬l is a rule in R(D), Γ ⊆ A, l 6∈A, and A is a consistent
answer set of R(D), we have two cases:

(i) ¬l ∈ A; or
(ii) d ∈ A.

Consider the second case: d ∈ A. Then there exists a rule (2) of R(D) with the
head d whose body is satisfied by A. From construction of R this implies that
there exists a default

1. default(d1,¬l, [∆]) ∈ D
such that

2. ∆ ⊆ A and d1 6∈A.

From (1) and construction of R we can conclude that R contains the rule

3. ¬l← ∆, not d1, not l.

Recall, that, by condition of the lemma, l 6∈A. This, together with (2), implies
that the body of the rule (3) is satisfied by A. Therefore, ¬l ∈ A. ♦
Let X be a set of literals in the language of R(D). By X|l we denote X ∩ lit(σ).

Lemma 11. Let D be a static and normalized domain description and D̃ be
one of its completions. Then, for every answer set Ã of R(D̃) there exists an
answer set A of R(D) such that Ã|l = A|l.
Proof. Since the preference relation in D̃ is a well-ordered order among defaults,
we can enumerate the set of defaults in D by the sequence d0, d1, . . . , dn,4

Let Ã be an answer set of R(D̃). It is easy to see that, since D is normalized, Ã
is consistent.

We define a sequence of sets of literals A∞
i=0 in the language of R(D) as follows:

A0 = Ã|l

An+1 =

An ∪ {dn+1} if there exists di s.t.
(0a) default(di,¬head(dn+1), [Γ]) ∈ D,
(0b) prefer(di, dn+1) ∈ D,
(0c) Γ ⊆ An, and
(0d) di 6∈An.

An otherwise
4 For simplicity, here and in the following lemmas we assume that the set of defaults

in D has the cardinality less than or equal to the ordinal number ω. However, the
proofs presented in this paper can be expanded to the general case.

Reasoning with Prioritized Defaults 209

Let A = ∪∞
i=0Ai. Obviously, A is consistent. We will prove that A is an answer

set of R(D) and A|l = Ã|l.
By the construction of A, we have that A|l = Ã|l. Hence, to prove the lemma we
need to prove that A is an answer set of R(D). To do that, we will show that A
is a minimal set of literals which is closed under the rules of (R(D))A.

Since D is a normalized domain description, (R(D))A consists of the following
rules:

(R(D))A =

l ← Γ. (1)

if there is d s.t.
(1a) default(d, l, [Γ]) ∈ D,
(1b) d 6∈A, and ¬l 6∈A

d2 ← Γ. (2)

if there is d1 s.t.
(2a) default(d1,¬head(d2), [Γ]) ∈ D,
(2b) prefer(d1, d2) ∈ D, and
(2c) d1 6∈A.

Let r be a rule of (R(D))A whose body is satisfied by A, i.e.,

a. Γ ⊆ A.

We consider two cases:

(i) r is of the form (1).

Since A|l = Ã|l, from (1b) and (a) we conclude that

b. ¬l 6∈Ã and Γ ⊆ Ã.

By Lemma 10, this, together with (1a) implies that l ∈ Ã and hence l ∈ A,
i.e.,

c. A is closed under the rules of type (1) of (R(D))A.
(ii) r is of the form (2). From (2a)-(2c) and (a), by the construction of A, we

conclude that d2 ∈ A, i.e.,

d. A is closed under the rules of type (2) of (R(D))A.

From (c) and (d) we can conclude that

e. A is closed under the rules of (R(D))A.

We now prove the minimality of A.

Assume that there exists a set B ⊂ A which is closed under the rules of (R(D))A.
We consider two cases:

210 Michael Gelfond and Tran Cao Son

(i) A|l \B|l 6= ∅.
Since D is hierarchical, there exists a rank function rank of D that satisfies
the conditions of Definition 5.

Let l ∈ A|l \B|l such that

f. rank(l) = min{rank(p) : p ∈ A|l \B|l}.
Since l ∈ A and A|l = Ã|l, we have that l ∈ Ã. Let

f1. ∆+
l = {d : default(d, l, [Γ]) ∈ D, Γ ⊆ Ã}.

Since Ã is an answer set of R(D̃), we have that

f2. ∆+
l 6= ∅.

Since the preference relation in D̃ is well-ordered, there exists a minimal
element dj of ∆+

l such that

f3. prefer(dj , dk) ∈ D̃ for dk ∈ ∆+
l \ {dj}.

We will prove that

g. dj 6∈Ã.

Assume the contrary, dj ∈ Ã. By construction of R(D̃), we conclude that
there exists a default dn such that

g1. default(dn,¬l, [Λ]) ∈ D,

g2. Λ ⊆ Ã, and

g3. prefer(dn, dj) ∈ D̃.

It follows from (f3) and (g3) and the fact that the preference order in D̃ is
well-ordered that

g3. prefer(dn, d) ∈ D̃ for d ∈ ∆+
l .

This, together with (g1) and (g2), implies that

g4. d ∈ Ã for d ∈ ∆+
l .

which, in turn, implies that there exists no rule with the head l in R(D̃)
whose body is satisfied by Ã, i.e., l 6∈Ã. This contradiction proves (g).

We now prove that

h. dj 6∈A.

Assume that (h) does not hold, i.e.,

h1. dj ∈ A.

Using the definition of A and the fact that A and Ã coincide on σ-literals
we can easily check that there is di such that

h2. default(di,¬l, [Γ]) ∈ D̃

Reasoning with Prioritized Defaults 211

h3. prefer(di, dj) ∈ D̃
h4. Γ ⊆ Ã

From construction of R(D̃) and conditions (h2), (h3) we have that

h5. dj ← Γ, not di ∈ R(D̃)

First assume that

h6: di 6∈Ã
Then, from (h4), (h5), and the fact that Ã is an answer set of R(D̃) we
conclude that dj ∈ Ã which contradicts (g). Therefore,

h7. di ∈ Ã

This implies that there is a default dk of the form default(dk, l, [∆]) ∈ D̃
such that

h8. ∆ ⊆ Ã

h9. prefer(dk, di) ∈ D̃
Since the preference relation in D̃ is total from (h3) and (h9) we conclude
that

h10. prefer(dk, dj) ∈ D̃
which contradicts dj being the minimal element of ∆+

l . This contradiction
proves (h).

Recall that head(dj) = l and let Θ be its body. Since dj is best for l in A
we have that

k. Θ ⊆ A

Since l ∈ A and A is consistent, ¬l 6∈A. This, together with (h), implies
that

l. l← Θ ∈ (R(D))A.

Since l 6∈B and B is closed under the rules of (R(D))A, from (l) we can
conclude that there exists a literal l′ ∈ Θ such that l′ 6∈B. This, together
with (k), implies that

m. l′ ∈ A \B.

Since D is normalized and hence hierarchical, from condition 5 of Definition
5 we have that rank(l′) < rank(l). This, together with (m), contradicts with
(f) which implies that A|l \B|l = ∅.

(ii) A|l = B|l. Since B ⊂ A, there exists dj ∈ A \B. By the construction of A,

n. there exists a default di ∈ D of the form default(di,¬head(dj), [Γ]) such
that

n1. prefer(di, dj) ∈ D, di 6∈A and

212 Michael Gelfond and Tran Cao Son

n2. Γ ⊆ A.

(n1), together with the definition of (R(D))A implies that

n3. dj ← Γ ∈ (R(D))A.

This, together with the assumption that B is closed under the rules of
(R(D))A and B|l = A|l, implies that dj ∈ B which contradicts the selection
of dj .

We showed that no proper subset B of A is closed under the rules of (R(D))A

and hence A is an answer set of R(D). ♦

The next lemma is the reverse of Lemma 11.

Lemma 12. Let D be a static and normalized domain description and A be an
answer set of R(D). Then, there exists a completion D̃ of D and an answer set
Ã of R(D̃) such that Ã|l = A|l.
Proof. We start with introducing some notation. Let P be a binary relation.
By P ∗ we denote the transitive closure of P . For a σ-literal l, we define,

∆+
l = {d : default(d, l, [Γ]) ∈ D, Γ ⊆ A},

∆−
l = {d : default(d,¬l, [Γ]) ∈ D, Γ ⊆ A},

∆l = ∆+
l ∪∆−

l , and

∆l = {d ∈ D : head(d) ∈ {l,¬l}}
By <l we denote the order induced on ∆l by the preference relation of D.

In our further discussion we need the following well known result:

(*) if P is a well-founded strict partial order then there exists a well-founded
total order containing P .

Now we start our construction of D̃. Notice that if l ∈ A then, since <l is well-
founded, it is easy to prove that there exists a default d ∈ ∆+

l which is a minimal
element in ∆l. Let us denote such a default by d(l).

Let

X1(l) = {prefer(d(l), d) : d ∈ ∆−
l }.

X2(l) = {prefer(d1, d2) : prefer(d1, d2) ∈ D, d1, d2 ∈ ∆l}.
For every atom p ∈ lit(σ) we define the set Xp as follows:

Xp =

(X1(p) ∪X2(p))∗ if p ∈ A

(X1(¬p) ∪X2(p))∗ if ¬p ∈ A

X2(p) otherwise

Reasoning with Prioritized Defaults 213

It is easy to see that Xp is a well-founded, strict partial order on ∆p. Let Yp be
a well-founded, total order on ∆p which extends Xp (existence of Yp is ensured
by (*)). Obviously,

⋃
p∈atom(σ) Yp is a well-founded, strict partial order on the

set of defaults of D which extends the preference relation in D.

Let Y be a well-founded, total order on the set of defaults of D which extends⋃
p∈atom(σ) Yp.

Let

D̃ = D ∪ Y .

It is easy to see that D̃ is a consistent completion of D.

Now we will construct an answer set Ã of R(D̃) such that Ã|l = A|l.

Ui = {l : l ∈ lit(σ) ∩ heads(R(D̃)) s.t. rank(l) < i}∪
{d ∈ heads(R(D̃)) : rank(head(d)) < i}.

The sequence U = U0, U1, . . . is monotone and continuous. Using the property of
the rank function from the definition of hierarchical domain description it is not
difficult to check that each Ui is a splitting set of R(D̃) and that

⋃
Ui is equal

to the set of all literals occurring in R(D̃). Hence, U is a splitting sequence of
R(D̃).

Let Ti be a collection of all the rules from R(D̃) whose heads belong to Ui and
let Ai = A ∩ Ui.

We define a sequence Ã0, Ã1, . . . such that

1a. Ãi is an answer set of Ti.

1b. Ãi|l = Ai|l
(i) Let Ã0 = A0

Since both sets are empty conditions (1a) and (1b) are satisfied.

(ii) assume that conditions (1a) and (1b) are satisfied by the already constructed
set Ãi Let T be the result of partial evaluation of the program Ti+1 with respect
to the set Ãi.

T will consists of the rules

(r2) l← not d, not ¬l where l is a σ-literal.

and

(r1) d2 ← not d1.

Using the argument from Lemma 6 we can show that the program consisting of
the rules of T of the form (r1) contains no negative odd cycles and therefore is
consistent. Let S0 be an answer set of this program and S1 = (Ai+1 \Ai)|l. We
will show that

214 Michael Gelfond and Tran Cao Son

2. S = S0 ∪ S1

is an answer set of T . By the splitting set theorem it suffices to show that S1
is an answer set of the partial evaluation of rules of the type (r2) from T with
respect to S0. We denote this partial evaluation by π. This, in turn, is true iff

3. S1 = πS1 .

To prove (3) let us first assume that

4. l ∈ S1.

This implies that l ∈ A and hence ∆l 6= ∅. Consider d ∈ ∆l which is minimal
with respect to well-ordering induced on ∆l by the preference relation from D̃.
It is easy to check that, since l ∈ A, head(d) = l and body(d) ⊆ A. Since D is
hierarchical we have that body(d) ⊆ Ai, and hence, by inductive hypothesis,

4a. body(d) ⊆ Ãi.

Since d is minimal, by construction of D̃ we have that there is no rule in T with
d in the head. Hence,

4b. d 6∈S0.

By construction of R(D̃) and conditions (4a) and (4b) we have that

4c. l← not ¬l ∈ π.

Since l ∈ A and A is consistent we conclude that ¬l 6∈Ai+1. Therefore, ¬l 6∈S1.
Hence,

4d. l ∈ πS1

Suppose now that

5. l ∈ πS1 .

This implies that there is d and Γ ⊆ A such that

default(d, l, Γ) ∈ D.

From (4d) we have that ¬l 6∈A and hence, by Lemma 10 we conclude that l ∈ A.
Therefore l ∈ S1 which concludes the proof of (3).

By the splitting set theorem, Ãi+1 = Ãi ∪S is an answer set of Ti+1. Obviously,
Ãi+1 also satisfies condition (1b). Now let

Ã =
⋃

Ãi.

From construction we have that Ã|l = A|l. Using the splitting sequence theorem
it is easy to check that Ã is an answer set of R(D̃). ♦

Lemma 13. Let D be a static and normalized domain description and A be an
answer set of R(D). Then, A|l is an answer set of B(D).

Reasoning with Prioritized Defaults 215

Proof. Since D is normalized, A is consistent, it suffices to prove that A|l is a
minimal set of literals closed under the rules of B(D)A|l .

Let

a. l← Γ ∈ B(D)A|l

and

b. Γ ⊆ A|l.
By construction of B(D) and of B(D)A|l , (a) implies that there exists a default
d ∈ D such that

c. default(d, l, [Γ]) ∈ D and ¬l 6∈A|l.
Since A is an answer set of R(D), from (c), (b), and Lemma 10, we can conclude
that l ∈ A and hence l ∈ A|l which proves that

d. A|l is closed under the rules of B(D)A|l .

We now prove the minimality of A|l.
Assume that there exists a set B ⊂ A|l which is closed under the rules of B(D)A|l .
We will prove that the set of literals

C = B ∪ {di : di ∈ A}
is closed under the rules of (R(D))A.

Since C contains every di in A, C ⊂ A, and A is an answer set of (R(D))A, we
have that

e. C is closed under the rules of the form (2) of (R(D))A.

Let r be a rule of the form (1) of (R(D))A whose body is satisfied by C, i.e.,

f1. l← Γ ∈ (R(D))A and

f2. Γ ⊆ C.

By construction of (R(D))A, (f1) implies that there exists a default d such that

g1. default(d, l, [Γ]) ∈ D, and

g2. ¬l 6∈A.

By definition of B(D) and B(D)A|l , and from (g1) and (g2) we conclude that

h. l← Γ is a rule of B(D)A|l .

which, together with (f2) and the assumption that B is closed under rules of
(B(D))A|l implies that l ∈ B and hence l ∈ C which, in turn, implies that

j. C is closed under the rule of the form (1) of (R(D))A.

From (e) and (j) we can conclude that C is closed under the rules of (R(D))A

which together with C ⊂ A contradicts the fact that A is an answer set of R(D).
This, together with (d), implies that A|l is an answer set of B(D). ♦

216 Michael Gelfond and Tran Cao Son

Lemma 14. Let D be a static and normalized domain description with a well-
ordered preference order P and let A be an answer set of R(D). Then, A|l is a
preferred answer set of Π(D).

Proof. Lemma 13 shows that A|l is an answer set of B(D). We need to show
that A|l = Z where Z = C<D (B(D)) and C<D (B(D)) is defined as in Definition
6.

Let d0, d1, . . . be the sequence of defaults in D, ordered by P .

Notice that

l← not ¬l ∈A|l B(D)

iff there exists a default d such that

0a. default(d, l, [Γ]) ∈ D, and

0b. Γ ⊆ A|l.
(i) We first prove that Z ⊆ A|l. Let

a. l ∈ Z.

This implies that there exists a default di ∈ D such that

b1. di satisfies (0a) and (0b), and

b2. the rule l← not l is not defeated by Si−1. (see Definition 6).

Let i be the minimal integer such that

c. di satisfies (b1) and (b2).

From (c) and (b2) and the definition of Z, we can conclude that

d. there exists no j < i and ∆ ⊆ A|l such that default(dj ,¬l, [∆]) ∈ D.

By construction of R(D) and (d), we conclude that there exists no rule of
R(D) with the head di whose body is satisfied by A, which implies that

e. di 6∈A.

Furthermore, for every default dk such that i < k and
default(dk,¬l, [∆]) ∈ D, it follows from (b1), (e), and the construction of
(R(D))A that

f. dk ∈ A.

This implies that

g. there exists no rule of (R(D))A with the head ¬l whose body is satisfied
by A.

This implies that

h. ¬l 6∈A.

From (h), (b1), and Lemma 10, we can conclude that l ∈ A and hence l ∈ A|l
which, together with (a) proves that

j. Z ⊆ A|l.

Reasoning with Prioritized Defaults 217

(ii) We now prove that A|l ⊆ Z. Let

k. l ∈ A|l.

Since A is an answer set of R(D), there exists a default d such that

l. default(d, l, [Γ]) ∈ D,

m. Γ ⊆ A, and ¬l 6∈A.

which implies that l← not ¬l is a rule of A|lB(D). This indicates that

n1. l ∈ Z or

n2. ¬l ∈ Z.

If (n2) holds, then, by (j), ¬l ∈ A|l, which, together with l ∈ A, contradicts
the fact that A|l is consistent. Hence, (n1) holds, i.e., l ∈ Z which, together
with (k) entails

o. A|l ⊆ Z.

The lemma is proved by (o) and (j). ♦

We now prove the reverse of Lemma 14.

Lemma 15. Let D be a static and normalized domain description with a well-
ordered preference order P . Let A be a preferred answer set of Π(D). Then,
there exists an answer set B of R(D) such that B|l = A.

Proof. First, notice that since D is normalized,R(D) is consistent and therefore,
by Lemma 14, B(D) is consistent. Thus, A is consistent.

Let d0, d1, . . . be the sequence of defaults in D, ordered by P . We define a se-
quence of sets of literals B∞

i=1 as follows.

B0 = B

Bn+1 =

Bn ∪ {dn+1} if there exists i ≤ n s.t.
(0a) default(di,¬head(dn+1), [Γ]) ∈ D,
(0b) Γ ⊆ Bn, and
(0c) di 6∈Bn.

Bn otherwise

218 Michael Gelfond and Tran Cao Son

Let B = ∪∞
i=0Bi. Obviously B is consistent and B|l = A. We prove that B is an

answer set of R(D), i.e., B is a minimal set of literals closed under the rules of
(R(D))B . By definition, (R(D))B consists of the following rules:

(R(D))B =

l ← Γ. (1)

if there is d s.t.
(1a) default(d, l, [Γ]) ∈ D,
(1b) d 6∈B, and ¬l 6∈B

d2 ← Γ. (2)

if there is d1 s.t.
(2a) default(d1, l, [Γ]) ∈ D,
(2b) prefer(d1, d2) ∈ D,
(2c) head(d2) = ¬l, and
(2d) d1 6∈B.

Let r be a rule of (R(D))B whose body is satisfied by B, i.e.,

a. Γ ⊆ B.

We consider two cases:

(i) r is of the form (1).

By the construction of B(D) we have that

b. l← Γ, not ¬l ∈ B(D).

From B|l = A, (a), and (1b), we conclude that

c. Γ ⊆ A and ¬l 6∈A.

Since A is an answer set of B(D), from (b) and (c) we conclude that l ∈ A
and hence, l ∈ B, which proves that

d. B is closed under the rules of the form (1) of (R(D))B .
(ii) r is a rule of form (2).

By construction of B and from (a) and (2a)-(2d), we can conclude that
d2 ∈ B which implies that

e. B is closed under the rules of the form (2) of (R(D))B .

It follows from (e) and (d) that

f. B is closed under the rules of (R(D))B .

We now prove the minimality of B.

Assume that there exists a set of literals C ⊂ B and C is closed under the rules
of (R(D))B . We will prove that

Reasoning with Prioritized Defaults 219

g. C|l is closed under the rules of B(D)A.

Let r be a rule of B(D)A whose body is satisfied by C|l, i.e., r is of the form

h1. l← Γ ∈ (B(D))A, and

h2. Γ ⊆ C|l.
By construction of B(D)A, we conclude that there exists a default di in D such
that

j1. default(di, l, [Γ]) ∈ D, and

j2. ¬l 6∈A.

(j1) and (h2) imply that the rule l ← not ¬l belongs to AB(D) which, together
with (j2) and the assumption that A is a preferred answer set of Π(D), implies
that l ∈ A.

We will prove that

l. di 6∈B.

Assume the contrary, i.e.,

m. di ∈ B.

By the construction of B, there exists j < i such that

n1. default(dj ,¬l, [∆]) ∈ D,

n2. ∆ ⊆ B, and

n3. dj 6∈B.

From (n1) and (n2) and the construction of AB(D), we can conclude that

p. ¬l← not l is a rule of AB(D).

From l ∈ A, the fact that A is a preferred answer set of Π(D), and (p), we can
conclude that there exists a k < j such that

q1. default(dk, l, [Θ]) ∈ D,

q2. Θ ⊆ A, and

q3. for every o, o < k, if default(do,¬l, [Λ]) ∈ D, then Λ 6⊆A.

From (q3) and the definition of R(D)B we have that

r. dk 6∈B.

From (r), (q1), (q2), and the construction of B we have that

s. dj ∈ Aj+1 ⊆ B

which contradicts with (n3), i.e., we have proved (l).

220 Michael Gelfond and Tran Cao Son

It follows from (j1), (j2), and (l) that l ← Γ ∈ (R(D))B which, together with
the assumption that C is closed under the rules of (R(D))B and Γ ⊆ C, implies
l ∈ C, and hence, l ∈ C|l which proves (g).

Since A is an answer set of B(D), from (g) we can conclude that C|l = A, which,
together with the assumption that C ⊂ B, implies that there exists some di ∈ D
such that

t. di ∈ B \ C.

By the construction of B, (t) implies that there exists a j < i such that

u1. default(dj ,¬l, [∆]) ∈ D,

u2. ∆ ⊆ B, and

u3. dj 6∈B.

Since j < i, by the ordering P , we conclude that prefer(dj , di) ∈ D. This,
together with (u1) and (u3), implies that

v. di ← ∆ is a rule of (R(D))B .

It follows from (u2), (v), and the assumption that C is closed under the rule of
(R(D))B that di ∈ C which contradicts with (t). In other words, B is a minimal
set of literals which is closed under (R(D))B , i.e., B is an answer set of R(D).
♦

We are now ready to prove the Theorem 2.

Proof of Theorem 2. Let DN be the normalization of a static domain descrip-
tion D. By Lemma 8, D |= holds by default(l) iff

a. l ∈ U(D) or R(DN) |= l,

and by Lemma 9, Π(D) |∼ l iff

b. l ∈ U(D) or Π(DN) |∼ l.

By Lemmas 12-14, we have that

c. R(DN) |= l iff Π(DN) |∼ l.

The conclusion of theorem 2 follows immediately from (a), (b), and (c). ♦

Reasoning with Prioritized Defaults 221

References

1. Baader, F. and Hollunder, B,: Priorities on Defaults with Prerequisite and their
Application in Treating Specificity in Terminological Default Logic, Journal of
Automated Reasoning, 15:41–68, 1995.

2. Baral, C. and Gelfond M.: Logic Programming and Knowledge Representation,
Journal of Logic Programming, 19,20: 73–148, 1994.

3. Brass, S. and Dix, J.: A disjunctive semantics based on unfolding and bottom-up
evaluation, in Bernd Wolfinger, editor, Innovationen bei Rechen- und Kommunika-
tionssystemen, (IFIP ’94-Congress, Workshop FG2: Disjunctive Logic Program-
ming and Disjunctive Databases), pages 83–91, 1994, Springer.

4. Brass, S. and Dix, J.: Characterizations of the Disjunctive Stable Semantics by
Partial Evaluation, Journal of Logic Programming, 32(3):207–228, 1997.

5. Brewka, G.: Reasoning about Priorities in Default Logic, Proc. AAAI-94, Seattle,
1994

6. Brewka, G.: Adding Priorities and Specificity to Default Logic, Proc. JELIA 94,
Springer LNAI 838, 247–260, 1994

7. Brewka, G.: Preferred Answer Sets, Proc. ILPS’97 Postconference Workshop, 76–
88, 1997.

8. Covington M.A., Nute D., and Vellino A.: Prolog Programming in Depth, Prentice
Hall, NJ, 1997.

9. Chen, W. and Warren, D.S.: Query Evaluation under the Well-Founded Semantics,
The Twelfth ACM Symposium on Principles of Database System, 1993.

10. Chen, W.: Extending Prolog with Nonmonotonic Reasoning, Journal of LP, 169–
183, 1996.

11. Delgrande , J.P., Schaub, T.H.: Compiling Reasoning with and about Preferences
into Default Logic, IJCAi’97, (1997).

12. Dix, J.: Classifying Semantics of Logics Programs. In Proc. of the International
Workshop in Logic Programming and Nonmonotonic Reasoning, 166–180, Wash-
ington, DC, 1991.

13. Jürgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: I.
Strong Properties, Fundamenta Informaticae, XXII(3):227–255, 1995.

14. Jürgen Dix. A Classification-Theory of Semantics of Normal Logic Programs: II.
Weak Properties, Fundamenta Informaticae, XXII(3):257–288, 1995.

15. Dung, P.M.: On the Relations Between Stable and Well-Founded Semantics of
Logic Programming, Theoretical Computer Science 105:7-25 (1992).

16. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning and Logic Programming and N-person game. AI (77)
2:321–357 (1995).

17. Fages, F.: Consistency of Clark’s Completion and Existence of Stable Models,
Technical Report 90-15, Ecole Normale Superieure, 1990.

18. Fishburn, P.C.: Nonlinear Preference and Utility Theory (Johns Hopkins University
Press, Baltimore, 1988).

19. Gabbay, D.: Theoretical Foundation for Nonmonotonic Reasoning in Experts Sys-
tem. In K. Apt, editor, Logics and models of Concurrent Systems, 439–457,
Springer Verlag, NY, 1985.

20. Gelfond, M., Gabaldon, A.: From Functional Specifications to Logic Programs,
355–370, Proc. of ILPS’97, 1997.

21. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases, New Generation of Computing 365–387, 1991.

22. Geffner, H., Pearl, J.: Conditional Entailment: Bridging two Approaches to Default
Reasoning, Artificial Intelligence 53, 209 – 244, 1992.

222 Michael Gelfond and Tran Cao Son

23. Grosof, B.N: Prioritized Conflict Handling for Logic Programs, 197–212, Proc. of
ILPS’97, 1997.

24. Gordon, T.: The Pleadings Game: An Artificial Intelligence Model of Procedural
Justice. Ph.D. Dissertation, TU Darmstadt.

25. Kosheleva, O.M. and Kreinovich, V.Ya.: Algorithm Problems of Nontransitive
(SSB) Utilities, Mathematical Social Sciences 21 (1991) 95–100.

26. Lehnmann, D., Kraus, S., and Magidor, M.: Nonmonotonic Reasoning, Preferential
Models and Cumulative Logics, AI (44) 1: 167–207, 1990.

27. Lifschitz, V., Turner, H.: Splitting a Logic Program, Proc. of ICLP, MIT Press,
1994.

28. Marek, W. and Truszczynski, M.: Nonmonotonic Logic: Context-Dependent Rea-
soning, Springer, 1993.

29. Nelson, D.: Constructible Falsity, JSL 14(1949), 16-26.
30. Nute, D.: A Decidable Quantified Defeasible Logic. In Prawitz, D., Skyrms, B., and

Westerstahl, D. (eds): Logic, Methodology and Philosophy of Science IX. Elsevier
Science B.V., 263–284, 1994.

31. Pearce, D.: A New Logical Characterization of Stable Models and Answer Sets,
NMELP’96, Springer, 57–70, 1997.

32. Prakken, H. and Sartor, G,: On the relation between legal language and legal
argument: assumptions, applicability and dynamic priorities. Proc. of the Fifth
International Conference on AI and Law, Maryland, College Park, MD USA, 1–
10, 1995.

33. Prakken, H. and Sartor, G.: Argument-based extended logic programming with
defeasible priorities. Journal of applied non-classical logics, 1,2 (7), 25–77, 1997.

34. Reiter, R.: On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and data bases, 55–76, 1978.

35. Reiter R.: A Logic for Default Reasoning in Readings in Nonmonotonic Reason-
ing, Edited by M. L. Ginsberg, Morgan Kaufmann Publishers, Inc., Los Altos,
California (1987) 68–93

36. Zhang, Y. and Foo , N.Y.: Answer Sets for Prioritized Logic Programs, 69–84,
Proc. of ILPS’97, 1997.

Generalizing Updates: From Models to Programs

João Alexandre Leite?,?? and Lúıs Moniz Pereira??

Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal
(jleite|lmp@di.fct.unl.pt

Abstract. Recently the field of theory update has seen some improve-
ment, in what concerns model updating, by allowing updates to be spec-
ified by so-called revision programs. The updating of theory models is
governed by their update rules and also by inertia applied to those literals
not directly affected by the update program. Though this is important,
it remains necessary to tackle as well the updating of programs specify-
ing theories. Some results have been obtained on the issue of updating a
logic program which encodes a set of models, to obtain a new program
whose models are the desired updates of the initial models. But here the
program only plays the rôle of a means to encode the models.
A logic program encodes much more than a set of models: it encodes
knowledge in the form of the relationships between the elements of those
models. In this paper we advocate that the principle of inertia is advan-
tageously applied to the rules of the initial program rather than to the
individual literals in a model. Indeed, we show how this concept of pro-
gram update generalizes model or interpretation updates. Furthermore,
it allows us to conceive what it is to update one program by another, a
crucial notion for opening up a whole new range of applications concern-
ing the evolution of knowledge bases. We will consider the updating of
normal programs as well as these extended with explicit negation, under
the stable semantics.
Keywords: Updates

1 Introduction and Motivation

When dealing with modifications to a knowledge base represented by a proposi-
tional theory, two kinds of abstract frameworks have been distinguished both by
Keller and Winslett in [KW85] and by Katsuno and Mendelzon in [KM91]. One,
theory revision, deals with incorporating new knowledge about a static world.
The other, dealing with changing worlds, is known as theory update. This paper
concerns only theory update.

So far, most of the work accomplished in the field of theory update [PT95]
[MT94] [KM91]has addressed the modification of models on a one by one basis,
? Partially supported by PRAXIS XXI scholarship no. BM/437/94.

?? Partially supported by project MENTAL (PRAXIS XXI 2/2.1/TIT/1593/95.)

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 224–246, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Generalizing Updates: From Models to Programs 225

by allowing updates to be specified by so-called revision programs. The field of
theory update has seen several major achievements, namely the embedding of
revision programs into logic programs [MT94], arbitrary rule updates and, the
embedding into default logic [PT95].

The update of models is governed by update rules and also by inertia applied
to the literals not directly affected by the update program. Though this is impor-
tant, it remains necessary to tackle as well the updating of programs specifying
theories, as opposed to updating its models. Some results have been obtained in
what concerns the updating of a logic program which encodes a set of models,
to obtain a new program whose models are the desired justified updates of the
initial models [AP97]. But here the program only plays the rôle of a means to
encode the models.

A logic program encodes much more than a set of models: it encodes knowl-
edge in the form of the relationships between the elements of those models. In
this paper we advocate that the principle of inertia is advantageously applied to
the rules of the initial program rather than to the individual literals in a model.
Indeed, we show how this concept of program update generalizes model or in-
terpretation updates. Furthermore, it allows us to conceive what it is to update
one program by another. A crucial notion for opening up a whole new range of
applications concerning the evolution of knowledge bases. We will consider the
updating of normal programs as well as these extended with explicit negation,
under the stable semantics.

To show that a logic program encodes relationships between the elements of
a model, which are lost if we simply envisage updates on a model by model basis,
as proposed in [KM91], consider the following situation where an alarm signal
is present:

Example 1. Take the normal program P and its single stable model M :

P : go home← not money
go restaurant← money
money ←

M = {money, go restaurant}
Now consider an update program stating that the person has been robbed and
that a robbery leaves the person without any money:

U : out(money)← in(robbed)
in(robbed)←

According to [MT94] and model updating we obtain as the single justified update
of M the following model:

MU = {robbed, go restaurant}
Stating that, although we know that the person doesn’t have any money, he/she
still goes to the restaurant and not home. In [AP97] the authors propose a

226 João Alexandre Leite, Lúıs Moniz Pereira

program transformation that produces a new program whose models are exactly
the justified revisions of the models of the initial program, according to the
definition proposed in [MT94], and so produces exactly the result above.

But looking at the program and at the update program, we arguably conclude
that MU doesn’t represent the intended meaning of the update of P by U for
a commonsensical reasoner. Since “go restaurant” was true because the person
had “money”, the removal of “money” should make one expect “go restaurant”
to become false. The same kind of reasoner expects “go home” to become true.
The intended update model of the example presumably is:

M
′
U = {robbed, go home} ♦

Another symptomatic example, but using explicit negation is this:

Example 2. Given the statements:

– If I’ve seen something that is unexplainable then I’ve seen a miracle.
– If I’ve seen a miracle then God exists.
– I’ve seen something.
– It is not explainable.

They can be represented by the following extended logic program:

P : seen miracle← seen something, not explainable
god exists← seen miracle
seen something ←
¬explainable←

whose answer-set M is:

M = {seen something,¬explainable, seen miracle, god exists}

Now consider the following update program U stating that we now have an
explanation:

U : in(explainable)←
According to model updating we obtain as the single justified update of M the
following model MU :

MU = {seen something, explainable, seen miracle, god exists}

Once again we arguably conclude that this model doesn’t represent the intended
meaning and that the correct model should be:

MU = {seen something, explainable} ♦

The purpose of this paper is to generalize model updates to logic program
updates. The former are a special case of the latter since they can be coded as
factual programs. To do this we must first consider the rôle of inertia in updates.

Generalizing Updates: From Models to Programs 227

Newton’s first law, also known as the law of inertia, states that: “every body
remains at rest or moves with constant velocity in a straight line, unless it is
compelled to change that state by an unbalanced force acting upon it” (adapted
from [Principia]). One often tends to interpret this law in a commonsensical way,
as things keeping as they are unless some kind of force is applied to them. This is
true but it doesn’t exhaust the meaning of the law. It is the result of all applied
forces that governs the outcome. Take a body to which several forces are applied,
and which is in a state of equilibrium due to those forces canceling out. Later
one of those forces is removed and the body starts to move.

The same kind of behavior presents itself when updating programs. Let us
make the parallel between a program rule and a physical body with forces applied
to it, the body of the rule being the forces applied to the head. In the same way
we have to determine whether the forces are still in a state of equilibrium, before
concluding that a physical body is at rest or moves with constant velocity in a
straight line due to inertia, when it comes to the updating of a program we have
to check if the truth value of a body which determines the truth value of a head
hasn’t changed before concluding the truth value of the head by inertia. This is
so because the truth value of the body may change due to an update rule.

Going back to the previous example, before stating that “god exists” is true
by inertia since it wasn’t directly affected by the update program, one should
verify for instance whether “explained” is still not true, for otherwise there would
be no longer a way to prove “god exists” and therefore its truth value would no
longer be ’true’.

To conclude, we argue that the truth of any element in the updated models
should be supported by some rule, i.e. one with a true body, either of the update
program or of the given program, in face of new knowledge.

The remainder of this paper is structured as follows: in Sect.2 we recapitulate
some background concepts necessary in the sequel; in Sect.3 we formalize the
normal logic program update process and present a transformation, reminiscent
of the one in [AP97], providing the intended results; we conclude the section
by showing that the transformation generalizes the one set forth in [PT95]; in
Sect.4 we extend our approach to the case where the program to be updated is
a logic program extended with explicit negation, and in Sect.5 we conclude and
elaborate on future developments.

2 Review of Interpretation Updates

In this section we summarize some of the definitions related to the issue of theory
update. Some of these definitions will be slightly different, though equivalent to
the original ones, with the purpose of making their relationship clearer.

For self containment and to eliminate any confusion between updates and
revisions, instead of using the original vocabulary of revision rule, revision pro-
gram and justified revision, we will speak of update rule, update program and
justified update, as in [AP97].

228 João Alexandre Leite, Lúıs Moniz Pereira

The language used is similar to that of logic programming: update programs
are collections of update rules, which in turn are built out of atoms by means of
the special operators: ←, in, out, and “, ”.

Definition 1 (Update Programs). [MT94] Let U be a countable set of atoms.
An update in-rule or, simply, an in-rule, is any expression of the form:

in(p)← in(q1), ..., in(qm), out(s1), ..., out(sn) (1)

where p, qi, 1 ≤ i ≤ m, and sj, 1 ≤ j ≤ n, are all in U , and m, n ≥ 0.
An update out-rule or, simply, an out-rule, is any expression of the form:

out(p)← in(q1), ..., in(qm), out(s1), ..., out(sn) (2)

where p, qi, 1 ≤ i ≤ m, and sj, 1 ≤ j ≤ n, are all in U , and m, n ≥ 0. A
collection of in-rules and out-rules is called an update program (UP). ♦

Definition 2 (Necessary Change). [MT94] Let P be an update program with
least model M (treating P as a positive Horn program). The necessary change
determined by P is the pair (IP , OP), where

IP = {a : in(a) ∈M} OP = {a : out(a) ∈M} (3)

Atoms in IP (resp. OP) are those that must become true (resp. false). If I ∩O =
{} then P is said coherent. ♦

Intuitively, the necessary change determined by a program P specifies those
atoms that must be added and those that must be deleted as a result of a given
update, whatever the initial interpretation.

Definition 3 (P-Justified Update). [MT94] Let P be an update program and
Ii and Iu two total interpretations. The reduct PIu|Ii

with respect to Ii and Iu is
obtained by the following operations:

- Removing from P all rules whose body contains some in(a) and a /∈ Iu;
- Removing from P all rules whose body contains some out(a) and a ∈ Iu;
- Removing from the body of any remaining rules of P all in(a) such that

a ∈ Ii;
- Removing from the body of any remaining rules of P all out(a) such that

a /∈ Ii.
Let (I, O) be the necessary change determined by PIu|Ii

. Whenever PIu|Ii

is coherent, Iu is a P-justified update of Ii with respect to P iff the following
stability condition holds:

Iu = (Ii −O) ∪ I ♦ (4)

The first two operations delete rules which are useless given Iu. The stability
condition preserves the initial interpretation in the final one as much as possible.

Generalizing Updates: From Models to Programs 229

3 Normal Logic Program Updating

As we’ve seen in the introduction, updating on the basis of models isn’t enough
if we want to take advantage of the information encoded by a logic program and
not expressed in the set of its models.

When we generalize the notion of P-justified update, from interpretations to
the new case where we want to update programs, the resulting update program
should be made to depend only on the initial program and on the update pro-
gram, but not on any specific initial interpretation. An interpretation should be
a model of a normal logic program updated by an update program if the truth
of each of its literals is either supported by a rule of the update program with
true body in the interpretation or, in case there isn’t one, by a rule of the initial
program whose conclusion is not contravened by the update program.

Another way to view program updating, and in particular the rôle of inertia,
is to say that the rules of the initial program carry over to the updated program,
due to inertia, instead of the truth of interpretation literals as in [AP97], just
in case they are not overruled by the update program. This is to be preferred
because the rules encode more information than the literals. Inertia of literals is a
special case of rule inertia since literals can be coded as factual rules. Accordingly,
program updating generalizes model updating.

To achieve rule inertia we start by defining the sub-program of the initial
program which contains the rules that should persist in the updated program due
to inertia. We use this program together with the update program to characterize
the models of the resulting updated program, i.e. the program-justified updates,
whatever the updated program may be. Finally, we present a joint program
transformation of the initial and the update programs, which introduces inertia
rules, to produce an updated program whose models are the required program-
justified updates. Stable model semantics and its generalization to extended logic
programs [GL90] will be used to define the models of programs.

We start by defining a translation of an update program written in a language
that does not contain explicit negation, into a normal logic program extended
with explicit negation.

Definition 4 (Interpretation Restriction). Given a language L that does
not contain explicit negation ¬, let M¬ be an interpretation, of the language L¬,
obtained by augmenting L with the set E = {¬A : A ∈ L}.

We define the corresponding restricted interpretation M , of L, as:

M = M¬ restricted to L ♦ (5)

Definition 5 (Translation of UPs into LPs). Given an update program UP ,
in the language L, its translation into an extended logic program U in the lan-
guage L¬ is obtained from UP by replacing each in-rule (1) with the correspond-
ing rule:

p← q1, ...qm, not s1, ..., not sn (6)

230 João Alexandre Leite, Lúıs Moniz Pereira

and similarly replacing each out-rule (2) with the corresponding rule:

¬p← q1, ...qm, not s1, ..., not sn ♦ (7)

From now onwards, and unless otherwise stated, whenever we refer to an up-
date program we mean its reversible translation into an extended logic program
according to the previous definition. Notice that such programs do not contain
explicitly negated atoms in the body of its rules.

Definition 6 (Inertial Sub-Program). Let P be a normal logic program in
the language L, U an update program in the language L¬ and M¬ an interpre-
tation of L¬. Let:

Rejected(M¬) = {A← body ∈ P : M¬ |= body
and ∃¬A← body′ ∈ U : M¬ |= body′ } (8)

where A is an atom. We define Inertial Sub-Program Pinertial(M¬) as:

Pinertial(M¬) = P −Rejected(M¬) ♦ (9)

Intuitively, the rules for some atom A that belong to Rejected(M¬) are those
that belong to the initial program but, although their body is still verified by
the model, there is an update rule that overrides them, by contravening their
conclusion.

Definition 7 (<P,U>-Justified Updates). Let P be a normal logic program
in the language L, U an update program in the language L¬, and M an inter-
pretation of the language L. M is a <P,U>-Justified Update of P updated by
U , iff there is an interpretation M¬ of L¬ such that M¬ is an answer-set of P ∗,
where

P ∗ = Pinertial(M¬) + U ♦ (10)

Notice that the new definition of program-justified update doesn’t depend
on any initial model. Once again this is because inertia applies to rules and not
model literals. To achieve inertia of model literals it is enough to include them
as fact rules, as shown in the sequel.

The following example will show the rôle played by Rejected(M¬) when
determining the <P,U>-Justified Updates.

Example 3. Consider program P stating that someone is a pacifist and that a
pacifist is a reasonable person. Later on, an update U states that it is not clear
whether we’re at war or at peace, and that a state of war will make that person
no longer a pacifist:

P : pacifist← U : ¬pacifist← war
reasonable← pacifist peace← not war

war ← not peace

Generalizing Updates: From Models to Programs 231

Intuitively, when performing the update of P by U , we should obtain two models,
namely

M1 = {pacifist, reasonable, peace}
M2 = {war}

Let’s check whether they are <P,U>-justified updates. M1 is M¬1 restricted to
the language of P :

M¬1 = {pacifist, reasonable, peace}
Since

Rejected(M¬1) = {}
P ∗ = P + U − {}

M¬1 is an answer-set of P ∗, and so M1 is a <P,U>-justified update.
M2 is M¬2 restricted to the language of P :

M¬2 = {war,¬pacifist}
Since

Rejected(M¬2) = {pacifist←}
P ∗ = P + U − {pacifist←}

M¬2 is an answer-set of P ∗ and so M2 is a <P,U>-justified update.
Let’s check if the model

MX = {reasonable, war}
is a <P,U>-justified update. Intuitively it should not be one because the truth
value of reasonable should be determined by the evaluation of the rule of P , rea-
sonable←pacifist, on the strength of the truth of pacifist in the updated model,
and therefore should be false. Note, however, that this model would be a justified
update of the only stable model of P , determined according to interpretation
updating.

Once again MX is M¬X restricted to the language of P :

M¬X = {reasonable, war,¬pacifist}
Since

Rejected(M¬X) = {pacifist←}
P ∗ = P + U − {pacifist←}

As expected, M¬X is not an answer-set of P ∗, and therefore MX is not a <P,U>-
justified update. ♦

Next we present a program transformation that produces an updated pro-
gram from an initial program and an update program. The answer-sets of the
updated program so obtained will be exactly the <P,U>-justified models, ac-
cording to Theorem 1 below. The updated program can thus be used to compute
them.

232 João Alexandre Leite, Lúıs Moniz Pereira

Definition 8 (Update transformation of a normal program). Consider
an update program U in the language L¬. For any normal logic program P in the
language L, its updated program PU with respect to U , written in the extended
language L¬ +

{
A′, AU ,¬AU : A ∈ L}

is obtained via the operations:

– All rules of U and P belong to PU subject to the changes:
• in the head of every rule of PU originated in U replace literal L by a new

literal LU ;
• in the head of every rule of PU originated in P replace atom A by a new

atom A′;
– Include in PU , for every atom A of P or U , the defining rules:

A← A′, not ¬AU A← AU ¬A← ¬AU ♦ (11)

The above definition assumes that in the language L there are no symbols of
the form L′ and LU .This transformation is reminiscent of the one presented in
[AP97], where the goal was to update a set of models encoded by a logic program.
In [AP97], literals figuring in the head of a rule of U (but it could be for any
literal) originate replacement of the corresponding atom in both the head and
body of the rules of the initial program, whereas in the above transformation
this replacement occurs only in the head (for all rules). This has the effect of
exerting inertia on the rules instead of on the model literals because the original
rules will be evaluated in the light of the updated model. The defining rules
establish that, after the update, a literal is either implied by inertia or forced
by an update rule. Note that only update rules are allowed to inhibit the inertia
rule, in contrast to the usual inertia rules for model updates. In model updates
there are no rule bodies in the coding of the initial interpretation as fact rules,
so the conclusion of these rules cannot change, in contradistinction to the case
of program updates. Hence the new inertia rule, which applies equally well to
model updating (cf. justification in Theorem 2) and so is more general. Their
intuitive reading is: A can be true either by inertia or due to the update program.

Example 4. Consider the normal logic program P with a single stable model M :

P : a← not b
d← e
e←

M = {a, d, e}
now consider the update program U :

U : c← not a
b←
¬e← a

And the updated program PU is (where the rules for A stand for all their ground
instances):

cU ← not a a
′ ← not b A← A′, not ¬AU

bU ← d
′ ← e A← AU

¬eU ← a e′ ← ¬A← ¬AU

Generalizing Updates: From Models to Programs 233

whose only answer-set (modulo A′ and AU atoms) is:

MU = {b, c, d, e}

This corresponds to the intended result: the insertion of b renders a no longer
supported and thus false; since a is false, c becomes true due to the first rule
of the update program; the last rule of U is ineffective since a is false; e is still
supported and not updated, so it remains true by inertia; finally d remains true
because still supported by e. ♦

If we consider this same example but performing the updating on a model
basis instead, we would get as the only U -justified update of M: M ′ = {a, b, d}.
The difference, for example in what a is concerned, is that in M ′ a is true by
inertia because it is true in M and there are no rules for a in U . According to
our definition, since there aren’t any rules (with a true body) in U for a, the rule
in P for a is still valid by inertia and re-evaluated in the final interpretation,
where since b is true a is false.

Example 5. Consider the P and U of example 3. The updated program PU of P
by U is (where the rules for A stand for all their ground instances):

pacifist′ ← ¬pacifistU ← war
reasonable′ ← pacifist peaceU ← not war
A← A′, not ¬AU warU ← not peace
A← AU ¬A← ¬AU

whose answer-sets (modulo A′, AU and explicitly negated atoms) are:

M1 = {pacifist, reasonable, peace}
M2 = {war}

coinciding with the two <P,U>-justified updates determined in example 3. ♦
The following theorem establishes the relationship between the models of the

update transformation of a program and its <P,U>-justified updates.

Theorem 1 (Correctness of the update transformation). Let P be a nor-
mal logic program in the language L and U a coherent update program in the
language L¬. Modulo any primed and XU literals, the answer-sets of the updated
program PU are exactly the <P,U>-Justified Updates of P updated by U . ♦
Proof. Let P be a normal logic program consisting of rules of the form:

A← Bi, not Ci

and U an update program consisting of rules of the form:

A← Bj , not Cj

¬A← Bk, not Ck

234 João Alexandre Leite, Lúıs Moniz Pereira

where A is an atom and each B and C is some finite set of atoms .
Let P ∗

U be the program obtained according to Def. 7:

P ∗
U = U + Pinertial(M¬)

and note that Pinertial(M¬) ⊆ P .
Let PU be the program obtained according to Def. 8:

PU : A′ ← Bi, not Ci for all rules from P
A← A′, not ¬AU

A← AU

¬A← ¬AU

 for all A

AU ← Bj , not Cj

¬AU ← Bk, not Ck

}
for all rules from U

We will show that PU is equivalent to P ∗
U for our purposes. Performing on PU

a partial evaluation of AU and ¬AU on the rules A ← AU and ¬A ← ¬AU we
obtain:

P
′
U : A′ ← Bi, not Ci (1)

A← A′, not ¬AU (2)
A← Bj , not Cj (3)
¬A← Bk, not Ck (4)
AU ← Bj , not Cj (5)
¬AU ← Bk, not Ck (6)

Note that rules (3) and (4) are exactly the update program.
These rules can be simplified. In particular we don’t need the rules for AU

and ¬AU . For some arbitrary A, consider first the case where ¬AU is false. We
can then perform the following simplifications on P

′
U : replace in (2) A′ by the

body of (1) and remove not ¬AU to obtain (2*): A ← Bi, not Ci; now we no
longer need rule (6). Since we don’t care about primed nor AU literals in the
updated models we can now remove rule (1), as well as rules (5) and (6)). The
so mutilated P

′
U preserves the semantics of P

′
U when ¬AU is false, apart primed

and U literals, and looks like this:

A← Bi, not Ci (2∗)
A← Bj , not Cj (3)
¬A← Bk, not Ck (4)

which corresponds exactly to P ∗
U when Pinertial(M¬) = P when ¬AU is false,

and hence their answer-sets are the same in that case.
For the case where ¬AU is true, we can delete rule (2); rule (6) is also not

needed for we don’t care about ¬AU literals in the updated models. Since we
don’t care about primed nor AU literals in the updated models, and A′ and AU

don’t appear in the body of remaining rules, we can delete rules (1) and (5). The
simplified P

′
U preserves the semantics of P

′
U when ¬AU is true, apart primed and

U literals, and looks like this:

A← Bj , not Cj (4)
¬A← Bk, not Ck (5)

Generalizing Updates: From Models to Programs 235

which is semantically equal to P ∗
U . Indeed, note that when ¬AU is true, the

rules of P for A are rejected if M¬ |= Bi, not Ci and don’t belong to P ∗
U . So

the only possible difference between the simplified P
′
U and P ∗

U would be the
existence of some extra rules in P ∗

U such that for any answer-set M¬ we would
have M¬ 2 Bi, not Ci, which does not affect the semantics

The next Theorem establishes the relationship between program update and
interpretation update. For this we begin by defining a transformation from an
interpretation into the arguably simplest normal logic program that encodes it.

Definition 9 (Factual LP). Let I be an interpretation of a language L. We
define the normal logic program associated with I, P ∗(I), as:

P ∗(I) = {L←: L ∈ I} ♦ (12)

We also need the following closeness relationship:

Definition 10 (Closeness relationship). Given three total interpretations I,
Iu and I

′
u, we say that I

′
u is closer to I than Iu if

(I
′
u \ I ∪ I \ I

′
u) ⊂ (Iu \ I ∪ I \ Iu) ♦ (13)

Theorem 2 (Generalization of Updates). Let U be an update program and
I an interpretation. Then:

1. Every U -justified update of I is a <P ∗(I), U>-justified update.
2. A <P ∗(I), U>-justified update Iu is a U -justified update of I iff there is no

I
′
u closer to I than Iu, where I

′
u is a <P ∗(I), U>-justified update. ♦

Proof. 1. Let U be an update program consisting of rules of the form:

A← Bj , not Cj

¬A← Bk, not Ck

where A is an atom and each B and C is some finite set of atoms.
According to [AP97], an interpretation Iu is a U-justified update of I iff it is
a total (or two-valued) WFSX model (modulo primed and explicitly negated
elements) of the corresponding program PU :

PU : A′ ← for all A ∈ I
A← A′, not ¬A
¬A← not A′, not A

}
for all A

A← Bj ,¬Cj

¬A← Bk,¬Ck

}
for all rules from U

according to Def. 8, an interpretation I
′
u is a <P ∗(I), U>-justified update

iff it is the restriction to the language of I of an answer-set of the program

236 João Alexandre Leite, Lúıs Moniz Pereira

P
′
U :

P
′
U : A′ ← for all A ∈ I

A← A′, not ¬AU

A← AU

¬A← ¬AU

 for all A

AU ← Bj , not Cj

¬AU ← Bk, not Ck

}
for all rules from U

Notice the difference in the translation of update rules in what the kind of
negation used in their bodies is concerned. We will show that for every total
(or two-valued) WFSX model Iu of the program PU , there is an answer-set
I

′
u of P

′
U such that Iu = I

′
u restricted to the language of I.

Performing a partial evaluation of AU and ¬AU on the rules A ← AU and
¬A← ¬AU we obtain:

P
′
U : A′ ← (1)

A← A′, not ¬AU (2)
A← Bj , not Cj (3)
¬A← Bk, not Ck (4)
AU ← Bj , not Cj (5)
¬AU ← Bk, not Ck (6)

We can safely replace not ¬AU by not ¬A in rule (2), for the only rules for
¬A and ¬AU have the same body. Now, and since we don’t care about AU

and ¬AU in the updated models, we can remove rules (5) and (6) and obtain
the following program P

′′
U :

P
′′
U : A′ ← (1)

A← A′, not ¬A (2)
(3)

A← Bj , not Cj (4)
¬A← Bk, not Ck (5)

PU : A′ ←
A← A′, not ¬A
¬A← not A′, not A
A← Bj ,¬Cj

¬A← Bk,¬Ck

It is easy to see that the only differences between P
′′
U and PU are the kind

of negation used in the body of the rules from the update program, and the
extra rule (3) in PU . Suppose that we add rule (3) to P

′′
U : if rule (3) has a

true body, rule (2) must have a false body; since we are not concerned about
¬A in the final models, and ¬A doesn’t appear in the body of any other
rules, adding rule (3) to P

′′
U wouldn’t change the restricted models. Now,

the only difference is the kind of negation used, but since in answer-sets we
have that if ¬C is true then not C is also true, we have that all total WFSX
models of PU are also answer-sets of P

′′
U .

2. There now remains to be proved the closeness part of the theorem, i.e. that
the set of interpretations S = Q−R, where

Q = {Iu : Iu is a < P ∗(I), U > -justified update}
R = {Iu : Iu is a U -justified update of I}

Generalizing Updates: From Models to Programs 237

is such that for every I
′
u in S, there is an Iu in R such that Iu is closer

to I than I
′
u, and thus eliminated by the closeness condition. According to

[MT94], Iu is a U -justified update of I iff it satisfies the rules of U (as per
Def.1 and where I satisfies in(a) (resp. out(a)) if a ∈ I (resp. a /∈ I)), and is
closest to I among such interpretations. From Definition 7, every <P, U>-
justified update must satisfy the rules of U , of the form:

A← Bj , not Cj

¬A← Bk, not Ck
(14)

Since for any answer-set if ¬a ∈ I then a /∈ I, we have that any <P, U>-
justified update, because it satisfies the rules of (14), must also satisfy the
update rules with in’s and out’s of the form (15)

in(A)← in(Bj), out(Cj)
out(A)← in(Bk), out(Ck) (15)

Let X be the set of all interpretations that satisfy the rules of (15). Then the
interpretations in X −R are the ones eliminated by the closeness condition,
to obtain the U -justified updates, according to [MT94]. Since R ⊆ Q (first
part of the theorem), and every interpretation of Q satisfies the rules of (15),
we have that S ⊆ X and thus any interpretation in S is eliminated by the
closeness condition of this theorem.
Therefore the notion of program update presented here is a generalization of

the updates carried out on a model basis. Consequently, the program transforma-
tion above is a generalization of the program transformation in [AP97], regarding
its 2-valued specialization. Elsewhere [Lei97] the 3-valued case is generalized as
well.

Remark 1 (Extending the language of initial programs). We could allow for initial
programs to be of the same form as update programs, i.e. with explicit negated
literals in their heads only, as per Def.5. For this, we would have to change
Definitions 6 and 8 by replacing atom A there with objective literal L1 (see
[Lei97]). However, note that, although both programs have explicit negation
in their heads, its use is limited, as explicit negation does not appear in rule
bodies. Indeed, all its occurrences can be replaced by allowing not in heads
instead, and then employing a semantics for such generalized programs such as
[LW92],[DP96].

1 An updated program can in turn be updated, once the inertia rule is generalized
for objective literals: L ← L′, not¬L. Because the inertia rule contains explicitly
negated literals in its body, the language of programs has to be extended, as per the
next section. However, the inertia rule itself does not need to be updated, only the
program and update rules. These will accumulate dashes in their heads as they are
updated. For the inertia rule to recurrently strip away successive dashes one needs
to introduce the equivalence (¬A)′ = ¬(A)′, and define ¬ and ′ as operators to
allow unification to do its work. For the details of such a generalization the reader
is referred to [Lei97].

238 João Alexandre Leite, Lúıs Moniz Pereira

4 Extended Logic Program Updating

When we update a normal logic program the result is an extended logic program.
In order to update these in turn we need to extend the results of the previous
section to cater for explicit negation in programs. Besides this obvious motiva-
tion, there is much work done on representing knowledge using extended logic
programs, and we want to be able to update them. We begin by extending the
definitions of the previous section to allow for the inclusion of explicit negation
anywhere in a normal program.

Definition 11 (Update Rules for Objective Literals). [AP97]Let K be a
countable set of objective literals. Update in-rules or, simply in-rules, and update
out-rules or, simply, out-rules, are as (1) and as (2), but with respect to this new
set K. ♦

Also, for extended update programs their transformation into an extended
logic programs is now:

Definition 12 (Translation of extended UPs into ELPs). [AP97]Given
an update program with explicit negation UP , its translation into the extended
logic program U is defined as follows2:

1. Each in-rule

in(L0)← in(L1), ..., in(Lm), out(Lm+1), ..., out(Ln) (16)

where m, n ≥ 0, and Li are objective literals, translates into:

L∗
0 ← L1, ..., Lm, not Lm+1, ..., not Ln (17)

where L∗
0 = Ap if L0 = A, or L∗

0 = An if L0 = ¬A;
2. Each out-rule

out(L0)← in(L1), ..., in(Lm), out(Lm+1), ..., out(Ln) (18)

where m, n ≥ 0, and Li are objective literals, translates into:

¬L∗
0 ← L1, ..., Lm, not Lm+1, ..., not Ln (19)

where L∗
0 = Ap if L0 = A, or L∗

0 = An if L0 = ¬A;
3. For every objective literal L such that in(L) belongs to the head of some in-

rule of UP , U contains ¬L∗ ← L where L∗ = An if L = A, or L∗ = Ap if
L = ¬A;

4. For every atom A, U contains the rules A← Ap and ¬A← An. ♦
2 This translation employs the results in [DP96], namely the expressive power of WFSX

to capture the semantics of extended logic programs with default literals in the heads
of rules, via the program transformation P not.

Generalizing Updates: From Models to Programs 239

Intuitively, this transformation converts an atom A into a new atom Ap and
an explicitly negated atom ¬A into a new atom An and ensures coherence. This
way, we no longer have explicitly negated atoms in the heads of the rules of
update programs and so we can use explicit negation ¬L to code the out(L) in
the heads of rules, as for update programs without explicit negation. Operation
4 maps the An and Ap back to their original atoms.

Conversely, any extended logic program (ELP) can be seen as an update
program, possibly applied to an empty program. Indeed, translate each ELP
rule of the form

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln (20)

where Li are objective literals, to

in(L0)← in(L1), ..., in(Lm), out(Lm+1), ..., out(Ln) (21)

It is easy to see that applying the above translation (Def.12) of such an up-
date program back into an ELP preserves the semantics of the original program
because of the read-out rules, A← Ap and ¬A← An.

The language of update programs is more expressive than that of ELPs be-
cause one may additionally have out(A0) and out(¬A0). The semantics of such
ELPout programs can be defined simply by the ELP semantics of the translation
into an ELP of their corresponding update programs.

Then we can envisage any ELP (or ELPout) program as an update specifi-
cation for another ELP (or ELPout) program, albeit the empty one. Programs
can update one another, in succession.

Definition 13 (Extended Interpretation Restriction). Given a language
K with explicit negation, let Mnp be the an interpretation of the language Knp,
obtained by augmenting K with the set E = {Ln, Lp : L ∈ K} (Ln, Lp and L are
objective literals).

We define the corresponding restricted interpretation M , of K, as:

M = Mnp restricted to K ♦ (22)

Definition 14 (Inertial Sub-Program). Let P be an extended logic program
in the language K, U an update program in the language Knp and Mnp an in-
terpretation of Knp. Let:

Rejected(Mnp) = {A← body ∈ P : Mnp |= body
and ∃¬Ap ← body′ ∈ U : Mnp |= body′ }∪
∪{¬A← body ∈ P : Mnp |= body
and ∃¬An ← body′ ∈ U : Mnp |= body′ }

(23)

where A is an atom. We define Inertial Sub-Program Pinertial(Mnp) as:

Pinertial(Mnp) = P −Rejected(Mnp) ♦ (24)

240 João Alexandre Leite, Lúıs Moniz Pereira

Again, the rules for some objective literal L that belong to Rejected(Mnp) are
those that belong to the initial program but, although their body is still verified
by the model, there is an update rule that overrides them, by contravening their
conclusion. Note that a rule of P for atom A, with true body, is also countervened
by a rule of U with true body for An (i.e. one translated from in(¬A)). Since
every U also contains the rules ¬Ap ← ¬A and ¬A← An, then ¬A in ¬Ap ← ¬A
is also true, and so that rule of P is rejected in this case too. Similarly for a rule
of P with head ¬A, but now with respect to Ap.

Definition 15 (<P,U>-Justified Updates). Let P be an extended logic pro-
gram in the language K, U an update program in the language Knp and M an
interpretation of the language K. M is a <P,U>-Justified Update of P updated
by U iff there is an interpretation Mnp such that Mnp is an answer-set of P ∗,
where

P ∗ = Pinertial(Mnp) + U ♦ (25)

Once again we should point out that the extended <P,U>-Justified Update
doesn’t depend on any initial interpretation. As for the case of normal logic
programs, it is the rules that suffer the effects of inertia and not model literals
per se.

Example 6. Consider a recoding of the alarm example using explicit negation,
where P and UP are:

P : sleep← ¬alarm UP : in(¬alarm)←
panic← alarm
alarm←

the update program U obtained from UP is:

alarmn ←
¬alarmp ← ¬alarm
alarm← alarmp

¬alarm← alarmn

Intuitively, when performing the update of P by U , we should obtain a single
model, namely

M = {¬alarm, sleep}
Let’s check whether M is an extended <P,U>-justified update. M is Mnp re-
stricted to the language of P :

Mnp = {¬alarm, sleep, alarmn,¬alarmp}
Since

Rejected(Mnp) = {alarm←}
P ∗ = P + U − {alarm←}

Mnp is an answer-set of P ∗, and so M is an extended <P,U>-justified update. ♦

Generalizing Updates: From Models to Programs 241

Definition 16 (Update transformation of an extended LP). Given an
update program UP , consider its corresponding extended logic program U in
the language Knp. For any extended logic program P in the language K, its
updated program PU with respect to U , written in the extended language Knp +{
A′,¬A′, AnU ,¬AnU , ApU ,¬ApU : A ∈ K}

is obtained through the operations:

– All rules of U and P belong to PU subject to the changes, where L is a literal:

• in the head of every rule of PU originated in U , replace Lp (resp. Ln) by
a new literal LpU (resp. LnU);
• in the head of every rule of PU originated in P , replace literal L by a

new literal L
′
;

– Include in PU , for every atom A of P or U , the defining rules:

An ← ¬A′, not ¬AnU Ap ← A′, not ¬ApU

An ← AnU Ap ← ApU

¬An ← ¬AnU ¬Ap ← ¬ApU ♦
(26)

As before, the transformation reflects that we want to preserve, by inertia,
the rules for those literals in P not affected by the update program. This is
accomplished via the renaming of the literals in the head of rules only, whilst
preserving the body, plus the inertia rules.

Theorem 3 (Correctness of the update transformation). Let P be an ex-
tended logic program and U a coherent update program. Modulo any primed, AU ,
Apand An elements and their defaults, the answer-sets of the updated program
PU of P with respect to U are exactly the <P,U>-Justified Updates of P updated
by U . ♦

Proof. (sketch): Let P be an extended logic program consisting of rules of the
form:

A← Bi, not Ci

¬A← Bj , not Cj

and U an update program consisting of rules of the form:

Ap ← Bk, not Ck A← Ap

¬Ap ← Bl, not Cl ¬A← An

An ← Bm, not Cm ¬An ← A
¬An ← Bn, not Cn ¬Ap ← ¬A

where A is an atom and each B and C is some finite set of objective literals.
Let P ∗

U be the program obtained according to Def. 7:

P ∗
U = U + Pinertial(Mnp)

and note that Pinertial(Mnp) ⊆ P .

242 João Alexandre Leite, Lúıs Moniz Pereira

Let PU be the program obtained according to Def. 8:

PU :
A′ ← Bi, not Ci

¬A′ ← Bj , not Cj

}
for all rules from P

Ap ← A′, not ¬ApU

An ← ¬A′, not ¬AnU

Ap ← ApU

¬Ap ← ¬ApU

An ← AnU

¬An ← ¬AnU

A← Ap

¬A← An

for all A

ApU ← Bk, not Ck

¬ApU ← Bl, not Cl

AnU ← Bm, not Cm

¬AnU ← Bn, not Cn

¬AnU ← A
¬ApU ← ¬A

rules from U

We will show that PU is equivalent to P ∗
U for our purposes. Performing on PU

a partial evaluation of ApU , ¬ApU , AnU and ¬AnU on the rules Ap ← ApU ,
¬Ap ← ¬ApU , An ← AnU and ¬An ← ¬AnU we obtain:

P
′
U : A′ ← Bi, not Ci (1)
¬A′ ← Bj , not Cj (2)
Ap ← A′, not ¬ApU (3)
An ← ¬A′, not ¬AnU (4)
Ap ← Bk, not Ck (5)
¬Ap ← Bl, not Cl (6)
An ← Bm, not Cm (7)
¬An ← Bn, not Cn (8)
¬An ← A (9)

¬Ap ← ¬A (10)
A← Ap (11)
¬A← An (12)
ApU ← Bk, not Ck (13)
¬ApU ← Bl, not Cl (14)
AnU ← Bm, not Cm (15)
¬AnU ← Bn, not Cn (16)
¬AnU ← A (17)
¬ApU ← ¬A (18)

Note that rules (5)-(12) are exactly equal to the rules of the update program.
The structure of the remaining part of the proof is quite similar to the one

set forth in Theorem 1. Its details are slightly more extensive for we now have
to simplify P

′
U eliminating ApU , ¬ApU , AnU and ¬AnU whilst in Theorem 1 we

only had to consider AU and ¬AU .

Example 7. Applying this transformation to the alarm example (Ex. 6)

P : sleep← ¬alarm U : in(¬alarm)←
panic← alarm
alarm←

Generalizing Updates: From Models to Programs 243

we obtain (where the rules for A and ¬A stand for their ground instances):

PU : sleep
′ ← ¬alarm Ap ← A′, not ¬ApU

panic
′ ← alarm An ← ¬A′, not ¬AnU

alarm′ ← Ap ← ApU

alarmnU ← ¬Ap ← ¬ApU

¬alarmpU ← ¬alarm An ← AnU

A← Ap ¬An ← ¬AnU

¬A← An

with model (modulo L′, Ln, Lp, LU):

MU = {sleep,¬alarm} ♦
Definition 9 and Theorem 2 both now carry over to a language K with explicit

negation.

Definition 17 (Extended factual LP). Let I be an interpretation of a lan-
guage K with explicit negation. We define the extended logic program associated
with I, P ∗(I), as:

P ∗(I) = {L←: L ∈ I} (27)

where the Ls are objective literals. ♦
It is worth pointing out that the translation of update programs into extended

logic programs, making use of explicit negation ¬ to code the out’s in the heads
of update rules and default negation not to code the out’s in the bodies of the
same rules, allows for some pairs of answer-sets, one of which will always be
closer than the other to the initial interpretation. This is best illustrated by the
following example:

Example 8. Let I = {a} and U = {¬a← not a} where U is the translation of
U ′ = {out(a)← out(a)} according to Def.5. The updated program is:

PU : a′ ←
a← a′, not ¬aU

¬aU ← not a

with two answer-sets whose restrictions are M1 = {a} and M2 = {}. Note that
M1 is closer to I than M2. ♦

The closeness condition in Theorems 2 and 4 exists to eliminate such farther
models in order to obtain the U-justified updates only. As mentioned, this phe-
nomena is due to the translation of the update programs. This is also shared
by [AP97] for the case of updates extended with explicit negation, and so their
soundness and completeness theorem should also make use of the closeness re-
lationship.

This translation has the virtue of not excluding such models, just in case they
are seen as desired. Another approach exists, mentioned in the conclusions, that
avoids the need for the closeness relation by excluding the non-closest updates
by construction.

244 João Alexandre Leite, Lúıs Moniz Pereira

Theorem 4 (Generalization of Updates). Let U be an update program with
explicit negation and I an interpretation. Then:

1. Every U -justified update of I is a <P ∗(I), U>-justified update.
2. A <P ∗(I), U>-justified update Iu is a U -justified update of I iff there is no

I
′
u closer to I than Iu, where I

′
u is a <P ∗(I), U>-justified update. ♦

Proof. (sketch): Let U be an update program consisting of rules of the form:

Ap ← Bk, not Ck A← Ap

¬Ap ← Bl, not Cl ¬A← An

An ← Bm, not Cm ¬An ← A
¬An ← Bn, not Cn ¬Ap ← ¬A

where A is an atom and each B and C is some finite set of objective literals.
According to [AP97], a total (or two-valued) WFSX model (modulo primed

and explicitly negated elements) of the program PU is a U-justified update iff it
is closest to I, among all such models, where PU is:

PU : A′ ← for all A ∈ I
¬A′ ← for all ¬A ∈ I
Ap ← A′, not ¬Ap

¬Ap ← not A′, not Ap

An ← ¬A′, not ¬An

¬An ← not ¬A′, not An

A← Ap

¬A← An

¬An ← A
¬Ap ← ¬A

for all A

Ap ← Bk, not Ck

¬Ap ← Bl, not Cl

An ← Bm, not Cm

¬An ← Bn, not Cn

rules from U

according to Def. 8, an interpretation I
′
u is a <P ∗(I), U>-justified update iff

it is the restriction of an answer-set of the program P
′
U (after the same partial

evaluation as done in the proof of Theorem 3):

P
′
U : A′ ← Bi, not Ci (1)
¬A′ ← Bj , not Cj (2)
Ap ← A′, not ¬ApU (3)
An ← ¬A′, not ¬AnU (4)
Ap ← Bk, not Ck (5)
¬Ap ← Bl, not Cl (6)
An ← Bm, not Cm (7)
¬An ← Bn, not Cn (8)
¬An ← A (9)

¬Ap ← ¬A (10)
A← Ap (11)
¬A← An (12)
ApU ← Bk, not Ck (13)
¬ApU ← Bl, not Cl (14)
AnU ← Bm, not Cm (15)
¬AnU ← Bn, not Cn (16)
¬AnU ← A (17)
¬ApU ← ¬A (18)

Generalizing Updates: From Models to Programs 245

We will have to show that these two transformed programs have the same models,
apart from irrelevant elements.

Following similar, though slightly more complex, arguments as in the proof of
Theorem 2, we can replace ApU , ¬ApU , AnU and ¬AnU by Ap, ¬Ap, An and ¬An

in rules (3)-(6), and deleting rules (15)-(20). Also rules ¬Ap ← not A′, not Ap

and ¬An ← not ¬A′, not An of PU are irrelevant for the only rules with ¬Ap

and ¬An in their body also have A′ and ¬A′ in their body, respectively, which
could never be true. Removing those rules from PU , it would be exactly equal
to P ′

U , after the simplifications mentioned, thus proving the theorem.

5 Conclusions

In this paper we have generalized the notion of updates to the case where we
want to update programs instead of just their models. We have shown that since
a program encodes more information than a set of models, the law of inertia
should be applied to rules instead of to model literals, as had been done so far.
We presented a transformation which, given an initial program and an update
program, generates the desired updated program. Our results have been further
extended to allow for both programs and update programs extended with explicit
negation. This is important inasmuch as it permits our updated programs to be
updated in turn, and allows us to conceive what it is to successively update one
program by another, and so to define the evolution of knowledge bases by means
of updates3.

Future foundational work involves dealing with partial interpretations and
non-coherent update programs and their contradiction removal requirements,
among other developments. Indeed, as the world changes, so must logic programs
that represent it. Program updating is a crucial notion opening up a whole
new range of applications, from specification of software updates to temporal
databases, from reasoning about actions to active databases, and in general as
a means for better representing reasoning, including belief revision.

Acknowledgments. We thank José Júlio Alferes, Halina Przymusinska and
Teodor Przymusinski for their insightful discussions and suggestions, and the
anonymous referees for their comments. A joint paper together with them is
well under way, improving on and generalizing the results presented here, as
well as exploring some of the application areas mentioned above. (A Prolog im-
plementation of this more general theory is already available.)

3 Iterated updates are made easier by a similar approach to that of Footnote 1, where
instead the equivalences (An)′ = (A′)n, (Ap)′ = (A′)p, (AU

n)′ = (A′)U
n and (AU

n)′ =
(A′)U

n are introduced. Lack of space prevents us to elaborate further on iterated
updates, and garbage collection techniques to do away with rules rendered useless.
For the details on these topics the reader is referred to [Lei97].

246 João Alexandre Leite, Lúıs Moniz Pereira

References

AP96. J. J. Alferes, L. M. Pereira. Reasoning with logic programming, LNAI 1111,
Berlin, Springer-Verlag, 1996.

AP97. J. J. Alferes, L. M. Pereira. Update-programs can update programs. In J. Dix,
L. M. Pereira and T. Przymusinski, editors, Selected papers from the ICLP’96 ws
NMELP’96, vol. 1216 of LNAI, pages 110-131. Springer-Verlag, 1997.

APP96. J. J. Alferes, L. M. Pereira and T. Przymusinski. Strong and Explicit Nega-
tion in Nonmonotonic Reasoning and Logic Programming. In J. J. Alferes, L. M.
Pereira and E. Orlowska, editors, JELIA ’96, volume 1126 of LNAI, pages 143-163.
Springer-Verlag, 1996.

BD95. S. Brass and J. Dix. Disjunctive Semantics based upon Partial and Bottom-
Up Evaluation. In Leon Sterling, editor, Procs. of the 12th Int. Conf. on Logic
Programming, Tokyo, pag. 85-98, Berlin, June 1995. Springer-Verlag.

DP96. C. V. Damásio and L. M. Pereira. Default negated conclusions: why not? In R.
Dyckhoff, H. Herre and P. Schroeder-Heister, editors, Procs. of ELP’96, volume
1050 of LNAI, pages 103-118. Springer-Verlag, 1996.

GL90. M. Gelfond and V. Lifschitz. Logic Programs with classical negation. In Warren
and Szeredi, editors, 7th Int. Conf. on LP, pages 579-597. MIT Press, 1990.

KM91. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In James Allen, Richard Fikes and Erik Sandewall, editors,
Principles of Knowledge Representation and Reasoning: Proc. of the Second Int’l
Conf. (KR91), pages 230-237, Morgan Kaufmann 1991.

KW85. A. Keller and M. Winslett Wilkins. On the use of an extended relational model
to handle changing incomplete information. IEEE Trans. on Software Engineering,
SE-11:7, pages 620-633, 1985.

Lei97. João A. Leite. Logic Program Updates. MSc dissertation, Universidade Nova de
Lisboa, 1997.

LW92. V. Lifschitz and T. Woo. Answer sets in general nonmonotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning, Proc. of the Third Int’l Conf (KR92),
pages 603-614. Morgan-Kaufmann, 1992

MT94. V.Marek and M. Truszczynski. Revision specifications by means of programs.
In C. MacNish, D. Pearce and L. M. Pereira, editors, JELIA ’94, volume 838 of
LNAI, pages 122-136. Springer-Verlag, 1994.

Principia. Isaaco Newtono. Philosophiæ Naturalis Principia Mathematica. Editio ter-
tia aucta & emendata. Apud Guil & Joh. Innys, Regiæ Societatis typographos.
Londini, MDCCXXVI. Original quotation:”Corpus omne perseverare in statu suo
quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus im-
pressis cogitur statum suum mutare.”.

PA92. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with
explicit negation. In B. Neumann, editor, European Conf. on AI, pages 102-106.
John Wiley & Sons, 1992.

PT95. T. Przymusinski and H. Turner. Update by means of inference rules. In V.
Marek, A. Nerode, and M. Truszczynski, editors, LPNMR’95, volume 928 of LNAI,
pages 156-174. Springer-Verlag, 1995.

	Front matter
	Chapter 1
	Knowledge Representation with Non-classical Logic
	Some History
	Non-Monotonic Formalisms in KR

	Knowledge Representation with Definite Logic Programs
	Top-Down versus Bottom-Up
	Why going beyond Definite Programs?
	What is a Semantics?

	Adding Negation
	Negation-as-Finite-Failure
	Negation-as-Failure
	The Well founded Semantics: WFS
	The Stable Semantics: STABLE

	Adding Explicit Negation
	Explicit vs. Classical and Strong Negation
	STABLE for Extended Logic Programs
	WFS for Extended Logic Programs

	Adding Preferences
	Motivation
	Handling Preferences
	A Legal Reasoning Example

	Adding Disjunction
	GCWA
	D-WFS
	DSTABLE

	What Do We Want and What Is Implemented?
	What is the Best Semantics?
	Query-Answering Systems and Implementations

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Introduction
	The $unhbox voidb @x hbox {Datalog$^{lor ,lnot ,leftarrow mathrel {mkern -3mu}rhook }$}$ Language
	Syntax
	Semantics

	Complexity and Expressiveness
	Preliminaries
	Results

	Some Examples
	Conclusion

	Chapter 12
	Introduction
	Basic Definitions and Notations
	Stable and Partial Stable Models
	Evidential Stable Models
	Annotation of Datadiscretionary {-}{}{}Bases and Partial Stable Models
	Partial Evidential Stable Models
	Comparison with Other Approaches
	Abstract Properties of the Evidential Semantics
	Conclusions

	Chapter 13
	Introduction
	Logic Programs with Default Negation
	Autoepistemic Logic
	Belief Interpretation
	Introspection

	Introspective Expansions
	Logic Program Semantics and Introspective Expansions
	Default negation and Disbelief

	Further Analysis
	Computational Complexity

	Chapter 14
	Introduction
	Abductive and Inductive Logic Programming
	Abductive Logic Programming
	Inductive Logic Programming
	The New Learning Framework

	An algorithm for Learning Abductive Logic Programs
	Properties of the algorithm
	Examples
	Learning exceptions
	Learning from incomplete knowledge

	Related Work
	Conclusions and Future Work

	Chapter 15
	Introduction
	Domain Descriptions
	Syntax
	Remarks
	Semantics

	Translation into Abductive Programs
	Soundness and Completeness
	Refinement
	An Example
	Concluding Remarks

	Chapter 16
	Introduction
	Basic notions and definitions
	Argumentation in Bi-disjunctive Logic Programs
	Some Important Classes of Hypotheses for Bi-disjunctive Programs
	Characterizations of BDAS
	Relationship between BDAS and Some Other Approaches
	BDAS for Non-disjunctive Programs
	BDAS for Positive Disjunctive Programs
	The Relationship Between PDH and the Disjunctive Stable Semantics
	Relations to Some Other Approaches

	Conclusion

	Chapter 17
	Introduction
	The Language of Prioritized Defaults
	Axioms of ${cal P}_0$

	Using the Axioms
	Extending ${cal L}_0(sigma)$
	Beyond normal defaults
	Weak Exceptions to Defaults
	Changing the mode of reasoning

	Hierarchical Domain Descriptions
	Domain Descriptions and Prioritized Logic Programs
	Conclusions

	Chapter 18
	Introduction and Motivation
	Review of Interpretation Updates
	Normal Logic Program Updating
	Extended Logic Program Updating
	Conclusions

