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Preface 

This book is the outcome of the compilation of extended and revised versions of selected 
papers presented at the workshop on Logic Programming and Knowledge Representation 
held in Port Jefferson (NY), USA, on October 17, 1997. A total of 15 papers were 
resubmitted, 8 of which were finally accepted by the PC and published in this volume. 
Background to this book is furnished through an invited introduction on knowledge 
representation with logic programs, by Brewka and Dix, 

The development of machines that are able to reason and act intelligently is one 
of the most challenging and desirable tasks ever attempted by humanity. It is there- 
fore not surprising that the investigation of techniques for representing and reasoning 
about knowledge has become an area of paramount importance to the whole field of 
Computer Science. Due to logic programming's declarative nature, and its amenability 
to implementation, it has quickly become a prime candidate language for knowledge 
representation and reasoning. 

The impressive research progress of the last few years as well as the significant 
advances made in logic programming implementation techniques now provide us with 
a great opportunity to bring to fruition computationally efficient implementations of the 
recent extensions to logic programming and their applications. 

This workshop is the third (after ICLP '94 and JICSLP '96) in a series of workshops 
which we have been organizing in conjunction with Logic Programming conferences. 
However, as shown by the following list of suggested topics in the call for papers, its 
scope is significantly broader than the previous ones: 

LP Functionalities: abduction, communication, contradiction removal, declarative de- 
bugging, knowledge and belief revision, learning, reasoning about actions, updates, 

LP Integrations: coupling knowledge sources, combining functionalities, logical agent 
architecture, multi-agents architecture, 

LP Language Extensions: constructive default negation, disjunctive programs, default 
and epistemic extensions, metalevel programming, object-oriented programming, 
paraconsistency, reactive rules, strong and explicit negation, 

LP Applications to Knowledge Representations: heterogeneous databases, model-based 
diagnosis, modeling production systems, planning, reactive databases, relations to 
non-monotonic formalisms, software engineering, 

LP Implementations: computational procedures, implementations. 

We would like to warmly thank the authors, the members of the program committee, 
and the additional reviewers listed below. They all have made this book possible and 
ensured its quality. 

June 1998 Jiirgen Dix, Koblenz 
Lufs Moniz Pereira, Lisboa 

Teodor C. Przymusinski, Riverside 
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Papers in thisBook 

In order to facilitate reading of this volume, we now present a brief overview of the 
content of the presented papers. The aim of the first paper, invited by the organizers, is 
to serve as an introductory overview on the topic, and as a guide for the other articles. 

Di~unctive Semantics 

Three papers are concerned with disjunctive semantics. While Greco et al. introduce 
nested rules in the heads of rules to increase the expressivity, D. Seipel defines vari- 
ants of the answer set semantics to remove the inconsistency problem. Yuan et al. use 
autoepistemic reasoning to classify disjunctive semantics with negation. 

S. Greco et al.: The authors present an extension of disjunctive Datalog programs by 
allowing nested rules in the disjunctive head. They show that such programs allow 
one to naturally model several real-world situations. In fact they show that this 
enlarged class of programs has an increased expressivity: the full second level of the 
polynomial hierachy is captured. 

D. Seipel: This paper considers the inconsistency problem of the stable and the partial 
stable semantics. It is well known that such models do not exist for all disjunctive 
deductive databases. The problem solved in the paper is to define an extension of 
these semantics such that (1) the new semantics coincides with the original if the 
original semantics is consistent, and (2) models always exist for the new semantics. 
The author also investigated abstract properties of the new semantics and compares 
them with the classical semantics. 

L.-Y. Yuan et al.: The paper gives a classification of various semantics for disjunctive 
logic programs by using autoepistemic reasoning. Consistency-based as well as 
minimal-model-based semantics are shown to correspond to suitable introspection 
policies. The authors also observe three main semantical viewpoints (well-founded, 
stable, and partial stable) and thus propose a classification into six categories. 

Abduction 

The three papers involving abduction concern themselves with learning (E. Lamina et 
ai.), describing action domains (R. Li et al.), and the semantics of disjunctive logic 
programs (K. Wang and H. Chert). 

E. Lamina et al.: A system for learning abductive logic programs from an abductive 
background theory and examples is presented. It can make assumptions to cover 
positive examples and to avoid coverage of negative ones, and these assumptions 
can be further used as new training data. The system can be applied for learning in 
the context of incomplete knowledge, and for learning exceptions to classification 
rules. 



VII 

R. Li et al.: The authors present an abductive methodology for describing action do- 
mains, starting from incomplete actions theories, i.e., those with more than one 
model. By performing tests to obtain additional information, a complete theory can 
be abduced. A high level language is used to describe incomplete domains and tests, 
and its sound and complete translation into abductive logic programs is provided. 
Via tests and abduction the original domain description can be refined to become 
closer to reality. The methodology, which has been implemented, allows for abduc- 
tive planning, prediction, and explanation. 

K. Wang and H. Chen: The authors treat argumentation in disjunctive logie program- 
ruing as abduction, within a semantic framework in which disjuncts of negative liter- 
als are taken as possible assumptions. Three semantics are defined, by as many kinds 
of acceptable hypotheses, to represent credulous, moderate, and skeptical reason- 
ing. The framework is defined for a broader class than disjunctive logic programs, 
thereby integrating and extending many key semantics such as minimal models, 
EGCWA, WFS, and SM, and serving as a unifying semantics for disjunctive logic 
programming. 

Priorities 

M. Oelfond and T.C. Son: A methodology for reasoning with prioritized defaults in 
logic programs under answer sets semantics is investigated. The paper presents, 
in a simple language, domain independent axioms for doing so in conjunction with 
particular domain descriptions. Sufficient conditions for consistency are given, and 
various examples from the literature are formalized. They show that in many cases 
the approach leads to simpler and more intuitive formalizations. A comparative 
discussion of other approaches is included. 

Upda tes  

J. Leite and L. M. Pereira: The paper defines what it is to update one logic program with 
another logic program defining the update. Furthermore, it shows how to obtain a 
third program as a result, whose semantics are as intended. The resulting program 
can in turn be updated. The classes of programs to be updated are those of extended 
programs under answer sets semantics, and of normal programs under stable model 
semantics. The concept of program update generalizes that of interpretation update, 
and solves important problems arising with the latter approach. Program updating 
opens up a whole new range of applications of logic programming, as well as the 
incremental approach to programming. 
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Knowledge Representation with Logic Programs?

Gerhard Brewka1 and Jürgen Dix2
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2 Universität Koblenz-Landau, Institut für Informatik,

Rheinau 1, D-56075 Koblenz
dix@mailhost.uni-koblenz.de

Abstract. In this overview we show how Knowledge Representation
(KR) can be done with the help of generalized logic programs. We start
by introducing the core of PROLOG, which is based on definite logic
programs. Although this class is very restricted (and will be enriched by
various additional features in the rest of the paper), it has a very nice
property for KR-tasks: there exist efficient Query-answering procedures
— a Top-Down approach and a Bottom-Up evaluation. In addition we
can not only handle ground queries but also queries with variables and
compute answer-substitutions.
It turns out that more advanced KR-tasks can not be properly handled
with definite programs. Therefore we extend this basic class of programs
by additional features like Negation-as-Finite-Failure, Default-Negation,
Explicit Negation, Preferences, and Disjunction. The need for these ex-
tensions is motivated by suitable examples and the corresponding seman-
tics are discussed in detail.
Clearly, the more expressive the respective class of programs under a cer-
tain semantics is, the less efficient are potential Query-answering meth-
ods. This point will be illustrated and discussed for every extension. By
well-known recursion-theoretic results, it is obvious that there do not
exist complete Query-answering procedures for the general case where
variables and function symbols are allowed. Nevertheless we consider it
an important topic of further research to extract feasible classes of pro-
grams where answer-substitutions can be computed.

1 Knowledge Representation with Non-classical Logic

One of the major reasons for the success story (if one is really willing to call it a
success story) of human beings on this planet is our ability to invent tools that
help us improve our — otherwise often quite limited — capabilities. The inven-
tion of machines that are able to do interesting things, like transporting people
from one place to the other (even through the air), sending moving pictures and

? This is a short version of Chapter 6 in D. Gabbay and F. Guenthner (editors), Hand-
book of Philosophical Logic, 2nd Edition, Volume 6, Methodologies, Reidel Publ., 1999

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 1–51, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



2 Gerhard Brewka and Jürgen Dix

sounds around the globe, bringing our email to the right person, and the like,
is one of the cornerstones of our culture and determines to a great degree our
everyday life.

Among the most challenging tools one can think of are machines that are
able to handle knowledge adequately. Wouldn’t it be great if, instead of the
stupid device which brings coffee from the kitchen to your office every day at
9.00, and which needs complete reengineering whenever your coffee preferences
change, you could (for the same price, admitted) get a smart robot whom you
can simply tell that you want your coffee black this morning, and that you need
an extra Aspirin since it was your colleague’s birthday yesterday? To react in the
right way to your needs such a robot would have to know a lot, for instance that
Aspirin should come with a glass of water, or that people in certain situations
need their coffee extra strong.

Building smart machines of this kind is at the heart of Artificial Intelligence
(AI). Since such machines will need tremendous amounts of knowledge to work
properly, even in very limited environments, the investigation of techniques for
representing knowledge and reasoning is highly important.

In the early days of AI it was still believed that modeling general purpose
problem solving capabilities, as in Newell and Simon’s famous GPS (General
Problem Solver) program, would be sufficient to generate intelligent behavior.
This hypothesis, however, turned out to be overly optimistic. At the end of
the sixties people realized that an approach using available knowledge about
narrow domains was much more fruitful. This led to the expert systems boom
which produced many useful application systems, expert system building tools,
and expert system companies. Many of the systems are still in use and save
companies millions of dollars per year1.

Nevertheless, the simple knowledge representation and reasoning methods
underlying the early expert systems soon turned out to be insufficient. Most of
the systems were built based on simple rule languages, often enhanced with ad
hoc approaches to model uncertainty. It became apparent that more advanced
methods to handle incompleteness, defeasible reasoning, uncertainty, causality
and the like were needed.

This insight led to a tremendous increase of research on the foundations
of knowledge representation and reasoning. Theoretical research in this area has
blossomed in recent years. Many advances have been made and important results
were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under-
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians’ game more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this overview, that is research aiming at interesting combinations of ideas from

1 We refer the interested reader to the recent book [104] which gives a very detailed
and nice exposition of what has been done in AI since its very beginning until today.
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logic programming and nonmonotonic reasoning, provides an important step into
this direction.

1.1 Some History

Historically, logic programs have been considered in the logic programming com-
munity for more than 20 years. It began with [51,82,115] and led to the definition
and implementation of PROLOG , a by now theoretically well-understood pro-
gramming language (at least the declarative part consisting of Horn-clauses:
pure PROLOG). Extensions of PROLOG allowing negative literals have been
also considered in this area: they rely on the idea of negation-as-finite-failure,
we call them Logic-Programming-semantics (or shortly LP-semantics).

In parallel, starting at about 1980, Nonmonotonic Reasoning entered into
computer science and began to constitute a new field of active research. It was
originally initiated because Knowledge Representation and Common-Sense Rea-
soning using classical logic came to its limits. Formalisms like classical logic are
inherently monotonic and they seem to be too weak and therefore inadequate
for such reasoning problems.

In recent years, independently of the research in logic programming, people
interested in knowledge representation and nonmonotonic reasoning also tried to
define declarative semantics for programs containing default or explicit negation
and even disjunctions. They defined various semantics by appealing to (different)
intuitions they had about programs.

This second line of research started in 1986 with the Workshop on the
Foundations of Deductive Databases and logic programming organized by Jack
Minker: the revised papers of the proceedings were published in [88]. The strati-
fied (or the similar perfect) semantics presented there can be seen as a splitting-
point: it is still of interest for the logic programming community (see [43]) but
its underlying intuitions were inspired by nonmonotonic reasoning and therefore
much more suitable for knowledge representation tasks. Semantics of this kind
leave the philosophy underlying classical logic programming in that their pri-
mary aim is not to model negation-as-finite-failure, but to construct new, more
powerful semantics suitable for applications in knowledge representation. Let us
call such semantics NMR-semantics.

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz,
Przymusinski and others, very close relationships between these two independent
research lines became evident. Methods from logic programming, e.g. least fix-
points of certain operators, can be used successfully to define NMR-semantics.

The NMR-semantics also shed new light on the understanding of the classical
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various
versions of Circumscription. In addition, the investigation of possible semantics
for logic programs seems to be useful because

1. parts of nonmonotonic systems (which are usually defined for full predicate
logic, or even contain additional (modal)-operators) may be “implemented”
with the help of such programs,



4 Gerhard Brewka and Jürgen Dix

2. nonmonotonicity in these logics may be described with an appropriate treat-
ment of negation in logic programs.

1.2 Non-Monotonic Formalisms in KR

As already mentioned above, research in nonmonotonic reasoning has begun at
the end of the seventies. One of the major motivations came from reasoning
about actions and events. John McCarthy and Patrick Hayes had proposed their
situation calculus as a means of representing changing environments in logic. The
basic idea is to use an extra situation argument for each fact which describes
the situation in which the fact holds. Situations, basically, are the results of
performing sequences of actions. It soon turned out that the problem was not
so much to represent what changes but to represent what does not change when
an event occurs. This is the so-called frame problem. The idea was to handle the
frame problem by using a default rule of the form

If a property P holds in situation S then P typically also holds in the
situation obtained by performing action A in S.

Given such a rule it is only necessary to explicitly describe the changes induced
by a particular action. All non-changes, for instance that the real color of the
kitchen wall does not change when the light is turned on, are handled implicitly.
Although it turned out that a straightforward formulation of this rule in some
of the most popular nonmonotonic formalisms may lead to unintended results
the frame problem was certainly the challenge motivating many people to join
the field.

In the meantime a large number of different nonmonotonic logics have been
proposed. We can distinguish four major types of such logics:

1. Logics using nonstandard inference rules with an additional consistency
check to represent default rules. Reiter’s default logic and its variants are of
this type.

2. Nonmonotonic modal logics using a modal operator to represent consistency
or (dis-) belief. These logics are nonmonotonic since conclusions may depend
on disbelief. The most prominent example is Moore’s autoepistemic logic.

3. Circumscription and its variants. These approaches are based on a preference
relation on models. A formula is a consequence iff it is true in all most
preferred models of the premises. Syntactically, a second order formula is
used to eliminate all non-preferred models.

4. Conditional approaches which use a non truth-functional connective |∼ to
represent defaults. A particularly interesting way of using such conditionals
was proposed by Kraus, Lehmann and Magidor. They consider p as a default
consequence of q iff the conditional q |∼ p is in the closure of a given condi-
tional knowledge base under a collection of rules. Each of the rules directly
corresponds to a desirable property of a nonmonotonic inference relation.

The various logics are intended to handle different intuitions about nonmono-
tonic reasoning in a most general way. On the other hand, the generality leads to
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problems, at least from the point of view of implementations and applications. In
the first order case the approaches are not even semi-decidable since an implicit
consistency check is needed. In the propositional case we still have tremendous
complexity problems. For instance, the complexity of determining whether a for-
mula is contained in all extensions of a propositional default theory is on the
second level of the polynomial hierarchy. As mentioned earlier we believe that
logic programming techniques can help to overcome these difficulties.

Originally, nonmonotonic reasoning was intended to provide us with a fast
but unsound approximation of classical reasoning in the presence of incomplete
knowledge. Therefore one might ask whether the higher complexity of NMR-
formalisms (compared to classical logic) is not a real drawback of this aim? The
answer is that NMR-systems allow us to formulate a problem in a very compact
way as a theory T . It turns out that any equivalent formulation in classical logic
(if possible at all) as a theory T ′ is much larger: the size of T ′ is exponential in the
size of T ! We refer to [74] and [41,42,40] where such problems are investigated.

2 Knowledge Representation with Definite Logic
Programs

In this section we consider the most restricted class of programs: definite logic
programs, programs without any negation at all. All the extensions of this basic
class we will introduce later contain at least some kind of negation (and perhaps
additional features). But here we also allow the occurrence of free variables as
well as function symbols.

In Section 2.1 we introduce as a representative for the Top-Down approach
the SLD-Resolution. Section 2 presents the main competing approach of SLD:
Bottom-Up Evaluation. This approach is used in the Database community and
it is efficient when additional assumptions are made (finiteness-assumptions, no
function symbols). Finally in Section 2.2 we present and discuss two important
examples in KR: Reasoning in Inheritance Hierarchies and Reasoning about Ac-
tions. Both examples clearly motivate the need of extending definite programs
by a kind of default-negation “not ”.

First some notation used throughout this paper. A language L consists of
a set of relation symbols and a set of function symbols (each symbol has an
associated arity). Nullary functions are called constants. Terms and atoms are
built from L in the usual way starting with variables, applying function symbols
and relation-symbols.

Instead of considering arbitrary L-formulae, our main object of interest is a
program:

Definition 1 (Definite Logic Program).
A definite logic program consists of a finite number of rules of the form

A← B1, . . . , Bm,
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where A,B1, . . . , Bm are positive atoms (containing possibly free variables). We
call A the head of the rule and B1, . . . , Bm its body. The comma represents
conjunction ∧.
We can think of a program as formalizing our knowledge about the world and
how the world behaves. Of course, we also want to derive new information, i.e. we
want to ask queries:

Definition 2 (Query).
Given a definite program we usually have a definite query in mind that we want
to be solved. A definite query Q is a conjunction of positive atoms C1 ∧ . . . ∧Cl

which we denote by
?- C1, . . . , Cl.

These Ci may also contain variables. Asking a query Q to a program P means
asking for all possible substitutions Θ of the variables in Q such that QΘ follows
from P . Often, Θ is also called an answer to Q. Note that QΘ may still contain
free variables.

Note that if a program P is given, we usually assume that it also determines
the underlying language L, denoted by LP , which is generated by exactly the
symbols occurring in P . The set of all these atoms is called the Herbrand base
and denoted by BLP or simply BP . The corresponding set of all ground terms
is the Herbrand universe.

How are our programs related to classical predicate logic? Of course, we
can map a program-rule into classical logic by interpreting “←” as material
implication “⊃” and universally quantifying. This means we view such a rule as
the following universally quantified formula

B1 ∧ . . . ∧Bm ⊃ A.

However, as we will see later, there is a great difference: a logic program-rule
takes some orientation with it. This makes it possible to formulate the following
principle as an underlying intuition of all semantics of logic programs:

Principle 01 (Orientation)
If a ground atom A does not unify with some head of a program rule of P , then
this atom is considered to be false. In this case we say that “not A” is derivable
from P to distinguish it from classical ¬A.

The orientation principle is nothing but a weak form of negation-by-failure. Given
an intermediate goal not A, we first try to prove A. But if A does not unify with
any head, A fails and this is the reason to derive not A.

2.1 Top-Down versus Bottom-Up

SLD-Resolution2 is a special form of Robinson’s general Resolution rule. While
Robinson’s rule is complete for full first order logic, SLD is complete for definite
logic programs (see Theorem 1).
2 SL-resolution for Definite clauses. SL-resolution stands for Linear resolution with

Selection function.
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Definite programs have the nice feature that the intersection of all Herbrand-
models exists and is again a Herbrand model of P . It is denoted by MP and
called the least Herbrand-model of P . Note that our original aim was to find
substitutions Θ such that QΘ is derivable from the program P . This task as
well as MP is closely related to SLD:

Theorem 1 (Soundness and Completeness of SLD).
The following properties are equivalent:

– P |= ∀ QΘ, i.e. ∀ QΘ is true in all models of P ,
– MP |= ∀ QΘ,
– SLD computes an answer τ that subsumes3 Θ wrt Q.

Note that not any correct answer is computed, only the most general one is
(which of course subsumes all the correct ones).

The main feature of SLD-Resolution is its Goal-Orientedness. SLD automati-
cally ensures (because it starts with the Query) that we consider only those rules
that are relevant for the query to be answered. Rules that are not at all related
are simply not considered in the course of the proof.

Bottom-Up

We mentioned in the last section the least Herbrand model MP . The bottom-up
approach can be described as computing this least Herbrand model from below.

To be more precise we introduce the immediate consequence operator TP

which associates to any Herbrand model another Herbrand model.

Definition 3 (TP ).
Given a definite program P let TP : 2BP 7−→2BP ; I 7−→TP (I)

TP (I) := {A ∈ BP : there is an instantiation of a rule in P
s.t. A is the head of this rule and all
body-atoms are contained in I }

It turns out that TP is monotone and continuous so that (by a general theorem
of Knaster-Tarski) the least fixpoint is obtained after ω steps. Moreover we have

Theorem 2 (TP and MP ).
MP = TP↑ω = lfp(TP ).

This approach is especially important in Database applications, where the
underlying language does not contain function symbols (DATALOG) — this
ensures the Herbrand universe to be finite. Under this condition the iteration
stops after finitely many steps. In addition, rules of the form

p← p

3 i.e. ∃σ : Qτσ = QΘ.
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do not make any problems. They simply can not be applied or do not produce
anything new. Note that in the Top-Down approach, such rules give rise to infi-
nite branches! Later, elimination of such rules will turn out to be an interesting
property. We therefore formulate it as a principle:

Principle 02 (Elimination of Tautologies)
Suppose a program P has a rule which contains the same atom in its body as
well as in its head (i.e. the head consists of exactly this atom). Then we can
eliminate this rule without changing the semantics.

Unfortunately, such a bottom-up approach has two serious shortcomings.
First, the goal-orientedness from SLD-resolution is lost: we are always computing
the whole MP , even those facts that have nothing to do with the query. The
reason is that in computing TP we do not take into account the query we are
really interested in. Second, in any step facts that are already computed before
are recomputed again. It would be more efficient if only new facts were computed.
Both problems can be (partially) solved by appropriate refinements of the naive
approach:

– Semi-naive bottom-up evaluation ([39,114]),
– Magic Sets techniques ([16,113]).

2.2 Why going beyond Definite Programs?

So far we have a nice query-answering procedure, SLD-Resolution, which is goal-
oriented as well as sound and complete with respect to general derivability. But
note that up to now we are not able to derive any negative information. Not
even our queries allow this. From a very pragmatic viewpoint, we can consider
“not A” to be derivable if A is not. Of course, this is not sound with respect to
classical logic but it is with respect to MP .

In KR we do not only want to formulate negative queries, we also want to
express default-statements of the form

Normally, unless something abnormal holds, then ψ implies φ.

Such statements were the main motivation for nonmonotonic logics, like Default
Logic or Circumscription). How can we formulate such a statement as a logic
program? The most natural way is to use negation “ not ”

φ ← ψ, not ab

where ab stands for abnormality . Obviously, this forces us to extend definite
programs by negative atoms.

A typical example for such statements occurs in Inheritance Reasoning. We
take the following example from [10]:
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Example 1 (Inheritance Hierachies).
Suppose we know that birds typically fly and penguins are non-flying birds. We
also know that Tweety is a bird. Now an agent is hired to build a cage for Tweety.
Should the agent put a roof on the cage? After all it could be still the case that
Tweety is a penguin and therefore can not fly, in which case we would not like to
pay for the unnecessary roof. But under normal conditions, it should be obvious
that one should conclude that Tweety is flying.

A natural axiomatization is given as follows:

PInheritance : flies(x) ← bird(x), not ab(r1, x)
bird(x) ← penguin(x)
ab(r1, x) ← penguin(x)
make top(x)← flies(x)

together with some particular facts, like e.g. bird(Tweety) and penguin(Sam).
The first rule formalizes our default-knowledge, while the third formalizes that
the default-rule should not be applied in abnormal or exceptional cases. In our
example, it expresses the famous Specificity-Principle which says that more spe-
cific knowledge should override more general one ([110,112,76]).

For the query “make top(Tweety)” we expect the answer “yes” while for the
query “make top(Sam)” we expect the answer “no”.

Another important KR task is to formalize knowledge for reasoning about
action. We again consider a particular important instance of such a task, namely
temporal projection. The overall framework consists in describing the initial state
of the world as well as the effects of all actions that can be performed. What we
want to derive is how the world looks like after a sequence of actions has been
performed.

The common-sense argument from which this should follow is the

Law of Inertia: Things normally tend to stay the same.

Up to now we only have stated some very “natural” axiomatizations of
given knowledge. We have motivated that something like default-negation “not ”
should be added to definite programs in order to do so and we have explicitly
stated the answers to particular queries. What is still missing are solutions to
the following very important problems

– How should an appropriate query answering mechanism handling default-
negation “ not ” look like?

– What is the formal semantics that such a procedural mechanism should be
checked against?

Such a semantics is certainly not classical predicate logic because of the default
character of “not ” — not is not classical ¬. Both problems will be considered
in detail in Section 3.
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2.3 What is a Semantics?

In the last sections we have introduced two principles (Orientation and Eli-
mination of Tautologies) and used the term semantics of a program in a loose,
imprecise way. We end this section with a precise notion of what we understand
by a semantics.

As a first attempt, we can view a semantics as a mapping that associates
to any program a set of positive atoms and a set of default atoms. In the case
of SLD-Resolution the positive atoms are the ground instances of all derivable
atoms. But sometimes we also want to derive negative atoms (like in our two
examples above). Our Orientation-Principle formalizes a minimal requirement
for deriving such default-atoms.

Of course, we also want that a semantics SEM should respect the rules of
P , i.e. whenever SEM makes the body of a rule true, then SEM should also
make the head of the rule true. But it can (and will) happen that a semantics
SEM does not always decide all atoms. Some atoms A are not derivable nor are
their default-counterparts not A. This means that a semantics SEM can view
the body of a rule as being undefined .

This already happens in classical logic. Take the theory

T := {(A ∧B) ⊃ C, ¬A ⊃ B}.
What are the atoms and negated atoms derivable from T , i.e. true in all models of
T? No positive atom nor any negated atom is derivable! The classical semantics
therefore makes the truthvalue of A ∧B undefined in a sense.

Suppose a semantics SEM treats the body of a program rule as undefined.
What should we conclude about the head of this rule? We will only require
that this head is not treated as false by SEM — it could be true or undefined
as well. This means that we require a semantics to be compatible with the
program viewed as a 3-valued theory — the three values being “true”, “false”
and “undefined”. For the understanding it is not necessary to go deeper into
3-valued logic. We simply note that we interpret “←” as the Kleene-connective
which is true for “undefined← undefined” and false for “false← undefined”.

Definition 4 (SEM).
A semantics SEM is a mapping from the class of all programs into the powerset
of the set of all 3-valued structures. SEM assigns to every program P a set of
3-valued models of P :

SEM(P ) ⊆ MODLP

3−val(P ).

This definition covers both the classical viewpoint (classical models are 2-
valued and therefore special 3-valued models) as well as our first attempt in the
beginning of this section.

Formally, we can associate to any semantics SEM in the sense of Definition 4
two entailment relations

sceptical: SEMscept(P ) is the set of all atoms or default atoms that are true in
all models of SEM(P ).
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credulous: SEMcred(P ) is the set of all atoms or default atoms that are true
in at least one model of SEM(P ).

3 Adding Negation

In the last section we have illustrated that logic programs with negation are
very suitable for KR — they allow a natural and straightforward formalization
of default-statements. The problem still remained to define an appropriate se-
mantics for this class and, if possible, to find efficient query-answering methods.
Both points are addressed in this section.

We can distinguish between two quite different approaches:

LP-Approach: This is the approach taken mainly in the Logic Programming
community. There one tried to stick as close as possible to SLD-Resolution
and treat negation as “Finite-Failure”. This resulted in an extension of SLD,
called SLDNF-Resolution, a procedural mechanism for query answering. For
a nice overview, we refer to [6].

NML-Approach: This is the approach suggested by non-monotonic reasoning
people. Here the main question is “What is the right semantics?” I.e. we are
looking first for a semantics that correctly fits to our intuitions and treats
the various KR-Tasks in the right (or appropriate) way. It should allow us
to jump to conclusions even when only little information is available. Here
it is of secondary interest how such a semantics can be implemented with a
procedural calculus. Interesting overviews are [89] and [61].

The LP-Approach is dealt with in Section 3.1. It is still very near to clas-
sical predicate logic — default negation is interpreted as Finite-Failure. To get
a stronger semantics, we interpret “not ” as Failure in Section 3.2. The main
difference is that the principle Elimination of Tautologies holds. We then intro-
duce a principle GPPE which is related to partial evaluation. In KR one can see
this principle as allowing for definitional extensions — names or abbreviations
can be introduced without changing the semantics.

All these principles do not yet determine a unique semantics — there is still
room for different semantics and a lot of them have been defined in the last years.
We do not want to present the whole zoo of semantics nor to discuss their merits
or shortcomings. We refer the reader to the overview articles [6] and [61] and the
references given therein. We focus on the two main competing approaches that
still have survived. These are the Wellfounded semantics WFS (Section 3.3) and
the Stable semantics STABLE (Section 3.4).

3.1 Negation-as-Finite-Failure

The idea of negation treated as finite-failure can be best illustrated by still
considering definite programs, but queries containing default-atoms. How should
we handle such default-atoms by modifying our SLD-resolution? Let us try this:
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– If we reach a default-atom “not A” as a subgoal of our original query, we
keep the current SLD-tree in mind and start a new SLD-tree by trying to
solve “A”.

– If this succeeds, then we falsified “not A”, the current branch is failing and
we have to backtrack and consider a different subquery.

– But it can also happen that the SLD-tree for “A” is finite with only failing
branches. Then we say that A finitely fails, we turn back to our original
SLD-tree, consider the subgoal “not A” as successfully solved and go on
with the next subgoal in the current list.

It is important to note that an SLD-tree for a positive atom can fail without
being finite. The SLD-tree for the program consisting of the single rule p ← p
with respect to the query p is infinite but failing (it consists of one single infinite
branch).

Although this idea of Finite-Failure is very procedural in nature, there is a
nice model theoretical counterpart — Clark’s completion comp(P ) ([50]). The
idea of Clark was that a program P consists not only of the implications, but
also of the information that these are the only ones. Roughly speaking, he argues
that one should interpret the “←”-arrows in rules as equivalences “≡” in classical
logic.

Definition 5 (Clark’s Completion comp(P )).
Clark’s semantics for a program P is given by the set of all classical models of
the theory comp(P ).

We can now see the classical theory comp(P ) as the information contained in
the program P . comp(P ) is like a sort of closed world assumption applied to
P . We are now able to derive negative information from P by deriving it from
comp(P ). In fact, the following soundness and completeness result for definite
programs P and definite queries Q =

∧
iAi (consisting of only positive atoms)

holds:

Theorem 3 (COMP and Fair FF-Trees).
The following conditions are equivalent:

– comp(P ) |= ∀¬Q
– Every fair SLD-tree for P with respect to Q is finitely failed.

Note that in the last theorem we did not use default negation but classical
negation ¬ because we just mapped all formulae into classical logic. We need
the fairness assumption to ensure that the selection of atoms is reasonably well-
behaving: we want that every atom or default-atom occurring in the list of
preliminary goals will eventually be selected.

But even this result is still very weak — after all we want to handle not
only negative queries but programs containing default-atoms. From now on we
consider programs with default-atoms in the body. We usually denote them by

A← B+ ∧ not B−,
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where B+ contains all the positive body atoms and not B− all default atoms
“not C”.

Our two motivating examples in Section 2.2 contain such default atoms.
This gives rise to an extension of SLD, called SLDNF, which treats negation as
Finite-Failure

SLDNF = SLD + not L succeeds, if L finitely fails.

The precise definitions of SLDNF-resolution, tree, etc. are very complex: we
refer to [85,5]. Recently, Apt and Bol gave interesting improved versions of these
notions: see [6, Section 3.2]. In order to get an intuitive idea, it is sufficient to
describe the following underlying principle:

Principle 03 (A “Naive” SLDNF-Resolution)
If in the construction of an SLDNF-tree a default-atom not Lij is selected in the
list Li = {Li1, Li2, . . .}, then we try to prove Lij.
If this fails finitely (it fails because the generated subtree is finite and failing),
then we take not Lij as proved and we go on to prove Li(j+1).
If Lij succeeds, then not Lij fails and we have to backtrack to the list Li−1 of
preliminary subgoals (the next rule is applied: “backtracking”).

Does SLDNF-Resolution properly handle Example 1? It does indeed:

Inheritance: The query make top(Tweety) generates an SLD-tree with one
main branch, the nodes of which are:

flies(Tweety),
bird(Tweety), not ab(r1, Tweety),
not ab(r1, Tweety),
Success.

The third node has a sibling-node penguin(Tweety), not ab(r1, Tweety)
which immediately fails because Tweety does not unify with Sam. The
Success-node is obtained from not ab(r1, Tweety) because the correspond-
ing SLD-tree for the atom ab(r1, Tweety) fails finitely (this tree consists only
of ab(r1, Tweety) and penguin(Tweety)).

Up to now it seems that SLDNF-resolution solves all our problems. It handles
our examples correctly, and is defined by a procedural calculus strongly related
to SLD. There are two main problems with SLDNF:

– SLDNF can not handle free variables in negative subgoals,
– SLDNF is still too weak for Knowledge Representation.

The latter problem is the most important one. By looking at a particular exam-
ple, we will motivate in Section 3.2 the need for a stronger semantics. This will
lead us in the remaining sections to the well founded and the stable semantics.

For the rest of this section we consider the first problem, known as the Floun-
dering Problem. This problem will also occur later in implementations of the well
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Fig. 1. The Floundering-Problem

founded or the stable semantics. We consider the program Pflounder consisting
of the three facts

p(c, c), q(b), r(f(c)).

Our query is ?- p(x, c), not q(x), r(f(x)) that is, we are interested in instan-
tiations of x such that the query follows from the program. The situation is
illustrated in Figure 1. Let us suppose that we always select the first atom or
default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial ex-
ample is linear and has three nodes: the first node is the query itself

?- p(x, c), not q(x), r(f(x))

the second node is ?- not q(c), r(f(c)) Now, we enter the negation-as-failure
mode and ask ?- q(c) This query immediately fails (the generated tree exists, is
finite and fails) so that we give back the answer “yes, the default atom not q(c)
succeeds and can be skipped from the list”. The last node is ?- r(f(c)) which
immediately succeeds.

Note that in the last step, the test for ?-q(c) has to be finished before the
tree can be extended. If we get no answer, the SLDNF-tree simply does not exist:
this can not happen with SLD-trees.

So far everything was fine. But what happens if we select the second atom
in the first step

?-p(x, c), not q(x), r(f(x))

Example 2 (Floundering).
We again consider the program Pflounder consisting of the three facts

p(c, c), q(b), r(f(c)).

Our query is ?-p(x, c), not q(x), r(f(x)) and in the first step we will select the
second default-atom, i.e. one with a free variable. Thus we enter the negation-
as-failure mode with the query ?- not q(x) In this case, x may be instantiated
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to b so that we have to give back the answer “no, the default-atom not q(x)
fails” and the whole query will fail. This is because SLDNF treats the subgoal as
“∀xnot q(x)” instead of “∃xnot q(x)” which is intended. There exist approaches
to overcome this shortcoming by treating negation as constructive negation:
see [44,45,67].

3.2 Negation-as-Failure

Let us first illustrate that SLDNF answers quite easily our requirements of a se-
mantics SEM (stated explicitly in Definition 4). We can formulate these require-
ments as two program-transformations (they will be used later for computing a
semantics). We call them Reductions for obvious reasons.

Principle 04 (Reduction)
Suppose we are given a program P with possibly default-atoms in its body. If a
ground atom A does not unify with any head of the rules of P , then we can delete
in every rule any occurrence of “not A” without changing the semantics.

Dually, if there is an instance of a rule of the form “B ← ” then we can
delete all rules that contain “not B” in their bodies.

It is obvious that SLDNF “implements” these two reductions automatically. The
weakness of SLDNF for Knowledge Representation is in a sense inherited from
SLD. When we consider rules of the form “p ← p”, then SLD resolution gets
into an infinite loop and no answer to the query ?-p can be obtained. This has
often the effect that when we enter into negation-as-failure mode, the SLD-tree
to be constructed is not finite, although it is not successful and therefore should
be considered as failed.

Let us discuss this point with a more serious example.

Example 3 (The Transitive Closure).
Assume we are given a graph consisting of nodes and edges between some of
them. We want to know which nodes are reachable from a given one. A natural
formalization of the property “reachable” would be

reachable(x)← edge(x, y), reachable(y).

What happens if we are given the following facts

edge(a, b), edge(b, a), edge(c, d)

and reachable(c)? Of course, we expect that neither a nor b are reachable because
there is no path from c to either a or b.

But SLDNF-Resolution does not derive “not reachable(a)”!

How does this result relate to Theorem 3? Note that our query has exactly the
form as required there. Clark’s completion of our program rule is

reachable(x) ≡ (x .= c ∨ ∃y (reachable(y) ∧ edge(y, x)))
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from which, together with our facts about the edge-relation, ¬reachable(a) is
indeed not derivable. This is due to the well known fact that transitive closure
is not expressible in first order predicate logic.

Note also that our Principle 02 does not help, because it simply does not
apply. It turns out that we can augment our two principles by a third one,
that constitutes together with them a very nice calculus handling the above ex-
ample in the right way. This principle is related to Partial Evaluation, hence
its name GPPE4. Let us motivate this principle with the last example. The
query “not reachable(a)” leads to “reachable(a) ← edge(a, b), reachable(b)”
and “reachable(b)” leads to “reachable(b) ← edge(b, a), reachable(a)”. Both
rules can be seen as definitions for reachable(a) and reachable(b) respectively.
So it should be possible to replace in these rules the body atoms of reachable
by their definitions. Thus we obtain the two rules

reachable(a)← edge(a, b), edge(b, a), reachable(a)
reachable(b)← edge(b, a), edge(a, b), reachable(b)

that can both be eliminated by applying Principle 02. So we end up with a
program that does neither contain reachable(a) nor reachable(b) in one of the
heads. Therefore, according to Principle 01 both atoms should be considered
false. The precise formulation of this principle is as follows:

Principle 05 (GPPE,[22,106])
We say that a semantics SEM satisfies GPPE, if the following transformation
does not change the semantics. Replace a rule A ← B+ ∧ not B− where B+

contains a distinguished atom B by the rules

A ← (B+ \ {B}) ∪ B+
i ∧ not

(B− ∪ B−
i

)
(i = 1, . . . , n)

where B ← B+
i ∧ not B−

i (i = 1, . . . , n) are all rules with head B.

Note that any semantics SEM satisfying GPPE and Elimination of Tautolo-
gies can be seen as extending SLD by doing some Loop-checking . We will call
such semantics NMR-semantics in order to distinguish them from the classi-
cal LP-semantics which are based on SLDNF or variants of Clark’s completion
comp(P ):

– NMR-Semantics = SLDNF + Loop-check.

The following, somewhat artificial example illustrates this point.

Example 4 (COMP vs. NMR).

4 Generalized Principle of Partial Evaluation
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PNMR : p← p
q ← not p

comp(PNMR) : p ≡ p
q ≡ ¬p

?-q: No (COMP).
Yes (NMR).

P ′
NMR : p← p

q ← not p
r ← not r

comp(P ′
NMR) : p ≡ p

q ≡ ¬p
r ≡ ¬r

?-p: Yes (COMP).
No (NMR).

For both programs, the answers of the completion-semantics do not match our
NMR-intuition! In the case of PNMR we expect q to be derivable, since we expect
not p to be derivable: the only possibility to derive p is the rule p ← p which,
obviously, will never succeed. But q 6∈Th({q ≡ ¬p}) = comp(PNMR)! In the case
of P ′

NMR we expect p not to be derivable, for the same reason: the only possibility
to derive p is the rule p← p. But p ∈ Fml = Th({r ≡ ¬r}) = comp(P ′

NMR)!
Note that the answers of the completion-semantics agree with the mechanism

of SLDNF: p ← p represents a loop. The completion of P ′ is inconsistent: this
led Fitting to consider the three-valued version of comp(P ) mentioned at the
end of Section 3.1. This approach avoids the inconsistency (the query ?-p is not
answered “yes”) but it still does not answer “no” as we would like to have.

The last principle in this section is related to Subsumption: we can get rid of
non-minimal rules by simply deleting them.

Principle 06 (Subsumption)
In a program P we can delete a rule A← B+∧ not B− whenever there is another
rule A← B′+ ∧ not B′− with

B′+ ⊆ B+ and B′− ⊆ B−.

As a simple example, the rule A ← B,C, not D, not E is subsumed by the 3
rules A← C, not D, not E or A← B,C, not E and by A← C, not E.

3.3 The Well founded Semantics: WFS

We call a semantics

SEM1 weaker than SEM2, written SEM1 ≤k SEM2,

if for all programs P and all atoms or default-atoms l the following holds:
SEM1(P ) |= l implies SEM2(P ) |= l. I.e. all atoms derivable from SEM1 with re-
spect to P are also derivable from SEM2. The notion ≤k refers to the knowledge
ordering in three-valued logic.

In fact, there exists a weakest semantics (as it turns out, this semantics is
identical to the well founded semantics, originally introduced in [116]) satisfying
our 4 principles (see [30,29,60]):



18 Gerhard Brewka and Jürgen Dix

Theorem 4 (WFS, [30]).
There exists the weakest semantics satisfying our four principles Elimination of
Tautologies, Reduction, Subsumption and GPPE. This semantics is called well
founded semantics WFS.

It can also be shown, that for propositional programs, our transformations can
be applied to compute this semantics.

Theorem 5 (Confluent Calculus for WFS,[29]).
The calculus consisting of these four transformations is confluent, i.e. whenever
we arrive at an irreducible program, it is uniquely determined. The order of the
transformations does not matter.

For finite propositional programs, it is also terminating: any program P is
therefore associated a unique normalform res(P ). The well founded semantics
of P can be read off from res(P ) as follows

WFS(P ) = {A : A← ∈ res(P )} ∪ {not A : A is in no head of res(P )}

We note that the size of the residual program is in general exponential in the
size of the original program. Recently it was shown in [34,31] how a small modi-
fication of the residual program, which still satisfies the nice characterization of
computing WFS as given in Theorem 5, results in a polynomial computation.

Therefore the well founded semantics associates to every program P with
negation a set consisting of atoms and default-atoms. This set is a 3-valued
model of P . It can happen, of course, that this set is empty. But it is always
consistent, i.e. it does not contain an atom A and its negation not A. Moreover, it
extends SLDNF: whenever SLDNF derives an atom or default-atom and does not
flounder, then WFS derives it as well. Therefore the two examples of Section 2.2
are handled in the right way. But also for Example 3 we get the desired answers.

As we said above, loop-checking is in general undecidable. Therefore WFS
is in the most general case where variables and function-symbols are allowed,
undecidable. Only for finite propositional programs it is decidable. In fact, it is
of quadratic complexity see [31].

Let us end this section with another example, which contains negation.

Example 5 (Van Gelder’s Example).
Assume we are describing a two-players game like checkers. The two players
alternately move a stone on a board. The moving player wins when his opponent
has no more move to make. We can formalize that by

– wins(x) ← move from to(x,y), not wins(y)

meaning that

– the situation x is won (for the moving player A), if he can lead over5 to a
situation y that can never be won for B.

5 With the help of a regular move, given by the relation move from to/2.
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We also have move from to(a, b), move from to(b, a) and move from to(b, c)
as facts. Our query to this program Pgame is ?-wins(b) Here we have no problems
with floundering, but using SLDNF we get an infinite sequence of oscillating
SLD-trees (none of which finitely fails).

WFS, however, derives the right results

WFS(Pgame) = {not wins(c), wins(b), not wins(a)}

which matches completely with our intuitions.

3.4 The Stable Semantics: STABLE

We defined WFS as the weakest semantics satisfying our four principles. This
already indicates that there are even stronger semantics. One of the main compe-
ting approaches is the stable semantics STABLE. The stable semantics associates
to any program P a set of 2-valued models, like classical predicate logic. STABLE
satisfies the following property, in addition to those that have been already
introduced:

Principle 07 (Elimination of Contradictions)
Suppose a program P has a rule which contains the same atom A and not A in
its body. Then we can eliminate this rule without changing the semantics.

This principle can be used, in conjunction with the others to define the stable
semantics

Theorem 6 (STABLE,[28]).
There exists the weakest semantics satisfying our five principles Elimination of
Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradictions.

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-valued
models ([28]). The underlying idea of STABLE is that any atom in an intended
model should have a definite reason to be true or false. This idea was made
explicit in [19,20] and, independently, in [73]. We use the latter terminology and
introduce the Gelfond-Lifschitz transformation: for a program P and a model
N ⊆ BP we define

PN := {ruleN : rule ∈ P}
where rule := A← B1, . . . , Bn, not C1, . . . , not Cm is transformed as follows

(rule)N :=
{
A← B1, . . . , Bn, if ∀j : Cj 6∈N ,
t, otherwise.

Note that PN is always a definite program. We can therefore compute its least
Herbrand model MP N and check whether it coincides with the model N with
which we started:
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Definition 6 (STABLE).
N is called a stable model6 of P if and only if MP N = N .

What is the relationship between STABLE and WFS? We have seen that
they are based on rather identical principles.

– Stable models N extend WFS: l ∈WFS(P ) implies N |= l.
– If WFS(P ) is two-valued, then WFS(P ) is the unique stable model.

But there are also differences. We refer to Example 5 and consider the program
P consisting of the clause

wins(x) ← move from to(x, y), not wins(y)

together with the following facts: move from to(a, b), move from to(b, a), as
well as move from to(b, c), and move from to(c, d). In this particular case we
have two stable models: {wins(a), wins(c)} and {wins(b), wins(c)} and there-
fore

WFS(P ) = {wins(c), not wins(d)} =
⋂

N a stable model of P

N .

This means that the 3-valued well founded model is exactly the set of all atoms
or default-atoms true in all stable models. But this is not always the case, as the
program of Psplitting shows:

Example 6 (Reasoning by cases).

Psplitting : a← not b
b← not a
p← a
p← b

Although neither a, nor b can be derived in any semantics based on two-valued
models (as STABLE for example), the disjunction a ∨ b, thus also p, is true.
In this way the example is handled by the completion semantics, too. WFS(P ),
however, is empty; if the WFS cannot decide between a or not a, then a is
undefined.

The main differences between STABLE and WFS are

– STABLE is not always consistent,
– STABLE does not allow for a goal-oriented implementation.

The inconsistency comes from odd, negative cycles

STABLE(p← not p) = ∅.
6 Note that we only consider Herbrand models.
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The idea to consider 2-valued models for a semantics necessarily implies its
inconsistency ([24]). Note that WFS(p← not p) = {∅} which is quite different!
Sufficient criteria for the existence of stable models are contained in [68,70].

That STABLE does not allow for a Top-Down evaluation is a more serious
drawback and has nothing to do with inconsistency.

We end this section with another description of WFS and STABLE that will
be useful in later sections. It was introduced in [11,12]:

Definition 7 (Antimonotone Operator γP ).
For a program P and a set N ⊂ BP we define an operator γP mapping Herbrand-
structures to Herbrand structures:

γP (N) := MP N .

It is easy to see that γP is antimonotone. Therefore its twofold application γ2 is
monotone ([109]).

Obviously, the stable models of a program P are exactly the fixpoints of γP .
This is just a reformulation of Definition 6. WFS is related to γ as follows

Theorem 7 (WFS and γ2).
A positive atom A is in WFS(P) if and only if A ∈ lfp(γ2

P ). A default-atom
not A is in WFS(P) if and only if A 6∈gfp(γ2

P ):

WFS(P ) = lfp(γ2
P ) ∪ {not A : A 6∈gfp(γ2

P )}.
Atom or default-atoms that do occur in neither of the two sets are undefined.

4 Adding Explicit Negation

So far we have considered programs with one special type of negation, namely
default negation. Default negation is particularly useful in domains where com-
plete positive information can be obtained. For instance, if one wants to represent
flight connections from Budapest to the US it is very convenient to represent
all existing flights and to let default negation handle the derivation of negative
information. There are domains, however, where the lack of positive informa-
tion cannot be assumed to support (or support with enough strength) that this
information is false. In such domains it becomes important to distinguish be-
tween cases where a query does not succeed and cases where the negated query
succeeds. The following example was used by McCarthy to illustrate the issue.
Assume one wants to represent the rule: cross the railroad tracks if no train is ap-
proaching. The straightforward representation of this rule with default negation
would be

crosstracks← not train

It seems obvious that in many practical settings the use of such a rule would not
lead to intended behavior, in fact it might even have disastrous consequences.
What seems to be needed here is the possibility of using a different negation
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symbol representing a stronger form of negation. This new negation — we will
call it explicit negation — should be true only if the corresponding negated
literal can actually be derived. We will use the classical negation symbol ¬ to
represent explicit negation. The track crossing rule will be represented as

crosstracks← ¬train

The idea is that this latter rule will only be applicable if ¬train has been proved,
contrary to the first rule which is applicable whenever train is not provable.

In the next section we will shortly discuss that explicit negation is (or should
not be) classical negation and how it should interfere with default negation.
In the two following subsections we will generalize the semantics STABLE and
WFS, respectively, to programs with explicit negation.

4.1 Explicit vs. Classical and Strong Negation

First we define the language we are using more precisely.

Definition 8 (Extended Logic Program).
An extended logic program consists of rules of the form

c← a1, . . . , an, not b1, . . . , not bm

where the ai, bj and c are literals, i.e., either propositional atoms or such atoms
preceded by the classical negation sign. The symbol “not ” denotes negation by
failure (default negation), “¬” denotes explicit negation.

We have already motivated the need of a second kind of negation “¬” different
from “not ”. What should the semantics of “¬” be? Should it be just like in
classical logic? Note that classical negation satisfies the law of excluded middle

A ∨ ¬A.

The following example taken from [4] shows that classical negation is sometimes
inappropriate for KR-tasks.

Example 7 (Behavior of Classical Negation).
Suppose an employer has several candidates that apply for a job. Some of them
are clearly qualified while others are not. But there may also be some candidates
whose qualifications are not clear and who should therefore be interviewed in
order to find out about their qualifications. If we express the situation by

hire(X) ← qualified(X) and reject(X) ← ¬qualified(X)

then, interpreting “¬” as classical negation, we are forced to derive that every
candidate must either be hired or rejected! There is no room for those that
should be interviewed. Also, applying the law of excluded middle has a highly
non-constructive flavor.
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Let us now consider again the example crosstracks ← ¬train from the be-
ginning of this section. Suppose that we replace ¬train by free track. We obtain

crosstracks← free track.

From this program, “not crosstracks” will be derivable for any semantics. There-
fore we should make sure that “ not crosstracks” is also derivable from

crosstracks← ¬train

After all, the second program is obtained from the first one by a simple syntactic
operation. This means we have to make sure that default negation “ not ” treats
positive and negative atoms symmetrically.

Such a negation, we will call it explicit will be introduced in the next two sec-
tions. Sometimes explicit negation is also called strong negation and denotes still
a variant of our explicit negation. In [4] the authors introduce both a strong and
explicit negation and discuss their relation with classical and default negation
at length.

4.2 STABLE for Extended Logic Programs

The extension of STABLE to extended logic programs is based on the notion
of answer sets which generalize the original notion of stable models in a rather
straightforward manner. Let us first introduce some useful notation. We say a
rule r = c ← a1, . . . , an, not b1, . . . , not bm ∈ P is defeated by a literal l iff
l = bi for some i ∈ {1, . . . ,m}. We say r is defeated by a set of literals X if X
contains at least one literal that defeats r. Furthermore, we call the rule obtained
by deleting weakly negated preconditions from r the monotonic counterpart of r
and denote it with Mon(r). We also apply Mon to sets of rules with the obvious
meaning.

Definition 9 (X-reduct).
Let P be an extended logic program, X a set of literals. The X-reduct of P ,
denoted PX , is the program obtained from P by

– deleting each rule defeated by X, and
– replacing each remaining rule r with its monotonic counterpart Mon(r).

Definition 10 (Consequences of Rules).
Let R be a set of rules without negation as failure. Cn(R) denotes the smallest
set of literals that is

1. closed under R, and
2. logically closed, i.e., either consistent or equal to the set of all literals.
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Definition 11 (Answer set).
Let P be an extended logic program, X a set of literals. Define the operator γP

as follows:
γP (X) = Cn(PX)

X is an answer set of P iff X = γP (X).

The definition of answer sets is thus based on a natural generalization of the
operator γP (see Definition 7) to extended logic programs.

A literal l is a consequence of a program P under the new semantics, denoted
l ∈ STABLE(P ), iff l is contained in all answer sets of P .

It is not difficult to see that for programs without explicit negation stable
models and answer sets coincide. Here is an example involving both types of
negation. The example describes the strategy of a certain college for awarding
scholarships to its students. It is taken from [10]:

Pel : (1) eligible(x) ← highGPA(x)
(2) eligible(x) ← minority(x), fairGPA(x)
(3) ¬eligible(x) ← ¬fairGPA(x),¬highGPA(x)
(4) interview(x)← not eligible(x), not ¬eligible(x)

Assume in addition to the rules above the following facts about Anne are given:

fairGPA(Anne),¬highGPA(Anne)

We obtain exactly one answer set, namely

{fairGPA(Anne),¬highGPA(Anne), interview(Anne)}

Anne will thus be interviewed before a decision about her eligibility is made. If
we use the above rules together with the facts

minority(Mike), fairGPA(Mark)

then the program entails eligible(Mike).
We obtain the following result [83]:

Lemma 1 (Program Types).
Let P be an extended logic program. P satisfies exactly one of the following
conditions:

– P has no answer sets,
– P has an answer set, and all its answer sets are consistent,
– the only answer set for P is Lit,

A program is consistent if the set of its consequences is consistent, and incon-
sistent otherwise. The former corresponds to the second case, the latter to the
other two.
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It should be noted that extended logic programs under answer set semantics
can be reduced to general logic programs as follows: for any predicate p occur-
ring in a program P we introduce a new predicate symbol p′ of the same arity
representing the explicit negation of p. We then replace each occurrence of ¬p
in the program with p′, thus obtaining the general logic program P ′. It can be
proved that a consistent set of literals S is an answer set of P iff the set S′ is a
stable model of P ′, where S′ is obtained from S by replacing ¬p with p′.

4.3 WFS for Extended Logic Programs

We now show how the second major semantics for general logic programs, WFS,
can be extended to logic programs with explicit negation. For our purposes the
characterization of WFS given in Theorem 7 will be useful. WFS is based on
a particular three-valued model. To simplify our presentation in this section we
will restrict ourselves to the literals which are true in this three-valued model.
The literals which are false will be left implicit. They can be added in a canonical
way as follows: let T , the set of true literals, be defined as the least fixed point
of a monotone operator composed of two antimonotone operators op1op2. Then
the literals which are false in the three-valued model are exactly those which are
not contained in op2(T ). Given this canonical extension to the full three-valued
model we can safely leave the false literals implicit from now on.

A natural idea is to use the characterization of WFS in terms of the least fixed
point of γ2

P , as in Theorem 7, where γP now is the new generalized operator from
Definition 4.2 [10,83]. This works in some cases, but often leads to very weak
results.

Consider the following program P0 which has also been discussed by Baral
and Gelfond [10]:

P0 : (1) b ← not ¬b
(2) a ← not ¬a
(3) ¬a← not a

The least fixed point of γ2 is empty since γP0(∅) equals Lit, the set of all lit-
erals, and the Lit-reduct of P0 contains no rule at all. This is surprising since,
intuitively, the conflict between (2) and (3) has nothing to do with ¬b and b.

This problem arises whenever the following conditions hold:

1. a complementary pair of literals is provable from the monotonic counterparts
of the rules of a program P , and

2. there is at least one proof for each of the complementary literals whose rules
are not defeated by Cn(P ′), where P ′ consists of the “strict” rules in P , i.e.,
those without negation as failure.

In this case well-founded semantics concludes l iff l ∈ Cn(P ′). It should be
obvious that such a situation is not just a rare limiting case. To the contrary, it
can be expected that many common sense knowledge bases will give rise to such
undesired behavior.
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A minor reformulation of the fixpoint operator can overcome this weakness
and leads to better results. Consider the following operator

γ?
P (X) = Cl(PX)

where Cl(R) denotes the minimal set of literals closed under the (classical) rules
R. Cl(R) is thus like Cn(R) without the requirement of logical closedness. Now
define a monotone operator as follows:

Γ ?
P (X) = γP (γ?

P (X))

With this operator well founded semantics can be defined.

Definition 12 (WFS for extended programs).
Let P be an extended logic program. The set of well-founded conclusions of P ,
denoted WFS(P ), is the least fixpoint of Γ ?

P .

Consider the effects of this modification on our example P0:

γ?
P0

(∅) = {a,¬a, b}.

Rule (1) is contained in the {a,¬a, b}-reduct of P0 and thus Γ ?
P0

(∅) = {b}. Since
b is also the only literal contained in all answer sets of P0 WFS actually coincides
with answer set semantics in this case.

It can be shown that every well-founded conclusion is a conclusion under
the answer set semantics. Well-founded semantics can thus be viewed as an
approximation of answer set semantics.

An alternative, somewhat stronger approach, was developed by Pereira and
Alferes [98,2,3], the semantics WFSX. This semantics implements the intuition
that a literal with default negation should be derivable from the corresponding
explicitly negated literal. The authors call this the coherence principle. To satisfy
the principle they use the seminormal version of a program P , denoted S(P ),
which is obtained from P by replacing each rule

c← a1, . . . , an, not b1, . . . , not bm

by the rule
c← a1, . . . , an, not b1, . . . , not bm, not −c

where −c is the complement of c, i.e. ¬c if c is an atom and a if c = ¬a. Based
on this notion Pereira and Alferes consider the following monotone operator:

ΩP (X) = γ?
P γ

?
S(P )(X)

The use of the seminormal version of the program in the first application of γ?

guarantees that a literal l is not considered a potential conclusion whenever the
complementary literal is already known to be true. In the general case S(P )X

contains fewer rules than PX . Therefore, fewer literals are considered as potential
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conclusions and thus more conclusions are obtained in each iteration of the
monotone operator. Here is an example [10]:

PWFSX : (1) a ← not b
(2) b ← not a
(3) ¬a←

The original version of WFS does not conclude b. In WFSX the set X = {¬a}
is obtained after the first iteration of the monotone operator. Since rule (1) is
not contained in the X-reduct of the seminormal version of the program the
monotonic counterpart of (2) produces b after the second iteration.

Although a number of researchers consider WFSX to be the more adequate
extension of well-founded semantics to extended logic programs the original for-
mulation is still very often found in the literature. For this reason we will base
our treatment of preferences in the next section on the earlier formulation based
on Γ ?.

For the next section a minor reformulation turns out to be convenient. In-
stead of using the monotonic counterparts of undefeated rules we will work with
the original rules and extend the definitions of the two operators Cn and Cl ac-
cordingly, requiring that default negated preconditions be neglected, i.e., for an
arbitrary set of rules P with default negation we define Cn(P ) = Cn(Mon(P ))
and Cl(P ) = Cl(Mon(P )). We can now equivalently characterize γP and γ?

P by
the equations

γP (X) = Cn(PX)

γ?
P (X) = Cl(PX)

where PX denotes the set of rules not defeated by X.
An alternative characterization of Γ ?

P will also turn out to be useful in the
next section. It is based on the following notion:

Definition 13 (X-SAFE).
Let P be a logic program, X a set of literals. A rule r is X-safe wrt. P (r ∈
SAFEX(P )) if r is not defeated by γ?

P (X) or, equivalently, if r ∈ Pγ?
P

(X).

With this new notion we can obviously characterize Γ ?
P as follows:

Γ ?
P (X) = Cn(Pγ?

P
(X)) = Cn(SAFEX(P ))

It is this last formulation that we will modify. More precisely, the notion of
X-safeness will be weakened to handle preferences adequately.

5 Adding Preferences

In this section we describe an extension of well-founded semantics for logic pro-
grams with two types of negation where information about preferences between
rules can be expressed in the logical language. Conflicts among rules are resolved
whenever possible on the basis of derived preference information.
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After giving some motivation in Section 5.1 we introduce our treatment of
preferences in Section 5.2. We show that our conclusions are, in general, a super-
set of the well-founded conclusions. Section 5.3 illustrates the expressive power
of our approach using a legal reasoning example.

5.1 Motivation

Preferences among defaults play a crucial role in nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity [99,110,111]
— we already discussed it in Example 1. In case of a conflict between defaults
we tend to prefer the more specific one since this default provides more reli-
able information. E.g., if we know that students are adults, adults are normally
employed, students are normally not employed, we want to conclude “Peter is
not employed” from the information that Peter is a student, thus preferring the
student default over the conflicting adult default.

Specificity is an important source of preferences, but not the only one, and
at least in some applications not necessarily the most important one. In the legal
domain it may, for instance, be the case that a more general rule is preferred since
it represents federal law as opposed to state law [100]. In these cases preferences
may be based on some basic principles regulating how conflicts among rules are
to be resolved. Also in other application domains, like model based diagnosis or
configuration, preferences play a fundamental role.

The relevance of preferences is well-recognized in nonmonotonic reasoning,
and prioritized versions for most of the nonmonotonic logics have been pro-
posed, e.g., prioritized circumscription [84], hierarchic autoepistemic logic [81],
prioritized default logic [35]. In these approaches preferences are handled in an
“external” manner in the following sense: some ordering among defaults is used
to control the generation of the nonmonotonic conclusions. For instance, in the
case of prioritized default logic this information is used to control the generation
of extensions. However, the preference information itself is not expressed in the
logical language.

Here we want to go one step further and represent also this kind of infor-
mation in the language. This makes it possible to reason not only with but
also about preferences. This is necessary in legal argumentation, for instance,
where preferences are context-dependent, and the assessment of the preferences
among involved conflicting laws is a crucial (if not the most crucial) part of the
reasoning.

The presentation in this section is based on [37]. A treatment of prioritized
logic programs under answer set semantics is described in [38].

5.2 Handling Preferences

In order to handle preferences we need to be able to express preference infor-
mation explicitly. Since we want to do this in the logical language we have to
extend the language. We do this in two respects:
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1. we use a set of rule names N together with a naming function name to be
able to refer to particular rules,

2. we use a special (infix) symbol ≺ that can take rule names as arguments to
represent preferences among rules.

Intuitively, n1 ≺ n2 where n1 and n2 are rule names means the rule with name
n1 is preferred over the rule with name n2.7

Definition 14 (Prioritized Program).
A prioritized logic program is a pair (R,name) where

– R is a set of rules containing all ground instances of the schemata

N1 ≺ N3 ← N1 ≺ N2, N2 ≺ N3

and
¬(N2 ≺ N1)← N1 ≺ N2

where Ni are parameters for names, and
– name a a partial injective naming function that assigns a name n ∈ N to

some of the rules in R.

Note that not all rules do necessarily have a name. The reason is that names
will only play a role in conflict resolution among defeasible rules, i.e., rules with
weakly negated preconditions. For this reason names for strict rules, i.e., rules
in which the symbol not does not appear, won’t be needed.

In our examples we leave the instances of the schemata for ≺ implicit. We
also assume that N and the function name are given implicitly. We write:

ni : c← a1, . . . , an, not b1, . . . , not bm

to express that name(c← a1, . . . , an, not b1, . . . , not bm) = ni.
Before introducing our new definitions we would like to point out how we

want the new explicit preference information to be used. Our approach follows
two principles:

1. We want to extend well-founded semantics, i.e. we want that every WFS-
conclusion remains a conclusion in the prioritized approach.

2. We want to use preferences to solve conflicts whenever this is possible without
violating principle 1.

Let us first explain what we mean by conflict here. Rules may be conflicting
in several ways. In the simplest case two rules may have complementary literals
in their heads. We call this a type-I conflict.

Definition 15 (Type-I Conflict).
Let r1 and r2 be two rules. We say r1 and r2 are type-I conflicting iff the head
of r1 is the complement of the head of r2.
7 Note that for historical reasons we follow the convention that the minimal rules are

the preferred ones.
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Conflicts of this type may render the set of well-founded conclusions inconsistent,
but do not necessarily do so. If, for instance, a precondition of one of the rules
is not derivable or a rule is defeated the conflict is implicitly resolved. In that
case the preference information will simply be neglected. Consider the following
program P1:

n1 : b← not c
n2 : ¬b← not b
n3 : n2 ≺ n1

There is a type-I conflict between n1 and n2. Although the explicit preference
information gives precedence to n2 we want to apply n1 here to comply with the
first of our two principles. Technically, this means that we can apply a preferred
rule r only if we are sure that r’s application actually leads to a situation where
literals defeating r can no longer be derived.

The following two rules exhibit a different type of conflict:

a← not b
b← not a

The heads of these rules are not complementary. However, the application of one
rule defeats the other and vice versa. We call this a direct type-II conflict. Of
course, in the general case the defeat of the conflicting rule may be indirect, i.e.
based on the existence of additional rules.

Definition 16 (Type-II Conflict).
Let r1 and r2 be rules, R a set of rules. We say r1 and r2 are type-II conflicting
wrt. R iff

1. Cl(R) neither defeats r1 nor r2,
2. Cl(R+ r1) defeats r2, and
3. Cl(R+ r2) defeats r1

Here R+r abbreviates R∪{r}. A direct type-II conflict is thus a type-II conflict
wrt. the empty set of rules. Note that the two types of conflict are not disjoint,
i.e. two rules may be in conflict of both type-I and type-II. Consider the following
program P2, a slight modification of P1:

n1 : b← not c, not ¬b
n2 : ¬b← not b
n3 : n2 ≺ n1

Now we have a type-II conflict between n1 and n2 (more precisely, a direct
type-II and a type-I conflict) that is not solvable by the implicit mechanisms of
well-founded semantics alone. It is this kind of conflict that we try to solve by
the explicit preference information. In our example n2 will be used to derive ¬b.
Note that now the application of n2 defeats n1 and there is no danger that a
literal defeating n2 might become derivable later. Generally, a type-II conflict
between r1 and r2 (wrt. some undefeated rules of the program) will be solved
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in favor of the preferred rule, say r1, only if applying r1 excludes any further
possibility of deriving an r1-defeating literal.

After this motivating discussion let us present the new definitions. Our treat-
ment of priorities is based on a weakening of the notion of X-safeness (Defini-
tion 13). In Section 4 we considered a rule r as X-safe whenever there is no
proof for a literal defeating r from the monotonic counterparts of X-undefeated
rules. Now in the context of a prioritized logic program we will consider a rule
r as X-safe if there is no such proof from monotonic counterparts of a certain
subset of the X-undefeated rules. The subset to be used depends on the rule
r and consists of those rules that are not “dominated” by r. Intuitively, r′ is
dominated by r iff r′ is

1. known to be less preferred than r and
2. defeated when r is applied together with rules that already have been estab-

lished to be X-safe.

It is obvious that whenever there is no proof for a defeating literal from all X-
undefeated rules there can be no such proof from a subset of these rules. Rules
that were X-safe according to our earlier definition thus remain to be X-safe.
Here are the precise definitions:

Definition 17 (Dominated Rules).
Let P = (R,name) be a prioritized logic program, X a set of literals, Y a set
of rules, and r ∈ R. The set of rules dominated by r wrt. X and Y , denoted
DomX,Y (r), is the set

{r′ ∈ R | name(r) ≺ name(r′) ∈ X and Cl(Y + r) defeats r′}

Note that DomX,Y (r) is monotonic in both X and Y . We can now define the
X-safe rules inductively:

Definition 18 (SAFEpr
X (P )).

Let P = (R,name) be a prioritized logic program, X a set of literals. The set of
X-safe rules of P , denoted SAFEpr

X (P ), is defined as follows: SAFEpr
X (P ) =⋃∞

i=0Ri, where

R0 = ∅, and for i > 0,
Ri = {r ∈ R | r not defeated by Cl(RX \DomX,Ri−1(r))}

Note that X-safeness is obviously monotonic in X. Based on this notion we
introduce a new monotonic operator Γ pr

P :

Definition 19 (WFSpr).
Let P = (R,name) be a prioritized logic program, X a set of literals. The oper-
ator Γ pr

P is defined as follows:

Γ pr
P (X) = Cn(SAFEpr

X (P ))
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As before we define the (prioritized) well-founded conclusions of P , denoted
WFSpr(P ), as the least fixpoint of Γ pr

P . If a program does not contain preference
information at all, i.e., if the symbol ≺ does not appear in R, the new semantics
coincides with WFS since in that case no rule can dominate another rule. In
the general case, since the new definition of X-safeness is weaker than the one
used earlier we may have more X-safe rules and for this reason obtain more
conclusions than via Γ ?

P .
Consider the following prioritized program P :

n1 : b← not c
n2 : c← not b
n3 : n2 ≺ n1

We first apply Γ pr
P to the empty set. Besides the instances of the transitivity

and anti-symmetry schema that we implicitly assume only n3 is in SAFEpr
∅ (P ).

We thus obtain
S1 = {n2 ≺ n1,¬(n1 ≺ n2)}

We next apply Γ pr
P to S1. Since n2 ≺ n1 ∈ S1 we have n1 ∈ DomS1,∅(n2).

n2 ∈ SAFEpr
S1

(P ) since Cl(PS1 \ {n1}) does not defeat n2 and we obtain

S2 = {n2 ≺ n1,¬(n1 ≺ n2), c}

Further iteration of Γ pr
P yields no new literals, i.e. S2 is the least fixpoint. Note

that c is not a conclusion under the original well-founded semantics.
The following nondeterministic algorithm computes the least fixed point of

Γ pr
P with time complexity of O(n3), where n is the number of rules:

Procedure WFSpr

Input: A prioritized logic program P = (R,name) with |R| = n
Output: the least fixed point of Γ pr

P

S0 := ∅;
R0 := ∅;
for i = 1 to n do

if there is a rule r ∈ RSi−1 \Ri−1 such that
Cl(RSi−1 \DomSi−1,Ri−1(r)) does not defeat r
then Ri := Ri−1 + r;Si := Cn(Ri)
else return Si−1

endfor
end WFSpr

5.3 A Legal Reasoning Example

In this section we show how our approach can be applied to legal reasoning
problems. We will use an example first discussed by Gordon [75].

Example 8 (Legal Reasoning).
Assume a person wants to find out if her security interest in a certain ship is
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perfected. She currently has possession of the ship. According to the Uniform
Commercial Code (UCC, §9-305) a security interest in goods may be perfected
by taking possession of the collateral. However, there is a federal law called the
Ship Mortgage Act (SMA) according to which a security interest in a ship may
only be perfected by filing a financing statement. Such a statement has not been
filed. Now the question is whether the UCC or the SMA takes precedence in this
case. There are two known legal principles for resolving conflicts of this kind.
The principle of Lex Posterior gives precedence to newer laws. In our case the
UCC is newer than the SMA. On the other hand, the principle of Lex Superior
gives precedence to laws supported by the higher authority. In our case the SMA
has higher authority since it is federal law.

The available information can nicely be represented in our approach. To make
the example somewhat shorter we use the notation

c⇐ a1, . . . , an, not b1, . . . , not bm

as an abbreviation for the rule

c← a1, . . . , an, not b1, . . . , not bm, not c′

where c′ is the complement of c, i.e. ¬c if c is an atom and a if c = ¬a. Such
rules thus correspond to semi-normal or, if m = 0, normal defaults in Reiter’s
default logic [103].

We use the ground instances of the following named rules to represent the
relevant article of the UCC, the SMA, Lex Posterior (LP), and Lex Superior
(LS). The symbols d1 and d2 are parameters for rule names:

UCC : perfected⇐ possession
SMA : ¬perfected⇐ ship,¬fin-statement
LP (d1, d2) : d1 ≺ d2 ⇐ more-recent(d1, d2)
LS(d1, d2) : d1 ≺ d2 ⇐ fed-law(d1), state-law(d2)

The following facts are known about the case and are represented as rules without
body (and without name):

possession
ship
¬fin-statement
more-recent(UCC, SMA)
fed-law(SMA)
state-law(UCC)

Let’s call the above set of literals H. Iterated application of Γ pr
P yields the

following sequence of literal sets (in each case Si = (Γ pr
P )i(∅)):

S1 = H
S2 = S1
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The iteration produces no new results besides the facts already contained in
the program. The reason is that UCC and SMA block each other, and that
no preference information is produced since also the relevant instances of Lex
Posterior and Lex Superior block each other. The situation changes if we add
information telling us how conflicts between the latter two are to be resolved.
Assume we add the following information:8

LS(SMA,UCC) ≺ LP (UCC, SMA)

Now we obtain the following sequence:

S1 = H ∪ {LS(SMA,UCC) ≺ LP (UCC, SMA),
¬LP (UCC, SMA) ≺ LS(SMA,UCC)}

S2 = S1 ∪ {SMA ≺ UCC,¬UCC ≺ SMA}
S3 = S2 ∪ {¬perfected}
S4 = S3

This example nicely illustrates how in our approach conflict resolution strategies
can be specified declaratively, by simply asserting relevant preferences among
the involved conflicting rules.

6 Adding Disjunction

In this section we will extend our programs to disjunctive statements. In Know-
ledge Representation it often occurs that we know A ∨ B ∨ C without being
sure which of these propositions hold. In fact, such a disjunction leaves it open:
there might be states in the world where A holds or B or C or any combination
thereof. Nevertheless, we can have information that A implies D and B implies
D and C implies D from which we would like to derive that D holds for sure.
It has been shown that even with disjunctive programs without negation we can
already express relations which belong to the second level of the polynomial
hierarchy.

Concerning the right semantics for such programs, we are in the same situ-
ation as in Section 3 — for positive programs there is general agreement while
for disjunctive programs with default-negation there exist several competing ap-
proaches.

We present in Section 6.1 the generalized closed world assumption introduced
by Minker. In Section 6.2 we show that our definition of WFS from Section 3.3
immediately carries over to the disjunctive case. The original definition of STA-
BLE (Definition 6) also carries over — we present it in Section 6.3.

6.1 GCWA

GCWA was defined by Minker ([87]) and can bee seen as a refined version of the
CWA introduced by Reiter ([102]):
8 In realistic settings one would again use a schema here. In order to keep the example

simple we use the relevant instance of the schema directly.
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Definition 20 (CWA).

CWA(DB) = DB ∪ {¬P (t) : DB 6|= P (t)} ,
where P (t) is a ground predicate instance.

That is, if a ground term cannot be inferred from the database, its negation is
added to the closure. A weakness of CWA is that already for very simple theories,
like A ∨B it is inconsistent. Since neither A nor B is derivable, we have to add
both their negations which makes the whole set inconsistent.

GCWA is defined for positive disjunctive programs consisting of rules of the
form

A1 ∨ . . . ∨An ← B1, . . . , Bm

by declaring all the minimal models to be the intended ones:

Definition 21 (GCWA).
The generalized closed world assumption GCWA of P is the semantics given by
the set of all minimal Herbrand models of P :

GCWA(P ) := Min-MOD(P )

GCWA is very important because it plays the same role for positive disjunc-
tive programs as the least Herbrand model MP does for definite programs.

Note also that as far as we consider deriving positive disjunctions, we stay
entirely within classical logic — a positive disjunction is true in GCWA if and
only if it follows from the program considered as a classical theory. Therefore
this task can be accomplished be methods and techniques developed in theorem
proving in the last 30 years. In fact this was one of the main starting points of
the DisLoP-project in Koblenz (see Section 7.2).

In Sections 2 and 3 we have introduced the general notion of a semantics and
various principles. Do they carry over to the disjunctive case? Fortunately, the
answer is yes. In addition, GCWA not only satisfies all these properties, it is also
uniquely characterized by them as the next theorem shows (we will introduce
these properties in the next section).

Theorem 8 (Characterization of GCWA, [28]).
Let SEM be a semantics satisfying GPPE and Elimination of Tautologies.

a) Then: SEM(P ) ⊆ Min-MOD2−val(P ) for positive disj. programs P .
I.e. any such semantics is already based on 2-valued minimal models. In
particular, GCWA is the weakest semantics with these properties.

b) If SEM is non-trivial and satisfies in addition9 Isomorphy and Relevance,
then it coincides with GCWA on positive disjunctive programs.

We end this section with the discussion of a well-known example that can
not be handled adequately by Circumscription:
9 See Section 7.1 for the precise definitions of Relevance and Isomorphy.
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Example 9 (Poole’s Broken Arm).
Usually, a person’s left arm is usable. But if the left arm is broken, it is an
exception. The same statement holds for the right arm. Suppose that we saw
Fred yesterday with a broken arm but we do not remember if it was the left or
the right one. We also know that Fred can make out a cheque if he has at least
one usable arm (he is ambidextrous) but that he is completely disabled if both
arms are broken. Here is the natural formalization:

left use(x) ← not ab(left, x)
ab(left, x) ← left brok(x)
right use(x) ← not ab(right, x)
ab(right, x) ← right brok(x)
left brok(Fred) ∨ right brok(Fred)←
make cheque(x) ← left use(x)
make cheque(x) ← right use(x)
disabled(x) ← left brok(x), right brok(x)

Of course, we expect that Fred is able to make out a cheque even without know-
ing which arm he is actually using. Also we derive that he is not (completely)
disabled.

For general Circumscription, the problem is to rule out the unintended model
where both arms are broken and Fred is disabled. As we will see later, both
D-WFS and DSTABLE derive that Fred is not disabled but only DSTABLE is
strong enough to also conclude that Fred can make out a cheque.

6.2 D-WFS

Before we can state the definition of D-WFS we have to extend our principles
to disjunctive programs with default-negation. We abbreviate general rules

A1 ∨ . . . ∨Ak ← B1, . . . , Bm, not C1, . . . , not Cn,

by
A ← B+, not B−

where A := {A1, . . . , Ak}, B+ := {B1, . . . , Bm}, B− := {C1, . . . , Cn}. We also
generalize our notion of a semantics slightly:

Definition 22 (Operator |∼, Semantics S|∼).
By a semantic operator |∼ we mean a binary relation between logic programs and
pure disjunctions which satisfies the following three arguably obvious conditions:

1. Right Weakening: If P |∼ ψ and ψ ⊆ ψ′10, then P |∼ ψ′.
2. Necessarily True: If A← true ∈ P for a disjunction A, then P |∼ A.

10 I. e. ψ is a subdisjunction of ψ′.
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3. Necessarily False: If A 6∈Head atoms(P )11 for L-ground atom A, then P |∼
not A.

Given such an operator |∼ and a logic program P , by the semantics S|∼(P ) of P
determined by |∼ we mean the set of all pure disjunctions derivable by |∼ from
P , i.e., S|∼(P ) := {ψ | P |∼ ψ}.
In order to give a unified treatment in the sequel, we introduce the following
notion:

Definition 23 (Invariance of |∼ under a Transformation).
Suppose that a program transformation Trans : P 7→Trans(P ) mapping logic
programs into logic programs is given. We say that the operator |∼ is invariant
under Trans (or that Trans is a |∼-equivalence transformation) iff

P |∼ ψ ⇐⇒ Trans(P ) |∼ ψ
for any pure disjunction ψ and any program P .

All our principles introduced below can now be naturally extended.

Definition 24 (Elimination of Tautologies, Non-Minimal Rules).
Semantics S|∼ satisfies a) the Elimination of Tautologies, resp. b) the Elimina-
tion of Non-Minimal Rules iff |∼ is invariant under the following transforma-
tions:

a) Delete a rule A ← B+ ∧ not B− with A ∩ B+ 6= ∅.
b) Delete a rule A ← B+ ∧ not B− if there is another rule
A′ ← B+′ ∧ not B−′ with A′ ⊆ A, B+′ ⊆ B+, and B−′ ⊆ B−.

Our partial evaluation principle has now to take into account disjunctive heads.
The following definition was introduced independently by Sakama/Seki and
Brass/Dix ([22,28,106]):

Definition 25 (GPPE).
Semantics S|∼ satisfies GPPE iff it is invariant under the following transfor-
mation: Replace a rule A ← B+ ∧ not B− where B+ contains a distinguished
atom B by the rules

A ∪ (Ai \ {B}
) ← (B+ \ {B}) ∪ B+

i ∧ not
(B− ∪ B−

i

)
(i = 1, . . . , n)

where Ai ← B+
i ∧ not B−

i (i = 1, . . . , n) are all the rules with B ∈ Ai.

Note that we are free to select a specific positive occurrence of an atom B
and then perform the transformation. The new rules are obtained by replacing
B by the bodies of all rules r with head literal B and adding the remaining head
atoms of r to the head of the new rule.

Here is the analogue of Principle 04:
11 We denote by Head atoms(P ) the set of all (instantiations of) atoms ocurring in

some rule-head of P .
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Definition 26 (Positive and Negative Reduction).
Semantics S|∼ satisfies a) Positive, resp. b) Negative Reduction iff |∼ is invari-
ant under the following transformations:

a) Replace A ← B+ ∧ not B− by A ← B+ ∧ not
(B− ∩Head atoms(P )

)
.

b) Delete A ← B+ ∧ not B− if there is a rule A′ ← true with A′ ⊆ B−.

Now the definition of a disjunctive counterpart of WFS is straightforward:

Definition 27 (D-WFS).
There exists the weakest semantics satisfying positive and negative Reduction,
GPPE, Elimination of Tautologies and non-minimal Rules. We call this seman-
tics D-WFS.

As it was the case for WFS, our calculus of transformations is also confluent
([25,27]).

Theorem 9 (Confluent Calculus for D-WFS, [29]).
The calculus consisting of our four transformations is confluent and terminating
for propositional programs. I.e. we always arrive at an irreducible program, which
is uniquely determined. The order of the transformations does not matter.

Therefore any program P is associated a unique normalform res(P ). The
disjunctive well founded semantics of P can be read off from res(P ) as follows

ψ ∈ D-WFS(P ) ⇐⇒ there is A ⊆ ψ with A ← true ∈ res(P ) or
there is not A ∈ ψ and A 6∈Head atoms(res(P )).

Note that the original definition of WFS, or any of its equivalent characteriza-
tions, does not carry over to disjunctive programs in a natural way.

Let us see how Example 9 is handled by D-WFS. Applying GPPE and Re-
duction gives us the following residual program (we consider just the Fred-
instantiations):

left use(F ) ← not ab(left, F )
ab(left, F ) ∨ right brok(F ) ←
right use(F ) ← not ab(right, F )
ab(right, F ) ∨ left brok(F ) ←
left brok(F ) ∨ right brok(F )←
make cheque(F ) ← not ab(left, F )
make cheque(F ) ← not ab(right, F )

Therefore we derive not disabled(F ), because it does not appear in any head of
the residual program. All the remaining atoms are undefined.

Two properties of D-WFS are worth noticing

– For positive disjunctive programs, D-WFS coincides with GCWA.
– For non-disjunctive programs with negation, D-WFS coincides with WFS.
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6.3 DSTABLE

Unlike the well founded semantics, the original definition of stable models carries
over to disjunctive programs quite easily:

Definition 28 (DSTABLE).
N is called a stable model12 of P if and only if N ∈ Min-Mod(PN ).

In the last definition PN is the positive disjunctive program obtained from P by
applying the Gelfond/Lifschitz transformation (as introduced before Definition 6
— its generalization to disjunctive programs is obvious).

Analogously to D-WFS the following two properties of DSTABLE hold:

– For positive disjunctive programs, DSTABLE coincides with GCWA.
– For non-disjunctive programs, DSTABLE coincides with STABLE.

What about our transformations introduced to define D-WFS? Do they hold
for DSTABLE? Yes, they are indeed true. The most difficult proof is the one for
GPPE. It was proved in [26,106] independently that stable models are preserved
under GPPE. Moreover, Brass/Dix proved in [24] that STABLE can be almost
uniquely determined by GPPE:

Theorem 10 (Characterization of DSTABLE, [28]).
Let SEM be a semantics satisfying GPPE, Elimination of Tautologies, and Eli-
mination of Contradictions. Then: SEM(P ) ⊆ STABLE(P ).

Moreover, DSTABLE is the weakest semantics satisfying these properties.

DSTABLE is stronger than D-WFS as can be seen from Example 9. There
we have exactly two stable models

1. left use(F ), not ab(left, F ), ab(right, F ), not right use(F ),
right brok(F ), not left brok(F ), make cheque(F ), not disabled(F ),

2. right use(F ), not ab(right, F ), ab(left, F ), not left use(F ),
left brok(F ), not right brok(F ), make cheque(F ), not disabled(F ).

In all of them, Fred is not disabled and can make out a cheque.
Of course, DSTABLE inherits the shortcomings of STABLE such as incon-

sistency and no goal-orientedness.

7 What Do We Want and What Is Implemented?

In this part we first consider the question Is there an optimal semantics?
(Section 7.1) and give in Section 7.2 an overview of all the existing implemen-
tations we are aware of. We also describe theoretical approaches that have not
yet been implemented.

12 Note that we only consider Herbrand models.
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7.1 What is the Best Semantics?

Most probably there is no definite answer to the question in the title. Different
knowledge representation tasks may ask for different semantics. Some might be
better suited in special domains than others. What are reasonable properties
that semantics should be checked against?

While many people defined in the last years new semantics by considering
only few examples and appealing to their own personal intuitions they had about
how these few examples should be handled, Dix tried to adjust and investigate
abstract properties known in general nonmonotonic reasoning to semantics of
logic programs ([56,58,59,60]). He showed for example that WFS is cumulative
and rational and that a semantics defined independently by Schlipf and Dix is
the weakest extension of WFS satisfying Cut and Supraclassicality .

Besides such properties (which he calls strong) he defined also weak properties
— these are conditions that any reasonable semantics should satisfy ([57,60]).
The principles we have introduced in Sections 2, 3 belong to this sort. Let us
take a closer look into some weak properties already mentioned (but not yet
defined). We start with a property that is satisfied for any semantics we know:

Definition 29 (Isomorphy).
A semantics SEM satisfies Isomorphy, if and only if

SEM(I(P )) = I(SEM(P ))

for all programs P and isomorphisms I on the Herbrand base BP .

Isomorphy formalizes the intuition that a renaming of the program should have
no influence on the semantics, as long as we also apply this same renaming to
the semantics.

The next property gives a formal definition of the notion Goal-Orientedness.
To state these conditions, we need the classical notion of the Dependency-Graph
and the two definitions

– dependencies of(X) := {A : X depends on A}, and
– rel rul(P,X) is the set of relevant rules of P with respect to X, i.e. the set

of rules that contain an A ∈ dependencies of(X) in their head.

Given any semantics SEM and a program P , it is perfectly reasonable that
the truthvalue of a literal L, with respect to SEM(P), only depends on the
subprogram formed from the relevant rules of P with respect to L.13 This idea
is formalized by:

Definition 30 (Relevance).
The principle of Relevance states: L ∈ SEM(P ) iff L ∈ SEM(rel rul(P,L)).

13 Let dependencies of(not X) := dependencies of(X), and rel rul(P, not X) :=
rel rul(P,X).
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Note that the set of relevant rules of a program P with respect to a literal L con-
tains all rules, that could ever contribute to L’s derivation (or to its nonderivabil-
ity). In general, L depends on a large set of atoms: dependencies of(L) := {A :
L depends on A}. But rules that do not contain these atoms in their heads,
will never contribute to their derivation or non-derivation. Therefore, these rules
should not affect the meaning of L in P . STABLE does not satisfy this principle.
This is due to the nonexistence of stable models by adding a clause “c← not c”
to a program.

We have already introduced GPPE above. In fact, even a weaker property is
not satisfied for the semantics defined by Minker and his group:

Example 10 (Extension-by-Definition, [56]).
We consider the following two programs:

PGWFS : p ← not b
a← not b
b ← c
c ← p, not a

PGWFSc : p ← not b
a← not b
b ← p, not a
c ← p, not a

GWFS(PGWFS) entails not c, because Min-MOD(PGWFS) = { {p, a}, {b} } and
thus also (by simple negation-as-failure reasoning) not b, p and a. Also we have
the identity Min-MOD(PGWFSc)={ {p, a}, {b} } but negation-as-failure can not
be applied like before. Therefore GWFS(PGWFSc) does not entail not b, nor p
nor a.

PGWFSc partial evaluates PGWFS : the last but one clause was transformed
into another one by expanding the definition of c. Obviously, a semantics should
assign the same meaning to these programs: unfortunately GWFS does not!

Typical results of Dix are

– WFS is the weakest semantics satisfying some of these weak properties,
– WFS can be uniquely characterized if some strong properties are added.

We conclude with Table 1: an overview of the properties of some semantics
mentioned above.

The bad properties of the PMS (failure of Relevance) stem from the fact
that it was originally based on stable models. But the underlying idea of PMS is
to transform disjunctive programs into non-disjunctive ones and then applying
a semantics for non-disjunctive programs. By choosing semantics different from
STABLE, PMS inherits other properties (see [105]).

7.2 Query-Answering Systems and Implementations

In this section we give a rough overview of what semantics have been imple-
mented so far and where they are available. As already mentioned our NMR-
semantics are undecidable in general. Nevertheless we think it is very important
to have running systems that
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Properties of Logic-Programming Semantics
Semantics Reference Domain Taut. GPPE Red. NMin. Rel.
comp Cla78 Nondis. — • • • —
GCWA Min82 Pos. • • • • •
WGCWA RosTop88 Pos. — • • — •
DSTABLEGelLif91 Dis. • • • • —
WFS vGeld.etal88 Nondis. • • • • •
ST N Prz91 Dis. • • • • •
STATIC Prz95 Dis. • • • • •
D-WFS BraDix95 Dis. • • • • •
DWFS Dix92 Dis. • • • • •
Str. WFS Ros92 Dis. — — • — •
WD-WFS BraDix95 Dis. — • • — •
WDWFS Dix92 Dis. — • • — •
PMS SakIno94 Dis. — — • — —

Table 1. Semantics and Their Equivalence-Transformations

1. can handle programs with free variables, and
2. are Goal-Oriented.

To ensure completeness (or termination) we need then additional requirements
like allowedness (to prevent floundering, see Section 3.1) and no function sym-
bols.

Although these restrictions ensure the Herbrand-universe to be finite (and
thus we are really considering a propositional theory) we think that such a system
has great advantages over a system that can just handle ground programs. For
a language L, the fully instantiated program can be quite large and difficult to
handle effectively.

The goal-orientedness (or Relevance as introduced in Section 7.1) is also
important — after all this was one reason of the success of SLD-Resolution. As
noted above, such a goal-oriented approach is not possible for STABLE.

LP-Semantics Various commercial PROLOG-systems perform variants of SLD-
NF-Resolution. Chan’s constructive negation has also been implemented as part
of the master-theses [86,117].

Currently, a library of implemented logic programming systems and interest-
ing test-cases for such systems is collected as a project of the artificial intelligence
group at Koblenz. We refer to |http://www.uni-koblenz.de/ag-ki/LP/¿—.

Non-Disjunctive NMR-Semantics There are many theoretical papers that
deal with the problem of implementation ([21,80,53,71]) but only few running
systems. The problem of handling and representing ground programs given a
non-ground one has also been adressed [78,79,69].
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In [17,18] the authors showed how the problem of computing stable models
can be transformed to an Integer-Linear Programming Problem. This has been
extended in [64] to disjunctive programs.

Inoue et. al. show in [77] how to compute stable models by transforming
programs into propositional theories and then using a model-generation theorem
prover.

In Berne, Switzerland, a group around G. Jäger is building a non-monotonic
reasoning system which incorporates various monotonic and non-monotonic log-
ics. We refer to |http://lwbwww.unibe.ch:8080/LWBinfo.html—.

Extended logic programs under the well-founded semantics are considered by
Pereira and his colleagues: [97,1,3]. The REVISE system, which deals with con-
tradiction removal for paraconsistent programs in this semantics, can be found
in |¡http://www.uni-koblenz.de/ag-ki/LP/¿— too.

In [96], an implementation of WFS and STABLE with a special eye on com-
plexity is described.

The most advanced system has been implemented by David Warren and his
group in Stony Brook based on OLDT-algorithm of [108]. They first developed
a meta-interpreter (SLG, see [49]) in PROLOG and then directly modified the
WAM for a direct implementation of WFS (XSB). They use tabling-methods and
a mixture of Top-Down and bottom-up evaluation to detect loops. Their system
is complete and terminating for non-floundering DATALOG. It also works for
general programs but termination is not guaranteed. This system is described in
[47,46,48], and is available by anonymous ftp from |ftp.cs.sunysb.edu/pub/XSB—.

Disjunctive NMR-Semantics There are theoretical descriptions of imple-
mentations that have not yet been implemented: [72,90,52]. Also Sakama and
Seki describe an approach for first-order disjunctive programs ([107]).

Here are some implemented systems. Inoue et. al. show in [77] how to compute
stable models for extended disjunctive programs in a bottom-up-fashion using a
theorem prover.

The approach of Bell et. al. ([93]) was used by Dix/Müller to implement
versions of the stationary semantics of Przymusinski ([101]): [92,63,91].

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DATA-
LOG programs ([23]14). An implementation of static semantics is described in
[33]15.

Seipel has implemented in his DisLog-system various (modified versions of)
semantics of Minker and his group. His system is publicly available at the URL
|http://sunwww.informatik.uni-tuebingen.de:8080/dislog/dislog.tar.Z—.
However we again point to the very irregular behaviour of these semantics illus-
trated by Example 10.

Finally, there is the DisLoP project undertaken by the Artificial Intelligence
Research Group at the University of Koblenz and headed by J. Dix and U. Fur-
bach ([54,8,9]). This project aims at extending certain theorem proving concepts,
14 |ftp://ftp.informatik.uni-hannover.de/software/index.html—
15 |ftp://ftp.informatik.uni-hannover.de/software/static/static.html—
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such as restart model elimination [13] and hyper tableaux [14] calculi, for dis-
junctive logic programming. The hyper tableaux calculus can handle positive
queries with respect to positive disjunctive logic programs and seems to facil-
itate minimal model generation. Restart model elimination calculus does not
use any contrapositives of the given clauses and thus allows for their procedural
reading. Moreover, it is answer complete for positive queries [15]. Thus, they are
suitable for implementing an interpreter for positive progams and the DisLoP
system extends this further for non-monotonic negations too.

Currently, DisLoP system can perform minimal model reasoning based on
GCWA, WGCWA. Minimal model reasoning is an important problem to tackle,
since any well-known semantics for negation is a conservative extension of that.
DisLoP can perform minimal model reasoning in both top-down and bottom-
up manners. The bottom-up approach employs the hyper tableaux calculus to
generate potential minimal models and then uses a novel technique to check
the minimality of the generated model without any reference to other models.
This approach is described in [94,95]. The top-down approach is based on an
abductive framework studied in [7]. This introduces an inference rule, negation
as failure to explain, which allows us to assume the negation of a sentence if
there are no abductive explanations for that. The DisLoP system uses a mod-
ified restart model elimination calculus to generate abductive explanations of
the given sentence and employs negation-as-failure-to-explain inference rule for
minimal model reasoning.

This system can be extended to handle non-monotonic semantics such as
D-WFS, STATIC etc. In particular, an implementation of D-WFS for general
disjunctive programs which works in polynomial space is available ([32]). Cur-
rently, an extension to first-order programs is on its way ([65,66]). Information
on the DisLoP project and related publications can be obtained from the WWW
page |¡http://www.uni-koblenz.de/ag-ki/DLP/¿—.

An important outcome of the Dagstuhl Seminar 9627 ([62]) was to construct
a web page to collect and disseminate information on various logic programming
systems that concentrate on non-monotonic aspects (different kinds of negation,
disjunction, abduction etc.). This web page is actively maintained at the URL
|¡http://www.uni-koblenz.de/ag-ki/LP/¿—. In addition the Logic Programming
and Nonmonotonic Reasoning-conference 1997 ([55]) contains a special track on
implementations and working systems.
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Abs t r ac t  In this overview we show how Knowledge Representation 
(KR) can be done with the help of generalized logic programs. We start 
by introducing the core of PROLOG, which is based on definite logic 
programs. Although this class is very restricted (and will be enriched by 
various additional features in the rest of the paper), it has a very nice 
property for KR-tasks: there exist efficient Query-answering procedures 
- -  a Top-Down approach and a Bottom-Up evaluation. In addition we 
can not only handle ground queries but also queries with variables and 
compute answer-substitutions. 
It turns out that more advanced KR-tasks can not be properly handled 
with definite programs. Therefore we extend this basic class of programs 
by additional features like Negation-as-Finite-Failure, Default-Negation, 
Explicit Negation, Preferences, and Disjunction. The need for these ex- 
tensions is motivated by suitable examples and the corresponding seman- 
tics are discussed in detail. 
Clearly, the more expressive the respective class of programs under a cer- 
tain semantics is, the less efficient are potential Query-answering meth- 
ods. This point will be illustrated and discussed for every extension. By 
well-known recursion-theoretic results, it is obvious that there do not 
exist complete Query-answering procedures for the general case where 
variables and function symbols are allowed. Nevertheless we consider it 
an important topic of further research to extract feasible classes of pro- 
grams where answer-substitutions can be computed. 

1 Knowledge Representation with Non-classical Logic 

One of the major reasons for the success story (if one is really willing to call it a 
success story) of human beings on this planet is our ability to invent tools that  
help us improve our - -  otherwise often quite limited - -  capabilities. The inven- 
tion of machines that  are able to do interesting things, like transporting people 
from one place to the other (even through the air), sending moving pictures and 

* This is a short version of Chapter 6 in D. Gabbay and F. Guenthner (editors), Hand- 
book of Philosophical Logic, ~nd Edition, Volume 6, Methodologies, Reidel Publ., 1999 
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sounds around the globe, bringing our email to the right person, and the like, 
is one of the cornerstones of our culture and determines to a great degree our 
everyday life. 

Among the most challenging tools one can think of are machines that are 
able to handle knowledge adequately. Wouldn't it be great if, instead of the 
stupid device which brings coffee from the kitchen to your office every day at 
9.00, and which needs complete reengineering whenever your coffee preferences 
change, you could (for the same price, admitted) get a smart robot whom you 
can simply tell that you want your coffee black this morning, and that you need 
an extra Aspirin since it was your colleague's birthday yesterday? To react in the 
right way to your needs such a robot would have to know a lot, for instance that 
Aspirin should come with a glass of water, or that people in certain situations 
need their coffee extra strong. 

Building smart machines of this kind is at the heart of Artificial Intelligence 
(AI). Since such machines will need tremendous amounts of knowledge to work 
properly, even in very limited environments, the investigation of techniques for 
representing knowledge and reasoning is highly important. 

In the early days of AI it was still believed that modeling general purpose 
problem solving capabilites, as in Newell and Simon's famous GPS (General 
Problem Solver) program, would be sufficient to generate intelligent behaviour. 
This hypothesis, however, turned out to be overly optimistic. At the end of 
the sixties people realized that an approach using available knowledge about 
narrow domains was much more fruitful. This led to the expert systems boom 
which produced many useful application systems, expert system building tools, 
and expert system companies. Many of the systems are still in use and save 
companies millions of dollars per year 1. 

Nevertheless, the simple knowledge representation and reasoning methods 
underlying the early expert systems soon turned out to be insufficient. Most of 
the systems were built based on simple rule languages, often enhanced with ad 
hoc approaches to model uncertainty. It became apparent that more advanced 
methods to handle incompleteness, defeasible reasoning, uncertainty, causality 
and the like were needed. 

This insight led to a tremendous increase of research on the foundations 
of knowledgerepresentation and reasoning. Theoretical research in this area has 
blossomed in recent years. Many advances have been made and important results 
were obtained. The technical quality of this work is often impressive. 

On the other hand, most of these advanced techniques have had surprisingly 
little influence on practical applications so far. To a certain degree this is under- 
standable since theoretical foundations had to be laid first and pioneering work 
was needed. However, if we do not want research in knowledge representation to 
remain a theoreticians' game more emphasis on computability and applicability 
seems to be needed. We strongly believe that the kind of research presented in 
this overview, that is research aiming at interesting combinations of ideas from 

1 We refer the interested reader to the recent book 104 which gives a very detailed 
and nice exposition of what has been done in AI since its very beginning until today. 
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logic programming and nonmonotonic reasoning, provides an important step into 
this direction. 

1.1 Some History 

Historically, logic programs have been considered in the logic programming com- 
munity for more than 20 years. It began with 51,82, 115 and led to the defini- 
tion and implementation of PROLOG, a by now theoretically well-understood 
programming language (at least the declarative part consisting of Horn-clauses: 
pure PROLOG). Extensions of PROLOG allowing negative literals have been 
also considered in this area: they rely on the idea of negation-as-finite-failure, 
we call them Logic-Programming-semantics (or shortly LP-semantics). 

In parallel, starting at about 1980, Nonmonotonic Reasoning entered into 
computer science and began to constitute a new field of active research. It was 
originally initiated because Knowledge Representation and Common-Sense Rea- 
soning using classical logic came to its limits. Formalisms like classical logic are 
inherently monotonic and they seem to be too weak and therefore inadequate 
for such reasoning problems. 

In recent years, independently of the research in logic programming, people 
interested in knowledge representation and nonmonotonic reasoning also tried to 
define declarative semantics for programs containing default or explicit negation 
and even disjunctions. They defined various semantics by appealing to (different) 
intuitions they had about programs. 

This second line of research started in 1986 with the Workshop on the 
Foundations of Deductive Databases and logic programming organized by Jack 
Minker: the revised papers of the proceedings were published in 88. The strati- 
fied (or the similar perfect) semantics presented there can be seen as a splitting- 
point: it is still of interest for the logic programming community (see 43) but 
its underlying intuitions were inspired by nonmonotonic reasoning and therefore 
much more suitable for knowledge representation tasks. Semantics of this kind 
leave the philosophy underlying classical logic programming in that their pri- 
mary aim is not to model negation-as-finite-failure, but to construct new, more 
powerful semantics suitable for applications in knowledge representation. Let us 
call such semantics NMR-semantics. 

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz, 
Przymusinski and others, very close relationships between these two indepen- 
dent research lines became evident. Methods from logic programming, e.g. least 
fixpoints of certain operators, can be used successfully to define NMR-semantics. 

The NMR-semantics also shed new light on the understanding of the classical 
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various 
versions of Circumscription. In addition, the investigation of possible semantics 
for logic programs seems to be useful because 

1. parts of nonmonotonic systems (which are usually defined for full predicate 
logic, or even contain additional (modal)-operators) may be "implemented" 
with the help of such programs, 
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2. nonmonotonicity in these logics may be described with an appropriate treat- 
ment of negation in logic programs. 

1.2 Non.monotonic Formalisms in KR 

As already mentioned above, research in nonmonotonic reasoning has begun at 
the end of the seventies. One of the major motivations came from reasoning 
about actions and events. John McCarthy and Patrick Hayes had proposed their 
situation calculus as a means of representing changing environments in logic. The 
basic idea is to use an extra situation argument for each fact which describes 
the situation in which the fact holds. Situations, basically, are the results of 
performing sequences of actions. It soon turned out that the problem was not 
so much to represent what changes but to represent what does not change when 
an event occurs. This is the so-called frame problem. The idea was to handle the 
frame problem by using a default rule of the form 

I f  a property P holds in situation S then P typically also holds in the 
situation obtained by per/orming action A in S. 

Given such a rule it is only necessary to explicitly describe the changes induced 
by a particular action. All non-changes, for instance that the real colour of the 
kitchen wall does not change when the light is turned on, are handled implicitly. 
Although it turned out that a straightforward formulation of this rule in some 
of the most popular nonmonotonic formalisms may lead to unintended results 
the frame problem was certainly the challenge motivating many people to join 
the field. 

In the meantime a large number of different nonmonotonic logics have been 
proposed. We can distinguish four major types of such logics: 

1. Logics using nonstandard inference rules with an additional consistency 
check to represent default rules. Reiter's default logic and its variants are of 
this type. 

2. Nonmonotonic modal logics using a modal operator to represent consistency 
or (dis-) belief. These logics are nonmonotonic since conclusions may depend 
on disbelief. The most prominent example is Moore's autoepistemic logic. 

3. Circumscription and its variants. These approaches are based on a preference 
relation on models. A formula is a consequence iff it is true in all most 
preferred models of the premises. Syntactically, a second order formula is 
used to eliminate all non-preferred models. 

4. Conditional approaches which use a non truth-functional connective b, to 
represent defaults. A particularly interesting way of using such conditionals 
was proposed by Krans, Lehmann and Magidor. They consider p as a default 
consequence of q iff.the conditional q ~ p is in the closure of a given condi- 
tional knowledge base under a collection of rules. Each of the rules directly 
corresponds to a desirable property of a nonmonotonic inference relation. 

The various logics are intended to handle different intuitions about nonmono- 
tonic reasoning in a most general way. On the other hand, the generality leads to 
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problems, at least from the point of view of implementations and applications. In 
the first order case the approaches are not even semi-decidable since an implicit 
consistency check is needed. In the propositional case we still have tremendous 
complexity problems. For instance, the complexity of determining whether a for- 
mula is contained in all extensions of a propositional default theory is on the 
second level of the polynomial hierarchy. As mentioned earlier we believe that 
logic programming techniques can help to overcome these difficulties. 

Originally, nonmonotonic reasoning was intended to provide us with a fast 
but unsound approximation of classical reasoning in the presence of incomplete 
knowledge. Therefore one might ask whether the  higher complexity of NMR- 
formalisms (compared to classical logic) is not a real drawback of this aim? The 
answer is that NMR-systems allow us to formulate a problem in a very compact 
way as a theory T. It turns out that any equivalent formulation in classical logic 
(if possible at all) as a theory T'  is much larger: the size of T'  is exponential in the 
size of T! We refer to 74 and 41, 42, 40 where such problems are investigated. 

2 K n o w l e d g e  R e p r e s e n t a t i o n  w i t h  D e f i n i t e  Logic 
P r o g r a m s  

In this section we consider the most restricted class of programs: definite logic 
programs, programs without any negation at all. All the extensions of this basic 
class we will introduce later contain at least some kind of negation (and perhaps 
additional features). But here we also allow the ocurrence of free variables as 
well as function symbols. 

In Section 2.1 we introduce as a representative for the Top-Down approach 
the SLD-Resolution. Section 2.1 presents the main competing approach of SLD: 
Bottom-Up Evaluation. This approach is used in the Database community and 
it is efficient when additional assumptions are made (finiteness-assumptions, n o  

function symbols). Finally in Section 2.2 we present and discuss two important 
examples in KR: Reasoning in Inheritance Hierarchies and Reasoning about Ac- 
tions. Both examples clearly motivate the need of extending definite programs 
by a kind of defuult-negation "not  " 

First some notation used throughout this paper. A language s consists of 
a set of relation symbols and a set of function symbols (each symbol has an 
associated arity). Nullary functions are called constants. Terms and atoms are 
built from s in the usual way starting with variables, applying function symbols 
and relation-symbols. 

Instead of considering arbitrary E-formulae, our main object of interest is a 
program: 

Definition 1 (Definite Logic Program). 
A definite logic program consists of a finite number of rules of the form 

A ~- B1,. . .  ,Bin, 
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where A, B 1 , . . . ,  Bm are positive atoms (containing possibly free variables). We 
call A the head of the rule and B 1 , . . . , B m  its body. The comma represents 
conjunction A. 

We can think of a program as formalizing our knowledge about the world and 
how the world behaves. Of course, we also want to derive new information, i.e. we 
want to ask queries: 

De f in i t i on  2 ( Q ue ry ) .  
Given a definite program we usually have a definite query in mind that we want 

to be solved. A definite query Q is a conjunction of positive atoms C1 A . . . A Ct 
which we denote by 

? -  C 1 ,  . . . , C ~ .  

These Ci may also contain variables. Asking a query Q to a program P means 
asking for all possible substitutions ~9 of the variables in Q such that Q~9 follows 
from P.  Often, ~9 is also called an answer to Q. Note that Q~9 may still contain 
free variables. 

Note that  if a program P is given, we usually assume tha t  it also determines 
the underlying language/ : ,  denoted by s  which is generated by exactly the 
symbols ocurring in P. The set of all these atoms is called the Herbrand base 
and denoted by Bs or simply Bp. The corresponding set of all ground terms 
is the Herbrand universe. 

How are our programs related to classical predicate logic? Of course, we 
can map a program-rule into classical logic by interpreting "+--" as material 
implication "D" and universally quantifying. This means we view such a rule as 
the following universally quantified formula 

B 1 A . . . A B m  D A. 

However, as we will see later, there is a great difference: a logic program-rule 
takes some orientation with it. This makes it possible to formulate the following 
principle as an underlying intuition of all semantics of logic programs: 

P r inc ip l e  01 ( O r i e n t a t i o n )  
If  a ground atom A does not unify with some head of a program rule of P,  then 
this atom is considered to be false. In this case we say that "not A" is derivable 
from P to distinguish it from classical -~A. 

The orientation principle is nothing but a weak form of negation-by-failure. Given 
an intermediate goal not A, we first try to prove A. But if A does not unify with 
any head, A fails and this is the reason to derive not A. 

2.1 T o p - D o w n  v e r s u s  B o t t o m - U p  

SLD-Resolution 2 is a special form of Robinson's general Resolution rule. While 
Robinson's rule is complete for full first order logic, SLD is complete for definite 
logic programs (see Theorem 1 on the facing page). 

2 SL-resolution for Definite clauses. SL-resolution stands for Linear resolution with 
Selection function. 
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Definite programs have the nice feature that  the intersection of all Herbrand- 
models exists and is again a Herbrand model of P .  It  is denoted by M p  and 
called the least Herbrand-model of P .  Note that  our original aim was to find 
substitutions O such that  QO is derivable from the program P.  This task as 
well as M p  is closely related to SLD: 

T h e o r e m  1 ( S o u n d n e s s  a n d  C o m p l e t e n e s s  o f  S L D ) .  
The following properties are equivalent: 

- P ~ V QO, i.e. V QO is true in all models of P ,  
- M p ~  V Q O ,  
- SLD computes an answer r that subsumes 3 0 wrt Q. 

Note that  not any correct answer is computed, only the most general one is 
(which of course subsumes all the correct ones). 

The main feature of SLD-Resolution is its Goal-Orientedness. SLD automat-  
ically ensures (because it starts with the Query) tha t  we consider only those 
rules tha t  are relevant for the query to  be answered. Rules tha t  are not at all 
related are simply not considered in the course of the proof. 

B o t t o m - U p  

We mentioned in the last section the least Herbrand model Mp.  The bot tom-up 
approach can be described as computing this least Herbrand model from below. 

To be more precise we introduce the immediate consequence operator  T p  
which associates to any Herbrand model another Herbrand model. 

Def in i t ion  3 ( T p ) .  

Given a definite program P let Tp : 2 By ~ ~ 2BY; Z f ~ Tp(Z)  

Tp(Z)  := {A E Bp  : there is an instantiation of a rule in P 
s.t. A is the head of this rule and all 
body-atoms are contained in Z } 

It  turns out that  Tp is monotone and continuous so that  (by a general theorem 
of Knaster-Tarski) the least fixpoint is obtained after w steps. Moreover we have 

T h e o r e m  2 (Tp and M p ) .  
M p  = Tp~ ~ = l fp (Tp) .  

This approach is especially important  in Database applications, where the 
underlying language does not contain function symbols (DATALOG) - -  this 
ensures the Herbrand universe to be finite. Under this condition the iteration 
stops after finitely many steps. In addition, rules of the form 

a i.e. 3a : Qra = QO. 

p + - p  
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do not make any problems. They simply can not be applied or do not produce 
anything new. Note that  in the Top-Down approach, such rules give rise to infi- 
nite branches! Later,  elimination of such rules will turn  out to be an interesting 
property. We therefore formulate it as a principle: 

Principle 02 (Elimination of Tautologies) 
Suppose a program P has a rule which contains the same atom in its body as 
well as in its head (i.e. the head consists of exactly this atom). Then we can 
eliminate this rule without changing the semantics. 

Unfortunately, such a bot tom-up approach has two serious shortcomings. 
First, the goal-orientedness from SLD-resolution is lost: we are always computing 
the whole MR, even those facts that  have nothing to do with the query. The 
reason is tha t  in computing Tp we do not take into account the query we are 
really interested in. Second, in any step facts that  are already computed before 
are recomputed again. It would be more efficient if only new facts were computed. 
Both problems can be (partially) solved by appropriate refinements of the naive 
approach: 

- Semi-naive bottom-up evaluation (39, 114), 
- Magic Sets techniques (16,113). 

2.2 Why Going Beyond Definite Programs? 

So far we have a nice query-answering procedure, SLD-Resolution, which is goal- 
oriented as well as sound and complete with respect to general derivability. But 
note that  up to now we are not able to derive any negative information. Not 
even our queries allow this. From a very pragmatic viewpoint, we can consider 
"no t  A" to be derivable if A is not. Of course, this is not sound with respect to 
classical logic but  it is with respect to Mp.  

In KR we do not only want to formulate negative queries, we also want to 
express default-statements of the form 

Normally, unless something abnormal holds, then r implies r 

Such statements were the main motivation for nonmonotonic logics, like Default 
Logic or Circumscription). How can we formulate such a statement as a logic 
program? The most natural  way is to use negation "n o t  " 

r +-- r  notab  

where ab stands for abnormality. Obviously, this forces us to extend definite 
programs by negative atoms. 

A typical example for such statements occurs in Inheritance Reasoning. We 
take the following example from 10: 
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Example 1 (Inheritance Hierachies). 
Suppose we know that birds typically fly and penguins are non-flying birds. We 
also know that Tweety is a bird. Now an agent is hired to build a cage for 
Tweety. Should the agent put a roof on the cage? After all it could be still the 
case that Tweety is a penguin and therefore can not fly, in which case we would 
not like to pay for the unneccessary roof. But under normal conditions, it should 
be obvious that one should conclude that Tweety is flying. 

A natural axiomatization is given as follows: 

Pznhcritance : f l ies(x)  +- bird(x), 
bird(x) +- penguin(x) 
ab(rl, x) +- penguin(x) 
make_top(x) e- f l ies(x)  

not ab(rl, x) 

together with some particular facts, like e.g. bird(Tweety) and penguin(Sam).  
The first rule formalizes our default-knowledge, while the third formalizes that 
the default-rule should not be applied in abnormal or exceptional cases. In our 
example, it expresses the famous Specificity-Principle which says that more spe- 
cific knowledge should override more general one (110, 112, 76). 

For the query "make_top(Tweety)" we expect the answer "yes" while for the 
query "make_top(Sam)" we expect the answer "no". 

Another important KR task is to formalize knowledge for reasoning about 
action. We again consider a particular important instance of such a task, namely 
temporal projection. The overall framework consists in describing the initial state 
of the world as well as the effects of all actions that can be performed. What we 
want to derive is how the world looks like after a sequence of actions has been 
performed. 

The common-sense argument from which this should follow is the 

Law of  Iner t ia :  Things normally tend to stay the same. 

Up to now we only have stated some very "natural" axiomatizations of 
given knowledge. We have motivated that something like default-negation "not " 
should be added to definite programs in order to do so and we have explicitly 
stated the answers to particular queries. What is still missing are solutions to 
the following very important problems 

- How should an appropriate query answering mechanism handling default- 
negation "not " look like. ~ 

- What is the formal semantics that such a procedural mechanism should be 
checked against? 

Such a semantics is certainly not classical predicate logic because of the default 
character of "not " - -  not is not classical -~. Both problems will be considered 
in detail in Section 3. 
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2.3 What Is a Semantics? 

In the last sections we have introduced two principles (Orientation and Elim- 
ination of Tautologies) and used the te rm semantics of a program in a loose, 
imprecise way. We end this section with a precise notion of what  we understand 
by a semantics. 

As a first a t tempt ,  we can view a semantics as a mapping  tha t  associates 
to any program a set of positive atoms and a set of default atoms. In the case 
of SLD-Resolution the positive atoms are the ground instances of all derivable 
atoms.  But  sometimes we also want to derive negative a toms (like in our two 
examples above). Our Orientation-Principle formalizes a minimal requirement 
for deriving such defanlt-atoms. 

Of course, we also want tha t  a semantics SEM should respect the rules of 
P ,  i.e. whenever SEM makes the body of a rule true, then SEM should also 
make the head of the rule true. But  it can (and will) happen  tha t  a semantics 
SEM does not always decide all atoms. Some atoms A are not derivable nor are 
their default-counterparts  not A. This means tha t  a semantics SEM can view 
the body of a rule as being undefined. 

This already happens in classical logic. Take the theory 

T : = { ( A A B )  D C ,  - ~ A D B } .  

Wha t  are the atoms and negated atoms derivable from T, i.e. t rue in all models of 
T?  No positive a tom nor any negated a tom is derivable! The  classical semantics 
therefore makes the truthvalue of A A B undefined in a sense. 

Suppose a semantics SEM treats  the body of a p rogram rule as undefined. 
Wha t  should we conclude about  the head of this rule? We will only require 
tha t  this head is not t reated as false by SEM - -  it could be t rue or undefined 
as well. This means tha t  we require a semantics to be compatible  with the 
program viewed as a 3-valued theory - -  the three values being "true",  "false" 
and "undefined". For the understanding it is not neccessary to go deeper into 
3-valued logic. We simply note tha t  we interpret  "+--" as the Kleene-connective 
which is t rue for "unde f ined  +-- undef ined"  and false for " fa lse  +-- undefined/ ' .  

Definit ion 4 (SEM).  
A semantics SEM is a mapping from the class of all programs into the powerset 
of the set of all 3-valued structures. S EM  assigns to every program P a set of 
3-valued models of P: 

SEM(P)  C_C_ MOD~3f_val(P ). 

This definition covers both  the classical viewpoint (classical models are 2- 
valued and therefore special 3-valued models) as well as our first a t t empt  in the 
beginning of this section. 

Formally, we can associate to any semantics SEM in the sense of Definition 4 
two entailment relations 

s cep t i ca l :  SEMSCePt(P) is the set of all a toms or default a toms tha t  are true in 
all models of SEM(P) .  
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credulous: SEMCred(P) is the set of all atoms or default atoms that  are true 
in at least one model of SEM(P). 

3 A d d i n g  N e g a t i o n  

In the last section we have illustrated that  logic programs with negation are 
very suitable for KR - -  they allow a natural and straightforward formalization 
of default-statements. The problem still remained to define an appropriate se- 
mantics for this class and, if possible, to find efficient query-answering methods. 
Both points are adressed in this section. 

We can distinguish between two quite different approaches: 

LP-Approach: This is the approach taken mainly in the Logic Programming 
community. There one tried to stick as close as possible to SLD-Resolution 
and treat negation as "Finite-Failure'. This resulted in an extension of SLD, 
called SLDNF-Resolution, a procedural mechanism for query answering. For 
a nice overview, we refer to 6. 

NML-Approach: This is the approach suggested by non-monotonic reasoning 
people. Here the main question is "What is the right semantics?" I.e. we are 
looking first for a semantics that  correctly fits to our intuitions and treats 
the various KR-Tasks in the right (or appropriate) way. It should allow us 
to jump to conclusions even when only little information is available. Here 
it is of secondary interest how such a semantics can be implemented with a 
procedural calculus. Interesting overviews are 89 and 61. 

The LP-Approach is dealt with in Section 3.1. It is still very near to clas- 
sical predicate logic - -  default negation is interpreted as Finite-Failure. To get 
a stronger semantics, we interpret "no t  " as Failure in Section 3.2. The main 
difference is that  the principle Elimination of Tautologies holds. We then intro- 
duce a principle GPPE which is related to partial evaluation. In KR one can see 
this principle as allowing for definitional extensions - -  names or abbreviations 
can be introduced without changing the semantics. 

All these principles do not yet determine a unique semantics - -  there is still 
room for different semantics and a lot of them have been defined in the last years. 
We do not want to present the whole zoo of semantics nor to discuss their merits 
or shortcomings. We refer the reader to the overview articles 6 and 61 and the 
references given therein. We focus on the two main competing approaches that  
still have survived. These are the Wellfounded semantics WFS (Section 3.3) and 
the Stable semantics STABLE (Section 3.4). 

3.1 Negation-as-Finlte-Failure 

The idea of negation treated as finite-failure can be best illustrated by still 
considering definite programs, but queries containing default-atoms. How should 
we handle such default-atoms by modifying our SLD-resolution? Let us t ry this: 
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- If we reach a defanlt-atom "no t  A" as a subgoal of our original query, we 
keep the current SLD-tree in mind and star t  a new SLD-tree by trying to 
solve "A". 

- If this succeeds, then we falsified "no t  A", the current branch is falling and 
we have to backtrack and consider a different subquery. 

- But it can also happen that  the SLD-tree for "A" is finite with only failing 
branches. Then we say that  A finitely fails, we turn back to our original 
SLD-tree, consider the subgoal "no t  A" as successfully solved and go on 
with the next subgoal in the current list. 

It is important  to note that  an SLD-tree for a positive atom can fall without 
being finite. The SLD-tree for the program consisting of the single rule p +- p 
with respect to the query p is infinite but  failing (it consists of one single infinite 
branch). 

Although this idea of Finite-Failure is very procedural in nature,  there is 
a nice modeltheoretical counterpart  - -  Clark's completion cornp(P) (50). The 
idea of Clark was that  a program P consists not only of the implications, but  
also of the information that  these are the only ones. Roughly speaking, he argues 
that  one should interpret the "+-"-arrows in rules as equivalences " - "  in classical 
logic. 

D e f i n i t i o n  5 ( C l a r k ' s  C o m p l e t i o n  camp(P)). 
Clark's semantics for a program P is given by the set of all classical models of 
the theory camp(P). 

We can now see the classical theory camp(P) as the information contained in 
the program P. camp(P) is like a sort of closed world assumption applied to 
P.  We are now able to derive negative information from P by deriving it from 
camp(P). In fact, the following soundness and completeness result for definite 
programs P and definite queries Q - Ai Ai (consisting of only positive atoms) 
holds: 

T h e o r e m  3 ( C O M P  a n d  Fa i r  F F - T r e e s ) .  
The following conditions are equivalent: 

- comB(P) ~ V-~Q 
- Every fair SLD-tree for P with respect to Q is finitely failed. 

Note that  in the last theorem we did not use default negation but  classical 
negation -~ because we just mapped all formulae into classical logic. We need 
the fairness assumption to ensure that  the selection of atoms is reasonably well- 
behaving: we want tha t  every atom or default-atom occurring in the list of 
preliminary goals will eventually be selected. 

But even this result is still very weak - -  after all we want to handle not 
only negative queries but  programs containing default-atoms. From now on we 
consider programs with default-atoms in the body. We usually denote them by 

A +-- 13 + A not I3-, 
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where B + contains all the positive body atoms and not /3-  all default atoms 
" not C". 

Our two motivating examples in Section 2.2 contain such default atoms. 
This gives rise to an extension of SLD, called SLDNF, which treats negation as 
Finite-Failure 

SLDNF = SLD + not L succeeds, if L finitely fails. 

The precise definitions of SLDNF-resolution, tree, etc. are very complex: we 
refer to 85, 5. Recently, Apt and Bol gave interesting improved versions of these 
notions: see 6, Section 3.2. In order to get an intuitive idea, it is sufficient to 
describe the following underlying principle: 

Principle 03 (A "Naive" SLDNF-Resolut ion)  
If  in the construction of an SLDNF-tree a default-atom not Lij is selected in the 
list ~.i = {Li l ,Li2 , . . . } ,  then we try to prove Lij. 
If  this fails finitely (it fails because the generated subtree is finite and failing), 
then we take not Lij as proved and we go on to prove Li(j+l). 
I f  Lij succeeds, then not Lij fails and we have to backtrack to the list f~i-t of 
preliminary subgoals (the next rule is applied: "backtracking"). 

Does SLDNF-Resolution properly handle Example 1? It does indeed: 

Inher i tance :  The query make_top(Tweety) generates an SLD-tree with one 
main branch, the nodes of which are: 

f l ies(Tweety),  
bird(Tweety), not ab(rl , Tweety), 
not ab(rl , Tweety), 
Success. 

The third node has a sibling-node penguin(Tweety), not ab(rl,Tweety) 
which immediately fails because Tweety does not unify with Sam. The 
Success-node is obtained from not ab(rl, Tweety) because the correspond- 
ing SLD-tree for the atom ab(rl, Tweety) fails finitely (this tree consists only 
of ab(rl,Tweety) and penguin(Tweety) ). 

Up to now it seems that SLDNF-resolution solves all our problems. It handles 
our examples correctly, and is defined by a procedural calculus strongly related 
to SLD. There are two main problems with SLDNF: 

- SLDNF can not handle free variables in negative subgoals, 
- SLDNF is still too weak for Knowledge Representation. 

The latter problem is the most important one. By looking at a particular exam- 
ple, we will motivate in Section 3.2 the need for a stronger semantics. This will 
lead us in the remaining sections to the wellfounded and the stable semantics. 

For the rest of this section we consider the first problem, known as the Floun- 
dering Problem. This problem will also occur later in implementations of the 
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<-- p(x,c), ~q(x), r(f(x)) <-- p(x,c), 

<-- ~q(c), r(f(c)) 

I test 

SUCCESS 

<-- r(f(c) ) 

"SucceSS" 

~q(x), r(f(x)) 

I test 

<-- q(c) 

I "Fail" 
fail 

fail 

<-- q(x) 

I 
S u c c e s s  

{x/b} 

Figure l .  The Floundering-Problem 

wellfounded or the stable semantics. We consider the program Pftounder consist- 
ing of the three facts 

p(c,c), q(b), r(f(c)). 

Our query is ?- p(x,c), not q(x),r(/(x))  that  is, we are interested in instan- 
tiations of x such that  the query follows from the program. The situation is 
illustrated in Figure 1. Let us suppose that  we always select the first atom or 
default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial ex- 
ample is linear and has three nodes: the first node is the query itself 

?- p(x, c), not q(x), r ( f (x) )  

the second node is ?- not q(c),r(f(c)) Now, we enter the negation-as-failure 
mode and ask ?- q(c) This query immediately fails (the generated tree exists, is 
finite and fails) so that  we give back the answer "yes, the default atom not q(c) 
succeeds and can be skipped from the list". The last node is ?- r ( f ( c ~  which 
immediately succeeds. 

Note that  in the last step, the test for ?-q(c) has to be finished before the 
tree can be extended. If we get no answer, the SLDNF-tree simply does not exist: 
this can not happen with SLD-trees. 

So far everything was fine. But what happens if we select the second atom 
in the first step 

c), not q(x), r(f(x)) 

Example 2 (Floundering). 
We again consider the program PIlounder consisting of the three facts 

p(c,c), q(b), r(f(c)). 

Our query is ?-p(x,c), not q(x),r(f(x))  and in the first step we will select the 
second default-atom, i.e. one with a free variable. Thus we enter the negation- 
as-failure mode with the query ?-not q(x) In this case, x may be instantiated 
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to b so that  we have to give back the answer "no, the default-atom not q(x) 
fails" and the whole query will fail. This is because SLDNF treats the subgoal as 
"Vx not q(x)" instead of "3x not q(x)" which is intended. There exist approaches 
to overcome this shortcoming by treating negation as constructive negation: 
see 44, 45, 67. 

3.2 Negation-as-Failure 

Let us first illustrate that  SLDNF answers quite easily our requirements of a 
semantics SEM (stated explicitly in Definition 4 on page 10). We can formulate 
these requirements as two program-transformations (they will be used later for 
computing a semantics). We call them Reductions for obvious reasons. 

P r i n c i p l e  04 ( R e d u c t i o n )  
Suppose we are given a program P with possibly default-atoms in its body. I f  a 
ground atom A does not uni~y with any head of the rules of P,  then we can delete 
in every rule any occurrence of "not A"  without changing the semantics. 

Dually, if there is an instance of a rule of the form "B ~ " then we can 
delete all rules that contain "not B "  in their bodies. 

It  is obvious that  SLDNF "implements" these two reductions automatically. The 
weakness of SLDNF for Knowledge Representation is in a sense inherited from 
SLD. When we consider rules of the form "p +- p", then SLD resolution gets 
into an infinite loop and no answer to the query ?-p can be obtained. This has 
often the effect that  when we enter into negation-as-failure mode, the SLD-tree 
to be constructed is not finite, although it is not successful and therefore should 
be considered as failed. 

Let us discuss this point with a more serious example. 

Example 3 (The Transitive Closure). 
Assume we are given a graph consisting of nodes and edges between some of 
them. We want to know which nodes are reachable from a given one. A natural 
formalization of the property "reachable" would be 

reachable(x) +- edge(x, y), reachable(y). 

What  happens if we are given the following facts 

edge(a, b), edge(b, a), edge(c, d) 

and reachable(c)? Of course, we expect tha t  neither a nor b are reachable because 
there is no path  from c to either a or b. 

But  SLDNF-Resolution does not derive "no t  reachable(a)"! 

How does this result relate to Theorem 3 on page 12? Note that  our query has 
exactly the form as required there. Clark's completion of our program rule is 

reachable(x) - (x - c V 3y (reachable(y) A edge(y, x))) 
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from which, together with our facts about  the edge-relation, -~reachable(a) is 
indeed not derivable. This is due to the wellknown fact tha t  transitive closure is 
not expressible in first order predicate logic. 

Note also that  our Principle 02 on page 8 does not help, because it simply 
does not apply. It turns out that  we can augment our two principles by a third 
one, that  constitutes together with them a very nice calculus handling the above 
example in the right way. This principle is related to Partial Evaluation, hence 
its name G P P E  a. Let us motivate this principle with the last example. The 
query "not reachable(a)" leads to "reachable(a) 4- edge(a,b),reachable(b)" 
and "reachable(b)" leads to "reachable(b) 4- edge(b,a),reachable(a)". Both 
rules can be seen as definitions for reachable(a) and reachable(b) respectively. 
So it should be possible to replace in these rules the body atoms of reachable 
by their definitions. Thus we obtain the two rules 

reachable(a) 4- edge(a, b), edge(b, a), reachable(a) 
reachable(b) 4- edge(b, a), edge(a, b), reachable(b) 

that  can both be eliminated by applying Principle 02 on page 8. So we end up 
with a program that  does neither contain reachable(a) nor reachable(b) in one 
of the heads. Therefore, according to Principle 01 on page 6 both atoms should 
be considered false. The precise formulation of this principle is as follows: 

Principle 05 (GPPE,22,106) 
We say that a semantics SEM satisfies GPPE, if the following transformation 
does not change the semantics. Replace a rule A 4- B + A not B -  where B + 
contains a distinguished atom B by the rules 

A U ( A i \ { B } )  4- (B + \ { B } ) U B  + A not ( B - U B ~ )  ( i = l , . . . , n )  

where B 4-- B + A not B~- (i = 1 , . . . , n )  are all rules with head B. 

Note that  any semantics SEM satsfying G P P E  and Elimination of Tautolo- 
gies can be seen as extending SLD by doing some Loop-checking. We will call 
such semantics NMR-semantics in order to distinguish them from the classi- 
cal LP-semantics which are based on SLDNF or variants of Clark's completion 
comp(P): 

- NMR-Semantics = SLDNF + Loop-check. 

The following, somewhat artificial example illustrates this point. 

Example 4 (COMP vs. NMR). 

4 Generalized Principle of Partial Evaluation 
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PNMR : P 6- P P~iMR : P 6- P 
q 6- not  p q +- not  p 

r 6- not  r 

comp(PNMR)  : p -- p eomp(P~vMR ) : p -- p 
q =_ -~p q =_ -,p 

r -- "~r 

?-q: No (COMP). ?-p: Yes (COMP). 
Yes (NMR). No (NMR). 

For both programs, the answers of the completion-semantics do not match our 
NMR-intuition! In the case of PNMR w e  expect q to be derivable, since we expect 
not  p to be derivable: the only possibility to derive p is the rule p 6- p which, 
obviously, will never succeed. But q r T h ( { q  - -~p}) = comp(PNMR)!  In the case 
of P~CMR w e  expect p not to be derivable, for the same reason: the only possibility 
to derive p is the rule p 6- p. But p E F m l  = T h ( { r  - -~r}) = comp(P~cMR ) 

Note that the answers of the completion-semantics agree with the mechanism 
of SLDNF: p 6- p represents a loop. The completion of PI is inconsistent: this 
led Fitting to consider the three-valued version of c a m p ( P )  mentioned at the 
end of Section 3.1. This approach avoids the inconsistency (the query ?-p is not 
answered "yes") but it still does not answer "no" as we would like to have. 

The last principle in this section is related to Subsumption:  we can get rid of 
non-minimal rules by simply deleting them. 

Principle 06 (Subsumption)  
In  a program P we can delete a rule A 6-/3+ A not B -  whenever  there is another 
rule A 6- B '+ ^ not B I-  with 

B '+ C_ 13 + and 13'- C 13-. 

As a simple example, the rule A 6- B ,  C, not  D,  not E is subsumed by the 3 
rules A 6- C, not  D,  not  E or A ~- B ,  C, not  E and by A 6- C, not  E.  

3.3 The Wellfounded Semantics: W F S  

The wellfounded semantics, originally introduced in 116, is the weakest seman- 
tics satisfying our 4 principles (see 30, 29, 60). We call a semantics 

SEM1 weaker than SEM2, written SEM1 _<k SEM2, 

if for all programs P and all atoms or default-atoms 1 the following holds: 
SEMi(P) ~ l implies SEM2(P) ~ 1. I.e. all atoms derivable from SEM1 with 
respect to P are also derivable from SEM2. The notion _<k refers to the knowl- 
edge ordering in three-valued logic. This is a nice theorem and gives rise to the 
following definition: 
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T h e o r e m  4 ( W F S ,  30) .  
There exists the weakest semantics satisfying our four principles Elimination 
of Tautologies, Reduction, Subsumption and GPPE. This semantics is called 
wellfounded semantics WFS. 

It can also be shown, tha t  for propositional programs, our transformations can 
be applied to compute this semantics. 

T h e o r e m  5 ( C o n f l u e n t  Ca l cu lu s  for  W F S , 2 9 ) .  
The calculus consisting of these four transformations is confluent, i.e. whenever 
we arrive at an irreducible program, it is uniquely determined. The order of the 
transformations does not matter. 

For finite propositional programs, it is also terminating: any program P is 
therefore associated a unique normalform tea(P). The wellfounded semantics of 
P can be read off from res(P) as follows 

W E S ( P )  = (A  : A +- E r e s ( P ) } U ( n o t  A : A is in no head o f res (P)}  

We note that  the size of the residual program is in general exponential in the 
size of the original program. Recently it was shown in 34, 31 how a small mod- 
ification of the residual program, which still satisfies the nice characterization of 
computing WFS as given in Theorem 5, results in a polynomial computation. 

Therefore the wellfounded semantics associates to every program P with 
negation a set consisting of atoms and defanlt-atoms. This set is a 3-valued 
model of P.  It can happen, of course, tha t  this set is empty. But it is always 
consistent, i.e. it does not contain an atom A and its negation not .A. Moreover, it 
extends SLDNF: whenever SLDNF derives an atom or default-atom and does not 
flounder, then WFS derives it as well. Therefore the two examples of Section 2.2 
are handled in the right way. But also for Example 3 on page 15 we get the 
desired answers. 

As we said above, loop-checking is in general undecidable. Therefore WFS 
is in the most general case where variables and function-symbols are allowed, 
undecidable. Only for finite propositional programs it is decidable. In fact, it is 
of quadratic complexity see 31. 

Let us end this section with another example, which contains negation. 

Example 5 (Van Gelder's Example). 
Assume we are describing a two-players game like checkers. The two players 
alternately move a stone on a board. The moving player wins when his opponent 
has no more move to make. We can formalize that  by 

- wins(x) e- move_from_to(x,y), not wins(y) 

meaning that  

- the situation x is won (for the moving player A), if he can lead over 5 to a 
situation y that  can never be won for B. 

With the help of a regular move, given by the relation move_from_to~2. 
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If we also have move_from_to(a, b), move_from_to(b, a) and move_from_to(b, c). 
Our query to this program Pgame is ?-wins(b) Here we have no problems with 
floundering, but  using SLDNF we get an infinite sequence of oscillating SLD- 
trees (none of which finitely fails). 

WFS, however, derives the right results 

W FS(  Pa~me ) = { not wins(c), wins(b), not wins(a)} 

which matches completely with our intuitions. 

3.4 T h e  S t a b l e  S e m a n t i c s :  S T A B L E  

We defined WFS as the weakest semantics satisfying our four principles. This 
already indicates tha t  there are even stronger semantics. One of the main com- 
peting approaches is the stable semantics STABLE. The stable semantics asso- 
ciates to any program P a set of 2-vaiued models, like classical predicate logic. 
STABLE satisfies the following property, in addition to those tha t  have been 
already introduced: 

Principle 07 (Elimination of Contradictions) 
Suppose a program P has a rule which contains the same atom A and not A in 
its body. Then we can eliminate this rule without changing the semantics. 

This principle can be used, in conjunction with the others to define the stable 
semantics 

Theorem 6 (STABLE,J28). 
There exists the weakest semantics satisfying our five principles Elimination of 
Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradictions. 

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-valued 
models (28). The underlying idea of STABLE is that  any atom in an intended 
model should have a definite reason to be true or false. This idea was made 
explicit in 19, 20 and, independently, in 73. We use the latter terminology and 
introduce the Gelfond-Lifschitz transformation: for a program P and a model 
N C_ Bp we define 

p N  := (rule N : rule E P} 

where rule := A +- B1 , . . . ,  Bn, not C1 , . . . ,  not Cm is transformed as follows 

A ~ B 1 , . . . , B n ,  i fVj  : Cj !~N, 
(rule)N := t,  otherwise. 

Note that  p N  is always a definite program. We can therefore compute its least 
Herbrand model MpN and check whether it coincides with the model N with 
which we started: 
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D e f i n i t i o n  6 ( S T A B L E ) .  
N is called a stable model 6 of P if and only if MpN = N. 

What  is the relationship between STABLE and WFS? We have seen that  
they are based on rather  identical principles. 

- Stable models N extend WFS: l E WFS(P)  implies N ~ l. 
- If WFS(P)  is two-valued, then WFS(P)  is the unique stable model. 

But  there are also differences. We refer to Example 5 on page 18 and consider 
the program P consisting of the clause 

wins(x) +-move_from_to(x,y),  not wins(y) 

together with the following facts: move_from_to(a, b), move_from_to(b, a), as 
well as move_from_to(b, c), and move_from_to(c, d). In this particular case we 
have two stable models: {wins(a), wins(c)} and {wins(b), wins(c)} and there- 
fore 

WFS(P)  = {wins(c), not wins(d)} = A A/'. 
A/" a s t a b l e  m o d e l  o f  P 

This means that  the 3-valued wellfounded model is exactly the set of all atoms 
or default-atoms true in all stable models. But this is not always the case, as the 
program of Psplitting shows: 

Example 6 (Reasoning by cases). 

espl i t t ing : a ~-- n o t  b 
b +- nora 
p+--a 
p+--b 

Although neither a, nor b can be derived in any semantics based on two-valued 
models (as STABLE for example), the disjunction a V b, thus also p, is true. 
In this way the example is handled by the completion semantics, too. WFS(P) ,  
however, is empty; if the WFS cannot decide between a or not a, then a is 
undefined. 

The main differences between STABLE and WFS are 

- STABLE is not always consistent, 
- STABLE does not allow for a goal-oriented implementation. 

The inconsistency comes from odd, negative cycles 

S T A B L E ( p  ~- not p) = 0. 

6 Note that we only consider Herbrand models. 
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The idea to consider 2-valued models for a semantics neccessarily implies its 
inconsistency (24). Note that WFS(p  ~- not p) = {0} which is quite different! 
Sufficient criteria for the existence of stable models are contained in 68, 70. 

That STABLE does not allow for a Top-Down evaluation is a more serious 
drawback and has nothing to do with inconsistency. 

We end this section with another description of WFS and STABLE that will 
be useful in later sections. It was introduced in 11,12: 

Defini t ion 7 ( A n t i m o n o t o n e  O p e r a t o r  7P). 
For a program P and a set N C Bp we define an operator 7P mapping Herbrand- 
structures to Herbrand structures: 

7p(N) := MpN. 

It is easy to see that 7P is antimonotone. Therefore its twofold application 72 is 
monotone (109). 

Obviously, the stable models of a program P are exactly the fixpoints of 7P. 
This is just a reformulation of Definition 6 on the preceding page. WFS is related 
to 7 as follows 

T h e o r e m  7 ( W F S  and  72). 
A positive atom A is in WFS(P) if and only if A 6 l fp(72).  A default-atom 
not A is in WFS(P) if and only if A r gfP(7~): 

W F S ( P )  = lfp(7~) U {not A: A C gfP(7~)}. 

Atom or default-atoms that do occur in neither of the two sets are undefined. 

4 Adding Explicit Negation 

So far we have considered programs with one special type of negation, namely 
default negation. Default negation is particularly useful in domains where com- 
plete positive information can be obtained. For instance, if one wants to represent 
flight connections from Budapest to the US it is very convenient to represent 
all existing flights and to let default negation handle the derivation of negative 
information. There are domains, however, where the lack of positive informa- 
tion cannot be assumed to support (or support with enough strength) that this 
information is false. In such domains it becomes important to distinguish be- 
tween cases where a query does not succeed and cases where the negated query 
succeeds. The following example was used by McCarthy to illustrate the issue. 
Assume one wants to represent the rule: cross the railroad tracks if no train is ap- 
proaching. The straightforward representation of this rule with default negation 
would be 

crosstracks +-- not train 

It seems obvious that in many practical settings the use of such a rule would not 
lead to intended behaviour, in fact it might even have disasterous consequences. 
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What seems to be needed here is the possibility of using a different negation 
symbol representing a stronger form of negation. This new negation - -  we will 
call it explicit negation - -  should be true only if the corresponding negated 
literal can actually be derived. We will use the classical negation symbol -~ to 
represent explicit negation. The track crossing rule will be represented as 

crosstracks +-- -~train 

The idea is that this latter rule will only be applicable if -~train has been proved, 
contrary to the first rule which is applicable whenever train is not provable. 

In the next section we will shortly discuss that explicit negation is (or should 
not be) classical negation and how it should interfere with default negation. 
In the two following subsections we will generalize the semantics STABLE and 
WFS, respectively, to programs with explicit negation. 

4.1 Explicit  vs. Classical and Strong Nega t ion  

First we define the language we are using more precisely. 

Defini t ion 8 (Ex tended  Logic P rogram) .  
An extended logic program consists of rules of the form 

c Jc- a l , . . . ,an ,  not b l , . . . , n o t  bm 

where the ai, bj and c are literals, i.e., either propositional atoms or such atoms 
preceded by the classical negation sign. The symbol "not " denotes negation by 
failure (default negation), '%" denotes explicit negation. 

We have already motivated the need of a second kind of negation "-~" different 
from "not ". What should the semantics of "-~" be? Should it be just like in 
classical logic? Note that classical negation satisfies the law of excluded middle 

A V ~ A .  

The following example taken from 4 shows that classical negation is sometimes 
inappropriate for KR-tasks. 

Example 7 (Behaviour of Classical Negation). 
Suppose an employer has several candidates that apply for a job. Some of them 
are clearly qualified while others are not. But there may also be some candidates 
whose qualifications are not clear and who should therefore be interviewed in 
order to find out about their qualifications. If we express the situation by 

hire(X) e- qualified(X) and reject(X) +-- ~quali f ied(X)  

then, interpreting "-~" as classical negation, we are forced to derive that every 
candidate must either be hired or rejected! There is no room for those that 
should be interviewed. Also, applying the law of excluded middle has a highly 
non-constructive flavor. 
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Let us now consider again the example crosstracks ~ -,train from the be- 
ginning of this section. Suppose that  we replace ~train by free_track. We obtain 

crosstracks +- free_track. 

From this program, "no t  crosstracks" will be derivable for any semantics. There- 
fore we should make sure that  "no t  crosstracks" is also derivable from 

crosstracks +- -~train 

After all, the second program is obtained from the first one by a simple syntactic 
operation. This means we have to make sure that  default negation "not  " treats 
positive and negative atoms symmetrically. 

Such a negation, we will call it explicit will be introduced in the next two sec- 
tions. Sometimes explicit negation is also called strong negation and denotes still 
a variant of our explicit negation. In 4 the authors introduce both a strong and 
explicit negation and discuss their relation with classical and default negation 
at length. 

4.2 S T A B L E  for Extended Logic P r o g r a m s  

The extension of STABLE to extended logic programs is based on the notion 
of answer sets which generalize the original notion of stable models in a rather 
straightforward manner. Let us first introduce some useful notation. We say a 
rule r = c ~ a l , . . . , a n ,  not b l , . . . ,  not bm E P is defeated by a literal l iff 
l = bi for some i E {1 , . . . ,  m).  We say r is defeated by a set of literals X if X 
contains at least one literal that  defeats r. Furthermore, we call the rule obtained 
by deleting weakly negated preconditions from r the monotonic counterpart of r 
and denote it with Man(r) .  We also apply Man to sets of rules with the obvious 
meaning. 

De f in i t i on  9 (X- r educ t ) .  
Let P be an extended logic program, X a set of literals. The X-reduct of P,  
denoted p X ,  is the program obtained from P by 

- deleting each rule defeated by X ,  and 
- replacing each remaining rule r with its monotonic counterpart Man(r) .  

Definition 10 (Consequences of  Rules ) .  
Let R be a set of rules without negation as failure. Cn(R)  denotes the smallest 
set of literals that is 

1. closed under R, and 
2. logically closed, i.e., either consistent or equal to the set of all literals. 

Definition 11 (Answer set). 
Let P be an extended logic program, X a set of literals. Define the operator 7P 
as follows: 

7 p ( X )  = C n ( P  x )  

X is an answer set o f P  i f f X  = 7p (X) .  
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The definition of answer sets is thus based on a natural  generalization of the 
operator  ~,p (see Definition 7 on page 21) to extended logic programs. 

A literal 1 is a consequence of a program P under the new semantics, denoted 
l E STABLE(P) ,  iff I is contained in all answer sets of P .  

It is not difficult to see that  for programs without explicit negation stable 
models and answer sets coincide. Here is an example involving both types of 
negation. The example describes the strategy of a certain college for awarding 
scholarships to its students. It is taken from 10: 

Pet : (1) eligible(x) +- highGPA(x) 
(2) eligible(x) +-- minority(x), fa irGPA(x)  
(3)-~eligible(x) +--~fairGPA(x),-~highGPA(x) 
(4) interview(x) +-- not eligible(x), not ~eligible(x) 

Assume in addition to the rules above the following facts about  Anne are given: 

f airG P A (Anne), -~hi g hG P A (Anne) 

We obtain exactly one answer set, namely 

{ fa i rGPA (Anne), ~highGPA (Anne), interview (Anne) } 

Anne will thus be interviewed before a decision about  her eligibility is made. If 
we use the above rules together with the facts 

minority(Mike), fa irGPA(Mark)  

then the program entails eligible(Mike). 
We obtain the following result 83: 

L e m m a  1 ( P r o g r a m  T y p e s ) .  
Let P be an extended logic program. P satisfies exactly one of the following 
conditions: 

- P has no answer sets, 
- P has an answer set, and all its answer sets are consistent, 
- the only answer set for P is Lit, 

A program is consistent if the set of its consequences is consistent, and incon- 
sistent otherwise. The former corresponds to the first two cases listed in the 
proposition, the latter to the third case. 

It should be noted that  extended logic programs under answer set semantics 
can be reduced to general logic programs as follows: for any predicate p occur- 
ring in a program P we introduce a new predicate symbol p~ of the same arity 
representing the explicit negation of p. We then replace each occurrence of -~p 
in the program with p',  thus obtaining the general logic program P ' .  It can be 
proved that  a consistent set of literals S is an answer set of P iff the set S'  is a 
stable model of P ' ,  where S ~ is obtained from S by replacing -~p with p~. 
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4.3 W F S  for Extended Logic Programs 

We now show how the second major semantics for general logic programs, WFS, 
can be extended to logic programs with explicit negation. For our purposes the 
characterization of WFS given in Theorem 7 on page 21 will be useful. WFS is 
based on a particular three-valued model. To simplify our presentation in this 
section we will restrict ourselves to the literals which are true in this three-valued 
model. The literals which are false will be left implicit. They can be added in a 
canonical way as follows: let T, the set of true literals, be defined as the least 
fixed point of a monotone operator composed of two antimonotone operators 
oplop2. Then the literals which are false in the three-valued model are exactly 
those which are not contained in op2 (T). Given this canonical extension to the 
full three-valued model we can safely leave the false literals implicit from now 
o n .  

A natural idea is to use the characterization of WFS in terms of the least fixed 
point of V~, as in Theorem 7 on page 21, where VP now is the new generalized 
operator from Definition 4.2 on page 23 10, 83. This works in some cases, but 
often leads to very weak results. 

Consider the following program P0 which has also been discussed by Baral 
and Gelfond 10: 

P0 : (1 )  b +- not ~b 
(2) a +- not-~a 
(3) -~a +- not a 

The least fixed point of 72 is empty since 7Po (0) equals Lit, the set of all lit- 
erals, and the Lit-reduct of P0 contains no rule at all. This is surprising since, 
intuitively, the conflict between (2) and (3) has nothing to do with -~b and b. 

This problem arises whenever the following conditions hold: 

1. a complementary pair of literals is provable from the monotonic counterparts 
of the rules of a program P,  and 

2. there is at least one proof for each of the complementary literals whose rules 
are not defeated by Cn(P~), where P '  consists of the "strict" rules in P,  i.e., 
those without negation as failure. 

In this case well-founded semantics concludes l iff 1 E Cn(P~). It should be 
obvious that  such a situation is not just a rare limiting case. To the contrary, it 
can be expected that  many commonsense knowledge bases will give rise to such 
undesired behaviour. 

A minor reformulation of the fixpoint operator can overcome this weakness 
and leads to better results. Consider the following operator 

v~(X)  = Cl(P x )  

where Cl(R) denotes the minimal set of literais closed under the (classical) rules 
R. Cl(R) is thus like Cn(R) without the requirement of logical closedness. Now 
define a monotne operator as follows: 

r a ( x )  = -Mv;,(x))  
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With this operator well founded semantics can be defined. 

De f in i t i on  12 ( W F S  for  e x t e n d e d  p r o g r a m s ) .  
Let P be an extended logic program. The set o/ well-founded conclusions of P, 
denoted W F S ( P ) ,  is the least fixpoint of F~. 

Consider the effects of this modification on our example P0: 

~ o  (0) = {a, ~a, b}. 

Rule (1) is contained in the {a, -~a, b}-reduct of P0 and thus F~0 (0) = {b}. Since 
b is also the only literal contained in all answer sets of P0 WFS actually coincides 
with answer set semantics in this case. 

It can be shown that  every well-founded conclusion is a conclusion under 
the answer set semantics. Well-founded semantics can thus be viewed as an 
approximation of answer set semantics. 

An alternative, somewhat stronger approach, was developed by Pereira and 
Alferes 98, 2, 3, the semantics WFSX. This semantics implements the intuition 
that  a literal with default negation should be derivable from the corresponding 
explicitly negated literal. The authors call this the coherence principle. To satisfy 
the principle they use the seminormal version of a program P,  denoted S(P),  
which is obtained from P by replacing each rule 

c + - a l , . . . , a n ,  not b l , . . . ,  not bm 

by the rule 
c~---al, . . . ,an, not b l , . . . ,  not bin, not - c  

where - c  is the complement of c, i.e. -~c if c is an atom and a if c = -~a. Based 
on this notion Pereira and Alferes consider the following monotone operator: 

r i p ( x )  = 

The use of the seminormal version of the program in the first application of 7" 
guarantees that  a literal 1 is not considered a potential conclusion whenever the 
complementary literal is already known to be true. In the general case S(P)  x 
contains fewer rules than pX.  Therefore, fewer literals are considered as potential 
conclusions and thus more conclusions are obtained in each iteration of the 
monotone operator. Here is an example 10: 

PWFSX : (1) a +- not b 
(2) b ~ not a 
(3) +- 

The  original version of WFS does not conclude b. In WFSX the set X = {-~a} 
is obtained after the first iteration of the monotone operator. Since rule (1) is 
not contained in the X-reduct of the seminormal version of the program the 
monotonic counterpart of (2) produces b after the second iteration. 
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Although a number of researchers consider WFSX to be the more adequate 
extension of well-founded semantics to extended logic programs the original for- 
mulation is still very often found in the literature. For this reason we will base 
our t reatment  of preferences in the next section on the earlier formulation based 
on T'*. 

For the next section a minor reformulation turns out to be convenient. In- 
stead of using the monotonic counterparts of undefeated rules we will work with 
the original rules and extend the definitions of the two operators Cn and Cl ac- 
cordingly, requiring that  default negated preconditions be neglected, i.e., for an 
arbi t rary set of rules P with default negation we define Cn(P)  = Cn(Mon(P))  
and Cl(P) = Cl(Mon(P)) .  We can now equivalently characterize 7P and ~/~ by 
the equations 

v p ( X )  = Cn(Px)  

7~,(X) = Cl(Px)  

where Px denotes the set of rules not defeated by X.  
An alternative characterization o f / ~  will also turn out to be useful in the 

next section. It is based on the following notion: 

D e f i n i t i o n  13 ( X - S A F E ) .  
Let P be a logic program, X a set of literals. A rule r is X-sa/e wrt. P (r E 
S A F E x ( P ) )  if r is not defeated by 7~(X)  or, equivalently, if r e P ~ ( x ) .  

With this new notion we can obviously characterize Y~, as follows: 

F~(X)  = Cn(P~;,(x)) = C n ( S A F E x  (P)) 

It is this last formulation that  we will modify. More precisely, the notion of 
X-safeness will be weakened to handle preferences adequately. 

5 Adding Preferences 

In this section we describe an extension of well-founded semantics for logic pro- 
grams with two types of negation where information about preferences between 
rules can be expressed in the logical language. Conflicts among rules are resolved 
whenever possible on the basis of derived preference information. 

After giving some motivation in Section 5.1 we introduce our t reatment  of 
preferences in Section 5.2. We show that  our conclusions are, in general, a super- 
set of the well-founded conclusions. Section 5.3 illustrates the expressive power 
of our approach using a legal reasoning example. 

5.1 M o t i v a t i o n  

Preferences among defaults play a crucial role in nonmonotonic reasoning. One 
source of preferences that  has been studied intensively is specificity 99, 110,111 
- -  we already discussed it in Example 1 on page 9. In case of a conflict between 
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defaults we tend to prefer the more specific one since this default provides more 
reliable information. E.g., if we know that  students are adults, adults are nor- 
really employed, students are normally not employed, we want to conclude "Peter 
is not employed" from the information that  Peter  is a student, thus preferring 
the student default over the conflicting adult default. 

Specificity is an important  source of preferences, but  not the only one, and 
at least in some applications not necessarily the most important  one. In the legal 
domain it may, for instance, be the case that  a more general rule is preferred since 
it represents federal law as opposed to state law 100. In these cases preferences 
may be based on some basic principles regulating how conflicts among rules are 
to be resolved. Also in other application domains, like model based diagnosis or 
configuration, preferences play a fundamental role. 

The relevance of preferences is well-recognized in nonmonotonic reasoning, 
and prioritized versions for most of the nonmonotonic logics have been pro- 
posed, e.g., prioritized circumscription 84, hierarchic autoepistemic logic 81, 
prioritized default logic 35. In these approaches preferences are handled in an 
"external" manner in the following sense: some ordering among defaults is used 
to control the generation of the nonmonotonic conclusions. For instance, in the 
case of prioritized default logic this information is used to control the generation 
of extensions. However, the preference information itself is not expressed in the 
logical language. 

Here we want to go one step further and represent also this kind of infor- 
mation in the language. This makes it possible to reason not only with) but 
also about preferences. This is necessary in legal argumentation, for instance, 
where preferences are context-dependent,  and the assessment of the preferences 
among involved conflicting laws is a crucial (if not the most crucial) part  of the 
reasoning. 

The presentation in this section is based on 37. A t reatment  of prioritized 
logic programs under answer set semantics is described in 38. 

5.2 Handling Preferences 

In order to handle preferences we need to be able to express preference infor- 
mation explicitly. Since we want to do this in the logical language we have to 
extend the language. We do this in two respects: 

1. we use a set of rule names N together with a naming function name  to be 
able to refer to particular rules, 

2. we use a special (infix) symbol -~ tha t  can take rule names as arguments to 
represent preferences among rules. 

Intuitively, nl  -~ n2 where nl  and n2 are rule names means the rule with name 
nl  is preferred over the rule with name n2. T 

Note that for historical reasons we follow the convention that the minimal rules are 
the preferred ones. 



Knowledge Representation with Logic Programs 29 

Definition 14 (Prioritized Program). 
A prioritized logic program is a pair (R, name)  where 

- R is a set of rules containing all ground instances of the schemata 

NI -< N3 e- NI -< N2,N2 -~ N3 

and 

where Ni  are parameters for  names, and 
- name  a a partial injective naming function that assigns a name n E N to 

some of the rules in R.  

Note that  not all rules do necessarily have a name. The reason is that  names 
will only play a role in conflict resolution among defeasible rules, i.e., rules with 
weakly negated preconditions. For this reason names for strict rules, i.e., rules 
in which the symbol not does not appear, won't  be needed. 

In our examples we leave the instances of the schemata for -< implicit. We 
also assume that  N and the function n a m e  are given implicitly. We write: 

ni : e + - a l , . . . , a n ,  not b l , . . .~  not bm 

to  express tha t  name(c  +-- e l , . . . ,  an, not b l , . . . ,  not bin) = ni.  
Before introducing our new definitions we would like to point out how we 

want the new explicit preference information to be used. Our approach follows 
two principles: 

1. We want to extend well-founded semantics, i.e. we want that every W F S * -  
conclusion remains a conclusion in the prioritized approach. 

2. We want to use preferences to solve conflicts whenever this is possible without 
violating principle 1. 

Let us first explain what we mean by conflict here. Rules may be conflicting 
in several ways. In the simplest case two rules may have complementary literals 
in their heads. We call this a type-I conflict. 

Definition 15 ( T y p e - I  Conf l i c t ) .  
Let rl and r2 be two rules. We say rl and r2 are type-I conflicting iff the head 
of rl is the complement of the head of r2. 

Conflicts of this type may render the set of well-founded conclusions inconsistent, 
but  do not necessarily do so. If, for instance, a precondition of one of the rules 
is not derivable or a rule is defeated the conflict is implicitly resolved. In tha t  
case the preference information will simply be neglected. Consider the following 
program P1: 

nl : b +-- not c 
n2 : -~b +-- not b 
n3 : n2 -~ nl  
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There is a type-I conflict between nl  and n2. Although the explicit preference 
information gives precedence to n2 we want to apply nl  here to comply with the 
first of our two principles. Technically, this means that  we can apply a preferred 
rule r only if we are sure that  r 's  application actually leads to a situation where 
literals defeating r can no longer be derived. 

The following two rules exhibit a different type of conflict: 

a +- not b 
b +-- not  a 

The heads of these rules are not complementary. However, the application of one 
rule defeats the other and vice versa. We call this a direct type-II  conflict. Of 
course, in the general case the defeat of the conflicting rule may be indirect, i.e. 
based on the existence of additional rules. 

D e f i n i t i o n  16 ( T y p e - I I  Conf l i c t ) .  
Let  rl and r2 be rules, R a set of  rules. We say rl  and r2 are t ype-H conflicting 
wrt. R i 

1. C l ( R )  nei ther  defeats rl nor r2, 
2. C I ( R  + r l )  defeats r2, and 
3. C l ( R  + r2) defeats rl 

Here R + r abbreviates R U {r}. A direct type-II conflict is thus a type-II  conflict 
wrt. the empty set of rules. Note that  the two types of conflict are not disjoint, 
i.e. two rules may be in conflict of both type-I and type-II. Consider the following 
program P2, a slight modification of P1: 

nl  : b <-- not c, not  -~b 
n2 : -~b +- not  b 
n3 : n2 -'< nl 

Now we have a type-II  conflict between nl  and n2 (more precisely, a direct 
type-II  and a type-I conflict) tha t  is not solvable by the implicit mechanisms of 
well-founded semantics alone. It is this kind of conflict tha t  we t ry  to solve by 
the explicit preference information. In our example n2 will be used to derive -lb. 
Note that  now the application of n2 defeats nl  and there is no danger that  a 
literal defeating n2 might become derivable later. Generally, a type-II  conflict 
between r l  and r2 (wrt. some undefeated rules of the program) will be solved 
in favour of the preferred rule, say r l ,  only if applying r l  excludes any further 
possibility of deriving an rl-defeating literal. 

After this motivating discussion let us present the new definitions. Our treat- 
ment of priorities is based on a weakening of the notion of X-safeness (Defini- 
tion 13 on page 27). In Section 4 we considered a rule r as X-safe whenever 
there is no proof for a literal defeating r from the monotonic counterparts of 
X-undefeated rules. Now in the context of a prioritized logic program we will 
consider a rule r as X-safe if there is no such proof from monotonic counterparts 
of  a certain subset of the X-undefeated rules. The subset to be used depends on 
the rule r and consists of those rules tha t  are not "dominated" by r. Intuitively, 
r ~ is dominated by r iff r ~ is 
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1. known to be less preferred than  r and 
2. defeated when r is applied together with rules tha t  already have been estab- 

lished to be X-safe. 

It  is obvious that  whenever there is no proof for a defeating literal from all X- 
undefeated rules there can be no such proof from a subset of these rules. Rules 
tha t  were X-safe according to our earlier definition thus remain to be X-safe. 
Here are the precise definitions: 

Definition 17 (Dominated Rules). 
Let P = (R, name) be a prioritized logic program, X a set of literals, Y a set 
of rules, and r E R. The set of rules dominated by r wrt. X and Y ,  denoted 
Domx ,y ( r ) ,  is the set 

{r' E R I name(r) -~ name(r')  E X and C l ( Y  + r) defeats r'} 

Note that  Domx ,y ( r )  is monotonic in both X and Y. We can now define the 
X-safe rules inductively: 

Definition 18 (SAFEPr(P) ) .  
Let P = (R, name) be a prioritized logic program, X a set of literals. The set of 
X-sale rules of P,  denoted SAFEPxr(P), is defined as follows: SAFEPxr(P) = 

o~ R Ui=o i, where 

Ro = O, and for i > O, 
Ri = {r e R I r not defeated by CI (Rx  \ Domx,R,_l (r))} 

Note that  X-safeness is obviously monotonic in X.  Based on this notion we 
introduce a new monotonic operator  F~r: 

Definition 19 (WFSPr ) .  
Let P = (R, name) be a prioritized logic program, X a set of literals. The oper- 
ator F~ r is defined as follows: 

FPr(X) = Cn(SAFEPr(P) )  

As before we define the (prioritized) well-founded conclusions of P ,  denoted 
WFSPr(P) ,  as the least fixpoint of F~ r. If a program does not contain preference 
information at all, i.e., if the symbol -~ does not appear in R, the new semantics 
coincides with W F S  since in tha t  case no rule can dominate another rule. In 
the general case, since the new definition of X-safeness is weaker than the one 
used earlier we may have more X-safe rules and for this reason obtain more 
conclusions than via F~. 

Consider the following prioritized program P:  

n~ :b+-- not c 
n2 : c ~ not b 
n3 : n2 -~ nl 
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We first apply T'~ r to the empty set. Besides the instances of the transitivity 
and anti-symmetry schema that we implicitly assume only n3 is in SAFESt(P). 
We thus obtain 

`91 = {n2 -~ nl,--(nl -~ n2)} 

We next apply F~ r to ,91. Since n2 -~ nl E 9̀1 we have nl E Domsl,~(n2). 
n2 E `gAFE~(P) since CI(Ps~ \ {nl)) does not defeat n2 and we obtain 

`92:{n2 ~ n l ,~(n l  ~ n2),c} 

Further iteration of F~ r yields no new literals, i.e. $2 is the least fixpoint. Note 
that c is not a conclusion under the original well-founded semantics. 

The following nondeterministic algorithm computes the least fxed point of 
F~ r with time complexity of O(n3), where n is the number of rules: 

P rocedu re  WFS pr 
Input :  A prioritized logic program P = (R, name) with R = n 
Ou tpu t :  the least fixed point of F~ r 
S0 :=0; 
R0 :=~; 
for i = 1 to n do 

if there is a rule r E Rs~_I \ Ri-1 such that 
Cl(Rs~_~ \ Doms~_I,R,_~ (r)) does not defeat r 
then Ri := Ri-1 + r; Si := Cn(Ri) 
else return Si-1 

endfor 
end  WFS pr 

5.3 A Legal Reason ing  Example  

In this section we show how our approach can be applied to legal reasoning 
problems. We will use an example first discussed by Gordon 75. 

Example 8 (Legal Reasoning). 
Assume a person wants to find out if her security interest in a certain ship is 
perfected. She currently has possession of the ship. According to the Uniform 
Commercial Code (UCC, w a security interest in goods may be perfected 
by taking possession of the collateral. However, there is a federal law called the 
Ship Mortgage Act (SMA) according to which a security interest in a ship may 
only be perfected by filing a financing statement. Such a statement has not been 
filed. Now the question is whether the UCC or the SMA takes precedence in this 
case. There are two known legal principles for resolving conflicts of this kind. 
The principle of Lex Posterior gives precedence to newer laws. In our case the 
UCC is newer than the SMA. On the other hand, the principle of Lex Superior 
gives precedence to laws supported by the higher authority. In our case the SMA 
has higher authority since it is federal law. 
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The available information can nicely be represented in our approach. To make 
the example somewhat shorter we use the notation 

c r  not b l , . . . ,  not bm 

as an abbreviation for the rule 

e t - - a l , . . . , a n ,  not b l , . . . ,  not bin, not c t 

where c ~ is the complement of c, i.e. -~c if c is an atom and a if c -- -~a. Such 
rules thus correspond to semi-normal or, if m = 0, normal defaults in Reiter's 
default logic 103. 

We use the ground instances of the following named rules to represent the 
relevant article of the UCC, the SMA, Lex Posterior (LP), and Lex Superior 
(LS). The symbols dl and d2 are parameters for rule names: 

UCC : perfected ~ possession 
S M A  : -~perfected r ship, -~fin-statement 
LP(dl ,  d2) : dl -~ d2 ~ more-recent(d1, d2) 
LS(dl ,  d2) :d l  -g d2 r fed-law(d1), state-law(d2) 

The following facts are known about  the case and are represented as rules without 
body (and without name): 

possession 
ship 
-~ f in-statement 
more-recent(U CC, S M A ) 
fed- law(SMA) 
state-law(UCC) 

Let's call the above set of literals H.  I terated application o f / , ~ r  yields the 
following sequence of literal sets (in each case S{ = (F~r)i(0)): 

S I = H  
$2 = $1 

The iteration produces no new results besides the facts already contained in 
the program. The reason is that  UCC and SMA block each other, and that  
no preference information is produced since also the relevant instances of Lex 
Posterior and Lex Superior block each other. The situation changes if we add 
information telling us how conflicts between the latter two are to be resolved. 
Assume we add the following information: s 

L S ( S M A ,  UCC) -~ LP(UCC, S M A )  

s In realistic settings one would again use a schema here. In order to keep the example 
simple we use the relevant instance of the schema directly. 
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Now we obtain the following sequence: 

$1 = H U {LS(SMA, UCC) -~ LP(UCC, SMA),  
~LP(UCC, SMA) -< LS(SMA,  UCC)} 

$2 = $1 U {SMA -< UCC,-,UCC -< S M A )  
$3 = $2 U {-.perfected} 
& = Ss 

This example nicely illustrates how in our approach conflict resolution strategies 
can be specified declaratively, by simply asserting relevant preferences among 
the involved conflicting rules. 

6 Adding Disjunction 

In this section we will extend our programs to disjunctive statements. In Knowl- 
edge Representation it often occurs that  we know A V B V C without being 
sure which of these propositions hold. In fact, such a disjunction leaves it open: 
there might be states in the world where A holds or B or C or any combination 
thereof. Nevertheless, we can have information that  A implies D and B implies 
D and C implies D from which we would like to derive that  D holds for sure. 
It has been shown that  even with disjunctive programs without negation we can 
already express relations which belong to the second level of the polynomial 
hierarchy. 

Concerning the right semantics for such programs, we axe in the same situ- 
ation as in Section 3 - -  for positive programs there is general agreement while 
for disjunctive programs with default-negation there exist several competing ap- 
proaches. 

We present in Section 6.1 the generalized closed world assumption introduced 
by Minker. In Section 6.2 we show that  our definition of WFS from Section 3.3 
immediately carries over to the disjunctive case. The original definition of STA- 
BLE (Definition 6 on page 20) also carries over - -  we present it in Section 6.3. 

6.1 G C W A  

GCWA was defined by Minker (87) and can bee seen as a refined version of the 
CWA introduced by Reiter (102): 

D e f i n i t i o n  20 ( C W A ) .  

CWA(DB) = DB U {-~P(t) : DB ~ P ( t ) } ,  

where P(t) is a ground predicate instance. 

That  is, if a ground term cannot be inferred from the database, its negation is 
added to the closure. A weakness of CWA is that  already for very simple theories, 
like A V B it is inconsistent. Since neither A nor B is derivable, we have to add 
both their negations which makes the whole set inconsistent. 
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GCWA is defined for positive disjunctive programs consisting of rules of the 
form 

A 1 V . . . V A m  +- B 1 , . . . , B , ~  

by declaring all the minimal models to be the intended ones: 

Definit ion 21 ( G C W A ) .  
The generalized closed world assumption GCWA of P is the semantics given by 
the set of all minimal Herbrand models of P: 

GCWA(P) :-- Min-MOD(P) 

GCWA is very important  because it plays the same role for positive disjunc- 
tive programs as the least Herbrand model MR does for definite programs. 

Note also that  as far as we consider deriving positive disjunctions, we stay 
entirely within classical logic - -  a positive disjunction is true in GCWA if and 
only if it follows from the program considered as a classical theory. Therefore 
this task can be accomplished be methods and techniques developed in theorem 
proving in the last 30 years. In fact this was one of the main starting points of 
the DisLoP-project in Koblenz (see Section 7.2). 

In Sections 2 and 3 we have introduced the general notion of a semantics and 
various principles. Do they carry over to the disjunctive case? Fortunately, the 
answer is yes. In addition, GCWA not only satisfies all these properties, it is also 
uniquely characterized by them as the next theorem shows (we will introduce 
these properties in the next section). 

Theorem 8 (Characterization of  GCWA, 28). 
Let SEM be a semantics satisfying G P P E  and Elimination of Tautologies. 

a) Then: SEM(P) C_ Min-MOD2-va~(P) for positive disj. programs P. 
I.e. any such semantics is already based on 2-valued minimal models. In 
particular, GCWA is the weakest semantics with these properties. 

b) If SEM is non-trivial and satisfies in addition 9 Isomorphy and Relevance, 
then it coincides with GCWA on positive disjunctive programs. 

We end this section with the discussion of a well-known example that  can 
not be handled adequately by Circumscription: 

Example 9 (Poole's Broken Arm). 
Usually, a person's left arm is useable. But if the left arm is broken, it is an 
exception. The same statement holds for the right arm. Suppose that  we saw 
Fred yesterday with a broken arm but we do not remember if it was the left or 
the right one. We also know that  Fred can make out a cheque if he has at least 

9 See Section 7.1 for the precise definitions of Relevance and Isomorphy. 
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one useable arm (he is ambidextrous) but that  he is completely disabled if both 
arms axe broken. Here is the natural formalization: 

left_use(x) +- not ab(left, x) 
ab(le f t ,  x) +-- le ft_brok(x) 
right_use(x) +- not ab(right, x) 
ab(right, x) +- right_brok(x) 
le ft_brok(Fred) V right_brok(Fred) 
make_cheque(x) ~ left_use(x) 
make_cheque(x) +-- right_use(x) 
disabled(x) +-- le ft_brok(x), right_brok(x) 

Of course, we expect that  Fred is able to make out a cheque even without know- 
ing which axm he is actually using. Also we derive that  he is not (completely) 
disabled. 

For general Circumscription, the problem is to rule out the unintended model 
where both arms axe broken and Fred is disabled. As we will see later, both 
D-WFS and DSTABLE derive that  Fred is not disabled but only DSTABLE is 
strong enough to also conclude that  Fred can make out a cheque. 

6.2  D - W F S  

Before we can state the definition of D-WFS we have to extend our principles 
to disjunctive programs with default-negation. We abbreviate general rules 

A1 V . . .  V Ak +- B 1 , . . . , B m ,  not C1 , . . . ,  not Ca, 

by 
A +- B +, not 13- 

where ,4 := {A1, . . . ,  Ak}, B + := {B1 , . . . ,  Bin}, I3- := {C1, . . . ,  Cn}. We also 
generalize our notion of a semantics slightly: 

D e f i n i t i o n  22 ( O p e r a t o r  ~ ,  S e m a n t i c s  S ~ ) .  
By a semantic operator ~ we mean a binary relation between logic programs and 
pure disjunctions which satisfies the following three arguably obvious conditions: 

1. Right Weakening: If P .. r and r C r then P ~ Ct. 
2. Necessarily True: If ,4+-true E P for a disjunction ,4, then P ~ ,4. 
3. Necessarily False: I rA  ~. Head_atoms(P) 11/or ~-ground atom A, then P 

not A. 

Given such an operator ~ and a logic program P, by the semantics 8~(P)  o/ P 
determined by ~ we mean the set of all pure disjunctions derivable by ~ from 
P, i.e., Sb~(P ) := { e l F  ~ r 

10 I. e. r is a subdisjunction of r 
lz We denote by Head_atoms(P) the set of all (instantiations of) atoms ocurring in 

some rule-head of P. 
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In order to give a unified treatment in the sequel, we introduce the following 
notion: 

Defini t ion 23 (Invariance of  ~ unde r  a Trans format ion) .  
Suppose that a program transformation Trans : P ~-+ Trans(P) mapping logic 
programs into logic programs is given. We say that the operator ~., is invariant 
under Trans (or that Trans is a ~-equivalence transformation) iff 

P ~ r .'. '.. Trans(P) ~ r 

for any pure disjunction r and any program P. 

All our principles introduced below can now be naturally extended. 

Defini t ion 24 (El imina t ion  of  Tautologies,  N o n - M i n i m a l  Rules) .  
Semantics S H satisfies a) the Elimination of Tautologies, resp. b) the Elimina- 
tion of Non-Minimal Rules iff ~ is invariant under the following transforma- 
tions: 

a) Delete a rule A +--/3 + A not 13- with A N B + # 0. 
b) Delete a rule A +--/3 + A not 13- if there is another rule 

A' +-- B +1 A not B -~ with A' C_ A, B +l C_ B +, and 13-' C B - .  

Our partial evaluation principle has now to take into account disjunctive heads. 
The following definition was introduced independently by Sakama/Seki and 
Srass/Dix (22, 28, 106): 

Defini t ion 25 ( G P P E ) .  
Semantics 8b~ satisfies GPPE iff it is invariant under the following transfor- 
mation: Replace a rule .4 +- B + A not 13- where B + contains a distinguished 
atom B by the rules 

A U ( A , \ { B } )  +-- ( B + \ { B } ) U B  + A n o t ( B - U B ~ - )  ( i = l , . . . , n )  

where Ai +-- B + A not B~- (i = 1, . . . ,  n) are all the rules with B E Ai. 

Note that we are free to select a specific positive occurrence of an atom B 
and then perform the transformation. The new rules are obtained by replacing 
B by the bodies of all rules r with head literal B and adding the remaining head 
atoms of r to the head of the new rule. 

Here is the analogue of Principle 04 on page 15: 

Defini t ion 26 (Posit ive and  Negat ive  Reduc t ion) .  
Semantics 8b~ satisfies a) Positive, resp. b) Negative Reduction iff ~ is invari- 
ant under the following transformations: 

a) Replace ,4 +-- B + A not 13- by .A +--/3 + A not (13- fl Head_atoms(P)). 
b) Delete A +-- B + A not B -  if there is a rule .4 ~ +- true with .4 ~ C_ 13-. 

Now the definition of a disjunctive counterpart of WFS is straightforward: 
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Definit ion 27 ( D - W F S ) .  
There exists the weakest semantics satisfying positive and negative Reduction, 
GPPE, Elimination of Tautologies and non-minimal Rules. We call this seman- 
tics D- WFS. 

As it was the case for WFS, our calculus of transformations is also confluent 
(25,27). 

Theorem 9 (Confluent Calculus for D-WFS,  29). 
The calculus consisting of our four transformations is confluent and terminating 
for propositional programs. L e. we always arrive at an irreducible program, which 
is uniquely determined. The order of the transformations does not matter. 

Therefore any program P is associated a unique normalform res(P). The 
disjunctive wellfounded semantics of P can be read off from res(P) as follows 

r E D-WFS(P) ~ there is ,4 C r with ,4 ~- true E res(P) or 
there is not A E ~b and A r Head_atoms(res(P)). 

Note that  the original definition of WFS, or any of its equivalent characteriza- 
tions, does not carry over to disjunctive programs in a natural  way. 

Let us see how Example 9 on page 35 is handled by D-WFS. Applying G P P E  
and Reduction gives us the following residual program (we consider just the 
F r ed-instantiations ) : 

left_use(F) +- 
ab(left, F) V right_brok(F) +-- 
right_use(F) +-- 
ab(right, F) V left_brok(F) +- 
left_brok(F) V right_brok(F) +- 
make_cheque(F) ~- 
make_cheque(F) +-- 

not ab(left, F) 

not ab(right, F) 

not ab(le f t ,  F) 
not ab(right, F) 

Therefore we derive not disabled(F), because it does not appear in any head of 
the residual program. All the remaining atoms are undefined. 

Two properties of D-WFS are worth noticing 

- For positive disjunctive programs, D-WFS coincides with GCWA. 
- For non-disjunctive programs with negation, D-WFS coincides with WFS. 

6.3 DSTABLE 

Unlike the wellfounded semantics, the original definition of stable models carries 
over to disjunctive programs quite easily: 

Definit ion 28 ( D S T A B L E ) .  
N is called a stable model 12 of P if and only if N E Min-Mod(Pg). 

12 Note that we only consider Herbrand models. 



Knowledge Representation with Logic Programs 39 

In the last definition pN is the positive disjunctive program obtained from P by 
applying the Gelfond/Lifschitz transformation (as introduced before Definition 6 
on page 20 - -  its generalization to disjunctive programs is obvious). 

Analogously to D-WFS the following two properties of DSTABLE hold: 

- For positive disjunctive programs, DSTABLE coincides with GCWA. 
- For non-disjunctive programs with negation, DSTABLE coincides with STA- 

BLE. 

What about our transformations introduced to define D-WFS? Do they hold 
for DSTABLE? Yes, they are indeed true. The most difficult proof is the one for 
GPPE. It was proved in 26,106 independently that stable models are preserved 
under GPPE. Moreover, Brass/Dix proved in 24 that STABLE can be almost 
uniquely determined by GPPE: 

Theorem 10 (Characterization of  DSTABLE,  28). 
Let SEM be a semantics satisfying GPPE, Elimination of Tautologies, and Elim- 
ination of Contradictions. Then: SEM(P) C_ STABLE(P). 

Moreover, DSTABLE is the weakest semantics satisfying these properties. 

DSTABLE is stronger than D-WFS as can be seen from Example 9 on 
page 35. There we have exactly two stable models 

1. left_use(F), not ab(left, F), ab(right, F), not right_use(F), 
right_brok( F), not le ft_brok( F), make_cheque(F), not disabled(F), 

2. right_use(F), not ab(right, F), ab(left, F), not left_use(F), 
left_brok(F), not right_brok(F), make_cheque(F), not disabled(F). 

In all of them, Fred is not disabled and can make out a cheque. 
Of course, DSTABLE inherits the shortcomings of STABLE such as incon- 

sistency and no goal-orientedness. 

7 W h a t  D o  W e  W a n t  a n d  W h a t  Is  I m p l e m e n t e d ?  

In this part we first consider the question Is there an optimal semantics ? (Sec- 
tion 7.1) and give in Section 7.2 an overview of all the existing implementations 
we are aware of. We also describe theoretical approaches that have not yet been 
implemented. 

7.1 What Is the Best Semantics? 

Most probably there is no definite answer to the question in the title. Different 
knowledge representation tasks may ask for different semantics. Some might be 
better suited in special domains than others. What are reasonable properties 
that semantics should be checked against? 

While many people defined in the last years new semantics by considering 
only few examples and appealing to their own personal intuitions they had about 
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how these few examples should be handled, Dix tried to adjust and investigate 
abstract properties known in general nonmonotonic reasoning to semantics of 
logic programs (56, 58-60). He showed for example that WFS is cumulative 
and rational and that a semantics defined independently by Schlipf and Dix is 
the weakest extension of WFS satisfying Cut and Supraclassicality. 

Besides such properties (which he calls strong) he defined also weak properties 
- -  these are conditions that any reasonable semantics should satisfy (57, 60). 
The principles we have introduced in Sections 2, 3 belong to this sort. Let us 
take a closer look into some weak properties already mentioned (but not yet 
defined). We start with a property that is satisfied for any semantics we know: 

Definition 29 (Isomorphy). 
A semantics SEM satisfies Isomorphy, if and only if 

SEM(Z(P) ) = Z( SEM(P) ) 

/or all programs P and isomorphisms Z on the Herbrand base Bp. 

Isomorphy formalizes the intuition that a renaming of the program should have 
no influence on the semantics, as long as we also apply this same renaming to 
the semantics. 

The next property gives a formal definition of the notion Goal-Orientedness. 
To state these conditions, we need the classical notion of the Dependency-Graph 
and the two definitions 

- dependencies_of(X) := {A : X depends on A}, and 
- rel_rul(P, X)  is the set of relevant rules of P with respect to X, i.e. the set 

of rules that contain an A E dependencies_of(X) in their head. 

Given any semantics SEM and a program P, it is perfectly reasonable that 
the truthvalue of a literal L, with respect to SEM(P), only depends on the 
subprogram formed from the relevant rules of P with respect to L. 13 This idea 
is formalized by: 

Definition 30 (Relevance). 
The principle of Relevance states: L E S E M ( P )  iff L E SEM(rel_rul(P, L)). 

Note that the set of relevant rules of a program P with respect to a literal L con- 
tains all rules, that could ever contribute to L's derivation (or to its nonderivabil- 
ity). In general, L depends on a large set of atoms: dependencies_of(L) := {A : 
L depends on A}. But rules that do not contain these atoms in their heads, 
will never contribute to their derivation or non-derivation. Therefore, these rules 
should not affect the meaning of L in P. STABLE does not satisfy this principle. 
This is due to the nonexistence of stable models by adding a clause "c e- not c" 
to a program. 

We have already introduced GPPE above. In fact, even a weaker property is 
not satisfied for the semantics defined by Minker and his group: 

la Let dependencies_of( not X) := dependencies_of(X), and rel_rul(P, not X) := 
rel_rul(P, X). 
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Example  10 (Extension-by-Definit ion,  56). 
We consider  the  following two programs:  

P a W F S  : P +-- not  b 
a ~-- not  b 
b+--c  
c +- p, not  a 

P a w F s c  : P +-- not  b 
a +-- not  b 
b +- p, not  a 
v +- p, not  a 

G W F S ( P G w F S )  entai ls  not  c, because M i n - M O D ( P G w F s )  = { {p, a}, ( b } )  and  
thus  also (by simple negat ion-as-fa i lure  reasoning)  not  b, p and a. Also we have 
the  ident i ty  M i n - M O D ( P c w F s o ) = (  (p, a},  (b)  } bu t  negat ion-as- fa i lure  can  not  

be  applied like before. Therefore G W F S ( P G w F s o )  does no t  entai l  not b, nor  p 

nor  a. 

P a W F S c  partial evaluates PaWFS:  the  last  bu t  one clause was t r ans fo rmed  
in to  ano ther  one by expand ing  the defini t ion of c: Obviously,  a semant ics  should 
assign the  same mean ing  to  these programs:  un fo r t una t e l y  G W F S  does not! 

Typica l  results of Dix are 

- W F S  is the weakest semantics  sat isfying some of these weak propert ies ,  
- W F S  can be un ique ly  character ized if some s t rong proper t ies  are added.  

Properties of Logic-Programming Semantics 

Semantics Reference 
comp Cla78 
GCWA Min82 
WGCWA RosTop88 
DSTABLEGelLif91 
WFS vGeld.eta188 
STAr Prz91 
STATIC Prz95 
D-WFS BraDix95 
DWFS Dix92 
Str. WFS Ros92 
WD-WFS BraDix95 
WDWFS Dix92 
PMS SakIno94 

Domain Taut. G P P E  Red. NMin. Rel. 
Nondis.- - -  - �9 �9 �9 - - - -  
Pos. �9 �9 �9 �9 �9 
Pos. �9 �9 �9 
Dis. �9 �9 �9 �9 
Nondis. �9 �9 �9 �9 �9 
Dis. �9 �9 �9 �9 �9 
Dis. �9 �9 �9 �9 �9 
Dis. �9 �9 �9 �9 �9 
Dis. �9 �9 �9 �9 �9 
Dis. - -  �9 �9 
Dis. �9 �9 �9 
Dis. �9 �9 �9 
Dis. - -  �9 

T a b l e l .  Semantics and Their Equivalence-Transformations 

We conclude wi th  Table  1: an  overview of the  proper t ies  of some semant ics  

men t ioned  above. 
The  bad  propert ies  of the PMS (failure of Relevance) s tem from the  fact 

t h a t  it  was original ly based on s table  models.  Bu t  the  unde r ly ing  idea of P M S  is 
to t r ans fo rm dis junct ive  programs in to  non-d is junc t ive  ones and  then  app ly ing  
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a semantics for non-disjunctive programs. By choosing semantics different from 
STABLE, PMS inherits other properties (see 105). 

7.2 Query-Answering Systems and Implementations 

In this section we give a rough overview of what semantics have been imple- 
mented so far and where they are available. As already mentioned our NMR- 
semantics are undecidable in general. Nevertheless we think it is very important 
to have running systems that 

1. can handle programs with free variables, and 
2. are Goal-Oriented. 

To ensure completeness (or termination) we need then additional requirements 
like aUowedness (to prevent floundering, see Section 3.1) and no function sym- 
bols. 

Although these restrictions ensure the Herbrand-universe to be finite (and 
thus we are really considering a propositional theory) we think that such a system 
has great advantages over a system that can just handle ground programs. For 
a language/:, the fully instantiated program can be quite large and difficult to 
handle effectively. 

The goal-orientedness (or Relevance as introduced in Section 7.1) is also 
important - -  after all this was one reason of the success of SLD-Resolution. As 
noted above, such a goal-oriented approach is not possible for STABLE. 

LP-Semantics Various commercial PROLOG-systems perform variants of SLDNF- 
Resolution. Chan's constructive negation has also been implemented as part of 
the master-theses 86, 117. 

Currently, a library of implemented logic programming systems and interest- 
ing test-cases for such systems is collected as a project of the artificial intelligence 
group at Koblenz. We refer to ht tp: / /www, uni -koblenz ,  de /ag-k i /LP/>.  

Non-Disjunctive NMR-Semantics There are many theoretical papers that 
deal with the problem of implementation (21, 80, 53, 71) but only few running 
systems. The problem of handling and representing ground programs given a 
non-ground one has also been adressed 78, 79, 69. 

In 17, 18 the authors showed how the problem of computing stable models 
can be transformed to an Integer-Linear Programming Problem. This has been 
extended in 64 to disjunctive programs. 

Inoue et. al. show in 77 how to compute stable models by transforming 
programs into propositional theories and then using a model-generation theorem 
prover. 

In Berne, Switzerland, a group around G. J" ager is building a non-monotonic 
reasoning system which incorporates various monotonic and non-monotonic log- 
ics. We refer to http://lwbwww, unibe, ch: 8080/LWBinfo. html. 
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Extended logic programs under the well-founded semantics are considered 
by Pereira and his colleagues: 97, 1, 3. The REVISE system, which deals with 
contradiction removal pro paraconsistent programs in this semantics, can be 
found in <http://www. uni-koblenz, de/ag-ki/LP/> too. 

In 96, an implementation of WFS and STABLE with a special eye on com- 
plexity is described. 

The most advanced system has been implemented by David Warren and his 
group in Stony Brook based on OLDT-algorithm of 108. They first developed 
a meta-interpreter (SLG, see 49) in PROLOG and then directly modified the 
WAM for a direct implementation of WFS (XSB). They use tabling-methods and 
a mixture of Top-Down and bottom-up evaluation to detect loops. Their system 
is complete and terminating for non-floundering DATALOG. It also works for 
general programs but termination is not guaranteed. This system is described in 
47, 46, 48, and is available by anonymous ftp from f t p .  cs.  sunysb,  edu/pub/  
XSB/. 

Dis junct ive  N M R - S e m a n t i c s  There are theoretical descriptions of imple- 
mentations that have not yet been implemented: 72, 90, 52. Also Sakama and 
Seki describe an approach for first-order disjunctive programs (107). 

Here are some implemented systems. Inoue et. al. show in 77 how to compute 
stable models for extended disjunctive programs in a bottom-up-fashion using a 
theorem prover. 

The approach of Bell et. al. (93) was used by Dix/Miiller to implement 
versions of the stationary semantics of Przymusinski (101): 92, 63, 91. 

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DAT- 
ALOG programs (23114). An implementation of static semantics is described in 
33 15 

Seipel has implemented in his DisLog-system various (modified versions of) 
semantics of Minker and his group. His system is publicly available at the 
URL http://sunwww, informatik, uni-tuebingen, de: 8080/dislog/dislog. 
t a r .  Z. However we again point to the very irregular behaviour of these semantics 
illustrated by Example 10 on page 41. 

Finally, there is the DisLoP project undertaken by the Artificial Intelligence 
Research Group at the University of Koblenz and headed by J. Dix and U. Fur- 
bach (54, 8, 9). This project aims at extending certain theorem proving con- 
cepts, such as restart model elimination 13 and hyper tableaux 14 calculi, for 
disjunctive logic programming. The hyper tableaux calculus can handle positive 
queries with respect to positive disjunctive logic programs and seems to facilitate 
minimal model generation. Restart model elimination calculus does not use any 
contrapositives of the given clauses and thus allows for their procedural reading. 
Moreover, it is answer complete for positive queries 15. Thus, they are suitable 
for implementing an interpreter for positive progams and the DisLoP system 
extends this further for non-monotonic negations too. 

14 ftp://ftp, informatik, uni-hannover, de/software/index, html 
15 ftp://ftp, informatik, uni-hannover, de/software/static/static, html 



44 Gerhard Brewka and Jfirgen Dix 

Currently, DisLoP system can perform minimal model reasoning based on 
GCWA, WGCWA. Minimal model reasoning is an important  problem to tackle, 
since any well-known semantics for negation is a conservative extension of that.  
DisLoP can perform minimal model reasoning in both top-down and bottom- 
up manners. The bottom-up approach employs the hyper tableaux calculus to 
generate potential minimal models and then uses a novel technique to check 
the minimality of the generated model without any reference to other models. 
This approach is described in 94, 95. The top-down approach is based on an 
abductive framework studied in 7. This introduces an inference rule, negation 
as failure to explain, which allows us to assume the negation of a sentence if 
there are no abductive explanations for that.  The DisLoP system uses a mod- 
ified restart model elimination calculus to generate abductive explanations of 
the given sentence and employs negation-as-failure-to-explain inference rule for 
minimal model reasoning. 

This system can be extended to handle non-monotonic semantics such as 
D-WFS, STATIC etc. In particular, an implementation of D-WFS for general 
disjunctive programs which works in polynomial space is available (32). Cur- 
rently, an extension to first-order programs is on its way (65, 66). Information 
on the DisLoP project and related publications can be obtained from the W W W  
page <http://www. uni-koblenz, de/ag-ki/DLP/>. 

An important outcome of the Dagstuhl Seminar 9627 (62) was to construct 
a web page to collect and disseminate information on various logic programming 
systems that  concentrate on non-monotonic aspects (different kinds of nega- 
tion, disjunction, abduction etc.). This web page is actively maintained at the 
URL < h t t p : / / w w w . u n i - k o b l e n z . d e / a g - k i / L P / > .  In addition the Logic Pro- 
gramming and Nonmonotonic Reasoning-conference 1997 (55) contains a spe- 
cial track on implementations and working systems. 
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Abs t r ac t .  Thispaper presents an extension of disjunctive datalog (Data- 
log v) by nested rules. Nested rules are (disjunctive) rules where elements 
of the head may be also rules. Nested rules increase the knowledge repre- 
sentation power of Datalog v both from a theoretical and from a practical 
viewpoint. A number of examples show that nested rules allow to nat- 
urally model several real world situations that cannot be represented in 
Datalog v. An in depth analysis of complexity and expressive power of 
the language shows that nested rules do increase the expressiveness of 
Datalog V without implying any increase in its computational complexity. 

1 I n t r o d u c t i o n  

In this paper,  we propose an extension of Datalog v by nested rules tha t  we call 
Datalog v , ~ .  Informally, a Datalog v ' ~  rule is a (disjunctive) rule where rules 
may  occur in the head. For instance, r : A V (B +-~ C) +-- D, where A and B 
are atoms and C and D are conjunctions of a toms is a Data logV,~ rule. The 
intuitive meaning of r is the following: if D is true, then A or B could be derived 
from r; however, B can be derived from r only if C is also true,  i.e., B cannot 
be derived from rule r if C is false. 

Example 1. The organizer of a par ty  wants to invite either susan or john and, 
in addition, either mary or paul. This situation can be expressed by means of 

* This work has been supported in part by FWF (Austrian Science Funds) under the 
project PI1580-MAT "A Query System for Disjunctive Deductive Databases"; by the 
Istituto per la Sistemistica e l'Informatica, ISI-CNR; and by a MURST grant (40% 
share) under the project "Interdata." 
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the following disjunctive Datalog program 

susan V john +- 
mary V paul +- 

This program has four stable models giving all possible solutions: M1 = ( susan, 
mary }, Ms -- (susan,paul} ,  M3 = (john,  mary}  and Ma = ( john,paul} .  

Suppose now that you know that john will attend the party only if mary 
will attend the party too; this means that if mary will not attend the meeting, 
john will not attend the meeting too (therefore, inviting john makes sense only 
if also mary has been invited). This situation cannot be naturally expressed 
in disjunctive Datalog whereas can be naturally expressed by means of nested 
rules. 

susan V (john ~-~ mary) +- 
mary V paul +- 

The new program has only three stable models, namely M1, Ms and M3 (see 
Section 2), that represent the three reasonable alternative sets of l~ersons to be 
invited. O 

Thus, the addition of nested rules allows us to represent real world situations 
that cannot be represented in plain Datalog v programs. 

R e m a r k s .  

- We point out that a nested rule a +-" b, appearing in the head of a rule r, 
does not constraint the truth of a (to b) globally (it is not logically equivalent 
to -~b -+ -~a); rather, a +-~ b constraints the derivation of a from the rule r. 
For instance, the program consisting of rule (a ~ b) +-- and of fact a +- has 
only the stable model {a}, where a is true even if b is false. 

- It is worth noting that nested rules could be simulated by using (possibly 
unstratified) negation; however, in cases like the example above, a nested 
rule allows us a more direct representation of the reality and it is therefore 
preferable. 

- In this paper we will contrast disjunctive Datalog with nested rules (Data- 
log v,~) mainly against plain (i.e., negation free) disjunctive Datalog (Data- 
logV), in order to put in evidence the types of disjunctive information that 
become expressible thanks to the introduction of nested rules. 

The main contributions of the paper are the following: 

- We addnested rules to disjunctive Datalog and define an elegant declarative 
semantics for the resulting language. We show that our semantics generalizes 
the stable model semantics 22, 11 of disjunctive Datalog programs. More- 
over, we show how nested rules can be used for knowledge representation 
and commonsense reasoning. 

- We analyze the complexity and the expressive power of Datalog v,~. It ap- 
pears that, while nested rules do not affect the complexity of the language, 
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they do increase its expressive power. Indeed, as for Datalog v, brave rea- 
soning is E2P-complete for Datalog v , ~  (that is, the complexity is the same). 
However, Datalog v allows to express only a strict subset of Z2 P (e.g., even 
the simple even query, 1 asking whether a relation has an even number of el- 
ements, is not expressible) 7, while Datalog v , ~  expresses exactly E2 P (that 
is, it allows to represent all and only the properties that  are computable in 
polynomial time by a nondeterministic Turing machine endowed with an NP 
oracle). 

To our knowledge this is the first paper proposing an extension of disjunc- 
tive Datalog with nested rules. Related to our work can be considered papers 
presenting other extensions of logic programming like, for instance, 2, 15, 20, 4, 
12. Related results on complexity and expressive power of Knowledge Repre- 
sentation languages are reported in 8, 13, 5, 18, 24, 23. 

The sequel of the paper is organized as follows. Section 2 describes the Data- 
log v,~,~ language formally. The syntax is first given, then an elegant definition 
of the stable model semantics, based on the notion of unfounded set is provided; 
results proving that  our notions generalize the classical definitions of unfounded 
set and stable model are also given in this section. Section 3 presents the results 
on complexity and expressive power of our language. Some examples on the use 
of nested rules for representing knowledge are reported in Section 4. Finally, 
Section 5 draws our conclusions and addresses ongoing work. 

2 T h e  D a t a l o g  v,-~,~ L a n g u a g e  

In this section, we extend disjunctive Datalog by nested rules. For the sake 
of generality, we will consider also negation in the rules' bodies (defining the 
language DatalogV'~,~). 

2.1 S y n t a x  

A term is either a constant or a variable 2. An atom is a( t l , . . . ,  tn), where a is a 
predicate of arity n and t l ,  ..., tn are terms. A literal is either a positive literal 
p or a negative literal -~p, where p is an atom. 

A nested rule is of the form: 

A ~-' b l , - . . ,  b~,-~bk+l,.. . ,  ~bm, m > 0 

where A, b l , . . . ,  bm are atoms. If m = 0, then the implication symbol "e  -~" can 
be omitted. 

A rule r is of the form 

A 1 V . . ' V A ,  +-bl,. . . ,bk,'~bk+l,.. . ,-~bm, n > 0 , m > 0  

1 See example 9. 
2 Note that function symbols are not considered in this paper. 
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where b l , ' " , b m  are atoms, and A 1 , . . . , A n  are nested rules. The disjunction 
A1 V . . .  V An is the head of r, while the conjunction bl, ..., bk, ~bk+l, ...,-'bin is 
the body of r; we denote the sets {A1, . . .  ,An} and {bl, ...,b~, -~b&+l, ...,-~bm} 
by Head(r) and Body(r), respectively; moreover, we denote {bl,...,bk} and 
{-~bk+l,.--,-~bm} by Body+(r) and Body-(r), respectively. Notice that  atoms 
occurring in Head(r) stand for nested rules with an empty body. If n -- 1 (i.e., 
the head is V-free), then r is normal; if no negative literal appear in r (r is 
-~-free), then r is positive; if A1,... ,An are atoms, then r is fiat. We will use 
the notation Body(r) and Head(r) also if r is a nested rule. A Datalog v , ' , ~  
program P is a set of rules; P is normal (resp., positive, fiat) if all rules in P are 
normal (resp. positive, fiat). We denote by: (i) Datalog v ,~ ,  (ii) Datalog v , ' ,  and 
(iii) Datalog v, the fragments of Datalog v '~ '~  where we disallow: (i) negation 
in the body, (ii) nested implication in the head, and (rio both negation in the 
body and nested implication in the head, respectively. Moreover, if negation is 
constrained to be stratified 21, then we will use the symbol -~8 instead of -~ 
(e.g., Datalog v ' '~  will denote disjunctive Datalog with stratified negation). 

Example 2. A rule may appear in the head of another rule. For instance, 

rl : a V (b +-~ -~c) +-- d 

is an allowed Datalog v,-~,~ rule. Moreover, 

r2 : a V (b 4-' c) +-- d 

is a Datalog v , ~  rule as well. Neither, r l  nor r2 belong to DatalogV; while 

r3 : aVb+--d 

is in Datalog v.  

2.2 S e m a n t i c s  

Let :P be a Datalog v,~,~ program. The Herbrand universe Up of P is the set 
of all constants appearing in P.  The Herbrand base Bp of P is the set of all 
possible ground atoms constructible from the predicates appearing in P and the 
constants occurring in Up (clearly, both Up and Bp are finite). The instantiation 
of the rules in P is defined in the obvious way over the constants in Up, and is 
denoted by ground(P). 

A (total) interpretation for P is a subset I of Bp.  A ground positive literal 
a is true (resp., false) w.r.t. I if a E I (resp., a ~ I).  A ground negative literal 
-,a is true (resp., false) w.r.t. I if a ~ I (resp., a E I).  

Let r be a ground nested rule. We say that  r is applied in the interpretation 
I if (i) every literal in Body(r) is true w.r.t. I,  and (ii) the atom in the head of r 
is true w. r . t . I .  A rule r E ground(P) is satisfied (or true) w.r.t. I if its body is 
false (i.e., some body literal is false) w.r.t. I or an element of its head is applied. 
(Note that  for fiat rules this notion coincides with the classical notion of truth). 
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Example 3. The nested rule b +-~ -~c +-- is applied in the interpretation I = 
{b, d}, as its body is true w.r.t. I and the head atom b is in I.  Therefore, rule 
rl  : a V (b +-" -~c) ~ d is satisfied w . r . t . I ,  r l  is true also in the interpretation 
I = {a, d}; while it is not satisfied w.r.t, the interpretation I = {c, d}.  

A model for 79 is an interpretation M for 79 which satisfies every rule r E 
ground(79). 

Example 4. For the fiat program 79 = {a V b +-} the interpretations {a}, {b} 
and {a, b} are its models. 

For the program 79 = {a V b +--; c V (d e-' a) +-} the interpretations {a, d}, 
{a, c}, {b, c}, {a, b, d}, {a, b, c}, {a, c, d}, {a, b, c, d} are models. {b, d} is not a 
model, as rule c V (d e -~ a) +- has a true body but neither c nor d +-" a are 
applied w.r.t. {b, d} (the latter is not applied because a is not true).  

As shown in 19, the intuitive meaning of positive (disjunctive) programs 
(i.e., Datalog V programs) is captured by the set of its minimal models (a model 
M is minimal if no proper subset of M is a model). However, in presence of 
negation and nested rules, not all minimal models represent an intuitive meaning 
for the programs at hand. For instance, the program consisting of the rule aV(b +- 
c) +- has two minimal models: M1 = {a} and M2 = {b, c}. However, the model 
M2 is not intuitive since the atom c cannon be derived from the program. 

To define a proper semantics of Datalog v,~,~ programs, we define next a 
suitable notion of unfounded sets for disjunctive logic programs with nested rules 
which extends in a very natural way the analogous notion of unfounded sets given 
for normal and disjunctive logic programs in 26 and 16, 17, respectively. 

Unfounded sets with respect to an interpretation I are essentially set of 
atoms that  are definitely not derivable from the program (assuming I),  and, as 
a consequence, they can be declared false according to the given interpretation. 

Def in i t ion  1. Let 7 9 be a Datalog v,-~,~ program and I C_ BT~ an interpretation 
for 79. X C_ Bp  is an unfounded set for 79 w.r.t. I if, for each a E X ,  every rule 
r with a nested rule r' : a +-~ Body(r') in Head(r),  3 satisfies at least one of the 
following conditions (we also say r has a witness of unfoundness): 

1. Body(r) U Body(r') is false w.r.t. I,  i.e., at least one literal in Body(r) U 
Body(r') is false w.r.t. I; 

2. (Body+(r) USody+(r ' ) )  M X  ~ 0; 
3. some nested rule in Head(r) is applied w.r.t. I - X .   

Informally, if a model M includes any unfounded set, say X,  then, in a sense, 
we can get a better model, according to the closed world principle, by declaring 
false all the atoms in the set X. Therefore, a "supported" model must contain no 
unfounded set. This intuition is formalized by the following definition of stable 
models. 

a An atom A in Head(r) is seen as a nested rule with empty body a +-~. 
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Definition 2. Let 7) be a Datalog v,€ program and M C_ B7~ be a model for 
7). M is a stable model for 7) if it does not contain any non empty unfounded 
set w.r.t. M (i.e., if both X C M and X ~ 0 hold, then X is not an unfounded 
set for 7) w.r.t. M).   

Example 5. Let 7) = {a V b +- c, b +-- -~a, -~c, a V c +- -~b}. Consider 
I = {b}. It is easy to verify that  {b} is not an unfounded set for 7) w . r . t . I .  
Indeed, rule b +- -~a, -~c has no witness of unfoundedness w . r . t . I .  Thus, as I is 
a model for 7), then I is a stable model for 7) according to Definition 1. 

Let 7) = {a Y (b +-~ -~c) +- d, d V c +--}. Consider the model I --- {b, d}. 
It  is easy to verify tha t  {b, d} is not an unfounded set w.r.t. I and neither {a} 
nor {b} is an unfounded set for 7) w . r . t . I .  Therefore, I is a stable model of 7). 

It is easy to see that  the stable models of the program 7) = {susanY (john +-~ 
mary) +--, mary V paul ~ }  of example 1 are: M1 = {susan, mary},  M2 = 
{susan,paul}, and M3 = {john, mary}.  

We conclude this section by showing that  the above definitions of unfounded 
sets and stable models extend the analogous notions given for normal and dis- 
junctive logic programs. 

Proposition 1. Let I be an interpretation for a fiat program 7 ).  X C BT~ is an 
unfounded set for 7) w.r.t. I according to 16, 17 if and only if X is an unfounded 
set for ~ w.r.t. I according to Definition 1. 

P r o o f .  For a flat program P ,  every nested rule r ~ is of the form a +-~. Con- 
sequently, Condition 1 and Condition 2 of Definition 1 correspond exactly to 
the analogous conditions of the definition of unfounded set given in 16,17 (as 
Body(r ~) = 0). Moreover, in absence of nested rules with nonempty bodies, Con- 
dition 3 of Definition 1 just says that  some head atom is t rue w.r.t. I -  X (which 
corresponds to Condition 3 of the definition of unfounded set given in 16, 17).• 

As a consequence, if 7) is a non disjunctive flat program, then the notion of 
unfounded set does coincide with the original one given in 26. 

C o r o l l a r y  1. Let I be an interpretation for a normal fiat program 7). X C BT~ 
is an unfounded set for 7) w.r.t. I according to 26 if and only if X is an 
unfounded set for 7) w.r.t. I according to Definition 1. 

P r o o f .  In 16,17, it is shown that  the Definition of unfounded sets given there, 
coincides on normal programs with the classical definition of unfounded sets of 
26. The result therefore follows from Proposition 1.  

T h e o r e m  1. Let 7) be a fiat program and M a model for 7). Then, M is a 
stable model for 7) according to 22, 11 if and only if M is a stable model for 7 ) 
according to Definition 2. 

P r o o f .  It follows from Proposition 1 and the results in 16,17.  

Moreover, if 7) is a positive flat program, then the set of its stable models 
coincides with the set of its minimal models. Hence, for positive flat programs 
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our stable models semantics coincide with minimal model semantics proposed 
for such programs in 19. 

In fact the stable model semantics defined above, is a very natural  extension 
of the widely accepted semantics for the various (less general) classes of logic pro- 
grams, since it is based on the same concepts of minimality and supportedness, 
which follow from the closed world assumption. 

3 C o m p l e x i t y  a n d  E x p r e s s i v e n e s s  

3.1 P r e l i m i n a r i e s  

In the context of deductive databases, some of the predicate symbols correspond 
to database relations (the extensional (EDB) predicates), and are not allowed 
to occur in rule heads; the other predicate symbols are called intensional (IDB) 
predicates. Actual database relations are formed on a fixed countable domain U, 
from which also possible constants in a Datalog v '~ '~  program are taken. 

More formally, a Datalog v'-~'~ program 7) has associated a relational database 
scheme 7)Bp = {r I r is an EDB predicate symbol of 7)}; thus EDB predicate 
symbols are seen as relation symbols. A database D on T ~  is a set of finite 
relations on U, one for each r in T~p ,  denoted by D(r) ;  note tha t  D can be seen 
as a first-order structure whose universe consists of the constants occurring in D 
(the active domain of D).4 The set of all databases on 723~, is denoted by D~.  

Given a database D E Dp ,  7)D denotes the following program: 

7)D = 7) U {r(t) +-- I r E lYB~ A t E D(r)} .  

Def in i t ion  3. A (bound Datalog v , ' , ~ )  query Q is a pair (7), G), where 7 ) is 
a Datalog v ,€  program and G is a ground literal (the query goal). Given a 
database D in Dp ,  the answer of Q on D is true if there exists a stable model 
M o 7)D such that G is true w.r.t. M ,  and false otherwise. 5  

Constraining 7) on fragments of Datalog v '~ '~ ,  we obtain smaller sets of 
queries. More precisely, we say that  Q = (7),G) is a Datalog x query, where 
X C_ {V, +-~, -~}, if 7) is a Datalog x program (and G is a ground literal). Clearly, 
-~ could also be replaced by -~8 to obtain queries of stratified fragments of 
DatalogV,-~, ~ .  

The constants occurring in 7)D and G define the active domain of query 
Q = (7), G) on the database D. Observe that ,  in general, two queries (7), G) 
and (7), -~G) on the same database need not give symmetric answers. Tha t  is, if 

4 We use here active domain semantics (cf. 1), rather then a setting in which a 
(finite) universe of D is explicitly provided 9, 6, 27. Note that Fagin's Theorem and 
all other results to which we refer remain valid in this (narrower) context; conversely, 
the results of this paper can be extended to that setting. 

5 We consider brave (also called possibility) semantics in this paper; however, com- 
plexity and expressiveness of cautious (also called skeptical) semantics can be easily 
derived from it. 
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e.g. (7), G) answers yes for D, it may be possible that  also (P,-~G) answers yes 
for D. 

A bound query defines a Boolean C-generic query of 1, i.e., a mapping 
from D~ to (true, false). As common, we focus in our analysis of the expressive 
power of a query language on generic queries, which are those mappings whose 
result is invariant under renaming the constants in D with constants from U. 
Genericity of a bound query (:P, G) is assured by excluding constants in ~P and 
G. As discussed in 1, p. 421, this issue is not central, since constants can be 
provided by designated input relations; moreover, any query goal G = (--)p(...) 
can be easily replaced by a new goal G' = (~)q and the rule q +- p( . . . ) ,  where 
q is a propositional letter. In the rest of this paper, we thus implicitly assume 
that  constants do not occur in queries. 

Def in i t ion  4. Let Q = (7 ~, G) be a (constant-free) query. Then the database 
collection of Q, denoted by gXP(Q), is the set of all databases D in Dp for 
which the answer of Q is true. 

The expressive power of Datalog X (X C_ ( V , +-~, -, ) ) , denoted gXP(DatalogX), 
is the family of the database collections of all Datalog X queries, i.e., 

gXPDatalog x = (GYP(Q) I Q is a constant-free Datalog x query).  

The expressive power will be related to database complexity classes, which 
are as follows. Let C be a Turing machine complexity class (e.g., P or NP), R be 
a relational database scheme, and D be a set of databases on R.  6 Then, D is C- 
recognizable if the problem of deciding whether D E D for a given database D on 
t t  is in C. The database complexity class DB-C is the family of all C-recoguizable 
database collections. (For instance, DB-P is the family of all database collections 
that  are recognizable in polynomial time). If the expressive power of a given 
language (fragment of Datalog v,-~,~) s coincides with some class DB-C, we say 
that  the given language captures C, and denote this fact by GYPg = C. 

Recall that  the classes E P , / - /P  of the polynomial hierarchy 25 are defined 

by ~ P  = P, ziP1 = NP m~, and /-//P = co-Z f ,  for all i _> 0. In particular, 
Ho P = P, Z ~  = NP, a n d / / P  = co-NP. 

3.2 Resu l t s  

T h e o r e m  2. gXPDatalog v,~' C_ gXPDatalog v,+= 

Proof .  We will show that  every Datalog v , ' '  query can be rewritten into an 
equivalent Datalog v,+-" query. 

It can be easily verified that  every Datalog v,-~~ program (i.e., disjunctive 
Datalog program with stratified negation) can be polynomially rewritten in a 
program where negative literals appear only in the body of rules of the form 

r :  p(X) +-- q(?) ,  -~s(Z) 

6 As usual, adopting the data independence principle, it is assumed that D is generic, 
i.e., it is closed under renamings of the constants in U. 
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where p and s are not mutually recursive and r is the only rule having p as head 
predicate symbol. Let (P, G) be a Datalog v'~" query. Following the observation 
above, we assume that  every rule r E 7 ~ such that  r contains negative literals has 
the syntactic form just described. This means that,  given any database D E DT,, 
a stable model M for 7~D, and a ground instance ~ : p(~) +-- q(b),-~s(~) of r, 
we have p(~) is derivable from ~ if and only if q(b) is true and s(~) is not true. 
Moreover, the rule ~ cannot be used to prove that  the atom s(~) is true. 

Now, given the Datalog v'~" program 7 ~, we define a Datalog v ' ~  program pi  
such that,  for any given database D E DT,, :P~ has the same set of stable models 
as 7~D. We obtain such a program 7 ~ from the program 7 ~ by simply replacing 
any rule of /~  having the form of the rule r above by the following Datalog v ,~  
rule rq 

r ' :  p(X) V (s(Z) +-' s(Z)) ~-- q(Y) 

Now, apply to r I the substitution that  yields ~ from r. The resulting instance 
is ~ : p(~) V (s(U) +.o s(~)) e- q(b). From the semantics of nested rules, we 
have that  p(~) is derivable from ~ if and only if q(b) is true and s(U) is false 
(exactly like for ~) - note that  a crucial role is played by the fact that  s belongs 
to a stratum lower than p so that  s is already evaluated when p is considered 
(e.g., if s(~) is true, then the nested rule s(~) +-~ s(~) is already applied and ~' 
cannot be used to derive p(~)). Thus, r and r ~ have exactly the same behaviour. 
Consequently, given a database D in Dp ,  we have that  an interpretation M is 
a stable model for :PD if and only if M is a stable model for 7~D.  

Corollary 2. `UP _C gXPDatalog v,+= 

Proof .  From 7, `UP _C gXPDatalogV,-,. Therefore, the result follows from 
Theorem 2.  

C o r o l l a r y  3. gXPDatalog v C gXPDatalog v'~ 

Proo f .  From 7, Datalog v can express only a strict subset of ,U P (e.g., the 
simple even query, deciding whether the number of tuples of a relation is even 
or odd, is not expressible in Datalog v 7). Therefore, the result follows from 
Corollary 2.  

We next prove that  the inclusion of Corollary 2 is not proper. 

Theorem 3. gA'PDatalog v' ' '~ C 27 P. 

Proo f .  To prove the theorem, we have to show that  for any Datalog v,-',*= 
query Q - (:P, G), recognizing whether a database D is in gASO(Q) is in `U~. 

Observe first that  recognizing whether a given model M of a Datalog v,-~,~ 
program is stable can be done in co-NP. Indeed, to prove that  M is not stable, 
it is sufficient to guess a subset X of M and check that  it is an unfounded set. 
(Note that,  since Q is fixed, ground(7~D) has size polynomial in D, and can be 
constructed in polynomial time.) 

Now, D is in gAP(Q) iff there exists a stable model M of Pv  such that  
G E M. To check this, we may guess an interpretation M of 7~D and verify that:  
(i) M is a stable model of PD, and (ii) G E M. From the observation above, 
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(i) is done by a single call to an NP oracle; moreover, (ii) is clearly polynomial. 
Hence, this problem is in E P. Consequently, recognizing whether a database D 
is in SAP(Q) is in ~2 P.  

Corol lary  4. SAPDatalog v,-''~ = $APDatalog v'~ = $APDatalog v'-' = 

Proof .  It follows from Corollary 2, from Theorem 3, and from the results in 
7.  

The above results show that full negation, stratified negation and nested 
rules in disjunctive rules have the same expressivity. Moreover, the choice of the 
constructs which should be used depends on the context of the applications. 

4 S o m e  E x a m p l e s  

In this section we present some examples to show that classical graph prob- 
lems can be expressed in Datalog v '~ .  For the sake of presentation we shall use 
the predicate ~ which can be emulated by Datalog v,+-'. Assuming that the the 
database domain is denoted by the unary predicate d, the following two rules 
define the binary predicate neq (not equal): 

neq(X, Y) V (eq(X, Y) +- X = Y) +- d(X), d(Y). 
eq(X,X) 

Thus, a tuple neq(x, y) is true if let x and y two elements in the database is 
x ~ y. Observe that also stratified negation could be emulated by Datalog v '~ .  
In the following examples we assume to have the graph G = (V, E) stored by 
means of the unary relation v and the binary relation e. 

Example 6. Spanning tree. The following program computes a spanning tree 
rooted in the node a for a graph G -- (V, E). The set of arcs in the spanning 
tree are collected by means of the predicate st. 

st(root, a). 
st(X, Y) V (no_st(X, Y) +-~ no_st(X, Y)) +-- st(_, X),  e(X, Y). 
no_st(x, Y) . -  st(x',  Y), x # x' .  

Observe that the nested rule forces to select for each value of Y a unique tuple 
for st(X, Y). Indeed, if some stable model M contains two tuples of the form 
tl = st(xl ,y) and t2 = st(x2,y), from the last rule, M must contain also the 
tuples no_st(x1, y) and no_st(x2, y). But this implies that also the interpretation 
N C M - {ti} for ti E {tl, t2} is a stable model and, therefore, M is not minimal. 
On the other side, assume now that there is some stable model M containing 
a tuple no_st(x',y) but not containing tuples of the form st(x,y) for x ~ x'. 
This means that the tuple no_st(x', y) cannot be derived from the last rule and, 
therefore, it must belong to some unfounded set w.r . t .M.  

Thus, there is a one-to-one correspondence between the stable models of the 
program and the spanning trees rooted in a of the graph.  
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Example Z Simple path. In this example we compute a simple path in a graph 
G, i.e., a path passing through every node just once (if any). The set of tuples 
in the simple path are collected by means of the predicate sp below defined: 

sp( root, X) V ( no_sp( root, X) e ~ no_sp( root, X ) ) ~- e ( X , _). 
sp(X, Y) V (no_sp(X, Y) +-~ no_sp(X, Y)) +- sp(W, X), e(X, Y). 

no_sp(X, Y) +-- sp(X', Y), X '  # X. 
no_sp(X, Y) +- sp(X, Y'), Y' # Y. 

As for the program computing a spanning tree, the nested rule forces to select 
for each value of X a unique tuple for sp(X, Y) and for each value of Y a unique 
tuple for sp(X, Y). The nested rules impose the constraint that the set of tuples 
for sp defines a chain. Thus, the first nested rule is used to select the starting 
node of the simple path, whereas the second nested rule is used to select the set 
of arcs belonging to the simple path. 

The above program can be used to define the hamiltonian path problem 
checking if a graph G has simple path passing through all nodes (hamiltonian 
path). Therefore, the hamiltonian graph problem can be defined by adding the 
check that all nodes in G are in the simple path.  

Example 8. Shortest path. In this example we assume to have a weighted directed 
graph G = (V, E). We assume that the database domain contains a finite subset 
of the integer numbers and that the weight argument of the arcs takes values 
from this domain. We assume also that the minimum weight of all paths between 
two nodes takes values from this domain. The arcs of the graph are stored by 
means of tuples of the form e(x, y, c) where c is the weight of the arc from x to 
y. The minimum weights of the paths from a source node a to every node in the 
graph can be defined as follows: 

mp(a, 0). 
rap(Y, C) V (no_mp(Y, C) +-~ no_rap(Y, C) ) +-- rap(X, C1), e(X, Y, C2), 

c = c~ + c2. 
no_rap(Y, C) +-- rap(Y, C'), C' < C. 

The predicate mp computes, for each node x, the minimum distance from the 
source node a to the node x. A stable model M contains for each tuple rap(y, ~) 
in M all tuples of the form no_rap(y, c) with c > c'. Thus, a tuple rap(y, c) is in 
M iff there is no tuple no_rap(y, c) in M, i.e., if all tuples in no_rap with first 
argument y have cost greater than c.  

Example 9. Even query. We are given a relation d and we want to check whether 
its cardinality is even or not. This can be done by first defining a linear order on 
the elements of the relation and, then, checking whether the number of elements 
in the ordering is even. 

succ( root, root). 
succ(X, Y) V (uo_succ(X, Y) +-" no_succ(X, Y)) +- succ(_, X), d(Y). 
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no_succ(X, Y) +-- succ(X, Y'), Y' # Y, Y' # root, d(Y). 
no_succ(X, Y) e- succ(X', Y), X' # X, d(X). 

odd(X) e- suec(root, X), X # root. 
even(X) +-- odd(Z), succ(Z, X). 
odd(X) +-- even(Z), succ(Z, Y). 
even_tel +-- even(X), ~has_a_succ(X). 
has_a_succ(X) ~- d(X), succ(X, _). 

The first four rules define a linear order on the elements of the relation d (by 
using a nested implication). Once a linear order has been defined on the domain 
it is easy to check, by a simple stratified program, whether the cardinality is 
even. Thus, the predicate even. te l  is true iff the relation d has an even number 
of elements. 

Therefore, Datalog v ' ~  expresses the even query, 7 while it cannot be ex- 
pressed in Datalog v 7.  

We conclude by observing that  the problems of the above examples could be 
expressed by means of disjunctive datalog with (unstratified) negation. However, 
programs with unstratified negation are neither intuitive nor efficiently com- 
putable (while Datalog v ,~  has nice computational properties - see Section 5). 

5 C o n c l u s i o n  

We have presented an extension of Disjunctive Datalog by nested rules. We have 
shown the suitability of the language to naturally express complex knowledge- 
based problems, which are not expressible by Datalog v. A formal definition of 
the semantics of Datalog v '~,~ programs has been provided, and we have shown 
that  it is a generalization of the classical stable model semantics. Finally, we have 
carefully analyzed both data-complexity and expressiveness of Datalog v , ' ' ~  un- 
der the possibility (brave) semantics. 

The results on the data-complexity and the expressiveness of Datalog v,-~'~ 
are compactly represented in Table 1. s 

Expressive Power 

Data Complexity 

Datalog v,~ DatalogV,~, ~ 

h 

,U P -complete ,U~-complete `u2P-complete ,U~-complete 

T a b l e  1. Expressibility and complexity results on Datalog v'~'~ 

T Recall that both r and stratified negation are used for simplicity, bu they can be 
easily emulated in Datalog v '~ .  

s Note that the results on data-complexity are immediately derived from the express- 
ibility results of Section 3.2. 
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Each column in Table 1 refers to a specific fragment of Datalog v,''+-'. The 
table clearly shows that the addition of nested rules does not increase the com- 
plexity of disjunctive Datalog; indeed, brave reasoning for Datalog v ' ~  is ZP-  
complete as for Datalog v. Nevertheless, nested rules do increase the expres- 
sive power, as Datalog v ,~  allows to express all Z2 P database properties; while, 
Datalog v expresses only a strict subset of them (e.g., the simple even query, that 
decides whether a relation has an even number of tuples, cannot be expressed in 
DatalogV). 

Clearly, the power of Datalog v ,~  does not exceed that of Datalog v'~, as 
nested rules could be simulated by means of unstratified negation. However, 
the increase of expressiveness w.r.t. Datalog v confirms that nested rule allow to 
express some useful forms of disjunctive information which are not expressible 
in plain disjunctive Datalog. 

Ongoing work concerns the definition of a fragment of Datalog v ' ~  for which 
one stable model can be computed in polynomial time; this fragment, under 
nondeterministic semantics, allows to express all polynomial time properties. 
Moreover, the investigation of abstract properties of Datalog v ,~  would also be 
interesting to see whether this language can be characterized as for the stable 
model semantics 3. We conclude by mentioning that nested rules have been re- 
cently used as a vehicle for binding propagation into disjunctive rules to optimize 
the computation of standard disjunctive queries. 14 
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Abs t r ac t .  In this paper we consider the basic semantics of stable and 
partial stable models for disjunctive deductive databases (with default 
negation), cf. 9, 16l. It is well-known that there are disjunctive deduc- 
tive databases where no stable or partial stable models exist, and these 
databases are called inconsistent w.r.t, the basic semantics. 

We define a consistent variant of each class of models, which we call ev- 
idential stable and partial evidential stable models. It is shown that if a 
database is already consistent w.r.t, the basic semantics, then the class 
of evidential models coincides with the basic class of models. Otherwise, 
the set of evidential models is a subset of the set of minimal models of the 
database. This subset is non-empty, if the database is logically consis- 
tent. It is determined according to a suitable preference relation, whose 
underlying idea is to minimize the amount of reasoning by contradiction. 

The technical ingredients for the construction of the new classes of mod- 
els are two transformations of disjunctive deductive databases. First, the 
evidential transformation is used to realize the preference relation, and to 
define evidential stable models. Secondly, based on the tu-transformation 
the result is lifted to the three-valued case, that is, partial evidential sta- 
ble models are defined. 

K e y w o r d s  

disjunctive logic programming,  non-monotonic  reasoning, stable and part ial  sta- 
ble models, handling inconsistency, p rogram transformations 

1 I n t r o d u c t i o n  

The semantics of stable and partial stable models, cf. Gelfond, Lifschitz 9, 10 
and Przymusinski  16, are among the most  prominent  semantics for disjunctive 
databases.  Unfortunately, there are databases  which are logically consistent, but  
are inconsistent w.r.t, these semantics. For normal  databases,  i.e. databases  tha t  
may  contain negation but  do not contain disjunctions, however, the part ial  stable 
models semantics is always consistent, and it is equivalent to the well-founded 
semantics of van Gelder, Ross and Schlipf 21. 
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For large databases, small inconsistent parts can prohibit the existence of 
stable models, and even of partial stable models. Thus, we will introduce two 
new variants of the stable model semantics, which are always consistent if the 
database is logically consistent: First, the two-valued semantics of evidential 
stable models, which is stronger than minimal model but weaker than stable 
model semantics. Secondly, a three-valued version, called partial evidential stable 
models, which for normal databases coincides with the well-founded semantics. 
For stratified-disjunctive databases both evidential semantics coincide with the 
perfect model semantics. 

Consider the disjunctive database :P = {r} consisting of one rule r = q +-- 
nora. Among its two minimal models M1 = {q} and M2 = {a}, the first model 
is preferred to the second. Intuitively, the reason is that in M2 the truth of "a" 
has been derived by contradiction, i.e. r has been fulfilled by making its body 
false. In contrast, in M1 the truth of "q" is derived constructively from the head 
of r. Thus, M1 is the so-called perfect model of T ~, and it is considered to be the 
intended model. 

The evidential transformation C7 ) is a positive-disjunctive database that is 
derived from P by moving default negated body literals to the rule heads and 
prefixing them with "C". Thus, the rule r is translated to q V Ca. Additionally, 
rules relating atoms and evidential atoms are introduced: Cq +-- q, Ca ~ a. A 
similar construction has been used by Fernandez et al., cf. 7, to characterize 
the stable models of ~. But our use of evidences has a different interpretation, 
and moreover we use additional normality rules, which are not needed in 7. 
Evidential stable models are defined as minimal models M of CP which also 
minimize the set of atoms that are derived by contradiction solely: such atoms 
A are false in M, but CA is true in M. Then we call CA an E-violation. In 
our example, the minimal models of CP are M~ = { q, Cq } and M~ = { Ca }. In 
M~ there is no C-violation, whereas in M~ there is the E-violation "Ca". Thus, 
M~ is the unique evidential stable model of P. We will show, that for databases 
which have stable models the evidential stable models coincide with the stable 
models, when evidential atoms CA are interpreted as atoms A. Furthermore, 
evidential stable models always exist for logically consistent databases. E.g. the 
database P'  = { a +- not a }, which does not have any stable models, has the 
unique evidential stable model M' = {Ca}, which is interpreted as the model 
M = {a} of P. 

The second type of transformation we use is the to-transformation ~,t- of 
a disjunctive database :P, which suitably annotates the atoms in T' by the two 
truth values true ("t") and undefined ("u"), cf. 19. We state a characterization 
of the partial stable models of ~' in terms of the stable models of ~t,,. Then, 
partial evidential stable models are defined based on the evidential stable models 
of :ptu, where the characterization for partial stable models motivates the new 
definition. As in the two-valued case, partial evidential stable models always 
exist for a logically consistent database. If there exist partial stable models of 
the database, then the partial evidential stable models coincide with the partial 
stable models, when evidential atoms are interpreted as atoms. 
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The paper is organized as follows: In Sections 2 and 3 we review the basic def- 
initions and notation for disjunctive databases, partial Herbrand interpretations 
and partial stable models. In Section 4 we introduce the evidential transforma- 
tion and the evidential stable models of a disjunctive database 79. In Section 5 
we define the tu-transformation 79tu of 79 and we state a characterization of the 
partial  stable models of 79 in terms of the total  stable models of 79t.. This moti- 
vates the definition of partial evidential stable models in Section 6. In Sections 7 
and 8 we compare the new semantics with other approaches known from the 
literature, and we briefly comment on some of their abstract  properties. 

2 Basic  Definit ions and Notat ions  

Given a first order language/ : ,  a disjunctive database 7 9 consists of logical infer- 
ence rules of the form 

r = AI V . . .  V Ak +-- B1 A . . .  A B m  A not C1 A . . .  A not  Cn, (1) 

where Ai, 1 < i < k, Bi, 1 < i < m, and Ci, 1 < i < n, axe atoms in the language 
/:; k, m, n E ~r~r0, and not is the negat ion-by-defaul t  operator.  1 A rule is called 
a fact if m = n = 0. The set of all ground instances of the rules and facts in 
7 9 is denoted by gnd (79). A rule (or database) is called posi t ive-disjunct ive if it 
does not contain default negation (i.e. n = 0). A rule r of the form (1) above is 
denoted for short as: 

r = a +-- ~ A not .  7, (2) 

where ~ = A: V . . . V  Ak,  13 = B:  A . . .  A B m,  and 7 = C: V . . . V Cn. 2 

H e r b r a n d  I n t e r p r e t a t i o n s  a n d  P a r t i a l  H e r b r a n d  I n t e r p r e t a t i o n s  

The Herbrand base HBT~ of a disjunctive database 7 ~ contains all ground atoms 
over the language of 79. A partial Herbrand interpretation of 7 ~ is given by a 
mapping I: HBp ~ {t, f, u} that  assigns a t ru th  value "t" (true), "t ~' (false) or "u" 
(undefined) to each ground atom in HBT~. Thus, partial Herbrand interpretations 
are also called three-valued Herbrand interpretations. I is called a total or total 
Herbrand interpretation, if all atoms A E HB~ are mapped to classical t ru th  
values t or f. 

Equivalently, a partial Herbrand interpretation I can be represented by using 
the concept of annotated atoms. Given an atom A = p ( t : , . . . , t n )  and a t ru th  
value v e { t ,f ,  u }, we define A v = p v ( t : , . . .  , tn) ,  where pV is taken to be a new 
predicate symbol. We will use two ways of representing I as a set of annotated 
atoms, either by specifying the true and false atoms or by specifying the true 
and undefined atoms: 

1 By SV+ we denote the set { 1, 2, 3, . . .  } of positive natural numbers, whereas iWo 
denotes the set { 0, 1, 2, . . .  } of all natural numbers. 

2 Note that 3' is a disjunction, and, according to De Morgan's law, not. 7 is taken to 
be a conjunction. 
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if-Representation: Itf = It  U I f, 
tu-Representation: I t" = I t O I", 

where It ,  I u and I f are given by: 

It = {A t A C H B ~ A I ( A )  = t } ,  
If  = { Af I A E HBt, A I ( A )  = f } ,  
IU= { A U l A  E HB~" A ( I ( A )  = t  V I(A) = u )  }. 

Note that  in the to-representation every true atom A is recorded as A t and as 
A u, which will become important later. Note also that  the if-representation is 
essentially the same as the conventional representation of I as a set of literals, 
where A t becomes the atom A itself and A f becomes the negative literal -,A. For 
a set Z of partial Herbrand interpretations we will use the same notations for 
v E { t f , tu  }: 2Y = { I v  I E 27 }. By 27 =v ,7, we denote that  J = 2Y is the 
v-representation of 27. 

Consider for instance the Herbrand base HBp = {a, b, c, d}. Then the partial 
Herbrand interpretation I with I(a) = t, I(b) = t, I(c) = f, and I(d) = u, is 
represented as follows: 

i t f = { a  t ,b  t , e  f}, I t U = { a  t , a  u,b t , b - , d  u}. 

Obviously, a total Herbrand interpretation I can simply be represented by 
the set J = { A E HB~ I(A) = t } of true atoms. Conversely, any set J C_ HB~ 
of ground atoms induces a total Herbrand interpretation J ~  where J<>(A) = t 
iff A E J.  For a set ,7 of sets of atoms, f ro  = { j o   j E J }. 

Truth Ordering and Knowledge Ordering 

There are two common partial orderings on truth values, the t ruth ordering and 
the knowledge ordering, cf. Fitting 8, which are shown by Figure 1: 

Truth Ordering _<t: f _<t u, o _<t t, 
Knowledge Ordering _<k: U _<k f, U _<k t. 

Given two truth values Vl,V2 E { t , f ,u  }, by vl _>• v2 we denote the fact that  
v2 <• vl, for x E { t, k }. 

These partial orderings have been generalized (pointwise) to partial orderings 
on partial Herbrand interpretations as follows. For x E { t, k }: 

I1 <x I2, iff (VA C HBT, : II(A) <x I2(A) ). 

The truth ordering on partial Herbrand interpretations corresponds to the sub- 
set ordering on their tu-representations: I1 <t 12 iff I~" _C U2". The knowl- 
edge ordering corresponds to the subset ordering on the if-representations: 
xl _<k 12 iff _c 

The Boolean operations "V", "A" and "-," on t ruth  values are defined based 
on the t ruth ordering, cf. Figure 2. The t ruth  value of a disjunction Vl V v2 and 
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_<k 

f 

\ /  
U 

i t  

Fig. 1. Truth Ordering and Knowledge Ordering 

 ltfu t f u  t t t  
f f f  t f u  
u f u  t u u  

t f 
f t 
U U 

Fig. 2. Boolean operations in three-valued logic 

a conjunction vl A v2 of t ru th  values are constructed by taking the maximum 
and the minimum of vl and v2, respectively. "V" and "A" both are commutative 
and associative, and thus can be generalized to disjunctions and conjunctions, 
respectively, of more than one t ru th  value. 

Models  and Partial Models ,  Minimality 

Let M be a partial Herbrand interpretation of a disjunctive database :P. For 
A~ �9 HBT~, 1 < i < k, and a connective | �9 ~V, A ) w e  define M(  A1 |174  ) = 
M(A1) |  | M(Ak).  For k = 0, the empty disjunction (i.e. @ = V) evaluates 
to f, whereas the empty conjunction (i.e. | = A) evaluates to t. M is called a 
partial model of a ground rule r = a +- ~ A not. 7 if 

M(a)  _>t M(f~) A -~M(7 ). (3) 

M is called a partial model of 7 ~ if M is a partial model of all ground instances 
r �9 gnd (7)) of all rules of P .  This is denoted by M ~3 7 ~. 

Minimality of partial models is defined w.r.t, the t ru th  ordering. M is called 
a partial minimal model of P if M is a partial model of 7 ~ and there is no other 
partial  model I of 7 ) such that  I _<t M. The set of all partial  minimal models of 
7 ~ is denoted by A4A43 (7~). A partial model M of a disjunctive database 7 ~ that  
is total  is called a model of 7 ~. This is denoted by M ~2 7 ~. A partial minimal 
model M of 7 ~ that  is total is called a minimal model of 7 ~. The set of all minimal 
models of 7 ~ is denoted by ~th42(7~). 
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3 Stable and Partial  Stable Models  

The Gelfond-Lischitz transformation (GL-transformation) of a disjunctive data- 
base 7) w.r.t, a partial Herbrand interpretation M is obtained from the ground 
instance gnd (7)) of 7) by replacing in every rule the negative body by its t ruth 
value M(not.  7) = -,M(7) w . r . t .M.  3 

Definition 1 (Gelfond-Lifschitz Transformation, 9, 16). 
Let M be a partial Herbrand interpretation of a disjunctive database 7). 

1. For r = a +- ~ A not. 7 E gnd (7)) we define r M -- a +-- f~ A -~M(7). 
2. The Gelfond-Lilschitz transformation of 7) is 7)M = { r M I r E gnd (7)) }. 

The GL-transformation 7)M is a ground positive-disjunctive database that  
has as additional atoms the t ruth  values t, f and u. Note that  these t ruth  values 
must evaluate to themselves under all partial Herbrand interpretations I of 7)M. 

Definition 2 (Partial Stable Models, Stable Models, 9, 16). 
Let M be a partial Herbrand interpretation of a disjunctive database 7). 

1. M is called a partial stable model of 7) if M E JMA43 (7)M). The set of all 
partial stable models of 7) is denoted by ST~tBs 

2. A partial stable model M of 7) that  is total is called a stable model of P.  
The set of all stable models of 7 ~ is denoted by STA~s 

It can be shown that  ST,4Bs _C STABs for all disjunctive databases. 
That  is, the semantics of stable models is always stronger than  the semantics of 
partial stable models. The following databases will be used as running examples 
throughout the paper. 

Example 1 (Partial Stable Models). 

1. For the disjunctive database 

7)1 = { a V b ,  q+--bAnota,  q + - a A n o t b } ,  

we get the following set of partial stable models: 

STABs =tf { { a t, qt, b f }, { b t, qt, a f } }. 

E.g. for M t~ = {a t, qt, b f} we get the GL-transformation :pM = { aVb, q 
bAf ,  q +-- a A t  }, and .Aft.A43(7) M) : t f  { M tf, Ntf }, for g tf = { bt, af, qf}. 
Here all partial stable models are also stable models, i.e. STABC~3(7)I) = 
ST.4BCZ2(7)x). Since 7)1 is stratified, the stable models coincide with the per- 
eet models. 

3 If this truth value is "t", then "t" can be deleted from the body. If it is 'T', then the 
whole rule can be deleted from pM. 
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2. For the disjunctive database  

/)2 = { a <-- not b, b +-- not c, c +- not a }, 

there is a unique partial  stable model, which is not stable: 

8T-4BEs = t f  { 0 }, ST.AB~:~2(/)2) : t f  0, 

3. The disjunctive database/ )3  = /)2 U { aVbVc  }, cf. also 16, is inconsistent 
w.r.t, the semantics of stable and part ial  stable models, i.e. S T . 4 B f ~ 3 ( / ) 3 )  -~- 

8T~sLC2(/ )3)  = 0. 

4 Evident ia l  Stable Models  

Given an a tom A = p ( t l , . . . , t n ) ,  we define the corresponding evidential atom 
CA = C p ( t l , . . . , t n ) ,  where Cp is taken to be a new predicate symbol. For a 
disjunction a = A1 V . . .  V Ak and a conjunction f~ = B1 A . . .  A Bm of a toms we 
define Ca = CA1 V . . .  V CA~ and C/~ = CB1 A . . .  A CBm. 

Definition 3 (Evidential Transformation). 
L e t / )  be a disjunctive database.  

1. For a rule r = c~ +- 3 A not. ~/E 7) we define 

Cr = c~ V C~ <-- ~, C2r = Ca V C'), +-- C/~. 

2. The evidential transformation o f / )  is 

s  { C r l r  E /)  } U {  C~r l r  E /)  } U {  CA +-- AI  A E HBp }. 

A rule Cr describes that ,  if the positive body/~  of r is true, then this gives 
rise to deriving either the head c~ "constructively" or an evidence for 9, "by con- 
tradiction".  The rules C2r could be compared with the normality rules from the 
autoepistemic logic ol belie#, cf. 17, and the rules CA +-- A with the necessita- 
tion rules. For an implementation,  C/) can be optimized: facts C2r = Cc~ V Cq, 
obtained from rules r = c~ e- not.~,  E /)  with an empty  positive body are 
redundant, since they are implied by Cr = c~ V C~/and the necessitation rules. 

Example 2 (Evidential Transformation). 
For the disjunctive database  7)1 of Example  1 we get the following CPl ,  where 
the fact Ca V Eb is redundant:  

E/)I = { a V b ,  q V  Ea +-b, q V  E b + - a  } U 

{ Ca V Cb, Cq V Ca +-- Cb, Cq V Cb +- Ca } U 

{ Ca +-- a, Cb +-- b, Cq +- q }. 
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Every pair of total Herbrand interpretations J and K of P induces a total 
Herbrand interpretation I of C79, denoted by J U CK, where for A E HBp: 

(J U CK)(A) = J(A), (g O CK)(CA) = K(A).  

Conversely, every total Herbrand interpretation I of C79 can be represented as JU 
CK. The total Herbrand interpretation K of P ,  that  determines I on evidential 
atoms, will be denoted by K~(I), i .e. /C(J U CK) = K. /C(I )  will be considered to 
be the total Herbrand interpretation of 79 that  corresponds to I .  It ignores the 
part J ,  and interprets evidential atoms as (regular) atoms. For a set Z of total 
Herbrand interpretations of CP we define E(27) = {/C(I)  I E Z }. 

Based on a similar transformation ~'79 = { Crr 6 79 }u{  CA +-- AA 6 HBT~ }, 
which is a subset of C79, and the set CP = { +-- CA A not A  A 6 HBp } of test 
constraints, a characterization of stable models has been given by Fernandez et 
al.: 

Theorem 1 (Characterization of Stable Models,  7). 
Given a disjunctive database 7 9, then 

This characterization of stable models can also be proven for CP instead of 9rP. It 
does not refer to the "normality rules" C2r, since they are fulfilled automatically, 
if I strictly fulfills all of the test constraints in CP. In our approach, however, 
they will be needed to guarantee tha t /C(I )  is a model of 79 if I is a model of 
CP. 

We propose the new concept of evidential stable models, which are minimal 
Herbrand models I of C79, such tha t /C(I )  E A4.M2(79). The strict requirement 
given by C79 is relaxed to a preference relation: I ~ is preferred to I ,  if )(I~) C 
)(I), where 12(1) denotes the set of violations of test constraints. 

Def in i t i on  4 (Ev iden t i a l  S t ab l e  Mode l s ) .  
Given a disjunctive database 79 and a set 27 of total Herbrand interpretations of 
CP. 

1. The set of C-violations of I E Z is given by 

1)(1) = { C A l l  ~2 CA and I W=2 A }, 

and minv(Z) = { I E 27 I ~II  E 27 : I ~ I ~ A 12(11) ~ l;(1) } denotes the set 
of )-minimal interpretations in 27. 

2. The set of evidential stable models of P is 

EST".aBs = rainy( ( I E .M.M2(E79) I K:(I ) E A43,42(P) } ), 

and we further define ST-~tm:e2+(79) = IC.(ESTAB~.e2(79)). 
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The name evidential stable models has been chosen, since an evidential stable 
model I E ESTABs )) contains evidential atoms, and it can be shown that 
C(I) is a stable model of a suitably, minimally transformed database, where all 
atoms A, such that EA is an E-violation in I, are moved from negative rule 
bodies to rule heads (see 7)~ below). 

An evidential stable model I provides more information than just about the 
truth of atoms A, namely the information of whether A was derived construc- 
tively, or solely by contradiction (i.e., CA is an C-violation in I). In the models 
C(I) E STA~s however, this information is ignored. 

Example 3 (Evidential Stable Models). 

1. For the disjunctive database/)1 we get 

ST  Le 2(Pl ) = STABLe2*(7),) C (7)1). 

2. For the disjunctive database 7)2 we get the following 87)2, where redundant 
facts have been left out: 

E7)2 = {aV~b,  bVEc, c V ~ a }  U { ~a+--a, Eb+-b ,~c+-c} .  

From ~r the first three models are 1-minimal: 

AdA42(ET)2) -= { { a, Ea, Cc }, { b, Eb, Ca }, { c, Ec,~b }, { Ea, Eb, Ec } }<>. 

E.g. for I = { a, Ea, Ec }o and I' -- { Ca, Eb, Ec }o we get 

v(I)  = { Ec } c+ v ( r )  = { Ea, Eb, Ec }. 

The meaning of I is that "a" is true, but there is only an evidence that "c" 
is true, i.e. "c" has been derived by contradiction: 

ST.a~s = { {a,c}, {a,b}, {b,c} }o = A4A42(7)2). 

Finally, C(I) = { a, c }o is a stable model of the suitably, minimally trans- 
formed database 7~ for I: 

7)~ = { a+-notb, bVc, c+--nora}. 

3. For the disjunctive database 7)3 we get STABs = ST~s 

The following theorem relates the evidential stable models of a disjunctive 
database to the minimal and the stable models. 

T h e o r e m  2 (Charac te r i za t ion  of  Evident ia l  Stable Models ) .  
Given a disjunctive database 7), then 

1. If.~(~.42(7)) ~ 0, then STAB~(7))  ~ ~. 
2. If STA~Z.~2(7)) # 0, then STAnzaS(7)) = ST~tBc~(7~). 
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Proof. 

1. Assume A4~42(:P) ~ 0. Every minimal model M E A4A42(:P) of 7 ~ induces a 
Herbrand interpretation M U CM, which obviously is a model of E7 ~. Thus, 
there exists a minimal model I E AJA42(EP), such tha t  I = J U E K  C_ 
M U EM. a Since E K  must be a model of 7 ~' = { E2r I r E 7 ~ }, and CM 
is a minimal model of 7 ~', and E K  C CM, we get tha t  K = M. Thus, 
I = J U ~ M  E A4.A42(E7 ~) and C(I) = M e A4M2(:P). This means that  the 
set of interpretations which we minimize is not empty, i.e. STABs ~) ~ 0. 

2. The test condition (A) I ~2 C7 ~ is equivalent to (B) Y(I) = 0. Thus, for a 
stable model K of P ,  the Herbrand interpretation I = K U E K  of EP  always 
is minimal w.r.t, violation, and thus I is evidential stable. Moreover, if there 
exists any stable model of P ,  then all evidential stable models I of P must 
fulfill (B), i.e. they are of the form I = K U EK,  such tha t  K E ST.aez.~2(7~). 

3. First, the inclusion STA~Lc2*(:P ) C_ A4~42(7)) holds by definition. Secondly, 
the inclusion ST.aBr~(P)  C ST.aBs )) is an immediate consequence of 
part  2. 

 

Note tha t  the concept of evidential stable models cannot  be lifted to the 
three-valued case by simply taking partial minimal models of EP.  The reason is 
tha t  for positive-disjunctive databases (without default negation), such as EP,  
the partial minimal models coincide with the minimal models. 

5 Annota t ion  of Databases  and Partial  Stable  Models  

We will use a special concept of annotating disjunctive rules, which encodes 
the condition that  partial  Herbrand models have to fulfill in terms of their t u -  
representation. Given a t ru th  value v E {t, u}, for a disjunction c~ = A1V. . .YAk 
and a conjunction ;3 - B1 A . . .  A Bm of atoms we define c~ v -- A v V . . .  V A~ and 
;3v = BI' ^ . . .  ^ 

D e f i n i t i o n  5 ( A n n o t a t i o n  o f  D a t a b a s e s ) .  

1. For a disjunctive rule r = a +- ;3 A not. "y we define the annotated rules 

r t = ( ~ t + _ ; 3 t A n o t . 7  u, r u__ (~u+_ ;3uAno t .7  t. 

2. For a disjunctive database P we define p t  = { r t I r E :P }, pu = { r u  r E :P }, 
and the annotated database ptu = ,pt U pu U { A u ~- A t I A E Hep }. 

Example 4 (Annotation ol Databases). 
For the disjunctive database Pl  of Example 1 we get 

qt a t b u T ~t { a t V b  t, q t + - b t A n o t a U ,  +- A n o t  } ,  

7~ = { aUVb u, qU +._bUAnota t, a u +_.qUAnotbt }, 

7~ tu = 7~l t U 7~ U { a u ~ a t, b u ~ b t, qU +_ qt }. 

4 Note that in this proof, total Herbrand interpretations are treated as their sets of 
true atoms, and they are compared like sets. 
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The construction of ptu is motivated by the condition given in Equation (3), 
which every partial Herbrand model M of a ground rule r = a ~- fl A not. 7 must 
fulfill. This condition can be encoded in the annotated rules r t and r u, since it 
is equivalent to the following: 

( ( M ( ~ ) _ > t t  A " ( M ( 7 ) _ > t u )  ==~ M ( a ) _ > t t )  A 

( ( M ( / 3 )  _>t " A - ' (M(7)  _>t t )  ==~ M ( a )  _>t u ). 

The  rules A" +-- A t are due to the fact tha t  we want to perceive the Herbrand 
models of p t ,  as Herbrand models of P in tu-representation.  

Propert ies  o f  the Annota ted  Database  

It can be shown that  annotation preserves stratification: Given a disjunctive 
database P ,  the annotated disjunctive database p t .  is stratified if and only if 
is stratified. Based on this, one can give an alternative proof  of the well-known 
fact (see 16) that  the partial stable models of a stratified-disjunctive database 
P coincide with the perfect models of P.  This fact implies in particular that  the 
partial stable models of a stratified-disjunctive database P are total. 

The annotated database p t ,  can be represented as a database over two pred- 
icate symbols "t" and "u". Then, annotated atoms A t and A u in rules can be 
represented by atoms t(A) and u(A), respectively, where "A" is seen as a term 
now. In this representation the (possibly infinite) set { A u +- A t  A E HB~, } 
of rules can simply be represented by one rule u(X) +-- t (X) ,  where "X" is a 
variable symbol for atoms. Then ptu has the size of 2 .  n + 1 rules if 7 ~ consists 
of n rules. This compact representation has been used for an implementation 
dealing with :ptu. 

Characterization of  Partial  Minimal  and Partial  Stable Models  

The following theorem shows that  the partial stable models of a disjunctive 
database P correspond to the total stable models of the annotated database 
p t . .  For any total Herbrand interpretation I of ptu we introduce the notation 
I v for the partial Herbrand interpretation of P that  is induced by I ,  i.e. for 
A E HB~, 

t i f I ( A  t ) - - t  
IV(A) = u if I(A") = t a n d / ( A  t) = f 

f if  X(A") = f 

For a set Z of total Herbrand interpretations of T TM, let Z v = { I v I I E Z }. 

Theorem 3 ( P a r t i a l  Minimal  and Partial  Stable Models ,  19). 
Given a disjunctive database 7 ), then 

2. 8TA3Lf.3(7 2~) : 8TABlY.s V. 
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E x a m p l e  5 (Par t ia l  Stable Models) .  

1. For the disjunctive database P l  of Example 1, whose annotated database 
p~u has been given in Example 4, we get 

STABLeS(~O1) =tu { { a t, a u, qt, qU }, { b t, b u, qt, q, } }. 

2. For the disjunctive database :P2 of Example 1, we get the annotated database 

7)t~ u = { a t +- no t  b u, b t ~-- no t  c u, c t +- no t  a u, 

a u +-- no t  b t, b u +-- no t  c t, c u +--'not a t, 

a u +-_a t, b u ~-.-b t, C u t - -C t }. 

Thus, we get 
sr ,Le (p2) { { a", b", e } }. 

For the restricted case of normal databases, i.e. databases that  may contain 
negation but do not contain disjunctions, other characterizations of partial stable 
models are given in 4, 22. The characterization of 4 is also based on the concept 
of annotation, but it needs more than the two t ruth  values that  we are annotating 
with here. 

6 P a r t i a l  E v i d e n t i a l  S t a b l e  M o d e l s  

For defining partial evidential stable models we can use the techniques described 
in the previous two sections. Partial evidential stable models are defined based 
on the evidential stable models of the tu-transformation of the database, i.e. 
Theorem 3 for partial stable models motivates the following definition. 

Definition 6 (Partial Evidential  Stable Models) .  
The set of part ial  ev ident ia l  stable models  of a disjunctive database P is 

ESTABLeS(7 ~) = ESTABs  V,  

and we further define STA~s (7 ~) = C(ESTA~Les(P)  ). 

Thus, for constructing partial evidential stable models we need the evidential 
transformation E(P t") of the tu-transformation of P.  5 As a consequence of its 
definition, for each rule r = a ~ fl A not .  "y E P ,  it contains two evidence rules 
~'r u , ~'r t, and two normality rules E2r" , ~'2rt : 

Cr" = c~" V E7 t +- f~", Ert = s t V ET" +-- f~t, 
~2ru = ~O~ u V ~ t  ~ ~'~u, ~r = ~O~ t V ~',~u /.._ ~'~t. 

Note that  in an implementation, ~(ptu) can be represented compactly as a dis- 
junctive database over four predicate symbols "t, u, Ct, Eu". 

5 We can identify evidential atoms g(A v) of g(7 ~t") with annotated atoms (gA) v of 
(EP) t". But note that - even with this identification - the databases s and 
(~,~)tu are  different if there is negation in P. 
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Fig. 3. Correlation between Annotated Atoms 

The correlation between the four different types of atoms is specified by four 
generic rules in E(~otu), cf. Figure 3: First, the rule r = A u +-- A t E ~tu gives rise 
to the two evidential rules g r  = r and g2r = CA u +-- CA t. Secondly, we get the 
two necessitation rules CA t / -  A t and CA u +-- A u, for A t and A u, respectively. 

Analogously to evidential stable models, a partial evidential stable model I 
provides more information than just about the t ruth  or undefinedness of atoms 
A, namely the information of whether an annotated atom A v was derived con- 
structively, or solely by contradiction !i.e. CA v E )(I) is an g-violation in I). 
Again, in the models/C(I) E 8TAns s (P) this information is ignored, i.e., an 
evidential atom CA v provides the same knowledge as a regular atom A v (cf. the 
knowledge levels in Figure 3). 

Example 6 (Partial Evidential Stable Models). 

1. For the disjunctive database 7~2 of Example 1 we get 

8TABLe:(~)2) ----- 8TABs163 

2. For the disjunctive database P3 of Example 1 we get g(:P~u), where the 
redundant facts g2r for rules r E p~u with empty positive bodies have been 
left out: 

C(~O~ u) --  { a t V b t V c t, a t V gb u, b t V Cc u, c t V Ca u } U 

{ a u V b u V c u, a u V Cb t, b u V gc t, c u V Ca t } U 

{ A u ~-- A t, CA u +-- CA t, CA t ~-- A t, CA u +-- A u  A E HBp 3 }. 

We get the set 

A4A42 (C(7~u)) = { I1 (a, b, c ) , /2  (a, b, c), I1 (C, a, b), /2 (c, a, b), 

Ii(b,c,a), I2(b,c,a) } 

of minimal models, where for A, B, C E HBps: 

Iz (A, B, C) = { A t, CA t, A u, CA u, B", CB u, g C  u }o, 

I2(A,B,C) = {A t, CA t, A u, CA", CC t, CC" )o.  
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Here, l)(/1 (A, B, C) ) = { EC u } C l)( I2 (A, B, C) ) = { EC t, EC u }. Thus, 
we get 

STABs =tu { {at, aU,bU, cu }, {ct, cU,aU, bu }, {bt, bU, cU,a u } }. 

3. For the (partial) evidential stable models of P3, it turns out that  for each 
evidential stable model I2 E STABLE~(P3) there is a corresponding partial 
evidential stable model I3 E 8TABL:~'(P3) that  is weaker in the knowledge 
ordering: e.g. for I~ TM = { a t, a u, c t, c u } and I~ u -- { a t, a u, b u, c u } we ge t /3  _<k 
12, since I~ f = { a t } C { a t, b f, c t } = I tf. 

The following theorem relates the partial evidential stable models of a dis- 
junctive database to the partial minimal and the partial stable models. It is a 
consequence of Definitions 4 and 6, and Theorems 2 and 3. 

Theorem 4 ( Characterization o f  Partial  Evidential  Stable Models ) .  
Given a disjunctive database P, then 

1. /f.VtA43(79) r 0, then 8TABZ.e~(P) # 1~. 
2. If STAI~Zes(P) r 0, then STABs = STAI~Z.eZ(P). 
3. ST.~BCe3(P) g 8T.48Ce3*(P) C_ J~tM3(P). 

(STABs (ptu)) V = ST-ABs (P). 

Proof. 
First, we will show that  

(4) 

Due to Definition 4, (ST~s v = (E(EST.~ns v. It is possible 
to switch: (E(CST.am:e2(ptu))) v = 1C(EST.aBLz2(ptu)V). According to Defini- 
tion 6, 

/C(ESTABs v)  = C(ESTA~s = 5%4Bz:e3~(P). 

1. Assume .~4.A43(P) ~ 0. According to Theorem 3, part  1, this implies that  

(A4h42(Tvtu)) v i~ 0. With Theorem 2, part 1, we get (STABs163162 0. 
Using Equation (4), 8TJt~z:e3*(P ) r 0 can be concluded. 

2. Assume ST.aBZes(7 )) ~ 0. According to Theorem 3, part  2, this implies that  
(STABs163 v ~ 0. With Theorem 2, part 2, we get 

($TABZ:e~(7~tu)) v = (STABs 2(Ptu) ) v. 

Using Equation (4) and Theorem 3, part  2, the desired result follows. 
3. From Theorem 2, part  3, we get an inclusion chain, that  is preserved by "V": 

(STABEE2(~Dtu)) V C__ (ST.ABLE2@(~tu)) v C_ ( j~ /~2(p tu ) )  v .  Applying Theo- 
rem 3, parts 1 and 2, to (.Ad.M2(ptu)) V and (STABs v, respectively, 

and applying Equation (4) t o  ($TAB~E2~(~)tu)) v, we get the desired chain of 
inclusions. 
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Partial evidential stable models provide a "consistent extension" of the well- 
founded semantics from normal databases to disjunctive databases P,  namely the 
set $7-xss ) of partial Herbrand interpretations. For stratified-disjunctive 
databases, this extension coincides with the perfect models if there exist perfect 
models of P (which is for instance guaranteed for databases without denial rules). 

7 Comparison with Other Approaches 

Regular Models  

The semantics of regular models has been introduced by You and Yuan, cf. 24, 
25: A regular model M is a justifiable model which has a minimal set M u of 
undefined atoms. A justifiable model M is a minimal model of a variant ~M of 
the three-valued Gelfond-Lifschitz transformation, where only those rules are 
selected whose negative bodies are true w.r.t. M (rather than undefined or false). 

For a large class of disjunctive databases - including all examples considered 
so far in this paper - the partial evidential stable models coincide with the 
regular models. But, using an example database from 6, it can be shown that  
the regular models do not always coincide with the (partial) evidential stable 
models, neither with the (partial) stable models. 

L-Stable  and M-Stab le  Models  

Eiter, Leone and Sacca 6 have investigated several interesting subsets of the set 
of partial stable models, like the least undefined and the maximal partial stable 
models, which they call L-stable and M-stable models, respectively. 6 For normal 
databases (without disjunctions), the M-stable models coincide with the regular 
models of You and Yuan. 

Since L-stable and M-stable models always are partial stable models, they do 
not give a consistent interpretation for databases without partial stable models 
(like P3), while (partial) evidential stable models do so if the databases are 
logically consistent. 

It tuns out that  the concepts of minimizing undefinedness and maximizing 
knowledge can be combined with our concept of partial evidential stable models. 
That  is, since SWASL:E3*(P ) is a set of partial Herbrand interpretations, it makes 
sense to look for the least undefined elements in that  set, and also for the elements 
with maximal knowledge. 

Abduct ive  Variants of  Stable Models  

Given a disjunctive database :P, and a set A _C Hs~ of ground atoms, called 
abducibles. A total Herbrand model I of 7) is called an A-belief model, if there 

6 Within the set of all partial stable models, an L-stable model M must have a minimal 
set M u of undefined atoms, whereas an M-stable model must have a maximal set 
M tf of  knowledge. 



Partial Evidential Stable Models for Disjunctive Deductive Databases 81 

exists a set .4i _C .4 of abducibles, such that  I is a stable model of P U AMI. ~" 
is called an AM-stable model of 7 ~, if its set AMI is minimal among all AM-belief 
models (i.e., if there exists no other AM-belief model I '  such that  ,41, C AMI). 

This construction had been suggested by Gelfond 7, who allowed all ground 
atoms to be abducibles (i.e. AM = HBp). A slightly different variant had been 
proposed by Inoue and Sakama 11, who minimize the amount of abducibles in 
an AM-stable model I by additionally requiring that  AMI = { A E AM I I (A)  = t } 
must hold for AM-belief models. 

In general, both definitions are different from evidential stable models. If 
there exist stable models, then Gelfond's approach also derives these stable mod- 
els, but otherwise it does not necessarily derive only minimal models, s The ap- 
proach of Inoue and Sakama is depending on particular useful sets of abducibles - 
for .4 = 0 it derives the stable models, and for .4 = HB~ it derives all minimal 
models. 

There are, of course, similarities to evidential stable models, where the g -  
violations (i.e. the atoms that  are derived by contradiction solely) play the role 
of abducibles which must occur in negative bodies of ground rules. 

Disjunctive Wel l -Founded  Semantics  

For achieving a consistent interpretation of disjunctive databases, several types 
of well-founded semantics have been proposed, cf. 1, 2, 14. It seems that  the 
semantics of evidential stable models are stronger than the semantics D-WFS of 
Brass and Dix 2, and still they are consistent. 

8 Abstract  Propert ies  of  the  Evident ia l  Semant ics  

In the following we will give a brief analysis of the two evidential semantics 
according to several abstract properties of semantics, cf. Brass and Dix 3. A 
summary is given by Figure 4. 

First, both evidential semantics have the property of independence. They 
even have the stronger property of modularity. This means that  if a database 
can be decomposed into separate components that  do not have any atoms in 
common, then the (partial) evidential stable models can be computed on the 
components separately. As a consequence, only on those parts of a disjunctive 
database that  are inconsistent w.r.t. (partial) stable models we have to compute 
(partial) evidential stable models. On the consistent part of a database - which 
usually will be the main part - we can compute the basic (partial) stable model 
semantics. 

7 in discussions 
s E.g., the disjunctive database 79 = {q +-- nora A notq, a ~-- b} has two evidential 

stable models I tf = { qt, a f, b f} and Qf = { a t, b f, qf }. According to Gelfond's defini- 
tion, besides I1 and 12 we get an extra .A-stable model I3 a = { a t, b $, qf }, which is 
not minimal (,4 = { a, b, q }, A11 = { q }, Jti2 = { a }, fl*Is = { b }). 
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Fig. 4. Abstract properties of semantics 

Secondly, evidential stable model semantics is supraclassical, i.e., it derives 
more consequences - by sceptical reasoning - than classical logic, since eviden- 
tial stable models are also minimal models, cf. Theorems 2. On the other hand, 
partial evidential stable model semantics is not supraclassical, since for normal 
databases it is equivalent to the well-founded semantics, which is not supraclas- 
sical. 

Thirdly, both evidential semantics allow for the elimination of tautologies. 
The semantics of evidential stable models also allows for the elimination of con- 
tradictions, whereas partial evidential stable models do not. This well matches 
with the conjecture of 3 that  elimination of contradictions should be given up for 
(three-valued) semantics of general - i.e. non-stratified - disjunctive databases. 

Fourth, both evidential semantics do not satisfy the generalized property of 
partial evaluation (GPPE) .  For partial evidential stable models this can be shown 
by an example that  originally was used for showing that  partial stable models 
do not satisfy G P P E  19. Given the fact that  evidential stable models satisfy 
elimination of tautologies and elimination of contradictions, using a theorem of 
3 it can be concluded that  evidential stable models cannot satisfy G P P E  - the 
reason is that  otherwise the set of evidential stable models always would have 
to be a subset of the set of stable models. 

Finally, note that  as a consequence of Theorem 3, the technique of partial 
evaluation can still be applied to the tu- t ransformation of a database - rather 
than the database itself - for computing its partial stable models, and conse- 
quently also the superset of partial evidential stable models. 

9 C o n c l u s i o n s  

The evidential semantics presented in this paper can be seen as a special case of 
the general framework or revising non-monotonic theories that  was introduced 
by Witteveen and van der Hoek in 23. In that  case, the intended models would 
be the (partial) stable models, and the backup models - from among which the 
models are chosen if there exist no intended models - would be the (partial) 
minimal models, cf. Theorems 2 and 4. 
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The computat ion of (partial) evidential stable model semantics has been 
implemented within the system DISLOG for efficient reasoning in disjunctive 
databases, cf. 20. It can be shown that  the time cdmplexity of computing (par- 
tial) evidential stable models is on the second level of the polynomial hierarchy, 
namely E P, just as for computing (partial) stable models. 

The detailed investigation of the properties and possible implementations of 
evidential stable models and partial evidential stable models will be the subject 
of future work. 
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Abstract .  In this paper, we use autoepistemic reasoning semantics to 
classify various semantics for disjunctive logic programs with default 
negation. We have observed that two different types of negative intro- 
spection in autoepistemic reasoning present two different interpretations 
of default negation: consistency-based and minimal-model-based. We also 
observed that all logic program semantics fall into three semantical points 
of view: the skeptical, stable, and partial-stable. Based on these two ob- 
servations, we classify disjunctive logic program semantics into six dif- 
ferent categories, and discuss the relationships among various semantics. 

1 Introduction 

Recently the study of theoretical foundations of disjunctive logic programs with 
default negation has attracted considerable attention. This is mainly because 
the additional expressive power of disjunctive logic programs significantly sim- 
plifies the problem of modeling disjunctive statements of various nonmonotonic 
formalisms in the framework of logic programming, and consequently facilitates 
using logic programming as an inference engine for nonmonotonic reasoning. 

One of the major challenges is how to define a suitable semantics for var- 
ious applications. A semantics of logic programs is usually specified by how 
default negation is justified. Different ways of justification lead to different se- 
mantics. Though many promising semantics for disjunctive programs have been 
proposed, such as the answer set semantics 12, the static semantics 16, and 
the well-founded and stable circumscriptive semantics 22, searching for suit- 
able semantics for disjunctive programs proved to be far more difficult than for 
normal programs (logic programs without disjunction) whose semantics is fairly 
well understood now. 

Three major semantical points of view have been established for logic pro- 
grams: the skeptical, stable, and partial-stable. 

A skeptical semantics justifies a default negation not(~ with respect to a 
program T / i f  and only if a cannot possibly be derived from H under any cir- 
cumstance 1 

1 We say a cannot be derived from T/under any circumstance if a cannot be derived 
from T/N for any set N of default negations. Note that//~v is a program obtained 
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A stable semantics is based on the idea of perfect introspection, in that  the 
semantics entails n o t a  if and only if it does not entails a.  Obviously, a sta- 
ble semantics disallows any undefined atoms. (Note that  an atom a in a given 
semantics is considered undefined if neither a nor n o r a  is true in the semantics. 

A stable semantics characterizes an ideal (credulous) semantics for logic pro- 
grams but a stable semantics of many less-than-ideal programs may not be con- 
sistent. For example, / /  = {a ~ nora )  has no stable models. This motivates 
the introduction of the third semantical point of view: the partial-stable seman- 
tics. A partial-stable semantics can be viewed as a relaxed stable semantics tha t  
allows a minimum number of undefined atoms. 

The standard semantics in three semantical categories for normal programs 
are the well-founded semantics 9, the stable semantics 11, and the regular 
semantics 20, respectively. 

Not surprisingly, many semantics for disjunctive programs have been pro- 
posed in each of these three semantical categories. For example, the static se- 
mantics, the well-founded circumscriptive semantics, and the disjunctive well- 
founded semantics 2-4 and the skeptical well-founded semantics 23 are rep- 
resentatives of the skeptical semantical category; and the answer set semantics 
and the stable extension semantics 14 (based on the autoepistemic translation 
of logic programs) are representatives of the stable semantical category. For the 
partial-stable semantical category, there are the partial-stable model semantics 
15, the regular model semantics 20, and the maximal stable model semantics 
8. These three partial-stable semantics, as well as many others, defined weaker 
stable semantics for disjunctive programs but experienced various difficulties 8. 
A notable new entry in the field is the the partial-stable assumption semantics 
19. The partial-stable assumption semantics extends the answer set seman- 
tics into the partial-stable semantical category in the same way as the regular 
semantics extends the stable semantics for normal programs. 

In addition to three semantical points of view, it has also been realized that  
the interpretations for default negation can be divided into two camps: those in 
default logic and autoepistemic logic, which are consistency-based, and those in 
circumscription and the like, which are minimal-model-based 13. In the former 
case, default assumptions are made on the basis of certain hypotheses being 
consistent with a current theory; in the latter case, default assumptions are 
made on the basis of their being true in all minimal models of a current theory. 

In this paper, we use autoepistemic logic as a tool to classify disjunctive pro- 
gram semantics into six different semantical categories, according to three seman- 
tical points of view and two interpretations of default negation. We demonstrate 
tha t  all the six semantics have been proposed earlier in various frameworks and 
that  all promising semantics either coincide with, or are essentially the same as, 
one of these six semantics. 

We also address computational aspects of various semantics, which is an- 
other important issue in the study of logic program semantics. In fact, we have 

from / /  by replacing all negations with their truth values in N. See Section 2 for 
details 
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shown that among all six semantics, the consistency-based skeptical semantics 
has the lowest computational complexity: pNP, which is not surprising be- 
cause minimal-model entailment is inherently more difficult to compute than 
(consistency-based) classical entailment. 

We use autoepistemic logic as a tool for classifying disjunctive logic pro- 
gram semantics for the following two reasons. First, default negation in logic 
programming and many other nonmonotonic reasoning frameworks can be pre- 
cisely characterized by negative introspection, which is a process for a rational 
agent to derive disbeliefs according to the agent's perspective of the world, in au- 
toepistemic reasoning 10. Second, we have observed that the difference between 
consistency-based and minimal-model-based interpretations of default negation 
lies in the use of an axiom - a  C -"Ba, where ~ B a  standing for "not believ- 
ing c~" (or nora) ,  in autoepistemic logic, which is quite interesting. In fact, we 
show that a minimal-model-based semantics can be precisely defined by the cor- 
responding consistency-based semantics with one simple axiom in the context 
of autoepistemic logic semantics. The following example demonstrates the dif- 
ference between the two interpretations of default negation and how they are 
related by the above axiom. 

Example 1. Consider the following program Hi: 

driving V flying ~- 
fixing_car +- not flying 
reserving_seat +- notdriving 

Iii  can be represented by an autoepistemic theory A1 below: 

driving V flying 
fixing_car C -"B flying 
reserving_seat C -"Bdriving 

The answer set semantics, which adopts the minimal-model-based default nega- 
tion, of/ /1 has two answer sets, one conclude 

{driving; fixing_car; not flying; notresering_seat } 

and the other 

{flying; reserving_seat; notdriving; not fixing_car}. 

The stable extension semantics 14, which is consistency-based, of A1, on the 
other hand, contains a unique stable extension which concludes 

{driving V flying; fixing_car; reserving_seat; -"Bdriving; -,B flying} 

Let Aim be obtained from A1 by adding instantiated formulas of axiom --a C 
--Ba, i.e., Aim = A1 (3 {-.driving C -.Bdriving; -.flying C -.B flying}. Then 
the stable extension semantics of Aim contains two stable extensions, one con- 
cludes 

{driving; fixing_car; -,B/lying; -.Bresering_seat } 
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and the other 

(flying; reserving_seat; -~Bdriving; -~B f ixing_car } , 

which coincides with the answer set semantics of / I1 .  

Our study provides much needed insights into the theoretical foundations of logic 
programming with default negation. 

The rest of the paper is organized as follows: Section 2 and 3 briefly review 
logic program semantics and autoepistemic logic respectively. Section 4 defines 
three autoepistemic expansions according to three different semantical points of 
view. The six different semantics are redefined in Section 5. Semantical analysis 
and comparisons are given in Section 6. 

2 Logic Programs with Default Negation 

We consider instantiated programs in a finite language containing the binary 
connectives V, A, +-, and a unary connective no t .  A logic program is a set of 
clauses of the form 

A1 V ... V Aq +- B1, . . .  ,Bm,no tC1 , . . . ,  n o t c h ,  

where A~,Bj,Ck are atoms, notCk are default negations, also called assumed 
negations, and q > 1. FI is considered a normal program if q -- 1; and a positive 
program if n = 0. We use/-/~- ~ to denote the fact tha t  ~ can be derived from 
/ / i n  the sense of classical entailment. 

Assume H is a program. A negation set N is defined as a set of default 
negations that  appear in H,  which represents a possible interpretation (values) 
of default negations contained in H.  The GL-translation /-IN is defined as a 
program obtained f r o m / / b y  first deleting all n o t c j s  if n o t c j  E N and then 
deleting all clauses with notck in the body if notck r N.  

The main challenge is how to define a suitable semantics for logic programs. 
Since a negation set specifies a set of default negations being assumed true and 
the intended meaning o f / / u n d e r  a given negation set N is determined b y / / g  
2, a semantics of H is usually given by one or more negation sets. Therefore, 
searching for a semantics of H is a process of searching for a negation set that  
can be justified under a certain semantical point of view. 

There are three major  semantical points of view: the skeptical, stable, and 
partial-stable. 

A skeptical semantics is the most conservative semantics in tha t  it justifies 
a default negation n o t s  if and only if ~ cannot be derived from the current 
program in any circumstance, meaning c~ is not true with respect to H g for 
any negation set N. Both stable and partial-stable semantics justify a default 

2 Given H and N, an atom a is considered true with respect to/-/N if either/-/N ~ C~ 
as in a consistency-based semantics, or (//N U {-~;3  notfl  E N}) ~ a as in the 
answer set semantics. See Section 5 for details. 
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negation n o t a  only if c~ cannot be derived from the current program under the 
given negation set. The difference between the stable and partial-stable is that 
the former assigns a definite value, being true or assumed false, to each and 
every atom while the latter allows a minimum number of undefined atoms. 

Consider normal (non-disjunctive) programs first. The following table lists 
all the major semantics proposed for normal programs. 

Skept ica l  S tab le  par t i a l - s tab le  

Well-Founded 
Semantics 9 

Stable Semantics 11 
'Regular Semantics 20 
Preferential Semantics 7 
Maximum Partial-Stable 
Semantics 17 1 
Stable-Class Semantics 

Let f i  be a normal program, and M and N negation sets of H. We say M is 
compatible wrt N if f iN ~= a for any n o t a  E M. Then N is justifiable wrt f i  
if n o t a  E N if and only i f / I  M ~= ~ for any M that is compatible wrt N. This 
leads to the following definition. 

Defini t ion 1. Let f i  be a normal program. A negation set N is said to be 

1. a partial-stable set of H if 
(a) N is compatible wrt itself, and 
(b) Y = {noto~/-/{n~  /-/N~} V= ~/~. 

2. a stable set of 1-I if N = {notc~  H ~= a}. 

From this definition we can see that a partiai-stable set N is a set of all default 
negations that can be justified under the rule of negation as failure. That is, 
n o t a  E N if and only if c~ cannot be derived from f i  even all default negations 
n o t e  E {no te  I f IN  ~ ~} are assumed false. Obviously, a stable set is a partial- 
stable set, but not vice versa. A program has at least one partial-stable set, 
though it may not have any stable set. Further, it is easy to show that among 
all partial-stable sets o f / - / there  exists the least stable set in the sense of set 
inclusion. The following proposition reveals that almost all semantics of normal 
programs can be characterized by partial-stable sets. 

P r o p o s i t i o n  1. (21) 

1. The well-founded semantics is characterized by the least partial-stable set. 
2. The stable semantics is characterized by the set of all stable sets. 
3. The regular semantics, preferential semantics, maximum partial-stable se- 

mantics, and normal stable-class semantics coincide and are characterized 
by the set of maximal partial-stable sets, in the sense of set inclusion. 

This proposition demonstrates that the well-founded, stable, and the regular 
(including all other equivalent) semantics are the standard semantics for their 
respective categories. 

While the normal program semantics is fairly understood, searching for suit- 
able disjunctive programs proved to be much more difficult. 

The following table lists all major semantics proposed for disjunctive pro- 
grams. 
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Skept ica l  S tab le  Pa r t i a l -S tab le  
Well-founded Circums- Stable Circums- Partial-stable 
criptive Semantics 22 criptive Semantics 22 Model Semantics 15 
Static Semantics Answer Set Regular Semantics 
16 Semantics 12 20 
Disjunctive Well- 
founded Semantics 2, 4 
Skeptical Well- 
founded Semantics 23 

Stable Extension 
Semantics 14 

Maximal Stable 
Model Semantics 8 
Partial-stable 
Assumption Semantics 19 
Regularly-justified 
Set Semantics 23 

Both the static and the well-founded circumscriptive semantics were defined 
based on the same idea of minimai-model-based negative introspection. The spe- 
cific form of this introspection was given in 22. In fact, the first three skeptical 
semantics listed above are essentially the same 5. The difference between the 
first three skeptical semantics and the skeptical well-founded semantics lies in 
the interpretation of default negation. The former adopts minimal-model-based 
default negation while the latter consistency-based default negation. 

Example P. Consider a simple program//2 below: 

bird +-; f ly  V abnormal +- bird; f ly +- bird, notabnormal 

Since abnormal is true in a minimal model of/ /2 with notabnormal being false 
while abnormal cannot be derived from//2 regardless of notabnormal being true 
or false, notabnormal can be justified under consistency-based default negation 
but not under minimal-model-based default negation. 

The skeptical well-founded semantics adopts consistency-based default nega- 
tion and thus concludes notabnormal and ly. On the other hand, the static 
as well as the well-founded circumscriptive and disjunctive well-founded se- 
mantics adopt minimai-model-based default negation and thus conclude neither 
notabnormal nor fly. 

The answer set semantics is defined for extended logic programs that allow clas- 
sical negation in both head and body while the stable circumscriptive semantics 
is defined for general autoepistemic theories, including the translated logic pro- 
grams with default negation. Both semantics adopt minimal-model-based default 
negation and coincide in the context of disjunctive logic programs. On the other 
hand, the stable extension semantics and the stable set semantics 23 are a 
stable semantics that adopt consistency-based default negation. 

Example 3. (Example 2 continued) The answer set semantics (as well as the sta- 
ble circumscriptive semantics) of II2 is defined by two sets, the first one contains 
the set {bird, fly, notabnormal) and the second {bird, abnormal, not /y ) .  

The stable set semantics, on the other hand, is defined by a unique negation 
set {notabnormal) and therefore implies bird Aly. 
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All the partial-stable semantics, except the regularly-justified set semantics which 
is consistency-based, listed above are minimal-model-based but are different from 
each other. See 8 for detailed comparisons. The recently proposed partial-stable 
assumption semantics seems the only semantics that extends the answer set se- 
mantics in the same way as the regular semantics extends the stable semantics 
for normal programs 19. 

Example 4. Consider the following program I/4 

work V sleep v tired +- 
work 4- nottired 
sleep +- notwork 
tired ~-- notsleep 

Both partial-stable and maximal stable model semantics, listed in the table, 
o f / / 4  are inconsistent while the partial-stable assumption semantics and the 
regularly-justified set semantics are characterized by an empty negation set N = 
q} which implies nothing but work V sleep V tired. 

The difference between the partial-stable assumption and regularly-justified 
set semantics lies in the interpretation of default negation. For example, consider 
//2 in Example 2. The partial-stable assumption semantics of / /2  coincides with 
the answer set semantics of I/2 while the regularly-justified set semantics of/ /2 
coincides with both the skeptical well-founded and the stable set semantics of 
//2. 
Another important feature of a semantics is its computational complexity. Be- 
cause of the inherent difficulty of computing minimal-model entailment, the 
computational complexity of consistency-based semantics is lower than that of 
minimal-model-based semantics. 

3 Autoepistemic Logic 

We consider here a propositional language augmented with a modal operator B. 
An atomic formula (atom) is either a propositional symbol, or an epistemic atom, 
also called belief atom, Ba,  where c~ is a (well-formed) formula defined as usual. 
The intended meaning of B a  is "a is believed". For convenience, we also use 
not(~, called disbelief atom, interchangeably for -~Bc~, meaning c~ is disbelieved. 
(not(~ is also viewed by many authors as a default negation.) An belief theory 
(or a theory for short) is a set of well-formed formulae, and a formula (or a 
theory) is objective if it contains no epistemic atoms, otherwise it is subjective. 
We denote by P+(A) and P - ( A )  the set of all propositions and the set of all 
negative literals that appear in A, and by B+(A) and B - ( A )  the set of all belief 
atoms and the set of all disbelief atoms that appear in A, respectively. 

The logic has the following axioms and rules of inference. 

Axioms. 
PL. All propositional tautologies. 
g. B(a D ~) D (Ba D B~). 
D. ~B (false) 
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Inference rules. 

Modus Ponens (MP). a D/3, 

A rational agent does not belief inconsistent conclusions which is expressed by 
D. K means that  if a conditional and its antecedent are both believed, then so 
is the consequent. The importance of K is evidenced by the fact that  K imposes 
a constraint of normality on the language: B a  - B~ whenever ~ -- f~. (Note 
tha t  by ~ _-- 13 we mean (a C t3) A (13 C (~).) MP is a usual inference rule for 
propositional logic. 

Let A be a theory and c~ a formula. By A I-KD Ol we mean a can be derived 
from A based on the aforementioned axioms and rules of inference. A is incon- 
sistent if there exists a formula (~ such that  A F-Ko c~ and A F-/~D -~(~; otherwise, 
it is consistent. 

3.1 Belief  Interpretation 

A belief theory A is used to describe the knowledge base of a rational agent. Due 
to incomplete information, an agent may have to hold a set of possible states 
of epistemic belief, each of which represents a complete description about the 
agent's belief. A (restricted) belief interpretation is thus introduced to charac- 
terize such a complete state of belief. Formally, 

Definition 2. 1. A restricted belief interpretation, or belief interpretation for 
short, of A is a set I of belief atoms and disbelief atoms such that for any 
belief atom Ba  appearing in A, either Ba  E I or -~Ba E I (not both). 

2. A restricted belief model, or belief model for short, of A is a belief interpre- 
tation I of A such that A U I is consistent. 

Obviously, a theory is consistent if and only if it has at least one belief model. 
Let A be a belief theory and I a belief model of A. An (objective) perspective 

theory of A, denoted by A I, is defined as an objective theory obtained from A 
by replacing each belief atom in A with their corresponding t ruth  value in I.  
Obviously, a belief theory may have more than one perspective theory and each 
of them represent the agent's perspective with respect to one restricted belief 
model. 

Example 5. The following autoepistemic theory is obtained f rom/ /2  in Exam- 
ple 2 above 

A5 = {bird; f l y  V abnormal C bird; f l y  C bird A -,Babnormal). 

A5 has two belief models and two corresponding perspective theories: 

I1 = {Babnormal) and A51 = {bird; f l y  V abnormal C bird); 
I2 = {-~Babnormal) and A52 = {bird; f l y  V abnormal C bird; f l y  C bird). 
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3.2 Introspection 

Introspection is a process of revising the agent' belief according to his perspective 
of the world. For example, Moore 14 uses the stable expansion T of A 

T = {r I AU {Ba  c~ e T} U {--Ba I a r T} ~-KDaa r 

where ~'KD45 denotes derivation under logic KD45, to model introspective rea- 
soning. The terms {Ba I ~ E T} and {--Ba I c~ r T} express the positive and 
negative introspection of an agent respectively. 

It is generally agreed that positive introspection is a process of concluding 
belief B~ if c~ can be derived while negative introspection is a process of con- 
cluding disbelief -~B~ (or B-~a) if c~ cannot be derived. Positive introspection is 
usually achieved by introducing the necessitatibn rule: derive Ba  if a has been 
proved, as follows: 

Necessitation (N). a 
J , J  

Ba  
The interpretation of non-derivability for negative introspection, however, varies 
quite diversely. Two typical approaches are: 

1. consistency-based introspection: 
deriving -~Ba if - a  is consistent with A, (or equivalently, A ~KO a); and 

2. minimal-model-based p-introspection: 
deriving -~Ba if -~a is true in every minimal model of every perspective 
theory of A. 

The closed world assumption, default logic, and Moore's autoepistemic logic 
use consistency-based negative introspection. This approach usually results in 
stronger negative introspection in that more disbeliefs may be concluded, and 
as such, many reasonable theories do not possess consistent introspective expan- 
sions. Minimal-model-based introspection, on the other hand, suffers from the 
inherent difficulties associated with minimal-model entailment 8. 

In 24, we have argued that introspection should be consistency-based and 
be with respect to each and every possible belief world: 

Deriving -~Ba if -~a is consistent with A U I for every belief model I of 
A. 

In the following we will formally define the inference rules of introspection. First 
we need to identify the classical entailment with respect to all possible belief 
worlds. 

Definition 3. Let A be a theory and ~ a formula. 

1. A ~ a if A U I ~'KD Ol for every belief model I of A, and 
2. A ~ ol if A U I VKD Ol for every belief model I of A. 

(Note that AU ~/KD a if and only if - ~  is consistent with A U I . )  
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If A has two belief models/1 and/2 such that A U 11 ~-KD a and A U I2 F/KD a 
then neither A ,~ a nor A "~l a. Further, if A is inconsistent then A ,~ a and 
A ,q a for every formula a. 

Now we are in a position to introduce the following two rules of inference 
for positive and negative introspection with respect to all possible belief worlds 
respectively. 

Positive Introspection (PI). 

Negative Introspection (NI). 

B a  

--Bet 

PI  states that deriving B a  whenever A ~ a and NI that deriving --Ba whenever 
A . q  a. 

Remarks Because A I,~ a if  and only if A ~-KD OL, PI  is the same as the 
necessitation rule N. We list P I  as a rule of inference for positive introspection 
here to emphases its role in introspection. N I  is not a usual inference rule in that 
its premise takes into account of the whole axioms. Rather, it is a content-based 
meta rule of inference. 

It is easy to see that PI is monotonic while NI is nonmonotonic. However, 
it has been shown that N I  is cumulative in that F U {-,Bfl} derives -,Ba, for 
any formula fl, whenever F derives both ~ B a  and --Bfl. Therefore, NI can be 
recursively applied in any ordering, which enable us to define a logic that is 
nonmonotonic in general but monotonic with respect to all belief and disbelief 
atoms, as follows. 

Definit ion 4. Assume A is a belief theory and a a formula. We say A intro- 
spectively implies a, denoted as A ~1~:D a, if a can be derived from A by the 
following axioms and rules of inference: 

Axioms:  PL, K, D 
Inference rule: MP, PI, NI. 

Example 6. Consider A5 in Example 5 again. Since A5 ,q abnormal, A5 ~IKD 
-,Babnormal. Consequently, A5 F-IKD f l y  as well as A5 ~IKD B f ly .  

The well-defined-ness of the epistemic entailment is evidenced by the fact that 
~'IKD is belief-monotonic, as described below. 

Definit ion 5. A relation b between a belief theory T and a formula a is said to 
be belief-monotonic if for any formula fl, T U {Bj3} F- a if T F- a and T U 
{-BZ} a if T a. 

The introspective implication characterizes both positive and negative introspec- 
tion, which is naturally nonmonotonic, but still remains belief monotonic. There- 
fore, the computation of the introspective logic can be carried out incrementally 
in any order, as long as the derived beliefs are preserved in the derivation. 
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The following example demonstrates that not every consistent theory is also 
consistent under introspective entailment. 

Example Z Let A7 = {a C -~Bb;-~a C -~Bb}. Since Ar ,q b, Ar ~-IKD -Bb, but 
Ar t_J {-~Bb} is not consistent. Note that A7 is consistent for {Bb} is a restricted 
belief model of AT. 

A theory A is said to be introspectively consistent if there exists no formula a 
such that A }-IKD a and A }-XKD -~a. Even though it is inherently difficult to 
check if a given theory is introspectively consistent, there exists a large class of 
theories that are introspectively consistent. For example, as discussed in Section 
6, all belief theories representing disjunctive logic programs with negation are 
introspectively consistent. 

The following observation, a direct consequence of axiom K, demonstrates 
the normal behavior of introspective logic. That is, for any formulae a and/~, 

~-IKD Ba  A Bfl = B(a A fl); ~-zKD B a  V B~  D B(a  V fl). 

4 I n t r o s p e c t i v e  E x p a n s i o n s  

In this section, we define three classes of introspective expansions, in order to 
express the three semantical points of view in the context of autoepistemic logic. 

Definition 6. A belief theory T is said to be an introspective expansion of A if 
it satisfies the following fixpoint equation 

T = { r 1 6 2  

The introspective expansion characterizes the introspective reasoning process by 
expanding a given theory A using both rules of PI and NI. 

It is worth noting that only the negative introspection {-~Ba I T ~1 a} is used 
in the above fixpoint equation. The use of inappropriate positive introspection in 
the equation, as indicated by Schwartz 18, may lead to ungrounded expansions. 

Among all introspective expansions, the following three are of special interest. 

Definition 7. An introspective expansion T of A is said to be 

1. the ground expansion of A if it is a subset of any introspective expansion; 
2. a stable expansion of A if T is epistemically complete in that for any formula 

a, T contains either Ba  or ",Ba; and 
3. a regular expansion of A if there exists no introspective expansion T' of A 

such that T' ~ T. 

In fact, these three classes of expansions are defined to express the three seman- 
tical points of view, first developed in the context of normal programs. 

Obviously, any stable expansion is a regular expansion, but not vice versa. For 
convenience we use CnIIcD(A) to denoted the set of all formulas introspectively 
implied by A, i.e., CnlKD(A) = {a I A ~-IKD 0~). 
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Example 8. Consider 

A5 = {bird; f l y  Y abnormal C bird; f l y  C bird A "~Babnormal} 

in Example 5 again. A5 has exactly one introspective expansion T = CnIKD (As), 
which is also a stable expansion of A~. 

Example 9. Consider A9 = {a C Ba, b C --Ba}. Then A9 has two introspective 
expansions, that is, T1 = CnlKD(Ag)  = {r f-~rKD r that contains neither 
Ba  nor --Ba, and T2 = CnIKD(A9 U {--Ba}). 

Note that T3 = CnlKD(A9 U {Ba}) is not an introspective expansion of A9 
since a cannot be derived from A9 with any set of disbelief atoms. 

It turns out that any theory has the ground (least) expansion, though not nec- 
essarily a consistent one. Furthermore, the ground expansion is just the set of 
all introspective consequences of A. 

Theorem 1. 1. T = {r ~'IKD r i8 the ground expansion of A.  
2. I f  A is introspectively consistent then any introspective expansion of A is 

consistent. 

The proof of the theorem is straightforward and thus omitted. 

5 L o g i c  P r o g r a m  S e m a n t i c s  a n d  I n t r o s p e c t i v e  E x p a n s i o n s  

In this section, we will define various semantics of logic programs based on 
autoepistemic expansions. 

5.1 Default Negation and Disbelief 

Defini t ion 8. Let 1-f be a logic program. Then AE(11) is defined as an autoepis- 
temic theory obtained from 1I by translating each clause in 11 into a formula o 
the form 10 

A1 V " . " V Aq C BI  h . . . A Bm A -,BC~ A . . . A n o t B C ,  

Example 10. Consider 

112 = {bird e-; f l y  V abnormal ~-- bird; f l y  +- bird, no tabnormal )  

again. Then AE(11) = {bird; f l y  V abnormal C bird; f l y  C birdA- ,Babnormal} .  

Similar to negative introspection, default negations in disjunctive programs can 
also be interpreted in two different ways: consistency-based and minimal-model 
based. The former assumes n o t a  if -~a is consistent with the current program 
while the latter assumes nora  if -,a is true in every minimal model of the current 
program. 
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Example 11. (Example 10 continued) By consistency-based default negation, 
notabnormal can be justified since abnormal cannot be derived from 112 no 
matter whether notabnormal is true or false. On the other hand, by minimal- 
model based default negation, notabnormal cannot be justified since abnormal 
is true in one of the minimal models of//2 when notabnormal is not assumed. 

Consistency-based default negation can be easily characterized by the transla- 
tion given in Definition 8 since negative introspection of autoepistemic logic is 
consistency-based. The following translation is introduced to capture minimal- 
model based default negation. 

Definit ion 9. Let II  be a logic program, and AE(11) be the autoepistemic theory 
of 11. Then, the M-autoepistemic theory o/11, denoted as MAE( I I )  is defined 
a s  

AE(II)  U(-~(~c'~B(~ l a is an atom in 11} 

MAE(I I )  is also viewed as AE(II)  augmented with an axiom -~a C -.Ba. 

Example 12. Consider 112 in Example 10 again. Then MAE(112) contains the 
following formulas: 

bird; 
f l y  V abnormal C bird; 
f l y  C bird A -"Babnormal; 
-"bird C -~Bb/rd; 
-..fly C -~B.fly; 
-.abnormal C -.Babnormal}. 

Now, we are in a position to define declarative semantics of disjunctive programs 
in terms of translated autoepistemic theories of 11. Because each program has two 
different translated autoepistemic theories, corresponding to consistency-based 
and minimal-model based default negations, and each autoepistemic theory may 
have three different types of introspective expansions, corresponding to the skep- 
tical, stable, and partial-stable semantical points of view, six different semantics 
are given below. 

Defini t ion 10. Let 1-1 be a disjunctive program, AE(11) and MAE(11) the cor- 
responding autoepistemic theories o 1I. Then we define 

1. the C-ground (standing for consistency-based ground), C-stable (standing for 
consistency-based stable), and C-regular (standing for Consistency-based reg- 
ular) semantics of l I  by the ground expansion, the set of all stable expansions, 
and the set of all regular expansions, of AE(H)  respectively; and 

2. the ground, stable, and partial-stable semantics of 1-1 by the ground expan- 
sion, the set of all stable expansions, and the set of all regular expansions, 
o M AE( II) respectively. 
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By saying that a semantics is characterized by an introspective expansion we 
mean that (1) an objective formula ~ is true in the semantics if and only if c~ 
is contained in the expansion, and (2) a default negation n o t a  is true in the 
semantics if and only if -~Ba is contained in the expansion. 

The following table summarizes all six different semantics. 

Consis- 
tency  
based 

Skeptical 
C-Ground Semantics: 
the ground expansion 
of AE(II) 

Stable 
C-Stable Semantics: 

Partial-Stable 
C-l~egular Semantics: 
all the regular 
expansions of AE(II) 

all the stable 
expansions of AE(II) 

Minimal- Ground Semantics: Stable Semantics: Partial-stable Semantics: 
model  the ground expansion all the stable all the regular 
based of MAE(H) expansions of MAE(II) expansions of MAE(H) 

It is straightforward to show that for normal programs, consistency-based and 
minimal-model based semantics coincide, simply because an atom is true in 
the set of all minimal models of a Horn program if and only if it is a logical 
consequence of the program. 

Example 13. Consider II2 in Example 10 again. 
First, consider consistency-based default negation. Since abnormal cannot 

be derived from AE(//~) in any circumstance, AE(//2) has a unique expansion 
containing -~Babnormal. Thus, all three semantics, including the C-ground, C- 
stable, and C-regular, coincide and imply fly. 

Now consider minimal-model based default negation. The skeptical semantics 
does not imply -~Babnormal since I = {Bbird,-~Bfly, Babnormal} is a belief 
model of MAE(/ /2)  and MAE( / /2 )UI  ~-KD abnormal. So the ground semantics 
does not imply fly either. In fact, it coincides with the static semantics. 

The stable semantics, which coincide with the partial-stable semantics, of//2 
is defined by two stable expansions, one contains {Bbird,-~Babnormal, B f ly}  
and the other contains {Bbird, Babnormal, -~Bfly}. 

6 F u r t h e r  A n a l y s i s  

In this section, we will analyze relationships between various semantics. 
First for normal programs, it is easy to show that both minimal-model-based 

and consistency-based semantics coincide. 

P r o p o s i t i o n  2. A s s u m e / / i s  a normal program. Then 

1. The well-founded, C-ground, and ground semantics of 171 coincide. 
2. The stable and C-stable semantics coincide. 
3. The regular, C-regular, and partial-stable semantics coincide. 

Both the answer set semantics and stable circumscriptive semantics are minimal- 
model-based and coincide with the stable semantics; and both the stable exten- 
sion semantics and the stable set semantics are consistency-based and coincide 
with the C-stable semantics, as shown below. Again, the proof is straightforward 
and thus omitted. 
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Proposition 3. 1. Both the answer set and stable circumscriptive semantics 
coincide with the stable semantics. 

2. Both the stable extension semantics and the stable set semantics coincide 
with the C-stable semantics. 

Among all the minimal-model-based semantics in the partial-stable category, 
the recently proposed partial-stable assumption semantics 19 coincides with 
the partial-stable semantics. Further, the C-partial-stable semantics coincides 
with the stable set semantics. 

Proposition 4. 1. The partial-stable semantics coincides with the partial-stable 
assumption semantics. 

2. The C-partial-stable semantics coincides with the regularly-justified set se- 
mantics. 

Proof. (1) It follows the following two facts. 
First, the partial-stable assumption semantics utilizes an additional meta rule 

of inference av/~,not/~B while the partial-stable semantics utilizes a minimal-model 
axiom -,a C -,B~, which are essentially the same. 

Second, the partial-stable assumption semantics is defined using the alternat- 
ing fixpoint theory while the partial-stable semantics is defined using negative 
introspection with respect to all belief models. However, it is easy to show that, 
in the context of logic programming, the two are the same. 

(2) It follows that the justification of default negation under the alternating 
fixpoint theory coincide with negative introspection with respect to all belief mod- 
els. Note that the regularly-justified set semantics justifies a regular set using the 
alternating fixpoint theory. 

Both the static and ground semantics are defined using minimal-model based 
introspection and thus are very much the same. The subtle difference between 
the two is due to the fact that the autoepistemic theory MAE(I I )  uses -~Ba to 
represent n o t a  while the static semantics uses B-~a to represent no ta .  

6.1 Computational Complexity 

It is a well-known fact that the computational complexity 3 of the well-founded 
semantics for normal program is polynomial while that of both the stable and 
regular semantics is NP-complete. Furthermore, it has been shown that the com- 
putational complexities for the answer set semantics and many other minimal- 
model-based partial-stable semantics are z P  8. This implies that the computa- 
tional complexity of both the stable and partial-stable semantics for disjunctive 
programs are Z~.  

The ground semantics and the static semantics have the same computational 
complexity which are also ZP-complete 6. 

By the computational complexity we mean the data complexity under possibility 
inference, i.e., the complexity of deciding if a given query is true in one partial-stable 
set under the given semantics 8 
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The following proposition shows that  the computational complexity of the 
consistency-based ground semantics is pgP which is the lowest among all the 
semantics for disjunctive logic programs in the polynomial hierarchy. 

P r o p o s i t i o n  5. The computational complexity of the consistency-based ground 
semantics is pNP.  

Proof. Let AE(II)  be a disjunctive theory and F a formula. We need only to 
show that  deciding if AE(TI) }-IKD F is pNP. 

Let M1 contain all disbeliefs and M2 all beliefs. Then both M1 and M2 are 
belief models of AE(II) .  ~r the rmore ,  let B1 and/32 are objective perspective 
theories of B with respect to M1 and M2 respectively. Then for any formula a, 
AE(II)  ~ ~ if and only if 132 ~'IKD ol and AE(II)  ~ ~ if and only if B1 ~IIKD 0l. 
This implies that  a visit to an oracle for classical inference can determine the 
status of any -~BCi under the positive (or negative) introspection. Therefore, a 
linear calls to oracle are sufficient enough to determine if AE(II)  }-IKD F. 

This result is by no means surprising because (consistency-based) classical en- 
tailment is inherently more efficient to compute than minimal-model-based en- 
tailment. 
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Abstract .  We present the system LAP (Learning Abductive Programs) 
that is able to learn abductive logic programs from examples and from a 
background abductive theory. A new type of induction problem has been 
defined as an extension of the Inductive Logic Programming framework. 
In the new problem definition, both the background and the target the- 
ories are abductive logic programs and abductive derivability is used as 
the coverage relation. 
LAP is based on the basic top-down ILP algorithm that has been suit- 
ably extended. In particular, coverage of examples is tested by using the 
abductive proof procedure defined by Kakas and Mancarella 24. As- 
sumptions can be made in order to cover positive examples and to avoid 
the coverage of negative ones, and these assumptions can be used as 
new training data. LAP can be applied for learning in the presence of 
incomplete knowledge and for learning exceptions to classification rules. 

Keywords: Abduction, Learning. 

1 I n t r o d u c t i o n  

Abductive Logic Programming (ALP) has been recognized as a powerful knowl- 
edge representation tool 23. Abduction 22, 36 is generally understood as rea- 
soning from effects to causes or explanations. Given a theory T and a formula 
G, the goal of abduction is to find a set of atoms A (explanation) that ,  together 
with T, entails G and that  is consistent with a set of integrity constraints IC. 
The atoms in A are abduced: they are assumed true in order to prove the goal. 
Abduction is specially useful to reason in domains where we have to infer causes 
from effects, such as diagnostic problems 3. But ALP has many other applica- 
tions 23: high level vision, natural  language understanding, planning, knowledge 
assimilation and default reasoning. Therefore, it is desirable to be able to au- 
tomatically produce a general representation of a domain starting from specific 
knowledge about  single instances. This problem, in the case of s tandard Logic 
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Programming, has been deeply studied in Inductive Logic Programming (ILP) 
7, the research area covering the intersection of Machine Learning 33 and 
Logic Programming. Its aim is to devise systems that are able to learn logic 
programs from examples and from a background knowledge. Recently, in this re- 
search area, a number of works have begun to appear on the problem of learning 
non-monotonic logic programs 4, 16, 8, 32. 

Particular attention has been given to the problem of learning abductive 
logic programs 21,26,29,30,27 and, more generally, to the relation existing 
between abduction and induction and how they can integrate and complement 
each other 15,17, 2. Our work addresses this topic as well. The approach for 
learning abductive logic programs that we present in this paper is doubly useful. 
On one side, we can learn abductive theories for the application domains men- 
tioned above. For example, we can learn default theories: in Section 5.1 we show 
an example in which we learn exceptions to classification rules. On the other 
side, we can learn theories in domains in which there is incomplete knowledge. 
This is a very frequent case in practice, because very often the data available is 
incomplete and/or noisy. In this case, abduction helps induction by allowing to 
make assumptions about unknown facts, as it is shown in the example in Sec- 
tion 5.2. In 29 we defined a new learning problem called Abductive Learning 
Problem. In this new framework we generate an abductive logic program from 
an abductive background knowledge and from a set of positive and negative ex- 
amples of the concepts to be learned. Moreover, abductive derivability is used 
as the example coverage relation instead of Prolog derivability as in ILP. 

We present the system LAP (Learning Abductive Programs) that solves this 
new learning problem. The system is based on the theoretical work developed 
in 21, 29 and it is an extension of a basic top-down algorithm adopted in ILP 
7. In the extended algorithm, the proof procedure defined in 24 for abductive 
logic programs is used for testing the coverage of examples in substitution of 
the deductive proof procedure of logic programming. Moreover, the abduced 
literals can be used as new training data for learning definitions for the abducible 
predicates. 

The paper is organized as follows: in Section 2 we recall the main concepts of 
Abductive Logic Programming, Inductive Logic Programming, and the definition 
of the abductive learning framework. Section 3 presents the learning algorithm 
while its properties are reported in Section 4. In Section 5 we apply LAP to 
the problem of learning exceptions to rules and learning from incomplete knowl- 
edge. Related works are discussed in Section 6. Section 7 concludes and presents 
directions for future works. 

2 Abduct ive  and Inductive Logic Programming  

2.1 Abductive Logic Programming 

An abductive logic program is a triple (P, A, IC) where: 

- P is a normal logic program; 
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- A is a set of abducible predicates; 
- IC is a set of integrity constraints in the form of denials, i.e.: 

+- A1, . . . ,  Am, not Am+l , . . . ,  not Am+n. 

Abducible predicates (or simply abducibles) are the predicates about which as- 
sumptions (or abductions) can be made. These predicates carry all the incom- 
pleteness of the domain, they can have a partial definition or no definition at 
all, while all other predicates have a complete definition. 

Negation as Failure is replaced, in ALP, by Negation by Default and is ob- 
tained by transforming the program into its positive version: each negative literal 
not p(t), where t is a tuple of terms, is replaced by a literal not_p(t), where not_p 
is a new predicate symbol. Moreover, for each predicate symbol p in the program, 
a new predicate symbol not_p is added to the set A and the integrity constraint 
+-- p(X) ,  not_p(X) is added to IC, where X is a tuple of variables. Atoms of the 
form not_p(t) are called default atoms. In the following, we will always consider 
the positive version of programs. This allows us to abduce either the truth or 
the falsity of atoms. 

Given an abductive theory AT = (P, A, IC) and a formula G, the goal of 
abduction is to find a (possibly minimal) set of ground atoms A (abductive 
explanation) of predicates in A which, together with P, entails G, i.e., PUA ~ G. 
It is also required that the program P U A be consistent with respect to IC, i.e. 
P U A ~ IC. When there exists an abductive explanation for G in AT, we say 
that AT abduetively entails G and we write AT ~ A G. 

As model-theoretic semantics for ALP, we adopt the abductive model seman- 
tics defined in 9. We do not want to enter into the details of the definition, 
we will just give the following proposition which will be useful throughout the 
paper. 

We indicate with s the set of all atoms built from the predicates of A 
(called abducible atoms), including also default atoms. 

P ropos i t ion  1. Given an abductive model M for the abductive program AT = 
(P, A, IC), there exists a set of atoms H C s such that M is the least Herbrand 
model of P U H. 

Proof. Straightforward from the definition of abductive model (definition 5.7 in 

91). 

In 24 a proof procedure for abductive logic programs has been defined. This 
procedure starts from a goal and a set of initial assumptions A~ and results in 
a set of consistent hypotheses (abduced literals) Ao such that Ao _D A i and Ao 
together with the program P allow deriving the goal. The proof procedure uses 
the notion of abductive and consistency derivations. Intuitively, an abductive 
derivation is the standard Logic Programming derivation suitably extended in 
order to consider abducibles. As soon as an abducible atom 5 is encountered, 
it is added to the current set of hypotheses, and it must be proved that any 
integrity constraint containing 5 is satisfied. For this purpose, a consistency 
derivation for 5 is started. Since the constraints are denials only (i.e., goals), this 
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corresponds to proving that  every such goal fails. Therefore, 5 is removed from 
all the constraints containing it, and we prove that  all the resulting goals fail. 
In this consistency derivation, when an abducible is encountered, an abductive 
derivation for its complement is s tar ted in order to prove the abducible's failure, 
so that  the initial constraint is satisfied. When the procedure succeeds for the 
goal G and the initial set of assumptions A~, producing as output  the set of 
assumptions Ao, we say that  T abductively derives G or that  G is abductively 
derivable from T and we write T ~-~ G. 

In 9 it has been proved that  the proof  procedure is sound and weakly com- 
plete with respect to the abductive model semantics defined in 9 under a number 
of restrictions. We will present these results in detail in Section 4. 

2 . 2  I n d u c t i v e  L o g i c  P r o g r a m m i n g  

The ILP problem can be defined as 6: 
G i v e n :  

- a set P of possible programs 
- a set E + of positive examples 
- a set E -  of negative examples 
- a logic program B (background knowledge) 

F i n d :  

- a logic program P 6 P such that  
�9 Ve + E E +, B U P ~ e + (completeness) 
�9 Ve- E E - ,  B U P ~/e- (consistency). 

Let us introduce some terminology. The program P that  we want to learn is the 
target program and the predicates which are defined in it are target predicates. 
The sets E + and E -  are called training sets and contain ground atoms for the 
target predicates. The program B is called background knowledge and contains 
the definitions of the predicates that  are already known. We say that  the pro- 
gram P covers an example e if P U B ~- e 1, i.e. if the theory "explains" the 
example. Therefore the conditions that  the program P must satisfy in order to 
be a solution to the ILP problem can be expressed as "P  must cover all positive 
examples and must not cover any negative example". A theory that  covers all 
positive examples is said to be complete while a theory that  does not cover any 
negative example is said to be consistent. The set P is called the hypothesis 
space. The importance of this set lies in the fact that  it defines the search space 
of the ILP system. In order to be able to effectively learn a program, this space 
must be restricted as much as possible. If the space is too big, the search could 
result infeasible. 

i In the ILP literature, the derivability relation is often used instead of entailment be- 
cause real systems adopt the Prolog interpreter for testing the coverage of examples, 
that is not sound nor complete. 
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The language bias (or simply bias in this paper) is a description of the hy- 
pothesis space. Many formalisms have been introduced in order to describe this 
space 7, we will consider only a very simple bias in the form of a set of literals 
which are allowed in the body of clauses for target  predicates. 

Initialize H := 0 
repeat (Covering loop) 

Generate one clause c 
Remove from E + the e + covered by c 
Add c to H 

until E + = 0 (Sufficiency stopping criterion) 

Generate one clause c: 
Select a predicate p that must be learned 
Initialize c to be p(X) +-.  
repeat (Specialization loop) 

Select a literal L from the language bias 
Add L to the body of c 
if c does not cover any positive example 

then backtrack to different choices for L 
until c does not cover any negative example (Necessity stopping criterion) 
return c 
(or fail if backtracking exhausts all choices for L) 

Fig. 1. Basic top-down ILP algorithm 

There are two broad categories of ILP learning methods: bottom-up methods 
and top-down methods. In bot tom-up methods clauses in P are generated by 
starting with a clause that  covers one or more positive examples and no nega- 
tive example, and by generalizing it as much as possible without covering any 
negative example. In top-down methods clauses in P are constructed starting 
with a general clause that  covers all positive and negative examples and by spe- 
cializing it until it does no longer cover any negative example while still covering 
at least one positive. In this paper, we concentrate on top-down methods. A ba- 
sic top-down inductive algorithm 7, 31 learns programs by generating clauses 
one after the other. A clause is generated by starting with an empty body and 
iteratively adding literals to the body. The basic inductive algorithm, adapted 
from 7 and 31, is sketched in Figure 1. 

2.3  T h e  N e w  L e a r n i n g  F r a m e w o r k  

We consider a new definition of the learning problem where both the background 
and target theory are abductive theories and the notion of deductive coverage 
above is replaced by abductive coverage. 
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Let us first define the correctness of an abductive logic program T with 
respect to the training set E +, E - .  This notion replaces those of completeness 
and consistency for logic programs. 

Definition 1 (Correc tness ) .  An abductive logic program T is correct, with 
respect to E + and E - ,  iff there exists A C_ f A such that 

T ~-~ E+,not_E - 

where not_E- = {not_e-ie-  E E - }  and E +, not_E- stands for the conjunction 
of each atom in E + and not_E- 

Defini t ion 2 ( A b d u c t i v e  Learning  P r o b l e m ) .  
Given: 

- a set 7" of possible abductive logic programs 
- a set of positive examples E + 
- a set of negative examples E -  
- an abductive program T = (P, A, IC)  as background theory 

Find: 
A new abductive program T' = (P U pe, A, I C  I such that T ~ E 7" and T'  is 

correct wrt E + and E - .  

We say that a positive example e + is covered if T F-~ e +. We say that a 
negative example e -  is not covered (or ruled out) if T ~ not_e-. By employing 
the abductive proof procedure for the coverage of examples, we allow the system 
to make assumptions in order to cover positive examples and to avoid the cover- 
age of negative examples. In this way, the system is able to complete a possibly 
incomplete background knowledge. Integrity constraints give some confidence in 
the correctness of the assumptions made. 

Differently from the ILP problem, we require the conjunction of examples, 
instead of each example singularly, to be derivable. In this way we ensure that 
the abductive explanations for different examples axe corlsistent with each other. 

The abductive program that is learned can contain new rules (possibly con- 
taining abducibles in the body), but not new abducible predicates and new 
integrity constraints. 

3 An Algorithm for Learning Abductive Logic Programs 

In this section, we present the system LAP that is able to learn abductive logic 
programs according to definition 2. The algorithm is obtained from the basic 
top-down ILP algorithm (Figure 1), by adopting the abductive proof procedure, 
instead of the Prolog proof procedure, for testing the coverage of examples. 

As the basic inductive algorithm, LAP is constituted by two nested loops: the 
covering loop (Figure 2) and the specialization loop (Figure 3). At each iteration 
of the covering loop, a new clause is generated such that it covers at least one 
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p r o c e d u r e  LAP( 
i n p u t s  : E +, E -  : training sets, 

A T  = (T, A, IC)  : background abductive theory, 
o u t p u t s  : H : learned theory, A : abduced literals) 

H:=@ 
A : = 0  
repeat 

GenerateRule(in: AT, E +, E -  , H, A; out: Rule, E+Rule , A Rule ) 
Add to E + all the positive literals of target predicates in Aa~le 
Add to E -  all the atoms corresponding to 

negative literals of target predicates in AR~l~ 
E + := E + - E+u~e 

H := H U {Rule} 
A : =  A U AR~l~ 

unt i l  E + = 0 (Sufficiency stopping criterion) 
o u t p u t  H 

Fig.  2. The covering loop 

p r o c e d u r e  GenerateRule( 
i n p u t s  : AT, E +, E - ,  H, A 
o u t p u t s  : Rule : rule, 

E+~le : positive examples covered by Rule, 
AR~ze : abduced literals 

Select a predicate to be learned p 
Let Rule = p (X)  +- true. 
r e p e a t  (specialization loop) 

select a literal L from the language bias 
add L to the body of Rule 
TestCoverage(in: Rule, AT,  H, E +, E -  , AI, 

out: E+uze, E ~ z e  , AR~le) 
if E+uze = 0 

backtrack to a different choice for L 
unt i l  E ~ l e  = @ (Necessity stopping criterion) 
o u t p u t  Rule, E+~le, A R~le 

Fig.  3. The specialization loop 
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procedure TestCoverage( 
inputs : Rule, AT, H, E +, E - ,  A 

. } .  - -  , outputs: ER~,I,, ER~z,. examples covered by Rule 
AR~, : new set of abduced literals 

E + Rule ---- ER~,~e = 0 
A~ = Zl 
for each e + E E + do 

if AbductiveDerivation(+-- e +, (T 0 H U (Rule}, A, I C) , Ai,~ , Ao~,t ) 
succeeds then  Add e + to E+~l~; A~ = Ao~ 

endfor  
for each e-  E E -  do 

if  AbductiveDerivation(+-- not.e-, (T 0 H tJ (Rule}, A, I C), A~,~, Ao~ ) 
succeeds then  Ain = Aou~ 

else Add e-  to E~ule 
endfor  
ARule = Ao~ t -- A 
output E+~t,, E~**, AR~t, 

Fig. 4. Coverage testing 

positive example and no negative one. The positive examples covered by the rule 
are removed from the training set and a new iteration of the covering loop is 
started. The algorithm ends when the positive training set becomes empty. The 
new clause is generated in the specialization loop: we star t  with a clause with an 
empty body, and we add literals to the body until the clause does not cover any 
negative example while still covering at least one positive. The basic top-down 
algorithm is extended in the following respects. 

First, in order to determine the positive examples E+,~le covered by the gen- 
erated rule Rule (procedure TestCoverage in Figure 4), an abductive derivation 
is s tarted for each positive example. This derivation results in a (possibly empty) 
set of abduced literals. We give as input to the abductive procedure also the set 
of literals abduced in the derivations of previous examples. In this way, we en- 
sure tha t  the assumptions made during the derivation of the current example 
are consistent with the assumptions for other examples. 

Second, in order to check that  no negative example is covered ( E ~ l e  = 0 
in Figure 3) by the generated rule Rule, an abductive derivation is started for 
the default negation of each negative example (+- not_e-). Also in this case, 
each derivation starts from the set of abducibles previously assumed. The set of 
abducibles is initialized to the empty set at the beginning of the computation,  
and is gradually extended as it is passed on from derivation to derivation. This 
is done as well across different clauses. 

Third, after the generation of each clause, the literals of target predicates 
tha t  have been abduced are added to the training set, so tha t  they become new 
training examples. For each positive abduced literal of the form abd(c +) where 
c + is a tuple of constants, the new positive example abd(c +) is added to E + 
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set, while for each negative literal of the form not_abd(c-) the negative example 
abd(c-) is added to E - .  

In order to be able to learn exceptions to rules, we include a number of 
predicates of the form not_abnormi/n in the bias of each target predicate of 
the form p/n.  Moreover, abnormdn and not_abnormdn are added to the set of 
abducible predicates and the constraint 

abnormi ( X ) , not_abnormi ( X ) . 

is added to the background knowledge. In this way, when the current partial rule 
in the specialization loop still covers some negative examples and no other literal 
can be added that would make it consistent, the rule is specialized by adding the 
literal not_abnorm~(X) to its body. Negative examples previously covered are 
ruled out by abducing for them facts of the form abnormi(c-),  while positive 
examples will be covered by abducing the facts not_abnormi (c +) and these facts 
are added to the training set. 

We are now able to learn rules for abnormdn , thus resulting in a definition 
for the exceptions to the current rule. For this purpose, predicates abnormJn 
are considered as target predicates, and we define a bias for them. Since we may 
have exceptions to exceptions, we may also include a number of literals of the 
form not_abnormj (X)  in the bias for abnormdn. 

The system has been implemented in Prolog using Sicstus Prolog 3#5. 

4 Properties of the Algorithm 

LAP is sound, under some restrictions, but not complete. In this section we give 
a proof of its soundness, and we point out the reasons of incompleteness. 

Let us first adapt the definitions of soundness and completeness for an induc- 
tive inference machine, as given by 7, to the new problem definition. We will 
call Abductive Inductive Inference Machine (AIIM) an algorithm that solves the 
Abductive Learning Problem. If M is an AIIM, we write M ( T ,  E +, E - ,  B) = T 
to indicate that, given the hypothesis space 7", positive and negative examples 
E + and E - ,  and a background knowledge B, the machine outputs a program 
T. We write M(7", E +, E - ,  B) = _l_ when M does not produce any output. 

With respect to the abductive learning problem (definition 2), the definitions 
of soundness and completeness are: 

Defini t ion 3 (Soundness) .  An AIIM M is sound iff if M ( T ,  E +, E - ,  B) = T, 
then T E 7" and T is correct with respect to E + and E - .  

Definition 4 (Completeness).  An AIIM M is complete iff if M(7", E +, E- ,  B) = 
.l., then there is no T E 7" that is correct with respect to E + and E - .  

The proof of LAP soundness is based on the theorems of soundness and weak 
completeness of the abductive proof procedure given in 9. We will first present 
the results of soundness and completeness for the proof procedure and then we 
will prove the soundness of our algorithm. 
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The theorems of soundness and weak completeness (theorems 7.3 and 7.4 in 
9) have been extended by considering the goal to be proved as a conjunction of 
abducible and non-abducible atoms (instead of a single non-abducible atom) and 
by considering an initial set of assumptions Ai. The proofs are straightforward, 
given the original theorems. 

T h e o r e m  1 (Soundness) .  Let us consider an abductive logic program T. Let 
L be a conjunction of atoms. If  T t -a~ L, then there exists an abductive model 
M o f T s u c h t h a t M ~ L  a n d A o C M n C  A. 

T h e o r e m  2 (Weak completeness) .  Let us consider an abductive logic pro- 
gram T. Let L be a conjunction of atoms. Suppose that every selection of rules in 
the proof procedure for L terminates with either success or failure. I f  there exists 
an abductive model M of T such that M ~ L, then there exists a selection of 
rules such that the derivation procedure for L succeeds in T returning A, where 
A C_ M A s  ~. 

We need as well the following lemma. 

L e m m a  1. Let us consider an abductive logic program T = (P, A, I). Let L be 
a conjunction of atoms. If  T b~ L then lhm(P U A) ~ L, where lhm(P  U A) is 
the least Herbrand model of P U A. 

Proof. Follows directly from theorem 5 in 18. 

The theorems of soundness and weak completeness for the abductive proof pro- 
cedure axe true under a number of assumptions: 

- the abductive logic program must be ground 
- the abducibles must not have a definition in the program 
- the integrity constraints are denials with at least one abducible in each con- 

straint. 

Moreover, the weak completeness theorem is limited by the assumption that the 
proof procedure for L always terminates. 

The soundness of LAP is limited as well by these assumptions. However, they 
do not severely restrict the generality of the system. In fact, the requirement that 
the program is ground can be met for programs with no function symbols. In this 
case the Herbrand universe is finite and we obtain a finite ground program from 
a non-ground one by grounding in all possible ways the rules and constraints 
in the program. This restriction is also assumed in many ILP systems (such as 
FOIL 37, RUTH 1, 11). 

The restriction on the absence of a (partial) definition for the abducible does 
not reduce the generality of the results since, when abducible predicates have 
definitions in T, we can apply a transformation to T so that the resulting program 
T' has no definition for abducible predicates. This is done by introducing an 
auxiliary predicate Ja/n for each abducible predicate a/n  and by adding the 
clause: 

a(x) +- 
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The predicate a/n is no longer abducible, whereas 5a/n is now abducible. In this 
way, we are able to deal as well with partial definitions for abducible predicates, 
and this is particularly important when learning from incomplete data, because 
the typical situation is exactly to have a partial definition for some predicates, 
as will be shown in Section 5.2. 

The requirement that each integrity constraint contains an abducible literal 
is not restrictive because we use constraints only for limiting assumptions and 
therefore a constraint without an abducible literal would be useless. 

The most restrictive requirement is the one on the termination of the proof 
procedure. However, it can be proved that the procedure always terminates for 
call-consistent programs, i.e. if no predicate depends on itself through an odd 
number of negative recursive calls (e.g., p +- not_p). 

We need as well the following theorem. It expresses a restricted form of 
monotonicity that holds for abductive logic programs. 

T h e o r e m  3~ Let T (P,A,I) and T' = (P U P ' ,A , I )  be abductive logic pro- 
grams. If T L1 and T ~ k ~  L2, where L1 and L2 are two conjunctions of 
atoms, then T k~ 2 L1 A L2. 

Proof. From T k21 L1 and lemma 1 we have that 

lhm(P U A1) ~ Lx 

From the definition of abductive proof procedure we have that A1 _C A 2. Since 
we consider the positive version of programs, P U A1 and P U P '  U A2 are definite 
logic programs. From the monotonicity of definite logic programs lhra(PUA1) C_ 
lhm(P U P~ U A2) therefore 

lhm(P U pt U A2) ~ L1 

From T' k ~  L2, by the soundness of the abductive proof procedure, we have 
that there exists an abductive model M2 such that M2 ~ L2 and A2 C M2As A. 
From proposition 1, there exists a set//2 C s such that M2 = Ihm(PUP'UH2). 
Since abducible and default predicates have no definition in P U P',  we have that 
M2 n s =/-/2 and A2 C/-/2. Therefore M2 D lhm(P n P '  n A2) and 

M2 ~ L 1  

From M2 ~ L2 and from the weak completeness of the abductive proof proce- 
dure, we have that 

z~2 L1 A L2 T t k~l 

We can now give the soundness theorem for our algorithm. 

T h e o r e m  4 (Soundness) .  The AIIM LAP is sound. 

Proof. Let us consider first the case in which the target predicates are not ab- 
ducible and therefore no assumption is added to the training set during the 
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computation. In order to prove that the algorithm is sound, we have to prove 
that, for any given sets E + and E - ,  the program T' that is output by the 
algorithm is such that 

T ~ F-~ E +, not_E- 

LAP learns the program T' by iteratively adding a new clause to the current 
hypothesis, initially empty. Each clause is tested by trying an abductive deriva- 
tion for each positive and for the complement of each negative example. Let 
E + = {e+. . .  e+o } be the set of positive examples whose conjunction is covered 
by clause c and let E -  = {e~-... e~}. Clause c is added to the current hypothesis 
H when: 

3E + C_E+: E + Vie{1...n~}: PUHU{c}l-aa _et 

a'7 not_e-~ V j e { 1 . . . m } :  PUHU{c}F-~ ._ ,  

where A0 + = AH, A+_I C_ A+ and Ao = A+o. By induction on the examples 
and by theorem 3 with P' = {~, we can prove that 

(PU H U {c},A, IC) ~_~u{c} E+,not_E - 

where AHu{c } = Am. At this point, it is possible to prove that 

r' u... u 

by induction on the clauses and by theorem 3. From this and from the sufficiency 
stopping criterion (see Figure 2) we have that E + U . . .  O E + = E +. 

We now have to prove soundness when the target predicates are abducible 
as well and the training set is enlarged during the computation. In this case, if 
the final training sets are E + and E~,  we have to prove that 

T' t- 2 E+,not-EF 

If a positive assumption is added to E +, then the resulting program will contain 
a clause that will cover it because of the sufficiency stopping criterion. If a 
negative assumption not_e- is added to E -  obtaining E ~-, clauses that are added 
afterwards will derive not_E ~-. We have to prove also that clauses generated 
before allow not_E ~- to be derived. Consider a situation where not_e- has been 
assumed during the testing of the last clause added to H. We have to prove that 

(PU H, A, IC) t-~ E+,not_E - =# (PU H, A, IC) I-~ E+,notJE '- 

where not_e- �9 A and e-  �9 E ~-. From the left part of the implication and for 
the soundness of the abductive proof procedure, we have that there exists an 
abductive model M such that A _C M N s From not_e- �9 A, we have that 
not_e- �9 M and therefore by weak completeness 

(P U H, A, IC) F-~ not_e- 

By induction and by theorem 3, we have the right part of the implication. 
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We turn now to the incompleteness of the algorithm. LAP is incomplete because 
a number of choice points have been overlooked in order to reduce the computa- 
tional complexity. The first source of incompleteness comes from the fact that, 
after a clause is added to the theory, it is never retracted. Thus, it can be the 
case that a clause not in the solution is learned and the restrictions imposed on 
the rest of the learning process by the clause (through the examples covered and 
their respective assumptions) prevent the system from finding a solution even if 
there is one. In fact, the algorithm performs only a greedy search in the space 
of possible programs, exploring completely only the smaller space of possible 
clauses. However, this source of incompleteness is not specific to LAP because 
most ILP systems perform such a greedy search in the programs space. 

The following source of incompleteness, instead, is specific to LAP. For each 
example, there may be more than one explanation and, depending on the one 
we choose, the coverage of other examples can be influenced. An explanation A1 
for the example el may prevent the coverage of example e:, because there may 
not be an explanation for e~ that is consistent with A1, while a different choice 
for A1 would have allowed such a coverage. Thus, in case of a failure in finding 
a solution, we should backtrack on example explanations. 

We decided to overlook these choice points in order to obtain an algorithm 
that is more effective in the average case, but we might not have done so. In 
fact, these choice points have a high computational cost, and they must be 
considered only when a high number of different explanations is available for 
each example. However, this happens only for the cases in which examples are 
highly interrelated, i.e., there are relations between them or between objects 
(constants) related to them. This case is not very common in concept learning, 
where examples represent instances of a concept and the background represents 
information about each instance and its possible parts. In most cases, instances 
are separate entities that have few relations with other entities. 

5 E x a m p l e s  

5.1 Learning Exceptions 

In this section, we show how LAP learns exceptions to classification rules. The 
example is taken from 16. 

Let us consider the following abductive background theory B = (P, A, IC I 
and training sets E + and E- :  

P = {bird(X) +- penguin(X). 
penguin(X) +- superpenguin( X ). 
bird(a), bird(b), penguin(e), penguin(d). 
superpenguin(e), superpenguin(f).} 

A = (abnorml/1, abnorm2/1, not_abnorml/1, not_abnorrn2/1} 
IC = {+- abnorml (X), not_abnorml (X). 

+- abnorm~ ( X ) , not_abnorm2 ( X ) . } 
+- f l ies(X),  not_flies(X).} 
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E + = {f l ies(a) ,  f l ies(b),  f l ies(e) ,  f l i e s ( f ) }  
E -  = { / l i e s ( c ) ,  f l ies (d)}  

Moreover, let the bias be: 

flies(X) +- a where a C {superpenguin(X),penguin(X), bird(X), 
not_abnorm l (X), not_abnorm2 ( X ) } 

abnorml(X) +-/3 and abnorm2(X) +-/3 where 
/3 C {superpenguin(X),penguin(X), bird(X)} 

The algorithm first generates the following rule (R1): 
f l ies(X) +-- superpenguin(X). 

which covers flies(e) and f l ies(f) that are removed from E +. Then, in the 
specialization loop, the rule R2 = flies(X) +- bird(X), is generated which covers 
all the remaining positive examples flies(a) and flies(b), but also the negative 
ones. In fact, the abductive derivations for not_flies(e) and not_flies(d) fail. 
Therefore, the rule must be further specialized by adding a new literal. The 
abducible literal not_abnorml is added to the body of R2 obtaining Ra: 

flies(X) +- bird(X), not_abnorml (X). 
Now, the abductive derivations for the negative examples flies(a) and flies(b) 
succeed abducing {not_abnorml (a), not_abnorml (b) } and the derivations 
not_flies(c) and not_flies(d) succeed abducing {abnorml (c), abnorml (d)}. 

At this point the system adds the literals abduced to the training set and 
tries to generalize them, by generating a rule for abnorml/1. Positive abduced 
literals for abnorml/1 form the set E +, while negative abduced literals form the 
set E - .  The resulting induced rule is (R4): 

abnorml (X) +- penguin(X). 
No positive example is now left in the training set therefore the algorithm ends 
by producing the following abductive rules: 

f l ies(X) +- superpenguin(X). 
flies(X) +- bird(X), not_abnorml (X). 
abnorml (X) +- penguin(X). 

A result similar to ours is obtained in 16, but exploiting "classical" negation and 
priority relations between rules rather than abduction. By integrating induction 
and abduction, we obtain a system that is more general than 16. 

5.2 Learning from Incomplete Knowledge 

Abduction is particularly suitable for modelling domains in which there is incom- 
plete knowledge. In this example, we want to learn a definition for the concept 
father from a background knowledge containing facts about the concepts parent 
and male. Knowledge about male is incomplete and we can make assumptions 
about it by considering it as an abducible. We have the abductive background 
theory B = (P, A, IC) and training set: 
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P = { parent(john, mary), male(john). 
parent(david, steve), parent(kathy, ellen). 
female(kathy).} 

A = {male/1, female/1} 
IC = {+- male(X),female(Z).} 
E + = {father(john, mary),father(david, steve)} 
E-  = {father(john, steve), father(kathy, ellen)} 

Moreover, let the bias be 

father(X, Y) +- a where ~ C {parent(X, Y), parent(Y, X), 
male(X), male(Y), female(X), female(Y)} 

At the first iteration of the specialization loop, the algorithm generates the rule 

father(X, Y) +-. 
which covers all the positive examples but also all the negative ones. Therefore 
another iteration is started and the literal parent(X, Y) is added to the rule 

father(X, Y) +-- parent(X, Y). 
This clause also covers all the positive examples but also the negative example 

father (kathy, ellen). 
Note that up to this point no abducible literal has been added to the rule, 
therefore no abduction has been made and the set A is still empty. Now, an 
abducible literal is added to the rule, male(X), obtaining 

father(X, Y) +-- parent(X, Y), male(X). 
At this point the coverage of examples is tested, father(john, mary) is covered 
abducing nothing because we have the fact male(john) in the background. The 
other positive example, father(david, steve), is covered with the abduction of 
the following set: {male(david), not_female(david)}. 

Then the coverage of negative examples is tested by starting the abductive 
derivations 

+-- not_father(john, steve). 
+- not_father(kathy, ellen). 

The first derivation succeeds with an empty explanation while the second suc- 
ceeds abducing not_male(kathy) which is consistent with the fact female(kathy) 
and the constraint +- male(X), female(X). Now, no negative example is cov- 
ered, therefore the specialization loop ends. No atom from A is added to the 
training set because the predicates of abduced literals are not target. The pos- 
itive examples covered by the rules are removed from the training set which 
becomes empty. Therefore also the covering loop terminates and the algorithm 
ends, returning the rule 

father(X, Y) +- parent(X, Y), male(X). 
and the assumptions 

A = {male(david), not_female(david), not_male(kathy) }. 
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6 Related  Work 

We will first mention our previous work in the field, and then related work by 
other authors. 

In 29 we have presented the definition of the extended learning problem and 
a preliminary version of the algorithm for learning abductive rules. 

In 30 we have proposed an algorithm for learning abductive rules obtained 
modifying the extensional ILP system FOIL 37. Extensional systems differ 
from intensional ones (as the one presented in this paper) because they employ 
a different notion of coverage, namely extensional coverage. We say that the 
program P extensionally covers example e if there exists a clause of P,  l +- 
l l , . . . , In  such that l = e and for all i, li E E + Ulhm(B) .  Thus examples can 
be used also for the coverage of other examples. This has the advantage of 
allowing the system to learn clauses independently from each other, avoiding 
the need for considering different orders in learning the clauses and the need for 
backtracking on clause addition. However, it has also a number of disadvantages 
(see 13 for a discussion about them). In 30 we have shown how the integration 
of abduction and induction can solve some of the problems of extensional systems 
when dealing with recursive predicates and programs with negation. 

In 17 the authors discuss various approaches for the integration of abduc- 
tion and induction. They  examine how abduction can be related to induction 
specifically in the case of Explanation Based Learning, Inductive Learning and 
Theory Revision. The authors introduce the definition of a learning problem 
integrating abduction (called Abductive Concept Learning) that has much in- 
spired our work. Rather than considering it as the definition of a problem to be 
solved and presenting an algorithm for it, they employ the definition as a general 
framework where to describe specific cases of integration. 

Our definition differs from Abductive Concept Learning on the condition 
that is imposed on negative examples: in 17 the authors require that negative 
examples not be abductively entailed by the theory. Our condition is weaker 
because it requires that there be an explanation for not_e-, which is easier to 
be met than requiring that there is no explanation for e- .  In fact, if there is 
an explanation for not_e-, this does not exclude that there is an explanation 
also for e - ,  while if there is no explanation for e-  then there is certainly an 
explanation for not_e-. We consider a weaker condition on negative examples 
because the strong condition is difficult to be satisfied without learning integrity 
constraints. For example, in section 5.2, the learned program also satisfies the 
stronger condition of 17, because for the negative example father(kathy,  ellen) 
the only abductive explanation {male(kathy)} is inconsistent with the integrity 
constraint ~- male(X),  female(X) .  However, if that constraint was not available 
in the background, the stronger condition would not be  satisfiable. 

Moreover, in 17 the authors suggest another approach for the integration of 
abduction in learning that consists in explaining the training data of a learning 
problem in order to generate suitable or relevant background data on which to 
base the inductive generalization. Differently from us, the authors allow the use 
of integrity constraints for rule specialization, while we rely only on the addition 
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of a literal to the body of the clause. Adding integrity constraints for specializing 
rules means that each atom derived by using the rules must be checked against 
the constraints, which can be computationally expensive. Moreover, the results 
of soundness and weak completeness can not be used anymore for the extended 
proof procedure. 

In 2 an integrated abductive and inductive framework is proposed in which 
abductive explanations that may include general rules can be generated by incor- 
porating an inductive learning method into abduction. The authors transform 
a proof procedure for abduction, namely SLDNFA, into a proof procedure for 
induction, called SLDNFAI. Informally, SLDNFA is modified so that abduction 
is replaced by induction: when a goal can not be proven, instead of adding it 
to the theory as a fact, an inductive procedure is called that generates a rule 
covering the goal. However, the resulting learning is not able to a learn a rule 
and, at the same time, make specific assumptions about missing data in order 
to cover examples. 

The integration of induction and abduction for knowledge base updating 
has been studied in 11 and 1. Both systems proposed in these papers perform 
incremental theory revision: they automatically modify a knowledge base when it 
violates a newly supplied integrity constraint. When a constraint is violated, they 
first extract an uncovered positive example or a covered negative example from 
the constraint and then they revise the theory in order to make it consistent with 
the example, using techniques from incremental concept learning. The system 
in 11 differs from the system in 1 (called RUTH) because it relies on an 
oracle for the extraction of examples from constraints, while RUTH works non 
interactively. Once the example has been extracted from the constraint, both 
systems call similar inductive operators in order to update the knowledge base. 
In 11 the authors use the inductive operators of Shapiro's MIS system 38. 

In 28, we have shown that LAP can be used to perform the knowledge 
base updating tasks addressed by the systems in 11 and 1, by exploiting the 
abductive proof procedure in order to extract new examples from a constraint 
on target predicates. While systems in 11, 1 can generate examples that violate 
other integrity constraints and new inconsistencies have to be recovered at the 
next iteration of the learning loop, in 28 we are able to select the examples that 
allow the minimal revision of the theory. Another relevant difference is that our 
system is a batch learner while the systems in 11, 1 are incremental learners: 
since we have all the examples available at the beginning of the learning process, 
we generate only clauses that do not cover negative examples and therefore 
we do not have to revise the theory to handle covered negative examples, i.e., 
to retract clauses. As regards the operators that are used in order to handle 
uncovered positive examples, we are able to generate a clause that covers a 
positive example by also making some assumptions, while in 11 they can cover 
an example either by generating a clause or by assuming a fact for covering it, 
but not the two things at the same time. RUTH, instead, is able to do this, and 
therefore would be able to solve the problem presented in Section 5.2. Moreover, 
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RUTH considers abduced literals as new examples, therefore it would be able to 
solve as well the problems in Section 5.1. 

As concerns the treatment of exceptions to induced rules, it is worth men- 
tioning that our treatment of exceptions by means of the addition of a non- 
abnormality literal to each rule is similar to the one in 35. The difference is 
that the system in 35 performs declarative debugging, not learning, therefore 
no rule is generated. In order to debug a logic program, in 35 the authors first 
transform it by adding a different default literal to each rule in order to cope with 
inconsistency, and add a rule (with an abducible in the body) for each predicate 
in order to cope with predicate incompleteness. These literals are then used as 
assumptions of the correctness of the rule, to be possibly revised in the face of 
a wrong solution. The debugging algorithm determines, by means of abduction, 
the assumptions that led to the wrong solution, thus identifying the incorrect 
rules. 

In 5 the authors have shown that is not possible, .in general, to preserve cor- 
rect information when incrementally specializing within a classical logic frame- 
work, and when learning exceptions in particular. They avoid this drawback by 
using learning algorithms which employ a nonmonotonic knowledge represen- 
tation. Several other authors have also addressed this problem, in the context 
of Logic Programming, by allowing for exceptions to (possibly induced) rules 
16, 10. In these frameworks, nonmonotonicity and exceptions are dealt with by 
learning logic programs with negation. Our approach in the treatment of excep- 
tions is very related to 16. They rely on a language which uses a limited form 
of "classical" (or, better, syntactic) negation together with a priority relation 
among the sentences of the program 25. However, in 20 it has been shown 
that negation by default can be seen as a special case of abduction. Thus, in 
our framework, by relying on ALP, we can achieve greater generality than 16: 
besides learning exceptions, LAP is able to learn from incomplete knowledge and 
to learn theories for abductive reasoning. 

In what concerns learning from incomplete information, many ILP systems 
include facilities in order to handle this problem, for example FOIL 37, Progol 
34, mFOIL 19. The approach that is followed by all these systems is funda- 
mentally different with respect to ours: they are all" based on the use of heuristic 
necessity and sufficiency stopping criteria and of special heuristic functions for 
guiding the search. The heuristic stopping criteria relaxes the requirements of 
consistency and completeness of the learned theory: the theory must cover (not 
cover) "most" positive (negative) examples, where the exact amount of "most" is 
determined heuristically. These techniques allow the systems to deal with imper- 
fect data in general, including noisy data (data with random errors in training 
examples and in the background knowledge) and incomplete data. In this sense, 
their approach is more general than ours, because we are not able to deal with 
noisy data. Their approach is equivalent to discarding some examples, consider- 
ing them as noisy or insufficiently specified, while in our approach no example is 
discarded, the theory must be complete and consistent (in the abductive sense) 
with each example. 
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7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have presented the system LAP for learning abductive logic programs. We 
consider an extended ILP problem in which both the background and target the- 
ory are abductive theories and coverage by deduction is replaced with coverage 
by abduction. 

In the system, abduction is used for making assumptions about incomplete 
predicates of the background knowledge in order to cover the examples. In this 
way, general rules are generated together with specific assumptions relative to 
single examples. If these assumptions regard an abnormality literal, they can be 
used as examples for learning a definition for the class of exceptions. 

LAP is obtained from the basic top-down ILP algorithm by substituting, 
for the coverage testing, the Prolog proof procedure with an abductive proof 
procedure. LAP has been implemented in Sicstus Prolog 3#5: the code of the 
system and of the examples shown in the paper are available at <URL:http: 
//www- lia. deis. unibo, it/Staff/FabrizioRiguzzi/LAP, html}>. 

In the future, we will test the algorithm on real domains where there is 
incompleteness of the data. As regards the theoretical aspects, we will investigate 
the problem of extending the proposed algorithm in order to learn full abductive 
theories, including integrity constraints as well. The integration of the algorithm 
with other systems for learning constraints, such as Claudien 12 and ICL 14, 
as proposed in 27, seems very promising in this respect. 

Our approach seems also promising for learning logic programs with two 
kinds of negation (e.g., default negation and explicit negation), provided that 
positive and negative examples are exchanged when learning a definition for the 
(explicit) negation of a concept, and suitable integrity constraints are added to 
the learned theory so as to ensure non-contradictoriness. This is also subject for 
future work. 
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Abstract. Reasoning about actions and changes often starts with an 
action theory which is then used for planning, prediction or explanation. 
In practice it is sometimes not simple to give an immediately available 
action theory. In this paper we will present an abductive methodology 
for describing action domains. We start with an action theory which 
is not complete, i.e., has more than one model. Then, after some tests 
are done, we can abduce a complete action theory. Technically, we use 
a high level action language to describe incomplete domains and tests. 
Then, we present a translation from domain descriptions to abductive 
logic programs. Using tests, we then abductively refine an original do- 
main description to a new one which is closer to the domain in reality. 
The translation has been shown to be both sound and complete. The 
result of this paper can be used not only for refinement of domain de- 
scriptions but also for abductive planning, prediction and explanation. 
The methodology presented in this paper has been implemented by an 
abductive logic programming system. 

1 Introduction 

When reasoning about actions and changes, we often assume that  an action 
theory has been given and described in a formal language or in a framework, 
e.g. situation calculus 15, event calculus 10, action description languages A 
7 and ADL 26, 

the fluent-features framework (FFF) 19, and their variants or extensions. 
But little work has been reported on how to obtain an action theory. Assume 
that  we want to generate a plan to make the world in a definite state (goal), but 
we are not certain about the initial state and the effects of available actions. For 
example, let's consider Vladimir Lifschitz' challenge problem1: 

1 Vladimir Lifschitz's email message to lmp~di.fct.unl.pt and renwei~di.fct.unl.pt on 
March 25, 1996. 
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The room has two lamps, say Big and Small, and two light switches, say 
Left and Right. A switch controls one and only one light. Both lights are 
off. Initially we don't  know whether the wiring is this way or the other 
way around, but we can find out by toggling a switch. 

In this example, we have two actions: to toggle the left switch and to toggle 
the right switch, denoted by toggle(left) and toggle(right), and we have two 
fluents: the big light is on and the small light is on, denoted by on(big) and 
on(small). If we knew the way in which the circuit is connected, then we could 
generate plans, predict the future, or explain the past. The problem is that  no 
such an immediately available theory exists. An intelligent agent should be able 
to perform some tests and then obtain a complete action theory. In this paper we 
will present an abductive methodology for reasoning about actions and changes 
starting from an incomplete action theory, i.e., an action theory with more than 
one model, then refining it by testing and abductive reasoning so as to have 
a complete action theory, which can then be used for planning, predicting and 
explaining. Our methodology consists of a high-level action description language 
.A +, a translation from .4 + to abductive logic programs, and an abductive logic 
programming system used as the underlying inference engine for refinement. 

Now suppose that  we have an action description language obtained by extend- 
ing ,4 7 with propositional conjunctions and disjunctions on effect propositions. 
Then, the above domain can be described by the following propositions: 

{toggle(left) causes  on(big) i f  -~on(big) 
Atoggle(le ft) causes  -,on(big) i f  on(big))} 

{toggle(left) causes  on(small) i f  -,on(small) 
Atoggle(le ft) causes  -~on(small) i f  on(small))} 

{toggle(right) 
Atoggle(right) 

{toggle(right) 
Atoggle(right) 

causes  on(big) i f  -,on(big) 
causes  -~on(big) i f  on(big))} 

causes  on(small) i f  -~on(small) 
c a u s e s  ~on(smaU) i f  on(small))} 

{toggle(left) causes  on(big) i f  -,on(big) 
Atoggle(le ft) causes  -,on(big) i f  on(big))} 

{toggle(right) causes  on(big) i f  -,on(big) 
Atoggle(right) causes  -~on(big) i f  on(big))} 

{toggle(left) c a u s e s  on(small) i f  -~on(smaU) 
Atoggle(left) causes  -~on(small) i f  on(small))} 

{toggle(right) causes  on(small) i f  -~on(smaU) 
Atoggle(right) causes  -~on(smaU) i f  on(small))) 
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It can be seen that finite uncertainties have been represented by exclusive dis- 
junction ~/. Intuitively, one of the following two domain descriptions should be 
real. 

toggle(left) c a u s e s  on(small) if  -~on(small) 
toggle(left) causes -~on(small) if  on(small) 
toggle(right) causes on(big) if  -~on(big) 
toggle(right) causes -~on(big) if  on(big) 

and 
toggle(left) causes on(big) if -~on(big) 
toggle(left) causes -~on(big) if on(big) 
toggle(right) causes on(small) i f  ~on(small) 
toggle(right) causes -~on(small) if  on(small) 

Later we will see that our methodology works well and produces what is intu- 
itively acceptable. The rest of the paper is organized as follows. In Section 2 
we present an action description language, denoted A +, which is an extension 
to ,4. The reason we choose ,4 is simply that ,4 has been shown to be a sim- 
ple, extensible and expressive action description language, and to be equivalent 
to other three major formalisms 9 proposed by Pednault 16, Reiter 18 and 
Baker 2, respectively. In Section 3 we will present a translation from domain 
descriptions in A + to abductive logic programs. This translation will serve to 
bridge the reasoning about actions and abductive logic programming. Generally 
it is not easy or simple to refine action theories or to predict and explain in `4+. 
The translation will effectively reduce working in `4+ to working in an abductive 
logic programming system, thereby being automated. In Section 4 we will show 
that our translation is both sound and complete. In Section 5 we will discuss 
tests and refinements by using abductive logic programming. In Section 6 we 
return to Lifschitz' challenge problem. In Section 7 we conclude this paper with 
a few remarks. 

2 D o m a i n  D e s c r i p t i o n s  

In this section we present an action description language A +, an extension to ,4 
of 7. 

2.1 Syn tax  

We begin with three disjoint non-empty sets of symbols, called proposition 
names, fluent names, and action names, respectively. For convenience we will 
also use parameterized names. Actions and propositions are defined to be action 
names and proposition names, respectively. A fluent expression, or simply fluent, 
is defined to be a fluent name possibly preceded by --. A fluent expression is also 
called a positive fluent if it only consists of a fluent name; otherwise it is called 
a negative fluent. 
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In .4 +, a domain description is defined to be a set of effect assertions and 
constraints. An effect assertion is defined to be a s ta tement  of the form 

A c a u s e s  F i f  P 1 , . . . , P m , Q 1 , . . . , Q n  

where A is an action, each of F,  P1, . . . ,  Pm (m _> 0) is a fluent expression, and 
each of Q1 , . . .  ,Qm (n > 0) is a proposition name. If m = n = 0, then we will 
simply write it as A causes  F.  A constraint is defined as follows: 

- A proposition name is an atomic constraint. 
- A statement of the form 

F a f t er  A 1 , . . . , A n  

where F is a fluent and Ai is an action, is an atomic constraint, also called 
wa/ue assertion. When n = 0, the value assertion above is abbreviated to 
in i t i a l ly  F.  

- If C1 and C2 are constraints, then -~C1, C1 A C2, C1 V C2 are constraints, 
called complex constraints. Other propositional connectives can be defined 
in terms of them as derived connectives. 

It can be seen that  .4+ is an extension of .4 by allowing propositions and more 
types of constraints. However, the detailed discussion on relations between .4 
and .4+ is out of this paper. 

2 .2  R e m a r k s  

It  seems that  we would increase the expressive power if we defined the effect 
assertions in the following way: (1) A basic effect assertion is a s tatement of the 
form A c a u s e s  F i f  C1 , . . .  ,Cn; (2) An effect assertion is a s tatement of the 
form (El l  A . . . A E I m l ) V . . .  V (Enl A.. .AEnm,~), where each Eiy is a basic effect 
assertion. In fact, combining with proposition names, we can reduce the above 
complex effect assertion to simpler ones of .4 + . We can systematically do so by 
introducing a few new proposition names and then transform effect assertions. 
For example, consider: 

(A1 c a u s e s  /;'1 i f  Cll,. . . ,Clnl) 
V o . .  

V(Arn c a u s e s  Frn i f  Cml,...,Cmn) 

Let hi, 1 < i < m be m new proposition symbols. Then, the above complex 
effect assertions can be transformed into m basic effect assertions and a new 
constraint as follows: 

A1 c a u s e s  F1 i f  Cll, . . . ,Clnl,hl 
. ~  

Am c a u s e s  F,n i f  Crnl,...,C~n,~,hm 
hi V. . .  V hm 
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On the other hand, it also seems that  we would increase the expressive power 
if we allowed general well-formed propositional formulas in the preconditions of 
effect assertions. For example, let A be an action, P1 a fluent, and Q1, Q2, Q3 be 
proposition names. Consider 

A c a u s e s  F i f  P1, (Q1 A Q2) v -~Q3 

This kind of seemingly more expressive effect assertions can also be reduced to 
effect assertions in .4 +. Let Q4 be a new proposition name. The following effect 
assertion and a constraint is equivalent to the above assertion: 

A c a u s e s  F i f  P1, Q4 

Q4 ~ (Q1 A Q2) v -~Q3 

2 . 3  S e m a n t i c s  

The semantics of a domain description is defined by using proposition assign- 
ment, states, and transitions. 

A proposition assignment a is a set of proposition names. Given a proposition 
name P and an assignment a, we say that  P is t rue if P E a,  and -~P is true if 
P r a.  A s ta te  is a set of fluent names. Given a fluent name F and a state ~, 
we say that  F holds in a if F E a; -~F holds in a if F f~ a. A transi t ion fimction 

is a mapping from the set of pairs (A, a), where A is an action expression and 
a is a state, to the set of states. 

An in terpreta t ion  s t ruc ture  is a triple (c~,ao,~), where c~ is an assign- 
ment, ao is a state, called the initial s ta te  of (ao,~) ,  and �9 is a transition 
function. For any interpretation structure M = (~, ao, ~) and any sequence of 
action expressions A1; . . .  ; A m  in M, by ~(A1; . . . ;  A m ,  Cro) we denote the state 
r  ~ ( A m - 1 ,  . . . , ~ (A1 ,  ~o) . . .) ). 

Given an interpretation structure (a, a0, ~), a constraint C is said to be true 
with respect to it iff 

- if C is a proposition name, then C E a; 
- if C is a value assertion of the form F a f t e r  A1, . . .  , A n ,  then F holds in 

the state ~ (A1 ; . . .  ;Amao);  
- if C is a complex constraint, then it is true according to the usual proposi- 

tional connective evaluation method. 

An interpretation structure (a, ao, ~) is a mode l  of a domain description D 
iff 

- Every constraint is true with respect to the interpretation structure. 
- For every action A, every fluent name F,  and every state a: (i) If D in- 

cludes an effect assertion A c a u s e s  F i f  P 1 , . . . ,  Pro, Q t , . . . ,  Qn,  such that  
fluents P1, . . . ,  Pm hold in a and propositions Q 1 , . . .  ,Qn are true with re- 
spect to (c~, a0, ~), then F E ~(A, a); (ii) If D includes an effect assertion 
A c a u s e s  --F i f  P 1 , . . . ,  Pro, Q I , . . . ,  Qn, such that  fluents P1, . . . ,  P,~ hold 
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in a and propositions Q 1 , . . - , Q n  are true with respect to (a, a0, ~), then 
F r ~(A,a) ;  (iii) If D does not include any such effect assertions, then 
F e ~(A, a) if F ~ a. 

A domain description is consistent if it has a model. A domain description is 
complete if it has exactly one model. A domain description D entails a value 
assertion V if V is t rue in all models of D. It can be shown that  different mod- 
els of the same domain description differ only in different initial states and /or  
proposition assignments. In addition, the interpretation of a proposition name 
is independent of states. 

In reality a practical domain should have only one model. The task of refining 
domain descriptions is to construct a new domain description which has fewer 
models than  the original domain description. We will achieve this purpose by first 
performing some actions and observing their outcome, then we will abductively 
infer the t ru th  values of propositions and initial states. We will make use of 
abductive logic programming for the purpose of abductive reasoning. 

3 Translation into Abductive Programs 

In this section we will present a translation from domain descriptions into abduc- 
tive logic programs. An abductive logic program is a triple < P, IC, A >, where 
P is a set of logic programming rules, I C  is a set of first-order sentences as con- 
straints, and A is a set of predicates, called abducible predicates. An abductive 
answer ~ to a query Q in < P, IC, A > is a finite subset of ground instances of A 
such that  (i) Q E S E M ( P U  {a +-- : a E 5},IC);  (ii) P U  {a +-- : a E 6} u I C  is 
consistent according to definition of S E M ;  (iii) 5 is minimal in the sense that  no 
subset of it satisfies the previous two conditions, where S E M ( P ,  IC)  denotes the 
semantics of the program P with constraints IC.  There have been a few com- 
peting semantics in the literature: predicate completion semantics, stable model 
semantics, and well-founded model semantics. Later we will see that  our logic 
program translations are acyclic, and thus all of these major  semantics agree. 
Therefore we will define the semantics of logic programs as the predicate com- 
pletion semantics. For abductive logic programs, we will complete all predicates 
except the abducible ones 3. 

Let D be a domain description. The translation ~rD includes a set of pro- 
gramming rules and a set of constraints defined as follows: 

1. Initialization: holds(F, So) +- ini t ial ly(F).  
2. Law of Inertia: 

holds(F, result(A,  S) ) +- holds(F, S), not noninertial(  F, S, A ). 

where not is the negation-as-failure operator.  By the law of inertia, F is 
t rue at a new situation by doing A on S if it was t rue at S. 

3. Each effect assertion a causes  / i f  p l , . . . ,  Pro, q l , . . . , q n ,  with / being 
positive, Pi being a fluent, and qi being a proposition, is translated into 

holds(/ ,  result(a, S) ) +-- holds(p1, S), . . . , holds(pro, S),  ql, . . . , qn. 
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where holds(-~p, S)  with p being positive stands for not  holds(p, S).  This 
convention is also used in the rest of this paper. 

4. Each effect assertion a causes  -~f if P l , . . . ,  Pro, q l , . . .  ,qn, with f being 
positive, pi being a fluent, and qi being a proposition, is translated into 

n o n in e r t i a l ( f  , S, a) +- holds(p1, S) ,  . . . , holds(pro, S) ,  ql , . . . , qn. 

5. For every constraint C of D: (i) if C is a proposition name, ~rC - C; (ii) if C 
is f a f te r  al,  .. . ,  an with f being positive, then ~rC = ho lds ( f ,  result(a1; 
�9 ..; an,so)); (iii) if C is -~f af ter  al, . . . , a n ,  with f being positive, then 
~rC = -~holds(f, r e s u l t ( a 1 ; . . .  ;an, So)); (iv) ~r(-~C1) = -~(~rC1), ~r(C1 A C2) 
= A V = V 7rC . 

We will define abducible predicates to be i n i t ia l l y (F)  and all proposition names. 
The semantics of ~TD, denoted by Comp(~rD), is defined to be the first-order 
theory by completing all predicates except i n i t i a l l y (F)  and proposition names, 
jointly with Clark's theory of equality, and the constraints 3, 6. 

T h e o r e m  31 Let  D be any domain description in .4 +. ~rD is an acyclic logic 
program with first-order constraints in the sense of 1. 

P r o o f  It suffices to give a level mapping ~ for all ground atoms. Note that 
i n i t i a l l y ( f )  and all propositions appear only on the right-hand side of +- ,  and 
thus can be assigned to 0. Observe that the number of occurrences of resul t  in 
holds(F, S)  on the left-hand side of +- is more than right-hand side of +- . 
Hence, a level mapping )~ can be defined as follows: 

 (XnitiaUy(f) ) = 0 

= 0 

)~(holds(f , resul t (a ,  s) ) ) = 2 

A (non iner t i a l ( f  , a, s) ) = 2 

for any proposition p 

x Isl + i 

x Isl + 2 

where Isl denotes the number of occurrences of resul t  plus 1. Then it is straight- 
forward to verify the above )~ is a level mapping. We should point out that the 
above level mapping is a slight modification of that in 5, 6.  

Coro l la ry  32 The completion semantics CompOrD ) o ~rD agrees with its gen- 
eralized stable model semantics 8 and generalized weU-ounded model semantics 
pz .  

P r o o f  Since 7rD is an acyclic logic program, According to 5, the completion 
semantics of any acyclic abductive logic program with constraints coincides with 
its generalized stable model semantics 8 and generalized well-founded model 
semantics 17.  

The above corollary means that the result of this paper can be experimented 
with any abductive logic programming system with one of the three major se- 
mantics. The detailed proof follows from 5. A short summary of partial results 
of 5 can also be found in 6. 
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4 Soundness and Completeness 

In general it is very difficult to reason about actions in .4 + . The purpose of the 
translation is to reduce the reasoning work in .4+ to abductive querying in an 
abductive logic programming system. This section will show that  reasoning in .4+ 
is equivalent to abductive querying through two technical results, whose proofs 
are slight modifications of 5 by consolidating c~ component in the interpretation 
structure. 

T h e o r e m  41 The translation 7r is sound. That is, for any domain description 
D and any value assertion V, if Comp(TrD) ~ 7rV, then D entails V. 

P r o o f  If the domain description is not consistent, the above theorem holds 
trivially since there is no model. Now assume D is consistent. We want to show 
every model of D is also a model of V. It suffices to prove that  for every model 
(a, a0, ~) of D, there is a model M of ~rD such that  V is true in (a, a0, ~) iff 7rV 
holds in M. The same technique of 5 can be used to construct such a model 
M from (a, a0, ~). The only difference is that  5 does not consider a.  In order 
to have a,  just let it be the same in both (a, ao,~) and M.  

D e f i n i t i o n  42 A domain description D is effect consistent iff for each pair of 
effect assertions, 

A c a u s e s  F i f  C 1 , . . . , C m  

A causes  --F i f  C m + l , . . . , C n  

in D, there exists i, 1 < i < m, and j ,  m + 1 < j < n, such that C~ is the 
complement of Cj. 

Note that  if C1 , . . . ,  Cm contain complement elements, then effect assertion 
A causes  F i f  C1 , . . . ,  Cm in a domain description has no effect on its models. 
And thus, in this paper we assume that  any domain description does not have 
such kind of effect assertions. 

T h e o r e m  43 The translation Ir is complete for any effect consistent domain 
descriptions. That is, .for any effect consistent domain description D and any 
value assertion V, if D entails V, then Comp(~rD) ~ 7rV. 

P r o o f  Since D is effect consistent, there is a unique translation �9 which satisfies 
the effect assertions when i~ is given. Then it suffices to prove that  for each model 
M of 7rD there is a model (a, a0,~)  of D such that  for each value assertion 
V, M ~ 7rV iff V holds in (c~,a0,~). This will immediately implies all value 
assertions of D hold in (a, a0,~/i) since M is a model of 7rV for every value 
assertion of D. We can still follow 5 to show it.  

The requirement for a domain description to be effect consistent is necessary. 
If a domain description D is not effect consistent, no transition functions exist 
to satisfy its effect assertions, thus it has no models, and hence it entails every 
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value assertion. On the other hand, its translation is consistent and thus has at 
least one model which entails a proper  subset of what D entails. 

The above soundness and completeness theorems signify that  our transla- 
tion can actually be used for the general purposes of reasoning about  actions 
and changes such as abductive planning, prediction, explanation. Tha t  is to say, 
our result of this paper goes beyond refinement of action theories. But we will 
not delve into detailed discussion on how to use our translation for abductive 
planning, temporal  prediction and explanation. In the next  section we will con- 
centrate on refinement of action theories. 

5 R e f i n e m e n t  

Let D be a domain description. D may have more than one model. If D has 
more than one model, we may only predict a disjunctive future instead of a 
definite future. That  is to say, after a sequence of actions is done, we cannot 
predict whether a fluent is definitely t rue or not. When a domain description is 
complete, we can always predict whether a fluent is true or not after an action 
is done. This is sometimes a very important  factor in reasoning about  actions, 
as shown as in 14. 

When a domain description is not complete, all its models differ in their initial 
states and /o r  proposition assignments. In order to determine initial states and 
proposition assignments, one may perform some tests: doing some actions, ob- 
serving their effects, and then abductively determining initial states and propo- 
sition names. 

Now suppose that  we are given a domain description Do. We want to refine 
it. The way to do it, as said as before, is to perform some actions and observe 
their effects. This process is called test. The  purpose of tests is to generate new 
value assertions. And thus we can formally define a test to be a set of value 
assertions. 

D e f i n i t i o n  51 A test T in an action domain is a set of value assertions. Let D 
be a domain description. The pair (D, T) is called a refinement problem. 

T h e o r e m  52 Let D be a domain description, and ~- a test. Then, eve~l model 
of D U r is a model of D. 

P r o o f  Let M be any model of D U r .  It is straightforward to see that  all effect 
assertions and constraints are true with respect to M. And thus M is also a 
model of D. D 

Note that  the converse of the above theorem does not hold in general cases. 
The  above theorem means that  simply adding tests to a domain description will 
definitely give a bet ter  and new domain description. But syntactically D U I- is 
more complicated than D. We may prefer simpler and finer descriptions. Note 
tha t  in an interpretation structure, all proposition names will be either t rue or 
false. In the reality, all these proposition names can and can only be either t rue or 
false. When we do enough tests, the refinement of the domain will be closer and 
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closer to a complete domain description. This implies that the complete domain 
description is a limit of all refinements of domain descriptions. When the domain 
description has only one model, all proposition names can be removed from 
the domain description by substituting them with their truth values, and thus 
syntactically simplifying the domain description. Hence, we have the following 
definition of refinements: 

Defini t ion 53 Let D1 and D2 be two domain descriptions. D2 is said to be a 
refinement of D1 iff the following conditions are satisfied: 

- Every model of D2 is a model o D1; 
- There is no proposition name in D2 which is true in every model of D2; 
- There is no proposition name in D2 which is false in every model of D~. 

In what follows we want to show how to compute refinements with abductive 
logic programming. In Section 3 we presented a translation from domain de- 
scriptions to abductive logic programs. However, many existing abductive logic 
programming systems do not directly support our constraints. Instead, they sup- 
port constraints of the form 

_L +-- L 1 , . . . , L n  

First we need to translate all constraints into the above form. 
The translation, still denoted by ~r, is as follows. Let C be a constraint in the 

program ~rD. Then C can be equivalently transformed into a conjunctive normal 
form: 

(6'11V... V Clml) A... A (Cml V... V Cmn) 

Then, it will be translated into 

.L +-- 

~  

_l_ +- 

not  C l l , . . . ,  not Clml 

n o t  C m l  , . . . , n o t  C m n  

_L +- not C n , . . . , n o t  Clm, 

_1_ +- not C ~ l , . . . , n o t  Cmn 

where not ",L is taken as L. 
After constraints are translated into a logic program, we can run it in any 

abductive logic programming system. Before proceeding, we need to guarantee 
that the correctness of the translation is preserved. 

T h e o r e m  54 The translation 7r is both sound and complete/or any effect con- 
sistent domain descriptions. 

P r o o f  By the use of the soundness and completeness theorems of the last 
section, it is sufficient to show that the handing of constraints does not change 
the semantics. For this purpose, completing 
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we will have 

_L A . . .  A V 

. . .V  

( cml A . . .  A 

It is equivalent to 

v . . .  v A i) A . . .  A v . . .  v c n) 

Thus the translation of the constraints does not change its semantics. Therefore, 
the semantics of new programs is the same as before. O 

Let T = {Vi , . . . ,  Vn} be a test. Then, T Can be transformed into a query: 

+- ~r V1, . . . , ~r Vn 

where for each i, 7rV/is defined as follows: Let V /be  F a f t e r  A i , . . .  ,An in 7-. 
If F is positive, then 7rV~ is defined to be holds(F, resul t (A1; . . .  ;An, so)); if F 
is negative and equal to -~G, then 7rV/ is defined to be not holds(G, result(Ai; 
�9 .. ;An,s0)).  

Submitting the query to an abductive logic programming system, we will 
get abductive answers to it. In what follows we will write 7"s T) to stand for 
the set of all abductive answers to the query +-- ~r~- against the abductive logic 
program 7rD. Now we are in a position to define the procedure of refining action 
theories. 

Definit ion 55 Let D be a domain description and T a test. Let R ( D ,T )  = 
{ R1, . . . , P~ }. Perform: 

1. For every proposition name P,  if P f Ri  U. . .URN,  remove from D all effect 
assertions containing P in the precondition list, and replace P with false  in 
every constraint of D; 

2. For every proposition name P,  if P E R 1 A . . .  ARn,  remove P from all effect 
assertions of D, and replace P with true in every constraint of D; 

3. Simplify constraints of D in the usual way by using of true and fa lse  in 
the formulas. For example, if C is of the form -~false or C1 V true, C is 
removed. 

Then, Define S(D,  T) to be the set of the resulting effect assertions, constraints, 
and the test T. 

The following theorem says that  the new domain description S(D,  T) is a 
refinement of D. 

T h e o r e m  56 Let D be a domain description, T a test. Then, S (D,  ~-) is a re- 
finement of D. 

P r o o f  To show that  S(D,  T) is a refinement of D, we need to show 
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(a) Every model of S(D, v) is a model of D; 

(b) There is no proposition name in S(D, r) which is true in every model of 
S(D, T); 

(C) There is no proposition name in S(D, T) which is false in every model of 
S (D , r ) .  

To see (a), note that  it suffices to show that  every model of S(D,T) is a model 
of D U T according to Theorem 5.2. Let 7~(D, T) = {R1,..., Rn}. Since Ri is an 
abductive answer to 7rT, we have 

Comp(~rD U a +- : a E P,4) ~ zr~" 

Thus for every proposition P,  if P r R1 U . . .  t.J Rn, it is always assigned to 
"false" in c~ since our model is two-valued. Since it is always false, if a dis- 
junct on the right-hand side of a completion equivalence of holds(F, S) and 
noninertial(F, A, S) contains it, it can be removed from Comp(TrD). Removing 
it amounts to removing the corresponding effect assertion which has P as one of 
preconditions. And thus the corresponding effect assertion can be deleted from 
D. This is what Step 1 does in Def.5.5. On the other hand, if P E R1 N . . .  N Rn, 
it is always assigned to "true",  and thus can be vacuumly removed from all 
the disjuncts on the right-hand side of a completion equivalence of holds(F, S) 
and noninertial(F, A, S). This amounts to removing the occurrence of P from 
Comp(TrD). And thus, P can be removed from the corresponding effect asser- 
tions. This is what Step 2 does in Def.5.5. Note that  Step 3 in Def.5.5 is in 
fact an equivalence transformation in logic, and thus does not change models of 
Comp(TrD). Therefore, every model of S(D, T) is a model of D 9 T. 

To see (b), suppose that  P is true in every model of S(D,r). Since P is an 
abducible predicate, it must appear in R1 N . . .  N Rn as {R1, . . .  ,Rn} is the set 
of all abductive answers, and is thus deleted in Step 2, and hence cannot appear 
in S(D, r). 

To see (c), suppose that  P is false in every model of S(D, r).  Then we would 
have P r R1 U . . .  URn. And thus all effect assertions with it as a precondition 
would have been deleted in Step 1, and hence cannot appear in S(D,  T).  

6 An Example 

Now we return to the example in the Introduction. Let controls(S,L) be a 
parameterized proposition name to denote that  switch S controls light L. Then, 
we can have the following domain description D: 
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controls(left, small) ++ controls(right, big) 
controls(left, big) ~-~ controls(right, small) 
controls(left, small)~/ controls(le ft, big) 
controls (right, small) ~/controls (right, big) 
toggle(left) causes  on(small) i f  -~on( smaU), controls(left, small) 
toggle(left) causes  -~on(small) i f  on(small), controls(left, small) 
toggle(right) causes  on(small) i f  -~on(small), controls(right, small) 
toggle(right) causes  -~on(smaU) i f  on(small),controls(right, small) 
toggle(left) causes  on(big) i f  -~on(b/g), controls(left, big) 
toggle(left) causes  -~on(b/g) i f  on(b/g), controls(left, big) 
toggle(right) causes  on(big) i f  -~on(big), controls(right, big) 
toggle(right) causes  -~on(big) i f  on(big), controls(right, big) 
i n i t i a l ly  -~on ( b/ g ) 
i n i t i a l ly  -~on(small) 

Then, we have an abductive logic program ~rD. Now suppose we have a test ~- 
= {on(b/g) a f t e r  toggle(left)}. Then we can evaluate it in an abductive logic 
programming system. The following is the version of ~rD and Irv in the abductive 
logic programming system REVISE 4: 

~the following are translations of \pi D. 
holds(F, init) <- initially(F). 
holds(F, result(A, S)) 

<- holds(F, S), not noninertial(F, S, A). 
holds(on(small), result(toggle(left), S)) 

<- controls(left, small), not holds(on(small), S). 
noninertial(on(small), S, toggle(left)) 

<- controls(left, small), holds(on(small), S). 
holds(on(small), result(toggle(right), S)) 

<- controls(right, small), not holds(on(small), S). 
noninertial(on(small), S, toggle(right)) 

<- controls(right, small), holds(on(small), S) . 
holds(on(big), result(toggle(left), S)) 

<- controls(left, big), not holds(on(big), S). 
noninertial(on(big), S, toggle(left)) 

<- controls(left, big), holds(on(big), S). 
holds(on(big), result(toggle(right), S)) 

<- controls(right, big), not holds(on(big), S) 
noninertial(on(big), S, toggle(right)) 

<- controls(right, big), holds(on(big), S). 
the following are constraints 

<- controls(left, small), not controls(right, big). 
<- not controls(left, small), controls(right, big). 
<- controls(left, big), not controls(right, small). 
<- not controls(left, big), controls(right, small). 
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<- controls(left, big), controls(left, small). 
<- not controls(left, big), not controls(left, small). 
<- controls(right, big), controls(right, small). 
<- not controls(right, big), not controls(right, small). 
<- holds(on(small), init). 
<- holds(on(big), init). 
7. The following are declarations of abducible predicates 
:- revisable(initially(_)). 
�9 - revisable(controls(_, _)). 
7. The following is the translation of the test. 
<- not holds(on(big), result(toggle(left), init)). 

In the REVISE system, the following answer ~(D,  T) will be output by issuing 
the solution command: 

{ (controls (right, small), controls (left, big) ) ) 

Then, by definition we have the following new domain description S(D, 7-): 

toggle(right) causes on(small) if  ~on(smaU) 
toggle(right) causes ~on(small) if  on(small) 
toggle(left) causes on(big) i f  -~on(big) 
toggle(left) causes -~on(big) if  on(big) 
ini t ial ly -~on( big) 
ini t ial ly -~on( smaU) 

on(big) af ter  toggle(left) 

Thus we have obtained a complete domain description which enables us to gen- 
erate plan, to predict the future, or to explain the past, as what we expected 
and intended. 

7 C o n c l u d i n g  R e m a r k s  

In this paper we have presented an experiment on using the abductive logic 
programming paradigm to refine an action theory in line with 11, 12 start- 
ing from 7. An action theory, also called domain description, describes effects 
of actions and initial states in a dynamic domain. A complete action theory 
should enable us to determine which fluent will be true and which fluent will 
be false after an action is performed. A complete action theory can be used for 
planning, prediction and explanation. In practice we may encounter incomplete 
domains with finite uncertainties. The finite uncertainties may be removed by 
doing some tests and abductive reasoning. Technically we presented an action 
description language ,4 + for domain descriptions, then we presented a transla- 
tion from .A + to abductive logic programs. The translation has been shown to 
be both sound and complete. Thus, the task of reasoning about actions in A + 
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amounts to abductive query evaluation in abductive logic programming systems. 
We also indicate that  our abductive logic program is acyclic, and thus we can use 
any abductive query evaluation procedure, no mat ter  whether their semantics is 
based on predicate completion, stable models, or well-founded models. The test 
on a domain is a set of observed effects of a sequence of specific actions. The 
test can be used to determine t ru th  values of proposition names which serve to 
represent uncertainties. This has been tested with the latest version of a meta- 
interpreter of abductive logic programs 4. To the best of our knowledge, there 
is no similar work in this topic, although there have been many reports on ,4 
family languages. In general, the refinement of action theories can be regarded 
as learning. But this kind of learning is different from the main-trend work on 
learning, where generalization, specialization, and induction is often used as the 
inference mechanism. In this paper we have used abduction as the underlying 
inference mechanism. The result of this paper is currently used to develop in- 
telligent situated agent 13, which is able to observe, act and reason in the real 
world. 
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Abs t rac t .  We study the relationship between argumentation (abduc- 
tion) and disjunctive logic programming. Based on the paradigm of 
argumentation, an abductive semantic framework for disjunctive logic 
programming is presented, in which the disjunctions of negative liter- 
als are taken as possible assumptions rather than only negative liter- 
als as the case of non-disjunctive logic programming. In our framework, 
three semantics PDH, CDH and WFDH are defined by three kinds of 
acceptable hypotheses to represent credulous reasoning, moderate rea- 
soning and skeptical reasoning in AI, respectively. On the other hand, 
our semantic framework could be established in a broader class than 
that of disjunctive programs (called bi-disjunctive logic programs) and, 
hence, the corresponding abductive framework is abbreviated as BDAS 
(Bi-Disjunctive Argumentation-theoretic Semantics). Besides its rich ex- 
pressive power and nondeterminism, BDAS integrates and naturally ex- 
tends many key semantics, such as the minimal models, EGCWA, the 
well-founded model, and the stable models. In particular, a novel and in- 
teresting argumentation-theoretic characterization of EGCWA is shown. 
Thus the framework in this paper does not only provides a new way 
of performing argumentation (abduction) in disjunctive logic program- 
ming, but also is a simple, intuitive and unifying semantic framework for 
disjunctive logic programming. 

1 Introduct ion  

In our everyday life as well as in various artificial intelligence (AI) applications, 
we are often required to deal with disjunctive information. It  suffices to enu- 
merate only a few areas of using disjunctive information: reasoning by cases, 
approximate reasoning, legal reasoning, diagnosis, and natural  language under- 
standing 10, 26. For example, if we know only that  'Mike will work in Havard 
or in Stanord ' but we do not know exactly in which university he will work, 
then this information can be conveniently transformed into a rule of disjunctive 
logic programs. In fact, it is known that  disjunctive programs have more ex- 
pressive power than non-disjunctive programs and permit  a direct and natural  
representation of disjunctive information from natural language and informal 
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specifications. To conveniently and properly handle the representation and rea- 
soning of disjunctive information in logic programming, a great deal of efforts 
have been given to the problem of finding suitable extensions of logic program- 
ming. The problem of defining an intended (declarative) meaning for disjunctive 
logic programs, however, has been proved to be more difficult than the case of 
non-disjunctive logic programs. The semantics of stratified non-disjunctive pro- 
grams leads to unique minimal model (that is, the perfect model) 1, which 
is well accepted as the intended meaning of stratified programs. However, this 
is not the case when we consider the class of non-stratified programs or dis- 
junctive programs (even positive disjunctive programs) and a lot of approaches 
have been proposed to determine semantics for non-stratified programs and/or 
disjunctive programs. Though some of semantics, such as the well-founded se- 
mantics for non-disjunctive programs 19, the extended generalized closed world 
assumption (EGCWA) for positive disjunctive programs 41land the stable se- 
mantics for non-disjunctive/disjunctive logic programs 18, 28 etc., are widely 
studied and shown to be promising in deductive databases, and nonmonotonic 
reasoning, but also they are often criticized in the literature for their short- 
comings. For example, the problem of the (disjunctive) stable semantics is its 
incompleteness: some disjunctive programs do not possess any stable models; 
the well-founded semantics is not able to express the nondeterministic nature 
of non-stratified programs. The diversity of various approaches in semantics for 
(disjunctive) logic programs shows that there is probably not a unique suitable 
semantics for applications in logic programming. Therefore, in our opinion, a 
suitable semantic framework rather than only a single semantics for disjunctive 
logic programming should be provided, in which most of the existing key se- 
mantics should be embedded and their shortcomings be overcome. In addition, 
a suitable semantic framework for disjunctive logic programming can provide a 
unifying mechanism for the implementation of various disjunctive semantics as 
well as it is used in studying the relationship between different formalisms of 
nonmonotonic reasoning. 

On the other hand, the paradigm of disjunctive logic programming is still not 
expressive enough to give direct representation for some problems in common- 
sense reasoning. Thus, it would be also desirable that the syntax of disjunctive 
programs should be extended to a broader class of logic programs so that the 
syntax of this class resembles that of traditional logic programs and the new class 
should include disjunctive programs as a subclass. Brass, Dix and Przymusinki 
10 propose a generalization for the syntax of disjunctive programs (called super 
logic programs) and the static semantics 30 of super logic programs is discussed. 
However, argumentation does not be treated in their work. In fact, as far as we 
know, the problem of performing argumentation-based abduction in disjunctive 
logic programming is rarely discussed 6. 

Abduction is usually defined as inferring the best or most reasonable expla- 
nation (or hypothesis) for a given set of facts. Moreover, it is a form of non- 
monotonic reasoning, since explanations which are consistent in a given context 
may become inconsistent when new information is obtained. In fact, abduction 
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plays an important role in much of human inference. It is relevant in our everyday 
commonsense reasoning as well as in many expert problem-solving tasks. Several 
efforts have been recently devoted to extending non-disjunctive logic program- 
ming to perform abductive reasoning, such as 15, 20, 22, 37. Two key forms of 
approaches to abduction are consistency~based and argumentation-based ones. 
The first kind of approaches exploit a certain logical consistency and an ac- 
ceptable hypothesis is specified as the corresponding consistent sets (some other 
constraints might also be applied), such as 2, 3, 11,17, 23; the latter kind of ap- 
proches depend on an attack relation among hypotheses and acceptable hypothe- 
ses are defined through a kind of stability conditions 14, 15, 36, 37. However, the 
approaches to argumentation-based abduction in logic programming are mainly 
concentrated on non-disjunctive logic programs and these approaches can not 
be directly extended to the class of disjunctive programs. 

Since argumentation has applications in areas such as law and practical rea- 
soning, it should be investigated and implemented in the setting of disjunc- 
tive logic programming. And more, as the results of this paper will show, an 
argumentation-theoretic framework can suggest many new semantics for disjunc- 
tive programs and can overcome the shortcomings of some major semantics. In 
this paper, we mainly concentrate on two problems: (1) The relationship between 
argumentation-based abduction and various semantics for disjunctive programs 
(the consistency-based abduction has been studied by some authors such as 3, 
11, 34; (2) The extension of disjunctive logic programming from both syntax 
(allowing disjunction in the bodies of program clauses) and semantics (by argu- 
mentation). For this purpose, we first define a moderate extension for the syntax 
of disjunctive logic programs (referred to as bi-disjunctive logic programs) by al- 
lowing the disjunctions of negative literals to appear in the bodies of program 
clauses. We shall see that the class of bi-disjunctive programs is broader than that 
of traditional disjunctive programs and can be considered as a subclass of super 
logic programs. More importantly, an argumentation-theoretic semantic frame- 
work for (bi-)disjunctive logic programs is presented, called the bi-disjunctive 
argumentation-theoretic semantics (abbreviated as BDAS), which is a general- 
ization of Dung's preferred scenarios 14, 15 and Torres' non-deterministic well- 
founded semantics 36, 37. In fact, this paper is heavily influenced by their work. 
Our work also shows that this is a non-trivial generalization. The basic idea of 
this paper is to introduce a specialresolution for default negation and interpret- 
ing the disjunctions of negative literals as abducibles (or, assumptions) rather 
than only negative literals as the case of non-disjunctive programs. As a result, 
we transform a given bi-disjunctive program P into an argument framework 
Fp -~( P, DBp,.,.zp >, where DBp is the set of all disjunctions of (ground) 
negative literals in P, a subset AI of DBp is called a disjunctive hypothesis (or 
simply, hypothesis) of P ,  and -.~p is an attack relation among the hypotheses 
of P. An admissible hypothesis A is one that can attack every hypothesis which 
attacks it. Based on this basic idea, we introduce mainly three subclasses of 
admissible hypotheses: preferred disjunctive hypothesis (PDH); complete dis- 
junctive hypothesis (CDH); well-founded disjunctive hypothesis (WFDH). Each 
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of these subclasses defines an abductive semantics for bi-disjunctive programs 
and they are all complete for disjunctive programs, that is, every disjunctive 
program has at least one corresponding hypothesis. BDAS can not only handle 
the problems of commonsense reasoning properly, but many interesting results 
are obtained. In particular, we show that BDAS characterizes and extends many 
key semantics. For example, our Theorem 6.2 states that WFDH extends both 
the well-found semantics for non-disjunctive logic programs 19 and the ex- 
tended generalized closed world assumption (EGCWA) 41 (and thus provides 
a unifying characterization for these two different semantics by abduction). This 
theorem has many implications and it might be one of the most interesting re- 
sults in this paper; we will also show that PDH extends the stable models 18 
for (disjunctive) logic programs to the whole class of disjunctive logic programs. 
As noted in 15, the skepticism and credulism are two major semantic intuitions 
for knowledge representation. A skeptical reasoner does not infer any conclusion 
in uncertainty conditions, but a credulous reasoner tries to give conclusions as 
much as possible. BDAS integrates these two opposite semantic intuitions and, in 
particular, PDH and WFDH characterize credulism and skepticism, respectively. 

The rest of this paper is arranged as follows: Section 2 will briefly define some 
necessary notions and definitions for disjunctive logic programming; In Section 
3 we extends the class of disjunctive programs to bi-disjunctive programs. By in- 
troducing a natural attack relation and a special resolution for default negation, 
our basic argument framework BDAS is established; In Section 4, three inter- 
esting acceptable hypotheses (PDH, CDH, WFDH) for bi-disjunctive programs 
are identified and hence they are three declarative semantics for disjunctive logic 
programming; Some fundamental properties of BDAS axe shown in Section 5; 
Section 6 studies the relationship between BDAS and some key approaches for 
non-disjunctive/disjunctive programs; Section 7 is our conclusion, in which some 
future work is pointed out. The proofs axe omitted here and can be found in 39. 

2 Basic Notions and Definitions 

In this section, we first introduce some necessary definitions and notions. Since 
only Herbrand models of logic programs are mentioned, without loss of gen- 
erality, we consider only propositional logic programs, this means that a logic 
program is often understood as its ground instantiation. 

Throughout the paper we will refer to the following different classes of logic 
programs: 

A Horn logic program is a set of Horn clauses of the form 

a ~-- a l , .  �9 . , a m ,  

where a and ai (i = 1 , . . . ,  m)  are atoms and m _> 0. 
A non-disjunctive logic program is a set of non-disjunctive clauses of the form 

~ a l , . . . , a s , ~  a s + l , . . . , r ' ~  ar 
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where a and ai (i = 1 , . . . ,  t) are atoms and t > s > 0. The symbol ~ denotes 
negation by default, rather than classical negation. 

A disjunctive logic program is a set of disjunctive clauses of the form 

all "" lar 4-- at+l, . . .  ,as, "~ as+l, . . . ,  " "  at, 

where a~ (i = 1 , . . . , t )  are atoms and t > s _> r > 0. The symbol I is the 
disjunction, sometimes called the epistemic disjunction to distinguish it from 
the classical disjunction V. 

A positive disjunctive logic program is a set of positive disjunctive clauses of 
the form 

a l l . . ,  tar +- a t + l , . . . ,  a,,  
where as (i = 1 , . . . ,  s) are atoms and s > r > 0. 

As usual, Bp denotes the Herbrand base of disjunctive logic program P,  that  
is, the set of all (ground) atoms in P. The set DB + of all disjuncts of the atoms 
in P is called the disjunctive Herbrand base of P;  the set DB~ of all disjuncts 
of the negative literals in P is called the negative disjunctive Herbrand base of 
P.  3. denotes the empty disjuncts. 

If S is an expression, then atoms(S) is the set of all atoms appearing in S. 
For ~,/g 6 DB +, if atoms(a) C atoms(fl) then we say a implies ;3, denoted as 

a =~/~. For example, alb =~ alblc. I fa  6 DB +, then the smallest factor sfac(a) of 
a is the disjunction of atoms obtained from a by deleting all repeated occurrence 
of atoms in a (if a is not propositional, the definition will not be so simple, see 
24). For instance, the smallest factor of atbla is alb. For S C D B  +, s/ac(S) = 
{sfac(a) : a 6 S}. The ezpansionofa is defined as II a II = {fl 6 DB + : a =~/3}; 
the expansion of S is II S I1= {/3 6 DB + : there exists a E S such that  ~ =~ fl}. 

The canonical form of S is defined as can(S) = { a 6 s f ac( S) : there exists no 
a' 6 sfac(S)such that  a '  =~ a and a '  ~ a}. 

For a 6 DB~ and S C_ DBp,  the notions of sfac(a), sfac(S), II a IJ and 
1 S H can be defined similarly. 

A subset of D B  + is called a state of the disjunctive logic program P;  a state 
pair of P is defined as S =< S+;S - >, where S + C_ D B  + and S -  C_ DBp.  

The minimal models and the least model state are two important  declara- 
tive semantics for positive disjunctive programs, both of which extend the least 
model theory of Horn logic programs. The minimal model semantics captures the 
disjunctive consequences from a positive disjunctive program as a set of models. 
The least model state captures the disjunctive consequences as a set of disjuncts 
of atoms and leads to a unique 'model' characterization. 

Let P be a positive disjunctive program, then the least model state of P is 
defined as 

ms(P) = {a 6 DB+ : P ~ a}, 

where }- is the inference of the first-order logic and P is considered as the corre- 
sponding first-order formulas. For example, the corresponding first-order formu- 
lae of disjuncts az l"" lain and ... all"" I "" am are al V.. "Vain and -~az V.. "V-,am, 
respectively. 
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The least model state ms(P)  of a positive disjunctive P can be characterized 
by the operator Tp S : 2 DB+ -+ 2DB+: for any J C_ DB +, 

T~(J)  = {(~ E D B + :  there exists a disjunctive clause a~ +- a l , . . . ,  an in P 
and ail(~i E J,i  = 1 , . . . , n ,  such that  a " =  a ' la l l . - - I (~n,  where a l , . . . , a ~  E 
D B  + 0 {_t_}, and a = sfac(a")} .  

Minker and Rajasekar 27 have shown that  Tp S has the least fixpoint l fp(Tfi)  
= Tp s 1" w, and the following result: 

T h e o r e m  2.1. Let P be a positive disjunctive program, then ms(P)  =11 T~ 
w II, and ms(P)  has the same set of minimal models as P. 

3 A r g u m e n t a t i o n  in B i -d i s junc t ive  Logic P r o g r a m s  

As noted in the introduction, we know that  some disjunctive information should 
be given a more direct and more convenient representation than with only tra- 
ditional disjunctive programs (this will be further explained later). Another mo- 
tivation of extending the syntax of disjunctive programs is that ,  when we set 
to study the relationship between argumentation (abduction) and disjunctive 
logic programming, we found that  our argumentation-theoretic framework for 
disjunctive programs seems more natural  in the case of bi-disjunctive logic pro- 
grams. Now, we f r s t  introduce the class of bi-disjunctive logic programs and 
then the basic argumentation-theoretic framework for bi-disjunctive programs is 
established. 

Definit ion 3.1. A bi-disjunctive clause C is a rule of the form 

all "'" lar +-- at+l, . . .  ,a,,/~,+l,... ,/~t, 

where ai (i = 1 , . . . ,  s) are atoms,/3 5 (j = s + 1 , . . . , t )  are disjuncts of negative 
literals, and t > s > r > 0, where I is the epistemic disjunction and ,,~ is default 
negation. 

A bi-disjunctive logic program P is defined as a set of bi-disjunctive clauses. 

For example, the following program is a bi-disjunctive program: 

alb +- 
elc +- d, ~ al ~ b 

d + - , ~ e  

We consider another example. 

E x a m p l e  3.1 Suppose that  we have a knowledge base consisting of the fol- 
lowing four rules (a variant of an example in 10): 

R1 Mike is able to visit London or Paris 
R2 If  Mike is able to visit London, he will be happy 
R3 I /Mike is able to visit Paris, he will be happy 
R4 If  Mike is not able to visit both London and Paris, he will be prudent 
It is easy to see that  the knowledge base can be easily expressed as the 

following bi-disjunctive logic program: 
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rl : V i s i t  - LondonIVis i t  - Par i s  +- 
r2 : Happy ~- V i s i t  - London 
r3 : Happy +- V i s i t  - Par i s  
r4 : Pruden t  +- ~, V i s i tLondon  I ~, V i s i t P a r i s  

Notice that the rule R4 possesses a more direct transformation with bi- 
disjunctive logic programs than with traditional disjunctive programs. 

We again stress the difference between the epistemic disjunction I and the 
classical disjunction V. For example, a V -~a is a tautology but the truth of 
the disjunction a I .~ a is unknown in the disjunctive program P = (ab ~--} 
since both of them may be unknown. In particular, the intended meaning of a 
disjunction ~ -=~ b l l " "  I ~ bn of negative literals is similar to the default atom 

(bl A.- .  Abn) in super logic programs 10. That is, ~ means that bl, . . . ,  and 
bn can not be proved at the same time. Therefore, bi-disjunctive programs can 
be regarded as a subclass of super programs. 

It is obvious that the following inclusions hold: 
Super Logic Programs D Bi-Disjunctive Programs D Disjunctive Programs D 

Non-disjunctive Programs 
Notice that we can also allow positive disjunctions to appear in the bodies of 

bi-disjunctive clauses as well as negative disjunctions. The semantic framework 
in this paper can be similarly defined for such bi-disjunctive programs by only 
trivially generalizing the notion of the least model state 25. For simplicity, we 
will not make such a generalization here. 

In general, argumentation-based abduction is based on argument frameworks 
defined as triples F = <  K, H , ~  >, where K is a first order theory representing 
the given knowledge, H is a set of first order formulae representing the possible 
hypotheses, and ~.~ is an attack relation among the hypotheses. 

Given a bi-disjunctive program P, an assumption of P is an element of D B~;  
a hypothesis of P is defined a subset A of D B p  such that A is expansion- 
closed: II A I1= A. In this paper, we will consider a bi-disjunctive program P 
as an argument framework F p  =< P, H ( P ) , . , z p > ,  where H ( P )  is the set of all 
hypotheses of P, and -x~p is a binary relation on H ( P ) ,  called the attack relation 
of Fp  (or P). 

To define the attack relation of Fp,  similar to GL-transformation 18, we 
first introduce a generalized GL-transformation for the class of bi-disjunctive 
programs, by which a positive disjunctive program P+ is obtained from any 
given bi-disjunctive program P with a (disjunctive) hypothesis zl of P. 

Defini t ion 3.2. Let A be a hypothesis of a bi-disjunctive program P, then 
(1) For each bi-disjunctive clause C in P, delete all the disjuncts of negative 

literals in the body of C that belong to A. The resulting bi-disjunctive program 
is denoted as Pzi; 

(2) The positive disjunctive program consisting of all the positive disjunctive 
clauses of P~ is denoted as P+, and is called the generalized GL-transormation 
of P. 
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Example 3.2. Let P be the following bi-disjunctive program: 

alb ~- 
elc ~- d, N a I ,~ b 

d + - , , , e  

If A1 =H ,~ a I ,,~ b II, then Pa l  = {alb +-; elc e-  d; d ~ e},  and P+I = 

{ab +-; eic +- d}. If A2 ----I,~ a I ,~ b, ,~ e II, then P+2 = P~2 = {alb e-; elc ~-- 
d; d +--}. 

Based on the above transformation, we can define a special resolution ~-p for 
default-negation, which can be intuitively illustrated as the following principle: 

I f  there is an agent who 
(1) holds the assumptions ,,, bl, . . . ,,', bin;and 
(2) can 'derive' bll . . . Ibmlbm+ll . . . bn f rom the knowledge base P with 

these assumptions.  
Then the disjunctive information bm+l l . . .  Ibn is obtained. 

The following definition precisely formulates this principle with bi-disjunctive 
programs. 

De f in i t i on  3.3. Let A be a (disjunctive) hypothesis of a bi-disjunctive pro- 
gram P,  ~ E D B  + and ,,~ bl, . . . , ,~ bm E A such that  the following two condi- 
tions are satisfied: 

(1) =  lbll... Ibm; and 
(2) Z e 

Then we call A is a supporting hypothesis for a,  denoted as AI-poL. 

The condition (2) above means that  ~ is a logical consequence of P+  with 
respect to the least model state. The set of all disjuncts of positive literals that  
are supported by A is denoted as V p ( A ) .  That  is, 

V p ( A )  = {(~ e D B +  : A~-pa} .  

In Example 3.2, Vp(A1)  =11 al b iP, V p ( A u )  =1 alb, e ,d  1. 

Def in i t i on  3.4. Let A be a hypothesis of P,  then S ~  =<1 V p ( A )  ll; A > is 
called a supported state pair of P.  

Though each hypothesis A corresponds to a state pair of P,  not every state 
pair represent the intended meaning of P.  For example P = {alb ~ , ~  a, ,~ b}. If 
A _--II~ a, ,~ b II, then V p ( A )  = {alb } and thus S ~  =<ll alb II; II "~ a,,~ b II>. It 
is obvious that  Sa  does not represent the correct meaning of P.  This is similar 
to the problem caused by the closed world assumption (CWA) which is first 
observed by Minker 25. 

To derive suitable hypotheses for a given bi-disjunctive program, some con- 
straints will be required, which can be realized though the following definition. 

De f in i t i on  3.5. Let A and A' be two hypotheses of a bi-disjunctive program 
P. If at least one of the following conditions holds: 
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(1) There exists f? --~ b l l ' "  I "~ b,n E A' ,m  > 0, such that  A~-pbi, i = 1 , . . .  ,m;  
o r  

(2) There exist ,~ b l , . . . ,  ~" bm E A' , rn  > 0, such that  AF-pbll . . .  Ibm. 

Then we say A attacks A t, and denoted as A -.~p A'. 

Intuitively, A -,zp A ~ means that  A causes the direct contradiction with A', 
which may come from any one of the above two cases. 

E x a m p l e  3.3. Let P be the bi-disjunctive program of Example 3.2. Take 
A =11" al ~ b, ,~ e II, ,5' --I1.~ c I ..~ d II. Since Vp(A) = {alb, c,d}, that  is, 
At-pc, d thus A -~p A', but not A ~ -.ze A. 

This example shows that  the relation -,-+p is not symmetric. Otherwise, the 
attack relation would have no much use. 

In the remaining of this subsection, we seek to define suitable constraints on 
(disjunctive) hypotheses by using the above fundamental definition (Definition 
3.5). 

Consider again the logic program P -- {alb +-,~ a I ,~ b} and A =ll~. a I ~ b II, 
it is not hard to see that  A . ~ p  A, this means that  A attacks itself. 

Firstly, a plausible hypothesis should not attack itself. 

De f in i t i on  3.6. A hypothesis A of a bi-disjunctive program P is self-consistent 
if A-/zpA.  

The empty hypothesis 0 is always self-consistent, called trivial hypothesis. 
The above example shows that  there exist non-trivial hypotheses that  are not 
self-consistent. 

The following easy corollary will be often used in proofs of some results in 
subsequent sections. 

C o r o l l a r y  3.1. A hypothesis A of P is not self-consistent if and only if there 
exists ,~ b l l " "  I "~ bn E A such that AF-pbi, i = 1 , . . . , n .  

Def in i t i on  3.7. For any self-consistent hypothesis A of a bi-disjunctive program 
P,  the corresponding state pair SA is called a self-consistent state pair of P.  

By Definition 3.3 and 3.5, it is not hard to see that  the self-consistency of a 
hypothesis guarantees that  there exists no direct contradiction within the corre- 
sponding state pair of this hypothesis. That  is, given a self-consistent hypothesis 
A of P,  neither of the following two conditions hold for the state S of A: 

(1) there exist a l , . . .  ,at  E S +, such that  ~- a l l " "  I ~" ar e S - ;  or 

(2) there exists a l l ' "  lar E S +, such tha t  -~ a l , . . . ,  "~ ar E S - .  

Def in i t i on  3.8. A state pair S = <  S+; S -  > is consistent if the set of the 
corresponding first-order formulas of S + U S -  is consistent. 

A self-consistent state pair is not necessarily consistent though there is no 
direct contradiction within it. 
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E x a m p l e  3.4. Let P be the following disjunctive program: 

a{b +-- 
b}c *- 
c{a t--- 

Take A ={{,~ a{ ~ b, ,~ b{ ~ c, ,-~ c{ -~ a {{, then A is a self-consistent hypothesis. 
However, Vp(A) = {a{b, b{c, c{a} and {{ Vp(A) { UA being considered as a set of 
first-order formulas is not consistent, thus the state pair S a  =<lJ Vp(A) {{; A > 
is not consistent. 

In particular, in many cases, self-consistency of state pairs can still not pro- 
vide suitable constraints for abductive semantics of bi-disjunctive programs. For 
example, the disjunctive program P consisting of 

SleepinglListeningFootbaUGameByRadio +- ,,~ ElectricitySupplied 
PossessGoodTV +-- 

This disjunctive program has two self-consistent hypotheses A1 ={{N Electricity 
Supplied {> and A2 ={~ Sleeping, ~ ListeningFootballGameByRadio, {{. But 
it is widely accepted that A1 rather than Z~2 is the acceptable hypothesis of P .  

How can we determine the self-consistent hypotheses of P that  capture the 
intended semantics. In other words, we must specify when a hypothesis of P is 
acceptable. To accomplish this task, we need to exploit an intuitive and useful 
principle in argument reasoning: If  one hypothesis can attack each hypothesis that 
attacks it, then this hypothesis is acceptable. ReL16 illustrates this principle by 
some examples and study its application in non-disjunctive logic programming. 

Now, we formulate this principle in the setting of bi-disjunctive logic pro- 
gramming, which can really provide a suitable criteria for specifying acceptable 
hypotheses for bi-disjunctive programs and forms the basis of our argumentation- 
theoretic framework for disjunctive logic programming. 

For short, if f~ = ~  bl{..-{ ~ bm E DB~,  and A'  is a hypothesis such that 
A ~ F-p bi, for any i = 1 , . . . ,  m, then we say A' denies ~ .  

D e f i n i t i o n  3.9. Let A be a hypothesis of a bi-disjunctive program P ,  an 
assumption ~ of P is admissible with respect to A if A U R A '  holds for any 
hypothesis A' of P such that A' denies ~. Write Ap(A)  = {~ E DBp : 
f~ is admissible wrt. A}. 

Consider the bi-disjunctive program in Example 3.2 and the hypothesis A1 of 
P .  It is easy to see that  ~ a{ ,~ b is admissible, since any hypothesis A' of P that  
denies ,,~ a{ ~ b must contain the hypothesis {l" a, ,,~ b {I but  A1 ~,zp{{~ a, ,-~ b {{. 

A p  has the following two properties, which are fundamental to the main 
results in this paper: 

C o r o l l a r y  3.2. I f  A and A' are two hypotheses of disjunctive program P, 
then 

(1) {{ A p ( A )  {l= A p ( A ) ,  that is, A p ( A )  is a hypothesis o /P;  
(2) I A C_ A', then A p ( A )  C_ Ap (A ' ) .  This means that A p  is a monotonic 

operator. 
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Intuitively, an acceptable hypothesis should be such one whose assumptions 
are all admissible with respect to it. Thus the following definition is in order. 

Def in i t ion  3.10. A hypothesis A of a bi-disjunctive program P is said to be 
admissible if A is self-consistent and A C Ap(A).  An admissible (disjunctive) 
hypothesis of P will be abbreviated as ADH. 

An intuitive and equivalent definition for admissible hypotheses will be shown 
in Section 5 (Theorem 5.1). Before giving examples, we first show a simple 
lemma. 

L e m m a  3.1. Let A be a hypothesis of a disjunctive program P.  I f  an as- 
sumption ~ =,~ bl . . .   ~ br of P is admissible with respect to /1, then 8' ="~ 
bl l""  I ~ brl "" br+l l""  I "~ bn is also admissible with respect to /1  for any atoms 
br+l , . . . , bn  in P and r <_ n. 

This lemma is useful when we want to show that a hypothesis of a disjunctive 
program is admissible: To show that a hypothesis A =1 ~1,.-.  ,~n I is admissi- 
ble, it suffices to show that all assumptions fli (i = 1 , . . . ,  n) (the representatives 
of A) are admissible with respect to/1.  

Ex ample  3.5. Consider the following disjunctive program P: 

a + - ~ a  

b+-  

P has five possible hypotheses:/1o = 0,/11 : l l  ~ a II,/12 = l l "  b II,/13 ---I "~ al "~ 
b 1,/14 =1 ~ a, ,,, b 1, among which/11,/12 and/14 axe not self-consistent. Since 
/11~-*pA3 but /137/*p/11, /13 is not an ADH of P, thus P has only one ADH 
/1o = 0 and the corresponding state pair Sn0 =<ll b I; ~ >. 

Ex ample  3.6. The disjunctive program P = {ab +--~ a} also has five possible 
hypotheses as the program in Example 3.5. For/11 =11 ~ a , the assumption ,,~ a 
is admissible with respect to/11, since/14 =H ~ a, ,,~ b II is the only hypothesis 
that can attack/11 and/11 "~P/14. 

Now we have established the basic argumentation-theoretic framework BDAS 
for bi-disjunctive logic programs, in which various semantics for performing 
argumentation-based abduction with bi-disjunctive programs can be defined. 
Each semantics in our framework will be specified as a subclass of admissible 
hypotheses (equivalently, admissible state pairs). 

4 Some Important Classes of Hypotheses for 
Bi-disjunctive Programs 

As mentioned in Section 1, a suitable semantic framework rather than a single 
semantics should be defined, in which most of the existing key semantics could be 
embedded and their shortcomings could be overcome. As well as investigating 
the inherent relationship between argumentation (abduction) and disjunctive 
logic programming, we shall attempts to show that our abductive framework 
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defined in section 2 can provide a (at least potentially) suitable framework, in 
a certain extent, for disjunctive logic programming by defining some abductive 
semantics and relating to some important semantics, such as the well-founded 
model, minimal models, stable models and EGCWA. 

Def ini t ion 4.1. Let A be a hypothesis of a bi-disjunctive program P: 

(1) A preferred disjunctive hypothesis (PDH) A of P is defined as a maximal 
ADH of P with respect to set inclusion; 

(2) If A is self-consistent and A = Ap(Z~), then A is called a complete disjunc- 
tive hypothesis (CDH) of P; 

(3) If the hypothesis A p  1" w is self-consistent, then it is called the well-founded 
disjunctive hypothesis of P ,  denoted as W F D H ( P ) .  

If A is an ADH (res. PDH, CDH, WFDH), then the corresponding state pair 
S~ is called an ADS (res. PDS, CDS, WFDS) of P. 

Defini t ion 4.2. The ADH (res. PDH, CDH, WFDH) semantics for a bi- 
disjunctive program P is defined as the class of its all ADS (res. PDS, CDS, 
WFDS). 

It follows easily from the above definition that a CDH must be an ADH; In 
Section 5 we will show that a PDH is a CDH. However, the converses do not 
hold. 

E x a m p l e  4.1. P consists of only one program clause: alb +-. Take A0 = 0, 
then Ap(Ao)  =I ,~ a ,,, b . Hence Ao is an ADH of P but not a CDH. If 
A 1 =IN a ~ b , then Ap(A1) = A1 and thus A1 is a CDH of P but not a 
PDH, since A2 =~ a  is an ADH of P and A1 C A2. 

Since 0 is always an admissible hypothesis, each bi-disjunctive program has 
at least one PDH. 

T h e o r e m  4.1. The semantics ADH is complete for the class of hi-disjunctive 
programs. That is, each bi-disjunctive program has at least one PDH. 

The completeness of CDH and WFDH will be delayed to Section 5. In the 
remaining of this section, by some examples, we will show the difference of BDAS 
from other semantics and illustrate behaviors of our argumentation-theoretic 
semantic framework BDAS in knowledge representation. 

Ex ample  4.2. Let P be the following disjunctive program: 

alb +- 
a ~---- 

Most of semantics for disjunctive programs assign the truth of b to false with 
respect the above program (credulous reasoning), , except the possible model 
semantics 33 and the WGCWA 31 (skeptical reasoning). In BDAS, P has three 
admissible hypotheses A1 = ~, A2 =,~ a ,~ b  and A 3 =,~ b . In particular, 
the WFDS of P is S1 =<11 a 1; 0 > and the PDH is <I a ; 1,,~ b I1>. Thus, 
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b is unknown with respect to WFDH but is true with respect to P D H ,  and 
this implies that  both the skeptical and credulous reasoning of P can all be 
represented in BDAS. 

E x a m p l e  4.3.  Let P be the program : 

b e -  

We know from Example 3.5 that  P has only one ADH Ao = 0 and the corre- 
sponding state pair Sao =< b I; 0 >. This conclusion coincides our intuition 
on P,  that  is, P provides no information about  a for us and thus, from P,  we 
can infer neither a nor ~- a, but  can infer b. This example shows that  BDAS 
can handle the inconsistency of disjunctive programs properly. Notice that  the 
Clark completion of P is not consistent and P has no stable model. 

5 Characterizations of B D A S  

As the basis for further investigation, this section is devoted to s tudy some fun- 
damental properties of BDAS. First, we give an intuitive and equivalent charac- 
terization of admissible hypotheses, which will be often used as an alternative 
definition for Definition 3.10. 

T h e o r e m  5.1. Let A be a self-consistent hypothesis of a bi-disjunctive program 
P.  Then A is an A D H  of P if and only if A,-,zpA' or any hypothesis A t of P 
satisfying A~.~ p A. 

This theorem shows that  an ADH is such a hypothesis tha t  can attack any 
hypothesis tha t  attacks it. 

In the following we will characterize ADHs in another way. 

D e f i n i t i o n  5.1. Let A and A J be two ADHs of a bi-disjunctive program P.  
If A C N ,  then A ~ is called an admissible extension of A. In particular, N is 
called a non-trivial admissible extension of A if A ~ A J. 

D e f i n i t i o n  5.2. 
Let A be an ADH of a bi-disjunctive program P.  If A t satisfies the following 

two conditions: 
(1) A U A ~ is self-consistent; and 
(2) ~x' g A~(zX u ~'). 

Then N is called a plausible hypothesis with respect to A. 

The following three corollaries can be easily obtained by Definition 5.1 and 
Definition 5.2. 

C o r o l l a r y  5.1. I f  A '  is a plausible hypothesis wrt an A D H  A ,  then A U A ~ is 
an ADH. 

C o r o l l a r y  5.2. A ~ is an admissible extension of A if and only if  A C A ~ and 
A ~ \ A is plausible with respect to A. 



152 Kewen Wang and Huowang Chen 

C o r o l l a r y  5.3. For any bi-disjunctive program P, the following statements 
are equivalent: 

(1) A is an ADH of P; 
(2) A is an admissible extension of the empty hypothesis O; 
(3) A is plausible with respect to 9. 

Definition 5.3. An admissible sequence of a bi-disjunctive program P is a 
sequence A1, A2 , . . . ,  An , . . .  of ADHs of P such that  An C_ An+ 1 for any n > 0. 

The following proposition states that  the sequences of bi-disjunctive program 
P possess the property of completeness. 

Proposition 5.1. For any admissible sequence A 1 , A 2 , . . . ,  An , . . .  of a bi- 
o o  disjunc- tive program P, the hypothesis A = Un=l  A n is an ADH of P. 

In particular, we have the following result: 

C o r o l l a r y  5.4. Every ADH o a bi-disjunctive program P is contained in a 
PDH. 

The following proposition is fundamental and our many results in BDAS for 
disjunctive programs will be based on it. 

Proposition 5.2. For any ADH A o a disjunctive program P, if a E DB~ 
is admissible wrt. A, that is, a E Ap(A) ,  then A I --II AU{c~} II is also an ADH 
oIP .  

This result guarantees that,  for any ADH A of a disjunctive program P,  if 
a is admissible wrt. A and a r A then we can obtain a non-trivial admissible 
extension of A by simply adding a to A. 

As a direct corollary of Theorem 5.1, it is not hard to see that  a PDH of a 
disjunctive program must be a CDH. 

Proposition 5.3. I A is a PDH of a disjunctive program P, then A is also 
a CDH of P. 

C o r o l l a r y  5.5. Each disjunctive program has at least one CDH. That is, se- 
mantics CDH is complete or the class o all disjunctive programs. 

In the rest of this section, we will show the existence and completeness of 
WFDH. P will be a disjunctive program if it is not stated explicitly. H(P)  is 
the set of all disjunctive hypotheses of P and it can be easily verified that  the 
partial order set (H(P) ,  C_) is a complete lattice. From Definition 3.9, Ap  can 
be considered as an operator on H(P) ,  called the admissible operator of P,  and 
we will show that  Ap  is continuous. 

L e m m a  5.1. For any disjunctive program P, its admissible operator A p  : 
H(P) -+ H(P)  is continuous. That is, or any directed subset D of H(P) ,  the 
following holds: 

A p ( U { A : A E D } ) = U { A p ( A ) :  A E D } .  
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Remark: A subset D of a complete lattice is directed if every finite subset of 
D has an upper bound in D. 

It follows from Lemma 5.1 and Tarski's theorem 35 that A p  has the least 
fixpoint l fp (Ap)  and l fp (Ap)  = A p  ~ w, that is, the closure cardinal of Ap  is 
w. Therefore, the following theorem is obtained. 

Theorem 5.2. Every disjunctive program P possesses the unique well-founded 
disjunctive hypothesis (WFDH). 

From Theorem 4.1, Corollary 5.5 and Theorem 5.2, it follows that the three 
semantics PDH, CDH and WFDH are all complete for disjunctive programs. 

6 Relationship Between BDAS and Some Other 
Approaches 

In this section we investigate the relationship between BDAS and some other 
semantics for (disjunctive) logic programs. The main results of this section can 
be summarized as the following: 

(1) PDH coincides with the stable semantics for an extensive subclass of 
disjunctive programs. 

(2) WFDH for non-disjunctive programs coincides with the well-founded se- 
mantics. 

(3) In particular, we show that the WFDH provides a quite new characteri- 
zation of EGCWA 41 by argumentation (abduction). 

Thus, WFDH integrates and extends both the well-founded semantics for 
non-disjunctive logic programs and EGCWA for positive disjunctive programs. 
As a result, EGCWA can be used to implement argumentative reasoning in 
deductive databases. 

6.1 BDAS for Non-disjunctive Programs 

As a special case, we consider the BDAS of non-disjunctive logic programs. In 
this subsection, P will be a non-disjunctive program. Let A be a (disjunctive) 
hypothesis of P,  that is, A C DBp,  and L(A) denotes the set of all negative 
literals in Zi. 

Definition 6.1. A hypothesis A of P is a non-disjunctive hypothesis of P if 
L(A) = can(A). That is, the set of representatives of a non-disjunctive hypoth- 
esis consists of only negative literals. 

It follows from Definition 3.3 that, for any non-disjunctive program P and 
a E Bp, 

e Min(P+ ) a 

Corollary 6.1. I f  A is a CDH of non-disjunctive program P, then L(A) = 
can(A), that is, the CDHs of a non-disjunctive program are non-disjunctive. 
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It follows from Corollary 6.1 and the result in Ref.21, 22 that, for any non- 
disjunctive program P,  we will get the equivalent definition of Definition 3.5 
if the basic inference /1}-pa is replaced by P t2/1 }- a. This means that our 
CDH and Dung's complete extension are equivalent concepts for the class of 
non-disjunctive programs. 

Theorem 6.1. If~1 is a non-disjunctive hypothesis of non-disjunctive program 
P,  then the following two statements are equivalent: 

(1) /1 is a CDH of P; 
(2) P U L(/1) is a complete extension. 

This theorem shows that BDAS generalizes the frameworks of Dung 15 and 
Torres 37. 

6.2 BDAS for Positive Disjunctive Programs 

In this subsection we investigate the relationship between BDAS and some se- 
mantics for positive disjunctive programs (without negation in the bodies of 
program clauses). In particular, we show that the well-founded disjunctive hy- 
potheses (WFDHs) provide a quite new characterization of EGCWA by argu- 
mentation (abduction). As a result, WFDH integrates and extends both the 
well-founded semantics for non-disjunctive logic programs and EGCWA for pos- 
itive disjunctive programs. 

If we do not state explicitly, P will denote a positive disjunctive program in 
this subsection. 

Proposition 6.1. I f  ms(P)  is the least model state of a positive disjunc- 
tive program P, then the state pair corresponding to the A DH 0 is SO =< 
ms(P); O >. 

This result shows that the ADH 0 characterizes the least model state for 
positive disjunctive programs. 

Proposition 6.2. Let A be a hypothesis of a positive disjunctive program P: 
(1) I rA  is a PDH of P and A is consistent (i. e. the first-order formulas Vp(A)U 
A is consistent}, then Iza = Bp \ {a E Bp ,~ a E A} is a minimal model of P; 
(2) I f  I is a minimal model of P then A =11~ f II is a PDH of P,  where f = B p \ I  
and ~ i = {,,~ a I a E i} .  

We believe that the condition '/1 is consistent 'is unnecessary. Moreover, we 
guess that the ADHs (including the PDHs, CDHs, and WFDHs) are all consistent 
but we have not found such a precise proof at present. 

For any positive disjunctive program P, its WFDH does not only exist, but 
also can be obtained by one step iteration of Ap  from 0. 

Proposition 6.3. Let P be a positive disjunctive program, then the closure 
ordinal of A p  is 1, that is, the (unique) WFDH of P is Ap(0). 
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To characterize EGCWA in BDAS, we first give the model-theoretic definition 
of EGCWA 41. 

Definition 6.2. Let P be a positive disjunctive program, then 

E G C W A ( P )  = {fl e D B p  : P ~min •} 

The following theorem shows that E G C W A  coincides with W F D H  for the 
class of positive disjunctive programs. 

Theorem 6.2.(Characterization of EGCWA by Argumentation) For positive 
disjunctive program P, E G C W A ( P )  = W F D H ( P ) .  

As noted before, this theorem may be the most interesting result in this paper 
in that it is not only quite intuitive but also useful in performing argumentation 
(abduction) in deductive databases by exploiting EGCWA. 

The following corollaries are directly obtained from Theorem 6.2 and the 
results in Ref.24, 41. 

Coro l la ry  6.2. For any positive disjunctive program P, its WFDH is consis- 
tent. 

The generalized closed world assumption (GCWA) can also be characterized 
by WFDH. 

Corol la ry  6.3. G C W A ( P )  = L ( W F D H ( P ) )  = {,~ a : ,,~ a E W F D H ( P ) } .  

Corol la ry  6.4. M is a minimal model of P if and only i M is a minimal 
model of P U W F D H ( P ) .  

6.3 The Relationship Between P D H  and the Disjunctive Stable 
Semantics 

Both the disjunctive stable semantics and our PDH represents credulous rea- 
soning in disjunctive logic programming but the former is not complete. In this 
section we will study PDH and its relation to the disjunctive stable semantics. 
To this end, we first define a program transformation L f t  38, 40 for disjunctive 
logic programs (called the least fixpoint transformation) and then, an extensive 
class of disjunctive programs, called the strongly stable disjunctive programs, are 
introduced, for which we show that PDHs and stable models have a one-to-one 
correspondence. Hence the abductive semantics PDH is not only complete but 
can also be considered as a natural and complete extension of the disjunctive 
stable semantics. Moreover, L f t  also provides an optimization technique for the 
computation of various semantics in BDAS (including many semantics that can 
be embedded in BDAS). 

The program transformation L f t  is based on the idea of Dung and Kanchan- 
sut 13 and Bry 12. It is also independently defined by Brass and Dix 8, 7. To 
define L f t  for disjunctive programs, we first extend the notion of the Herbrand 
base Bp to the generalized disjunctive base GDBp  of a disjunctive logic program 
P. 
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G D B p  is defined as the set of all negative disjunctive programs whose atoms 
are in Bp: 

G D B p  = { a l l " "  lar ~ ' ~  bl , . . . , "~ b8 : ai, bj E B p , i  = 1 , . . .  , r ; j  = 1, . . .  ,s}  

and +-- the empty clause. 
Thus, we can introduce an immediate consequence operator Tp c for general 

disjunctive program P,  which is similar to the immediate consequence operator 
T~, for positive program P ' .  The operator Tp v will provide a basis for defining 
our program transformation L f t .  

Def in i t i on  6.3. For any disjunctive program P,  the generalized consequence 
operator Tp a : 2 GDBP -+ 2 GDBP is defined as, for any J C_ G D B p ,  

Tap(J) = {C 6 G D B p  : There exist a disjunctive clause a' ~-- b l , . . . ,  bin, "~ bm+l 

, . . .  ,"~ bs and C1 , . . . ,  Cra 6 G D B p  lJ {e--} such that ( l )  bihead(Ci) ~ body(Ci) 

is in J, for all i = 1 , . . .  ,m; (2) C is the clause can(a'head(C1)l. . .  head(Gin)) 

+- body(C1), . . . ,  body(Cm), ~ bin+l , . . . ,  "~ 58}. 

This definition looks a little tedious at first sight. In fact, its intuition is quite 
simple and it defines the following form of resolution: 

0~' +'- b l , . . .  ,bm,/~l, . . .  ,~s; blal +-- ~11,-.. , ~ l t l ;  " ' "  ;bmarn +- ~ml , . . .  ,~rntm 
o '1o 11''' flrntm, i l l , . . .  

where as  with subscripts are positive disjunctive literals and/~s with subscripts 
are negative disjunctive literals. 

E x a m p l e  6.1. Suppose that  P = {alia= ~ a3, ,~ a4; aaa5 +--N a6} and 
J = Tg(#).  Then Tg(O) = {a3as +-~ a6}; If J '  = Tg(Tg(O)).  Then T g ( J ' )  = 
Tg(Tg(O))  = {aala5 +-'"~ a6; alla2la5 +-"~ a4, ~ a6}. 

Notice that  T~ is a generalization of T fl if a disjunctive program clause 
a l l " "  an ~ is treated as the disjunct all �9 �9 �9 an. The following proposition shows 
that  T~ possesses the least fixpoint. 

L e m m a  6.1. For any disjunctive program P, its generalized consequence op- 
erator Tap is continuous and hence possesses the least fixpoint Tap ~ w. 

It is obvious that  the least fixpoint of Tp c does not only exist but also is 
computable. Since Tp c 1" w is a negative disjunctive program, Tp a results in a 
computable program transformation which will be defined in the next definition. 

Definit ion 6.4. Denote Tap ~ w as L f t ( P ) ,  then L f t  : P -~ L f t ( P )  defines a 
transformation from the set of all disjunctive programs to the set of all negative 
disjunctive programs, and we say that  L f t ( P )  is the least fixpoint transformation 
of P.  
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The following lemma asserts that  L f t ( P )  has the same least model-state as 
P and it is fundamental to prove some invariance properties of L f t  under various 
semantics for disjunctive programs. 

L e m m a  6.2 For any hypothesis A of disjunctive program P, (L f t (P )  +) pos- 
sesses the same least model-state as P+ : 

ms(L  f t (P )  +) = ms(P+).  

Firstly, we show that  the program transformation L I t ( P )  preserves our ab- 
ductive semantics. 

T h e o r e m  6.3. For any disjunctive program P, P is equivalent to its least 
fixpoint transormation L f t ( P )  with respect to BDAS. As a result, L f t (P )  has 
the same ADH (res. CDH, PDH) as P. 

The following proposition, which is also independently given by Brass and 
Dix in 7, shows that  the least fixpoint transformation also preserves the (dis- 
junctive) stable models. 

For any disjunctive program P,  and M C Bp.  Set 

P / M  = {a l l " "  at +- at+l , . . . ,  a8 : there exists a clause of P :  a l l " "  lar +- 

ar+l ,  �9 �9 �9 as, ~ a s + l , . . . ,  "~ at such that  as+i , . . . ,  at ~- M}.  

If M is a minimal model of P/M,  then it is a (disjunctive) stable model of P .  
The disjunctive stable semantics of P is defined as the set of its all disjunctive 
table models. 

P r o p o s i t i o n  6.4. For any disjunctive program P, P is equivalent to its least 
fixpoint transformation L f t (P )  with respect to the stable semantics. That is, P 
has the same set o the stable models as L f t ( P ) .  

Let A be a hypothesis of disjunctive program P,  P~ is defined as the dis- 
junctive program obtained by the following transformations: 

1. For any clause C in P ,  if a E head(C) and .~ a E A, then delete a from 
the head of C; if ~, b E body(C) and ~ b e A ,  then delete .-~ b from the body of 
C; 

2. From the program obtained by the step 1, delete all the clauses that  have 
empty heads; 

3. For any a E Bp such that  all the clauses containing a or ,~ a have been 
deleted by the above two steps, add a new clause a +-- a. 

Notice that  the step 3 is technical, which is to keep P~ has the same Herbrand 
base as P.  But the step 2 is necessary and it can guarantees tha t  P~ has a stable 
model if P has at least one. For example, if P = {alb ~ c} and A =ll N a, ..~ b I, 
then P will be transformed to the program (+-- c}, which has no stable model. 

D e f i n i t i o n  6.5. A disjunctive program P is strongly stable if, for any A E 
H(P) ,  P~ possesses at least one stable model. 
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It is obvious that positive disjunctive programs are strongly stable. More 
generally, the class of (local) stratified disjunctive programs axe strongly stable. 
Thus, the class of strongly stable disjunctive programs is extensive enough. 

The main theorem of this subsection can be stated as follows. 

T h e o r e m  6.4. Suppose that disjunctive program P is strongly stable and its 
all PDHs are consistent: 

1. I f  "4 is a PDH of P,  then Iza = {a E Bp  : ~ a ~ "4} is a stable model of 
P .  

2. I f  M is a stable model of P ,  then A M --II {~ a : a ~ Bp \ M} II is a PDH 
o I P .  

As mentioned before, we believe that the condition 'the PDHs of P axe con- 
sistent' is unnecessary. 

This theorem establishes a one-one correspondence between the PDHs and 
the stable models for any strongly stable programs. Therefore, PDH extends 
the stable semantics to the whole class of disjunctive programs. Moreover, this 
result reveals the relationship between credulous argumentation and the stable 
semantics for disjunctive logic programming. 

Coro l la ry  6.5. Any (local) stratified disjunctive program P has the unique 
PDH. 

6 .4  R e l a t i o n s  to  S o m e  O t h e r  A p p r o a c h e s  

Becides the semantics discussed in the previous subsections of Section 6, there 
have been proposed some other interesting approaches of defining semantics for 
disjunctive logic programs, such as the static semantics 30, the D-WFS 7, 9. 
In this subsection we will compare our BDAS to these semantics. 

E x a m p l e  6.2. Consider disjunctive program P: 

aJb ~- 
c < - . - ~ a  

c ~ - - ~ b  

We need to consider only the following seven assumptions of P: 

~ a , ~ b , ~ c , ~ a  ~b, , .~b I ~ c,.~ c I ~ a , , ~ a  ~ b  I ~ c .  

The possible hypotheses of P has 19: 

.4  0 ~--- ~ ,  

"42 =11 ~ b I, 
"4a =ll "~ a ,'-, b II, 
"46 = 1 1 "  al ~ c II, 
A s  ---II ~ a ,  ~ b II, 
"41o = 1 1 "  b, ~ c II, 
"41z = l l  ~ al ~ c, ~ b II, 
"41a =11 ~ al ~ b, ~ cl ~ a II, 
"416 - -I1" bl ~ c, ~ cl ~ a II, 
"418 

"41 =l l  ~ a II, 
"43 = l l  ~ c It, 
"45 =H ~ bl ~ c If, 
AT =-I1~ a I ~ b ~ c II, 
"49 = l l  ~ a ,  ~ c II, 
"411 =lJ ~ a ,  ~ bl ~ c H, 
A13  = 1 ~  al ~ b, ~ c I, 
A15  = 1 1 ~  al ~ b, ~ bl ~ c II, 
A l r  = l l ~  a ,  ,'-, b, ,~, c I1, 

=11 ~ al ~ b, ,-- bl ~ c, ~ cl " a II, 
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where Ao,A1,A2,A4,A117 are all the ADHs of P; A1,A~,A4 are CDHs; the 
PDHs A1, As correspond to the stable models {b, c} and {a, c}. WFDH of P is 
A4 and the state pair W F D H ( P )  = Sa4 --< ab ; ~ a ~ b >. 

The least stationary model 29 and the static model of P coincide and equal 
to S ---< ab,c I, "~ a ~ b >. It is obvious that W F D H ( P ) -  = S -  but c can 
not be inferred in WFDH from P. 

This example has been used by many authors to show the suitability of 
their semantics. It is known that, from this program, the extended well-founded 
semantics 32 and the GDWFS 4 do not infer c to be true; but the static se- 
mantics 30 and the disjunctive stable semantics 28 infer a to be true. This 
phenomenon is caused because different semantics provide deferent meaning for 
the disjunction. An interesting problem is that: Can these two disjunctions (clas- 
sical and epistemic) be represented in the bodies of rules by one single semantics 
for disjunctive logic programming. To solve this problem, it is necessary that 
the syntax should be extended. Now, we show this problem can be treated in 
our WFDH semantics for bi-disjunctive programs. In particular, the classical 
disjunction in program P1 = {c +--,,, aV ,,, b} can be represented by changing P1 
into {c ~ a; c ~,,~ b} and the program P2 = {c +--,-~ a ,-~ b} represents the 
epistemic disjunction of ,,, a ~ b. 

Example  6.3. Let P~ be the bi-disjunctive program: 

ab +-- 
c+-- ~a,,~b 

Similar to Example 6.2, it can be shown that W F D H ( P ' )  =<1 ab, c 1, I "~ 
a I -~ b H>. It is obvious that we can infer c from pi. 

By Theorem 6.4, the relationship between the stationary semantics and PDH 
can be formulated as the following result. 

Coro l la ry  {}.6. For any strongly stable disjunctive program P, stationary mod- 
els coincide with preferred disjunctive state-pairs (PDSs). 

Dix and Brass 7 propose an interesting and general approach to define 
semantics for disjunctive programs simply by postulating some semantic prop- 
erties. In particular, they define a generalization of the well-founded semantics 
called D-WFS. Though D-WFS and WFDH have quite different intuitions, D- 
WFS bears some similarities with our WFDH: (1) it extends the well-founded 
model for non-disjunctive programs and (E)GCWA for positive disjuntive pro- 
grams; (2) it represents also a form of skeptical reasoning in disjunctive logic 
programming. However, we will show that WFDH is different from D-WFS. In 
fact, D-WFS is more skeptical than WFDH. 

As shown by Dix and Brass in 7, for any disjunctive program P,  the negative 
disjunctive program Lf t (P)  can be further reduced to the so-called residual 
program res( P ). 
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Lemma 6.3. For any disjunctive program P,  P is equivalent to res(P) wrt. 
BDAS. In particular, W F D H ( P )  = W F D H ( r e s ( P ) ) .  

By Lemma 6.3, it is direct to prove the following result. 

P ropos i t i on6 .5 .  WFDH is less skeptical than D-WFS. That is, D - W F S ( P )  C 
W F D H ( P )  but 'C_ 'can not be replaced by % 'in general. 

Notice that D-WFS and WFDH have some other differences. For example, 
if a --.-~ a l l . . .   .~ ar is a disjunctive hypothesis of P with a E D - W F S  then 
there exists at least one i(1 < i < r) such that ~ ai E D - W F S ( P ) .  However, 
WFDH allows one concludes 'true 'disjunctive information. Take P = {ab <--}, 
it is not hard to see that D - W F S ( P )  contains no negative (disjunctive) literals. 
However, ~ a ~ b E W F D H ( P )  even though neither ..~ a E W F D H ( P )  nor 
,~ b e W F D H ( P ) .  

Moreover, W F D H ( P )  and D - W F S ( P )  may have distinct sets of non-disjunc- 
tive literals as the following example shows. 

Example  6.4. Let P consist of only one clause: 

alb +-- ~. a 

Since P = res(P),  it is easy to see that ,~ a e W F D H ( P )  but ~ a ~ D- 
W F S ( P ) .  For this program, it seems that WFDH should be the intended mean- 
ing of negation as failure. 

Consider another similar example. 

Example  {}.5. Let P be the following disjunctive program: 

ab +-- 
C 4 - -  , ~  a 

Then it can be verified that W F D H ( P )  ---< b, c ; IN a > and D - W F S ( P )  = 

<11 alb II; 0 >. 
Thus, our result further convinces that D-WFS is the most skeptical seman- 

tics for disjunctive logic programs. 

7 C o n c l u s i o n  

In this paper, we have provided an extension of disjunctive logic programming 
both from semantics and syntax. Syntactically, the class of bi-disjunctive pro- 
grams is defined, which includes disjunctive programs and can be considered 
as a subclass of super logic programs; Semantically, an argumentation-theoretic 
framework BDAS for bi-disjunctive programs is established, which is a simple, 
unifying and intuitive framework for disjunctive logic programming. In BDAS 
three semantics PDH, CDH and WFDH for bi-disjunctive programs are de- 
fined by three kinds of admissible hypotheses to represent credulous reasoning, 
moderate reasoning and skeptical reasoning in AI, respectively. Besides its rich 
expressive power and nondeterminism, BDAS integrates and naturally extends 
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many key semantics, such as the minimal models, EGCWA, the well-founded 
model, and the stable models. 

Besides the unifying frameworks mentioned in the previous sections, Bonatti 
5 has also defined a unifying framework for disjunctive logic programs by view- 
ing a disjunctive program as an epistemic theory. In our opinion, this framework 
and some of existing ones are not so intuitive as BDAS and argumentation is 
not treated. An interesting problem to be further investigated is the relation- 
ship between BDAS and some other major semantics for disjunctive programs. 
Some of the most interesting applications of BDAS have to also be left for future 
work. Another problem that has not been touched in this paper is the relation- 
ship between argumentation and extended disjunctive logic programming. Since 
the situation becomes quite complicated when the explicit negation is allowed 
in BDAS, this problem has to be discussed in a separate paper. A weak form of 
cumulativity of nonmonotonic reasoning defined by WFDH is given in 38 and 
further work is needed. 
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Abst rac t .  The purpose of this paper is to investigate the methodology 
of reasoning with prioritized defaults in the language of logic programs 
under the answer set semantics. We present a domain independent sys- 
tem of axioms, written as an extended logic program, which defines rea- 
soning with prioritized defaults. These axioms are used in conjunction 
with a description of a particular domain encoded in a simple language 
allowing representation of defaults and their priorities. Such domain de- 
scriptions are of course domain dependent and should be specified by 
the users. We give sufficient conditions for consistency of domain de- 
scriptions and illustrate the use of our system by formalizing various 
examples from the literature. Unlike many other approaches to formal- 
izing reasoning with priorities ours does not require development of the 
new semantics of the language. Instead, the meaning of statements in 
the domain description is given by the system of (domain independent) 
axioms. We believe that in many cases this leads to simpler and more 
intuitive formalization of reasoning examples. We also present some dis- 
cussion of differences between various formalizations. 

1 I n t r o d u c t i o n  

The purpose of this paper is to investigate the methodology of reasoning with 
prioritized defaults in the language of logic programs under the answer set se- 
mantics. Information about  relative strengths of defaults can be commonly found 
in natural  language descriptions of various domains. For instance, in legal rea- 
soning it is often used to state preference of some laws over others, e.g., federal 
laws in the U.S. can, in some cases, override the laws of a particular state. Prefer- 
ences are also used in reasoning with expert 's  knowledge where they are assigned 
in accordance with the degree of our confidence in different experts. Sometimes 
preferences in the natural  language description of the domain are given implicitly, 
e.g., a conflict between two contradictory defaults can be resolved by selecting 
the one which is based on more specific information. All these examples suggest 
tha t  it may be useful to consider knowledge representation languages capable of 
describing defaults and preferences between them. There  is a sizeable body of 
l i terature devoted to design and investigation of such languages 1, 5-7, 11, 23, 
30, 32, 33, 36. The work is too diverse and our knowledge of it is not sufficient 



Reasoning with Prioritized Defaults 165 

to allow a good classification but we will try to mention several important dif- 
ferences in approaches taken by the different authors. To shorten the discussion 
we limit our attention to approaches based on logic programming and default 
logics. 

Many differences in design seem to be caused by the ambiguity of the very notion 
of default. Sometimes defaults are understood as statements of natural language, 
of the form "Elements of a class C normally (regularly, as a rule) satisfy prop- 
erty P ' .  Sometimes this understanding is broadened to include all statements 
with defensible conclusions. The following example is meant to illustrate the 
difference. 

Suppose we are given a list t of people and want to define the class of people not 
listed in t. This, of course, can be done by the rule 

rl.  unlisted(X) +- not t(X). 

The conclusion of this statement can be defeated by expanding the table t but 
cannot be defeated by adding a fact of the form -~unlisted(x) where x r t. The 
attempt to do the latter will (justifiably) lead to contradiction. The statement 
r l  is not a default according to the first, narrow view. It is rather a universally 
true statement which does not allow exceptions and can not be defeated by other 
(preferred) statements; of course, according to the second view, r l  is a default. 
Notice, that the statement "Table unlisted normally contains all the people not 
contained in t" is a default according to the both views. Its logic programming 
representation can have a form 

r2. unlisted(X) e- not t(X),  not -~unlisted(X). 

This time the addition of ~unlisted(x) where x ~ t cause no contradiction. 

This (and similar) differences in understanding of defaults seems to sometimes 
determine the syntax of the corresponding "default" languages. The first view 
seems to lead to introducing special syntax for defaults while the second uses 
standard logic programming syntax augmented by the preference relation among 
the rules. According to the second view it seems to be also more natural to 
consider static preference relation, i.e., to prohibit occurrence of the preference 
relation in the rules of the program. 

Even more important differences can be found on determining the correct modes 
of default reasoning. To demonstrate the problem let us accept a narrow view 
of defaults and consider the theory consisting of three defaults: 

dl. "Normally a"; 

d2. "Normally b" 

dl. "Normally c" 

and three rules 

rl .  "b's are always -~a's"; 
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r2. "b's are always d's"; 

r3. "a's are always d's"; 

There seems to be at least three equally reasonable ways to deal with this theory. 
We can assume that it is inconsistent and entail everything (or nothing); We 
can be cautious and refuse to apply defaults dl and d2. In this case the only 
conclusion is c. We can be less cautious and reason by cases entailing d supported 
by two different arguments. With preference relation the situation will become 
even less clear since we will have an additional difficult question of defining what 
we mean by a conflict between defaults. 

Different choices made by the authors of default languages are expressed in their 
semantics given by defining the entailment and/or the derivability relation for 
the language. The corresponding new logics can often be viewed as "prioritized" 
versions of the existing general purpose non-monotonic formalisms 1, 5-7, 32, 28 
with new level of complexity added in fixpoint (or other) constructions defining 
the semantics. The viability of new logics is normally demonstrated by using it 
for formalization of some examples of default reasoning aimed to illustrate special 
features of the logic and the inadequacy of other formalisms. This process, even 
though useful and necessary, is often complicated by our collective lack of expe- 
rience in representing knowledge about defaults and their preferences. It is often 
unclear for instance, if unintuitive answers to queries given by various formalisms 
can be blamed on the formalism itself or on the inadequate representation of the 
original problem. Moreover, it is often unclear what is the "common-sense", 
natural language description of the original problem of which the corresponding 
formal theory claims to be a representation. This, together with technical com- 
plexity of definitions, lack of the developed mathematical theories for new logics 
and the absence of clearly understood parameters which determine the choice 
of the semantics make their use for knowledge representation a rather difficult 
task. 

This paper is the result of the authors attempts to understand some of the issues 
discussed above. We wanted to design a simple language, s capable of expressing 
and reasoning with prioritized defaults satisfying (among others) the following 
requirements: 

�9 Understand defaults in a narrow sense as statements of the form a's are nor- 
mally b's. 

�9 Allow dynamic priorities, i.e., defaults and rules about the preference relation. 

�9 Give semantics o f / :  without developing new general purpose nonmonotonic 
formalism. 

�9 Make sure that changes in informal parameters of the language such as proper- 
ties of the preference relation, the definitions of conflicting defaults, cautiousness 
or bravery in reasoning are reflected by comparatively simple changes in the for- 
malism. 
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�9 Make sure that some inference mechanism is available to reason with theories 
of s and some mathematical theory is available to prove properties of these 
theories. 

We achieve these goals by mapping theories of s (also called domain descriptions) 
into a class of extended logic programs under the answer sets semantics 21. This 
is done by presenting a logic program :P consisting of (domain independent) 
axioms defining the use of prioritized defaults; viewing domain descriptions of s 
as collections of atoms; and defining the notion of entailment between query q and 
a domain description :D in s via answer set entailment in logic programming. In 
other words, we say that a domain description :D entails a query q if q is entailed 
by the logic program :P U :D. 

This approach appears to be similar in principle to the one suggested recently in 
11 (which was not yet published when this work was completed). The result- 
ing formalisms however axe quite different technically. The precise relationship 
between the two is not yet fully investigated. 

The use of the language will be illustrated by various examples from the lit- 
erature. All the examples were run using the SLG inference engine 9, 10. We 
believe that the study of the class of logic programs described by P0 and its 
variants can complement the existing work and help to understand reasoning 
with prioritized defaults. 

The paper is organized as follows. In the next section, we introduce the language 
of prioritized defaults s and present a collection of axioms :Po. In Section 3 we 
show examples of the use of domain descriptions in/:0. Section 4 contains the 
brief discussion of several extensions of :Do. Section 5 is devoted to the class of 
hierarchical domain descriptions. Finally, in Section 6, we discuss the relationship 
between our work and that of Brewka. 

2 The Language of Prioritized Defaults 

We start with describing the class s of languages used for representing 
various domains of discourse./:0 (a) is parameterized by a multi-sorted signature 
a containing names for objects, functions and relations of the user's domain. 
By lit(g) and atoms(a) we denote the set of all (ground) literals and atoms 
of a. Literal -~-~I will be identified with I. We assume that atoms(g) contain 
two special collections of atoms, called default names and rule names which 
will be used to name defaults and strict (non-defeasible) rules of the language. 
Domain knowledge in s will be described by a collection of literals of a 
(called a-literals) together with statements describing strict rules, defaults, and 
preferences between defaults. The syntax of such descriptions is given by the 
following definitions: 

Def in i t ion  1. 

- a-literals are literals of s 
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- if d, dl,d2 are default names, lo,. . .  ,In are literals of s and  is the list 
operator of Prolog then 

rule(r, lo, l l , . . . ,  lm); (z:0.1) 

defaul t (d,  lo, 11, . . . , lrnl); (Z:o.2) 

conflict(d1, d2); (/:0-3) 

prefer(d1,  d2); (/:o-4) 

are literals of s (a). 

A set D of ground literals of / :o(a)  will be called domain description (with 
underlying signature a). 

We assume that symbols defaul t ,  rule, conf l ic t  and p re f e r  do not belong to a. 
Relations, denoted by these symbols will be called domain independent. 

A set S of s literals containing variables (ranging over objects of various 
types) will be viewed as a shorthand for the set of all (properly typed) ground 
instantiations of literals from S. Statements (/:o.1) and (/:o.2) will be called 
definitions of rule r and default d respectively. Intuitively, the statement (/:o.1) 
defines the rule r which says that if literals 11, . . . ,  lm are true in a domain 
description 2) then so is the literal lo. It can be viewed as a counterpart of the 
logic programming rule 

lo 4"- l l , . . .  ,Ira. 

Literals lo and 11,. . . ,  lm are called the head and the body of r and are denoted 
by head(r) and body(r) respectively. 

The statement (E0.2) is a definition of the default d which says that normMly, if 
l l , . . . ,  lm are true in 2) then lo is true in 2:). The logic programming counterpart 
of d is the rule 

lo +- /1 , . . - ,  ira, not -~lo. 

As before we refer to lo as the head of d (head(d)) and to l l , . . . ,  lm as its body 
(body(d)). 

The statement (/:o.3) indicates that dl and d2 are conflicting defaults. In many 
interesting cases confl ict(dl ,d2)  will be true iff heads of defaults dl and d2 
are contrary literals, but other defaults can also be declared as conflicting by 
the designer of the domain description. Finally, the statement (/:o.4) stops the 
application of default d2 if defaults dl and d2 are in conflict with each other and 
the default dl is applicable. 
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This informal explanation of the meaning of domain independent relations of 
s (a) will be replaced by the precise definition in the next section. But first we 
will attempt to clarify this meaning with the following examples. 

Example 1. Let us assume that we are given complete lists of students enrolled 
in various university departments. We know that in general, students can not 
write computer programs and that computer science students do it regularly. 
Let us represent this information by a domain description :Do. 

The underlying signature ~ of Do contains student names, mary, mike, sam, 
..., department names cs, cis, art, ..., appropriately typed predicate symbols 
is_in(S, D) and can_progr(S) read as "Student S is in department D" and "Stu- 
dent S can program", and default names of the form dl (S), d2(S), and d3(S, D). 

The defaults from our informal description can be represented by statements 

de fault( dl ( S), -~can_progr( S), student(S)). 
de fault( d2( S), can_progr( S), student(S), is_in(S, cs)). 

Finally, the lists of students mentioned in the informal description will be rep- 
resented by the collection F of facts: 

student(mary), dept(cs), is_in(mary, cs). 
student(mike), dept(art), is_in(mike, art). 
student(sam), dept(cis), is_in(sam, cis). 

We also need the closed world assumption 34 for is_in, written as the default 

default(d3(S, D), -~is_in(S, D),  ). 

Relations student and dept are, of course, not necessary. They are playing the 
role of types and will later allow us to avoid floundering when applying the SLG 
inference engine to this example. 

We will assume that our domain description contain statements of the form 
conlict(dl, d2) for any two defaults with contrary heads and that the relation 
conflict is symmetric. This will guarantee that :Do will contain 
conflict(d1 (X), d2 (X)) and conflict (d2 (X), dl (X)). (These assumptions will be 
of course enforced later by the corresponding axioms). 

Informally, the domain description T~o should allow us to conclude that Mike 
and Sam do not know how to program, while we should remain undecided about 
programming skills of Mary. This is the case only as long as we do not assume 
that the second default overrides the first one, due to the specificity principle. 
We can use the relation prefer from our language to record this preference by 
stating 

pre f er(d2(X), dl(X)). 

From the new domain description 7)1 we should be able to conclude that Mary 
can write programs. 
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The next example is meant to illustrate the behavior of conflicting defaults in 
the presence of strict rules. 

Example 2. Consider the domain description 7)2 consisting of two defaults 

default(all, p, ~) 

default(d2, q, Jr), 

the rules 

rule(rl,-~p, q) 

rule(r2,-~q, p) 

and the fact 

r .  

(Intuitively, the logic programming counterpart of I12 consists of the rules 
p ~-- not -~p 
q +-- r, not -~q 
"~p ~ q 
-~q +- p 

Notice that the last two rules can be viewed as a translation into the logic 
programming language of the conditional q's are always not p's.) 

The intended meaning of 112 should sanction two alternative sets of conclusions: 
one, containing p and -~q, and another containing q and -~p. If we expand 112 by 

conflict(d2, dl) 

prefer(d2, dl ) 

the application of dl should be blocked and the new domain description 7)3 
should entail q and -~p. Notice, that if conflict(d2,dl) were not added to the 
domain description then addition of prefer(d2, dl) would not alter the conclu- 
sions of 7)2. This is because preference only influences application of conflicting 
defaults. 

More examples of the use of the language C0 for describing various domains will 
be found in the following sections. In the next section we give a precise definition 
of entailment from domain descriptions of s 

2.1 Axioms  of  ~o  

In this section we present a collection :P0,~ of axioms defining the meaning of 
the domain independent relations of Co(a). The axioms are stated in the lan- 
guage of logic programs under the answer set semantics. They are intended 
to be used in conjunction with domain descriptions of /:o(a) and to define 
the collection of statements which (strictly and/or defeasibly) follow from a 
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given domain description 7). More precisely, we consider two basic relations 
holds(1) and holds_by_default(l) defined on literals of s  which stand for 
"strictly holds" and "defeasibly holds", respectively. The query language associ- 
ated with domain descriptions of s (a) will consist of ground atoms of the form 
holds_by_default(l), holds(1), and their negations. In what follows, by laws(l)) 
we denote the set of statements of the forms (s and (s from definition 1 
which belong to 7); facts(7)) = 7) \ laws(7)). 

Definit ion 2. We say that  a domain description 7) entails a query q (7) ~ q) 
if q belongs to every answer set of the program 7~o,a(7)) = 7)o,a U (holds(l) I I E 
facts(z))} u la s(7)). 

Program P0 t consists of the following rules: 

Non-defeas ible  Inference: 

holds(L) +- rule(R, L, Body), (7)o.1) 

hold(Body). 

hold( ). (Po.2) 

hold(HIT) +- holds(H), (7~0.3) 

hold(T). 

The first axiom describes how the rules can be used to prove that  a s (a) literal 
1 is non-defeasibly true in a domain description 7). The next two axioms define 
similar relation on the lists of literals in s i.e., hold(Ill,... ,ln) iff all the 
l's from the list are true in 7). 

Defeasible Inference: 

hol ds_by Me f aul t ( L ) ~ holds(L). (Po.4) 

holds_by_default(L) +- rule(R, L, Body), (7~o.5) 

hold_by_default(Body). 

holds_by.default(L) ~ default(D, L, Body), (Po.6) 

hold_by_default(Body), 

1 In what follows we assume that a is fixed and omit reference to it whenever possible. 
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not defeated(D), 
not holds_by_de f ault(-~ L ). 

hold_by_default( ). 

hold_by_default(HIT) +- holds_by_default(H), 
hold_by_default(T). 

(po.7) 

The first axiom in this group ensures that strictly true statements are also true 
by default. The next one allows application of rules for defeasible inference. The 
third axiom states that defaults with proven premises imply their conclusions 
unless they are defeated by other rules and defaults of the domain description. 
The condition not holds_by_default(~L) is used when the domain contains two 
undefeated defaults dl and d2 with conflicting conclusions. In this case :P0(T)) 
will have multiple answer sets, one containing the conclusion of dl and the other 
containing the conclusion of d2. The alternative solution here is to stop appli- 
cations of both defaults, but we believe that in some circumstances (like those 
described by the extended "Nixon Diamond") our solution is preferable. 

The last two rules from this group define relation hold_by_default(List) which 
holds if all literals from the list hold by default. 

Defea t ing  defaults:  

defeated(D) +-- default(D, L, Body), 
holds(~L). 

defeated(D) +- default(D, L, Body), 
default(D1, L1, Bodyl ), 
holds(conflict(D1, D) ), 
holds_by_default(prefer(D1, D)), 

hold_by_default ( B odyl ) , 
not defeated(D1). 

('Po-9) 

(P0.10) 

These axioms describe two possible ways to defeat a default d. The first axiom 
describes a stronger type of defeat when the conclusion of the default is proven 
to be false by non-defeasible means. The axiom (P0.10) allows defeating of d by 
conflicting undefeated defaults of higher priority. They represents the "bravery" 
approach in the application of defaults. In the next section, we show how our 
axioms can be expanded or changed to allow other ways of defeating defaults. 
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Now we are left with the task of defining conflicts between defaults. There are 
several interesting ways to define this notion. Different definitions will lead to 
different theories of default reasoning. The investigation of ramifications of dif- 
ferent choices is, however, beyond the limits of this paper. Instead we introduce 
the following three axioms which constitute the minimal requirement for this 
relation. 

holds(conflict(all, d2 ) ) +- default(d1, L1, Body1), 
default(d2, L2, Body2), 
contrary (L1, L2). 

(9o.11) 

for any two defaults with contrary literals in their heads and for any two defaults 
whose heads are of the form prefer(di, dj) and prefer(dj,  di) respectively. The 
precise definition of contrary is given by the rules (90.21) and (~Vo.22). 

-~hol ds (con f l ict ( D , D ) ) . 

holds(conflict(D1, D2 ) ) +- holds(conflict(D2, D1) ). 

(79o.12) 

(9o.13) 

Finally, we include axioms stating asymmetry of the preference relation: 

-~holds(pre f er( D1, D2 ) ) e- holds(prefer(D2, Dl)), 

D1 ~ 192. 

-~holds.by_de f ault(pre f er( D1, D~) ) +- holds_by_default(prefer(D2, DI ) ), 
D1 ~ D2. 

(90.14) 

(~0.15) 

Without the loss of generality we can view these axioms as schemes where D1 
and D2 stand for defaults present in 7:). The equality used in these axioms is 
interpreted as identity. Notice, that our minimal requirements on the preference 
relation do not include transitivity. On the discussion of nontransitive preference 
relations see 18, 25. 

U n i q u e n e s s  of  names  for defaults  and rules: 

These three axioms guarantee uniqueness of names for defaults and rules used 
in the domain description. 
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~rule(R, F1, BI) +- default(R, F2, B2). 

-~rule(R, F1, B1) +- rule(R, F2, B2), 

rule(R, F1, B1) ~ rule(R, F2, B2) 

-~default(D, F1, B1) +- default(D, F2, B2), 

default(D, F1, B1) ~ default(D, F2, B2). 

(po.16) 

(po.17) 

(Po.18) 

Addition of these axioms is needed only to make domain descriptions con- 
taining statements default(d, 11, F1) and default(d, 12, F2), rule(rl, 11, F1) and 
rule(rl, 12, F2), etc, inconsistent. 

Auxiliary 

Finally we have the axioms 

~holds(L) +- holds(-~L). 

-~holds_by_de fault( L) +- holds_by_de f ault(-~L ). 

(P0.19) 

(Po.20) 

contrary(L,-~L). 

contrary(prefer(D1, D2),prefer(D2, D1)) +- D1 # D2. 

(Po.21) 

(Po.22) 

whose meaning is self-explanatory. 

We believe that :Po (:D) captures a substantial part of our intuition about rea- 
soning with prioritized defaults and therefore deserves some study. 

3 U s i n g  t h e  A x i o m s  

In this section we illustrate the use of our approach by formalizing several ex- 
amples of reasoning with priorities. In what follows we will refer to running our 
programs using SLG inference engine. Since the syntax of SLG does not allow 
"-," we treat it as a new function symbol and consider only those stable models 
of P0(T)) which do not contain literals of the form a and ned(a). 
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Example 3. (Example 1 revisited) 
It is easy to check that the program :P0(:D0) (where Do is the domain description 
from Example 1) has two answer sets, containing 

-~hd( can_pr ogr (mary ) ) , -~hd( can_pr ogr ( m i ke ) ) , -,hd( can_pr ogr (sam ) ) } 

and 

( hd(can_progr(mary) ), -~hd(ean_progr(mike) ), -~hd(can_progr(sam) ) ), 

respectively, where hd is a shorthand for holds_by_default. Hence, we can con- 
clude that Mike and Sam do not know how to program but we have to stay 
undecided on the same question about Mary. 

If we expand the domain by adding the statement prefer(d2, dl) then the first 
answer set will disappear which of course corresponds exactly to our intention. 
It may be instructive to expand our domain by the following information: "Bad 
students never know how to program. Bob is a bad computer science student". 
This can be represented by facts 

student(bob). 
bad(bob). 
is_in(bob, es ) . 

and the rule 

rule(r2 ( S), -~can_progr( S), student(S), bad(S)). 

The new domain description D4 will correctly entail that Bob does not know 
how to program. Notice, that if the above rule were changed to the default 

de fault(  d3( S), -~can_progr( S), student( S), bad( S) ) 

we would again get two answer sets with contradictory conclusions about Bob, 
and that again the conflict could be resolved by adding, say, 

prefer(d3 ( S) , d2 ( S) ). 0 

The previous example had an introductory character and could have been nicely 
formalized without using the preference relation. The next example (from 5, 
which attributes it to 24) is more sophisticated: Not only does it require the 
ability to apply preferences to resolve conflicts between defaults, but also the 
ability of using defaults to reason about such preferences. Brewka in 5 argues 
that the ability to reason about preferences between defaults in the same lan- 
guage in which defaults are stated is important for various applications. In legal 
reasoning similar arguments were made by Gordon, Prakken, and Sartor 24, 32. 
On the other hand, many formalisms developed for reasoning with prioritized 
defaults treat preferences as something statically given and specified separately 
from the corresponding default theory. 
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Example J. (Legal Reasoning 5) Assume that a person wants to find out if her 
security interest in a certain ship is perfected. She currently has possession of 
the ship. According to the Uniform Commercial Code (UCC) a security interest 
in goods may be perfected by taking possession of the collateral. However, there 
is a federal law called Ship Mortgage Act (SMA) according to which a security 
interest in a ship may only be perfected by filing a financing statement. Such 
a statement has not been filed. Now, the question is whether the UCC or the 
SMA takes precedence in this case. There are two known legal principles for 
resolving conflicts of this kind. The principle of Lex Posterior gives preference 
to newer law. In our case the UCC is newer than the SMA. On the other hand, 
the principle of Lex Superior gives precedence to laws supported by the higher 
authority. In our case the SMA has higher authority since it is federal law. 

Let us build the domain description 7)5 which represents the above information. 
We will follow the formalization from 5 which uses symbols possession for "ship 
is a possession of the lady from the above story", perfected for "the ownership 
of the ship is perfected", and filed for "financial statement about possession of 
the ship is flied". The domain also contains symbols state(D), federal(D), and 
more_recent(D1, D2) representing properties and relations between legal laws. 

The UCC and SMA defaults of 7)5 can be represented by 

default(d1, perfected, ~ossession). 
default(d2,-.perfected, -. f ile~ ). 

The two legal principles for resolving conflicts are represented by the next two 
defaults: 

de f ault(d3 (D1, D2), prefer(D1, D2), more_recent(D1, D2)). 
de fault( d4 ( D1, D2 ) , prefer(D1, D2), federal(D1), state(D2)). 

The next defaults will express the closed world assumptions for relations 
more_recent, federal and state. Presumably, a reasoning legal agent must have 
complete knowledge about the laws. The following defaults are added to 7)5 to 
represent this CWA assumption. 

default(dh(D1, D2), -.more_recent(D1, D~),  ). 
default(d6(D), ~federal(D), ). 
de fault( dT( D ), -.state(D), ). 

To complete our formalization we need the following facts: 

-.filed. 
possession. 
more_recent(d1, d2 ). 
federal(d2). 
state(d1). 

It is not difficult to check (using SLG if necessary) that the program ~o0(7)5) has 
two answer sets where 
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(i) holds_by_default(perfected) 

belongs to one answer set and 

(ii) -~holds_by_de f ault(per f ected) 

belongs to the other�9 This is because we have two defaults dl and d2: the former 
supports the first conclusion, the latter - the second one, and preference between 
them cannot be resolved using defaults d3 and da. Thus, neither (i) nor (ii) is 
entailed by P0(~5). This is also Brewka's result in 5�9 

However, if we know that d4 has a preference over d3 the situation changes; To 
see that, let us expand our domain description by 

pre f er( d4( D1, D2 ), d3(D2, O1)). 

and denote the new domain description by ~P6; as a result, program ~0(~P6) has 
then only one answer set, which contains (ii). This is again the desired behavior, 
according to 5�9 It may be worth noticing that the closed world assumptions 
ds, d6 and d7 have no role in the above arguments and could be removed from 
the domain description. They are important, however, for general correctness of 
our representation�9 The example can be substantially expanded by introducing 
more realistic representation of the story and by using more complex strategies 
of assigning preferences to conflicting defaults. We found that the corresponding 
domain descriptions remain natural and correct. 

Example 5. (Simple Inheritance Hierarchy) Now let us consider a simple inher- 
itance hierarchy of the form depicted in fig (1). 

�9 

Figure 1. The Inheritance Hierarchy of D7 

A simple hierarchy consists of two parts: an acyclic graph representing the proper 
subclass relation between classes of objects and a collection of positive and neg- 
ative defaults from these subclasses to properties of objects. In fig (1) we have 
three class nodes, a, b, and c. The strict link between the class nodes, say, a 
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and b can be read as "a is a proper subclass of b". Dotted lines from b and c 
to property p represent positive and negative defaults respectively. The simple 
hierarchy is used in conjunction with a collection of statements is_in(x, c) read 
as "x is an elements of a class c". For simplicity we assume completeness of in- 
formation about relations subclass and is_in. (For discussion of hierarchies with 
incomplete information, see 20). 

The encoding of simple hierarchies will consists of two parts: the first representing 
a particular graph and the second containing general properties of a hierarchy 
together with the inheritance principle. Notice, that the second part is common 
to all simple hierarchies. 

In our case, the domain description 7:)7 encoding the hierarchy from fig (1) con- 
sists of domain dependent axioms 

subclass(a, b). 
subclass(c, b). 
is_in(x1, a) 
is_in(x2, c) 
default(d1 (X), has(X, p), is_in(X, b)) 
default(d2 (X), -~has(X, p), is_in(X, c)) 

(where has(X, P) stands for "element X has a property P")  and the domain 
independent axioms 

rule(r1 (Co, C2), subclass(Co, C2), subclass(Co, C1), subclass(C1, C2)). 
rule(r2 ( X, C1), is_in(X, C1), subclass(Co, C1), is_in(X, Co)). 
rule(r3 (91 (X), D2 (X) ), prefer(D1 (X), D2 (X) ), d(Dl (X), _, is(X, A)), 

d(D2 (X), _, is(X, B)), 
subclass(A,B)). 

default(d3 ( X), -~is_in( X), D). 
default(d4, -~subclass( A, B ), ~). 

(where d stands for default and _ is used where names are not important). The 
first two rules represent general properties of subclass and is_in. The next rule 
is an encoding of the inheritance principle. The last two defaults express the 
closed world assumptions for simple hierarchies. 

It is easy to check that T)~ is consistent and that the logic program P0(7~7) has 
the unique answer set containing holds_by_default(has(x1, p)) and 
holds_by_default(-~has(x2,p)). Consistency result can be easily expanded to 
"rule-consistent" domains representing simple hierarchies. 

We use the next example from Brewka 7 to illustrate differences between our 
theory and several other formalisms dealing with prioritized defaults. 

Example 6. (Gray Area) Brewka considers the following defaults: 

1. "Penguins normally do not fly;", 
2. "Birds normally fly;", and 
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3. "Birds that can swim are normally penguins;", 

under the assumption that default (1) is preferred over (2), and (2) is preferred 
over (3). (Notice, that Brewka assumes transitivity of the preference relation). 

These defaults are represented in his formalism by a program 

bird. 
swims. 
(dl) -,flies ~- not flies,penguin. 
(d2) f l ies +-- not -,flies, bird. 
(d3) penguin +- not -~penguin, bird, swims. 

According to Brewka, the prioritized default theories from 1, 5, 28 are applicable 
to this case and produce single extension E1 = {swims, bird, flies, penguin} 
which seems contrary to intuition. According to the semantics from 7 the corre- 
sponding program has one prioritized answer set, E2 = {swims, bird, penguin, 
-,flies} which is a more intuitive result. The information above is naturally 
encoded in the domain description 798 by the following statements 

bird. 
swims. 

default(d1,-~flies, ~penguin). 
default(d2, flies, bira~). 
default(d3, penguin, bird, swims). 

prefer (dl, d2). 
prefer ( d2, d3 ). 
prefer (dl, dz). 

The program Po(79s) has only one answer set which contains 
$1 = {holds_by_default(bird), holds_by_default(swim), 

holds_by_default(penguin), -~holds_by_de fault( flies) }. 
which coincides with the approach from 7. This happens because the default 
d3 is in conflict with neither dl nor d2 and therefore its application is not influ- 
enced by the preference relation. If we expand the domain description 798 by a 
statement 

conflict(d2, d3 ) 

the situation changes. Now we will have the second answer set, 

$2 = {holds_by.default(bird), holds_by_default(swim), holds_by_default(flies)}. 

which corresponds to the following line of reasoning: We are initially, confronted 
with "ready to fire" defaults (d2) and (d3). Since (d2) has a higher priority and 
d2 and d3 are conflicting defaults, d2 wins and we conclude flies. Now, (dl) is 
not applicable and hence we stop. 
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To obtain $1, we can apply defaults (dl) and (d3). Since (d2) is then defeated 
by (dl) it will not block (d3). Q 

We realize of course that this example belongs to the gray area and can be 
viewed differently. The main lesson from this observation is that in the process 
of expressing ourself (while programming or otherwise) we should try to avoid 
making unclear statements. Of course, we hope that further work on semantics 
will help to clarify some statements which so far remain unclear. We also hope 
that the reader is not left with the impression that we claim success in following 
our own advice. 

4 E x t e n d i n g  ~:o(O') 

In this section we briefly outline and discuss several extensions of the language 
E0(a). We show how to extend the language and the corresponding collection 
of axioms to allow the representation of more powerful defaults and default 
defeaters. 

4.1 Beyond Normal Defaults 

The domain descriptions of s contain defaults whose logic programming 
counterparts are of the form 

(ND) lo +- 11,... ,In,not -~lo. 

These rules can be viewed as normal defaults in the sense of Reiter 35. Even 
though the ability to express priorities between the defaults gives the domain 
descriptions of s (a) expressive power that exceeds that of default theories of 
Reiter consisting of (ND)-rules, this power is not sufficient for some applications. 
In this section we expand the language s (a) and the corresponding system of 
axioms to make it possible to represent more general types of defaults. To this 
end we replace the definition of default description in s (see s in the 
Definition 1) by the more powerful construct 

default(d, lo, l l , . . . ,  Ira, Ira+l,..., l=l) (s 

The intuitive meaning of this statement is that normally, if 11,..., Im are true in 
T) and there is no reason to believe that Ira+l,..., In are true in :D then 10 is true 
in :D. In other words, the statement (s corresponds to the logic programming 
rule 

lo ~- 11,... ,lrn,not /~n+l,... ,not In,not -~lo. 

Literals l l , . . . ,  l,~ and/re+l, �9 �9 In are called positive and negative preconditions 
of d respectively. Both sets of preconditions will be sometimes referred to as the 
body of statement (s 
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Our set of axioms 7)0 will be modified as follows: axioms (7)0.6) and (7)0.10) will 
be replaced by axioms 

holds_by_default(L) +- holds(default(D, L, Positive, Negative)), 
hold_by_default(Positive), 
fail_by_default(Negative), 
not defeated(D), 
not -~holds_by_de fault( L ). 

(7).6) 

defeated(D) +- holds(default(D1, L, Positive, Negative)), 
holds_by_default(prefer(D1, D ) ), 
hold_by_default(Positive), 
fail_by_default(Negative), 
not defeated(D1). 

where fail_by_default is defined as follows: 

(7).10) 

fail_by_default( ). (7).23) 

f ail_by_de f ault(HIT) +- not holds_by_default(H), (7).24) 

fail_by_default(T). 

We hope that the modification is self-explanatory. 

The following example, taken from 32, illustrates the use of the new language. 

Example 7. 33 Consider the following two legal default rules: 

1. Normally, a person who cannot be shown to be a minor has the capacity to 
perform legal acts. 

2. In order to exercise the right to vote the person has to demonstrate that  he 
is not a minor. 

The first default can be represented as 

de fault( dz (x), has_legal_capacity(x), , minor(x)) 

which requires a negative precondition. The second default has the form 

default(d2 (x), has_right_to_vote(x), -~minor(x),  ). 

These defaults, used in conjunction with statement ~minor(jim) entail that  J im 
has legal capacity and the right to vote. If the system is asked the same questions 
about  Mary whose legal age is not known it will conclude that  Mary has legal 



182 Michael Gelfond and Trail Cao Son 

capacity but will remain in the dark about Mary's right to vote. If we expand 
our domain description by the closed world assumption for has_right_to_vote 

de f ault(d3 (x), -~has_right_to_vote(x), , ) 

then the answer to the last question will be no. Q 

4.2 Weak  Excep t ions  to Defaul t s  

So far our language allowed only strong exceptions to defaults, i.e., a default 
d could be defeated by rules and by defaults conflicting with d. Many authors 
argued for a need for so called weak exceptions - statements of the form "do 
not apply default d to objects satisfying property p". (For the discussion of 
the difference between weak and strong exceptions see, for instance, 2.) Weak 
exceptions of this type can be easily incorporated in our language. First we 
expand the language by allowing literals of the form 

exception( d(xl, . . . , Xk ), 11,..., ln, I/n+1,..-, ln+m) 

read as "the default d is not applicable to x l , . . . ,  xk which satisfy 11,..., In and 
not In+l,... ,  not ln+m". The formal meaning of this statement is defined by an 
axiom 

defeated(D) +- exception(D, Positive, Negative), (7~.25) 

hold_by_default(Positive), 
fail_by_default(Negative). 

added to P0. 

Consider a domain description/)9. 

de/ault(d(X),p(X), q(X), ). 
exception(d(X), r(X), ). 
q(xl). 

r(x2). 

It is easy to check, that the corresponding program :P0(7)9) (and hence 7)9) 
entails p(xl) but remains undecided about p(x2). Notice, that we were able to 
entail p(xl) even though Xl may satisfy property r, i.e. 7)0 ~: -~r(xl). In some 
cases we need to be able to say something like "do not apply d to x if x may 
satisfy property r". This can be achieved by replacing the exception clause in 
7)9 by 

exception(d(X), , -~r(X)). (s 
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The new domain description entails neither p(xl) nor p(x2). 

We will denote the language and the system of axioms described in this section 
by/~ and 79 respectively. We believe that the system is useful for reasoning with 
prioritized defaults and deserves careful investigation. In this paper however we 
present only several illustrative results about 790 . A more detailed analysis of 79 
will be done elsewhere. Before presenting these results we would like to mention 
another possible extension/modification of the system. 

i 

4.3 Changing the Mode of Reasoning 

In our theory 790 we formalized a " brave" mode of applying defaults. In this 
section we briefly mention how the axioms can be changed to allow for cautious 
reasoning. This can be achieved by adding to 79o the axiom 

defeated(D) +- default(D, L, Body), 
default(D1, L1, Body1), 
holds(conflict(D1, D ) ), 
not holds_by_default(prefer(D1, D ) ) , 
not holds_by_default(prefer(D, D1)), 

hold_by_default(Body), 
hold_by_default(Body1) 

(79.26) 

Let us denote the resulting program by 790,c. Now let us consider the domain 
description D10 consisting of defaults and conditionals mentioned in the intro- 
duction 

default(d1, a, ~). 
default(d2, b, ~). 
default(d3, e, ~). 
conflict(d1, d2). 
rule(r1,-~a, b). 
rule(r2, d, b). 
rule(r3, d, a). 

rule(rl, a). 
rule(  , 
 ute(r , -a,  

It is easy to check that 79o(7910) has two answer sets containing {c, a, d, -~b} and 
{c, b, d, -~a} and therefore entails d and c. In contrast 790,c(:D10) has one answer 
set containing c and not containing d. 

It is worth mentioning that it may be possible in this framework to introduce 
two types of defaults - those requiring brave and cautious reasoning and add the 
above axiom for the latter. 
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5 H i e r a r c h i c a l  D o m a i n  D e s c r i p t i o n s  

D e f i n i t i o n  3. We will say that  a domain description 79 is consistent if 790 (79) 
is consistent, i.e., has a consistent answer set. 

Obviously, not all domain descriptions are consistent; 79 = {p,-~p,q), for in- 
stance, is not. 

(Notice that  this is the intended meaning. We believe that  the question of draw- 
ing conclusions in the presence of inconsistency is somewhat orthogoned to the 
problem we address in this paper and should be studied separately. ) 

In the next example inconsistency is slightly less obvious. 

Example 8. The domain description 7911 consists of the following three literals: 

default(d, a, D). 
rule(r1,-~c, a). 
C. 

It is easy to see that  79o(79n) does not have a consistent answer set. This happens 
because nothing prevents rule (790.6) of 790 from concluding that  a holds by 
default. This conclusion, together with fact c and rule rl  from 7911 leads to 
inconsistency. Notice, that  addition of the rule 

rule(r2,-~a, c). 

blocks the application of (790.6) and restore consistency. 

In this section we give a simple condition guaranteeing consistency of domain 
descriptions of Z:o. The condition can be expanded to domain descriptions of s 
but  we will not do it in this paper. From now on, by domain descriptions we will 
mean domain descriptions of f~o. 

We will need the following definitions. 

D e f i n i t i o n  4. The domain description 79 is said to be rule-consistent if the 
non-defeasible part of 790 (79) has a consistent answer set. (By the non-defeasible 
part  of 790(79) we mean the program 79~(79) consisting of the set {holds(l) I l e 
facts (79))Ulaws(79) and nondefeasible rules (rules (790.1)- (79o.3), (79o.9), (79o.12)- 
(790.14), (79o.16)-(79o.19), and (79o.21)-(790.22) of 790). 

D e f i n i t i o n  5. A domain description 79 over signature a will be called hierar- 
chical if it satisfies the following conditions: 

1. 7) is rule-consistent; 
2. 79 does not contain statements of the form s (i.e., there are no conflicts 

except those specified in 790); 
3. heads of defaults in 79 are a-literals or literals of the form prefer(d1, d2); 
4. no literal from the head of a default in 79 belongs to the body of a rule in 79; 



Reasoning with Prioritized Defaults 185 

5. there is a function rank  from the set heads(7)) of literals belonging to the 
heads of defaults in 7) to the set of ordinals such that  

(a) if 1 E head(7)) and -~l E head(7)) then rank( l )  = rank(-~l); 

(b) if prefer(d1,  dg)) e head(7)) and prefer(d2,  dl) E head(7)) then 
rank(prefer(al l ,  d2) ) = rank(pre fer (d2 ,  dl)); 

(c) if de faul t (d ,  l, 11, . . . , ln) e 7) and li e heads(7)) then rank(1) > rank(li);  

(d) if prefer(al l ,d2)  e heads(7)) and dl ,d2 e 7) then 
rank(head(di))  > rank(pre fer (d1 ,  d2)) for i = 1, 2; 

It is easy to check that domain descriptions :Do, 7)1, 7)4, and 7)6 are hierarchical 
while D2,7)3,7)7 are not. In 7)2 and 7)7, the condition (4) is violated while 
(2) is not true in /)3. Domain description 7)5 is also hierarchical. The rank 
function for / )5  can be given by rank(l)  = 1 for l • (per f ec ted , - .per f ec ted} ,  
rank(per fec ted)  = rank(-~per fected)  = 4, and rank(pre  f er( dl  ( X ), d2(X)))  = 
r a n k ( p r e f e r ( d 2 ( X ) ,  dl (X) ) )  = 2. 

T h e o r e m  1. Hierarchical domain descriptions are consistent. 

P r o o f .  (Sketch) To prove the theorem we first simplify the program 7)o(7)) by 

(i) replacing all the occurrences of literals of the form ho ld ( l l , . . . ,  In) 
and hold_by_defaul t ( I l l , . . . ,  ln) in the bodies of the rules from 7)o(:D) by 
holds(ll) ,  . . . , holds(In) and holds_by_de f ault( l l) ,  . . . , holds_by_default(In) respec- 
tively and 

(ii) dropping the rules with these literals in the heads. 

It is easy to verify that  7)0(7)) is a conservative extension of the resulting 
program P2 (D) (whose language does not contain predicate symbols hold and 
hold_by_default). 

Now let us notice that,  since 7) is a hierarchical domain description, the non- 
defeasible part  7~(D) of 7)0(/)) has a unique consistent answer set, say H.  This 
answer set can be used to further simplify ;~ (D) by eliminating all the occur- 
rences of literals from H.  This is done by using the splitting set theorem of 27 
and removing some useless rules. Finally, we drop the rule (:P0.20) and replace 
the occurrences of holds_by_default(1) and deeated(d) in t)o(7)) by I and d 
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respectively. We call the resulting program Q(9) the deeasible counterpart of 
9 .  

Q ( 9 )  = 

I. if holds(t) e H (1) 

l +- l l , . . . ,  l,~, (2) 
not d, 
not -~l. 

42 ~- 

-,prefer(dl, d2) +-- 

if default(d,l, l l , . . . ,  ln) e ~) 
and holds(t) r H, 
and holds(-,l) r H 

l l , . .  �9 , I n ,  
prefer(d1, d2), 
not dl. 

if d2 E 9 ,  
de f ault(dl , l, 11, . . . , l,~) e V, 
holds(con flict(dl , d2) ) e H 
and holds(l) r H 
and holds(-~l) r H, 

prefer (d2, dl). 

if holds(prefer(d1, d2)) r H 
and holds(prefer(d2, dl)) • H 
and dl,d2 E 9 

(3) 

(4) 

Using the splitting sequence theorem, and the assumption that 9 is hierarchical, 
we can prove that for any a-literal I 

7~o(V) ~ holds_by_default(t) iff Q(D) ~ I. 

In the last part of the proof we show that Q(9) is consistent. This implies the 
consistency of 500(9). 

The detailed proof of the theorem 1 can be found in appendix A. 

The last example in this section demonstrates the importance of the requirement 
for existence of the rank function in definition 5. 

Example 9. Let us consider the following domain description, ~12. 

de f auU( dl, l, D). 
default(d2,-~l, If). 
prefer (d2, dl). 



Reasoning with Prioritized Defaults 187 

It is easy to see that  l)12 has no rank function. To show that  Z)12 is inconsistent 
it suffices to verify that  ~o0(:D12) is consistent iff the following program R is 
consistent: 

l +-- not dl, not -~l 
-,l +- 1,not d2,not l 
dl +-- l, not d2 

Obviously, R is inconsistent. <) 

It is worth mentioning that  the domain description Z)13 which is obtained from 
Z)12 by removing the preference prefer(d2, dl) is consistent. This demonstrates 
the difference between prioritized defaults and preferential model approaches 
(see e.g. 22). In these approaches existence of preferred models is guaranteed if 
the original theory has a model and the preference relation is transitive. 

6 Domain Descriptions and Prioritized Logic Programs 

In this section we discuss the relationship between our theory of prioritized de- 
faults and the prioritized logic programs recently introduced by G. Brewka 7. 
In Brewka's approach, a domain description is represented by a prioritized logic 
program (P, <) where P is a logic program with the answer set semantics rep- 
resenting the domain without preferences and < is a preference relation among 
rules of P.  The semantics of (P, <) is defined by its preferred answer set - answer 
sets of P satisfying some conditions determined by <. 

We will recall the notion of preferred answer sets from 7 and show that  for a 
restricted class of hierarchical domain descriptions Brewka's approach and our 
approach are equivalent. In what follows, we will use the following terminology. 

A binary relation R on a set S is called strict partial order (or order) if R is 
irreflexive and transitive. An order R is total if for every pair a, b E S, either 
(a, b) E R or (b, a) e R; R is well-founded if every set X C S has a minimal 
element; R is well-ordered if it is total and well-founded. 

Let P be a collection of rules of the form 

r : lo +- l l , . . .  , lm,not lm+l , . . .  ,not  In 

where li's are ground literals. Literals l t , . . . ,  l~ are called the prerequisites of r. 
If m = 0 then r is said to be prerequisite free. A rule r is defeated by a literal 
l if I = li for some i E {m + 1 , . . . ,  n);  r is defeated by a set of literal X if X 
contains a literal that  defeats r. A program P is prerequisite free if every rule in 
P is prerequisite free. 

For a program P and a set of literals X,  the reduct of P with respect to X ,  
denoted by X p ,  is the program obtained from P by 

- deleting all rules with prerequisite l such that  l ~ X; and 
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- deleting all prerequisites of the remaining rules. 

De f in i t i on  6. (Brewka 7) Let (P, <) be a prioritized logic program where P 
is prerequisite free and < is a total order among rules of P.  Let 
C< (P) = Ui~176 Si where 

S 0 = 0  

f Sn-1 if rn is defeated by Sn-1 
Sn =  Sn-1 U {head(rn)} otherwise 

and rn is the n th rule in the order <. Then 

- An answer set A of P is called a preferred answer set 2 of (P, <) if A = C< (P). 
- For an arbitrary prioritized logic program (P, <), a set of literals A is called 

a preferred answer set of (P, <) if it is an answer set of P and A = C<, (Ap) 
for some total order <r that  extends <. 

- A prioritized program (P, <) entails a query q, denoted by (P, <) ~ q, if for 
every preferred answer set A of (P, <),  q E A. 

There are several substantial differences between domain descriptions of s and 
prioritized logic programs. To compare the two approaches we need to limit our- 
self to domain descriptions without dynamic priorities whose preference relation 
is transitive and is defined only on conflicting defaults. More precisely: 

De f in i t i on  7. A domain description :D of Lo is said to be static if it satisfies 
the following conditions: 

- laws of :D do not contain occurrences of the predicate symbol prefer; 
- the transitive closure of the preference relation {(dl, d2) : dl, d2 are defaults 

in :D such that  prefer(dl,d2) E Z)}, denoted by preferS,  is an order on 
defaults of :D; 

- for every literal of the form prefer(dl, d2) E :D, head(d1) and head(d2) are 
contrary literals. 

A static domain description Z) can be naturally encoded by a prioritized logic 
p rogram/ /C  D) = (B(:D), <v)  defined as follows. 

 / s(v) = 

//(Z)) =  d :  

 
dl < v  d2 

2 Strongly preferred answer set in Brewka's terminology. 

if l is a a-literal in :D 

+'- l l , .  . . , l n .  

i f  rule(r, l, l l , . . . ,  ln) E D 

(1) 

(2) 

l +-- 11,..., ln, not -q. (3) 
if default(d, l, ll,. �9 �9 ln) E l) 

if (dl,d2) E prefer~ (4) 
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We say that a domain description D entails a a-literai l in the sense of Brewka 
if//(:D) ~ q. 

The following theorem shows that for static and hierarchical domain descriptions 
Brewka's approach coincides with ours. 

T h e o r e m  2. For every hierarchical and static domain description :D and for 
every a-literal l, 

l) ~ holds_by_default(1) if and only if //(:D) ~ 1. 

P roof .  (Sketch) First, by "partially evaluating" :D with respect to non-defeasible 
information and removing various useless statements we reduce/3 to a simpler 
domain description DN with the following property: 

(i) :D ~ holds_by_default(l) iff :D ~ holds(1) or DN ~ holds_by_default(l) and 

(ii)//(:D) ~ l iff D ~ holds(l) or H(:DN) ~,~ I. 

The domain description :D g c a n  be represented by the program Ti(:DN) consist- 
ing of the rules 

Ts d2 +- l l , . . . , ln ,nOt  dl. 

I t , . . . ,  ln, not d, not ~l. (1) 

if default(d, l, 11,..., ln) E DN 

(2) 

if d2 E :DN, 
default(dl, l, l l , . . . ,  ln) E :DN, 
prefer(d1, d2) E DN, 
and head(d2) = -~l 

and the set pref  = {prefer(d1, d2) : prefer(d1, d2) E T~N}. 

~)g can also be represented by the prioritized logic program 
/-/(:DN) = (BCDN), <~N) where •(T)N) consists of the following rules: 

l 11 , . . . ,  not  (1) 
B(DN) / if default(d, l, l l , . . . ,  ln) E DN 

We then show that 

(iii) for each answer set A of 7~(:DN), the set B = ANlit(a) is a preferred answer 
set of/~(~)N); and 

(iv) for each preferred answer set A of -/(~)g) there exists an answer set B of 
7~(~9) such that B N lit(a) = A. 

The conclusion of the theorem follows from (i)-(iv). 
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Detailed proof of the theorem can be found in appendix B. 

The theorem 2 can be used to better understand properties of both formal- 
izations. It implies, for instance, that queries to Brewka's prioritized programs 
corresponding to domain descriptions of s can be answered by the SLG in- 
ference engine. It can also be used for a simple proof of the fact that static, 
hierarchical domain descriptions are monotonic with respect to p r e f e r ,  i.e. for 
any such :D and :D' with preference relations P and P '  if P C_ P '  and :D ~ l then 
~' ~l. 

The next example demonstrates differences between reasoning with domain de- 
scriptions and prioritized logic programs. 

Example 10. Let us consider the domain description/)14 which consists of the 
following/:o-literals: 

rule(r1, ~ll,II2). 
rule(r2,-q2,  ll). 
defaul t (d1,  ll, D). 
default(d2,12, ~). 
conflict(all ,  d2 ) . 
pre fer (d2 ,  dl). 

It is easy to see that in this domain description d2 is applicable, dl is defeated 
and hence, the program 7~0(:D14) has a unique answer set containing 12 and -~ll. 

The prioritized logic program B(:D14) which corresponds to :/:)14 consists of the 
following rules: 

rl : -~11 4- 12. 
r2 : -~12 4- 11. 
dl : ll 4- not -~ll. 
d2 : 12 4- not  -~12. 
d2 < d l .  

and has two preferred answer sets: {12,-~ll } and {ll,-~12 }. The former corresponds 
to the preference orders in which r2 < rl and the latter to the preference order 
r l < r 2 < d 2 < d l .  (~ 

The above example shows that Brewka's approach differs from ours in the way 
priority is dealt with. In our approach, we distinguish rules from defaults and 
only priority between defaults are considered and enforced. This is not so in 
Brewka's approach where priority is defined among rules of the logic program 
representing the domain in consideration. The completion of the preference order 
could "overwrite" the preference order between defaults as the above example 
has shown. 
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7 Conclusions 

In this paper we 

�9 introduced a language s capable of expressing strict rules, defaults with 
exceptions, and the preference relation between defaults; 

�9 gave a collection of axioms, :P, defining the entailment relation between domain 
descriptions of l:(a) and queries of the form holds(l) and holds_by_default(l); 

�9 demonstrated, by way of examples, that the language and the entailment rela- 
tion is capable of expressing rather complex forms of reasoning with prioritized 
defaults; 

�9 gave sufficient conditions for consistency of domain descriptions; 

�9 described a class of domain descriptions for which our treatment of prioritized 
defaults coincides with that suggested by G. Brewka in 7. 

Defining reasoning with prioritized defaults via axioms of :P allows to use logic 
programming theory to prove consistency and other properties of domain de- 
scriptions of l:. Logic programming also provides algorithms for answering queries 
to such domain descriptions. This work can be extended in several directions. 
First, the results presented in the paper can be generalized to much broader 
classes of theories of s We also plan a more systematic study of the class of 
logic programs defined by 7 ~ (i.e., programs of the form 7 ~ tJT~). It may be inter- 
esting and useful to check if cautious monotony 19 or other general properties 
of defeasible inference (26, 12-14) hold for this class of programs. Another in- 
teresting class of questions is related to investigating the relationship between 
various versions of 7 ~. Under what conditions on :D, for instance, we can guar- 
antee that :P(D) is equivalent to 7~0(:D)? What is the effect of expanding 7 ~ by 
the transitivity axiom for prefer? Should this axiom to be made defeasible? etc. 
Finally, we want to see if a better language can be obtained by removing from 
it the notion of conflict. In the current language the statement prefer(d1, d2) 
stops the application of default d2 if defaults dl and d2 are in conflict with 
each other and the default dl is applicable. It may be more convenient to make 
prefer(d1, d2) simply mean that d2 is stoped if dl is applicable. More experience 
with both languages is needed to make a justified design decision. We hope that 
answers to these and similar questions will shed new light on representation and 
reasoning with prioritized defaults. 
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Appendix A 

In this appendix we prove theorem 1. We need the following lemmas. 

L e m m a  1. 3Let 7" be a logic program and 

q+--F1 
q+--F2 
. , .  

be the collection of all rules of 7" with the head q. Then the program Q obtained 
from 7" by replacing rules of the form 

p 6- A1, q, A2 

by the set of rules 

p +-- A1,F1, A 2 
p ~ A1,F2,A~2 

. . o  

is equivalent to 7", i.e., 7- and Q have the same consistent answer sets. 

P r o o f .  Let us denote the set of all rules removed from 7- by S and let 

R = Q u S .  

7~ can be viewed as a union of 7" and the set of new rules obtain from 7" by 
the application of the cut inference rule. Since the cut is sound with respect to 
constructive logic N2 31 which is an extension of the logic N from 29, 7" and 
T~ are equivalent in N2. As shown in 31, programs equivalent in N2 have the 
same consistent answer sets, i.e., 

(a) programs T and T~ are equivalent. 

This means that  to prove our lemma it suffices to show equivalence of T~ and Q. 

Let QA and S A be reducts of Q and S with respect to set A of literals (as in 
the definition of answer sets). We show that  A is the minimal set closed under 
~A if it is the minimal set closed under ~A U 8 A. 

(b) Let A be the minimal set dosed under QA. We show that  it is closed under 
S A . 

Consider a rule 

A A sA p +-" A l  ,q,  A 2 E 

AA s.t. { 1, q, AA} C_ A. (Here by A A we denote the result of removing from Ai all 
the occurrences of not I s.t. I • A. Obviously, AA's above do not contain not .) 
From the assumption of (b) and the fact that  q E A we have that  there is i s.t. 
a rule 

a This is a well-know property of logic programs called "partial evaluation" in 3, 4. 
We were, however, unable to find a proof of it for an infinite P. 
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qe-r  e QA 

with T 'A C_ A. This implies tha t  there is a rule 

A A  I~A A A  QA 
P + - ~ l  , ' i  ,~'2 E 

whose body is satisfied by A, and therefore p E A. This implies tha t  A is the 
minimal set closed under QA U S A. 

(c) Let A be the minimal set closed under ~A U S A. We will show that  it is the 
minimal set closed under QA. 

A is obviously closed under QA. Suppose that  there is B C A closed under QA. 
As was shown above it would be also closed under S A which contradicts our 
assumption. 

From (b), (c) and the definition of answer set we have that  T~ and Q are equiv- 
alent, which, together with (a), proves the lemma. 0 

To formulate the next lemma we need the following notation: Let T be a (ground) 
logic program not containing negative literals ~l and let p be a unary predicate 
symbol from the language of T.  By T* we denote the result of replacing all 
occurrences of atoms of the form p(t) in T by t. Notice, tha t  7"* can be viewed as a 
propositional logic program with different terms viewed as different propositional 
letters. Let us also assume that  terms of the language of T do not belong to the 
set of atoms in this language. 

L e m m a  2. Let 7" and p be as above. Then A is an answer set of T if A* is an 
answer set of T*. 

P r o o f .  If T does not contain not the lemma is obvious. Otherwise, notice that  
by definition of answer set, A is an answer set of T if it is an answer set of T A. 
Since T A does not contain not this happens iff A* is the answer set of (TA) *. 
To complete the proof it remains to notice that  (TA)  * --~ (7-*) A* . 

L e m m a  3. Let 7) be a domain description. By 7)2(7)) we denote the program 
obtained from 7~0 (7)) by 

- replacing all occurrences of literals hold( l l , . . . ,  ln) 
and hold_by_default(l l , . . .  ,in) in the bodies of the rules from 7~0(7)) by 
holds (11), �9 �9 �9 holds (ln) and holds_by_de f ault(ll  ), . . . , holds_by_default(In) re- 
spectively (we denote the resulting program by P1 (7))); 

- Dropping the rules with heads formed by literals hold and hold_by_default. 

Then 

(a) if A is an answer set of :P0(7)) then A \ lit({hold, hold_by_default}) is an 
answer set of :P2 (7)); 
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(b) if A is an answer set of 79~ (79) then 
A U {hold(ll,...,ln): holds(ll),...,holds(ln) e A} U 

{ hold_by_de f ault(ll, . . . , ln) : holds_by_de f ault(ll) E A, . . . , 
holds_by.default(In) E A} 

is an answer set of 79o (D). 

Proof .  First notice that by Lemma 1, programs 790(:D) and 791 (D) are equivalent. 
Then observe that atoms formed by predicate symbols hold and hold_by_default 
form the complement of a splitting set of program 791. The conclusion of the 
lemma follows immediately from the splitting set theorem (27) and the fact 
that rules defining hold and hold_by_default contains neither not nor -~. 

L e m m a  4. Let 79 be a hierarchical domain description over signature a and 

H = {holds(l): 79~(D) ~ holds(l)} U {defeated(d): 79~(D) ~ defeated(d)}. 

By 7)3 (:D) we denote the program consisting of the following rules 

holds_by_default(l). 

holds_by_default(l) +- 

de f eated( dz ) 

if holds(l) E H 

holds_by_de f ault(ll ), 

holds_by_default(In), 

not defeated(d), 

not holds_by_default(-4). 

if default(d, l, I l l , . . . , /hi)  E 7) 

and holds(l) r H, 

and holds(-~l) ~ H 

holds_by_de fault( ll ), 

holds_by_default(In), 

holds_by_default(prefer(d1, d2) ) 

not defeated(d1). 

if d2 E ~), 

default(all, l, l l , . . . ,  ln) E ~,  

holds(conflict(d1, d2)) E H, 

(i) 

(2) 

(3) 
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and holds(l) r H, 
and holds(-,l) r H 

holds_by_default(-~prefer(dl, d2)) +-- holds_by_default(prefer(d2, all))(4) 

if holds(prefer(dl, d2)) • H, 

and holds(prefer(d2, dl)) r H, 

and dl , d2 G T) 

-~holds_by_de f ault(1) +-- holds_by_de f ault(-~l). (5) 

Then, A is an answer set of 7)2(7:)) iffA = laws(7))UHUB where B is an answer 
set of 7)3(:D). 

Proof .  Let Uo be the set of literals formed by predicate symbols holds, rule 
and default. Uo is a splitting set of program 7)2(T)) and hence A is an answer 
set of 7)2(T)) iff A = Ao U A1 where Ao is the answer set of program bvo (7)o(T~)) 
consisting of rules of 7)2 (D) whose heads belong to Uo and A1 is an answer set 
of the partial evaluation, 7~ = evo (tVo (7)0(9)), A0), of the rest of the program 
with respect to Uo and Ao. It is easy to see that the program 7~ consists of the 
rules of 7)3 (D) and 

(a) rules of the type (2) where holds(l) or holds(-~l) is in H; 

(b) rules of the type (3) where holds(l) e H or holds(-~l) e H; 

(c) rules of the type 

holds_by_default(l) ~- holds_by.de f ault(ll ), 
. . .  

holds_by_default(In), 

for each rule rule(r, 1, l l , . . . ,  l,) E 7); 

(d) rules of the type (4) where holds(prefer(d1, d2)) E H 
or holds(prefer(d2, dl)) E H; 

(e) facts of the type defeated(d) where d is a default in T) with the head I s.t. 
holds(-~l) e H. 

From the rule (7)0.9) of program 7)0 we have that facts of the type (e) belong 
to H and hence to prove the lemma it is enough to show that the rules of the 
type (a)-(d) can be eliminated from T~ without changing its answer sets. To 
do that let us first make the following simple observation. Consider a program 
Q1 containing a rule p ~- F and the fact p and let Q~ be obtained from Q1 
by removing the rule. Q1 and Q2 are obviously equivalent in the logic N2 and 
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hence have the same answer sets. Similarly, we can show that  a rule whose body 
contradicts a fact of the program can be removed from the program. 

(la) Consider a rule r of 7~ of the type (a). 
If holds(l) E H then, from rule (4) of Po we have that  holds_by_default(l) E 7~. 
Hence, by the above observation, r can be removed from T/wi thout  changing its 
answer sets. 
If holds(~l) E H then from rule (4) of Po we have that  holds_by_default(-,l) E 7~ 
which contradicts the body of r. Hence r is useless and can be safely removed. 

(lb) Now consider a rule r of the type (b). We will show that  its head, defeated(d2), 
is a fact of T~. 

First notice that ,  if holds(-~l) E H then 7a~(7)) ~ defeated(d1). Therefore, 
defeated(all) E Ao and hence, in this case, r r T~. 

Suppose now that  holds(l) E H. Consider two cases: 

(i) The head I of d2 is a literal. 
By definition of rules of type (b) we have that  holds(conflict(d1, d2)) E H.  
From condition (2) of definition 5 of hierarchical domain description and the 
rules (Po. l l ) ,  (7)o.21), and (Po.22) of Po we conclude that  the head of default 
dl is literal -~l. Since r is of type (b), this means that  holds(-~l) E H and, from 
the rule (P0.9) of Po we have that  defeated(d2) E H. 

(ii) The head l of d2 is of the form prefer(&, dj). 
From conditions (2), (3) of definition 5 and the rule (Po. l l ) ,  (Po.21), and (Po.22) 
of 7) we have that  the head of dl is prefer(dj, di). From rule (Po.14) of P0 we 
have that  -~prefer(d~,dj) E H. Finally, from rule (Po.9) of P0 we have that  
defeated(d2) E H. 
This demonstrates that  the rules of the type (b) can be removed from T~ without 
changing its answer sets. 

(lc) It is easy to check that  by the condition (4) of definition 5 the body of a 
rule of the type (d) is satisfied iff holds(ll),...,holds(In) �9 H and hence the 
head of such a rule is in H or the rule is useless. 

(ld) Similar argument can be used for the rules of the type (c). The conclusion of 
the lemma follows now from the observation above and the splitting set theorem. 
<> 

Let us consider a logic program Q(7)) obtained from program/)3(7)) by 

(a) removing rules of the type (5); 

(b) replacing literals of the form holds_by_default(1) and defeated(d) by l and 
d respectively. 
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The program Q(:D) is called the defeasible counterpart of/:) and consists the 
following rules: 

Q(D) = 

1. if holds(l) 6 H 

4-- l l , . . . , l n ,  
not d, 
not -~I. 

if default(d, l, l l , . . . ,  In) 6/P 
and holds(l) r H, 
and holds(-4) f~ H 

d2 4- l l , . . . , ln ,  
prefer(d1, d2) 
not dl. 

if d2 e/P,  
default(d1, l, 11,..., In) 6 1~, 
holds(conflict(d1, d2)) 6 H 
and holds(1) f H 
and holds(-~l) f H 

-~prefer(dl, d2) +- prefer(d2, dl). 

if holds(prefer(d1, d2)) • H 
and holds(prefer(d2, dl)) r H 
and dl,d2 6 1) 

(I) 

(2) 

(3) 

(4) 

L e m m a  5. Let /P be a hierarchical domain description over signature a and 
let H be the set of literals defined as in Lemma 4. Then the program Q(:D) is 
consistent. 

Proof.  First let us notice that the set F of facts of the form (1) from the program 
Q(/P) form a splitting set of this program. Since :D is rule-consistent so is F. This 
implies that Q(:D) is consistent iff the result Qo of partial evaluation of Q(/)) 
with respect to F is consistent. Let Q1 be the result of removal from Q0 all the 
rules whose bodies contain literals not belonging to the heads of rules from Q0. 
Obviously, Q(/)) is equivalent to Q1. 

To prove consistency of Q1 we construct its splitting sequence and use the split- 
ting sequence theorem from 27. 

Since/P is hierarchical it has a rank function rank. Let p be the smallest or- 
dinal number such that rank(l) < # for every l from the domain of rank. Let 
heads(Q1) be the set of literals from the heads of rules in Q1 and 
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Ua = {l : l E lit(a) A heads(Q1) s.t. rank(l) < a)U 
{d E heads(Qa) : rank(head(d)) < (~}U 
{prefer(da, d2) E heads(Q1) : rank(prefer(dl, d2)) < a}U 
{-~prefer(dl, d2) : prefer(d2, dl) E heads(Q1), rank~arefer(d2, dl)) < ~} 

The sequence U = {Us)a<u is monotone (Us C Uf~ whenever a < /3) and 
continuous (for each limit ordinal c~ < #, Us = .JZ<a U~). Using the property 
of the rank function from the definition of hierarchical domain description it is 
not difficult to check that for each a < #, Us is a splitting set of Q1 and that 
-Js<u Ua is equal to the set of all literals occurring in Qi. Hence, U is a splitting 
sequence of Qt. By the splitting sequence theorem existence of an answer set of 
Q1 follows from existence of a solution to Q1 (with respect to U). Let Ts be a 
collection of all the rules from Qt whose heads belong to Us. To show existence 
of such a solution it suffices to 

(i) assume that for (~ such that ~ + 1 < # the program Ts has a consistent answer 
set As; 

(ii) use this assumption to show that Ts+l also has a consistent answer set; 

(iii) show that Ja<~ As is consistent. 

Let us show (ii) and (iii). Let T be the result of partial evaluation of the program 
Ta+l with respect to the set An. T can be divided into three parts consisting of 
rules of the form 

(a) d2 ~- not dl. 

and 

(b) l ~- not d, not -~l where l is a a-literal 

and 

(cl) prefer(di, dj) ~-- not d, not -~prefer(di, dj) 

(c2) -~prefer(dra, dn) +-- prefer(dn, din). 

respectively. 

To show consistency of the program T(a) consisting of rules (a) we first observe 
that, by construction, if a rule r of type (a) is in T then dl, d2 are conflict- 
ing defaults and hence, by condition 2 of definition 5 and the rule (:P0.11), 
(P0.21), and (P0.22) of To, their heads are either contrary a-literals or of the 
form prefer(&, dj) and prefer(dj,  di) where i ~ j .  Consider the dependency 
graph D of $1. D obviously does not contain cycles with positive edges. We will 
show that it does not contain odd cycles with negative edges. (Programs with 
this property are called call-consistent). Suppose that d l , . . . ,  d2n+l, dl is such a 
cycle. Since dl and di+l (i = 1 , . . . ,  2n) are conflicting defaults we have that dl 
and d2n+l have the same heads (clause (2) of the definition and rules (:P0.11), 
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(:P0.21), and (7~0.22) of :P0). Since dl and d2n+l are conflicting their heads must 
be different. Hence our program has no odd cycles. As was shown by Fages 17 
(see also 15), call consistent programs with dependency graphs without positive 
cycles have an answer set. 

To show consistency of the program T(a, b) consisting of rules (a) and (b) of T it 
suffices to take an arbitrary answer set of program T(a) and use the splitting set 
theorem. The corresponding reduct R will consist of rules of the form l +- not -~l. 
Let X0 be the set of all positive literals from the heads of R and X1 be the set 
of negative literals of the form -~l from the heads of R such tha t  I r X0. It is 
easy to see that  the set X0 U X1 is a consistent answer set of R. 

Now we need to show consistency of the partial evaluation Tr of T with respect 
to some answer set of T(a, b). Tr consists of rules 

pre f er( di, dj ) +- not -~pre f er( di, dj ) 

and 

-~prefer(dm, dn) +" prefer(dn, dm). 

Let heads(Tr) be the set of the heads of the rules of Tr and let us assume that  
each default is associated with a unique index i. Consider a set X0 

Xo = {prefer(di, dj) : prefer(di, dj) e heads(Tr),prefer(dj, di) ~. heads(Tr))U 
{prefer(di,dj) : i < j if prefer(di,dj) e heads(Tr) and prefer(dj,di) e 

heads( Tr ) ) 

Now let 

X = Xo U {-~prefer(dn, din) : prefer(dm, dn) e X0} 

Obviously, X is consistent. To show that  it is a consistent answer set of Tr let 
us construct T x and show tha t  

prefer(di,dj) e Tr x iff prefer(di,dj) �9 Z .  

Let 

prefer(di, dj) �9 X.  

Then, by construction of X, 

prefer(dj, di) r X ,  hence 

-~prefer(dl, dj) r X ,  i.e. 

prefer(di, dj) �9 Tr x .  

Similar argument demonstrates equivalence in the opposite direction. This im- 
plies that  X is a consistent answer set of Tr. By the splitting set theorem we 
conclude consistency of T and Ta+l. Statement (iii) follows immediately from the 
above construction of answer set of T~+I and hence, from the splitting sequence 
theorem we have that  Q(/)) is consistent. 0 
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L e m m a  6. Let 7) be a hierarchical domain description over signature a and let 
@(23) be the program defined as in Lemma 5. Then for any literal I of/:o(a) 

l) ~ holds_by_default(1) iff @(23) ~ I. 

Proof .  By definition, 

1.23 ~ holds_by_default(1) iff :P0(23) ~ holds_by_default(l). 

From (1) and lemma 3 we have that 

2.23 ~ holds_by_default(1) iff P2(23) ~ holds_by_default(1). 

From (2) and lemma 4 we have that 

3.23 ~ holds_by_default(1) iff P3(23) ~ holds_by_default(l). 

Let 7~4 (23) be the program obtained from the program :P3 (23) by removing the 
rules of type (5) from :P3 (23). It is easy to see that Pa (23) is the bottom program 
of P3 (23) with respect to the splitting set consisting of all positive literals of the 
program P~ (79). 

Now let us consider the program Qp(23) obtained from Q(23) by replacing every 
negative literal I = -~p(t) by the atom 7 = ~(t) where p is a new predicate symbol. 

From (3) and lemma 2 we have that 

4. 7~4(23) ~ holds_by_default(l) iff Qp(9) ~ l. 

As was shown in 21 answer sets of Q(23) coincide with answer sets (stable 
models) of Qp(23) which do not contain pairs of atoms of the form l, 7. Let us 
show that no answer set A of Qp(23) contains such literals. Consider two cases: 

(i) l is a a-literal. Suppose that l E A. Obviously there is no rule of the type 
(2) in Qp(23) whose head is 7 and whose body is satisfied by A. Since 7) is 
rule-consistent  r Qp(23) and hence 7 r A. 

(ii) l = prefer(di, dj). There axe free types of rules in Qp(23) which contain 
literals formed by prefer in the heads: 

(a). prefer(di, dj). 

from rule (1) of @(23) 

(b). prefer(di, dj) <- F, not prefer(dl, dj). 

from rule (2) of @(23) and 

(c). prefer(di, dj) +-- prefer(dj, di). 

from rule (2) of @(23). 

Suppose that prefer(di,dj) E A. Then, from the rule consistency of 23 we 
have that prefer(dj, di) does not belong to (a). Since, by rule (c) we have that 
pre f er( dj , di) e A and hence pre f er( dj , di ) r A. This implies that pre f er( di, dj ) r 
A. 
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Hence, we have that 

5. Qp( ) l ifr l .  

It follows from (5) and (4) that 

6. ~:~4(~) ~ holds_by_default(l) iff Q(:D) ~ I. 

Since QC D) is consistent, we can conclude that no answer set of 7~4 (D) containing 
holds_by_default(l) and holds_by_default(-,l). By the splitting theorem, we have 
that Ps(:D) is consistent and moreover, 

7. i~ ( :D ) ~ holds_by_default(l) iff 7~4(:D) ~ holds_by_default(l). 

The proof of the lemma follows from (7), (6), and (3). 

The proof of the theorem 1 follows immediately from Lemmas 5 and 6. 

A p p e n d i x  B 

In this appendix we prove the theorem 2. By Lemma 6, we have that for any 
a-literal l 

~ holds_by_default(l) iff Q(:D) ~ ! 

where Q(D) is the program defined in Lemma 5. Hence, to prove the theorem, 
it suffices to show that 

Q(~) ~ l ifr  n ( ~ )  ~ l. 

Let us introduce some useful terminology and notation. Let l:) be a hierarchical 
domain description and 

U(D) = {l: l is a / :0(a)  literal and P~(:D) ~ holds(l)} 

where 7P~(D) is the non-defeasible part of P0(D). 

To simplify the proof let us assume that the set of defaults in :D has the cardi- 
nality less than or equal to w and that the minimal value of the rank function 
of :D is 1. Let :DN be the domain description obtained from 7) as follows: 

(i) removing all rules and a-literals from l:); 
(ii) removing all defaults d E :D such that head(d) e U(I)) or ahead(d) E U(I)); 

(iii) removing every occurrence of a-literal l E U(:D) from the bodies of the 
remaining defaults of :D; We denote the resulting domain description Do. 

(iv) Let ~)M ~--- nrW----0~)r where Dr is obtained from :Dr-1 by removing from it 
every default of the rank r whose body contains a literal not belonging to 
the head of any default in :Dr-l; :DN is obtained from :DM by removing all 
literals of the form prefer(dl,d2) such that dl ~ ~)M or d 2 ~ ~)M- 
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The domain description DN will be called the normalization of 2). 

A hierarchical domain description l)  is said to be normalized if D = :DN. 

Let Q(:D) be the defeasible counterpart of a static domain description :D and let 
7~(T)) be obtained from Q(D) by 

(a) removing rules of the type (4); 
(b) performing partial evaluation of the resulting program with respect to U(D). 

This construction, together with the following simple lemma, will be frequently 
used in our proof. 

L e m m a  7. For any static and hierarchical domain description :D and a-literal 
l r v(p),  

Proof .  First notice that since :D is static "~prefer(dl, d2) E U(T)) or 
prefer(d2, da) • U(D). Hence the program Qa(D) obtained from Q(D) by step 
(a) has the same answer sets as Q(:D). 

Now notice that since :D is static the heads of rules of the type (2) in Q(:D) 
belong to lit(a). By construction of Q(D) these heads do not belong to U(:D). 
Therefore, U(O) is a splitting set of Qa(D) and conclusion of the lemma follows 
from the splitting set theorem. 

The proof of the theorem 2 will be based on the following lemmas. 

L e m m a  8. Let DN be the normalization of a static and hierarchical domain 
description D. Then, for every a-literal l such that I r U(:D) 

~) ~ holds_by_default(l) iff T)N ~ holds_by_default(1). 

Proof .  Let l be a a-literal such that l r U(:D). Since :D is hierarchical we have 
that by Lemma 6 it suffices to show that 

a. Q(O) ~ l iff Q(ON) ~ I. 

Domain descriptions :D and ON are static and hierarchical and hence, by Lemma 
7 we have that (a) is true iff 

b. 7~(D) ~ 1 iff R(DN) ~ l. 

Let :D* be the domain description obtained from :D by performing the steps (i), 
(ii), and (iii) in the construction of ~)Y. Obviously, DN C D*. We first prove 
that 

c. Ts and 7~(:D*) are identical. 

Let 

cl. r e T~(:D) 

We consider two cases: 
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(i) head(r) e lit(a), i.e., 

r is of the form lo +- F, not d, not -lo 

where T' consists of a-literals not belonging to U(2)). By construction of 
T~(2)) and Q(2)) this is possible iff 

c2. neither l0 nor -~lo is in U(2)) and there is a set of literals A C_ U(2)) 
such that  default(d, lo, A, F) e 2). 

From definition of DN we have that  (c2) holds iff 

c3. default(d, lo, F) E 2)*. 

Notice also that,  by the same definition, U(2)*) consists of literals formed by 
prefer and conflict and hence do not contain a-literals. This implies that  
(c3) holds iff 

c4. r e Q(2)*). 

Since 2) is static, literals from U(2)*) do not belong to rules (2) of Q(2)*). 
This implies that  (c4) holds iff 

c5. r �9 7r 
(ii) head(r) r lit(a), i.e. 

r is of the form d2 +- F, not dt 

where F consists of a-literals not belonging to U(2)). 

By construction of T~(/)) this is possible iff 

c6. default(all, lo, A, F), default(d2, --lo, AI,/"1) �9 D 

for some A _C U(2)), A1 _C U(2)) and/ '1 consisting of a-literals not belonging 
to U(D); lo, "~lo • U(D), and prefer(d1, d2) e 2). 

It follows from definition of 2)* that (c6) holds iff 

c7. default(d1, lo, F) �9 2)*, default(d2, -~lo, /"1) � 9  and 
prefer(d1, d~) �9 2)*. 

which holds iff 

c8. r �9 •(2)*). 

From (cl), (c5) and (c8) we have that  T~(2)) and T~(7)*) are identical. Therefore, 
to prove (b) we will show 

d. n(2)*) ~ l iff n(2)N) ~ I. 

Let 

e. A be an answer set of T~(2)*). 

Let 

f. B = A \  {d: d �9 2)* \ 2)N}. 
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We will prove that 

dl. B is an answer set of 7~(/9N). 

By construction of 7~(7)*) and 7~(:DN) it is easy to see that 

d2. (7~(DN)) B C_ (Tr A. 

Hence, 

d3. B is closed under the rules of (7~(:DN)) B. 

Assume that there exists a set of literals C C B, which is closed under the rules 
of (7"r B. Let 

d4. D = (C N lit(a)) U (A \ lit(a)). 

We will prove that 

d5. D is closed under the rules of (T~(19")) A. 

By construction of D, 

d6. D is closed under the rules of (7~(79")) A whose heads do not belong to lit(a). 

Consider a rule 

e0. lo +-- F 6 (~-~(~)*))A such that 

el. P C  B. 

By construction of (7~(D*)) A, this is possible if there exists a default d, 

e2. default(d, lo, F) �9 D*, 

e3. -~lo • B, d r A, 

From (e2) and the fact that C is closed under the rules of (7~(Djv)) B, by con- 
struction of :DN, we conclude that 

e4. default(d, lo, P) �9 :DN. 

which, together with (e3), implies that 

e5. lo ~- F �9 (~(:DN)) B 

Since C is closed under the rules of (~(:DN)) B, (e5) together with (el), implies 
that l0 �9 C. This proves that D is closed under the rules of (7~(:D*)) A with a- 
literals in their heads. This, together with (d6), implies (d5), and hence, implies 
that, A is not an answer set of 7~(D*). This contradiction proves (dl). 

Now, let 

fl. A be an answer set of 7~(~)g )  , 

and 

f2. B = A U {d : d �9 79* \ ~)g, Sd ~ �9 ~)g, prefer(d  ~, d) �9 19", body(d ~) C_ A}. 
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We will prove that B is an answer set of 7~(:D*) by showing that B is a minimal 
set of literals closed under the rules of (T~(:D*)) B. 

Since A is an answer set of 7~(:DN) we can conclude that 

f3. for any d �9 T)* \ 2)g, body(d) is not satisfied by A. 

This, together with the construction of B and the fact that every rule of (7~(:D*))B 
is of the form 1 +-/~ or d e-/~ where/~ is the body of some default in :D*, implies 
that 

f4. B is closed under the rules of (7~(:D*)) B. 

We need to prove the minimality of B. Assume the contrary, there exists a set 
of literals C C B that is closed under the rules of (7~(:D*)) B. Let 

f5. D = C \ ( B \ A ) .  

Obviously, D C A. Since (T~(:DN)) A C_ (T~(~)*))B), it is easy to check that D 
is closed under the rules of (T~(:DN)) A which contradicts the fact that A is an 
answer set of 7~(:DN), i.e., we have proved that 

f6. B is an answer set of 7~(:D*). 

From (e), (dl), (fl), and (f6) we can conclude (d). which, together with (a), (b), 
and (c) proves the lemma. 

The next lemma shows that for a static and hierarchical domain description, the 
program B(:D) can also be simplified. 

L e m m a  9. Let :D be a static and hierarchical domain description and :DN be 
its normalization. Then, for each a-literal I such that l r U(:D), 

//(:D) ~ l if and only if II(I)N) ~ I. 

Proof .  First, observe the following for prioritized programs. 

Let (Q, <) be a prioritized program where Q is a defeasible program without 
facts, i.e., each rule in Q contains at least a negation-as-failure literal. Let P 
be a strict program, i.e., no rule in P contains a negation-as-failure literal. Let 
head(Q) be the set of literals belonging to the heads of Q and body(P) be the set 
of literals belonging to the body of rules of P. Assume that head(Q) nbody(P) = 
0. Then, we have that 

(i) A is a preferred answer set of (P tA Q, <) iff A = Ap tA AO. where Ap is the 
answer set of P and AQ is a preferred answer set of (Qp, <) where Qp is 
the partial evaluation of Q with respect to Ap. 

(ii) Let P' be a strict program equivalent to P. Then, (PUQ, <) and (P'uQ, <) 
are equivalent. 

(iii) Let R be the set of rules in Q such that for every r E R, P ~ head(r) or 
P ~ -~head(r). Then, (P U Q, <) and (P U Q \ R, <) are equivalent. 
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Let us denote the program consisting of rules (3) of B(:D) by Q and P = BCD ) \Q. 
Obviously, 

a. Q is a defeasible logic program without facts and P is a strict program. 

Since 2) is hierarchical, we have that 

b. head(Q) N body(P) = 0. 

Let Uo (:D) be the set of a-literals belonging to U(:D). It is easy to see that U0 (:D) is 
the unique answer set of P, i.e., U0(:D) and P are equivalent. Therefore, together 
with (a) and (b), by (ii) we can conclude that 

c. H(:D) ~ l iff (Uo(:D) tA Q, <~) ~-- I. 

Let R be the set of rules in Q such that for every r 6 R, head(r) 6 Uo(:D) or 
-~head(r) 6 Uo (:D), then by (iii) we know that 

d. (Uo(:D) U Q, <~) ~ l iff (Uo(:D) U Q \ R, <v)  ~ I. 

It is easy to see that Uo (:D) is a splitting set of U0 (:D) O Q \ R. Let S be the 
reduct of Uo(:D) U Q \ R with respect to Uo(:D). 

As in the previous proof, let l)* be the domain description obtained from ~D by 
performing the steps (i), (ii), and (iii) in the construction of :DN. We will prove 
that S is identical to B(:D*). Let 

e l . r  6 S. 

It means that r has the form 

e2. l ~ F, not -~l. 

where/" is a set of a-literals containing no literals from Uo (1)). By construction 
of S, (e2) holds iff 

e3. I r Uo(:D), --I • U0(:D), and there exists a set of literals A C_ Uo(:D) such that 
defaul t (d ,  l, IF, A) E :D. 

From the definition of :D*, (e3) holds iff 

e4. defaul t (d ,  l, F) E :D* 

By definition of B(:D*) and the definition of :D*, (e4) holds iff 

e5. r is a rule in B(:D*). 

From (el) and (e5) we can conclude that 

e. S is identical to B(:D*). 

From (e), (i), (c), and (d), and the splitting set theorem, we have that 

f. n ( 9 )  l i s  I e u ( 9 )  o r / / ( 9 " )  l. 

This, implies that to prove the lemma, it suffices to show that 

g./-/(T~*) ~-, l iff//(:DN) ~,, 1. 
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To prove (g) we first prove that 

gl. B(D*) and B(DN) are equivalent. 

Let 

g2. A be an answer set of B(:D*). 

Since :DN C_ Z)*, we have that 

g3. (B(~N)) A C (8(~*)) A 

which immediately implies that 

g4. A is closed under the rules of (13(:DN)) A. 

Furthermore, it is easy to prove that if B C A is closed under the rules of 
(B(TIN)) A then B is closed under the rules of (B(Z)*)) A. This, together with 
(g4), implies that 

g5. A is an answer set of B(llN). 

Now, let 

g6. A be an answer set of B(T~N). 

Since for any rule 

gT. l r �9 A \ A 

there exists a default d such that 

g8. default(d, l, F) �9 9"  \ DN. 

Hence, we can conclude that 

g9. if r is a logic programming rule in (B(:D*)) A \ (13(T)N)) A then body(r) is not 
satisfied by A. 

This, together with (g6) and the fact that (B(~)N)) A C_ (B(T)*)) A, implies that 

gl0. A is an answer set of B(:D*). 

From (g2), (g5), (g6), and (gl0) we can conclude (gl). 

The conclusion (g) follows from (gl) and the fact that A(B(T~*) is identical to 

The above two lemmas show that for any static and hierarchical domain descrip- 
tion D and a-literai 1 • U(D) 

(i) Q(Z)) ~ l if 7~(ZIN) ~ 1 and 

(ii) H(Z)) ~ 1 iff II(Zlg) ~ I. 

where :D N is the normalization of :D. 

Furthermore, for 1 �9 U(D), Q(D) ~ 1 and//(:D) ~ I. 
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Therefore, to prove the theorem 2, we will show that  for l r U(2)), 
n(2)N) F l n(2)N) F 1. 
The above observation shows that  in proving theorem 2 we can limit ourself 
to static and normalized domain descriptions. Since for a static and normalized 
domain description 2), the programs T~(2)) and/ / (2))  are simpler than  for general 
cases, for future references, we define these programs before continuing with the 
proof of theorem 2. 

For a static and normalized domain description 2), the program 7~(2)) consists 
of the following rules 

n(2)) 

l +- 11, . . . ,  ln, not d, not -~l. (1) 

if default(d,  l, l l , . . . ,  ln) e 23 

d2 ~- l l , . . .  , ln ,not  dl. (2) 

if d2 E 2), 
default(d1, l, l l , . . . ,  in) E 2), 
pre fer(d l ,d2)  E 2), 
and head(d2) = -~l 

and the program B(2)) of H(2)) consists of the following rules: 

f I +-- l l , . . . ,  ln, not -~l. 
B(2)) ! if defaul t (d,  l, 11,..., ln) E 2) 

To continue with the proof we need the following definitions. 

(1) 

We will need the following technical observations. 

L e m m a  10. Let 2) be a static and normalized domain description. Let A be an 
answer set of T~(2)) and default(d,  l, F) be a default in 2) such tha t  l r A and 
F C A. Then, -~l E A. 

P roo f .  First notice that,  since 2) is normalized, it is hierarchical. Therefore, in 
virtue of theorem 1, 1) is consistent. By Lemmas 6 and 7 this implies tha t  T~(2)) 
is consistent. As was shown in 21 every answer set of consistent program is 
consistent which implies consistency of A. 

Since l +- F, not d, not -~l is a rule in T~(2)),/" _C A, l ~ A, and A is a consistent 
answer set of 7~(2)), we have two cases: 

Definit ion 8. Let 2) be a static domain description with the preference relation 
P0. Let P1 be a well-ordered order defined on defaults in l)  which extends P0. 
The domain description ~ = 2 ) 0  {prefer(dl ,d2)  : (dl,d2) E P1} is called a 
completion of 2). 
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(i) -~l E A; or 
(ii) d E A. 

Consider the second case: d E A. Then there exists a rule (2) of 7~(7)) with the 
head d whose body is satisfied by A. From construction of 7~ this implies that  
there exists a default 

1. default(d1,-q,  A) E 7:) 

such that  

2. A C_ A and dl tg A. 

From (1) and construction of 7~ we can conclude that  T~ contains the rule 

3. -~l +- ,5, not dl, not l. 

Recall, that ,  by condition of the lemma, l r A. This, together with (2), implies 
that  the body of the rule (3) is satisfied by A. Therefore, -~l E A. 

Let X be a set of literals in the language of Ts By XIt we denote X M lit(a). 

L e m m a  11. Let 7) be a static and normalized domain description and 7) be 
one of its completions. Then, for every answer set .4 of Ts there exists an 
answer set A of T~(:D) such that  Air = Ail. 

P roo f .  Since the preference relation in ~ is a well-ordered order among defaults, 
we can enumerate the set of defaults in 7) by the sequence do, d l , . . . ,  dn, . . . .4 

Let .4 be an answer set of 7~(7)). It is easy to see that,  since 7) is normalized, A 
is consistent. 

We define a sequence of sets of literals Ai~ o in the language of 7~(Z)) as follows: 

Ao = Air 

An+ 1 = 

An U {dn+l } if there exists di s.t. 
(0a) default(di,-~head(dn+l), F) E 7), 
(0b) prefer(di ,  dn+l) E 7), 
(Oc) .l-' C An, and 
(0d) dl • An. 

An otherwise 

oo A Let A -- Ui= o i. Obviously, A is consistent. We will prove that  A is an answer 
set of T~(:D) and All -- -4z. 

4 For simplicity, here and in the following lemmas we assume that the set of defaults 
in ~ has the cardinality less than or equal to the ordinal number w. However, the 
proofs presented in this paper can be expanded to the general case. 
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By the construction of A, we have that  All -- ,411. Hence, to prove the lemma we 
need to prove that  A is an answer set of TO(/)). To do that,  we will show that A 
is a minimal set of literals which is closed under the rules of (Tr A. 

Since D is a normalized domain description, (7~(D)) A consists of the following 
rules: 

( n ( D ) ) A  = d2 +- 1". 

if there is d s.t. 
(la) default(d, l, r) e ~ ,  
(lb) d C A ,  a n d ~ l C A  

if there is dl s.t. 
(2a) default(d1,-~head(d2), F) E Z), 
(2b) prefer(d1, d2) E ~ ,  and 
(2c) 41 • A. 

(1) 

(2) 

Let r be a rule of (T~(~D)) A whose body is satisfied by A, i.e., 

a. FC_A.  

We consider two cases: 

(i) r is of the form (1). 

Since A l =  .zit, from (lb) and (a) we conclude that  

b. -,l r ffl and F C_ fl. 

By Lemma 10, this, together with (la) implies that  l E .4 and hence l E A, 
i.e., 

c. A is closed under the rules of type (1) of (Ti(D)) A. 
(ii) r is of the form (2). From (2a)-(2c) and (a), by the construction of A, we 

conclude that  d2 E A, i.e., 

d. A is closed under the'rules of type (2) of (T~(D)) A. 

From (c) and (d) we can conclude that  

e. A is closed under the rules of (Ti(D)) A. 

We now prove the minimality of A. 

Assume that there exists a set B C A which is closed under the rules of (T~(:D)) A. 
We consider two cases: 
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(i) Air \ Bit # 0. 

Since 7) is hierarchical, there exists a rank function rank of 7:) that  satisfies 
the conditions of Definition 5. 

Let l E AIz \ Bit such that  

f. rank(l) = rain{rank(p) : p E Air \ Bit }. 

Since l E A and All = -4It, we have that  1 E A. Let 

ft. A + = {d:  default(d, l, F) �9 :D, F C_ .4}. 

Since .4 is an answer set of Tr we have that  

Since the preference relation in ~ is well-ordered, there exists a minimal 
element dj of A + such that  

f3. prefer(dj,  dk) �9 ~ for dk �9 A t \ {dj}. 

We will prove that  

g. dj CA.  

Assume the contrary, dj �9 ii. By construction of Tr we conclude that  
there exists a default dn such that  

gl.  default(dn,-,l, A) �9 :D, 

g2. A C_ .zl, and 

g3. prefer(dn, dj) �9 "D. 

It follows from (f3) and (g3) and the fact that  the preference order in ~ is 
well-ordered that  

g3. prefer(dn, d) �9 l) for d �9 A +. 

This, together with (gl) and (g2), implies that  

g4. d �9 ,zl for d �9 A +. 

which, in turn, implies that  there exists no rule with the head l in Tr 
whose body is satisfied by A, i.e., l r .zl. This contradiction proves (g). 

We now prove that  

h. dj f A. 

Assume that  (h) does not hold, i.e., 

hl. d j � 9  

Using the definition of A and the fact that  A and A coincide on a-literals 
we can easily check that  there is di such that  

52. default(di,-,l, F) �9 
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ha. prefer(di, dj) e 7) 

h4. F C.4  

From construction of Tr and conditions (h2), (h3) we have that 

h5. dj +- F, not di �9 T~(7)) 

First assume that 

h6: d~ t~ 

Then, from (h4), (h5), and the fact that A is an answer set of ~(7)) we 
conclude that dj �9 A which contradicts (g). Therefore, 

h7. di �9 

This implies that there is a default dk of the form default(dk, l, A) �9 7) 
such that 

hS. A C . 4  

h9. prefer(dk, di) �9 7) 

Since the preference relation in 7) is total from (h3) and (h9) we conclude 
that 

hl0. prefer(d~, dj) �9 Z) 

which contradicts dj being the minimal element of A +. This contradiction 
proves (h). 

Recall that head(dj) = I and let O be its body. Since dj is best for 1 in A 
we have that 

k. OC_A 

Since l �9 A and A is consistent, -~l r A. This, together with (h), implies 
that 

1. l ~ O �9 (n (v ) )  A. 

Since l r B and B is closed under the rules of (Tr A, from (1) we can 
conclude that there exists a literal l ~ �9 O such that l ~ ~ B. This, together 
with (k), implies that 

m. ll E A \ B .  

Since 7) is normalized and hence hierarchical, from condition 5 of Definition 
5 we have that rank(l ~) < rank(1). This, together with (m), contradicts with 
(f) which implies that All \ Bit = 0. 

(ii) AI, = B~. Since B C A, there exists dj �9 A \ B. By the construction of A, 

n. there exists a default di �9 7) of the form default(di,-~head(dj), F) such 
that 

nl. prefer(d~, dj) �9 7), di r A and 
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n2. F_C A. 

(nl),  together with the definition of (7E(7))) A implies that  

n3. dj e- F e (n(D))  A. 

This, together with the assumption that  B is closed under the rules of 
(TE(:D)) A and Bll = AI~ , implies tha t  dj E B which contradicts the selection 
ofd~. 

We showed that  no proper subset B of k is closed under the rules of (Ts A 
and hence A is an answer set of Ts <> 

The next lemma is the reverse of Lemma 11. 

L e m m a  12. Let 7) be a static and normalized domain description and A be an 
answer set of 7~(V). Then, there exists a completion 7) of 2) and an answer set 
.4 of 7E(7)) such that  ,4It = Air. 

P roo f .  We start with introducing some notation. Let P be a binary relation. 
By P* we denote the transitive closure of P.  For a a-literal l, we define, 

A + = {d: de fau l t (  d, l, F) e 7), F C_ A}, 

A~- = {d: default(d,-~l,  IF) e 7), F C_ A}, 

Al = A + U A~-, and 

A t = {d �9 D :  head(d) �9 {1,-~I}} 

By <l we denote the order induced on Az by the preference relation of 7). 

In our further discussion we need the following well known result: 

(*) if P is a well-founded strict partial order then there exists a well-founded 
total order containing P. 

Now we start our construction of 7). Notice that  if I �9 A then, since <~ is well- 
founded, it is easy to prove that  there exists a default d �9 A + which is a minimal 
element in Al. Let us denote such a default by d(1). 

Let 

Xl( l )  = {prefer(d(l) ,  d):  d �9 A~-). 

X2(I) = {prefer(d1, d2): prefer(d1,42)  �9 7), dl, d2 �9 At}. 

For every atom p �9 lit(a) we define the set Xp as follows: 

(XI(p) UX2(p))* i f p � 9  

X v = ~ (Xl(-~p) U X2(p))* if -~p �9 A 
/ 
, X2 (p) otherwise 
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It is easy to see that  Xp is a well-founded, strict partial order on Av. Let Yp be 
a well-founded, total order on AP which extends Xp (existence of Yp is ensured 
by (*)). Obviously, Upeatom(a) Yp is a well-founded, strict partial order on the 
set of defaults of 7) which extends the preference relation in 2). 

Let Y be a well-founded, total order on the set of defaults of 7) which extends 

Uve~to,~(.) Yr. 
Let 

~ = ~ u Y .  

It is easy to see that  Z) is a consistent completion of 7). 

Now we will construct an answer set A of 7~(D) such that  -411 = A~. 

Ui = {l : l E lit(a) f3 heads(7~(~)) s.t. rank(l) < i}U 
{d e heads(T~(l))) : rank(head(d)) < i}. 

The sequence U = U0, U1, . . .  is monotone and continuous. Using the property of 
the rank function from the definition of hierarchical domain description it is not 
difficult to check that  each Ui is a splitting set of T~(~) and that  U Ui is equal 
to the set of all literals occurring in T~(~). Hence, U is a splitting sequence of 
n (D) .  

Let Ti be a collection of all the rules from 7E(~) whose heads belong to U/and  
let Ai = A f3 Ui. 

We define a sequence -40, A1, . . .  such tha t  

la.  Ai is an answer set of Ti. 

lb. -4ill = Ait 

(i) Let Ao = Ao 

Since both sets are empty conditions (la) and (lb) are satisfied. 

(ii) assume that  conditions (la) and (lb) are satisfied by the already constructed 
set Ai Let T be the result of partial evaluation of the program Ti+l with respect 
to the set -4i. 

T will consists of the rules 

(r2) l +- not d, not ~l where l is a a-literal. 

and 

(rl) d2 4-- not dl. 

Using the argument from Lemma 6 we can show that  the program consisting of 
the rules of T of the form (rl) contains no negative odd cycles and therefore is 
consistent. Let So be an answer set of this program and $1 = (Ai+l \ Ai)ll. We 
will show that  
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2. S = S o U S 1  

is an answer set of T. By the splitting set theorem it suffices to show that  $1 
is an answer set of the partial evaluation of rules of the type (r2) from T with 
respect to So. We denote this partial evaluation by r .  This, in turn, is true iff 

3. S1 = 71 "S1. 

To prove (3) let us first assume that  

4. l E S 1 .  

This implies that  l e A and hence At ~ 0. Consider d E At which is minimal 
with respect to well-ordering induced on At by the preference relation from 7). 
It is easy to check that,  since l e A, head(d) = 1 and body(d) C_ A. Since :D is 
hierarchical we have that body(d) C_ Ai, and hence, by inductive hypothesis, 

4a. body(d) C .4i. 

Since d is minimal, by construction of 0 we have that there is no rule in T with 
d in the head. Hence, 

4b. d r So. 

By construction of T~(0) and conditions (4a) and (4b) we have that  

4c. l +- not -~l E ~r. 

Since I E A and A is consistent we conclude that  -~l r Ai+l. Therefore, -~l r $1. 
Hence, 

4d. l Elr  sl 

Suppose now that  

5. l E r s l .  

This implies that  there is d and F _C A such that  

default(d,  l, F) E T). 

From (4d) we have that -~l r A and hence, by Lemma 10 we conclude that I E A. 
Therefore l E $1 which concludes the proof of (3). 

By the splitting set theorem, -41+1 = -4i U S is an answer set of Ti+l. Obviously, 
-4i+1 also satisfies condition (lb).  Now let 

i i  = UAi .  

From construction we have that Aiz = Ail. Using the splitting sequence theorem 
it is easy to check that .4 is an answer set of 7~(75). 

L e m m a  13. Let 7) be a static and normalized domain description and A be an 
answer set of T~(/)). Then, All is an answer set of B(7)). 
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P r o o f .  Since 79 is normalized, A is consistent, it suffices to prove that  All is a 
minimal set of literals closed under the rules of B(79) AI~ . 

Let 

a. I +- F E B(79) AI~ 

and 

b. r C_ Az. 

By construction of B(79) and of B(/)) Al~ , (a) implies that  there exists a default 
d E 79 such that  

c. default(d,  l, El) e 2) and -~l • Air. 

Since A is an answer set of 7~(79), from (c), (b), and Lemma 10, we can conclude 
that  1 E A and hence l E Air which proves that  

d. All is closed under the rules of B(79) Ab. 

We now prove the minimality of All. 

Assume that  there exists a set B c All which is closed under the rules of B(79) AI~ . 
We will prove that  the set of literals 

C = B U  {di :di e A} 

is closed under the rules of (7~(79)) A. 

Since C contains every d / i n  A, C C A, and A is an answer set of (7~(79)) A, we 
have that  

e. C is closed under the rules of the form (2) of (~(79))A. 

Let r be a rule of the form (1) of (T~(79)) A whose body is satisfied by C, i.e., 

f l .  I ~-- F e (~r~(D))A and 

f2. F C C .  

By construction of (n(79)) A, (fl) implies that  there exists a default d such that 

gl .  default(d,  l, IF) e 79, and 

g2. -~l r A. 

By definition of B(79) and B(79) AI', and from (gl) and (g2) we conclude that  

h. l +-- F is a rule of/~(79) AI' . 

which, together with (f2) and the assumption that B is closed under rules of 
(B(79)) AI~ implies that  l E B and hence I E C which, in turn, implies that  

j. C is closed under the rule of the form (1) of (7~(79)) A. 

From (e) and (j) we can conclude that C is closed under the rules of (7~(79)) A 
which together with C C A contradicts the fact that  A is an answer set of T~(79). 
This, together with (d), implies that  All is an answer set of B(79). 
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L e m m a  14. Let :D be a static and normalized domain description with a well- 
ordered preference order P and let A be an answer set of Ts Then, All is a 
preferred answer set of / /CD).  

P r o o f .  Lemma 13 shows that AI~ is an answer set of B(:D). We need to show 
that  Air = Z where Z = C<~ (BCD)) and C<~ (B(:D)) is defined as in Definition 
6. 

Let do, d l , . . ,  be the sequence of defaults in :D, ordered by P .  

Notice that  

l ~-- not ~l E Az BCD ) 

if there exists a default d such that  

0a. defau l t (d ,  l, El) e :D, and 

0b. F C AI,. 

(i) We first prove that Z C Air. Let 

a. I E Z .  

This implies that  there exists a default di E :D such that 

b l .  di satisfies (0a) and (0b), and 

b2. the rule l +-- not  I is not defeated by Si-1. (see Definition 6). 

Let i be the minimal integer such that  

c. di satisfies (bl)  and (b2). 

From (c) and (b2) and the definition of Z, we can conclude that  

d. there exists no j < i and A C_ AIz such that  defaul t (d j , -~l ,  A) �9 :D. 

By construction of 7~(:D) and (d), we conclude that  there exists no rule of 
7~(:D) with the head di whose body is satisfied by A, which implies that  

e. d i C A .  

Furthermore, for every default d~ such that  i < k and 
default(d~,-~l ,  A) �9 :D, it follows from (bl),  (e), and the construction of 
(7~(:D)) A that 

f. d k E A .  

This implies that  

g. there exists no rule of (7~(:D)) A with the head -~l whose body is satisfied 
byA. 
This implies that  

h.-~l CA.  

From (h), (bl) ,  and Lemma 10, we can conclude that I �9 A and hence 1 E Air 
which, together with (a) proves that  

j. Z C_ AI,. 
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(ii) We now prove that All _c Z. Let 

k. 1E All. 

Since A is an answer set of T~(79), there exists a default d such that 

I. default(d, l, F) e 79, 

m. r '  C_ A, and -~l r A. 

which implies that  l ~ not -~l is a rule of AI~B(79). This indicates that  

nl.  I E Z or 

n2. ~l E Z. 

If (n2) holds, then, by (j), -~l E All, which, together with 1 E A, contradicts 
the fact that  All is consistent. Hence, (nl) holds, i.e., 1 E Z which, together 
with (k) entails 

o. All C Z. 

The lemma is proved by (o) and (j). 

We now prove the reverse of Lemma 14. 

L e n a m a  15. Let 79 be a static and normalized domain description with a well- 
ordered preference order P .  Let A be a preferred answer set of II(79). Then, 
there exists an answer set B of 7s such that Bit = A. 

P r o o f .  First, notice that  since 79 is normalized, ~(79) is consistent and therefore, 
by Lemma 14, B(79) is consistent. Thus, A is consistent. 

Let d0 ,d l , . . ,  be the sequence of defaults in 79, ordered by P .  We define a se- 
quence of sets of literals B ~ I  as follows. 

Bo = B 

B n + l  ~- 

Bn U {dn+l } if there exists i < n s.t. 
(0a) default(di,-~head(dn+l), F) e D, 
(0b) T' C Bn, and 
(0c) di ~ Bn. 

Bn otherwise 
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Let B = Ui=oB,.~ �9 Obviously B is consistent and BI~ = A. We prove that B is an 
answer set of Tr i.e., B is a minimal set of literals closed under the rules of 
(Tr B. By definition, (Tr B consists of the following rules: 

l ~ - F .  

( n ( : D ) )  B = d2 4 -  1". 

if there is d s.t. 
( la)  default(d,  l, 1") e 9 ,  
( lb)  d r B, and -,l r B 

if there is dl s.t. 
(2a) default(d1, l, 1"1) e :D, 
(2b) prefer(d1,  d2) E 9 ,  
(2c) head(d2)=-~l ,  and 
(2d) dl • B. 

(1) 

(2) 

Let r be a rule of (Tr B whose body is satisfied by B,  i.e., 

a. 1"C_B. 

We consider two cases: 

(i) r is of the form (1). 

By the construction of B(:D) we have that  

b. l 4- 1", not -~l E B(D).  

From Bl = A, (a), and (lb),  we conclude that 

c. 1" C_ A and ~l C. A. 

Since A is an answer set of B(CD), from (b) and (c) we conclude that l E A 
and hence, I E B,  which proves that  

d. B is closed under the rules of the form (1) of (TO(T))) B. 
(ii) r is a rule of form (2). 

By construction of B and from (a) and (2a)-(2d), we can conclude that 
d2 E B which implies that  

e. B is closed under the rules of the form (2) of (T~(T))) B. 

It follows from (e) and (d) that  

f. B is closed under the rules of (Ti(D)) B. 

We now prove the minimality of B. 

Assume that  there exists a set of literals C C B and C is closed under the rules 
of (Tr B. We will prove that 
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g. Cll is closed under the rules of B(79) A. 

Let r be a rule of B(79) A whose body is satisfied by Cl, i.e., r is of the form 

hl.  l ~- F �9 (B(79)) A, and 

h2. F _C Cll. 

By construction of/3(79) A, we conclude that there exists a default di in 79:) such 
that 

j l .  default(di,  l, F) �9 79, and 

j2. -~l r A. 

(jl) and (h2) imply that  the rule l +- not -~l belongs to A/3(79) which, together 
with 02) and the assumption that  A is a preferred answer set of H(79), implies 
that  l �9 A. 

We will prove that 

l .d~C_B. 

Assume the contrary, i.e., 

m . d ~ e B .  

By the construction of B, there exists j < i such that 

nl .  default(dj,-~l, A) �9 7), 

n2. A _C B, and 

n3. dj C B .  

From (nl) and (n2) and the construction of A3(79), we can conclude that 

p. ~l +-- not l is a rule of AB(79). 

From l �9 A, the fact that  A is a preferred answer set of / / (79) ,  and (p), we can 
conclude that there exists a k < j such that  

ql .  default(dk, l, dg) �9 79, 

q2. {9 _C A, and 

q3. for every o, o < k, if default(do,-~l, A) �9 79, then A q: A. 

From (q3) and the definition of ~(79)s  we have that 

r. d k C B .  

From (r), (ql), (q2), and the construction of B we have that  

s.d#�9 C_B 

which contradicts with (n3), i.e., we have proved (1). 
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It follows from (jl), (j2), and (1) that  l +-- F 6 (R(7))) B which, together with 
the assumption that C is closed under the rules of (7~(7))) B and F _C C, implies 
l E C, and hence, I E Cll which proves (g). 

Since A is an answer set of B(7)), from (g) we can conclude that  CIt = A, which, 
together with the assumption that C C B, implies that  there exists some di 6 7) 
such that  

t. d i E B \ C .  

By the construction of B, (t) implies that  there exists a j < i such that  

ul .  default(dj, ~l, A) 6 7), 

u2. A _C B, and 

u3. d i • B. 

Since j < i, by the ordering P,  we conclude that prefer(di,di ) 6 7). This, 
together with (ul)  and (u3), implies that  

v .  di ~- A is a rule of (7~(7))) B. 

It follows from (u2), (v), and the assumption that C is closed under the rule of 
(7~(7))) B that  d~ E C which contradicts with (t). In other words, B is a minimal 
set of literals which is closed under (R(7))) B, i.e., B is an answer set of 7~(7)). 
0 

We are now ready to prove the Theorem 2. 

P r o o f  o f  T h e o r e m  2. Let 7)N be the normalization of a static domain descrip- 
tion 7). By Lemma 8, 7) ~ holds_by_default(1) iff 

a. l e U(7)) or n(7)g) ~ l, 

and by Lemma 9 , / / (7 ) )  ~ l iff 

b. 1 e U(7)) or II(7)g) ~ I. 

By Lemmas 12-14, we have that  

c. n(7)N) t n(7)N) t. 

The conclusion of theorem 2 follows immediately from (a), (b), and (c). Q 
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Abstract. Recently the field of theory update has seen some improve- 
ment, in what concerns model updating, by allowing updates to be spec- 
ified by so-called revision programs. The updating of theory models is 
governed by their update rules and also by inertia applied to those literals 
not directly affected by the update program. Though this is important, 
it remains necessary to tackle as well the updating of programs specify- 
ing theories. Some results have been obtained on the issue of updating a 
logic program which encodes a set of models, to obtain a new program 
whose models are the desired updates of the initial models. But here the 
program only plays the rSle of a means to encode the models. 
A logic program encodes much more than a set of models: it encodes 
knowledge in the form of the relationships between the elements of those 
models. In this paper we advocate that the principle of inertia is advan- 
tageously applied to the rules of the initial program rather than to the 
individual literals in a model. Indeed, we show how this concept of pro- 
gram update generalizes model or interpretation updates. Furthermore, 
it allows us to conceive what it is to update one program by another, a 
crucial notion for opening up a whole new range of applications concern- 
ing the evolution of knowledge bases. We will consider the updating of 
normal programs as well as these extended with explicit negation, under 
the stable semantics. 
Keywords: Updates 

1 Introduct ion and Mot ivat ion  

When dealing with modifications to a knowledge base represented by a proposi- 
tional theory, two kinds of abs t rac t  frameworks have been distinguished both by 
Keller and Winslett  in KW85 and by Katsuno and Mendelzon in KM91. One, 
theory revision, deals with incorporating new knowledge about  a static world. 
The  other, dealing with changing worlds, is known as theory update .  This paper  
concerns only theory update.  

So far, most  of the work accomplished in the field of theory update  PT95 
MT94 KM91has addressed the modification of models on a one by one basis, 

* Partially supported by PRAXIS XXI scholarship no. BM/437/94. 
** Partially supported by project MENTAL (PRAXIS XXI 2/2.1/TIT/1593/95.) 
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by allowing updates to be specified by so-called revision programs. The field of 
theory update has seen several major achievements, namely the embedding of 
revision programs into logic programs MT94, arbitrary rule updates and, the 
embedding into default logic PT95. 

The update of models is governed by update rules and also by inertia applied 
to the literals not directly affected by the update program. Though this is impor- 
tant, it remains necessary to tackle as well the updating of programs specifying 
theories, as opposed to updating its models. Some results have been obtained in 
what concerns the updating of a logic program which encodes a set of models, 
to obtain a new program whose models are the desired justified updates of the 
initial models AP97. But here the program only plays the r61e of a means to 
encode the models. 

A logic program encodes much more than a set of models: it encodes knowl- 
edge in the form of the relationships between the elements of those models. In 
this paper we advocate that the principle of inertia is advantageously applied to 
the rules of the initial program rather than to the individual literals in a model. 
Indeed, we show how this concept of program update generalizes model or in- 
terpretation updates. Furthermore, it allows us to conceive what it is to update 
one program by another. A crucial notion for opening up a whole new range of 
applications concerning the evolution of knowledge bases. We will consider the 
updating of normal programs as well as these extended with explicit negation, 
under the stable semantics. 

To show that a logic program encodes relationships between the elements of 
a model, which are lost if we simply envisage updates on a model by model basis, 
as proposed in KM91, consider the following situation where an alarm signal 
is present: 

Example 1. Take the normal program P and its single stable model M: 

P : go_home +- not money 
go_restaurant ~- money  
money  +- 

M = {money,  go_restaurant} 

Now consider an update program stating that the person has been robbed and 
that a robbery leaves the person without any money: 

U : out(money) +- in(robbed) 
in(robbed) +- 

According to MT94 and model updating we obtain as the single justified update 
of M the following model: 

M u  = {robbed, go_restaurant} 

Stating that, although we know that the person doesn't have any money, he/she 
still goes to the restaurant and not home. In AP97 the authors propose a 
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program transformation that produces a new program whose models are exactly 
the justified revisions of the models of the initial program, according to the 
definition proposed in MT94, and so produces exactly the result above. 

But looking at the program and at the update program, we arguably conclude 
that My doesn't represent the intended meaning of the update of P by U for 
a commonsensical reasoner. Since "go_restaurant" was true because the person 
had "money", the removal of "money" should make one expect "go_restaurant" 
to become false. The same kind of reasoner expects "go.home" to become true. 
The intended update model of the example presumably is: 

P 

M v = {robbed, go_home} 0 

Another symptomatic example, but using explicit negation is this: 

Example 2. Given the statements: 

- If I've seen something that is unexplainable then I've seen a miracle. 
- If I've seen a miracle then God exists. 
- I've seen something. 
- It is not explainable. 

They can be represented by the following extended logic program: 

P : seen_miracle +-- seen_something, not explainable 
god_exists +-- seen_miracle 
seen_something ~- 
-~explainable +-- 

whose answer-set M is: 

M = (seen_something,-~explainable, seen_miracle, god_exists} 

Now consider the following update program U stating that we now have an 
explanation: 

U : in(explainable) +-- 

According to model updating we obtain as the single justified update of M the 
following model My: 

My  = {seen_something, explainable, seen_miracle, god_exists} 

Once again we arguably conclude that this model doesn't represent the intended 
meaning and that the correct model should be: 

My = (seen_something, explainable} 0 

The purpose of this paper is to generalize model updates to logic program 
updates. The former are a special case of the latter since they can be coded as 
factual programs. To do this we must first consider the rSle of inertia in updates. 
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Newton's first law, also known as the law of inertia, states that: "every body 
remains at rest or moves with constant velocity in a straight line, unless it is 
compelled to change that state by an unbalanced force acting upon it" (adapted 
from Principia). One often tends to interpret this law in a commonsensical way, 
as things keeping as they are unless some kind of force is applied to them. This is 
true but it doesn't exhaust the meaning of the law. It is the result of all applied 
forces that governs the outcome. Take a body to which several forces are applied, 
and which is in a state of equilibrium due to those forces canceling out. Later 
one of those forces is removed and the body starts to move. 

The same kind of behaviour presents itself when updating programs. Let us 
make the parallel between a program rule and a physical body with forces applied 
to it, the body of the rule being the forces applied to the head. In the same way 
we have to determine whether the forces are still in a state of equilibrium, before 
concluding that a physical body is at rest or moves with constant velocity in a 
straight line due to inertia, when it comes to the updating of a program we have 
to check if the truth value of a body which determines the truth value of a head 
hasn't changed before concluding the truth value of the head by inertia. This is 
so because the truth value of the body may change due to an update rule. 

Going back to the previous example, before stating that "god_exists" is true 
by inertia since it wasn't directly affected by the update program, one should 
verify for instance whether "explained" is still not true, for otherwise there would 
be no longer a way to prove "god_exists" and therefore its truth value would no 
longer be 'true'. 

To conclude, we argue that the truth of any element in the updated models 
should be supported by some rule, i.e. one with a true body, either of the update 
program or of the given program, in face of new knowledge. 

The remainder of this paper is structured as follows: in Sect.2 we recapitulate 
some background concepts necessary in the sequel; in Sect.3 we formalize the 
normal logic program update process and present a transformation, reminiscent 
of the one in AP97, providing the intended results; we conclude the section 
by showing that the transformation generalizes the one set forth in PT95; in 
Sect.4 we extend our approach to the case where the program to be updated is 
a logic program extended with explicit negation, and in Sect.5 we conclude and 
elaborate on future developments. 

2 Review of Interpretation Updates 

In this section we summarize some of the definitions related to the issue of theory 
update. Some of these definitions will be slightly different, though equivalent to 
the original ones, with the purpose of making their relationship clearer. 

For self containment and to eliminate any confusion between updates and 
revisions, instead of using the original vocabulary of revision rule, revision pro- 
gram and justified revision, we will speak of update rule, update program and 
justified update, as in AP97. 
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The language used is similar to that of logic programming: update programs 
are collections of update rules, which in turn are built out of atoms by means of 
the special operators: +-, in, out, and ", ". 

Def ini t ion 1 ( U p d a t e  P rog rams) .  MTg4 Let U be a countable set of atoms. 
An update in-rule or, simply, an in-rule, is any expression of the form: 

in(p) ~ in(q1), ..., in(qm), out(si), ..., out(Sn) (1) 

where p, qi, 1 < i < m, and sj, 1 < j < n, are all in U, and rn, n > O. 
An update out-rule or, simply, an out-rule, is any expression of the form: 

out(p) +- in(q1), ..., in( qm ) , out(s1), ..., out( sn ) (2) 

where p, qi, 1 < i < m, and sj, 1 <_ j <_ n, are all in U, andre,  n >_ O. A 
collection of in-rules and out-rules is called an update program (UP). Q 

Definit ion 2 (Necessa ry  Change) .  MT94 Let P be an update program with 
least model M (treating P as a positive Horn program). The necessary change 
determined by P is the pair (Ip, OR), where 

Ip = {a:  in(a) e M}  Op = {a: out(a) e M }  (3) 

Atoms in Ip (resp. OR) are those that must become true (resp. false). If l n O  = 
{} then P is said coherent. Q 

Intuitively, the necessary change determined by a program P specifies those 
atoms that must be added and those that must be deleted as a result of a given 
update, whatever the initial interpretation. 

Definit ion 3 (P-Jus t i f i ed  U p d a t e ) .  MT94 Let P be an update program and 
Ii and Iu two total interpretations. The reduct Px~lh with respect to Ii and Iu is 
obtained by the following operations: 

- Removing from P all rules whose body contains some in(a) and a ~ Iu; 
- Removing from P all rules whose body contains some out(a) and a E Iu; 
- Removing from the body of any remaining rules of P all in(a) such that 

a e  I~; 
- Removing from the body of any remaining rules of P all out(a) such that 

a r  Ii. 
Let ( I , 0 )  be the necessary change determined by PI=II~. Whenever PI~tI~ 

is coherent, Iu is a P-justified update of Ii with respect to P iff the following 
stability condition holds: 

X~ = (s - O) U I <> (4) 

The first two operations delete rules which are useless given I~. The stability 
condition preserves the initial interpretation in the final one as much as possible. 
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3 N o r m a l  L o g i c  P r o g r a m  U p d a t i n g  

As we've seen in the introduction, updating on the basis of models isn't enough 
if we want to take advantage of the information encoded by a logic program and 
not expressed in the set of its models. 

When we generalize the notion of P-justified update, from interpretations to 
the new case where we want to update programs, the resulting update program 
should be made to depend only on the initial program and on the update pro- 
gram, but not on any specific initial interpretation. An interpretation should be 
a model of a normal logic program updated by an update program if the truth 
of each of its literals is either supported by a rule of the update program with 
true body in the interpretation or, in case there isn't one, by a rule of the initial 
program whose conclusion is not contravened by the update program. 

Another way to view program updating, and in particular the r61e of inertia, 
is to say that the rules of the initial program carry over to the updated program, 
due to inertia, instead of the truth of interpretation literals as in AP97, just 
in case they are not overruled by the update program. This is to be preferred 
because the rules encode more information than the literals. Inertia of literals is a 
special case of rule inertia since literals can be coded as factual rules. Accordingly, 
program updating generalizes model updating. 

To achieve rule inertia we start by defining the sub-program of the initial 
program which contains the rules that should persist in the updated program due 
to inertia. We use this program together with the update program to characterize 
the models of the resulting updated program, i.e. the program-justified updates, 
whatever the updated program may be. Finally, we present a joint program 
transformation of the initial and the update programs, which introduces inertia 
rules, to produce an updated program whose models are the required program- 
justified updates. Stable model semantics and its generalization to extended logic 
programs GL90 will be used to define the models of programs. 

We start by defining a translation of an update program written in a language 
that does not contain explicit negation, into a normal logic program extended 
with explicit negation. 

Defini t ion 4 ( In t e rp re t a t ion  Res t r ic t ion) .  Given a language g. that does 
not contain explicit negation -~, let M-~ be an interpretation, of the language ~ ,  
obtained by augmenting f~ with the set ~ = {-~A : A E f.}. 

We define the corresponding restricted interpretation M, of ~, as: 

M = M-, restricted to ~ (~ (5) 

Defini t ion 5 (Transla t ion of  UPs  into LPs) .  Given an update program UP, 
in the language f~, its translation into an extended logic program U in the lan- 
guage ~-~ is obtained from UP by replacing each in-rule (1) with the correspond- 
ing rule: 

P +'- ql, ...qm,not sl, ...,not Sn (6) 

and similarly replacing each out-rule (2) with the corresponding rule: 

~P +-ql, ...qm,not sl, ...,not sn ~ (7) 
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From now onwards, and unless otherwise stated, whenever we refer to an up- 
date program we mean its reversible translation into an extended logic program 
according to the previous definition. Notice that such programs do not contain 
explicitly negated atoms in the body of its rules. 

Def in i t ion  6 (Iner t ia l  Sub-Program) .  Let P be a normal logic program in 
the language f~, U an update program in the language ~-~ and M-~ an interpre- 
tation of ~.-~. Let: 

Rejected(M-.) = {A +- body e P : M-~ ~ body 
and 3-~A +-- body I E U : M-~ ~ body' } 

(8) 

where A is an atom. We define Inertial Sub-Program PinerUat (M-~) as: 

PinerUat (M-~) = P - Rejected(M~) 0 (9) 

Intuitively, the rules for some atom A that belong to Rejected(M-.)  are those 
that belong to the initial program but, although their body is still verified by 
the model, there is an update rule that overrides them, by contravening their 
conclusion. 

Def in i t ion  7 (<P ,U>-Jus t i f i ed  Updates ) .  Let P be a normal logic program 
in the language E., U an update program in the language ~-~, and M an inter- 
pretation of the language E.. M is a <P,U>-Justified Update of P updated by 
U, iff there is an interpretation M-~ orE.. such that M-~ is an answer-set of P*, 
where 

P* = Pinertiat (M~) + U 0 (10) 

Notice that the new definition of program-justified update doesn't depend 
on any initial model. Once again this is because inertia applies to rules and not 
model literals. To achieve inertia of model literals it is enough to include them 
as fact rules, as shown in the sequel. 

The following example will show the r61e played by Rejected(M~) when 
determining the <P,U>-Justified Updates. 

Example 3. Consider program P stating that someone is a pacifist and that a 
pacifist is a reasonable person. Later on, an update U states that it is not clear 
whether we're at war or at peace, and that a state of war will make that person 
no longer a pacifist: 

P : paci f i s t  +-- 
reasonable +-- pac i f i s t  

U : -~pacifist +-- war 
peace <--- not war 
war +-- not peace 

Intuitively, when performing the update of P by U, we should obtain two models, 
namely 

M1 = (paci f is t ,  reasonable,peace} 
M 2 =  {war} 
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Let's check whether they are <P,U>-justified updates. M1 is M-~I restricted to 
the language of P: 

Since 

M~I = {pacifist, reasonable,peace} 

Rejected(M.1) = {} 

P* = P + U - { }  

M~I is an answer-set of P*, and so M1 is a <P,U>-justified update. 
/I//2 is M-~2 restricted to the language of P: 

M~s = {war,-~pacifist} 

Since 
Rejected( M~s) = {pacifist ~ } 

P* = P + U - {pacifist +-} 

M~s is an answer-set of P" and so Ms is a <P,U>-justified update. 
Let's check if the model 

M x  = {reasonable, war} 

is a <P,U>-justified update. Intuitively it should not be one because the truth 
value of reasonable should be determined by the evaluation of the rule of P,  rea- 
sonablee-pacifist, on the strength of the truth of pacifist in the updated model, 
and therefore should be false. Note, however, that this model would be a justified 
update of the only stable model of P ,  determined according to interpretation 
updating. 

Once again M x  is Max restricted to the language of P: 

Since 

M-~x = {reasonable, war, -~paci f i s t  } 

Rejected(M~x) = {pacifist ~-) 

P* = P + U - {pacifist +--} 

As expected, M~x is not an answer-set of P*, and therefore M x  is not a <P,U>- 
justified update. 

Next we present a program transformation that produces an updated pro- 
gram from an initial program and an update program. The answer-sets of the 
updated program so obtained will be exactly the <P,U>-justified models, ac- 
cording to Theorem 1 below. The updated program can thus be used to compute 
them. 

Defini t ion 8 ( U p d a t e  t r ans fo rma t ion  of  a n o r m a l  p rog ram) .  Consider 
an update program U in the language ~-~. For any normal logic program P in the 
language s its updated program Ptr with respect to U, written in the extended 
language s + {A t, A v, -~A v : A E s is obtained via the operations: 
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- All rules of U and P belong to Pu  subject to the changes: 

�9 in the head of every rule of Pu  originated in U replace literal L by a new 
literal L u  ; 

�9 in the head of every rule of Pu  originated in P replace atom A by a new 
atom A~ ; 

- Include in Pv ,  for every atom A of P or U, the defining rules: 

A ~- A l ,no t  -~A U A ~- A U ~ A  +- -~A v (> (11) 

The above definition assumes that in the language s there are no symbols of 
the form L I and L v .Th is  transformation is reminiscent of the one presented in 
AP97, where the goal was to update a set of models encoded by a logic program. 
In AP97, literals figuring in the head of a rule of U (but it could be for any 
literal) originate replacement of the corresponding atom in both the head and 
body of the rules of the initial program, whereas in the above transformation 
this replacement occurs only in the head (for all rules). This has the effect of 
exerting inertia on the rules instead of on the model literals because the original 
rules will be evaluated in the light of the updated model. The defining rules 
establish that, after the update, a literal is either implied by inertia or forced 
by an update rule. Note that only update rules are allowed to inhibit the inertia 
rule, in contrast to the usual inertia rules for model updates. In model updates 
there are no rule bodies in the coding of the initial interpretation as fact rules, 
so the conclusion of these rules cannot change, in contradistinction to the case 
of program updates. Hence the new inertia rule, which applies equally well to 
model updating (cf. justification in Theorem 2) and so is more general. Their 
intuitive reading is: A can be true either by inertia or due to the update program. 

Example 4. Consider the normal logic program P with a single stable model M: 

P : a +- not b 
d + - e  
e ~ -  

M = {a ,d ,e}  

now consider the update program U: 

U : c +- not a 
b+- 
"~e ~--- a 

And the updated program P v  is (where the rules for A stand for all their ground 
instances): 

c u +- not a a' +- not b A +-- AI ,no t  -~A v 
bY+ - a~ +--e A +- Atr 
-~e v ~- a e I +- -~A +- -~A U 
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whose only answer-set (modulo A ~ and A v atoms) is: 

M{ = {b,c,d,e} 

This corresponds to the intended result: the insertion of b renders a no longer 
supported and thus false; since a is false, c becomes true due to the first rule 
of the update program; the last rule of U is ineffective since a is false; e is still 
supported and not updated, so it remains true by inertia; finally d remains true 
because still supported by e. 0 

If we consider this same example but performing the updating on a model 
basis instead, we would get as the only U-justified update of M: M'  = {a, b, d). 
The difference, for example in what a is concerned, is that in M'  a is true by 
inertia because it is true in M and there are no rules for a in U. According to 
our definition, since there aren't any rules (with a true body) in U for a, the rule 
in P for a is still valid by inertia and re-evaluated in the final interpretation, 
where since b is true a is false. 

Example 5. Consider the P and U of example 3. The updated program Pu of P 
by U is (where the rules for A stand for all their ground instances): 

pacifist '  
reasonable' +- pacifist  
A +- A', not -~A v 
A § A{ 

-~paci fist{ +- war 
peace { +- not war 
war{ +- not peace 
-~A +- -~A v 

whose answer-sets (modulo A', A{ and explicitly negated atoms) are: 

M1 = {pacifist, reasonable,peace) 
M2 = {war) 

coinciding with the two <P,U>-justified updates determined in example 3. 

The following theorem establishes the relationship between the models of the 
update transformation of a program and its <P,U>-justified updates. 

Theorem 1 (Correctness of the update transformation). Let P be a nor- 
mal logic program in the language s and U a coherent update program in the 
language s Modulo any primed and X v literals, the answer-sets of the updated 
program Pv are exactly the <P, U>-dustified Updates of P updated by U. 0 

Proof. Let P be a normal logic program consisting of rules of the form: 

A +- Bi,not C~ 

and U an update program consisting of rules of the form: 

A ~ Bj ,not  Cj 
-~A ~- Bk, not Ck 
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where A is an atom and each B and C is some finite set of a toms .  
Let P~ be the program obtained according to Def. 7: 

P~ = ~ + P ~ r , ~ z ( U ~ )  

and note that  P~ner~al (M-~) C. P.  
Let Pv  be the program obtained according to Def. 8: 

Pv  : A' ~- Bi,  not C~ 
A r A', not -~A v 
A + - A  U 
-~A +- -~A U 
A U r B~, not r  
-~A U ~- Bk,  not Ck 

for all rules from P 

for all A 

for all rules from U 

We will show that  Pv  is equivalent to P~ for our purposes. Performing on Pu 
a partial evaluation of A v and -~A v on the rules A ~ A v and -~A +-- -~A U we 
obtain: 

PU: A' r B~, not Ci (1) 
A +-- A', not -~A U (2) 
A ~- B j ,  not Cj (3) 
-~A e- B~,not C~ (4) 
A U ~ Bj ,  not  Cj (5) 
-~A U +- Bk, not Ck (6) 

Note that  rules (3) and (4) are exactly the update program. 
These rules can be simplified. In particular we don't  need the rules for A v 

and -~A v . For some arbitrary A, consider first the case where - ,A v is false. We 
can then perform the following simplifications on P~: replace in (2) A ~ by the 
body of (1) and remove not -~A v to obtain (2"): A +- B i , n o t  C~; now we no 
longer need rule (6). Since we don't  care about primed nor A v literals in the 
updated models we can now remove rule (1), as well as rules (5) and (6)). The 
so mutilated PV preserves the semantms of PU when -~A v m false, apart primed 
and U literals, and looks like this: 

A +-- Bi,  not Ci (2.) 
A ~ Bj ,  not Cj (3) 
-~A e- Bk,  not Ck (4) 

which corresponds exactly to P~ when P~nertiaz(M-) = P when -~A v is false, 
and hence their answer-sets are the same in that  case. 

For the case where -~A v is true, we can delete rule (2); rule (6) is also not 
needed for we don't  care about ~A v literals in the updated models. Since we 
don't  care about primed nor A U literals in the updated models, and A' and A v 
don't  appear in the body of remaining rules, we can delete rules (1) and (5). The 
simplified P~ preserves the semantics of Pu when -~A U is true, apart primed and 
U literals, and looks like this: 

A ~- B j ,  not Cj (4) 
-~A +-- Bk, not Ck (5) 
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which is semantically equal to Pt~. Indeed, note that when -~A v is true, the 
rules of P for A are rejected if M~ ~ Bi, not Ci and don't belong to Pt~- So 
the only possible difference between the simplified P~: and P~ would be the 
existence of some extra rules in Pt~ such that for any answer-set M~ we would 
have M~ ~ Bi, not Ci, which does not affect the semantics 

The next Theorem establishes the relationship between program update and 
interpretation update. For this we begin by defining a transformation from an 
interpretation into the arguably simplest normal logic program that encodes it. 

Definit ion 9 (Factual  LP).  Let I be an interpretation of a language s We 
define the normal logic program associated with I, P*(I), as: 

P*(I) = {L 6-: L �9 I )  ~ (12) 

We also need the following closeness relationship: 

Defini t ion 10 (Closeness re la t ionship) .  Given three total interpretations I, 
Iu and fu, we say that fu is closer to I than Iu if 

(I' u \ I O I \  I'u) C (Iu \ I U I \  Iu) (> (13) 

T h e o r e m  2 (Genera l iza t ion  of  Upda tes ) .  Let U be an update program and 
I an interpretation. Then: 

1. Every U-justified update of I is a <P*(I),U>-justified update. 
2. A <P*(I),  U>-justified update Iu is a U-justified update of I iff there is no 

I' u closer to I than Iu, where I' u is a <P*(I) ,  V>-justified update. (> 

Proof. 1. Let U be an update program consisting of rules of the form: 

A 6- Bj ,not  Cj 
-~A 6- Bk, not Ck 

where A is an atom and each B and C is some finite set of atoms. 
According to AP97, an interpretation Iu is a U-justified update of I iff it is 
a total (or two-valued) WFSX model (modulo primed and explicitly negated 
elements) of the corresponding program Pu: 

Pv : A' 6- for all A �9 I 
A 6- A', not -,A 

for all A 
-~A 6- not A', not A 

A 6- B j,-~Cj for all rules from U 
-~A 6- B~,-~Ck 

according to Def. 8, an interpretation fu is a <P*(I),  U>-justified update 
iff it is the restriction to the language of I of an answer-set of the program 
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PU: 
Pu : A' ~ for all A E I 

A ~ A',  not -~A v ) 
A t-- A~ / for all A 
- .A +- -~A U 

A v +-- B j ,  not Cj for all rules from U 
-~A v +- Bk, not Ck 

Notice the difference in the translation of update rules in what the kind of 
negation used in their bodies is concerned. We will show that for every total 
(or two-valued) WFSX model Iu of the program Pu,  there is an answer-set 
I' u of Pu such that Iu = I'~ restricted to the language of I. 
Performing a partial evaluation of A U and - .A U on the rules A +- A t and 
-~A ~ - .A U we obtain: 

Pu : A' +-- (1) 
A +-- A', not - .A U (2) 
A +- Bj ,  not Cj (3) 
-~A +- Bk,  not Ck (4) 
A U +- Bj ,  not Cj (5) 
-~A U ~- B~, not  Ck (6) 

We can safely replace not -~A v by not ~A  in rule (2), for the only rules for 
- .A and -~A U have the same body. Now, and since we don't care about A v 
and -.A v in the updated models, we can remove rules (5) and (6) and obtain 
the following program Pu: 

Pu :A' +- (1) Pry :A' +- 
A +-- A~,not -.A (2) A +-- A~,not - .A 

(3) - .A +- not A ' , n o t  A 
A ~ Bj ,  not Cj (4) A ~ Bj,--Cj 
-~A +-- Bk, not Ck (5) -~A +- Bk,-~Ck 

It is easy to see that the only differences between Pg and Pu are the kind 
of negation used in the body of the rules from the update program, and the 
extra rule (3) in Pv- Suppose that we add rule (3) to Pg: if rule (3) has a 
true body, rule (2) must have a false body; since we are not concerned about 
-~A in the final models, and -~A doesn't appear in the body of any other 
rules, adding rule (3) to Pg wouldn't change the restricted models. Now, 
the only difference is the kind of negation used, but since in answer-sets we 
have that if ~C is true then not C is also true, we have that all total WFSX 
models of Pu are also answer-sets of Pu. 

2. There now remains to be proved the closeness part of the theorem, i.e. that 
the set of interpretations S = Q - R, where 

Q = {I~ : I~ is a < P* (I), U > -justified update} 
R = (Iu : Iu is a U-justified update of I )  



Generalizing Updates: From Models to Programs 237 

is such that  for every I'u in S, there is an Iu in R such tha t  Iu is closer 
to I than I'u, and thus eliminated by the closeness condition. According to 
MT94, Iu is a U-justified update of I iff it satisfies the rules of U (as per 
Def.1 and where I satisfies in(a) (resp. out(a)) i f a  E I (resp. a ~ I)),  and is 
closest to I among such interpretations. From Definition 7, every <P,  U>- 
justified update must satisfy the rules of U, of the form: 

A ~- Bj,  not Cj (14) 
-~A +- Bk, not C~ 

Since for any answer-set if -~a E I then a ~ I ,  we have tha t  any <P,  U>- 
justified update, because it satisfies the rules of (14), must also satisfy the 
update rules with in's and out's of the form (15) 

in(A) e- in(Bj), out(Cj) 
out(A) e- in(B~), out(Ck) (15) 

Let X be the set of all interpretations that  satisfy the rules of (15). Then the 
interpretations in X - R are the ones eliminated by the closeness condition, 
to obtain the U-justified updates, according to MT94. Since R C_ Q (first 
part of the theorem), and every interpretation of Q satisfies the rules of (15), 
we have that  S c_ X and thus any interpretation in S is eliminated by the 
closeness condition of this theorem. 
Therefore the notion of program update presented here is a generalization of 

the updates carried out on a model basis. Consequently, the program transforma- 
tion above is a generalization of the program transformation in AP97, regarding 
its 2-valued specialization. Elsewhere Lei97 the 3-valued case is generalised as 
well. 

Remark 1 (Extending the language of initial programs). We could allow for initial 
programs to be of the same form as update programs, i.e. with explicit negated 
literals in their heads only, as per Def.5. For this, we would have to change 
Definitions 6 and 8 by replacing atom A there with objective literal L 1 (see 
Lei97). However, note that ,  although both programs have explicit negation 
in their heads, its use is limited, as explicit negation does not appear in rule 
bodies. Indeed, all its occurrences can be replaced by allowing n o t  in heads 
instead, and then employing a semantics for such generalized programs such as 
LW92,DP96. 

1 An updated program can in turn be updated, once the inertia rule is generalized 
for objective literals: L +-- L ~, not-~L. Because the inertia rule contains explicitely 
negated literals in its body, the language of programs has to be extended, as per the 
next section. However, the inertia rule itself does not need to be updated, only the 
program and update rules. These will accumulate dashes in their heads as they are 
updated. For the inertia rule to recurrently strip away successive dashes one needs 
to introduce the equivalence (-~A)' = -~(A)', and define -~ and ' as operators to 
allow unification to do its work. For the details of such a generalization the reader 
is referred to Lei97. 
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4 Extended Logic Program Updating 

When we update a normal logic program the result is an extended logic program. 
In order to update these in turn we need to extend the results of the previous 
section to cater for explicit negation in programs. Besides this obvious motiva- 
tion, there is much work done on representing knowledge using extended logic 
programs, and we want to be able to update them. We begin by extending the 
definitions of the previous section to allow for the inclusion of explicit negation 
anywhere in a normal program. 

Definition 11 (Update Rules for Object ive  Literals) .  AP97Let E be a 
countable set of objective literals. Update in-rules or, simply in-rules, and update 
out-rules or, simply, out-rules, are as (1) and as (2), but with respect to this new 
set E.  0 

Also, for extended update programs their transformation into an extended 
logic programs is now: 

Definition 12 (Translation of  extended UPs  into ELPs) .  AP97Given 
an update program with explicit negation UP,  its translation into the extended 
logic program U is defined as foUows2 : 

1. Each in-rule 

. 

in(Lo) e- in(L1), ..., in(Lm),  out(Lm+l),  ..., out(Ln) (16) 

where m,  n > O, and Li are objective literals, translates into: 

L~ +- L1, ..., Lm, not Lm+l, ..., not Ln (17) 

where L~ = A p i/  Lo = A, or L~ = A n if  Lo = -~A; 
Each out-rule 

out(Lo) +- in(L1), ..., in(Lm),  out(Lm+l),  ..., out(Ln) (18) 

where m,  n > O, and Li are objective literals, translates into: 

-~L~ +-L1,  . . . ,Lm,not  Lm+l, . . . ,not Ln (19) 

where L~ = A v i /  Lo = A, or L~ = A n if  Lo = -~A; 
3. For every objective literal L such that in(L)  belongs to the head of some in- 

rule o / U P ,  U contains -~L* ~- L where L* = A n i /  L = A, or L* = Ap if  
L = -~A; 

4. For every atom A,  U contains the rules A +- A p and -~A ~ A n. 

2 This translation employs the results in DP96, namely the expressive power of WFSX 
to capture the semantics of extended logic programs with default literals in the heads 
of rules, via the program transformation P"~ 



Generalizing Updates: From Models to Programs 239 

Intuitively, this transformation converts an atom A into a new atom A s and 
an explicitly negated atom ~A into a new atom A n and ensures coherence. This 
way, we no longer have explicitly negated atoms in the heads of the rules of 
update programs and so we can use explicit negation -~L to code the out(L) in 
the heads of rules, as for update programs without explicit negation. Operation 
4 maps the A n and A s back to their original atoms. 

Conversely, any extended logic program (ELP) can be seen as an update 
program, possibly applied to an empty program. Indeed, translate each ELP 
rule of the form 

Lo +-- L1, . . . ,Lm,not Lm+l, ...,not Ln (20) 

where Li axe objective literals, to 

in(Lo) +- in(L1), ..., in(Lm), out(Lm+l), ..., out(Ln) (21) 

It is easy to see that applying the above translation (Def.12) of such an up- 
date program back into an ELP preserves the semantics of the original program 
because of the read-out rules, A ~- A s and -~A +-- A n. 

The language of update programs is more expressive than that of ELPs be- 
cause one may additionally have out(Ao) and out(-~Ao). The semantics of such 
ELPout programs can be defined simply by the ELP semantics of the translation 
into an ELP of their corresponding update programs. 

Then we can envisage any ELP (or ELPout) program as an update specifi- 
cation for another ELP (or ELPout) program, albeit the empty one. Programs 
can update one another, in succession. 

Definit ion 13 (Ex tended  In t e rp re t a t i on  Res t r ic t ion) .  Given a language 
1C with explicit negation, let Mnp be the an interpretation of the language ICns, 
obtained by augmenting C with the set s = {L n, L p : L E IC} (L n, L s and L are 
objective literals). 

We define the corresponding restricted interpretation M, of 1C, as: 

M = Mv.p restricted to IC (22) 

Defini t ion 14 (Iner t ia l  Sub-Program) .  Let P be an extended logic program 
in the language IC, U an update program in the language ICns and Mns an in- 
terpretation of lCnp. Let: 

Rejected(Mnp) = {A ~ body E P : Mnp ~ body 
and 3~A p ~ body' E U : Mns ~ body r }U 
U{-~A e- body E P : Mnp ~ body 
and ~-~A n +-- body I E U : Mnp ~ body I } 

(23) 

where A is an atom. We define Inertial Sub-Program Pin~rti~t(Mnp) as: 

Pinert~al (Mnp) = P - Rejected(Mnp) ~ (24) 
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Again, the rules for some objective literal L that belong to Rejected(Mnp) are 
those that belong to the initial program but, although their body is still verified 
by the model, there is an update rule that overrides them, by contravening their 
conclusion. Note that a rule of P for atom A, with true body, is also countervened 
by a rule of U with true body for A n (i.e. one translated from in(-~A)). Since 
every U also contains the rules -~A p +-- -~A and ~A +- A '~, then -~A in --A p ~ -~A 
is also true, and so that rule of P is rejected in this case too. Similarly for a rule 
of P with head -~A, but now with respect to A p. 

Defini t ion 15 (<P ,U>-Jus t i f i ed  Updates ) .  Let P be an extended logic pro- 
gram in the language C, U an update program in the language Cnp and M an 
interpretation o the language C. M is a <P,U>-Justified Update of P updated 
by U iff there is an interpretation Mnp such that Mnp is an answer-set of P*, 
where 

P* = Pinertial (Mnv) + U 0 (25) 

Once again we should point out that the extended <P,U>-Justified Update 
doesn't depend on any initial interpretation. As for the case of normal logic 
programs, it is the rules that suffer the effects of inertia and not model literals 
per se. 

Example 6. Consider a recoding of the alarm example using explicit negation, 
where P and UP are: 

P : sleep ~-- -~alarm UP : in(-~alarm) +-- 
panic +-- alarm 
alarm +-- 

the update program U obtained from UP is: 

alarm n +- 
-~alarm p +-- -~alarm 
alarm +-- alarm p 
-,alarm +-- alarm n 

Intuitively, when performing the update of P by U, we should obtain a single 
model, namely 

M = (-~alarm, sleep} 

Let's check whether M is an extended <P,U>-justified update. M is Mnp re- 
stricted to the language of P: 

Mnp = (-~alarm, sleep, alarm n, -~alarm p} 

Since 
Rejected(Mnp) = (alarm ~ } 

P* = P + U - (alarm +--} 

Mnp is an answer-set of P*, and so M is an extended <P,U>-justified update. 
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Definition 16 (Upda te  t r an s fo rma t ion  of  an ex t ended  LP) .  Given an 
update program UP, consider its corresponding extended logic program U in 
the language 1Cnp. For any extended logic program P in the language IC, its 
updated program Pu with respect to U, written in the extended language ICnp + 
{A  ~, ~A ~, A nu, -~A nv, A pU, -~A pU : A E 1C} is obtained through the operations: 

- All rules of U and P belong to Pv  subject to the changes, where L is a literal: 

�9 in the head of every rule of Pu originated in U, replace L p (resp. L n) by 
a new literal L pU (resp. LUSt); 

�9 in the head of every rule of Pu originated in P,  replace literal L by a 
new literal L'; 

- Include in Pu, for every atom A of P or U, the defining rules: 

A n +- ~A ~, not -~A nU Ap +- A ~, not -~A pU 
A n ~- Anv Ap ~- A pv 
-~A n +- -~A nU ~A  p e- ~ApU 

(26) 

As before, the transformation reflects that we want to preserve, by inertia, 
the rules for those literals in P not affected by the update program. This is 
accomplished via the renaming of the literals in the head of rules only, whilst 
preserving the body, plus the inertia rules. 

Theorem 3 (Correctness of  the u p d a t e  t r ans fo rma t ion ) .  Let P be an ex- 
tended logic programand U a coherent update program. Modulo any primed, A v ,  
AP and A n elements and their defaults, the answer-sets of the updated program 
Pu of P with respect to U are exactly the <P, U>-Justified Updates of P updated 
by U. 

Proof. (sketch): Let P be an extended logic program consisting of rules of the 
form: 

A ~- B~, not Ci 
~A , -  Bj, not Ca 

and U an update program consisting of rules of the form: 

Ap +- Bk, not Ck A +- A p 
-~A p ~- Bl, not Q -~A ~ A n 
A n +- Bin, not Cm -~A n ~ A 
- A  n e- Bn, not Cn ~A  p +-- -~A 

where A is an atom and each B and C is some finite set of objective literals. 
Let P~ be the program obtained according to Def. 7: 

P~ = U + Pinertial (Mnp) 

and note that Pinertial (Mnp) C P.  
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Let Pv be the program obtained according to Def. 8: 

P v  : } for all rules from P 
A'  ~ Bi,  not C~ 
- .A'  ~ B j ,  not Cj 
A p +-- A ~ not -~A pv 
A n +- -~AI,not - .A nU 

A p ~ A pv 
-~A p +- -~ApU 
A n +- A nU 
-~A n +- -~A nU 

A + - A p  
~ A  e-  A n 
A pU +- Bk,  not Ck 
-~A ptr +- Bl, not Ct 
A n v  +-- B ~ ,  not C.~ 

-~A nv  +- Bn, not Cn 
~ A  nU +-- A 
-~A pU +- ~ A  

for all A 

rules from U 

We will show that Pv  is equivalent to Pt3 for our purposes. Performing on Ptr 
a partial evaluation of A pU, -~A pv, A nU and - A n v  on the rules A p +-- A pv, 
-~A p +-- -~A ptr, A n +- A nt and -,A n +-- - .Anv  we obtain: 

Pu : A'  e-  Bi, not Ci (1) ~A p +-- -~A (10) 
-~A' +- B j ,  not Cj (2) A +-- A p (11) 
A p +- A',  not -~A pv (3) -,A +- A n (12) 
A n +-- -~A',not -~A nv  (4) A pU +-- B k , n o t  Ck (13) 
A p +- Bk,  not Ck (5) "~A pU +-- Bl, not Ct (14) 
-~A p +- Bt, not Ct (6) A n v  ~ Bin, not Cm (15) 
A n +- Bin, not Cm (7) -~A nU +- Bn,  not Cn (16) 
- .A n +-- Bn, not Cn (8) -~A nv +-- A (17) 
-~A n +- A (9) -~A pv ~- -~A (18) 

Note that rules (5)-(12) are exactly equal to the rules of the update program. 

The structure of the remaining part of the proof is quite similar to the one 
set forth in Theorem 1. Its details are slightly more extensive for we now have 
to simplify P~ eliminating A pU, -~A pU, A nv  and -~A nv  whilst in Theorem 1 we 
only had to consider A v and -~A u. 

Example 7. Applying this transformation to the alarm example (Ex. 6) 

P : sleep ~- - .alarm 
panic  +-- a larm 
alarm +- 

U : in(-~alarm) +- 
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we obtain (where the rules for A and -~A stand for their ground instances): 

Pv  : sleep' +- - .alarm 
pan i c  +- alarm 
alarm t +-- 
a larm ng ~-- 
-~alarm pU +- - .alarm 
A e - A  p 
-~A ~ A n 

with model (modulo U,  L '~, L p, Lu):  

A p +- A t, not -"ApV 
A n +- - ,A t, not  -"A nU 
A p ~ A pv 
-~A  p +-  -~A  pU 

A n +- AnU 
-.A n +- - ,A nU 

M u  = {sleep,- ,alarm} 0 

Definition 9 and Theorem 2 both now carry over to a language K with explicit 
negation. 

Defini t ion 17 ( E x t e n d e d  factual  LP) .  Let I be an interpretation of a lan- 
guage C with explicit negation. We define the extended logic program associated 
with I ,  P*(I ) ,  as: 

P*(I )  = {L  +--: L �9 I }  (27) 

where the Ls  are objective literals. 0 

It is worth pointing out that the translation of update programs into extended 
logic programs, making use of explicit negation -- to code the out's in the heads 
of update rules and default negation not to code the out's in the bodies of the 
same rules, allows for some pairs of answer-sets, one of which will always be 
closer than the other to the initial interpretation. This is best illustrated by the 
following example: 

Example 8. Let I = {a} and U = {--a +-- not a} where U is the translation of 
U t = {out(a) +-- out(a)} according to Def.5. The updated program is: 

B y : a t + -  
a+-  a t , n o t  ~ a  U 

-~a U +-- n o t  a 

with two answer-sets whose restrictions are M1 = {a} and M2 = {}. Note that 
M1 is closer to I than M2. 

The closeness condition in Theorems 2 and 4 exists to eliminate such farther 
models in order to obtain the U-justified updates only. As mentioned, this phe- 
nomena is due to the translation of the update programs. This is also shared 
by AP97 for the case of updates extended with explicit negation, and so their 
soundness and completeness theorem should also make use of the closeness re- 
lationship. 

This translation has the virtue of not excluding such models, just in case they 
are seen as desired. Another approach exists, mentioned in the conclusions, that 
avoids the need for the closeness relation by excluding the non-closest updates 
by construction. 
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T h e o r e m  4 ( G e n e r a l i z a t i o n  o f  U p d a t e s ) .  Let U be an update program with 
explicit negation and I an interpretation. Then: 

1. Every U-justified update of I is a <P*(I ) ,  U>-justif ied update. 
2. A <P*( I ) ,  U>-justified update I~ is a U-justified update of I iff  there is no 

I '  u closer to I than I~, where I '  u is a <P*(I ) ,U>- jus t i f i ed  update. 

Proof. (sketch): Let U be an update program consisting of rules of the form: 

A v ~- Bk,  not  Ck 
."AP +- Bt, not  Cl 
A ~ e- B.~, not Cm 
."A n ~ Bn,  not  C~ 

A + - A  p 
-~A e-  A n 
-~A n +-- A 

~ A  p ~'- ".A 

where A is an atom and each B and C is some finite set of objective literals. 
According to AP97, a total (or two-valued) WFSX model (modulo primed 

and explicitly negated elements) of the program Pu is a U-justified update iff it 
is closest to I, among all such models, where Pv  is: 

Pu : for all A E I 
for all -~A E I 

A I / -  
-.A t ~- 
A p ~- A t, not -~A p 
."A p +- not A t, not  A p 
A n +- ."AI,not  - .A n 
."A n +-- not ."A t, not  A n 
A v - A V  
"~A +- A n 
."A n +- A 

."A ~ ~ ."A 
A p +- Bk,  not Ck 
."A p +-- Bl, not Ct 
A n +- Bin, not Cm 
."A n ~- Bn, not Cn 

for all A 

rules from U 

P~ : A '  ~- Bi, not Ci (1) ."Ap +- ."A (10) 
."A' ~- B j ,  not Cj (2) A +- A p (11) 
AV e- A' ,  not ."A pU (3) ."A e- A n (12) 
A n +-- ."A', not ."A ntr (4) A ptr +- Bk,  not  Ck (13) 
A p +- Bk,  not Ck (5) -~A pv'+-- Bt, not  Ct (14) 
."A p +-- Bt,  not Ct (6) A nU +- Bin, not  Cm (15) 
A n +-- Bin, not Cm (7) -~A nU +- Bn,  not  Cn (16) 
."A n +- Bn,  not Cn (8) -~A ntr +- A (17) 
-~A n +- A (9) -~A pU +- -~A (18) 

! , 

according to Def. 8, an interpretation I~ is a < P  (I), U>-justified update iff 
it is the restriction of an answer-set of the program Pu  (after the same partial 
evaluation as done in the proof of Theorem 3): 
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We will have to show that  these two transformed programs have the same models, 
apart  from irrelevant elements. 

Following similar, though slightly more complex, arguments as in the proof of 
Theorem 2, we can replace A pU, -~A pU, A nu and -~A nU by A p, -~A p, A n and ~A n 
in rules (3)-(6), and deleting rules (15)-(20). Also rules -~A p +- not A ~, not A p 
and -~A n +- not -~A~,not A n of Pu are irrelevant for the only rules with -~A p 
and -~A n in their body also have A ~ and -~A ~ in their body, respectively, which 
could never be true. Removing those rules from Pu,  it would be exactly equal 
to P~,  after the simplifications mentioned, thus proving the theorem. 

5 C o n c l u s i o n s  

In this paper we have generalized the notion of updates to the case where we 
want to update  programs instead of just  their models. We have shown that  since 
a program encodes more information than  a set of models, the law of inertia 
should be applied to rules instead of to model literals, as had been done so far. 
We presented a transformation which, given an initial program and an update 
program, generates the desired updated program. Our results have been further 
extended to allow for both programs and update  programs extended with explicit 
negation. This is important  inasmuch as it permits our updated programs to be 
updated in turn, and allows us to conceive what it is to successively update  one 
program by another, and so to define the evolution of knowledge bases by means 
of updates 3. 

Future foundational work involves dealing with partial interpretations and 
non-coherent update  programs and their contradiction removal requirements, 
among other developments. Indeed, as the world changes, so must logic programs 
that  represent it. Program updating is a crucial notion opening up a whole 
new range of applications, from specification of software updates to temporal  
databases, from reasoning about  actions to active databases, and in general as 
a means for bet ter  representing reasoning, including belief revision. 

Acknowledgments We thank Jos~ Jfilio Alferes, Halina Przymusinska and Teodor 
Przymusinski for their insightful discussions and suggestions, and the anonymous 
referees for their comments. A joint paper together with them is well under way, 
improving on and generalizing the results presented here, as well as exploring 
some of the application areas mentioned above. (A Prolog implementation of 
this more general theory is already available.) 

a Iterated updates are made easier by a similar approach to that of Footnote 1, where 
instead the equivalences (An) ~ = (X)~, (Ap) ~ -- (X)p, (A~) t --- (A~)~ and (AU) ~ -- 
(X)~ are introduced. Lack of space prevents us to elaborate further on iterated 
updates, and garbage collection techniques to do away with rules rendered useless. 
For the details on these topics the reader is referred to Lei97. 
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Abstract. This paper presents an extension of disjunctive datalog (Data-
log∨) by nested rules. Nested rules are (disjunctive) rules where elements
of the head may be also rules. Nested rules increase the knowledge repre-
sentation power of Datalog∨ both from a theoretical and from a practical
viewpoint. A number of examples show that nested rules allow to nat-
urally model several real world situations that cannot be represented in
Datalog∨. An in depth analysis of complexity and expressive power of
the language shows that nested rules do increase the expressiveness of
Datalog∨ without implying any increase in its computational complexity.

1 Introduction

In this paper, we propose an extension of Datalog∨ by nested rules that we call
Datalog∨,←↩. Informally, a Datalog∨,←↩ rule is a (disjunctive) rule where rules
may occur in the head. For instance, r : A ∨ (B ←↩ C) ← D, where A and B
are atoms and C and D are conjunctions of atoms is a Datalog∨,←↩ rule. The
intuitive meaning of r is the following: if D is true, then A or B could be derived
from r; however, B can be derived from r only if C is also true, i.e., B cannot
be derived from rule r if C is false.

Example 1. The organizer of a party wants to invite either susan or john and,
in addition, either mary or paul. This situation can be expressed by means of
the following disjunctive Datalog program

susan ∨ john←
mary ∨ paul←
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This program has four stable models giving all possible solutions: M1 = { susan,
mary }, M2 = {susan, paul}, M3 = {john, mary} and M4 = {john, paul}.

Suppose now that you know that john will attend the party only if mary
will attend the party too; this means that if mary will not attend the meeting,
john will not attend the meeting too (therefore, inviting john makes sense only
if also mary has been invited). This situation cannot be naturally expressed
in disjunctive Datalog whereas can be naturally expressed by means of nested
rules.

susan ∨ (john←↩ mary)←
mary ∨ paul←

The new program has only three stable models, namely M1, M2 and M3 (see
Section 2), that represent the three reasonable alternative sets of persons to be
invited. 2

Thus, the addition of nested rules allows us to represent real world situations
that cannot be represented in plain Datalog∨ programs.

Remarks.

– We point out that a nested rule a ←↩ b, appearing in the head of a rule r,
does not constraint the truth of a (to b) globally (it is not logically equivalent
to ¬b → ¬a); rather, a ←↩ b constraints the derivation of a from the rule r.
For instance, the program consisting of rule (a←↩ b)← and of fact a← has
only the stable model {a}, where a is true even if b is false.

– It is worth noting that nested rules could be simulated by using (possibly
unstratified) negation; however, in cases like the example above, a nested
rule allows us a more direct representation of the reality and it is therefore
preferable.

– In this paper we will contrast disjunctive Datalog with nested rules (Data-
log∨,←↩) mainly against plain (i.e., negation free) disjunctive Datalog (Data-
log∨), in order to put in evidence the types of disjunctive information that
become expressible thanks to the introduction of nested rules.

The main contributions of the paper are the following:

– We add nested rules to disjunctive Datalog and define an elegant declarative
semantics for the resulting language. We show that our semantics generalizes
the stable model semantics [22,11] of disjunctive Datalog programs. More-
over, we show how nested rules can be used for knowledge representation
and common sense reasoning.

– We analyze the complexity and the expressive power of Datalog∨,←↩. It ap-
pears that, while nested rules do not affect the complexity of the language,
they do increase its expressive power. Indeed, as for Datalog∨, brave rea-
soning is ΣP

2 -complete for Datalog∨,←↩ (that is, the complexity is the same).
However, Datalog∨ allows to express only a strict subset of ΣP

2 (e.g., even
the simple even query,1 asking whether a relation has an even number of el-
ements, is not expressible) [7], while Datalog∨,←↩ expresses exactly ΣP

2 (that
1 See example 9.
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is, it allows to represent all and only the properties that are computable in
polynomial time by a nondeterministic Turing machine endowed with an NP
oracle).

To our knowledge this is the first paper proposing an extension of disjunctive
Datalog with nested rules. Related to our work can be considered papers pre-
senting other extensions of logic programming like, for instance, [2,15,20,4,12].
Related results on complexity and expressive power of Knowledge Representa-
tion languages are reported in [8,13,5,18,24,23].

The sequel of the paper is organized as follows. Section 2 describes the Data-
log∨,¬,←↩ language formally. The syntax is first given, then an elegant definition
of the stable model semantics, based on the notion of unfounded set is provided;
results proving that our notions generalize the classical definitions of unfounded
set and stable model are also given in this section. Section 3 presents the results
on complexity and expressive power of our language. Some examples on the use
of nested rules for representing knowledge are reported in Section 4. Finally,
Section 5 draws our conclusions and addresses ongoing work.

2 The Datalog∨,¬,←↩ Language

In this section, we extend disjunctive Datalog by nested rules. For the sake
of generality, we will consider also negation in the rules’ bodies (defining the
language Datalog∨,¬,←↩).

2.1 Syntax

A term is either a constant or a variable2. An atom is a(t1, ..., tn), where a is a
predicate of arity n and t1, ..., tn are terms. A literal is either a positive literal
p or a negative literal ¬p, where p is an atom.

A nested rule is of the form:

A←↩ b1, · · · , bk,¬bk+1, · · · ,¬bm, m ≥ 0

where A, b1, · · · , bm are atoms. If m = 0, then the implication symbol ”←↩” can
be omitted.

A rule r is of the form

A1 ∨ · · · ∨An ← b1, · · · , bk,¬bk+1, · · · ,¬bm, n > 0, m ≥ 0

where b1, · · · , bm are atoms, and A1, · · · , An are nested rules. The disjunction
A1 ∨ · · · ∨ An is the head of r, while the conjunction b1, ..., bk,¬bk+1, ...,¬bm is
the body of r; we denote the sets {A1, · · · , An} and {b1, ..., bk, ¬bk+1, ..., ¬bm}
by Head(r) and Body(r), respectively; moreover, we denote {b1, ..., bk} and
{¬bk+1, ...,¬bm} by Body+(r) and Body−(r), respectively. Notice that atoms
occurring in Head(r) stand for nested rules with an empty body. If n = 1 (i.e.,
2 Note that function symbols are not considered in this paper.
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the head is ∨-free), then r is normal; if no negative literal appear in r (r is
¬-free), then r is positive; if A1, · · · , An are atoms, then r is flat. We will use
the notation Body(r) and Head(r) also if r is a nested rule. A Datalog∨,¬,←↩

program P is a set of rules; P is normal (resp., positive, flat) if all rules in P are
normal (resp. positive, flat). We denote by: (i) Datalog∨,←↩, (ii) Datalog∨,¬, and
(iii) Datalog∨, the fragments of Datalog∨,¬,←↩ where we disallow: (i) negation
in the body, (ii) nested implication in the head, and (iii) both negation in the
body and nested implication in the head, respectively. Moreover, if negation is
constrained to be stratified [21], then we will use the symbol ¬s instead of ¬
(e.g., Datalog∨,¬s will denote disjunctive Datalog with stratified negation).

Example 2. A rule may appear in the head of another rule. For instance,

r1 : a ∨ (b←↩ ¬c)← d

is an allowed Datalog∨,¬,←↩ rule. Moreover,

r2 : a ∨ (b←↩ c)← d

is a Datalog∨,←↩ rule as well. Neither, r1 nor r2 belong to Datalog∨; while

r3 : a ∨ b← d

is in Datalog∨. 2

2.2 Semantics

Let P be a Datalog∨,¬,←↩ program. The Herbrand universe UP of P is the set
of all constants appearing in P. The Herbrand base BP of P is the set of all
possible ground atoms constructible from the predicates appearing in P and the
constants occurring in UP (clearly, both UP and BP are finite). The instantiation
of the rules in P is defined in the obvious way over the constants in UP , and is
denoted by ground(P).

A (total) interpretation for P is a subset I of BP . A ground positive literal
a is true (resp., false) w.r.t. I if a ∈ I (resp., a /∈ I). A ground negative literal
¬a is true (resp., false) w.r.t. I if a /∈ I (resp., a ∈ I).

Let r be a ground nested rule. We say that r is applied in the interpretation
I if (i) every literal in Body(r) is true w.r.t. I, and (ii) the atom in the head of r
is true w.r.t. I. A rule r ∈ ground(P) is satisfied (or true) w.r.t. I if its body is
false (i.e., some body literal is false) w.r.t. I or an element of its head is applied.
(Note that for flat rules this notion coincides with the classical notion of truth).

Example 3. The nested rule b ←↩ ¬c ← is applied in the interpretation I =
{b, d}, as its body is true w.r.t. I and the head atom b is in I. Therefore, rule
r1 : a ∨ (b ←↩ ¬c) ← d is satisfied w.r.t. I. r1 is true also in the interpretation
I = {a, d}; while it is not satisfied w.r.t. the interpretation I = {c, d}. 2

A model for P is an interpretation M for P which satisfies every rule r ∈
ground(P).
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Example 4. For the flat program P = {a ∨ b ←} the interpretations {a}, {b}
and {a, b} are its models.

For the program P = {a ∨ b←; c ∨ (d←↩ a)←} the interpretations {a, d},
{a, c}, {b, c}, {a, b, d}, {a, b, c}, {a, c, d}, {a, b, c, d} are models. {b, d} is not a
model, as rule c ∨ (d ←↩ a) ← has a true body but neither c nor d ←↩ a are
applied w.r.t. {b, d} (the latter is not applied because a is not true). 2

As shown in [19], the intuitive meaning of positive (disjunctive) programs
(i.e., Datalog∨ programs) is captured by the set of its minimal models (a model
M is minimal if no proper subset of M is a model). However, in presence of
negation and nested rules, not all minimal models represent an intuitive meaning
for the programs at hand. For instance, the program consisting of the rule a∨(b←
c)← has two minimal models: M1 = {a} and M2 = {b, c}. However, the model
M2 is not intuitive since the atom c cannon be derived from the program.

To define a proper semantics of Datalog∨,¬,←↩ programs, we define next a
suitable notion of unfounded sets for disjunctive logic programs with nested rules
which extends in a very natural way the analogous notion of unfounded sets given
for normal and disjunctive logic programs in [26] and [16,17], respectively.

Unfounded sets with respect to an interpretation I are essentially set of
atoms that are definitely not derivable from the program (assuming I), and, as
a consequence, they can be declared false according to the given interpretation.

Definition 1. Let P be a Datalog∨,¬,←↩ program and I ⊆ BP an interpretation
for P. X ⊆ BP is an unfounded set for P w.r.t. I if, for each a ∈ X, every rule
r with a nested rule r′ : a←↩ Body(r′) in Head(r),3 satisfies at least one of the
following conditions (we also say r has a witness of unfoundness):

1. Body(r) ∪ Body(r′) is false w.r.t. I, i.e., at least one literal in Body(r) ∪
Body(r′) is false w.r.t. I;

2. (Body+(r) ∪Body+(r′)) ∩X 6= ∅;
3. some nested rule in Head(r) is applied w.r.t. I −X. 2

Informally, if a model M includes any unfounded set, say X, then, in a sense,
we can get a better model, according to the closed world principle, by declaring
false all the atoms in the set X. Therefore, a “supported” model must contain no
unfounded set. This intuition is formalized by the following definition of stable
models.

Definition 2. Let P be a Datalog∨,¬,←↩ program and M ⊆ BP be a model for
P. M is a stable model for P if it does not contain any non empty unfounded
set w.r.t. M (i.e., if both X ⊆M and X 6= ∅ hold, then X is not an unfounded
set for P w.r.t. M). 2

Example 5. Let P = {a ∨ b ← c, b ← ¬a,¬c, a ∨ c ← ¬b}. Consider
I = {b}. It is easy to verify that {b} is not an unfounded set for P w.r.t. I.
Indeed, rule b ← ¬a,¬c has no witness of unfoundedness w.r.t. I. Thus, as I is
a model for P, then I is a stable model for P according to Definition 1.
3 An atom A in Head(r) is seen as a nested rule with empty body a←↩.
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Let P = {a ∨ (b←↩ ¬c)← d, d ∨ c←}. Consider the model I = {b, d}.
It is easy to verify that {b, d} is not an unfounded set w.r.t. I and neither {a}
nor {b} is an unfounded set for P w.r.t. I. Therefore, I is a stable model of P.

It is easy to see that the stable models of the program P = {susan∨(john←↩
mary) ←, mary ∨ paul ←} of example 1 are: M1 = {susan, mary}, M2 =
{susan, paul}, and M3 = {john, mary}. 2

We conclude this section by showing that the above definitions of unfounded
sets and stable models extend the analogous notions given for normal and dis-
junctive logic programs.

Proposition 1. Let I be an interpretation for a flat program P. X ⊆ BP is an
unfounded set for P w.r.t. I according to [16,17] if and only if X is an unfounded
set for P w.r.t. I according to Definition 1.

Proof. For a flat program P, every nested rule r′ is of the form a ←↩. Con-
sequently, Condition 1 and Condition 2 of Definition 1 correspond exactly to
the analogous conditions of the definition of unfounded set given in [16,17] (as
Body(r′) = ∅). Moreover, in absence of nested rules with nonempty bodies, Con-
dition 3 of Definition 1 just says that some head atom is true w.r.t. I−X (which
corresponds to Condition 3 of the definition of unfounded set given in [16,17]).2

As a consequence, if P is a non disjunctive flat program, then the notion of
unfounded set does coincide with the original one given in [26].

Corollary 1. Let I be an interpretation for a normal flat program P. X ⊆ BP
is an unfounded set for P w.r.t. I according to [26] if and only if X is an
unfounded set for P w.r.t. I according to Definition 1.

Proof. In [16,17], it is shown that the Definition of unfounded sets given there,
coincides on normal programs with the classical definition of unfounded sets of
[26]. The result therefore follows from Proposition 1. 2

Theorem 1. Let P be a flat program and M a model for P. Then, M is a
stable model for P according to [22,11] if and only if M is a stable model for P
according to Definition 2.

Proof. It follows from Proposition 1 and the results in [16,17]. 2

Moreover, if P is a positive flat program, then the set of its stable models
coincides with the set of its minimal models. Hence, for positive flat programs
our stable models semantics coincide with minimal model semantics proposed
for such programs in [19].

In fact the stable model semantics defined above, is a very natural extension
of the widely accepted semantics for the various (less general) classes of logic pro-
grams, since it is based on the same concepts of minimality and supportedness,
which follow from the closed world assumption.
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3 Complexity and Expressiveness

3.1 Preliminaries

In the context of deductive databases, some of the predicate symbols correspond
to database relations (the extensional (EDB) predicates), and are not allowed
to occur in rule heads; the other predicate symbols are called intensional (IDB)
predicates. Actual database relations are formed on a fixed countable domain U ,
from which also possible constants in a Datalog∨,¬,←↩ program are taken.

More formally, a Datalog∨,¬,←↩ program P has associated a relational database
scheme DBP = {r| r is an EDB predicate symbol of P}; thus EDB predicate
symbols are seen as relation symbols. A database D on DBP is a set of finite
relations on U , one for each r in DBP , denoted by D(r); note that D can be seen
as a first-order structure whose universe consists of the constants occurring in D
(the active domain of D).4 The set of all databases on DBP is denoted by DP .

Given a database D ∈ DP , PD denotes the following program:

PD = P ∪ {r(t)← | r ∈ DBP ∧ t ∈ D(r)}.

Definition 3. A (bound Datalog∨,¬,←↩) query Q is a pair 〈P, G〉, where P is
a Datalog∨,¬,←↩ program and G is a ground literal (the query goal). Given a
database D in DP , the answer of Q on D is true if there exists a stable model
M of PD such that G is true w.r.t. M , and false otherwise. 5 2

Constraining P on fragments of Datalog∨,¬,←↩, we obtain smaller sets of
queries. More precisely, we say that Q = 〈P, G〉 is a DatalogX query, where
X ⊆ {∨,←↩,¬}, if P is a DatalogX program (and G is a ground literal). Clearly,
¬ could also be replaced by ¬s to obtain queries of stratified fragments of
Datalog∨,¬,←↩.

The constants occurring in PD and G define the active domain of query
Q = 〈P, G〉 on the database D. Observe that, in general, two queries 〈P, G〉
and 〈P,¬G〉 on the same database need not give symmetric answers. That is, if
e.g. 〈P, G〉 answers yes for D, it may be possible that also 〈P,¬G〉 answers yes
for D.

A bound query defines a Boolean C-generic query of [1], i.e., a mapping
from DP to {true, false}. As common, we focus in our analysis of the expressive
power of a query language on generic queries, which are those mappings whose
result is invariant under renaming the constants in D with constants from U .
Genericity of a bound query 〈P, G〉 is assured by excluding constants in P and

4 We use here active domain semantics (cf. [1]), rather then a setting in which a (finite)
universe of D is explicitly provided [9,6,27]. Note that Fagin’s Theorem and all other
results to which we refer remain valid in this (narrower) context; conversely, the
results of this paper can be extended to that setting.

5 We consider brave (also called possibility) semantics in this paper; however, com-
plexity and expressiveness of cautious (also called skeptical) semantics can be easily
derived from it.
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G. As discussed in [1, p. 421], this issue is not central, since constants can be
provided by designated input relations; moreover, any query goal G = (¬)p(· · ·)
can be easily replaced by a new goal G′ = (¬)q and the rule q ← p(· · ·), where
q is a propositional letter. In the rest of this paper, we thus implicitly assume
that constants do not occur in queries.

Definition 4. Let Q = 〈P, G〉 be a (constant-free) query. Then the database
collection of Q, denoted by EXP(Q), is the set of all databases D in DP for
which the answer of Q is true.

The expressive power of DatalogX (X ⊆ {∨,←↩,¬}), denoted EXP(DatalogX),
is the family of the database collections of all DatalogX queries, i.e.,

EXP[DatalogX ] = {EXP(Q) | Q is a constant-free DatalogX query}. 2

The expressive power will be related to database complexity classes, which
are as follows. Let C be a Turing machine complexity class (e.g., P or NP), R be
a relational database scheme, and D be a set of databases on R.6 Then, D is C-
recognizable if the problem of deciding whether D ∈ D for a given database D on
R is in C. The database complexity class DB-C is the family of all C-recognizable
database collections. (For instance, DB-P is the family of all database collections
that are recognizable in polynomial time). If the expressive power of a given
language (fragment of Datalog∨,¬,←↩) L coincides with some class DB-C, we say
that the given language captures C, and denote this fact by EXP[L] = C.

Recall that the classes ΣP
k , ΠP

k of the polynomial hierarchy [25] are defined
by ΣP

0 = P, ΣP
i+1 = NPΣP

i , and ΠP
i = co-ΣP

i , for all i ≥ 0. In particular,
ΠP

0 = P, ΣP
1 = NP, and ΠP

1 = co-NP.

3.2 Results

Theorem 2. EXP[Datalog∨,¬s ] ⊆ EXP[Datalog∨,←↩]
Proof. We will show that every Datalog∨,¬s query can be rewritten into an
equivalent Datalog∨,←↩ query.

It can be easily verified that every Datalog∨,¬s program (i.e., disjunctive
Datalog program with stratified negation) can be polynomially rewritten in a
program where negative literals appear only in the body of rules of the form

r : p(X)← q(Y ), ¬s(Z)

where p and s are not mutually recursive and r is the only rule having p as head
predicate symbol. Let 〈P, G〉 be a Datalog∨,¬s query. Following the observation
above, we assume that every rule r ∈ P such that r contains negative literals has
the syntactic form just described. This means that, given any database D ∈ DP ,
a stable model M for PD, and a ground instance r : p(a) ← q(b),¬s(c) of r,
we have p(a) is derivable from r if and only if q(b) is true and s(c) is not true.
Moreover, the rule r cannot be used to prove that the atom s(c) is true.
6 As usual, adopting the data independence principle, it is assumed that D is generic,

i.e., it is closed under renamings of the constants in U .
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Now, given the Datalog∨,¬s program P, we define a Datalog∨,←↩ program P ′
such that, for any given database D ∈ DP , P ′D has the same set of stable models
as PD. We obtain such a program P ′ from the program P by simply replacing
any rule of P having the form of the rule r above by the following Datalog∨,←↩

rule r′:
r′ : p(X) ∨ (s(Z)←↩ s(Z))← q(Y )

Now, apply to r′ the substitution that yields r from r. The resulting instance
is r′ : p(a) ∨ (s(c) ←↩ s(c)) ← q(b). From the semantics of nested rules, we
have that p(a) is derivable from r′ if and only if q(b) is true and s(c) is false
(exactly like for r) – note that a crucial role is played by the fact that s belongs
to a stratum lower than p so that s is already evaluated when p is considered
(e.g., if s(c) is true, then the nested rule s(c) ←↩ s(c) is already applied and r′

cannot be used to derive p(a)). Thus, r and r′ have exactly the same behavior.
Consequently, given a database D in DP , we have that an interpretation M is
a stable model for PD if and only if M is a stable model for P ′D. 2

Corollary 2. ΣP
2 ⊆ EXP[Datalog∨,←↩]

Proof. From [7], ΣP
2 ⊆ EXP[Datalog∨,¬s ]. Therefore, the result follows from

Theorem 2. 2

Corollary 3. EXP[Datalog∨] ⊂ EXP[Datalog∨,←↩]

Proof. From [7], Datalog∨ can express only a strict subset of ΣP
2 (e.g., the

simple even query, deciding whether the number of tuples of a relation is even
or odd, is not expressible in Datalog∨ [7]). Therefore, the result follows from
Corollary 2. 2

We next prove that the inclusion of Corollary 2 is not proper.

Theorem 3. EXP[Datalog∨,¬,←↩] ⊆ ΣP
2 .

Proof. To prove the theorem, we have to show that for any Datalog∨,¬,←↩

query Q = 〈P, G〉, recognizing whether a database D is in EXP(Q) is in ΣP
2 .

Observe first that recognizing whether a given model M of a Datalog∨,¬,←↩

program is stable can be done in co-NP. Indeed, to prove that M is not stable,
it is sufficient to guess a subset X of M and check that it is an unfounded set.
(Note that, since Q is fixed, ground(PD) has size polynomial in D, and can be
constructed in polynomial time.)

Now, D is in EXP(Q) iff there exists a stable model M of PD such that
G ∈M . To check this, we may guess an interpretation M of PD and verify that:
(i) M is a stable model of PD, and (ii) G ∈ M . From the observation above,
(i) is done by a single call to an NP oracle; moreover, (ii) is clearly polynomial.
Hence, this problem is in ΣP

2 . Consequently, recognizing whether a database D
is in EXP(Q) is in ΣP

2 . 2

Corollary 4. EXP[Datalog∨,¬,←↩] = EXP[Datalog∨,←↩] = EXP[Datalog∨,¬] =
ΣP

2
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Proof. It follows from Corollary 2, from Theorem 3, and from the results in
[7]. 2

The above results show that full negation, stratified negation and nested
rules in disjunctive rules have the same expressivity. Moreover, the choice of the
constructs which should be used depends on the context of the applications.

4 Some Examples

In this section we present some examples to show that classical graph prob-
lems can be expressed in Datalog∨,←↩. For the sake of presentation we shall use
the predicate 6= which can be emulated by Datalog∨,←↩. Assuming that the the
database domain is denoted by the unary predicate d, the following two rules
define the binary predicate neq (not equal):

neq(X, Y ) ∨ (eq(X, Y )← X = Y )← d(X), d(Y ).
eq(X, X)

Thus, a tuple neq(x, y) is true if let x and y two elements in the database is
x 6= y. Observe that also stratified negation could be emulated by Datalog∨,←↩.
In the following examples we assume to have the graph G = (V, E) stored by
means of the unary relation v and the binary relation e.

Example 6. Spanning tree. The following program computes a spanning tree
rooted in the node a for a graph G = (V, E). The set of arcs in the spanning
tree are collected by means of the predicate st.

st(root, a).
st(X, Y ) ∨ (no st(X, Y )←↩ no st(X, Y ))← st( , X), e(X, Y ).
no st(X, Y ) ← st(X ′, Y ), X 6= X ′.

Observe that the nested rule forces to select for each value of Y a unique tuple
for st(X, Y ). Indeed, if some stable model M contains two tuples of the form
t1 = st(x1, y) and t2 = st(x2, y), from the last rule, M must contain also the
tuples no st(x1, y) and no st(x2, y). But this implies that also the interpretation
N ⊆M−{ti} for ti ∈ {t1, t2} is a stable model and, therefore, M is not minimal.
On the other side, assume now that there is some stable model M containing
a tuple no st(x′, y) but not containing tuples of the form st(x, y) for x 6= x′.
This means that the tuple no st(x′, y) cannot be derived from the last rule and,
therefore, it must belong to some unfounded set w.r.t. M .

Thus, there is a one-to-one correspondence between the stable models of the
program and the spanning trees rooted in a of the graph. 2

Example 7. Simple path. In this example we compute a simple path in a graph
G, i.e., a path passing through every node just once (if any). The set of tuples
in the simple path are collected by means of the predicate sp below defined:

sp(root, X) ∨ (no sp(root, X)←↩ no sp(root, X))← e(X, ).
sp(X, Y ) ∨ (no sp(X, Y )←↩ no sp(X, Y )) ← sp(W, X), e(X, Y ).
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no sp(X, Y )← sp(X ′, Y ), X ′ 6= X.
no sp(X, Y )← sp(X, Y ′), Y ′ 6= Y.

As for the program computing a spanning tree, the nested rule forces to select
for each value of X a unique tuple for sp(X, Y ) and for each value of Y a unique
tuple for sp(X, Y ). The nested rules impose the constraint that the set of tuples
for sp defines a chain. Thus, the first nested rule is used to select the starting
node of the simple path, whereas the second nested rule is used to select the set
of arcs belonging to the simple path.

The above program can be used to define the Hamiltonian path problem
checking if a graph G has simple path passing through all nodes (Hamiltonian
path). Therefore, the Hamiltonian graph problem can be defined by adding the
check that all nodes in G are in the simple path. 2

Example 8. Shortest path. In this example we assume to have a weighted directed
graph G = (V, E). We assume that the database domain contains a finite subset
of the integer numbers and that the weight argument of the arcs takes values
from this domain. We assume also that the minimum weight of all paths between
two nodes takes values from this domain. The arcs of the graph are stored by
means of tuples of the form e(x, y, c) where c is the weight of the arc from x to
y. The minimum weights of the paths from a source node a to every node in the
graph can be defined as follows:

mp(a, 0).
mp(Y, C) ∨ (no mp(Y, C)←↩ no mp(Y, C))← mp(X, C1), e(X, Y, C2),

C = C1 + C2.
no mp(Y, C) ← mp(Y, C′), C ′ < C.

The predicate mp computes, for each node x, the minimum distance from the
source node a to the node x. A stable model M contains for each tuple mp(y, c′)
in M all tuples of the form no mp(y, c) with c > c′. Thus, a tuple mp(y, c) is in
M iff there is no tuple no mp(y, c) in M , i.e., if all tuples in no mp with first
argument y have cost greater than c. 2

Example 9. Even query. We are given a relation d and we want to check whether
its cardinality is even or not. This can be done by first defining a linear order on
the elements of the relation and, then, checking whether the number of elements
in the ordering is even.

succ(root, root).
succ(X, Y ) ∨ (no succ(X, Y )←↩ no succ(X, Y ))← succ( , X), d(Y ).

no succ(X, Y ) ← succ(X, Y ′), Y ′ 6= Y, Y ′ 6= root, d(Y ).
no succ(X, Y ) ← succ(X ′, Y ), X ′ 6= X, d(X).

odd(X) ← succ(root, X), X 6= root.
even(X) ← odd(Z), succ(Z, X).
odd(X) ← even(Z), succ(Z, Y ).
even rel ← even(X),¬has a succ(X).
has a succ(X)← d(X), succ(X, ).
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The first four rules define a linear order on the elements of the relation d (by
using a nested implication). Once a linear order has been defined on the domain
it is easy to check, by a simple stratified program, whether the cardinality is
even. Thus, the predicate even rel is true iff the relation d has an even number
of elements.

Therefore, Datalog∨,←↩ expresses the even query,7 while it cannot be ex-
pressed in Datalog∨ [7]. 2

We conclude by observing that the problems of the above examples could be
expressed by means of disjunctive datalog with (unstratified) negation. However,
programs with unstratified negation are neither intuitive nor efficiently com-
putable (while Datalog∨,←↩ has nice computational properties – see Section 5).

5 Conclusion

We have presented an extension of Disjunctive Datalog by nested rules. We have
shown the suitability of the language to naturally express complex knowledge-
based problems, which are not expressible by Datalog∨. A formal definition of
the semantics of Datalog∨,¬,←↩ programs has been provided, and we have shown
that it is a generalization of the classical stable model semantics. Finally, we have
carefully analyzed both data-complexity and expressiveness of Datalog∨,¬,←↩ un-
der the possibility (brave) semantics.

The results on the data-complexity and the expressiveness of Datalog∨,¬,←↩

are compactly represented in Table 1. 8

Datalog∨,←↩ Datalog∨ Datalog∨,¬ Datalog∨,¬,←↩

Expressive Power = ΣP
2 ⊂ ΣP

2 = ΣP
2 = ΣP

2

Data Complexity ΣP
2 -complete ΣP

2 -complete ΣP
2 -complete ΣP

2 -complete

Table 1. Expressibility and complexity results on Datalog∨,¬,←↩

Each column in Table 1 refers to a specific fragment of Datalog∨,¬,←↩. The
table clearly shows that the addition of nested rules does not increase the com-
plexity of disjunctive Datalog; indeed, brave reasoning for Datalog∨,←↩ is ΣP

2 -
complete as for Datalog∨. Nevertheless, nested rules do increase the expres-
sive power, as Datalog∨,←↩ allows to express all ΣP

2 database properties; while,
Datalog∨ expresses only a strict subset of them (e.g., the simple even query, that
decides whether a relation has an even number of tuples, cannot be expressed in
Datalog∨).
7 Recall that both 6= and stratified negation are used for simplicity, but they can be

easily emulated in Datalog∨,←↩.
8 Note that the results on data-complexity are immediately derived from the express-

ibility results of Section 3.2.
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Clearly, the power of Datalog∨,←↩ does not exceed that of Datalog∨,¬, as
nested rules could be simulated by means of unstratified negation. However,
the increase of expressiveness w.r.t. Datalog∨ confirms that nested rule allow to
express some useful forms of disjunctive information which are not expressible
in plain disjunctive Datalog.

Ongoing work concerns the definition of a fragment of Datalog∨,←↩ for which
one stable model can be computed in polynomial time; this fragment, under
nondeterministic semantics, allows to express all polynomial time properties.
Moreover, the investigation of abstract properties of Datalog∨,←↩ would also be
interesting to see whether this language can be characterized as for the stable
model semantics [3]. We conclude by mentioning that nested rules have been re-
cently used as a vehicle for binding propagation into disjunctive rules to optimize
the computation of standard disjunctive queries. [14]
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Abstract. In this paper we consider the basic semantics of stable and
partial stable models for disjunctive deductive databases (with default
negation), cf. [9,16]. It is well–known that there are disjunctive deduc-
tive databases where no stable or partial stable models exist, and these
databases are called inconsistent w.r.t. the basic semantics.
We define a consistent variant of each class of models, which we call ev-
idential stable and partial evidential stable models. It is shown that if a
database is already consistent w.r.t. the basic semantics, then the class
of evidential models coincides with the basic class of models. Otherwise,
the set of evidential models is a subset of the set of minimal models of the
database. This subset is non-empty, if the database is logically consis-
tent. It is determined according to a suitable preference relation, whose
underlying idea is to minimize the amount of reasoning by contradiction.
The technical ingredients for the construction of the new classes of mod-
els are two transformations of disjunctive deductive databases. First, the
evidential transformation is used to realize the preference relation, and to
define evidential stable models. Secondly, based on the tu–transformation
the result is lifted to the three–valued case, that is, partial evidential sta-
ble models are defined.

Keywords

disjunctive logic programming, non–monotonic reasoning, stable and partial sta-
ble models, handling inconsistency, program transformations

1 Introduction

The semantics of stable and partial stable models, cf. Gelfond, Lifschitz [9,10]
and Przymusinski [16], are among the most prominent semantics for disjunctive
databases. Unfortunately, there are databases which are logically consistent, but
are inconsistent w.r.t. these semantics. For normal databases, i.e. databases that
may contain negation but do not contain disjunctions, however, the partial stable
models semantics is always consistent, and it is equivalent to the well–founded
semantics of van Gelder, Ross and Schlipf [21].
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For large databases, small inconsistent parts can prohibit the existence of
stable models, and even of partial stable models. Thus, we will introduce two
new variants of the stable model semantics, which are always consistent if the
database is logically consistent: First, the two–valued semantics of evidential
stable models, which is stronger than minimal model but weaker than stable
model semantics. Secondly, a three–valued version, called partial evidential stable
models, which for normal databases coincides with the well–founded semantics.
For stratified–disjunctive databases both evidential semantics coincide with the
perfect model semantics.

Consider the disjunctive database P = {r} consisting of one rule r = q ←
not a. Among its two minimal models M1 = {q} and M2 = {a}, the first model
is preferred to the second. Intuitively, the reason is that in M2 the truth of “a”
has been derived by contradiction, i.e. r has been fulfilled by making its body
false. In contrast, in M1 the truth of “q” is derived constructively from the head
of r. Thus, M1 is the so–called perfect model of P, and it is considered to be the
intended model.

The evidential transformation EP is a positive–disjunctive database that is
derived from P by moving default negated body literals to the rule heads and
prefixing them with “E”. Thus, the rule r is translated to q ∨ Ea. Additionally,
rules relating atoms and evidential atoms are introduced: Eq ← q, Ea ← a. A
similar construction has been used by Fernández et al., cf. [7], to characterize
the stable models of P. But our use of evidences has a different interpretation,
and moreover we use additional normality rules, which are not needed in [7].
Evidential stable models are defined as minimal models M of EP which also
minimize the set of atoms that are derived by contradiction solely: such atoms
A are false in M , but EA is true in M . Then we call EA an E–violation. In
our example, the minimal models of EP are M ′

1 = { q, Eq } and M ′
2 = { Ea }. In

M ′
1 there is no E–violation, whereas in M ′

2 there is the E–violation “Ea”. Thus,
M ′

1 is the unique evidential stable model of P. We will show, that for databases
which have stable models the evidential stable models coincide with the stable
models, when evidential atoms EA are interpreted as atoms A. Furthermore,
evidential stable models always exist for logically consistent databases. E.g. the
database P ′ = { a ← not a }, which does not have any stable models, has the
unique evidential stable model M ′ = {Ea}, which is interpreted as the model
M = {a} of P.

The second type of transformation we use is the tu–transformation P tu of
a disjunctive database P, which suitably annotates the atoms in P by the two
truth values true (“t”) and undefined (“u”), cf. [19]. We state a characterization
of the partial stable models of P in terms of the stable models of P tu. Then,
partial evidential stable models are defined based on the evidential stable models
of P tu, where the characterization for partial stable models motivates the new
definition. As in the two–valued case, partial evidential stable models always
exist for a logically consistent database. If there exist partial stable models of
the database, then the partial evidential stable models coincide with the partial
stable models, when evidential atoms are interpreted as atoms.
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The paper is organized as follows: In Sections 2 and 3 we review the basic def-
initions and notation for disjunctive databases, partial Herbrand interpretations
and partial stable models. In Section 4 we introduce the evidential transforma-
tion and the evidential stable models of a disjunctive database P. In Section 5
we define the tu–transformation P tu of P and we state a characterization of the
partial stable models of P in terms of the total stable models of P tu. This moti-
vates the definition of partial evidential stable models in Section 6. In Sections 7
and 8 we compare the new semantics with other approaches known from the
literature, and we briefly comment on some of their abstract properties.

2 Basic Definitions and Notations

Given a first order language L, a disjunctive database P consists of logical infer-
ence rules of the form

r = A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bm ∧ not C1 ∧ . . . ∧ not Cn, (1)

where Ai, 1 ≤ i ≤ k, Bi, 1 ≤ i ≤ m, and Ci, 1 ≤ i ≤ n, are atoms in the language
L; k, m, n ∈ IN0, and not is the negation–by–default operator.1 A rule is called
a fact if m = n = 0. The set of all ground instances of the rules and facts in
P is denoted by gnd (P). A rule (or database) is called positive–disjunctive if it
does not contain default negation (i.e. n = 0). A rule r of the form (1) above is
denoted for short as:

r = α← β ∧ not · γ, (2)

where α = A1 ∨ . . . ∨Ak, β = B1 ∧ . . . ∧Bm, and γ = C1 ∨ . . . ∨ Cn.2

Herbrand Interpretations and Partial Herbrand Interpretations

The Herbrand base HBP of a disjunctive database P contains all ground atoms
over the language of P. A partial Herbrand interpretation of P is given by a
mapping I: HBP → {t, f, u} that assigns a truth value “t” (true), “f” (false) or “u”
(undefined) to each ground atom in HBP . Thus, partial Herbrand interpretations
are also called three–valued Herbrand interpretations. I is called a total or total
Herbrand interpretation, if all atoms A ∈ HBP are mapped to classical truth
values t or f.

Equivalently, a partial Herbrand interpretation I can be represented by using
the concept of annotated atoms. Given an atom A = p(t1, . . . , tn) and a truth
value v ∈ { t, f, u }, we define Av = pv(t1, . . . , tn), where pv is taken to be a new
predicate symbol. We will use two ways of representing I as a set of annotated
atoms, either by specifying the true and false atoms or by specifying the true
and undefined atoms:
1 By IN+ we denote the set { 1, 2, 3, . . . } of positive natural numbers, whereas IN0

denotes the set { 0, 1, 2, . . . } of all natural numbers.
2 Note that γ is a disjunction, and, according to De Morgan’s law, not · γ is taken to

be a conjunction.
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tf–Representation: Itf = It ∪ I f ,
tu–Representation: Itu = It ∪ Iu,

where It, Iu and I f are given by:

It = {At |A ∈ HBP ∧ I(A) = t },
I f = {Af |A ∈ HBP ∧ I(A) = f },
Iu = {Au |A ∈ HBP ∧ ( I(A) = t ∨ I(A) = u ) }.

Note that in the tu–representation every true atom A is recorded as At and as
Au, which will become important later. Note also that the tf–representation is
essentially the same as the conventional representation of I as a set of literals,
where At becomes the atom A itself and Af becomes the negative literal ¬A. For
a set I of partial Herbrand interpretations we will use the same notations for
v ∈ { tf, tu }: Iv = { Iv | I ∈ I }. By I =v J , we denote that J = Iv is the
v–representation of I.

Consider for instance the Herbrand base HBP = {a, b, c, d}. Then the partial
Herbrand interpretation I with I(a) = t, I(b) = t, I(c) = f, and I(d) = u, is
represented as follows:

Itf = { at, bt, cf }, Itu = { at, au, bt, bu, du }.
Obviously, a total Herbrand interpretation I can simply be represented by

the set J = { A ∈ HBP | I(A) = t } of true atoms. Conversely, any set J ⊆ HBP
of ground atoms induces a total Herbrand interpretation J3, where J3(A) = t
iff A ∈ J . For a set J of sets of atoms, J 3 = { J3 | J ∈ J }.

Truth Ordering and Knowledge Ordering

There are two common partial orderings on truth values, the truth ordering and
the knowledge ordering, cf. Fitting [8], which are shown by Figure 1:

Truth Ordering ≤t: f ≤t u, u ≤t t,
Knowledge Ordering ≤k: u ≤k f, u ≤k t.

Given two truth values v1, v2 ∈ { t, f, u }, by v1 ≥x v2 we denote the fact that
v2 ≤x v1, for x ∈ { t, k }.

These partial orderings have been generalized (pointwise) to partial orderings
on partial Herbrand interpretations as follows. For x ∈ { t, k }:

I1 ≤x I2, iff ( ∀A ∈ HBP : I1(A) ≤x I2(A) ).

The truth ordering on partial Herbrand interpretations corresponds to the sub-
set ordering on their tu–representations: I1 ≤t I2 iff Itu

1 ⊆ Itu
2 . The knowl-

edge ordering corresponds to the subset ordering on the tf–representations:
I1 ≤k I2 iff Itf

1 ⊆ Itf
2 .

The Boolean operations “∨”, “∧” and “¬” on truth values are defined based
on the truth ordering, cf. Figure 2. The truth value of a disjunction v1 ∨ v2 and
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≤k

≤t

6

-

f t

u

Fig. 1. Truth Ordering and Knowledge Ordering

∧ t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

¬
t f
f t
u u

Fig. 2. Boolean operations in three–valued logic

a conjunction v1 ∧ v2 of truth values are constructed by taking the maximum
and the minimum of v1 and v2, respectively. “∨” and “∧” both are commutative
and associative, and thus can be generalized to disjunctions and conjunctions,
respectively, of more than one truth value.

Models and Partial Models, Minimality

Let M be a partial Herbrand interpretation of a disjunctive database P. For
Ai ∈ HBP , 1 ≤ i ≤ k, and a connective ⊗ ∈ {∨,∧} we define M( A1⊗. . .⊗Ak ) =
M(A1)⊗ . . .⊗M(Ak). For k = 0, the empty disjunction (i.e. ⊗ = ∨) evaluates
to f, whereas the empty conjunction (i.e. ⊗ = ∧) evaluates to t. M is called a
partial model of a ground rule r = α← β ∧ not · γ if

M(α) ≥t M(β) ∧ ¬M(γ). (3)

M is called a partial model of P if M is a partial model of all ground instances
r ∈ gnd (P) of all rules of P. This is denoted by M |=3 P.

Minimality of partial models is defined w.r.t. the truth ordering. M is called
a partial minimal model of P if M is a partial model of P and there is no other
partial model I of P such that I ≤t M . The set of all partial minimal models of
P is denoted by MM3(P). A partial model M of a disjunctive database P that
is total is called a model of P. This is denoted by M |=2 P. A partial minimal
model M of P that is total is called a minimal model of P. The set of all minimal
models of P is denoted by MM2(P).
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3 Stable and Partial Stable Models

The Gelfond–Lifschitz transformation (GL–transformation) of a disjunctive data-
base P w.r.t. a partial Herbrand interpretation M is obtained from the ground
instance gnd (P) of P by replacing in every rule the negative body by its truth
value M(not · γ) = ¬M(γ) w.r.t. M .3

Definition 1 (Gelfond–Lifschitz Transformation, [9,16]).
Let M be a partial Herbrand interpretation of a disjunctive database P.

1. For r = α← β ∧ not · γ ∈ gnd (P) we define rM = α← β ∧ ¬M(γ).
2. The Gelfond–Lifschitz transformation of P is PM = { rM | r ∈ gnd (P) }.

The GL–transformation PM is a ground positive–disjunctive database that
has as additional atoms the truth values t, f and u. Note that these truth values
must evaluate to themselves under all partial Herbrand interpretations I of PM .

Definition 2 (Partial Stable Models, Stable Models, [9,16]).
Let M be a partial Herbrand interpretation of a disjunctive database P.

1. M is called a partial stable model of P if M ∈ MM3(PM ). The set of all
partial stable models of P is denoted by STABLE3(P).

2. A partial stable model M of P that is total is called a stable model of P.
The set of all stable models of P is denoted by STABLE2(P).

It can be shown that STABLE2(P) ⊆ STABLE3(P) for all disjunctive databases.
That is, the semantics of stable models is always stronger than the semantics of
partial stable models. The following databases will be used as running examples
throughout the paper.

Example 1 (Partial Stable Models).

1. For the disjunctive database

P1 = { a ∨ b, q ← b ∧ not a, q ← a ∧ not b },

we get the following set of partial stable models:

STABLE3(P1) =tf { { at, qt, bf }, { bt, qt, af } }.

E.g. for M tf = {at, qt, bf} we get the GL–transformation PM
1 = { a∨b, q ←

b ∧ f, q ← a ∧ t }, and MM3(PM
1 ) =tf {M tf , N tf }, for N tf = { bt, af, qf }.

Here all partial stable models are also stable models, i.e. STABLE3(P1) =
STABLE2(P1). Since P1 is stratified, the stable models coincide with the per-
fect models.

3 If this truth value is “t”, then “t” can be deleted from the body. If it is “f”, then the
whole rule can be deleted from PM .
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2. For the disjunctive database

P2 = { a← not b, b← not c, c← not a },

there is a unique partial stable model, which is not stable:

STABLE3(P2) =tf { ∅ }, STABLE2(P2) =tf ∅.

3. The disjunctive database P3 = P2 ∪ { a∨b∨c }, cf. also [16], is inconsistent
w.r.t. the semantics of stable and partial stable models, i.e. STABLE3(P3) =
STABLE2(P3) = ∅.

4 Evidential Stable Models

Given an atom A = p(t1, . . . , tn), we define the corresponding evidential atom
EA = Ep(t1, . . . , tn), where Ep is taken to be a new predicate symbol. For a
disjunction α = A1 ∨ . . .∨Ak and a conjunction β = B1 ∧ . . .∧Bm of atoms we
define Eα = EA1 ∨ . . . ∨ EAk and Eβ = EB1 ∧ . . . ∧ EBm.

Definition 3 (Evidential Transformation).
Let P be a disjunctive database.

1. For a rule r = α← β ∧ not · γ ∈ P we define

Er = α ∨ Eγ ← β, E2r = Eα ∨ Eγ ← Eβ.

2. The evidential transformation of P is

EP = { Er | r ∈ P } ∪ { E2r | r ∈ P } ∪ { EA← A |A ∈ HBP }.

A rule Er describes that, if the positive body β of r is true, then this gives
rise to deriving either the head α “constructively” or an evidence for γ “by con-
tradiction”. The rules E2r could be compared with the normality rules from the
autoepistemic logic of beliefs, cf. [17], and the rules EA← A with the necessita-
tion rules. For an implementation, EP can be optimized: facts E2r = Eα ∨ Eγ
obtained from rules r = α ← not · γ ∈ P with an empty positive body are
redundant, since they are implied by Er = α ∨ Eγ and the necessitation rules.

Example 2 (Evidential Transformation).
For the disjunctive database P1 of Example 1 we get the following EP1, where
the fact Ea ∨ Eb is redundant:

EP1 = { a ∨ b, q ∨ Ea← b, q ∨ Eb← a } ∪
{ Ea ∨ Eb, Eq ∨ Ea← Eb, Eq ∨ Eb← Ea } ∪
{ Ea← a, Eb← b, Eq ← q }.
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Every pair of total Herbrand interpretations J and K of P induces a total
Herbrand interpretation I of EP, denoted by J ∪ EK, where for A ∈ HBP :

(J ∪ EK)(A) = J(A), (J ∪ EK)(EA) = K(A).

Conversely, every total Herbrand interpretation I of EP can be represented as J∪
EK. The total Herbrand interpretation K of P, that determines I on evidential
atoms, will be denoted by K(I), i.e. K(J ∪ EK) = K. K(I) will be considered to
be the total Herbrand interpretation of P that corresponds to I. It ignores the
part J , and interprets evidential atoms as (regular) atoms. For a set I of total
Herbrand interpretations of EP we define K(I) = { K(I) | I ∈ I }.

Based on a similar transformation FP = {Er |r ∈ P}∪{EA← A|A ∈ HBP },
which is a subset of EP, and the set CP = { ← EA ∧ not A | A ∈ HBP } of test
constraints, a characterization of stable models has been given by Fernández et
al.:

Theorem 1 (Characterization of Stable Models, [7]).
Given a disjunctive database P, then

STABLE2(P) = K( { I ∈MM2(FP) | I |=2 CP } ).

This characterization of stable models can also be proven for EP instead of FP. It
does not refer to the “normality rules” E2r, since they are fulfilled automatically,
if I strictly fulfills all of the test constraints in CP. In our approach, however,
they will be needed to guarantee that K(I) is a model of P if I is a model of
EP.

We propose the new concept of evidential stable models, which are minimal
Herbrand models I of EP, such that K(I) ∈ MM2(P). The strict requirement
given by CP is relaxed to a preference relation: I ′ is preferred to I, if V(I ′) (

V(I), where V(I) denotes the set of violations of test constraints.

Definition 4 (Evidential Stable Models).
Given a disjunctive database P and a set I of total Herbrand interpretations of
EP.

1. The set of E–violations of I ∈ I is given by

V(I) = { EA | I |=2 EA and I 6|=2 A },

and minV(I) = { I ∈ I | 6 ∃I ′ ∈ I : I 6= I ′ ∧ V(I ′) ( V(I) } denotes the set
of V–minimal interpretations in I.

2. The set of evidential stable models of P is

ESTABLE2(P) = minV( { I ∈MM2(EP) | K(I) ∈MM2(P) } ),

and we further define STABLE ✦
2 (P) = K(ESTABLE2(P)).
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The name evidential stable models has been chosen, since an evidential stable
model I ∈ ESTABLE2(P) contains evidential atoms, and it can be shown that
K(I) is a stable model of a suitably, minimally transformed database, where all
atoms A, such that EA is an E–violation in I, are moved from negative rule
bodies to rule heads (see P ′

2 below).
An evidential stable model I provides more information than just about the

truth of atoms A, namely the information of whether A was derived construc-
tively, or solely by contradiction (i.e., EA is an E–violation in I). In the models
K(I) ∈ STABLE ✦

2 (P), however, this information is ignored.

Example 3 (Evidential Stable Models).

1. For the disjunctive database P1 we get

STABLE2(P1) = STABLE ✦
2 (P1) (MM2(P1).

2. For the disjunctive database P2 we get the following EP2, where redundant
facts have been left out:

EP2 = { a ∨ Eb, b ∨ Ec, c ∨ Ea } ∪ { Ea← a, Eb← b, Ec← c }.
From MM2(EP2), the first three models are V–minimal:

MM2(EP2) = { { a, Ea, Ec }, { b, Eb, Ea }, { c, Ec, Eb }, { Ea, Eb, Ec } }3.

E.g. for I = { a, Ea, Ec }3 and I ′ = { Ea, Eb, Ec }3 we get

V(I) = { Ec } ( V(I ′) = { Ea, Eb, Ec }.
The meaning of I is that “a” is true, but there is only an evidence that “c”
is true, i.e. “c” has been derived by contradiction:

STABLE ✦
2 (P2) = { { a, c }, { a, b }, { b, c } }3 = MM2(P2).

Finally, K(I) = { a, c }3 is a stable model of the suitably, minimally trans-
formed database P ′

2 for I:

P ′
2 = { a← not b, b ∨ c, c← not a }.

3. For the disjunctive database P3 we get STABLE ✦
2 (P3) = STABLE ✦

2 (P2).

The following theorem relates the evidential stable models of a disjunctive
database to the minimal and the stable models.

Theorem 2 (Characterization of Evidential Stable Models).
Given a disjunctive database P, then

1. If MM2(P) 6= ∅, then STABLE ✦
2 (P) 6= ∅.

2. If STABLE2(P) 6= ∅, then STABLE ✦
2 (P) = STABLE2(P).

3. STABLE2(P) ⊆ STABLE ✦
2 (P) ⊆MM2(P).
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Proof.

1. Assume MM2(P) 6= ∅. Every minimal model M ∈MM2(P) of P induces a
Herbrand interpretation M ∪ EM , which obviously is a model of EP. Thus,
there exists a minimal model I ∈ MM2(EP), such that I = J ∪ EK ⊆
M ∪ EM .4 Since EK must be a model of P ′ = { E2r | r ∈ P }, and EM
is a minimal model of P ′, and EK ⊆ EM, we get that K = M . Thus,
I = J ∪ EM ∈MM2(EP) and K(I) = M ∈MM2(P). This means that the
set of interpretations which we minimize is not empty, i.e. STABLE ✦

2 (P) 6= ∅.
2. The test condition (A) I |=2 CP is equivalent to (B) V(I) = ∅. Thus, for a

stable model K of P, the Herbrand interpretation I = K ∪EK of EP always
is minimal w.r.t. violation, and thus I is evidential stable. Moreover, if there
exists any stable model of P, then all evidential stable models I of P must
fulfill (B), i.e. they are of the form I = K ∪EK, such that K ∈ STABLE2(P).

3. First, the inclusion STABLE ✦
2 (P) ⊆MM2(P) holds by definition. Secondly,

the inclusion STABLE2(P) ⊆ STABLE ✦
2 (P) is an immediate consequence of

part 2.
ut

Note that the concept of evidential stable models cannot be lifted to the
three–valued case by simply taking partial minimal models of EP. The reason is
that for positive–disjunctive databases (without default negation), such as EP,
the partial minimal models coincide with the minimal models.

5 Annotation of DataBases and Partial Stable Models

We will use a special concept of annotating disjunctive rules, which encodes
the condition that partial Herbrand models have to fulfill in terms of their tu–
representation. Given a truth value v ∈ {t, u}, for a disjunction α = A1∨ . . .∨Ak

and a conjunction β = B1 ∧ . . .∧Bm of atoms we define αv = Av
1 ∨ . . .∨Av

k and
βv = Bv

1 ∧ . . . ∧Bv
m.

Definition 5 (Annotation of DataBases).

1. For a disjunctive rule r = α← β ∧ not · γ we define the annotated rules

rt = αt ← βt ∧ not · γu, ru = αu ← βu ∧ not · γt.

2. For a disjunctive database P we define P t = {rt |r ∈ P }, Pu = {ru |r ∈ P },
and the annotated database P tu = P t ∪ Pu ∪ {Au ← At |A ∈ HBP }.

Example 4 (Annotation of DataBases).
For the disjunctive database P1 of Example 1 we get

P t
1 = { at ∨ bt, qt ← bt ∧ not au, qt ← at ∧ not bu },
Pu

1 = { au ∨ bu, qu ← bu ∧ not at, au ← qu ∧ not bt },
P tu

1 = P t
1 ∪ Pu

1 ∪ { au ← at, bu ← bt, qu ← qt }.
4 Note that in this proof, total Herbrand interpretations are treated as their sets of

true atoms, and they are compared like sets.
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The construction of P tu is motivated by the condition given in Equation (3),
which every partial Herbrand model M of a ground rule r = α← β∧not·γ must
fulfill. This condition can be encoded in the annotated rules rt and ru, since it
is equivalent to the following:

( ( M(β) ≥t t ∧ ¬(M(γ) ≥t u ) =⇒ M(α) ≥t t ) ∧
( ( M(β) ≥t u ∧ ¬(M(γ) ≥t t ) =⇒ M(α) ≥t u ).

The rules Au ← At are due to the fact that we want to perceive the Herbrand
models of P tu as Herbrand models of P in tu–representation.

Properties of the Annotated Database

It can be shown that annotation preserves stratification: Given a disjunctive
database P, the annotated disjunctive database P tu is stratified if and only if P
is stratified. Based on this, one can give an alternative proof of the well–known
fact (see [16]) that the partial stable models of a stratified–disjunctive database
P coincide with the perfect models of P. This fact implies in particular that the
partial stable models of a stratified–disjunctive database P are total.

The annotated database P tu can be represented as a database over two pred-
icate symbols “t” and “u”. Then, annotated atoms At and Au in rules can be
represented by atoms t(A) and u(A), respectively, where “A” is seen as a term
now. In this representation the (possibly infinite) set { Au ← At | A ∈ HBP }
of rules can simply be represented by one rule u(X) ← t(X), where “X” is a
variable symbol for atoms. Then P tu has the size of 2 · n + 1 rules if P consists
of n rules. This compact representation has been used for an implementation
dealing with P tu.

Characterization of Partial Minimal and Partial Stable Models

The following theorem shows that the partial stable models of a disjunctive
database P correspond to the total stable models of the annotated database
P tu. For any total Herbrand interpretation I of P tu we introduce the notation
I∇ for the partial Herbrand interpretation of P that is induced by I, i.e. for
A ∈ HBP

I∇(A) =




t if I(At) = t
u if I(Au) = t and I(At) = f
f if I(Au) = f

For a set I of total Herbrand interpretations of P tu, let I∇ = { I∇ | I ∈ I }.
Theorem 3 (Partial Minimal and Partial Stable Models, [19]).
Given a disjunctive database P, then

1. MM3(P) =MM2(P tu)∇
.

2. STABLE3(P) = STABLE2(P tu)∇
.
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Example 5 (Partial Stable Models).

1. For the disjunctive database P1 of Example 1, whose annotated database
P tu

1 has been given in Example 4, we get

STABLE3(P1) =tu { { at, au, qt, qu }, { bt, bu, qt, qu } }.
2. For the disjunctive database P2 of Example 1, we get the annotated database

P tu
2 = { at ← not bu, bt ← not cu, ct ← not au,

au ← not bt, bu ← not ct, cu ← not at,

au ← at, bu ← bt, cu ← ct }.
Thus, we get

STABLE3(P2) =tu { { au, bu, cu } }.
For the restricted case of normal databases, i.e. databases that may contain

negation but do not contain disjunctions, other characterizations of partial stable
models are given in [4,22]. The characterization of [4] is also based on the concept
of annotation, but it needs more than the two truth values that we are annotating
with here.

6 Partial Evidential Stable Models

For defining partial evidential stable models we can use the techniques described
in the previous two sections. Partial evidential stable models are defined based
on the evidential stable models of the tu–transformation of the database, i.e.
Theorem 3 for partial stable models motivates the following definition.

Definition 6 (Partial Evidential Stable Models).
The set of partial evidential stable models of a disjunctive database P is

ESTABLE3(P) = ESTABLE2(P tu)∇
,

and we further define STABLE ✦
3 (P) = K(ESTABLE3(P)).

Thus, for constructing partial evidential stable models we need the evidential
transformation E(P tu) of the tu–transformation of P. 5 As a consequence of its
definition, for each rule r = α ← β ∧ not · γ ∈ P, it contains two evidence rules
Eru, Ert, and two normality rules E2ru, E2rt :

Eru = αu ∨ Eγt ← βu, Ert = αt ∨ Eγu ← βt,
E2ru = Eαu ∨ Eγt ← Eβu, E2rt = Eαt ∨ Eγu ← Eβt.

Note that in an implementation, E(P tu) can be represented compactly as a dis-
junctive database over four predicate symbols “t, u, Et, Eu”.
5 We can identify evidential atoms E(Av) of E(P tu) with annotated atoms (EA)v of

(EP)tu. But note that – even with this identification – the databases E(P tu) and
(EP)tu are different if there is negation in P.
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Fig. 3. Correlation between Annotated Atoms

The correlation between the four different types of atoms is specified by four
generic rules in E(P tu), cf. Figure 3: First, the rule r = Au ← At ∈ P tu gives rise
to the two evidential rules Er = r and E2r = EAu ← EAt. Secondly, we get the
two necessitation rules EAt ← At and EAu ← Au, for At and Au, respectively.

Analogously to evidential stable models, a partial evidential stable model I
provides more information than just about the truth or undefinedness of atoms
A, namely the information of whether an annotated atom Av was derived con-
structively, or solely by contradiction (i.e. EAv ∈ V(I) is an E–violation in I).
Again, in the models K(I) ∈ STABLE ✦

3 (P) this information is ignored, i.e., an
evidential atom EAv provides the same knowledge as a regular atom Av (cf. the
knowledge levels in Figure 3).

Example 6 (Partial Evidential Stable Models).

1. For the disjunctive database P2 of Example 1 we get

STABLE ✦
3 (P2) = STABLE3(P2).

2. For the disjunctive database P3 of Example 1 we get E(P tu
3 ), where the

redundant facts E2r for rules r ∈ P tu
3 with empty positive bodies have been

left out:

E(P tu
3 ) = { at ∨ bt ∨ ct, at ∨ Ebu, bt ∨ Ecu, ct ∨ Eau } ∪
{ au ∨ bu ∨ cu, au ∨ Ebt, bu ∨ Ect, cu ∨ Eat } ∪
{ Au ← At, EAu ← EAt, EAt ← At, EAu ← Au | A ∈ HBP3 }.

We get the set

MM2(E(P tu
3 )) = { I1(a, b, c), I2(a, b, c), I1(c, a, b), I2(c, a, b),

I1(b, c, a), I2(b, c, a) }
of minimal models, where for A, B, C ∈ HBP3 :

I1(A, B, C) = {At, EAt, Au, EAu, Bu, EBu, ECu }3,

I2(A, B, C) = {At, EAt, Au, EAu, ECt, ECu }3.
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Here, V( I1(A, B, C) ) = { ECu } ( V( I2(A, B, C) ) = { ECt, ECu }. Thus,
we get

STABLE ✦
3 (P3) =tu { { at, au, bu, cu }, { ct, cu, au, bu }, { bt, bu, cu, au } }.

3. For the (partial) evidential stable models of P3, it turns out that for each
evidential stable model I2 ∈ STABLE ✦

2 (P3) there is a corresponding partial
evidential stable model I3 ∈ STABLE ✦

3 (P3) that is weaker in the knowledge
ordering: e.g. for Itu

2 = { at, au, ct, cu } and Itu
3 = { at, au, bu, cu } we get I3 ≤k

I2, since Itf
3 = { at } ( { at, bf, ct } = Itf

2 .

The following theorem relates the partial evidential stable models of a dis-
junctive database to the partial minimal and the partial stable models. It is a
consequence of Definitions 4 and 6, and Theorems 2 and 3.

Theorem 4 ( Characterization of Partial Evidential Stable Models).
Given a disjunctive database P, then

1. If MM3(P) 6= ∅, then STABLE ✦
3 (P) 6= ∅.

2. If STABLE3(P) 6= ∅, then STABLE ✦
3 (P) = STABLE3(P).

3. STABLE3(P) ⊆ STABLE ✦
3 (P) ⊆MM3(P).

Proof.
First, we will show that

(STABLE ✦
2 (P tu))

∇
= STABLE ✦

3 (P). (4)

Due to Definition 4, (STABLE ✦
2 (P tu))

∇
= (K(ESTABLE2(P tu)))∇

. It is possible
to switch: (K(ESTABLE2(P tu)))∇ = K(ESTABLE2(P tu)∇). According to Defini-
tion 6,

K(ESTABLE2(P tu)∇) = K(ESTABLE3(P)) = STABLE ✦
3 (P).

1. Assume MM3(P) 6= ∅. According to Theorem 3, part 1, this implies that
(MM2(P tu))∇ 6= ∅. With Theorem 2, part 1, we get (STABLE ✦

2 (P tu))
∇6= ∅.

Using Equation (4), STABLE ✦
3 (P) 6= ∅ can be concluded.

2. Assume STABLE3(P) 6= ∅. According to Theorem 3, part 2, this implies that
(STABLE2(P tu))∇ 6= ∅. With Theorem 2, part 2, we get

(STABLE ✦
2 (P tu))

∇
= (STABLE2(P tu))∇

.

Using Equation (4) and Theorem 3, part 2, the desired result follows.
3. From Theorem 2, part 3, we get an inclusion chain, that is preserved by “∇”:

(STABLE2(P tu))∇ ⊆ (STABLE ✦
2 (P tu))

∇ ⊆ (MM2(P tu))∇
. Applying Theo-

rem 3, parts 1 and 2, to (MM2(P tu))∇ and (STABLE2(P tu))∇, respectively,
and applying Equation (4) to (STABLE ✦

2 (P tu))
∇

, we get the desired chain of
inclusions.

ut
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Partial evidential stable models provide a “consistent extension” of the well–
founded semantics from normal databases to disjunctive databases P, namely the
set STABLE ✦

3 (P) of partial Herbrand interpretations. For stratified–disjunctive
databases, this extension coincides with the perfect models if there exist perfect
models of P (which is for instance guaranteed for databases without denial rules).

7 Comparison with Other Approaches

Regular Models

The semantics of regular models has been introduced by You and Yuan, cf.
[24,25]: A regular model M is a justifiable model which has a minimal set Mu

of undefined atoms. A justifiable model M is a minimal model of a variant PM
Y

of the three–valued Gelfond–Lifschitz transformation, where only those rules are
selected whose negative bodies are true w.r.t. M (rather than undefined or false).

For a large class of disjunctive databases – including all examples considered
so far in this paper – the partial evidential stable models coincide with the
regular models. But, using an example database from [6], it can be shown that
the regular models do not always coincide with the (partial) evidential stable
models, neither with the (partial) stable models.

L–Stable and M–Stable Models

Eiter, Leone and Sacca [6] have investigated several interesting subsets of the set
of partial stable models, like the least undefined and the maximal partial stable
models, which they call L–stable and M–stable models, respectively.6 For normal
databases (without disjunctions), the M–stable models coincide with the regular
models of You and Yuan.

Since L–stable and M–stable models always are partial stable models, they do
not give a consistent interpretation for databases without partial stable models
(like P3), while (partial) evidential stable models do so if the databases are
logically consistent.

It tuns out that the concepts of minimizing undefinedness and maximizing
knowledge can be combined with our concept of partial evidential stable models.
That is, since STABLE ✦

3 (P) is a set of partial Herbrand interpretations, it makes
sense to look for the least undefined elements in that set, and also for the elements
with maximal knowledge.

Abductive Variants of Stable Models

Given a disjunctive database P, and a set A ⊆ HBP of ground atoms, called
abducibles. A total Herbrand model I of P is called an A–belief model , if there
6 Within the set of all partial stable models, an L–stable model M must have a minimal

set Mu of undefined atoms, whereas an M–stable model must have a maximal set
M tf of knowledge.
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exists a set AI ⊆ A of abducibles, such that I is a stable model of P ∪ AI . I
is called an A–stable model of P, if its set AI is minimal among all A–belief
models (i.e., if there exists no other A–belief model I ′ such that AI′ ( AI).

This construction had been suggested by Gelfond7, who allowed all ground
atoms to be abducibles (i.e. A = HBP). A slightly different variant had been
proposed by Inoue and Sakama [11], who minimize the amount of abducibles in
an A–stable model I by additionally requiring that AI = {A ∈ A | I(A) = t }
must hold for A–belief models.

In general, both definitions are different from evidential stable models. If
there exist stable models, then Gelfond’s approach also derives these stable mod-
els, but otherwise it does not necessarily derive only minimal models.8 The ap-
proach of Inoue and Sakama is depending on particular useful sets of abducibles –
for A = ∅ it derives the stable models, and for A = HBP it derives all minimal
models.

There are, of course, similarities to evidential stable models, where the E–
violations (i.e. the atoms that are derived by contradiction solely) play the role
of abducibles which must occur in negative bodies of ground rules.

Disjunctive Well–Founded Semantics

For achieving a consistent interpretation of disjunctive databases, several types
of well–founded semantics have been proposed, cf. [1,2,14]. It seems that the
semantics of evidential stable models are stronger than the semantics D-WFS of
Brass and Dix [2], and still they are consistent.

8 Abstract Properties of the Evidential Semantics

In the following we will give a brief analysis of the two evidential semantics
according to several abstract properties of semantics, cf. Brass and Dix [3]. A
summary is given by Figure 4.

First, both evidential semantics have the property of independence. They
even have the stronger property of modularity . This means that if a database
can be decomposed into separate components that do not have any atoms in
common, then the (partial) evidential stable models can be computed on the
components separately. As a consequence, only on those parts of a disjunctive
database that are inconsistent w.r.t. (partial) stable models we have to compute
(partial) evidential stable models. On the consistent part of a database – which
usually will be the main part – we can compute the basic (partial) stable model
semantics.
7 in discussions
8 E.g., the disjunctive database P = { q ← not a ∧ not q, a ← b } has two evidential

stable models I tf
1 = { qt, af, bf} and I tf

2 = { at, bf, qf }. According to Gelfond’s defini-
tion, besides I1 and I2 we get an extra A–stable model I tf

3 = { at, bt, qf }, which is
not minimal (A = { a, b, q }, AI1 = { q }, AI2 = { a }, AI3 = { b }).
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Taut. Contr. GPPE Indep. Supra.

STABLE2 + + + — +

STABLE3 + — — — —

STABLE ✦
2 + + — + +

STABLE ✦
3 + — — + —

D-WFS + — + + —

Regular + + — — —

Fig. 4. Abstract properties of semantics

Secondly, evidential stable model semantics is supraclassical , i.e., it derives
more consequences – by sceptical reasoning – than classical logic, since eviden-
tial stable models are also minimal models, cf. Theorems 2. On the other hand,
partial evidential stable model semantics is not supraclassical, since for normal
databases it is equivalent to the well–founded semantics, which is not supraclas-
sical.

Thirdly, both evidential semantics allow for the elimination of tautologies.
The semantics of evidential stable models also allows for the elimination of con-
tradictions, whereas partial evidential stable models do not. This well matches
with the conjecture of [3] that elimination of contradictions should be given up
for (three–valued) semantics of general – i.e. non–stratified – disjunctive data-
bases.

Fourth, both evidential semantics do not satisfy the generalized property of
partial evaluation (GPPE). For partial evidential stable models this can be shown
by an example that originally was used for showing that partial stable models
do not satisfy GPPE [19]. Given the fact that evidential stable models satisfy
elimination of tautologies and elimination of contradictions, using a theorem of
[3] it can be concluded that evidential stable models cannot satisfy GPPE – the
reason is that otherwise the set of evidential stable models always would have
to be a subset of the set of stable models.

Finally, note that as a consequence of Theorem 3, the technique of partial
evaluation can still be applied to the tu–transformation of a database – rather
than the database itself – for computing its partial stable models, and conse-
quently also the superset of partial evidential stable models.

9 Conclusions

The evidential semantics presented in this paper can be seen as a special case of
the general framework for revising non–monotonic theories that was introduced
by Witteveen and van der Hoek in [23]. In that case, the intended models would
be the (partial) stable models, and the backup models – from among which the
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models are chosen if there exist no intended models – would be the (partial)
minimal models, cf. Theorems 2 and 4.

The computation of (partial) evidential stable model semantics has been
implemented within the system DisLog for efficient reasoning in disjunctive
databases, cf. [20]. It can be shown that the time complexity of computing (par-
tial) evidential stable models is on the second level of the polynomial hierarchy,
namely ΣP

2 , just as for computing (partial) stable models.
The detailed investigation of the properties and possible implementations of

evidential stable models and partial evidential stable models will be the subject
of future work.
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Abstract. In this paper, we use autoepistemic reasoning semantics to
classify various semantics for disjunctive logic programs with default
negation. We have observed that two different types of negative intro-
spection in autoepistemic reasoning present two different interpretations
of default negation: consistency-based and minimal-model-based. We also
observed that all logic program semantics fall into three semantical points
of view: the skeptical, stable, and partial-stable. Based on these two ob-
servations, we classify disjunctive logic program semantics into six dif-
ferent categories, and discuss the relationships among various semantics.

1 Introduction

Recently the study of theoretical foundations of disjunctive logic programs with
default negation has attracted considerable attention. This is mainly because
the additional expressive power of disjunctive logic programs significantly sim-
plifies the problem of modeling disjunctive statements of various nonmonotonic
formalisms in the framework of logic programming, and consequently facilitates
using logic programming as an inference engine for nonmonotonic reasoning.

One of the major challenges is how to define a suitable semantics for var-
ious applications. A semantics of logic programs is usually specified by how
default negation is justified. Different ways of justification lead to different se-
mantics. Though many promising semantics for disjunctive programs have been
proposed, such as the answer set semantics [12], the static semantics [16], and
the well-founded and stable circumscriptive semantics [22], searching for suit-
able semantics for disjunctive programs proved to be far more difficult than for
normal programs (logic programs without disjunction) whose semantics is fairly
well understood now.

Three major semantical points of view have been established for logic pro-
grams: the skeptical, stable, and partial-stable.

A skeptical semantics justifies a default negation notα with respect to a
program Π if and only if α cannot possibly be derived from Π under any cir-
cumstance 1.
1 We say α cannot be derived from Π under any circumstance if α cannot be derived

from ΠN for any set N of default negations. Note that ΠN is a program obtained

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 85–101, 1998.
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A stable semantics is based on the idea of perfect introspection, in that the
semantics entails notα if and only if it does not entails α. Obviously, a sta-
ble semantics disallows any undefined atoms. (Note that an atom α in a given
semantics is considered undefined if neither α nor notα is true in the semantics.

A stable semantics characterizes an ideal (credulous) semantics for logic pro-
grams but a stable semantics of many less-than-ideal programs may not be con-
sistent. For example, Π = {a ← nota} has no stable models. This motivates
the introduction of the third semantical point of view: the partial-stable seman-
tics. A partial-stable semantics can be viewed as a relaxed stable semantics that
allows a minimum number of undefined atoms.

The standard semantics in three semantical categories for normal programs
are the well-founded semantics [9], the stable semantics [11], and the regular
semantics [20], respectively.

Not surprisingly, many semantics for disjunctive programs have been pro-
posed in each of these three semantical categories. For example, the static se-
mantics, the well-founded circumscriptive semantics, and the disjunctive well-
founded semantics [2,3,4] and the skeptical well-founded semantics [23] are rep-
resentatives of the skeptical semantical category; and the answer set semantics
and the stable extension semantics [14] (based on the autoepistemic translation
of logic programs) are representatives of the stable semantical category. For the
partial-stable semantical category, there are the partial-stable model semantics
[15], the regular model semantics [20], and the maximal stable model semantics
[8]. These three partial-stable semantics, as well as many others, defined weaker
stable semantics for disjunctive programs but experienced various difficulties [8].
A notable new entry in the field is the the partial-stable assumption semantics
[19]. The partial-stable assumption semantics extends the answer set seman-
tics into the partial-stable semantical category in the same way as the regular
semantics extends the stable semantics for normal programs.

In addition to three semantical points of view, it has also been realized that
the interpretations for default negation can be divided into two camps: those in
default logic and autoepistemic logic, which are consistency-based, and those in
circumscription and the like, which are minimal-model-based [13]. In the former
case, default assumptions are made on the basis of certain hypotheses being
consistent with a current theory; in the latter case, default assumptions are
made on the basis of their being true in all minimal models of a current theory.

In this paper, we use autoepistemic logic as a tool to classify disjunctive pro-
gram semantics into six different semantical categories, according to three seman-
tical points of view and two interpretations of default negation. We demonstrate
that all the six semantics have been proposed earlier in various frameworks and
that all promising semantics either coincide with, or are essentially the same as,
one of these six semantics.

We also address computational aspects of various semantics, which is an-
other important issue in the study of logic program semantics. In fact, we have

from Π by replacing all negations with their truth values in N . See Section 2 for
details
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shown that among all six semantics, the consistency-based skeptical semantics
has the lowest computational complexity: PNP , which is not surprising be-
cause minimal-model entailment is inherently more difficult to compute than
(consistency-based) classical entailment.

We use autoepistemic logic as a tool for classifying disjunctive logic pro-
gram semantics for the following two reasons. First, default negation in logic
programming and many other nonmonotonic reasoning frameworks can be pre-
cisely characterized by negative introspection, which is a process for a rational
agent to derive disbeliefs according to the agent’s perspective of the world, in au-
toepistemic reasoning [10]. Second, we have observed that the difference between
consistency-based and minimal-model-based interpretations of default negation
lies in the use of an axiom ¬α ⊂ ¬Bα, where ¬Bα standing for “not believ-
ing α” (or notα), in autoepistemic logic, which is quite interesting. In fact, we
show that a minimal-model-based semantics can be precisely defined by the cor-
responding consistency-based semantics with one simple axiom in the context
of autoepistemic logic semantics. The following example demonstrates the dif-
ference between the two interpretations of default negation and how they are
related by the above axiom.

Example 1. Consider the following program Π1:

driving ∨ flying ←
fixing car ← notflying
reserving seat← notdriving

Π1 can be represented by an autoepistemic theory A1 below:

driving ∨ flying
fixing car ⊂ ¬Bflying
reserving seat ⊂ ¬Bdriving

The answer set semantics, which adopts the minimal-model-based default nega-
tion, of Π1 has two answer sets, one conclude

{driving; fixing car;notflying;notresering seat}

and the other

{flying; reserving seat;notdriving;notfixing car}.

The stable extension semantics [14], which is consistency-based, of A1, on the
other hand, contains a unique stable extension which concludes

{driving ∨ flying; fixing car; reserving seat;¬Bdriving;¬Bflying}

Let A1m be obtained from A1 by adding instantiated formulas of axiom ¬α ⊂
¬Bα, i.e., A1m = A1 ∪ {¬driving ⊂ ¬Bdriving;¬flying ⊂ ¬Bflying}. Then
the stable extension semantics of A1m contains two stable extensions, one con-
cludes

{driving; fixing car;¬Bflying;¬Bresering seat}
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and the other

{flying; reserving seat;¬Bdriving;¬Bfixing car},
which coincides with the answer set semantics of Π1.

Our study provides much needed insights into the theoretical foundations of logic
programming with default negation.

The rest of the paper is organized as follows: Section 2 and 3 briefly review
logic program semantics and autoepistemic logic respectively. Section 4 defines
three autoepistemic expansions according to three different semantical points of
view. The six different semantics are redefined in Section 5. Semantical analysis
and comparisons are given in Section 6.

2 Logic Programs with Default Negation

We consider instantiated programs in a finite language containing the binary
connectives ∨,∧,←, and a unary connective not. A logic program is a set of
clauses of the form

A1 ∨ · · · ∨Aq ← B1, . . . , Bm,notC1, . . . ,notCn,

where Ai, Bj , Ck are atoms, notCk are default negations, also called assumed
negations, and q ≥ 1. Π is considered a normal program if q = 1; and a positive
program if n = 0. We use Π ` α to denote the fact that α can be derived from
Π in the sense of classical entailment.

Assume Π is a program. A negation set N is defined as a set of default
negations that appear in Π, which represents a possible interpretation (values)
of default negations contained in Π. The GL-translation ΠN is defined as a
program obtained from Π by first deleting all notcjs if notcj ∈ N and then
deleting all clauses with notck in the body if notck 6∈N .

The main challenge is how to define a suitable semantics for logic programs.
Since a negation set specifies a set of default negations being assumed true and
the intended meaning of Π under a given negation set N is determined by ΠN

2, a semantics of Π is usually given by one or more negation sets. Therefore,
searching for a semantics of Π is a process of searching for a negation set that
can be justified under a certain semantical point of view.

There are three major semantical points of view: the skeptical, stable, and
partial-stable.

A skeptical semantics is the most conservative semantics in that it justifies
a default negation notα if and only if α cannot be derived from the current
program in any circumstance, meaning α is not true with respect to ΠN for
any negation set N . Both stable and partial-stable semantics justify a default

2 Given Π and N , an atom α is considered true with respect to ΠN if either ΠN |= α
as in a consistency-based semantics, or (ΠN ∪ {¬β | notβ ∈ N}) |= α as in the
answer set semantics. See Section 5 for details.
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negation notα only if α cannot be derived from the current program under the
given negation set. The difference between the stable and partial-stable is that
the former assigns a definite value, being true or assumed false, to each and
every atom while the latter allows a minimum number of undefined atoms.

Consider normal (non-disjunctive) programs first. The following table lists
all the major semantics proposed for normal programs.

Skeptical Stable partial-stable
Regular Semantics [20]

Well-Founded Stable Semantics [11] Preferential Semantics [7]
Semantics [9] Maximum Partial-Stable

Semantics [17]
Stable-Class Semantics [1]

Let Π be a normal program, and M and N negation sets of Π. We say M is
compatible wrt N if ΠN 6|= α for any notα ∈ M . Then N is justifiable wrt Π
if notα ∈ N if and only if ΠM 6|= α for any M that is compatible wrt N . This
leads to the following definition.

Definition 1. Let Π be a normal program. A negation set N is said to be

1. a partial-stable set of Π if
(a) N is compatible wrt itself, and
(b) N = {notα|Π{notβ | ΠN 6|=β} 6|= α}.

2. a stable set of Π if N = {notα | ΠN 6|= α}.
From this definition we can see that a partial-stable set N is a set of all default
negations that can be justified under the rule of negation as failure. That is,
notα ∈ N if and only if α cannot be derived from Π even all default negations
notβ ∈ {notβ | ΠN 6|= β} are assumed false. Obviously, a stable set is a partial-
stable set, but not vice versa. A program has at least one partial-stable set,
though it may not have any stable set. Further, it is easy to show that among
all partial-stable sets of Π there exists the least stable set in the sense of set
inclusion. The following proposition reveals that almost all semantics of normal
programs can be characterized by partial-stable sets.

Proposition 1. ([21])

1. The well-founded semantics is characterized by the least partial-stable set.
2. The stable semantics is characterized by the set of all stable sets.
3. The regular semantics, preferential semantics, maximum partial-stable se-

mantics, and normal stable-class semantics coincide and are characterized
by the set of maximal partial-stable sets, in the sense of set inclusion.

This proposition demonstrates that the well-founded, stable, and the regular
(including all other equivalent) semantics are the standard semantics for their
respective categories.

While the normal program semantics is fairly understood, searching for suit-
able disjunctive programs proved to be much more difficult.

The following table lists all major semantics proposed for disjunctive pro-
grams.
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Skeptical Stable Partial-Stable
Well-founded Circums- Stable Circums- Partial-stable
criptive Semantics [22] criptive Semantics [22] Model Semantics [15]
Static Semantics Answer Set Regular Semantics
[16] Semantics [12] [20]
Disjunctive Well- Stable Extension Maximal Stable
founded Semantics [2,4] Semantics [14] Model Semantics [8]
Skeptical Well- Partial-stable
founded Semantics [23] Assumption Semantics [19]

Regularly-justified
Set Semantics [23]

Both the static and the well-founded circumscriptive semantics were defined
based on the same idea of minimal-model-based negative introspection. The spe-
cific form of this introspection was given in [22]. In fact, the first three skeptical
semantics listed above are essentially the same [5]. The difference between the
first three skeptical semantics and the skeptical well-founded semantics lies in
the interpretation of default negation. The former adopts minimal-model-based
default negation while the latter consistency-based default negation.

Example 2. Consider a simple program Π2 below:

bird←; fly ∨ abnormal← bird; fly ← bird,notabnormal

Since abnormal is true in a minimal model of Π2 with notabnormal being false
while abnormal cannot be derived from Π2 regardless of notabnormal being true
or false, notabnormal can be justified under consistency-based default negation
but not under minimal-model-based default negation.

The skeptical well-founded semantics adopts consistency-based default nega-
tion and thus concludes notabnormal and fly. On the other hand, the static
as well as the well-founded circumscriptive and disjunctive well-founded se-
mantics adopt minimal-model-based default negation and thus conclude neither
notabnormal nor fly.

The answer set semantics is defined for extended logic programs that allow clas-
sical negation in both head and body while the stable circumscriptive semantics
is defined for general autoepistemic theories, including the translated logic pro-
grams with default negation. Both semantics adopt minimal-model-based default
negation and coincide in the context of disjunctive logic programs. On the other
hand, the stable extension semantics and the stable set semantics [23] are a
stable semantics that adopt consistency-based default negation.

Example 3. (Example 2 continued) The answer set semantics (as well as the sta-
ble circumscriptive semantics) of Π2 is defined by two sets, the first one contains
the set {bird, fly,notabnormal} and the second {bird, abnormal,notfly}.

The stable set semantics, on the other hand, is defined by a unique negation
set {notabnormal} and therefore implies bird ∧ fly.
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All the partial-stable semantics, except the regularly-justified set semantics which
is consistency-based, listed above are minimal-model-based but are different from
each other. See [8] for detailed comparisons. The recently proposed partial-stable
assumption semantics seems the only semantics that extends the answer set se-
mantics in the same way as the regular semantics extends the stable semantics
for normal programs [19].

Example 4. Consider the following program Π4
work ∨ sleep ∨ tired←
work ← nottired
sleep← notwork
tired← notsleep

Both partial-stable and maximal stable model semantics, listed in the table,
of Π4 are inconsistent while the partial-stable assumption semantics and the
regularly-justified set semantics are characterized by an empty negation set N =
∅ which implies nothing but work ∨ sleep ∨ tired.

The difference between the partial-stable assumption and regularly-justified
set semantics lies in the interpretation of default negation. For example, consider
Π2 in Example 2. The partial-stable assumption semantics of Π2 coincides with
the answer set semantics of Π2 while the regularly-justified set semantics of Π2
coincides with both the skeptical well-founded and the stable set semantics of
Π2.

Another important feature of a semantics is its computational complexity. Be-
cause of the inherent difficulty of computing minimal-model entailment, the
computational complexity of consistency-based semantics is lower than that of
minimal-model-based semantics.

3 Autoepistemic Logic

We consider here a propositional language augmented with a modal operator B.
An atomic formula (atom) is either a propositional symbol, or an epistemic atom,
also called belief atom, Bα, where α is a (well-formed) formula defined as usual.
The intended meaning of Bα is “α is believed”. For convenience, we also use
notα, called disbelief atom, interchangeably for ¬Bα, meaning α is disbelieved.
(notα is also viewed by many authors as a default negation.) An belief theory
(or a theory for short) is a set of well-formed formulae, and a formula (or a
theory) is objective if it contains no epistemic atoms, otherwise it is subjective.
We denote by P+(A) and P−(A) the set of all propositions and the set of all
negative literals that appear in A, and by B+(A) and B−(A) the set of all belief
atoms and the set of all disbelief atoms that appear in A, respectively.

The logic has the following axioms and rules of inference.
Axioms.

PL. All propositional tautologies.
K. B(α ⊃ β) ⊃ (Bα ⊃ Bβ).
D. ¬B (false)
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Inference rules.

Modus Ponens (MP). α ⊃ β, α

β

A rational agent does not belief inconsistent conclusions which is expressed by
D. K means that if a conditional and its antecedent are both believed, then so
is the consequent. The importance of K is evidenced by the fact that K imposes
a constraint of normality on the language: Bα ≡ Bβ whenever α ≡ β. (Note
that by α ≡ β we mean (α ⊂ β) ∧ (β ⊂ α).) MP is a usual inference rule for
propositional logic.

Let A be a theory and α a formula. By A `KD α we mean α can be derived
from A based on the aforementioned axioms and rules of inference. A is incon-
sistent if there exists a formula α such that A `KD α and A `KD ¬α; otherwise,
it is consistent.

3.1 Belief Interpretation

A belief theory A is used to describe the knowledge base of a rational agent. Due
to incomplete information, an agent may have to hold a set of possible states
of epistemic belief, each of which represents a complete description about the
agent’s belief. A (restricted) belief interpretation is thus introduced to charac-
terize such a complete state of belief. Formally,

Definition 2. 1. A restricted belief interpretation, or belief interpretation for
short, of A is a set I of belief atoms and disbelief atoms such that for any
belief atom Bα appearing in A, either Bα ∈ I or ¬Bα ∈ I (not both).

2. A restricted belief model, or belief model for short, of A is a belief interpre-
tation I of A such that A ∪ I is consistent.

Obviously, a theory is consistent if and only if it has at least one belief model.
Let A be a belief theory and I a belief model of A. An (objective) perspective

theory of A, denoted by AI , is defined as an objective theory obtained from A
by replacing each belief atom in A with their corresponding truth value in I.
Obviously, a belief theory may have more than one perspective theory and each
of them represent the agent’s perspective with respect to one restricted belief
model.

Example 5. The following autoepistemic theory is obtained from Π2 in Exam-
ple 2 above

A5 = {bird; fly ∨ abnormal ⊂ bird; fly ⊂ bird ∧ ¬Babnormal}.

A5 has two belief models and two corresponding perspective theories:

I1 = {Babnormal} and A51 = {bird; fly ∨ abnormal ⊂ bird};
I2 = {¬Babnormal} and A52 = {bird; fly ∨ abnormal ⊂ bird; fly ⊂ bird}.
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3.2 Introspection

Introspection is a process of revising the agent’ belief according to his perspective
of the world. For example, Moore [14] uses the stable expansion T of A

T = {φ | A ∪ {Bα | α ∈ T} ∪ {¬Bα | α 6∈T} `KD45 φ},

where `KD45 denotes derivation under logic KD45, to model introspective rea-
soning. The terms {Bα | α ∈ T} and {¬Bα | α 6∈T} express the positive and
negative introspection of an agent respectively.

It is generally agreed that positive introspection is a process of concluding
belief Bα if α can be derived while negative introspection is a process of con-
cluding disbelief ¬Bα (or B¬α) if α cannot be derived. Positive introspection is
usually achieved by introducing the necessitation rule: derive Bα if α has been
proved, as follows:

Necessitation (N). α

Bα
The interpretation of non-derivability for negative introspection, however, varies
quite diversely. Two typical approaches are:

1. consistency-based introspection:
deriving ¬Bα if ¬α is consistent with A, (or equivalently, A 6 K̀D α); and

2. minimal-model-based p-introspection:
deriving ¬Bα if ¬α is true in every minimal model of every perspective
theory of A.

The closed world assumption, default logic, and Moore’s autoepistemic logic
use consistency-based negative introspection. This approach usually results in
stronger negative introspection in that more disbeliefs may be concluded, and
as such, many reasonable theories do not possess consistent introspective expan-
sions. Minimal-model-based introspection, on the other hand, suffers from the
inherent difficulties associated with minimal-model entailment [8].

In [24], we have argued that introspection should be consistency-based and
be with respect to each and every possible belief world:

Deriving ¬Bα if ¬α is consistent with A ∪ I for every belief model I of
A.

In the following we will formally define the inference rules of introspection. First
we need to identify the classical entailment with respect to all possible belief
worlds.

Definition 3. Let A be a theory and α a formula.

1. A |∼ α if A ∪ I `KD α for every belief model I of A, and
2. A ∼| α if A ∪ I 6 K̀D α for every belief model I of A.

(Note that A∪ 6 K̀D α if and only if ¬α is consistent with A ∪ I.)
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If A has two belief models I1 and I2 such that A ∪ I1 `KD α and A ∪ I2 6 K̀D α
then neither A |∼ α nor A ∼| α. Further, if A is inconsistent then A |∼ α and
A ∼| α for every formula α.

Now we are in a position to introduce the following two rules of inference
for positive and negative introspection with respect to all possible belief worlds
respectively.

Positive Introspection (PI). |∼ α

Bα

Negative Introspection (NI). ∼| α
¬Bα

PI states that deriving Bα whenever A |∼ α and NI that deriving ¬Bα whenever
A ∼| α.

Remarks Because A |∼ α if and only if A `KD α, PI is the same as the
necessitation rule N. We list PI as a rule of inference for positive introspection
here to emphases its role in introspection. NI is not a usual inference rule in that
its premise takes into account of the whole axioms. Rather, it is a content-based
meta rule of inference.

It is easy to see that PI is monotonic while NI is nonmonotonic. However,
it has been shown that NI is cumulative in that F ∪ {¬Bβ} derives ¬Bα, for
any formula β, whenever F derives both ¬Bα and ¬Bβ. Therefore, NI can be
recursively applied in any ordering, which enable us to define a logic that is
nonmonotonic in general but monotonic with respect to all belief and disbelief
atoms, as follows.

Definition 4. Assume A is a belief theory and α a formula. We say A intro-
spectively implies α, denoted as A `IKD α, if α can be derived from A by the
following axioms and rules of inference:

Axioms: PL, K, D
Inference rule: MP, PI, NI.

Example 6. Consider A5 in Example 5 again. Since A5 ∼| abnormal, A5 `IKD

¬Babnormal. Consequently, A5 `IKD fly as well as A5 `IKD Bfly.

The well-defined-ness of the epistemic entailment is evidenced by the fact that
`IKD is belief-monotonic, as described below.

Definition 5. A relation ` between a belief theory T and a formula α is said to
be belief-monotonic if for any formula β, T ∪ {Bβ} ` α if T ` α and T ∪
{¬Bβ} ` α if T ` α.

The introspective implication characterizes both positive and negative introspec-
tion, which is naturally nonmonotonic, but still remains belief monotonic. There-
fore, the computation of the introspective logic can be carried out incrementally
in any order, as long as the derived beliefs are preserved in the derivation.
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The following example demonstrates that not every consistent theory is also
consistent under introspective entailment.

Example 7. Let A7 = {a ⊂ ¬Bb;¬a ⊂ ¬Bb}. Since A7 ∼| b, A7 `IKD ¬Bb, but
A7 ∪{¬Bb} is not consistent. Note that A7 is consistent for {Bb} is a restricted
belief model of A7.

A theory A is said to be introspectively consistent if there exists no formula α
such that A `IKD α and A `IKD ¬α. Even though it is inherently difficult to
check if a given theory is introspectively consistent, there exists a large class of
theories that are introspectively consistent. For example, as discussed in Section
6, all belief theories representing disjunctive logic programs with negation are
introspectively consistent.

The following observation, a direct consequence of axiom K, demonstrates
the normal behavior of introspective logic. That is, for any formulae α and β,

`IKD Bα ∧Bβ ≡ B(α ∧ β); `IKD Bα ∨Bβ ⊃ B(α ∨ β).

4 Introspective Expansions

In this section, we define three classes of introspective expansions, in order to
express the three semantical points of view in the context of autoepistemic logic.

Definition 6. A belief theory T is said to be an introspective expansion of A if
it satisfies the following fixpoint equation

T = {φ | A ∪ {¬Bα | T ∼| α} `IKD φ}.

The introspective expansion characterizes the introspective reasoning process by
expanding a given theory A using both rules of PI and NI.

It is worth noting that only the negative introspection {¬Bα | T ∼| α} is used
in the above fixpoint equation. The use of inappropriate positive introspection in
the equation, as indicated by Schwartz [18], may lead to ungrounded expansions.

Among all introspective expansions, the following three are of special interest.

Definition 7. An introspective expansion T of A is said to be

1. the ground expansion of A if it is a subset of any introspective expansion;
2. a stable expansion of A if T is epistemically complete in that for any formula

α, T contains either Bα or ¬Bα; and
3. a regular expansion of A if there exists no introspective expansion T ′ of A

such that T ′ ⊃ T .

In fact, these three classes of expansions are defined to express the three seman-
tical points of view, first developed in the context of normal programs.

Obviously, any stable expansion is a regular expansion, but not vice versa. For
convenience we use CnIKD(A) to denoted the set of all formulas introspectively
implied by A, i.e., CnIKD(A) = {α | A `IKD α}.
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Example 8. Consider

A5 = {bird; fly ∨ abnormal ⊂ bird; fly ⊂ bird ∧ ¬Babnormal}
in Example 5 again. A5 has exactly one introspective expansion T = CnIKD(A5),
which is also a stable expansion of A5.

Example 9. Consider A9 = {a ⊂ Ba, b ⊂ ¬Ba}. Then A9 has two introspective
expansions, that is, T1 = CnIKD(A9) = {φ|A9 `IKD φ} that contains neither
Ba nor ¬Ba, and T2 = CnIKD(A9 ∪ {¬Ba}).

Note that T3 = CnIKD(A9 ∪ {Ba}) is not an introspective expansion of A9
since a cannot be derived from A9 with any set of disbelief atoms.

It turns out that any theory has the ground (least) expansion, though not nec-
essarily a consistent one. Furthermore, the ground expansion is just the set of
all introspective consequences of A.

Theorem 1. 1. T = {φ|A `IKD φ} is the ground expansion of A.
2. If A is introspectively consistent then any introspective expansion of A is

consistent.

The proof of the theorem is straightforward and thus omitted.

5 Logic Program Semantics and Introspective Expansions

In this section, we will define various semantics of logic programs based on
autoepistemic expansions.

5.1 Default negation and Disbelief

Definition 8. Let Π be a logic program. Then AE(Π) is defined as an autoepis-
temic theory obtained from Π by translating each clause in Π into a formula of
the form [10]

A1 ∨ · · · ∨Aq ⊂ B1 ∧ · · · ∧Bm ∧ ¬BC1 ∧ · · · ∧ notBCn

Example 10. Consider

Π2 = {bird←; fly ∨ abnormal← bird; fly ← bird,notabnormal}
again. Then AE(Π) = {bird; fly∨abnormal ⊂ bird; fly ⊂ bird∧¬Babnormal}.
Similar to negative introspection, default negations in disjunctive programs can
also be interpreted in two different ways: consistency-based and minimal-model
based. The former assumes notα if ¬α is consistent with the current program
while the latter assumes notα if ¬α is true in every minimal model of the current
program.
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Example 11. (Example 10 continued) By consistency-based default negation,
notabnormal can be justified since abnormal cannot be derived from Π2 no
matter whether notabnormal is true or false. On the other hand, by minimal-
model based default negation, notabnormal cannot be justified since abnormal
is true in one of the minimal models of Π2 when notabnormal is not assumed.

Consistency-based default negation can be easily characterized by the transla-
tion given in Definition 8 since negative introspection of autoepistemic logic is
consistency-based. The following translation is introduced to capture minimal-
model based default negation.

Definition 9. Let Π be a logic program, and AE(Π) be the autoepistemic theory
of Π. Then, the M-autoepistemic theory of Π, denoted as MAE(Π) is defined
as

AE(Π) ∪ {¬α ⊂ ¬Bα | α is an atom in Π}
MAE(Π) is also viewed as AE(Π) augmented with an axiom ¬α ⊂ ¬Bα.

Example 12. Consider Π2 in Example 10 again. Then MAE(Π2) contains the
following formulas:

bird;
fly ∨ abnormal ⊂ bird;
fly ⊂ bird ∧ ¬Babnormal;
¬bird ⊂ ¬Bbird;
¬fly ⊂ ¬Bfly;
¬abnormal ⊂ ¬Babnormal}.

Now, we are in a position to define declarative semantics of disjunctive programs
in terms of translated autoepistemic theories of Π. Because each program has two
different translated autoepistemic theories, corresponding to consistency-based
and minimal-model based default negations, and each autoepistemic theory may
have three different types of introspective expansions, corresponding to the skep-
tical, stable, and partial-stable semantical points of view, six different semantics
are given below.

Definition 10. Let Π be a disjunctive program, AE(Π) and MAE(Π) the cor-
responding autoepistemic theories of Π. Then we define

1. the C-ground (standing for consistency-based ground), C-stable (standing for
consistency-based stable), and C-regular (standing for Consistency-based reg-
ular) semantics of Π by the ground expansion, the set of all stable expansions,
and the set of all regular expansions, of AE(Π) respectively; and

2. the ground, stable, and partial-stable semantics of Π by the ground expan-
sion, the set of all stable expansions, and the set of all regular expansions,
of MAE(Π) respectively.

By saying that a semantics is characterized by an introspective expansion we
mean that (1) an objective formula α is true in the semantics if and only if α
is contained in the expansion, and (2) a default negation notα is true in the
semantics if and only if ¬Bα is contained in the expansion.

The following table summarizes all six different semantics.
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Skeptical Stable Partial-Stable
Consis- C-Ground Semantics: C-Stable Semantics: C-Regular Semantics:
tency the ground expansion all the stable all the regular
based of AE(Π) expansions of AE(Π) expansions of AE(Π)
Minimal- Ground Semantics: Stable Semantics: Partial-stable Semantics:
model the ground expansion all the stable all the regular
based of MAE(Π) expansions of MAE(Π) expansions of MAE(Π)

It is straightforward to show that for normal programs, consistency-based and
minimal-model based semantics coincide, simply because an atom is true in
the set of all minimal models of a Horn program if and only if it is a logical
consequence of the program.

Example 13. Consider Π2 in Example 10 again.
First, consider consistency-based default negation. Since abnormal cannot

be derived from AE(Π2) in any circumstance, AE(Π2) has a unique expansion
containing ¬Babnormal. Thus, all three semantics, including the C-ground, C-
stable, and C-regular, coincide and imply fly.

Now consider minimal-model based default negation. The skeptical semantics
does not imply ¬Babnormal since I = {Bbird,¬Bfly,Babnormal} is a belief
model of MAE(Π2) and MAE(Π2)∪I `KD abnormal. So the ground semantics
does not imply fly either. In fact, it coincides with the static semantics.

The stable semantics, which coincide with the partial-stable semantics, of Π2
is defined by two stable expansions, one contains {Bbird,¬Babnormal,Bfly}
and the other contains {Bbird,Babnormal,¬Bfly}.

6 Further Analysis

In this section, we will analyze relationships between various semantics.
First for normal programs, it is easy to show that both minimal-model-based

and consistency-based semantics coincide.

Proposition 2. Assume Π is a normal program. Then

1. The well-founded, C-ground, and ground semantics of Π coincide.
2. The stable and C-stable semantics coincide.
3. The regular, C-regular, and partial-stable semantics coincide.

Both the answer set semantics and stable circumscriptive semantics are minimal-
model-based and coincide with the stable semantics; and both the stable exten-
sion semantics and the stable set semantics are consistency-based and coincide
with the C-stable semantics, as shown below. Again, the proof is straightforward
and thus omitted.

Proposition 3. 1. Both the answer set and stable circumscriptive semantics
coincide with the stable semantics.

2. Both the stable extension semantics and the stable set semantics coincide
with the C-stable semantics.
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Among all the minimal-model-based semantics in the partial-stable category,
the recently proposed partial-stable assumption semantics [19] coincides with
the partial-stable semantics. Further, the C-partial-stable semantics coincides
with the stable set semantics.

Proposition 4. 1. The partial-stable semantics coincides with the partial-stable
assumption semantics.

2. The C-partial-stable semantics coincides with the regularly-justified set se-
mantics.

Proof. (1) It follows the following two facts.
First, the partial-stable assumption semantics utilizes an additional meta rule

of inference α∨β,notβ
β while the partial-stable semantics utilizes a minimal-model

axiom ¬α ⊂ ¬Bα, which are essentially the same.
Second, the partial-stable assumption semantics is defined using the alternat-

ing fixpoint theory while the partial-stable semantics is defined using negative
introspection with respect to all belief models. However, it is easy to show that,
in the context of logic programming, the two are the same.

(2) It follows that the justification of default negation under the alternating
fixpoint theory coincide with negative introspection with respect to all belief mod-
els. Note that the regularly-justified set semantics justifies a regular set using the
alternating fixpoint theory.

Both the static and ground semantics are defined using minimal-model based
introspection and thus are very much the same. The subtle difference between
the two is due to the fact that the autoepistemic theory MAE(Π) uses ¬Bα to
represent notα while the static semantics uses B¬α to represent notα.

6.1 Computational Complexity

It is a well-known fact that the computational complexity 3 of the well-founded
semantics for normal program is polynomial while that of both the stable and
regular semantics is NP-complete. Furthermore, it has been shown that the com-
putational complexities for the answer set semantics and many other minimal-
model-based partial-stable semantics are ΣP

2 [8]. This implies that the computa-
tional complexity of both the stable and partial-stable semantics for disjunctive
programs are ΣP

2 .
The ground semantics and the static semantics have the same computational

complexity which are also ΣP
2 -complete [6].

The following proposition shows that the computational complexity of the
consistency-based ground semantics is PNP which is the lowest among all the
semantics for disjunctive logic programs in the polynomial hierarchy.

Proposition 5. The computational complexity of the consistency-based ground
semantics is PNP .
3 By the computational complexity we mean the data complexity under possibility

inference, i.e., the complexity of deciding if a given query is true in one partial-stable
set under the given semantics [8]
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Proof. Let AE(Π) be a disjunctive theory and F a formula. We need only to
show that deciding if AE(Π) `IKD F is PNP .

Let M1 contain all disbeliefs and M2 all beliefs. Then both M1 and M2 are
belief models of AE(Π). Furthermore, let B1 and B2 are objective perspective
theories of B with respect to M1 and M2 respectively. Then for any formula α,
AE(Π) |∼ α if and only if B2 `IKD α and AE(Π) ∼| α if and only if B1 6 ÌKD α.
This implies that a visit to an oracle for classical inference can determine the
status of any ¬BCi under the positive (or negative) introspection. Therefore, a
linear calls to oracle are sufficient enough to determine if AE(Π) `IKD F .

This result is by no means surprising because (consistency-based) classical en-
tailment is inherently more efficient to compute than minimal-model-based en-
tailment.
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Viale Risorgimento 2, I-40136 Bologna, Italy
{elamma,mmilano,friguzzi}@deis.unibo.it

2 Dip. di Ingegneria, Università di Ferrara
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Abstract. We present the system LAP (Learning Abductive Programs)
that is able to learn abductive logic programs from examples and from a
background abductive theory. A new type of induction problem has been
defined as an extension of the Inductive Logic Programming framework.
In the new problem definition, both the background and the target the-
ories are abductive logic programs and abductive derivability is used as
the coverage relation.
LAP is based on the basic top-down ILP algorithm that has been suit-
ably extended. In particular, coverage of examples is tested by using the
abductive proof procedure defined by Kakas and Mancarella [24]. As-
sumptions can be made in order to cover positive examples and to avoid
the coverage of negative ones, and these assumptions can be used as
new training data. LAP can be applied for learning in the presence of
incomplete knowledge and for learning exceptions to classification rules.

Keywords: Abduction, Learning.

1 Introduction

Abductive Logic Programming (ALP) has been recognized as a powerful knowl-
edge representation tool [23]. Abduction [22,36] is generally understood as rea-
soning from effects to causes or explanations. Given a theory T and a formula
G, the goal of abduction is to find a set of atoms ∆ (explanation) that, together
with T , entails G and that is consistent with a set of integrity constraints IC.
The atoms in ∆ are abduced: they are assumed true in order to prove the goal.
Abduction is specially useful to reason in domains where we have to infer causes
from effects, such as diagnostic problems [3]. But ALP has many other applica-
tions [23]: high level vision, natural language understanding, planning, knowledge
assimilation and default reasoning. Therefore, it is desirable to be able to au-
tomatically produce a general representation of a domain starting from specific
knowledge about single instances. This problem, in the case of standard Logic
Programming, has been deeply studied in Inductive Logic Programming (ILP)

J. Dix, L. Moniz Pereira, and T.C. Przymusinski (Eds.): LPKR’97, LNAI 1471, pp. 102–122, 1998.
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[7], the research area covering the intersection of Machine Learning [33] and
Logic Programming. Its aim is to devise systems that are able to learn logic
programs from examples and from a background knowledge. Recently, in this re-
search area, a number of works have begun to appear on the problem of learning
non-monotonic logic programs [4,16,8,32].

Particular attention has been given to the problem of learning abductive logic
programs [21,26,29,30,27] and, more generally, to the relation existing between
abduction and induction and how they can integrate and complement each other
[15,17,2]. Our work addresses this topic as well. The approach for learning abduc-
tive logic programs that we present in this paper is doubly useful. On one side,
we can learn abductive theories for the application domains mentioned above.
For example, we can learn default theories: in Section 5.1 we show an example
in which we learn exceptions to classification rules. On the other side, we can
learn theories in domains in which there is incomplete knowledge. This is a very
frequent case in practice, because very often the data available is incomplete
and/or noisy. In this case, abduction helps induction by allowing to make as-
sumptions about unknown facts, as it is shown in the example in Section 5.2. In
[29] we defined a new learning problem called Abductive Learning Problem. In
this new framework we generate an abductive logic program from an abductive
background knowledge and from a set of positive and negative examples of the
concepts to be learned. Moreover, abductive derivability is used as the example
coverage relation instead of Prolog derivability as in ILP.

We present the system LAP (Learning Abductive Programs) that solves this
new learning problem. The system is based on the theoretical work developed
in [21,29] and it is an extension of a basic top-down algorithm adopted in ILP
[7]. In the extended algorithm, the proof procedure defined in [24] for abductive
logic programs is used for testing the coverage of examples in substitution of
the deductive proof procedure of logic programming. Moreover, the abduced
literals can be used as new training data for learning definitions for the abducible
predicates.

The paper is organized as follows: in Section 2 we recall the main concepts of
Abductive Logic Programming, Inductive Logic Programming, and the definition
of the abductive learning framework. Section 3 presents the learning algorithm
while its properties are reported in Section 4. In Section 5 we apply LAP to
the problem of learning exceptions to rules and learning from incomplete knowl-
edge. Related works are discussed in Section 6. Section 7 concludes and presents
directions for future works.
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2 Abductive and Inductive Logic Programming

2.1 Abductive Logic Programming

An abductive logic program is a triple 〈P, A, IC〉 where:

– P is a normal logic program;
– A is a set of abducible predicates;
– IC is a set of integrity constraints in the form of denials, i.e.:
← A1, . . . , Am, not Am+1, . . . , not Am+n.

Abducible predicates (or simply abducibles) are the predicates about which as-
sumptions (or abductions) can be made. These predicates carry all the incom-
pleteness of the domain, they can have a partial definition or no definition at
all, while all other predicates have a complete definition.

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-
tained by transforming the program into its positive version: each negative literal
not p(t), where t is a tuple of terms, is replaced by a literal not p(t), where not p
is a new predicate symbol. Moreover, for each predicate symbol p in the program,
a new predicate symbol not p is added to the set A and the integrity constraint
← p(X), not p(X) is added to IC, where X is a tuple of variables. Atoms of the
form not p(t) are called default atoms. In the following, we will always consider
the positive version of programs. This allows us to abduce either the truth or
the falsity of atoms.

Given an abductive theory AT = 〈P, A, IC〉 and a formula G, the goal of
abduction is to find a (possibly minimal) set of ground atoms ∆ (abductive
explanation) of predicates in A which, together with P , entails G, i.e., P∪∆ |= G.
It is also required that the program P ∪∆ be consistent with respect to IC, i.e.
P ∪∆ |= IC. When there exists an abductive explanation for G in AT , we say
that AT abductively entails G and we write AT |=A G.

As model-theoretic semantics for ALP, we adopt the abductive model seman-
tics defined in [9]. We do not want to enter into the details of the definition,
we will just give the following proposition which will be useful throughout the
paper.

We indicate with LA the set of all atoms built from the predicates of A
(called abducible atoms), including also default atoms.

Proposition 1. Given an abductive model M for the abductive program AT =
〈P, A, IC〉, there exists a set of atoms H ⊆ LA such that M is the least Herbrand
model of P ∪H.

Proof. Straightforward from the definition of abductive model (definition 5.7 in
[9]).

In [24] a proof procedure for abductive logic programs has been defined. This
procedure starts from a goal and a set of initial assumptions ∆i and results in
a set of consistent hypotheses (abduced literals) ∆o such that ∆o ⊇ ∆i and ∆o

together with the program P allow deriving the goal. The proof procedure uses
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the notion of abductive and consistency derivations. Intuitively, an abductive
derivation is the standard Logic Programming derivation suitably extended in
order to consider abducibles. As soon as an abducible atom δ is encountered,
it is added to the current set of hypotheses, and it must be proved that any
integrity constraint containing δ is satisfied. For this purpose, a consistency
derivation for δ is started. Since the constraints are denials only (i.e., goals), this
corresponds to proving that every such goal fails. Therefore, δ is removed from
all the constraints containing it, and we prove that all the resulting goals fail.
In this consistency derivation, when an abducible is encountered, an abductive
derivation for its complement is started in order to prove the abducible’s failure,
so that the initial constraint is satisfied. When the procedure succeeds for the
goal G and the initial set of assumptions ∆i, producing as output the set of
assumptions ∆o, we say that T abductively derives G or that G is abductively
derivable from T and we write T `∆o

∆i
G.

In [9] it has been proved that the proof procedure is sound and weakly com-
plete with respect to the abductive model semantics defined in [9] under a number
of restrictions. We will present these results in detail in Section 4.

2.2 Inductive Logic Programming

The ILP problem can be defined as [6]:
Given:

– a set P of possible programs
– a set E+ of positive examples
– a set E− of negative examples
– a logic program B (background knowledge)

Find:

– a logic program P ∈ P such that
• ∀e+ ∈ E+, B ∪ P ` e+ (completeness)
• ∀e− ∈ E−, B ∪ P 6`e− (consistency).

Let us introduce some terminology. The program P that we want to learn is the
target program and the predicates which are defined in it are target predicates.
The sets E+ and E− are called training sets and contain ground atoms for the
target predicates. The program B is called background knowledge and contains
the definitions of the predicates that are already known. We say that the pro-
gram P covers an example e if P ∪ B ` e1, i.e. if the theory “explains” the
example. Therefore the conditions that the program P must satisfy in order to
be a solution to the ILP problem can be expressed as “P must cover all positive
examples and must not cover any negative example”. A theory that covers all
positive examples is said to be complete while a theory that does not cover any
1 In the ILP literature, the derivability relation is often used instead of entailment be-

cause real systems adopt the Prolog interpreter for testing the coverage of examples,
that is not sound nor complete.
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negative example is said to be consistent. The set P is called the hypothesis
space. The importance of this set lies in the fact that it defines the search space
of the ILP system. In order to be able to effectively learn a program, this space
must be restricted as much as possible. If the space is too big, the search could
result infeasible.

The language bias (or simply bias in this paper) is a description of the hy-
pothesis space. Many formalisms have been introduced in order to describe this
space [7], we will consider only a very simple bias in the form of a set of literals
which are allowed in the body of clauses for target predicates.

Initialize H := ∅
repeat (Covering loop)

Generate one clause c
Remove from E+ the e+ covered by c
Add c to H

until E+ = ∅ (Sufficiency stopping criterion)

Generate one clause c:
Select a predicate p that must be learned
Initialize c to be p(X)← .
repeat (Specialization loop)

Select a literal L from the language bias
Add L to the body of c
if c does not cover any positive example

then backtrack to different choices for L
until c does not cover any negative example (Necessity stopping criterion)
return c
(or fail if backtracking exhausts all choices for L)

Fig. 1. Basic top-down ILP algorithm

There are two broad categories of ILP learning methods: bottom-up methods
and top-down methods. In bottom-up methods clauses in P are generated by
starting with a clause that covers one or more positive examples and no nega-
tive example, and by generalizing it as much as possible without covering any
negative example. In top-down methods clauses in P are constructed starting
with a general clause that covers all positive and negative examples and by spe-
cializing it until it does no longer cover any negative example while still covering
at least one positive. In this paper, we concentrate on top-down methods. A
basic top-down inductive algorithm [7,31] learns programs by generating clauses
one after the other. A clause is generated by starting with an empty body and
iteratively adding literals to the body. The basic inductive algorithm, adapted
from [7] and [31], is sketched in Figure 1.
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2.3 The New Learning Framework

We consider a new definition of the learning problem where both the background
and target theory are abductive theories and the notion of deductive coverage
above is replaced by abductive coverage.

Let us first define the correctness of an abductive logic program T with
respect to the training set E+, E−. This notion replaces those of completeness
and consistency for logic programs.

Definition 1 (Correctness). An abductive logic program T is correct, with
respect to E+ and E−, iff there exists ∆ ⊆ LA such that

T `∆
∅ E+, not E−

where not E− = {not e−|e− ∈ E−} and E+, not E− stands for the conjunction
of each atom in E+ and not E−

Definition 2 (Abductive Learning Problem).
Given:

– a set T of possible abductive logic programs
– a set of positive examples E+

– a set of negative examples E−
– an abductive program T = 〈P, A, IC〉 as background theory

Find:
A new abductive program T ′ = 〈P ∪ P ′, A, IC〉 such that T ′ ∈ T and T ′ is

correct wrt E+ and E−.

We say that a positive example e+ is covered if T `∆
∅ e+. We say that a

negative example e− is not covered (or ruled out) if T `∆
∅ not e−. By employing

the abductive proof procedure for the coverage of examples, we allow the system
to make assumptions in order to cover positive examples and to avoid the cover-
age of negative examples. In this way, the system is able to complete a possibly
incomplete background knowledge. Integrity constraints give some confidence in
the correctness of the assumptions made.

Differently from the ILP problem, we require the conjunction of examples,
instead of each example singularly, to be derivable. In this way we ensure that
the abductive explanations for different examples are consistent with each other.

The abductive program that is learned can contain new rules (possibly con-
taining abducibles in the body), but not new abducible predicates and new
integrity constraints.

3 An algorithm for Learning Abductive Logic Programs

In this section, we present the system LAP that is able to learn abductive logic
programs according to definition 2. The algorithm is obtained from the basic
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procedure LAP(
inputs : E+, E− : training sets,

AT = 〈T, A, IC〉 : background abductive theory,
outputs : H : learned theory, ∆ : abduced literals)

H := ∅
∆ := ∅
repeat

GenerateRule(in: AT, E+, E−, H, ∆; out: Rule, E+
Rule, ∆Rule)

Add to E+ all the positive literals of target predicates in ∆Rule

Add to E− all the atoms corresponding to
negative literals of target predicates in ∆Rule

E+ := E+ − E+
Rule

H := H ∪ {Rule}
∆ := ∆ ∪∆Rule

until E+ = ∅ (Sufficiency stopping criterion)
output H

Fig. 2. The covering loop

procedure GenerateRule(
inputs : AT, E+, E−, H, ∆
outputs : Rule : rule,

E+
Rule : positive examples covered by Rule,

∆Rule : abduced literals

Select a predicate to be learned p
Let Rule = p(X)← true.
repeat (specialization loop)

select a literal L from the language bias
add L to the body of Rule
TestCoverage(in: Rule, AT, H, E+, E−, ∆,

out: E+
Rule, E

−
Rule, ∆Rule)

if E+
Rule = ∅
backtrack to a different choice for L

until E−
Rule = ∅ (Necessity stopping criterion)

output Rule, E+
Rule, ∆Rule

Fig. 3. The specialization loop
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procedure TestCoverage(
inputs : Rule, AT, H, E+, E−, ∆
outputs: E+

Rule, E
−
Rule: examples covered by Rule

∆Rule : new set of abduced literals

E+
Rule = E−

Rule = ∅
∆in = ∆
for each e+ ∈ E+ do

if AbductiveDerivation(← e+, 〈T ∪H ∪ {Rule}, A, IC〉, ∆in, ∆out)
succeeds then Add e+ to E+

Rule; ∆in = ∆out

endfor
for each e− ∈ E− do

if AbductiveDerivation(← not e−, 〈T ∪H ∪ {Rule}, A, IC〉, ∆in, ∆out)
succeeds then ∆in = ∆out

else Add e− to E−
Rule

endfor
∆Rule = ∆out −∆
output E+

Rule, E
−
Rule, ∆Rule

Fig. 4. Coverage testing

top-down ILP algorithm (Figure 1), by adopting the abductive proof procedure,
instead of the Prolog proof procedure, for testing the coverage of examples.

As the basic inductive algorithm, LAP is constituted by two nested loops: the
covering loop (Figure 2) and the specialization loop (Figure 3). At each iteration
of the covering loop, a new clause is generated such that it covers at least one
positive example and no negative one. The positive examples covered by the rule
are removed from the training set and a new iteration of the covering loop is
started. The algorithm ends when the positive training set becomes empty. The
new clause is generated in the specialization loop: we start with a clause with an
empty body, and we add literals to the body until the clause does not cover any
negative example while still covering at least one positive. The basic top-down
algorithm is extended in the following respects.

First, in order to determine the positive examples E+
Rule covered by the gen-

erated rule Rule (procedure TestCoverage in Figure 4), an abductive derivation
is started for each positive example. This derivation results in a (possibly empty)
set of abduced literals. We give as input to the abductive procedure also the set
of literals abduced in the derivations of previous examples. In this way, we en-
sure that the assumptions made during the derivation of the current example
are consistent with the assumptions for other examples.

Second, in order to check that no negative example is covered (E−
Rule = ∅

in Figure 3) by the generated rule Rule, an abductive derivation is started for
the default negation of each negative example (← not e−). Also in this case,
each derivation starts from the set of abducibles previously assumed. The set of
abducibles is initialized to the empty set at the beginning of the computation,
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and is gradually extended as it is passed on from derivation to derivation. This
is done as well across different clauses.

Third, after the generation of each clause, the literals of target predicates
that have been abduced are added to the training set, so that they become new
training examples. For each positive abduced literal of the form abd(c+) where
c+ is a tuple of constants, the new positive example abd(c+) is added to E+

set, while for each negative literal of the form not abd(c−) the negative example
abd(c−) is added to E−.

In order to be able to learn exceptions to rules, we include a number of
predicates of the form not abnormi/n in the bias of each target predicate of
the form p/n. Moreover, abnormi/n and not abnormi/n are added to the set of
abducible predicates and the constraint

← abnormi(X), not abnormi(X).

is added to the background knowledge. In this way, when the current partial rule
in the specialization loop still covers some negative examples and no other literal
can be added that would make it consistent, the rule is specialized by adding the
literal not abnormi(X) to its body. Negative examples previously covered are
ruled out by abducing for them facts of the form abnormi(c−), while positive
examples will be covered by abducing the facts not abnormi(c+) and these facts
are added to the training set.

We are now able to learn rules for abnormi/n, thus resulting in a definition
for the exceptions to the current rule. For this purpose, predicates abnormi/n
are considered as target predicates, and we define a bias for them. Since we may
have exceptions to exceptions, we may also include a number of literals of the
form not abnormj(X) in the bias for abnormi/n.

The system has been implemented in Prolog using Sicstus Prolog 3#5.

4 Properties of the algorithm

LAP is sound, under some restrictions, but not complete. In this section we give
a proof of its soundness, and we point out the reasons of incompleteness.

Let us first adapt the definitions of soundness and completeness for an induc-
tive inference machine, as given by [7], to the new problem definition. We will
call Abductive Inductive Inference Machine (AIIM) an algorithm that solves the
Abductive Learning Problem. If M is an AIIM, we write M(T , E+, E−, B) = T
to indicate that, given the hypothesis space T , positive and negative examples
E+ and E−, and a background knowledge B, the machine outputs a program
T . We write M(T , E+, E−, B) = ⊥ when M does not produce any output.

With respect to the abductive learning problem (definition 2), the definitions
of soundness and completeness are:

Definition 3 (Soundness). An AIIM M is sound iff if M(T , E+, E−, B) = T ,
then T ∈ T and T is correct with respect to E+ and E−.
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Definition 4 (Completeness). An AIIM M is complete iff M(T , E+, E−, B)
= ⊥, then there is no T ∈ T that is correct with respect to E+ and E−.

The proof of LAP soundness is based on the theorems of soundness and weak
completeness of the abductive proof procedure given in [9]. We will first present
the results of soundness and completeness for the proof procedure and then we
will prove the soundness of our algorithm.

The theorems of soundness and weak completeness (theorems 7.3 and 7.4 in
[9]) have been extended by considering the goal to be proved as a conjunction of
abducible and non-abducible atoms (instead of a single non-abducible atom) and
by considering an initial set of assumptions ∆i. The proofs are straightforward,
given the original theorems.

Theorem 1 (Soundness). Let us consider an abductive logic program T . Let
L be a conjunction of atoms. If T `∆o

∆i
L, then there exists an abductive model

M of T such that M |= L and ∆o ⊆M ∩ LA.

Theorem 2 (Weak completeness). Let us consider an abductive logic pro-
gram T . Let L be a conjunction of atoms. Suppose that every selection of rules in
the proof procedure for L terminates with either success or failure. If there exists
an abductive model M of T such that M |= L, then there exists a selection of
rules such that the derivation procedure for L succeeds in T returning ∆, where
∆ ⊆M ∩ LA.

We need as well the following lemma.

Lemma 1. Let us consider an abductive logic program T = 〈P, A, I〉. Let L be
a conjunction of atoms. If T `∆

∅ L then lhm(P ∪∆) |= L, where lhm(P ∪∆) is
the least Herbrand model of P ∪∆.

Proof. Follows directly from theorem 5 in [18].

The theorems of soundness and weak completeness for the abductive proof pro-
cedure are true under a number of assumptions:

– the abductive logic program must be ground
– the abducibles must not have a definition in the program
– the integrity constraints are denials with at least one abducible in each con-

straint.

Moreover, the weak completeness theorem is limited by the assumption that the
proof procedure for L always terminates.

The soundness of LAP is limited as well by these assumptions. However, they
do not severely restrict the generality of the system. In fact, the requirement that
the program is ground can be met for programs with no function symbols. In this
case the Herbrand universe is finite and we obtain a finite ground program from
a non-ground one by grounding in all possible ways the rules and constraints
in the program. This restriction is also assumed in many ILP systems (such as
FOIL [37], RUTH [1], [11]).
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The restriction on the absence of a (partial) definition for the abducible does
not reduce the generality of the results since, when abducible predicates have
definitions in T , we can apply a transformation to T so that the resulting program
T ′ has no definition for abducible predicates. This is done by introducing an
auxiliary predicate δa/n for each abducible predicate a/n and by adding the
clause:

a(x)← δa(x).

The predicate a/n is no longer abducible, whereas δa/n is now abducible. In this
way, we are able to deal as well with partial definitions for abducible predicates,
and this is particularly important when learning from incomplete data, because
the typical situation is exactly to have a partial definition for some predicates,
as will be shown in Section 5.2.

The requirement that each integrity constraint contains an abducible literal
is not restrictive because we use constraints only for limiting assumptions and
therefore a constraint without an abducible literal would be useless.

The most restrictive requirement is the one on the termination of the proof
procedure. However, it can be proved that the procedure always terminates for
call-consistent programs, i.e. if no predicate depends on itself through an odd
number of negative recursive calls (e.g., p← not p).

We need as well the following theorem. It expresses a restricted form of
monotonicity that holds for abductive logic programs.

Theorem 3. Let T = 〈P, A, I〉 and T ′ = 〈P ∪ P ′, A, I〉 be abductive logic pro-
grams. If T `∆1

∅ L1 and T ′ `∆2
∆1

L2, where L1 and L2 are two conjunctions of
atoms, then T `∆2

∅ L1 ∧ L2.

Proof. From T `∆1
∅ L1 and lemma 1 we have that

lhm(P ∪∆1) |= L1

From the definition of abductive proof procedure we have that ∆1 ⊆ ∆2. Since
we consider the positive version of programs, P ∪∆1 and P ∪P ′∪∆2 are definite
logic programs. From the monotonicity of definite logic programs lhm(P ∪∆1) ⊆
lhm(P ∪ P ′ ∪∆2) therefore

lhm(P ∪ P ′ ∪∆2) |= L1

From T ′ `∆2
∆1

L2, by the soundness of the abductive proof procedure, we have
that there exists an abductive model M2 such that M2 |= L2 and ∆2 ⊆M2∩LA.
From proposition 1, there exists a set H2 ⊆ LA such that M2 = lhm(P∪P ′∪H2).
Since abducible and default predicates have no definition in P ∪P ′, we have that
M2 ∩ LA = H2 and ∆2 ⊆ H2. Therefore M2 ⊇ lhm(P ∩ P ′ ∩∆2) and

M2 |= L1

From M2 |= L2 and from the weak completeness of the abductive proof proce-
dure, we have that

T ′ `∆2
∆1

L1 ∧ L2
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We can now give the soundness theorem for our algorithm.

Theorem 4 (Soundness). The AIIM LAP is sound.

Proof. Let us consider first the case in which the target predicates are not ab-
ducible and therefore no assumption is added to the training set during the
computation. In order to prove that the algorithm is sound, we have to prove
that, for any given sets E+ and E−, the program T ′ that is output by the
algorithm is such that

T ′ `∆
∅ E+, not E−

LAP learns the program T ′ by iteratively adding a new clause to the current
hypothesis, initially empty. Each clause is tested by trying an abductive deriva-
tion for each positive and for the complement of each negative example. Let
E+

c = {e+
1 . . . e+

nc
} be the set of positive examples whose conjunction is covered

by clause c and let E− = {e−
1 . . . e−

m}. Clause c is added to the current hypothesis
H when:

∃E+
c ⊆ E+ : E+

c 6= ∅, ∀i ∈ {1 . . . nc} : P ∪H ∪ {c} `∆+
i

∆+
i−1

e+
i

∀j ∈ {1 . . . m} : P ∪H ∪ {c} `∆−
j

∆−
j−1

not e−
j

where ∆+
0 = ∆H , ∆+

i−1 ⊆ ∆+
i and ∆−

0 = ∆+
nc

. By induction on the examples
and by theorem 3 with P ′ = ∅, we can prove that

〈P ∪H ∪ {c}, A, IC〉 `∆H∪{c}
∆H

E+
c , not E−

where ∆H∪{c} = ∆−
m. At this point, it is possible to prove that

T ′ `∆
∅ E+

c1
∪ . . . ∪ E+

ck
, not E−

by induction on the clauses and by theorem 3. From this and from the sufficiency
stopping criterion (see Figure 2) we have that E+

c1
∪ . . . ∪ E+

ck
= E+.

We now have to prove soundness when the target predicates are abducible
as well and the training set is enlarged during the computation. In this case, if
the final training sets are E+

F and E−
F , we have to prove that

T ′ `∆
∅ E+

F , not E−
F

If a positive assumption is added to E+, then the resulting program will contain
a clause that will cover it because of the sufficiency stopping criterion. If a
negative assumption not e− is added to E− obtaining E′−, clauses that are added
afterwards will derive not E′−. We have to prove also that clauses generated
before allow not E′− to be derived. Consider a situation where not e− has been
assumed during the testing of the last clause added to H. We have to prove that

〈P ∪H, A, IC〉 `∆
∅ E+

H , not E− ⇒ 〈P ∪H, A, IC〉 `∆
∅ E+

H , not E′−

where not e− ∈ ∆ and e− ∈ E′−. From the left part of the implication and for
the soundness of the abductive proof procedure, we have that there exists an



114 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

abductive model M such that ∆ ⊆ M ∩ LA. From not e− ∈ ∆, we have that
not e− ∈M and therefore by weak completeness

〈P ∪H, A, IC〉 `∆
∅ not e−

By induction and by theorem 3, we have the right part of the implication.

We turn now to the incompleteness of the algorithm. LAP is incomplete because
a number of choice points have been overlooked in order to reduce the computa-
tional complexity. The first source of incompleteness comes from the fact that,
after a clause is added to the theory, it is never retracted. Thus, it can be the
case that a clause not in the solution is learned and the restrictions imposed on
the rest of the learning process by the clause (through the examples covered and
their respective assumptions) prevent the system from finding a solution even if
there is one. In fact, the algorithm performs only a greedy search in the space
of possible programs, exploring completely only the smaller space of possible
clauses. However, this source of incompleteness is not specific to LAP because
most ILP systems perform such a greedy search in the programs space.

The following source of incompleteness, instead, is specific to LAP. For each
example, there may be more than one explanation and, depending on the one
we choose, the coverage of other examples can be influenced. An explanation ∆1
for the example e1 may prevent the coverage of example e2, because there may
not be an explanation for e2 that is consistent with ∆1, while a different choice
for ∆1 would have allowed such a coverage. Thus, in case of a failure in finding
a solution, we should backtrack on example explanations.

We decided to overlook these choice points in order to obtain an algorithm
that is more effective in the average case, but we might not have done so. In
fact, these choice points have a high computational cost, and they must be
considered only when a high number of different explanations is available for
each example. However, this happens only for the cases in which examples are
highly interrelated, i.e., there are relations between them or between objects
(constants) related to them. This case is not very common in concept learning,
where examples represent instances of a concept and the background represents
information about each instance and its possible parts. In most cases, instances
are separate entities that have few relations with other entities.

5 Examples

5.1 Learning exceptions

In this section, we show how LAP learns exceptions to classification rules. The
example is taken from [16].

Let us consider the following abductive background theory B = 〈P, A, IC〉
and training sets E+ and E−:

P = {bird(X) ← penguin(X).
penguin(X)← superpenguin(X).
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bird(a). bird(b). penguin(c). penguin(d).
superpenguin(e). superpenguin(f).}

A = {abnorm1/1, abnorm2/1, not abnorm1/1, not abnorm2/1}
IC ={← abnorm1(X), not abnorm1(X).

← abnorm2(X), not abnorm2(X).}
← flies(X), not flies(X).}

E+ = {flies(a), f lies(b), f lies(e), f lies(f)}
E− = {flies(c), f lies(d)}
Moreover, let the bias be:

flies(X)← α where α ⊂ {superpenguin(X), penguin(X), bird(X),
not abnorm1(X), not abnorm2(X)}

abnorm1(X)← β and abnorm2(X)← β where
β ⊂ {superpenguin(X), penguin(X), bird(X)}

The algorithm first generates the following rule (R1):
flies(X)← superpenguin(X).

which covers flies(e) and flies(f) that are removed from E+. Then, in the
specialization loop, the rule R2 = flies(X)← bird(X). is generated which covers
all the remaining positive examples flies(a) and flies(b), but also the negative
ones. In fact, the abductive derivations for not flies(c) and not flies(d) fail.
Therefore, the rule must be further specialized by adding a new literal. The
abducible literal not abnorm1 is added to the body of R2 obtaining R3:

flies(X)← bird(X), not abnorm1(X).
Now, the abductive derivations for the negative examples flies(a) and flies(b)
succeed abducing {not abnorm1(a), not abnorm1(b)} and the derivations
not flies(c) and not flies(d) succeed abducing {abnorm1(c), abnorm1(d)}.

At this point the system adds the literals abduced to the training set and
tries to generalize them, by generating a rule for abnorm1/1. Positive abduced
literals for abnorm1/1 form the set E+, while negative abduced literals form the
set E−. The resulting induced rule is (R4):

abnorm1(X)← penguin(X).
No positive example is now left in the training set therefore the algorithm ends
by producing the following abductive rules:

flies(X)← superpenguin(X).
f lies(X)← bird(X), not abnorm1(X).
abnorm1(X)← penguin(X).

A result similar to ours is obtained in [16], but exploiting “classical” negation and
priority relations between rules rather than abduction. By integrating induction
and abduction, we obtain a system that is more general than [16].

5.2 Learning from incomplete knowledge

Abduction is particularly suitable for modelling domains in which there is incom-
plete knowledge. In this example, we want to learn a definition for the concept
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father from a background knowledge containing facts about the concepts parent
and male. Knowledge about male is incomplete and we can make assumptions
about it by considering it as an abducible. We have the abductive background
theory B = 〈P, A, IC〉 and training set:

P = { parent(john, mary). male(john).
parent(david, steve). parent(kathy, ellen).
female(kathy).}

A = {male/1, female/1}
IC = {← male(X), female(X).}
E+ = {father(john, mary), father(david, steve)}
E− = {father(john, steve), father(kathy, ellen)}
Moreover, let the bias be

father(X, Y )← α where α ⊂ {parent(X, Y ), parent(Y, X),
male(X), male(Y ), female(X), female(Y )}

At the first iteration of the specialization loop, the algorithm generates the rule
father(X, Y )← .

which covers all the positive examples but also all the negative ones. Therefore
another iteration is started and the literal parent(X, Y ) is added to the rule

father(X, Y )← parent(X, Y ).
This clause also covers all the positive examples but also the negative example

father(kathy, ellen).
Note that up to this point no abducible literal has been added to the rule,
therefore no abduction has been made and the set ∆ is still empty. Now, an
abducible literal is added to the rule, male(X), obtaining

father(X, Y )← parent(X, Y ), male(X).
At this point the coverage of examples is tested. father(john, mary) is covered
abducing nothing because we have the fact male(john) in the background. The
other positive example, father(david, steve), is covered with the abduction of
the following set: {male(david), not female(david)}.

Then the coverage of negative examples is tested by starting the abductive
derivations
← not father(john, steve).
← not father(kathy, ellen).

The first derivation succeeds with an empty explanation while the second suc-
ceeds abducing not male(kathy) which is consistent with the fact female(kathy)
and the constraint ← male(X), female(X). Now, no negative example is cov-
ered, therefore the specialization loop ends. No atom from ∆ is added to the
training set because the predicates of abduced literals are not target. The pos-
itive examples covered by the rules are removed from the training set which
becomes empty. Therefore also the covering loop terminates and the algorithm
ends, returning the rule

father(X, Y )← parent(X, Y ), male(X).
and the assumptions

∆ = {male(david), not female(david), not male(kathy)}.
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6 Related Work

We will first mention our previous work in the field, and then related work by
other authors.

In [29] we have presented the definition of the extended learning problem and
a preliminary version of the algorithm for learning abductive rules.

In [30] we have proposed an algorithm for learning abductive rules obtained
modifying the extensional ILP system FOIL [37]. Extensional systems differ
from intensional ones (as the one presented in this paper) because they employ
a different notion of coverage, namely extensional coverage. We say that the
program P extensionally covers example e if there exists a clause of P , l ←
l1, . . . , ln such that l = e and for all i, li ∈ E+ ∪ lhm(B). Thus examples can
be used also for the coverage of other examples. This has the advantage of
allowing the system to learn clauses independently from each other, avoiding
the need for considering different orders in learning the clauses and the need for
backtracking on clause addition. However, it has also a number of disadvantages
(see [13] for a discussion about them). In [30] we have shown how the integration
of abduction and induction can solve some of the problems of extensional systems
when dealing with recursive predicates and programs with negation.

In [17] the authors discuss various approaches for the integration of abduc-
tion and induction. They examine how abduction can be related to induction
specifically in the case of Explanation Based Learning, Inductive Learning and
Theory Revision. The authors introduce the definition of a learning problem
integrating abduction (called Abductive Concept Learning) that has much in-
spired our work. Rather than considering it as the definition of a problem to be
solved and presenting an algorithm for it, they employ the definition as a general
framework where to describe specific cases of integration.

Our definition differs from Abductive Concept Learning on the condition
that is imposed on negative examples: in [17] the authors require that negative
examples not be abductively entailed by the theory. Our condition is weaker
because it requires that there be an explanation for not e−, which is easier to
be met than requiring that there is no explanation for e−. In fact, if there is
an explanation for not e−, this does not exclude that there is an explanation
also for e−, while if there is no explanation for e− then there is certainly an
explanation for not e−. We consider a weaker condition on negative examples
because the strong condition is difficult to be satisfied without learning integrity
constraints. For example, in section 5.2, the learned program also satisfies the
stronger condition of [17], because for the negative example father(kathy, ellen)
the only abductive explanation {male(kathy)} is inconsistent with the integrity
constraint← male(X), female(X). However, if that constraint was not available
in the background, the stronger condition would not be satisfiable.

Moreover, in [17] the authors suggest another approach for the integration of
abduction in learning that consists in explaining the training data of a learning
problem in order to generate suitable or relevant background data on which to
base the inductive generalization. Differently from us, the authors allow the use
of integrity constraints for rule specialization, while we rely only on the addition
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of a literal to the body of the clause. Adding integrity constraints for specializing
rules means that each atom derived by using the rules must be checked against
the constraints, which can be computationally expensive. Moreover, the results
of soundness and weak completeness can not be used anymore for the extended
proof procedure.

In [2] an integrated abductive and inductive framework is proposed in which
abductive explanations that may include general rules can be generated by incor-
porating an inductive learning method into abduction. The authors transform
a proof procedure for abduction, namely SLDNFA, into a proof procedure for
induction, called SLDNFAI. Informally, SLDNFA is modified so that abduction
is replaced by induction: when a goal can not be proven, instead of adding it
to the theory as a fact, an inductive procedure is called that generates a rule
covering the goal. However, the resulting learning is not able to a learn a rule
and, at the same time, make specific assumptions about missing data in order
to cover examples.

The integration of induction and abduction for knowledge base updating
has been studied in [11] and [1]. Both systems proposed in these papers perform
incremental theory revision: they automatically modify a knowledge base when it
violates a newly supplied integrity constraint. When a constraint is violated, they
first extract an uncovered positive example or a covered negative example from
the constraint and then they revise the theory in order to make it consistent with
the example, using techniques from incremental concept learning. The system
in [11] differs from the system in [1] (called RUTH) because it relies on an
oracle for the extraction of examples from constraints, while RUTH works non
interactively. Once the example has been extracted from the constraint, both
systems call similar inductive operators in order to update the knowledge base.
In [11] the authors use the inductive operators of Shapiro’s MIS system [38].

In [28], we have shown that LAP can be used to perform the knowledge
base updating tasks addressed by the systems in [11] and [1], by exploiting the
abductive proof procedure in order to extract new examples from a constraint
on target predicates. While systems in [11,1] can generate examples that violate
other integrity constraints and new inconsistencies have to be recovered at the
next iteration of the learning loop, in [28] we are able to select the examples that
allow the minimal revision of the theory. Another relevant difference is that our
system is a batch learner while the systems in [11,1] are incremental learners:
since we have all the examples available at the beginning of the learning process,
we generate only clauses that do not cover negative examples and therefore
we do not have to revise the theory to handle covered negative examples, i.e.,
to retract clauses. As regards the operators that are used in order to handle
uncovered positive examples, we are able to generate a clause that covers a
positive example by also making some assumptions, while in [11] they can cover
an example either by generating a clause or by assuming a fact for covering it,
but not the two things at the same time. RUTH, instead, is able to do this, and
therefore would be able to solve the problem presented in Section 5.2. Moreover,
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RUTH considers abduced literals as new examples, therefore it would be able to
solve as well the problems in Section 5.1.

As concerns the treatment of exceptions to induced rules, it is worth men-
tioning that our treatment of exceptions by means of the addition of a non-
abnormality literal to each rule is similar to the one in [35]. The difference is
that the system in [35] performs declarative debugging, not learning, therefore
no rule is generated. In order to debug a logic program, in [35] the authors first
transform it by adding a different default literal to each rule in order to cope with
inconsistency, and add a rule (with an abducible in the body) for each predicate
in order to cope with predicate incompleteness. These literals are then used as
assumptions of the correctness of the rule, to be possibly revised in the face of
a wrong solution. The debugging algorithm determines, by means of abduction,
the assumptions that led to the wrong solution, thus identifying the incorrect
rules.

In [5] the authors have shown that is not possible, in general, to preserve cor-
rect information when incrementally specializing within a classical logic frame-
work, and when learning exceptions in particular. They avoid this drawback by
using learning algorithms which employ a nonmonotonic knowledge represen-
tation. Several other authors have also addressed this problem, in the context
of Logic Programming, by allowing for exceptions to (possibly induced) rules
[16,10]. In these frameworks, nonmonotonicity and exceptions are dealt with by
learning logic programs with negation. Our approach in the treatment of excep-
tions is very related to [16]. They rely on a language which uses a limited form
of “classical” (or, better, syntactic) negation together with a priority relation
among the sentences of the program [25]. However, in [20] it has been shown
that negation by default can be seen as a special case of abduction. Thus, in
our framework, by relying on ALP, we can achieve greater generality than [16]:
besides learning exceptions, LAP is able to learn from incomplete knowledge and
to learn theories for abductive reasoning.

In what concerns learning from incomplete information, many ILP systems
include facilities in order to handle this problem, for example FOIL [37], Progol
[34], mFOIL [19]. The approach that is followed by all these systems is funda-
mentally different with respect to ours: they are all based on the use of heuristic
necessity and sufficiency stopping criteria and of special heuristic functions for
guiding the search. The heuristic stopping criteria relaxes the requirements of
consistency and completeness of the learned theory: the theory must cover (not
cover) “most” positive (negative) examples, where the exact amount of “most” is
determined heuristically. These techniques allow the systems to deal with imper-
fect data in general, including noisy data (data with random errors in training
examples and in the background knowledge) and incomplete data. In this sense,
their approach is more general than ours, because we are not able to deal with
noisy data. Their approach is equivalent to discarding some examples, consider-
ing them as noisy or insufficiently specified, while in our approach no example is
discarded, the theory must be complete and consistent (in the abductive sense)
with each example.



120 Evelina Lamma, Paola Mello, Michela Milano, and Fabrizio Riguzzi

7 Conclusions and Future Work

We have presented the system LAP for learning abductive logic programs. We
consider an extended ILP problem in which both the background and target the-
ory are abductive theories and coverage by deduction is replaced with coverage
by abduction.

In the system, abduction is used for making assumptions about incomplete
predicates of the background knowledge in order to cover the examples. In this
way, general rules are generated together with specific assumptions relative to
single examples. If these assumptions regard an abnormality literal, they can be
used as examples for learning a definition for the class of exceptions.

LAP is obtained from the basic top-down ILP algorithm by substituting, for
the coverage testing, the Prolog proof procedure with an abductive proof proce-
dure. LAP has been implemented in Sicstus Prolog 3#5: the code of the system
and of the examples shown in the paper are available at |¡URL:http://www-
lia.deis.unibo.it/Staff/FabrizioRiguzzi/LAP.html¿—.

In the future, we will test the algorithm on real domains where there is
incompleteness of the data. As regards the theoretical aspects, we will investigate
the problem of extending the proposed algorithm in order to learn full abductive
theories, including integrity constraints as well. The integration of the algorithm
with other systems for learning constraints, such as Claudien [12] and ICL [14],
as proposed in [27], seems very promising in this respect.

Our approach seems also promising for learning logic programs with two
kinds of negation (e.g., default negation and explicit negation), provided that
positive and negative examples are exchanged when learning a definition for the
(explicit) negation of a concept, and suitable integrity constraints are added to
the learned theory so as to ensure non-contradictoriness. This is also subject for
future work.
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Abstract. Reasoning about actions and changes often starts with an
action theory which is then used for planning, prediction or explanation.
In practice it is sometimes not simple to give an immediately available
action theory. In this paper we will present an abductive methodology
for describing action domains. We start with an action theory which
is not complete, i.e., has more than one model. Then, after some tests
are done, we can abduce a complete action theory. Technically, we use
a high level action language to describe incomplete domains and tests.
Then, we present a translation from domain descriptions to abductive
logic programs. Using tests, we then abductively refine an original do-
main description to a new one which is closer to the domain in reality.
The translation has been shown to be both sound and complete. The
result of this paper can be used not only for refinement of domain de-
scriptions but also for abductive planning, prediction and explanation.
The methodology presented in this paper has been implemented by an
abductive logic programming system.

1 Introduction

When reasoning about actions and changes, we often assume that an action
theory has been given and described in a formal language or in a framework,
e.g. situation calculus [15], event calculus [10], action description languages A
[7] and ADL [16],

the fluent-features framework (FFF) [19], and their variants or extensions.
But little work has been reported on how to obtain an action theory. Assume
that we want to generate a plan to make the world in a definite state (goal), but
we are not certain about the initial state and the effects of available actions. For
example, let’s consider Vladimir Lifschitz’ challenge problem1:
1 Vladimir Lifschitz’s email message to lmp@di.fct.unl.pt and renwei@di.fct.unl.pt on

March 25, 1996.
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The room has two lamps, say Big and Small, and two light switches, say
Left and Right. A switch controls one and only one light. Both lights are
off. Initially we don’t know whether the wiring is this way or the other
way around, but we can find out by toggling a switch.

In this example, we have two actions: to toggle the left switch and to toggle
the right switch, denoted by toggle(left) and toggle(right), and we have two
fluents: the big light is on and the small light is on, denoted by on(big) and
on(small). If we knew the way in which the circuit is connected, then we could
generate plans, predict the future, or explain the past. The problem is that no
such an immediately available theory exists. An intelligent agent should be able
to perform some tests and then obtain a complete action theory. In this paper we
will present an abductive methodology for reasoning about actions and changes
starting from an incomplete action theory, i.e., an action theory with more than
one model, then refining it by testing and abductive reasoning so as to have
a complete action theory, which can then be used for planning, predicting and
explaining. Our methodology consists of a high-level action description language
A+, a translation from A+ to abductive logic programs, and an abductive logic
programming system used as the underlying inference engine for refinement.

Now suppose that we have an action description language obtained by extend-
ing A [7] with propositional conjunctions and disjunctions on effect propositions.
Then, the above domain can be described by the following propositions:

{[toggle(left) causes on(big) if ¬on(big)]
∧[toggle(left) causes ¬on(big) if on(big))]}
∨̇
{[toggle(left) causes on(small) if ¬on(small)]
∧[toggle(left) causes ¬on(small) if on(small))]}

{[toggle(right) causes on(big) if ¬on(big)]
∧[toggle(right) causes ¬on(big) if on(big))]}
∨̇
{[toggle(right) causes on(small) if ¬on(small)]
∧[toggle(right) causes ¬on(small) if on(small))]}

{[toggle(left) causes on(big) if ¬on(big)]
∧[toggle(left) causes ¬on(big) if on(big))]}
∨̇
{[toggle(right) causes on(big) if ¬on(big)]
∧[toggle(right) causes ¬on(big) if on(big))]}

{[toggle(left) causes on(small) if ¬on(small)]
∧[toggle(left) causes ¬on(small) if on(small))]}
∨̇
{[toggle(right) causes on(small) if ¬on(small)]
∧[toggle(right) causes ¬on(small) if on(small))]}
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It can be seen that finite uncertainties have been represented by exclusive dis-
junction ∨̇. Intuitively, one of the following two domain descriptions should be
real.

toggle(left) causes on(small) if ¬on(small)
toggle(left) causes ¬on(small) if on(small)
toggle(right) causes on(big) if ¬on(big)
toggle(right) causes ¬on(big) if on(big)

and
toggle(left) causes on(big) if ¬on(big)
toggle(left) causes ¬on(big) if on(big)
toggle(right) causes on(small) if ¬on(small)
toggle(right) causes ¬on(small) if on(small)

Later we will see that our methodology works well and produces what is intu-
itively acceptable. The rest of the paper is organized as follows. In Section 2
we present an action description language, denoted A+, which is an extension
to A. The reason we choose A is simply that A has been shown to be a sim-
ple, extensible and expressive action description language, and to be equivalent
to other three major formalisms [9] proposed by Pednault [16], Reiter [18] and
Baker [2], respectively. In Section 3 we will present a translation from domain
descriptions in A+ to abductive logic programs. This translation will serve to
bridge the reasoning about actions and abductive logic programming. Generally
it is not easy or simple to refine action theories or to predict and explain in A+.
The translation will effectively reduce working in A+ to working in an abductive
logic programming system, thereby being automated. In Section 4 we will show
that our translation is both sound and complete. In Section 5 we will discuss
tests and refinements by using abductive logic programming. In Section 6 we
return to Lifschitz’ challenge problem. In Section 7 we conclude this paper with
a few remarks.

2 Domain Descriptions

In this section we present an action description language A+, an extension to A
of [7].

2.1 Syntax

We begin with three disjoint non-empty sets of symbols, called proposition
names, fluent names, and action names, respectively. For convenience we will
also use parameterized names. Actions and propositions are defined to be action
names and proposition names, respectively. A fluent expression, or simply fluent,
is defined to be a fluent name possibly preceded by ¬. A fluent expression is also
called a positive fluent if it only consists of a fluent name; otherwise it is called
a negative fluent.
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In A+, a domain description is defined to be a set of effect assertions and
constraints. An effect assertion is defined to be a statement of the form

A causes F if P1, . . . , Pm, Q1, . . . , Qn

where A is an action, each of F , P1, . . ., Pm (m ≥ 0) is a fluent expression, and
each of Q1, . . . , Qm (n ≥ 0) is a proposition name. If m = n = 0, then we will
simply write it as A causes F . A constraint is defined as follows:

– A proposition name is an atomic constraint.
– A statement of the form

F after A1, . . . , An

where F is a fluent and Ai is an action, is an atomic constraint, also called
value assertion. When n = 0, the value assertion above is abbreviated to
initially F .

– If C1 and C2 are constraints, then ¬C1, C1 ∧ C2, C1 ∨ C2 are constraints,
called complex constraints. Other propositional connectives can be defined
in terms of them as derived connectives.

It can be seen that A+ is an extension of A by allowing propositions and more
types of constraints. However, the detailed discussion on relations between A
and A+ is out of this paper.

2.2 Remarks

It seems that we would increase the expressive power if we defined the effect
assertions in the following way: (1) A basic effect assertion is a statement of the
form A causes F if C1, . . . , Cn; (2) An effect assertion is a statement of the
form (E11∧ . . .∧E1m1)∨ . . .∨ (En1∧ . . .∧Enmn), where each Eij is a basic effect
assertion. In fact, combining with proposition names, we can reduce the above
complex effect assertion to simpler ones of A+. We can systematically do so by
introducing a few new proposition names and then transform effect assertions.
For example, consider:

(A1 causes F1 if C11, . . . , C1n1)
∨ . . .
∨(Am causes Fm if Cm1, . . . , Cmn)

Let hi, 1 ≤ i ≤ m be m new proposition symbols. Then, the above complex
effect assertions can be transformed into m basic effect assertions and a new
constraint as follows:

A1 causes F1 if C11, . . . , C1n1 , h1
. . .
Am causes Fm if Cm1, . . . , Cmn, hm

h1 ∨ . . . ∨ hm
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On the other hand, it also seems that we would increase the expressive power
if we allowed general well-formed propositional formulas in the preconditions of
effect assertions. For example, let A be an action, P1 a fluent, and Q1, Q2, Q3 be
proposition names. Consider

A causes F if P1, (Q1 ∧Q2) ∨ ¬Q3

This kind of seemingly more expressive effect assertions can also be reduced to
effect assertions in A+. Let Q4 be a new proposition name. The following effect
assertion and a constraint is equivalent to the above assertion:

A causes F if P1, Q4

Q4 ↔ (Q1 ∧Q2) ∨ ¬Q3

2.3 Semantics

The semantics of a domain description is defined by using proposition assign-
ment, states, and transitions.

A proposition assignment α is a set of proposition names. Given a proposition
name P and an assignment α, we say that P is true if P ∈ α, and ¬P is true if
P 6∈α. A state is a set of fluent names. Given a fluent name F and a state σ,
we say that F holds in σ if F ∈ σ; ¬F holds in σ if F 6∈σ. A transition function
Φ is a mapping from the set of pairs (A, σ), where A is an action expression and
σ is a state, to the set of states.

An interpretation structure is a triple (α, σ0, Φ), where α is an assign-
ment, σ0 is a state, called the initial state of (σ0, Φ), and Φ is a transition
function. For any interpretation structure M = (α, σ0, Φ) and any sequence of
action expressions A1; . . . ;Am in M , by Φ(A1; . . .; Am, σ0) we denote the state
Φ(Am, Φ(Am−1, . . . , Φ(A1, σ0) . . .)).

Given an interpretation structure (α, σ0, Φ), a constraint C is said to be true
with respect to it iff

– if C is a proposition name, then C ∈ α;
– if C is a value assertion of the form F after A1, . . . , An, then F holds in

the state Φ(A1; . . . ;An, σ0);
– if C is a complex constraint, then it is true according to the usual proposi-

tional connective evaluation method.

An interpretation structure (α, σ0, Φ) is a model of a domain description D
iff

– Every constraint is true with respect to the interpretation structure.
– For every action A, every fluent name F , and every state σ: (i) If D in-

cludes an effect assertion A causes F if P1, . . . , Pm, Q1, . . . , Qn, such that
fluents P1, . . ., Pm hold in σ and propositions Q1, . . . , Qn are true with re-
spect to (α, σ0, Φ), then F ∈ Φ(A, σ); (ii) If D includes an effect assertion
A causes ¬F if P1, . . . , Pm, Q1, . . . , Qn, such that fluents P1, . . ., Pn hold
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in σ and propositions Q1, . . . , Qn are true with respect to (α, σ0, Φ), then
F 6∈Φ(A, σ); (iii) If D does not include any such effect assertions, then
F ∈ Φ(A, σ) iff F ∈ σ.

A domain description is consistent if it has a model. A domain description is
complete if it has exactly one model. A domain description D entails a value
assertion V if V is true in all models of D. It can be shown that different mod-
els of the same domain description differ only in different initial states and/or
proposition assignments. In addition, the interpretation of a proposition name
is independent of states.

In reality a practical domain should have only one model. The task of refining
domain descriptions is to construct a new domain description which has fewer
models than the original domain description. We will achieve this purpose by first
performing some actions and observing their outcome, then we will abductively
infer the truth values of propositions and initial states. We will make use of
abductive logic programming for the purpose of abductive reasoning.

3 Translation into Abductive Programs

In this section we will present a translation from domain descriptions into abduc-
tive logic programs. An abductive logic program is a triple < P, IC, ∆ >, where
P is a set of logic programming rules, IC is a set of first-order sentences as con-
straints, and ∆ is a set of predicates, called abducible predicates. An abductive
answer δ to a query Q in < P, IC, ∆ > is a finite subset of ground instances of ∆
such that (i) Q ∈ SEM(P ∪ {a ← : a ∈ δ}, IC); (ii) P ∪ {a ← : a ∈ δ} ∪ IC is
consistent according to definition of SEM ; (iii) δ is minimal in the sense that no
subset of it satisfies the previous two conditions, where SEM(P, IC) denotes the
semantics of the program P with constraints IC. There have been a few com-
peting semantics in the literature: predicate completion semantics, stable model
semantics, and well-founded model semantics. Later we will see that our logic
program translations are acyclic, and thus all of these major semantics agree.
Therefore we will define the semantics of logic programs as the predicate com-
pletion semantics. For abductive logic programs, we will complete all predicates
except the abducible ones [3].

Let D be a domain description. The translation πD includes a set of pro-
gramming rules and a set of constraints defined as follows:

1. Initialization: holds(F, s0) ← initially(F ).
2. Law of Inertia:

holds(F, result(A, S)) ← holds(F, S),not noninertial(F, S, A).

where not is the negation-as-failure operator. By the law of inertia, F is
true at a new situation by doing A on S if it was true at S.

3. Each effect assertion a causes f if p1, . . ., pm, q1, . . . , qn, with f being
positive, pi being a fluent, and qi being a proposition, is translated into

holds(f, result(a, S)) ← holds(p1, S), . . . , holds(pm, S), q1, . . . , qn.
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where holds(¬p, S) with p being positive stands for not holds(p, S). This
convention is also used in the rest of this paper.

4. Each effect assertion a causes ¬f if p1, . . ., pm, q1, . . . , qn, with f being
positive, pi being a fluent, and qi being a proposition, is translated into

noninertial(f, S, a) ← holds(p1, S), . . . , holds(pm, S), q1, . . . , qn.

5. For every constraint C of D: (i) if C is a proposition name, πC = C; (ii) if C
is f after a1, . . ., an with f being positive, then πC = holds(f , result(a1;
. . .; an, s0)); (iii) if C is ¬f after a1, . . . , an, with f being positive, then
πC = ¬holds(f , result(a1; . . . ;an, s0)); (iv) π(¬C1) = ¬(πC1), π(C1 ∧ C2)
= πC1 ∧ πC2, π(C1 ∨ C2) = πC1 ∨ πC2.

We will define abducible predicates to be initially(F ) and all proposition names.
The semantics of πD, denoted by Comp(πD), is defined to be the first-order
theory by completing all predicates except initially(F ) and proposition names,
jointly with Clark’s theory of equality, and the constraints [3,6].

Theorem 31 Let D be any domain description in A+. πD is an acyclic logic
program with first-order constraints in the sense of [1].

Proof It suffices to give a level mapping λ for all ground atoms. Note that
initially(f) and all propositions appear only on the right-hand side of ← , and
thus can be assigned to 0. Observe that the number of occurrences of result in
holds(F, S) on the left-hand side of ← is more than right-hand side of ← .
Hence, a level mapping λ can be defined as follows:

λ(Initially(f)) = 0
λ(p) = 0 for any proposition p

λ(holds(f, result(a, s))) = 2× |s|+ 1
λ(noninertial(f, a, s)) = 2× |s|+ 2

where |s| denotes the number of occurrences of result plus 1. Then it is straight-
forward to verify the above λ is a level mapping. We should point out that the
above level mapping is a slight modification of that in [5,6]. 2

Corollary 32 The completion semantics Comp(πD) of πD agrees with its gen-
eralized stable model semantics [8] and generalized well-founded model semantics
[17].

Proof Since πD is an acyclic logic program, According to [5], the completion
semantics of any acyclic abductive logic program with constraints coincides with
its generalized stable model semantics [8] and generalized well-founded model
semantics [17]. 2

The above corollary means that the result of this paper can be experimented
with any abductive logic programming system with one of the three major se-
mantics. The detailed proof follows from [5]. A short summary of partial results
of [5] can also be found in [6].
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4 Soundness and Completeness

In general it is very difficult to reason about actions in A+. The purpose of the
translation is to reduce the reasoning work in A+ to abductive querying in an
abductive logic programming system. This section will show that reasoning inA+

is equivalent to abductive querying through two technical results, whose proofs
are slight modifications of [5] by consolidating α component in the interpretation
structure.

Theorem 41 The translation π is sound. That is, for any domain description
D and any value assertion V , if Comp(πD) |= πV , then D entails V .

Proof If the domain description is not consistent, the above theorem holds
trivially since there is no model. Now assume D is consistent. We want to show
every model of D is also a model of V . It suffices to prove that for every model
(α, σ0, Φ) of D, there is a model M of πD such that V is true in (α, σ0, Φ) iff πV
holds in M . The same technique of [5] can be used to construct such a model
M from (α, σ0, Φ). The only difference is that [5] does not consider α. In order
to have α, just let it be the same in both (α, σ0, Φ) and M . 2

Definition 42 A domain description D is effect consistent iff for each pair of
effect assertions,

A causes F if C1, . . . , Cm

A causes ¬F if Cm+1, . . . , Cn

in D, there exists i, 1 ≤ i ≤ m, and j, m + 1 ≤ j ≤ n, such that Ci is the
complement of Cj.

Note that if C1, . . . , Cm contain complement elements, then effect assertion
A causes F if C1, . . . , Cm in a domain description has no effect on its models.
And thus, in this paper we assume that any domain description does not have
such kind of effect assertions.

Theorem 43 The translation π is complete for any effect consistent domain
descriptions. That is, for any effect consistent domain description D and any
value assertion V , if D entails V , then Comp(πD) |= πV .

Proof Since D is effect consistent, there is a unique translation Φ which satisfies
the effect assertions when α is given. Then it suffices to prove that for each model
M of πD there is a model (α, σ0, Φ) of D such that for each value assertion
V , M |= πV iff V holds in (α, σ0, Φ). This will immediately implies all value
assertions of D hold in (α, σ0, Φ) since M is a model of πV for every value
assertion of D. We can still follow [5] to show it. 2

The requirement for a domain description to be effect consistent is necessary.
If a domain description D is not effect consistent, no transition functions exist
to satisfy its effect assertions, thus it has no models, and hence it entails every
value assertion. On the other hand, its translation is consistent and thus has at
least one model which entails a proper subset of what D entails.
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The above soundness and completeness theorems signify that our transla-
tion can actually be used for the general purposes of reasoning about actions
and changes such as abductive planning, prediction, explanation. That is to say,
our result of this paper goes beyond refinement of action theories. But we will
not delve into detailed discussion on how to use our translation for abductive
planning, temporal prediction and explanation. In the next section we will con-
centrate on refinement of action theories.

5 Refinement

Let D be a domain description. D may have more than one model. If D has
more than one model, we may only predict a disjunctive future instead of a
definite future. That is to say, after a sequence of actions is done, we cannot
predict whether a fluent is definitely true or not. When a domain description is
complete, we can always predict whether a fluent is true or not after an action
is done. This is sometimes a very important factor in reasoning about actions,
as shown as in [14].

When a domain description is not complete, all its models differ in their initial
states and/or proposition assignments. In order to determine initial states and
proposition assignments, one may perform some tests: doing some actions, ob-
serving their effects, and then abductively determining initial states and propo-
sition names.

Now suppose that we are given a domain description D0. We want to refine
it. The way to do it, as said as before, is to perform some actions and observe
their effects. This process is called test. The purpose of tests is to generate new
value assertions. And thus we can formally define a test to be a set of value
assertions.

Definition 51 A test τ in an action domain is a set of value assertions. Let D
be a domain description. The pair (D, τ) is called a refinement problem.

Theorem 52 Let D be a domain description, and τ a test. Then, every model
of D ∪ τ is a model of D.

Proof Let M be any model of D ∪ τ . It is straightforward to see that all effect
assertions and constraints are true with respect to M . And thus M is also a
model of D. 2

Note that the converse of the above theorem does not hold in general cases.
The above theorem means that simply adding tests to a domain description will
definitely give a better and new domain description. But syntactically D ∪ τ is
more complicated than D. We may prefer simpler and finer descriptions. Note
that in an interpretation structure, all proposition names will be either true or
false. In the reality, all these proposition names can and can only be either true or
false. When we do enough tests, the refinement of the domain will be closer and
closer to a complete domain description. This implies that the complete domain
description is a limit of all refinements of domain descriptions. When the domain
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description has only one model, all proposition names can be removed from
the domain description by substituting them with their truth values, and thus
syntactically simplifying the domain description. Hence, we have the following
definition of refinements:

Definition 53 Let D1 and D2 be two domain descriptions. D2 is said to be a
refinement of D1 iff the following conditions are satisfied:

– Every model of D2 is a model of D1;
– There is no proposition name in D2 which is true in every model of D2;
– There is no proposition name in D2 which is false in every model of D2.

In what follows we want to show how to compute refinements with abductive
logic programming. In Section 3 we presented a translation from domain de-
scriptions to abductive logic programs. However, many existing abductive logic
programming systems do not directly support our constraints. Instead, they sup-
port constraints of the form

⊥ ← L1, . . . , Ln

First we need to translate all constraints into the above form.
The translation, still denoted by π, is as follows. Let C be a constraint in the

program πD. Then C can be equivalently transformed into a conjunctive normal
form:

(C11 ∨ . . . ∨ C1m1) ∧ . . . ∧ (Cm1 ∨ . . . ∨ Cmn)

Then, it will be translated into

⊥ ← not C11, . . . ,not C1m1

. . .

⊥ ← not Cm1, . . . ,not Cmn

where not ¬L is taken as L.
After constraints are translated into a logic program, we can run it in any

abductive logic programming system. Before proceeding, we need to guarantee
that the correctness of the translation is preserved.

Theorem 54 The translation π is both sound and complete for any effect con-
sistent domain descriptions.

Proof By the use of the soundness and completeness theorems of the last
section, it is sufficient to show that the handing of constraints does not change
the semantics. For this purpose, completing

⊥ ← not C11, . . . ,not C1m1

. . .

⊥ ← not Cm1, . . . ,not Cmn
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we will have

⊥ ↔ (¬C11 ∧ . . . ∧ ¬C1m1) ∨
. . . ∨
(¬Cm1 ∧ . . . ∧ ¬Cmn)

It is equivalent to

(C11 ∨ . . . ∨ C1m1) ∧ . . . ∧ (Cm1 ∨ . . . ∨ Cmn)

Thus the translation of the constraints does not change its semantics. Therefore,
the semantics of new programs is the same as before. 2

Let τ = {V1, . . . , Vn} be a test. Then, τ can be transformed into a query:

← πV1, . . . , πVn

where for each i, πVi is defined as follows: Let Vi be F after A1, . . . , An in τ .
If F is positive, then πVi is defined to be holds(F, result(A1; . . . ;An, s0)); if F
is negative and equal to ¬G, then πVi is defined to be not holds(G, result(A1;
. . . ;An, s0)).

Submitting the query to an abductive logic programming system, we will
get abductive answers to it. In what follows we will write R(D, τ) to stand for
the set of all abductive answers to the query ← πτ against the abductive logic
program πD. Now we are in a position to define the procedure of refining action
theories.

Definition 55 Let D be a domain description and τ a test. Let R(D, τ) =
{R1, . . . , Rn}. Perform:

1. For every proposition name P , if P 6∈R1∪ . . .∪Rn, remove from D all effect
assertions containing P in the precondition list, and replace P with false in
every constraint of D;

2. For every proposition name P , if P ∈ R1∩ . . .∩Rn, remove P from all effect
assertions of D, and replace P with true in every constraint of D;

3. Simplify constraints of D in the usual way by using of true and false in
the formulas. For example, if C is of the form ¬false or C1 ∨ true, C is
removed.

Then, Define S(D, τ) to be the set of the resulting effect assertions, constraints,
and the test τ .

The following theorem says that the new domain description S(D, τ) is a
refinement of D.

Theorem 56 Let D be a domain description, τ a test. Then, S(D, τ) is a re-
finement of D.

Proof To show that S(D, τ) is a refinement of D, we need to show

(a) Every model of S(D, τ) is a model of D;
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(b) There is no proposition name in S(D, τ) which is true in every model of
S(D, τ);

(c) There is no proposition name in S(D, τ) which is false in every model of
S(D, τ).

To see (a), note that it suffices to show that every model of S(D, τ) is a model
of D ∪ τ according to Theorem 5.2. Let R(D, τ) = {R1, . . . , Rn}. Since Ri is an
abductive answer to πτ , we have

Comp(πD ∪ a ← : a ∈ Ri) |= πτ

Thus for every proposition P , if P 6∈R1 ∪ . . . ∪ Rn, it is always assigned to
”false” in α since our model is two-valued. Since it is always false, if a dis-
junct on the right-hand side of a completion equivalence of holds(F, S) and
noninertial(F, A, S) contains it, it can be removed from Comp(πD). Removing
it amounts to removing the corresponding effect assertion which has P as one of
preconditions. And thus the corresponding effect assertion can be deleted from
D. This is what Step 1 does in Def.5.5. On the other hand, if P ∈ R1 ∩ . . .∩Rn,
it is always assigned to ”true”, and thus can be vacuumly removed from all
the disjuncts on the right-hand side of a completion equivalence of holds(F, S)
and noninertial(F, A, S). This amounts to removing the occurrence of P from
Comp(πD). And thus, P can be removed from the corresponding effect asser-
tions. This is what Step 2 does in Def.5.5. Note that Step 3 in Def.5.5 is in
fact an equivalence transformation in logic, and thus does not change models of
Comp(πD). Therefore, every model of S(D, τ) is a model of D ∪ τ .

To see (b), suppose that P is true in every model of S(D, τ). Since P is an
abducible predicate, it must appear in R1 ∩ . . . ∩ Rn as {R1, . . . , Rn} is the set
of all abductive answers, and is thus deleted in Step 2, and hence cannot appear
in S(D, τ).

To see (c), suppose that P is false in every model of S(D, τ). Then we would
have P 6∈R1 ∪ . . . ∪Rn. And thus all effect assertions with it as a precondition
would have been deleted in Step 1, and hence cannot appear in S(D, τ). 2

6 An Example

Now we return to the example in the Introduction. Let controls(S, L) be a
parameterized proposition name to denote that switch S controls light L. Then,
we can have the following domain description D:
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controls(left, small)↔ controls(right, big)
controls(left, big)↔ controls(right, small)
controls(left, small)∨̇controls(left, big)
controls(right, small)∨̇controls(right, big)
toggle(left) causes on(small) if ¬on(small), controls(left, small)
toggle(left) causes ¬on(small) if on(small), controls(left, small)
toggle(right) causes on(small) if ¬on(small), controls(right, small)
toggle(right) causes ¬on(small) if on(small), controls(right, small)
toggle(left) causes on(big) if ¬on(big), controls(left, big)
toggle(left) causes ¬on(big) if on(big), controls(left, big)
toggle(right) causes on(big) if ¬on(big), controls(right, big)
toggle(right) causes ¬on(big) if on(big), controls(right, big)
initially ¬on(big)
initially ¬on(small)

Then, we have an abductive logic program πD. Now suppose we have a test τ
= {on(big) after toggle(left)}. Then we can evaluate it in an abductive logic
programming system. The following is the version of πD and πτ in the abductive
logic programming system REVISE [4]:

%the following are translations of \pi D.
holds(F, init) <- initially(F).
holds(F, result(A, S))

<- holds(F, S), not noninertial(F, S, A).
holds(on(small), result(toggle(left), S))

<- controls(left, small), not holds(on(small), S).
noninertial(on(small), S, toggle(left))

<- controls(left, small), holds(on(small), S).
holds(on(small), result(toggle(right), S))

<- controls(right, small), not holds(on(small), S).
noninertial(on(small), S, toggle(right))

<- controls(right, small), holds(on(small), S) .
holds(on(big), result(toggle(left), S))

<- controls(left, big), not holds(on(big), S).
noninertial(on(big), S, toggle(left))

<- controls(left, big), holds(on(big), S).
holds(on(big), result(toggle(right), S))

<- controls(right, big), not holds(on(big), S) .
noninertial(on(big), S, toggle(right))

<- controls(right, big), holds(on(big), S).
% the following are constraints
<- controls(left, small), not controls(right, big).
<- not controls(left, small), controls(right, big).
<- controls(left, big), not controls(right, small).
<- not controls(left, big), controls(right, small).
<- controls(left, big), controls(left, small).
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<- not controls(left, big), not controls(left, small).
<- controls(right, big), controls(right, small).
<- not controls(right, big), not controls(right, small).
<- holds(on(small), init).
<- holds(on(big), init).
% The following are declarations of abducible predicates
:- revisable(initially(_)).
:- revisable(controls(_, _)).
% The following is the translation of the test.
<- not holds(on(big), result(toggle(left), init)).

In the REVISE system, the following answer R(D, τ) will be output by issuing
the solution command:

{{controls(right, small), controls(left, big)}}

Then, by definition we have the following new domain description S(D, τ):

toggle(right) causes on(small) if ¬on(small)
toggle(right) causes ¬on(small) if on(small)
toggle(left) causes on(big) if ¬on(big)
toggle(left) causes ¬on(big) if on(big)
initially ¬on(big)
initially ¬on(small)

on(big) after toggle(left)

Thus we have obtained a complete domain description which enables us to gen-
erate plan, to predict the future, or to explain the past, as what we expected
and intended.

7 Concluding Remarks

In this paper we have presented an experiment on using the abductive logic
programming paradigm to refine an action theory in line with [11,12] starting
from [7]. An action theory, also called domain description, describes effects of
actions and initial states in a dynamic domain. A complete action theory should
enable us to determine which fluent will be true and which fluent will be false
after an action is performed. A complete action theory can be used for planning,
prediction and explanation. In practice we may encounter incomplete domains
with finite uncertainties. The finite uncertainties may be removed by doing some
tests and abductive reasoning. Technically we presented an action description
languageA+ for domain descriptions, then we presented a translation fromA+ to
abductive logic programs. The translation has been shown to be both sound and
complete. Thus, the task of reasoning about actions in A+ amounts to abductive
query evaluation in abductive logic programming systems. We also indicate that
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our abductive logic program is acyclic, and thus we can use any abductive query
evaluation procedure, no matter whether their semantics is based on predicate
completion, stable models, or well-founded models. The test on a domain is a set
of observed effects of a sequence of specific actions. The test can be used to de-
termine truth values of proposition names which serve to represent uncertainties.
This has been tested with the latest version of a meta-interpreter of abductive
logic programs [4]. To the best of our knowledge, there is no similar work in this
topic, although there have been many reports on A family languages. In general,
the refinement of action theories can be regarded as learning. But this kind of
learning is different from the main-trend work on learning, where generalization,
specialization, and induction is often used as the inference mechanism. In this
paper we have used abduction as the underlying inference mechanism. The result
of this paper is currently used to develop intelligent situated agent [13], which
is able to observe, act and reason in the real world.
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Abstract. We study the relationship between argumentation (abduc-
tion) and disjunctive logic programming. Based on the paradigm of
argumentation, an abductive semantic framework for disjunctive logic
programming is presented, in which the disjunctions of negative liter-
als are taken as possible assumptions rather than only negative liter-
als as the case of non-disjunctive logic programming. In our framework,
three semantics PDH, CDH and WFDH are defined by three kinds of
acceptable hypotheses to represent credulous reasoning, moderate rea-
soning and skeptical reasoning in AI, respectively. On the other hand,
our semantic framework could be established in a broader class than
that of disjunctive programs (called bi-disjunctive logic programs) and,
hence, the corresponding abductive framework is abbreviated as BDAS
(Bi-Disjunctive Argumentation-theoretic Semantics). Besides its rich ex-
pressive power and nondeterminism, BDAS integrates and naturally ex-
tends many key semantics, such as the minimal models, EGCWA, the
well-founded model, and the stable models. In particular, a novel and in-
teresting argumentation-theoretic characterization of EGCWA is shown.
Thus the framework in this paper does not only provides a new way
of performing argumentation (abduction) in disjunctive logic program-
ming, but also is a simple, intuitive and unifying semantic framework for
disjunctive logic programming.

1 Introduction

In our everyday life as well as in various artificial intelligence (AI) applications,
we are often required to deal with disjunctive information. It suffices to enu-
merate only a few areas of using disjunctive information: reasoning by cases,
approximate reasoning, legal reasoning, diagnosis, and natural language under-
standing [10,26]. For example, if we know only that ‘Mike will work in Havard
or in Stanford ’ but we do not know exactly in which university he will work,
then this information can be conveniently transformed into a rule of disjunctive
logic programs. In fact, it is known that disjunctive programs have more ex-
pressive power than non-disjunctive programs and permit a direct and natural
representation of disjunctive information from natural language and informal
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specifications. To conveniently and properly handle the representation and rea-
soning of disjunctive information in logic programming, a great deal of efforts
have been given to the problem of finding suitable extensions of logic program-
ming. The problem of defining an intended (declarative) meaning for disjunctive
logic programs, however, has been proved to be more difficult than the case of
non-disjunctive logic programs. The semantics of stratified non-disjunctive pro-
grams leads to unique minimal model (that is, the perfect model) [1], which
is well accepted as the intended meaning of stratified programs. However, this
is not the case when we consider the class of non-stratified programs or dis-
junctive programs (even positive disjunctive programs) and a lot of approaches
have been proposed to determine semantics for non-stratified programs and/or
disjunctive programs. Though some of semantics, such as the well-founded se-
mantics for non-disjunctive programs [19], the extended generalized closed world
assumption (EGCWA) for positive disjunctive programs [41]and the stable se-
mantics for non-disjunctive/disjunctive logic programs [18,28] etc., are widely
studied and shown to be promising in deductive databases, and nonmonotonic
reasoning, but also they are often criticized in the literature for their short-
comings. For example, the problem of the (disjunctive) stable semantics is its
incompleteness: some disjunctive programs do not possess any stable models;
the well-founded semantics is not able to express the nondeterministic nature
of non-stratified programs. The diversity of various approaches in semantics for
(disjunctive) logic programs shows that there is probably not a unique suitable
semantics for applications in logic programming. Therefore, in our opinion, a
suitable semantic framework rather than only a single semantics for disjunctive
logic programming should be provided, in which most of the existing key se-
mantics should be embedded and their shortcomings be overcome. In addition,
a suitable semantic framework for disjunctive logic programming can provide a
unifying mechanism for the implementation of various disjunctive semantics as
well as it is used in studying the relationship between different formalisms of
nonmonotonic reasoning.

On the other hand, the paradigm of disjunctive logic programming is still not
expressive enough to give direct representation for some problems in common
sense reasoning. Thus, it would be also desirable that the syntax of disjunctive
programs should be extended to a broader class of logic programs so that the
syntax of this class resembles that of traditional logic programs and the new class
should include disjunctive programs as a subclass. Brass, Dix and Przymusinki
[10] propose a generalization for the syntax of disjunctive programs (called super
logic programs) and the static semantics [30] of super logic programs is discussed.
However, argumentation does not be treated in their work. In fact, as far as we
know, the problem of performing argumentation-based abduction in disjunctive
logic programming is rarely discussed [6].

Abduction is usually defined as inferring the best or most reasonable expla-
nation (or hypothesis) for a given set of facts. Moreover, it is a form of non-
monotonic reasoning, since explanations which are consistent in a given context
may become inconsistent when new information is obtained. In fact, abduc-



Abduction, Argumentation and Bi-Disjunctive Logic Programs 141

tion plays an important role in much of human inference. It is relevant in our
everyday common sense reasoning as well as in many expert problem-solving
tasks. Several efforts have been recently devoted to extending non-disjunctive
logic programming to perform abductive reasoning, such as [15,20,22,37]. Two
key forms of approaches to abduction are consistency-based and argumentation-
based ones. The first kind of approaches exploit a certain logical consistency and
an acceptable hypothesis is specified as the corresponding consistent sets (some
other constraints might also be applied), such as [2,3,11,17,23]; the latter kind
of approaches depend on an attack relation among hypotheses and acceptable
hypotheses are defined through a kind of stability conditions [14,15,36,37]. How-
ever, the approaches to argumentation-based abduction in logic programming
are mainly concentrated on non-disjunctive logic programs and these approaches
can not be directly extended to the class of disjunctive programs.

Since argumentation has applications in areas such as law and practical rea-
soning, it should be investigated and implemented in the setting of disjunc-
tive logic programming. And more, as the results of this paper will show, an
argumentation-theoretic framework can suggest many new semantics for disjunc-
tive programs and can overcome the shortcomings of some major semantics. In
this paper, we mainly concentrate on two problems: (1) The relationship between
argumentation-based abduction and various semantics for disjunctive programs
(the consistency-based abduction has been studied by some authors such as
[3,11,34]; (2) The extension of disjunctive logic programming from both syntax
(allowing disjunction in the bodies of program clauses) and semantics (by argu-
mentation). For this purpose, we first define a moderate extension for the syntax
of disjunctive logic programs (referred to as bi-disjunctive logic programs) by al-
lowing the disjunctions of negative literals to appear in the bodies of program
clauses. We shall see that the class of bi-disjunctive programs is broader than that
of traditional disjunctive programs and can be considered as a subclass of super
logic programs. More importantly, an argumentation-theoretic semantic frame-
work for (bi-)disjunctive logic programs is presented, called the bi-disjunctive
argumentation-theoretic semantics (abbreviated as BDAS), which is a general-
ization of Dung’s preferred scenarios [14,15] and Torres’ non-deterministic well-
founded semantics [36,37]. In fact, this paper is heavily influenced by their work.
Our work also shows that this is a non-trivial generalization. The basic idea of
this paper is to introduce a special resolution for default negation and interpret-
ing the disjunctions of negative literals as abducibles (or, assumptions) rather
than only negative literals as the case of non-disjunctive programs. As a result,
we transform a given bi-disjunctive program P into an argument framework
FP =< P,DB−P ,;P >, where DB−P is the set of all disjunctions of (ground)
negative literals in P , a subset ∆ of DB−P is called a disjunctive hypothesis (or
simply, hypothesis) of P , and ;P is an attack relation among the hypotheses
of P . An admissible hypothesis ∆ is one that can attack every hypothesis which
attacks it. Based on this basic idea, we introduce mainly three subclasses of
admissible hypotheses: preferred disjunctive hypothesis (PDH); complete dis-
junctive hypothesis (CDH); well-founded disjunctive hypothesis (WFDH). Each
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of these subclasses defines an abductive semantics for bi-disjunctive programs
and they are all complete for disjunctive programs, that is, every disjunctive
program has at least one corresponding hypothesis. BDAS can not only handle
the problems of common sense reasoning properly, but many interesting results
are obtained. In particular, we show that BDAS characterizes and extends many
key semantics. For example, our Theorem 6.2 states that WFDH extends both
the well-found semantics for non-disjunctive logic programs [19] and the ex-
tended generalized closed world assumption (EGCWA) [41] (and thus provides
a unifying characterization for these two different semantics by abduction). This
theorem has many implications and it might be one of the most interesting re-
sults in this paper; we will also show that PDH extends the stable models [18]
for (disjunctive) logic programs to the whole class of disjunctive logic programs.
As noted in [15], the skepticism and credulism are two major semantic intuitions
for knowledge representation. A skeptical reasoner does not infer any conclusion
in uncertainty conditions, but a credulous reasoner tries to give conclusions as
much as possible. BDAS integrates these two opposite semantic intuitions and, in
particular, PDH and WFDH characterize credulism and skepticism, respectively.

The rest of this paper is arranged as follows: Section 2 will briefly define some
necessary notions and definitions for disjunctive logic programming; In Section
3 we extends the class of disjunctive programs to bi-disjunctive programs. By in-
troducing a natural attack relation and a special resolution for default negation,
our basic argument framework BDAS is established; In Section 4, three inter-
esting acceptable hypotheses (PDH, CDH, WFDH) for bi-disjunctive programs
are identified and hence they are three declarative semantics for disjunctive logic
programming; Some fundamental properties of BDAS are shown in Section 5;
Section 6 studies the relationship between BDAS and some key approaches for
non-disjunctive/disjunctive programs; Section 7 is our conclusion, in which some
future work is pointed out. The proofs are omitted here and can be found in [39].

2 Basic notions and definitions

In this section, we first introduce some necessary definitions and notions. Since
only Herbrand models of logic programs are mentioned, without loss of gen-
erality, we consider only propositional logic programs, this means that a logic
program is often understood as its ground instantiation.

Throughout the paper we will refer to the following different classes of logic
programs:

A Horn logic program is a set of Horn clauses of the form

a← a1, . . . , am,

where a and ai (i = 1, . . . , m) are atoms and m ≥ 0.
A non-disjunctive logic program is a set of non-disjunctive clauses of the form

a← a1, . . . , as,∼ as+1, . . . ,∼ at,
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where a and ai (i = 1, . . . , t) are atoms and t ≥ s ≥ 0. The symbol ∼ denotes
negation by default, rather than classical negation.

A disjunctive logic program is a set of disjunctive clauses of the form

a1| · · · |ar ← ar+1, . . . , as,∼ as+1, . . . ,∼ at,

where ai (i = 1, . . . , t) are atoms and t ≥ s ≥ r > 0. The symbol | is the
disjunction, sometimes called the epistemic disjunction to distinguish it from
the classical disjunction ∨.

A positive disjunctive logic program is a set of positive disjunctive clauses of
the form

a1| · · · |ar ← ar+1, . . . , as,

where ai (i = 1, . . . , s) are atoms and s ≥ r > 0.
As usual, BP denotes the Herbrand base of disjunctive logic program P , that

is, the set of all (ground) atoms in P . The set DB+
P of all disjuncts of the atoms

in P is called the disjunctive Herbrand base of P ; the set DB−P of all disjuncts
of the negative literals in P is called the negative disjunctive Herbrand base of
P . ⊥ denotes the empty disjuncts.

If S is an expression, then atoms(S) is the set of all atoms appearing in S.
For α, β ∈ DB+

P , if atoms(α) ⊆ atoms(β) then we say α implies β, denoted as
α⇒ β. For example, a|b⇒ a|b|c. If α ∈ DB+

P , then the smallest factor sfac(α) of
α is the disjunction of atoms obtained from α by deleting all repeated occurrence
of atoms in α (if α is not propositional, the definition will not be so simple, see
[24]). For instance, the smallest factor of a|b|a is a|b. For S ⊆ DB+

P , sfac(S) =
{sfac(α) : α ∈ S}. The expansion of α is defined as ‖ α ‖= {β ∈ DB+

P : α⇒ β};
the expansion of S is ‖ S ‖= {β ∈ DB+

P : there exists α ∈ S such that α⇒ β}.
The canonical form of S is defined as can(S) = {α ∈ sfac(S) : there exists no

α′ ∈ sfac(S)such that α′ ⇒ α and α′ 6= α}.
For α ∈ DB−P and S ⊆ DB−P , the notions of sfac(α), sfac(S), ‖ α ‖ and

‖ S ‖ can be defined similarly.
A subset of DB+

P is called a state of the disjunctive logic program P ; a state
pair of P is defined as S =< S+;S− >, where S+ ⊆ DB+

P and S− ⊆ DB−P .
The minimal models and the least model state are two important declara-

tive semantics for positive disjunctive programs, both of which extend the least
model theory of Horn logic programs. The minimal model semantics captures the
disjunctive consequences from a positive disjunctive program as a set of models.
The least model state captures the disjunctive consequences as a set of disjuncts
of atoms and leads to a unique ‘model’ characterization.

Let P be a positive disjunctive program, then the least model state of P is
defined as

ms(P ) = {α ∈ DB+
P : P ` α},

where ` is the inference of the first-order logic and P is considered as the corre-
sponding first-order formulas. For example, the corresponding first-order formu-
lae of disjuncts a1| · · · |am and∼ a1| · · · | ∼ am are a1∨· · ·∨am and ¬a1∨· · ·∨¬am,
respectively.
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The least model state ms(P ) of a positive disjunctive P can be characterized
by the operator TSP : 2DB

+
P → 2DB

+
P : for any J ⊆ DB+

P ,
TSP (J) = {α ∈ DB+

P : there exists a disjunctive clause α′ ← a1, . . . , an in P
and ai|αi ∈ J, i = 1, . . . , n, such that α′′ = α′|α1| · · · |αn, where α1, . . . , αn ∈
DB+

P ∪ {⊥}, and α = sfac(α′′)}.
Minker and Rajasekar [27] have shown that TSP has the least fixpoint lfp(TSP )

= TSP ↑ ω, and the following result:

Theorem 2.1. Let P be a positive disjunctive program, then ms(P ) =‖ TSP ↑
ω ‖, and ms(P ) has the same set of minimal models as P .

3 Argumentation in Bi-disjunctive Logic Programs

As noted in the introduction, we know that some disjunctive information should
be given a more direct and more convenient representation than with only tra-
ditional disjunctive programs (this will be further explained later). Another mo-
tivation of extending the syntax of disjunctive programs is that, when we set
to study the relationship between argumentation (abduction) and disjunctive
logic programming, we found that our argumentation-theoretic framework for
disjunctive programs seems more natural in the case of bi-disjunctive logic pro-
grams. Now, we first introduce the class of bi-disjunctive logic programs and
then the basic argumentation-theoretic framework for bi-disjunctive programs is
established.

Definition 3.1. A bi-disjunctive clause C is a rule of the form

a1| · · · |ar ← ar+1, . . . , as, βs+1, . . . , βt,

where ai (i = 1, . . . , s) are atoms, βj (j = s+ 1, . . . , t) are disjuncts of negative
literals, and t ≥ s ≥ r > 0, where | is the epistemic disjunction and ∼ is default
negation.

A bi-disjunctive logic program P is defined as a set of bi-disjunctive clauses.

For example, the following program is a bi-disjunctive program:

a|b←
e|c← d,∼ a| ∼ b
d← ∼ e

We consider another example.

Example 3.1 Suppose that we have a knowledge base consisting of the fol-
lowing four rules (a variant of an example in [10]):

R1 Mike is able to visit London or Paris
R2 If Mike is able to visit London, he will be happy
R3 If Mike is able to visit Paris, he will be happy
R4 If Mike is not able to visit both London and Paris, he will be prudent
It is easy to see that the knowledge base can be easily expressed as the

following bi-disjunctive logic program:
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r1 : V isit − London|V isit − Paris←
r2 : Happy ← V isit − London
r3 : Happy ← V isit − Paris
r4 : Prudent← ∼ V isitLondon| ∼ V isitParis

Notice that the rule R4 possesses a more direct transformation with bi-
disjunctive logic programs than with traditional disjunctive programs.

We again stress the difference between the epistemic disjunction | and the
classical disjunction ∨. For example, a ∨ ¬a is a tautology but the truth of
the disjunction a| ∼ a is unknown in the disjunctive program P = {a|b ←}
since both of them may be unknown. In particular, the intended meaning of a
disjunction β =∼ b1| · · · | ∼ bn of negative literals is similar to the default atom
∼ (b1 ∧ · · · ∧ bn) in super logic programs [10]. That is, β means that b1, . . . , and
bn can not be proved at the same time. Therefore, bi-disjunctive programs can
be regarded as a subclass of super programs.

It is obvious that the following inclusions hold:
Super Logic Programs ⊃ Bi-Disjunctive Programs ⊃ Disjunctive Programs ⊃

Non-disjunctive Programs
Notice that we can also allow positive disjunctions to appear in the bodies of

bi-disjunctive clauses as well as negative disjunctions. The semantic framework
in this paper can be similarly defined for such bi-disjunctive programs by only
trivially generalizing the notion of the least model state [25]. For simplicity, we
will not make such a generalization here.

In general, argumentation-based abduction is based on argument frameworks
defined as triples F =< K,H,; >, where K is a first order theory representing
the given knowledge, H is a set of first order formulae representing the possible
hypotheses, and ; is an attack relation among the hypotheses.

Given a bi-disjunctive program P , an assumption of P is an element of DB−P ;
a hypothesis of P is defined a subset ∆ of DB−P such that ∆ is expansion-
closed: ‖ ∆ ‖= ∆. In this paper, we will consider a bi-disjunctive program P
as an argument framework FP =< P,H(P ),;P>, where H(P ) is the set of all
hypotheses of P , and;P is a binary relation on H(P ), called the attack relation
of FP (or P ).

To define the attack relation of FP , similar to GL-transformation [18], we
first introduce a generalized GL-transformation for the class of bi-disjunctive
programs, by which a positive disjunctive program P+

∆ is obtained from any
given bi-disjunctive program P with a (disjunctive) hypothesis ∆ of P .

Definition 3.2. Let ∆ be a hypothesis of a bi-disjunctive program P , then
(1) For each bi-disjunctive clause C in P , delete all the disjuncts of negative

literals in the body of C that belong to ∆. The resulting bi-disjunctive program
is denoted as P∆;

(2) The positive disjunctive program consisting of all the positive disjunctive
clauses of P∆ is denoted as P+

∆ , and is called the generalized GL-transformation
of P .
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Example 3.2. Let P be the following bi-disjunctive program:

a|b←
e|c← d,∼ a| ∼ b
d← ∼ e

If ∆1 =‖∼ a| ∼ b ‖, then P∆1 = {a|b ←; e|c ← d; d ←∼ e}, and P+
∆1

=
{a|b ←; e|c ← d}. If ∆2 =‖∼ a| ∼ b,∼ e ‖, then P+

∆2
= P∆2 = {a|b ←; e|c ←

d; d←}.
Based on the above transformation, we can define a special resolution `P for

default-negation, which can be intuitively illustrated as the following principle:

If there is an agent who
(1) holds the assumptions ∼ b1, . . . ,∼ bm;and
(2) can ‘derive’ b1| . . . |bm|bm+1| . . . |bn from the knowledge base P with

these assumptions.
Then the disjunctive information bm+1| . . . |bn is obtained.

The following definition precisely formulates this principle with bi-disjunctive
programs.

Definition 3.3. Let ∆ be a (disjunctive) hypothesis of a bi-disjunctive pro-
gram P , α ∈ DB+

P and ∼ b1, . . . ,∼ bm ∈ ∆ such that the following two condi-
tions are satisfied:

(1) β = α|b1| · · · |bm; and
(2) β ∈ can(ms(P+

∆ )).
Then we call ∆ is a supporting hypothesis for α, denoted as ∆`Pα.

The condition (2) above means that β is a logical consequence of P+
∆ with

respect to the least model state. The set of all disjuncts of positive literals that
are supported by ∆ is denoted as VP (∆). That is,

VP (∆) = {α ∈ DB+
P : ∆`Pα}.

In Example 3.2, VP (∆1) =‖ a|b ‖, VP (∆2) =‖ a|b, c, d ‖.
Definition 3.4. Let ∆ be a hypothesis of P , then S∆ =<‖ VP (∆) ‖;∆ > is
called a supported state pair of P .

Though each hypothesis ∆ corresponds to a state pair of P , not every state
pair represent the intended meaning of P . For example P = {a|b←∼ a,∼ b}. If
∆ =‖∼ a,∼ b ‖, then VP (∆) = {a|b} and thus S∆ =<‖ a|b ‖; ‖∼ a,∼ b ‖>. It
is obvious that S∆ does not represent the correct meaning of P . This is similar
to the problem caused by the closed world assumption (CWA) which is first
observed by Minker [25].

To derive suitable hypotheses for a given bi-disjunctive program, some con-
straints will be required, which can be realized though the following definition.

Definition 3.5. Let ∆ and ∆′ be two hypotheses of a bi-disjunctive program
P . If at least one of the following conditions holds:
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(1) There exists β =∼ b1| · · · | ∼ bm ∈ ∆′ , m > 0, such that ∆`P bi, i = 1, . . . , m;
or
(2) There exist ∼ b1, . . . ,∼ bm ∈ ∆′, m > 0, such that ∆`P b1| · · · |bm.
Then we say ∆ attacks ∆′, and denoted as ∆;P ∆

′.

Intuitively, ∆;P ∆
′ means that ∆ causes the direct contradiction with ∆′,

which may come from any one of the above two cases.

Example 3.3. Let P be the bi-disjunctive program of Example 3.2. Take
∆ =‖∼ a| ∼ b,∼ e ‖, ∆′ =‖∼ c| ∼ d ‖. Since VP (∆) = {a|b, c, d}, that is,
∆`P c, d thus ∆;P ∆

′, but not ∆′;P ∆.

This example shows that the relation ;P is not symmetric. Otherwise, the
attack relation would have no much use.

In the remaining of this subsection, we seek to define suitable constraints on
(disjunctive) hypotheses by using the above fundamental definition (Definition
3.5).

Consider again the logic program P = {a|b←∼ a| ∼ b} and ∆ =‖∼ a| ∼ b ‖,
it is not hard to see that ∆;P ∆, this means that ∆ attacks itself.

Firstly, a plausible hypothesis should not attack itself.

Definition 3.6. A hypothesis ∆ of a bi-disjunctive program P is self-consistent
if ∆ 6;P∆.

The empty hypothesis ∅ is always self-consistent, called trivial hypothesis.
The above example shows that there exist non-trivial hypotheses that are not
self-consistent.

The following easy corollary will be often used in proofs of some results in
subsequent sections.

Corollary 3.1. A hypothesis ∆ of P is not self-consistent if and only if there
exists ∼ b1| · · · | ∼ bn ∈ ∆ such that ∆`P bi, i = 1, . . . , n.

Definition 3.7. For any self-consistent hypothesis ∆ of a bi-disjunctive program
P , the corresponding state pair S∆ is called a self-consistent state pair of P .

By Definition 3.3 and 3.5, it is not hard to see that the self-consistency of a
hypothesis guarantees that there exists no direct contradiction within the corre-
sponding state pair of this hypothesis. That is, given a self-consistent hypothesis
∆ of P , neither of the following two conditions hold for the state S of ∆:

(1) there exist a1, . . . , ar ∈ S+, such that ∼ a1| · · · | ∼ ar ∈ S−; or
(2) there exists a1| · · · |ar ∈ S+, such that ∼ a1, . . . ,∼ ar ∈ S−.

Definition 3.8. A state pair S =< S+;S− > is consistent if the set of the
corresponding first-order formulas of S+ ∪ S− is consistent.

A self-consistent state pair is not necessarily consistent though there is no
direct contradiction within it.



148 Kewen Wang and Huowang Chen

Example 3.4. Let P be the following disjunctive program:

a|b←
b|c ←
c|a←

Take ∆ =‖∼ a| ∼ b,∼ b| ∼ c,∼ c| ∼ a ‖, then ∆ is a self-consistent hypothesis.
However, VP (∆) = {a|b, b|c, c|a} and ‖ VP (∆) ‖ ∪∆ being considered as a set of
first-order formulas is not consistent, thus the state pair S∆ =<‖ VP (∆) ‖;∆ >
is not consistent.

In particular, in many cases, self-consistency of state pairs can still not pro-
vide suitable constraints for abductive semantics of bi-disjunctive programs. For
example, the disjunctive program P consisting of

Sleeping|ListeningFootballGameByRadio ← ∼ ElectricitySupplied
PossessGoodTV ←

This disjunctive program has two self-consistent hypotheses ∆1 =‖∼ Electricity
Supplied ‖> and ∆2 =‖∼ Sleeping,∼ ListeningFootballGameByRadio, ‖. But
it is widely accepted that ∆1 rather than ∆2 is the acceptable hypothesis of P .

How can we determine the self-consistent hypotheses of P that capture the
intended semantics. In other words, we must specify when a hypothesis of P is
acceptable. To accomplish this task, we need to exploit an intuitive and useful
principle in argument reasoning: If one hypothesis can attack each hypothesis that
attacks it, then this hypothesis is acceptable . Ref.[16] illustrates this principle by
some examples and study its application in non-disjunctive logic programming.

Now, we formulate this principle in the setting of bi-disjunctive logic pro-
gramming, which can really provide a suitable criteria for specifying acceptable
hypotheses for bi-disjunctive programs and forms the basis of our argumentation-
theoretic framework for disjunctive logic programming.

For short, if β =∼ b1| · · · | ∼ bm ∈ DB−P , and ∆′ is a hypothesis such that
∆′ `P bi, for any i = 1, . . . , m, then we say ∆′ denies β .

Definition 3.9. Let ∆ be a hypothesis of a bi-disjunctive program P , an
assumption β of P is admissible with respect to ∆ if ∆;P∆

′ holds for any
hypothesis ∆′ of P such that ∆′ denies β. Write AP (∆) = {β ∈ DB−P :
β is admissible wrt. ∆}.

Consider the bi-disjunctive program in Example 3.2 and the hypothesis ∆1 of
P . It is easy to see that ∼ a| ∼ b is admissible, since any hypothesis ∆′ of P that
denies ∼ a| ∼ b must contain the hypothesis ‖∼ a,∼ b ‖ but ∆1 ;P‖∼ a,∼ b ‖.

AP has the following two properties, which are fundamental to the main
results in this paper:

Corollary 3.2. If ∆ and ∆′ are two hypotheses of disjunctive program P ,
then

(1) ‖ AP (∆) ‖= AP (∆), that is, AP (∆) is a hypothesis of P ;
(2) If ∆ ⊆ ∆′, then AP (∆) ⊆ AP (∆′). This means that AP is a monotonic

operator.
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Intuitively, an acceptable hypothesis should be such one whose assumptions
are all admissible with respect to it. Thus the following definition is in order.

Definition 3.10. A hypothesis ∆ of a bi-disjunctive program P is said to be
admissible if ∆ is self-consistent and ∆ ⊆ AP (∆). An admissible (disjunctive)
hypothesis of P will be abbreviated as ADH.

An intuitive and equivalent definition for admissible hypotheses will be shown
in Section 5 (Theorem 5.1). Before giving examples, we first show a simple
lemma.

Lemma 3.1. Let ∆ be a hypothesis of a disjunctive program P . If an as-
sumption β =∼ b1| · · · | ∼ br of P is admissible with respect to ∆, then β′ =∼
b1| · · · | ∼ br| ∼ br+1| · · · | ∼ bn is also admissible with respect to ∆ for any atoms
br+1, . . . , bn in P and r ≤ n.

This lemma is useful when we want to show that a hypothesis of a disjunctive
program is admissible: To show that a hypothesis ∆ =‖ β1, . . . , βn ‖ is admissi-
ble, it suffices to show that all assumptions βi (i = 1, . . . , n) (the representatives
of ∆) are admissible with respect to ∆.

Example 3.5. Consider the following disjunctive program P :

a← ∼ a
b ←

P has five possible hypotheses:∆0 = ∅, ∆1 =‖∼ a ‖, ∆2 =‖∼ b ‖, ∆3 =‖∼ a| ∼
b ‖, ∆4 =‖∼ a,∼ b ‖, among which ∆1, ∆2 and ∆4 are not self-consistent. Since
∆1;P∆3 but ∆3 6;P∆1, ∆3 is not an ADH of P , thus P has only one ADH
∆0 = ∅ and the corresponding state pair S∆0 =<‖ b ‖; ∅ >.

Example 3.6. The disjunctive program P = {a|b←∼ a} also has five possible
hypotheses as the program in Example 3.5. For ∆1 =‖∼ a ‖, the assumption ∼ a
is admissible with respect to ∆1, since ∆4 =‖∼ a,∼ b ‖ is the only hypothesis
that can attack ∆1 and ∆1 ;P ∆4.

Now we have established the basic argumentation-theoretic framework BDAS
for bi-disjunctive logic programs, in which various semantics for performing
argumentation-based abduction with bi-disjunctive programs can be defined.
Each semantics in our framework will be specified as a subclass of admissible
hypotheses (equivalently, admissible state pairs).

4 Some Important Classes of Hypotheses for
Bi-disjunctive Programs

As mentioned in Section 1, a suitable semantic framework rather than a single
semantics should be defined, in which most of the existing key semantics could be
embedded and their shortcomings could be overcome. As well as investigating
the inherent relationship between argumentation (abduction) and disjunctive
logic programming, we shall attempts to show that our abductive framework
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defined in section 2 can provide a (at least potentially) suitable framework, in
a certain extent, for disjunctive logic programming by defining some abductive
semantics and relating to some important semantics, such as the well-founded
model, minimal models, stable models and EGCWA.

Definition 4.1. Let ∆ be a hypothesis of a bi-disjunctive program P :

(1) A preferred disjunctive hypothesis (PDH) ∆ of P is defined as a maximal
ADH of P with respect to set inclusion;

(2) If ∆ is self-consistent and ∆ = AP (∆), then ∆ is called a complete disjunc-
tive hypothesis (CDH) of P ;

(3) If the hypothesis AP ↑ ω is self-consistent, then it is called the well-founded
disjunctive hypothesis of P , denoted as WFDH(P ).

If ∆ is an ADH (res. PDH, CDH, WFDH), then the corresponding state pair
S∆ is called an ADS (res. PDS, CDS, WFDS) of P .

Definition 4.2. The ADH (res. PDH, CDH, WFDH) semantics for a bi-
disjunctive program P is defined as the class of its all ADS (res. PDS, CDS,
WFDS).

It follows easily from the above definition that a CDH must be an ADH; In
Section 5 we will show that a PDH is a CDH. However, the converses do not
hold.

Example 4.1. P consists of only one program clause: a|b ←. Take ∆0 = ∅,
then AP (∆0) =‖∼ a| ∼ b ‖. Hence ∆0 is an ADH of P but not a CDH. If
∆1 =‖∼ a| ∼ b ‖, then AP (∆1) = ∆1 and thus ∆1 is a CDH of P but not a
PDH, since ∆2 =‖∼ a ‖ is an ADH of P and ∆1 ⊂ ∆2.

Since ∅ is always an admissible hypothesis, each bi-disjunctive program has
at least one PDH.

Theorem 4.1. The semantics ADH is complete for the class of bi-disjunctive
programs. That is, each bi-disjunctive program has at least one PDH.

The completeness of CDH and WFDH will be delayed to Section 5. In the
remaining of this section, by some examples, we will show the difference of BDAS
from other semantics and illustrate behaviors of our argumentation-theoretic
semantic framework BDAS in knowledge representation.

Example 4.2. Let P be the following disjunctive program:

a|b←
a←

Most of semantics for disjunctive programs assign the truth of b to false with
respect the above program (credulous reasoning), , except the possible model
semantics [33] and the WGCWA [31](skeptical reasoning). In BDAS, P has three
admissible hypotheses ∆1 = ∅, ∆2 =‖∼ a| ∼ b ‖ and ∆3 =‖∼ b ‖. In particular,
the WFDS of P is S1 =<‖ a ‖; ∅ > and the PDH is <‖ a ‖; ‖∼ b ‖>. Thus,
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∼ b is unknown with respect to WFDH but is true with respect to PDH , and
this implies that both the skeptical and credulous reasoning of P can all be
represented in BDAS.

Example 4.3. Let P be the program :

a← ∼ a
b ←

We know from Example 3.5 that P has only one ADH ∆0 = ∅ and the corre-
sponding state pair S∆0 =<‖ b ‖; ∅ >. This conclusion coincides our intuition
on P , that is, P provides no information about a for us and thus, from P , we
can infer neither a nor ∼ a, but can infer b. This example shows that BDAS
can handle the inconsistency of disjunctive programs properly. Notice that the
Clark completion of P is not consistent and P has no stable model.

5 Characterizations of BDAS

As the basis for further investigation, this section is devoted to study some fun-
damental properties of BDAS. First, we give an intuitive and equivalent charac-
terization of admissible hypotheses, which will be often used as an alternative
definition for Definition 3.10.

Theorem 5.1. Let ∆ be a self-consistent hypothesis of a bi-disjunctive program
P . Then ∆ is an ADH of P if and only if ∆;P∆

′ for any hypothesis ∆′ of P
satisfying ∆′;P∆.

This theorem shows that an ADH is such a hypothesis that can attack any
hypothesis that attacks it.

In the following we will characterize ADHs in another way.

Definition 5.1. Let ∆ and ∆′ be two ADHs of a bi-disjunctive program P .
If ∆ ⊆ ∆′, then ∆′ is called an admissible extension of ∆. In particular, ∆′ is
called a non-trivial admissible extension of ∆ if ∆ 6= ∆′.

Definition 5.2.
Let ∆ be an ADH of a bi-disjunctive program P . If ∆′ satisfies the following

two conditions:
(1) ∆∪∆′ is self-consistent; and
(2) ∆′ ⊆ AP (∆ ∪∆′).

Then ∆′ is called a plausible hypothesis with respect to ∆.

The following three corollaries can be easily obtained by Definition 5.1 and
Definition 5.2.

Corollary 5.1. If ∆′ is a plausible hypothesis wrt an ADH ∆, then ∆∪∆′ is
an ADH.

Corollary 5.2. ∆′ is an admissible extension of ∆ if and only if ∆ ⊆ ∆′ and
∆′ \∆ is plausible with respect to ∆.
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Corollary 5.3. For any bi-disjunctive program P , the following statements
are equivalent:

(1) ∆ is an ADH of P ;
(2) ∆ is an admissible extension of the empty hypothesis ∅;
(3) ∆ is plausible with respect to ∅.

Definition 5.3. An admissible sequence of a bi-disjunctive program P is a
sequence ∆1, ∆2, . . . , ∆n, . . . of ADHs of P such that ∆n ⊆ ∆n+1 for any n > 0.

The following proposition states that the sequences of bi-disjunctive program
P possess the property of completeness.

Proposition 5.1. For any admissible sequence ∆1, ∆2, . . . , ∆n, . . . of a bi-
disjunc- tive program P , the hypothesis ∆ = ∪∞n=1∆n is an ADH of P .

In particular, we have the following result:

Corollary 5.4. Every ADH of a bi-disjunctive program P is contained in a
PDH.

The following proposition is fundamental and our many results in BDAS for
disjunctive programs will be based on it.

Proposition 5.2. For any ADH ∆ of a disjunctive program P , if α ∈ DB−P
is admissible wrt. ∆, that is, α ∈ AP (∆), then ∆′ =‖ ∆∪{α} ‖ is also an ADH
of P .

This result guarantees that, for any ADH ∆ of a disjunctive program P , if
α is admissible wrt. ∆ and α 6∈ ∆ then we can obtain a non-trivial admissible
extension of ∆ by simply adding α to ∆.

As a direct corollary of Theorem 5.1, it is not hard to see that a PDH of a
disjunctive program must be a CDH.

Proposition 5.3. If ∆ is a PDH of a disjunctive program P , then ∆ is also
a CDH of P .

Corollary 5.5. Each disjunctive program has at least one CDH. That is, se-
mantics CDH is complete for the class of all disjunctive programs.

In the rest of this section, we will show the existence and completeness of
WFDH. P will be a disjunctive program if it is not stated explicitly. H(P ) is
the set of all disjunctive hypotheses of P and it can be easily verified that the
partial order set (H(P ),⊆) is a complete lattice. From Definition 3.9, AP can
be considered as an operator on H(P ), called the admissible operator of P , and
we will show that AP is continuous.

Lemma 5.1. For any disjunctive program P , its admissible operator AP :
H(P ) → H(P ) is continuous. That is, for any directed subset D of H(P ), the
following holds:

AP (∪{∆ : ∆ ∈ D}) = ∪{AP (∆) : ∆ ∈ D}.
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Remark: A subset D of a complete lattice is directed if every finite subset of
D has an upper bound in D.

It follows from Lemma 5.1 and Tarski’s theorem [35] that AP has the least
fixpoint lfp(AP ) and lfp(AP ) = AP ↑ ω, that is, the closure cardinal of AP is
ω. Therefore, the following theorem is obtained.

Theorem 5.2. Every disjunctive program P possesses the unique well-founded
disjunctive hypothesis (WFDH).

From Theorem 4.1, Corollary 5.5 and Theorem 5.2, it follows that the three
semantics PDH, CDH and WFDH are all complete for disjunctive programs.

6 Relationship between BDAS and Some Other
Approaches

In this section we investigate the relationship between BDAS and some other
semantics for (disjunctive) logic programs. The main results of this section can
be summarized as the following:

(1) PDH coincides with the stable semantics for an extensive subclass of
disjunctive programs.

(2) WFDH for non-disjunctive programs coincides with the well-founded se-
mantics.

(3) In particular, we show that the WFDH provides a quite new characteri-
zation of EGCWA [41] by argumentation (abduction).

Thus, WFDH integrates and extends both the well-founded semantics for
non-disjunctive logic programs and EGCWA for positive disjunctive programs.
As a result, EGCWA can be used to implement argumentative reasoning in
deductive databases.

6.1 BDAS for Non-disjunctive Programs

As a special case, we consider the BDAS of non-disjunctive logic programs. In
this subsection, P will be a non-disjunctive program. Let ∆ be a (disjunctive)
hypothesis of P , that is, ∆ ⊆ DB−P , and L(∆) denotes the set of all negative
literals in ∆.

Definition 6.1. A hypothesis ∆ of P is a non-disjunctive hypothesis of P if
L(∆) = can(∆). That is, the set of representatives of a non-disjunctive hypoth-
esis consists of only negative literals.

It follows from Definition 3.3 that, for any non-disjunctive program P and
a ∈ BP ,

∆`P a iff a ∈Min(P+
∆ ) iff a ∈Min(P+

L(∆)).

Corollary 6.1. If ∆ is a CDH of non-disjunctive program P , then L(∆) =
can(∆), that is, the CDHs of a non-disjunctive program are non-disjunctive.
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It follows from Corollary 6.1 and the result in Ref.[21,22] that, for any non-
disjunctive program P , we will get the equivalent definition of Definition 3.5
if the basic inference ∆`P a is replaced by P ∪ ∆ ` a. This means that our
CDH and Dung’s complete extension are equivalent concepts for the class of
non-disjunctive programs.

Theorem 6.1. If ∆ is a non-disjunctive hypothesis of non-disjunctive program
P , then the following two statements are equivalent:

(1) ∆ is a CDH of P ;
(2) P ∪ L(∆) is a complete extension.

This theorem shows that BDAS generalizes the frameworks of Dung [15] and
Torres [37].

6.2 BDAS for Positive Disjunctive Programs

In this subsection we investigate the relationship between BDAS and some se-
mantics for positive disjunctive programs (without negation in the bodies of
program clauses). In particular, we show that the well-founded disjunctive hy-
potheses (WFDHs) provide a quite new characterization of EGCWA by argu-
mentation (abduction). As a result, WFDH integrates and extends both the
well-founded semantics for non-disjunctive logic programs and EGCWA for pos-
itive disjunctive programs.

If we do not state explicitly, P will denote a positive disjunctive program in
this subsection.

Proposition 6.1. If ms(P ) is the least model state of a positive disjunc-
tive program P , then the state pair corresponding to the ADH ∅ is S∅ =<
ms(P ); ∅ >.

This result shows that the ADH ∅ characterizes the least model state for
positive disjunctive programs.

Proposition 6.2. Let ∆ be a hypothesis of a positive disjunctive program P :
(1) If ∆ is a PDH of P and ∆ is consistent (i. e. the first-order formulas VP (∆)∪
∆ is consistent), then I∆ = BP \ {a ∈ BP | ∼ a ∈ ∆} is a minimal model of P ;
(2) If I is a minimal model of P then ∆ =‖∼ Ī ‖ is a PDH of P , where Ī = BP \I
and ∼ Ī = {∼ a| a ∈ Ī}.

We believe that the condition ‘∆ is consistent ’is unnecessary. Moreover, we
guess that the ADHs (including the PDHs, CDHs, and WFDHs) are all consistent
but we have not found such a precise proof at present.

For any positive disjunctive program P , its WFDH does not only exist, but
also can be obtained by one step iteration of AP from ∅.
Proposition 6.3. Let P be a positive disjunctive program, then the closure
ordinal of AP is 1, that is, the (unique) WFDH of P is AP (∅).
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To characterize EGCWA in BDAS, we first give the model-theoretic definition
of EGCWA [41].

Definition 6.2. Let P be a positive disjunctive program, then

EGCWA(P ) = {β ∈ DB−P : P |=min β}

The following theorem shows that EGCWA coincides with WFDH for the
class of positive disjunctive programs.

Theorem 6.2.(Characterization of EGCWA by Argumentation) For positive
disjunctive program P , EGCWA(P ) = WFDH(P ).

As noted before, this theorem may be the most interesting result in this paper
in that it is not only quite intuitive but also useful in performing argumentation
(abduction) in deductive databases by exploiting EGCWA.

The following corollaries are directly obtained from Theorem 6.2 and the
results in Ref.[24,41].

Corollary 6.2. For any positive disjunctive program P , its WFDH is consis-
tent.

The generalized closed world assumption (GCWA) can also be characterized
by WFDH.

Corollary 6.3. GCWA(P ) = L(WFDH(P )) = {∼ a : ∼ a ∈WFDH(P )}.
Corollary 6.4. M is a minimal model of P if and only if M is a minimal
model of P ∪WFDH(P ).

6.3 The Relationship Between PDH and the Disjunctive Stable
Semantics

Both the disjunctive stable semantics and our PDH represents credulous rea-
soning in disjunctive logic programming but the former is not complete. In this
section we will study PDH and its relation to the disjunctive stable semantics.
To this end, we first define a program transformation Lft [38,40] for disjunctive
logic programs (called the least fixpoint transformation) and then, an extensive
class of disjunctive programs, called the strongly stable disjunctive programs, are
introduced, for which we show that PDHs and stable models have a one-to-one
correspondence. Hence the abductive semantics PDH is not only complete but
can also be considered as a natural and complete extension of the disjunctive
stable semantics. Moreover, Lft also provides an optimization technique for the
computation of various semantics in BDAS (including many semantics that can
be embedded in BDAS).

The program transformation Lft is based on the idea of Dung and Kanchan-
sut [13] and Bry [12]. It is also independently defined by Brass and Dix [8,7]. To
define Lft for disjunctive programs, we first extend the notion of the Herbrand
base BP to the generalized disjunctive base GDBP of a disjunctive logic program
P .
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GDBP is defined as the set of all negative disjunctive programs whose atoms
are in BP :

GDBP = {a1| · · · |ar ←∼ b1, . . . ,∼ bs : ai, bj ∈ BP , i = 1, . . . , r; j = 1, . . . , s}

and ← the empty clause.
Thus, we can introduce an immediate consequence operator TGP for general

disjunctive program P , which is similar to the immediate consequence operator
TSP ′ for positive program P ′. The operator TGP will provide a basis for defining
our program transformation Lft.

Definition 6.3. For any disjunctive program P , the generalized consequence
operator TGP : 2GDBP → 2GDBP is defined as, for any J ⊆ GDBP ,

TGP (J) = {C ∈ GDBP : There exist a disjunctive clause α′ ← b1, . . . , bm,∼ bm+1

, . . . ,∼ bs and C1, . . . , Cm ∈ GDBP ∪{←} such that(1) bi|head(Ci)← body(Ci)

is in J, for all i = 1, . . . , m; (2) C is the clause can(α′|head(C1)| · · · |head(Cm))

← body(C1), . . . , body(Cm),∼ bm+1, . . . ,∼ bs}.

This definition looks a little tedious at first sight. In fact, its intuition is quite
simple and it defines the following form of resolution:

α′ ← b1, . . . , bm, β1, . . . , βs; b1|α1← β11, . . . , β1t1; · · · ; bm|αm← βm1, . . . , βmtm
α′|α1| · · · |αm← β11, . . . , β1t1 , · · · , βm1, . . . , βmtm , β1, . . . , βs

where αs with subscripts are positive disjunctive literals and βs with subscripts
are negative disjunctive literals.

Example 6.1. Suppose that P = {a1|a2 ← a3,∼ a4; a3|a5 ←∼ a6} and
J = TGP (∅). Then TGP (∅) = {a3|a5 ←∼ a6}; If J ′ = TGP (TGP (∅)). Then TGP (J ′) =
TGP (TGP (∅)) = {a3|a5 ←∼ a6; a1|a2|a5←∼ a4,∼ a6}.

Notice that TGP is a generalization of TSP if a disjunctive program clause
a1| · · · |an← is treated as the disjunct a1| · · · |an. The following proposition shows
that TGP possesses the least fixpoint.

Lemma 6.1. For any disjunctive program P , its generalized consequence op-
erator TGP is continuous and hence possesses the least fixpoint TGP ↑ ω.

It is obvious that the least fixpoint of TGP does not only exist but also is
computable. Since TGP ↑ ω is a negative disjunctive program, TGP results in a
computable program transformation which will be defined in the next definition.

Definition 6.4. Denote TGP ↑ ω as Lft(P ), then Lft : P → Lft(P ) defines a
transformation from the set of all disjunctive programs to the set of all negative
disjunctive programs, and we say that Lft(P ) is the least fixpoint transformation
of P .
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The following lemma asserts that Lft(P ) has the same least model-state as
P and it is fundamental to prove some invariance properties of Lft under various
semantics for disjunctive programs.

Lemma 6.2 For any hypothesis ∆ of disjunctive program P , (Lft(P )+
∆) pos-

sesses the same least model-state as P+
∆ :

ms(Lft(P )+
∆) = ms(P+

∆ ).

Firstly, we show that the program transformation Lft(P ) preserves our ab-
ductive semantics.

Theorem 6.3. For any disjunctive program P , P is equivalent to its least
fixpoint transformation Lft(P ) with respect to BDAS. As a result, Lft(P ) has
the same ADH (res. CDH, PDH) as P .

The following proposition, which is also independently given by Brass and
Dix in [7], shows that the least fixpoint transformation also preserves the (dis-
junctive) stable models.

For any disjunctive program P , and M ⊆ BP . Set

P/M = {a1| · · · |ar ← ar+1, . . . , as : there exists a clause of P : a1| · · · |ar ←

ar+1, . . . , as,∼ as+1, . . . ,∼ at such that as+1, . . . , at 6∈M}.

If M is a minimal model of P/M , then it is a (disjunctive) stable model of P .
The disjunctive stable semantics of P is defined as the set of its all disjunctive
table models.

Proposition 6.4. For any disjunctive program P , P is equivalent to its least
fixpoint transformation Lft(P ) with respect to the stable semantics. That is, P
has the same set of the stable models as Lft(P ).

Let ∆ be a hypothesis of disjunctive program P , P ∗∆ is defined as the dis-
junctive program obtained by the following transformations:

1. For any clause C in P , if a ∈ head(C) and ∼ a ∈ ∆, then delete a from
the head of C; if ∼ b ∈ body(C) and ∼ b ∈ ∆ , then delete ∼ b from the body of
C;

2. From the program obtained by the step 1, delete all the clauses that have
empty heads;

3. For any a ∈ BP such that all the clauses containing a or ∼ a have been
deleted by the above two steps, add a new clause a← a.

Notice that the step 3 is technical, which is to keep P ∗∆ has the same Herbrand
base as P . But the step 2 is necessary and it can guarantees that P ∗∆ has a stable
model if P has at least one. For example, if P = {a|b← c} and ∆ =‖∼ a,∼ b ‖,
then P will be transformed to the program {← c}, which has no stable model.

Definition 6.5. A disjunctive program P is strongly stable if, for any ∆ ∈
H(P ), P ∗∆ possesses at least one stable model.
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It is obvious that positive disjunctive programs are strongly stable. More
generally, the class of (local) stratified disjunctive programs are strongly stable.
Thus, the class of strongly stable disjunctive programs is extensive enough.

The main theorem of this subsection can be stated as follows.

Theorem 6.4. Suppose that disjunctive program P is strongly stable and its
all PDHs are consistent:

1. If ∆ is a PDH of P , then I∆ = {a ∈ BP : ∼ a 6∈ ∆} is a stable model of
P .

2. If M is a stable model of P , then ∆M =‖ {∼ a : a ∈ BP \M} ‖ is a PDH
of P .

As mentioned before, we believe that the condition ‘the PDHs of P are con-
sistent’ is unnecessary.

This theorem establishes a one-one correspondence between the PDHs and
the stable models for any strongly stable programs. Therefore, PDH extends
the stable semantics to the whole class of disjunctive programs. Moreover, this
result reveals the relationship between credulous argumentation and the stable
semantics for disjunctive logic programming.

Corollary 6.5. Any (local) stratified disjunctive program P has the unique
PDH.

6.4 Relations to Some Other Approaches

Becides the semantics discussed in the previous subsections of Section 6, there
have been proposed some other interesting approaches of defining semantics for
disjunctive logic programs, such as the static semantics [30], the D-WFS [7,9].
In this subsection we will compare our BDAS to these semantics.

Example 6.2. Consider disjunctive program P :

a|b←
c← ∼ a
c← ∼ b

We need to consider only the following seven assumptions of P :

∼ a,∼ b,∼ c,∼ a| ∼ b,∼ b| ∼ c,∼ c| ∼ a, ,∼ a| ∼ b| ∼ c.
The possible hypotheses of P has 19:

∆0 = ∅, ∆1 =‖∼ a ‖,
∆2 =‖∼ b ‖, ∆3 =‖∼ c ‖,
∆4 =‖∼ a| ∼ b ‖, ∆5 =‖∼ b| ∼ c ‖,
∆6 =‖∼ a| ∼ c ‖, ∆7 =‖∼ a| ∼ b| ∼ c ‖,
∆8 =‖∼ a,∼ b ‖, ∆9 =‖∼ a,∼ c ‖,
∆10 =‖∼ b,∼ c ‖, ∆11 =‖∼ a,∼ b| ∼ c ‖,
∆12 =‖∼ a| ∼ c,∼ b ‖, ∆13 =‖∼ a| ∼ b,∼ c ‖,
∆14 =‖∼ a| ∼ b,∼ c| ∼ a ‖, ∆15 =‖∼ a| ∼ b,∼ b| ∼ c ‖,
∆16 =‖∼ b| ∼ c,∼ c| ∼ a ‖, ∆17 =‖∼ a,∼ b,∼ c ‖,
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∆18 =‖∼ a| ∼ b,∼ b| ∼ c,∼ c| ∼ a ‖,

where ∆0, ∆1, ∆2, ∆4, ∆17 are all the ADHs of P ; ∆1, ∆2, ∆4 are CDHs; the
PDHs ∆1, ∆2 correspond to the stable models {b, c} and {a, c}. WFDH of P is
∆4 and the state pair WFDH(P ) = S∆4 =<‖ a|b ‖; ‖∼ a| ∼ b ‖>.

The least stationary model [29] and the static model of P coincide and equal
to S̃ =<‖ a|b, c ‖, ‖∼ a| ∼ b ‖>. It is obvious that WFDH(P )− = S̃− but c can
not be inferred in WFDH from P .

This example has been used by many authors to show the suitability of
their semantics. It is known that, from this program, the extended well-founded
semantics [32] and the GDWFS [4] do not infer c to be true; but the static se-
mantics [30] and the disjunctive stable semantics [28] infer a to be true. This
phenomenon is caused because different semantics provide deferent meaning for
the disjunction. An interesting problem is that: Can these two disjunctions (clas-
sical and epistemic) be represented in the bodies of rules by one single semantics
for disjunctive logic programming. To solve this problem, it is necessary that
the syntax should be extended. Now, we show this problem can be treated in
our WFDH semantics for bi-disjunctive programs. In particular, the classical
disjunction in program P1 = {c←∼ a∨ ∼ b} can be represented by changing P1

into {c ←∼ a; c ←∼ b} and the program P2 = {c ←∼ a| ∼ b} represents the
epistemic disjunction of ∼ a| ∼ b.
Example 6.3. Let P ′ be the bi-disjunctive program:

a|b←
c← ∼ a| ∼ b

Similar to Example 6.2, it can be shown that WFDH(P ′) =<‖ a|b, c ‖, ‖∼
a| ∼ b ‖>. It is obvious that we can infer c from P ′.

By Theorem 6.4, the relationship between the stationary semantics and PDH
can be formulated as the following result.

Corollary 6.6. For any strongly stable disjunctive program P , stationary mod-
els coincide with preferred disjunctive state-pairs (PDSs).

Dix and Brass [7] propose an interesting and general approach to define
semantics for disjunctive programs simply by postulating some semantic prop-
erties. In particular, they define a generalization of the well-founded semantics
called D-WFS. Though D-WFS and WFDH have quite different intuitions, D-
WFS bears some similarities with our WFDH: (1) it extends the well-founded
model for non-disjunctive programs and (E)GCWA for positive disjuntive pro-
grams; (2) it represents also a form of skeptical reasoning in disjunctive logic
programming. However, we will show that WFDH is different from D-WFS. In
fact, D-WFS is more skeptical than WFDH.

As shown by Dix and Brass in [7], for any disjunctive program P , the negative
disjunctive program Lft(P ) can be further reduced to the so-called residual
program res(P ).
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Lemma 6.3. For any disjunctive program P , P is equivalent to res(P ) wrt.
BDAS. In particular, WFDH(P ) = WFDH(res(P )).

By Lemma 6.3, it is direct to prove the following result.

Proposition 6.5. WFDH is less skeptical than D-WFS. That is, D-WFS(P ) ⊆
WFDH(P ) but ‘⊆’can not be replaced by ‘=’in general.

Notice that D-WFS and WFDH have some other differences. For example,
if α =∼ a1| · · · | ∼ ar is a disjunctive hypothesis of P with α ∈ D-WFS then
there exists at least one i(1 ≤ i ≤ r) such that ∼ ai ∈ D-WFS(P ). However,
WFDH allows one concludes ‘true ’disjunctive information. Take P = {a|b←},
it is not hard to see that D-WFS(P ) contains no negative (disjunctive) literals.
However, ∼ a| ∼ b ∈ WFDH(P ) even though neither ∼ a ∈ WFDH(P ) nor
∼ b ∈WFDH(P ).

Moreover,WFDH(P ) andD-WFS(P ) may have distinct sets of non-disjunc-
tive literals as the following example shows.

Example 6.4. Let P consist of only one clause:

a|b← ∼ a

Since P = res(P ), it is easy to see that ∼ a ∈ WFDH(P ) but ∼ a 6∈ D-
WFS(P ). For this program, it seems that WFDH should be the intended mean-
ing of negation as failure.

Consider another similar example.

Example 6.5. Let P be the following disjunctive program:

a|b←
c← ∼ a

Then it can be verified that WFDH(P ) =<‖ b, c ‖; ‖∼ a ‖> and D-WFS(P ) =
<‖ a|b ‖; ∅ >.

Thus, our result further convinces that D-WFS is the most skeptical seman-
tics for disjunctive logic programs.

7 Conclusion

In this paper, we have provided an extension of disjunctive logic programming
both from semantics and syntax. Syntactically, the class of bi-disjunctive pro-
grams is defined, which includes disjunctive programs and can be considered
as a subclass of super logic programs; Semantically, an argumentation-theoretic
framework BDAS for bi-disjunctive programs is established, which is a simple,
unifying and intuitive framework for disjunctive logic programming. In BDAS
three semantics PDH, CDH and WFDH for bi-disjunctive programs are de-
fined by three kinds of admissible hypotheses to represent credulous reasoning,
moderate reasoning and skeptical reasoning in AI, respectively. Besides its rich
expressive power and nondeterminism, BDAS integrates and naturally extends
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many key semantics, such as the minimal models, EGCWA, the well-founded
model, and the stable models.

Besides the unifying frameworks mentioned in the previous sections, Bonatti
[5] has also defined a unifying framework for disjunctive logic programs by view-
ing a disjunctive program as an epistemic theory. In our opinion, this framework
and some of existing ones are not so intuitive as BDAS and argumentation is
not treated. An interesting problem to be further investigated is the relation-
ship between BDAS and some other major semantics for disjunctive programs.
Some of the most interesting applications of BDAS have to also be left for future
work. Another problem that has not been touched in this paper is the relation-
ship between argumentation and extended disjunctive logic programming. Since
the situation becomes quite complicated when the explicit negation is allowed
in BDAS, this problem has to be discussed in a separate paper. A weak form of
cumulativity of nonmonotonic reasoning defined by WFDH is given in [38] and
further work is needed.
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Abstract. The purpose of this paper is to investigate the methodology
of reasoning with prioritized defaults in the language of logic programs
under the answer set semantics. We present a domain independent sys-
tem of axioms, written as an extended logic program, which defines rea-
soning with prioritized defaults. These axioms are used in conjunction
with a description of a particular domain encoded in a simple language
allowing representation of defaults and their priorities. Such domain de-
scriptions are of course domain dependent and should be specified by
the users. We give sufficient conditions for consistency of domain de-
scriptions and illustrate the use of our system by formalizing various
examples from the literature. Unlike many other approaches to formal-
izing reasoning with priorities ours does not require development of the
new semantics of the language. Instead, the meaning of statements in
the domain description is given by the system of (domain independent)
axioms. We believe that in many cases this leads to simpler and more
intuitive formalization of reasoning examples. We also present some dis-
cussion of differences between various formalizations.

1 Introduction

The purpose of this paper is to investigate the methodology of reasoning with
prioritized defaults in the language of logic programs under the answer set se-
mantics. Information about relative strengths of defaults can be commonly found
in natural language descriptions of various domains. For instance, in legal rea-
soning it is often used to state preference of some laws over others, e.g., federal
laws in the U.S. can, in some cases, override the laws of a particular state. Prefer-
ences are also used in reasoning with expert’s knowledge where they are assigned
in accordance with the degree of our confidence in different experts. Sometimes
preferences in the natural language description of the domain are given implic-
itly, e.g., a conflict between two contradictory defaults can be resolved by se-
lecting the one which is based on more specific information. All these examples
suggest that it may be useful to consider knowledge representation languages
capable of describing defaults and preferences between them. There is a size-
able body of literature devoted to design and investigation of such languages
[1,5,6,7,11,23,30,32,33,36]. The work is too diverse and our knowledge of it is
not sufficient to allow a good classification but we will try to mention several
important differences in approaches taken by the different authors. To shorten
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the discussion we limit our attention to approaches based on logic programming
and default logics.

Many differences in design seem to be caused by the ambiguity of the very notion
of default. Sometimes defaults are understood as statements of natural language,
of the form “Elements of a class C normally (regularly, as a rule) satisfy prop-
erty P”. Sometimes this understanding is broadened to include all statements
with defeasible conclusions. The following example is meant to illustrate the
difference.

Suppose we are given a list t of people and want to define the class of people not
listed in t. This, of course, can be done by the rule

r1. unlisted(X)← not t(X).

The conclusion of this statement can be defeated by expanding the table t but
cannot be defeated by adding a fact of the form ¬unlisted(x) where x 6∈t. The
attempt to do the latter will (justifiably) lead to contradiction. The statement
r1 is not a default according to the first, narrow view. It is rather a universally
true statement which does not allow exceptions and can not be defeated by other
(preferred) statements; of course, according to the second view, r1 is a default.
Notice, that the statement “Table unlisted normally contains all the people not
contained in t” is a default according to the both views. Its logic programming
representation can have a form

r2. unlisted(X)← not t(X), not ¬unlisted(X).

This time the addition of ¬unlisted(x) where x 6∈t cause no contradiction.

This (and similar) differences in understanding of defaults seems to sometimes
determine the syntax of the corresponding “default” languages. The first view
seems to lead to introducing special syntax for defaults while the second uses
standard logic programming syntax augmented by the preference relation among
the rules. According to the second view it seems to be also more natural to
consider static preference relation, i.e., to prohibit occurrence of the preference
relation in the rules of the program.

Even more important differences can be found on determining the correct modes
of default reasoning. To demonstrate the problem let us accept a narrow view
of defaults and consider the theory consisting of three defaults:

d1. “Normally a”;

d2. “Normally b”

d1. “Normally c”

and three rules

r1. “b’s are always ¬a’s”;

r2. “b’s are always d’s”;

r3. “a’s are always d’s”;
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There seems to be at least three equally reasonable ways to deal with this theory.
We can assume that it is inconsistent and entail everything (or nothing); We
can be cautious and refuse to apply defaults d1 and d2. In this case the only
conclusion is c. We can be less cautious and reason by cases entailing d supported
by two different arguments. With preference relation the situation will become
even less clear since we will have an additional difficult question of defining what
we mean by a conflict between defaults.

Different choices made by the authors of default languages are expressed in their
semantics given by defining the entailment and/or the derivability relation for
the language. The corresponding new logics can often be viewed as “prioritized”
versions of the existing general purpose non-monotonic formalisms [1,5,6,7,32,28]
with new level of complexity added in fixpoint (or other) constructions defining
the semantics. The viability of new logics is normally demonstrated by using it
for formalization of some examples of default reasoning aimed to illustrate special
features of the logic and the inadequacy of other formalisms. This process, even
though useful and necessary, is often complicated by our collective lack of expe-
rience in representing knowledge about defaults and their preferences. It is often
unclear for instance, if unintuitive answers to queries given by various formalisms
can be blamed on the formalism itself or on the inadequate representation of the
original problem. Moreover, it is often unclear what is the “common-sense”,
natural language description of the original problem of which the corresponding
formal theory claims to be a representation. This, together with technical com-
plexity of definitions, lack of the developed mathematical theories for new logics
and the absence of clearly understood parameters which determine the choice
of the semantics make their use for knowledge representation a rather difficult
task.

This paper is the result of the authors attempts to understand some of the issues
discussed above. We wanted to design a simple language, L, capable of expressing
and reasoning with prioritized defaults satisfying (among others) the following
requirements:

• Understand defaults in a narrow sense as statements of the form a’s are nor-
mally b’s.

• Allow dynamic priorities, i.e., defaults and rules about the preference relation.

• Give semantics of L without developing new general purpose nonmonotonic
formalism.

•Make sure that changes in informal parameters of the language such as proper-
ties of the preference relation, the definitions of conflicting defaults, cautiousness
or bravery in reasoning are reflected by comparatively simple changes in the for-
malism.

• Make sure that some inference mechanism is available to reason with theories
of L and some mathematical theory is available to prove properties of these
theories.
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We achieve these goals by mapping theories of L (also called domain descriptions)
into a class of extended logic programs under the answer sets semantics [21]. This
is done by presenting a logic program P consisting of (domain independent)
axioms defining the use of prioritized defaults; viewing domain descriptions of L
as collections of atoms; and defining the notion of entailment between query q and
a domain description D in L via answer set entailment in logic programming. In
other words, we say that a domain description D entails a query q if q is entailed
by the logic program P ∪ D.

This approach appears to be similar in principle to the one suggested recently in
[11] (which was not yet published when this work was completed). The result-
ing formalisms however are quite different technically. The precise relationship
between the two is not yet fully investigated.

The use of the language will be illustrated by various examples from the lit-
erature. All the examples were run using the SLG inference engine [9,10]. We
believe that the study of the class of logic programs described by P0 and its
variants can complement the existing work and help to understand reasoning
with prioritized defaults.

The paper is organized as follows. In the next section, we introduce the language
of prioritized defaults L0 and present a collection of axioms P0. In Section 3 we
show examples of the use of domain descriptions in L0. Section 4 contains the
brief discussion of several extensions of D0. Section 5 is devoted to the class of
hierarchical domain descriptions. Finally, in Section 6, we discuss the relationship
between our work and that of Brewka.

2 The Language of Prioritized Defaults

We start with describing the class L0(σ) of languages used for representing
various domains of discourse. L0(σ) is parameterized by a multi-sorted signature
σ containing names for objects, functions and relations of the user’s domain.
By lit(σ) and atoms(σ) we denote the set of all (ground) literals and atoms
of σ. Literal ¬¬l will be identified with l. We assume that atoms(σ) contain
two special collections of atoms, called default names and rule names which
will be used to name defaults and strict (non-defeasible) rules of the language.
Domain knowledge in L0(σ) will be described by a collection of literals of σ
(called σ-literals) together with statements describing strict rules, defaults, and
preferences between defaults. The syntax of such descriptions is given by the
following definitions:

Definition 1.

– σ-literals are literals of L0(σ);
– if d, d1, d2 are default names, l0, . . . , ln are literals of L0(σ) and [ ] is the list

operator of Prolog then
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rule(r, l0, [l1, . . . , lm]); (L0.1)

default(d, l0, [l1, . . . , lm]); (L0.2)

conflict(d1, d2); (L0.3)

prefer(d1, d2); (L0.4)

are literals of L0(σ).

A set D of ground literals of L0(σ) will be called domain description (with
underlying signature σ).

We assume that symbols default, rule, conflict and prefer do not belong to σ.
Relations, denoted by these symbols will be called domain independent.

A set S of L0(σ) literals containing variables (ranging over objects of various
types) will be viewed as a shorthand for the set of all (properly typed) ground
instantiations of literals from S. Statements (L0.1) and (L0.2) will be called
definitions of rule r and default d respectively. Intuitively, the statement (L0.1)
defines the rule r which says that if literals l1, . . . , lm are true in a domain
description D then so is the literal l0. It can be viewed as a counterpart of the
logic programming rule

l0 ← l1, . . . , lm.

Literals l0 and l1, . . . , lm are called the head and the body of r and are denoted
by head(r) and body(r) respectively.

The statement (L0.2) is a definition of the default d which says that normally, if
l1, . . . , lm are true in D then l0 is true in D. The logic programming counterpart
of d is the rule

l0 ← l1, . . . , lm, not ¬l0.

As before we refer to l0 as the head of d (head(d)) and to l1, . . . , lm as its body
(body(d)).

The statement (L0.3) indicates that d1 and d2 are conflicting defaults. In many
interesting cases conflict(d1, d2) will be true iff heads of defaults d1 and d2
are contrary literals, but other defaults can also be declared as conflicting by
the designer of the domain description. Finally, the statement (L0.4) stops the
application of default d2 if defaults d1 and d2 are in conflict with each other and
the default d1 is applicable.

This informal explanation of the meaning of domain independent relations of
L0(σ) will be replaced by the precise definition in the next section. But first we
will attempt to clarify this meaning with the following examples.



Reasoning with Prioritized Defaults 169

Example 1. Let us assume that we are given complete lists of students enrolled
in various university departments. We know that in general, students can not
write computer programs and that computer science students do it regularly.
Let us represent this information by a domain description D0.

The underlying signature σ of D0 contains student names, mary, mike, sam,
..., department names cs, cis, art, ..., appropriately typed predicate symbols
is in(S, D) and can progr(S) read as “Student S is in department D” and “Stu-
dent S can program”, and default names of the form d1(S), d2(S), and d3(S, D).

The defaults from our informal description can be represented by statements

default(d1(S), ¬can progr(S), [student(S)]).
default(d2(S), can progr(S), [student(S), is in(S, cs)]).

Finally, the lists of students mentioned in the informal description will be rep-
resented by the collection F of facts:

student(mary). dept(cs). is in(mary, cs).
student(mike). dept(art). is in(mike, art).
student(sam). dept(cis). is in(sam, cis).
. . . . . . . . .

We also need the closed world assumption [34] for is in, written as the default

default(d3(S, D), ¬is in(S, D), [ ]).

Relations student and dept are, of course, not necessary. They are playing the
role of types and will later allow us to avoid floundering when applying the SLG
inference engine to this example.

We will assume that our domain description contain statements of the form
conflict(d1, d2) for any two defaults with contrary heads and that the relation
conflict is symmetric. This will guarantee that D0 will contain
conflict(d1(X), d2(X)) and conflict(d2(X), d1(X)). (These assumptions will be
of course enforced later by the corresponding axioms).

Informally, the domain description D0 should allow us to conclude that Mike
and Sam do not know how to program, while we should remain undecided about
programming skills of Mary. This is the case only as long as we do not assume
that the second default overrides the first one, due to the specificity principle.
We can use the relation prefer from our language to record this preference by
stating

prefer(d2(X), d1(X)).

From the new domain description D1 we should be able to conclude that Mary
can write programs. ♦

The next example is meant to illustrate the behavior of conflicting defaults in
the presence of strict rules.
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Example 2. Consider the domain description D2 consisting of two defaults

default(d1, p, [])

default(d2, q, [r]),

the rules

rule(r1,¬p, [q])

rule(r2,¬q, [p])

and the fact

r.

(Intuitively, the logic programming counterpart of D2 consists of the rules
p← not ¬p
q ← r, not ¬q
¬p← q
¬q ← p

Notice that the last two rules can be viewed as a translation into the logic
programming language of the conditional q’s are always not p’s.)

The intended meaning of D2 should sanction two alternative sets of conclusions:
one, containing p and ¬q, and another containing q and ¬p. If we expand D2 by

conflict(d2, d1)

prefer(d2, d1)

the application of d1 should be blocked and the new domain description D3
should entail q and ¬p. Notice, that if conflict(d2, d1) were not added to the
domain description then addition of prefer(d2, d1) would not alter the conclu-
sions of D2. This is because preference only influences application of conflicting
defaults. ♦

More examples of the use of the language L0 for describing various domains will
be found in the following sections. In the next section we give a precise definition
of entailment from domain descriptions of L0.

2.1 Axioms of P0

In this section we present a collection P0,σ of axioms defining the meaning of
the domain independent relations of L0(σ). The axioms are stated in the lan-
guage of logic programs under the answer set semantics. They are intended
to be used in conjunction with domain descriptions of L0(σ) and to define
the collection of statements which (strictly and/or defeasibly) follow from a
given domain description D. More precisely, we consider two basic relations
holds(l) and holds by default(l) defined on literals of L0(σ) which stand for
“strictly holds” and “defeasibly holds”, respectively. The query language associ-
ated with domain descriptions of L0(σ) will consist of ground atoms of the form



Reasoning with Prioritized Defaults 171

holds by default(l), holds(l), and their negations. In what follows, by laws(D)
we denote the set of statements of the forms (L0.1) and (L0.2) from definition 1
which belong to D; facts(D) = D \ laws(D).

Definition 2. We say that a domain description D entails a query q (D |= q)
if q belongs to every answer set of the program P0,σ(D) = P0,σ ∪ {holds(l) | l ∈
facts(D)} ∪ laws(D).

Program P0
1 consists of the following rules:

Non-defeasible Inference:

holds(L)← rule(R, L, Body), (P0.1)
hold(Body).

hold([ ]). (P0.2)

hold([H|T ])← holds(H), (P0.3)
hold(T ).

The first axiom describes how the rules can be used to prove that a L0(σ) literal
l is non-defeasibly true in a domain description D. The next two axioms define
similar relation on the lists of literals in L0(σ), i.e., hold([l1, . . . , ln]) iff all the
l’s from the list are true in D.

Defeasible Inference:

holds by default(L)← holds(L). (P0.4)

holds by default(L)← rule(R, L, Body), (P0.5)
hold by default(Body).

holds by default(L)← default(D, L, Body), (P0.6)
hold by default(Body),
not defeated(D),
not holds by default(¬L).

hold by default([ ]). (P0.7)
1 In what follows we assume that σ is fixed and omit reference to it whenever possible.
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hold by default([H|T ])← holds by default(H), (P0.8)
hold by default(T ).

The first axiom in this group ensures that strictly true statements are also true
by default. The next one allows application of rules for defeasible inference. The
third axiom states that defaults with proven premises imply their conclusions
unless they are defeated by other rules and defaults of the domain description.
The condition not holds by default(¬L) is used when the domain contains two
undefeated defaults d1 and d2 with conflicting conclusions. In this case P0(D)
will have multiple answer sets, one containing the conclusion of d1 and the other
containing the conclusion of d2. The alternative solution here is to stop appli-
cations of both defaults, but we believe that in some circumstances (like those
described by the extended “Nixon Diamond”) our solution is preferable.

The last two rules from this group define relation hold by default(List) which
holds if all literals from the list hold by default.

Defeating defaults:

defeated(D)← default(D, L, Body), (P0.9)
holds(¬L).

defeated(D)← default(D, L, Body), (P0.10)
default(D1, L1, Body1),
holds(conflict(D1, D)),
holds by default(prefer(D1, D)),
hold by default(Body1),
not defeated(D1).

These axioms describe two possible ways to defeat a default d. The first axiom
describes a stronger type of defeat when the conclusion of the default is proven
to be false by non-defeasible means. The axiom (P0.10) allows defeating of d by
conflicting undefeated defaults of higher priority. They represents the “bravery”
approach in the application of defaults. In the next section, we show how our
axioms can be expanded or changed to allow other ways of defeating defaults.

Now we are left with the task of defining conflicts between defaults. There are
several interesting ways to define this notion. Different definitions will lead to
different theories of default reasoning. The investigation of ramifications of dif-
ferent choices is, however, beyond the limits of this paper. Instead we introduce
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the following three axioms which constitute the minimal requirement for this
relation.

holds(conflict(d1, d2))← default(d1, L1, Body1), (P0.11)
default(d2, L2, Body2),
contrary(L1, L2).

for any two defaults with contrary literals in their heads and for any two defaults
whose heads are of the form prefer(di, dj) and prefer(dj , di) respectively. The
precise definition of contrary is given by the rules (P0.21) and (P0.22).

¬holds(conflict(D, D)). (P0.12)

holds(conflict(D1, D2))← holds(conflict(D2, D1)). (P0.13)

Finally, we include axioms stating asymmetry of the preference relation:

¬holds(prefer(D1, D2))← holds(prefer(D2, D1)),
D1 6= D2. (P0.14)

¬holds by default(prefer(D1, D2))← holds by default(prefer(D2, D1)),
D1 6= D2. (P0.15)

Without the loss of generality we can view these axioms as schemes where D1
and D2 stand for defaults present in D. The equality used in these axioms is
interpreted as identity. Notice, that our minimal requirements on the preference
relation do not include transitivity. On the discussion of nontransitive preference
relations see [18], [25].

Uniqueness of names for defaults and rules:

These three axioms guarantee uniqueness of names for defaults and rules used
in the domain description.

¬rule(R, F1, B1)← default(R, F2, B2). (P0.16)

¬rule(R, F1, B1)← rule(R, F2, B2), (P0.17)
rule(R, F1, B1) 6= rule(R, F2, B2)

¬default(D, F1, B1)← default(D, F2, B2), (P0.18)
default(D, F1, B1) 6= default(D, F2, B2).
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Addition of these axioms is needed only to make domain descriptions con-
taining statements default(d, l1, Γ1) and default(d, l2, Γ2), rule(r1, l1, Γ1) and
rule(r1, l2, Γ2), etc, inconsistent.

Auxiliary

Finally we have the axioms

¬holds(L)← holds(¬L). (P0.19)

¬holds by default(L)← holds by default(¬L). (P0.20)

contrary(L,¬L). (P0.21)

contrary(prefer(D1, D2), prefer(D2, D1))← D1 6= D2. (P0.22)

whose meaning is self-explanatory.

We believe that P0(D) captures a substantial part of our intuition about rea-
soning with prioritized defaults and therefore deserves some study.

3 Using the Axioms

In this section we illustrate the use of our approach by formalizing several ex-
amples of reasoning with priorities. In what follows we will refer to running our
programs using SLG inference engine. Since the syntax of SLG does not allow
“¬” we treat it as a new function symbol and consider only those stable models
of P0(D) which do not contain literals of the form a and neg(a).

Example 3. (Example 1 revisited)
It is easy to check that the program P0(D0) (where D0 is the domain description
from Example 1) has two answer sets, containing

{¬hd(can progr(mary)),¬hd(can progr(mike)),¬hd(can progr(sam))}
and

{hd(can progr(mary)),¬hd(can progr(mike)),¬hd(can progr(sam))},
respectively, where hd is a shorthand for holds by default. Hence, we can con-
clude that Mike and Sam do not know how to program but we have to stay
undecided on the same question about Mary.

If we expand the domain by adding the statement prefer(d2, d1) then the first
answer set will disappear which of course corresponds exactly to our intention.
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It may be instructive to expand our domain by the following information: “Bad
students never know how to program. Bob is a bad computer science student”.
This can be represented by facts

student(bob).
bad(bob).
is in(bob, cs).

and the rule

rule(r2(S), ¬can progr(S), [student(S), bad(S)]).

The new domain description D4 will correctly entail that Bob does not know
how to program. Notice, that if the above rule were changed to the default

default(d3(S), ¬can progr(S), [student(S), bad(S)])

we would again get two answer sets with contradictory conclusions about Bob,
and that again the conflict could be resolved by adding, say,

prefer(d3(S), d2(S)). ♦

The previous example had an introductory character and could have been nicely
formalized without using the preference relation. The next example (from [5],
which attributes it to [24]) is more sophisticated: Not only does it require the
ability to apply preferences to resolve conflicts between defaults, but also the
ability of using defaults to reason about such preferences. Brewka in [5] argues
that the ability to reason about preferences between defaults in the same lan-
guage in which defaults are stated is important for various applications. In legal
reasoning similar arguments were made by Gordon, Prakken, and Sartor [24,32].
On the other hand, many formalisms developed for reasoning with prioritized
defaults treat preferences as something statically given and specified separately
from the corresponding default theory.

Example 4. (Legal Reasoning [5]) Assume that a person wants to find out if her
security interest in a certain ship is perfected. She currently has possession of
the ship. According to the Uniform Commercial Code (UCC) a security interest
in goods may be perfected by taking possession of the collateral. However, there
is a federal law called Ship Mortgage Act (SMA) according to which a security
interest in a ship may only be perfected by filing a financing statement. Such
a statement has not been filed. Now, the question is whether the UCC or the
SMA takes precedence in this case. There are two known legal principles for
resolving conflicts of this kind. The principle of Lex Posterior gives preference
to newer law. In our case the UCC is newer than the SMA. On the other hand,
the principle of Lex Superior gives precedence to laws supported by the higher
authority. In our case the SMA has higher authority since it is federal law.

Let us build the domain description D5 which represents the above information.
We will follow the formalization from [5] which uses symbols possession for “ship
is a possession of the lady from the above story”, perfected for “the ownership
of the ship is perfected”, and filed for “financial statement about possession of
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the ship is filed”. The domain also contains symbols state(D), federal(D), and
more recent(D1, D2) representing properties and relations between legal laws.

The UCC and SMA defaults of D5 can be represented by

default(d1, perfected, [possession]).
default(d2,¬perfected, [¬filed]).

The two legal principles for resolving conflicts are represented by the next two
defaults:

default(d3(D1, D2), prefer(D1, D2), [more recent(D1, D2)]).
default(d4(D1, D2), prefer(D1, D2), [federal(D1), state(D2)]).

The next defaults will express the closed world assumptions for relations
more recent, federal and state. Presumably, a reasoning legal agent must have
complete knowledge about the laws. The following defaults are added to D5 to
represent this CWA assumption.

default(d5(D1, D2),¬more recent(D1, D2), [ ]).
default(d6(D),¬federal(D), [ ]).
default(d7(D),¬state(D), [ ]).

To complete our formalization we need the following facts:

¬filed.
possession.
more recent(d1, d2).
federal(d2).
state(d1).

It is not difficult to check (using SLG if necessary) that the program P0(D5) has
two answer sets where

(i) holds by default(perfected)

belongs to one answer set and

(ii) ¬holds by default(perfected)

belongs to the other. This is because we have two defaults d1 and d2: the former
supports the first conclusion, the latter - the second one, and preference between
them cannot be resolved using defaults d3 and d4. Thus, neither (i) nor (ii) is
entailed by P0(D5). This is also Brewka’s result in [5].

However, if we know that d4 has a preference over d3 the situation changes; To
see that, let us expand our domain description by

prefer(d4(D1, D2), d3(D2, D1)).

and denote the new domain description by D6; as a result, program P0(D6) has
then only one answer set, which contains (ii). This is again the desired behavior,
according to [5]. It may be worth noticing that the closed world assumptions
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d5, d6 and d7 have no role in the above arguments and could be removed from
the domain description. They are important, however, for general correctness of
our representation. The example can be substantially expanded by introducing
more realistic representation of the story and by using more complex strategies
of assigning preferences to conflicting defaults. We found that the corresponding
domain descriptions remain natural and correct. ♦

Example 5. (Simple Inheritance Hierarchy) Now let us consider a simple inher-
itance hierarchy of the form depicted in fig (1).
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Figure 1. The Inheritance Hierarchy of D7

A simple hierarchy consists of two parts: an acyclic graph representing the proper
subclass relation between classes of objects and a collection of positive and neg-
ative defaults from these subclasses to properties of objects. In fig (1) we have
three class nodes, a, b, and c. The strict link between the class nodes, say, a
and b can be read as “a is a proper subclass of b”. Dotted lines from b and c
to property p represent positive and negative defaults respectively. The simple
hierarchy is used in conjunction with a collection of statements is in(x, c) read
as “x is an elements of a class c”. For simplicity we assume completeness of in-
formation about relations subclass and is in. (For discussion of hierarchies with
incomplete information, see [20]).

The encoding of simple hierarchies will consists of two parts: the first representing
a particular graph and the second containing general properties of a hierarchy
together with the inheritance principle. Notice, that the second part is common
to all simple hierarchies.

In our case, the domain description D7 encoding the hierarchy from fig (1) con-
sists of domain dependent axioms

subclass(a, b).
subclass(c, b).
is in(x1, a)
is in(x2, c)
default(d1(X), has(X, p), [is in(X, b)])
default(d2(X),¬has(X, p), [is in(X, c)])
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(where has(X, P ) stands for “element X has a property P”) and the domain
independent axioms

rule(r1(C0, C2), subclass(C0, C2), [subclass(C0, C1), subclass(C1, C2)]).
rule(r2(X, C1), is in(X, C1), [subclass(C0, C1), is in(X, C0)]).
rule(r3(D1(X), D2(X)), prefer(D1(X), D2(X)), [d(D1(X), , [is(X, A)]),

d(D2(X), , [is(X, B)]),
subclass(A, B)]).

default(d3(X),¬is in(X), []).
default(d4,¬subclass(A, B), []).

(where d stands for default and is used where names are not important). The
first two rules represent general properties of subclass and is in. The next rule
is an encoding of the inheritance principle. The last two defaults express the
closed world assumptions for simple hierarchies.

It is easy to check that D7 is consistent and that the logic program P0(D7) has
the unique answer set containing holds by default(has(x1, p)) and
holds by default(¬has(x2, p)). Consistency result can be easily expanded to
”rule-consistent” domains representing simple hierarchies.

We use the next example from Brewka [7] to illustrate differences between our
theory and several other formalisms dealing with prioritized defaults.

Example 6. (Gray Area) Brewka considers the following defaults:

1. “Penguins normally do not fly;”,
2. “Birds normally fly;”, and
3. “Birds that can swim are normally penguins;”,

under the assumption that default (1) is preferred over (2), and (2) is preferred
over (3). (Notice, that Brewka assumes transitivity of the preference relation).

These defaults are represented in his formalism by a program

bird.
swims.
(d1) ¬flies← not flies, penguin.
(d2) flies← not ¬flies, bird.
(d3) penguin← not ¬penguin, bird, swims.

According to Brewka, the prioritized default theories from [1,5,28] are applicable
to this case and produce single extension E1 = {swims, bird, flies, penguin}
which seems contrary to intuition. According to the semantics from [7] the corre-
sponding program has one prioritized answer set, E2 = {swims, bird, penguin,
¬flies} which is a more intuitive result. The information above is naturally
encoded in the domain description D8 by the following statements

bird.
swims.
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default(d1,¬flies, [penguin]).
default(d2, f lies, [bird]).
default(d3, penguin, [bird, swims]).

prefer(d1, d2).
prefer(d2, d3).
prefer(d1, d3).

The program P0(D8) has only one answer set which contains
S1 = {holds by default(bird), holds by default(swim),

holds by default(penguin),¬holds by default(flies)}.
which coincides with the approach from [7]. This happens because the default
d3 is in conflict with neither d1 nor d2 and therefore its application is not influ-
enced by the preference relation. If we expand the domain description D8 by a
statement

conflict(d2, d3)

the situation changes. Now we will have the second answer set,

S2 ={holds by default(bird), holds by default(swim), holds by default(flies)}.

which corresponds to the following line of reasoning: We are initially confronted
with “ready to fire” defaults (d2) and (d3). Since (d2) has a higher priority and
d2 and d3 are conflicting defaults, d2 wins and we conclude flies. Now, (d1) is
not applicable and hence we stop.

To obtain S1, we can apply defaults (d1) and (d3). Since (d2) is then defeated
by (d1) it will not block (d3). ♦

We realize of course that this example belongs to the gray area and can be
viewed differently. The main lesson from this observation is that in the process
of expressing ourself (while programming or otherwise) we should try to avoid
making unclear statements. Of course, we hope that further work on semantics
will help to clarify some statements which so far remain unclear. We also hope
that the reader is not left with the impression that we claim success in following
our own advice.

4 Extending L0(σ)

In this section we briefly outline and discuss several extensions of the language
L0(σ). We show how to extend the language and the corresponding collection
of axioms to allow the representation of more powerful defaults and default
defeaters.
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4.1 Beyond normal defaults

The domain descriptions of L0(σ) contain defaults whose logic programming
counterparts are of the form

(ND) l0 ← l1, . . . , ln, not ¬l0.

These rules can be viewed as normal defaults in the sense of Reiter [35]. Even
though the ability to express priorities between the defaults gives the domain
descriptions of L0(σ) expressive power that exceeds that of default theories of
Reiter consisting of (ND)-rules, this power is not sufficient for some applications.
In this section we expand the language L0(σ) and the corresponding system of
axioms to make it possible to represent more general types of defaults. To this
end we replace the definition of default description in L0(σ) (see L0.2 in the
Definition 1) by the more powerful construct

default(d, l0, [l1, . . . , lm], [lm+1, . . . , ln]) (L.2)

The intuitive meaning of this statement is that normally, if l1, . . . , lm are true in
D and there is no reason to believe that lm+1, . . . , ln are true in D then l0 is true
in D. In other words, the statement (L.2) corresponds to the logic programming
rule

l0 ← l1, . . . , lm, not lm+1, . . . , not ln, not ¬l0.

Literals l1, . . . , lm and lm+1, . . . , ln are called positive and negative preconditions
of d respectively. Both sets of preconditions will be sometimes referred to as the
body of statement (L.2).

Our set of axioms P0 will be modified as follows: axioms (P0.6) and (P0.10) will
be replaced by axioms

holds by default(L)← holds(default(D, L, Positive, Negative)), (P.6)
hold by default(Positive),
fail by default(Negative),
not defeated(D),
not ¬holds by default(L).

defeated(D)← holds(default(D1, L, Positive, Negative)), (P.10)
holds by default(prefer(D1, D)),
hold by default(Positive),
fail by default(Negative),
not defeated(D1).
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where fail by default is defined as follows:

fail by default([ ]). (P.23)

fail by default([H|T ])← not holds by default(H), (P.24)
fail by default(T ).

We hope that the modification is self-explanatory.

The following example, taken from [32], illustrates the use of the new language.

Example 7. [33] Consider the following two legal default rules:

1. Normally, a person who cannot be shown to be a minor has the capacity to
perform legal acts.

2. In order to exercise the right to vote the person has to demonstrate that he
is not a minor.

The first default can be represented as

default(d1(x), has legal capacity(x), [ ], [minor(x)])

which requires a negative precondition. The second default has the form

default(d2(x), has right to vote(x), [¬minor(x)], [ ]).

These defaults, used in conjunction with statement ¬minor(jim) entail that Jim
has legal capacity and the right to vote. If the system is asked the same questions
about Mary whose legal age is not known it will conclude that Mary has legal
capacity but will remain in the dark about Mary’s right to vote. If we expand
our domain description by the closed world assumption for has right to vote

default(d3(x),¬has right to vote(x), [ ], [ ])

then the answer to the last question will be no. ♦

4.2 Weak Exceptions to Defaults

So far our language allowed only strong exceptions to defaults, i.e., a default
d could be defeated by rules and by defaults conflicting with d. Many authors
argued for a need for so called weak exceptions - statements of the form “do
not apply default d to objects satisfying property p”. (For the discussion of
the difference between weak and strong exceptions see, for instance, [2].) Weak
exceptions of this type can be easily incorporated in our language. First we
expand the language by allowing literals of the form

exception(d(x1, . . . , xk), [l1, . . . , ln], [ln+1, . . . , ln+m]) (L.5)
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read as “the default d is not applicable to x1, . . . , xk which satisfy l1, . . . , ln and
not ln+1, . . . , not ln+m”. The formal meaning of this statement is defined by an
axiom

defeated(D)← exception(D, Positive, Negative), (P.25)
hold by default(Positive),
fail by default(Negative).

added to P0.

Consider a domain description D9.

default(d(X), p(X), [q(X)], [ ]).
exception(d(X), [r(X)], [ ]).
q(x1).
q(x2).
r(x2).

It is easy to check, that the corresponding program P0(D9) (and hence D9)
entails p(x1) but remains undecided about p(x2). Notice, that we were able to
entail p(x1) even though x1 may satisfy property r, i.e. D9 6|= ¬r(x1). In some
cases we need to be able to say something like “do not apply d to x if x may
satisfy property r”. This can be achieved by replacing the exception clause in
D9 by

exception(d(X), [ ], [¬r(X)]). (L.6)

The new domain description entails neither p(x1) nor p(x2).

We will denote the language and the system of axioms described in this section
by L and P respectively. We believe that the system is useful for reasoning with
prioritized defaults and deserves careful investigation. In this paper however we
present only several illustrative results about P0. A more detailed analysis of P
will be done elsewhere. Before presenting these results we would like to mention
another possible extension/modification of the system.

4.3 Changing the mode of reasoning

In our theory P0 we formalized a “ brave” mode of applying defaults. In this
section we briefly mention how the axioms can be changed to allow for cautious
reasoning. This can be achieved by adding to P0 the axiom

defeated(D)← default(D, L, Body), (P.26)
default(D1, L1, Body1),
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holds(conflict(D1, D)),
not holds by default(prefer(D1, D)),
not holds by default(prefer(D, D1)),
hold by default(Body),
hold by default(Body1)

Let us denote the resulting program by P0,c. Now let us consider the domain
description D10 consisting of defaults and conditionals mentioned in the intro-
duction

default(d1, a, []).
default(d2, b, []).
default(d3, c, []).
conflict(d1, d2).
rule(r1,¬a, [b]). rule(r′

1,¬b, [a]).
rule(r2, d, [b]). rule(r′

2,¬b, [¬d]).
rule(r3, d, [a]). rule(r′

3,¬a, [¬d]).

It is easy to check that P0(D10) has two answer sets containing {c, a, d,¬b} and
{c, b, d,¬a} and therefore entails d and c. In contrast P0,c(D10) has one answer
set containing c and not containing d.

It is worth mentioning that it may be possible in this framework to introduce
two types of defaults - those requiring brave and cautious reasoning and add the
above axiom for the latter.

5 Hierarchical Domain Descriptions

Definition 3. We will say that a domain description D is consistent if P0(D)
is consistent, i.e., has a consistent answer set.

Obviously, not all domain descriptions are consistent; D = {p,¬p, q}, for in-
stance, is not.

(Notice that this is the intended meaning. We believe that the question of draw-
ing conclusions in the presence of inconsistency is somewhat orthogonal to the
problem we address in this paper and should be studied separately. )

In the next example inconsistency is slightly less obvious.

Example 8. The domain description D11 consists of the following three literals:

default(d, a, []).
rule(r1,¬c, [a]).
c.
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It is easy to see that P0(D11) does not have a consistent answer set. This happens
because nothing prevents rule (P0.6) of P0 from concluding that a holds by
default. This conclusion, together with fact c and rule r1 from D11 leads to
inconsistency. Notice, that addition of the rule

rule(r2,¬a, [c]).

blocks the application of (P0.6) and restore consistency. ♦

In this section we give a simple condition guaranteeing consistency of domain
descriptions of L0. The condition can be expanded to domain descriptions of L
but we will not do it in this paper. From now on, by domain descriptions we will
mean domain descriptions of L0.

We will need the following definitions.

Definition 4. The domain description D is said to be rule-consistent if the
non-defeasible part of P0(D) has a consistent answer set. (By the non-defeasible
part of P0(D) we mean the program Ps

0(D) consisting of the set {holds(l) | l ∈
facts(D)}∪laws(D) and nondefeasible rules (rules (P0.1)-(P0.3), (P0.9), (P0.12)-
(P0.14), (P0.16)-(P0.19), and (P0.21)-(P0.22) of P0).

Definition 5. A domain description D over signature σ will be called hierar-
chical if it satisfies the following conditions:

1. D is rule-consistent;
2. D does not contain statements of the form L0.3 (i.e., there are no conflicts

except those specified in P0);
3. heads of defaults in D are σ-literals or literals of the form prefer(d1, d2);
4. no literal from the head of a default in D belongs to the body of a rule in D;
5. there is a function rank from the set heads(D) of literals belonging to the

heads of defaults in D to the set of ordinals such that
(a) if l ∈ head(D) and ¬l ∈ head(D) then rank(l) = rank(¬l);
(b) if prefer(d1, d2)) ∈ head(D) and prefer(d2, d1) ∈ head(D) then

rank(prefer(d1, d2)) = rank(prefer(d2, d1));
(c) if default(d, l, [l1, . . . , ln]) ∈ D and li ∈ heads(D) then rank(l)>rank(li);
(d) if prefer(d1, d2) ∈ heads(D) and d1, d2 ∈ D then

rank(head(di)) > rank(prefer(d1, d2)) for i = 1, 2;

It is easy to check that domain descriptions D0, D1, D4, and D6 are hierarchical
while D2,D3,D7 are not. In D2 and D7, the condition (4) is violated while
(2) is not true in D3. Domain description D5 is also hierarchical. The rank
function for D5 can be given by rank(l) = 1 for l 6∈ {perfected,¬perfected},
rank(perfected) = rank(¬perfected) = 4, and rank(prefer(d1(X), d2(X))) =
rank(prefer(d2(X), d1(X))) = 2.

Theorem 1. Hierarchical domain descriptions are consistent.
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Proof. (Sketch) To prove the theorem we first simplify the program P0(D) by

(i) replacing all the occurrences of literals of the form hold([l1, . . . , ln])
and hold by default([l1, . . . , ln]) in the bodies of the rules from P0(D) by
holds(l1), . . . , holds(ln) and holds by default(l1), . . . , holds by default(ln),
respectively and

(ii) dropping the rules with these literals in the heads.

It is easy to verify that P0(D) is a conservative extension of the resulting
program P2(D) (whose language does not contain predicate symbols hold and
hold by default).

Now let us notice that, since D is a hierarchical domain description, the non-
defeasible part Ps

0(D) of P0(D) has a unique consistent answer set, say H. This
answer set can be used to further simplify P2(D) by eliminating all the occur-
rences of literals from H. This is done by using the splitting set theorem of [27]
and removing some useless rules. Finally, we drop the rule (P0.20) and replace
the occurrences of holds by default(l) and defeated(d) in P0(D) by l and d
respectively. We call the resulting program Q(D) the defeasible counterpart of
D.

Q(D) =




l. if holds(l) ∈ H (1)

l ← l1, . . . , ln, (2)
not d,
not ¬l.

if default(d, l, [l1, . . . , ln]) ∈ D
and holds(l) 6∈H,
and holds(¬l) 6∈H

d2 ← l1, . . . , ln, (3)
prefer(d1, d2),
not d1.

if d2 ∈ D,
default(d1, l, [l1, . . . , ln]) ∈ D,
holds(conflict(d1, d2)) ∈ H
and holds(l) 6∈H
and holds(¬l) 6∈H,

¬prefer(d1, d2)← prefer(d2, d1). (4)

if holds(prefer(d1, d2)) 6∈H
and holds(prefer(d2, d1)) 6∈H
and d1, d2 ∈ D

Using the splitting sequence theorem, and the assumption that D is hierarchical,
we can prove that for any σ-literal l
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P0(D) |= holds by default(l) iff Q(D) |= l.

In the last part of the proof we show that Q(D) is consistent. This implies the
consistency of P0(D). ♦

The detailed proof of the theorem 1 can be found in appendix A.

The last example in this section demonstrates the importance of the requirement
for existence of the rank function in definition 5.

Example 9. Let us consider the following domain description, D12.

default(d1, l, []).
default(d2,¬l, [l]).
prefer(d2, d1).

It is easy to see that D12 has no rank function. To show that D12 is inconsistent
it suffices to verify that P0(D12) is consistent iff the following program R is
consistent:

l ← not d1, not ¬l
¬l← l, not d2, not l
d1 ← l, not d2

Obviously, R is inconsistent. ♦

It is worth mentioning that the domain description D13 which is obtained from
D12 by removing the preference prefer(d2, d1) is consistent. This demonstrates
the difference between prioritized defaults and preferential model approaches
(see e.g. [22]). In these approaches existence of preferred models is guaranteed if
the original theory has a model and the preference relation is transitive.

6 Domain Descriptions and Prioritized Logic Programs

In this section we discuss the relationship between our theory of prioritized de-
faults and the prioritized logic programs recently introduced by G. Brewka [7].
In Brewka’s approach, a domain description is represented by a prioritized logic
program (P, <) where P is a logic program with the answer set semantics rep-
resenting the domain without preferences and < is a preference relation among
rules of P . The semantics of (P, <) is defined by its preferred answer set - answer
sets of P satisfying some conditions determined by <.

We will recall the notion of preferred answer sets from [7] and show that for a
restricted class of hierarchical domain descriptions Brewka’s approach and our
approach are equivalent. In what follows, we will use the following terminology.

A binary relation R on a set S is called strict partial order (or order) if R is
irreflexive and transitive. An order R is total if for every pair a, b ∈ S, either
(a, b) ∈ R or (b, a) ∈ R; R is well-founded if every set X ⊆ S has a minimal
element; R is well-ordered if it is total and well-founded.
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Let P be a collection of rules of the form

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where li’s are ground literals. Literals l1, . . . , lm are called the prerequisites of r.
If m = 0 then r is said to be prerequisite free. A rule r is defeated by a literal
l if l = li for some i ∈ {m + 1, . . . , n}; r is defeated by a set of literal X if X
contains a literal that defeats r. A program P is prerequisite free if every rule in
P is prerequisite free.

For a program P and a set of literals X, the reduct of P with respect to X,
denoted by XP , is the program obtained from P by

– deleting all rules with prerequisite l such that l 6∈X; and
– deleting all prerequisites of the remaining rules.

Definition 6. (Brewka [7]) Let (P, <) be a prioritized logic program where P
is prerequisite free and < is a total order among rules of P . Let
C<(P ) =

⋃∞
i=1 Si where

S0 = ∅

Sn =
{

Sn−1 if rn is defeated by Sn−1
Sn−1 ∪ {head(rn)} otherwise

and rn is the nth rule in the order <. Then

– An answer set A of P is called a preferred answer set2 of (P, <) if A = C<(P ).
– For an arbitrary prioritized logic program (P, <), a set of literals A is called

a preferred answer set of (P, <) if it is an answer set of P and A = C<′(AP )
for some total order <′ that extends <.

– A prioritized program (P, <) entails a query q, denoted by (P, <) |∼ q, if for
every preferred answer set A of (P, <), q ∈ A.

There are several substantial differences between domain descriptions of L0 and
prioritized logic programs. To compare the two approaches we need to limit our-
self to domain descriptions without dynamic priorities whose preference relation
is transitive and is defined only on conflicting defaults. More precisely:

Definition 7. A domain description D of L0 is said to be static if it satisfies
the following conditions:

– laws of D do not contain occurrences of the predicate symbol prefer;
– the transitive closure of the preference relation {〈d1, d2〉 : d1, d2 are defaults

in D such that prefer(d1, d2) ∈ D}, denoted by prefer∗
D, is an order on

defaults of D;

2 Strongly preferred answer set in Brewka’s terminology.
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– for every literal of the form prefer(d1, d2) ∈ D, head(d1) and head(d2) are
contrary literals.

A static domain description D can be naturally encoded by a prioritized logic
program Π(D) = (B(D), <D) defined as follows.

Π(D) =




B(D) =




l. if l is a σ-literal in D (1)

l ← l1, . . . , ln. (2)
if rule(r, l, [l1, . . . , ln]) ∈ D

d : l ← l1, . . . , ln, not ¬l. (3)
if default(d, l, [l1, . . . , ln]) ∈ D

d1 <D d2 if 〈d1, d2〉 ∈ prefer∗
D (4)

We say that a domain description D entails a σ-literal l in the sense of Brewka
if Π(D) |∼ q.

The following theorem shows that for static and hierarchical domain descriptions
Brewka’s approach coincides with ours.

Theorem 2. For every hierarchical and static domain description D and for
every σ-literal l,

D |= holds by default(l) if and only if Π(D) |∼ l.

Proof. (Sketch) First, by “partially evaluating” D with respect to non-defeasible
information and removing various useless statements we reduce D to a simpler
domain description DN with the following property:

(i) D |= holds by default(l) iff D |= holds(l) or DN |= holds by default(l) and

(ii) Π(D) |∼ l iff D |= holds(l) or Π(DN ) |∼ l.

The domain description DN can be represented by the program R(DN ) consist-
ing of the rules

R(DN )




l ← l1, . . . , ln, not d, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ DN

d2 ← l1, . . . , ln, not d1. (2)

if d2 ∈ DN ,
default(d1, l, [l1, . . . , ln]) ∈ DN ,
prefer(d1, d2) ∈ DN ,
and head(d2) = ¬l

and the set pref = {prefer(d1, d2) : prefer(d1, d2) ∈ DN}.
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DN can also be represented by the prioritized logic program
Π(DN ) = (B(DN ), <DN

) where B(DN ) consists of the following rules:

B(DN )




l ← l1, . . . , ln, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ DN

We then show that

(iii) for each answer set A of R(DN ), the set B = A∩ lit(σ) is a preferred answer
set of Π(DN ); and

(iv) for each preferred answer set A of Π(DN ) there exists an answer set B of
R(D) such that B ∩ lit(σ) = A.

The conclusion of the theorem follows from (i)-(iv). ♦

Detailed proof of the theorem can be found in appendix B.

The theorem 2 can be used to better understand properties of both formal-
izations. It implies, for instance, that queries to Brewka’s prioritized programs
corresponding to domain descriptions of L0 can be answered by the SLG in-
ference engine. It can also be used for a simple proof of the fact that static,
hierarchical domain descriptions are monotonic with respect to prefer, i.e. for
any such D and D′ with preference relations P and P ′ if P ⊆ P ′ and D |= l then
D′ |= l.

The next example demonstrates differences between reasoning with domain de-
scriptions and prioritized logic programs.

Example 10. Let us consider the domain description D14 which consists of the
following L0-literals:

rule(r1,¬l1, [l2]).
rule(r2,¬l2, [l1]).
default(d1, l1, []).
default(d2, l2, []).
conflict(d1, d2).
prefer(d2, d1).

It is easy to see that in this domain description d2 is applicable, d1 is defeated
and hence, the program P0(D14) has a unique answer set containing l2 and ¬l1.

The prioritized logic program B(D14) which corresponds to D14 consists of the
following rules:

r1 : ¬l1 ← l2.
r2 : ¬l2 ← l1.
d1 : l1 ← not ¬l1.
d2 : l2 ← not ¬l2.
d2 < d1.



190 Michael Gelfond and Tran Cao Son

and has two preferred answer sets: {l2,¬l1} and {l1,¬l2}. The former corresponds
to the preference orders in which r2 < r1 and the latter to the preference order
r1 < r2 < d2 < d1. ♦

The above example shows that Brewka’s approach differs from ours in the way
priority is dealt with. In our approach, we distinguish rules from defaults and
only priority between defaults are considered and enforced. This is not so in
Brewka’s approach where priority is defined among rules of the logic program
representing the domain in consideration. The completion of the preference order
could “overwrite” the preference order between defaults as the above example
has shown.

7 Conclusions

In this paper we

• introduced a language L(σ) capable of expressing strict rules, defaults with
exceptions, and the preference relation between defaults;

• gave a collection of axioms, P, defining the entailment relation between domain
descriptions of L(σ) and queries of the form holds(l) and holds by default(l);

• demonstrated, by way of examples, that the language and the entailment rela-
tion is capable of expressing rather complex forms of reasoning with prioritized
defaults;

• gave sufficient conditions for consistency of domain descriptions;

• described a class of domain descriptions for which our treatment of prioritized
defaults coincides with that suggested by G. Brewka in [7].

Defining reasoning with prioritized defaults via axioms of P allows to use logic
programming theory to prove consistency and other properties of domain de-
scriptions of L. Logic programming also provides algorithms for answering queries
to such domain descriptions. This work can be extended in several directions.
First, the results presented in the paper can be generalized to much broader
classes of theories of L. We also plan a more systematic study of the class of
logic programs defined by P (i.e., programs of the form P ∪D). It may be inter-
esting and useful to check if cautious monotony [19] or other general properties
of defeasible inference ([26,12,13,14]) hold for this class of programs. Another
interesting class of questions is related to investigating the relationship between
various versions of P. Under what conditions on D, for instance, we can guar-
antee that P(D) is equivalent to P0(D)? What is the effect of expanding P by
the transitivity axiom for prefer? Should this axiom to be made defeasible? etc.
Finally, we want to see if a better language can be obtained by removing from
it the notion of conflict. In the current language the statement prefer(d1, d2)
stops the application of default d2 if defaults d1 and d2 are in conflict with
each other and the default d1 is applicable. It may be more convenient to make
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prefer(d1, d2) simply mean that d2 is stoped if d1 is applicable. More experience
with both languages is needed to make a justified design decision. We hope that
answers to these and similar questions will shed new light on representation and
reasoning with prioritized defaults.
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Appendix A

In this appendix we prove theorem 1. We need the following lemmas.

Lemma 1. 3Let T be a logic program and

q ← Γ1
q ← Γ2
. . .

be the collection of all rules of T with the head q. Then the program Q obtained
from T by replacing rules of the form

p← ∆1, q, ∆2

by the set of rules

p← ∆1, Γ1, ∆2
p← ∆1, Γ2, ∆2
. . .

is equivalent to T , i.e., T and Q have the same consistent answer sets.

Proof. Let us denote the set of all rules removed from T by S and let

R = Q∪ S.

R can be viewed as a union of T and the set of new rules obtain from T by
the application of the cut inference rule. Since the cut is sound with respect to
constructive logic N2 [31] which is an extension of the logic N from [29], T and
R are equivalent in N2. As shown in [31], programs equivalent in N2 have the
same consistent answer sets, i.e.,

(a) programs T and R are equivalent.

3 This is a well-know property of logic programs called “partial evaluation” in [3,4].
We were, however, unable to find a proof of it for an infinite P .
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This means that to prove our lemma it suffices to show equivalence of R and Q.

Let QA and SA be reducts of Q and S with respect to set A of literals (as in
the definition of answer sets). We show that A is the minimal set closed under
QA iff it is the minimal set closed under QA ∪ SA.

(b) Let A be the minimal set closed under QA. We show that it is closed under
SA.

Consider a rule

p← ∆A
1 , q, ∆A

2 ∈ SA

s.t. {∆A
1 , q, ∆A

2 } ⊆ A. (Here by ∆A
i we denote the result of removing from ∆i all

the occurrences of not l s.t. l 6∈A. Obviously, ∆A
i ’s above do not contain not .)

From the assumption of (b) and the fact that q ∈ A we have that there is i s.t.
a rule

q ← ΓA
i ∈ QA

with ΓA
i ⊆ A. This implies that there is a rule

p← ∆A
1 , ΓA

i , ∆A
2 ∈ QA

whose body is satisfied by A, and therefore p ∈ A. This implies that A is the
minimal set closed under QA ∪ SA.

(c) Let A be the minimal set closed under QA ∪ SA. We will show that it is the
minimal set closed under QA.

A is obviously closed under QA. Suppose that there is B ⊂ A closed under QA.
As was shown above it would be also closed under SA which contradicts our
assumption.

From (b), (c) and the definition of answer set we have that R and Q are equiv-
alent, which, together with (a), proves the lemma. ♦

To formulate the next lemma we need the following notation: Let T be a (ground)
logic program not containing negative literals ¬l and let p be a unary predicate
symbol from the language of T . By T ∗ we denote the result of replacing all
occurrences of atoms of the form p(t) in T by t. Notice, that T ∗ can be viewed as a
propositional logic program with different terms viewed as different propositional
letters. Let us also assume that terms of the language of T do not belong to the
set of atoms in this language.

Lemma 2. Let T and p be as above. Then A is an answer set of T iff A∗ is an
answer set of T ∗.

Proof. If T does not contain not the lemma is obvious. Otherwise, notice that
by definition of answer set, A is an answer set of T iff it is an answer set of T A.
Since T A does not contain not this happens iff A∗ is the answer set of (T A)∗.
To complete the proof it remains to notice that (T A)∗ = (T ∗)A∗

. ♦
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Lemma 3. Let D be a domain description. By P2(D) we denote the program
obtained from P0(D)

– replacing all occurrences of literals hold([l1, . . . , ln])
and hold by default([l1, . . . , ln]) in the bodies of the rules from P0(D) by
holds(l1), . . . , holds(ln) and holds by default(l1), . . . , holds by default(ln),
respectively (we denote the resulting program by P1(D));

– Dropping the rules with heads formed by literals hold and hold by default.

Then

(a) if A is an answer set of P0(D) then A \ lit({hold, hold by default}) is an
answer set of P2(D);

(b) if A is an answer set of P2(D) then
A ∪ {hold([l1, . . . , ln]) : holds(l1), . . . , holds(ln) ∈ A} ∪

{hold by default([l1, . . . , ln]) : holds by default(l1) ∈ A, . . . ,
holds by default(ln) ∈ A}

is an answer set of P0(D).

Proof. First notice that by Lemma 1, programs P0(D) and P1(D) are equivalent.
Then observe that atoms formed by predicate symbols hold and hold by default
form the complement of a splitting set of program P1. The conclusion of the
lemma follows immediately from the splitting set theorem ([27]) and the fact
that rules defining hold and hold by default contains neither not nor ¬. ♦

Lemma 4. Let D be a hierarchical domain description over signature σ and

H = {holds(l) : Ps
0(D) |= holds(l)} ∪ {defeated(d) : Ps

0(D) |= defeated(d)}.

By P3(D) we denote the program consisting of the following rules

holds by default(l). if holds(l) ∈ H (1)

holds by default(l)← holds by default(l1), (2)
...
holds by default(ln),
not defeated(d),
not holds by default(¬l).

if default(d, l, [l1, . . . , ln]) ∈ D
and holds(l) 6∈H,

and holds(¬l) 6∈H

defeated(d2)← holds by default(l1), (3)



194 Michael Gelfond and Tran Cao Son

...
holds by default(ln),
holds by default(prefer(d1, d2))
not defeated(d1).

if d2 ∈ D,

default(d1, l, [l1, . . . , ln]) ∈ D,

holds(conflict(d1, d2)) ∈ H,

and holds(l) 6∈H,

and holds(¬l) 6∈H

holds by default(¬prefer(d1, d2))← holds by default(prefer(d2, d1))(4)

if holds(prefer(d1, d2)) 6∈H,

and holds(prefer(d2, d1)) 6∈H,

and d1, d2 ∈ D

¬holds by default(l)← holds by default(¬l). (5)

Then, A is an answer set of P2(D) iff A = laws(D)∪H∪B where B is an answer
set of P3(D).

Proof. Let U0 be the set of literals formed by predicate symbols holds, rule
and default. U0 is a splitting set of program P2(D) and hence A is an answer
set of P2(D) iff A = A0 ∪A1 where A0 is the answer set of program bU0(P0(D))
consisting of rules of P2(D) whose heads belong to U0 and A1 is an answer set
of the partial evaluation, R = eU0(tU0(P0(D)), A0), of the rest of the program
with respect to U0 and A0. It is easy to see that the program R consists of the
rules of P3(D) and

(a) rules of the type (2) where holds(l) or holds(¬l) is in H;

(b) rules of the type (3) where holds(l) ∈ H or holds(¬l) ∈ H;

(c) rules of the type

holds by default(l)← holds by default(l1),
. . .
holds by default(ln),

for each rule rule(r, l, [l1, . . . , ln]) ∈ D;

(d) rules of the type (4) where holds(prefer(d1, d2)) ∈ H
or holds(prefer(d2, d1)) ∈ H;
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(e) facts of the type defeated(d) where d is a default in D with the head l s.t.
holds(¬l) ∈ H.

From the rule (P0.9) of program P0 we have that facts of the type (e) belong
to H and hence to prove the lemma it is enough to show that the rules of the
type (a)-(d) can be eliminated from R without changing its answer sets. To
do that let us first make the following simple observation. Consider a program
Q1 containing a rule p ← Γ and the fact p and let Q2 be obtained from Q1
by removing the rule. Q1 and Q2 are obviously equivalent in the logic N2 and
hence have the same answer sets. Similarly, we can show that a rule whose body
contradicts a fact of the program can be removed from the program.

(1a) Consider a rule r of R of the type (a).
If holds(l) ∈ H then, from rule (4) of P0 we have that holds by default(l) ∈ R.
Hence, by the above observation, r can be removed from R without changing its
answer sets.
If holds(¬l) ∈ H then from rule (4) of P0 we have that holds by default(¬l) ∈ R
which contradicts the body of r. Hence r is useless and can be safely removed.

(1b) Now consider a rule r of the type (b). We will show that its head, defeated
(d2), is a fact of R.

First notice that, if holds(¬l) ∈ H then Ps
0(D) |= defeated(d1). Therefore,

defeated(d1) ∈ A0 and hence, in this case, r 6∈ R.
Suppose now that holds(l) ∈ H. Consider two cases:

(i) The head l of d2 is σ literal.
By definition of rules of type (b) we have that holds(conflict(d1, d2)) ∈ H.
From condition (2) of definition 5 of hierarchical domain description and the
rules (P0.11), (P0.21), and (P0.22) of P0 we conclude that the head of default
d1 is literal ¬l. Since r is of type (b), this means that holds(¬l) ∈ H and, from
the rule (P0.9) of P0 we have that defeated(d2) ∈ H.

(ii) The head l of d2 is of the form prefer(di, dj).
From conditions (2), (3) of definition 5 and the rule (P0.11), (P0.21), and (P0.22)
of D we have that the head of d1 is prefer(dj , di). From rule (P0.14) of P0 we
have that ¬prefer(di, dj) ∈ H. Finally, from rule (P0.9) of P0 we have that
defeated(d2) ∈ H.
This demonstrates that the rules of the type (b) can be removed from R without
changing its answer sets.

(1c) It is easy to check that by the condition (4) of definition 5 the body of a
rule of the type (d) is satisfied iff holds(l1), . . . , holds(ln) ∈ H and hence the
head of such a rule is in H or the rule is useless.

(1d) Similar argument can be used for the rules of the type (c). The conclusion of
the lemma follows now from the observation above and the splitting set theorem.
♦

Let us consider a logic program Q(D) obtained from program P3(D) by
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(a) removing rules of the type (5);

(b) replacing literals of the form holds by default(l) and defeated(d) by l and
d respectively.

The program Q(D) is called the defeasible counterpart of D and consists the
following rules:

Q(D) =




l. if holds(l) ∈ H (1)

l ← l1, . . . , ln, (2)
not d,
not ¬l.

if default(d, l, [l1, . . . , ln]) ∈ D
and holds(l) 6∈H,
and holds(¬l) 6∈H

d2 ← l1, . . . , ln, (3)
prefer(d1, d2)
not d1.

if d2 ∈ D,
default(d1, l, [l1, . . . , ln]) ∈ D,
holds(conflict(d1, d2)) ∈ H
and holds(l) 6∈H
and holds(¬l) 6∈H

¬prefer(d1, d2)← prefer(d2, d1). (4)

if holds(prefer(d1, d2)) 6∈H
and holds(prefer(d2, d1)) 6∈H
and d1, d2 ∈ D

Lemma 5. Let D be a hierarchical domain description over signature σ and
let H be the set of literals defined as in Lemma 4. Then the program Q(D) is
consistent.

Proof. First let us notice that the set F of facts of the form (1) from the program
Q(D) form a splitting set of this program. Since D is rule-consistent so is F . This
implies that Q(D) is consistent iff the result Q0 of partial evaluation of Q(D)
with respect to F is consistent. Let Q1 be the result of removal from Q0 all the
rules whose bodies contain literals not belonging to the heads of rules from Q0.
Obviously, Q(D) is equivalent to Q1.

To prove consistency of Q1 we construct its splitting sequence and use the split-
ting sequence theorem from [27].
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Since D is hierarchical it has a rank function rank. Let µ be the smallest or-
dinal number such that rank(l) < µ for every l from the domain of rank. Let
heads(Q1) be the set of literals from the heads of rules in Q1 and

Uα = {l : l ∈ lit(σ) ∩ heads(Q1) s.t. rank(l) < α}∪
{d ∈ heads(Q1) : rank(head(d)) < α}∪
{prefer(d1, d2) ∈ heads(Q1) : rank(prefer(d1, d2)) < α}∪
{¬prefer(d1, d2) : prefer(d2, d1) ∈ heads(Q1), rank(prefer(d2, d1)) < α}

The sequence U = 〈Uα〉α<µ is monotone (Uα ⊂ Uβ whenever α < β) and
continuous (for each limit ordinal α < µ, Uα =

⋃
β<α Uβ). Using the property

of the rank function from the definition of hierarchical domain description it is
not difficult to check that for each α < µ, Uα is a splitting set of Q1 and that⋃

α<µ Uα is equal to the set of all literals occurring in Q1. Hence, U is a splitting
sequence of Q1. By the splitting sequence theorem existence of an answer set of
Q1 follows from existence of a solution to Q1 (with respect to U). Let Tα be a
collection of all the rules from Q1 whose heads belong to Uα. To show existence
of such a solution it suffices to

(i) assume that for α such that α+1 < µ the program Tα has a consistent answer
set Aα;

(ii) use this assumption to show that Tα+1 also has a consistent answer set;

(iii) show that
⋃

α<µ Aα is consistent.

Let us show (ii) and (iii). Let T be the result of partial evaluation of the program
Tα+1 with respect to the set Aα. T can be divided into three parts consisting of
rules of the form

(a) d2 ← not d1.

and

(b) l← not d, not ¬l where l is a σ-literal

and

(c1) prefer(di, dj)← not d, not ¬prefer(di, dj)

(c2) ¬prefer(dm, dn)← prefer(dn, dm).

respectively.

To show consistency of the program T (a) consisting of rules (a) we first observe
that, by construction, if a rule r of type (a) is in T then d1, d2 are conflict-
ing defaults and hence, by condition 2 of definition 5 and the rule (P0.11),
(P0.21), and (P0.22) of P0, their heads are either contrary σ-literals or of the
form prefer(di, dj) and prefer(dj , di) where i 6= j. Consider the dependency
graph D of S1. D obviously does not contain cycles with positive edges. We will
show that it does not contain odd cycles with negative edges. (Programs with



198 Michael Gelfond and Tran Cao Son

this property are called call-consistent). Suppose that d1, . . . , d2n+1, d1 is such a
cycle. Since di and di+1 (i = 1, . . . , 2n) are conflicting defaults we have that d1
and d2n+1 have the same heads (clause (2) of the definition and rules (P0.11),
(P0.21), and (P0.22) of P0). Since d1 and d2n+1 are conflicting their heads must
be different. Hence our program has no odd cycles. As was shown by Fages [17]
(see also [15]), call consistent programs with dependency graphs without positive
cycles have an answer set.

To show consistency of the program T (a, b) consisting of rules (a) and (b) of T it
suffices to take an arbitrary answer set of program T (a) and use the splitting set
theorem. The corresponding reduct R will consist of rules of the form l← not ¬l.
Let X0 be the set of all positive literals from the heads of R and X1 be the set
of negative literals of the form ¬l from the heads of R such that l 6∈X0. It is
easy to see that the set X0 ∪X1 is a consistent answer set of R.

Now we need to show consistency of the partial evaluation Tr of T with respect
to some answer set of T (a, b). Tr consists of rules

prefer(di, dj)← not ¬prefer(di, dj)

and

¬prefer(dm, dn)← prefer(dn, dm).

Let heads(Tr) be the set of the heads of the rules of Tr and let us assume that
each default is associated with a unique index i. Consider a set X0

X0 = {prefer(di, dj) : prefer(di, dj) ∈ heads(Tr), prefer(dj , di) 6∈heads(Tr)}∪
{prefer(di, dj) : i < j if prefer(di, dj) ∈ heads(Tr) and prefer(dj , di) ∈

heads(Tr)}
Now let

X = X0 ∪ {¬prefer(dn, dm) : prefer(dm, dn) ∈ X0}
Obviously, X is consistent. To show that it is a consistent answer set of Tr let
us construct TX

r and show that

prefer(di, dj) ∈ TX
r iff prefer(di, dj) ∈ X.

Let

prefer(di, dj) ∈ X.

Then, by construction of X,

prefer(dj , di) 6∈X, hence

¬prefer(di, dj) 6∈X, i.e.

prefer(di, dj) ∈ TX
r .

Similar argument demonstrates equivalence in the opposite direction. This im-
plies that X is a consistent answer set of Tr. By the splitting set theorem we
conclude consistency of T and Tα+1. Statement (iii) follows immediately from the
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above construction of answer set of Tα+1 and hence, from the splitting sequence
theorem we have that Q(D) is consistent. ♦

Lemma 6. Let D be a hierarchical domain description over signature σ and let
Q(D) be the program defined as in Lemma 5. Then for any literal l of L0(σ)

D |= holds by default(l) iff Q(D) |= l.

Proof. By definition,

1. D |= holds by default(l) iff P0(D) |= holds by default(l).

From (1) and lemma 3 we have that

2. D |= holds by default(l) iff P2(D) |= holds by default(l).

From (2) and lemma 4 we have that

3. D |= holds by default(l) iff P3(D) |= holds by default(l).

Let P4(D) be the program obtained from the program P3(D) by removing the
rules of type (5) from P3(D). It is easy to see that P4(D) is the bottom program
of P3(D) with respect to the splitting set consisting of all positive literals of the
program P3(D).

Now let us consider the program Qp(D) obtained from Q(D) by replacing every
negative literal l = ¬p(t) by the atom l = p̄(t) where p̄ is a new predicate symbol.

From (3) and lemma 2 we have that

4. P4(D) |= holds by default(l) iff Qp(D) |= l.

As was shown in [21] answer sets of Q(D) coincide with answer sets (stable
models) of Qp(D) which do not contain pairs of atoms of the form l, l. Let us
show that no answer set A of Qp(D) contains such literals. Consider two cases:

(i) l is a σ-literal. Suppose that l ∈ A. Obviously there is no rule of the type
(2) in Qp(D) whose head is l and whose body is satisfied by A. Since D is
rule-consistent l 6∈ Qp(D) and hence l 6∈A.

(ii) l = prefer(di, dj). There are free types of rules in Qp(D) which contain
literals formed by prefer in the heads:

(a). prefer(di, dj).

from rule (1) of Q(D)

(b). prefer(di, dj)← Γ, not prefer(di, dj).

from rule (2) of Q(D) and

(c). prefer(di, dj)← prefer(dj , di).

from rule (2) of Q(D).
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Suppose that prefer(di, dj) ∈ A. Then, from the rule consistency of D we
have that prefer(dj , di) does not belong to (a). Since, by rule (c) we have that
prefer(dj , di) ∈ A and hence prefer(dj , di) 6∈A. This implies that prefer(di, dj)
6∈A.

Hence, we have that

5. Qp(D) |= l iff Q(D) |= l.

It follows from (5) and (4) that

6. P4(D) |= holds by default(l) iff Q(D) |= l.

Since Q(D) is consistent, we can conclude that no answer set of P4(D) containing
holds by default(l) and holds by default(¬l). By the splitting theorem, we have
that P3(D) is consistent and moreover,

7. P3(D) |= holds by default(l) iff P4(D) |= holds by default(l).

The proof of the lemma follows from (7), (6), and (3). ♦

The proof of the theorem 1 follows immediately from Lemmas 5 and 6.

Appendix B

In this appendix we prove the theorem 2. By Lemma 6, we have that for any
σ-literal l

D |= holds by default(l) iff Q(D) |= l

where Q(D) is the program defined in Lemma 5. Hence, to prove the theorem,
it suffices to show that

Q(D) |= l iff Π(D) |∼ l.

Let us introduce some useful terminology and notation. Let D be a hierarchical
domain description and

U(D) = {l : l is a L0(σ) literal and Ps
0(D) |= holds(l)}

where Ps
0(D) is the non-defeasible part of P0(D).

To simplify the proof let us assume that the set of defaults in D has the cardi-
nality less than or equal to ω and that the minimal value of the rank function
of D is 1. Let DN be the domain description obtained from D as follows:

(i) removing all rules and σ-literals from D;
(ii) removing all defaults d ∈ D such that head(d) ∈ U(D) or ¬head(d) ∈ U(D);
(iii) removing every occurrence of σ-literal l ∈ U(D) from the bodies of the

remaining defaults of D; We denote the resulting domain description D0.
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(iv) Let DM = ∩ω
r=0Dr where Dr is obtained from Dr−1 by removing from it

every default of the rank r whose body contains a literal not belonging to
the head of any default in Dr−1; DN is obtained from DM by removing all
literals of the form prefer(d1, d2) such that d1 6∈ DM or d2 6∈ DM .

The domain description DN will be called the normalization of D.

A hierarchical domain description D is said to be normalized if D = DN .

Let Q(D) be the defeasible counterpart of a static domain description D and let
R(D) be obtained from Q(D) by

(a) removing rules of the type (4);
(b) performing partial evaluation of the resulting program with respect to U(D).

This construction, together with the following simple lemma, will be frequently
used in our proof.

Lemma 7. For any static and hierarchical domain description D and σ-literal
l 6∈U(D),

Q(D) |= l iff R(D) |= l.

Proof. First notice that since D is static ¬prefer(d1, d2) ∈ U(D) or
prefer(d2, d1) 6∈U(D). Hence the program Qa(D) obtained from Q(D) by step
(a) has the same answer sets as Q(D).

Now notice that since D is static the heads of rules of the type (2) in Q(D)
belong to lit(σ). By construction of Q(D) these heads do not belong to U(D).
Therefore, U(D) is a splitting set of Qa(D) and conclusion of the lemma follows
from the splitting set theorem. ♦

The proof of the theorem 2 will be based on the following lemmas.

Lemma 8. Let DN be the normalization of a static and hierarchical domain
description D. Then, for every σ-literal l such that l 6∈U(D)

D |= holds by default(l) iff DN |= holds by default(l).

Proof. Let l be a σ-literal such that l 6∈U(D). Since D is hierarchical we have
that by Lemma 6 it suffices to show that

a. Q(D) |= l iff Q(DN ) |= l.

Domain descriptions D and DN are static and hierarchical and hence, by Lemma
7 we have that (a) is true iff

b. R(D) |= l iff R(DN ) |= l.

Let D∗ be the domain description obtained from D by performing the steps (i),
(ii), and (iii) in the construction of DN . Obviously, DN ⊆ D∗. We first prove
that
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c. R(D) and R(D∗) are identical.

Let

c1. r ∈ R(D)

We consider two cases:

(i) head(r) ∈ lit(σ) , i.e.,

r is of the form l0 ← Γ, not d, not ¬l0

where Γ consists of σ-literals not belonging to U(D). By construction of
R(D) and Q(D) this is possible iff

c2. neither l0 nor ¬l0 is in U(D) and there is a set of literals ∆ ⊆ U(D)
such that default(d, l0, [∆, Γ ]) ∈ D.

From definition of DN we have that (c2) holds iff

c3. default(d, l0, [Γ ]) ∈ D∗.

Notice also that, by the same definition, U(D∗) consists of literals formed by
prefer and conflict and hence do not contain σ-literals. This implies that
(c3) holds iff

c4. r ∈ Q(D∗).

Since D is static, literals from U(D∗) do not belong to rules (2) of Q(D∗).
This implies that (c4) holds iff

c5. r ∈ R(D∗).
(ii) head(r) 6∈lit(σ), i.e.

r is of the form d2 ← Γ, not d1

where Γ consists of σ-literals not belonging to U(D).

By construction of R(D) this is possible iff

c6. default(d1, l0, [∆, Γ ]), default(d2,¬l0, [∆1, Γ1]) ∈ D
for some ∆ ⊆ U(D), ∆1 ⊆ U(D) and Γ1 consisting of σ-literals not belonging
to U(D); l0,¬l0 6∈U(D), and prefer(d1, d2) ∈ D.

It follows from definition of D∗ that (c6) holds iff

c7. default(d1, l0, [Γ ]) ∈ D∗, default(d2,¬l0, [Γ1]) ∈ D∗ and
prefer(d1, d2) ∈ D∗.

which holds iff

c8. r ∈ R(D∗).
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From (c1), (c5) and (c8) we have that R(D) and R(D∗) are identical. Therefore,
to prove (b) we will show

d. R(D∗) |= l iff R(DN ) |= l.

Let

e. A be an answer set of R(D∗).

Let

f. B = A \ {d : d ∈ D∗ \ DN}.
We will prove that

d1. B is an answer set of R(DN ).

By construction of R(D∗) and R(DN ) it is easy to see that

d2. (R(DN ))B ⊆ (R(D))A.

Hence,

d3. B is closed under the rules of (R(DN ))B .

Assume that there exists a set of literals C ⊂ B, which is closed under the rules
of (R(DN ))B . Let

d4. D = (C ∩ lit(σ)) ∪ (A \ lit(σ)).

We will prove that

d5. D is closed under the rules of (R(D∗))A.

By construction of D,

d6. D is closed under the rules of (R(D∗))A whose heads do not belong to lit(σ).

Consider a rule

e0. l0 ← Γ ∈ (R(D∗))A such that

e1. Γ ⊆ B.

By construction of (R(D∗))A, this is possible if there exists a default d,

e2. default(d, l0, [Γ ]) ∈ D∗,

e3. ¬l0 6∈B, d 6∈A,

From (e2) and the fact that C is closed under the rules of (R(DN ))B , by con-
struction of DN , we conclude that

e4. default(d, l0, [Γ ]) ∈ DN .

which, together with (e3), implies that

e5. l0 ← Γ ∈ (R(DN ))B
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Since C is closed under the rules of (R(DN ))B , (e5) together with (e1), implies
that l0 ∈ C. This proves that D is closed under the rules of (R(D∗))A with σ-
literals in their heads. This, together with (d6), implies (d5), and hence, implies
that, A is not an answer set of R(D∗). This contradiction proves (d1).

Now, let

f1. A be an answer set of R(DN ),

and

f2. B = A ∪ {d : d ∈ D∗ \ DN ,∃d′ ∈ DN , prefer(d′, d) ∈ D∗, body(d′) ⊆ A}.
We will prove that B is an answer set of R(D∗) by showing that B is a minimal
set of literals closed under the rules of (R(D∗))B .

Since A is an answer set of R(DN ) we can conclude that

f3. for any d ∈ D∗ \ DN , body(d) is not satisfied by A.

This, together with the construction of B and the fact that every rule of (R(D∗))B

is of the form l← Γ or d← Γ where Γ is the body of some default in D∗, implies
that

f4. B is closed under the rules of (R(D∗))B .

We need to prove the minimality of B. Assume the contrary, there exists a set
of literals C ⊂ B that is closed under the rules of (R(D∗))B . Let

f5. D = C \ (B \A).

Obviously, D ⊂ A. Since (R(DN ))A ⊆ (R(D∗))B), it is easy to check that D
is closed under the rules of (R(DN ))A which contradicts the fact that A is an
answer set of R(DN ), i.e., we have proved that

f6. B is an answer set of R(D∗).

From (e), (d1), (f1), and (f6) we can conclude (d). which, together with (a), (b),
and (c) proves the lemma. ♦

The next lemma shows that for a static and hierarchical domain description, the
program B(D) can also be simplified.

Lemma 9. Let D be a static and hierarchical domain description and DN be
its normalization. Then, for each σ-literal l such that l 6∈U(D),

Π(D) |∼ l if and only if Π(DN ) |∼ l.

Proof. First, observe the following for prioritized programs.

Let (Q, <) be a prioritized program where Q is a defeasible program without
facts, i.e., each rule in Q contains at least a negation-as-failure literal. Let P
be a strict program, i.e., no rule in P contains a negation-as-failure literal. Let
head(Q) be the set of literals belonging to the heads of Q and body(P ) be the set
of literals belonging to the body of rules of P . Assume that head(Q)∩body(P ) =
∅. Then, we have that
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(i) A is a preferred answer set of (P ∪Q, <) iff A = AP ∪ AQ where AP is the
answer set of P and AQ is a preferred answer set of (QP , <) where QP is
the partial evaluation of Q with respect to AP .

(ii) Let P ′ be a strict program equivalent to P . Then, (P ∪Q, <) and (P ′∪Q, <)
are equivalent.

(iii) Let R be the set of rules in Q such that for every r ∈ R, P |= head(r) or
P |= ¬head(r). Then, (P ∪Q, <) and (P ∪Q \R, <) are equivalent.

Let us denote the program consisting of rules (3) of B(D) by Q and P = B(D)\Q.
Obviously,

a. Q is a defeasible logic program without facts and P is a strict program.

Since D is hierarchical, we have that

b. head(Q) ∩ body(P ) = ∅.
Let U0(D) be the set of σ-literals belonging to U(D). It is easy to see that U0(D) is
the unique answer set of P , i.e., U0(D) and P are equivalent. Therefore, together
with (a) and (b), by (ii) we can conclude that

c. Π(D) |∼ l iff (U0(D) ∪Q, <D) |∼ l.

Let R be the set of rules in Q such that for every r ∈ R, head(r) ∈ U0(D) or
¬head(r) ∈ U0(D), then by (iii) we know that

d. (U0(D) ∪Q, <D) |∼ l iff (U0(D) ∪Q \R, <D) |∼ l.

It is easy to see that U0(D) is a splitting set of U0(D) ∪ Q \ R. Let S be the
reduct of U0(D) ∪Q \R with respect to U0(D).

As in the previous proof, let D∗ be the domain description obtained from D by
performing the steps (i), (ii), and (iii) in the construction of DN . We will prove
that S is identical to B(D∗). Let

e1. r ∈ S.

It means that r has the form

e2. l← Γ, not ¬l.

where Γ is a set of σ-literals containing no literals from U0(D). By construction
of S, (e2) holds iff

e3. l 6∈U0(D), ¬l 6∈U0(D), and there exists a set of literals ∆ ⊆ U0(D) such that
default(d, l, [Γ, ∆]) ∈ D.

From the definition of D∗, (e3) holds iff

e4. default(d, l, [Γ ]) ∈ D∗

By definition of B(D∗) and the definition of D∗, (e4) holds iff

e5. r is a rule in B(D∗).
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From (e1) and (e5) we can conclude that

e. S is identical to B(D∗).

From (e), (i), (c), and (d), and the splitting set theorem, we have that

f. Π(D) |∼ l iff l ∈ U(D) or Π(D∗) |∼ l.

This, implies that to prove the lemma, it suffices to show that

g. Π(D∗) |∼ l iff Π(DN ) |∼ l.

To prove (g) we first prove that

g1. B(D∗) and B(DN ) are equivalent.

Let

g2. A be an answer set of B(D∗).

Since DN ⊆ D∗, we have that

g3. (B(DN ))A ⊆ (B(D∗))A

which immediately implies that

g4. A is closed under the rules of (B(DN ))A.

Furthermore, it is easy to prove that if B ⊂ A is closed under the rules of
(B(DN ))A then B is closed under the rules of (B(D∗))A. This, together with
(g4), implies that

g5. A is an answer set of B(DN ).

Now, let

g6. A be an answer set of B(DN ).

Since for any rule

g7. l← Γ ∈ (B(D∗))A \ (B(DN ))A

there exists a default d such that

g8. default(d, l, [Γ ]) ∈ D∗ \ DN .

Hence, we can conclude that

g9. if r is a logic programming rule in (B(D∗))A \ (B(DN ))A then body(r) is not
satisfied by A.

This, together with (g6) and the fact that (B(DN ))A ⊆ (B(D∗))A, implies that

g10. A is an answer set of B(D∗).

From (g2), (g5), (g6), and (g10) we can conclude (g1).

The conclusion (g) follows from (g1) and the fact that A(B(D∗) is identical to
A(B(DN ). ♦
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The above two lemmas show that for any static and hierarchical domain descrip-
tion D and σ-literal l 6∈U(D)

(i) Q(D) |= l iff R(DN ) |= l and

(ii) Π(D) |∼ l iff Π(DN ) |∼ l.

where DN is the normalization of D.

Furthermore, for l ∈ U(D), Q(D) |= l and Π(D) |∼ l.

Therefore, to prove the theorem 2, we will show that for l 6∈U(D),
R(DN ) |= l iff Π(DN ) |∼ l.

The above observation shows that in proving theorem 2 we can limit ourself
to static and normalized domain descriptions. Since for a static and normalized
domain description D, the programsR(D) and Π(D) are simpler than for general
cases, for future references, we define these programs before continuing with the
proof of theorem 2.

For a static and normalized domain description D, the program R(D) consists
of the following rules

R(D)




l ← l1, . . . , ln, not d, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ D

d2 ← l1, . . . , ln, not d1. (2)

if d2 ∈ D,
default(d1, l, [l1, . . . , ln]) ∈ D,
prefer(d1, d2) ∈ D,
and head(d2) = ¬l

and the program B(D) of Π(D) consists of the following rules:

B(D)




l ← l1, . . . , ln, not ¬l. (1)

if default(d, l, [l1, . . . , ln]) ∈ D
To continue with the proof we need the following definitions.

Definition 8. Let D be a static domain description with the preference relation
P0. Let P1 be a well-ordered order defined on defaults in D which extends P0.
The domain description D̃ = D ∪ {prefer(d1, d2) : 〈d1, d2〉 ∈ P1} is called a
completion of D.

We will need the following technical observations.

Lemma 10. Let D be a static and normalized domain description. Let A be an
answer set of R(D) and default(d, l, [Γ ]) be a default in D such that l 6∈A and
Γ ⊆ A. Then, ¬l ∈ A.
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Proof. First notice that, since D is normalized, it is hierarchical. Therefore, in
virtue of theorem 1, D is consistent. By Lemmas 6 and 7 this implies that R(D)
is consistent. As was shown in [21] every answer set of consistent program is
consistent which implies consistency of A.

Since l← Γ, not d, not ¬l is a rule in R(D), Γ ⊆ A, l 6∈A, and A is a consistent
answer set of R(D), we have two cases:

(i) ¬l ∈ A; or
(ii) d ∈ A.

Consider the second case: d ∈ A. Then there exists a rule (2) of R(D) with the
head d whose body is satisfied by A. From construction of R this implies that
there exists a default

1. default(d1,¬l, [∆]) ∈ D
such that

2. ∆ ⊆ A and d1 6∈A.

From (1) and construction of R we can conclude that R contains the rule

3. ¬l← ∆, not d1, not l.

Recall, that, by condition of the lemma, l 6∈A. This, together with (2), implies
that the body of the rule (3) is satisfied by A. Therefore, ¬l ∈ A. ♦
Let X be a set of literals in the language of R(D). By X|l we denote X ∩ lit(σ).

Lemma 11. Let D be a static and normalized domain description and D̃ be
one of its completions. Then, for every answer set Ã of R(D̃) there exists an
answer set A of R(D) such that Ã|l = A|l.
Proof. Since the preference relation in D̃ is a well-ordered order among defaults,
we can enumerate the set of defaults in D by the sequence d0, d1, . . . , dn, . . ..4

Let Ã be an answer set of R(D̃). It is easy to see that, since D is normalized, Ã
is consistent.

We define a sequence of sets of literals A∞
i=0 in the language of R(D) as follows:

A0 = Ã|l

An+1 =




An ∪ {dn+1} if there exists di s.t.
(0a) default(di,¬head(dn+1), [Γ ]) ∈ D,
(0b) prefer(di, dn+1) ∈ D,
(0c) Γ ⊆ An, and
(0d) di 6∈An.

An otherwise
4 For simplicity, here and in the following lemmas we assume that the set of defaults

in D has the cardinality less than or equal to the ordinal number ω. However, the
proofs presented in this paper can be expanded to the general case.
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Let A = ∪∞
i=0Ai. Obviously, A is consistent. We will prove that A is an answer

set of R(D) and A|l = Ã|l.
By the construction of A, we have that A|l = Ã|l. Hence, to prove the lemma we
need to prove that A is an answer set of R(D). To do that, we will show that A
is a minimal set of literals which is closed under the rules of (R(D))A.

Since D is a normalized domain description, (R(D))A consists of the following
rules:

(R(D))A =




l ← Γ. (1)

if there is d s.t.
(1a) default(d, l, [Γ ]) ∈ D,
(1b) d 6∈A, and ¬l 6∈A

d2 ← Γ. (2)

if there is d1 s.t.
(2a) default(d1,¬head(d2), [Γ ]) ∈ D,
(2b) prefer(d1, d2) ∈ D, and
(2c) d1 6∈A.

Let r be a rule of (R(D))A whose body is satisfied by A, i.e.,

a. Γ ⊆ A.

We consider two cases:

(i) r is of the form (1).

Since A|l = Ã|l, from (1b) and (a) we conclude that

b. ¬l 6∈Ã and Γ ⊆ Ã.

By Lemma 10, this, together with (1a) implies that l ∈ Ã and hence l ∈ A,
i.e.,

c. A is closed under the rules of type (1) of (R(D))A.
(ii) r is of the form (2). From (2a)-(2c) and (a), by the construction of A, we

conclude that d2 ∈ A, i.e.,

d. A is closed under the rules of type (2) of (R(D))A.

From (c) and (d) we can conclude that

e. A is closed under the rules of (R(D))A.

We now prove the minimality of A.

Assume that there exists a set B ⊂ A which is closed under the rules of (R(D))A.
We consider two cases:
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(i) A|l \B|l 6= ∅.
Since D is hierarchical, there exists a rank function rank of D that satisfies
the conditions of Definition 5.

Let l ∈ A|l \B|l such that

f. rank(l) = min{rank(p) : p ∈ A|l \B|l}.
Since l ∈ A and A|l = Ã|l, we have that l ∈ Ã. Let

f1. ∆+
l = {d : default(d, l, [Γ ]) ∈ D, Γ ⊆ Ã}.

Since Ã is an answer set of R(D̃), we have that

f2. ∆+
l 6= ∅.

Since the preference relation in D̃ is well-ordered, there exists a minimal
element dj of ∆+

l such that

f3. prefer(dj , dk) ∈ D̃ for dk ∈ ∆+
l \ {dj}.

We will prove that

g. dj 6∈Ã.

Assume the contrary, dj ∈ Ã. By construction of R(D̃), we conclude that
there exists a default dn such that

g1. default(dn,¬l, [Λ]) ∈ D,

g2. Λ ⊆ Ã, and

g3. prefer(dn, dj) ∈ D̃.

It follows from (f3) and (g3) and the fact that the preference order in D̃ is
well-ordered that

g3. prefer(dn, d) ∈ D̃ for d ∈ ∆+
l .

This, together with (g1) and (g2), implies that

g4. d ∈ Ã for d ∈ ∆+
l .

which, in turn, implies that there exists no rule with the head l in R(D̃)
whose body is satisfied by Ã, i.e., l 6∈Ã. This contradiction proves (g).

We now prove that

h. dj 6∈A.

Assume that (h) does not hold, i.e.,

h1. dj ∈ A.

Using the definition of A and the fact that A and Ã coincide on σ-literals
we can easily check that there is di such that

h2. default(di,¬l, [Γ ]) ∈ D̃
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h3. prefer(di, dj) ∈ D̃
h4. Γ ⊆ Ã

From construction of R(D̃) and conditions (h2), (h3) we have that

h5. dj ← Γ, not di ∈ R(D̃)

First assume that

h6: di 6∈Ã
Then, from (h4), (h5), and the fact that Ã is an answer set of R(D̃) we
conclude that dj ∈ Ã which contradicts (g). Therefore,

h7. di ∈ Ã

This implies that there is a default dk of the form default(dk, l, [∆]) ∈ D̃
such that

h8. ∆ ⊆ Ã

h9. prefer(dk, di) ∈ D̃
Since the preference relation in D̃ is total from (h3) and (h9) we conclude
that

h10. prefer(dk, dj) ∈ D̃
which contradicts dj being the minimal element of ∆+

l . This contradiction
proves (h).

Recall that head(dj) = l and let Θ be its body. Since dj is best for l in A
we have that

k. Θ ⊆ A

Since l ∈ A and A is consistent, ¬l 6∈A. This, together with (h), implies
that

l. l← Θ ∈ (R(D))A.

Since l 6∈B and B is closed under the rules of (R(D))A, from (l) we can
conclude that there exists a literal l′ ∈ Θ such that l′ 6∈B. This, together
with (k), implies that

m. l′ ∈ A \B.

Since D is normalized and hence hierarchical, from condition 5 of Definition
5 we have that rank(l′) < rank(l). This, together with (m), contradicts with
(f) which implies that A|l \B|l = ∅.

(ii) A|l = B|l. Since B ⊂ A, there exists dj ∈ A \B. By the construction of A,

n. there exists a default di ∈ D of the form default(di,¬head(dj), [Γ ]) such
that

n1. prefer(di, dj) ∈ D, di 6∈A and
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n2. Γ ⊆ A.

(n1), together with the definition of (R(D))A implies that

n3. dj ← Γ ∈ (R(D))A.

This, together with the assumption that B is closed under the rules of
(R(D))A and B|l = A|l, implies that dj ∈ B which contradicts the selection
of dj .

We showed that no proper subset B of A is closed under the rules of (R(D))A

and hence A is an answer set of R(D). ♦

The next lemma is the reverse of Lemma 11.

Lemma 12. Let D be a static and normalized domain description and A be an
answer set of R(D). Then, there exists a completion D̃ of D and an answer set
Ã of R(D̃) such that Ã|l = A|l.
Proof. We start with introducing some notation. Let P be a binary relation.
By P ∗ we denote the transitive closure of P . For a σ-literal l, we define,

∆+
l = {d : default(d, l, [Γ ]) ∈ D, Γ ⊆ A},

∆−
l = {d : default(d,¬l, [Γ ]) ∈ D, Γ ⊆ A},

∆l = ∆+
l ∪∆−

l , and

∆l = {d ∈ D : head(d) ∈ {l,¬l}}
By <l we denote the order induced on ∆l by the preference relation of D.

In our further discussion we need the following well known result:

(*) if P is a well-founded strict partial order then there exists a well-founded
total order containing P .

Now we start our construction of D̃. Notice that if l ∈ A then, since <l is well-
founded, it is easy to prove that there exists a default d ∈ ∆+

l which is a minimal
element in ∆l. Let us denote such a default by d(l).

Let

X1(l) = {prefer(d(l), d) : d ∈ ∆−
l }.

X2(l) = {prefer(d1, d2) : prefer(d1, d2) ∈ D, d1, d2 ∈ ∆l}.
For every atom p ∈ lit(σ) we define the set Xp as follows:

Xp =




(X1(p) ∪X2(p))∗ if p ∈ A

(X1(¬p) ∪X2(p))∗ if ¬p ∈ A

X2(p) otherwise
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It is easy to see that Xp is a well-founded, strict partial order on ∆p. Let Yp be
a well-founded, total order on ∆p which extends Xp (existence of Yp is ensured
by (*)). Obviously,

⋃
p∈atom(σ) Yp is a well-founded, strict partial order on the

set of defaults of D which extends the preference relation in D.

Let Y be a well-founded, total order on the set of defaults of D which extends⋃
p∈atom(σ) Yp.

Let

D̃ = D ∪ Y .

It is easy to see that D̃ is a consistent completion of D.

Now we will construct an answer set Ã of R(D̃) such that Ã|l = A|l.

Ui = {l : l ∈ lit(σ) ∩ heads(R(D̃)) s.t. rank(l) < i}∪
{d ∈ heads(R(D̃)) : rank(head(d)) < i}.

The sequence U = U0, U1, . . . is monotone and continuous. Using the property of
the rank function from the definition of hierarchical domain description it is not
difficult to check that each Ui is a splitting set of R(D̃) and that

⋃
Ui is equal

to the set of all literals occurring in R(D̃). Hence, U is a splitting sequence of
R(D̃).

Let Ti be a collection of all the rules from R(D̃) whose heads belong to Ui and
let Ai = A ∩ Ui.

We define a sequence Ã0, Ã1, . . . such that

1a. Ãi is an answer set of Ti.

1b. Ãi|l = Ai|l
(i) Let Ã0 = A0

Since both sets are empty conditions (1a) and (1b) are satisfied.

(ii) assume that conditions (1a) and (1b) are satisfied by the already constructed
set Ãi Let T be the result of partial evaluation of the program Ti+1 with respect
to the set Ãi.

T will consists of the rules

(r2) l← not d, not ¬l where l is a σ-literal.

and

(r1) d2 ← not d1.

Using the argument from Lemma 6 we can show that the program consisting of
the rules of T of the form (r1) contains no negative odd cycles and therefore is
consistent. Let S0 be an answer set of this program and S1 = (Ai+1 \Ai)|l. We
will show that
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2. S = S0 ∪ S1

is an answer set of T . By the splitting set theorem it suffices to show that S1
is an answer set of the partial evaluation of rules of the type (r2) from T with
respect to S0. We denote this partial evaluation by π. This, in turn, is true iff

3. S1 = πS1 .

To prove (3) let us first assume that

4. l ∈ S1.

This implies that l ∈ A and hence ∆l 6= ∅. Consider d ∈ ∆l which is minimal
with respect to well-ordering induced on ∆l by the preference relation from D̃.
It is easy to check that, since l ∈ A, head(d) = l and body(d) ⊆ A. Since D is
hierarchical we have that body(d) ⊆ Ai, and hence, by inductive hypothesis,

4a. body(d) ⊆ Ãi.

Since d is minimal, by construction of D̃ we have that there is no rule in T with
d in the head. Hence,

4b. d 6∈S0.

By construction of R(D̃) and conditions (4a) and (4b) we have that

4c. l← not ¬l ∈ π.

Since l ∈ A and A is consistent we conclude that ¬l 6∈Ai+1. Therefore, ¬l 6∈S1.
Hence,

4d. l ∈ πS1

Suppose now that

5. l ∈ πS1 .

This implies that there is d and Γ ⊆ A such that

default(d, l, Γ ) ∈ D.

From (4d) we have that ¬l 6∈A and hence, by Lemma 10 we conclude that l ∈ A.
Therefore l ∈ S1 which concludes the proof of (3).

By the splitting set theorem, Ãi+1 = Ãi ∪S is an answer set of Ti+1. Obviously,
Ãi+1 also satisfies condition (1b). Now let

Ã =
⋃

Ãi.

From construction we have that Ã|l = A|l. Using the splitting sequence theorem
it is easy to check that Ã is an answer set of R(D̃). ♦

Lemma 13. Let D be a static and normalized domain description and A be an
answer set of R(D). Then, A|l is an answer set of B(D).
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Proof. Since D is normalized, A is consistent, it suffices to prove that A|l is a
minimal set of literals closed under the rules of B(D)A|l .

Let

a. l← Γ ∈ B(D)A|l

and

b. Γ ⊆ A|l.
By construction of B(D) and of B(D)A|l , (a) implies that there exists a default
d ∈ D such that

c. default(d, l, [Γ ]) ∈ D and ¬l 6∈A|l.
Since A is an answer set of R(D), from (c), (b), and Lemma 10, we can conclude
that l ∈ A and hence l ∈ A|l which proves that

d. A|l is closed under the rules of B(D)A|l .

We now prove the minimality of A|l.
Assume that there exists a set B ⊂ A|l which is closed under the rules of B(D)A|l .
We will prove that the set of literals

C = B ∪ {di : di ∈ A}
is closed under the rules of (R(D))A.

Since C contains every di in A, C ⊂ A, and A is an answer set of (R(D))A, we
have that

e. C is closed under the rules of the form (2) of (R(D))A.

Let r be a rule of the form (1) of (R(D))A whose body is satisfied by C, i.e.,

f1. l← Γ ∈ (R(D))A and

f2. Γ ⊆ C.

By construction of (R(D))A, (f1) implies that there exists a default d such that

g1. default(d, l, [Γ ]) ∈ D, and

g2. ¬l 6∈A.

By definition of B(D) and B(D)A|l , and from (g1) and (g2) we conclude that

h. l← Γ is a rule of B(D)A|l .

which, together with (f2) and the assumption that B is closed under rules of
(B(D))A|l implies that l ∈ B and hence l ∈ C which, in turn, implies that

j. C is closed under the rule of the form (1) of (R(D))A.

From (e) and (j) we can conclude that C is closed under the rules of (R(D))A

which together with C ⊂ A contradicts the fact that A is an answer set of R(D).
This, together with (d), implies that A|l is an answer set of B(D). ♦
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Lemma 14. Let D be a static and normalized domain description with a well-
ordered preference order P and let A be an answer set of R(D). Then, A|l is a
preferred answer set of Π(D).

Proof. Lemma 13 shows that A|l is an answer set of B(D). We need to show
that A|l = Z where Z = C<D (B(D)) and C<D (B(D)) is defined as in Definition
6.

Let d0, d1, . . . be the sequence of defaults in D, ordered by P .

Notice that

l← not ¬l ∈A|l B(D)

iff there exists a default d such that

0a. default(d, l, [Γ ]) ∈ D, and

0b. Γ ⊆ A|l.
(i) We first prove that Z ⊆ A|l. Let

a. l ∈ Z.

This implies that there exists a default di ∈ D such that

b1. di satisfies (0a) and (0b), and

b2. the rule l← not l is not defeated by Si−1. (see Definition 6).

Let i be the minimal integer such that

c. di satisfies (b1) and (b2).

From (c) and (b2) and the definition of Z, we can conclude that

d. there exists no j < i and ∆ ⊆ A|l such that default(dj ,¬l, [∆]) ∈ D.

By construction of R(D) and (d), we conclude that there exists no rule of
R(D) with the head di whose body is satisfied by A, which implies that

e. di 6∈A.

Furthermore, for every default dk such that i < k and
default(dk,¬l, [∆]) ∈ D, it follows from (b1), (e), and the construction of
(R(D))A that

f. dk ∈ A.

This implies that

g. there exists no rule of (R(D))A with the head ¬l whose body is satisfied
by A.

This implies that

h. ¬l 6∈A.

From (h), (b1), and Lemma 10, we can conclude that l ∈ A and hence l ∈ A|l
which, together with (a) proves that

j. Z ⊆ A|l.
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(ii) We now prove that A|l ⊆ Z. Let

k. l ∈ A|l.

Since A is an answer set of R(D), there exists a default d such that

l. default(d, l, [Γ ]) ∈ D,

m. Γ ⊆ A, and ¬l 6∈A.

which implies that l← not ¬l is a rule of A|lB(D). This indicates that

n1. l ∈ Z or

n2. ¬l ∈ Z.

If (n2) holds, then, by (j), ¬l ∈ A|l, which, together with l ∈ A, contradicts
the fact that A|l is consistent. Hence, (n1) holds, i.e., l ∈ Z which, together
with (k) entails

o. A|l ⊆ Z.

The lemma is proved by (o) and (j). ♦

We now prove the reverse of Lemma 14.

Lemma 15. Let D be a static and normalized domain description with a well-
ordered preference order P . Let A be a preferred answer set of Π(D). Then,
there exists an answer set B of R(D) such that B|l = A.

Proof. First, notice that since D is normalized,R(D) is consistent and therefore,
by Lemma 14, B(D) is consistent. Thus, A is consistent.

Let d0, d1, . . . be the sequence of defaults in D, ordered by P . We define a se-
quence of sets of literals B∞

i=1 as follows.

B0 = B

Bn+1 =




Bn ∪ {dn+1} if there exists i ≤ n s.t.
(0a) default(di,¬head(dn+1), [Γ ]) ∈ D,
(0b) Γ ⊆ Bn, and
(0c) di 6∈Bn.

Bn otherwise
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Let B = ∪∞
i=0Bi. Obviously B is consistent and B|l = A. We prove that B is an

answer set of R(D), i.e., B is a minimal set of literals closed under the rules of
(R(D))B . By definition, (R(D))B consists of the following rules:

(R(D))B =




l ← Γ. (1)

if there is d s.t.
(1a) default(d, l, [Γ ]) ∈ D,
(1b) d 6∈B, and ¬l 6∈B

d2 ← Γ. (2)

if there is d1 s.t.
(2a) default(d1, l, [Γ ]) ∈ D,
(2b) prefer(d1, d2) ∈ D,
(2c) head(d2) = ¬l, and
(2d) d1 6∈B.

Let r be a rule of (R(D))B whose body is satisfied by B, i.e.,

a. Γ ⊆ B.

We consider two cases:

(i) r is of the form (1).

By the construction of B(D) we have that

b. l← Γ, not ¬l ∈ B(D).

From B|l = A, (a), and (1b), we conclude that

c. Γ ⊆ A and ¬l 6∈A.

Since A is an answer set of B(D), from (b) and (c) we conclude that l ∈ A
and hence, l ∈ B, which proves that

d. B is closed under the rules of the form (1) of (R(D))B .
(ii) r is a rule of form (2).

By construction of B and from (a) and (2a)-(2d), we can conclude that
d2 ∈ B which implies that

e. B is closed under the rules of the form (2) of (R(D))B .

It follows from (e) and (d) that

f. B is closed under the rules of (R(D))B .

We now prove the minimality of B.

Assume that there exists a set of literals C ⊂ B and C is closed under the rules
of (R(D))B . We will prove that
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g. C|l is closed under the rules of B(D)A.

Let r be a rule of B(D)A whose body is satisfied by C|l, i.e., r is of the form

h1. l← Γ ∈ (B(D))A, and

h2. Γ ⊆ C|l.
By construction of B(D)A, we conclude that there exists a default di in D such
that

j1. default(di, l, [Γ ]) ∈ D, and

j2. ¬l 6∈A.

(j1) and (h2) imply that the rule l ← not ¬l belongs to AB(D) which, together
with (j2) and the assumption that A is a preferred answer set of Π(D), implies
that l ∈ A.

We will prove that

l. di 6∈B.

Assume the contrary, i.e.,

m. di ∈ B.

By the construction of B, there exists j < i such that

n1. default(dj ,¬l, [∆]) ∈ D,

n2. ∆ ⊆ B, and

n3. dj 6∈B.

From (n1) and (n2) and the construction of AB(D), we can conclude that

p. ¬l← not l is a rule of AB(D).

From l ∈ A, the fact that A is a preferred answer set of Π(D), and (p), we can
conclude that there exists a k < j such that

q1. default(dk, l, [Θ]) ∈ D,

q2. Θ ⊆ A, and

q3. for every o, o < k, if default(do,¬l, [Λ]) ∈ D, then Λ 6⊆A.

From (q3) and the definition of R(D)B we have that

r. dk 6∈B.

From (r), (q1), (q2), and the construction of B we have that

s. dj ∈ Aj+1 ⊆ B

which contradicts with (n3), i.e., we have proved (l).
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It follows from (j1), (j2), and (l) that l ← Γ ∈ (R(D))B which, together with
the assumption that C is closed under the rules of (R(D))B and Γ ⊆ C, implies
l ∈ C, and hence, l ∈ C|l which proves (g).

Since A is an answer set of B(D), from (g) we can conclude that C|l = A, which,
together with the assumption that C ⊂ B, implies that there exists some di ∈ D
such that

t. di ∈ B \ C.

By the construction of B, (t) implies that there exists a j < i such that

u1. default(dj ,¬l, [∆]) ∈ D,

u2. ∆ ⊆ B, and

u3. dj 6∈B.

Since j < i, by the ordering P , we conclude that prefer(dj , di) ∈ D. This,
together with (u1) and (u3), implies that

v. di ← ∆ is a rule of (R(D))B .

It follows from (u2), (v), and the assumption that C is closed under the rule of
(R(D))B that di ∈ C which contradicts with (t). In other words, B is a minimal
set of literals which is closed under (R(D))B , i.e., B is an answer set of R(D).
♦

We are now ready to prove the Theorem 2.

Proof of Theorem 2. Let DN be the normalization of a static domain descrip-
tion D. By Lemma 8, D |= holds by default(l) iff

a. l ∈ U(D) or R(DN ) |= l,

and by Lemma 9, Π(D) |∼ l iff

b. l ∈ U(D) or Π(DN ) |∼ l.

By Lemmas 12-14, we have that

c. R(DN ) |= l iff Π(DN ) |∼ l.

The conclusion of theorem 2 follows immediately from (a), (b), and (c). ♦
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Abstract. Recently the field of theory update has seen some improve-
ment, in what concerns model updating, by allowing updates to be spec-
ified by so-called revision programs. The updating of theory models is
governed by their update rules and also by inertia applied to those literals
not directly affected by the update program. Though this is important,
it remains necessary to tackle as well the updating of programs specify-
ing theories. Some results have been obtained on the issue of updating a
logic program which encodes a set of models, to obtain a new program
whose models are the desired updates of the initial models. But here the
program only plays the rôle of a means to encode the models.
A logic program encodes much more than a set of models: it encodes
knowledge in the form of the relationships between the elements of those
models. In this paper we advocate that the principle of inertia is advan-
tageously applied to the rules of the initial program rather than to the
individual literals in a model. Indeed, we show how this concept of pro-
gram update generalizes model or interpretation updates. Furthermore,
it allows us to conceive what it is to update one program by another, a
crucial notion for opening up a whole new range of applications concern-
ing the evolution of knowledge bases. We will consider the updating of
normal programs as well as these extended with explicit negation, under
the stable semantics.
Keywords: Updates

1 Introduction and Motivation

When dealing with modifications to a knowledge base represented by a proposi-
tional theory, two kinds of abstract frameworks have been distinguished both by
Keller and Winslett in [KW85] and by Katsuno and Mendelzon in [KM91]. One,
theory revision, deals with incorporating new knowledge about a static world.
The other, dealing with changing worlds, is known as theory update. This paper
concerns only theory update.

So far, most of the work accomplished in the field of theory update [PT95]
[MT94] [KM91]has addressed the modification of models on a one by one basis,
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by allowing updates to be specified by so-called revision programs. The field of
theory update has seen several major achievements, namely the embedding of
revision programs into logic programs [MT94], arbitrary rule updates and, the
embedding into default logic [PT95].

The update of models is governed by update rules and also by inertia applied
to the literals not directly affected by the update program. Though this is impor-
tant, it remains necessary to tackle as well the updating of programs specifying
theories, as opposed to updating its models. Some results have been obtained in
what concerns the updating of a logic program which encodes a set of models,
to obtain a new program whose models are the desired justified updates of the
initial models [AP97]. But here the program only plays the rôle of a means to
encode the models.

A logic program encodes much more than a set of models: it encodes knowl-
edge in the form of the relationships between the elements of those models. In
this paper we advocate that the principle of inertia is advantageously applied to
the rules of the initial program rather than to the individual literals in a model.
Indeed, we show how this concept of program update generalizes model or in-
terpretation updates. Furthermore, it allows us to conceive what it is to update
one program by another. A crucial notion for opening up a whole new range of
applications concerning the evolution of knowledge bases. We will consider the
updating of normal programs as well as these extended with explicit negation,
under the stable semantics.

To show that a logic program encodes relationships between the elements of
a model, which are lost if we simply envisage updates on a model by model basis,
as proposed in [KM91], consider the following situation where an alarm signal
is present:

Example 1. Take the normal program P and its single stable model M :

P : go home← not money
go restaurant← money
money ←

M = {money, go restaurant}
Now consider an update program stating that the person has been robbed and
that a robbery leaves the person without any money:

U : out(money)← in(robbed)
in(robbed)←

According to [MT94] and model updating we obtain as the single justified update
of M the following model:

MU = {robbed, go restaurant}
Stating that, although we know that the person doesn’t have any money, he/she
still goes to the restaurant and not home. In [AP97] the authors propose a
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program transformation that produces a new program whose models are exactly
the justified revisions of the models of the initial program, according to the
definition proposed in [MT94], and so produces exactly the result above.

But looking at the program and at the update program, we arguably conclude
that MU doesn’t represent the intended meaning of the update of P by U for
a commonsensical reasoner. Since “go restaurant” was true because the person
had “money”, the removal of “money” should make one expect “go restaurant”
to become false. The same kind of reasoner expects “go home” to become true.
The intended update model of the example presumably is:

M
′
U = {robbed, go home} ♦

Another symptomatic example, but using explicit negation is this:

Example 2. Given the statements:

– If I’ve seen something that is unexplainable then I’ve seen a miracle.
– If I’ve seen a miracle then God exists.
– I’ve seen something.
– It is not explainable.

They can be represented by the following extended logic program:

P : seen miracle← seen something, not explainable
god exists← seen miracle
seen something ←
¬explainable←

whose answer-set M is:

M = {seen something,¬explainable, seen miracle, god exists}

Now consider the following update program U stating that we now have an
explanation:

U : in(explainable)←
According to model updating we obtain as the single justified update of M the
following model MU :

MU = {seen something, explainable, seen miracle, god exists}

Once again we arguably conclude that this model doesn’t represent the intended
meaning and that the correct model should be:

MU = {seen something, explainable} ♦

The purpose of this paper is to generalize model updates to logic program
updates. The former are a special case of the latter since they can be coded as
factual programs. To do this we must first consider the rôle of inertia in updates.
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Newton’s first law, also known as the law of inertia, states that: “every body
remains at rest or moves with constant velocity in a straight line, unless it is
compelled to change that state by an unbalanced force acting upon it” (adapted
from [Principia]). One often tends to interpret this law in a commonsensical way,
as things keeping as they are unless some kind of force is applied to them. This is
true but it doesn’t exhaust the meaning of the law. It is the result of all applied
forces that governs the outcome. Take a body to which several forces are applied,
and which is in a state of equilibrium due to those forces canceling out. Later
one of those forces is removed and the body starts to move.

The same kind of behavior presents itself when updating programs. Let us
make the parallel between a program rule and a physical body with forces applied
to it, the body of the rule being the forces applied to the head. In the same way
we have to determine whether the forces are still in a state of equilibrium, before
concluding that a physical body is at rest or moves with constant velocity in a
straight line due to inertia, when it comes to the updating of a program we have
to check if the truth value of a body which determines the truth value of a head
hasn’t changed before concluding the truth value of the head by inertia. This is
so because the truth value of the body may change due to an update rule.

Going back to the previous example, before stating that “god exists” is true
by inertia since it wasn’t directly affected by the update program, one should
verify for instance whether “explained” is still not true, for otherwise there would
be no longer a way to prove “god exists” and therefore its truth value would no
longer be ’true’.

To conclude, we argue that the truth of any element in the updated models
should be supported by some rule, i.e. one with a true body, either of the update
program or of the given program, in face of new knowledge.

The remainder of this paper is structured as follows: in Sect.2 we recapitulate
some background concepts necessary in the sequel; in Sect.3 we formalize the
normal logic program update process and present a transformation, reminiscent
of the one in [AP97], providing the intended results; we conclude the section
by showing that the transformation generalizes the one set forth in [PT95]; in
Sect.4 we extend our approach to the case where the program to be updated is
a logic program extended with explicit negation, and in Sect.5 we conclude and
elaborate on future developments.

2 Review of Interpretation Updates

In this section we summarize some of the definitions related to the issue of theory
update. Some of these definitions will be slightly different, though equivalent to
the original ones, with the purpose of making their relationship clearer.

For self containment and to eliminate any confusion between updates and
revisions, instead of using the original vocabulary of revision rule, revision pro-
gram and justified revision, we will speak of update rule, update program and
justified update, as in [AP97].
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The language used is similar to that of logic programming: update programs
are collections of update rules, which in turn are built out of atoms by means of
the special operators: ←, in, out, and “, ”.

Definition 1 (Update Programs). [MT94] Let U be a countable set of atoms.
An update in-rule or, simply, an in-rule, is any expression of the form:

in(p)← in(q1), ..., in(qm), out(s1), ..., out(sn) (1)

where p, qi, 1 ≤ i ≤ m, and sj, 1 ≤ j ≤ n, are all in U , and m, n ≥ 0.
An update out-rule or, simply, an out-rule, is any expression of the form:

out(p)← in(q1), ..., in(qm), out(s1), ..., out(sn) (2)

where p, qi, 1 ≤ i ≤ m, and sj, 1 ≤ j ≤ n, are all in U , and m, n ≥ 0. A
collection of in-rules and out-rules is called an update program (UP ). ♦

Definition 2 (Necessary Change). [MT94] Let P be an update program with
least model M (treating P as a positive Horn program). The necessary change
determined by P is the pair (IP , OP ), where

IP = {a : in(a) ∈M} OP = {a : out(a) ∈M} (3)

Atoms in IP (resp. OP ) are those that must become true (resp. false). If I ∩O =
{} then P is said coherent. ♦

Intuitively, the necessary change determined by a program P specifies those
atoms that must be added and those that must be deleted as a result of a given
update, whatever the initial interpretation.

Definition 3 (P-Justified Update). [MT94] Let P be an update program and
Ii and Iu two total interpretations. The reduct PIu|Ii

with respect to Ii and Iu is
obtained by the following operations:

- Removing from P all rules whose body contains some in(a) and a /∈ Iu;
- Removing from P all rules whose body contains some out(a) and a ∈ Iu;
- Removing from the body of any remaining rules of P all in(a) such that

a ∈ Ii;
- Removing from the body of any remaining rules of P all out(a) such that

a /∈ Ii.
Let (I, O) be the necessary change determined by PIu|Ii

. Whenever PIu|Ii

is coherent, Iu is a P-justified update of Ii with respect to P iff the following
stability condition holds:

Iu = (Ii −O) ∪ I ♦ (4)

The first two operations delete rules which are useless given Iu. The stability
condition preserves the initial interpretation in the final one as much as possible.
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3 Normal Logic Program Updating

As we’ve seen in the introduction, updating on the basis of models isn’t enough
if we want to take advantage of the information encoded by a logic program and
not expressed in the set of its models.

When we generalize the notion of P-justified update, from interpretations to
the new case where we want to update programs, the resulting update program
should be made to depend only on the initial program and on the update pro-
gram, but not on any specific initial interpretation. An interpretation should be
a model of a normal logic program updated by an update program if the truth
of each of its literals is either supported by a rule of the update program with
true body in the interpretation or, in case there isn’t one, by a rule of the initial
program whose conclusion is not contravened by the update program.

Another way to view program updating, and in particular the rôle of inertia,
is to say that the rules of the initial program carry over to the updated program,
due to inertia, instead of the truth of interpretation literals as in [AP97], just
in case they are not overruled by the update program. This is to be preferred
because the rules encode more information than the literals. Inertia of literals is a
special case of rule inertia since literals can be coded as factual rules. Accordingly,
program updating generalizes model updating.

To achieve rule inertia we start by defining the sub-program of the initial
program which contains the rules that should persist in the updated program due
to inertia. We use this program together with the update program to characterize
the models of the resulting updated program, i.e. the program-justified updates,
whatever the updated program may be. Finally, we present a joint program
transformation of the initial and the update programs, which introduces inertia
rules, to produce an updated program whose models are the required program-
justified updates. Stable model semantics and its generalization to extended logic
programs [GL90] will be used to define the models of programs.

We start by defining a translation of an update program written in a language
that does not contain explicit negation, into a normal logic program extended
with explicit negation.

Definition 4 (Interpretation Restriction). Given a language L that does
not contain explicit negation ¬, let M¬ be an interpretation, of the language L¬,
obtained by augmenting L with the set E = {¬A : A ∈ L}.

We define the corresponding restricted interpretation M , of L, as:

M = M¬ restricted to L ♦ (5)

Definition 5 (Translation of UPs into LPs). Given an update program UP ,
in the language L, its translation into an extended logic program U in the lan-
guage L¬ is obtained from UP by replacing each in-rule (1) with the correspond-
ing rule:

p← q1, ...qm, not s1, ..., not sn (6)
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and similarly replacing each out-rule (2) with the corresponding rule:

¬p← q1, ...qm, not s1, ..., not sn ♦ (7)

From now onwards, and unless otherwise stated, whenever we refer to an up-
date program we mean its reversible translation into an extended logic program
according to the previous definition. Notice that such programs do not contain
explicitly negated atoms in the body of its rules.

Definition 6 (Inertial Sub-Program). Let P be a normal logic program in
the language L, U an update program in the language L¬ and M¬ an interpre-
tation of L¬. Let:

Rejected(M¬) = {A← body ∈ P : M¬ |= body
and ∃¬A← body′ ∈ U : M¬ |= body′ } (8)

where A is an atom. We define Inertial Sub-Program Pinertial(M¬) as:

Pinertial(M¬) = P −Rejected(M¬) ♦ (9)

Intuitively, the rules for some atom A that belong to Rejected(M¬) are those
that belong to the initial program but, although their body is still verified by
the model, there is an update rule that overrides them, by contravening their
conclusion.

Definition 7 (<P,U>-Justified Updates). Let P be a normal logic program
in the language L, U an update program in the language L¬, and M an inter-
pretation of the language L. M is a <P,U>-Justified Update of P updated by
U , iff there is an interpretation M¬ of L¬ such that M¬ is an answer-set of P ∗,
where

P ∗ = Pinertial(M¬) + U ♦ (10)

Notice that the new definition of program-justified update doesn’t depend
on any initial model. Once again this is because inertia applies to rules and not
model literals. To achieve inertia of model literals it is enough to include them
as fact rules, as shown in the sequel.

The following example will show the rôle played by Rejected(M¬) when
determining the <P,U>-Justified Updates.

Example 3. Consider program P stating that someone is a pacifist and that a
pacifist is a reasonable person. Later on, an update U states that it is not clear
whether we’re at war or at peace, and that a state of war will make that person
no longer a pacifist:

P : pacifist← U : ¬pacifist← war
reasonable← pacifist peace← not war

war ← not peace
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Intuitively, when performing the update of P by U , we should obtain two models,
namely

M1 = {pacifist, reasonable, peace}
M2 = {war}

Let’s check whether they are <P,U>-justified updates. M1 is M¬1 restricted to
the language of P :

M¬1 = {pacifist, reasonable, peace}
Since

Rejected(M¬1) = {}
P ∗ = P + U − {}

M¬1 is an answer-set of P ∗, and so M1 is a <P,U>-justified update.
M2 is M¬2 restricted to the language of P :

M¬2 = {war,¬pacifist}
Since

Rejected(M¬2) = {pacifist←}
P ∗ = P + U − {pacifist←}

M¬2 is an answer-set of P ∗ and so M2 is a <P,U>-justified update.
Let’s check if the model

MX = {reasonable, war}
is a <P,U>-justified update. Intuitively it should not be one because the truth
value of reasonable should be determined by the evaluation of the rule of P , rea-
sonable←pacifist, on the strength of the truth of pacifist in the updated model,
and therefore should be false. Note, however, that this model would be a justified
update of the only stable model of P , determined according to interpretation
updating.

Once again MX is M¬X restricted to the language of P :

M¬X = {reasonable, war,¬pacifist}
Since

Rejected(M¬X) = {pacifist←}
P ∗ = P + U − {pacifist←}

As expected, M¬X is not an answer-set of P ∗, and therefore MX is not a <P,U>-
justified update. ♦

Next we present a program transformation that produces an updated pro-
gram from an initial program and an update program. The answer-sets of the
updated program so obtained will be exactly the <P,U>-justified models, ac-
cording to Theorem 1 below. The updated program can thus be used to compute
them.
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Definition 8 (Update transformation of a normal program). Consider
an update program U in the language L¬. For any normal logic program P in the
language L, its updated program PU with respect to U , written in the extended
language L¬ +

{
A′, AU ,¬AU : A ∈ L}

is obtained via the operations:

– All rules of U and P belong to PU subject to the changes:
• in the head of every rule of PU originated in U replace literal L by a new

literal LU ;
• in the head of every rule of PU originated in P replace atom A by a new

atom A′;
– Include in PU , for every atom A of P or U , the defining rules:

A← A′, not ¬AU A← AU ¬A← ¬AU ♦ (11)

The above definition assumes that in the language L there are no symbols of
the form L′ and LU .This transformation is reminiscent of the one presented in
[AP97], where the goal was to update a set of models encoded by a logic program.
In [AP97], literals figuring in the head of a rule of U (but it could be for any
literal) originate replacement of the corresponding atom in both the head and
body of the rules of the initial program, whereas in the above transformation
this replacement occurs only in the head (for all rules). This has the effect of
exerting inertia on the rules instead of on the model literals because the original
rules will be evaluated in the light of the updated model. The defining rules
establish that, after the update, a literal is either implied by inertia or forced
by an update rule. Note that only update rules are allowed to inhibit the inertia
rule, in contrast to the usual inertia rules for model updates. In model updates
there are no rule bodies in the coding of the initial interpretation as fact rules,
so the conclusion of these rules cannot change, in contradistinction to the case
of program updates. Hence the new inertia rule, which applies equally well to
model updating (cf. justification in Theorem 2) and so is more general. Their
intuitive reading is: A can be true either by inertia or due to the update program.

Example 4. Consider the normal logic program P with a single stable model M :

P : a← not b
d← e
e←

M = {a, d, e}
now consider the update program U :

U : c← not a
b←
¬e← a

And the updated program PU is (where the rules for A stand for all their ground
instances):

cU ← not a a
′ ← not b A← A′, not ¬AU

bU ← d
′ ← e A← AU

¬eU ← a e′ ← ¬A← ¬AU
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whose only answer-set (modulo A′ and AU atoms) is:

MU = {b, c, d, e}

This corresponds to the intended result: the insertion of b renders a no longer
supported and thus false; since a is false, c becomes true due to the first rule
of the update program; the last rule of U is ineffective since a is false; e is still
supported and not updated, so it remains true by inertia; finally d remains true
because still supported by e. ♦

If we consider this same example but performing the updating on a model
basis instead, we would get as the only U -justified update of M: M ′ = {a, b, d}.
The difference, for example in what a is concerned, is that in M ′ a is true by
inertia because it is true in M and there are no rules for a in U . According to
our definition, since there aren’t any rules (with a true body) in U for a, the rule
in P for a is still valid by inertia and re-evaluated in the final interpretation,
where since b is true a is false.

Example 5. Consider the P and U of example 3. The updated program PU of P
by U is (where the rules for A stand for all their ground instances):

pacifist′ ← ¬pacifistU ← war
reasonable′ ← pacifist peaceU ← not war
A← A′, not ¬AU warU ← not peace
A← AU ¬A← ¬AU

whose answer-sets (modulo A′, AU and explicitly negated atoms) are:

M1 = {pacifist, reasonable, peace}
M2 = {war}

coinciding with the two <P,U>-justified updates determined in example 3. ♦
The following theorem establishes the relationship between the models of the

update transformation of a program and its <P,U>-justified updates.

Theorem 1 (Correctness of the update transformation). Let P be a nor-
mal logic program in the language L and U a coherent update program in the
language L¬. Modulo any primed and XU literals, the answer-sets of the updated
program PU are exactly the <P,U>-Justified Updates of P updated by U . ♦
Proof. Let P be a normal logic program consisting of rules of the form:

A← Bi, not Ci

and U an update program consisting of rules of the form:

A← Bj , not Cj

¬A← Bk, not Ck
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where A is an atom and each B and C is some finite set of atoms .
Let P ∗

U be the program obtained according to Def. 7:

P ∗
U = U + Pinertial(M¬)

and note that Pinertial(M¬) ⊆ P .
Let PU be the program obtained according to Def. 8:

PU : A′ ← Bi, not Ci for all rules from P
A← A′, not ¬AU

A← AU

¬A← ¬AU


 for all A

AU ← Bj , not Cj

¬AU ← Bk, not Ck

}
for all rules from U

We will show that PU is equivalent to P ∗
U for our purposes. Performing on PU

a partial evaluation of AU and ¬AU on the rules A ← AU and ¬A ← ¬AU we
obtain:

P
′
U : A′ ← Bi, not Ci (1)

A← A′, not ¬AU (2)
A← Bj , not Cj (3)
¬A← Bk, not Ck (4)
AU ← Bj , not Cj (5)
¬AU ← Bk, not Ck (6)

Note that rules (3) and (4) are exactly the update program.
These rules can be simplified. In particular we don’t need the rules for AU

and ¬AU . For some arbitrary A, consider first the case where ¬AU is false. We
can then perform the following simplifications on P

′
U : replace in (2) A′ by the

body of (1) and remove not ¬AU to obtain (2*): A ← Bi, not Ci; now we no
longer need rule (6). Since we don’t care about primed nor AU literals in the
updated models we can now remove rule (1), as well as rules (5) and (6)). The
so mutilated P

′
U preserves the semantics of P

′
U when ¬AU is false, apart primed

and U literals, and looks like this:

A← Bi, not Ci (2∗)
A← Bj , not Cj (3)
¬A← Bk, not Ck (4)

which corresponds exactly to P ∗
U when Pinertial(M¬) = P when ¬AU is false,

and hence their answer-sets are the same in that case.
For the case where ¬AU is true, we can delete rule (2); rule (6) is also not

needed for we don’t care about ¬AU literals in the updated models. Since we
don’t care about primed nor AU literals in the updated models, and A′ and AU

don’t appear in the body of remaining rules, we can delete rules (1) and (5). The
simplified P

′
U preserves the semantics of P

′
U when ¬AU is true, apart primed and

U literals, and looks like this:

A← Bj , not Cj (4)
¬A← Bk, not Ck (5)
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which is semantically equal to P ∗
U . Indeed, note that when ¬AU is true, the

rules of P for A are rejected if M¬ |= Bi, not Ci and don’t belong to P ∗
U . So

the only possible difference between the simplified P
′
U and P ∗

U would be the
existence of some extra rules in P ∗

U such that for any answer-set M¬ we would
have M¬ 2 Bi, not Ci, which does not affect the semantics

The next Theorem establishes the relationship between program update and
interpretation update. For this we begin by defining a transformation from an
interpretation into the arguably simplest normal logic program that encodes it.

Definition 9 (Factual LP). Let I be an interpretation of a language L. We
define the normal logic program associated with I, P ∗(I), as:

P ∗(I) = {L←: L ∈ I} ♦ (12)

We also need the following closeness relationship:

Definition 10 (Closeness relationship). Given three total interpretations I,
Iu and I

′
u, we say that I

′
u is closer to I than Iu if

(I
′
u \ I ∪ I \ I

′
u) ⊂ (Iu \ I ∪ I \ Iu) ♦ (13)

Theorem 2 (Generalization of Updates). Let U be an update program and
I an interpretation. Then:

1. Every U -justified update of I is a <P ∗(I), U>-justified update.
2. A <P ∗(I), U>-justified update Iu is a U -justified update of I iff there is no

I
′
u closer to I than Iu, where I

′
u is a <P ∗(I), U>-justified update. ♦

Proof. 1. Let U be an update program consisting of rules of the form:

A← Bj , not Cj

¬A← Bk, not Ck

where A is an atom and each B and C is some finite set of atoms.
According to [AP97], an interpretation Iu is a U-justified update of I iff it is
a total (or two-valued) WFSX model (modulo primed and explicitly negated
elements) of the corresponding program PU :

PU : A′ ← for all A ∈ I
A← A′, not ¬A
¬A← not A′, not A

}
for all A

A← Bj ,¬Cj

¬A← Bk,¬Ck

}
for all rules from U

according to Def. 8, an interpretation I
′
u is a <P ∗(I), U>-justified update

iff it is the restriction to the language of I of an answer-set of the program
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P
′
U :

P
′
U : A′ ← for all A ∈ I

A← A′, not ¬AU

A← AU

¬A← ¬AU


 for all A

AU ← Bj , not Cj

¬AU ← Bk, not Ck

}
for all rules from U

Notice the difference in the translation of update rules in what the kind of
negation used in their bodies is concerned. We will show that for every total
(or two-valued) WFSX model Iu of the program PU , there is an answer-set
I

′
u of P

′
U such that Iu = I

′
u restricted to the language of I.

Performing a partial evaluation of AU and ¬AU on the rules A ← AU and
¬A← ¬AU we obtain:

P
′
U : A′ ← (1)

A← A′, not ¬AU (2)
A← Bj , not Cj (3)
¬A← Bk, not Ck (4)
AU ← Bj , not Cj (5)
¬AU ← Bk, not Ck (6)

We can safely replace not ¬AU by not ¬A in rule (2), for the only rules for
¬A and ¬AU have the same body. Now, and since we don’t care about AU

and ¬AU in the updated models, we can remove rules (5) and (6) and obtain
the following program P

′′
U :

P
′′
U : A′ ← (1)

A← A′, not ¬A (2)
(3)

A← Bj , not Cj (4)
¬A← Bk, not Ck (5)

PU : A′ ←
A← A′, not ¬A
¬A← not A′, not A
A← Bj ,¬Cj

¬A← Bk,¬Ck

It is easy to see that the only differences between P
′′
U and PU are the kind

of negation used in the body of the rules from the update program, and the
extra rule (3) in PU . Suppose that we add rule (3) to P

′′
U : if rule (3) has a

true body, rule (2) must have a false body; since we are not concerned about
¬A in the final models, and ¬A doesn’t appear in the body of any other
rules, adding rule (3) to P

′′
U wouldn’t change the restricted models. Now,

the only difference is the kind of negation used, but since in answer-sets we
have that if ¬C is true then not C is also true, we have that all total WFSX
models of PU are also answer-sets of P

′′
U .

2. There now remains to be proved the closeness part of the theorem, i.e. that
the set of interpretations S = Q−R, where

Q = {Iu : Iu is a < P ∗(I), U > -justified update}
R = {Iu : Iu is a U -justified update of I}
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is such that for every I
′
u in S, there is an Iu in R such that Iu is closer

to I than I
′
u, and thus eliminated by the closeness condition. According to

[MT94], Iu is a U -justified update of I iff it satisfies the rules of U (as per
Def.1 and where I satisfies in(a) (resp. out(a)) if a ∈ I (resp. a /∈ I)), and is
closest to I among such interpretations. From Definition 7, every <P, U>-
justified update must satisfy the rules of U , of the form:

A← Bj , not Cj

¬A← Bk, not Ck
(14)

Since for any answer-set if ¬a ∈ I then a /∈ I, we have that any <P, U>-
justified update, because it satisfies the rules of (14), must also satisfy the
update rules with in’s and out’s of the form (15)

in(A)← in(Bj), out(Cj)
out(A)← in(Bk), out(Ck) (15)

Let X be the set of all interpretations that satisfy the rules of (15). Then the
interpretations in X −R are the ones eliminated by the closeness condition,
to obtain the U -justified updates, according to [MT94]. Since R ⊆ Q (first
part of the theorem), and every interpretation of Q satisfies the rules of (15),
we have that S ⊆ X and thus any interpretation in S is eliminated by the
closeness condition of this theorem.
Therefore the notion of program update presented here is a generalization of

the updates carried out on a model basis. Consequently, the program transforma-
tion above is a generalization of the program transformation in [AP97], regarding
its 2-valued specialization. Elsewhere [Lei97] the 3-valued case is generalized as
well.

Remark 1 (Extending the language of initial programs). We could allow for initial
programs to be of the same form as update programs, i.e. with explicit negated
literals in their heads only, as per Def.5. For this, we would have to change
Definitions 6 and 8 by replacing atom A there with objective literal L1 (see
[Lei97]). However, note that, although both programs have explicit negation
in their heads, its use is limited, as explicit negation does not appear in rule
bodies. Indeed, all its occurrences can be replaced by allowing not in heads
instead, and then employing a semantics for such generalized programs such as
[LW92],[DP96].

1 An updated program can in turn be updated, once the inertia rule is generalized
for objective literals: L ← L′, not¬L. Because the inertia rule contains explicitly
negated literals in its body, the language of programs has to be extended, as per the
next section. However, the inertia rule itself does not need to be updated, only the
program and update rules. These will accumulate dashes in their heads as they are
updated. For the inertia rule to recurrently strip away successive dashes one needs
to introduce the equivalence (¬A)′ = ¬(A)′, and define ¬ and ′ as operators to
allow unification to do its work. For the details of such a generalization the reader
is referred to [Lei97].
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4 Extended Logic Program Updating

When we update a normal logic program the result is an extended logic program.
In order to update these in turn we need to extend the results of the previous
section to cater for explicit negation in programs. Besides this obvious motiva-
tion, there is much work done on representing knowledge using extended logic
programs, and we want to be able to update them. We begin by extending the
definitions of the previous section to allow for the inclusion of explicit negation
anywhere in a normal program.

Definition 11 (Update Rules for Objective Literals). [AP97]Let K be a
countable set of objective literals. Update in-rules or, simply in-rules, and update
out-rules or, simply, out-rules, are as (1) and as (2), but with respect to this new
set K. ♦

Also, for extended update programs their transformation into an extended
logic programs is now:

Definition 12 (Translation of extended UPs into ELPs). [AP97]Given
an update program with explicit negation UP , its translation into the extended
logic program U is defined as follows2:

1. Each in-rule

in(L0)← in(L1), ..., in(Lm), out(Lm+1), ..., out(Ln) (16)

where m, n ≥ 0, and Li are objective literals, translates into:

L∗
0 ← L1, ..., Lm, not Lm+1, ..., not Ln (17)

where L∗
0 = Ap if L0 = A, or L∗

0 = An if L0 = ¬A;
2. Each out-rule

out(L0)← in(L1), ..., in(Lm), out(Lm+1), ..., out(Ln) (18)

where m, n ≥ 0, and Li are objective literals, translates into:

¬L∗
0 ← L1, ..., Lm, not Lm+1, ..., not Ln (19)

where L∗
0 = Ap if L0 = A, or L∗

0 = An if L0 = ¬A;
3. For every objective literal L such that in(L) belongs to the head of some in-

rule of UP , U contains ¬L∗ ← L where L∗ = An if L = A, or L∗ = Ap if
L = ¬A;

4. For every atom A, U contains the rules A← Ap and ¬A← An. ♦
2 This translation employs the results in [DP96], namely the expressive power of WFSX

to capture the semantics of extended logic programs with default literals in the heads
of rules, via the program transformation P not.
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Intuitively, this transformation converts an atom A into a new atom Ap and
an explicitly negated atom ¬A into a new atom An and ensures coherence. This
way, we no longer have explicitly negated atoms in the heads of the rules of
update programs and so we can use explicit negation ¬L to code the out(L) in
the heads of rules, as for update programs without explicit negation. Operation
4 maps the An and Ap back to their original atoms.

Conversely, any extended logic program (ELP) can be seen as an update
program, possibly applied to an empty program. Indeed, translate each ELP
rule of the form

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln (20)

where Li are objective literals, to

in(L0)← in(L1), ..., in(Lm), out(Lm+1), ..., out(Ln) (21)

It is easy to see that applying the above translation (Def.12) of such an up-
date program back into an ELP preserves the semantics of the original program
because of the read-out rules, A← Ap and ¬A← An.

The language of update programs is more expressive than that of ELPs be-
cause one may additionally have out(A0) and out(¬A0). The semantics of such
ELPout programs can be defined simply by the ELP semantics of the translation
into an ELP of their corresponding update programs.

Then we can envisage any ELP (or ELPout) program as an update specifi-
cation for another ELP (or ELPout) program, albeit the empty one. Programs
can update one another, in succession.

Definition 13 (Extended Interpretation Restriction). Given a language
K with explicit negation, let Mnp be the an interpretation of the language Knp,
obtained by augmenting K with the set E = {Ln, Lp : L ∈ K} (Ln, Lp and L are
objective literals).

We define the corresponding restricted interpretation M , of K, as:

M = Mnp restricted to K ♦ (22)

Definition 14 (Inertial Sub-Program). Let P be an extended logic program
in the language K, U an update program in the language Knp and Mnp an in-
terpretation of Knp. Let:

Rejected(Mnp) = {A← body ∈ P : Mnp |= body
and ∃¬Ap ← body′ ∈ U : Mnp |= body′ }∪
∪{¬A← body ∈ P : Mnp |= body
and ∃¬An ← body′ ∈ U : Mnp |= body′ }

(23)

where A is an atom. We define Inertial Sub-Program Pinertial(Mnp) as:

Pinertial(Mnp) = P −Rejected(Mnp) ♦ (24)
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Again, the rules for some objective literal L that belong to Rejected(Mnp) are
those that belong to the initial program but, although their body is still verified
by the model, there is an update rule that overrides them, by contravening their
conclusion. Note that a rule of P for atom A, with true body, is also countervened
by a rule of U with true body for An (i.e. one translated from in(¬A)). Since
every U also contains the rules ¬Ap ← ¬A and ¬A← An, then ¬A in ¬Ap ← ¬A
is also true, and so that rule of P is rejected in this case too. Similarly for a rule
of P with head ¬A, but now with respect to Ap.

Definition 15 (<P,U>-Justified Updates). Let P be an extended logic pro-
gram in the language K, U an update program in the language Knp and M an
interpretation of the language K. M is a <P,U>-Justified Update of P updated
by U iff there is an interpretation Mnp such that Mnp is an answer-set of P ∗,
where

P ∗ = Pinertial(Mnp) + U ♦ (25)

Once again we should point out that the extended <P,U>-Justified Update
doesn’t depend on any initial interpretation. As for the case of normal logic
programs, it is the rules that suffer the effects of inertia and not model literals
per se.

Example 6. Consider a recoding of the alarm example using explicit negation,
where P and UP are:

P : sleep← ¬alarm UP : in(¬alarm)←
panic← alarm
alarm←

the update program U obtained from UP is:

alarmn ←
¬alarmp ← ¬alarm
alarm← alarmp

¬alarm← alarmn

Intuitively, when performing the update of P by U , we should obtain a single
model, namely

M = {¬alarm, sleep}
Let’s check whether M is an extended <P,U>-justified update. M is Mnp re-
stricted to the language of P :

Mnp = {¬alarm, sleep, alarmn,¬alarmp}
Since

Rejected(Mnp) = {alarm←}
P ∗ = P + U − {alarm←}

Mnp is an answer-set of P ∗, and so M is an extended <P,U>-justified update. ♦
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Definition 16 (Update transformation of an extended LP). Given an
update program UP , consider its corresponding extended logic program U in
the language Knp. For any extended logic program P in the language K, its
updated program PU with respect to U , written in the extended language Knp +{
A′,¬A′, AnU ,¬AnU , ApU ,¬ApU : A ∈ K}

is obtained through the operations:

– All rules of U and P belong to PU subject to the changes, where L is a literal:

• in the head of every rule of PU originated in U , replace Lp (resp. Ln) by
a new literal LpU (resp. LnU );
• in the head of every rule of PU originated in P , replace literal L by a

new literal L
′
;

– Include in PU , for every atom A of P or U , the defining rules:

An ← ¬A′, not ¬AnU Ap ← A′, not ¬ApU

An ← AnU Ap ← ApU

¬An ← ¬AnU ¬Ap ← ¬ApU ♦
(26)

As before, the transformation reflects that we want to preserve, by inertia,
the rules for those literals in P not affected by the update program. This is
accomplished via the renaming of the literals in the head of rules only, whilst
preserving the body, plus the inertia rules.

Theorem 3 (Correctness of the update transformation). Let P be an ex-
tended logic program and U a coherent update program. Modulo any primed, AU ,
Apand An elements and their defaults, the answer-sets of the updated program
PU of P with respect to U are exactly the <P,U>-Justified Updates of P updated
by U . ♦

Proof. (sketch): Let P be an extended logic program consisting of rules of the
form:

A← Bi, not Ci

¬A← Bj , not Cj

and U an update program consisting of rules of the form:

Ap ← Bk, not Ck A← Ap

¬Ap ← Bl, not Cl ¬A← An

An ← Bm, not Cm ¬An ← A
¬An ← Bn, not Cn ¬Ap ← ¬A

where A is an atom and each B and C is some finite set of objective literals.
Let P ∗

U be the program obtained according to Def. 7:

P ∗
U = U + Pinertial(Mnp)

and note that Pinertial(Mnp) ⊆ P .
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Let PU be the program obtained according to Def. 8:

PU :
A′ ← Bi, not Ci

¬A′ ← Bj , not Cj

}
for all rules from P

Ap ← A′, not ¬ApU

An ← ¬A′, not ¬AnU

Ap ← ApU

¬Ap ← ¬ApU

An ← AnU

¬An ← ¬AnU

A← Ap

¬A← An




for all A

ApU ← Bk, not Ck

¬ApU ← Bl, not Cl

AnU ← Bm, not Cm

¬AnU ← Bn, not Cn

¬AnU ← A
¬ApU ← ¬A




rules from U

We will show that PU is equivalent to P ∗
U for our purposes. Performing on PU

a partial evaluation of ApU , ¬ApU , AnU and ¬AnU on the rules Ap ← ApU ,
¬Ap ← ¬ApU , An ← AnU and ¬An ← ¬AnU we obtain:

P
′
U : A′ ← Bi, not Ci (1)
¬A′ ← Bj , not Cj (2)
Ap ← A′, not ¬ApU (3)
An ← ¬A′, not ¬AnU (4)
Ap ← Bk, not Ck (5)
¬Ap ← Bl, not Cl (6)
An ← Bm, not Cm (7)
¬An ← Bn, not Cn (8)
¬An ← A (9)

¬Ap ← ¬A (10)
A← Ap (11)
¬A← An (12)
ApU ← Bk, not Ck (13)
¬ApU ← Bl, not Cl (14)
AnU ← Bm, not Cm (15)
¬AnU ← Bn, not Cn (16)
¬AnU ← A (17)
¬ApU ← ¬A (18)

Note that rules (5)-(12) are exactly equal to the rules of the update program.
The structure of the remaining part of the proof is quite similar to the one

set forth in Theorem 1. Its details are slightly more extensive for we now have
to simplify P

′
U eliminating ApU , ¬ApU , AnU and ¬AnU whilst in Theorem 1 we

only had to consider AU and ¬AU .

Example 7. Applying this transformation to the alarm example (Ex. 6)

P : sleep← ¬alarm U : in(¬alarm)←
panic← alarm
alarm←
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we obtain (where the rules for A and ¬A stand for their ground instances):

PU : sleep
′ ← ¬alarm Ap ← A′, not ¬ApU

panic
′ ← alarm An ← ¬A′, not ¬AnU

alarm′ ← Ap ← ApU

alarmnU ← ¬Ap ← ¬ApU

¬alarmpU ← ¬alarm An ← AnU

A← Ap ¬An ← ¬AnU

¬A← An

with model (modulo L′, Ln, Lp, LU ):

MU = {sleep,¬alarm} ♦
Definition 9 and Theorem 2 both now carry over to a language K with explicit

negation.

Definition 17 (Extended factual LP). Let I be an interpretation of a lan-
guage K with explicit negation. We define the extended logic program associated
with I, P ∗(I), as:

P ∗(I) = {L←: L ∈ I} (27)

where the Ls are objective literals. ♦
It is worth pointing out that the translation of update programs into extended

logic programs, making use of explicit negation ¬ to code the out’s in the heads
of update rules and default negation not to code the out’s in the bodies of the
same rules, allows for some pairs of answer-sets, one of which will always be
closer than the other to the initial interpretation. This is best illustrated by the
following example:

Example 8. Let I = {a} and U = {¬a← not a} where U is the translation of
U ′ = {out(a)← out(a)} according to Def.5. The updated program is:

PU : a′ ←
a← a′, not ¬aU

¬aU ← not a

with two answer-sets whose restrictions are M1 = {a} and M2 = {}. Note that
M1 is closer to I than M2. ♦

The closeness condition in Theorems 2 and 4 exists to eliminate such farther
models in order to obtain the U-justified updates only. As mentioned, this phe-
nomena is due to the translation of the update programs. This is also shared
by [AP97] for the case of updates extended with explicit negation, and so their
soundness and completeness theorem should also make use of the closeness re-
lationship.

This translation has the virtue of not excluding such models, just in case they
are seen as desired. Another approach exists, mentioned in the conclusions, that
avoids the need for the closeness relation by excluding the non-closest updates
by construction.
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Theorem 4 (Generalization of Updates). Let U be an update program with
explicit negation and I an interpretation. Then:

1. Every U -justified update of I is a <P ∗(I), U>-justified update.
2. A <P ∗(I), U>-justified update Iu is a U -justified update of I iff there is no

I
′
u closer to I than Iu, where I

′
u is a <P ∗(I), U>-justified update. ♦

Proof. (sketch): Let U be an update program consisting of rules of the form:

Ap ← Bk, not Ck A← Ap

¬Ap ← Bl, not Cl ¬A← An

An ← Bm, not Cm ¬An ← A
¬An ← Bn, not Cn ¬Ap ← ¬A

where A is an atom and each B and C is some finite set of objective literals.
According to [AP97], a total (or two-valued) WFSX model (modulo primed

and explicitly negated elements) of the program PU is a U-justified update iff it
is closest to I, among all such models, where PU is:

PU : A′ ← for all A ∈ I
¬A′ ← for all ¬A ∈ I
Ap ← A′, not ¬Ap

¬Ap ← not A′, not Ap

An ← ¬A′, not ¬An

¬An ← not ¬A′, not An

A← Ap

¬A← An

¬An ← A
¬Ap ← ¬A




for all A

Ap ← Bk, not Ck

¬Ap ← Bl, not Cl

An ← Bm, not Cm

¬An ← Bn, not Cn




rules from U

according to Def. 8, an interpretation I
′
u is a <P ∗(I), U>-justified update iff

it is the restriction of an answer-set of the program P
′
U (after the same partial

evaluation as done in the proof of Theorem 3):

P
′
U : A′ ← Bi, not Ci (1)
¬A′ ← Bj , not Cj (2)
Ap ← A′, not ¬ApU (3)
An ← ¬A′, not ¬AnU (4)
Ap ← Bk, not Ck (5)
¬Ap ← Bl, not Cl (6)
An ← Bm, not Cm (7)
¬An ← Bn, not Cn (8)
¬An ← A (9)

¬Ap ← ¬A (10)
A← Ap (11)
¬A← An (12)
ApU ← Bk, not Ck (13)
¬ApU ← Bl, not Cl (14)
AnU ← Bm, not Cm (15)
¬AnU ← Bn, not Cn (16)
¬AnU ← A (17)
¬ApU ← ¬A (18)
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We will have to show that these two transformed programs have the same models,
apart from irrelevant elements.

Following similar, though slightly more complex, arguments as in the proof of
Theorem 2, we can replace ApU , ¬ApU , AnU and ¬AnU by Ap, ¬Ap, An and ¬An

in rules (3)-(6), and deleting rules (15)-(20). Also rules ¬Ap ← not A′, not Ap

and ¬An ← not ¬A′, not An of PU are irrelevant for the only rules with ¬Ap

and ¬An in their body also have A′ and ¬A′ in their body, respectively, which
could never be true. Removing those rules from PU , it would be exactly equal
to P ′

U , after the simplifications mentioned, thus proving the theorem.

5 Conclusions

In this paper we have generalized the notion of updates to the case where we
want to update programs instead of just their models. We have shown that since
a program encodes more information than a set of models, the law of inertia
should be applied to rules instead of to model literals, as had been done so far.
We presented a transformation which, given an initial program and an update
program, generates the desired updated program. Our results have been further
extended to allow for both programs and update programs extended with explicit
negation. This is important inasmuch as it permits our updated programs to be
updated in turn, and allows us to conceive what it is to successively update one
program by another, and so to define the evolution of knowledge bases by means
of updates3.

Future foundational work involves dealing with partial interpretations and
non-coherent update programs and their contradiction removal requirements,
among other developments. Indeed, as the world changes, so must logic programs
that represent it. Program updating is a crucial notion opening up a whole
new range of applications, from specification of software updates to temporal
databases, from reasoning about actions to active databases, and in general as
a means for better representing reasoning, including belief revision.

Acknowledgments. We thank José Júlio Alferes, Halina Przymusinska and
Teodor Przymusinski for their insightful discussions and suggestions, and the
anonymous referees for their comments. A joint paper together with them is
well under way, improving on and generalizing the results presented here, as
well as exploring some of the application areas mentioned above. (A Prolog im-
plementation of this more general theory is already available.)

3 Iterated updates are made easier by a similar approach to that of Footnote 1, where
instead the equivalences (An)′ = (A′)n, (Ap)′ = (A′)p, (AU

n )′ = (A′)U
n and (AU

n )′ =
(A′)U

n are introduced. Lack of space prevents us to elaborate further on iterated
updates, and garbage collection techniques to do away with rules rendered useless.
For the details on these topics the reader is referred to [Lei97].
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