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Preface

Fluid–structure interaction (FSI) is among the most popular and intriguing problems
in applied sciences. Their range of interest covers many significant areas of
research including industrial applications, such as the manufacturing of short-
fiber composites, biological applications, such as separation of macromolecules by
electrophoresis, DNA sequencing, and blood flow, as well as animal locomotion and
damage of structures.

The focus of this book is to present, in a methodical way, updated and compre-
hensive descriptions and analysis of some among the most relevant problems in the
framework of FSI, with a special view to biomedical applications. More specifically,
this work, organized in chapters, is dedicated to as many different fundamental
aspects of FSI from different perspectives, that comprehend a mathematical analysis
of basic questions, like well-posedness of the relevant initial and boundary value
problems, as well as the modeling and the numerical simulation of a number of
fundamental phenomena related to human biology. These latter include blood flow
in arteries and veins, blood coagulation, and speech modeling.

The book is organized in seven chapters presenting in detail selected subjects:

1. Chapter 1: Mathematical and Numerical Analysis of Some FSI Problems—
Some specific existence and numerical results applied to a 2D/1D fluid–structure
coupled model, for an incompressible fluid and a thin elastic structure are
presented. Special focus is on mathematical and numerical difficulties arising
when studying this kind of problems, such as the geometrical nonlinearities or
the added mass effect. In particular the link between the strategies of proof of
weak or strong solutions and the possible algorithms to discretize these type of
coupled problems is pointed out.

2. Chapter 2: Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis,
and Numerical Simulation—To study the interaction between blood flow and
cardiovascular tissue a stable and efficient FSI solver is an indispensable tool.
The multi-physics nature of this class of problems suggests the use of partitioned,
modular algorithms based on an operator splitting approach that would separate
the different physics in the problem. Such a scheme is presented, to be used not
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only in computations but also to prove existence of weak solutions to this class
of problems. Particular attention is paid to multi-physics FSI problems involving
structures consisting of multiple layers.

3. Chapter 3: Hyperbolic–Parabolic Coupling and the Occurrence of Resonance in
Partially Dissipative Systems—Elastic solids, when subjected to a time-periodic
load of frequency !, may respond with a drastic increase of the magnitude
of basic kinematic and dynamic quantities, such as displacement, velocity,
and energy.Objective of the presented analysis is to investigate whether the
interaction of an elastic solid with a dissipative agent can affect and possibly
prevent the occurrence of resonance. This problem is studied in a broad class
of dynamical systems (called partially dissipative), whose dynamics is governed
by strongly continuous semigroups of contractions. For such systems the sharp
necessary and sufficient conditions for the occurrence of resonance are provided.

4. Chapter 4: Topics in the Mathematical Theory of Interactions of Incompressible
Viscous Fluid with Rigid Bodies—The recent results devoted to the interactions
between a set of rigid bodies and a surrounding viscous fluid, the whole system
filling a container, are reviewed. It is assumed that the motion of (resp.) the rigid
bodies is governed by the incompressible Navier–Stokes equations (resp. Newton
laws), and that velocities and stress tensors are continuous at the fluid/body
interfaces. The well-posedness of the associated Cauchy problem, with a specific
eye towards the handling of contact between bodies or between one body and the
container boundary, is addressed.

5. Chapter 5: Numerical Simulation of Fluid–Structure Interaction Problems of
Flow in Vocal Folds—Here the main attention is paid to the mathematical
description of a corresponding problem and to the description of the applied
numerical methods. The mathematical description consists of the elasticity
equations describing the motion of an elastic structure, and the air flow modeled
by the Navier–Stokes equations. The solution of dynamic elasticity equations is
realized with the aid of conforming finite elements or the elastic structure motion
is modeled by a simplified model of vibrating rigid body. Both compressible
and incompressible fluid models are considered. The approximation of flow in
moving domains is treated with the aid of the arbitrary Lagrangian–Eulerian
method.

6. Chapter 6: Data Assimilation in Cardiovascular Fluid–Structure Interaction
Problems—This chapter provides an introduction to methods for data assimi-
lation, mostly developed in fields like meteorology, applied to computational
hemodynamics. The focus is mainly on two of them: methods based on stochastic
arguments (Kalman filtering) and variational methods. Some examples are
addressed that have been approached with different techniques, in particular the
estimation of vascular compliance from displacement measures.

7. Chapter 7: Mathematical Models for Blood Coagulation—The historical expo-
sure of the development of classical coagulation modeling theories is followed
by a basic overview of blood coagulation biochemistry. The recent developments
of cell-based models are explained in detail to demonstrate the current shift
from the classical cascade/waterfall models. This phenomenological overview
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is followed by a survey of available mathematical concepts used to describe the
blood coagulation process at various spatial scales including some of the related
biophysical phenomena.

We believe that the variety of the topics along with the different approaches
used to tackle the corresponding problems will help the reader to have a global
and updated view on the latest results on the subject and on the relevant open
questions. For the same reason we expect the book to become a friendly companion
to scientists having their main research focus in diverse disciplines, such as
mathematics, physics, mathematical biology, bioengineering, and medicine.

Prague, Czech Republic Tomáš Bodnár
Pittsburgh, PA, USA Giovanni Paolo Galdi
Prague, Czech Republic Šárka Nečasová
February 2014
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Chapter 1
Mathematical and Numerical Analysis of Some
FSI Problems

Céline Grandmont, Mária Lukáčová-Medvid’ová, and Šárka Nečasová

Abstract In this chapter we deal with some specific existence and numerical results
applied to a 2D/1D fluid–structure coupled model, for an incompressible fluid and
a thin elastic structure. We will try to underline some of the mathematical and
numerical difficulties that one may face when studying this kind of problems such
as the geometrical nonlinearities or the added mass effect. In particular we will
point out the link between the strategies of proof of weak or strong solutions and the
possible algorithms to discretize these type of coupled problems.

Keywords ALE method • Elastic structure • Existence of the weak solution •
Fluid–structure interaction • Geometric conservation laws • Hemodynamics •
Kinematic coupling algorithm • Navier–Stokes equations • Non-Newtonian shear-
dependent fluids • Operator splitting
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1.1 Introduction

Many physical phenomena deal with a fluid interacting with a moving rigid or
deformable structure. These kinds of problems have a lot of important applications,
for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc.
From the analytical point of view as well as from the numerical point of view
they have been studied extensively over the past years. The purpose of the present
chapter is to present an overview of some of the analytical and numerical difficulties
that may be encountered when dealing with fluid–structure interaction problems and
how one can deal with these difficulties. We will focus on the case where the fluid
is a viscous incompressible fluid and interacts with a thin elastic structure located
on one part of the fluid boundary domain. We will assume that the deformations

T. Bodnár et al. (eds.), Fluid-Structure Interaction and Biomedical Applications,
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Fig. 1.1 Description of the fluid domain �f .t/

of the fluid domain cannot be neglected and which consequently depends on the
structure displacement. The fluid evolves according to the structure displacement
itself resulting from the fluid force. We restrict ourselves to the two-dimensional
case. Note that the model we will consider in what follows can be viewed as a first
model to describe the blood flow in large arteries [138].

Let us start by setting the full nonlinear coupled problem we will study in
what follows. The fluid is described by the unsteady Navier–Stokes equations (or
by incompressible non-Newtonian fluid system), whereas the structure will be a
thin linear elastic structure. We consider �f .t/ the domain occupied by the fluid
at time t , �f .t/ � R

2. Furthermore, we assume that the fluid boundary can be
decomposed into four parts: @�f .t/ D †.t/ [ �0 [ �in [ �out, see Fig. 1.1.

The first part †.t/ denotes the elastic wall. The boundary †.t/ is consequently
the deformed configuration of the structure which is an unknown of the problem
depending on the structure displacement, whereas �0, �in, �out are fixed given
boundaries where different kind of boundary conditions could be applied. We
denote by O�f and O† the reference configurations of the fluid and of the structure,
respectively. Here we consider that O† is flat and equal to .0; L/ � fRg and that
O�f D .0; L/�.0;R/. The behavior of the structure is described by the displacement
of each point of the reference configuration. Then each point Ox of O† occupies at
time t the position x.t/ D Ox C d. Ox; t/ where d denotes the displacement of the
structure that satisfies the constitutive equations that describe the structure motion.

Concerning the fluid, most of the descriptions are Eulerian ones. The unknowns
(velocity, pressure) are evaluated at each time and at each point of the physical
domain. The resolution of the fluid part, if one considers a Newtonian flow, then
consists in: finding .u; p/ defined over�f .t/ such that

�f @tu C �f .u:r/u � ��u C rp D f ; in �f .t/; (1.1)

div u D 0; in �f .t/; (1.2)
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where u denotes the fluid velocity, p its pressure, � its viscosity, �f its density
(assumed to be constant). Moreoverf denotes a given exterior load. Equations (1.1)
stand for the momentum conservation whereas (1.2) traduces the incompressibility
constraint. These equations are completed with initial data

u.t D 0; �/ D u0.�/; in �f .0/; (1.3)

and boundary conditions.
On the boundaries which are outside the fluid–structure interface, i.e., on �f D

@�f .t/n†.t/, one can consider different kind of boundary conditions. For instance,
one could impose homogeneous Dirichlet condition over �f :

u D 0; on �f : (1.4)

This type of boundary conditions means that the fluid is enclosed in the cavity
�f .t/. It is clear that in the most of the applications, other kind of boundary
conditions are to be considered. For instance, in the case of blood flow modeling
or in the case of the air flow in the respiratory system where one considers only
a portion of the arterial network, or a portion of the bronchial tree, some parts
of �f such that �in and �out may represent artificial boundaries. If measurement
of the velocity is available (which is rather unlikely) over �in and �out one may
impose given Dirichlet boundary conditions. Otherwise we may also have access to
some pressure measurements and then impose the Neumann boundary conditions
that write

� f .u; p/ � n D �pinn; on �in; (1.5)

� f .u; p/ � n D �poutn; on �out; (1.6)

completed with

u D 0; on �0 D �f n .�in [ �out/; (1.7)

where � f .u; p/ D �pI C 2�D.u/ denotes the fluid stress tensor, D.u/ stands for
the fluid strain tensor, D.u/ D 1

2
.ru C .ru/T /, and n denotes the exterior unit

normal to the considered boundary.
Note that many other boundary conditions could be imposed, for instance

� f .u; p/ � n � n D �pin;u � � D 0; on �in; (1.8)

� f .u; p/ � n � n D �pout;u � � D 0; on �out; (1.9)

or boundary conditions on the pressure only (see [32]), or a prescribe velocity profile
of unknown intensity (see [93]).
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One could also consider simplified reduced models that represent the part of the
fluid–structure domain that have been cut. These models will then be coupled to the
Navier–Stokes system. We refer to [103] for a theoretical study of the steady and
unsteady Navier–Stokes system with a given prescribed flux, or average pressure.
We also refer to [69–71, 138, 140, 157] for the case of blood flows and 3D=0D
coupling or 3D=1D coupling and to [9] for the case of air flow modeling.

Concerning the structural part, we consider here a thin elastic structure whose
displacement d is decomposed into two components: � the longitudinal one and
	 the radial or transversal one. For the sake of simplicity we assume that � and 	
satisfy two linear decoupled equations, which correspond to a rod or beam model.
One could consider also more complex model such as shell models (Koiter, Nagdhi,
etc.) where � and 	 are coupled, see, e.g., Bukač et al. [21], Raghu et al. [142], Čanić
et al. [24], and the references therein.

The considered equations satisfied by d.t; x; R/ D .�.t; x/; 	.t; x//T in the
reference configuration .0; L/ are:

�se@tt� � ˛1@xx� � ˇ1@xx@t � D �.Tf /1 C g1; on .0; L/; (1.10)

�se@tt	C 
@4x	 � ˛2@xx	 � ˇ2@xx@t	 D �.Tf /2 C g2; on .0; L/; (1.11)

where �s denotes the density of the structure (assumed to be constant), e the
thickness of the elastic wall. The positive constants 
 , ˛i ; i D 1; 2 denote
mechanical constants depending on the elastic properties of the media and the
ˇi ; i D 1; 2 some additional viscous damping. Two types of load act on the
structure: the load Tf coming from the fluid, that will be defined later on, and a
given external surfacic load denoted g. Note that one could add to (1.11) the term
� 2
3
�se

3@xx@tt	 that represents the inertia of rotation.
These equations have to be completed with the initial conditions:

�.t D 0; �/ D �0.�/; 	.t D 0; �/ D 	0.�/
@t �.t D 0; �/ D �1.�/; @t	.t D 0; �/ D 	1.�/ on .0; L/; (1.12)

and by the boundary conditions. We can assume here that the rod is clamped and
thus prescribe homogeneous Dirichlet boundary conditions, even if these type of
conditions are not reflecting reality in the case of blood flow modeling. Thus we
have, for instance

�.0/ D �.L/ D 0 and 	.0/ D 	.L/ D 0 (1.13)

@x	.0/ D @x	.L/ D 0; whenever 
 > 0: (1.14)

The next question that we aim to study is:
What are the coupling conditions between the fluid and the structure?

First, we will assume that the fluid sticks to the elastic boundary and conse-
quently the fluid velocity and the structure velocity are equal at the interface. That
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writes, taking into account the fact that the fluid velocity is written in the Eulerian
coordinates and the structure velocity in the Lagrangian ones:

u.t; Ox C d.t; Ox// D @td.t; Ox/; for .t; Ox/ 2 .0; T / � O†: (1.15)

This can be rewritten in the following form:

u.t; x C �.t; x/; R C 	.t; x// D .@t �.t; x/; @t 	.t; x//
T for .t; x/ 2 .0; T / � .0; L/:

The second coupling condition traduces the action–reaction principle. In the case
where one considers the coupling of a fluid with a thick structure this principle leads
to the equality of the normal component of the fluid and structure stress tensors.
Here the structure is thin and consequently the action of the fluid on the structure
appears in the right hand side of the structure equations as a surfacic load. This load
T f can be defined in a variational way by:

Z
†.t/

.� f .u; p/ � n/ � vd�t D
Z

O†
T f � vd�; 8v (1.16)

with v.t; Ox/ D v.t; Ox C d.t; Ox// for each Ox 2 O† and n denoting the exterior unit
normal to the deformed wall †.t/. The quantity T f represents the surface force,
written in the reference configuration, applied by to fluid on the structure.

Note that other types of coupling conditions have been considered in the
literature. For instance in [100], the existence of weak solution is studied in the
case, where 
 > 0 and � D 0. In their study the kinematic condition simply ensures
that the deformable boundary is impermeable.

In order to rewrite T f in a strong way, let us introduce �f a deformation of the

fluid domain that maps Œ0; T � � O�f into [t ftg � �f .t/ and such that �f .t; Ox/ D
OxC d.t; Ox/ for .t; Ox/ 2 Œ0; T �� O†. Let F f be the deformation gradient and Jf the
Jacobian of �f . The equality (1.16) writes

T f D Jf � f .u; p/ � .F f /
�T � On; (1.17)

where On denotes the exterior unit normal to the reference interface O†.

Remark 1.1. The previous definition of T f depends only on the displacement d
of the elastic wall (which is a part of the fluid boundary) and not on the particular
chosen extension �f .

The third coupling condition comes from the fact that the fluid equations are
written in the Eulerian coordinates and consequently the fluid domain �f .t/ D
�f .t; O�f / is unknown and depends on the displacement of the structure.

Remark 1.2. Whenever we consider homogeneous boundary conditions for the
fluid (1.4) or mixed boundary conditions (1.5), (1.6), (1.7), the pressure is always
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defined in a unique way and not up to an additional constant. This is clear in the
case when Neumann boundary conditions are prescribed. In the case of Dirichlet
boundary conditions the average pressure is determined by adding an additional
constraint to the system that states that, since the fluid is incompressible, the total
volume of the fluid cavity is preserved. In our case it writes:

Z L

0

@t	.1C @x�/ �
Z L

0

@t �@x	 D 0; (1.18)

which is equivalent to

Z L

0

	.1C @x�/ D C; (1.19)

where C is a given constant.
From the mathematical point of view the average pressure is the Lagrange

multiplier associated with (1.18) or (1.19).

We are now well prepared to write the variational formulation of the coupled
problem and derive, at least formally, a priori energy estimates satisfied by any
smooth enough solution.

1.1.1 Variational Formulation and Energy Estimates

The following calculations are formal and based on the assumption that the solution
.u; p;d/ of the system and the chosen test functions are regular enough.

Let v be a fluid test function satisfying v D 0 on �f in the case of homogeneous
boundary conditions or v D 0 on �0 in the case of mixed Neumann–Dirichlet
boundary conditions. Let .b1; b2/T be a structure test function satisfying the same
homogeneous Dirichlet boundary conditions (1.13) as .�; 	/T .

We multiply the fluid conservation of momentum (1.1) by v and integrate over
the fluid domain�f .t/. In the same way, we multiply the structure equations (1.10),
(1.11), respectively, by b1 and b2 and integrate over the structure reference domain
.0; L/. After integration by parts and by summing up the fluid and the structure
contributions, we obtain in the case where v D 0 over �f

Z
�f .t/

�f @tu � vC
Z
�f .t/

�f .u � r/u � vC �

Z
�f .t/

D.u/ W D.v/

�
Z
�f .t/

p divv �
Z
†.t/

� f .u; p/ � n � v

C
Z L

0

�se @t t � b1 C ˛1

Z L

0

@x �@xb1 C ˇ1

Z L

0

@x@t � @xb1
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C
Z L

0

�se @t t 	 b2 C 


Z L

0

@xx	 @xxb2 C ˛2

Z L

0

@x	 @xb2 C ˇ2

Z L

0

@x@t	 @xb2

D �
Z

O†
T f � bC

Z
�f .t/

f � vC
Z L

0

g1b1 C
Z L

0

g2b2;

8.v;b/;b. Ox/ D .b1.x/; b2.x//
T8 Ox D .x;R/ 2 O†; v D 0 on �f :

Note that the terms at the fluid–structure interface are
Z
†.t/

� f .u; p/ � n � v �
Z

O†
T f � b D

Z
O†
T f � .v � b/; (1.20)

thanks to the definition of T f . By choosing the test functions satisfying the
kinematic condition:
b.t; Ox/ D v.t; OxC d.t; Ox// for Ox 2 O† and by using the definition (1.16) of T f , we
obtain the following variational formulation of the problem:

Z
�f .t/

�f @tu � vC
Z
�f .t/

�f .u � r/u � vC�
Z
�f .t/

D.u/ W D.v/�
Z
�f .t/

p divv

C
Z L

0

�se @t t � b1 C ˛1

Z L

0

@x �@xb1 C ˇ1

Z L

0

@x@t � @xb1

C
Z L

0

�se @t t 	 b2 C 


Z L

0

@xx	 @xxb2 C ˛2

Z L

0

@x	 @xb2 C ˇ2

Z L

0

@x@t	 @xb2

D
Z
�f .t/

f � vC
Z

O†
g � b;

8.v;b/ such that v D 0 on �f ;

b.t; Ox/ D .b1.t; x/; b2.t; x//
T D v.t; Ox C d.t; Ox// for Ox D .x;R/ 2 O†:

(1.21)
We have to underline the fact that the previous weak formulation is not standard
since the test functions depend on time and on the unknown solution. This is due to
the difference between the Lagrangian formulation for the structure motion and the
Eulerian one for the fluid description.

In the case where we have mixed Neumann–Dirichlet boundary conditions, we
obtain

Z
�f .t/

�f @tu � vC
Z
�f .t/

�f .u � r/u � vC �

Z
�f .t/

D.u/ W D.v/

�
Z
�f .t/

p divv �
Z
†.t/

� f .u; p/ � n � v

�
Z
�in

� f .u; p/ � n � v �
Z
�out

� f .u; p/ � n � v
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C
Z L

0

�se @t t � b1 C ˛1

Z L

0

@x �@xb1 C ˇ1

Z L

0

@x@t � @xb1

C
Z L

0

�se @t t 	 b2 C 


Z L

0

@xx	 @xxb2 C ˛2

Z L

0

@x	 @xb2 C ˇ2

Z L

0

@x@t	 @xb2

D �
Z

O†
T f � bC

Z
�f .t/

f � vC
Z L

0

g1b1 C
Z L

0

g2b2;

8.v;b/;b. Ox/ D .b1.x/; b2.x//
T for Ox D .x;R/ 2 O†; v D 0 on �0:

Taking into account the Neumann boundary conditions on �in and �out we get

Z
�f .t/

�f @tu � vC
Z
�f .t/

�f .u � r/u � vC�
Z
�f .t/

D.u/ W D.v/�
Z
�f .t/

p divv

C
Z L

0

�se @t t � b1 C ˛1

Z L

0

@x �@xb1 C ˇ1

Z L

0

@x@t � @xb1

C
Z L

0

�se @t t 	 b2 C 


Z L

0

@xx	 @xxb2 C ˛2

Z L

0

@x	 @xb2 C ˇ2

Z L

0

@x@t	 @xb2

D
Z
�f .t/

f � v �
Z
�out

poutv � n �
Z
�in

pinv � nC
Z

O†
g � b;

8.v;b/ such that v D 0 on �0;

b.t; Ox/ D .b1.t; x/; b2.t; x//
T D v.t; Ox C d.t; Ox// for Ox D .x;R/ 2 O†:

(1.22)

Energy Estimates

In order to obtain the energy estimates satisfied by .u; p/ we choose the fluid
velocity u and the structure velocity @td as test functions in the previous variational
formulations (1.21) or (1.22). These test functions are admissible since they satisfy
the kinematic condition (1.15). Thanks to the fluid incompressibility, in the case
of homogeneous Dirichlet boundary conditions on �f and since the interface †.t/
moves at the structure velocity which is equal to the fluid velocity, we note that due
to the Reynolds transport theorem it holds

Z
�f .t/

�f @tu � u C
Z
�f .t/

�f .u � r/u � u D d

dt

Z
�f .t/

�f

2
juj2: (1.23)

Consequently the kinetic energy of the fluid appears leading to the following energy
balance:
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Z
�f .t/

�f

2
juj2.t/

„ ƒ‚ …
Fluid kinetic energy

C �

Z t

0

Z
�f .t/

jD.u/j2
„ ƒ‚ …

Fluid dissipation

C
Z L

0

�se

2

�j@t �j2 C j@t	j2
�

„ ƒ‚ …
Kinetic energy of the structure

C ˛1

2

Z L

0

j@x�j2 C 


2

Z L

0

j@xx	j2 C ˛2

2

Z L

0

j@x	j2
„ ƒ‚ …

Mechanical energy of the structure

C ˇ1

2

Z t

0

Z L

0

j@x@t �j2 C ˇ2

2

Z t

0

Z L

0

j@x@t	j2
„ ƒ‚ …

Structure dissipation

D
Z t

0

Z
�f .s/

f � u C
Z t

0

Z
O†
g � @td

„ ƒ‚ …
Power of the exterior forces

C
Z
�f .0/

�f

2
ju0j2

„ ƒ‚ …
Initial energy of the fluid DEf .0/

C
Z L

0

�se

2
.j�1j2 C j	1j2/C ˛1

2

Z L

0

j@x�0j2 C 


2

Z L

0

j@xx	0j2 C ˛2

2

Z L

0

j@x	0j2
„ ƒ‚ …

Initial energy of the structure DEs.0/
(1.24)

Remark 1.3. In the case of an elastic or hyperelastic thick structure, the energy takes
the same form except for the mechanical energy of the structure which depends on
the considered material.

The energy balance (1.24) implies, by using the Gronwall lemma, that for t � T

Z
�f .t/

�f

2
juj2.t/C �

Z t

0

Z
�f .s/

jD.u/j2 C
Z L

0

�se

2

�j@t �j2.t/C j@t	j2.t/
�

C ˛1

2

Z L

0

j@x�j2.t/C 


2

Z L

0

j@xx	j2.t/C ˛2

2

Z L

0

j@x	j2.t/

C ˇ1

2

Z t

0

Z L

0

j@x@t �j2 C ˇ2

2

Z t

0

Z L

0

j@x@t	j2

� et

 
Ef .0/C Es.0/C C

Z t

0

et�s
 Z

�f .s/

jf j2 C
Z L

0

jgj2
!!

: (1.25)

Note that here we have not used the dissipation coming from the structure to
obtain this energy estimate and this is the reason why we have a constant in time
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whose behavior is exponential. Consequently the previous estimates is also valid
for ˇ1 D ˇ2 D 0. By taking advantage of both the dissipation of the fluid and the
structure one obtains an estimate of the form

C

 
Ef .0/C Es.0/C C

Z t

0

 Z
�f .s/

jf j2 C
Z L

0

jgj2
!!

;

where C does not depend on time. Consequently in any case, we obtain that, at least
formally, if

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

f 2 L2..0; T / � R
2/;g 2 L2..0; T / � .0; L//;

�0 2 H1.0;L/;

	0 2 H2.0;L/ if 
 > 0; 	0 2 H1.0;L/ otherwise;

�1 2 L2.0;L/; 	1 2 L2.0;L/;

then

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

u 2 L1.0; T IL2.�f .t//;

ru 2 L2.0; T IL2.�f .t///;

� 2 W 1;1.0; T IL2.0;L//\ L2.0; T IH1.0;L//;

	 2 W 1;1.0; T IL2.0;L// \L2.0; T IH2.0;L//; if 
 > 0;

	 2 W 1;1.0; T IL2.0;L// \L2.0; T IH1.0;L// otherwise;

if ˇi > 0; i D 1; 2; @t � 2 L2.0; T IH1.0;L//; @t	 2 L2.0; T IH1.0;L//:

In the case when the Neumann boundary conditions are prescribed on �in and �out,
then the Newton equality (1.23) has to be modified and the flux of kinetic energy
appears at the artificial boundaries:

Z
�f .t/

�f @tu � u C
Z
�f .t/

�f .u � r/u � u D d

dt

Z
�f .t/

�f

2
juj2

C
Z
�in

�f
juj2
2

u � nC
Z
�out

�f
juj2
2

u � n: (1.26)

Consequently the energy balance becomes

Z
�f .t/

�f

2
juj2.t/

„ ƒ‚ …
Fluid kinetic energy

C �

Z t

0

Z
�f .t/

jD.u/j2
„ ƒ‚ …

Fluid dissipation

C
Z L

0

�se

2

�j@t �j2.t/C j@t	j2.t/
�

„ ƒ‚ …
Kinetic energy of the structure
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C ˛1

2

Z L

0

j@x�j2.t/C 


2

Z L

0

j@xx	j2.t/C ˛2

2

Z L

0

j@x	j2.t/
„ ƒ‚ …

Mechanical energy of the structure

C ˇ1

2

Z t

0

Z L

0

j@x@t �j2 C ˇ2

2

Z t

0

Z L

0

j@x@t	j2
„ ƒ‚ …

Structure dissipation

D
Z t

0

Z
�f .s/

f � u C
Z t

0

Z
O†
g � @td

„ ƒ‚ …
Power of the exterior forces

C
Z
�f .0/

�f

2
ju0j2

„ ƒ‚ …
Initial energy of the fluid DEf .0/

C
Z L

0

�se

2
.j�1j2 C j	1j2/C ˛1

2

Z L

0

j@x�0j2 C 


2

Z L

0

j@xx	0j2 C ˛2

2

Z L

0

j@x	0j2
„ ƒ‚ …

Initial energy of the structure DEs.0/

�
Z t

0

Z
�in

�f
juj2.t/
2

u.t/ � n �
Z t

0

Z
�out

�f
juj2.t/
2

u.t/ � n
„ ƒ‚ …

Flux of fluid kinetic energy at the interfaces
(1.27)

These two last additional terms have an undetermined sign and could not be
easily estimated by the fluid energy. In dimension 2 one could obtain an energy
estimate locally in time and for small initial data but it is not feasible in dimension 3.

We refer to [9, 103, 138] for existence results in the case of Navier–Stokes in a
given domain with Neumann type boundary conditions. Note that in these papers
the solutions are strong and not weak. Since no energy estimate could be derived, a
way to get rid of this difficulty is to modify the initial problem and impose:

� f

�
u; p C �f

2
juj2

�
� n D �pinn on �in; (1.28)

� f

�
u; p C �f

2
juj2

�
� n D �poutn on �out; (1.29)

where p is replaced by the total pressure p C �f
2

juj2. By doing so one obtains
an energy estimate and one can hope to prove existence of solutions in the energy
space (see [93, 109–111, 121, 129], where such kind of boundary conditions are
considered). These type of boundary conditions will also be used in Sect. 1.2.4.
Note moreover that imposing the Neumann boundary conditions (1.5), (1.6) for the
Navier–Stokes system leads also to numerical issues since the energy entering the
computational domain is not controlled, which may induce numerical instabilities
[94, 113, 126].
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1.1.2 Difficulties

This type of coupled problem raises challenging questions from the analytical
and numerical point of view, that we will try to review, at least some of them,
in the present chapter. But first of all let us describe which type of theoretical
and numerical difficulties one face when studying the existence of solutions or
simulating these coupled system.

Mathematical Difficulties

Considering the Cauchy problem and consequently the well-posedness of fluid–
structure interaction problems the main difficulties are mainly of three types:

• The full system is nonlinear. There are two types of nonlinearities: the nonlinear
convective terms of the Navier–Stokes system and the geometrical nonlinearities
due to the fact that the fluid equations are set in an unknown domain depending
on the structure displacement. In the case of the non-Newtonian fluids we have
in addition nonlinearities in the diffusive term.

One of the key points here is to define a functional framework that enables
to give a sense of traces of fluid velocity-fields on moving boundaries. Such
function spaces have to be designed keeping in mind that classical methods
for proving existence of weak solutions require a fortiori to be able to prove
compactness of any bounded family of solutions. In our case, if one considers
weak solutions, the a priori bounds imply that � is in H1.0;L/ for a.e t and
	 is in H2.0;L/ for a.e t if 
 > 0, H1.0;L/ otherwise. Note that these
regularities are not sufficient for �f .t/ to be a Lipschitz domain. So we need
to work with more regular solutions or to consider only transversal motion (i.e.,
� D 0).

• The full unsteady system involves two different kinds of PDE. The fluid has a
parabolic behavior whereas, in the case of undamped elasticity (i.e., ˇi D 0,
i D 1; 2), the structure equations are hyperbolic. Consequently, one has a
parabolic–hyperbolic coupling inducing a gap between the fluid regularities and
the structure regularities.

• The incompressibility of the fluid may be difficult to handle. In particular the
pressure load applied by the fluid on the structure may not be estimated easily in
suitable spaces. This difficulty is linked to the added mass effect that may also
imply numerical instabilities.

Numerical Difficulties

From a numerical point of view one of the difficulties arises from the geometric
nonlinearity. The question is then how to follow the moving interface. We will not
focus on this aspect here, but many methods have been developed to get rid of the
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difficulties linked to the moving domain. In particular, one can refer to [43] for
the ALE method, [85] for the fictitious domain method, or [133] for the immersed
boundary method.

We will focus here on the fluid–structure coupling. Indeed, even if we consider
a linear coupled problem, one major issue is how to efficiently discretize in
time the coupling conditions (1.15) and (1.17)? The implicit (or strongly coupled
schemes) are stable since they preserve the energy balance at the interface. The
explicit (or staggered) scheme are cheaper but do not preserve the energy balance
at the interface and may lead to numerical instabilities in particular in the case
of strong added mass effect of the fluid on the structure (i.e., �f close to �s),
cf. also Proposition 1.1. In order to balance out the energy at the interface and
to stabilize explicitly coupled schemes typically inner sub-iterations are needed,
see, e.g., [25,37,63,69,72,130,131,140], and the references therein. Semi-implicit
schemes have been introduced based on the implicit treatment of the added mass
effect and the explicit treatment of the viscous stress [63]. In the case of a thin
structure there is however also another strategy to solve fluid–structure interaction
problem without inner sub-iterations. The so-called kinematically coupled schemes
treat implicitly only the hydrodynamic fluid–structure coupling (i.e., the added mass
effect), whereas the contribution of the elastic structure is treated explicitly. We
refer, e.g., to [23, 56, 57, 62, 98, 110, 121] and to our more detailed discussion in
Sect. 1.3. See also [82].

The goal of this chapter is to enlighten some of these difficulties, some strategies
to overcome them and to present few open questions. Consequently we will review
some of the existence results that can be found, as well as some of the numerical
schemes. We will only give the key ideas and steps of these results and the reader
may refer to corresponding papers for the details.

1.2 Mathematical Analysis

Last years, existence of weak or strong solutions for fluid–structure coupled
problems have been the object of numerous researches.

A vast majority of works concern a rigid solid moving in a viscous incompress-
ible Newtonian fluid whose behavior is described by the equations of Navier–Stokes
(historically, the weak formulation of the problem of the motion of rigid bodies in
viscous fluids has been introduced and studied in [112], and further in [33, 39, 40,
75, 89, 107, 108, 146, 147, 149, 153, 154] for existence of weak or strong solutions).
Note that, in these cases, the displacement of the structure remains regular enough
and that we have a parabolic-ODE coupling. We refer to Chap. 2 for further details.

In these problems a challenging point is the existence of collisions. Let us first
mention that in the case of compressible fluids this problem has been clarified in [52,
Lemma 3.1, Corollary 3.1] where it is proven that solids are allowed to touch but not
to penetrate one another unless they did so at the initial time. In the incompressible
case the situation is different.
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In [102, 104] a no-collision result is proven when there is only one body in a
bounded two-dimensional cavity. Later on, the result was extended to the three-
dimensional situation in [105]. The case of grazing collisions was studied in [106].
In [52] (see p. 287) the case of a rigid sphere surrounded by an incompressible
viscous fluid inside a cavity was considered and a “paradoxical” solution to the
subsequent problem in which the sphere sticks to the ceiling of the cavity without
falling down was constructed. Moreover in [151], collisions, if any, are proved to
occur with zero relative translational velocity as soon as the boundaries of the
rigid objects are smooth and the gradient of the underlying velocity field is square
integrable—a hypothesis satisfied by any Newtonian fluid flow of finite energy. The
possibility or impossibility of collisions in a viscous fluid is related to the properties
of the velocity gradient. A simple argument reveals that the velocity gradient must
become singular (unbounded) at the contact point since otherwise the streamlines
would be well defined, in particular, they could never meet each other.

In [45], inspired by Feireisl et al. [54], the motion of several rigid bodies in a non-
Newtonian fluid of power-law type (see Chap. 1 of [123] for details) is considered. It
is shown that not only that a weak solution exists but also that collisions cannot occur
in such viscous fluids. The question of the influence of the smoothness of boundary
on the existence of collisions was recently investigated in [78] and [77]. Moreover
slip boundary conditions at the fluid–structure interface have been considered in [79]
and [80] where, respectively, existence of weak solutions is proven up to collision
and it is showed that collision may occur. Recently, the existence result was extended
up to the contact [28] but for a slightly different problem.

Concerning the motion of rigid bodies in a viscous compressible fluid let us
mention [40], then [52], where the existence of global-in-time weak solutions was
proved. This case was extended to case with self-gravitation force in [46]. See also
regularity results [17].

Comparing with results in the incompressible case, there is no restriction on the
existence time, regardless of possible collisions of two or more bodies or contact of
a body with the boundary.

In [53] the problem of the long time behavior of global-in-time solutions is
addressed. The authors restrict themselves to the simplest situation of a rigid ball
in a viscous fluid occupying a two-dimensional bounded domain. Assuming there
is a body force (gravity) acting in the vertical direction, they show that the rigid
body approaches, as time tends to infinity, a static state when the body touches the
boundary. Thus the contact albeit possibly absent in any finite instant must occur in
the asymptotic regime in the long run.

Concerning investigation of motion of bodies in inviscid case one can refer to
[83, 84].

Concerning an elastic structure evolving in incompressible flow, we can refer to
[41] and [19] where the structure is described by a finite number of eigenmodes
or to [10, 16, 119, 120] for an artificially damped elastic structure. In [15] the
case of a compressible fluid was also considered. Note that, in these cases, the
displacement of the structure remains regular enough and that we have either a
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parabolic–parabolic or a parabolic-ODE coupling that enables to consider strong
solutions as well as weak solutions.

Concerning three-dimensional elastic structure very few results are available.
One can refer to [76, 87, 152] in the steady state case and [34, 35, 114] for the
full unsteady case. In the later works the authors consider the existence of strong
solutions for small enough data locally in time. Note that unrealistic compatibility
conditions are required for these existence results and that some drawbacks are
known to exist in the proof of [34] (they surely may be overcome but to the price of
tedious adaptations).

To be complete, let us mention that strong existence of the motion of elastic
bodies in a viscous compressible case was recently investigated in [18].

Concerning the fluid-beam or fluid-plate coupled system one considers in this
chapter, the 2D/1D steady state case has been considered in [86] for homogeneous
Dirichlet boundary conditions on the boundary �f that is not the fluid–structure
interface. Existence of a unique regular enough solution is obtained for small enough
applied forces. To our knowledge this is the only work where both the transverse and
the longitudinal displacement are considered. In the unsteady framework the only
studied case, so far, is the case � D 0. One may refer to [26] where a 3D/2D coupling
is studied and where the structure is a damped plate in flexion (i.e., � D 0, 
 > 0)
and to [88] in the case of a plate in flexion (i.e., � D 0, 
 > 0 and ˇ2 D 0). The
previous results deal with the existence of weak solutions, i.e., in the energy spaces.
Note that in these problems the displacement of the structure is only in H2 in space
which is not sufficient to imply a Lipschitz regularity of the fluid domain �f .t/.
Nevertheless �f .t/ is at least C0 and taking the advantage of the only transverse
motion of the elastic interface one can prove that at least one weak solution exists.
These results also apply in the case of a 2D/1D coupled problem with � D 0 and

 D ˇ2 D 0 as we will see in Sect. 1.2.2. More recently [129] have considered
the 2D/1D coupling with � D 0, 
 > 0 and ˇ2 � 0 (note that in this case the
fluid domain is Lipschitz) and involving also Neumann type boundary conditions
(1.28), (1.29). The authors have given an alternative proof of existence of a weak
solutions based on ideas coming from numerical schemes introduced in [98] and
further developed in [56, 57, 62, 110, 121]. The proof is then based on a numerical
scheme where a splitting strategy is used for the structure part, emphasizing the
link between stable numerical schemes and strategies to prove existence of solution.
We would like to point out yet another theoretical results concerning the existence
of weak solution of the fluid–structure interaction problem based on numerical
techniques. In [111] the interaction of a non-Newtonian fluid with the viscoelastic
membrane was studied, for inflow/outflow boundary conditions (1.28), (1.29) are
applied. The proof is based analogously as the numerical scheme described in [109]
on the artificial compressibility approach as well as on the global iterations with
respect to the moving domain, cf. also [110]. Such a link to numerics is also present
in [119, 120] where the existence of strong solutions for 3D/2D, or 2D/1D coupled
problem involving a damped elastic structure is studied (see also [10] for 2D/1D
strong solutions). The proofs of [119, 120] are based on a splitting strategy for the
Stokes system and on an implicit treatment of the added mass effect. Also we would
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like to mention [99] where the continuity of the solution with respect to the data
was investigated a 2D/1D context and for 
 > 0. The study of the existence of weak
solution for unsteady fluid–structure interaction problem for shear-thickening flow
was investigated in [111]. This yields the existence of at least one weak solution of
the fully coupled unsteady fluid–structure interaction between the non-Newtonian
shear-dependent fluid and the elastic string. Note that in this case an additional
viscous term is added @4x@t	. For more details see Sect. 1.2.4. Moreover the coupling
of a Newtonian (or resp. a generalized Newtonian flow) and a linearly elastic Koiter
shell has recently been studied in [118], (resp. [117]). In these studies the mid-
surface of the structure is not flat anymore and other types of arguments to prove
compactness than the ones we will develop here are used. To complete the references
see [49, 68, 90, 91, 139, 141].

The aim of this section is to present some known results on existence of a solution
of fluid-beam (or rod) coupled problems and to show how these problems could be
approximated or decoupled, how compactness results could be derived. The section
is organized as follows: we will consider the unsteady problem and review some of
the existing results that can be found on the problem. Note that we will only consider
the case where � D 0 which is the case that has been treated in the literature so far.
In a first part we will explain on a simplified linear problem the so-called added
mass effect and why it may lead to some mathematical (and numerical) difficulties.
Then we will review some results of existence of weak and strong solutions. In
particular, we will see how to prove existence of weak solutions and how one
can obtain compactness of a sequence of approximated solutions in the case of a
damped structure first and then in the undamped case. Next the general ideas of
the proof of existence of strong solution will be developed. We will explain the
decoupling strategy used. This strategy enables to exploit the properties of each
sub-problem but impose to treat carefully the so-called added mass effect. This
theoretical section is concluded by presenting the existence result for the interaction
of a non-Newtonian fluid with a viscoelastic structure. The proof inherits some
techniques from numerical simulations, such as the artificial compressibility and
the global iterations with respect to the moving domain (i.e., the Schauder fixed
point theorem). We will underline which kind of additional difficulties arise due to
the non-Newtonian behavior of the fluid.

1.2.1 A Linear Simplified Problem

Let us consider the following toy problem that has been introduced in [25] to
illustrate the role played by the added mass effect on the numerical stability of
explicit schemes for fluid–structure interaction problems. For the fluid we consider
a perfect, inviscid flow described by the following equations:

�f @tu C rp D 0; in O�f ; (1.30)
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div u D 0; in O�f ; (1.31)

p D pin; on �in; (1.32)

p D pout; on �out; (1.33)

u � n D 0; on �0: (1.34)

Note that we neglect the fluid domain variations and the equations are set
in the reference configuration O�f . Concerning the structure part we consider a
thin clamped elastic structure but whose displacement is only vertical and whose
transverse component 	 satisfied, for instance

�se@t t 	 � ˛2@xx	� ˇ2@xx@t	 D p; on .0; L/: (1.35)

Moreover since the fluid is inviscid the kinematic condition at the interface writes

u � n D @t	; on O†; (1.36)

Note that here all geometrical and convective nonlinearities have been omitted.
We will assume that all the quantities are regular enough to justify the following
derivations. Due to the incompressibility constraint (1.31), by taking the divergence
of the fluid equation (1.30) we obtain that the pressure satisfies

��p D 0; in O�f ; (1.37)

@p

@n
D ��f @tu � n; on O† (1.38)

@p

@n
D 0; on �0; (1.39)

together with Dirichlet boundary conditions (1.32), (1.33) on �in and �out.
Due to (1.36), the boundary condition (1.38) writes

@p

@n
D ��f @t t 	 on O†: (1.40)

Consequently we can rewrite the pressure load applied by the fluid on the
structure as p D q � �fM.@t t 	/ where q satisfies:

��q D 0; in O�f ; (1.41)

@q

@n
D 0; on �0 [ O†; (1.42)

q D pin; on �in; (1.43)

q D pout; on �out; (1.44)
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and M is the Neumann to Dirichlet operator that associates with any v on �f , the
trace over �f of p solution of

��p D 0; in O�f ; (1.45)

@p

@n
D v; on O†; (1.46)

@p

@n
D 0; on �f ; (1.47)

p D 0; on �in [ �out: (1.48)

The mapping M is continuous from H�1=2. O†/ into H1=2. O†/ and is a compact,
self-adjoint, positive operator on L2. O†/. Consequently the coupled system can be
written only in terms of 	 which satisfies:

.�seI C �fM/@t t 	� ˛2@xx	� ˇ2@xx@t	 D q; on .0; L/;

where I is the identity mapping. We note that the action of the fluid on the structure
can be seen as an added mass through the operator M. Now, one can prove easily
that, if f 2 L2.0; T IL2.�f //, with initial conditions in well-chosen spaces, there
exists a weak solution 	 2 C1.0; T IH1

0 ..0; L// of this problem. Nevertheless if
one tries to prove existence of a solution by naively decoupling the fluid from the
structure, one will be able to do it only in the case where the structure density
is large enough compared to the fluid one. Note first that since the structure is
mono-dimensional, the natural way to decouple the fluid from the structure is to
solve the fluid equations with a given velocity on the fluid–structure boundary.
That gives a stress which is applied to the elastic media. Finally one obtains a new
structure velocity. The fixed point strategy consists then in associating with a given
displacement 	1 and displacement 	2 solution of

�se@t t 	2 � ˛2@xx	2 � ˇ2@xx@t	2 D q � �fM.@t t 	1/; on .0; L/:

Here one can clearly see that 	2 will have the same regularity in time as 	1.
Consequently the fixed point mapping will not be a contraction even locally in time
unless the structure density is large enough with respect to the fluid density. This
restriction can be found in [89] but is only due to the choice of strategy of proof.
That underlines the fact if one wants to decouple the fluid from the structure the
added mass effect has to be treated “implicitly” (see [119, 120] in the context of
existence results and [1–3, 25, 55, 64] in the context of numerical schemes) or other
strategies have to be thought about (see [129] in the context of existence result and
[56, 57, 62, 98] in the context of numerical schemes).

In the next subsection, we will consider the existence of weak and strong
solutions for the unsteady problem in the case where � D 0. In the first part, adapted
from [26, 88], existence of weak solutions is tackled and the global fluid–structure
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formulation is preserved to avoid the added mass effect (only the geometrical part
being decoupled). In a second part, we explain the strategy used in [119, 120], the
proof being based on a suitable decoupling of the fluid–structure problem where the
added mass effect is kept implicit.

1.2.2 Existence of Weak Solutions

In this subsection we will consider the case of the full nonlinear coupled problem
but with � D 0. Consequently the fluid domain is a subgraph defined by:

�f .t/ D �	.t/ D f.t; x; y/ 2 R
2; x 2 .0; L/; 0 < y < RC 	.t; x/g:

The displacement 	 will satisfied a wave equation (thus 
 D 0 in (1.11)). In a
first part we will consider an additional viscous term (ˇ2 > 0) then we study the
vanishing viscosity limit (ˇ2 ! 0) and we prove that there exists at least one
weak solution of the fluid–membrane coupled problem. Moreover to simplify we
will consider fluid boundary conditions that allow to obtain energy estimates and
consequently impose homogeneous Dirichlet boundary conditions (1.4). Note one
could also impose (1.28), (1.29).

The Damped Wave Equation: ˇ2 > 0

An energy estimate of the same type as (1.25) shows that one can look for an elastic
displacement 	 in W 1;1.0; T IL2.0;L// \ H1.0; T IH1

0 .0; L//. Nevertheless this
regularity implies that the fluid–structure interface is continuous for all time but not
Lipschitz. Consequently the set�	.t/ is an open set (tillRC	.t; x/ > 0) which not
Lipschitz. One of the first questions is then to properly define the functional spaces
to which the fluid velocity belongs to and to rigorously define the fluid trace velocity
on the moving interface.

Remark 1.4. In the case where one considers a beam equation (i.e., 
 > 0) the
energy estimates give that the elastic displacement belongs to L1.0; T IH2

0 .0; L//.
Thus the mapping �f is a C1 diffeomorphism as long as R C 	 > 0. And
consequently�	.t/ is Lipschitz.

In our case, we introduce the open set �T
	 D [t2.0;T /�	.t/ � ftg and we define

L2.0; T IH1.�	.t/// D
n
v 2 L2.�T

	 /; rv 2 L2.�T
	 /
o
;

L2.0; T IH1
0 .�	.t/// D D.�T

	 /
L2.0;T IH1.�	.t///

;

Vf D
n
v 2 C1

�
�T
	

�
; divv D 0; v D 0 on .0; T / � �f

o
;
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and

Vf D Vı
L2.0;T IH1.�	.t///

:

Concerning the sense to give to the trace of the fluid velocity on the moving
interface, we can easily give a sense in L2.0;L/ to u.t; x; R C 	.t; x//. Indeed the
elastic displacement being only transversal and the fluid velocity beingH1 in space,
we have:

u.t; x; R C 	.t; x// D
Z RC	.t;x/

0

@zu.t; x; s/ds:

This specificity of our coupled problem is strongly used in [26]. In particular
it enables to build divergence free lifting of structure test functions by noting
that .0; b.x//T with b 2 H1.0;L/ belongs to H1.�	.t// and is divergence free.
Moreover the only transverse motions imply that �	.t/ is a subgraph. Density
properties, Korn inequality follow (even if the fluid domain is not Lipschitz) as well
as the possibility to contract the fluid domain with respect to the vertical direction.

The weak solutions that are considered are defined by (by choosing all the
constants except the viscosity to be equal to 1)

– u 2 Vf \L1.0; T IL2.�	.t//,

– 	 2 W 1;1.0; T IL2.0;L//\H1.0; T IH1
0 .0; L//,

– u.t; x; RC 	.t; x// D .0; @t	.t; x//
T , for a.e. t , on .0; L/

– For all .�; b/ 2 Vf � C1.Œ0; T �IH1
0 .0; L// such that �.t; x; R C 	.t; x// D

.0; b.t; x//T , .t; x/ 2 Œ0; T � � .0; L/, we have for a.e. t

Z
�	.t/

u.t/ � �.t/ �
Z t

0

Z
�	.s/

u � @t�C 2�

Z t

0

Z
�	.s/

ru W r�

C
Z t

0

Z
�	.s/

.u � r/u � � �
Z t

0

Z L

0

.@t	/
2b C

Z L

0

@t 	.t/ b.t/

�
Z t

0

Z L

0

@t 	 @tb C ˇ2

Z t

0

Z L

0

@x@t	 @xb C
Z t

0

Z L

0

@x	 @xb

D
Z t

0

Z
�	.s/

f � �C
Z t

0

Z L

0

g b C
Z
�	.0/

u0�.0/C
Z L

0

	1b.0/: (1.49)

Here we have integrated by parts both in space and in time making a new
convection term appearing:

R t
0

R L
0
.@t	/

2b. Moreover the fluid dissipation involves
only the gradient of u and not its symmetric part. This simplification comes, once
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again, from the only traverse motion of the elastic structure. Indeed using the
equality of the velocity at the interface and the fluid incompressibility leads to

.2D.u/ � n/2 D .ru � n/2; on †.t/:

This identity enables to simplify the weak formulation.
As noted in Remark 1.2, the volume of the fluid domain has to be preserved

during the deformations. Unlike the case where � ¤ 0, the condition satisfied by the
structure displacement is linear and 	 should satisfy

R L
0
@t	 D 0. This simplification

comes, once again, from the only transverse motion.
Let us assume that the data satisfy the following compatibility conditions:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
Œ0;L�

.RC 	0/ > 0;

div u0 D 0 in �	.0/;

u0 � n D 0 on �f ;

u0.t; x; R C 	0.x// � On D .0; 	1/
T � On on .0; L/;Z L

0

	1 D 0:

(1.50)

The existence theorem can then be enunciated as follows:

Theorem 1.1. By assuming that the data satisfy

f 2 L2..0; T / � R
2/; g 2 L2..0; T / � .0; L//;

u0 2 L2.�	.0//; 	1 2 L2.0;L/; 	0 2 H1
0 .0; L/

(1.51)

and verify the compatibility conditions (1.50), there exists at least one weak solution
.u; 	/ to the coupled problem as long as the elastic structure does not touch the
bottom of the fluid cavity. Moreover this solution satisfies the energy estimate.

The proof of this result follows a standard scheme:

• Construction of approximated solutions that satisfy energy bounds;
• Derivation of additional bounds, since the energy bounds are not sufficient to

obtain compactness to pass to the limit in the nonlinear terms;
• Passage to the limit.

The first step is to build suitable approximated solutions. As we have seen for the
toy problem, to naively decouple the fluid system from the structure equation may
lead to difficulties due to the added mass effect. Consequently we will not decouple
the fluid from the structure. To get rid of the difficulties of the unsmooth fluid
domain and convective nonlinearities, the fluid domain and the convective velocity
will be regularized. By doing so, and if we want to conserve a solution satisfying
the energy bound, one has either to consider a regularization process imposing
that the regularized fluid convective velocity matches the velocity of the domain
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or to modify the fluid–structure variational formulation (1.49). The first alternative
has been used in [39, 41] and relies on a representation of the fluid and structure
velocities. Nevertheless it requires more regularity of the structure motion than the
one we have here. We then modify the variational formulation by noting

Z
�	.t/

.u � ru/� D 1

2

Z
�	.t/

.u � ru/� � 1

2

Z
�	.t/

.u � r�/u � 1

2

Z L

0

.@t	/
2b;

with �.x;R C 	.x// D .0; b.x//T on .0; L/. The convective term is then
transformed as follows:

1

2

Z
��

	 .t/

.u� � ru/� � 1

2

Z
��

	 .t/

.u� � r�/u � 1

2

Z L

0

@t 	
�@t	b;

where the asterisk denotes regularized quantities.
The modified variational formulation then writes, with �	�.t/ denoting the

regularized domain:

Z
�	�.t/

u.t/ � �.t/ �
Z t

0

Z
�	�.s/

u � @t�C 2�

Z t

0

Z
��

	 .s/

ru W r�

1

2

Z t

0

Z
��

	 .s/

.u� � ru/� � 1

2

Z t

0

Z
��

	 .s/

.u� � r�/u C 1

2

Z t

0

Z L

0

@t	
�@t 	b

�
Z t

0

Z L

0

@t	 @tb C ˇ2

Z t

0

Z L

0

@x@t	 @xb C
Z t

0

Z L

0

@x	 @xb

D
Z t

0

Z
��

	 .s/

f � �C
Z t

0

Z L

0

g b C
Z
��

	 .0/

u0�.0/C
Z L

0

	1b.0/; (1.52)

for test functions satisfying div � D 0 and �.t; x; R C 	�.t; x// D .0; b.t; x//T ,
for x 2 .0; L/.

Then by taking .� D u; b D @t	/ as test functions we recover the fluid kinetic
energy since

Z
��

	 .t/

ju.t/j2�
Z t

0

Z
��

	 .s/

u �@tuC 1

2

Z t

0

Z
��

	 .s/

.u� �ru/u� 1
2

Z t

0

Z
��

	 .s/

.u� �ru/u

C 1

2

Z t

0

Z L

0

@t	
�.@t	/2 D 1

2

Z
��

	 .t/

ju.t/j2 � 1

2

Z
��

	 .0/

ju.0/j2:

The existence of at least one weak solution of the approximated problem (1.52)
relies on a fixed point argument: we consider a given motion of the fluid domain ı
and a given convective fluid velocity v, that we regularized and we denote by ı� and
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v� these regularizations. Denoting by

�ı.t/ D f.x; y/ 2 R
2; x 2 .0; L/; 0 < y < RC ı.t; x/g

we solve the following linearized-approximated problem:

Z
�ı�.t/

u.t/ � �.t/ �
Z t

0

Z
�ı� .s/

u � @t�C 2�

Z t

0

Z
�ı� .s/

ru W r�

1

2

Z t

0

Z
�ı� .s/

.v� � ru/� � 1

2

Z t

0

Z
��

ı .s/

.v� � r�/u C 1

2

Z t

0

Z L

0

@t ı
�@t 	b

�
Z t

0

Z L

0

@t	 @tb C ˇ2

Z t

0

Z L

0

@x@t	 @xb C
Z t

0

Z L

0

@x	 @xb

D
Z t

0

Z
�ı� .s/

f � �C
Z t

0

Z L

0

g b C
Z
�ı� .0/

u0�.0/C
Z L

0

	1b.0/; (1.53)

for test functions satisfying div � D 0 and �.t; x; R C ı�.t; x// D .0; b.t; x//T ,
for x 2 .0; L/. Note that now the test functions do not depend on the solution
anymore, the problem is linear and the fluid domain motion is smooth. Yet the fluid
and the structure equations are still coupled. One can then easily prove that there
exists a unique solution to this problem thanks to the Galerkin method for instance.
Consequently we are able to associate with .v; ı/ a new velocity u and a new elastic
displacement 	. The idea to prove the compactness for the Schauder fixed point
procedure is to take .@tu; @t t 	/ as test functions that will lead to L2tx bounds of these
quantities and then to use the elliptic regularity (note that we are in the case where
ˇ2 > 0). We remark nevertheless that .@tu; @t t 	/ are not admissible test functions.
Yet we can easily modify the fluid acceleration to obtain a fluid test function that
is divergence free and is equal to the structure acceleration at the interface. Let
us emphasize that this construction uses the regularized domain motion. Moreover
the L2tx bounds on .@tu; @t t 	/ also require the regularization step. Consequently the
additional estimates depend on this regularization parameter.

Once the existence of a solution of the approximated problem is obtained,
we need to pass to the limit as the regularization parameter tends to zero.
The energy estimates lead to uniform bounds of the approximated solution in
V �
f \ L1.0; T IL2.��

	 .t// for the fluid velocity and in W 1;1.0; T IL2.0;L// \
H1.0; T IH1

0 .0; L// for the structure displacement. In particular, we obtain the
uniform convergence in C0 of the sequence of interface displacement that enables
to pass to the limit in the sequence of fluid domains. Nevertheless, these bounds are
not sufficient to obtain the desired strong convergences. Some additional bounds
are needed to obtain the L2tx compactness of the velocities. This compactness
in L2tx is indeed needed to pass to the limit in the nonlinear convective terms
such as 1

2

R t
0

R
��

	 .s/
.u� � ru/� � 1

2

R t
0

R
��

	 .s/
.u� � r�/u or 1

2

R t
0

R L
0 @t	

�@t	b. The

estimates obtained at the previous step cannot be used since they depend on
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the regularization parameter. It is here a key step in the proofs of existence of
weak solutions. One may try to apply the Aubin’s lemma to prove the desired
compactness. Nevertheless it is not straightforward to apply this lemma in the
case of divergence free functions defined on moving time-dependent domains. We
can refer to [74, 145] for incompressible Navier–Stokes in moving domains or to
[39, 40, 146] for existence weak solutions of fluid solid coupled problem.

One option to obtain compactness is to study quantities like: ku.tCh/�u.t/kL2tx
and k@t	.t C h/ � @t	.t/kL2tx . Indeed, we are going to use the following lemma
that characterizes the compact sets of Lp.0; T IX/ where X is a Banach space
(see [150]).

Lemma 1.1. Let X be a Banach space and F ,! Lq.0; T IX/ with 1 � q < 1.
Then F is a relatively compact set of Lq.0; T IX/ if and only if

i)
nR t2
t1
f .t/dt; f 2 F

o
is relatively compact in X , 80 < t1 < t2 < T

ii) kf .t C h/�f .t/kLq.0;T IX/ �! 0 as h goes to zero, uniformly with respect to f
in F .

We will now apply Lemma 1.1 to the sequence F D .u; @t	/, indexed by the
regularization parameter, q D 2 and X D L2.B/ � L2.0;L/. Note that here we
have introduced a set B that contains all the fluid domains��

	 .t/ for any t 2 .0; T /
and we have extended the fluid velocity by defining

u D
(

u in ��
	 .t/

.0; @t	/
T in B n��

	 .t/:
(1.54)

Remark 1.5. This extension relies strongly on the fact that there is only the
transverse motion of the elastic structure. Note moreover that, for this reason, u
is divergence free and that if @t	 is in H1 in space (which is the case since ˇ2 > 0)
this extension is also in H1.B/ in space.

The first point i) of Lemma 1.1 is clearly satisfied thanks to energy estimates and
we have to verify the second point. Given any h > 0, we denote g�.t; �/ D g.t�h; �/
and gC.t; �/ D g.t C h; �/. The assertion i i/ is a consequence of the following
lemma:

Lemma 1.2. Let T > 0 such that minŒ0;T ��Œ0;L� .1C	/ � ˛ > 0. Then for all h > 0
small enough, we have

Z T

0

Z
B

�ju � .u/�j2 C
Z T

0

Z L

0

.@t 	� @t	
�/2 � C

p
h; (1.55)

and

Z T

0

Z
B

j�u � ��.u/�j2 � C
p
h; (1.56)
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with 	 extended by 	0 for t < 0 (hence @t	 extended by 0) and u extended by 0 for
t < 0, and where �.t/ denotes the characteristic function of ��

	 .t/. These estimates
are uniform with respect to the regularization parameter.

The idea to prove this lemma is to choose test functions in the variational
formulation (1.52) that looks like

R t
t�h u and

R t
t�h @t 	. But since we are dealing with

moving domains we have to slightly modify these test functions in order to obtain
admissible test functions. For � > 1 we define v� by

v� .x; y/ D .�v1.x; �y/; v2.x; �y//: (1.57)

If v is divergence free, v� is also divergence free.
We set

� D
Z t

t�h
.u/� .s/ds; b D

Z t

t�h
@t 	.s/ds:

The function � belongs to H1.0; T IH1.B// and b belongs to H1.0; T IH1
0 .0; L//.

Remember that 	 has been extended by 	0 for t < 0 and u and @t	 extended by 0
for t < 0. The function � is divergence free.

Moreover since k	kH1.0;T IH1
0 .0;L//

� C and

H1.0; T IH1
0 .0; L/// ,! C0;1=2.Œ0; T �IC0.Œ0; L�//;

we have

k	 � 	�kL1..0;T /�.0;L// � C
p
h;

and

k	� � .	�/�kL1..0;T /�.0;L// � C
p
h:

Thus, if � is such as � � 1C 2C

˛

p
h, we have

�.t; x; 1C 	�.t; x// D
�
0;

Z t

t�h
@t	.s; x/ds

�T
on .0; L/:

Remark 1.6. We have used, in particular to prove Lemma 1.2, the additional
damping on the structure equation. In the next subsection we will see that the
dissipation coming from the fluid enables to have nevertheless this type of property
for the coupled system.

Once we have obtained the desired bounds on the sequence of solutions we can
pass to the limit as the regularization parameter tends to zero. Indeed, by denoting
by " regularization parameter, we have a sequence .u"; @	"/" solution of (1.52) that
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satisfies the following convergences. Let T > 0 such that inf" minŒ0;T ��Œ0;L� .1 C
	"/ � ˛ > 0. Note that T does not depend on " since .	"/ is uniformly bounded
in C0. Let us denote by .	; Qu/ the limit of a subsequence of .	";u"/">0 (with
the extension defined by (1.54)). We denote any subsequence of .	";u"/">0 by
.	";u"/">0. We have the following convergences as " goes to zero:

	" ! 	 in C0.Œ0; T � � Œ0; L�/
	" * 	 in H1.0; T IH1

0 .0; L//

@t	" ! @t	 in L2.0; T IL2.0;L//
u" ! Qu in L2.0; T IL2.B//
�"u" ! � Qu in L2.0; T IL2.B//
u" * Qu in L2.0; T IH1

0;�0
.B//

	�
" ! 	 in C0.Œ0; T � � Œ0; L�/
@t	

�
" ! @t	 in L2.0; T IL2.!//

u�
" ! Qu in L2.0; T IL2.B//
�"ru" * �r Qu in L2.0; T IL2.B//

(1.58)

First we take care of the equality

u".t; x; 1C 	�
" .t; x// D .0; @t	".t; x//

T

on .0; T /� .0; L/. The right hand side converges to .0; @t	/T in L2.0; T IL2.0;L//.
For the left hand side, we consider the function w" defined for a.e. t by

w" D
ˇ̌
ˇ̌ .0; @t	"/T in B n C˛=2
R.0; @t	"/T in C˛=2;

where R is a linear continuous lifting operator from H
1
2 ..0; L/ � f˛=2g/ to

H1
0;�f

.C˛=2/ such that R.0; @t	"/T is divergence free and where Cˇ D .0; L/ �
.0; ˇ/. Then, the function u" � w" belongs to L2.0; T IH1.B// and is bounded
in this space independently of ". Thus, a subsequence of .u" � w"/">0 converges
weakly in L2.0; T IH1.B// to w0 D Qu � w (with an obvious definition of w). We
have w0 D 0 on �f and in �T

	Cı for all ı > 0, since 	�
" converges uniformly to

	. Thus Qu D .0; @t	/
T in ..0; T / � B/ n �T

	 and w0 2 L2.0; T IH1
0 .�	.t///. Thus

w0.t; x; R C 	.t; x// D 0 on .0; L/, but w.t; x; R C 	.t; x// D .0; @t	/
T , hence

Qu.t; x; RC 	.t; x// D .0; @t	.t; x//
T ;

on .0; T / � .0; L/. Next we pass to the limit in the weak formulation, the fluid test
functions a priori depend on ". However, it is sufficient to consider test functions
that do not depend on " and that are admissible for " small enough.

We consider first test functions of the form .�0; 0/, with �0 2 D.�T 	/ and
div�0 D 0. These test functions satisfy the property that �0.t; �/ 2 D.�	.t// for
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every t . Hence for " small enough, �0 2 V	�

"
, since 	�

" converges uniformly to 	 as
" # 0.

The second pair of test functions we consider is .�1; b/ where b belongs to
C1.Œ0; T �IH1

0 .0; L//, with
R
!
b D 0 and for a.e. t :

�1 D
ˇ̌
ˇ̌ .0; b/T in B n C˛=2
R.0; b/T in C˛=2:

Since minŒ0;T ��Œ0;L� .1C 	�
" / � ˛=2, .�1; b/ is a pair of admissible test functions for

all ".
With both types of test functions, it is easy to pass to the limit in the weak

formulation as " goes to zero. We obtain the existence of a weak solution on .0; T /
satisfying energy estimates.

Eventually, we show that we can extend the solution as long as we have
minŒ0;T ��Œ0;L� .1 C 	/ > 0. Let us build an increasing sequence of times .Tk/k�1
as follows. First we choose a time T1 > 0 such that there exists a weak solution
up to T1, with m1 D minŒ0;T1��Œ0;L� .1 C 	/ > 0. Possibly changing slightly T1, we
may assume that @t 	.T1/ 2 L2.0;L/ and u.T1/ 2 L2.�	.T1// (since this is true for
almost every time).

Now, let k � 1 and assume that we have built a solution up to some time Tk , with
mk D minŒ0;Tk ��Œ0;L� .1C	/ > 0. Our construction allows us to build an extension of
our solution, on some time interval starting from Tk. Thanks to the a priori energy
estimate, we have for s � Tk

1C 	.s/ � 1C 	.Tk/ � .s � Tk/ 12 C.Tk; s/ � mk � .s � Tk/
1
2 C.Tk; s/ ; (1.59)

with

C.Tk; s/ D QC
�
ku.Tk/kL2.�	0/; k@t	.Tk/kH1

0 .0;L/
;

Z s

Tk

exp :.s � u/.kf kL2.�	.u//.u/C kgkL2.0;L/.u//du
�
;

where QC is positive and nondecreasing with respect to its arguments, andC.Tk; s/ �
C.0; s/. This a priori estimate shows that if we let

k D minf1; .mk=2C.Tk; Tk C 1//2g;

we can build a solution starting from u.Tk/, 	.Tk/ and @t 	.Tk/ up to the time TkCk
(this corresponds to choosing ˛ D mk=2 in the construction of the solution). The
time TkC1 is chosen close to Tk C k (in ŒTk C k=2; Tk C k�), in order to have also
@t	.TkC1/ 2 L2.!/ and u.TkC1/ 2 L2.�	.TkC1//.

We let T � D supk Tk . If T � < C1, then m� D minŒ0;T ���Œ0;L� .1 C 	/ D 0.
Otherwise, since mk � m� for all k, k � minf1; .m�=2C.0; T �//2g > 0. But
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TkC1 � Tk � k=2 and goes to zero, which is a contradiction. This achieves the
proof of existence of a weak solution as long as no contact occurs between the
elastic structure and the bottom of the fluid cavity.

Undamped Wave Equation: ˇ2 �! 0

We explain in this subsection how one can pass to the limit in the coupled problem as
the structure viscosity ˇ2 goes to zero. As we will see, the fluid dissipation enables
to control the space of high frequencies of the structure velocity without any added
viscosity on the wave equation.

The elastic displacement 	 in the case ˇ2 D 0 has only a hyperbolic regularity
and belongs to L1.0; T IH1

0 .0; L// \W 1;1.0; T IL2.0;L//. We easily verify that
these regularities are sufficient to define all the functional spaces and to give a sense
to the trace of the fluid velocity at the interface: u.t; x; RC 	.t; x// on .0; L/. They
are also sufficient to prove that the existence time of the weak solutions obtained
for ˇ2 > 0 is bounded from below independently of ˇ2. Indeed 	 is uniformly
continuous in space and time independently of ˇ2. Consequently this ensures that
there exists a time T > 0 such that R C 	 stays away from zero.

Yet the uniform energy estimates are not sufficient to obtain the compactness in
L2.0; T IL2.0;L// of the structure velocity. As noted at Remark 1.6, in the previous
subsection this compactness relied on the fact that @t	 2 L2.0; T IH1.0;L// thanks
to the parabolic regularization of the elastic equation. Here one cannot hope to
obtain (1.55) or (1.56) and in particular we cannot hope to have the convergence
rate

p
h. But in order to obtain a uniform decay, as h goes to zero, it is sufficient

to have some space regularity of @t	. The idea is then to take advantage of the
kinematic condition .0; @t	.t; x//T D u.t; x; RC 	.t; x// on .0; L/, and of the fact
that the fluid is viscous.

Indeed, if 	 had Lipschitzian regularity, since u 2 L2.0; T IH1.�	.t//, one
would deduce that @t	 2 L2.0; T IH1=2.0; L// as the trace of u and the space
of high frequencies of the structure velocity would then be controlled. Here these
regularities are not satisfied by any weak solution (unless 
 > 0). But thanks to
Sobolev injections 	 2 C0.Œ0; T �� Œ0; L�/\L1.0; T IH1

0 .0; L// and this regularity
of the fluid–structure interface enables to obtain that @t 	 2 L2.0; T IHs.0;L// for
any s < 1=4.

The question is now: is this dissipation sufficient to derive the same kind of result
enunciate at Lemma 1.2? The answer is yes and can be summarized by the following
lemma:

Lemma 1.3. Let T > 0 such that minŒ0;T ��.0;L/.1 C 	/ � ˛ > 0. We have 8" >
0; 9h0 > 0; s. t. 8ˇ2 > 0; 8h � h0

Z T

0

Z
B

�ju � .u/�j2 C
Z T

0

Z L

0

.@t	 � @t	�/2 � " (1.60)



1 Mathematical and Numerical Analysis of Some FSI Problems 29

and

Z T

0

Z
B

j�u � ��.u/�j2 � "; (1.61)

with 	 extended by 	0 for t < 0 and u and @t	 extended by 0 for t < 0, and where �
denotes the characteristic function of O�T

	 .

Remark 1.7. The main difference between the two lemmas is that in Lemma 1.2,
a uniform rate is obtained, whereas in Lemma 1.3, we have only a convergence to
zero, as h goes to zero, uniformly in ˇ2. Note that the dissipation of the fluid, which
induces dissipation of the structure, is crucial.

In order to prove this lemma we may follow the same lines as for the proof of
Lemma 1.2 and take advantage of the fact that @t	 2 L2.0; T IHs.0;L// for any s <
1=4 thanks to the equality of the velocities at the interface. Note that it is necessary
to split the space of high and low frequencies of the structure velocity. The space
of high frequencies are controlled since @t	 2 L2.0; T IHs.0;L//, with s < 1=4

and the low frequencies will be controlled thanks to the variational formulation
and a good choice of the test functions. Let us consider the eigenfunctions
�i associated with the Laplace operator on .0; L/ with homogeneous Dirichlet
boundary conditions and satisfying the additional constraint

R L
0
� i D 0. They form

a basis of H1
0 .0; L/ \L20.0; L/. Consequently the L2-projection, denoted 	N0 , of 	

in the space generated by the N0 first eigenvectors satisfies

k@t 	� @t	
N0kL2.0;L/ � C�

�s=2
N0

k@t	kHs.0;L/; s < 1=4;

where �N0 is the eigenvalue associated with �N0 . Then the high frequencies of @t	
are controlled in L2.0; T IL2.0;L// uniformly in ˇ2 and we have

Z T

0

Z L

0

.@t	
hf;N0 � .@t	hf;N0 /.t � h//2 � C�

� s
2

N0
; s < 1=4;

with 	hf;N0 D 	� 	N0 and where C is independent of the structure viscosity ˇ2.
For the low frequency part @t	N0 , the variational formulation will be used to

obtain a uniform convergence (with respect to ˇ2 when h goes to zero) of quantities
ku.t C h/� u.t/kL2tx and k@t 	N0.t C h/� @t	N0.t/kL2tx . The structure test function

is b D R t
t�h @t	

N0
" . The fluid test function has to be chosen carefully. We set

� D
Z t

t�h

�
.u � R˛.@t	/

�
�
�
.s/ds C

Z t

t�h
R˛.@t	N0/.s/ds;
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where the extension v 7! v is defined by (1.54) and where R˛ is a lifting operator
defined by

R˛.b/ D
ˇ̌
ˇ̌ .0; 0; b/T for z � ˛;

.0; 0; z
˛
b/T C w˛ in C˛ ;

for a.e. t; (1.62)

with w˛ such that div .w˛/ D b and w˛ 2 H1
0 .C˛/, kw˛kH1

0 .C˛/
� CkbkL2.0;L/, for

a.e. t . Note that w˛ exists because b has a zero mean. The first term of � has a trace
equal to zero on the interface, the second term matches the structure test function
at the interface. Note moreover that a space regularization of v D u � R˛.@t	/,
denoted by v� has been introduced in order to have � bounded inH1.0; T IH1.B//

independently of ˇ2. It verifies div .v�/ D 0, v� 2 L2.0; T IH1
0 .�	.t/// and

kv � v�kL2.0;T IL2.�	.t/// �! 0; uniformly in ˇ2; as � goes to zero;
kv�kL2.0;T IH1.�	.t/// � C�:

(1.63)

The construction of v� relies on the fact that the elastic interface does not touch
the bottom of the fluid cavity. Moreover, the uniform convergence of .v�/� as
� �! 0 in L2.0; T IL2.�	.t/// is made possible since v is uniformly bounded
in L2.0; T IHs.B//; 0 < s < 1=4. With this choice,

k@t	N0kL1.0;T IL2.0;L// � C; k@t 	N0kL2.0;T IHs.0;L// � C;

kbkW 1;1.0;T IL2.0;L// � C; kbkH1.0;T IHs.0;L// � C;

kv�kL1.0;T IL2.B// � C; kv�kL2.0;T IHs..B// � C;8s0 < s < 1=4;

and

k@t	N0kL1.0;T IH1.0;L// � CN0; kbkW 1;1.0;T IH1.0;L// � CN0; kv�kL2.0;T IH1.B// � C�;

where C denotes a strictly positive constant that depends only on the data and not
on ˇ2 andN0, and CN0 (resp. C�) denotes and will denote a strictly positive constant
that depends on the data and not on ˇ2 but may depend on N0 (resp. �). The integer
N0 (resp. the real �) is chosen large enough (resp. small enough). Then for well-
chosen � , .�; b/ are admissible test functions. Indeed, � is divergence free thanks
to the definitions of the lifting operator R˛ , the extension operator v 7! v, the
operator v 7! v� and the definition of the regularization v 7! v�. Moreover �
belongs to H1.0; T IH1.B//. The function b belongs to H1.0; T IH1

0 .0; L//. Both
of them are bounded in the previous spaces independently of ˇ2 but not ofN0 and �.
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With this choice of test functions we have for " > 0

Z T

0

Z
�	.t/

ju.t/�u.t�h/j2C
Z T

0

Z L

0

.@t	
N0.t/�@t 	N0.t�h//2 �CN0h
CC�� s

2

N0
CC";

8ˇ2 small enough;

with s < 1
4

and for some 0 < 
 < 1=4. It implies finally

Z T

0

Z
�	.t/

ju.t/�u.t�h/j2C
Z T

0

Z L

0

.@t	.t/�@t 	.t�h//2 � CN0h

CC�� s

2

N0
CC";

8ˇ2 small enough:

This result together with the energy estimates enable to obtain the desired
convergences, compactness and to pass to the limit in the weak formulation. We
then obtain the existence of at least one weak solution until the elastic structure
touches the bottom of the fluid cavity. Note that recently Muha and Canic [129]
prove the same kind of result for a 2D=1D coupled problem with 
 > 0. The proof
is based on a time discretization and a splitting of the structure equations, inspires
from a numerical strategy, that enables to have stability for an explicit coupling
independently of the added mass effect [56, 98].

In the case 
 D 0 since we do not have a lot regularity of the structure
displacement at the interface, the proof relies strongly on the only transverse motion.
In the general case where we do not neglect the longitudinal displacement and if
.�; 	/ satisfies only the energy estimates, the displacement of the structure is not
regular enough to properly define the problem. Thus there is a need to work with
smooth solutions.

In the next subsection we then explain how one can obtain existence of a unique
strong solution and review some results of Lequeurre that considers also the case
where � D 0. It is nevertheless a first step to further be able to consider the full
coupled problem.

1.2.3 Existence of Strong Solutions

In this subsection we will give the general steps of the results obtained by Lequeurre
[119, 120], which are a generalization of the one obtained in [10]. In these studies,
two-dimensional as well as three-dimensional problems with 
 > 0 or 
 D 0

and with ˇ2 > 0 have been considered, but the general scheme of proof is the
same in any case. The main difference comes from the regularity of the structure
displacement 	. We will focus on the general steps without detailing the proofs
which are rather technical. The goal is to underline the possible links between



32 C. Grandmont et al.

existence of solutions and numerical schemes. In particular we will see in Sect. 1.3
a semi-implicit scheme based on the same kind of splitting ideas.

We consider the coupled problem (1.1), (1.2), (1.7), (1.11), (1.15), (1.17), with
� D 0, with initial conditions (1.3), (1.12) and with no external forces applied to
the coupled system. For the fluid boundary conditions one could assume that the
fluid velocity satisfies Dirichlet homogeneous boundary conditions as in [119] or
considers periodicity in the x variable as it is done in [120]. Note that this periodicity
assumption seems to be necessary in the case where 
 D 0. Remember that in the
case of homogeneous Dirichlet boundary conditions for the fluid velocity on �f
(or periodic boundary conditions in x on �in [ �out together with homogeneous
Dirichlet boundary conditions for the fluid velocity on �0) the velocity of the
structure satisfies the additional constraint:

R T
0
@t 	 D 0. We assume moreover that

ˇ2 > 0 so that we have a parabolic–parabolic coupling. Assuming that the elastic
displacement is regular enough, the fluid equations can be rewritten in the reference
configuration O�f , thanks to the change of variables �f as follows:

Jf �f @tv � �f .wBf r/vC �f .vBf r/v � �div ..Af r/v/C .Bf r/q D 0;

div .BT
f v/ D 0;

(1.64)

where v.t; x/ D u.t;�f .t; x//, q D .t; x/ D p.t;�f .t; x//, w D @t�f , Jf D
det r�f and with the following notations for the matrices Af and Bf :

Af D 1

Jf
.cof r�f /T cof r�f ; (1.65)

Bf D cof .r�f /; (1.66)

where cof A denotes the cofactor matrix of A. Note that �f is a lifting of the
interface deformation into the fluid domain. In the particular case of only transverse
motion it can be chosen as:

�f .t; x; y/ D
�
x

y.1C 	.t; x//

�
; (1.67)

for .x; y/ 2 O�f D .0; L/ � .0;R/. In the case where the structure displacement is
regular enough we could consider BT

f v as a new unknown, so that one works with
divergence free velocities. By doing so, when studying the linearized associated
problem we keep this divergence free condition unchanged. That was done [153] in
the case of a rigid solid moving a viscous flow. Here it is possible, for instance, in
the two-dimensional setting for 
 > 0. In the general case we cannot make such a
change of unknown because of the lack of regularity of the solution and in particular
of the elastic displacement.
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Remark 1.8. The mapping �f could also be the flow associated with the fluid
velocity. In this case, no convection terms appears in (1.64). This change of variables
has, for instance, been done in [89] or [18] in the context of fluid–solid interaction.

The compatibility conditions that the data have to satisfy are now

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
Œ0;L�

.RC 	0/ > 0;

div u0 D 0 in �	.0/;

u0 D 0 on �0; periodic in x

u0.t; x; R C 	0.x// D .0; 	1.x//
T on .0; L/;Z L

0

	1 D 0:

(1.68)

The result presented in [120] for 
 D 0 and written in terms of .v; q; 	/ can be
summarized as follows:

Theorem 1.2. Let us consider .u0; 	0; 	1/ 2 H1
# .�	.0// � H2

# .0; L/ �
H1

# .0; L/ satisfying (1.68), then there exists a time T � > 0 such that
(1.64), (1.11), (1.7), (1.3), (1.12) has got a unique solution .v; q; 	/ that

belongs to
�
L2.0; T �IH2

# .
O�f //\H1.0; T �IL2#. O�f //

�
� L2.0; T �IH1

# .
O�f // ��

H1.0; T �IH2
# .0; L// \H2.0; T �IL2#.0; L//

�
, where the subscript # stands for

the x-periodicity.

Remark 1.9. For the initial conditions we will assume, for the sake of simplicity,
that 	0 D 0. Consequently O�f D �	.0/. Remark that the results in [119,120] seem
to be only correct in this case (or for a 	0 more regular than H2

# .0; L/) and that
some, surely feasible, adaptations should to be done when 	0 ¤ 0. Nevertheless to
suppose that 	0 D 0 is a quite reasonable assumption that is not so restrictive.

The steps of the proof are the following:

• Study the linear coupled problem, with, in particular, nonhomogeneous diver-
gence condition;

• Study the nonlinear terms and prove that they are small for small times to obtain
that there exists a unique fixed point thanks to Picard theorem for small enough
time or for small enough data.

The first point consists then in studying the following nonhomogenous coupled
problem:

�f @tv � ��vC rq D f ; in O�f ;

div v D div g; in O�f ;

v D .0; @t	/
T ; on O†;

v D 0; on �0;
�se@t t 	 � ˛2@xx	C 
@4x	 � ˇ2@xx@t	 D �.� .v; q/ � On/2 C h; on .0; L/;

(1.69)
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for given f ;g; h and with the additional constraint that @t	 has a zero mean.
This system has to be completed by initial conditions and we assume that periodic
boundary conditions in x are satisfied. In the fixed point procedure the right hand
side terms will typically contain nonlinear terms that write �div ...I � Af /r/ Qv/
for f or the second component of ..I � Af /r/ Qv � On for h, with Qv a given velocity
in L2.0; T IH2

# .
O�f // \ H1.0; T �IL2#. O�f //. Under the assumption that 	0 D 0

these terms shall be small in suitable spaces for small time since at initial time
Af D Bf D I .

Note that, since @t	 has a zero average, g has to satisfy the compatibility
condition

R
O†[�0 g �n D 0. This property enables to consider the following lifting of

the nonhomogeneous divergence:

��z C r� D 0; in O�f ;

div z D div g; in O�f ;

z D 0; on O† [ �0;
x � periodic:

Let us underline that this lifting does not modify the kinematic coupling condition
and consequently the new velocity v � z is still equal to .0; @t	/T on the fluid–
structure interface. It is strongly linked to the only transverse motion. Note moreover
that, in the fixed point procedure, g will write .I � Bf /

T Qv, with Qv satisfying
v1 D 0 on O† and Qv D 0 on �0. Consequently g D 0 on O†. It implies
that if @tg 2 L2.0; T IL2#. O�f // then div .@tg/ belongs to L2.0; T I .H1

# .
O�f //

0/.
Furthermore, div g D .I � Bf / W r Qv since Bf is the cofactor matrix of the
deformation gradient r�f and thanks to the Piola’s identity [31]. Consequently
div g will have the regularity of .I � Bf / W r Qv.

With this lifting we have to study the following coupled problem, by changing
the right hand side still denoted here f and h:

�f @tw � ��w C r� D f ; in O�f :

div w D 0; in O�f :

w D .0; @t	/
T ; on O†:

w D 0; on �0:
�se@t t 	� ˛2@xx	 � ˇ2@xx@t	 D .� .w; �/ � On/2 C h; on .0; L/;

x � periodic:

(1.70)

As we have seen in Sect. 1.2.1, to naively decouple the fluid from the structure to
prove existence of a solution of (1.70) leads to impose a condition on the density
of structure (that has to be large enough with respect to the fluid one). The key
idea is then to rewrite this coupled system thanks to an added mass operator and to
spilt the fluid problem into two sub-problems. We decompose w D we C ws , with
ws D .I �P/w, we D Pw, where P denotes the Leray operator on the subspace of
L2. O�f / of divergence free vectors with zero normal trace on the boundary. In the
same way � D �e C �s . Then ws D r� , where � is the solution (up to an additive



1 Mathematical and Numerical Analysis of Some FSI Problems 35

constant) of

�� D 0; in O�f ;

@�

@n
D @t	; on O†;

@�

@n
D 0; on �0:

Consequently ws is divergence free (as w is) and satisfies ws � n D @t	. Moreover
�ws D 0. We next define �s D �.f /� �m where � is defined by

��� D 0; in O�f ;

@�

@n
D ��f @t t 	; on O†;

@�

@n
D 0; on �0;

and �.f / is the solution of:

���.f / D � div.f /; in O�f ;

@�.f /

@n
D f � n; on �0 [ O†:

This Neumann problem has to be understood in a weak way, so that �.f / is defined
for f belonging only to L2#. O�f /.

Next .we; pe/ is the solution of:

�f @twe � ��we C r�e D P.f /; in O�f ;

div we D 0; in O�f ;

we � n D 0; on �0 [ O†;
we � � D ws � �; on �0 [ O†:

(1.71)

Consequently the structure equation can be rewritten as follows:

.�seIC�fM/@t t	�˛2@xx	�ˇ2@xx@t	 D .�� .we; �eCc/�n/2C�.f /Ch; (1.72)

where M is the Neumann to Dirichlet operator which associate to any v, the trace
over O† of p solution of

��p D 0; in O�f ;

@p

@n
D v; on O†;

@p

@n
D 0; on �0:
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With this notation we have: � D ��fM.@t t 	/. Note that every intermediate
pressure is defined up to an additive constant that can be taken such that the average
of each pressure is zero. Consequently we have added a constant c in the right hand
side which is the Lagrange multiplier of the constraint

R L
0
@t	 D 0. Now we are

in a position to decouple the fluid from the structure equations and more precisely
we decouple (1.71) from (1.72). Then the fixed point procedure can be applied to
prove the existence of a regular solution of the linear nonhomogenous problem since
now the added mass is treated implicitly. Indeed the regularity in time of .we; �e/
depends only on the regularity of @t 	 and not on the one of @t t 	. Note that here one
needs to have ˇ2 > 0 in order to obtain enough regularity of the structure velocity.

Remark 1.10. To decouple the fluid from the structure in this way does not allow
to take advantage of the fluid dissipation that induces, on the full coupled problem,
dissipation of the elastic structure.

The second step is the fixed point procedure. It is based on the Picard fixed
point theorem. To a given . Q	; Qv; Qp/ we associated .	; v; p/ solution of the linear
coupled problem, with right hand sides f ;g; h depending on . Q	; Qv; Qp/. Typically
f contains terms of the form div..I � QAf /r Qv/ or .I � QBf /r Qq with QAf and QBf
defined by (1.65), (1.66), (1.67). The key argument of this step is that for a given
Q	 2 L2.0; T IH2

# .
O�f // \ H1.0; T �IL2#. O�f //, with Q	.0/ D 0 then QAf , QBf will

stay, for small enough time, in a neighborhood of the identity matrix in spaces that
are multiplayer of L2.0; T IH1

# .
O�f //, which is the space to which r Qv belongs to

if Qv 2 L2.0; T IH2
# .

O�f // \H1.0; T �IL2#. O�f //. Note that, at this step, one has to
pay a particular attention on the dependency of the various constants with respect to
the time since one wants to prove existence for small time.

The open questions raised by this study are numerous. First could we prove
existence of strong solutions with no additional viscosity of the elastic part (i.e.,
ˇ2 D 0) and do these solutions exist till the elastic boundary touches the bottom of
the fluid cavity? Moreover could we consider other type of boundary conditions for
the fluid such as Neumann boundary conditions? One of the key points is then the
regularity of the fluid velocity and pressure that satisfy a Stokes like system with
mixed Neumann–Dirichlet boundary conditions. Note that considering (1.5), (1.6)
or (1.8), (1.9) will not give the same type of regularities. Another question is: could
we include also longitudinal motion of the elastic part of the boundary as for the
steady state case (see [86])?

1.2.4 Non-Newtonian Shear-Dependent Fluid

The aim of this section is to present analysis of the fluid–structure interaction
problem for some non-Newtonian fluids. Moreover, we will also present a com-
plementary proof of the existence of the weak solution that is based on the so-called
global iterative method with respect to the domain deformation and special "�; ��
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approximation of the original problem. Let us start with the description of our fluid–
structure interaction problem. We consider a two-dimensional fluid motion governed
by the same momentum and the continuity equations, as previously

�f @tu C �f .u � r/ u � div� C rp D 0; (1.73)

div u D 0;

but with a fluid stress tensor given by

� D �.D.u// D 2�.jD.u/j/D.u/;

with the notations introduced in the introduction

� f .u; p/ D � � pI : (1.74)

Moreover we assume that there exists a potential U 2 C2.R2�2/ of the stress tensor
�, such that for some 1 < q < 1; C1; C2 > 0 we have for all �; � 2 R

2�2
sym and

i; j; k; l 2 f1; 2g, cf. [123]

@U.�/
@�ij

D �ij .�/; U.0/ D @U.0/
@�ij

D 0; (1.75)

@2U.�/
@�mn@�rs

�mn�rs � C1 .1C j�j/q�2j�j2; (1.76)

ˇ̌
ˇ̌ @2U.�/
@�ij @�kl

ˇ̌
ˇ̌ � C2.1C j�j/q�2: (1.77)

A typical example satisfying the above properties is

�.jD.u/j/ D �.1C jD.u/j2/ q�2
2 q > 1; (1.78)

cf. [109, 122, 123, 159]. Note that according to the parameter q, the non-Newtonian
fluid is either shear-thinning (q < 2) or shear-thickening (q � 2). Models for
fluids with the shear-dependent viscosity are used in many areas such as geophysics,
glaciology, polymer mechanics, blood or food rheology. For q > 2 this model is an
analogy of the so-called Ladyzhenskaja’s fluid, for q D 3 it yields the Smagorinskij
model of turbulence. In numerical simulations presented in recent papers [109,121]
the shear-thinning model of Carreau has been used in order to model blood flow in
compliant vessels. For the simplicity of presentation we will consider here only the
case of shear-thickening fluids, i.e., q � 2. The generalization for shear-thinning
fluids may be done in an analogous way as here, using an appropriate techniques for
shear-thinning fluids, see [42, 73, 158].
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The two-dimensional deformable fluid domain

�	.t/ 	 f.x; y/I 0 < x < L; 0 < y < R0.x/C 	.t; x/g ; 0 < t < T

is given by a reference radius function R0.x1/ and the unknown free boundary
function 	.t; x/ describing the domain of deformation. The fluid and the geometry
of the computational domain are coupled through the following Dirichlet boundary
condition on the deformable part of the boundary†.t/

u.t; x; R0.x/C 	.t; x// D .0; @t	.t; x//
T ; (1.79)

where †.t/ D f.x; y/I y D R0.x/ C 	.t; x/; x 2 .0; L/g. Note that compared to
the previous subsections we have introduced a nonconstant radius R0.x/ to model,
for example, stenotic vessels. Nevertheless it adds no further difficulties.

Our structural model is similar to (1.11) but we set 
 D 0 and use instead of a
higher order friction term (term with the coefficient ˇ2)

�se@t t 	� ˛2@xx	C Qı	C ˇ2@
4
x@t	 � ˛2@xxR0 D H.u; p/ on O†; (1.80)

where

H.u; p/ D �.T f /2: (1.81)

Here T f is defined in the same way as (1.16) or (1.17) but with � f defined by
(1.74) (see also (1.129)) and

O† WD ˚
.x; y/ 2 R

2 W 0 < x < L; y D R0.x/
�
; (1.82)

see also Sect. 1.3.3, for more details. Equation (1.80) is equipped with the following
boundary and initial conditions

	.t; 0/ D 	.t; L/ D 0 and 	.0; x/ D @t	.0; x/ D 0;

@x	.t; 0/ D @x	.t; L/ D 0; (1.83)

We complete the system (1.73) with the boundary and initial conditions. We
assume that the flow motion is driven by a pressure drop: on the inflow part of
the boundary (same as (1.8)), which we denote �in, we set

u2.t; 0; y/ D 0; (1.84)�
2�.jD.u/j/@u1

@x
� p C pin � �f

2
ju1j2

�
.t; 0; y/ D 0 (1.85)
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for any 0 < y < R0.0/, 0 < t < T and for a given function pin D pin.y; t/. On the
opposite, outflow part of the boundary �out, (see (1.9)) we set

u2.t; L; y/ D 0 ; (1.86)�
2�.jD.v/j/@u1

@x
� p C pout � �f

2
ju1j2

�
.t; L; y/ D 0 (1.87)

for any 0 < y < R0.L/, 0 < t < T and for a given function pout D pout.t; y/.
Note that we require here that the so-called kinematic pressure (or total pressure) is
prescribed on the inflow and outflow boundary. This implies that the fluxes of kinetic
energy on inflow and outflow boundary will disappear in the weak formulation as
already stated in the introduction. Finally, on the remaining part of the boundary,
�0, we set the flow symmetry condition

u2.t; x; 0/ D 0 ; �.jD.u/j/@u1
@y
.t; x; 0/ D 0 (1.88)

for any 0 < x < L, 0 < t < T . The initial conditions read

u.0; x; y/ D 0 for any 0 < x < L; 0 < y < R0.x/: (1.89)

The proof of the main result formulated in Theorem 1.1 will be realized in several
steps:

• approximation of the solenoidal spaces on a moving domain by the artificial
compressibility approach: "-approximation

• splitting of the boundary conditions (1.79)–(1.80) by introducing the semi-
pervious boundary: �-approximation

• transformation of the weak formulation on a time-dependent domain �	.t/ to a
fixed reference domain O�f D .0; L/ � .0; 1/ using a given domain deformation
	 D 	1. Note that we scale in the y-direction to .0; 1/ interval. This step requires
that the domain motion is regular enough (here 	 (or 	1) should be at least C1 in
space, which was not the case in the previous subsections for weak solutions).

• limiting process for " ! 0; � ! 1 and a fixed point on the geometry domain,
respectively.

Weak Formulation

In this subsection our aim is to present the weak formulation of the problem (1.73)–
(1.89). Assuming that 	 is enough regular (see below) and taking into account the
results from [26] we can define the functional spaces that gives sense to the trace of
velocity fromW 1;p.�	.t// and thus to define the weak solution of the problem. We
assume that R0 2 C2

0 .0; L/.
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Definition 1.1 (Weak Formulation). We say that .u; 	/ is a weak solution of
(1.73)–(1.89) on Œ0; T / if the following conditions hold

– u 2 Lp.0; T IW 1;q.�	.t/// \L1.0; T IL2.�	.t///,
– 	 2 W 1;1.0; T IL2.0;L//\H1.0; T IH2

0 .0; L//,
– div u D 0 a.e. on �	.t/,
– u

ˇ̌
†.t/

D .0; @t	/
T for a.e. x 2 †.t/; t 2 .0; T /, u2

ˇ̌
�in[�out[�0 D 0,

Z T

0

Z
�	.t/

8<
:��f u � @t'C 2�.jD.u/j/D.u/D.'/C �f

2X
i;jD1

ui @xi uj'j

9=
;

C
Z T

0

Z R0.L/

0

�
pout � �f

2
ju1j2

�
'1jxDL

�
Z T

0

Z R0.0/

0

�
pin � �f

2
ju1j2

�
'1jxD0

C
Z T

0

Z L

0

˛2@xxR0�

C
Z T

0

Z L

0

��se@t 	@t � C ˇ2 @xx@t	@xx� C ˛2@x	@x� C Qı	 � D 0

(1.90)

for every test functions

'.t; x; y/ 2 H1.0; T IW 1;q.�	.t/// such that

div' D 0 a.e on �	.t/;

'2
ˇ̌
†.t/

2 H1.0; T IH2
0 .†.t///; '2

ˇ̌
�in[�out[�0 D '1

ˇ̌
†.t/

D 0 and

�.t; x/ D '2.t; x; R0.x/C 	.t; x// on .0; T / � .0; L/:

(1.91)

Theorem 1.3 (Existence of a Weak Solution). Let q � 2. Assume that the bound-
ary data fulfill pin 2 Lq0.0; T IL2.0;R0.0///, pout 2 Lq0.0; T IL2.0;R0.L///,
pw 2 Lq0.0; T IL2.0;L//, 1

q
C 1

q0 D 1. Furthermore, assume that the properties
(1.75)–(1.77) for the viscous stress tensor hold. Then there exists a weak solution
.u; 	/ of the problem (1.73)–(1.89) such that

i) u 2 Lq.0; T IW 1;q.�	.t/// \ L1.0; T IL2.�	.t///;

	 2 W 1;1.0; T IL2.0;L//\H1.0; T IH2
0 .0; L//,

ii) u
ˇ̌
†.t/

D .0; @t	/
T for a.e. x 2 †.t/; t 2 .0; T /, u2

ˇ̌
�in[�out[�0 D 0,

iii) u satisfies the condition div u D 0 a.e on�	.t/ and (1.90) holds.

Auxiliary Problem: .�; "; given domain/-Approximation

In what follows we will formulate a suitable approximation of the original problem
(1.73)–(1.89).
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First of all we approximate the deformable boundary †.t/ by a given function
h D R0 C ı, ı 2 H1.0; T IH2

0 .0; L// \W 1;1.0; T IL2.0;L//, R0.x/ 2 C2Œ0; L�

satisfying for all x 2 Œ0; L�

0 < ˛ � h.t; x/ � ˛�1; j@xh.t; x/j C
Z T

0

j@th.t; x/j2� K< 1 (1.92)

h.t; 0/ D R0.0/; h.t; L/ D R0.L/:

Consider now one step of the iterative process with respect to the domain
deformation: we look for a solution .u; p; 	/ of the following problem

�f @tu C �f .u � r/u D div� � rp in �ı.t/ DW �h.t/; (1.93)

and for all x 2 .0; L/, 0 < t < T
h
�se@t t 	 � ˛2@xx	C Qı	 � ˇ2@

4
x@t	 � ˛2@xxR0

i
.t; x/ D OH.u; p/.t; Nx/ (1.94)

OH.t; Nx/ D 	
�.jD.u/j/ ˚� �@xu2 C @yu1

�
@xhC 2@yu2

� � p


.t; Nx/; (1.95)

u.t; Nx/ D .0; @t	.t; x//
T ; (1.96)

Nx D .x; h.t; x//. Note here that we have written the forcing term thanks to a change
of variables depending on the given h.

Furthermore, in the analysis of problem (1.73)–(1.89) the boundary conditions
(1.79) and the structure equation (1.80), cf. (1.94)–(1.96) are splitted in the
following way, see [66]

OH.u; p/.t; Nx/� �f

2
u2
�

u2.t; Nx/� @t ı.t; x/
�

D 	
�.jD.u/j/ ˚� �@xu2 C @yu1

�
@xhC 2@yu2

� � p


.t; Nx/

��f
2

u2
�

u2.t; Nx/� @t ı.t; x/
�

D �
h
@t	.t; x/ � u2.t; Nx/

i
(1.97)

and

�
h
�se@t t 	� ˛2@xx	C Qı	Cˇ2@4x@t	 � ˛2@xxR0

i
.t; x/ D �

h
@t	.t; x/ � u2.t; Nx/

i

with � 
 1: (1.98)

We will show later that the approximation with � is reasonable. One of the pos-
sible physical interpretations for introducing finite � comes from the mathematical
modeling of semi-pervious boundary, where this type of boundary condition occurs.
In our case, the boundary † seems to be partly permeable for finite �, but letting
� ! 1 it becomes impervious. In fact, we prove the existence of solution if � ! 1
and thus we get the original boundary conditions and structure equation (1.94)–

(1.96). Note that we have added the term � �f
2

u2
�

u2.t; Nx/ � @t ı.t; x/
�

to the fluid
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forces OH to conserve an energy estimate in the approximation process. This term
will vanish in the limit.

Furthermore, we overcome the difficulties of solenoidal spaces by means of the
artificial compressibility. We approximate the continuity equation similarly as in
[66] with

u"

�
@p"

@t
��p"

�
C div u" D 0 in �ı.t/;

@p"

@n
D 0; on @�ı.t/; " > 0: (1.99)

By letting " ! 0 we show that u" ! u, where u is the weak solution of (1.73). For
fixed ", due to the lack of solenoidal property for velocity, we have the additional
term

�f
2

uidiv u in momentum equation, which can be included into the convective
term, see (1.106). With both these approximation strategies we will avoid the added
mass effect for this approximation step.

The approximated problem is defined on a moving domain depending on function
h D R0Cı. Now we reformulate it to a fixed rectangular domain. This step requires
that the deformation h is regular enough. Let us set

Ou.t; Ox; Oy/ defD u.t; Ox; h.t; Ox/ Oy/
Op.t; Ox; Oy/ defD p.t; Ox; h.t; Ox/ Oy/
�.t; Ox/ defD @t 	.t; Ox/ (1.100)

for y 2 D D f. Ox; Oy/I 0 < Ox < L; 0 < Oy < 1g, 0 < t < T .

We define the following space

V 	 ˚
w 2 W 1;p.D/ W w1 D 0 on Sw; w2 D 0 on Sin [ Sout [ Sc

�
;

Sw D f. Ox; 1/ W 0 < Ox < Lg; Sin D f.0; Oy/ W 0 < Oy < 1g;
Sout D f.L; Oy/ W 0 < Oy < 1g; Sc D f. Ox; 0/ W 0 < Ox < Lg: (1.101)

Let us introduce the following notations that correspond to the change of variables
in the problem: for the divergence equation

divhu
defD @ Ox bu1 � Oy

h
@ Ox h @ Oy bu1 C 1

h
@ Oy bu2;

for the bilinear form involving the pressure

ah.q; �/ D
Z
D

h O@1 Oq @ Ox� C
�O@2 Oq � Oy @ Oxh O@1 Oq

�
@ Oy�; (1.102)
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with

O@1 D
�
@

@ Ox � Oy
h

@h

@ Ox
@

@ Oy
�
; O@2 D 1

h

@

@ Oy :

With the same notations we define for the viscous term

.. Ou; //h D
Z
D

h�ij . OD. Ou// ODij . /; (1.103)

�ij . OD. Ou// D 2�.j OD. Ou/j/ ODij . Ou/; (1.104)

ODij . Ou/ D 1

2
.O@i .Ouj /C O@j .Oui //; (1.105)

and for the convective term

bh. Ou; z; / D �f

�Z
D

�
hbu1 O@1z C u2@ Oyz

�
� C h

2
z � divh Ou

�1
2

Z 1

0

R0bu1z1 1j OxDL C 1

2

Z 1

0

R0bu1z1 1j OxD0

�1
2

Z L

0

bu2z2 2j OyD1
�
: (1.106)

Remark 1.11. Note that the transformed stress tensor �ij D 2�.j OD. Ou/j/ ODij . Ou/ from
(1.103) with �.j OD. Ou/j/ defined in (1.78) also satisfies (1.75)–(1.77).

Remark 1.12. Note that all these terms could be written by means of the notations
introduced in the study of the existence of strong solutions. For instance,

divhu D Bh W r Ou.Jh/�1;

with Bh D cof r�h, Jh D det r�h and �h. Ox; Oy/ D . Ox; Oyh. Ox//.
Definition 1.1 (Weak Solution of the Approximated Linearized Problem). Let
Ou 2 Lp.0; T IV / \ L1.0; T IL2.D//, Op 2 L2.0; T IH1.D// \ L1.0; T IL2.D//
and � 2 L1.0; T IL2.0;L//\L2.0; T IH2

0 .0; L//: A triple w D . Ou; Op; �/ is called
a weak solution of the regularized problem (1.73)–(1.89) if the following equation
holds (for simplicity in what follows all the physical constants are assumed to be
equal to one)

�
Z T

0

h@t .h Ou/; i

D
Z T

0

�Z
D

�@th @ Oy. Oy Ou/ � � h Op divh 

�
C bh. Ou; Ou; /C .. Ou; //h



44 C. Grandmont et al.

C
Z T

0

Z 1

0

Opout hj OxDL  1j OxDL � Opin hj OxD0  1j OxD0

C
Z T

0

Z L

0

�
1

2
bu2 @thC � .bu2 � �/

�
 2j OyD1

C"
Z T

0

h@t .h Op/; �i (1.107)

C
Z T

0

Z
D

��"@th @ Oy. Oy Op/ � C "ah. Op; �/C h divh Ou ��

C "

2

Z T

0

Z L

0

@t h Op �j OyD1

C
Z T

0

Z L

0

�
@t�� C @ Ox Ox� @ Ox Ox� C @ Ox

�Z t

0

�.s; Ox/ds
�
@ Ox�

C
�Z t

0

�.s; Ox/ds
�
� � @ Ox OxR0� C � .� � bu2/ �

�

for every . ; �; �/ 2 H1
0 .0; T IV / � L2.0; T IH1.D// � L2.0; T IH2

0 .0; L//.

Theorem 1.4 (Existence of the Approximated Linearized Weak Solution). Let
"; �; ı be fixed. Assume (1.75)–(1.77), (1.92), Opin; Opout 2 Lq0.0; T IL2.0; 1//:
Then there exists a weak solution of the .�; "; ı/-approximated problem transformed
to the fixed domain, in the sense of integral identity (1.107). Moreover,

@t .h Ou/ 2
8<
:
Lq0.0; T IV �/ for 2 < p < 1;

Lq0.0; T IV �/˚ L4=3..0; T / �D/;
for p D 2;

@t .h Op/ 2 L2.0; T IH�1.D//;

such that

Z T

0

D
@t .h Ou/; 

E
D �

Z T

0

Z
D

h Ou � @t :

Solution of this approximated linearized problem has been obtained in the recent
work [111] by means of the standard energy method using the Galerkin approximate
solutions and showing the a priori estimates. To guarantee the coercivity of the
nonlinear viscous term we need to apply the generalized Korn inequality with
variable coefficients

R
D j OD.u/jp � c.K; ˛/

R
D jrujp. This requires that at least

h 2 L1.0; T IW 1;1.0; L//, cf. [111] for more details. We would like to point
out that this is a crucial step forcing us to require also higher order friction term
in modeling the string equation.

Since the problem for a given ı, and fixed ", � is still nonlinear because of the
convection and nonlinear viscous terms, we have to obtain some compactness in
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order to prove that the Galerkin approximation converges. Due to the additional
compressibility we are able to prove the following a priori estimates: the fluid veloc-
ity is bounded in L1.0; T IL2.D// \ Lq.0; T IW 1;q.D// and its time derivative
is bounded in Lq

0

.0; T I .W 1;q.D//0/, whereas the structure velocity is bounded in
L1.0; T IL2.0;L// \ L2..0; T /IH2.0;L//, and its time derivative is bounded in
L2..0; T /IL2.0;L//. Note that the latter estimate arises due to the �-approximation
that implies that the right hand side of the structure equation can be represented in
terms of velocities and not of the fluid stress.

Now applying the Lions–Aubin lemma the compactness results and the corre-
sponding strong convergence in Lq..0; T / � D/ for Ou and in L2.0; T IH1.0;L//

for � are obtained. The limiting process in the nonlinear viscous term is realized by
applying the Minty-trick and theory of monotone operators.

The weak solution from Theorem 1.4 depends on the parameters "; � and on
the given geometry h. Keeping geometry fixed but passing to the limit with " !
0; � ! 1 we can obtain the weak solution of the original problem (1.73)–(1.89)
defined on �ı. Note that now when passing to the limit with � and � we cannot
apply the Lions–Aubin lemma anymore and to get the strong convergence for Ou and
� the equicontinuity in time is applied (see Lemma 1.4). Again the limiting process
in the nonlinear viscous term is realized by applying the Minty-trick and theory of
monotone operators.

Fixed Point Iterations

We have proved the existence of weak solution of the original problem in a domain
given by a known deformation function h D R0Cı. The aim of this subsection is to
prove that the mapping that associates 	 with h (or equivalently to ı) has at least one
fixed point. To prove it we apply the Schauder fixed point theorem. The compactness
argument will be based on the equicontinuity in time, see Lemma 1.4. Consequently
we obtain the final result: existence of weak solution for a fully coupled fluid–
structure interaction problem (1.73)–(1.89).

We denote the space Y D H1.0; T IL2.0;L//. Let us assume that ı belongs to
the ball B˛;K defined by

B˛;K D
n
ı 2 Y I kıkY � C˛;K; 0 < ˛ � R0. Ox/C ı.t; Ox/ � ˛�1;
ˇ̌
ˇ@ Oxı.t; Ox/

ˇ̌
ˇ � K; 	. Ox; 0/ D 0; 8 Ox 2 Œ0; L�; 8t 2 Œ0; T �;

Z T

0

j@t	.t; Ox/j2 � K; 8 Ox 2 Œ0; L�
o
;

where C˛;K is a suitable constant large enough with respect to K;˛ and the data.
Note that here we ask the domain interface to be at least W 1;1 in space so that

all the nonlinear geometric terms of the formulation coming from the change of
variables are well defined.
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For a given h D R0 C ı, ı 2 B˛;K we consider

X D f .t/ 2 Vdiv I  2.t/
ˇ̌
Sw

2 H2
0 .0; L/; �.t/ D  2.t/

ˇ̌
Sw

g; (1.108)

Vdiv WD ff 2 V ; divhf D 0 a:e: onDg; cf. (1.101):

For each test function  2 Lq.0; T IX/;  .T / D 0, and for any h 2 Y , such that
(1.92) holds, we construct solutions . Ou; 	/ of the following problem defined on the
reference domainD, � D @t	

�
Z T

0

h@t .h Ou/; i

D
Z T

0

�Z
D

�@th @ Oy. Oy Ou/ � � h Op divh 

�
C bh. Ou; Ou; /C .. Ou; //h

C
Z T

0

Z 1

0

Opout hj OxDL  1j OxDL � Opin hj OxD0  1j OxD0

C
Z T

0

Z L

0

1

2
� @th 2j OyD1

C
Z T

0

Z L

0

�
@t�� C @ Ox Ox� @ Ox Ox� C @ Ox

�Z t

0

�.s; Ox/ds
�
@ Ox�

C
�Z t

0

�.s; Ox/ds
�
� � @ Ox OxR0�

�
:

By choosing ı 2 B˛;K and applying the Korn’s inequality we ensure that the viscous
bilinear form is coercive.

The following energy estimate holds for all 1 > q � 2 uniformly in ı

k Ouk2
L1.0;T IL2.D// C k Oukq

Lq.0;T IW 1;q.D//
(1.109)

Ck@t 	k2L1.0;T IL2.0;L// C k@t 	k2L2.0;T IH2.0;L//
C k	k2

L1.0;T IH1.0;L//

� c.T; p;K; ˛/
�
k Op@DkLq0

./;T;L2.@˝/ C kR0k2C2Œ0;L�
�
:

Note that this energy estimate takes the same form as the one obtained
in the Newtonian case except that the space L2.0; T IH1.D// is replaced by
Lq.0; T IW 1;q.D//.

Now, let us define the following mapping,

F W B˛;K ! Y I
F.h/ 	 F.R0 C ı/ D 	:
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Our aim is to apply the Schauder fixed point theorem and prove that the mapping F
has at least one fixed point. This implies the existence of the weak solution to our
fully coupled problem. It is necessary to check the following properties:

• F.B˛;K/ � B˛;K
• .F.R0 C ı.k///k is relatively compact in Y , for any sequence in .ı.k//k 2 B˛;K

(We show the equicontinuity in time, Lemma 1.4, which implies, together with
the energy estimate, the strong convergence in Y .)

• The continuity of the mapping F with respect to the strong topology in Y must
be proven.

Relative Compactness of the Fixed Point Mapping F

We focus on the integral equicontinuity in time and the relative compactness in Y:
Lemma 1.4 provides the equicontinuity result that holds independently on k. The
lemma is the analogue of the two Lemmas 1.2 and 1.3 and writes (with the same
notations as in the previous subsections, see (1.54))

Lemma 1.4. For the weak solution .u.k/; @t 	.k// D .u.k/; �.k// of the problem
associated with a given ı.k/ 2 B˛;K it holds

Z T�

0

Z
B

�
.k/
t j Nu.k/.t C /� Nu.k/.t/j2 C

Z T�

0

Z L

0

j@t	.k/.t C /� @t	
.k/.t/j2

� C.1=q C 1=2/: (1.110)

Here �.k/t denotes the characteristic function of�h.k/ .t/. The constantC D C.K; ˛/

does not depend on k.

From (1.110) we can get that

Z T�

0

Z
B

j�.k/tC Nu.k/.t C / � �.k/t Nu.k/.t/j2C
Z T�

0

Z L

0

j@t	.k/.t C / � @t	.k/.t/j2

� C.1=q C 1=2/: (1.111)

It implies that �.k/t Nu.k/.t/, and thus Nu.k/.t/ is relatively compact in L2..0; T / � B/.
Consequently, the Riesz–Fréchet–Kolmogorov compactness argument [20, The-

orem IV.26] (or see Lemma 1.1) based on (1.111) implies the relative compactness
of @t	.k/; Nu.k/ in L2.0; T IL2.0;L//; L2.0; T IL2.B//; respectively. Additionally,
the standard interpolations give us the compactness of Nu.k/ in Lr..0; T / � B/; 1 �
r < 4 and @t	.k/ in Ls..0; T / � .0; L//; 1 � s < 6.
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Continuity of the Mapping F

We can show by limiting process for k ! 1 in the weak formulation satisfied by
.u.k/; 	.k// associated with h.k/ that

F.h.k// ! F.h/

whenever h.k/ converges to h inB˛;K . As already shown above . Ou.k/; 	.k// converges
strongly to some . Ou; 	/ in Y , i.e., we have 	.k/ ! 	 in H1.0; T IL2.0;L//
as k ! 1. Due to the boundedness of 	 from a priori estimate (1.109) and
the imbeddings in one dimension we have even stronger result—the uniform
convergence of @ Ox	.k/ in C.Œ0; T � � Œ0; L�/. Indeed,

	.k/ 2 L1.0; T IH2.0;L//\W 1;1.0; T IL2.0;L// (1.112)

,! C0;1�ˇ.0; T IH2ˇ.0; L//

for 0 < ˇ < 1. From the continuous imbedding of H2ˇ.0; L/ into H2ˇ��.0; L/
and the Arzelá–Ascoli Lemma we conclude that a subsequence of 	.k/ converges
strongly in C.Œ0; T �IHs.0;L//; 0 < s < 2. Since for s > 3=2 we also have
continuous imbedding Hs.0;L/ ,! C1Œ0; L�, we can conclude, that 	.k/ ! 	

strongly in C.0; T IC1Œ0; L�/. Let us summarize available convergences

Ou.k/ * u weakly in Lq.0; T IW 1;q.D//;

NOu.k/ ! Nu strongly in Lr..0; T / � B/; 1 � r < 4;

Ou.k/ ! Ou strongly in Lr..0; T / �D/; 1 � r < 4;

	.k/ * 	 weakly in H1.0; T IH2.0;L//; (1.113)

	.k/ *� 	 weakly* in L1.0; T IL2.0;L//;
	.k/ ! 	 uniformly in C.0; T IC1Œ0; L�/;

@t 	
.k/ ! @t	 strongly in Ls..0; T / � .0; L//; 1 � s < 6:

Limiting Process

Now we let k ! 1 in the weak formulation satisfied by .u.k/; 	.k//. The previous
convergences allow to pass to the limit. As already mentioned the main difficulty at
this step is to deal with test functions that depend on the solution. Nevertheless as
mentioned in Sect. 1.2.2, one can choose test functions that do not depend on k. Let
us mention two important limits for k ! 1:

Z T

0

�
bh.k/ . Ou.k/; Ou.k/; / � bh. Ou; Ou; /

�
! 0;
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Z T

0

.. Ou.k/; //h.k/ � .. Ou; //h ! 0: (1.114)

This concludes the limiting process in (1.109). We found out that F.h.k// !
F.h/, as h.k/ D R0 C ı.k/ converges to h D R0 C ı as k ! 1.

Finally, using the continuity of the mapping F , its relative compactness in Y and
the property F.B˛;K/ � B˛;K we deduce from the Schauder fixed point theorem,
that there exists at least one fixed point of the mapping F defined by the weak
formulation (1.109), F.R0 C 	/ D 	. Thus, we obtain the existence of at least one
weak solution (1.90) of the original unsteady fluid–structure interaction problem
(1.73)–(1.89). The proof of the Theorem 1.3 is now completed.

Let us point out that we have obtained the existence of weak solution until
some time T �. We remind that this time is obtained in order to achieve the fixed
point of the mapping F and to avoid the contact of the elastic boundary O† with
the fixed boundary for given data Op@D; R0 and ˛; K . Similarly as in [26] and as
explained in the previous subsection for the Newtonian case, we can prolongate the
solution in time and even obtain the global existence until the contact with the solid
bottom.

Remark 1.13. The result on the existence of weak solution for the coupled fluid–
structure interaction problem for shear-thickening power-law fluids is shown for
the generalized string equation with a regularizing term of type �@4x@t	. The
same existence result can be obtained for other regularizing terms in the structure
equation. Instead of �@xx	 C @4x@t	 we can consider @4x	 � @xx@t	. The regularity
of the domain deformation coming from the term @4x	 is essential to obtain that
	 2 L1.0; T IW 1;1.0; L//. This is a sufficient condition for generalized Korn’s
inequality for q ¤ 2. As seen in the Newtonian case (see also [26, 88]) such a
condition for 	 is not required for Korn’s equality in the moving domain �	.t/ to
hold. Consequently, in three-dimensional case a plate with no additional viscosity
may be used and in the two-dimensional case a string model with no additional
viscosity may be used.

In this section we have reviewed some existence results. In the unsteady state
case for the existence of weak solutions, we have seen that the nonlinear geometrical
term could be decoupled from the fluid–structure problem. In the case, when some
decoupling of the fluid and the structure is used (e.g., to take advantage of the
already known properties/regularity of solutions of the Stokes system or of the
elastic one [119, 120] or because of the chosen strategy used to obtain the desired
result [111, 129]), it is still necessary to decouple the fluid and the structure in an
appropriate way, because of the added mass effect. This is in particular true for
numerical schemes as we will detail it hereafter.
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1.3 Numerical Analysis

As we have seen previously the coupling conditions at the interface are of two types:
kinematic (equality of the velocities in the case of a viscous flow) and dynamic (the
action–reaction principle). From a numerical point of view the most direct way to
satisfy both these two conditions is to solve the coupled fluid–structure problem
thanks to a unique solver based on a global weak formulation. One obtains then
schemes that are called monolithic. Examples of such approach are numerous.

Without being exhaustive, one can refer to [101,144] based on an ALE formula-
tion of the fluid equations, [4, 36] based on fictitious domain method or to [65].

By construction both the kinematic and the dynamic conditions are satisfied and
it leads to strongly coupled schemes. These methods conserve the energy at the
fluid–structure interface and are consequently usually stable. Nevertheless they are
not really modular and do not allow to take easily advantage of the specificities of
each sub-problem. From the numerical analysis point of view, we refer to [44, 92,
115, 148], for stability and convergences studies on fully coupled schemes.

With the stagerred schemes the fluid and the structure are computed by two
specific solvers and one question is then: how to couple these two solvers efficiently?
A first strategy is to use a weakly coupled or explicit schemes where the fluid and the
structure equations are solved once per time step. The advantage of such methods
is that they are cheap since they require the resolution of the fluid and the structure
only once per time step. These methods have been wildly used for the simulation of
compressible flows (see, for instance, [134–136]). We refer to [51] for a state of the
art of such methods.

Nevertheless the kinematic condition and the dynamic condition are not both
satisfied and it may lead to numerical instabilities in particular in the case of strong
added mass effect, as already mentioned in the previous section and as we will see
in Sect. 1.3.1. These instabilities were seen in the case of blood flows in arteries,
where the incompressible flow interacts with a structure whose density is closed
to the fluid density. The role played by the added mass was underlined in [116]
and formalized in [25] (and later on in [72] for more general time discretization
schemes). We will see, on the toy model introduced in Sect. 1.2.1 that an explicit
scheme, based on a Dirichlet to Neumann splitting, is unconditionally unstable if
the fluid–structure density ratio is less than a given quantity (that may depend on
the geometrical characteristics of the considered problem). It is strongly linked to
the fluid incompressibility.

Consequently, strongly coupled or implicit schemes have been further developed
and used to obtain stable numerical methods. These schemes are naturally stable
since they conserve the energy balance at the interface. Nevertheless they are costly
since they require many requests to each solver at each time step. Thus, in the
early 2000 year efforts have been made to accelerate the convergence and the
efficiency of fixed point procedures [37, 116, 127, 128, 131] or of inexact Newton
methods [101, 124, 125, 156] or exact Newton methods [58–61]. Moreover more
recently methods have been introduced based on Robin–Robin decomposition [6]
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to optimize the partitioned procedure, see also [8] for further results on Robin
transmission conditions. In [37] further results on acceleration using the so-
called transpiration conditions were presented, see also [38] for a nice review on
different coupling approaches based on the domain decomposition techniques and
approximation of the Steklov–Poincaré operator.

Nevertheless, these schemes stay expensive and there was a need to find new
efficient, cheap and stable strategies. As already mentioned, the most natural
splitting that can be made for the coupled problem we are considering in this
chapter is based on a Dirichlet to Neumann decomposition, where the fluid is solved
by imposing Dirichlet boundary conditions at the interface whereas the structure
depends on the stress applied by the fluid. Nevertheless, in this case one has to deal
with the added mass effect. Consequently, semi-implicit [63] has been introduced
based on the implicit treatment of the added mass effect and the explicit treatment
of the viscous stress. This splitting can be obtained by applying a Chorin–Temam
scheme for the resolution of the fluid part [29, 30, 155] (see also [97] for a state of
the art on projection schemes) and has a lot of similarities with the strategy of proof
developed in [119,120] and summarized in the previous section. We refer to [56] for
a nice review on these semi-implicit schemes. In [7,137] algebraic splitting methods
are used. Moreover, in the case where the structure is a thin structure then it can be
viewed as generalized Robin condition for the fluid [130].

More recently, in the case of a thin structure, a splitting of the structure equation
has been proposed in [98], see also [56, 57, 62, 110, 121] for further results and
generalizations. Note that the kinematic splitting method introduced in [98] applies
only for a thin viscoelastic structure. If the structure is viscoelastic and we treat
the friction term from the structure within the fluid solver, then the fluid problem
conserves the complexity of the full coupled problem since one has a differential and
nonlocal operator at the fluid interface. On the other hand, we can left the friction
terms in the structure equation which yields only the local structural operator within
the fluid solver, see, e.g., [55]. In the recent work of Čanic̀ [22] a generalization of
the kinematic splitting algorithm for coupling a thick structure with the fluid but with
an intermediate thin layer was presented. These well-adapted methods in the case
of a thin structure are stable and do not depend on the added mass effect. But they
may dissipate the energy and need precise time integration scheme and prediction
to be accurate [55]. The major question now in the fluid–structure interaction
discretization is: how can we improve these cheap and stable kinematically coupled
schemes so that they become more precise? In the recent work of Čanic̀ [23] the
so-called ˇ-schemes have been derived that point out the implicit inclusion of the
structure inertia into the fluid sub-problem to avoid the added mass effects and
improve scheme’s accuracy. The questions of stability and accuracy are discussed
here as well. One way to increase the accuracy of the kinematic coupling schemes
is to apply the higher order splitting schemes, such as the Strang splitting. It has
been shown in the recent works of Lukáčová et al. in [110, 121] that in such a
way a new kinematic splitting scheme can be obtained that is stable and second
order accurate. Another way, presented in [56] is based on the so-called incremental
displacement-correction scheme, i.e., interpolation of the structure velocity used
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in the hydrodynamic operator to improve accuracy of the coupling. As mentioned
above, these schemes were termed kinematically coupled, since they treat implicitly
the hydrodynamic fluid–structure coupling (the so-called added mass effect) and
explicitly the contribution of elastic structure.

In the next subsections we will underline, once again, why, in the case of strong
added mass effect a naive explicit scheme may be unconditionally unstable. Next we
will present a semi-implicit scheme based on the Chorin–Temam projection strategy
for the fluid part that is conditionally stable and convergent. Further, we also present
main ideas of the kinematically coupled schemes and present their stability analysis.

1.3.1 Explicit Scheme and Added Mass Effect

In this subsection we recall some results obtained in [25] to illustrate the so-called
added mass effect on an explicit Dirichlet to Neumann time marching scheme. We
consider the same kind of linear toy problem described in Sect. 1.2.1. The fluid
satisfies (1.30), (1.31), (1.32), (1.33), (1.34), with the coupling condition (1.36),
whereas we further simplify the structure equation and consider

�se@t t 	C a	 D p; on .0; L/: (1.115)

Let�t > 0 denote the time step. Let us denote by un; 	n the approximations of u; 	
at time n�t , n 2 N. The fluid equations (1.30) are discretized with respect to the
time by an implicit Euler scheme

�f
unC1 � un

�t
C rpn D 0 in O�f : (1.116)

Moreover we impose a Dirichlet boundary condition on the fluid–structure interface,
that is an explicit discretization of (1.36):

unC1 � On D 	n � 	n�1

�t
; on O†: (1.117)

The structure equation is discretized with an explicit leap frog scheme:

�se
	nC1 � 2	n C 	n�1

�t2
C a	n D pnC1; on .0; L/: (1.118)

With the same formalism as previously by introducing the added mass operator M
defined by the Poisson problem (1.45), (1.46), (1.47), (1.48), it leads to

�se
	nC1 � 2	n C 	n�1

�t2
C �fM

�
	n � 2	n�1 C 	n

�t2

�
C a	n D qn; on .0; L/;

(1.119)
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where the pressure q is defined by (1.41), (1.42), (1.43) (1.44). Then we have the
following proposition [25]:

Proposition 1.1. Let �max be the largest eigenvalue of the compact, self-adjoint
operator M in L.L2. O†//, then the scheme (1.119) is unconditionally unstable if

�se

�f �max
< 1: (1.120)

The proof of this proposition is elementary: by expanding 	n on the orthonormal
L2. O†/ basis of eigenvectors .�i / of M, we obtain

�se
	nC1
i � 2	ni C 	n�1

i

�t2
C �f �i

	ni � 2	n�1
i C 	n�2

i

�t2
C a	ni D qni ; on .0; L/;

where �i > 0 is the i th eigenvalue of M and 	n D P
i 	

n
i �i and qn D P

i q
n
i �i .

By a direct calculation of the characteristic polynomial � of the previous difference
equation, we obtain that �.�1/ D �1 and �.�1/ > 0 as soon as there exists i
such that �f �i > �se. Consequently, there exists a root of the polynomial � that is
strictly less than �1. Thus, if �f �max > �se, the scheme is unstable unconditionally
with respect to the time step �t .

1.3.2 A Semi-Implicit Scheme

Here we present a semi-implicit scheme but only on the linear problem associated
with (1.1), (1.2), (1.10), (1.11), (1.15), (1.16), (1.3), (1.12). It means that we neglect
the variations of the fluid domain and consequently the nonlinear geometrical
terms. As we have seen in the previous section these nonlinearities may be treated
explicitly in the time advancing scheme. We refer to [132] for a study of the different
possibility of choice to advance in time the fluid domain in the case where the ALE
method is used. We also consider only the Stokes system. The fluid equations are
discretized with a Chorin–Temam projection method. The time marching scheme
for the structure is done by a first order leap frog scheme. Let us denote by �t the
time step, and tn D n�t . We assume that approximations .un; pn; �n; 	n/ of the
fluid velocity, fluid pressure, and structure displacement at time tn are known. The
algorithm writes:

• Step 1: Advection–diffusion step

8̂
ˆ̂<
ˆ̂̂:

�f
QunC1 � un

�t
� �� QunC1 D 0; in O�f

QunC1 D
�
�n � �n�1

�t
;
	n � 	n�1

�t

�T
D dn � dn�1

�t
; on O†:

(1.121)
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• Step 2 : Projection step (velocity correction)

– Step 2.1:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

�f
unC1 � QunC1

�t
C rpnC1 D 0; in O�f ;

div unC1 D 0; in O�f ;

unC1 � On D 	nC1 � 	n
�t

� On; on O†:

(1.122)

– Step 2.2: Structure equation on .0; L/

8̂
<̂
ˆ̂:

�se
�nC1 � 2�n C �n�1

�t2
� ˛1@xx�

nC1 D .� f . QunC1; pnC1/ � On/1;

�se
	nC1 � 2	n C 	n�1

�t2
C 
@4x	

nC1 � ˛2@xx	
nC1 D .� f . QunC1; pnC1/ � On/2:

(1.123)

Here only the projection step is implicitly coupled with the structure equation.

Remark 1.14. When dealing with the full nonlinear problem all the nonlinearity
(convection terms, geometrical nonlinearities) are treated at the explicit advection–
diffusion step.

Remark 1.15. The projection step is written as a Darcy system but we could also
have written it as a Poisson problem on the pressure as we did it for the toy problem
(see (1.37)). This scheme is based on the same kind of splitting idea summarized in
Sect. 1.2.3.

Remark 1.16. Note that if one computes the residual of the fluid equation on the
interface it is not equal to zero but to

Z
O†
D. QunC1/ �

 
QunC1 � dnC1 � dn

�t

!
:

It involves only the viscous stress and does not involve the pressure so one could
hope to control it.

Stability and Convergence

Now we are going to see why this scheme is stable and convergent for the coupled
system. We are considering where a 2D fluid is interacting with a 1D structure.
Note that in [64] and [1] more general coupled systems are considered in particular
3D=3D coupling. For the purpose of the analysis we assume that the coupled
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system is also discretized in space with a finite element discretization. We denote
by h the space mesh size. We assume that the finite element spaces for the fluid
velocity and the fluid pressure are, respectively, conform in H1. O�f / and L2. O�f /

(we assume that these spaces satisfy the inf–sup or LBB condition even if it plays no
role in our analysis). We assume moreover that the structure space approximation
V h
s is a conformal approximation of Vs D H1.0;L/ � H2.0;L/ if 
 > 0 or
Vs D H1.0;L/ � H1.0;L/ if 
 D 0. Even if the approximations are conform
for each sub-problem, the global approximation may be nonconform, in particular
in the case 
 > 0, where one could have, for instance, Lagrange finite element
for the fluid part and Hermite finite element for the discretization of the transverse
displacement. In this particular case, there is a nonconforming matching at the
interface and it is necessary to introduce a matching operator �h that could be an
interpolation operator or an integral matching operator of mortar type [11–14]. The
kinematic conditions satisfied by the fluid and the structure at the interface and by
the test functions that appear in the variational formulation of the coupled problem
discretized in space and time writes (by obvious notations)

QunC1
h D �h

 
dnh � dn�1

h

�t

!
; on O†

unC1
h � On D �h

 
	nC1
h � 	nh
�t

!
; on O†;

and for the test functions

vh D �h.bh/; on O†:

The following stability result is then satisfied [64].

Theorem 1.5. Assume that the restriction on the interface of the matching operator
�h is stable in L2. There exists a constantC > 0 that do not depend on the physical
parameters of the problem such that, if

�s � C

�
�f hC 2

��t

h

�
; (1.124)

the discrete energy bounds are satisfied:

1

�t

h�f
2

kunC1
h k2

L2. O�f / � �f

2
kunhk2L2. O�f /

i
C 1

�t

2
4�s
2

�����
dnC1
h � dnh
�t

�����
2

L2. O†/
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��s
2

�����
dnh � dn�1

h

�t

�����
2

L2. O†/

3
5C 1

2�t

	
as.d

nC1
h ;dnC1

h / � as.dnh;dnh/



C �kr. QunC1
h /k2

L2. O�f / � 0; (1.125)

where

as.d ;b/ D ˛1

Z L

0

@xd1@xb1 C ˛2

Z L

0

@xd2@xb2 C 


Z L

0

@xxd2@xxb2

with d D .d1; d2/
T and b D .b1; b2/

T .

Remark 1.17. In the really special case, when � D 0, we can prove the same sta-
bility result on the semi-discrete scheme in time (i.e., without space discretization)
provided the time step is small enough.

Furthermore, the following convergence theorem holds true.

Theorem 1.6. Assuming that the finite element spaces have good approximation
properties, under the stability conditions (1.124) and assuming that the exact
solution of the linear coupled problem is regular enough then the sequence of
discrete solutions converge through the continuous solution and satisfy the error
estimates:

�f

2
kunC1

h � u.tnC1/k2
L2. O�f / C �s

2

�����
dnC1
h � d.tnC1/� dnh � d.tn/

�t

�����
2

L2. O†/

C 1

4
.as.d

nC1
h �d.tnC1/;dnC1

h �d.tnC1///C
NX
nD0

��tkr. QunC1
h � u.tnC1//k2

L2. O�f /

� C�t C Ch2k C Ch2m C Ch2l ; (1.126)

k denotes the degree of the Lagrange polynomial associated with the fluid finite
element discretization and m depends on the choice of space discretization for the
structure is such that, for v 2 Vs ,

inf
vh2V hs

as.v � vh; v � vh/ � Ch2m;

and whereas l depends on the choice of the matching operator at the interface �h:

• l � min .1; k C 1/ if 
 D 0, l � min .2; k C 1/ if 
 D 0 for the interpolation
operator;

• 1
2

� l � k for the mortar operator.
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These results, which are the adaptation of [1, 64], to our setting are to be
commented. First of all, concerning the stability, it is obtained under a sufficient
condition that requires that the time steps is small enough with respect to the mesh
size. In the case where one considers a more general setting, for instance a 3D
fluid coupled with a 3D structure then, to obtain the same kind of stability property,
one has to consider different space discretizations for the fluid and for the structure.
Nevertheless this restriction is not seen in practice. Note moreover that the sufficient
condition depends on the physical parameters of the problem and on the ratio of the
densities. Once again this restriction has not been observed for practical applications
such as blood flow in arteries.

This sufficient condition comes from the fact that we have to control the viscous
residual

R
O† �D. QunC1/. QunC1

h � @td
nC1
h / since the viscous effect is treated explicitly

(see Remark 1.16). It will be the same sufficient condition if one considers a heat-
wave (parabolic–hyperbolic) explicit coupling. To prove these stability result, one
would like to choose as test functions

QunC1
h ; unC1

h ;
dnC1
h � dnh
�t

:

But at the interface we have QunC1
h D �h.

dnh�dn�1
h

�t
/ ¤ �h.

d
nC1
h �dnh
�t

/. Thus we choose

QunC1
h C Exth

 
�h.

dnC1
h � 2dnh C dn�1

h

�t
/

!
; unC1

h ;
dnC1
h � dnh
�t

;

as test functions, where Exth is an extension of the structure test function in the fluid
domain such that the L2 norm is of order h and theH1 norm blows up as 1

h
. The dif-

ficulty here is to control the extra terms coming from Exth

�
�h.

d
nC1
h �2dnhCdn�1

h

�t
/

�
.

Note that these terms are easily controlled by the dissipation coming from the
Leap–Frog chosen scheme for the time discretization of the structure. In the case
of Newmark scheme, which is not dissipative, the proof does not hold any more.
Nevertheless the same stability estimate can be obtained provided that the kinematic
boundary conditions are imposed in a weak way thanks to Nitsche’s method [3],
since Nitsche’s method introduces some dissipation in the coupled scheme.

Concerning the convergence result, the time error is at least of order
p
�t .

It is well known that a non-incremental Chorin–Temam scheme has time rate of
convergence that is less than one, for the pressure in norm L1.0; T IL2. O�f //, and
for the velocity in normL1.0; T IH1. O�f // (see [5,47,95,96,143] for details). Here
it is also the case for the fluid velocity in L1.0; T IL2. O�f // norm. The reasons for
this may be due to our proof technique, that may not be optimal, or due to the fact
that the error for the fluid pressure propagates through the structure to the whole
coupled system.
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Concerning the non-matching operator at the interface the error estimate is
optimal in any case when considering the Mortar matching. This is conform with
what can be found in [116]. Yet, in these case of a pointwise matching, then the
optimality depends on the structure type and of the polynomial degree of the fluid
Lagrange finite element.

For a discussion on non-matching grids for fluid–structure interaction problems,
we also refer to [48].

1.3.3 Kinematically Coupled Schemes

The idea of kinematically coupled schemes has been firstly introduced in [98] and
later generalized to the second order schemes in [110, 121] using the higher order
splitting methods and in [56] applying the interpolation of the structure velocity
used in the hydrodynamic equations, see also [23, 57, 62] for related works. Let us
consider the following generalized string model introduced in [109]

�se@t t 	 � ˛2@xx	C Qı	 � ˇ2@xx@t	 D H.u; p/ on O†; (1.127)

where

O† WD ˚
.x; y/ 2 R

2 W 0 < x < L; y D R0.x/
�
; (1.128)

R0.x/ is a given reference domain radius and H.u; p/ D .T f /2 represents the
forces exhibited by the normal fluid stress acting on the elastic vessel wall and
transformed to O†. In detail we have

H.u; p/ WD �
��
.� f C pext I/n

�ˇ̌
ˇ O† � er

� R
R0

p
1C .@xR/2p
1C .@xR0/2

; R D R0 C 	:

(1.129)
The term with square roots corresponds to the Jacobian of the transformation
between the Eulerian framework used for the description of fluid and the Lagrangian
framework used for the structure, er denotes a unit vector in the y-direction (radial
direction) and pext is a given external pressure.

For the structure we assume analogously as in (1.11) that we have the third order
viscoelastic term �@t @2x	 and moreover that 
 D 0. The parameters are defined as
follows:

˛2 D j�x je
"
1C

�
@R0

@x

�2#�2
; Qı D Ee

R20.1 � Q�2/ : (1.130)

Recall thatE is the Young modulus, e the thickness of the vessel wall, �s its density,
j�x j D G� is the longitudinal stress,G D E=.2.1C Q�// denotes the shear modulus,
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Q� is the Poisson ratio, � is the Timoshenko shear correction factor, and ˇ2 a positive
viscoelastic constant.

The kinematic splitting algorithm is based on the kinematic coupling condition

u D w WD
�
0; @t	

�T
on †.t/ (1.131)

and special splitting of the structure equation into the hyperbolic and parabolic part.
We define the operator A that includes the fluid solver and viscoelastic part of the
structure equation

A operator .hydrodynamic/

8̂
<̂
ˆ̂:

fluid solver .u; p/;
� WD u2j†;
�se

@�

@t
D ˇ2

@2�

@x2
CH.u; p/;

(1.132)

and the operator B for purely elastic load of the structure

B operator .elastic/

8̂
<̂
ˆ̂:

@	

@t
D �;

@�

@t
D ˛2

�se

@2	

@x2
�

Qı
�se

	CG.R0/;

(1.133)

where G.R0/ WD ˛2
�se

@2R0
@x2

: Here we note that the coupling condition allowed us to
rewrite the hydrodynamic part of structure equation in terms of wall velocity � . The
splitting works well also in the case that the structure is just elastic, i.e., without any
friction term, ˇ2 D 0. Time discretization of our problem is done in the following
way: from the fluid equation we compute new velocities unC1 and pressures pnC1
for xn 2 �n (i.e., �n WD �	.t

n/). Note that QunC1 D unC1 ı �f .tnC1/ ı �f .tn/�1
and QpnC1 D pnC1 ı �f .tnC1/ ı�f .tn/�1, where �f .t

n/ is the ALE-mapping from

a reference domain O�f onto �n. Then we continue with computing of the wall

velocity �nC 1
2 from the hydrodynamic part of structure equation (1.132). Further

we proceed with the operator B and compute new wall displacement 	nC1 and new
wall velocity �nC1. Finally, knowing 	nC1 the geometry is updated from�n to�nC1
and new values of fluid velocity unC1 and pressure pnC1 are transformed onto�nC1.
In order to update the domain �n we need to define the grid velocity w. First, we
set wj† D �nC1. In order to prescribe the grid velocity also inside the fluid domain

we can solve an auxiliary problem, e.g., harmonic extension of xnC1
ˇ̌
ˇ̌
†nC1

	 	nC1

from†nC1 inside�nC1. Consequently, we get wnC1 WD xnC1 � xn
tnC1 � tn

, xnC1 2 �nC1.
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Stability Analysis

In what follows we will briefly present the stability analysis of the semi-discrete
scheme for the kinematic coupling approach. More details on the derivation can be
found in [121]. Now, let us consider the weak formulation of the fluid equation.
Integrating over �n and approximating the time derivative by the backward Euler
method the operator A yields the following equation for new intermediate velocities
QunC1, �nC 1

2

Z

�n

QunC1 � QunC1 � un

�t
C 2

�f

Z

�n

�.jD. QunC1/j/ D. QunC1/ W D. QunC1/

C1

2

Z

�nC1=2

j OunC1j2div wnC1=2 D ��se
�f

Z

O†

"
�nC 1

2 � �n
�t

#
�nC 1

2 (1.134)

� ˇ2
�f

Z

O†

"
@�nC 1

2

@x

#2
dl0 � 1

�f

Z

†n

pext.t
nC1/ QunC1

2p
1C .@xR0/2

dl C 1

�f

Z

�n

QunC1 � f nC1

C 1

�f

Z R0.0/

0

pin.t
nC1/QunC1

1 jxD0 � 1

�f

Z R0.L/

0

pout.t
nC1/QunC1

1 jxDL:

where OunC1 D unC1 ı �f .tnC1/ ı ��1
f .t

nC1=2/.
Moreover, we have div QunC1 D 0 in�n. The operator B is discretized in time via

the Crank–Nicolson scheme, i.e.,

	nC1 � 	n
�t

D 1

2

�
�nC1 C �nC 1

2

�
; (1.135)

�nC1 � �nC 1
2

�t
D ˛2

2�se

�
@xx	

nC1 C @xx	
n
� �

Qı
2�se

�
	nC1 C 	n

�CG.R0/:

(1.136)

The discrete scheme (1.135)–(1.136) is also reported in literature as the Newmark
scheme.

First we look for an energy estimate of the semi-discrete weak formulation of
the momentum equation (1.135). In order to control the energy of the operator A
we apply the Young and the trace inequalities. Further using the generalized Korn
inequality for nonlinear viscous term we can show the coercivity of the nonlinear
viscous fluid term. After some manipulations, cf. [121], we obtain

jj QunC1jj2
L2.�n/

C �t

2

Z

�nC1=2

j OunC1j2div wnC1=2
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CC ��t jj QunC1jjq
W 1;q.�n/

(1.137)

C�se

�f

�
jj�nC 1

2 jj2
L2. O†/ � jj�njj2

L2. O†/


C 2�t

ˇ2

�f
jj@x�nC 1

2 jj2
L2. O†/



� jjunjj2
L2.�n/

C 2�tC2

"q
0=q

RHSnC1 C 2C �� �t;

where � D 0 for q � 2 and � D 1 for 1 � q < 2,

RHSnC1 WD jjpin.t
nC1/jjp0

Lq
0

.�in/
C jjpout.t

nC1/jjq0

Lq
0

.�out/
C jjpext.t

nC1/jjq0

Lq
0

.†n/

Cjjf nC1jjq0

Lq
0

.�nC1/

and C �; C tr ; " are positive constants. The dual argument q0 � 1 satisfies 1=q C
1=q0 D 1.

In order to rewrite the term containing the norm jj QunC1jjL2.�n/ by means of
jjunC1jjL2.�nC1/ we use the well-known Reynolds transport theorem:

jjunC1jj2
L2.�nC1/

� jj QunC1jj2
L2.�n/

D
tnC1Z

tn

Z

�f .t/. O�f /
junC1 ı �f .tnC1/ ı ��1

f .t/j2 div w

(1.138)
Applying the midpoint rule for approximation of the convective ALE-term in

two-dimensional case the integrand on the left hand side of (1.138) can be exactly
computed, cf. [67], or [50] i.e.,

tnC1Z

tn

Z

�f .t/. O�f /
junC1 ı �f .tnC1/ ı ��1

f .t/j2 div w D �t

Z

�nC1=2

j OunC1j2 div wnC1=2:

(1.139)
The latter equation is called the Geometric Conservation Law. Thus we obtain an
estimate that does not depend on the mesh velocity.

jjunC1jj2
L2.�n/

C C ��t jj QunC1jjq
W 1;q.�n/

(1.140)

C�se

�f

�
jj�nC 1

2 jj2
L2. O†/ � jj�njj2

L2. O†/


C 2�t

ˇ2

�f
jj@x�nC 1

2 jj2
L2. O†/



� jjunjj2
L2.�n/

C 2�tC2

"q
0=q

RHSnC1 C 2C �� �t;

Remark 1.18. Note that if we do not assume that the Geometric Conservation Law
(1.139) is satisfied exactly, but we only approximate time integral on the left hand
side by, e.g., the rectangle rule, then the estimate will depend on the mesh velocity
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w and a condition on the time step involving kdiv wkL1 appears (see [121]). This
condition requires that the time step is small enough and that the mesh velocity that
depends on the structure velocity is regular enough. Note however that we do not
always have the required regularity at the continuous level.

Remark 1.19. We have considered here a nonconservative form of the fluid equa-
tions. In [67] they obtain an energy estimate depending on the mesh velocity even
in the case where the Geometric Conservation Law is satisfied. This is not in
contradiction with the result presented here since we solve the fluid equations on
�n whereas in [67] it was solved on�nC1.

The next step is to estimate the operator B. To this end we firstly multiply Eq. (1.135)
by ı.	nC1C	n/ and Eq. (1.136) by .�nC1C�nC 1

2 /, sum up the multiplied equations,
and then integrate them over O†. After some manipulations this yields, cf. [121],

˛2jj@x	nC1jj2
L2. O†/ C Qı jj	nC1jj2

L2. O†/ C �sejj�nC1jj2
L2. O†/

� ˛2jj@x	0jj2L2. O†/ C Qı jj	0jj2
L2. O†/ C �sejj�0jj2L2. O†/ (1.141)

C�se
nX
iD0

�
jj�iC 1

2 jj2
L2. O†/ � jj�i jj2

L2. O†/
�

C 2�se

Z
O†
G.R0/.	

nC1 � 	0/:

It can be shown easily that for some sufficiently small " we have

2�se

Z
O†
G.R0/ .	

nC1 � 	0/ dl0 � ˛2�seL j O†j
"

(1.142)

C
Qı
2

�
jj	nC1jj2

L2. O†/ C jj	0jj2
L2. O†/


:

Inserting (1.143) into (1.142) we obtain an estimate of the operator B

˛2jj@x	nC1jj2
L2. O†/ C

Qı
2

jj	nC1jj2
L2. O†/ C �sejj�nC1jj2

L2. O†/

� ˛2jj@x	0jj2L2. O†/ C 3 Qı
2

jj	0jj2
L2. O†/ C �sejj�0jj2L2. O†/

C�se
nX
iD0

�
jj�iC 1

2 jj2
L2. O†/ � jj�i jj2

L2. O†/
�

C ˛2�seLj O†j
"

: (1.143)

Note that in our model we have 	0 D 0 and �0 D u02j†.
Taking into account (1.141) and (1.143) and applying discrete Gronwall Lemma,

the total energy at the new time step tnC1 will be bounded only with the initial
energy and the boundary data



1 Mathematical and Numerical Analysis of Some FSI Problems 63

EnC1 C�t

nC1X
iD1

Gi � E0 C �se

�f
Qıjj	0jj2

L2. O†/ C �se˛2L

�f

j O†j
"

(1.144)

C2C ��T C 2�t C2

"q
0=q

nC1X
iD1

P i ;

where

Ei WD jjui jj2
L2.�i /

C 1

�f

�
˛2jj	ixjj2L2. O†/ C

Qı
2

jj	i jj2
L2. O†/ C �sejj�i jj2L2. O†/


;

Gi WD C �jj Qui jjq
W 1;q.�i�1/

C 2ˇ2

�f
jj@x�i� 1

2 jj2
L2. O†/ ;

P i WD 2C2

"q
0=q

RHSi ;

and i D 0; : : : ; nC 1.

Numerical Experiments

The aim of this section is to illustrate performance of numerical methods presented
above, the semi-implicit schemes presented in Sect. 1.3.2 as well as the kinemati-
cally coupled schemes presented in Sect. 1.3.3.

We start with the semi-implicit schemes and illustrate by numerical experiments
performance of the semi-implicit scheme for strong added mass effect. It is worth
mentioning that in the Newmark scheme is used in every numerical test without any
stability issue. In every test case the projection step is solved by a Poisson equation
on the pressure (see (1.37), (1.38)), for which one has really performant algorithms,
and not the mixed Darcy problem (see (1.30), (1.31)).

First of all we have compared for � D 0 and 
 D 0 three difference schemes
relying on explicit, semi-implicit, and implicit strategies (Fig. 1.2.)

The second test case deals with a three-dimensional problem, where the structure
satisfies a shell equation. It is the benchmark case proposed in [69] (for the used
parameters we refer to [64]). The fluid is discretized by Q1=Q1 finite elements and
the structure by shell element MITC4 [27]. The implicit step is solved by a Newton
algorithm (Fig. 1.3).

These results are in agreement with [61, 69, 81]. Note moreover that this scheme
has the same precision as an implicit scheme with a computational cost which
is much lower. Moreover, the theoretical convergence rate in time has not been
recovered easily in practice and only on well-chosen cases [1].

In the following experiment we compare the accuracy of the first and second
order kinematically coupled fluid–structure interaction schemes. To derive the first
or second order methods we can apply, respectively, the first order Marchuk–
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Fig. 1.2 Left: Residual power at the interface for �s D 30. Added has effect are small—all the
schemes are stable. Right: Residual power at the interface for �s D 20. The explicit scheme is
unstable whereas the two other are stable

Fig. 1.3 Wave propagation in a cylinder, t D 0:0018; 0:0058 and 0:0098 s

Yanenko splitting scheme

UnC1 D B4tA4t Un; (1.145)

or the second order Strang splitting scheme

UnC1 D B4t=2A4tB4t=2 Un: (1.146)

Here we have denoted by Un the approximate solution of coupled problem at the
time level tn and by A4t and B4t the operator A, cf. (1.132), and the operator B,
cf. (1.133), acting on interval .tn; tnC1�; 4t D tnC1 � tn, respectively. Further,
B4t=2 denotes the operator B acting on the interval of length 4t=2. The operator A
is discretized by the finite volume method using the so-called dual grids of the basic
triangular mesh. Velocity as well as pressures is approximated by the piecewise
linear functions over the underlying triangular grid. Artificial compressibility is used
to relax the solenoidal condition for velocities, more precisely we have

�"� QpnC1 C r � QunC1 D 0 on �n:

Here " is a small positive constant, " � 4h2, where 4h denotes the grid size. In
order to stabilize the convective term the upwinding technique is used, nonlinearity
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Table 1.1 Convergence rates in space; Marchuk–Yanenko splitting scheme, Carreau viscosity

Lq-norm L2-norm

# refin (4h) Err (u) EOC (u) Err (ru) EOC (ru) Err (	) EOC (	)

1 0.24542 0.0219 0.2942
2 0.07939 1.63 0.0637 1.78 0.1087 1.44
3 0.02861 1.46 0.0303 1.07 0.0425 1.35
4 0.00729 1.99 0.0110 1.46 0.0150 1.50

in the convective term and in the viscosity is approximated by the fixed point
iterations. The operator B is approximated by the Newmark finite difference scheme,
we refer the reader to [121] for more details of the discretization schemes.

In hemodynamic applications the nonlinear viscosity function is typically used
to describe non-Newtonian effects due to the aggregation and deformability of the
red blood cells. In [121] Lukáčová et al. considered the so-called Carreu viscosity
model that describes shear-thinning behavior of blood

�.jD.u/j/ D �1 C .�0 � �1/
	
1C 2.�jD.u/j/2
 q�2

2 ; (1.147)

D D 1=2.5u C 5uT / denotes the rate of the deformation tensor and �1 WD
limjD.u/j!1 �.jD.u/j/; �0 WD limjD.u/j!0 �.jD.u/j/: In the experiments presented
below the following parameters are used �0 D 1:26P , �1 D 0:63P , q D 1:6, � D
1: We compute a reference solution on a fine mesh (consisting of 32,768 elements)
and compare the L2 or Lq norms of the difference between the reference uref and
the approximate solutions, respectively. Thus, the normalized Lq error is given as

Err.u/ D jju4h;4t � urefjjLq
j�4hj1=q (1.148)

and the experimental order of convergence (EOC) is computed in the following way

EOC.u/ D log2
jju4h;4t � urefjjLq=j�4hj1=q

jju4h=2;4t � urefjjLq=j�4h=2j1=q : (1.149)

Tables 1.1 and 1.2 present the EOC results in space obtained by the kinematic
splitting scheme and the Strang splitting approach. To this end we compute solution
at different grid refinements having 32, 128, 512, and 2,048 elements, respectively.
The final time was taken T D 0:004 s and a fixed time step �t D 10�4 s have been
used. We can see that both schemes have very similar error behavior, in particular
we get the second order convergence for velocities and pressures. As it is expected,
the Strang splitting technique has not visibly influenced the convergence rates in
space.
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Table 1.2 Convergence rates in space; Strang splitting scheme, Carreau viscosity

Lq-norm L2-norm

# refin (4h) Err (u) EOC (u) Err (ru) EOC (ru) Err (	) EOC (	)

1 0.24469 0.0218 0.3068
2 0.07891 1.63 0.0796 1.45 0.1186 1.37
3 0.02867 1.46 0.0351 1.18 0.0514 1.21
4 0.00709 2.02 0.0117 1.58 0.0190 1.43

Table 1.3 Convergence rates in time; Marchuk–Yanenko splitting, Carreau viscosity

Lq.Lq/-norm L2.L2/-norm

# refin (4t ) Err (u) EOC (u) Err (ru) EOC (ru) Err (	) EOC (	)

2/1 0.1532 0.1600 0.2706
3/2 0.0705 1.12 0.0747 1.10 0.2000 0.44
4/3 0.0218 1.69 0.0234 1.67 0.0915 1.13

Setting the final computational time T D
NP
jD1

4t D 4t N , the experimental

order of convergence in time is computed by the following formula

EOC.u/ D log2

�PN
jD1 jjuj4h;4t � uj4h;4t=2jjqLq=j�j

4h;4t jq
�1=q

�
1=2

P2N
jD1 jjuj4h;4t=2 � uj4h;4t=4jjqLq=j�j

4h;4t=2jq
�1=q : (1.150)

Moreover, the normalized relative Lq.0; T ILq.�// error in time is defined by

Err.u/ D 1

T

 
NX
jD1

4t
 jjuj4h;4t � uj4h;4t=2jjLq

j�j

4h;4t j
;

!q!1=q
(1.151)

where uj4h;4t and �
j

4h;4t denotes the velocity and the computational domain
associated with the time instant j 4 t , respectively, using the fixed grid size 4h
The EOC in time (1.150) was computed on a computational mesh consisting of 585
elements. Going from one time refinement to the finer one, the time step was halved.
The time period for the computation was t 2 Œ0:2I 0:8� s and the initial time step was
4t D 0:0125 s. The initial computational domain is a rectangular reference domain
O�f : In Tables 1.3 and 1.4 we present experimental order of convergence in time for
the first order Marchuk–Yanenko and the second order Strang splitting schemes. We
see that the global errors are significantly smaller for the Strang splitting scheme in
comparison with the first order Marchuk–Yanenko splitting scheme, see also [121]
for further experiments.

In the following experiment we have analyzed the effects of different viscosity
models used in hemodynamics, the Carreu model (1.147), the logarithmic model
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Table 1.4 Convergence rates in time; Strang splitting, Carreau viscosity

Lq.Lq/-norm L2.L2/-norm

# refin (4t ) Err (u) EOC (u) Err (ru) EOC (ru) Err (	) EOC (	)

2/1 0.0578 0.0609 0.1140
3/2 0.0241 1.26 0.0243 1.32 0.0441 1.37
4/3 0.0088 1.44 0.0078 1.64 0.0173 1.35
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Fig. 1.4 WSS along † for stenotic vessel geometry at several time instants

of Yeleswarapu, see, e.g., [121, 159], and the Navier–Stokes model. In Fig. 1.4 we
compare the so-called wall shear stress (WSS), i.e., the normal component of the
fluid stress tensor evaluated at the moving wall †.t/, projected in the tangential
direction. The computational domain has a reference radius

R0.x1/ D

8̂
<
:̂
R0.0/

"
1 � 0:15

 
1C cos

 
5�.x1 � L=2/

L

!!#
if x1 2 Œ0:3LI 0:7L�;

R0.0/ if x1 2 Œ0I 0:3L/ [ .0:7LIL�;
(1.152)

which models a stenotic occlusion. We set L D 6 cm and R.0/ D 0:6 cm.
In Fig. 1.4 we see the distribution of WSS for different time instants during the

cardiac cycle along the moving boundary of stenosed vessel. Negative values of
WSS along the moving boundary are visible. In both cases we observe that the WSS
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Fig. 1.5 Fluid–structure interaction of three-dimensional Newtonian fluid and a thin viscoelastic
structure at time instants t D 0:4; 0:6; 0:8; 1:2 s (from left to right and top to down); velocity
magnitudes, velocity vectors and streamlines

corresponding to the non-Newtonian model considerably differs from that given by
the Navier–Stokes equations, indeed the WSS gives higher extremal values.

In the last experiment we present a generalization of the kinematically coupled
schemes to 3D/2D coupling problem, i.e., we consider three-dimensional (Newto-
nian) fluid and two-dimensional membrane. We take structure to be clamped. The
equation describing time evolution of the transversal displacement 	; 	.x1; x2; t/ 2
R reads

�se
@2	

@t2
� ˛2�	 � ˇ2�@	

@t
D H.u; p/ on O† � R

2: (1.153)

We impose the Dirichlet boundary conditions for fluid at the inflow part. Inflow
velocity has the maximum value 16 cm/s and is multiplied by sin.�t/ function to
model time-dependent inflow, t 2 .0; T /; T D 2:0. On the outflow part the normal
stress is set to 0. We use the no-slip boundary condition for the remaining parts of
boundary �0: For the computational domain the following parameters have been
used:L1 D 8 cm, L2 D 1 cm,R0.x1; x2/ D 1 cm. Further, we set the fluid viscosity
to 0.0345 P and density to 1 g cm�3. For structure we use the following parameters:
wall thickness is h D 0:1 cm, wall density is �w D 1:1 g cm�3, Timoshenko’s factor
is � D 1, Poisson’s ratio Q� D 0:5, E D 0:75 � 106 Pa, viscoelasticity coefficient

 D 0:2 � 106, cf. [121].

Computational domain for fluid is discretized by 60,915 tetrahedral elements.
In Fig. 1.5 we present results of the fluid–structure interaction simulations obtained
by the first order kinematically coupling method at different time instants
0:4; 0:6; 0:8; 1:2 s. We depict velocity magnitudes, velocity vectors as well as
streamlines.
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1.4 Conclusions

Our main aim in this chapter was to discuss analytical and numerical difficulties
arising in fluid–structure interaction problems. Due to the nonlinear geometrical
coupling the so-called added mass effects appear and play a crucial role in both
analysis and numerical simulations. The applications we have in mind are, for
example, blood flow in elastic vessels, but more general applications of fluid flow in
compliant domains are governed as well. More importantly, if the coupled problem
has biological applications the fraction of fluid and structure densities is typically
close to one and the added mass effects due to decoupling fluid and structure
are more profound. We have presented several approaches to obtain existence of
global weak solutions for both Newtonian and non-Newtonian shear-dependent
fluids. Moreover, we present also main ideas and corresponding results for local
existence of strong solutions. In this chapter we concentrate on the case when a
two-dimensional fluid interacts with a viscoelastic membrane. However, many of the
results can be generalized for three-dimensional situations and purely elastic struc-
ture and we present a broad literature overview. In the second part we concentrate on
the numerical analysis and try to underline connections between analytical results
and construction of efficient and stable schemes. We present in more detail two
partitioned schemes, the semi-implicit scheme, cf. Sect. 1.3.2 and the kinematically
coupled scheme based on a suitable operator splitting technique 1.3.3. We also study
their stability and accuracy from both theoretical and experimental point of view.
The chapter is closed with some numerical experiments that demonstrate reliability
of the presented numerical approaches.
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121. M. Lukáčová-Medvid’ová, G. Rusnáková, A. Hundertmark-Zaušková, Kinematic splitting
algorithm for fluid-structure interaction in hemodynamics. Comput. Methods Appl. Mech.
Eng. 265, 83–106 (2013)

122. J. Málek, K.R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and
some of its generalizations, in Handbook of Differential Equations, ed. by C.M. Dafermos,
E. Feireisl (North-Holland, Boston, 2005)
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129. B. Muha, S. Canić, Existence of a weak solution to a nonlinear fluid-structure interaction
problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable
walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

130. F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular
dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)

131. F. Nobile, C. Vergara, Partitioned algorithms for fluid-structure interaction problems in
haemodynamics. Milan J. Math. 80, 443–467 (2012)

132. F. Nobile, M. Pozzoli, C. Vergara, Time accurate partitioned algorithms for the solution of
fluid-structure interaction problems in haemodynamics. Comput. Fluids 86, 470–482 (2013)

133. C.S. Peskin, D.M. McQueen, A three-dimensional computational method for blood flow in
the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81,
372–405 (1989)

134. S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor
and fluid subcycling for 2D inviscid aeroelastic simulations. Int. J. Numer. Methods Fluids
25, 1207–1226 (1997)



76 C. Grandmont et al.

135. S. Piperno, C. Farhat, Design of efficient partitioned procedures for the transient solution of
aeroelastic problems, in Fluid-Structure Interaction. Innovative Technology Series (Kogan
Page Science, London, 2003), pp. 23–49

136. S. Piperno, C. Farhat, B. Larrouturou, Partitioned procedures for the transient solution of
coupled aeroelastic problems. Part I: model problem, theory and two-dimensional application.
Comput. Methods Appl. Mech. Eng. 124, 79–112 (1995)

137. A. Quaini, A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on
an algebraic fractional step method. Math. Models Methods Appl. Sci. 17, 957–983 (2007)

138. A. Quarteroni, A. Veneziani, Analysis of a geometrical multiscale model based on the
coupling of ODEs and PDEs for blood flow simulations. Multiscale Model. Simul. 1(2), 173–
195 (2003)

139. A. Quarteroni, M. Tuveri, A. Veneziani, Computational vascular fluid dynamics: problems,
models and methods. Comput. Vis. Sci. 2, 163–197 (2000)

140. A. Quarteroni, S. Ragni, A. Veneziani, Coupling between lumped and distributed models for
blood flow problems. Second AMIF International Conference (Il Ciocco, 2000). Computing
and Visualization in Science 4(2), 111–124 (2001)

141. P. Raback, J. Ruokolainen, M. Lyly, E. Jarvinen, in Fluid–structure interaction boundary
conditions by artificial compressibility, ECCOMAS 2008, Venice, Italy, June 30–4 July 2008

142. R. Raghu, I. Vignon-Clementel, C. Figueroa, C. Taylor, Comparative study of viscoelastic
arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
J. Biomech. Eng. 133(8), 081003 (2011)

143. R. Rannacher, in On Chorin’s projection method for the incompressible Navier-Stokes
equations. The Navier-Stokes equations II–theory and numerical methods (Oberwolfach,
1991). Lecture Notes in Mathematics, vol. 1530 (Springer, Berlin, 1992), pp. 167–183

144. S. Rugonyi, K.J. Bathe, On finite element analysis of fluid flows coupled with structural
interaction. CMES-Comput. Model. Eng. Sci. 2, 195–212 (2001)

145. R. Salvi, On the existence of free surface problem for viscous incompressible flow. Navier-
Stokes equations and related nonlinear problems (Ferrara, 1999). Ann. Univ. Ferrara Sez. VII
(N.S.) 46, 251–266 (2000)

146. J. San Martin, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional
motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.
161(2), 113–147 (2002)

147. J.A. San Martin, V. Starovoitov, M. Tucsnak, Global weak solutions for the two dimensional
motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.
161, 93–112 (2002)

148. J. San Martin, J.F. Scheid, T. Takahashi, M. Tucsnak, Convergence of the Lagrange-Galerkin
method for the equations modelling the motion of a fluid-rigid system. SIAM J. Numer. Anal.
43, 1536–1571 (2005)

149. D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible. Existence (French)
[Free fall of a rigid body in an incompressible viscous fluid. Existence]. Jpn J. Appl. Math.
4(1), 99–110 (1987)

150. J. Simon, Compact sets in the space Lp.0; T IB/. Ann. Mat. Pura Appl. (4), 146, 65–96
(1987)

151. V.N. Starovoitov, Behavior of a rigid body in an incompressible viscous fluid near a boundary,
in Free Boundary Problems (Trento, 2002). International Series of Numerical Mathematics,
vol. 147 (Birkhauser, Basel, 2004), pp. 313–327

152. C. Surulescu, On the stationary interaction of a Navier–Stokes fluid with an elastic tube wall.
Appl. Anal. 86, 149–165 (2007)

153. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-
fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

154. T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an
infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6(1), 53–77 (2004)

155. R. Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes.
Bull. Soc. Math. France 96, 115–152 (1968)



1 Mathematical and Numerical Analysis of Some FSI Problems 77

156. T.E. Tezduyar, Finite element methods for fluid dynamics with moving boundaries and
interfaces. Arch. Comput. Methods Eng. 8, 83–130 (2001)

157. I. Vignon, C.A. Taylor, Outflow boundary conditions for one-dimensional finite element
modeling of blood flow and pressure waves in arteries: new computational methods for wave
propagation. Wave Motion 39(4), 361–374 (2004)

158. J. Wolf, Existence of weak solution to the equations of non-stationary motion of non-
Newtonian fluids with shear rate dependent viscosity. J. Math. Fluid. Mech. 9(1), 104–138
(2007)

159. K.K. Yeleswarapu, Evaluation of continuum models for characterizing the constitutive
behavior of blood. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, 1996

C. Grandmont (�)
INRIA Paris-Rocquencourt, Paris, France
e-mail: celine.grandmont@inria.fr
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Chapter 2
Fluid–Structure Interaction in Hemodynamics:
Modeling, Analysis, and Numerical Simulation

Sunčica Čanić, Boris Muha, and Martina Bukač

Abstract Fluid–structure interaction (FSI) problems arise in many applications.
They include multi-physics problems in engineering such as aeroelasticity and pro-
peller turbines, as well as biofluidic application such as self-propulsion organisms,
fluid–cell interactions, and the interaction between blood flow and cardiovascular
tissue. A comprehensive study of these problems remains to be a challenge due
to their strong nonlinearity and multi-physics nature. To make things worse, in
many biological applications the structure is composed of several layers, each with
different mechanical characteristics. This is, for example, the case with arterial
walls, which are composed of three main layers: the intima, media, and adventitia,
separated by thin elastic laminae. A stable and efficient FSI solver that simulates the
interaction between an incompressible, viscous fluid and a multi-layered structure
would be an indispensable tool for the computational studies of solutions.

The multi-physics nature of this class of problems suggests the use of partitioned,
modular algorithms based on an operator splitting approach that would separate the
different physics in the problem. This chapter presents such a scheme, which can be
used not only in computations, but also to prove existence of weak solutions to this
class of problems. Particular attention will be payed to multi-physics FSI problems
involving structures consisting of multiple layers.
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2.1 Introduction

Fluid–structure interaction (FSI) problems arise in many applications. The widely
known examples are aeroelasticity and biofluids. In aeroelasticity, where the
structure (wing of an airplane) is much heavier than the fluid (air), it is sometimes
of interest to study small vibrations of the structure in which case linear coupling
between the fluid and the structure may be sufficient to capture the main features
of the solutions. In that case the fluid domain remains fixed in the FSI model, and
only the location of the structure is computed based on the fluid loading (one-way
coupling). In biofluidic applications, such as the interaction between blood flow and
cardiovascular tissue where the density of the structure (arterial walls) is roughly
equal to the density of the fluid (blood), the coupling between the fluid and the
relatively light structure is highly nonlinear. In that case the fluid domain is not fixed
in the FSI model, and its location is determined by the location of the structure. The
elastodynamics of the structure influences the motion of the fluid through the contact
force exerted by the structure onto the fluid, while the structure location is computed
based on the fluid loading expressed through the contact force exerted by the fluid
onto the structure (two-way coupling). It has recently been shown that classical
“partitioned” time-marching numerical algorithms, which are based on subsequent
solutions of the fluid and structure sub-problems, are unconditionally unstable in
problems in which the density of the structure and of the fluid are comparable [30].
The exchange of energy between the moving fluid and structure is so significant, that
a mismatch between the energy of the discretized problem and the energy of the
continuous problem causes instabilities in classical “loosely coupled” partitioned
schemes. The difficulties associated with the significant energy exchange and the
high geometric nonlinearity of the fluid–structure interface are reflected not only
in the design of numerical schemes but also in the theoretical studies of existence
and stability of solutions to this class of problems. A comprehensive study of these
problems remains to be a challenge due to their strong nonlinearity and multi-
physics nature.

In the blood flow application, the problems are further exacerbated by the fact
that arterial walls of major arteries are composed of several layers, each with
different mechanical characteristics. The main layers are the tunica intima, media,
and adventitia. They are separated by the thin elastic laminae, see Fig. 2.1. Recent
developments in ultrasound speckle tracking methods revealed significant shear
strain between the different layers in high adrenaline situations [2, 39, 40]. It was
noted that the consequences of this phenomenon on cardiovascular disease are yet
to be explored! An example of a disease which is associated with a pathophysiology
of the aortic wall layers is aortic dissection: tears in the intimal layer result in
separation of the aortic wall layers causing blood to flow within the aortic wall.

Until recently, there have been no FSI models or computational solvers of arterial
flow that take into account the multi-layered structure of arterial walls. In this
chapter we take a step in this direction by studying a benchmark problem in fluid-
multi-layered-structure interaction in which the structure consists of two layers, a
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Fig. 2.1 FSI between blood flow and arterial walls, which are composed of multiple structural
layers

Fig. 2.2 Left: Reference domain. Right: Deformed domain

thin and a thick layer. See Fig. 2.2. The fluid flow will be modeled by the Navier–
Stokes equations for an incompressible, viscous, Newtonian fluid. This is a good
approximation for blood flow in major arteries, such as the aorta or coronary arteries.
The thin structural layer will be modeled by the cylindrical Koiter shell equations,
and the thick structural layer will be modeled by the equations of linear elasticity.
The thin structural layer located between the fluid and the thick structure serves as
a fluid–structure interface with mass. The proposed problem is a nonlinear moving-
boundary problem.

THE BENCHMARK PROBLEM

Fluid: Navier–Stokes equations for an incompressible, viscous fluid;

Thin Structure: Cylindrical Koiter shell equations;

Thick Structure: Classical equations of linear elasticity.

This is a multi-physics problem which consists of three different physical models:
a model for fluid flow, a model describing the elastodynamics of the thin structure,
and a model describing the elastodynamics of the thick structural layer. The multi-
physics nature of the problem strongly suggests the use of a partitioned algorithm
that would solve the underlying coupled problem by splitting the problem into
sub-problems determined by the different physics. This has the advantage of
allowing modular implementations in both the numerical method development and
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in constructing the proof of existence of solutions for this class of problems. In
this chapter we present a stable, convergent, modular scheme with precisely these
properties, called the Kinematically Coupled ˇ-Scheme. This scheme was originally
constructed to study FSI problems with a single structural layer, modeled by the
cylindrical Koiter shell equations in [85, 86], and then recently improved for higher
accuracy in [21] (Kinematically Coupled ˇ-Scheme). Modifications of this scheme
can be applied to a much larger class of multi-physics problems associated with
FSI, such as FSI involving stent–artery–fluid interaction [122], FSI involving a
multi-layered elastic porous medium [23], and FSI involving a non-Newtonian fluid
[95, 96].

In this chapter we present a general “recipe” describing the construction of the
main steps of such a scheme that can be used to:

• prove existence of weak solutions, and/or
• construct a numerical solver

to study a class of FSI problems that include:

• problems with viscoelastic and/or purely elastic structural models,
• problems with different coupling conditions (no-slip, slip),
• problems with nonlinear thin structure models,
• 2D and 3D scenarios.

An interesting new feature of the class of problems studied in this chapter is
the fact that the presence of a thin fluid–structure interface with mass regularizes
solutions of this class of FSI problems. More precisely, the energy estimates
presented in this chapter will show that the thin structure inertia regularizes
evolution of the thin structure, which affects the solution of the entire coupled
FSI problem. Namely, if we were considering a problem in which the structure
consisted of only one layer, modeled by the equations of linear elasticity, from the
energy estimates we would not be able to conclude that the fluid–structure interface
is even continuous. With the presence of a thin elastic fluid–structure interface
with mass (modeled, e.g., by the linear wave equation), the energy estimates imply
that the displacement of the thin interface is in H1.�/, which, due to the Sobolev
embeddings, implies that the interface is Hölder continuous C0;1=2.�/. The inertia
of the fluid–structure interface with mass serves as a regularizing mechanism for the
entire FSI problem. It will be shown in Sect. 2.7 that numerical simulations confirm
this behavior.

This is reminiscent of the results by Hansen and Zuazua [90] in which the
presence of a point mass at the interface between two linearly elastic strings with
solutions in asymmetric spaces (different regularity on each side) allowed the proof
of well-posedness due to the regularizing effects by the point mass. More precisely,
they considered two elastic strings modeled by the linear wave equations, connected
by a point mass, with initial data of different regularity on the left or right side
of the point mass. They showed that the rough waves traveling through the point
mass, which served as an interface with mass between the two elastic strings, were
regularized due to the inertia effects of the point mass. See Sect. 2.7.7 for more
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details. For a reader with further interest in this area we also mention [91,134,145].
Further research in this direction, directly relevant to the FSI with multiple layers,
is under way by the authors.

We begin by a review of models used in FSI studies to describe mechanical
properties of arterial walls.

2.2 Mathematical Models of Arterial Walls

The walls of blood vessels are composed of three layers: the intima, media, and
adventitia. They are separated by thin elastic laminae. See Fig. 2.1. The intima is
the innermost layer and it is mainly composed of endothelial cells. The media is the
middle layer and it is mainly composed of elongated smooth muscle cells, and also
elastin and collagen. Most blood vessels contain smooth muscle arranged in either
circular or spiral layers. The media gives rise to the majority of the vessel’s vis-
coelastic behavior. The adventitia is the outermost layer, and it is manly composed
of collagen fibrils, elastic sheets, and elastic fibrils. The layers of smooth muscle
and connective tissue surrounding the intima vary in thickness in different vessels.

The aorta and major arteries are characterized by walls that have a thick smooth
muscle layer and large amounts of elastic and fibrous tissue. Because of the stiffness
of the fibrous tissue, substantial amounts of energy are required to stretch the walls
of an artery outward. This energy comes from the high blood pressure exerted onto
the arterial walls during the systolic part of cardiac cycle, when the left ventricle
of the heart contracts, and squeezes blood through the aortic valve on to the aorta.
Once the artery is distended with blood, energy stored by stretching elastic fibers
is released through elastic recoil. Elastic recoil takes place during the diastolic part
of cardiac cycle, when the left ventricle relaxes and gets refilled by blood. During
that time the elastic recoil of arteries helps propel blood to the far most parts of the
cardiovascular system.

Downstream from the arteries, small vessels called arterioles create a high-
resistance outlet for arterial blood flow. Arterioles direct distribution of blood flow
to individual tissues by selectively constricting and dilating. Arteriolar diameter is
regulated by both local factors, such as tissue oxygen, and homeostatic control.

Downstream from the arterioles are capillaries. A leaky epithelium in the
capillaries allows exchange of materials between the blood plasma, the interstitial
fluid, and the cells of the body. At the distal end of the capillaries, blood flows into
the venous side of the circulation and from there back to the right heart.

Depending on the types of questions one is trying to answer, and depending on
the thickness of the vessel wall with respect to the diameter of the corresponding
vessel, different arterial wall models can be used to describe the mechanical
properties of arterial walls [68,69,88,133]. Table 2.1 summarizes the mean diameter
and wall thickness for arteries, arterioles, and capillaries [136].

In FSI studies, the coupling between blood flow and vascular tissue is so
complicated that several simplifying assumptions have to be taken into account to
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Table 2.1 Mean diameter and wall thickness for human vasculature

Artery (mm) Arteriole (�m) Capillary (�m)

Mean diameter 4.0 30:0 8.0
Mean wall thickness 1.0 6:0 0.5

make the computer simulations feasible. A common set of simplifying assumptions
that captures only the most important physics in the description of the mechanical
properties of arterial walls includes homogeneity and isotropy, capturing the average
mechanical properties of arterial walls. Further simplifying assumptions that are
often used in hemodynamics FSI literature are “small” displacements and “small”
deformation gradients leading to the hypothesis of linear elasticity.

Depending on the relative thickness of the structure (arterial walls) with respect
to the diameter of the cylindrical fluid domain (arterial lumen), different modes
have been used to approximate the overall (average) mechanical behavior of
arterial walls. Three-dimensional equations of elasticity have been used under the
assumption that the thickness of arterial walls is comparable to the diameter of the
vessel lumen, while reduced shell or membrane models have been used under the
assumption that the ratio between the thickness of the vessel wall and the vessel
radius is small (� � 1). In the latter case, most FSI hemodynamics literature
assumes that only the radial component of displacement of the thin structural wall
is non-negligible. Recent developments in ultrasound speckle tracking methods
revealed, however, that the axial (longitudinal) component of displacement of
arterial walls may be significant in certain situations. Moreover, it was revealed that
there is significant axial shear strain between the different layers (the intima–media
complex and the adventitia) in high adrenaline situations [39, 40, 129, 138]. It was
noted that the consequences of this phenomenon on cardiovascular disease are yet to
be explored. Motivated by these experimental findings, recent progress in designing
an FSI solver capturing both longitudinal and radial displacement of a thin Koiter
shell modeling arterial walls was reported in [20, 21].

Finally, a further simplification that can be utilized in certain situations is axial
symmetry of the loading exerted by the blood flow to the vessel walls in the
approximately straight cylindrical sections, leading to the axially symmetric models
with a potential of further reduction to 1D FSI models.

We give a brief review of these models next.

2.2.1 Elastodynamics of Thin Structures

The equations of shell theory have been derived by many authors, see [51] and the
references therein. Due to variations in approach and rigor the variety of equations
occurring in literature is overwhelming. Among all the equations of shell theory
the Koiter shell equations appear to be the simplest consistent first approximation
in the general theory of thin elastic shells [97, 98]. In addition, they have been



2 Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and. . . 85

Fig. 2.3 Left: Cylindrical shell in reference configuration with middle surface radius R and shell
thickness h. Right: Deformed shell

mathematically justified using asymptotic methods to be consistent with three-
dimensional elasticity [37]. Ciarlet and Lods showed in [37] that the Koiter shell
model has the same asymptotic behavior as the three-dimensional membrane model,
the bending model and the generalized membrane model in the respective regimes
in which each of them holds. Motivated by these remarkable properties of the
Koiter shell model, in [27, 28] Čanić et al. derived the Koiter shell equations for
the cylindrical geometry with the purpose of using the equations as a model to
study the mechanical behavior of arterial walls. The models in [27, 28], and a
portion of the text presented in this section, were based on the derivations of the
cylindrical Koiter shell equations, obtained by Tambača in [139]. The cylindrical
Koiter shell equations are a generalization of several classes of models that have
been used in modeling of arterial walls. They include the linear string model
proposed by Quarteroni et al. in [26, 133] as a benchmark problem for testing
numerical schemes for FSI in blood flow, the independent ring model [133], and
the cylindrical membrane model.

In [27,28] Čanić et al. have extended the linearly elastic cylindrical Koiter model
to include the viscous effects of Kelvin–Voigt type, observed in the measurements of
the mechanical properties of vessel walls [3,4,14]. It was shown in [3,4,14] that the
Kelvin–Voigt model approximates well the experimentally measured viscoelastic
properties of the canine aorta and of the human femoral and carotid arteries. In [27,
28] it was shown that a reduced FSI model between the linearly elastic cylindrical
Koiter shell and the flow of an incompressible, viscous fluid, approximates well the
experimentally measured data presented in [3,4,14]. The Kelvin–Voight model was
also used in [130] to model the arterial walls as a linearly viscoelastic membrane.
We summarize the derivation of the Koiter shell model next.

The Cylindrical Koiter Shell Equations: General Framework

Consider a clamped cylindrical shell of thickness h, length L, and reference radius
of the middle surface equal to R. See Fig. 2.3. This reference configuration, which
we denote by � , can be defined via the parameterization

' W ! ! R
3; '.z; �/ D .R cos �;R sin �; z/t ;
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where ! D .0; L/ � .0; 2�/ and R > 0. Therefore, the reference configuration is

� D fx D .R cos �;R sin �; z/ 2 R
3 W � 2 .0; 2�/; z 2 .0; L/g: (2.1)

The associated covariant Ac and contravariant Ac metric tensors of this (non-
deformed) cylinder are given by:

Ac D
�
1 0

0 R2

�
; Ac D

�
1 0

0 1
R2

�
; (2.2)

and the area element along cylinder � is dS D p
ady WD p

detAcdy D Rdy. The
corresponding curvature tensor in covariant components is given by

Bc D
�
0 0

0 R

�
:

We define the elasticity properties of this cylindrical shell by the following elasticity
tensor A:

AE D 4��

�C 2�
.Ac � E/Ac C 4�AcEAc ; E 2 Sym.M2/; (2.3)

where � and � are the Lamé coefficients.
Using the following relationships between the Lamé constants and the Young’s

modulus of elasticity E and Poisson ratio � :

2��

�C 2�
C 2�D 4�

�C�

�C 2�
D E

1��2 ;
2��

�C 2�
D 4�

�C�

�C 2�

1

2

�

�C�
D E

1� �2 �;
(2.4)

the elasticity tensor A can also be written as:

AE D 2E�

1 � �2
.Ac � E/Ac C 2E

1C �
AcEAc; E 2 Sym .R2/:

A Koiter shell can undergo stretching of the middle surface, and flexure
(bending). Namely, the Koiter shell model accounts for both the membrane effects
(stretching) and shell effects (flexure). Stretching of the middle surface is measured
by the change of metric tensor, while flexure is measured by the change of curvature
tensor. Consider an arbitrary displacement field � D .	z; 	� ; 	r / from the reference
configuration� . Then, the corresponding change of metric, and change of curvature
tensors for the deformed shell, in covariant components, are defined by:

G.�/ D 1

2
.Ac.�/� Ac/ ;„ ƒ‚ …

The Change of Metric Tensor

and R.�/ D 1

2
.Bc.�/� Bc/ ;„ ƒ‚ …

The Change of Curvature Tensor

(2.5)
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where Ac.�/ and Bc.�/ are the covariant metric and curvature tensors, respectively,
of the deformed shell. These will be specified below for the problem we consider in
this chapter.

With the corresponding change of metric and change of curvature tensors we
can now write formally the corresponding elastic energy of the deformed shell. The
elastic energy of the cylindrical Koiter shell is given by [35, 36, 38, 98]:

Eel.�/ D h

4

Z
!

AG.�/ W G.�/
p
a C h3

48

Z
!

AR.�/ W R.�/
p
a; (2.6)

where W denotes the scalar product

A W B WD Tr
�
ABT

�
A;B 2 M2.R/ Š R

4: (2.7)

Given a force with surface force density f, the loaded shell deforms and the
corresponding displacement � of the deformed shell is a minimizer of the energy
functional [35, 36, 38, 98]:

J.�/ D h

4

Z
!

AG.�/ W G.�/
p
a C h3

48

Z
!

AR.�/ W R.�/
p
a �

Z
!

f � �p
a: (2.8)

The corresponding weak formulation can be written as:

h

2

Z
!

AG.�/ W G0.�/ 
p
aC h3

48

Z
!

AR.�/ W R0.�/ 
p
a

D
Z
!

f � p
a; 8 2 C1

c ; (2.9)

where G0 is the Gateux derivative of G.
The weak formulation of the corresponding elastodynamics problem is given by

the following:

�Kh

Z
!

@2t � 
p
a C h

2

Z
!

AG.�/ W G0.�/ 
p
aC h3

48

Z
!

AR.�/ W R0.�/ 
p
a

D
Z
!

f � p
a; 8 2 C1

c ; (2.10)

where �K and h are the Koiter shell density and thickness.
Associated with this problem are the following physical quantities:

• Stress Resultant (Internal Force), which relates the internal force with the change
of metric tensor, and is defined by

N WD h

2
AG.�/; (2.11)
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and
• Stress Couples (Bending Moment), which describe the bending moments in terms

of the change of curvature tensor, and are defined by

M WD h3

24
AR.�/:

At this point we also introduce the effects of prestress by defining the stress
resultantN ref that relates the reference pressure pref with circumferential strain [46,
113, 114]

h

2
N ref D hRAc

2
4 0 0

0 pref
R

h
	r

3
5Ac (2.12)

so that the total stress resultant, including the effects of prestress, reads

• Stress Resultant for a prestressed elastic Koiter shell

N D h

2
AG.�/C h

2
N ref: (2.13)

In what follows, we will be providing more specific details on a few concrete
examples of the general framework described above.

Example 1: The Linearly Elastic Cylindrical Koiter Shell with Radial
Displacement

We present the cylindrical Koiter shell equations without the assumption of axial
symmetry. This means that the displacement � can be written as:

�.t; z; �/ D .	z.t; z; �/; 	� .t; z; �/; 	r .t; z; �//:

However, as is common in the blood flow literature, we will be assuming that the
azimuthal and longitudinal components of the displacement are negligible 	� �
0; 	z � 0, i.e., only the radial component of the displacement is different from zero,
so that:

�.t; z; �/ D .0; 0; 	r.t; z; �/; / D 	.t; z; �/er .�/;

where er .�/ is the unit vector pointing in the radial direction. Notice that this does
not mean that the flow is axially symmetric, since the radial displacement is a
function of both � and z.
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In this case, the corresponding linearized change of metric, and change of
curvature tensors (2.5) take the following form:

G .�/ D
�
0 0

0 R	r


; R.�/ D

� �@2z	 �@2z�	
�@2z�	 �@2�	C 	


: (2.14)

The elastic energy of the shell is defined by:

Eel.	/ D h

4

Z
!

AG .	/ W G .	/pa C h3

48

Z
!

AR.	/ W R.	/pa; (2.15)

where 	 is the scalar displacement function. We will be assuming that the shell is
clamped at the end points, satisfying the following boundary conditions:

	 D @	

@n
D 0 on @!:

The dynamics of the linearly elastic cylindrical Koiter shell is given by the following
weak formulation: find 	 2 H2

0 .!/ such that

�Kh

Z
!

@2t 	 
p
a C h

2

Z
!

AG .	/ W G . /pa C h3

24

Z
!

AR.	/ W R. /pa

D
Z
!

f  
p
a (2.16)

for all  2 H2
0 .!/, where f is the radial component of the surface force density

applied to the shell. Here, we have used the fact that for linear problems:

G0.	/ D G. /:

We define the corresponding linear elasticity operator Lel:

hLel	;  i D h

2

Z
!

AG .	/ W G . /pa C h3

24

Z
!

AR.	/ W R. /pa; 8 2 H2
0 .!/:

A calculation shows that the operator Lel in differential form reads:

Lel	 D h3�

3R4.�C 2�/

�
.�C �/@4�	CR4.�C �/@4z	C 2R2.�C �/@2z@

2
�	

�R2�@2z	 � 2.�C �/@2�	C .�C �/	
�

C 4h

R2
.�C �/�

�C 2�
	:
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By using the relationships between the Lamé constants and Young’s modulus of
elasticity E and Poisson ratio � , given by (2.4), operator Lel can be written as:

Lel	 D h3E

12R4.1 � �2/

�
@4�	CR4@4z	C 2R2@2z@

2
�	 � 2@2�	C 	

�

C h3E�

6R2.1 � �2/
@2z	C hE

R2.1 � �2/
	:

(2.17)

Example 2: The Axially Symmetric Koiter Shell Allowing Both Radial and
Longitudinal Displacement

Here, we assume that nothing in the problem depends on � . The problem is axially
symmetric, and the displacement � is given by

�.t; z/ D .	z.r; z/; 	r .t; z//:

The linearized change of metric tensor and the linearized change of curvature tensor
are given, respectively, by:

G .�/ D
�
@z	z 0

0 R	r


; R.�/ D

��@zz	r 0

0 	r


: (2.18)

The elastic energy of the problem is given by:

Eel.�/ D h

2

Z L

0

AG .�/ W G .�/Rdz C h3

24

Z L

0

AR.�/ W R.�/Rdz: (2.19)

To define a weak formulation of the problem, introduce the following function
space:

Vc D H1
0 .0; L/ �H2

0 .0; L/ D ˚
. z;  r / 2 H1.0;L/ �H2.0;L/ W

 z.0/ D  z.L/ D  r.0/ D  r.L/ D 0; @z r.0/ D @z r.L/ D 0g :
Then the weak formulation of the linearly elastic cylindrical Koiter shell is given by
the following: find � D .	z; 	r / 2 Vc such that

h

2

Z L

0

AG .�/ W G . /Rdz C h3

24

Z L

0

AR.�/ W R. /Rdz

D
Z L

0

f � Rdz; 8 2 Vc; (2.20)

Here f is the surface density of the force applied to the shell, and A is the elasticity
tensor given by (2.3).
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The weak formulation of the associated elastodynamics problem is given by:

�Kh

Z L

0

@2t � Rdz C h

2

Z L

0

AG .�/ W G . /Rdz C h3

24

Z L

0

AR.�/ W R. /Rdz

D
Z L

0

f � Rdz; 8 2 Vc; (2.21)

To write the weak form explicitly in terms of displacement, we introduce a
simpler notation for the spatial derivative with respect to z, and for the time
derivative. Namely, in this section we will be using 0 to denote the partial derivative
with respect to z, and Pto denote the partial derivative with respect to time. Namely,
for an arbitrary function f :

f 0 WD @f

@z
; Pf WD @f

@t
:

Using this notation, the weak formulation written explicitly in terms of the
displacement now reads:

�Kh

Z L

0

R	z z C R	r r

Ch

2

Z L

0

�
4��

�C 2�

�
	0

z C 1

R
	r

�
�
�
� 0

z C 1

R
�r

�
C 4�

�
	0

z�
0
z C 1

R2
	r�r

��
dz

Ch3

24

Z L

0

�
4��

�C 2�

�
�	00

r C 1

R2
	r

�
�
�
�� 00

r C 1

R2
�r

�
C 4�

�
	00
r �

00
r C 1

R4
	r�r

��
dz

D
Z L

0

.fz�z Cfr�r /dz; 8.�z; �r / 2 Vc:

By using the relationships between �;� and E; � , given by (2.4), the weak
formulation in terms of E and � reads:

�Kh

Z L

0

R	z z C R	r r

C h

Z L

0

�
E�

1 � �2

�
	0

z C 1

R
	r

��
� 0

z C 1

R
�r

�
C E

1C �

�
	0

z�
0
z C 1

R2
	r�r

��
dz

(2.22)

C h3

12

Z L

0

�
E�

1� �2
�
�	00

r C 1

R2
	r

��
�� 00

r C 1

R2
�r

�
C E

1C�

�
	00
r �

00
r C 1

R4
	r�r

��
dz

D
Z L

0

.fz�z C fr�r /dz; .�z; �r / 2 Vc: (2.23)
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The terms multiplying h=2 account for the stored energy density due to stretching
(membrane effects) and the terms multiplying h3=12 account for the stored energy
density due to bending (flexural shell effects). Integration by parts gives rise to the
following dynamics equilibrium equations in differential form:

LINEARLY ELASTIC, AXIALLY SYMMETRIC CYLINDRICAL KOITER SHELL

�Kh R	z � hE

1��2
�
	00

z C �
1

R
	0
r

�
D fz;

�Kh R	r C hE

R.1��2/
�
�	0

z C 	r

R

�
C h3E

12.1��2/
�
	0000
r � 2� 1

R2
	0
r C 1

R4
	r

�
Dfr :

(2.24)

By ignoring the terms accounting for the bending energy (shell effects), the
resulting equations representing a model for the linearly elastic, axially symmetric
cylindrical Koiter membrane take the following form:

LINEARLY ELASTIC, AXIALLY SYMMETRIC

CYLINDRICAL KOITER MEMBRANE

�Kh R	z � hE

1 � �2
�
	0

z C �
1

R
	0
r

�
D fz;

�Kh R	r C hE

R.1 � �2/

�
�	0

z C 	r

R

�
D fr :

(2.25)

Example 3: A Nonlinearly Elastic, Axially Symmetric Koiter Membrane
with Only Radial Displacement

As in the previous example, we assume that nothing in the problem depends on
� . Also, for simplicity, we will be assuming that only the radial component of the
displacement is different from zero, so that

� D �.t; z/ D 	er :

Therefore, we consider axially symmetric deformations of a nonlinearly elastic
Koiter membrane from the reference configuration � given by (2.1), with only
the radial component of displacement different from zero. See Fig. 2.4. The
corresponding change of metric tensor capturing membrane effects is given by

G.	/ D 1

2

�
.@z	/

2 0

0 2R	C 	2

�
: (2.26)
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Fig. 2.4 A sketch of an
axially symmetric fluid
domain with radial
displacement 	

The elastic energy of the Koiter membrane is given by the following:

Emem
el .	/ D h

2

Z L

0

AG.	/ � G.	/ Rdz (2.27)

We consider the dynamics of the Koiter membrane with fixed end points, modeled
by the boundary conditions

	.0/ D 	.L/ D 0:

Following (2.10), the variational formulation for the nonlinearly elastic Koiter
membrane problem is given by the following:

Z L

0

�Kh@
2
t 	� Rdz C h

2

Z L

0

AG.	/ � G0.	/� Rdz D
Z L

0

f � Rdz; 8� 2 H2
0 .0; L/;

(2.28)
where G0 is Gateux derivative of G given by:

G0.	/� D
�
@z	@z� 0

0 .RC 	/�

�
:

This defines the following (nonlinear) differential operator Lmem
el :

˝
Lmem

el .	/; �
˛ WD h

2

Z L

0

AG.	/ � G0.	/� Rdz; 8� 2 C1
c .0; L/:

Integration by parts yields the following formula:

Lmem
el .	/ D �@z

h� hE

2.1� �2/
.@z	/

2 C hE�

1 � �2

� 1
R
	C 1

2R2
	2
��
@z	
i

C
� hE

1 � �2

� 1
R
	C 1

2R2
	2
�C hE�

2.1� �2/
.@z	/

2
�� 1
R

C 1

R2
	
�
; 	 2 W 2;4

0 .0; L/:

(2.29)

With this notation, the corresponding differential formulation of (2.28) can be
written as:

�Kh @
2
t 	C Lmem

el .	/ D f: (2.30)
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Here, �K is the structure density, h is the structure thickness, and f is the force
density in the radial (vertical) er direction acting on the structure.

Example 4: A Linearly Viscoelastic Koiter Shell

We introduce the viscoelastic effects to the linearly elastic Koiter shell by consider-
ing viscoelasticity of Kelvin–Voigt type in which the stress is linearly proportional
to strain plus the time derivative of strain. For this purpose we introduce the
following equivalent of the elasticity tensor A given by (2.3), which we denote
by B:

BE D 4�v�v

�v C 2�v
.Ac � E/Ac C 4�vAcEAc ; E 2 Sym.M2/; (2.31)

where �v and�v are the viscoelastic counterparts of the Lamé constants of elasticity.
Here Ac is the contra variant metric tensor of the reference configuration � , given
in (2.2).

Given the force density f, the displacement of the deformed linearly viscoelastic
Koiter shell can be found by solving the following variational formulation for �:

h

2

Z
!

.AG.�/C BG. P�// W G. /
p
aC h3

48

Z
!

.AR.�/C BR. P�// W R. /
p
a

D
Z
!

f � p
a; 8 2 C1

c ; (2.32)

where �K and h are the Koiter shell density and thickness, respectively.
The energy of this problem is given by:

E.�/ D h

2

Z
!

AG.�/ W G.�/
p
aC h3

48

Z
!

AR.�/ W R.�/
p
a

Ch

4

d

dt

Z
!

BG.�/ W G.�/
p
a C h3

96

d

dt

Z
!

BR.�/ W R.�/
p
a

D Eel.�/C 1

2

d

dt
Evis.�/;

(2.33)

where

Eel.�/ D h

2

Z
!

AG.�/ W G.�/
p
aC h3

48

Z
!

AR.�/ W R.�/
p
a (2.34)

Evis.�/ D h

2

Z
!

BG.�/ W G.�/
p
aC h3

48

Z
!

BR.�/ W R.�/
p
a (2.35)
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The corresponding elastodynamics problem is given by:

�Kh

Z
!

@2t � 
p
aC h

2

Z
!

.AG.�/C BG. P�// W G. /
p
a

Ch3

48

Z
!

.AR.�/C BR. P�// W R. /
p
a D

Z
!

f � p
a; 8 2 C1

c ;(2.36)

Introduce the following notation for the corresponding elastic and viscoelastic
operators:

hLel�; i WD h

2

Z
!

AG.�/ W G. /
p
a C h3

48

Z
!

AR.�/ W R. /
p
a: (2.37)

hLvis P�; i WD h

2

Z
!

BG. P�/ W G. /
p
a C h3

48

Z
!

BR. P�/ W R. /
p
a: (2.38)

Then, we can write (2.36) as

�Kh

Z
!

@2t � 
p
a C hLel�; i C hLvis P�; i D

Z
!

f � p
a; 8 2 C1

c :

We now write the explicit form of these equations for the case when the structure
displacement is independent of � so that:

�.t; z/ D .	z.t; z/; 	r .t; z//;

and with the boundary conditions corresponding to a clamped shell

	.0/ D @z	.0/ D 	.L/ D @z	.L/ D 0:

Therefore, to simplify the form of the explicit equations, we assume axial symmetry
of the problem. In this case, we look for a weak solution which is in the space

Vc D H1
0 .0; L/ �H2

0 .0; L/ D ˚
. z;  r/ 2 H1.0;L/ �H2.0;L/ W

 z.0/ D  z.L/ D  r.0/ D  r.L/ D 0; @z r.0/ D @z r.L/ D 0g :

The corresponding weak formulation is given by (2.36), where we can replace the
test space C1

c by the space Vc . We write the differential form of the elastodynamics
equations in terms of the Young’s modulus of elasticity E and Poisson ratio � , and
the corresponding viscoelastic equivalents, which we denote be Ev and �v . The
relationship between �;� and E; � is given by (2.4). The same relationship holds
between the corresponding viscoelastic constants �v; �v and Ev; �v .

After writing out the weak form (2.36), and after performing integration by parts,
the corresponding dynamic equilibrium equations for the linearly viscoelastic Koiter
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shell in differential form are given by:

�Kh
@2	z

@t2
� C2

@	r

@z
� C3 @

2	z

@z2
�D2

@2	r

@t@z
�D3

@3	z

@t@z2
D fz; (2.39)

�Kh
@2	r

@t2
C C0	r � C1 @

2	r

@z2
C C2

@	z

@z
C C4

@4	r

@z4
CD0

@	r

@t
�D1

@3	r

@t@z2

CD2

@2	z

@t@z
CD4

@5	r

@t@z4
D fr ; (2.40)

where

C0 D hE
R2.1��2/ .1C h2

12R2
/; C1 D h3

6
E�

R2.1��2/ ; C2 D h
R

E�
1��2 ;

C3 D hE
1��2 ; C4 D h3

12
E

1��2 ;

D0 D h
R2
Cv.1C h2

12R2
/; D1 D h3

6
Dv
R2
; D2 D hDv

R
;

D3 D hCv; D4 D h3

12
Cv;

(2.41)

and

Cv WD Ev

1 � �2v
; Dv WD Ev�v

1 � �2v
:

We can write this problem using the operators Lel and Lvis as:

�Kh
@2�

@t2
C Lel�C Lvis

@�

@t
D f; (2.42)

where

Lel� D

0
BB@

�C2 @	r
@z

� C3 @
2	z

@z2

C0	r � C1 @
2	r

@z2
C C2

@	z

@z
C C4

@4	r

@z4

1
CCA ; (2.43)

and

Lvis
@�

@t
D

0
BB@

�D2

@2	r

@t@z
�D3

@3	z

@t@z2

D0

@	r

@t
�D1

@3	r

@t@z2
CD2

@2	z

@t@z
CD4

@5	r

@t@z4

1
CCA : (2.44)

The typical values of the model parameters for the aorta and iliac arteries are
given in Table 2.2
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Table 2.2 Table with typical
wall parameter values for the
aorta and iliac arteries

Parameters Aorta/iliacs

Char. radius R (m) 0.006–0.012 [133]
Wall thickness h (m) 1–2 � 10�3[133]
Wall density �K (kg/m3) 1:1 � 103[133]
Young’s modulus E (Pa) 105–106 [3, 14, 133]
Wall viscosity coef. hCv=R (Pa s) 103–8� 103[3, 4, 14]
Poisson’s ratio � 0:5

Table 2.3 Structure
parameters for Example 5

Parameters Values for model problem

Shear mod. G (dynes/cm2) 0:25� 106

Timoshenko factor k 1
Viscoelasticity 
 (poise cm) 0:01

Radius R (cm) 0:5

Wall density �s (g/cm3) 1:1

Wall thickness hs (cm) 0:1

Young’s mod. E(dynes/cm2) 0:75� 106

Poisson’s ratio � 0:5

Example 5: The Linearly Elastic String Model

We present here a model which has been used by several authors to test numerical
solvers for FSI in blood flow [8, 9, 21, 85, 125, 131]. This model problem was first
introduced by Formaggia et al. in [67]. The structure model for this benchmark
problem is of the form

�sh
@2	r

@t2
� kGh

@2	r

@z2
C Eh

1 � �2
	r

R2
� 
 @

3	r

@z2@t
D f: (2.45)

Here G D E
2.1C�/ is the shear modulus and k is the Timoshenko shear correction

factor. The values of the model parameters used in [67] are given in Table 2.3.
Notice that this model can be recovered from the linearly viscoelastic Koiter shell
model (2.42) by taking the longitudinal component of displacement to be equal to
zero, and by choosing the following values for the coefficients in (2.43), (2.44):

C0 D Eh

R2.1 � �2/ ; C1 D �kGh; D2 D �
;

with all the other coefficients equal to zero. The typical values of the parameters in
this model are given in Table 2.3 [67]. The Young’s modulus E and viscoelasticity

 are smaller than the physiological values. This means that the arterial wall in this
example is rather elastic. The relatively large value of the coefficient in front of the
second-order derivative with respect to z (describing bending rigidity) minimizes
the oscillations that would normally appear in such structures. For the typical
physiological values of these parameters see Table 2.2.
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Example 6: The Independent Ring Model

The independent ring model has been extensively used in modeling elastic proper-
ties of arterial walls. See, e.g., [26, 133], and the references therein. The model is
particularly suitable to study blood flow in compliant arteries using a reduced, 1D
model, studied in, e.g., [26].

The independent ring model reads

p � pref D hE

R2.1 � �2/	; (2.46)

where pref is the reference pressure, i.e., the pressure at which the displacement
from the reference configuration is equal to zero.

Notice that this model is included in the Koiter shell equations (2.39), (2.40).
Indeed, if we ignore the longitudinal displacement and take only the terms that
follow from the membrane effects ( h

2

R
AG.	/ W G.	/) we obtain exactly the

Independent Ring Model:

fr D C0	r D hE

R2.1 � �2/
	: (2.47)

We conclude this example by proposing a Nonlinear Independent Ring model
consistent with the Koiter membrane theory. To obtain this model, consider the
nonlinearly elastic Koiter membrane model (2.29), (2.30), which assumes axial
symmetry, and only the radial component of displacement to be different from
zero. By assuming, additionally, that the gradient of the radial displacement @z	

is negligible, one obtains the following Nonlinear Independent Ring Model:

p � pref D hE

.1 � �2/R

�
	

R
C 3

2

	2

R2
C 1

2

	3

R3

�
: (2.48)

For the parameter values given in Table 2.2, we calculated the pressure–
displacement relationship for this model, which is depicted in Fig. 2.5. This figure
also shows the pressure–displacement relationship for the Linear Independent Ring
model.

We conclude this section by a remark on the nonlinearly elastic independent ring
model of the form

p � pref D hE

R.1 � �2/

 �
RC 	

R

�ˇ
� 1

!
; (2.49)

which was used by certain authors to model the nonlinearly elastic properties
of arterial walls. For ˇ > 1, this model is not consistent with the linearly
elastic Independent Ring model, since its linearization does not coincide with
the linearly elastic Independent Ring model. Figure 2.6 shows the plot of the
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Fig. 2.5 The
pressure–displacement
relationship for the nonlinear
Independent Ring
Model (2.48), and the linear
Independent Ring
Model (2.46)

Fig. 2.6 The
pressure–displacement
relationship for the nonlinear
Independent Ring
Model (2.49), shown in
dashed line, superimposed
over the plots of the linearly
elastic and nonlinearly elastic
Independent Ring
models (2.46) and (2.48).
Notice how the slope at zero
for the nonlinear Independent
beta-model (2.49) does not
coincide with that of (2.46)
and (2.48)

pressure–displacement relationship given by (2.49) with ˇ D 3, for the same
values of the parameter, given in Table 2.2 as the plot shown in Fig. 2.5. Notice
how the slope of the pressure–displacement curve for model (2.49), evaluated
at 	 D 0, differs from the slope of the linearly elastic and nonlinearly elastic
Independent Ring models given by (2.46) and (2.48). This means, in particular,
that the leading-order coefficient modeling the stiffness of arterial walls for small
displacements is different for the ˇ-model (2.49), and cannot be approximated for
small displacements by the physically reasonable one stated in the linearly elastic
Independent Ring model.
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Example 7: A Koiter Shell Model with Prestress

We follow the general description provided in (2.13) and calculate the differential
form of the linearly elastic Koiter shell. The only difference with the examples
presented above is in the coefficient multiplying the non-differentiated term, which
will now have an extra term pref=R. Therefore, in Example 1, the linear operator Lel

given by Eq. (2.17) now becomes

Lel	 D h3E

12R4.1� �2/

�
@4�	CR4@4z	C 2R2@2z@

2
�	� 2@2�	C 	

�

C h3E�

6R2.1 � �2/
@2z	C

�
hE

R2.1 � �2/ C pref

R

�
	:

In Example 2, this gives rise to the following linearly elastic Koiter membrane
equations with prestress:

�Kh R	z � hE

1 � �2

�
	0

z C �
1

R
	0
r

�
D fz;

�Kh R	z C hE�

R.1 � �2/
	0

z C
�

hE

R.1� �2/
C pref

�
	r

R
D fr :

(2.50)

In Example 4, the prestress changes the constant C0 in (2.41), which now becomes

C0 D hE

R2.1 � �2/
.1C h2

12R2
/C pref

R
:

2.2.2 Elastodynamics of Structures with Finite Thickness
(“Thick Structures”)

The equations modeling elastodynamics of a structure are typically given in terms of
the displacement vector field d D d.t;x/. Vector field d denotes the displacement
from a given reference configuration �S . We will be assuming that the reference
configuration of the thick structure is given by a straight cylinder of radiusR, length
L and thicknessH . See Fig. 2.2. The elastodynamics equations describe the second
Newton’s law of motion

�s @t td D r � S in �S; t 2 .0; T /; (2.51)

where �s denotes density of the thick structure, and S is the first Piola–Kirchhoff
stress tensor.

To close the system, we need to specify the dependence of S on d . The
relationship between S and d depends on the material under consideration. In this
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chapter we will be assuming that our thick elastic structure is

• homogeneous, i.e., the material properties do not depend on x, and
• isotropic, i.e., the response of the material deformation is the same in all

directions.

Additionally, we will be assuming that

• the displacement gradient is small (i.e., rd � 1).

Under these assumptions, one of the simplest constitutive models for the mechanical
behavior of linearly elastic structures, called the linearized Saint Venant–Kirchhoff
model, takes the following form:

S D � .rd C .rd/T /C �.r � d/I; (2.52)

Here, � and � are the Lamé constants, accounting the compression and distortion
of the structure, respectively.

Writing a constitutive model for the behavior or elastic structures in general is a
bit more involving. Arterial walls are, in fact, nonlinear. The linear approximation
written above is good as long as the displacement gradient and displacement are
not too large, which in the blood flow application means displacement not larger
than roughly 5 % of the reference radius of an artery. A typical displacement in a
healthy artery under normal physiological conditions is between 5 and 10 %. Thus,
many physiological and pathophysiological situations can exceed the linearly elastic
regime. Depending on what types of questions is one trying to answer, linear or
nonlinear models may be appropriate.

A typical assumption in biomedical literature on soft tissue mechanics is that
arterial walls behave as a hyperelastic material. This means that the relationship
between stress and strain in the structure can be written as the derivative of the
energy density function with respect to strain. More precisely, if we denote by

• …—the second Piola–Kirchhoff stress tensor,
• E—the Green–Lagrange strain tensor, and
• W—the energy density function,

then, for a hyperelastic material

….E/ D @W

@E
.E/:

What is the relationship between the first and second Piola–Kirchhoff stress
tensors S and…, and between the Green–Lagrange strain tensorE and displacement
d? To explain these relationships we need to recall the notion of deformation.
For each point x 2 �S belonging to an undeformed, reference configuration
�S , deformation is a mapping ' which to each point x 2 �S associates a point
'.x/ D x C d.x/, where d denotes the displacement of x. Deformation gradient
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will be denoted by F D r'. Namely,

F D r' D @'i

@xj
D I C rd D I C @d i

@xj
: (2.53)

F plays a key role in specifying the relationship between the first and second Piola–
Kirchhoff stress tensors, and in the relationship between strain and displacement.
The first and second Piola–Kirchhoff stress tensors are related through the gradient
of deformation as follows:

S D F…: (2.54)

While the first Piola–Kirchhoff stress tensor is not generally symmetric, the
second Piola–Kirchoff stress tensor is, and is, therefore, more suited for the
description of physical properties of materials in terms of constitutive relations.

Constitutive relations, which specify the material properties of a structure, typi-
cally express a relationship between stress and strain, more precisely, between the
second Piola–Kirchhoff stress tensor… and the Green–Lagrange strain tensor E :

… D ….E/;

where the Green–Lagrange strain tensor is defined via deformation gradient as

E WD 1

2

�
F TF � I

�
: (2.55)

A calculation shows that in terms of the displacement gradient,E is given by:

E WD 1

2

�rd C rdT C rdrdT � : (2.56)

Therefore, a general relationship between strain and displacement gradient is
quadratic. For small displacement gradients, the quadratic term can be neglected,
and the relationship becomes linear:

E � " WD 1

2

�rd C rdT � D D.d/; (2.57)

whereD is known as the symmetrized gradient of displacement.
Therefore, in summary, the elastodynamics of elastic structures is described by

the second Newton’s law of motion

�s @t td D r � S in �S � .0; T /;

where

• S D F… is the first Piola–Kirchhoff stress tensor,
• … is the second Piola–Kirchhoff stress tensor,
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• F D r' D I C rd is the deformation gradient,
• '.x/ D x C d.x/;x 2 �S is deformation of �S , and
• d is displacement from the reference configuration.

To close the system, a constitutive relation needs to be specified:

… D ….E/ ;

where

• E D 1
2

�
F TF � I

�
is the Green–Lagrange strain tensor, also expressed as

• E D 1
2

�rd C rdT C rdrdT � in terms of displacement gradient.

Therefore, the elastodynamics equations in closed form can be written as

�s @t td D r � Œ.I C rd/…..rd C rdT /=2C rdrdT =2„ ƒ‚ …
E

/�;

where… is a given function via a constitutive relation.
For hyperelastic materials we have

….E/ D @W=@E :

Examples of hyperelastic materials include:

• The Saint Venant–Kirchhoff model for which

W.E/ D �

2
ŒtrE �2 C �Œtr.E 2/�; and so ….E/ D �ŒtrE �I C 2�E :

• The linearized Saint Venant–Kirchhoff model for which

E � D.d/ D .rd C rdT /=2

and so

… � ….D.d// D �ŒtrD.d/�IC2�D.d/; and S � � .rdC.rd/T /C�.r�d/I;

whereD.d/ is the symmetrized gradient of displacement.
• The exponential stiffening stress–strain law of Fung [68, 69], providing a more

realistic model of the mechanical properties of arterial walls, for which

W.E/ D C exp.a1E2
�� C a2E

2
zz C a3E��Ezz/;

where E�� and Ezz are strains in the circumferential direction (�) and longitudi-
nal direction (z), respectively, and C; a1; a2; a3 are constants.
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In the rest of this chapter we will be working with the linearized Saint Venant–
Kirchhoff model.

2.3 A Benchmark Problem

In this section we focus on a benchmark problem in fluid-multi-layered structure
interaction. The problem consists of studying FSI between an incompressible,
viscous fluid, and a structure consisting of two layers: a thin layer modeled by the
Koiter shell equations, and a thick layer modeled by the equations of linear elasticity.
The methods presented in this chapter work for an entire class of problems in which
the thin structural layer can be described by either the full cylindrical linearly elastic
Koiter shell model, described in Examples 1 and 2 of Sect. 2.2.1, the linearly elastic
membrane equations, presented in Example 2 of Sect. 2.2.1, the nonlinearly elastic
Koiter membrane/shell model, described in Example 3 of Sect. 2.2.1, the cylindrical
linearly viscoelastic Koiter shell model, presented in Example 4 of Sect. 2.2.1, or
the elastic string model described in Example 5 of Sect. 2.2.1.

2.3.1 The Model Equations

The thin structural layer is modeled by the reduced equations of linear
(visco)elasticity, discussed in Sect. 2.2.1, which take the general form:

THIN STRUCTURE W �Kh
@2�

@t2
C Lel.�/C Lvis

@�

@t
D f ; on � � .0; T /;

(2.58)

These equations are defined on the reference domain which is a cylinder of radiusR:

� D f.R cos �;R sin �; z/ 2 R
3 W z 2 .0; L/; � 2 .0; 2�/g:

As discussed in Sect. 2.2.1, Lel may be a linear or a nonlinear operator modeling
the elastic properties of shells or membranes, and Lvisc denotes a linear operator
modeling their viscoelastic properties. Operator Lvis may be equal to the zero
operator. The methodology presented in this chapter is robust in the sense that it can
be applied to solving both the viscoelastic and purely elastic thin structure models.

The thick structural layer is modeled by the equations of linear elasticity,
discussed in Sect. 2.2.2:

THICK STRUCTURE W
�
�s @t td D r � S; on �S � .0; T /; where

S D � .rd C .rd/T /C �.r � d/I:
(2.59)
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Table 2.4 Blood density and
dynamics viscosity
coefficients

Blood density �F (kg/m3) 1:1� 103[133]
Blood dynamic viscosity
�F (kg/ms)

1;050 [133]

Fig. 2.7 Domain sketch and
notation

These equations are defined on the reference domain

�S D f.x; y; z/ 2 R
3 W z 2 .0; L/; R <

p
x2 C y2 < RCH/g:

The flow of an incompressible, viscous fluid is modeled by the Navier–Stokes
equations. They are defined on a time-dependent cylindrical fluid domain �F .t/,
which is not known a priori:

FLUID W �F .@tu C u � ru/ D r � � ;
r � u D 0;

�
in �F .t/; t 2 .0; T /; (2.60)

where �F denotes the fluid density; u the fluid velocity; � D �pI C 2�FD.u/ is
the fluid Cauchy stress tensor; p is the fluid pressure; �F is the dynamic viscosity
coefficient; and D.u/ D 1

2
.ruCru/ is the symmetrized gradient of u. The typical

values of the parameters �F and �F for blood are given in Table 2.4.
We will be working with the fluid equations written in Cartesian coordinates

.x; y; z/, while the structure equations will be written in cylindrical coordinates

.r; �; z/. For any function f given in Cartesian coordinates, we define Qf to be the
corresponding function given in cylindrical coordinates:

Qf .r; �; z/ WD f .x; y; z/:

For simplicity, in the rest of this chapter, we drop the tilde notation.
The cylindrical fluid domain is of length L, with reference radius r D R.

See Fig. 2.7. The thin structure, described by Eq. (2.58), serves as a fluid–structure
interface. The nonzero inertia term �Kh@

2�=@t2 indicates that our fluid–structure
interface has mass. This has important implications for the analysis and numerical
simulation of FSI problems, discussed in Sect. 2.7.7.

For simplicity, in the rest of this chapter, we will be assuming that only the radial
component of the displacement of the thin structure is different from zero, i.e., we
will be assuming

ASSUMPTION W � D .	r ; 	� ; 	z/ D .	r ; 0; 0/ DW 	er ; (2.61)
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where er D er .�; z/ is the unit vector in the r-direction. This is a common
assumption in the literature on FSI in blood flow. For problems with nonzero radial
and longitudinal displacement 	r ; 	z ¤ 0, please see [20, 21].

The radius of the deformed domain is equal to R C 	.t; �; z/. Thus, the fluid
domain, sketched in Fig. 2.7, is given by

�F .t/ D f.x; y; z/ 2 R
3 W z 2 .0; L/;

p
x2 C y2 < .0;RC 	.t; �; z//g;

where the lateral boundary of the cylinder corresponds to fluid–structure interface,
denoted by

�.t/ D f.x; y; z/ 2 R
3 W z 2 .0; L/;

p
x2 C y2 < .0;RC 	.t; �; z//g:

The inlet and outlet boundary of the fluid domain will be denoted by �in and �out,
respectively.

2.3.2 The Coupling Conditions

Since we have three different physical models describing three different physical
processes which are coupled, we need to describe the physics of the coupling
between all of them. This includes prescribing coupling conditions between the
fluid and structure, and prescribing coupling conditions between the thin and thick
structure.

The coupling between the fluid, the thin structural layer, and the thick structural
layer is achieved via two sets of coupling conditions: the kinematic coupling
condition and the dynamic coupling condition. The kinematic coupling condition
addresses the coupling of kinematic quantities, such as velocity. The dynamic
coupling condition describes balance of forces that occurs at the interface between
different physical models. These two sets of conditions give rise to a well-defined
mathematical problem, while, at the same time, they capture the basic physical laws
of the coupling.

In our problem, the thin structure serves both as a fluid–structure interface, and
as a structure–structure interface. In this chapter we will be assuming that the
kinematic coupling condition is the no-slip boundary condition between both the
fluid and thin structure, as well as between the thin and thick structural layers.

Concerning the dynamic coupling condition, since �.t/ is a fluid–structure
interface with mass, the dynamic coupling condition is simply the second Newton’s
Law of motion. It states that mass times acceleration of the interface is balanced by
the sum of total forces acting on, or within, �.t/. This includes the contribution due
to the elastic energy of the structure, and the balance of contact forces exerted by
the fluid and the thick structure onto �.t/. More precisely, we have the following
set of coupling conditions written in Lagrangian framework:
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• Kinematic Coupling Condition:

@t	.t; �; z/er .�; z/ D u.t; RC 	.t; �; z/; �; z/; .continuity of velocity/
	.t; �; z/er .�; z/ D d.t; R; �; z/; .continuity of displacement/

(2.62)

where er .�; z/ is the unit vector in the r-direction.
• Dynamic Coupling Condition:

�Kh@t t 	CLel.	/CLvis
@	

@t
D �J.�n/j.t;RC	;�;z/ � er CRSj.t;R;�;z/er � er : (2.63)

Here J D J.t; �; z/ D
p
Œ1C .@z	/2�ŒR C 	�2 C @�	2 denotes the Jacobian

of the composite function which includes the transformation from Eulerian to
Lagrangian coordinates, and the transformation from cylindrical to Cartesian
coordinates; the R in front of S in (2.63) denotes the Jacobian of the transfor-
mation from cylindrical to Cartesian coordinates evaluated at r D R, and n
evaluated at .t; R C 	; �; z/ is the outward unit normal vector to the deformed
fluid–structure interface �.t/. As before, 	 D 	.t; �; z/, and er D er .�; z/ is the
unit vector in the r-direction.

If we did not have the thin structure with mass present, i.e., if we only had the
fluid and thick structure interacting with each other, the dynamic coupling condition
would look slightly different. The balance of contact forces at the fluid–structure
interface would be given by the following:

�J.�n/j.t;RC	;�;z/ � er CRSj.t;R;�;z/er � er D 0; on � � .0; T /:
Namely, the dynamic coupling condition in this case reads that the normal stress
exerted by the fluid onto the thick structure is balanced the normal stress exerted by
the thick structure onto the fluid.

2.3.3 The Boundary and Initial Conditions

To get to a well-defined mathematical problem, Eqs. (2.58)–(2.63) need to be
supplemented with initial and boundary conditions.

Fluid Inlet and Outlet Boundary Conditions. Examples of the inlet and outlet
boundary conditions for the fluid include the following:

• Dynamic pressure data: In the existence proof presented later in the chapter, we
will be working with the following inlet/outlet data:

p C �F

2
juj2 D Pin=out.t/;

u D uzez;

)
on �in=out; (2.64)
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where Pin=out 2 L2loc.0;1/ are given, and ez is the outer unit normal to �in=out.
Therefore, the fluid flow is driven by a prescribed dynamic pressure drop, and
the flow enters and leaves the fluid domain orthogonally to the inlet and outlet
boundary.

• Normal stress data: In the section on numerical simulations, presented later in
this chapter, we will be using the following inlet/outlet data:

�nj�in D Pin.t/;

�nj�out D Pout.T /:
(2.65)

Structure Inlet and Outlet Boundary Conditions. Examples of the boundary
conditions for the structure at the inlet and outlet ends of the tube include the
following:

• The thin structure data. At the end points of the thin structure we prescribe zero
displacement:

	.t; r; �; 0/ D 	.t; r; �; L/ D 0; r 2 .0;R/; � 2 .0; 2�/; t 2 .0; T /: (2.66)

If 4-th order derivative terms with respect to z appear in the model (i.e., if bending
rigidity is included in the model), we consider a clamped Kotier shell with the
additional boundary conditions

	z.t; r; �; 0/ D 	z.t; r; �; L/ D 0; r 2 .0;R/; � 2 .0; 2�/; t 2 .0; T /: (2.67)

• The thick structure data. At the end points of the annular sections of the thick
structure we prescribe zero displacement:

d.t; r; �; 0/ D d.t; r; �; L/ D 0; for r 2 .R;RCH/; � 2 .0; 2�/:

The External Boundary Condition. We will be assuming that the external
boundary of the thick structure

�ext D f.x; y; z/ 2 R
3 W z 2 .0; L/; x2 C y2 D .RCH/2g

is exposed to an external ambient pressure Pe:

Ser D �Peer ; on �ext: (2.68)

Initial Data. The initial fluid and structure velocities, and the initial displacements,
are given by

u.0; :/ D u0; 	.0; :/ D 	0; @t	.0; :/ D v0; d.0; :/ D d0; @td.0; :/ D V0; (2.69)

and are assumed to belong to the following spaces: u0 2 L2.�F .0//, 	0 2 H1
0 .0; 1/,

v0 2 L2.0; 1/, V 0 2 L2.�S/, d0 2 H1.�S/.
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A Summary of the Benchmark Problem. The benchmark problem in fluid-multi-
layered-structure interaction that we are interested in studying is given by the
following:

Find u, p, 	 and d such that:

�F .@tu C .u � r/u/ D r � �
r � u D 0

�
in �F .t/; t 2 .0; T /;

�S@t td D r � S in �S � .0; T /;
@t	er D ujRC	;
	er D djR;
�Kh@t t 	C Lel.	/C Lvis

@	

@t
D �J.�n/jRC	 � er CRSjRer � er

9=
; on � � .0; T /:

where � , S, Lel, and Lvis are defined above. In this formulation, the fluid and thick
structure equations are defined in Cartesian coordinates, while the thin structure
model is given in cylindrical coordinates. Furthermore, the fluid equations are
given in Eulerian framework, while the structure equations are given in Lagrangian
framework. To account for the different coordinates, J in the dynamic coupling
condition denotes the Jacobian of the transformation from the Eulerian to the
Lagrangian framework, and from Cartesian to cylindrical coordinates. Similarly,
the factor R in front of the first Piola–Kirchhoff stress tensor S is the Jacobian
of the transformation between the Cartesian and cylindrical coordinates. While the
coupling conditions are calculated at the deformed interface �.t/, they are written
in terms of the reference configuration of the fluid–structure interface, namely, they
are written in terms of points on � .

Supplemented with initial and boundary conditions, this problem defines a
nonlinear, moving-boundary problem of mixed, parabolic–hyperbolic type. Hyper-
bolicity is associated with the thick structure problem and with the thin structure
problem when no viscoelastic effects are taken into account, i.e., when Lvis D 0.
Parabolicity describes the properties of the fluid problem.

We will be studying this class of problems from both numerical, and theoretical
point of view. Numerical method development for this class of problems will be
presented in Sect. 2.7, while existence of solutions will be studied in Sect. 2.6. In
those sections, concrete examples of this class of problems will be presented and
studied. A simplified version of these equations in 2D will be presented.

2.4 FSI Literature Review

Fluid–structure interaction problems have been extensively studied for the past 20
years by many authors. The focus has been exclusively on FSI problems with
structures consisting of a single material, except for the numerical simulations
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using the Immersed Boundary Method which is particularly suitable to deal with
structures composed of fibers. The field has evolved from first studying FSI
between an incompressible, viscous fluid and a rigid structure immersed in a fluid,
to considering compliant (elastic/viscoelastic) structures interacting with a fluid.
Concerning compliant structures, the coupling between the structure and fluid was
first assumed to take place along a fixed fluid domain boundary (linear coupling).
This was then extended to FSI problems in which the coupling was evaluated at a
deformed fluid–structure interface, giving rise to an additional nonlinearity in the
problem (nonlinear coupling).

2.4.1 Literature on Analysis of FSI Problems

Well-posedness results in which the structure was assumed to be a rigid body
immersed in a fluid, or described by a finite number of modal functions, were studied
in [19,41,45,49,50,58,71,72,74–76,135]. FSI problems coupling the Navier–Stokes
equations with linear elasticity where the coupling was calculated at a fixed fluid
domain boundary were considered in [53], and in [11, 12, 101] where an additional
nonlinear coupling term was added at the interface. A study of well-posedness for
FSI problems between an incompressible, viscous fluid and an elastic/viscoelastic
structure with nonlinear coupling evaluated at a moving interface started with the
result by daVeiga [17], where existence of a strong solution was obtained locally in
time for an interaction between a 2D fluid and a 1D viscoelastic string, assuming
periodic boundary conditions. This result was extended by Lequeurre in [108, 109],
where the existence of a unique, local in time, strong solution for any data, and the
existence of a global strong solution for small data, was proved in the case when the
structure was modeled as a clamped viscoelastic beam. D. Coutand and S. Shkoller
proved existence, locally in time, of a unique, regular solution for an interaction
between a viscous, incompressible fluid in 3D and a 3D structure, immersed in the
fluid, where the structure was modeled by the equations of linear [43], or quasi-
linear [44] elasticity. In the case when the structure (solid) is modeled by a linear
wave equation, I. Kukavica and A. Tufahha proved the existence, locally in time, of
a strong solution, assuming lower regularity for the initial data [102]. A similar
result for compressible flows can be found in [103]. A FSI between a viscous,
incompressible fluid in 3D, and 2D elastic shells was considered in [33, 34] where
existence, locally in time, of a unique regular solution was proved. All the above-
mentioned existence results for strong solutions are local in time. We also mention
that the works of Shkoller et al., and Kukavica et al. were obtained in the context of
Lagrangian coordinates, which were used for both the structure and fluid problems.

In the context of weak solutions, the following results have been obtained.
Continuous dependence of weak solutions on initial data for an FSI problem with
a free-boundary type coupling condition was studied in [87]. Existence of a weak
solution for an FSI problem between a 3D incompressible, viscous fluid and a 2D
viscoelastic plate was considered by Chambolle et al. in [32], while Grandmont
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improved this result in [79] to hold for a 2D elastic plate. These results were
extended to a more general geometry in [106], and then to the case of generalized
Newtonian fluids in [105], and to a non-Newtonian shear-dependent fluid in [94,95].
In these works existence of a weak solution was proved for as long as the elastic
boundary does not touch “the bottom” (rigid) portion of the fluid domain boundary.

Muha and Čanić recently proved existence of weak solutions to a class of FSI
problems modeling the flow of an incompressible, viscous, Newtonian fluid flowing
through a cylinder whose lateral wall was modeled either by the linearly viscoelastic
or by the linearly elastic Koiter shell equations [119], assuming nonlinear coupling
at the deformed fluid–structure interface. The fluid flow boundary conditions were
not periodic, but rather, the flow was driven by the dynamic pressure drop data.
The methodology of proof in [119] was based on a semi-discrete, operator splitting
Lie scheme which we discuss later in this chapter, and which was also used in
[85] to design a stable, loosely coupled partitioned numerical scheme, called the
kinematically coupled scheme (see also [21]). Ideas based on the Lie operator
splitting scheme were also used by Temam in [140] to prove the existence of a
solution to the nonlinear Carleman equation.

Finally, we also mention the results in [73] where a free-boundary problem for
a steady flow of the incompressible, viscous fluid past a three-dimensional elastic
body was studied, and the results in [18] where the authors consider a rigid body
floating on the free surface of the fluid.

2.4.2 Literature on Numerical Simulation of FSI Problems

The development of numerical solvers for FSI problems has become particularly
active since the 1980s. Among the most popular techniques are the Immersed
Boundary Method [57,66,80–84,111,117,127,128] and the Arbitrary Lagrangian–
Eulerian (ALE) method [52, 92, 93, 104, 110, 132, 133]. We further mention the
Fictitious Domain Method in combination with the mortar element method or ALE
approach [7, 142], and the methods recently proposed for the use in the blood flow
application such as the Lattice Boltzmann method [56, 59, 99, 100], the Level Set
Method [42], and the Coupled Momentum Method [65].

Until recently, only monolithic algorithms seemed applicable to blood flow
simulations [15, 16, 47, 65, 77, 126, 144]. These algorithms are based on solving
the entire nonlinear coupled problem as one monolithic system. They are, however,
generally quite expensive in terms of the computational time, programming time,
and memory requirements, since they require solving a sequence of strongly coupled
problems using, e.g., the fixed point and Newton’s methods [31,47,62,92,115,126],
or the Steklov–Poincaré-based domain decomposition methods [48].

The multi-physics features of the blood flow problem strongly suggest to employ
partitioned (or staggered) numerical algorithms, where the coupled fluid–structure
problem is separated into a pure fluid sub-problem and a pure structure sub-problem.
The fluid and structure sub-problems are integrated in time in an alternating way,
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and the coupling conditions are enforced asynchronously. When the density of the
structure is much larger than the density of the fluid, as is the case in aeroelasticity, it
is sufficient to solve, at every time step, just one fluid sub-problem and one structure
sub-problem to obtain a solution. The classical loosely coupled partitioned schemes
of this kind typically use the structure velocity in the fluid sub-problem as Dirichlet
data for the fluid velocity (enforcing the no-slip boundary condition at the fluid–
structure interface), while in the structure sub-problem the structure is loaded by the
fluid normal stress calculated in the fluid sub-problem. These Dirichlet–Neumann
loosely coupled schemes work well for problems in which the structure is much
heavier than the fluid. Unfortunately, when fluid and structure have comparable
densities, which is the case in the blood flow application, the simple strategy of
separating the fluid from the structure suffers from severe stability issues [30, 116].
This is because the energy of the discretized problem in Dirichlet–Neumann loosely
coupled schemes does not approximate well the energy of the continuous problem.
A partial solution to this problem is to iterate several times between the fluid and
structure sub-solvers at every time step until the energy of the continuous problem
is well approximated. These strongly coupled partitioned schemes, however, are
computationally expensive and may suffer from convergence issues for certain
parameter values [30].

To get around these difficulties, and to retain the main advantages of loosely
coupled partitioned schemes such as modularity, simple implementation, and low
computational costs, several new loosely coupled algorithms have been proposed
recently. The method proposed in [9] uses a simple membrane model for the
structure which can be easily embedded into the fluid problem where it appears as
a generalized Robin boundary condition. In this way the original problem reduces
to a sequence of fluid problems. A similar approach was proposed in [126] where
the fluid and structure were split in the classical way, but the fluid and structure sub-
problems were linked via novel transmission (coupling) conditions that improve the
convergence rate. A different approach to stabilization of loosely coupled schemes
was proposed in [25] where a stabilization based on Nitsche’s method [89] was
used. We further mention the scheme proposed in [10] where a Robin–Robin type
preconditioner was combined with Krylov iterations for a solution of an interface
system. For completeness, we also mention several semi-implicit FSI schemes.
The schemes proposed in [5, 6, 64] separate the computation of fluid velocity from
the coupled pressure-structure velocity system, thereby reducing the computational
costs. Similar schemes, derived from algebraic splitting, were proposed in [8, 132].
We also mention [124] where an optimization problem was solved at each time step
to enforce the coupling conditions.

Recently, a novel loosely coupled partitioned scheme, called the “kinematically
coupled ˇ-scheme,” was introduced by Bukač et al. in [21], and applied to FSI
problem with thin elastic and viscoelastic structures, modeled by the membrane or
shell equations. This scheme successfully deals with stability problems associated
with loosely coupled schemes in a way different from those reported above. Stability
is achieved by combining the structure inertia with the fluid sub-problem to mimic
the energy balance of the continuous problem. It was shown in [29] that the scheme
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is unconditionally stable even for the parameters associated with the blood flow
applications. Additionally, Čanić and Muha showed that a version of this scheme
with ˇ D 0 converges to a weak solution of the fully nonlinear FSI problem [119].
This result uses energy estimates combined with compactness arguments to show
that the approximate solutions converge to a weak solution of the problem as the
time discretization tends to zero. This is a significant result since it proves the
existence of a (weak) solution to a nonlinear FSI problem in a constructive way,
by using a computational scheme to construct a solution. See [54,55] for the related
results concerning linear FSI problems.

The case ˇ D 0 considered in [119] corresponds to the classical kinematically
coupled scheme, first introduced in [85]. Parameter ˇ was introduced in [21] to
increase the accuracy of the scheme. It was shown in [21] that the accuracy of
the kinematically coupled ˇ-scheme with ˇ D 1 was comparable to that of
monolithic scheme by Badia et al. in [8] when applied to the nonlinear benchmark
FSI problem in hemodynamics, introduced by Formaggia et al. in [67]. A different
approach to increasing the accuracy of the classical kinematically coupled scheme
was recently proposed by Fernández et al. [60,61,63]. Their modified kinematically
coupled scheme, called “the incremental displacement-correction scheme” threats
the structure displacement explicitly in the fluid sub-step and then corrects it in the
structure sub-step. Fernández et al. showed that the accuracy of the incremental
displacement-correction scheme is first-order in time. The results were obtained for
an FSI problem involving a thin elastic structure.

These recent results indicate that the kinematically coupled scheme and its
modifications provide an appealing way to solve FSI problems using partitioned
approach. This scheme is particularly suitable for problems in which the structure
consists of several layers, since modeling each additional layer can be accomplished
by adding a new module to the partitioned scheme. Indeed, in the sections that
follow, we present the kinematically coupled scheme, discuss the numerical results,
and show the main steps in the proof of the existence of a weak solution to the class
of fluid-multi-layered structure interaction problems discussed in Sect. 2.3.

2.5 Solution Framework

To study numerical simulation and existence of solutions to the class of prob-
lems (2.58)–(2.63) we present here a stable, partitioned approach that splits the fluid
from the structure problem by using the Lie splitting, also known as the Marchuk–
Yanenko scheme. The Lie splitting scheme has been widely used in numerical
computations, see [78] and the references therein. Here we discuss an extension
of this approach to study fluid-multi-layered structure interaction problems via
the Kinematically Coupled Scheme, which is based on the time-discretization via
Lie splitting. The time-dependent coupled problem is discretized in time (semi-
discretization) in such a way that at each time step the coupled problem is split
into a fluid and a structure sub-problem in a particular way so that the energy of the
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discretized problem mimics the energy of the continuous problem. As we shall see
later, this guarantees stability of the scheme.

2.5.1 The Energy of the Coupled Problem

We present here a general approach to deriving an energy estimate of the coupled
FSI benchmark problem, described in Sect. 2.3, for the class of problems in which
the Koiter shell is linear. Thus, we consider a clamped linearly (visco)elastic Koiter
shell (2.58), coupled with the equations of linear elasticity (2.59), and the flow of an
incompressible, viscous fluid modeled by the Navier–Stokes equations (2.60). The
inlet and outlet data are given by the dynamic pressure data, specified in (2.64).

We first recall from Sect. 2.2.1 that the linear operators Lel and Lvis are defined
as follows:

hLel�; i WD h

2

Z
!

AG.�/ W G. /
p
a C h3

48

Z
!

AR.�/ W R. /
p
a; 8 2 C1

c :

(2.70)

hLel P�; i WD h

2

Z
!

BG. P�/ W G. /
p
aC h3

48

Z
!

BR. P�/ W R. /
p
a; 8 2 C1

c ;

(2.71)

where G and R are the change of metric, and change of curvature tensors,
respectively, and A and B are the elasticity tensor and the viscoelasticity tensor,
respectively, defined in Example 4 of Sect. 2.2.1. This will be used to obtain the
following energy estimate for the coupled problem:

Proposition 2.1. The coupled FSI benchmark problem (2.58)–(2.69) with dynamic
inlet and outlet pressure data satisfies the following energy estimate:

d

dt
.Ekin.t/C Eel.t//CD.t/ � C.Pin.t/; Pout.t//; (2.72)

where

Ekin.t/ WD 1
2

�
�F kuk2

L2.�F .t//
C �Khk@t�k2

L2.�/
C �Sk@tdk2

L2.�S /

�
;

Eel.t/ WD 1
2

�
Eel.�/C 2�kD.d/k2

L2.�S/
C �kr � dk2

L2.�S /

�
;

(2.73)

denote the kinetic and elastic (internal) energy of the coupled problem, respectively,
and the term D.t/ captures viscous dissipation:

D.t/ WD Evis.@t�/C �F kD.u/k2
L2.�F .t//

: (2.74)
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The constant C.Pin.t/; Pout.t/// depends only on the inlet and outlet pressure data,
which are both functions of time.

The expressions for the energy associated with the Koiter shell are given by:

Eel.�/ D h

2

Z
!

AG.�/ W G.�/RC h3

48

Z
!

AR.�/ W R.�/R;

Evis.@t�/ D h

2

Z
!

BG.@t�/ W G.@t�/RC h3

48

Z
!

BR.@t�/ W R.@t�/R:

Notice that, due to the presence of an elastic fluid–structure interface with
mass, the kinetic energy term Ekin.t/ contains a contribution from the kinetic
energy of the fluid–structure interface k@t�k2

L2.�/
incorporating the interface inertia.

Furthermore, the elastic energy Eel.t/ of the FSI problem accounts for the elastic
energy k@z�k2

L2.�/
of the interface. If an FSI problem between the fluid and a thick

structure was considered without the thin FSI interface with mass, these terms would
not be present. In fact, the traces of the displacement and velocity at the fluid–
structure interface of that FSI problem would not have been even defined for weak
solutions.

Proof. A formal calculation of the energy estimate for this class of problems
typically entails multiplying the fluid and structure equations in differential form
by the fluid and structure velocities, respectively, and performing integration by
parts. Integration by parts of the fluid equations takes into account the boundary
conditions, which are the conditions at the inlet and outlet boundary of the fluid
domain, and the conditions at the lateral boundary of the fluid domain. At the lateral
boundary of the fluid domain, the normal fluid stress is coupled with the structure
equations, and here is where the dynamic and kinematic coupling conditions come
into play. By taking these coupling conditions into account, the energy of the fluid
and the energy of the structure are coupled together into the total energy of the
coupled FSI problem.

More precisely, we first multiply equation (2.60) by u, integrate over�F .t/, and
formally integrate by parts to obtain:

Z
�F .t/

�F
�
@tu � u C .u � r/u � u

�C 2�F

Z
�F .t/

jD.u/j2

�
Z
@�F .t/

.�pI C 2�FD.u//n.t/ � u D 0: (2.75)

To deal with the inertia term we first recall that�F .t/ is moving in time and that the
velocity of the lateral boundary is given by uj�.t/. The transport theorem applied to
the first term on the left-hand side of the above equation then gives:

Z
�F .t/

@tu � u D 1

2

d

dt

Z
�F .t/

juj2 � 1

2

Z
�.t/

juj2u � n.t/:
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The second term on the left-hand side can be rewritten by using integration by parts,
and the divergence-free condition, to obtain:

Z
�F .t/

.u � r/u � u D 1

2

Z
@�F .t/

juj2u � n.t/ D 1

2

�Z
�.t/

juj2u � n.t/

�
Z
�in

juj2uz C
Z
�out

juj2uz:

�

These two terms added together give

�F

Z
�F .t/

.@tu � u C .u � r/u � u/ D �F

2

d

dt

Z
�F .t/

juj2

� �F

2

Z
�in

juj2uz C �F

2

Z
�out

juj2uz: (2.76)

Notice the importance of nonlinear advection in canceling the cubic term
R
�.t/

juj2u�
n.t/!

To deal with the boundary integral over @�F .t/, first notice

Z
@�F .t/

.�pI C 2�FD.u//n � u D
Z
�in=out[�.t/

.�pI C 2�FD.u//n � u: (2.77)

To calculate the contribution of the integral over �in=out, notice that on �in=out the
outward unit normal is given by ˙ez. Furthermore, the boundary condition (2.64)
implies ur D u� D 0, or, in Cartesian coordinates ux D uy D 0. Combined with the
divergence-free condition one obtains @zuz D 0. This implies D.u/ D 0 on �in=out.
Therefore,

Z
�in=out

.�pI C 2�FD.u//n � u D
Z
�in

p uz �
Z
�out

p uz: (2.78)

What is left is to calculate the remaining boundary integral over �.t/, namely

�
Z
�.t/

.�pI C 2�FD.u//n.t/ � u D �
Z
�.t/

�n.t/ � u:

By enforcing the dynamic and kinematic coupling conditions (2.62), (2.63), we
obtain

�
Z
�.t/

�n.t/ � u D �
Z
�

J�n � u D
Z
!

R.f � Ser � er /@t	; (2.79)

where f is the function appearing on the right-hand side of the Koiter shell
equation (2.58).
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The rest of the proof entails calculating the right-hand side of (2.79) in terms of
the energy of the thin and thick structure problems. We begin with the Koiter shell
problem:

�Kh@t t�C Lel�C Lvis@t� D f :

Multiply this equation by @t� and formally integrate by parts, using, on the way,
the definition of operators Lel and Lvis, given in (2.70) and (2.71), respectively. The
resulting equation is given by the following:

1

2

d

dt

Z
!

�Kh .�t /
2 RC < Lel�; @t� > C < Lvis@t�; @t� >D

Z
!

f @t�R;

or, by expanding the operators Lel and Lvis, and using P� to denote @t�:

1

2

d

dt

Z
!

�Kh .�t /
2 R C h

2

Z
!

AG.�/ W G. P�/RC h3

48

Z
!

AR. P�/ W R. P�/R

h

2

Z
!

BG. P�/ W G. P�/RC h3

48

Z
!

BR. P�/ W R. P�/R D
Z
!

f @t�R: (2.80)

By recalling the definitions of the elastic and viscous energy of the Koiter shell:

Eel.�/ D h

2

Z
!

AG.�/ W G.�/
p
a C h3

48

Z
!

AR.�/ W R.�/
p
a;

Evis.�/ D h

2

Z
!

BG.�/ W G.�/
p
aC h3

48

Z
!

BR.�/ W R.�/
p
a;

Equation (2.80) can be written as

�Kh

2

d

dt
k@t�k2

L2.!/
C 1

2

d

dt
Eel.�/C Evis.@t�/ D

Z
!

R f @t�: (2.81)

Next, consider the elasticity equation (2.59), multiply it by @td and integrate by
parts to obtain:

1

2

d

dt

�
�Sk@tdk2

L2.�S/
C 2�kD.d/k2

L2.�S /
C �kr � dk2

L2.�S/

� D �
Z
�

Ser � @td

D �
Z
!

R Ser � @td: (2.82)

Now, the right-hand side of Eq. (2.79) can be calculated by combining (2.81)
and (2.82) to obtain
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�
Z
�.t/

�n.t/ � u D �Kh

2

d

dt
k@t�k2

L2.!/
C 1

2

d

dt
Eel.�/CEvis.@t�/

1

2

d

dt

�
�sk@tdk2

L2.�S/
C 2�kD.d/k2

L2.�S/
C �kr � dk2

L2.�S/

�
: (2.83)

By combining (2.75) with (2.76), (2.77), (2.78), and (2.83), one obtains the
following energy equality:

1

2

d

dt

n
�F kuk2�F .t/ C �Khk@t�k2

L2.�/
C �Sk@tdk2

L2.�S/
CEel.�/C 2�kD.d/k2

L2.�S/

C �kr � dk2
L2.�S/

o
C 2�F kD.u/k2�F .t/ CEvis.@t�/D ˙ Pin=out.t/

Z
�in=out

uz

Finally, by using the trace inequality and Korn inequality one can estimate:

jPin=out.t/

Z
�in=out

uzj � C jPin=outjkukH1.�F .t// � C

2�
jPin=outj2C �C

2
kD.u/k2

L2.�F .t//
:

By choosing � such that �C
2

� �F we get the energy inequality

1

2

d

dt

n
�F kuk2�F .t/ C �Khk@t�k2

L2.�/
C �Sk@tdk2

L2.�S/
CEel.�/C 2�kD.d/k2

L2.�S/

C �kr � dk2
L2.�S/

o
C�F kD.u/k2�F .t/ CEvis.@t�/ � C.Pin.t/; Pout.t//:

ut

2.5.2 ALE Formulation

Since the fluid–structure coupling studied in this chapter is performed along the
moving fluid–structure interface, the fluid domain �.t/ is not fixed. This is a
problem from many points of view. In particular, defining the time discretization of
the time derivative @u=@t , for example @u=@t � .u.tnC1; :/� u.tn; ://=.tnC1 � tn/,
is not well defined since u.tnC1; :/ and u.tn; :/ are not defined on the same domain
at two different time steps. To resolve this difficulty, often times the fluid domain is
mapped onto a fixed, reference domain via a smooth, invertible ALE mapping [52]:

A W �F ! �F .t/:

An example of such a mapping is the harmonic extension of the boundary @�F .t/

onto the fluid domain. See Sect. 2.7. Another example is a mapping particularly
convenient for the existence proof, presented in Sect. 2.6. This introduces additional
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nonlinearities into the equations, reflecting the geometric nonlinearities of the
moving interface. The transformed gradient, which we denote by r�, will depend
on the fluid–structure interface �. Furthermore, by using the chain rule, one can
see that the time derivative of the transformed fluid velocity will have an additional
advection term with the coefficient given by the domain velocity w WD At ı A�1,
where At denotes the time derivative of A. Finally, the mapped fluid equations in
�F read:

�F .@tu C ..u � w/ � r	/u/ D r	 � � 	
r	 � u D 0

�
in �F � .0; T /: (2.84)

Here, the notation � 	 reflects the dependence of D�.u/ D 1
2
.r	u C r	T u/ on 	.

Therefore, our problem in ALE formulation reads as follows:

The Coupled Problem in ALE Form defined on �F Find u, p, 	 and d such that:

�F .@tu C ..u � w/ � r	/u/ D r	 � � 	
r	 � u D 0

�
in �F � .0; T /;

�S@t td D r � S in �S � .0; T /;
@t	er D ujRC	;
	er D d;
�Kh@t t 	C Lel.	/C Lvis@t	 D �J.�n/jRC	 � er CR Ser � er

9=
; on � � .0; T /:

As we shall see in Sect. 2.7, the actual numerical simulations at each time step
are typically performed on the current (fixed) domain �n

F .t/, with only the time-
derivative calculated on �F , thereby avoiding the need to calculate the transformed
gradients r�. The corresponding continuous problem in ALE form can be written
as follows:

The Coupled Problem in ALE Form defined on �F .t/

Find u, p, 	 and d such that:

�F .@tuj�F C ..u � w/ � r/u/ D r � �
r � u D 0

�
in �F .t/ � .0; T /;

�S@t td D r � S in �S � .0; T /;
@t	er D ujRC	;
	er D d;
�Kh@t t 	C Lel.	/C Lvis@t	 D �J.�n/jRC	 � er CR Ser � er

9=
; on � � .0; T /:
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Here, @tuj�F denotes the time derivative calculated on �F . This approach is
standard in ALE methods applied to partitioned schemes. In our existence proof,
and in our definition of the splitting scheme, however, it will be convenient to use
the fully mapped problem onto the fixed reference domain�F .

2.5.3 The Splitting Scheme: General Framework

To apply the Lie splitting scheme the problem must first be written as a first-order
system in time:

@�

@t
C A.�/ D 0; in .0; T /; (2.85)

�.0/ D �0; (2.86)

where A is an operator from a Hilbert space into itself. Operator A is then split, in a
nontrivial decomposition, as

A D
IX
iD1

Ai : (2.87)

The Lie scheme consists of the following. Let 4t > 0 be a time discretization step.
Denote tn D n4t and let �n be an approximation of �.tn/: Set �0 D �0: Then, for
n � 0 compute �nC1 by solving

@�i

@t
C Ai.�i / D 0 in .tn; tnC1/; (2.88)

�i .t
n/ D �nC.i�1/=I ; (2.89)

and then set �nCi=I D �i .t
nC1/; for i D 1; : : : ; I: Thus, the value at t D tnC1 of

the solution of the i -th problem is taken as the initial data for the .i C 1/-st problem
on .tn; tnC1/.

This method is first-order accurate in time. More precisely, if (2.85) is defined on
a finite-dimensional space, and if operators Ai are smooth enough, then k�.tn/ �
�nk D O.�t/ [78].

To solve the class of problems (2.58)–(2.63), we split the fluid from the structure
sub-problem to separate the different physics in the coupled problem. Thus, the
coupled problem, which defines operator A, is split into a sum of two operators:

1. An elastodynamics problem for the thick structure, and
2. A fluid problem with suitable boundary conditions involving structure velocity

and fluid stress at the boundary.

The thin-structure problem will enter through the boundary conditions, enforcing
the dynamic coupling condition between the fluid and thick structure.
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Thus, this scheme works as follows: first the structure problem is solved on the
time-interval .tn; tnC1/ with the initial data obtained from the previous time step.
Then, the fluid problem is solved on the same-time interval .tn; tnC1/, but with the
initial data obtained from the just calculated solution in the first step.

Not every splitting of this kind would lead to a stable, convergent scheme. Our
strategy is to split the fluid from the structure sub-problem in such a way that the
energy of the discretized problem approximates well the energy of the continuous
problem. To achieve this goal, a key role is played by the kinematic coupling
condition, which will be enforced implicitly in both steps of the splitting scheme,
keeping the two sub-problems tightly coupled at all times.

Before we apply the Lie splitting, we rewrite our coupled problem in first-order
form with respect to time. For this purpose we introduce the following notation:

• the trace of the fluid velocity at the moving interface �.t/ will be denoted by v,
i.e.,

ver WD uj�.t/:

Namely, v, which is defined on � , is equal to the trace of u evaluated at R C 	.
The kinematic coupling condition (no-slip) then reads @t 	 D v:

• the thick structure velocity will be denoted by:

V WD @d
@t
:

The system in ALE form is now rewritten by using the abovementioned notation,
and by employing the kinematic coupling condition in the thin structure model. This
way the kinematic coupling condition will be enforced everywhere, in all the steps
of the splitting scheme. The resulting coupled problem in first-order ALE form is
given by the following:

The Coupled Problem in First-Order ALE Form Find u, p, 	, d, v, and V such
that:

�F .@tu C ..u � w/ � r	/u/ D r	 � � 	
r	 � u D 0

�
in �F � .0; T /;

�S@tV D r � S
dt D V;

�
in �S � .0; T /;

@t	 D v;

ver D u;
	er D d;
�Kh@t v C Lel.	/C Lvisv D �J �	n � er CR Ser � er

9>>=
>>;

on � � .0; T /:
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Notice that we have enforced the kinematic coupling condition both in the thin
structure acceleration term and in the viscous part of the thin structure equation.

We are now ready to split the problem. For this purpose, observe that the portion
�Kh @tv C Lvisv D �J�n � er of the dynamic coupling condition is all given
in terms of the trace v of the fluid velocity on � (recall, � depends on v). We
can, therefore, use this as a lateral boundary condition on � for the fluid sub-
problem. This observation is crucial because keeping the structure inertia term
�Kh@tv together with the inertia of the fluid in the fluid sub-problem is of paramount
importance for designing a stable and convergence scheme.

This is different from the classical loosely coupled schemes. In classical
Dirichlet–Neumann loosely coupled scheme, the boundary condition for the fluid
sub-problem is the Dirichlet condition for the fluid velocity v on � given in terms
of the structure velocity @	=@t , namely v D @	=@t , where @	=@t is calculated at
the previous time step! This inclusion of the structure inertia from the previous time
step (explicitly) makes the fluid sub-problem unstable for certain parameters values
[30]. The main reason for this is that the kinetic energy at this time step includes
only the fluid kinetic energy from the current time step, and not the thin structure
kinetic energy, since the thin structure velocity enters from the previously calculated
time step. For strong geometric nonlinearities, which often happen when the fluid
and structure densities are comparable, this mismatch between the kinetic energy of
the discretized problem (where only the fluid kinetic energy appears in the current
time step) and the kinetic energy of the continuous problem (where both the fluid
and structure kinetic energy are tied together in a strongly coupled FSI problem)
gives rise to an unstable numerical scheme [30].

Therefore, the strategy of our splitting, mentioned above, to keep the thin
structure inertia together with the fluid inertia in the fluid sub-step will give rise
to the kinetic energy of the discretized problem that approximates well the kinetic
energy of the continuous problem, giving rise to a scheme that is unconditionally
stable for all the parameters in the problem [29]. In Sect. 2.6 we prove that the
scheme converges to a weak solution to the underlying FSI problem.

We therefore define the operators A1 and A2 as follows:

Problem A1 W STRUCTURE
�S@tV D r � S; in �S

@td D V; in �S

d D 	er ; on �
@t	 D v; on �

�Kh@tv D Lel.	/CR Ser � er on �

Here, of course, the PDE system in �S can be solved just as a single second-order
PDE for d: �Sdt t D r � S. Problem A1 is solved with the initial data .d;V; 	; v/
given by the solution from the previous time step. This means, in particular, that
the thin structure velocity v is set to be equal to the trace of the fluid velocity on
� , calculated in the previous time step. Thus, we are solving the elastodynamics
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problem for the linearly elastic thick structure in �S , with the boundary condition
at the lateral boundary � given by a PDE that determines the motion of the lateral
boundary. The motion of the lateral boundary in this sub-problem is driven by the
normal component of the first Piola–Kirchhoff stress tensor S, and by the initial data
for the velocity of the thin structure, which is given by the trace of the fluid velocity,
just calculated in the previous time step. In this step we also calculate the domain
velocity w, which is given by the time-derivative of the ALE mapping, associated
with Problem A1.

Problem A2 W FLUID
@tu C .. Ou � w/ � r	/u D r	 � � 	; in �F

r	 � u D 0; in �F

u D ver ; on �
�Kh@tv C Lvisv D �J� 	n � er on �

Here Ou is the value of u from the previous time step, and w, which is the domain
velocity (the time derivative of the ALE mapping), is obtained from the just
calculated Problem A1. Furthermore, r� is the transformed gradient, which is based
on the value of � from the previous time step. The initial data for u is given from the
previous time step, while the initial data for the trace of the fluid velocity v is given
by the just calculated velocity of the thin structure @t	.

This concludes our description of the general framework based on the Lie
splitting scheme for solving the class of FSI problems (2.58)–(2.63) with multiple
structural layers.

Before we continue, several remarks are in order:

• The splitting works as well when the thin structure is purely elastic, i.e., when
Lvis D 0.

• Switching the order of solution (fluid step first, structure second) works as well.
The corresponding algorithm is explicitly shown below in the corresponding
block-diagram.

• The symmetrized Lie splitting obtained by solving the structure problem,
followed by the fluid problem, and then the structure problem, increases the
accuracy of the scheme to second-order in time.

• A version of Strang splitting for this problem was performed by Lukačova et al.
in [95, 96] achieving second-order accuracy in time.

• Adding additional modules to capture different physics in a given multi-physics
problem can be accomplished in a similar way. See [23] for an application of
this scheme to an FSI problem with multiple poroelastic structural layers. Also,
see [122] for an application of this scheme to an FSI between a vascular device
called stent, elastic arterial wall, and the flow of an incompressible, viscous fluid.

• A modification of this scheme to achieve higher accuracy within the class of first-
order schemes was introduced in [20,21]. Details of this modified scheme, called
the Kinematically Coupled ˇ-scheme, are presented next.
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2.5.4 A Modified Splitting Scheme Achieving Higher Accuracy

To increase the accuracy, the kinematically coupled ˇ-scheme is based on addition-
ally splitting the normal fluid stress as follows:

�n D �n C ˇpn„ ƒ‚ …
.I /

�ˇpn„ƒ‚…
.II /

;

where ˇ 2 Œ0; 1�. Part I of the fluid stress is treated with the fluid sub-problem,
while Part II with the structure sub-problem. The new boundary condition for the
fluid sub-problem, written in the framework in which the entire fluid sub-problem
is considered on the fixed, reference domain�F , becomes

�Sh@tv C Lvisv D �J .� 	n C ˇ Opn/ � er on �;

where Op denotes the explicit use of the pressure calculated from the previous step.
Part II of the fluid stress is then used to load the structure so that the new boundary
condition for the structure sub-problem becomes

�Kh@tv D Lel.	/C .R Ser � ˇJpn/ � er on �: (2.90)

A block diagram shown in Fig. 2.8 below summarizes the splitting in each iteration.
The main reason for the increase in accuracy of the ˇ-scheme is the inclusion

of the pressure loading ˇJpn by the fluid onto the structure in the structure sub-
problem. This way the structure “feels” the fluid not only through the kinematic
coupling condition enforced via the initial condition for the structure sub-problem
(@t	 D v), but also through the leading contribution of the normal stress, i.e., the
pressure, exerted by the fluid onto the structure. Typically, the highest accuracy is
achieved for ˇ D 1. The accuracy of this modified scheme is still first-order, but the
error is closer to the error of a monolithic scheme, as we shall see in Sect. 2.7.

Numerical Implementation. Typically, numerical implementation of the fluid
sub-problem entails solving the fluid equations on the “current domain.” Namely,
numerical implementation is performed for the ALE problem written on�F .t/, and
not�F , as was discussed at the end of Sect. 2.5.2. In this case, the fluid sub-problem
written above takes the following form:

Problem A2 .FLUID/

@tuj�F C ..un � wnC1/ � r/u D r � � ; in �n
F

r � u D 0; in �n
F

.�Kh@tujRC	 C LvisujRC	/ � er D �J .�n C ˇpnn/ jRC	 � er on �n
F
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Fig. 2.8 A block diagram showing the main steps of the Kinematically Coupled ˇ-Scheme

2.6 Existence of a Weak Solution

In this section we present details of the analysis of the existence of a weak solution
to a previously discussed FSI problem with a multi-layered structure in two space
dimensions. For related results in 3D, please see [121]. The most difficult case
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from the analysis point of view is the case when the viscoelastic effects in the
thin structure model are ignored, and the highest order spatial derivatives (the 4-th
order spatial derivatives) in the Koiter shell have the coefficients equal to zero. The
resulting thin-structure model is the linear wave equation. Thus, in this section we
study FSI between an incompressible, viscous fluid flowing through a 2D cylinder
with compliant walls, consisting of a thin and a thick layer, modeled by the linear
wave equation, and the equations of linear elasticity, respectively. As before, we will
also be assuming that only the radial displacement in the thin structure is different
from zero.

The existence result for the FSI problem in which the thin structure is modeled
by the full linearly elastic/viscoelastic Koiter shell equations, and the thick structure
is modeled by the equations of linear elasticity, can be obtained by combining the
results of [119] and the results of [120].

2.6.1 Problem Definition

We consider the flow of an incompressible, viscous fluid modeled by the Navier–
Stokes equations in a 2D, time-dependent cylindrical fluid domain�F .t/, which is
not known a priori:

FLUID W �F .@tu C u � ru/ D r � � ;
r � u D 0;

�
in �F .t/; t 2 .0; T /; (2.91)

where �F denotes the fluid density; u the fluid velocity; � D �pI C 2�FD.u/ is
the fluid Cauchy stress tensor; p is the fluid pressure; � is the kinematic viscosity
coefficient; and D.u/ D 1

2
.ru C ru/ is the symmetrized gradient of u.

The cylindrical fluid domain is of length L, with reference radius r D R. The
radial (vertical) displacement of the cylinder radius at time t and position z 2 .0; L/
will be denoted by 	.t; z/, giving rise to a deformed domain with radiusRC	.t; z/.
Thus, the fluid domain, sketched in Fig. 2.9, is given by

�F .t/ D f.z; r/ 2 R
2 W z 2 .0; L/; r 2 .0;RC 	.t; z/g;

where the lateral boundary of the cylinder corresponds to the fluid–structure
interface, denoted by

�.t/ D f.z; r/ 2 R
2 W z 2 .0; L/; r D RC 	.t; z/g:

Without loss of generality we only consider the upper half of the fluid cylinder, with
a symmetry boundary condition prescribed at the axis of symmetry, denoted by �b
in Fig. 2.9.
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Fig. 2.9 2D domain sketch

The fluid is in contact with a thin elastic structure, which is located between
the fluid and the thick structural layer. The thin structure thereby serves as a fluid–
structure interface with mass. We will be assuming that the elastodynamics of the
thin elastic structure is governed by the 1D wave equation

THIN STRUCTURE W �Kh @t t 	 D c2@zz	C f; z 2 .0; L/; t 2 .0; T /;
(2.92)

where 	 denotes radial (vertical) displacement. Here, �K is the structure density,
h denotes structure thickness, and f denotes force density in the radial (vertical)
direction acting on the structure. The wave equation can be viewed as a special case
of the linearly (visco)elastic cylindrical Koiter shell model

�Kh@
2
t 	C C0	� C1@

2
z	C C2@

4
z	CD0@t	 �D1@t@

2
z	CD2@t@

4
z	 D f; (2.93)

with C0 D C2 D D0 D D1 D D2 D 0. See Sect. 2.2.1.
The thick structural layer will be modeled by the equations of linear elasticity

THICK STRUCTURE W �S @t td D r � S in �S; t 2 .0; T /; (2.94)

where d.t; z; r/ D .dz.t; z; r/; dr .t; z; r// denotes structural displacement of the
thick elastic wall at point .z; r/ 2 �S and time t , S is the first Piola–Kirchhoff
stress tensor given by S D � .rd C .rd/T / C �.r � d/I, where � and � are the
Lamé constants, and �S is density of the thick structure. Domain�S corresponds to
a fixed, reference domain which is independent of time, and is given by

�S D .0; L/ � .R;RCH/:

A deformation of �S at time t is denoted by �S.t/ in Fig. 2.9.

The Coupling between the fluid, the thin structural layer, and the thick structural
layer is achieved via

• the kinematic coupling condition:

.@t 	.t; z/; 0/ D u.t; z; R C 	.t; z//; .continuity of velocity/
.	.t; z/; 0/ D d.t; z; R/; .continuity of displacement/

(2.95)
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• the dynamic coupling condition:

�s1h@t t 	 D c2@zz	� J.t; z/.�n/j.t;z;RC	.t;z// � er C S.t; z; R/er � er : (2.96)

Here J.t; z/ D
p
1C .@z	.t; z//2 denotes the Jacobian of the transformation

from Eulerian to Lagrangian coordinates, and er is the unit vector associated
with the vertical, r-direction.

Notice that in this 2D problem both the structure and fluid equations are written
in Cartesian coordinates, and so the Jacobian of the transformation between the
cylindrical and Cartesian coordinates does not appear in these equations. This
means, in particular, that the factorR that appears in equation (2.63) does not appear
in (2.96).

The Boundary and Initial Conditions:
At the inlet and outlet boundaries to the fluid domain we prescribe zero tangential

velocity and a given dynamic pressure p C �f
2

juj2:

p C �f

2
juj2 D Pin=out.t/;

ur D 0;

)
on �in=out; (2.97)

where Pin=out 2 L2loc.0;1/ are given. Therefore, the fluid flow is driven by a
prescribed dynamic pressure drop, and the flow enters and leaves the fluid domain
orthogonally to the inlet and outlet boundary.

At the bottom boundary we prescribe the symmetry boundary condition:

ur D @ruz D 0; on �b: (2.98)

At the end points of the thin structure we prescribe zero displacement:

	.t; 0/ D 	.t; L/ D 0: (2.99)

For the thick structure, we assume that the external (top) boundary r D H is
exposed to an external ambient pressure Pe :

Ser D �Peer ; on �ext; (2.100)

while at the end points of the annular sections of the thick structure, �sin=out, we
assume that the displacement is zero

d.t; 0; r/ D d.t; L; r/ D 0; for r 2 .R;H/:
The initial fluid and structural velocities, and the initial displacements are

given by

u.0; :/ D u0; 	.0; :/ D 	0; @t	.0; :/ D v0; d.0; :/ D d0; @td.0; :/ D V0; (2.101)
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and are assumed to belong to the following spaces: u0 2 L2.�F .0//, 	0 2 H1
0 .0; 1/,

v0 2 L2.0; 1/, V 0 2 L2.�S/, d0 2 H1.�S/, satisfying the following compatibility
conditions:

.	0.z/; 0/ D d0.z; R/;
	0.0/D	0.L/D v0.0/D v0.L/ D 0 D d0.0; :/ D d0.L; :/ D V0.0; :/ D V0.L; :/;

RC 	0.z/ > 0; z 2 Œ0; L�:
(2.102)

We study the existence of a weak solution to the nonlinear FSI problem (2.91)–
(2.102), in which the flow is driven by the time-dependent inlet and outlet dynamic
pressure data.

For simplicity, in the rest of this section, we will be setting all the parameters
in the problem to be equal to 1. This includes the domain parameters R and L, the
Lamé constants � and �, and the structure parameters �K; �S and h. Furthermore,
we will be assuming that the external pressure, given in (2.68), is equal to zero.
Alternatively, we subtract the constant external pressure data from the inlet and
outlet dynamic pressure data to obtain an equivalent problem.

2.6.2 The Energy of the Coupled Problem

By using the same approach as described in Sect. 2.5.1, one can now show that the
following energy estimate holds:

d

dt
.Ekin.t/C Eel.t//CD.t/ � C.Pin.t/; Pout.t//; (2.103)

where

Ekin.t/ WD 1

2

�
kuk2

L2.�F .t//
C k@t 	k2L2.�/ C k@tdk2

L2.�S/

�
;

Eel.t/ WD 1

2

�
k@z	k2L2.�/ C 2kD.d/k2

L2.�S /
C kr � dk2

L2.�S/

�
; (2.104)

denote the kinetic and elastic energy of the coupled problem, respectively, and the
term D.t/ captures viscous dissipation in the fluid:

D.t/ WD kD.u/k2
L2.�F .t//

: (2.105)

The constant C.Pin.t/; Pout.t/// depends only on the inlet and outlet pressure data,
which are both functions of time.
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2.6.3 The ALE Formulation and Lie Splitting

First-Order ALE Formulation

As mentioned earlier, since we consider nonlinear coupling between the fluid and
structure, the fluid domain changes in time. To prove the existence of a weak solu-
tion to (2.91)–(2.102) it is convenient to map the fluid domain onto a fixed domain
�F . The structural problems are already defined on fixed domains since they are
formulated in the Lagrangian framework. We map our fluid domain�F .t/ onto�F

by using an Arbitrary Lagrangian–Eulerian (ALE) mapping [21,52,85,132,133]. We
remark here that in our problem it is not convenient to use Lagrangian formulation
for the fluid sub-problem, as is done in, e.g., [34,44,102], since, in our problem, the
fluid domain consists of a fixed, control volume of a cylinder, with prescribed inlet
and outlet pressure data, which does not follow Largangian flow.

We begin by defining a family of ALE mappingsA	 parameterized by 	:

A	.t/ W �F ! �F .t/; A	.t/.Qz; Qr/ WD
� Qz
.1C 	.t; Qz//Qr

�
; .Qz; Qr/ 2 �F ;

(2.106)

where .Qz; Qr/ denote the coordinates in the reference domain �F D .0; 1/ � .0; 1/.
The mapping A	.t/ is a bijection, and its Jacobian is given by

jdetrA	.t/j D j1C 	.t; Qz/j: (2.107)

Composite functions with the ALE mapping will be denoted by

u	.t; :/ D u.t; :/ ı A	.t/ and p	.t; :/ D p.t; :/ ı A	.t/: (2.108)

The derivatives of composite functions satisfy:

@tu D @tu	 � .w	 � r	/u	; ru D r	u	; (2.109)

where the ALE domain velocity, w	, and the transformed gradient, r	, are given
by:

w	 D @t	Qrer ; r	 D

0
B@
@Qz � Qr @z	

1C 	
@Qr

1

1C 	
@Qr

1
CA : (2.110)

One can see that r	v D rv.rA	/�1: For the purposes of the existence proof we
also introduce the following notation:

�	 D �p	I C 2D	.u	/; D	.u	/ D 1

2
.r	u	 C .r	/u	/:
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We are now ready to rewrite problem (2.91)–(2.102) in ALE formulation. However,
before we do that, we will make one more important step in our strategy to prove
the existence of a weak solution to (2.91)–(2.102). Namely, as mentioned earlier,
we would like to “solve” the coupled FSI problem by approximating the problem
using the time-discretization via Lie operator splitting. Since Lie operator splitting
is defined for systems that are first-order in time, see Sect. 2.5.3, we have to replace
the second-order time-derivatives of 	 and d, with the first-order time-derivatives
of the thin and thick structure velocities, respectively. In Sect. 2.5.3 we use the
kinematic coupling condition (2.62) to achieve this goal. The kinematic coupling
condition states that the fluid–structure interface velocity is equal to the normal
trace of the fluid velocity on �	.t/, and so we will introduce a new variable, v, to
denote this trace, and replace @t	 by v everywhere in the structure equation. We
also introduce another new variable V D @td which denotes the thick structure
velocity. This enables us to rewrite problem (2.91)–(2.102) as a first-order system
in time.

Thus, the ALE formulation of problem (2.91)–(2.102), defined on the reference
domain �F , and written as a first-order system in time, is given by the following
(we drop the superscript 	 in u	 to simplify notation):

Find u.t; Qz; Qr/; p.t; Qz; Qr/; 	.t; Qz/, v.t; Qz/, d.t; Qz/ and V.t; Qz/ such that

@tu C ..u � w	/ � r	/u D r	 � �	;
r	 � u D 0;

�
in .0; T / ��F ; (2.111)

ur D 0;

@ruz D 0

�
on .0; T / � �b; (2.112)

p C 1
2
juj2 D Pin=out.t/;

ur D 0;

�
on .0; T / � �in=out; (2.113)

u D ver ;
d D 	er ;

@t 	 D v;

@t v � @2z	 D �J�n � er C Ser � er

9>>=
>>;

on .0; T / � .0; 1/; (2.114)

@td D V;
@tV D r � S;

�
on �S; (2.115)

	 D 0 on .0; T / � @�;
d D 0 on .0; T / � �sin=out

(2.116)

Ser D 0 on .0; T / � �ext: (2.117)

u.0; :/ D u0; 	.0; :/ D 	0; v.0; :/ D v0;d.0; :/ D d0;V.0; :/ D V0 at t D 0:

(2.118)
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This defines a parabolic–hyperbolic–hyperbolic nonlinear moving-boundary prob-
lem. The nonlinearity appears in the equations (2.111), and in the coupling
conditions (2.114) where the fluid quantities are evaluated at the deformed fluid–
structure interface 	.t; z/. Parabolic features are associated with the fluid prob-
lem (2.111)–(2.113), while hyperbolic features come from the 2D equations of
elasticity, and from the 1D wave equation modeling the fluid–structure interface,
described by the last equation in (2.114).

The Operator Splitting Scheme

To prove the existence of a weak solution to (2.111)–(2.118) we use the time-
discretization via operator splitting, see Sect. 2.5.3. We apply the splitting strategy,
described in Sect. 2.5.3, to separate the fluid sub-problem from the structure sub-
problem.

Problem A1: The Structure Elastodynamics Problem. In this step we solve an
elastodynamics problem for the location of the multi-layered cylindrical wall. The
problem is driven only by the initial data, i.e., the initial boundary velocity, taken
from the previous time step as the trace of the fluid velocity at the fluid–structure
interface. The fluid velocity u remains unchanged in this step. More precisely, the
problem reads:

Given .un; 	n; vn;dn;V n/ from the previous time step, find .u; v; 	;V ;d/ such
that:

@tu D 0; in .tn; tnC1/ ��F ;

@tV D r � S;
@td D V

�
in .tn; tnC1/ ��S;

d D 0 on �sin=out;

Ser D 0 on .tn; tnC1/ � �ext;

(2.119)

d D 	er on .tn; tnC1/ � .0; 1/;
@tv � @2z	 D Ser � er ;

@t 	 D v

�
on .tn; tnC1/ � .0; 1/;

	.0/ D 	.1/ D 0;

(2.120)

with u.tn/ D un; 	.tn/ D 	n; v.tn/ D vn; d.tn/ D dn; V.tn/ D Vn:

Then set unC 1
2 D u.tnC1/, 	nC 1

2 D 	.tnC1/, vnC 1
2 D v.tnC1/, dnC 1

2 D d.tnC1/,
VnC 1

2 D V.tnC1/.

Problem A2: The Fluid Problem. In this step we solve the Navier–Stokes
equations coupled with structure inertia through a “Robin-type” boundary condition
on � (lines 5 and 6 in (2.121) below). The kinematic coupling condition is implicitly
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satisfied. The structure displacement remains unchanged. With a slight abuse of
notation, the problem can be written as follows:

Find .u; v; 	;V ;d/ such that:

@t	 D 0 on .tn; tnC1/ � .0; 1/;
@td D 0 on .tn; tnC1/ ��S;

@tu C ..un � w	nC
1
2 / � r	n/u D r	n � �	n

r	n � u D 0

)
in .tn; tnC1/ ��F ;

@tv D �J�n � er
u D ver

�
on .tn; tnC1/ � .0; 1/; (2.121)

ur D 0

@ruz D 0

�
on .tn; tnC1/ � �b;

p C �f
2

juj2 D Pin=out.t/

ur D 0

�
on .tn; tnC1/ � �in=out;

with u.tn; :/ D unC 1
2 ; 	.tn; :/ D 	nC 1

2 ; v.tn; :/ D vnC 1
2 ; d.tn; :/ D dnC 1

2 ;

V.tn; :/ D VnC 1
2 :

Then set unC1 D u.tnC1/; 	nC1 D 	.tnC1/; vnC1 D v.tnC1/; dnC1 D 	.tnC1/;
VnC1 D V.tnC1/:

Notice that, since in this step 	 does not change, this problem is linear.
In numerical simulations, one can use the ALE mappingA	n to “transform” only

the time derivative term @tu onto the fixed domain �F while the rest of the PDE
is discretized on the current domain �F .t

n/. This gives rise to the domain velocity
term w in the equations, but avoids the unnecessary calculation of the transformed
gradient r	n . See equation (2.195) in Sect. 2.7.3, and Problem A2(b) in Sect. 2.7.5.
For the purposes of our proof, we will, however, remain working on the fixed,
reference domain�F .

It is important to notice that in Problem A2, the problem is “linearized” around
the previous location of the boundary, i.e., we work with the domain determined
by 	n, and not by 	nC1=2. This is in direct relation with the implementation of the
numerical scheme studied in [21, 29]. However, we also notice that ALE velocity,
wnC 1

2 , is taken from the just calculated Problem A1! This choice is crucial for
obtaining a semi-discrete version of an energy inequality, which will be discussed
in Sect. 2.6.5.

Next we use the splitting scheme described above to define approximate solutions
of (2.111)–(2.118) (or equivalently of problem (2.91)–(2.102) ) and show that the
approximate solutions converge to a weak solution, as �t ! 0.
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2.6.4 Weak Solutions

Notation and Function Spaces

Notation. To define weak solutions of the moving-boundary problem (2.91)–
(2.102) and of the moving-boundary problem (2.111)–(2.118) defined on a fixed
domain, the following notation will be useful:

• aS will denote the bilinear form associated with the elastic energy of the thick
structure:

aS.d; / D
Z
�S

�
2D.d/ W D. /C .r � d/ � .r � /�: (2.122)

Here “W” denotes the scalar product defined in (2.7).
• b will denote the following trilinear form corresponding to the (symmetrized)

nonlinear advection term in the Navier–Stokes equations:

b.t;u; v;w/ D 1

2

Z
�F .t/

.u � r/v � w � 1

2

Z
�F .t/

.u � r/w � v: (2.123)

• The linear functional which associates the inlet and outlet dynamic pressure
boundary data with a test function v will be denoted by:

hF.t/; vi�in=out D Pin.t/

Z
�in

vz � Pout.t/

Z
�out

vz:

Function Spaces. For the fluid velocity we would like to work with the classical
function space associated with weak solutions of the Navier–Stokes equations. This,
however, requires some additional consideration. Namely, since our thin structure
is governed by the linear wave equation, lacking the bending rigidity terms, weak
solutions cannot be expected to be Lipschitz-continuous. Indeed, from the energy
inequality (2.103) we only have 	 2 H1.0; 1/, and from Sobolev embedding we get
that 	 2 C0;1=2.0; 1/, which means that �F .t/ is not necessarily a Lipshitz domain.
However,�F .t/ is locally a sub-graph of a Hölder continuous function. In that case
one can define “Lagrangian” trace


�.t/ W C1.�F .t// ! C.�/;


�.t/ W v 7! v.t; z; r C 	.t; z//:
(2.124)

Furthermore, it was shown in [32, 79, 118] that the trace operator 
�.t/ can be
extended by continuity to a linear operator from H1.�F .t// to Hs.�/, 0 � s < 1

4
.

For a precise statement of the results about “Lagrangian” trace, see Theorem 2.2.
Now, the velocity solution space can be defined in the following way:
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VF .t/ D fu D .uz; ur / 2 C1.�F .t//
2 W r � u D 0;

uz D 0 on �.t/; ur D 0 on @�F .t/ n �.t/g;
VF .t/ D VF .t/

H1.�F .t//
:

(2.125)

Using the fact that �F .t/ is locally a sub-graph of a Hölder continuous function
we can get the following characterization of the velocity solution space VF .t/ (see
[32, 79]):

VF .t/ D fu D .uz; ur / 2 H1.�	.t//
2 W r � u D 0;

uz D 0 on �.t/; ur D 0 on @�	.t/ n �.t/g: (2.126)

The function space associated with weak solutions of the 1D linear wave equation
and the thick wall are given, respectively, by

VW D H1
0 .0; 1/; (2.127)

VS D f D . z;  r/ 2 H1.�S/
2 W  z D 0 on �;  D 0 on �sin=outg: (2.128)

Motivated by the energy inequality we also define the corresponding evolution
spaces for the fluid and structure sub-problems, respectively:

WF .0; T / D L1.0; T IL2.�F .t/// \L2.0; T IVF .t//; (2.129)

WW .0; T / D W 1;1.0; T IL2.0; 1//\ L2.0; T IVW /; (2.130)

WS .0; T / D W 1;1.0; T IL2.�S// \L2.0; T IVS /: (2.131)

Finally, we are in a position to define the solution space for the coupled fluid-multi-
layered-structure interaction problem. This space involves the kinematic coupling
condition, which is enforced in strong sense. The dynamic coupling condition will
be enforced in weak sense, through integration by parts in the weak formulation of
the problem. Thus, we define

W.0; T / D f.u; 	;d/ 2 WF .0; T / � WW .0; T / � WS.0; T / W
u.t; z; 1C 	.t; z// D @t	.t; z/er ; d.t; z; 1/ D 	.t; z/erg: (2.132)

Equality u.t; z; 1 C 	.t; z// D @t	.t; z/er is taken in the sense defined in [32, 118].
The corresponding test space will be denoted by

Q.0; T / D f.q;  ; / 2 C1
c .Œ0; T /IVF � VW � VS / W

q.t; z; 1C 	.t; z// D  .t; z/er ; .t; z; 1/ D  .t; z/er g: (2.133)

Notice the coupling conditions in the test space that are enforced at the fluid–
structure interface.
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Weak Solutions for the Problem Defined on the Moving Domain

We are now in a position to define weak solutions of fluid-multi-layered structure
interaction problem, defined on the moving domain�F .t/.

Definition 2.1. We say that .u; 	;d/ 2 W.0; T / is a weak solution of prob-
lem (2.91)–(2.102) if for every .q;  ; / 2 Q.0; T / the following equality holds:

�
Z T

0

Z
�F .t/

u � @tq C
Z T

0

b.t;u;u;q/C2
Z T

0

Z
�F .t/

D.u/ W D.q/� 1

2

Z T

0

Z 1

0

.@t	/
2 

�
Z T

0

Z 1

0

@t 	@t C
Z T

0

Z 1

0

@z	@z �
Z T

0

Z
�S

@td � @t C
Z T

0

aS .d ; /

D
Z T

0

hF.t/;qi�in=out C
Z
�	0

u0 � q.0/C
Z 1

0

v0 .0/C
Z
�S

V0 � .0/:
(2.134)

In deriving the weak formulation we used integration by parts, and the following
equalities which hold for smooth functions:

Z
�F .t/

.u � r/u � q D 1

2

Z
�F .t/

.u � r/u � q � 1

2

Z
�F .t/

.u � r/q � u

C1

2

Z 1

0

.@t	/
2 ˙ 1

2

Z
�out=in

jur j2vr ;

Z T

0

Z
�F .t/

@tu � q D �
Z T

0

Z
�F .t/

u � @tq �
Z
�	0

u0 � q.0/�
Z T

0

Z 1

0

.@t	/
2 :

Weak Solutions for the Problem Defined on a Fixed, Reference Domain

Since most of the analysis will be performed on the problem mapped to �F , we
rewrite the above definition in terms of �F using the ALE mapping A	.t/ defined
in (2.106). For this purpose, the following notation will be useful. We define the
transformed trilinear functional b	:

b	.u;u;q/ WD 1

2

Z
�F

.1C 	/..u � w	/ � r	/u � q � 1

2

Z
�F

.1C	/..u � w	/ � r	/q � u;

(2.135)

where 1C 	 is the Jacobian of the ALE mapping, calculated in (2.107). Notice that
we have included the ALE domain velocity w	 into b	.

It is important to point out that the transformed fluid velocity u	 is not
divergence-free anymore. Rather, it satisfies the transformed divergence-free
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condition r	 � u	 D 0. Furthermore, since 	 is not a Lipschitz function, the
ALE mapping is not necessarily a Lipschitz function either, and, as a result, u	 is
not necessarily an H1 function on �F . Therefore we need to redefine the function
spaces for the fluid velocity by introducing

V	F D fu	 W u 2 VF .t/g;

where u	 is defined in (2.108). Under the assumption 1 C 	.z/ > 0, z 2 Œ0; 1�, the
following defines a scalar product on V	F :

.u	; v	/V	
F

D
Z
�F

.1C 	/
�
u	 � v	 C r	u	 W r	v	

� D .u; v/H1.�F .t//:

Therefore, u 7! u	 is an isometric isomorphism between VF .t/ and V	F , so V	F is
also a Hilbert space. The function spaces W	

F .0; T / and W	.0; T / are defined as
before, but with V	F instead VF .t/. More precisely:

W	
F .0; T / D L1.0; T IL2.�F // \L2.0; T IV	F .t//; (2.136)

W≡.0; T / D f.u; 	;d/ 2 W	
F .0; T / � WW .0; T / � WS.0; T / W

u.t; z; 1/ D @t	.t; z/er ; 	.t; z/ D d.t; z; 1/g: (2.137)

The corresponding test space is defined by

Q≡.0; T / D f.q;  ; / 2 C1
c .Œ0; T /IV	F � VW � VS / W

q.t; z; 1/ D  .t; z/er ; .t; z; 1/ D  .t; z/er g: (2.138)

Definition 2.2. We say that .u; 	;d/ 2 W	.0; T / is a weak solution of prob-
lem (2.111)–(2.118) defined on the reference domain �F , if for every .q;  ; / 2
Q≡.0; T / the following equality holds:

�
Z T

0

Z
�F

.1C 	/u � @tq C
Z T

0

b	.u;u;q/C2
Z T

0

Z
�F

.1C 	/D	.u/ W D	.q/

�1
2

Z T

0

Z
�F

.@t	/u � q�
Z T

0

Z 1

0

@t 	@t C
Z T

0

Z 1

0

@z	@z 

�
Z T

0

Z
�S

@td � @t C
Z T

0

aS .d ; /

D
Z T

0

hF.t/;qi�in=out C
Z
�	0

u0 � q.0/C
Z 1

0

v0 .0/C
Z
�S

V0 � .0/:
(2.139)
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To see that this is consistent with the weak solution defined in Definition 2.1, we
present the main steps in the transformation of the first integral on the left-hand side
in (2.134), responsible for the fluid kinetic energy. Namely, we formally calculate:

�
Z
�F .t/

u � @tq D �
Z
�F

.1C 	/u	 � .@tq � .w	 � r	/q/ D �
Z
�F

.1C 	/u	 � @tq

C1

2

Z
�F

.1C 	/.w	 � r	/q � u	 C 1

2

Z
�F

.1C 	/.w	 � r	/q � u	:

In the last integral on the right-hand side we use the definition of w	 and of r	,
given in (2.110), to obtain

Z
�F

.1C 	/.w	 � r	/q � u	 D
Z
�F

@t	 Qr @Qrq � u	:

Using integration by parts with respect to r , keeping in mind that 	 does not depend
on r , we obtain

�
Z
�F .t/

u � @tq D �
Z
�F

.1C 	/u	 � .@tq � .w	 � r	/q/ D �
Z
�F

.1C 	/u	 � @tq

C 1

2

Z
�F

.1C 	/.w	 � r	/q � u	 � 1

2

Z
�F

.1C 	/.w	 � r	/u	 � q

� 1

2

Z
�F

@t	u	 � q C 1

2

Z 1

0

.@t	/
2 ;

By using this identity in (2.134), and by recalling the definitions for b and b	, we
obtain exactly the weak form (2.139).

In the remainder of this section we will be working on the fluid-multi-layered
structure interaction problem defined on the fixed domain �F , satisfying the weak
formulation presented in Definition 2.2. For brevity of notation, since no confusion
is possible, we omit the superscript “tilde” which is used to denote the coordinates
of points in �F .

2.6.5 Approximate Solutions

In this section we use the Lie operator splitting scheme and semi-discretization to
define a sequence of approximate solutions of the FSI problem (2.111)–(2.118).
Each of the sub-problems defined by the Lie splitting in Sect. 2.6.3 as Problem A1
and Problem A2 will be discretized in time using the Backward Euler scheme. This
approach defines a time step, which will be denoted by �t , and a number of time
sub-intervalsN 2 N, so that
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.0; T / D [N�1
nD0 .tn; tnC1/; tn D n�t; n D 0; : : : ; N � 1:

For every subdivision containing N 2 N sub-intervals, the vector of unknown
approximate solutions will be denoted by

X
nC i

2

N D
�

u
nC i

2

N ; v
nC i

2

N ; 	
nC i

2

N ;V
nC i

2

N ; d
nC i

2

N

�T
; n D 0; 1; : : : ; N � 1; i D 1; 2;

(2.140)

where i D 1; 2 denotes the solution of Problem A1 or A2, respectively. The initial
condition will be denoted by X0 D .u0; v0; 	0;V 0;d0/

T :

The semi-discretization and the splitting of the problem will be performed in such
a way that the semi-discrete version of the energy inequality (2.103) is preserved at
every time step. This is a crucial ingredient for the existence proof.

The semi-discrete versions of the kinetic and elastic energy (2.104), and of
dissipation (2.105) are defined by the following:

E
nC i

2

kin;N D 1

2

� Z
�F

.1C 	n�1Ci /junC i
2

N j2 C kvnC i
2

N k2
L2.0;1/

C kV nC i
2

N k2
L2.�S/

�
;

EnC1
el;N D 1

2

�
k@z	

nC 1
2

N k2
L2.0;1/

C 2kD.d
nC 1

2

N /k2
L2.�S/

C kr � dnC 1
2

N k2
L2.�S/

�
;

E
nC i

2

N D E
nC i

2

kin;N C EnC1
el;N ;

(2.141)

DnC1
N D �t

Z
�F

.1C 	n/jD	n.unC1
N /j2; n D 0; : : : ; N � 1; i D 0; 1: (2.142)

Throughout the rest of this section we fix the time step �t , i.e., we keep
N 2 N fixed, and study the semi-discretized sub-problems defined by
the Lie splitting. To simplify notation, we omit the subscript N and write

.unC i
2 ; vnC i

2 ; 	nC i
2 ;V nC i

2 ;dnC i
2 / instead of .u

nC i
2

N ; v
nC i

2

N ; 	
nC i

2

N ;V
nC i

2

N ;d
nC i

2

N /.

Semi-discretization of Problem A1

In this step u does not change, and so

unC 1
2 D un:

Functions .vnC 1
2 ; 	nC 1

2 ;VnC 1
2 ;UnC 1

2 / 2 V2W � V2S define a weak solution of the
semi-discretized Problem A1 if the following holds:

dnC 1
2 .z; 1/ D 	nC 1

2 .z; 1/er ; z 2 .0; 1/;
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dnC 1
2 � dn
�t

D V nC 1
2 ;
	nC 1

2 � 	n
�t

D vnC 1
2 ; (2.143)

Z
�S

VnC 1
2 � Vn

�t
�‰ C

Z 1

0

vnC 1
2 � vn
�t

 C aS.d
nC 1

2 ;‰/C
Z 1

0

@z	
nC 1

2 @z D 0;

for all . ;‰/ 2 VW � VS such that ‰.t; z; 1/ D  .t; z/. The first equation
enforces the kinematic coupling condition, the second row in (2.6.5) introduces the
structure velocities, while the third equation corresponds to a weak form of the
semi-discretized elastodynamics problem. Notice that we solve the thin and thick
structure problems as one problem. The thin structure enters as a boundary condition
for the thick structure problem.

Proposition 2.2. For each fixed �t > 0, problem (2.6.5) has a unique solution
.vnC 1

2 ; 	nC 1
2 ;V nC 1

2 ;dnC 1
2 / 2 V2W � V2S .

Proof. First notice that Korn’s inequality implies that the bilinear form aS is
coercive on VS . From here, the proof is a direct consequence of the Lax-Milgram
Lemma applied to the weak form

Z 1

0

	nC 1
2  C

Z
�S

dnC1 �‰ C .�t/2
� Z 1

0

@z	@z C aS.d
nC 1

2 ;‰/
�

D
Z L

0

�
�tvn C 	n

�
 C

Z
�S

.�tV n C dn/ �‰ ; 8. ;‰/ 2 fVW � VS j‰.t; z; 1/

D  .z; 1/g;

which is obtained after a substitution of vnC 1
2 and V nC 1

2 in the third equation
in (2.6.5), by using Eq. (2.6.5)2. ut
Proposition 2.3. For each fixed �t > 0, solution of problem (2.6.5) satisfies the
following discrete energy equality:

E
nC 1

2

kin;N C EnC1
el;N C 1

2

�kvnC 1
2 � vnk2

L2.0;1/
C kV nC 1

2 � V nk2
L2.�S /

Ck@z.	
nC 1

2 � 	n/k2
L2.0;1/

C aS.d
nC 1

2 � dn;dnC 1
2 � dn/� D En

kin;N C En
el;N ;

(2.144)

where the kinetic and elastic energy, En
kin;N , En

el;N , are defined in (2.141).

Proof. From the second row in (2.6.5) we immediately get

vnC 1
2 D 	nC 1

2 � 	n
�t

2 VW ; V nC 1
2 D dnC 1

2 � dn
�t

2 VS :
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Therefore, we can proceed as usual, by substituting the test functions in (2.6.5)
with structure velocities. More precisely, we replace the test function . ; / by
.vnC 1

2 ;V nC 1
2 / in the first term on the left-hand side, and then replace . ; / by

..	nC 1
2 � 	n/=�t; .dnC 1

2 � dn/=�t/ in the bilinear forms that correspond to the
elastic energy. To deal with the terms .vnC1=2 � vn/vnC1=2, .	nC1=2 � 	n/	nC1=2,
.V nC1=2 � V n/ � V nC1=2, and .dnC1=2 � dn/ � dnC1=2, we use the algebraic identity
.a� b/ � a D 1

2
.jaj2 C ja� bj2 � jbj2/. After multiplying the entire equation by�t ,

the third equation in (2.6.5) can be written as:

.kvnC 1
2 k2
L2.0;1/

C kvnC 1
2 � vnk2

L2.0;1/
/C .kV nC 1

2 k2
L2.�S/

C kV nC 1
2 � V nk2

L2.�S/
/

k@z	
nC 1

2 k2
L2.0;1/

C k@z.	
nC 1

2 � @z	
n/k2

L2.0;1/
C aS.d

nC 1
2 ;dnC 1

2 /

C aS.d
nC 1

2 � dn;dnC 1
2 � dn/ D kvnk2

L2.0;1/
C kV nk2

L2.�S/
C k@z	

nk2
L2.0;1/

C aS.d
n;dn/:

Since in this sub-problem unC 1
2 D un, we can add �f

R
�F
.1C	n/unC1=2 on the left-

hand side, and �f
R
�F
.1C	n/un on the right-hand side of the equation. Furthermore,

displacements dnC 1
2 and 	nC 1

2 do not change in Problem A2 (see (2.145)), and so
we can replace dn and 	n on the right-hand side of the equation with dn� 1

2 and
	n� 1

2 , respectively, to obtain exactly the energy equality (2.144). ut

Semi-discretization of Problem A2

In this step 	, d and V do not change, and so

	nC1 D 	nC 1
2 ; dnC1 D dnC 1

2 ; V nC1 D V nC 1
2 : (2.145)

Then, define .unC1; vnC1/ 2 V	
n

F � L2.0; 1/ to be a weak solution of Problem

A2 (2.121) if the following holds for each .q;  / 2 V	
n

F � L2.0; 1/ such that
qj� D  er , velocities .unC1; vnC1/:

Z
�

.1C 	n/

 
unC1 � unC 1

2

�t
� q C 1

2

h
.un � vnC 1

2 rer / � r	n
i

unC1 � q

�1
2

h
.un � vnC 1

2 rer / � r	n
i

q � unC1
�

C 1

2

Z
�

vnC 1
2 unC1 � q

C2
Z
�

.1C 	n/D	n.u/ W D	n.q/ (2.146)
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C�sh
Z 1

0

vnC1 � vnC 1
2

�t
 D �

Pn
in

Z 1

0

.qz/jzD0 � Pn
out

Z 1

0

.qz/jzDL
�
;

with r	n � unC1 D 0; unC1
j� D vnC1er ;

where Pn
in=out D 1

�t

Z .nC1/�t

n�t

Pin=out.t/dt.

The existence of a unique weak solution and energy estimate are given by the
following proposition.

Proposition 2.4. Let �t > 0, and assume that 	n are such that 1 C 	n � Rmin >

0; n D 0; : : : ; N . Then:

1. The fluid sub-problem defined by (2.146) has a unique weak solution
.unC1; vnC1/ 2 V	

n

F �L2.0; 1/;
2. Solution of problem (2.146) satisfies the following discrete energy inequality:

EnC1
kin;N C 1

2

Z
�F

.1C 	n/junC1 � unj2 C 1

2
kvnC1 � vnC 1

2 k2
L2.0;1/

CDnC1
N � E

nC 1
2

kin;N C C�t..P n
in/

2 C .P n
out/

2/;

(2.147)

where the kinetic energy En
N and dissipation Dn

N are defined in (2.141)
and (2.142), and the constant C depends only on the parameters in the problem,
and not on�t (or N ).

The proof of this proposition is identical to the proof presented in [119] which
concerns an FSI problem between an incompressible, viscous fluid and a thin elastic
structure modeled by a linearly elastic Koiter shell model. The fluid sub-problems
presented in [119] and in the present manuscript (Problem A2) are the same, except
for the fact that 	 in this manuscript satisfies the linear wave equation. Since 	nC1=2
satisfies an elliptic problem for the Laplace operator with the right-hand side given
in terms of approximate velocities vn; vnC1=2 2 L2.0; 1/ (see equation (2.6.5)), the
approximation 	nC1=2 is H2.0; 1/, and so the fluid domain in the semi-discretized
Problem A2 is, in fact, Lipschitz. Therefore, the proof of Proposition 2.4 is the same
as the proof of Proposition 3 [119] (for statement 1) and the proof of Proposition 4
[119] (for statement 2).

We pause for a second, and summarize what we have accomplished so far.
For a given �t > 0, the time interval .0; T / was divided into N D T=�t sub-
intervals .tn; tnC1/; n D 0; : : : ; N � 1. On each sub-interval .tn; tnC1/ we “solved”
the coupled FSI problem by applying the Lie splitting scheme. First, Problem
A1 was solved for the structure position and velocity, both thick and thin, and
then Problem A2 was solved to update fluid velocity and fluid–structure interface
velocity. We showed that each sub-problem has a unique solution, provided that
1 C 	n � Rmin > 0; n D 0; : : : ; N , and that each sub-problem solution satisfies
an energy estimate. When combined, the two energy estimates provide a discrete
version of the energy estimate (2.103). Thus, for each �t we have designed a
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time-marching, splitting scheme, which defines an approximate solution on .0; T /
of our main FSI problem (2.111)–(2.118). Furthermore, the scheme is designed in
such a way that for each �t > 0 the approximate FSI solution satisfies a discrete
version of an energy estimate for the continuous problem.

We would like to ultimately show that, as �t ! 0, the sequence of solutions
parameterized by N (or �t) converges to a weak solution of (2.111)–(2.118).
Furthermore, we also need to show that 1 C 	n � Rmin > 0 is satisfied for each
n D 0; : : : ; N �1. In order to obtain this result, it is crucial to show that the discrete
energy of the approximate FSI solutions defined for each�t is uniformly bounded,
independently of �t (or N ). This result is obtained by the following Lemma.

Lemma 2.1 (The uniform energy estimates). Let �t > 0 and N D T=�t > 0.

Furthermore, let E
nC 1

2

N , EnC1
N , and Dj

N be the total energy and dissipation given
by (2.141) and (2.142), respectively.

There exists a constantC > 0 independent of�t (andN ) such that the following
estimates hold:

1. E
nC 1

2

N � C; EnC1
N � C , for all n D 0; : : : ; N � 1;

2.
PN

jD1 D
j
N � C;

3.
N�1X
nD0

�Z
�F

.1C 	n/junC1 � unj2 C kvnC1 � vnC 1
2 k2
L2.0;1/

CkvnC 1
2 � vnk2

L2.0;1/
C kV nC1 � V nk2

L2.�S/

�
� C;

4.
N�1X
nD0

�
.k@z.	

nC1 � 	n/k2
L2.0;1/

C aS
�
dnC1 � dn;dnC1 � dn�� � C:

In fact, C D E0 C QC
�
kPink2

L2.0;T /
C kPoutk2L2.0;T /

�
, where QC is the constant

from (2.147), which depends only on the parameters in the problem.

Proof. We begin by adding the energy estimates (2.144) and (2.147) to obtain

E
nC1
N CD

nC1
N C 1

2

� Z
�F

.1C 	n/junC1 � unj2 C kvnC1 � vnC
1
2 k2

L2.0;1/

CkvnC
1
2 � vnk2

L2.0;1/
C kV nC1 � V nk2

L2.�S /
C k@z.	

nC
1
2 � 	n/k2

L2.0;1/

CaS �dnC1 � dn;dnC1 � dn
�� � En

N C QC�t..P n
in/
2 C .P n

out/
2/; n D 0; : : : ; N � 1:

Then, we calculate the sum, on both sides, and cancel out like terms in the kinetic
energy that appear on both sides of the inequality to obtain

EN
N C

N�1X
nD0

DnC1
N C 1

2

N�1X
nD0

� Z
�F

.1C 	n/junC1 � unj2 C kvnC1 � vnC 1
2 k2
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CkvnC 1
2 � vnk2

L2.0;1/
C kV nC1 � V nk2

L2.�S/
C k@z.	

nC 1
2 � 	n/k2

L2.0;1/
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CaS
�
dnC1 � dn;dnC1 � dn�� � E0 C QC�t

N�1X
nD0

..P n
in/
2 C .P n

out/
2/:

To estimate the term involving the inlet and outlet pressure, we recall that on every
sub-interval .tn; tnC1/ the pressure data is approximated by a constant which is
equal to the average value of the pressure over that time interval. Therefore, we
have, after using Hölder’s inequality:

�t

N�1X
nD0

.P n
in/

2 D �t

N�1X
nD0

 
1

�t

Z .nC1/�t

n�t

Pin.t/dt

!2
� kPink2

L2.0;T /
:

By using the pressure estimate to bound the right-hand side in the above energy
estimate, we have obtained all the statements in the Lemma, with the constant C
given by C D E0 C QCkPin=outk2L2.0;T /.

Notice that Statement 1 can be obtained in the same way by summing from 0 to
n � 1, for each n, instead of from 0 to N � 1. ut

We will use this Lemma in the next section to show convergence of approximate
solutions.

2.6.6 Convergence of Approximate Solutions

We define approximate solutions of problem (2.111)–(2.118) on .0; T / to be the
functions which are piece-wise constant on each sub-interval ..n�1/�t; n�t�; n D
1 : : : N of .0; T /, such that for t 2 ..n� 1/�t; n�t�; n D 1 : : : N;

uN .t; :/ D unN ; 	N .t; :/ D 	nN ; vN .t; :/ D vnN ; v
�
N .t; :/ D v

n� 1
2

N ; dN .t; :/ D dnN ;

V N .t; :/ D V n
N : (2.148)

See Fig. 2.10. Notice that functions v�
N D v

n�1=2
N are determined by Problem A1

(the elastodynamics sub-problem), while functions vN D vnN are determined by
Problem A2 (the fluid sub-problem). As a consequence, functions vN are equal to
the normal trace of the fluid velocity on � , i.e., uN D vN er , which may be different
from v�

N . However, we will show later that kvN � v�
N kL2.0;1/ ! 0, as N ! 1.

Using Lemma 2.1 we now show that these sequences are uniformly bounded in
the appropriate solution spaces.

We begin by showing that .	N /N2N is uniformly bounded inL1.0; T IH1
0 .0; 1//,

and that there exists a T > 0 for which 1C	nN > 0 holds independently ofN and n.

Proposition 2.5. The sequence .	N /N2N is uniformly bounded in

L1.0; T IH1
0 .0; 1//:
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Fig. 2.10 A sketch of uN

Moreover, for T small enough, we have

0 < Rmin � 1C 	N .t; z/ � Rmax; 8N 2 N; z 2 .0; 1/; t 2 .0; T /: (2.149)

Proof. From the energy estimate in Lemma 2.1 we have

k	N .t/k2L2.0;1/ C k@z	N .t/k2L2.0;1/;� C; 8t 2 Œ0; T �;

which implies

k	N kL1.0;T IH1
0 .0;1//

� C:

To show that the radius 1 C 	N is uniformly bounded away from zero for T small
enough, we first notice that the above inequality implies

k	nN � 	0kH1
0 .0;1/

� 2C; n D 1; : : : ; N; N 2 N:

Furthermore,

k	nN � 	0kL2.0;1/ �
n�1X
iD0

k	iC1N � 	iN kL2.0;1/ D �t

n�1X
iD0

kviC 1
2

N kL2.0;1/;

where we recall that 	0N D 	0. Lemma 2.1 implies that E
nC 1

2

N � C , where C is
independent of N . Combined with the above inequality this implies

k	nN � 	0kL2.0;1/ � Cn�t � CT; n D 1; : : : ; N; N 2 N:

Now, since k	nN �	0kL2.0;1/ and k	nN �	0kH1
0 .0;1/

are uniformly bounded, we can use
the interpolation inequality for Sobolev spaces, Theorem 4.17, p. 79 in [1], to get

k	nN � 	0kHs.0;1/ � 2CT 1�s; n D 1; : : : ; N; N 2 N; for 0 < s < 1:

From Lemma 2.1 we see that C depends on T through the norms of the inlet and
outlet data in such a way that C is an increasing function of T . Therefore, by
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choosingT small, we can make k	nN�	0kHs.0;1/ arbitrarily small for n D 1; : : : : ; N ,
N 2 N. Because of the Sobolev embedding of Hs.0; 1/ into C Œ0; 1�, for s > 1=2,
we can also make k	nN � 	0kCŒ0;1� arbitrarily small. Since the initial data 	0 is such
that 1 C 	0.z/ > 0 (due to the conditions listed in (2.102)), we see that for T > 0

small enough, there exist Rmin; Rmax > 0, such that

0 < Rmin � 1C 	N .t; z/ � Rmax; 8N 2 N; z 2 .0; 1/; t 2 .0; T /: ut

We will show in the end that our existence result holds not only locally in time,
i.e., for small T > 0, but rather, it can be extended all the way until either T D 1,
or until the lateral walls of the channel touch each other.

Proposition 2.5 implies, among other things, that the standard L2-norm, and the
following weighted L2-norm are equivalent: for every f 2 L2.�F /, there exist
constants C1; C2 > 0, which depend only on Rmin; Rmax, and not on f or N , such
that

C1

Z
�F

.1C 	N /f
2 � kf k2

L2.�F /
� C2

Z
�F

.1C 	N /f
2: (2.150)

We will be using this property in the next section to prove strong convergence of
approximate solutions.

Next we show that the sequences of approximate solutions for the velocity and
its trace on the lateral boundary, as well as the displacement of the thick structure
and the thick structure velocity, are uniformly bounded in the appropriate norms. To
do that, we introduce the following notation which will be useful in the remainder
of this section to prove compactness: denote by h the translation in time by h of a
function f

hf .t; :/ D f .t � h; :/; h 2 R: (2.151)

Proposition 2.6. The following statements hold:

1. .vN /N2N, .v�
N /N2N are uniformly bounded in L1.0; T IL2.0; 1//.

2. .uN /N2N is uniformly bounded in L1.0; T IL2.�F //.
3. .r�t 	N uN /N2N is uniformly bounded in L2..0; T / ��F /.
4. .dN /N2N is uniformly bounded in L1.0; T IH1.�S//.
5. .V N /N2N is uniformly bounded in L1.0; T IL2.�S//.

Proof. The uniform boundedness of .vN /N2N; .v�
N /N2N, .dN /N2N; .V N /N2N, and

the uniform boundedness of .uN /N2N in L1.0; T IL2.�F // follow directly from
Statements 1 and 2 of Lemma 2.1, and from the definition of .vN /n2N; .v�

N /N2N,
.dN /N2N; .V N /N2N and .uN /N2N as step-functions in t so that

Z T

0

kvN k2
L2.0;1/

dt D
N�1X
nD0

kvnN k2
L2.0;1/

�t:
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It remains to show uniform boundedness of .r�t 	N uN /N2N in L2..0; T / � �F /.
From Lemma 2.1 we only know that the symmetrized gradient is bounded in the
following way:

NX
nD1

Z
�F

.1C 	n�1
N /jD	n�1

N .unN /j2�t � C: (2.152)

We cannot immediately apply Korn’s inequality since estimate (2.152) is given in
terms of the transformed symmetrized gradient. Thus, there are some technical
difficulties that need to be overcome due to the fact that our problem involves
moving domains. To get around this difficulty we take the following approach.

We first transform the problem back to the physical fluid domain �
	n�1
N

F which is
defined by the lateral boundary 	n�1

N , on which uN is defined. There, instead of
the transformed gradient, we have the standard gradient, and we can apply Korn’s
inequality in the usual way. However, since the Korn constant depends on the
domain, we will need a result which provides a universal Korn constant, independent
of the family of domains under consideration. Indeed, a result of this kind was
obtained in [32, 119, 120, 143], assuming certain domain regularity. In particular,
a calculation in [120] showed that the following Korn’s equality holds for the space
VF .t/:

kruN;nk2
L2.�

	n�1
N
F /

D 2kD.uN;n/k2
L2.�

	n�1
N
F /

: (2.153)

Notice that the Korn constant (the number 2) is, indeed, domain independent. The
proof of this Korn equality, presented in [120], is similar to the proof in Chambolle et
al. [32, Lemma 6, p. 377], with the slightly different assumptions. By using (2.153)
and by mapping everything back to the fixed domain�F , one recovers the following
Korn’s equality on �F :

2

Z
�F

.1C 	n�1
N /jD	n�1

N .unN /j2 D
Z
�F

.1C 	n�1
N /jr	n�1

N .unN /j2: (2.154)

By summing equalities (2.154) for n D; 1 : : : ; N , and by using (2.150), we get
uniform boundedness of .r�t	N uN /N2N in L2..0; T / ��F /. ut

From the uniform boundedness of approximate sequences, the following weak
and weak* convergence results follow.

Lemma 2.2 (Weak and Weak* Convergence Results). There exist subsequences
.	N /N2N, .vN /N2N, .v�

N /N2N, .dN /N2N, .V N /N2N and .uN /N2N, and the functions
	 2 L1.0; T IH1

0 .0; 1//, v; v
� 2 L1.0; T IL2.0; 1//, d 2 L1.0; T IVS/, V 2

L1.0; T IL2.�S//, u 2 L1.0; T IL2.�F // and G 2 L2..0; T / ��F / such that
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	N * 	 weakly in L1.0; T IH1
0 .0; 1//;

vN * v weakly in L1.0; T IL2.0; 1//;
v�
N * v� weakly in L1.0; T IL2.0; 1//;

dN * d weakly in L1.0; T IH1.�S//;

V N * V weakly in L1.0; T IL2.�S//;

uN * u weakly in L1.0; T IL2.�F //;

r�t 	N uN * G weakly in L2..0; T / ��F /:

(2.155)

Furthermore,

v D v�: (2.156)

Proof. The only thing left to show is that v D v�. For this purpose, we multiply the
second statement in Lemma 2.1 by �t , and notice again that kvN k2

L2..0;T /�.0;1// D
�t
PN

nD1 kvnN k2
L2.0;1/

. This implies kvN � v�
N kL2..0;T /�.0;1// � C

p
�t , and we have

that in the limit, as �t ! 0, v D v�. ut
Naturally, our goal is to prove that G D r	u. However, to achieve this goal

we will need some stronger convergence properties of approximate solutions.
Therefore, we postpone the proof until Sect. 2.6.7.

Strong Convergence of Approximate Sequences

Due to the nonlinearity of our FSI problem, to show that the limits obtained in the
previous Lemma satisfy the weak form of problem (2.111)–(2.118), we will need to
show that the approximate sequences converge strongly in the appropriate function
spaces. The strong convergence results will be achieved by using the following
compactness result by Simon [137]:

Theorem 2.1 ([137]). Let X be a Banach space and F ,! Lq.0; T IX/ with 1 �
q < 1. Then F is a relatively compact set in Lq.0; T IX/ if and only if

(i)
n Z t2

t1

f .t/dt W f 2 F
o

is relatively compact in X , 0 < t1 < t2 < T ,

(ii) khf � f kLq.h;T IX/ ! 0 as h goes to zero, uniformly with respect to f 2 F .

This result was used in [119] to show compactness, but the proof was simpler
because of the higher regularity of the lateral boundary of the fluid domain, namely,
of the fluid–structure interface. In the present case we need to obtain some additional
regularity for the fluid velocity uN on �F and its trace vN on the lateral boundary,
before we can use Theorem 2.1 to show strong convergence of approximate
sequences. Notice, we only have that our fluid velocity on�F is uniformly bounded
in L2.�F /, plus a condition that the transformed gradient r�t 	N uN is uniformly
bounded in L2. Since 	 is not Lipschitz, we cannot get that the gradient ruN is
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uniformly bounded in L2 on �F . This lower regularity of 	N causes additional
problems in obtaining regularity of uN on�F , namely it will imply lower regularity
of uN in the sense that u 2 Hs.�F /, for 0 < s < 1=2, and not H1.�F /. Luckily,
according to the trace theorem in [118], this will still allow us to make sense of the
trace of uN on � . More precisely, we prove the following Lemma.

Lemma 2.3. The following statements hold:

1. .uN /N2N is uniformly bounded in L2.0; T IHs.�F //, 0 < s < 1=2;
2. .vN /N2N is uniformly bounded in L2.0; T IHs=2.0; 1//, 0 < s < 1=2.

Proof. We start by mapping the fluid velocity uN defined on �F , back to the
physical fluid domain with the lateral boundary �t	N .t; z/ D 	N .t � �t; z/. We
denote by uN .t; :/ the fluid velocity on the physical domain��t	N :

uN .t; :/ D uN .t; :/ ı A�1
�t 	N

.t/; N 2 N:

As before, we use sub-script N to denote fluid velocity defined on the physical
space. From (2.109) we see that

ruN D r�t	N uN :

Proposition 2.6, statement 3, implies that the sequence .ruN /N2N is uniformly
bounded in L2, and so we have that kuN kL2.0;T IH1.��t 	//

is uniformly bounded.

Now, from the fact that the fluid velocities uN defined on the physical domains
are uniformly bounded in H1, we would like to obtain a similar result for the
velocities uN defined on the reference domain �F . For this purpose, we recall that
the functions 	N ;N 2 N that are involved in the ALE mappings A�t 	N .t/, N 2 N,
are uniformly bounded in H1.0; 1/. This is, unfortunately, not sufficient to obtain
uniform boundedness of the gradients .ruN /N2N in L2.�F /. However, from the
Sobolev embedding H1.0; 1/ ,! C0;1=2.0; 1/ we have that the sequence .	N /N2N
is uniformly bounded in L1.0; T IC0;1=2.0; 1//. This will help us obtain uniform
boundedness of .uN /n2N in a slightly lower-regularity space, namely in the space
L2.0; T IHs.�F //, 0 < s < 1=2. To see this, we first notice that uN on �F can be
expressed in terms of function uN defined on ��t 	N as

uN .t; Qz; Qr/ D uN .t; Qz; .1C �t	N /.t; Qz//Qr/; .Qz; Qr/ 2 �F : (2.157)

Therefore, uN can be written as an H1-function uN composed with a C0;1=2-
function 	N , in the way described in (2.157). The following Lemma, proved in
[118], implies that uN belongs to a space with asymmetric regularity (more regular
in Qr than in Qz) in the sense that uN 2 L2.0; 1IHs.0; 1//; 0 < s < 1=2, and
@QruN 2 L2.0; 1IL2.0; 1//. We use notation from Lions and Magenes [112], p. 10,
to denote the corresponding function space by

W.0; 1I s/ D ff W f 2 L2.0; 1IHs.0; 1///; @Qr f 2 L2.0; 1IL2.0; 1//g:
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More precisely, Lemma 3.3 from [118] states the following:

Lemma 2.4 ([118]). Let 	 2 C0;˛ , 0 < ˛ < 1, and let u 2 H1.�	/. Define

Qu.Qr; Qz/ D u.Qz; .1C 	.Qz//Qr/; .Qz; Qr/ 2 �F : (2.158)

Then Qu 2 W.0; 1I s/ for 0 < s < ˛.

Thus, Lemma 2.4 implies that uN .t; :/ 2 W.0; 1I s/ for 0 < s < 1=2. Now, using
the fact W.0; 1I s/ ,! Hs.�F / we get

kuN .t; :/k2Hs.�F /
� CkuN .t; :/k2

H1.�	.t��t//
; a:a: t 2 .0; T /; 0 < s < 1=2:

By integrating the above inequality w.r.t. t we get the first statement of Lemma 2.3.
To prove the second statement of Lemma 2.3 we use Theorem 3.1 of [118], which

states that the notion of trace for the functions of the form (2.157) for which uN 2
H1 and 	N 2 C0;1=2, can be defined in the sense of Hs=2, 0 < s < 1=2. For
completeness, we state Theorem 3.2 of [118] here.

Theorem 2.2 ([118]). Let ˛ < 1 and let 	 be such that

	 2 C0;˛.0; 1/; 	.z/ � 	min > �1; z 2 Œ0; 1�; 	.0/ D 	.1/ D 1:

Then, the trace operator


	 W C1.�	/ ! C.�/

that associates with each function u 2 C1.�	/ its “Lagrangian trace” u.Qz; 1 C
	.Qz// 2 C.�/, defined via (2.158) for Qr D 1,


	 W u 7! u.Qz; 1C 	.Qz//;

can be extended by continuity to a linear operator from H1.�	/ to Hs.�/ for 0 �
s < ˛=2.

By recalling that vN D .uN /j� , this proves the second statement of Lemma 2.3.
ut

Notice that the difficulty associated with bounding the gradient of uN is
somewhat artificial, since the gradient of the fluid velocity uN defined on the
physical domain is, in fact, uniformly bounded (by Proposition 2.6). Namely, the
difficulty is imposed by the fact that we decided to work with the problem defined
on a fixed domain �F , and not on the family of moving domains. This decision,
however, simplifies other parts of the main existence proof. The “expense” that we
had to pay for this decision is embedded in the proof of Lemma 2.3.

We are now ready to use Theorem 2.1 to prove compactness of the sequences
.vN /N2N and .uN /N2N.
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Theorem 2.3. Sequences .vN /N2N and .uN /N2N are relatively compact in
L2.0; T IL2.0; 1// and L2.0; T IL2.�F //, respectively.

Proof. We use Theorem 2.1 with q D 2, and X D L2. We verify that both
assumptions (i) and (ii) hold.

Assumption (i): To show that the sequences .vN /N2N and .uN /N2N are rel-
atively compact in L2.0; 1/ and L2.�F /, respectively, we use Lemma 2.3 and
the compactness of the embeddings Hs.�F / ,! L2.�F / and Hs=2.0; 1/ ,!
L2.0; 1/, respectively, for 0 < s < 1=2. Namely, from Lemma 2.3 we know
that sequences .uN /N2N and .vN /N2N are uniformly bounded in L2.0; T IHs.�F //

and L2.0; T IHs=2.0; 1//, respectively, for 0 < s < 1=2. The compactness of the
embeddings Hs.�F / ,! L2.�F / and Hs=2.0; 1/ ,! L2.0; 1/ verify Assumption
(i) of Theorem 2.1.

Assumption (ii): We prove that the “integral equicontinuity,” stated in assumption
(ii) of Theorem 2.1, holds for the sequence .vN /N2N. Analogous reasoning can be
used for .uN /N2N. Thus, we want to show that for each " > 0, there exists a ı > 0

such that

khvN � vN k2
L2.!IL2.0;1// < "; 8jhj < ı; independently of N 2 N; (2.159)

where ! is an arbitrary compact subset of �. Indeed, we will show that for each
" > 0, the following choice of ı:

ı WD minfdist.!; @�/=2; "=.2C /g

provides the desired estimate, where C is the constant from Lemma 2.1 (indepen-
dent of N ).

Let h be an arbitrary real number whose absolute value is less than ı. We want to
show that (2.159) holds for all �t D T=N . This will be shown in two steps. First,
we will show that (2.159) holds for the case when�t � h (Case 1), and then for the
case when �t < h (Case 2).

A short remark is in order: For a given ı > 0, we will have �t < ı for infinitely
many N , and both cases will apply. For a finite number of functions .vN /, we will,
however, have that �t � ı. For those functions (2.159) needs to be proved for all
�t such that jhj < ı � �t , which falls into Case 1 below. Thus, Cases 1 and 2
cover all the possibilities.

Case 1: �t � h. We calculate the shift by h to obtain (see Fig. 2.11, left):

khvN � vN k2
L2.!IL2.0;1// �

N�1X
jD1

Z j�t

j�t�h
kvjN � v

jC1
N k2

L2.0;1/

D h

N�1X
jD1

kvjN � v
jC1
N k2

L2.0;1/
� hC < "=2 < ":
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Fig. 2.11 Left panel—Case 1: �t � h. The graph of vN is shown in solid line, while the
graph of the shifted function hvN is shown in dashed line. The shaded area denotes the nonzero
contributions to the norm khvN � vN k2

L2
. Right panel—Case2: �t < h D �t C s; 0 < s < �t .

The graph of vN is shown in solid line, while the graph of the shifted function hvN is shown in
the dashed line. The shaded areas denote nonzero contributions to the norm khvN � vN k2

L2
. The

two colors represent the contributions to the first and second integral in (2.160) separately

The last inequality follows from jhj < ı � "=.2C /.
Case 2: �t < h. In this case we can write h D l�t C s for some ł 2 N,
0 < s � �t . Similarly, as in the first case, we get (see Fig. 2.11, right):

khvN � vN k2
L2.!IL2.0;1// D

N�l�1X
jD1

 Z .jC1/�t�s

j�t

kvjN � vjCl
N k2

L2.0;1/

C
Z .jC1/�t

.jC1/�t�s
kvjN � v

jClC1
N k2

L2.0;1/

!
: (2.160)

Now we use the triangle inequality to bound each term under the two integrals
from above by

PlC1
iD1 kvjCi�1

N � v
jCi
N k2

L2.0;1/
: After combining the two terms

together one obtains

khvN � vN k2
L2.!IL2.0;1// � �t

N�l�1X
jD1

lC1X
iD1

kvjCi�1
N � v

jCi
N k2

L2.0;1/
: (2.161)

Lemma 2.1 now implies that the right-hand side of (2.161) is bounded by�t.lC
1/C . Now, since h D l�t C s we see that �t � h=l , and so the right-hand side
of (2.161) is bounded by lC1

l
hC . Since jhj < ı and from the form of ı we get

khvN � vN k2
L2.!IL2.0;1// � �t.l C 1/C � l C 1

l
hC � l C 1

l

"

2
< ":

Thus, if we set ! D Œı=2; T � ı=2� we have shown:

kı=2vN � vN k2
L2.ı=2;T�ı=2IL2.0;1// < "; N 2 N:
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To show that condition (ii) from Theorem 2.1 holds it remains to estimate
kı=2vN � vN k2

L2.T�ı=2;T IL2.0;1//. From the first inequality in Lemma 2.1 (bound-

edness of v
nC i

2

N ; i D 1; 2 in L2.0; 1/) we have

Z T

T�ı=2
kı=2vN � vN k2

L2.0;1/
� ı

2
2C < "; N 2 N:

Thus, we have verified all the assumptions of Theorem 2.1, and so the com-
pactness result for .vN /N2N follows from Theorem 2.1. Similar arguments imply
compactness of .uN /N2N. ut
To show compactness of .	N /N2N we use the approach similar to that in

[119], except that, due to the weaker regularity properties of 	N , we will have
to use different embedding results (Hilbert interpolation inequalities). In the end,
compactness of the sequence of lateral boundary approximation will follow due to
the Arzelà–Ascoli Theorem.

As in [119], we start by introducing a slightly different set of approximate
functions of u, v, 	 and V . Namely, for each fixed �t (or N 2 N), define QuN ,
Q	N , QvN and QV N to be continuous, linear on each sub-interval Œ.n� 1/�t; n�t�, and
such that for n D 0; : : : ; N :

QuN .n�t; :/ D uN .n�t; :/; QvN .n�t; :/ D vN .n�t; :/;

Q	N .n�t; :/ D 	N .n�t; :/; QV N .n�t; :/ D V N .n�t; :/;
(2.162)

See Fig. 2.12. A straightforward calculation gives the following inequalities (see
[141, p. 328])

kvN � QvN k2
L2.0;T IL2.0;1// � �t

3

NX
nD1

kvnC1 � vnk2
L2.0;1/

;

kuN � QuN k2
L2.0;T IL2.�F // � �t

3

NX
nD1

kunC1 � unk2
L2.�F /

;

k	N � Q	N k2
L2.0;T IL2.0;1// � �t

3

NX
nD1

k	nC1 � 	nk2
L2.0;1/

;

kV N � QV N k2
L2.0;T IL2.�S// � �t

3

NX
nD1

kV nC1 � V nk2
L2.�S/

;

(2.163)

Now from

@t Q	N .t/ D 	nC1 � 	n

�t
D 	nC1=2 � 	n

�t
D vnC 1

2 ; t 2 .n�t; .nC 1/�t/;
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Fig. 2.12 A sketch of QuN

since v�
N was defined in (2.148) as a piece-wise constant function defined via

v�
N .t; �/ D vnC 1

2 , for t 2 .n�t; .nC 1/�t�, we see that

@t Q	N D v�
N a:e: on .0; T /: (2.164)

Lemma 2.1 (the boundedness of E
nC i

2

N ) then implies

. Q	N /N2N is bounded in L1.0; T IH1
0 .0; 1//\W 1;1.0; T IL2.0; 1//:

We now use the following result on continuous embeddings:

L1.0; T IH1
0 .0; 1//\W 1;1.0; T IL2.0; 1// ,! C0;1�˛.Œ0; T �IH˛.0; 1//; (2.165)

for 0 < ˛ < 1. This result follows from the standard Hilbert interpolation
inequalities, see [112]. A slightly different result (assuming higher regularity)
was also used in [79] to deal with a set of mollifying functions approximating
a solution to a moving-boundary problem between a viscous fluid and an elastic
plate. From (2.165) we see that . Q	N /N2N is also bounded (uniformly in N ) in
C0;1�˛.Œ0; T �IH˛.0; 1//. Now, from the continuous embedding of H˛.0; 1/ into
H˛�� , and by applying the Arzelà–Ascoli Theorem, we conclude that sequence
. Q	N /N2N has a convergent subsequence, which we will again denote by . Q	N /N2N,
such that

Q	N ! Q	 in C.Œ0; T �IHs.0; 1//; 0 < s < 1:

Since (2.163) implies that . Q	N /N2N and .	N /N2N have the same limit, we have
	 D Q	 2 C.Œ0; T �IHs.0; 1//, where 	 is the weak* limit of .	N /N2N, discussed
in (2.155). Thus, we have

Q	N ! 	 in C.Œ0; T �IHs.0; 1//; 0 < s < 1:

We can now prove the following lemma:
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Lemma 2.5. 	N ! 	 in L1.0; T IHs.0; 1//, 0 < s < 1.

Proof. The proof is similar to the proof of Lemma 3 in [119]. The result
follows from the continuity in time of 	, and from the fact that Q	N !
	 in C.Œ0; T �IHs.0; 1//, for 0 < s < 1, applied to the inequality

k	N .t/ � 	.t/kHs.0;1/ D k	N .t/ � 	.n�t/C 	.n�t/ � 	.t/kHs.0;1/

D k	N .n�t/ � 	.n�t/C 	.n�t/ � 	.t/kHs.0;1/

� k	N .n�t/ � 	.n�t/k C k	.n�t/ � 	.t/kHs.0;1/

D kQ	N .n�t/ � 	.n�t/kHs.0;1/ C k	.n�t/ � 	.t/kHs.0;1/: ut

The strong convergence results obtained in Theorem 2.3 and Lemma 2.5 can be
summarized as follows: there exist subsequences .uN /N2N, .vN /N2N and .	N /N2N
such that

uN ! u in L2.0; T IL2.�F //;

vN ! v in L2.0; T IL2.0; 1//;
�tuN ! u in L2.0; T IL2.�F //;

�tvN ! v in L2.0; T IL2.0; 1//;
	N ! 	 in L1.0; T IHs.0; 1//; 0 � s < 1:

(2.166)

Because of the uniqueness of derivatives, we also have v D @t	 in the sense of dis-
tributions. The statements about the convergence of .�tuN /N2N and .�tvN /N2N
follow directly from

k�tuN � uN k2
L2..0;T /��F / C k�tvN � vN k2

L2..0;T /�.0;1// � C�t; (2.167)

which is obtained after multiplying the third equality of Lemma 2.1 by �t .
Furthermore, one can also show that subsequences . QvN /N , . QuN /N and . QV N /N

also converge to v, u and V , respectively. More precisely,

QuN ! u in L2.0; T IL2.�F //;

QvN ! v in L2.0; T IL2.0; 1//;
QV N * V weakly in L1.0; T IL2.�S//

(2.168)

This statement follows directly from the inequalities (2.163) and Lemma 2.1,
which provides uniform boundedness of the sums on the right-hand sides of the
inequalities.

We conclude this section by showing one last convergence result that will be used
in the next section to prove that the limiting functions satisfy weak formulation of
the FSI problem. Namely, we want to show that

	N ! 	 in L1.0; T IC Œ0; 1�/;
�t	N ! 	 in L1.0; T IC Œ0; 1�/: (2.169)
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The first statement is a direct consequence of Lemma 2.5 in which we proved that
	N ! 	 in L1.0; T IHs.0; 1//, 0 < s < 1. For s > 1

2
this implies

	N ! 	 in L1.0; T IC Œ0; 1�/: (2.170)

To show convergence of the shifted displacements �t	N to the same limiting
function 	, we recall that

Q	N ! 	 in C.Œ0; T �IHsŒ0; L�/; 0 < s < 1;

and that . Q	N /N2N is uniformly bounded in C0;1�˛.Œ0; T �IH˛.0; 1//, 0 < ˛ < 1.
Uniform boundedness of . Q	N /N2N in C0;1�˛.Œ0; T �IH˛.0; 1// implies that there
exists a constant C > 0, independent of N , such that

k Q	N ..n� 1/�t/ � Q	N .n�t/kH˛.0;1/ � C j�t j1�˛:

This means that for each " > 0, there exists an N1 > 0 such that

k Q	N ..n � 1/�t/ � Q	N .n�t/kH˛.0;1/ � "

2
; for all N � N1:

Here, N1 is chosen by recalling that �t D T=N , and so the right-hand side implies
that we want an N1 such that

C

�
T

N

�1�˛
<
"

2
for all N � N1:

Now, convergence Q	N ! 	 in C.Œ0; T �IHsŒ0; 1�/; 0 < s < 1; implies that for each
" > 0, there exists an N2 > 0 such that

k Q	N .n�t/ � 	.t/kHs.0;1/ <
"

2
; for all N � N2:

We will use this to show that for each " > 0 there exists an N � � maxfN1;N2g,
such that

k�t Q	N .t/ � 	.t/kHs.0;1/ < "; for all N � N �:

Indeed, let t 2 .0; T /. Then there exists an n such that t 2 ..n � 1/�t; n�t�. We
calculate

k�t Q	N .t/ � 	.t/kHs.0;1/ D k�t Q	N .t/ � Q	N .n�t/C Q	N .n�t/ � 	.t/kHs.0;1/

D kQ	N ..n� 1/�t/ � Q	N .n�t/C Q	N .n�t/ � 	.t/kHs.0;1/

� kQ	N ..n � 1/�t/ � Q	N .n�t/kHs.0;1/ C kQ	N .n�t/ � 	.t/kHs.0;1/:
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The first term is less than "=2 by the uniform boundedness of . Q	N /N2N in
C0;1�˛.Œ0; T �IH˛.0; 1//, while the second term is less than "=2 by the convergence
of Q	N to 	 in C.Œ0; T �IHsŒ0; 1�/; 0 < s < 1.

Now, since �t Q	N D B.�t	N /, we can use the same argument as in Lemma 2.5

to show that sequences B.�t	N / and �t	N both converge to the same limit 	 in
L1.0; T IHs.0; 1//, for 0 < s < 1.

2.6.7 The Limiting Problem and Weak Solution

Next we want to show that the limiting functions satisfy the weak form (2.139) of
the full fluid–structure iteration problem. In this vein, one of the things that needs
to be considered is what happens in the limit as N ! 1, i.e., as �t ! 0, of
the weak form of the fluid sub-problem (2.146). Before we pass to the limit we
must observe that, unfortunately, the velocity test functions in (2.146) depend onN !
More precisely, they depend on 	nN because of the requirement that the transformed
divergence-free condition r	nN � q D 0 must be satisfied. This is a consequence of
the fact that we mapped our fluid sub-problem onto a fixed domain �F . Therefore,
we need to take special care when constructing suitable velocity test functions and
passing to the limit in (2.146).

2.6.8 Construction of the Appropriate Test Functions

We begin by recalling that test functions .q;  ; / for the limiting problem are
defined by the space Q, given in (2.133), which depends on 	. Similarly, the test
spaces for the approximate problems depend on N through the dependence on 	N .

To deal with the dependence of test functions on N , we follow the same ideas
as those presented in [32, 119]. We restrict ourselves to a dense subset X of all test
functions in Q that is independent of 	N even for the approximate problems. We
construct the set X to consist of the test functions .q;  ; / 2 X D XF �XW �XS ,
such that the velocity components q 2 XF are smooth, independent of N , and
r �q D 0. Such functions can be constructed as an algebraic sum of the functions q0
that have compact support in�	[�in [�out [�b , plus a function q1, which captures
the behavior of the solution at the boundary �	. More precisely, let �min and �max

denote the fluid domains associated with the radii Rmin and Rmax, respectively.

1. Definition of test functions .q0; 0; 0/ on .0; T /��max ��S : Consider all smooth
functions q with compact support in�	[�in [�out [�b, and such that r �q D 0.
Then we can extend q by 0 to a divergence-free vector field on .0; T / � �max.
This defines q0.

Notice that since 	N converge uniformly to 	, there exists an Nq > 0 such
that supp.q0/ � ��t 	N , 8N � Nq . Therefore, q0 is well defined on infinitely
many approximate domains��t 	N .
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2. Definition of test functions .q1;  ; / on .0; T / � �max � �S : Consider  2
C1
c .Œ0; T /IH2

0 .0; 1//. Define

q1 WD

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

A constant extension in the vertical
direction of  er on �	 W q1 WD .0;  .z//T I
Notice divq1 D 0:

9=
; on �max n�min;

A divergence-free extension to �min

(see, e.g., [70, p. 127]).

�
on �min:

From the construction it is clear that q1 is also defined on��t 	N for eachN , and
so it can be mapped onto the reference domain � by the transformation A�t 	N .
We take  2 H1.�S/ such that  .t; z; 1/ D  .t; z/.

For any test function .q;  ; / 2 Q it is easy to see that the velocity component
q can then be written as q D q � q1 C q1, where q � q1 can be approximated by
divergence-free functions q0 that have compact support in �	 [ �in [ �out [ �b .
Therefore, one can easily see that functions .q;  / D .q0 C q1;  / in X satisfy the
following properties:

• X is dense in the space Q of all test functions defined on the physical, moving
domain�	, defined by (2.133); furthermore, r � q D 0;8q 2 XF .

• For each q 2 XF , define

Qq D q ı A	:

The set f. Qq;  ; /j Qq D q ı A	;q 2 XF ;  2 XS ;  2 XS g is dense in the
space Q	 of all test functions defined on the fixed, reference domain�F , defined
by (2.138).

• For each q 2 XF , define

qN WD q ı A�t 	N :

Functions qN are defined on the fixed domain�F , and they satisfy r�t 	N �qN D
0.

Functions qN will serve as test functions for approximate problems associated
with the sequence of domains��t 	N , while functions Qq will serve as test functions
associated with the domain�	. Both sets of test functions are defined on�F .

Lemma 2.6. For every .q;  ; / 2 X we have qN ! Qq uniformly in
L1.0; T IC.�F //.

Proof. By the Mean-Value Theorem we get:

jqN .t; z; r/ � Qq.t; z; r/j D jq.t; z; .1C �t	N /r/ � q.t; z; .1C 	/r/j
D j@rq.t; z; �/r j j	.t; z/� 	N .t ��t; z/j:
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The uniform convergence of qN follows from the uniform convergence of 	N , since
q are smooth. ut

We are now ready to identify the weak limit G from Lemma 2.2.

Proposition 2.7. G D r	u, where G, u and 	 are the weak and weak* limits given
by Lemma 2.2.

Proof. As in Lemma 2.3, it will be helpful to map the approximate fluid velocities
and the limiting fluid velocity onto the physical domains. For this purpose, we
introduce the following functions

uN .t; :/ D uN .t; :/ ı A�1
�t 	N

.t/; Qu.t; :/ D u.t; :/ ı A�1
	 .t/;

�N f.t; x/ D
�

f; x 2 ��t	N .t/

0; x … ��t	N .t/
; �f.t; x/ D

�
f; x 2 �	.t/

0; x … �	.t/
;

where A is the ALE mapping defined by (2.106), 	 is the weak* limit 	N *

	 in L1.0; T IH1
0 .0; 1// satisfying the uniform convergence property (2.169),

and f is an arbitrary function defined on the physical domain. Notice, again, that
superscript N is used to denote a function defined on the physical domain, while
subscriptN is used denote a function defined on the fixed domain �F .

The proof consists of three main steps: (1) we will first show that �NuN ! � Qu
strongly in L2..0; T /��max/, then, by using step (1), we will show (2) �NruN !
�r Qu weakly in L2..0; T / � �max/, and, finally by using (2) we will show (3)R T
0

R
�F

G W Qq D R T
0

R
�F

r	u W Qq for every test function Qq D q ı A	.
STEP 1. We will show that k�NuN � � QukL2..0;T /��max/ ! 0: To achieve this

goal, we introduce the following auxiliary functions

QuN .t; :/ D uN .t; :/ ı A�1
	 .t/;

which will be used in the following estimate

k�N uN � � QukL2..0;T /��max/

� k�NuN � � QuN kL2..0;T /��max/ C k� QuN � � QukL2..0;T /��max/:

The second term on the right-hand side converges to zero because of the strong
convergence of uN to u on the reference domain�F , namely,

k� QuN � � Quk2
L2.�max/

D
Z
�F

.1C 	/juN � uj2 ! 0:

To show that the first term on the right-hand side converges to zero, first notice
that
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Fig. 2.13 A sketch of the
fluid domains in STEP 1

Z T

0

Z
�max

j� QuN � �NuN j2

D .

Z T

0

Z
�	.t/4��t	N .t/

C
Z T

0

Z
�	.t/\��t	N .t/

/j� QuN � �NuN j2:

Here A�B WD .A [ B/ n .A \ B/. See Fig. 2.13. Because of the uniform
convergence (2.169) we can make the measure j�	.t/4��t	N .t/j arbitrary small.
Furthermore, by Propositions 2.5 and 2.6 we have that the sequence .� QuN �
�NuN /N2N is uniformly bounded in L2..0; T /��max/: Therefore, for every " > 0,
there exists an N0 2 N such that for every N � N0 we have

Z T

0

Z
�	.t/4��t 	N .t/

j� QuN � �NuN j2 < "

2
: (2.171)

To estimate the second term, we need to measure the relative difference between
the function uN composed with A�1

	 .t/, denoted by QuN , and the same function
uN composed with A�1

�t 	N .t/
, denoted by uN . We will map them both on the same

domain and work with one function uN , while the convergence of the L2-integral
will be obtained by estimating the difference in the ALE mappings. More precisely,
we introduce the set ! D A�1

	 .�	.t/ \ ��t 	N .t// � �F . Now, we use the
properties of the ALE mapping A	 and the definitions of QuN ; uN to get

Z T

0

Z
�	.t/\��t	N .t/

j� QuN � �NuN j2 D
Z T

0

Z
!

1

1C 	
juN � uN ıA�1

�t 	N .t/
ıA	.t/j2

D
Z T

0

Z
!

1

1C 	.t; z/
juN .t; z; r/ � uN .t; z;

1C 	.t; z/

1C �t	N .t; z/
r/j2

D
Z T

0

Z
!

ˇ̌
ˇ̌@ruN .t; z; �/r

�
1 � 1C 	.t; z/

1C �t	N .t; z/

�ˇ̌
ˇ̌2
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Now because of the uniform convergence (2.169) of the sequence .�t	N /N2N,
and the uniform boundedness of .k@ruN kL2.�F //N2N, which is consequence of
Proposition 2.6, we can take N1 � N0 such that

Z T

0

Z
�	.t/\��t	N .t/

j� QuN � �NuN j2 < "

2
; N � N1:

This inequality, together with (2.171) proofs that �NuN ! � Qu strongly in
L2..0; T / ��max/.

STEP 2. We will now show that �NruN * �r Qu weakly in L2..0; T /��max/:

First notice that from

ruN D r�t 	N uN

and from uniform boundedness of .r�t 	N uN /N2N in L2..0; T /��F /, established
in Proposition 2.6, we get that the sequence .�NruN /N2N converges weakly in
L2..0; T /��max/. Let us denote the weak limit of .�NruN /N2N by QG. Therefore,

Z T

0

Z
�max

QG � � D lim
N!1

Z T

0

Z
�max

�NruN � �; � 2 C1
c ..0; T / ��max/:

We want to show that QG D �r Qu.
For this purpose, we first consider the set .�max n�	.t// and show that QG D 0

there, and then the set �	.t/ and show that QG D r Qu there.

Let � be a test function such that supp� � .0; T / �
�
�max n�	.t/

�
. Using the

uniform convergence of the sequence �t	N , obtained in (2.169), there exists anN�
such that �N .x/ D 0, N � N�, x 2 supp�. Therefore, we have

Z T

0

Z
�max

QG � � D lim
N!1

Z T

0

Z
�max

�NruN � � D 0:

Thus, QG D 0 on .0; T / �
�
�max n�	.t/

�
.

Now, let us take a test function such that supp � .0; T /��	.t/. Again using
the same argument as before, as well as the uniform convergence of the sequence
�t	N , obtained in (2.169), we conclude that there exists an N such that �N .x/ D
1, N � N , x 2 supp . Therefore, we have

Z T

0

Z
�max

QG � D lim
N!1

Z T

0

Z
�max

�NruN � D lim
N!1

Z T

0

Z
�	.t/

ruN � :

From the strong convergence �NuN ! � Qu obtained in STEP 1, we have that on the
set supp , uN ! Qu in the sense of distributions, and so, on the same set supp ,
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ruN ! r Qu in the sense of distributions. Therefore we have

Z T

0

Z
�max

QG � D lim
N!1

Z T

0

Z
�	.t/

ruN � D
Z T

0

Z
�	.t/

r Qu � :

Since this conclusion holds for all the test functions  supported in .0; T / ��	.t/,
from the uniqueness of the limit, we conclude QG D r Qu in .0; T / ��	.t/.

Therefore, we have shown that

�NruN * �r Qu weakly in L2..0; T / ��max/:

STEP 3. We want to show that
R T
0

R
�F

G W Qq D R T
0

R
�F

r	u W Qq for every
test function Qq D q ı A	, q 2 XF . This will follow from STEP 2, the uniform
boundedness and convergence of the gradients r�t 	N QuN provided by Lemma 2.2,
and from the strong convergence of the test functions qN ! Qq provided by
Lemma 2.6. More precisely, we have that for every Qq D q ı A	, q 2 XF

Z T

0

Z
�F

G W Qq D lim
N!1

Z T

0

Z
�F

r�t 	N uN W qN

D lim
N!1

Z T

0

Z
�max

1

1C �t	N
�NruN W q

D
Z T

0

Z
�	

1

1C 	
r Qu W q D

Z T

0

Z
�F

r	u W Qq:

Here, we have used from (2.110) that ruN D r�t 	N uN , and r Qu D r	u: This
completes proof. ut
Corollary 2.1. For every .q;  ; / 2 X we have

r�t 	N qN ! r	 Qq; in L2..0; T / ��F /:

Proof. Since �t	NqN and Qq are the test functions for the velocity fields, the same
arguments as in Proposition 2.7 provide weak convergence of .r�t 	N qN /N2N.
To prove strong convergence it is sufficient to prove the convergence of norms
kr�t 	N qN kL2.�F / ! kr	 QqkL2.�F /. This can be done, by using the uniform con-
vergence of .�t	N /N2N, in the following way:

kr�t 	N qN k2
L2.�F /

D
Z T

0

Z
�max

�N
1

1C �t	N
jrqj2 !

Z T

0

Z
�max

�
1

1C 	
jrqj2

D
Z T

0

Z
�F

jr	 Qqj2 D kr	 Qqk2
L2.�F /

:
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The notation used here is analogous to that used in the proof of Proposition 2.7. ut
Before we can pass to the limit in the weak formulation of the approximate

problems, there is one more useful observation that we need. Namely, notice that
although q are smooth functions both in the spatial variables and in time, the
functions qN are discontinuous at n�t because �t	N is a step function in time.
As we shall see below, it will be useful to approximate each discontinuous function
qN in time by a piece-wise constant function, NqN , so that

NqN .t; :/ D q.n�t�; :/; t 2 Œ.n � 1/�t; n�t/; n D 1; : : : ; N;

where qN .n�t�/ is the limit from the left of qN at n�t , n D 1; : : : ; N . By using
Lemma 2.6, and by applying the same arguments in the proof of Lemma 2.5, we get

NqN ! Qq uniformly on Œ0; T � ��:

Passing to the Limit

To get to the weak formulation of the coupled problem, take the test functions
. .t/; .t// 2 XW � XS as the test functions in the weak formulation of the
structure sub-problem (2.6.5) and integrate the weak formulation (2.6.5) with
respect to t from n�t to .nC1/�t . Notice that the construction of the test functions
is done in such a way that . .t/; .t// do not depend on N , and are continuous.
Then, consider the weak formulation (2.146) of the fluid sub-problem and take the
test functions .qN .t/;  .t// (where qN D q ı A�t 	N , q 2 XF ). Integrate the fluid
sub-problem (2.146) with respect to t from n�t to .n C 1/�t . Add the two weak
formulations together, and take the sum from n D 0; : : : ; N � 1 to get the time
integrals over .0; T / as follows:

Z T

0

Z
�F

.1C �t 	N /
�
@t QuN � qN C 1

2
.�tuN � wN / � r�t	N uN � qN

�1
2
.�tuN � wN / � r�t 	N qN � uN

�
C 1

2

Z T

0

Z
�F

v�
NuN � qN

C
Z T

0

Z
�F

.1C �t	N /2D�t	N .uN/ W D�t 	N .qN /C
Z T

0

Z 1

0

@t QvN 

C
Z T

0

Z 1

0

@z	N @z C
Z T

0

Z
�S

@t QV N � C
Z T

0

Z
�S

aS.dN ; /

D
Z T

0

PN
in dt

Z 1

0

qz.t; 0; r/dr �
Z T

0

PN
outdt

Z 1

0

qz.t; L; r/dr;

(2.172)
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with

r�t 	 � uN D 0; vN D ..ur /N /j� ; 	N D .dN /j� ;

uN .0; :/ D u0; 	.0; :/N D 	0; vN .0; :/ D v0:
(2.173)

Here QuN , QvN , and QV N are the piecewise linear functions defined in (2.162), �t is
the shift in time by �t to the left, defined in (2.151), r�t 	N is the transformed
gradient via the ALE mapping A�t 	N , defined in (2.110), and v�

N , uN , vN , 	N , dN ,
and V N are defined in (2.148).

Using the convergence results obtained for the approximate solutions in
Sect. 2.6.6, and the convergence results just obtained for the test functions qN ,
we can pass to the limit directly in all the terms except in the term that contains
@t QuN . To deal with this term we notice that, since qN are smooth on sub-intervals
.j�t; .j C 1/�t/, we can use integration by parts on these sub-intervals to obtain:

Z T

0

Z
�F

.1C �t	N /@t QuN � qN

D
N�1X
jD0

Z .jC1/�t

j�t

Z
�F

.1C 	
j
N /@t QuN � qN

D
N�1X
jD0

�
�
Z .jC1/�t

j�t

Z
�F

.1C �t	N / QuN � @tqN

C
Z
�F

.1C 	jC1 � 	jC1 C 	j /ujC1
N � qN ..j C 1/�t�/

�
Z
�F

.1C 	j /ujN � qN .j�tC/
�
: (2.174)

Here, we have denoted by qN ..j C 1/�t�/ and qN .j�tC/ the limits from the left
and right, respectively, of qN at the appropriate points.

The integral involving @tqN can be simplified by recalling that qN D q ı A	N ,
where 	N are constant on each sub-interval .j�t; .j C 1/�t/. Thus, by the chain
rule, we see that @tqN D @tq on .j�t; .j C 1/�t/. After summing over all j D
0; : : : ; N � 1 we obtain

�
N�1X
jD0

Z .jC1/�t

j�t

Z
�F

.1C �t	N / QuN � @tqN D �
Z T

0

Z
�F

.1C �t	N / QuN � @tq:

To deal with the last two terms in (2.174) we calculate
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N�1X
jD0

� Z
�F

.1C 	
jC1
N � 	

jC1
N C 	

j
N /u

jC1
N � qN ..j C 1/�t�/

�
Z
�F

.1C 	
j
N /u

j
N � qN .j�tC/

�

D
N�1X
jD0

Z
�F

�
.1C 	

jC1
N /ujC1

N � qN ..j C 1/�t�/

� .	jC1
N � 	

j
N /u

jC1
N � qN ..j C 1/�t�/

�

�
Z
�

.1C 	0/u0 � q.0/�
N�1X
jD1

Z
�F

.1C 	
j
N /u

j
N � qN .j�tC/

�

Now, we can write .	jC1 � 	j / as vjC 1
2 �t , and rewrite the summation indexes in

the first term to obtain that the above expression is equal to

D
NX
jD1

Z
�F

.1C 	
j
N /u

j
N � qN .j�t�/�

Z T

0

Z
�F

v�
NuN � NqN �

Z
�F

.1C 	0/u0 � q.0/

�
N�1X
jD1

Z
�F

.1C 	
j
N /u

j
N � qN .j�tC/:

Since the test functions have compact support in Œ0; T /, the value of the first term at
j D N is zero, and so we can combine the two sums to obtain

D
NX
jD1

Z
�F

.1C 	
j
N /u

j
N � .qN .j�t�/� qN .j�tC// �

Z
�F

.1C 	0/u0 � q.0/

�
Z T

0

Z
�F

v�
NuN � NqN :

Now we know how to pass to the limit in all the terms except the first one. We
continue to rewrite the first expression by using the Mean Value Theorem to obtain:

qN .j�t�; z; r/ � qN .j�tC; z; r/
D q.j�t; z; .1C 	

j
N /r/ � q.j�t; z; .1C 	

jC1
N /r/ D

D @rq.j�t; z; �/r.	
j
N � 	jC1

N / D ��t@rq.j�t; z; �/vjC 1
2

N r:
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Therefore we have:

N�1X
jD1

Z
�F

.1C 	
j
N /u

j
N

�
q.j�t�/ � q.j�tC//

D �
Z T��t

0

Z
�F

.1C 	N /uN r��tv�
N@r Nq:

We can now pass to the limit in this last term to obtain:

Z T��t

0

Z
�F

.1C 	N /uN r��t v�
N@r Nq !

Z T

0

Z
�F

.1C 	/ur@t 	@rq:

Therefore, by noticing that @t Qq D @tq C r@t	@rq we have finally obtained

Z T

0

Z
�F

.1C �t	N /@t QuN � qN ! �
Z T

0

Z
�F

.1C 	/u � @t Qq �
Z T

0

Z
�F

@t	u � Qq

�
Z
�F

.1C 	0/u0 � Qq.0/;

where we recall that Qq D q ı A	.
Thus, we have shown that the limiting functions u, 	 and d satisfy the weak form

of problem (2.111)–(2.118) in the sense of Definition 2.2, for all test functions that
belong to a dense subset of Q	. By density arguments, we have, therefore, shown
the main result of this manuscript:

Theorem 2.4 (Main Theorem). Suppose that the initial data v0 2 L2.0; 1/, u0 2
L2.�	0/, V 0 2 L2.�S/, d0 2 H1.�S/, and 	0 2 H1

0 .0; 1/ are such that 1 C
	0.z/ > 0, z 2 Œ0; 1� and compatibility conditions (2.102) are satisfied. Furthermore,
let Pin, Pout 2 L2loc.0;1/.

Then, there exist a T > 0 and a weak solution .u; 	;d/ of problem (2.111)–
(2.118) (or equivalently problem (2.91)–(2.102)) on .0; T / in the sense of Defini-
tion 2.2 (or equivalently Definition 2.1), such that the following energy estimate is
satisfied:

E.t/C
Z t

0

D./d � E0 C C.kPink2
L2.0;t/

C kPoutk2L2.0;t//; t 2 Œ0; T �; (2.175)

where C depends only on the coefficients in the problem, E0 is the kinetic energy of
initial data, and E.t/ and D.t/ are given by

E.t/ D 1

2
kuk2

L2.�F /
C 1

2
k@t 	k2L2.0;1/ C 1

2
kdk2

L2.�S/
C 1

2

�k@z	k2L2.0;1/ C aS.d ;d/
�
;

D.t/ D kD.u/k2
L2.�	.t///

:
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Furthermore, one of the following is true:

either T D 1 or lim
t!T

min
z2Œ0;1�.1C 	.z// D 0: (2.176)

Proof. It only remains to prove the last assertion, which states that our result is either
global in time, or, in case the walls of the cylinder touch each other, our existence
result holds until the time of touching. However, the proof of this argument follows
the same reasoning as the proof of the Main Theorem in [119], and the proof of
the main result in [32, pp. 397–398]. We avoid repeating those arguments here, and
refer the reader to [32, 119]. ut

2.7 Numerical Simulation

In this section we show how the Kinematically Coupled ˇ-Scheme can be applied to
FSI problems with multiple structural layers. We also present numerical arguments
showing that the presence of a thin fluid–structure interface with mass regularizes
solutions of the related FSI problems.

We first summarize the FSI problem that will be solved numerically, then present
the numerical algorithm, and finally show the numerical results. The problem, the
numerical method, and the results will be shown on an example in 2D.

2.7.1 Problem Definition

We consider the flow of an incompressible, viscous fluid in a two-dimensional
channel of reference length L, and reference width 2R, see Fig. 2.9. The channel
is bounded by a two-layered deformable wall, which consists of a thin elastic layer
with thickness h, and a thick elastic layer with thicknessH . The thin structural layer
serves as a fluid–structure interface with mass.

We are interested in simulating the normal stress-driven fluid flow through a
deformable 2D channel with two-way coupling between the fluid and structure.
Without loss of generality, we consider only the upper half of the fluid domain
supplemented by a symmetry condition at the axis of symmetry. Thus, as before,
the reference fluid and structure domains in our problem are given, respectively, by

�F WD f.z; r/j0 < z < L; 0 < r < Rg;
�S WD f.z; r/j0 < z < L;R < r < RCH g:

Here z and r denote the horizontal and vertical Cartesian coordinates, respectively
(see Fig. 2.9).
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The flow of an incompressible, viscous fluid is modeled by the Navier–Stokes
equations:

�F

�
@u
@t

C u � ru
�

D r � � .u; p/ in �F .t/ � .0; T /; (2.177)

r � u D 0 in �F .t/ � .0; T /; (2.178)

where u D .uz; ur / is the fluid velocity,p is the fluid pressure, �F is the fluid density,
and � is the fluid Cauchy stress tensor. For a Newtonian fluid the Cauchy stress
tensor is given by � .u; p/ D �pI C 2�FD.u/; where �F is the fluid viscosity and
D.u/ D .ru C .ru/ /=2 is the rate-of-strain tensor.

Denote the inlet and outlet fluid boundaries by �in D f0g � .0;R/ and �out D
fLg � .0;R/; respectively. At the inlet and outlet boundary we prescribe the normal
stress:

�nin D �pin.t/nin on �in � .0; T /; (2.179)

�nout D �pout.t/nout on �out � .0; T /; (2.180)

where nin and nout are the outward normals to the inlet and outlet fluid boundaries,
respectively. Even though not physiologically optimal, these boundary conditions
are common in blood flow modeling [9, 125].

At the bottom fluid boundary r D 0 we impose the symmetry conditions:

@uz

@r
.z; 0; t/ D 0; ur .z; 0; t/ D 0 on .0; L/ � .0; T /: (2.181)

The lateral fluid boundary is bounded by a deformable, thin wall. We assume that
the wall is linearly elastic, whose dynamics is modeled by the linearly elastic Koiter
membrane model, specified in (2.25), Sect. 2.2.1:

�Kh
@2	z

@t2
� C2 @	r

@z
� C1 @

2	z

@z2
D fz on � � .0; T /; (2.182)

�Kh
@2	r

@t2
C C0	r C C2

@	z

@z
D fr on � � .0; T /; (2.183)

where �.z; t/ D .	x.z; t/; 	r .z; t// denotes the axial and radial displacement, f D
.fz; fr / is the force surface density, �K denotes the shell density and (see (2.25))

C0 D hE

R2.1 � �2/ ; C1 D hE

1 � �2 ; C2 D hE�

R.1 � �2/
:

The thick layer of the wall will be modeled by the equations of linear elas-
ticity (2.59), with an added extra term 
d to account for circumferential strain
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whose effects are lost in the transition from 3D to 2D. This term corresponds to
the non-differentiated term in the Koiter membrane equations (2.183) containing
the coefficient C0, which appears in these equations due to the cylindrical geometry
of the domain. Adding the non-differentiated term 
d to the thick structure problem
in 2D has been done by several authors, see [8,9,13,114]. If the structure is not fixed
at the end points, this term helps keep the top and bottom portions of the structure
domain together. The model reads:

�S
@2d
@t2

C 
d D r � S .d/ in �S � .0; T /; (2.184)

with the first Piola–Kirschhoff stress tensor S given by

S .d/ D 2�D.d/C �.r � d/I ;

where d D .dz; dr/ is the structure displacement and �S is the structure density.
As before, the structure is assumed to be fixed at the inlet and outlet boundaries:

d.0; r; t/ D d.L; r; t/ D 0 on ŒR;R CH� � .0; T /; (2.185)

and the external structure boundary �ext D fR C H g � .0; L/ is exposed to zero
external ambient pressure, while the axial displacement remains fixed:

Snext � next D 0 on �ext � .0; T /; (2.186)

dz D 0 on �ext � .0; T /; (2.187)

where next is the outward unit normal vector on �ext.
Initially, the fluid and the structure are assumed to be at rest, with zero

displacement from the reference configuration

v D 0; � D 0;
@�

@t
D 0; d D 0;

@d
@t

D 0; at t D 0: (2.188)

The fluid and the multi-layered structure are coupled via the kinematic and
dynamic boundary conditions (2.62), (2.63):
Continuity of the velocity:

u.z C 	z.z; t/; R C 	r.z; t/; t/ D @�

@t
.z; t/ on .0; L/ � .0; T /; (2.189)

Continuity of displacement:

�.z; t/ D d.z; R; t/ on .0; L/ � .0; T /: (2.190)
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Balance of forces:
0
BB@
�Kh

@2	z

@t2
� C2

@	r

@z
� C1 @

2	z

@z2

�Kh
@2	r

@t2
C C0	r C C2

@	z

@z

1
CCA D S er j� � J �nj�.t/ on .0; L/ � .0; T /;

(2.191)

where J is the Jacobian of the transformation from the Eulerian to Lagrangian
framework, n is the outward unit normal to the deformed fluid domain, and er is
the unit vector pointing in the vertical direction.

2.7.2 The Energy of the Coupled Problem

The coupled problem (2.177)–(2.191) with dynamic inlet and outlet pressure data
satisfies the following energy equality:

1

2

d

dt

n
�F kuk2�F .t/ C �Khk@t�k2

L2.�/
C �Sk@tdk2

L2.�S /
C Emem

el .�/

C 
kdk2
L2.�S/

C 2�kD.d/k2
L2.�S/

C �kr � dk2
L2.�S /

o
C �F kD.u/k2�F .t/

D
Z R

0

pin.t/uzjzD0 �
Z R

0

pout.t/uzjzDL

where

Emem
el .�/ D h

2

Z L

0

AG.�/ W G.�/

D h

2

�
4E

1C �

ˇ̌
ˇ̌
ˇ̌
ˇ̌	r
R

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.0;L/

C 4E

1C �

ˇ̌
ˇ̌
ˇ̌
ˇ̌@	z

@z

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.0;L/

C 4E�

1 � �2
ˇ̌
ˇ̌
ˇ̌
ˇ̌@	z

@z
C 	r

R

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
L2.0;L/



Furthermore, the following energy estimate holds:

1

2

d

dt

n
�F kuk2�F .t/ C �Khk@t�k2

L2.�/
C �Sk@tdk2

L2.�S /
C Emem

el .�/

C 
kdk2
L2.�S/

C 2�kD.d/k2
L2.�S/

C �kr � dk2
L2.�S /

o
C �F kD.u/k2�F .t/

� C.Pin.t/; Pout.t//:
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2.7.3 The ALE Formulation

As mentioned in Sect. 2.3, to deal with the motion of the fluid domain we use the
ALE approach. An ALE mapping A maps the reference domain�F into the current
domain�F .t/:

A W �F ! �F .t/ � R
2; x D A.x/ 2 �F .t/; for x 2 �F :

We will use ALE mapping to deal with the deformation of the mesh, and to resolve
the issues related to the approximation of the time-derivative @v=@t � .v.tnC1/ �
v.tn//=�t;, which due to the fact that �F .t/ depends on time, is not well defined.
In particular, we will be using the ALE mapping which is defined as the harmonic
extension of the boundary, determined by the current position of �, to the entire fluid
domain:

�A D 0; in �F ;

Aj� D �;

Aj@�F n� D 0:

To solve the Navier–Stokes equations numerically on a moving domain, we
transform the time derivative of the fluid velocity using the chain rule

@u
@t

ˇ̌
ˇ̌
�F

D @u
@t

C w � ru; (2.192)

where w D @A
@t

denotes the domain velocity, and consider the rest of the problem

defined on the moving domain �F .t/. See Sect. 2.5.2. Therefore, with a slight
abuse of notation, the Navier–Stokes problem (2.177)–(2.178) that will be solved
numerically can be written in ALE formulation as follows: find u D .uz; ur / and p
such that

�F

�
@u
@t

ˇ̌
ˇ̌
�F

C .u � w/ � ru
�

D r � � .v; p/; in �F .t/ � .0; T /; (2.193)

r � u D 0 in �F .t/ � .0; T /; (2.194)

satisfying the corresponding initial and boundary conditions.
The structure problems remain the same since the equations are defined on the

reference, fixed domains�S and � .
To perform the Lie splitting, described in Sect. 2.5.3, the coupled problem is

rewritten as a first-order system in time. For this purpose, the trace of the fluid
velocity on �.t/ will be denoted by v WD uj�.t/, while the trace of the thick structure
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velocity on � will be denoted by V D @d=@t . The kinematic coupling condition
@�=@t D v is then used to rewrite the system.

Notice again that uj�.t/ is defined on �.t/, namely, atRC	.z; t/. More precisely,
uj�.t/ D u.RC 	.z; t/; z; t/. Therefore, v, which is defined on � is equal to

v.z; t/ WD u.R C 	.z; t/; z; t/:

The resulting problem is given by the following:

�f

�
@u
@t

ˇ̌
ˇ̌
�F

C .u � w/ � ru
�

D r � � in �F .t/ � .0; T /; (2.195a)

r � u D 0 in �F .t/ � .0; T /; (2.195b)

�Kh
@vz

@t
� C2

@	r

@z
� C1 @

2	z

@z2
D fz on � � .0; T /; (2.195c)

�Kh
@vr

@t
C C0	r C C2

@	z

@z
D fr on � � .0; T /; (2.195d)

@�

@t
D v on � � .0; T /; (2.195e)

�S
@V

@t
C 
d D r � S .d/ in �S � .0; T /; (2.195f)

@d
@t

D V in �S � .0; T /; (2.195g)

with the coupling conditions at the fluid–structure interface

v D uj�.t/; � D dj�; (2.196)

�Kh
@vz

@t
� C2 @	r

@z
� C1 @

2	z

@z2
C J �nj�.t/ � ez C S ezj� � ez D 0; (2.197)

�Kh
@vr

@t
C C0	r C C2

@	z

@z
C J �nj�.t/ � er C S er j� � er D 0: (2.198)

Notice, again, that v D uj�.t/ means v.z; t/ D u.RC	.z; t/; z; t/ on .0; L/� .0; T /.
This problem is supplemented with the boundary and initial conditions presented in
Sect. 2.7.1.

Before we continue with the Lie splitting algorithm applied to the problem
in ALE form (2.195)–(2.198), we introduce the notion of weak solutions for
the problem studied in this section, namely, for problem (2.177)–(2.191). The
corresponding function spaces on domains �F .t/ will be defined in terms of the
functions defined on the fixed, reference domain�F , where the association between
the two is done via the ALE mapping, defined above.
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2.7.4 Weak Formulation of FSI Problem (2.177)–(2.191)

For t 2 Œ0; T / introduce the following test function spaces: the fluid velocity space
is defined by

VF .t/ D f' W �F .t/ ! R
2j ' D O' ı .A/�1; O' 2 .H1.�F //

2;

'r jrD0 D 0; 'jzD0;L D 0g; ;
the fluid pressure:

Q.t/ D fq W �F .t/ ! Rj q D Oq ı .A/�1; Oq 2 L2.�F /g; ;
the test space for the thin structure problem:

VK D f� W .0; L/ ! R
2j � 2 .H1

0 .�//
2g;

and the test space for the thick structure problem

VS D f W �S ! R
2j  2 .H1.�S//

2; jzD0;L D 0;  zj�Sext
D 0g:

The test space for the coupled FSI problem is given by:

Q.t/ D f.'; �; / 2 VF .t/ � VK � VS j 'j�.t/ D �; � D  j�g; (2.199)

The variational formulation of the coupled FSI problem now reads: for t 2
.0; T /, find .u; p;�;d/ 2 VF .t/�Q.t/�VK �VS such that the kinematic coupling
conditions (2.189) and (2.190) hold, and such that for all .'; �; ; q/ 2 Q.t/�Q.t/
the following equations are satisfied:

�F

Z
�F .t/

@u
@t

� 'C
Z
�F .t/

.u � r/u � 'C 2�F

Z
�F .t/

D.u/ W D.'/

�
Z
�F .t/

pr � '
Z
�F .t/

qr � u C �Kh

Z L

0

@2	z

@t2
�z C �Kh

Z L

0

@2	r

@t2
�r

�C2
Z L

0

@	r

@z
�z C C1

Z L

0

@	z

@z

@�z

@z
C C0

Z L

0

	r�r C C2

Z L

0

@	z

@z
�r

C�S
Z
�S

@2d
@t2

� C 2�

Z
�S

D.d/ W D. /C �

Z
�S

.r � d/.r � /

C

Z
�S

d � D
Z R

0

pin.t/'zjzD0dr �
Z R

0

pout.t/'zjzDLdr:
Z
�F

qr � u D 0:

(2.200)
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2.7.5 Numerical Implementation of the Splitting Scheme

The splitting is performed on the first-order system written in ALE form (2.195)–
(2.198). System (2.195)–(2.198) is split into two sub-problems, the fluid and the
structure sub-problem, as described in Sect. 2.5.4. We notice that in this splitting,
we also separated the viscous part of the structure problem from the purely elastic
part of the structure problem, so that in the final structure sub-problem, denoted
by Problem A1 in Sect. 2.5.4, we only solve non-dissipative, hyperbolic part of the
structure problem using appropriate solvers. Namely, it has been our experience that
for the stability and accuracy of the splitting scheme, it is beneficial to separate the
parabolic from the hyperbolic features of the coupled FSI problem, and apply non-
dissipative solvers to the non-dissipative, hyperbolic sub-problems. While in the
example studied in this section we do not have viscous dissipation in the structure
problem, we, however, use the same logic to numerically solve the fluid sub-
problem, which contains, in itself, dissipative and non-dissipative features. More
precisely, we will split the fluid sub-problem into the pure advection sub-problem
(non-dissipative), and the remaining, time-dependent Stokes problem capturing vis-
cous dissipation. This will give rise to a splitting algorithm with three main steps:

A1. An elastodynamics sub-problem for the structure;
A2(a). A time-dependent Stokes problem for the fluid;
A2(b). A fluid and ALE advection problem.

To achieve higher accuracy, we implement the Kinematically Coupled ˇ-
Scheme, described in Sect. 2.5.4, in which the normal fluid stress is further split
into two parts:

�n D �nC ˇpn„ ƒ‚ …
.Part I /

�ˇpn„ƒ‚…
.Part II /

;

where ˇ 2 Œ0; 1�. It was shown in [21] that the accuracy of the scheme increases
as the value of ˇ increases from 0 to 1. Part I of the fluid stress will be taken into
account in the fluid sub-problem, while Part II of the fluid stress will be used as load-
ing to the structure in the structure sub-problem, and will appear as a Robin bound-
ary condition for the thick structure equations. Details of the scheme are as follows:

Problem A1: The Elastodynamics Problem

This step involves solving the thick structure problem together with membrane
elastodynamics. The membrane elastodynamics problem appears in this step as a
Robin boundary condition on � for the thick structure problem defined on �S ,
where we have used continuity of displacement (kinematic coupling condition) to
write the problem this way. The Robin boundary condition also includes Part II of
the normal fluid stress, which enters explicitly in the sense that the pressure is taken
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from the fluid sub-problem at the time step n (Problem A1(a)). The Jacobian of the
transformation from the Eulerian to Lagrangian framework J is calculated based on
the data obtained in the previous time step.

In this step we also compute the domain velocity w and use it in Problem
A2(b) below to solve the fluid and ALE advection problem. The initial data for the
structure velocity on � is taken to be the trace of the fluid velocity v calculated in
the previous time step. Thus, the structure communicates with the fluid sub-problem
through this initial data and through the pressure exerted by the fluid onto the fluid–
structure interface. In turn, the updated structure velocity is then taken in Problem
A2(a) as the initial data for the trace of the fluid velocity on �.t/.

In this step the fluid velocity u and fluid pressure p remain unchanged, and so

unC1=3 D un; pnC1=3 D pn:

The structure sub-problem reads: Find �;d; v, and V , such that for t 2 .tn; tnC1/

�S
@V

@t
C 
d D r � S .d/ in �S � .tn; tnC1/;

@d
@t

D V in �S � .tn; tnC1/;

�Kh
@vz

@t
� C2

@	r

@z
� C1

@2	z

@z2
C S er � ez D J nˇpnnj�.t/ � ez on � � .tn; tnC1/;

�Kh
@vr

@t
C C0	r C C2

@	z

@z
C S er � er D J nˇpnnj�.t/ � er on � � .tn; tnC1/;

@�

@t
D v on � � .tn; tnC1/;

� D dj� on � � .tn; tnC1/;

V j� D v on � � .tn; tnC1/;

with the following boundary conditions:

djzD0;L D 0; and dz D 0; nsext � Snsext D 0 on �ext � .tn; tnC1/:

The initial conditions are given by:

d.tn/ D dn;�.tn/ D �n; v.tn/ D vn; V .tn/ D V n:

Then set

dnC1=3 D d.tnC1/;�nC1=3 D �.tnC1/; vnC1=3 D v.tnC1/; V nC1=3 D V .tnC1/:

After the new position of the structure has been calculated, and the new fluid
domain updated, we calculate the ALE mapping AnC1 as the harmonic extension of
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the structure displacement �nC1 onto the whole domain�F

�AnC1 D 0 in �F ;

AnC1j� D �nC1;

AnC1j@�F n� D 0:

From here we calculate the domain velocity wnC1 D @AnC1

@t
, based on the updated

location of the structure, and use it in the advection problem, Problem A2(b) below.

Remark 1. Note that in Problem A1, we can rewrite the membrane equations by
using the kinematic coupling conditions in the following way:

�Kh
@Vz

@t
� C2

@dr

@z
� C1

@2dz

@z2
C S er � ez D 0 on � � .tn; tnC1/;

�Kh
@Vr

@t
C C0dr C C2

@dz

@z
C Ser � er D 0 on � � .tn; tnC1/:

In this way the membrane equations serve as Robin boundary conditions for the
thick structure problem.

Problem A2(a): The Stokes Problem

This step involves solving a time-dependent Stokes problem on .tn; tnC1/, with a
Robin-type boundary condition involving the thin structure inertia and Part I of the
fluid stress. This problem is solved on the fixed fluid domain �F .t

n/, determined
by the structure position in the previous time step. Using the updated fluid domain
calculated in Problem A1 is also an option. In the proof of stability of this scheme,
using �F .t

n/ is more convenient for the proof. In this step the structure position
and the velocity of the thick structure do not change, and so

�nC2=3 D �nC1=3;dnC2=3 D dnC1=3;V nC2=3 D V nC1=3:

The problem reads as follows:
Find u; p, and v such that for t 2 .tn; tnC1/, with pn denoting the pressure

obtained at the previous time step, the following holds:

�F
@u
@t

ˇ̌
ˇ̌
�F

D r � � ; r � u D 0 in �F .t
n/ � .tn; tnC1/;

�Kh
@.uj�.t//
@t

C J
�
�nj�.t/ C ˇpnnj�.t/

� D 0 on � � .tn; tnC1/;

v D uj�.t/ on � � .tn; tnC1/;
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where v D uj�.t/ means v.z; t/ D u.R C 	.z; t/; z; t/ on � . This is supplemented
with the following boundary conditions:

@uz

@r
.z; 0; t/ D ur .z; 0; t/ D 0 on .0; L/; u.0;R; t/ D u.L;R; t/ D 0;

�nin D �pin.t/nin on �in; �nout D �pout.t/nout on �out;

and initial conditions: u.tn/ D un; v.tn/ D vnC1=3: Then set

unC2=3 D u.tnC1/; pnC2=3 D p.tnC1/; vnC2=3 D v.tnC1/:

Problem A2(b): The Advection Problem

Solve the fluid and ALE advection sub-problem defined on the fixed domain�.tn/,
with the domain velocity wnC1 just calculated in Problem A1. The displacement of
the structure, the velocity of the thick structure, the velocity of the thin structure,
and the fluid pressure do not change in this step, so that

�nC1 D �nC2=3;dnC1 D dnC2=3;V nC1 D V nC2=3; vnC1 D vnC2=3; pnC1 D pnC2=3:

The advection problem reads: Find u such that for t 2 .tn; tnC1/

@u
@t

ˇ̌
ˇ̌
�F

C .unC2=3 � wnC1/ � ru D 0; in �F .t
n/ � .tn; tnC1/;

u D vnC2=3; on � � .tn; tnC1/;

with the inlet/outlet conditions:

u D unC2=3 on �nC2=3� D fx 2 R
2jx 2 @�F .t

n/; .unC2=3 � wnC1/ � n < 0g;

and initial conditions u.tn/ D unC2=3: Then set

unC1 D u.tnC1/:

Set n D nC 1 and return to Problem A1.

2.7.6 Discretized Scheme in Weak Form

To discretize the problem in time, sub-divide the time interval .0; T / into N sub-
intervals of width�t , and let tn D n�t , where n � N . The Backward Euler scheme
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is implemented to discretize the time-derivatives. For the space discretization, we
use the finite element method approach. Thus, we define the finite element spaces
VhF .tn/ � VF .tn/;Qh.tn/ � Q.tn/;VhK � VK and VhS � VS , and introduce the
following bilinear forms

anF .u;'/ WD 2�F

Z
�F .tn/

D.u/ W D.'/;

bnF .p;'/ WD
Z
�F .tn/

pr � ';

aK.	r ; �r / WD C0

Z L

0

	r�r ;

aS .d; / WD 2�

Z
�S

D.d/ W D. /C �

Z
�S

.r � d/.r � /:

A weak formulation of the fully discrete loosely coupled algorithm applied to the
simplified problem is given as follows:

Problem A1 (The Structure Problem). To discretize the structure problem in
time we use the second-order Newmark scheme. The problem reads as follows: Find
.dnC1=3
h ;V

nC1=3
h / 2 VhS � VhS such that for all . h;�h/ 2 VhS � VhS

�S

Z
�S

V
nC1=3
h � V n

h

�t
� h C 


Z
�S

dnh C dnC1=3
h

2
� h

C�Kh
Z
�

V
nC1=3
r;h � V n

r;h

�t
 r;h C aK.

dnr;h C d
nC1=3
r;h

2
;  r;h/C aS.

dnh C dnC1=3
h

2
; h/

C�S
Z
�S

.
V n
h C V

nC1=3
h

2
� dnC1=3

h � dnh
�t

/ � �h

C �Kh

Z
�

.
V n
r;h C V

nC1=3
r;h

2
� d

nC1=3
r;h � dnr;h

�t
/ � �r;h D 0: (2.201)

Note that in this step we take all the kinematic coupling conditions into account.
More precisely:

1. Initially we set V n
r;hj� D vnr;h D unr;hj�.tn/;

2. Once dnC1=3
h and V nC1=3

h are computed, 	nC1=3
r;h ; v

nC1=3
r;h and unC1=3

r;h j�.tn/ are
recovered via

	
nC1=3
r;h D d

nC1=3
r;h j�; vnC1=3

r;h D unC1=3
r;h j�.tn/ D V

nC1=3
r;h j�:
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In this step the fluid velocity does not change, and so

unC1=3
h D unh:

In this step we also update the fluid domain velocity w. As mentioned earlier,
after the new position of the structure has been calculated, we calculate the ALE
mapping AnC1 W �F ! �F .t

nC1/ as the harmonic extension of the structure
displacement �nC1=3

h D �nC1
h onto the whole fluid domain, and obtain the domain

velocity wnC1
h as the difference quotient between the new location of points

associated with AnC1, minus the old location of points associated with An, divided
by �t . This will be used it in the advection problem, i.e., Problem A2(b) below.

Problem A2(a) (The Time-Dependent Stokes Problem). Find .unC2=3
h ;

p
nC2=3
h / 2 VhF .tn/ �Qh.tn/ such that for all .'h; qh/ 2 VhF .tn/ �Qh.tn/

�F

Z
�F .tn/

unC2=3
h � unC1=3

h

�t
� 'h C anF .u

nC1
h ;'h/ � bnF .pnC2=3

h ;'h/

C�Kh
Z L

0

unC2=3
r;h j�.tn/ � unC1=3

r;h j�.tn/
�t

'r;hdx C bnF .qh;u
nC2=3
h /

D
Z R

0

pin.t
nC1/'z;hjzD0dr �

Z R

0

pout.t
nC1/'z;hjzDLdr:

(2.202)

This step is computed on the fixed domain �f .tn/. The only updated variables are
the fluid velocity and pressure. For higher accuracy, this step can be computed on
the updated domain�.tnC1/.

Problem A2(b) (The Advection Problem). As mentioned earlier, it is conve-
nient to write the fluid and ALE advection term in symmetric form, giving rise to
the following weak formulation: Find unC1

h 2 VhF .tn/ such that for all 'h 2 VhF .tn/

�F

Z
�F .tn/

unC1
h � unC2=3

h

�t
� 'h C �F

2

Z
�F .tn/

.r � wnC1
h /unC1

h � 'h

C�F

2

Z
�F .tn/

�
.unh � wnC1

h / � r/unC1
h � 'h � ..unh � wnC1

h / � r/'h � unC1
h

� D 0:

(2.203)

In this step all the other variables, except for the fluid velocity, remain unchanged
so that

dnC1
h D dnC2=3

h ;V nC1
h D V

nC2=3
h ; 	nC1

r;h D 	
nC2=3
r;h ; vnC1

r;h D vnC2=3
r;h ;
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with

unC1
r;h j�.tn/ D unC2=3

r;h j�.tn/ D v
nC2=3
r;h :

It was shown in [24] that an energy estimate associated with unconditional
stability of this scheme holds for the full nonlinear FSI problem. Therefore, we
expect that this scheme is unconditionally stable for all the parameters in the
problem.

2.7.7 Numerical Examples

We present two numerical examples. One is a simplified problem for which there
exists an exact solution against which we can test our numerical scheme. The
other one is a fully nonlinear FSI problem with a thin and thick structural layer.
Since there are no numerical results in literature on FSI problems with multiple
structural layers against which we could test our solution, in this second example
we calculated solutions to a sequence of problems for which the thickness of the
thin structure converges to zero, and showed that the limiting solution is the same
as the solution of the FSI problem in which the structure consists of only one thick
structural layer. This was proved using analytical methods in [24]. The solution of
the limiting problem was then numerically tested against the solution of the FSI
problem with only one thick structural layer, which was obtained using a different
solver. We show below that the two solutions, obtained with two different solvers,
are in good agreement.

Example 1

We consider a simplified FSI problem with multiple structural layers that satisfies
the following simplifying assumptions:

1. The fluid problem is defined on the fixed, reference domain of width R, and
length L (the coupling is linear).

2. The fluid problem is driven by the constant inlet and outlet pressure data pin and
pout D 0 (the pressure drop is constant).

3. Only radial displacement of the thin and thick structure is assumed to be different
from zero.

Assumption 3 implies that the thin structure membrane model takes the form:

�Kh
@2	r

@t
C C0	r D fr ;
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while the thick structure problem simplifies as follows:

�s
@2dr

@t2
D �

@2dr

@x2
C .�C �/

@2dr

@y2
:

Finally, the coupling conditions between the fluid and the multi-layered structure
are given by

fr D p C .�C �/
@dr

@y
on � � .0; T /;

@	r

@t
D ur on � � .0; T /;

	r D Ur on � � .0; T /:
The exact solution to this problem is given by the following. The fluid flow through
the fixed cylinder with constant pressure drop is given by the Poiseuille velocity
profile:

uez .z; r/ D uez .r/ D pin � pout

2�FL
.R2 � r2/; uer D 0;

and the fluid pressure is linear within the channel:

pe.z; r/ D pe.z/ D poutz C pin.L � z/

L
; z 2 .0; L/; r 2 .0;R/:

The radial displacements of the thin and thick structure are given by:

	er .z/ D pe.z/

C0
; d er .z; r/ D der .z/ D 	er .z/:

We solve this problem numerically using the parameters given in Table 2.5. The
initial data was taken to be

u D 0; p D pout; 	r D 0; dr D 0; at t D 0;

while at the inlet and outlet boundaries we kept both structures fixed, with the inlet
and outlet displacement data tailored so that the final solution does not exhibit a
boundary layer:

	r jzD0 D dr jzD0 D pin

C0
; 	r jzDL D dr jzDL D pout

C0
D 0;8t > 0:

The numerical scheme with ˇ D 1 was implemented, and the problem was
solved until the steady state was achieved. With the time step �t D 10�5 it took
200 iterations to achieve the accuracy of less than 0.08%. Namely, the maximum
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Table 2.5 Geometry, fluid and structure parameters used in Example 1

Parameters Values Parameters Values

Radius R (cm) 0:5 Length L (cm) 6

In. press. pin (dyne/cm2) 250 Out. press. pout (dyne/cm2) 0

Fluid density �f (g/cm3) 1 Dyn. viscosity � (g/cm s) 0:35

Thin wall:
Density �m (g/cm3) 1:1 Thickness h (cm) 0:02

Lamé coeff. �m (dyne/cm2) 1:07� 106 Lamé coeff. �m (dyne/cm2) 4:29 � 106

Thick wall:
Density �s(g/cm3) 1:1 Thickness H (cm) 0:1

Lamé coeff. �s(dyne/cm2) 1:07� 106 Lamé coeff. �s (dyne/cm2) 4:29 � 106

Spring coeff. 
 (dyne/cm4) 0
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Fig. 2.14 Comparison between the computed solution (in blue) and the exact solution (in red). The
two are superimposed. Left: Axial velocity. Middle: Fluid pressure. Right: Radial displacement

relative error between the computed and exact solution was less than 0.08% (namely,
0.000778).

Figure 2.14 shows a comparison between the computed (blue) and the exact solu-
tion (red) for axial velocity (left), fluid pressure (middle), and radial displacement
(right), showing excellent agreement. The corresponding relative errors are given by
the following:

jjue � ujjL2.�f /
jjuejjL2.�f /

D 7:78 � 10�4;
jjpe � pjjL2.�f /

jjpejjL2.�f /
D 1:17 � 10�4;

jj	er � 	r jjL2.0;L/
jj	er jjL2.0;L/

D 3:82 � 10�5;
jjder � dr jjL2.�s/

jjder jjL2.�s/
D 3:82 � 10�5:

We conclude that the scheme behaves well for this simplified FSI problem with
multiple structural layers.

Example 2

In this example we solve the full, nonlinear FSI problem (2.177)–(2.191) with the
structure consisting of two layers, using the data that correspond to a benchmark
problem in FSI with a single thick structure. Moreover, we solve a sequence of
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Table 2.6 Geometry, fluid and structure parameters that are used in Example 2

Parameters Values Parameters Values

Radius R (cm) 0:5 Length L (cm) 6

Fluid density �f (g/cm3) 1 Dyn. viscosity � (g/cm s) 0:035

Thin wall:
Density �m(g/cm3) 1:1 Thickness h (cm) 0:02

Lamé coeff. �m (dyne/cm2) 5:75� 105 Lamé coeff. �m (dyne/cm2) 1:7 � 106

Thick wall:
Density �s (g/cm3) 1:1 Thickness H (cm) 0:1

Lamé coeff. �s (dyne/cm2) 5:75� 105 Lamé coeff. �s (dyne/cm2) 1:7 � 106

Spring coeff. 
 (dyne/cm4) 4� 106

FSI problems (2.177)–(2.191) in which the thickness of the thin layer converges to
zero. The limiting solution is then compared with the solution of the benchmark
problem with a single, thick structure, obtained using a different solver. In the
sequence of FSI problem with two structural layers, the combined thickness of the
entire structure is set to be constant, and equal to the thickness of the thick structure
from the benchmark problem. Furthermore, the elastic properties (i.e., the Young’s
modulus of elasticity and the Poisson ratio) of the thin and thick structure are all set
to be equal to the elastic properties of the thick structure in the benchmark problem.

The elastodynamics of the thin structural layer is modeled using the
linearly elastic Koiter membrane equations with both radial and longitudinal
displacement (2.182), (2.183), while the elastodynamics of the thick structure
is modeled using the equations of 2D linear elasticity (2.184). The same 2D linear
elasticity model (2.184) is used to capture the elastodynamics of the thick structure
in the FSI benchmark problem. In both cases the flow is driven by the time-
dependent pressure data:

pin.t/ D
(
pmax
2

	
1 � cos

�
2�t
tmax

�

if t � tmax

0 if t > tmax
; pout.t/ D 0 8t 2 .0; T /;

where pmax D 1:333 � 104 (dyne/cm2) and tmax D 0:003 (s). The values of the
parameters used in this example are given in Table 2.6. The same parameters were
used to test partitioned FSI schemes in [9].

We assume that the combined thickness of the two-layered structure is fixed,
and equal to h C H D 0:12 cm, which is set to be the same as the thickness of
the single thick structure in the benchmark problem. Our kinematically coupled ˇ
scheme, described in Sect. 2.7.5, was used to solve the multi-layered FSI problem
with ˇ D 1, while the scheme presented in [22] was used to solve the single-
layered FSI benchmark problem. The problem was solved over the time interval
Œ0; 0:012�s, using the time step �t D 5 � 10�5. Figure 2.15 shows the axial and
radial displacement at time t D 8ms obtained using the multi-layered model (left)
and the single-layered model (right) for the arterial wall. Figure 2.16 shows the
corresponding fluid velocity and pressure. One can notice significant smoothing of
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Fig. 2.15 Axial displacement (top) and radial displacement (bottom) at time t D 8ms obtained
using the model capturing two structural layers (left), and the model capturing FSI with a single
thick structural layer [22] (right)

Fig. 2.16 Fluid velocity (top) and fluid pressure (bottom) at time t D 8ms obtained using the
model capturing two structural layers (left), and the model capturing FSI with a single thick
structural layer [22] (right)

both the displacement as well as the fluid velocity and pressure in the composite, i.e.,
multi-layered structure case. Same data are used for both simulations. We further
compared the results of the multi-layered model with the single-layered model as
the thickness of the thin structure h goes to zero. As we decreased h, we increasedH
to maintain the constant combined thickness hCH D 0:12 cm. Figures 2.17, 2.18,
and 2.19 show the flowrate, mean pressure, and displacement of the fluid–structure
interface obtained using different values of h. The results obtained using the single-
layered wall model correspond to the label h D 0. Indeed, we can see that as we
decrease the thickness of the fluid–structure interface, the numerical results obtained
using our multi-layered model approach the results obtained using the single-layered
FSI model! Notice how for h D 0:025 cm the solutions obtained using the multi-
layered model and the single thick structure model (h D 0 in Figs. 2.17, 2.18,
and 2.19) are almost identical.
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Fig. 2.17 Flowrate computed using two different models: the model in [22] containing a single
thick structural layer (h D 0), and the model considered in this chapter, consisting of two layers.
The thickness of the thin membrane layer was decreased from h D 0:02 to h D 0:0025 cm.
The combined thickness of the two-layered structure was kept constant at h C H D 0:12 cm.
Convergence of the solutions to the FSI solution containing a single, thick layered model (h D 0)
can be observed

Fig. 2.18 Displacement of the fluid–structure interface obtained under the same conditions as
those described in Fig. 2.17

Regularizing Effects by Thin Fluid–Structure Interface with Mass

We conclude this section with a remark on the regularizing effects of the thin
fluid–structure interface with mass. Figures 2.17, 2.18, and 2.19 indicate that as we
increase inertia of the thin fluid–structure interface with mass by increasing its thick-
ness, the solution of the entire FSI problem is damped, or regularized. More pre-
cisely, if one looks at the FSI problem with a single thick structural layer, the fluid–
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Fig. 2.19 Mean pressure obtained under the same conditions as those described in Fig. 2.17

structure interface is simply the massless trace of the thick structure that is in contact
with the fluid. Mathematically, in that case the trace of the structure displacement
is not well defined (assuming regularity of the data consistent with weak solutions),
and using energy estimates it is not possible to even show that the fluid–structure
interface is continuous. In the case when the fluid–structure interface has mass, we
showed in Proposition 2.1 that not only is the fluid–structure interface continuous,
but its evolution can be controlled by the energy norm of the time derivative of its
displacement. We see effects of this in the solutions presented in Figs. 2.17, 2.18,
and 2.19, and in Fig. 2.20 below. In Fig. 2.20 below we focus on the displacement
and displacement velocity of the fluid–structure interface, which measures the
effects of inertia. In the first row of Fig. 2.20 three snap-shots of the fluid–structure
interface are shown as the inlet pressure wave travels down the tube. In the second
row of Fig. 2.20 the same three snap-shots are shown, but for the fluid–structure
interface velocity. The red solid line in these figures corresponds to the massless
fluid–structure interface in the FSI problem with a single thick structural layer. The
black dashed line corresponds to the fluid–structure interface with mass in the FSI
problem with two structural layers. We see significant damping of the traveling wave
in the case when the fluid–structure interface has mass. This indicates that inertia of
the fluid–structure interface with mass regularizes solutions of FSI problems.

This is reminiscent of the results by Hansen and Zuazua [90] in which the
presence of a point mass at the interface between two linearly elastic strings
with solutions in asymmetric spaces (different regularity on each side) allowed
the proof of well-posedness due to the regularizing effects by the point mass. In
particular, in [90] two linearly elastic strings were considered, meeting at a point
mass. The elastodynamics of each string was modeled by the linear wave equation.
It was shown that as the wave with the displacement in H1.0;L/ and velocity
in L2.0;L/ passes through the point mass, a reflected and a transmitted waves
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Fig. 2.20 Fluid–structure interface displacement (top) and velocity (bottom) obtained using a
multi-layered wall model and the single-layered model from [22], shown at times t D 1ms,
t D 6ms, and t D 12ms

Fig. 2.21 Regularizing effects of point mass. These figures originally appeared as Fig. 1 and Fig. 2
(left) in [107] and are reprinted by permission of c� American Mathematical Society 2014. The
initial data (left panel) is smoothed out as the transmitted wave traveling to the right passes through
the point mass (right panel)

form. The transmitted wave, which passes through the point mass, gets smoothed
out to H2.0;L/ regularity in displacement, and H1.0;L/ regularity in velocity. A
numerical simulation of this phenomenon was shown in [107]. Figure 2.21 shows
one of the results from [107]. The panel on the left shows the initial displacement
in H1.0;L/ with zero initial velocity, located just left from the point mass. The
panel on the right shows the solution at time T D 10s at which the reflected
and transmitted waves have formed, with the displacement of the reflected wave
on the left of the point mass still in H1.0;L/, but with the displacement of the
transmitted wave, shown to the right of the point mass, belonging to H2.0;L/. For
a reader with further interest in the area of simplified coupled problems we mention
[91, 123, 134, 145].

2.8 Conclusions

This chapter addresses an operator splitting approach to study multi-physics prob-
lems related to FSI with application to hemodynamics. The methodology is based on
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the Lie splitting scheme, also known as the Marchuk–Yanenko scheme. The splitting
discussed in this chapter deals successfully with the added mass effect which is
known to be responsible for instabilities in loosely coupled Dirichlet–Neumann
schemes for FSI problems in which the density of the structure is comparable to
that of the fluid, which is the case in blood flow applications. Particular attention
was payed to a multi-physics FSI problem in which the structure is composed of
multiple structural layers. Problems of this kind arise, for example, in modeling
blood flow through human arteries which are composed of several layers, each
with different mechanical characteristics and thickness. A benchmark problem was
studied in which the structure consists of two layers: a thin layer which is in contact
with the fluid, and a thick layer which sits on top of the thin layer. The thin layer
serves as a fluid–structure interface with mass. Both analytical (existence of a weak
solution) and numerical results were studied for the underlying benchmark problem.
In particular, it was shown that the proposed scheme converges to a weak solution to
the full nonlinear fluid-multi-layered structure interaction problem. Two academic
examples were considered to test the performance of the numerical scheme.

The analytical and numerical methods presented here apply with slight modifi-
cations to a larger class of problems. They include, for example, a study of FSI with
one structural layer (thin [20, 21, 85], or thick [22]), FSI with poroelastic structures
[23], FSI between a mechanical device called stent, arterial wall and fluid [122], and
FSI involving a non-Newtonian fluid [94–96].

This chapter provides the basic mathematical tools for further development of
analytical and computational methods based on the Lie operator splitting approach,
to study various multi-physics problems involving FSI.
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11. V. Barbu, Z. Grujić, I. Lasiecka, A. Tuffaha, Existence of the energy-level weak solutions for a
nonlinear fluid-structure interaction model, in Fluids and Waves. Contemporary Mathematics,
vol. 440 (American Mathematical Society, Providence, 2007), pp. 55–82
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solution to the coupled fluid-structure interaction problem for non-newtonian shear-dependent
fluid (2013, submitted)

95. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova, Kinematic splitting
algorithm for fluid-structure interaction in hemodynamics. Comput. Methods Appl. Mech.
Eng. 265, 83–106 (2013)

96. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova, Fluid-Structure Inter-
action for Shear-Dependent Non-Newtonian Fluids. Topics in Mathematical Modeling and
Analysis. Lecture Notes, vol. 7 (Necas Center for Mathematical Modeling, The Check
Republic, 2012), pp. 109–158



2 Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and. . . 193

97. W.T. Koiter, A consistent first approximation in the general theory of thin elastic shells. Part
1: foundations and linear theory. Technological University, Delft, 5 August 1959

98. W.T. Koiter, On the foundations of the linear theory of thin elastic shells. I, II. Nederl. Akad.
Wetensch. Proc. Ser. B 73, 169–182 (1970)

99. M. Krafczyk, M. Cerrolaza, M. Schulz, E. Rank, Analysis of 3D transient blood flow passing
through an artificial aortic valve by Lattice-Boltzmann methods. J Biomech. 31, 453–462
(1998)

100. M. Krafczyk, J. Tolke, E. Rank, M. Schulz, Two-dimensional simulation of fluid-structure
interaction using Lattice-Boltzmann methods. Comput. Struct. 79, 2031–2037 (2001)

101. I. Kukavica, A. Tuffaha, M. Ziane, Strong solutions for a fluid structure interaction system.
Adv. Differ. Equ. 15(3–4), 231–254 (2010)

102. I. Kukavica, A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem.
DCDS-A 32(4), 1355–1389 (2012)

103. I. Kukavica, A. Tuffaha, Well-posedness for the compressible Navier-Stokes-Lamé system
with a free interface. Nonlinearity 25(11), 3111–3137 (2012)

104. P. Le Tallec, J. Mouro, Fluid structure interaction with large structural displacements.
Comput. Methods Appl. Mech. Eng. 190(24–25), 3039–3067 (2001)

105. D. Lengeler, Global weak solutions for an incompressible, generalized Newtonian fluid
interacting with a linearly elastic Koiter shell (2012). arXiv:1212.3435
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Chapter 3
Hyperbolic–Parabolic Coupling
and the Occurrence of Resonance in Partially
Dissipative Systems

Giovanni Paolo Galdi, Mahdi Mohebbi, Rana Zakerzadeh, and Paolo Zunino

Abstract It is well known that elastic solids, when subjected to a time-periodic
load of frequency !, may respond with a drastic increase of the magnitude of
basic kinematic and dynamic quantities, such as displacement, velocity and energy,
whenever! is near to one of the “proper frequencies” of the solid. This phenomenon
is briefly described as resonance. Objective of our analysis is to investigate whether
the interaction of an elastic solid with a dissipative agent can affect and possibly
prevent the occurrence of resonance. We shall study this problem in a broad class
of dynamical systems that we call partially dissipative, and whose dynamics is
governed by strongly continuous semigroups of contractions. For such systems
we will provide sharp necessary and sufficient conditions for the occurrence of
resonance. Afterward, we shall furnish a number of applications to physically
relevant problems including thermo- and magneto-elasticity, as well as several
liquid–structure interaction models.

Keywords Asymptotic behavior • Elastic solid • Linear magnetoelasticity •
Linear thermoelasticity • Liquid–structure models • Mean ergodic theorem •
Resonance • Stokes equations • Strongly continuous semigroup of contractions
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3.1 Introduction

Resonance in elastic solids is a well-known phenomenon occurring in Nature that
can be roughly described as follows: when the frequency of an applied time-periodic
load approaches one (or a multiple of one) of the natural frequencies of oscillations
of the solid, then the basic kinematic and dynamic parameters of the solid, such
as displacement, velocity, and energy become increasingly large, resulting into
damage and even rupture of the structure. In this respect, perhaps the most striking
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representative is the wind-induced collapse of the Tacoma Narrows bridge in 1940;
see [9] for a thorough analysis of this event.

Even though resonance is observed in both linear and nonlinear solids [46], the
most common and simplest example showing the occurrence of such a phenomenon
is that of materials modeled by the equations of elasticity in the small gradient
approximation (linearized elasticity). For the sake of argument, it is on these
materials that we shall focus our present investigation.

As is well known, the equations of linearized elasticity have the following
characteristic properties: (1) they are of hyperbolic type, and (2) they conserve
the total initial energy at each following instant of time. Basically, it is these two
combined issues that are responsible for resonance. As a matter of fact, if we
“parabolize” these equations by adding a suitable dissipative term (representative,
for instance, of an appropriate damping factor due to the decay of the purely elastic
properties of the material) then, at least mathematically, it is readily seen that the
event of resonance is ruled out; see Sect. 3.2.

Our focus in this paper is different. We are not interested in how resonance can be
removed by altering the constitutive properties of the material; rather, we would like
to study whether and how the interaction of an elastic solid with a dissipative agent,
for example heat loss or viscous liquid, can affect and even prevent the happening
of resonance. As a matter of fact, we would like to characterize the conditions under
which resonance may or may not take place in a physical system where a (linear)
elastic material interacts with a phenomenon or another material whose dynamics
is of dissipative nature. We will refer to systems of this type as partially dissipative
systems.

It is quite remarkable that the question above, even though of great relevance
in applied science, has received only very little attention from the mathematical
community. In fact, we are only aware of the paper [16] where aspects of the
problem are analyzed in a one-dimensional model of linear thermoelasticity.

The motivation for our study came originally from a quite relevant liquid–solid
interaction problem, namely, that involving arterial blood flow. In this case, blood
is pumped at pulsatile rate and, therefore, for certain frequencies it could be in
principle able to produce harmful resonant effects on the arterial walls. However, the
analysis we shall perform here will be of larger breadth. In fact, we shall characterize
the occurrence of resonance in a vast class of partially dissipative systems that
include models of liquid–solid interaction as a particular case.

To this end, we observe that a characteristic feature of the above systems is that
the total energy E .t/ is a non-increasing function of time t � 0. Therefore, denoting
by U D U.t/, t � 0, the associated semigroup on the appropriate Banach space X ,
we must require

kU.t/xk2 	 E .t/ � E .0/ 	 kxk2 ; for all x 2 X and all t � 0 ;

where k � k denotes the norm of X . As a result, a partially dissipative system is
naturally defined as one whose dynamics is governed by a linear strongly continuous
semigroup of contractions.
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Occurrence of resonance in partially dissipative systems is performed in
Sect. 3.4. In order to summarize the main results in some details, we begin with
the following simple observation, that resonance is ruled out if for any T > 0 and
for any “force” f (in a suitable function class) of period T (shortly: T -periodic),
we can always determine a corresponding motion of the dynamical system of the
same period T . Therefore, we define a resonant period to be a positive number T
for which there is at least one T -periodic f such that there is no corresponding
T -periodic motion. With the help of Yosida’s mean ergodic theorem we thus show
that a resonant period T can exist if and only if if at least one of the following two
conditions is violated (see Theorem 3.3)

.a/ N.I � U.T // D f0g I .b/ R.I � U.T // is closed ; (3.1)

where N.�/ and R.�/ denote null space (kernel) and range, respectively, and I is the
identity. Of particular relevance in many concrete applications is the case when we
know that (a) holds but not necessarily (b). In this situation, in fact, resonance can
be “generically” excluded. More precisely, fix arbitrarily T > 0. We then show
that there is a dense Q � L1.0; T IX/1 such that, for any f 2 Q we can find a
unique corresponding T -periodic solution. Consequently, for any T -periodic force
f 2 L1.0; T IX/, and any " > 0, we may select a unique T -periodic solution
corresponding to f C f", where the magnitude of f" is less than ". In fact, in a
suitable subclass of partially dissipative systems we are able to provide a “concrete”
representation of the dense set Q, and show that it may be taken as the set of all T -
periodic functions possessing a finite Fourier series; see Theorem 3.5. An important
consequence of this result is that for such partially dissipative systems resonance
cannot be produced by T -periodic forces having a finite number of modes.

As it turns out, the validity of properties (a) and (b) can be directly related to
the asymptotic behavior (in “time” t , that is) of U.t/. From the physical viewpoint
the latter means asymptotic behavior of the total energy E D E .t/ of the system in
absence of external forces. In this respect, it should be emphasized that an important
feature of partially dissipative systems is that, in absence of forces, E .t/ is a
decreasing function of time. Different scenarios may thus occur. (1) The dissipative
mechanism is sufficiently “strong” as to force E .t/ ! 0 as t ! 1, provided
only E .0/ < 1; namely, dissipation damps out all possible self-oscillations of the
material. In terms of semigroup, this amounts to say that U.t/ is strongly stable.
In turn, the latter ensures the validity of condition (a) in (3.1) and, therefore,
by what we mentioned above, it “generically” excludes the event of resonance
(Theorem 3.4). (2) E .t/ ! 0 as t ! 1 whenever E .0/ < 1, with an explicit
order of decay rate. This means that U.t/ is uniformly stable, which guarantees that
both conditions (a) and (b) in (3.1) are satisfied, so that for such partially dissipative
systems, resonance is completely ruled out (Theorem 3.6). (3) Even though E .t/
is decreasing, part of the energy (related to the conservative elastic component) is

1For notation, see the end of this introductory section.
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stored and only part is dissipated. A typical example is furnished in Sect. 3.3.2 for
three-dimensional linearized thermoelasticity with periodic boundary conditions.
With respect to U.t/, this means that there exists an invariant subspace X0 � X

such that kU.t/xk D kxk, for all x 2 X0 and all t � 0. In this case we show that
resonance always occurs (Theorem 3.7).

The above general results are then applied to the study of resonance in several
partially dissipative systems, including three-dimensional linear thermoelasticity
(Sect. 3.5.1) and magnetoelasticity (Sect. 3.5.2). In both models, the interaction
between solid and dissipative agent (the latter being heat or magnetic losses) takes
place in the bulk of the material. Precisely, in the thermoelastic case, we show that
resonance can be “generically” excluded in “most” bounded and sufficiently regular
domains. Moreover, for such domains, resonance never occurs if the T -periodic
forcing terms have a finite (but otherwise arbitrary) number of modes. However, res-
onance does occur for some familiar and simply shaped domains such as a ball; see
Theorem 3.9 and Remark 3.3. Likewise, in linear magnetoelasticity resonance can
be “generically” ruled out for any (sufficiently smooth) bounded domains, but only
and only if the Lamé coefficients of the elastic solid satisfy appropriate conditions2;
see Theorem 3.10. The above results may be concisely summarized by stating
that resonance in linear thermoelasticity is due to the particular “geometry” of the
reference configuration of the solid, while in magnetoelasticity is a consequence of
its specific constitutive properties.3

Another significant application of the theory developed in Sect. 3.4 concerns the
analysis of resonance for certain liquid–structure interaction models, and is worked
out in Sect. 3.5.3. From the physical standpoint, the principal difference between
these partially dissipative systems and those considered previously is that now the
interaction takes place at the interface solid–liquid, through the continuity of stress
and velocity fields, rather than in the bulk of the solid. From the mathematical
point of view, this leads to a hyperbolic–parabolic coupled problem of completely
different nature. As for the models we shall consider, besides being linearized
versions of the original ones (namely, Navier equations for elasticity and Stokes
equations for the liquid), they all show the specific feature of having the interface
fixed. Though at first sight restrictive, such an assumption is certainly appropriate
in a number of physically interesting situations, as well as useful from a strictly
mathematical perspective.

In fact, from the physical point of view it is certainly valid within a good
approximation whenever the volume occupied by the fluid is little affected by the
deflection of the elastic structure. For example, as in a cylinder-like drum whose

2These conditions amount to say that the Poisson ratio must not be “too large,” a condition that is
verified in most common materials; see, e.g., [34].
3It is worth remarking that, as recently shown in [33], resonance is excluded in nonlinear
magnetoelasticity without the above restrictions on the Lamé coefficients, in presence of a suitable
nonlinear damping for the elastic material.
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shell is completely filled up with a viscous liquid, and its height is much bigger than
the diameter of the drumhead.

From the mathematical viewpoint, investigating a problem by these simplified
models may have an important bearing on the resolution of the same problem
for the original complete model. For instance, strong solutions to liquid–structure
interaction problems are constructed around the solution to a set of “approximate
equations” obtained by disregarding the nonlinearity and fixing the interface as
the reference configuration for the structure; see, e.g., [7, 19] and the bibliography
therein enclosed. The models we shall consider are exactly described by these
“approximate equations.”

There is a vast amount of literature dedicated to the mathematical analysis of
such models, too long to be included here. We limit ourselves to refer the reader to
[4, 12] and the bibliography therein.

The first liquid–structure problem we investigate is presented in Sect. 3.5.3 and
consists of a viscous liquid (within the Stokes approximation) occupying a three-
dimensional bounded domain, �F , and surrounding a linearized elastic material
occupying another bounded and simply connected domain �S . Combining the
result of Sect. 3.4 with those of [4] regarding the existence of a strongly continuous
semigroup of contractions for the problem, we prove necessary and sufficient
conditions for the occurrence of resonance. More precisely we show that resonance
cannot “generically” occur if and only if �S is such that a suitable overdetermined
boundary-value problem in �S has only the trivial solution.

As we already remarked, in this type of problems the dissipative interaction
occurs at the interface liquid–structure, � . In mathematical terms this can be
described as follows. Because of the adherence condition imposed on the liquid at
� , the velocity fields of both liquid .v/ and structure .ut /must there coincide. Now,
by the effect of viscosity �, the coupled system liquid–solid dissipates its energy at
a rate D WD �

R
�F

jD.v/j2, where D is the stretching tensor. By the trace theorem
and Korn’s inequality, we can show, in particular, D � �

R
�

jut j2. As a result, the
liquid “induces” into the structure some sort of dissipation, but only at the interface,
which, however, need not diffuse inside the solid in such a way as to rule out the
occurrence of resonance.

In view of the above observations, one may wonder whether this type of
dissipation could prevent resonance at least in the case of “thin” structures, like
plate or membranes. The answer to this question is positive, and the corresponding
analysis is carried out in Sects. 3.5.4 and 3.5.5. The typical situation here [12, 37]
is that the liquid is contained in a simply connected, smooth three-dimensional
domain � with a part, � , of its boundary that is elastic. The displacement field
on � is assumed to be directed in the normal direction. In the case � flat, in [12] it is
shown, among other things, that the relevant system of equations defines a strongly
continuous semigroup of contractions that is also uniformly stable. Consequently,
we conclude the absence of resonance for this model (Theorem 3.12). Successively,
we analyze the case when � may be “curved.” In this situation, the methods of
[12] are seemingly not applicable. Nevertheless, using some arguments developed
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in Sect. 3.4, we are able to conclude also in this case that resonance cannot occur
Theorem 3.13.

One important consequence of the above results on liquid–solid interactions is
that, at least for the class of models we have considered, “thick” elastic materials
may favor the occurrence of resonance.

We conclude this introductory section with a further consideration. A puzzling
issue that follows from our analysis regards those systems whose total energy decays
to zero for sufficiently large times, but with an unspecified order of decay. In
this situation, as we already mentioned, existence and uniqueness of T -periodic
solutions (arbitrary fixed T > 0) is established for a dense set, Q, of data or, in
other words, resonance is “generically” excluded. The mathematical reason why we
cannot take Q D X is because of lack of an a priori estimate of the solution in
terms of the data. Thus, if really Q ¤ X , we should be able to find f 2 X � Q
and a sequence ffkg � Q with fk ! f , such that the “energy” kU.t/xkk2 of the
corresponding (unique) solutions becomes increasingly large. We have performed
this kind of investigation in Sect. 3.6 from a numerical point of view, for a model of
solid–liquid interaction of the type analyzed in Sect. 3.5.3. The results obtained,
however, do not show the expected trend of the energy, at least for the kind of
periodic loads that we have chosen (squared profile). This leaves room for future
investigation.

Notation. We end this introductory section by collecting the basic notations we
shall use throughout the paper, referring the reader to, e.g., [18] for those (quite
standard) not reported here. For A a domain of the real Euclidean space R

n, n � 1,
and s a real positive number, we set Hs.A/ WD W s;2.A/, Hs

0 .A/ WD W
s;2
0 .A/, with

corresponding norm k � ks;2;A, where the subscript “A” will be omitted if confusion
does not arise. Here, as customary,W s;2.A/, W s;2

0 .A/ denote usual Sobolev spaces,
so that H0.A/ 	 H0

0 .A/ D L2.A/, the classic Lebesgue space. Unless otherwise
noticed, we shall use the same symbol X for a space of scalar-, vector-, and tensor-
valued functions. The scalar product in L2.A/ is denoted by .�; �/A, where, again,
the subscript “A” will be included whenever necessary. If X is a Banach space,
with associate norm k � kX , and T > 0 we denote by Lq.0; T IX/, q � 1 [resp.
C.Œ0; T �IX/] the class of functions u W Œ0; T � ! X such that

R T
0 ku.t/kXdt < 1

[resp. maxŒ0;T � ku.t/kX < 1].

3.2 Resonance in a Linearized Elastic Solid

Before addressing the question for a coupled hyperbolic–parabolic system, we
deem it useful to recall some basic and well-known facts about the occurrence of
resonance in linearly elastic solids. For the sake of simplicity, we shall assume that
the material is isotropic and homogeneous. In such a case the governing equations
are the Navier equations, with the subscript t denoting differentiation with respect
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to time:

�ut t � ��u � .�C �/rdiv u D �f in � � .0;1/ : (3.2)

Here u D u.x; t/ denotes the displacement field, � � R
n, n D 2; 3, the bounded

reference configuration, � > 0 the constant density, � > 0 and � the Lamé
coefficients satisfying the condition

�C 2� > 0 ; (3.3)

and f D f .x; t/ the external load per unit mass. To (3.2) we append the boundary
conditions, which we choose to be of displacement type:

u.x; t/ D 0 at @� � .0;1/. (3.4)

We now define the operator L as

L .u/ D ���u � .�C �/rdiv u (3.5)

with domain D.L / WD H1
0 .�/\H2.�/ � L2.�/ and range in L2.�/. By a direct

calculation one shows that L is symmetric in L2.�/ and that, moreover, under the
given assumption on � and �, there is a constant 
 > 0 such that

.L u;u/ � 
 kruk22 ; for all u 2 D.L /.

The latter, along with Poincaré inequality implies that L is positive definite.
Furthermore, from classical results on existence and regularity [13, Sect. 6.3], if
� is of class C2 for any g 2 L2.�/ there is one and only u 2 D.L / such that

kuk2;2 � c kgk2 : (3.6)

Hence L is surjective and, being also symmetric, is self-adjoint. Finally, from
Rellich theorem and (3.6) it follows that L �1 is compact. In view of all the above
properties, it follows that the spectrum of L is constituted only by a countable
number of positive eigenvalues, f�kg each of finite multiplicity that can cluster only
at infinity; see, e.g., [27, Theorem 6.26]. We will denote by f kg the corresponding
eigenfunctions, which we may take as an orthonormal base in L2.�/.

Suppose now that the load f is a one-mode time-periodic function of period
T WD 2�=! of the type

f .x; t/ D e{!t g.x/ ; g 2 L2.�/ :
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We then look for a corresponding T -periodic solution to (3.2)–(3.4) of the form
u.x; t/ D e{!t w.x/, where w satisfies

� � !2w C L .w/ D �g : (3.7)

Expanding w and g in the base f kg we deduce that w is a solution to (3.7) if and
only if its Fourier coefficients, wk , along f kg are related to those, gk , of g by the
formula

.�k � � !2/wk D � gk ; k 2 N :

Thus, if � !2 ¤ �k, for all k 2 N, we infer

wk D �gk

�k � �!2 ; for all k 2 N ;

in which case, the time-periodic solution exists and is given by

u.x; t/ D e{!t
1X
kD1

�gk

�k � � !2 k :

If, on the other hand, � !2 D �k for some k 2 N, the load f must satisfy the
necessary condition gk D 0, and the solution is given by

u.x; t/ D e{!t
X

k2N�fkg

�gk

�k � � !2
 k C C e{!t  k ;

for arbitrary C 2 R. Notice that in the case � !2 ¤ �k for all k 2 N, we deduce

ku.t/k22 D �2
1X
kD1

jgkj2
.�k � � !2/2

;

at each time t . As a result, the L2-norm of the displacement becomes larger and
larger the closer � !2 gets to one of the eigenvalues. Analogous conclusions hold
for the total (kinetic and strain) energy. These considerations describe in simple
mathematical terms the phenomenon of resonance in a linear elastic material.4

It is now worth observing that resonance can be ruled out if the solid, instead
of being perfectly elastic, possesses a suitable damping property. For example, in
case of linear damping (proportional to the velocity, that is) (3.2) is replaced by the

4For the general case when the periodic load has an infinite number of modes, we refer to
Remark 3.1.
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following one

�ut t � ��u � .�C �/rdiv u C ˛ut D �f in � � .0;1/ ; (3.8)

where ˛ > 0.5 Therefore, if we repeat step by step the previous procedure, we obtain
that the function w is, this time, a solution to the following equation

�� !2w C { ! ˛w C L .w/ D � g :

As a result, we prove

u.x; t/ D e{!t
1X
kD1

�gk

�k C { ˛ ! � � !2  k ;

implying

ku.t/k22 D �2
1X
kD1

jgkj2
Œ.�k � � !2/2 C ˛2!2�2

;

from which we deduce at once that resonance does not occur.
Another point that is worth remarking and that will be useful for future

considerations regards the behavior in time of the total energy E :

E .t/ WD 1
2

�kut .t/k22 C �kruk22 C .�C �/kdiv uk22
�
;

in absence of external loads. Actually, in the purely elastic case described by (3.2),
E is a constant function of time (conservation of energy):

E .t/ D E .0/ ; for all t � 0: (3.9)

This property is well known and easy to show by dot-multiplying both sides of (3.2)
with f 	 0 by u and integrating by parts over�.

In the presence of linear damping, however, the total energy decays exponentially
fast, a property that, as we shall see further on, can be intimately related to the lack
of resonant effects. In order to sketch the proof of the above decay, we dot-multiply
both sides of (3.8) with f 	 0, by ut and u, respectively, and integrate by parts over
� to obtain

dE

dt
D �˛kutk22

d

dt

h
˛
2
kuk22 C .ut ;u/

i
D kutk22 � �kruk22 � .�C �/kdiv uk22 :

5The calculations to follow show lack of resonance also in the case ˛ < 0. However, such an
assumption is unacceptable from the physical viewpoint in that it would imply an increase of total
energy in absence of external loads.
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Multiplying the second of these equations by a parameter " > 0 and summing the
resulting relation to the first one we get

dV

dt
D ." � ˛/kutk22 � " �kruk22 � " .�C �/kdiv uk22 WD F ; (3.10)

with

V WD E C "
	
˛
2
kuk22 C .ut ;u/



:

It is readily checked that by choosing " sufficiently small, and using the assumptions
on � and � along with the Poincaré inequality, both functionals V and F are
equivalent to E . As a consequence, from (3.10) and Gronwall’s lemma we get

E .t/ � M E .0/ e�ı t (3.11)

for suitable M; ı > 0, which proves the desired property.

Remark 3.1. The result concerning the occurrence of resonance can be generalized
to the case when the T -periodic load f has in general an infinite number of modes
as follows. Let us expand f in a Fourier series in time

f .x; t/ D
X

jmj2Z
e{ m! tf m.x/ ;

and set fmk WD .f m; k/. Then a T -periodic solution to (3.2) such that

u 2 W 2;2.0; T IL2.�// \ L20; T I D.L //

exists if and only if the following conditions hold

.i/ fmk 	 0 for all .m; k/ 2 Z � N such that �m2!2 D �k I

.ii/
X

f.m;n/2Z�NI�m2!2¤�kg

m4!4jfmkj2
.� m2!2 � �k/2

< 1 :

3.3 An Interesting Case Study: Linear Thermoelasticity

In the previous section we have seen, among other things, how the introduction of
damping in the material properties of the structure can eliminate the occurrence of
resonance. Objective of this and the following sections is to investigate whether the
interaction of the elastic structure with a dissipative phenomenon or material can
produce the same outcome.
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We will analyze this problem in the simple but instructive case when dissipation
is due to thermal effects and nonlinear effects are negligible. Thus, within the
linearized approximation for the elastic solid, and using a linear Fourier law for
the heat flow, and homogeneous and isotropic coupling, the relevant equations
governing the dynamics of the material reduce then to the classical equations of
homogeneous linear thermoelasticity [28], [26, Chap. 1]:

� ut t � ��u � .�C �/r.div u/ D �1r� C �f

�t � ��� D �2div ut CQ

�
in � � .0;1/ : (3.12)

While keeping the notation introduced in the previous section, we further denote
by � the temperature field, � > 0 the heat conduction coefficient, Q D Q.x; t/

a heat source, and �i , i D 1; 2, coupling constants obeying the thermodynamical
restriction �1�2 > 0. To (3.12) we append the following boundary conditions:

u.x; t/ D 0 ; �.x; t/ D 0 at @� � .0;1/. (3.13)

As previously mentioned, the thermoelastic material is overall dissipative, and in
fact, its total energy

E WD 1
2

�
�kut .t/k22 C k�.t/k22 C �kruk22 C .�C �/kdiv uk22

�

is a decreasing function of time. To see this, we formally dot-multiply both sides
of (3.12)1 by u, multiply both sides of (3.12)2 by � , and then integrate by parts over
�. By taking into account (3.13) and summing the resulting relations we thus deduce

dE
dt

D �� kr�k22 : (3.14)

Since it can be shown [30] that if there is t0 � 0 such that kr�.t0/k2 D 0, then u and
� must be identically zero over the whole time interval .0;1/, from (3.14) we find,
as a consequence, that the energy is a strictly decreasing function of time. However,
this does not imply that each component of E is actually decreasing. Nevertheless,
thanks to a classical result of Dafermos [15] one can proceed further and conclude
that indeed E.t/ ! 0 as t ! 1, for “most” (sufficiently smooth, bounded) domains
of R3. More precisely, we have the following [15] (see also [24, 43]).

Proposition 3.1. Let � � R
3 be a bounded domain of class C2. If the problem

��  �� D 0

div D 0

�
in � ;

 D 0 on @�
(3.15)

has only the trivial solution  D 0 for all � > 0, then solutions to (3.12)–(3.13)
with f 	 Q 	 0 and E.0/ < 1 satisfy E.t/ ! 0 as t ! 1. Concerning problem
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(3.15),  	 0 is the only solution for all � > 0, whenever� is such that all eigen-
values of the Laplace operator are simple [15], which is indeed true for a residual
set of (bounded) domains of class C2, in the sense of the Baire category [45].6

This classical result is of great physical relevance, in that it ensures that, for
“most” (and sufficiently regular) bounded domains the dissipation due to thermal
effects is able to damp out the free vibrations of the elastic body (within the above
model, of course). Its proof can be obtained by LaSalle’s invariance principle [23,
43], and is based on the following facts. Let

X WD ˚
.u;ut ; �/ 2 ŒH1.�/�3 � ŒL2.�/�3 � L2.�/� ;

be the “energy space.” The set of cluster points (as t ! 1) of all trajectories
emanating from some x 2 X is contained in the subset, F , of X where the
Liapounov functional E is constant. From (3.12) to (3.14) (with f 	 Q 	 0)
we see that F is the space of solutions .u; �/ 	 .u; 0/ such that

� ut t � ��u � .�C �/r.div u/ D 0

div ut D 0

�
in � � .0;1/ ;

ut D 0 on @� :

Setting w WD ut , and expanding w in a time Fourier series, the above system may
be equivalently reduced to (3.15). Therefore, if � satisfies the condition stated in
Proposition 3.1, every trajectory converges to 0 in the X -norm (equivalent to E 1

2 ).
The question that we would like to address next is whether such a dissipative

mechanism is also able to rule out the occurrence of resonance.
In this regard, it must be emphasized that Proposition 3.1 does not guarantee,

in general, any uniform rate of decay for E.t/.7 It should also be remarked that
such a decay is not true if instead of Dirichlet boundary conditions, we use periodic
boundary conditions.8 We will analyze these questions in Sect. 3.3.2, and in a much
broader context, in Sect. 3.4.

3.3.1 The One-Dimensional Case

In order to perform our study on resonance, we begin to consider the simple
one-dimensional version of (3.12), where � D .0; `/. By suitably rescaling the

6It is worth remarking that there are also “familiar” domains where (3.15) has an infinite number of
linearly independent solutions. This happens, for example, when� is a ball [15, Remark 5.2], and,
in fact, in the two-dimensional case, the circle is the only (sufficiently smooth) simply connected
domain where (3.15) has an infinite number of linearly independent solutions [8].
7In this respect, see [31].
8See, however, also Remark 3.4.
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appropriate variables, we then obtain, with the obvious meaning of the symbols,
that the relevant equations take the following form

ut t � uxx C ˛ �x D f

�t � �xx C ˇ uxt D Q

u.0; t/ D u.`; t/ D �.0; t/ D �.`; t/ D 0 t > 0 ;

(3.16)

where ˛ˇ > 0. We next expand u; �; f , and Q in Fourier series in time with period
T D 2�=!, namely

u.x; t/ D
X
n2Z

un.x/ e
{n!t ; etc.

From (3.16) we then infer that the corresponding coefficients un; �n; fn, and Qn

must satisfy the following equations

�n2!2un � un;xx C ˛�n;x D fn.x/

{ n! �n � �n;xx C { n! ˇun;x D Qn.x/

�
0 < x < ` ; (3.17)

with boundary conditions

un.0/ D un.`/ D �n.0/ D �n.`/ D 0 : (3.18)

Our next result ensures the existence of solutions to (3.17)–(3.18) with corre-
sponding estimates.

Proposition 3.2. For any fn;Qn 2 L2.�/, n 2 Z, there exists one and only
one solution .un; �n/ to (3.17)–(3.18) such that .un; �n/ 2 ŒH2.�/ \ H1

0 .�/�
2.

Furthermore, there exists C D C.n; !; `; ˛; ˇ/ > 0 such that

kunk2;2 C k�nk2;2 � C
�kfnk2 C kQnk2

�
: (3.19)

Proof. Set (D WD d=dx)

A D
��D2 0

0 �D2

�
; K D

� �n2!2 ˛ D

{ n!ˇD { n!

�
;

wn D
�

un
�n

�
; Fn D

�
fn
Qn

�
:

The operators A and K are well defined from X WD ŒH2.�/\H1
0 .�/�

2 in L2.�/,
so that for each n 2 Z our problem (3.17)–(3.18) can be written in the following
abstract form

A .wn/C K .wn/ D Fn in L2.�/ :
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Clearly, A is a homeomorphism of X onto L2.�/, while, by Rellich theorem, K
is compact. As a result, A C K is Fredholm of index 0, and the desired existence
result follows if we show that the only solution wn 2 X corresponding to Fn 	 0, is
trivial. To this end, we multiply both sides of (3.17)1, with fn 	 0, by { .ˇ=˛/n!un
(“ ”= c.c.) and integrate by parts over� to obtain, also with the help of (3.18)

� { jnj3!3 ˇ
˛

kunk22 C { n!
ˇ

˛
kun;xk22 C { n!ˇ.�n;x; un/ D 0 : (3.20)

Likewise, taking the c.c. of (3.17)2, with Qn 	 0, and then multiplying both sides
by �n and integrating over� allows us to deduce

{ n!k�nk22 C k�n;xk22 � { n!ˇ.�n;x; un/ D 0 : (3.21)

Summing side by side (3.20) and (3.21) then implies k�n;xk2 D 0, that is, in view
of (3.18), �n 	 0. As a consequence, from (3.17)2 (with Qn 	 0) and again (3.18)
we show, since ˇ ¤ 0, that un must identically vanish, and the claimed existence
result follows. The last statement in the proposition is a consequence of Banach
closed range theorem. ut

With the help of Proposition 3.2 we are now in a position to prove the following
theorem which furnishes the non-occurrence of resonance for a sufficiently large
class of data.

Theorem 3.1. Let f;Q be time-periodic functions of arbitrarily fixed period T > 0
with

f 2 W 3;2.0; T IL2.�// ; Q 2 W 2;2.0; T IL2.�//:

Then, there exists one and only one time-periodic solution .u; �/ to (3.16) of period
T such that

u 2 W 2;2.0; T IL2.�// \W 1;2.0; T IH1
0 .�/ \L2.0; T IH2.�//

� 2 W 2;2.0; T IH1
0 .�// \W 1;2.0; T IH2.�//

Proof. Our starting point is the system of equations (3.22) for arbitrary n 2 Z,
whose corresponding solutions are provided in Proposition 3.2. The first objective
is then to show estimates of the type (3.19) but with an explicit dependence of
the involved constant on the number n. Clearly, in view of (3.19), it is enough to
establish such estimates for all jnj � 1. For simplicity, throughout the proof we
shall omit the subscript “n.” Proceeding in the same way as we did to deduce (3.20)
and (3.21) (this time with f;Q 6	 0) we obtain

�n2!2 kuk22 C kuxk22 C ˛ .�x; u/ D .f; u/ ;
{ n!k�k22 C k�xk22 � { n!ˇ.�x; u/ D .Q; �/ :

(3.22)
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By multiplying both sides of (3.22)1 by { n! ˇ=˛ and summing the resulting
equation to (3.22)2, we show, in particular,

k�xk22 D n!
ˇ

˛
= .f; u/C < .Q; �/ ;

which, in turn, by Cauchy–Schwarz and Poincaré inequalities, implies for all " > 0

k�k1;2 � c0.jnjkf k2 C kQk2/C " kuk2 (3.23)

with c0 D c0.`; "; !/ > 0. We next multiply both sides of (3.17)2 by �xx and
integrate over� to get

k�xxk22 D { n!
	
.�; �xx/C ˇ.ux; �xx/


 � .Q; �xx/ ;

which, in turn, by Schwarz inequality, implies

k�xxk2 � jnj! �k�k2 C jˇj kuxk2
�C kQk2 : (3.24)

Since, by Poincaré’s inequality,

j � ˛.�x; u/C .f; u/j � 
2˛2k�xk22 C 1
4

kf k22 C 1
2
kuxk22 ;

with 
 Poincaré constant, from (3.22)1 and (3.24) we arrive at

k�xxk2 � c1
	jnj! k�k2 C k�xk2 C jnj! kuk2 C kf k2 C kQk2



; (3.25)

with c1 D c1.˛; `/ > 0. Let

U.x/ WD
Z x

0

u.�/ d�:

Multiplying both sides of (3.17)2 by U , integrating by parts, and using (3.18) we
find

{ n!.�; U /C .�x; u/� �x.`/

Z `

0

u.�/ d� � { n!ˇ kuk22 D .f; U / :

After a simple manipulation in this relation, we infer

jnj! jˇj kuk2 � c2
�jnj! k�k2 C k�xk2 C kf k2 C j�x.`/j

�
: (3.26)

with c2 D c2.`/ > 0. Starting from the identity

�2x .`/ D �2x.x/C 2

Z `

x

��.�/���.�/ d� ; x 2 .0; `/ ;
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and using Schwarz inequality, one easily shows that

j�x.`/j � c3

h
.1C 1=	/k�xk2 C 	 k�xxk2

i

where c3 D c3.`/ > 0 and 	 is an arbitrary positive number. Replacing this
inequality in (3.26) and employing (3.25) we derive the following

�jnj! jˇj � c4 	 jnj!�kuk2 �c5
n
jnj!k�k2 C .1C 1

	
/ k�xk2

C .1C 	/kf k2 C 	 kQk2
o

where c4; c5 > 0 depend only on ˛, and `. Choosing 	 D jˇj=2c4, from the previous
inequality we show

jnj! kuk2 � c6
˚jnj! k�k2 C k�xk2 C kf k2 C kQk2

�
; (3.27)

with c6 D c6.˛; ˇ; !; `/ > 0. Recalling that jnj � 1, from (3.27) we deduce

kuk2 � c7 .k�k1;2 C kf k2 C kQk2/; (3.28)

with c7 D c7.˛; ˇ; !; `/ > 0. Combining (3.23) with " D 1=2c7, and (3.28) we find

k�k1;2 � c8 .jnj kf k2 C kQk2/ ; (3.29)

for another constant c8 independent of n, which, once replaced in (3.27) allows us
to conclude

jnj kuk2 � c9
	
.1C jnj2/kf k2 C .1C jnj/kQk2



; (3.30)

with c9 > 0 independent of n. From (3.30) and (3.25) we infer

k�xxk2 � c10
	
.1C jnj2/kf k2 C .1C jnj/kQk2



; (3.31)

while from (3.17)1, and (3.29), (3.30) it follows that

kuxxk2 � c11
	
.1C jnj3/.kf k2 C .1C n2/kQk2



; (3.32)

where, again, the constants involved do not depend on n. Finally, we recall the
elementary inequality

kuxk2 � kuk 1
2

2 kuxxk
1
2

2 : (3.33)

The desired result is then a consequence of (3.29)–(3.33) and Plancherel theorem.
ut
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Remark 3.2. For future reference, it is important to observe that solutions to the
initial-value problem associated with (3.16) with f 	 Q 	 0 and data

.u.0/; ut .0/; �.0// 2 H1.�/ � L2.�/ � L2.�/ W	 X

decay exponentially fast to zero, as time goes to infinity, in the norm ofX , as shown
independently in [24] and [35].

3.3.2 The Higher Dimensional Case

For three-dimensional motions the picture is less clear.9 Actually, as will be shown
in a later section, one is only able to prove that resonance does not occur for
system (3.12)–(3.13) whenever the external load and heat source possess a finite
(but otherwise arbitrary) number of modes or, equivalently, belong to a dense linear
space of the data space.

However, if instead of Dirichlet boundary conditions (3.13) we use (space) peri-
odic boundary conditions, we may provide a somewhat more complete analysis.10

To this end, we let

C WD
3Y
1D1

�
�`i
2
;
`i

2

�
; k� WD

�
k1

`1
;
k2

`2
;
k3

`3

�
:

We are interested in time-periodic solutions to (3.12) that are also space-periodic
of period 2�=`i in the xi -direction, i D 1; 2; 3. We thus introduce the following
classes of functions, form 2 N [ f0g,

Hm
# .C/ WD

n
u D

X
k2Z3

uk e{ k
��x W uk D �u�k ;

X
k2Z3

.1C jk�j/2mjukj2 < 1
o
;

PHm
# .C/ WD ˚

u 2 Hm
# .C/ W u0 D 0

�
;

H0
# .C/ 	 H#.C/ ; PH0

# .C/ 	 PH#.C/:

We also recall that, in the space-periodic framework, the well-known Helmholtz–
Weyl decomposition of a generic vector function u 2 H#.C/ follows immediately
from the vector identity

jkj2u D k� � .u � k�/C .u � k�/k� ;

9Considerations and results reported in this section remain valid also in dimension 2.
10In this regard, see also Remark 3.3.
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and, therefore, we have

u D r' C curlv

' WD
X
k2Z3

uk � k�

jk�j2 e{ k
��x ; v WD

X
k2Z3

uk � k�

jk�j2 e{ k
��x :

(3.34)

Theorem 3.2. Assume f and Q are time-periodic functions of period T with
f ;Q 2 L2.0; T IH#.C//, and let

f D r‰ C curlF (3.35)

be the Helmholtz–Weyl decomposition of f . Then resonance may occur for solutions
to system (3.12) satisfying space-periodic boundary conditions if and only if
curlF 6	 0. On the other hand, if curlF 	 0 and, in addition,

‰ 2 L2.0; T IH1
# .C//\W 3;2.0; T IH#.C// ; Q 2 W 2;2.0; T I PH#.C// ;

the system (3.12) has at least one periodic solution, .u; �/ of period T , arbitrary
T > 0, with

u 2 W 2;2.0; T IH1
# .C//\W 1;2.0; T IH1

# .C//\ L2.0; T IH2
# .C//

� 2 W 2;2.0; T IH1
# .C//\W 1;2.0; T IH2

# .C// :

This solution is also unique in its own class if and only if � !2 ¤ � jk�j2=n2, for all
.k; n/ 2 Z

3 � Z.

Proof. By the Helmholtz–Weyl decomposition, we have

u D r' C curlv ;

which once replaced into (3.12), with the help of (3.34), delivers

r 	
�'tt � .�C 2�/�' � �1� � �‰
C curl

	
�vt t � ��v � �F


 D 0

�t � ��� D �2�'t CQ :
(3.36)

By the uniqueness of the decomposition, (3.36) is equivalent to the following set of
three equations

�vt t � ��v D �F

�'tt � .�C 2�/�' D �1� C �‰

�t � ��� D �2�'t CQ :

(3.37)

Further on we shall show that, under the given assumptions on ‰ and Q, (3.37)2;3
has one and only one T -periodic solution .'; �/ in the appropriate class. As a
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consequence, from the considerations developed in Sect. 3.2 (by formally setting
� C � D 0) resonance may occur if and only if F 6	 0, which, from the general
formula (3.34), is equivalent to curlF 6	 0. If, on the other hand, F 	 0, then a
T -periodic solution v 2 L2.0; T IH2

# .C// \ W 2;2.0; T IH#.C// to (3.37)1 will be
identically zero if and only if � !2 ¤ � jk�j2=n2, for all .k; n/ 2 Z

3 � Z. To show
the theorem completely, it then remains to show the T -periodicity property of the
solution .'; �/ mentioned above. Applying Fourier expansion in time to both sides
of (3.37)2;3 we obtain

�� n2!2'n � .�C 2�/�'n D �1�n C �‰n

{ n! �n � � ��n D { n! �2 �'n CQn ;
(3.38)

where

'.x; t/ D
X
n2Z

'n.x/ e
{n!t ; etc.

We next apply to these equations Fourier expansion in space to get

	 � � n2!2 C .�C 2�/jk�j2
'nk D �1�nk C �‰nk�
{ n! C � jk�j2��nk D �{ n! jk�j2�2'nk CQnk ;

(3.39)

where

'n D
X
k2Z3

'nk e
{ k��x ; etc.

Without loss, we may set‰n;0 D 0 for all n 2 Z,11 whereas, by assumption,Qn;0 D
0, for all n 2 Z. Therefore, from (3.39), we infer that we may take

'n;0 D �n;0 D 0 ; for all n 2 Z

and

'nk D �.{ n! C � jk�j2/‰nk CQnk

R.n;k/

�nk D �{ n! �2jkj2'nk CQnk

{ n! C �jkj2
.n;k/ 2 Z � Z

3 � f.n; 0/g ;

with

R.n;k/ WD � jkj2 .�� n2!2C .�C 2�/jkj2/
C { n! .�� n2!2 C .�C 2�/jkj2 C �1�2jkj2/ :

11This means to modify ‰ by a function of time which, of course, does not affect the load f .
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Since �1�2 > 0 it follows R.n;k/ ¤ 0 for all .n;k/ 2 Z�Z
3�f.n; 0/g, so that both

Fourier coefficients 'nk and �nk are well defined. Our next step is to obtain suitable
bounds of these coefficients in terms of the data. To this end, we multiply both sides
of (3.39)2 by �nk, take the c.c. of both sides of (3.39)1 and then multiply by 'nk. If
we sum the two resulting equations, we get

�jk�j2j�nkj2 D � n! jk�j2 �2
�1

=h‰nk; 'nki C <h NQnk; �nki ; (3.40)

where h�; �i denotes the scalar product in R
3. We next multiply (3.39)1 by jk�j2 and

replace the term jk�j2�nk from (3.39)2 to show

� n! jk�j2�1�2j'nkj2 D � �1 n! <h�nk; 'nki C =hQnk; 'nki : (3.41)

Recalling that �1�2 > 0, from (3.41) it immediately follows that

� jnj! jk�j2�1�2j'nkj � � j�1j jnj! j�nkj C jQnkj (3.42)

while from (3.40) we infer

�jk�j2j�nkj2 � � jnj! jk�j2 �2
�1

j‰nkj j'nkj C jQnkj j�nkj : (3.43)

Employing (3.42) in (3.43) leads to the following relation

�jk�j2j�nkj2 � � jnj!
j�1j j‰nkj j�nkj C �

��21
jQnkj j‰nkj C jQnkj j�nkj ;

which, in turn, by Cauchy inequality and recalling that jnj; jkj � 1, implies

jk�j j�nkj � c1
	
.1C jnj/j‰nkj C jQnkj



; (3.44)

where c1 > 0 is independent of n andk. Likewise, from (3.42) and (3.44) we deduce

jnj jk�j2j'nkj � c2
	
.1C n2/ j‰nkj C .1C jnj/jQnkj ; (3.45)

where also c2 > 0 is independent of n and k. Furthermore, combining (3.39)2
with (3.44)–(3.45) we obtain

jk�j2j�nkj � c3
	
.1C n2/j‰nkj C .1C jnj/jQnkj



; (3.46)

with c3 > 0 independent of n and k. Finally, from (3.39)1, and again (3.44)–(3.45)
it is not hard to show that

jk�j3j'nkj � c4
	
.1C jnj3 C jk�j/j‰nkj C .1C n2/jQnkj



; (3.47)
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with c4 > 0 independent of n and k. The theorem then follows from (3.44) to (3.47)
with the help of Plancherel theorem. ut
Remark 3.3. A significant consequence of the argument adopted in the proof of
the previous theorem is that, under the stated periodic boundary conditions, even
though—in absence of external loads and heat sources—the total energy of the
elastic body is strictly decreasing, the energy of the “divergence-free” part of the
displacement field remains constant in time. This can be immediately seen from
(3.37) with F 	 0, ‰ 	 0 which after some simple manipulation furnishes

1
2

dE1
dt

	 1
2

d

dt
Œ� kcurlvt .t/k2 C � kr.curlv.t//k2� D 0 ;

1
2

dE2
dt

	 1
2

d

dt

	
� kr't .t/k22 C .�C 2�/k�'.t/k22 C k�.t/k22


 D �kr�.t/k22 :

Notice also that, since one can prove that E2.t/ ! 0 as t ! 1, the energy remains
stored only in the rotational part of the displacement field. As we shall see in details
in the next section, “stored energy” is one of the main reasons (but not the only one)
for the occurrence of resonance.

Remark 3.4. A result qualitatively analogous to that of Theorem 3.2 could be
proved also in the case of a bounded and sufficiently smooth domain �, provided
we use appropriate boundary conditions on the displacement field u, as proposed in
[32]; see also [42]. The latter require that on @� the tangential component of u as
well as div u identically vanish.

3.4 An Abstract Approach

From what we have seen in the previous section by analyzing the linear ther-
moelastic model, we may state that, roughly speaking, resonance in a mechanical
system does not occur if and only if whatever the period of the applied driving
mechanism can be, the system allows for a corresponding time-periodic motion of
the same period. As a consequence, in order to furnish a general approach to the
problem, it seems appropriate to investigate existence of time-periodic solutions
for a sufficiently broad class of linear evolution equations, that include the relevant
hyperbolic–parabolic systems as a special case. This will be the object of the present
section, where we shall analyze this question with the help of the mean ergodic
theorem and some of its main consequences, within a class of problems whose
dynamics is governed by a strongly continuous semigroup of contractions.

Let X be a reflexive Banach space with associated norm k � k, and let X� denote
its dual with norm k � k�. For a given operator A W X 7! X we indicate by D.A/ its
domain of definition and by R.A/ its range. Moreover, we set N.A/ WD fx 2 X W
Ax D 0g. The identity operator on X is indicated by I .

Let f W R 7! X be an assigned periodic function of period T > 0. Our
objective is to provide necessary and sufficient conditions for the occurrence of
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resonance (and, as a consequence, for the existence of a time-periodic solution) to
the following equation

dx

dt
D Ax C f .t/ t 2 R , x 2 X : (3.48)

In this respect, we shall assume that A is the infinitesimal generator of a strongly
continuous semigroup of contractions. As is well known, the latter means that
there exists a one-parameter family of bounded, linear operators of X into itself,
fU.t/gt�0, such that

Ax D lim
t!0C

1

t
k.T .t/� I /xk ; for all x 2 D.A/ ;

and satisfying the following properties

(i) U.0/ D I ;
(ii) U.t C s/ D U.t/U.s/, all t; s � 0;

(iii) kU.t/x � U.t0/xk ! 0 as t ! t0, for all x 2 X , and all t0 � 0 ,

that is, U.t/ is strongly continuous and, in addition,

(iv) kU.t/xk � kxk, for all x 2 X and t � 0 ,

that is, U.t/ is a contraction at all t � 0.

Remark 3.5. The equations of thermoelasticity define a strongly continuous semi-
group of contractions in the (energy) spaceX WD H1

0 .�/�L2.�/�L2.�/. In fact,
setting A1 	 .1=�/L , A2 	 ��� with D.A2/ 	 H2.�/\H1

0 .�/, B 	 .�1=�/r
with D.B/ 	 H1

0 .�/, and B� 	 ��2div with D.B�/ 	 H1.�/. we can put
(3.12)–(3.13) in the form (3.48) where

x WD
0
@u
v

�

1
A ; A WD

0
@ 0 I 0

�A1 0 B

0 �B� �A2

1
A ; f WD

0
@ 0

f =�

Q

1
A ;

with D.A/ WD H2.�/ \ H1.�/ \ H1
0 .�/. Then, it can be shown that A is the

infinitesimal generator of a strongly continuous semigroup of contractions; see, e.g.,
[24, Theorem 1].

As customary, we define x D x.t/ to be a strong solution to (3.48) if x 2
C.Œ0; �IX/; dx=dt 2 L1.0;  IX/,  > 0, and x.t/ 2 D.A/ and satisfies (3.48)
for a.a. t 2 Œ0; �. Likewise, x D x.t/ is a mild solution to (3.48) if it is continuous
with values in X and satisfies the integrated “mild formulation” of (3.48):

x.t/ D U.t/x.0/C
Z t

0

U.t � s/f .s/ ds ; t � 0 . (3.49)
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Definition 3.1. A real number T > 0 is a resonant period for (3.48) [respectively,
for (3.49)] if there exists a T -periodic function f 2 L1.0; T IX/ of period T
for which (3.48) [respectively, (3.49)] does not have any corresponding T -periodic
strong [respectively, mild] solution.

As we shall see further on, the existence or non-existence of a resonant period is
strictly related to the asymptotic behavior as t ! 1 of the generic solution to the
homogeneous equation, that is, (3.48) with f 	 0. In particular, resonant periods do
occur for systems possessing solutions not approaching 0 for large t (Theorem 3.3).
A remarkable example in this direction is constituted by conservative systems
where energy is kept constant at all t � 0 by all solutions (Theorem 3.7). On the
opposite hand, resonance certainly does not occur if solutions decay exponentially
fast to 0 as t ! 1 (Theorem 3.6). In the intermediate case, where all solutions
decay to 0 at an indefinite rate,12 we can show that resonance may occur if and only
if f belong to the complement of a dense set in the data space (Theorem 3.4).
Furthermore, if the operator A obeys appropriate further assumptions, that are
certainly met in several physically relevant models like linear thermo- and magneto-
elasticity, as well as poroelastic diffusion, we can specialize this result to show that
resonance does not occur whenever f possesses a finite (but otherwise arbitrary)
number of modes or, equivalently, belongs to a suitable dense linear space of the
data space (Theorem 3.2).

We begin to show the following result.

Theorem 3.3. Let T > 0. The following properties hold.

(i) If

N.I � U.T // ¤ f0g ; (3.50)

then T is a resonant period for (3.49). Moreover, if 0 is an eigenvalue of A,
then every T > 0 is a resonant period for (3.49).

(ii) If N.I � U.T // D f0g, but R.I � U.T // is not closed, then T is a resonant
period for (3.49). In addition, there is a dense subset, Q, of L1.0; T IX/ such
that for every f 2 Q there exists a unique corresponding T -periodic solution
x 2 C.Œ0; T �IX/ to Eq. (3.49).

(iii) If

N.I � U.T // D f0g and R.I � U.T // is closed; (3.51)

then for every T -periodic function f 2 L1.0; T IX/ there exists one and only
one corresponding T -periodic solution x 2 C.Œ0; T �IX/ to Eq. (3.49).

12Recall that if there exists t0 > 0 such that kx.t0/k 	 kU.t0/x.0/k < kx.0/k for all x.0/ 2 X ,
then, by the semigroup property of U.t/, all solutions must decay exponentially fast [5, Remark at
p. 178].
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Therefore, a necessary and sufficient condition for the existence of a resonant
period for (3.49) is that at least one of the conditions in (3.51) is violated.

Proof. Set U WD U.T /, and denote by Un, n 2 N, the Cesaro averages of U :

Un WD 1

n

nX
mD1

Um : (3.52)

For a fixed x 2 X , by the property (iv) of the semigroup U.t/ we find

kUnxk � 1

n
.nkxk/ ;

so that, since X is reflexive, for each x 2 X there exists fn0g � fng and x0 2 X

such that

weak � lim
n0!1Un0x D x0 :

Moreover, again by the property (iv) of U.t/ the family fUmg is equi-continuous, in
the sense that

sup
m�1

kUmxk � kxk ; for each x 2 X .

As a result, from the mean ergodic theorem (e.g., [49, pp. 213–214]) we deduce

x0 2 N.I � U / ; lim
n!1Unx D x0 ;

as well as the following characterizations

R.I � U / D fx 2 X W lim
n!1Unx D 0g

N.I � U / D fx0 2 X W lim
n!1Unx D x0g : (3.53)

Furthermore, we have the direct sum decomposition of the space X

X D N.I � U /˚ R.I � U / : (3.54)

Now, suppose (3.50) holds and, by contradiction, that for any T -periodic f 2
L1.0; T IX/ Eq. (3.49) admits a corresponding T -periodic solution. The latter
means that there is x 2 X such that

.I � U /x D
Z T

0

U.T � s/f .s/ds : (3.55)
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Denote by U � the conjugate of U , and by h�; �i the duality pair X $ X�. Since
(e.g., [21, p. 308])

N.I � U �/ D fx� 2 X� W hx�; xi D 0; for all x 2 R.I � U /g ; (3.56)

and since

R.I � U / ¤ X (3.57)

we infer that N.I � U �/ is not trivial. Thus, picking x� 2 N.I � U �/ � f0g,
from (3.55) it follows

h.I � U �/x�; xi D hx�; .I � U /xi D
Z T

0

hx�; U.T � s/f .s/i ds

that is

Z T

0

hx�; U.T � s/f .s/i ds D 0 : (3.58)

In view of (3.56) and (3.57) we deduce that there exists at least one x 2 X �
R.I � U / such that

hx�; xi ¤ 0 : (3.59)

We now choose the T -periodic function f such that

f .t/ D U.t/x t 2 Œ0; T � :

Clearly, f 2 L1.RIX/. Using the semigroup property of U.t/ we thus have

Z T

0

hx�; U.T � s/f .s/i ds D
Z T

0

hx�; U xi ds D T hU �x�; xi :

Recalling that x� 2 N.I � U �/ and using (3.59), from the previous relation we
conclude

Z T

0

hx�; U.T � s/f .s/i ds D T hx�; xi ¤ 0 ;

which contradicts (3.58). This proves the first statement of the theorem. Suppose
now 0 is an eigenvalue of the generator A. From the spectral mapping theorem it
then follows that 1 is an eigenvalue of U.t/ for all t � 0 [38, Theorem 2.4], namely,
N.I � U.t// ¤ f0g for all t � 0, and the second statement follows from the first
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one. We next prove property (ii). If R.I � U / ¤ X , there exists b 2 X such that
the equation

.I � U /x D b (3.60)

does not have a solution. Therefore, since the existence of a T -periodic solution is
equivalent to the resolution of (3.55), the first stated property in part (ii) follows
provided we show that for any b 2 X there is f 2 L1.0; T IX/ such that

b D
Z T

0

U.T � s/f .s/ds : (3.61)

Once such an f is found, we may extend it periodically of period T to the whole real
line. 13 For � > 0 we set QU .t/ WD e��tU.t/, and observe that since k QU .T /k < 1,
I � QU .T / is continuously invertible. Equation (3.61) becomes

b D
Z T

0

QU .T � s/w.s/ds ;

where w.s/ WD e�.T�s/f .s/. Replacing w.s/ by w.T � s/ and keeping the same
notation, the question then reduces to show that the bounded linear operator

M W L1.0; T IX/ ! X

defined by

Mw WD
Z T

0

QU .s/w.s/ds

is surjective. It is clear that R.M/ is dense in X . To see this we observe that w.t/ D
. QU .T /�I /�1.A��/b satisfiesMw D b, which in turn implies D.A/ � R.M/, and,
therefore, the density property. We shall next prove that the range ofM is closed. To
this end, by the Banach closed range theorem, this is equivalent to show that R.M �/
is closed, whereM � is the conjugate of M . From the identity

hMw; x�i D
Z T

0

h QU.s/w.s/; x�ids D
Z T

0

hw.s/; QU �.s/x�ids

it follows thatM � W X� ! L1.0; T IX/� 	 L1.0; T IX�/ is given byM �x�.s/ D
QU �.s/x�, s 2 Œ0; T �. This implies

kx�k� � sup
0�s�T

k QU �.s/x�k� D kM �x�kL1.0;T IX�/ :

13The argument that follows is due to Professor Jan Prüss, to whom we are indebted.
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Hence M � is injective and has closed range, and the proof of the first statement in
(ii) is completed. In order to show the second one we introduce the quotient space

L 1.0; T IX/ WD L1.0; T IX/=N.M/

where

N.M/ D
n
w 2 L1.0; T IX/ W

Z T

0

QU .t/w.t/dt 	
Z T

0

U.T � t/w.t/ D 0
o
; (3.62)

endowed with the usual norm

kW k WD inf
z2N.M/

kw � zk ; w 2 W :

Recalling that M is surjective, the operator

M W W 2 L 1.0; T IX/ 7! Mw 2 X ; w 2 W ;

is then continuously invertible and, therefore,M�1 maps dense sets ofX into dense
sets of L 1.0; T IX/. As a result, setting D D M�1.R.I � U // we deduce, by
assumption, that D is dense in L 1.0; T IX/. Define

D WD fv 2 X W v 2 V for some V 2 Dg ;
and notice that for any b 2 R.I � U / there is v 2 D such that Mv D b. We claim
that the set

Q WD D C N.M/

is dense in L1.0; T IX/. In fact, pick u 2 X , and " > 0. By what we have just
shown, there exists u" 2 D such that

inf
z2N.M/

ku � u" � zk < " ;

which, in turn, by the property of the infimum, implies that we can find z 2 N.M/

such that

ku � u" � zk < 2" ;
which proves the desired property. We next observe that for any b 2 R.I � U /

(that, by hypothesis, is dense in X ) (3.60) has one and only one solution x. Now,
from what we have proved and (3.62), we conclude that for such a b there exists
f D f1 C f2 2 D C N.M/ such that

b D
Z T

0

U.T � s/f1.s/ds D
Z T

0

U.T � s/f .s/ds ;



224 G.P. Galdi et al.

namely, for any f in the dense set Q there exists x 2 X such that

.I � U /x D
Z T

0

U.T � s/f .s/ds ;

and this completes the proof of the second statement in (ii).
We finally prove property (iii). We recall that, for a given T -periodic function f ,

the existence of a corresponding T -periodic solution to (3.49) is equivalent to find
x 2 X satisfying (3.55). Now, under the assumption (3.51), by the Banach closed
range theorem .I �U / is continuously invertible. Therefore, from (3.55) we obtain

x D .I � U /�1
Z T

0

U.T � s/f .s/ ds ;

which provides the desired solution. Finally, the corresponding uniqueness result is
an immediate consequence of the first condition in (3.51). ut
Remark 3.6. As immediate consequence of Theorem 3.3, we deduce the following
result. Necessary and sufficient condition in order that for any T -periodic f 2
L1.0; T IX/ Eq. (3.49) admits a unique T -periodic mild solution is that both
conditions in (3.51) hold. This extends the analogous result of [41, Theorem 1]
to the case of more general f .

Remark 3.7. If f is such that

Z T

0

U.T � s/f .s/ ds D 0 ;

which, of course, is a non-generic property of the data, then the assumption on the
closedness of the range in (3.51) is not required (since always 0 2 R.I � U /) and
the unique T -periodic solution is given by

x.t/ D
Z t

0

U.t � s/f .s/ ds ;

see [36, Theorem 3.3].

Remark 3.8. The first part of Theorem 3.3 can be equivalently restated by saying
that if the homogeneous equation (namely (3.49) with f 	 0) has a non-
trivial T -periodic solution, then T is a resonant period for the non-homogeneous
equation (3.49). This is in complete agreement with what we have shown in Sect. 3.3
in the particular case of thermoelasticity with periodic boundary conditions.

Our next objective is to give sufficient conditions on the semigroup U.t/ that
ensure the validity of (3.51) for all T > 0. As a by-product, we will then obtain
existence of T -periodic solutions for arbitrary period, which in turn will rule out the
occurrence of resonance. The above conditions are, as somewhat expected, related
to the asymptotic behavior of U.t/ for large t .
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To this end, we recall that a semigroup S.t/ is called strongly stable if

lim
t!1 kS.t/xk D 0 ; for all x 2 X , (3.63)

whereas it is called uniformly stable if

lim
t!1 kS.t/k D 0 : (3.64)

The following result is well known; see, e.g., [5, Remark at p. 178].

Lemma 3.1. A strongly continuous semigroup S.t/ is uniformly stable if and only
if there exists M; ı > 0 such that

kS.t/xk � M e�ı tkxk ; for all t � 0 and all x 2 X . (3.65)

The next theorem shows that strong stability prevents resonance for dense set of
data but does not rule it out completely.

Theorem 3.4. Suppose that U.t/ is strongly stable, and let T > 0 be arbitrarily
given. Then we can find a dense set Q � L1.0; T IX/ such that for any T -periodic
f 2 Q there exists a unique corresponding T -periodic solution x 2 C.Œ0; T �IX/
to Eq. (3.49).

Proof. By Theorem 3.3(ii) it is enough to show

N.I � U.T // D f0g for all T > 0 . (3.66)

Assume (3.63) holds and fix T > 0. Then, for any " > 0 there is n 2 N such that

kU.nT /xk < " ; for all n � n : (3.67)

We now have, for all n > n,

Un.T /x D 1

n

"
U.T /x C U.2T /x C � � � C U.nT /x C

nX
kDnC1

U.kT /x

#
:

Thus, using the property (iv) of the semigroup and (3.67)

kUn.T /xk � 1

n
ŒnC ".n � n/� kxk ;

from which, by the arbitrariness of ", we conclude

lim
n!1 kUn.T /xk D 0 :

Therefore (3.66) follows.
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An immediate consequence of the above theorem is the following result ensuring
“generic existence” and uniqueness of T -periodic solutions for arbitrary T > 0,
provided only U.t/ is strongly stable.

Corollary 3.1. Assume U.t/ strongly stable, and let f 2 L1.0; T IX/ be T -
periodic of arbitrary period T > 0. Then, for every " > 0 there is f" 2 L1.0; T IX/
with

kf"kL1.0;T IX/ < "; (3.68)

such that (3.49), with f replaced by f C f", has one and only one corresponding
T -periodic solution.

Proof. Given f and " > 0, we may find f " 2 Q satisfying (3.68). By Theorem 3.4,
we then show the existence of one and only one corresponding T -periodic solution.
Thus, the claimed property follows by writing f " D f C .f " � f /. ut

In view of the classical result of Arendt and Batty [1], a sufficient condition
in order to satisfy the assumption on U.t/ of Theorem 3.4 and Corollary 3.1 is
that the infinitesimal generator A has a compact resolvent and no eigenvalues
lying on the imaginary axis. These conditions are certainly met in a broad class
of hyperbolic–parabolic problems that are relevant in many significant applications
where the dissipative coupling is “sufficiently strong.” In such a class, we are also
able to provide a concrete realization of a dense set of “forces” with the property
stated in Theorem 3.4. In particular, our result allows us to exclude the occurrence
of resonance when f has a finite (but otherwise arbitrary) number of modes.
Nevertheless, if the coupling is not “strong” enough, then resonance is shown to
occur.

To state all the above in precise mathematical terms, we set

L2].0; T IX/ D
�
r W t 2 R 7! X I r is T -periodic, and

Z T

0

kr.t/k2dt < 1
�

and let

Q].0; T IX/ WD
(
q 2 L2].0; T IX/ W q.t/ D

NX
nD�N

qn e
{ 2 n �T t ; qn 2 X , N 2 N

)
:

We recall the following result on vector-valued Fourier series (e.g., [25, Theo-
rem 2.2]).

Lemma 3.2. Let X be a Hilbert space. Then any r 2 L2].0; T IX/ admits the
following Fourier expansion (with ! WD 2�=T )

r.t/ D
X
k2Z
rk e{ k ! t



3 Hyperbolic–Parabolic Coupling and the Occurrence of Resonance in. . . 227

where the Fourier coefficients rk are given by

rk WD 1

T

Z T

0

r.t/ e{ k ! t dt :

In the above, the integral is meant in the sense of Bochner and the convergence of
the series in the following sense

lim
N!1

Z T

0

���r.t/ �
kDNX
kD�N

rk.t/ e{ k ! t
���2dt D 0 :

Thus, in particular, Q].0; T IX/ is dense in L2].0; T IX/.
We are now in a position to prove the following result.

Theorem 3.5. Let H1 and H2 be Hilbert spaces, and consider the equations

Ru C A1u C �1Bw D f in H1 ; Pw C A2w C �2B
� Pu D g in H2 ; (3.69)

where �i 2 R � f0g are coupling parameters, Ai W D.Ai / � Hi ! Hi , i D
1; 2, are self-adjoint, strictly accretive operators with compact inverse, while B W
D.B/ ! H1, is a densely defined operator with adjoint B�, and D.A2/ � D.B/,
D.A1/ � D.B�/. Suppose, further, that B is A2-compact, while B� is A1-compact.
The following properties hold.

(a) Assume

� �v C A1v D 0 ; B�v D 0 H) v D 0 (3.70)

for any value of the positive parameter �, and let T be an arbitrary positive
number. Then, there exists a dense set Q � L2].0; T IH1 � H2/ such that for
any .f; g/ 2 Q, the system (3.69) has at least one T -periodic solution .u;w/ 2
C1.Œ0; T �I D.A1/ � D.A2//. More specifically, for any f and g such that

f .t/ D
NX

nD�N
fn e

{n!t ; g.t/ D
NX

nD�N
gn e

{n!t (3.71)

where N 2 N, ! WD 2�=T , and .fn; gn/ 2 H1 � H2, for all 0 � jnj � N , the
system (3.69) has a corresponding solution .u;w/ of period T given by

u.t/ D
NX

nD�N
un e

{n!t ; w.t/ D
NX

nD�N
wn e

{n!t ;
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where .un;wn/ 2 D.A1/ � D.A2/. Furthermore

kA1.un/kH1 C kA2.wn/kH2 � C.n/ .kfnkH1 C kgnkH2 / ; (3.72)

for all 0 � jnj � N .
Finally, if .u1;w1/ is another T -periodic solution to (3.69) corresponding to

the same data with

u1 2 W 2;2.0; T IH1/ \L2.0; T I D.A1// ;

w1 2 W 2;2.0; T IH2/ \L2.0; T I D.A2//

then necessarily .u;w/ D .u1;w1/:
(b) Conversely, assume there is �0 > 0 such that the problem

� �0v CA1v D 0; B�v D 0 (3.73)

has a non-zero solution. Then, there exists at least one resonant period for
(3.69).

Proof. Before proceeding, we would like to recall that, under the stated assump-
tions, by using LaSalle’s invariance principle one can show that all solutions .u;w/
to (3.69) with f 	 g 	 0 having initial data in H1 � H2, decay to zero as t ! 1
in the H1 � H2-norm; see [24, Theorem 2]. We now pass to the proof. In view
of Lemma 3.2 it is enough to consider only f and g of the form (3.71). For each
0 � jnj � N , and each .fn; gn/ 2 H1 � H2 we look for solutions to the equations

�n2!2 unCA1unC�1Bwn D fn ; { n! wnCA2wn�{ n! �2B�un D gn : (3.74)

We shall show that (3.74) has one and only one solution .un;wn/ 2 D.A1/� D.A2/.
To this end, we set

A D
�
A1 0

0 A2

�
; K D

� �n2!2 �1B

�{ n! �2B� { n!

�
;

Un D
�

un
wn

�
; Fn D

�
fn

gn

�
;

so that (3.74) can be rewritten as

A Un C K Un D Fn in H

where H WD H1 � H2. The operator A C L can be thought of as defined in the
space X with range in H, where

X WD
(
.u1; u2/ 2 D.A1/ � D.A2/ W

2X
iD1

kAiuikHi < 1
)
:
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In view of the stated assumption on Ai , i D 1; 2, X is a Hilbert space, endowed
with the appropriate scalar product, and, in addition, A is a homeomorphism of X
onto H. Furthermore, again by assumption, it follows that K is compact. In fact,
let f.�k;  k/g be a bounded sequence in X . Since Ai has a compact inverse in Hi ,
i D 1; 2, there is a subsequence f.�k0 ;  k0/g that converges strongly in H1 � H2.
Moreover, in view of the assumption on B and B�, so does f.B.�k0/; B�. k0//g,
which proves compactness. Consequently,A CK is Fredholm of index 0. Denoting
by hh � iii and h � ; �ii , norm and scalar product in Hi , respectively, from (3.69) with
fn D gn D 0 we infer (with � WD �2=�1)

�{ jnj3!3� hhunii1 C { n! � hA1.un/; uni1 C { n! �2hB.wn/; uni1 D 0

�{ n!hhwnii2 C hA2.wn/;wni2 � { n! �2hB�.un/;wni2 D 0 :
(3.75)

Summing side by side the latter two equations we get hA2.wn/;wni2 D 0, which
implies wn D 0. Using this information back in (3.69) with fn D gn D 0, we
conclude

� n2!2 un C A1un D 0 ; B�un D 0 ; (3.76)

which, by (3.70), furnishes un D 0. Therefore, A C L is a homeomorphism
of X onto H, and the proof of existence is completed. The proof of (3.72) is
a consequence of Banach closed range theorem. Finally, for uniqueness, after
expanding .u1;w1/ in a time-Fourier series with values in H1�H2 (see Lemma 3.2),
we deduce that the pair .un � u1n;wn � w1n/ must satisfy (3.72) wth fn D gn D 0 for
all n 2 Z. As a consequence, arguing as in a previous part of this proof, we deduce
that .un � u1n;wn � w1n/ obeys (3.76), from which, in view of the assumption (3.70),
we conclude .un � u1n;wn � w1n/ D .0; 0/. Part (a) of the theorem is proved. To
show part (b), we have to prove the existence of T > 0 and of T -periodic f and
g such that problem (3.69) does not admit a T -periodic solution. To this end, we
observe that by assumption, �0 is an eigenvalue of A1. We then choose g D 0 and
f D e{ !0 tf0, where !0 D p

�0 and f0 is a non-zero solution to (3.73). Now, let
.u;w/ be a corresponding 2�

!0
-periodic solution to (3.69). We can then expand it in a

Fourier series and show that the (only nonzero) mode .u0;w0/ corresponding to !0
must satisfy, in particular,

��0 u0 CA1u0 C �1Bw0 D f0 :

Taking the H1-scalar product of both sides of this equation by f0, and recalling that
A1 is self-adjoint we get

hu0;��0f0 C A1f0i1 C �1hw0; B
�f0i1 D hhf0ii21 :

However, by the choice of f0 and (3.73) the left-hand side of this equation is zero,
which furnishes a contradiction and concludes the proof of the theorem. ut

The mere strong stability of the semigroup does not appear to be enough to secure
the closedness property of R.I �U / and, therefore, by Theorem 3.3, to exclude the
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occurrence of resonance. In this respect, there are several characterizations of this
property, and we quote the following one due to Browder [11, Lemma 5]

Lemma 3.3. R.I � U / is closed in X if and only if

sup
n�1

���
nX

mD1
Umx

��� < 1 for all x 2 X : (3.77)

Using this result, we can give sufficient conditions on the semigroup U.t/ in
order to verify (3.77). In fact we have the following.

Proposition 3.3. Suppose thatU.t/ is uniformly stable. Then R.I�U.T // is closed
for all T > 0.

Proof. By Lemma 3.1 U.t/ satisfies (3.65). As a result, for each x 2 X we find

���
nX

mD1
Umx

��� � M kxk
nX

mD0
e�mıt D M

1 � e�.nC1/ıt

1 � e�ıt kxk � M kxk ;

and the claim follows from Lemma 3.3 . ut
We are now in a position to give sufficient conditions for the absence of resonant

periods for (3.49).

Theorem 3.6. Suppose U.t/ is uniformly stable. Then, given any T > 0 and a T -
periodic function f 2 L1.0; T IX/, there exists one and only one corresponding
T -periodic function x 2 C.Œ0; T �IX/ satisfying (3.49). Moreover, there is C > 0

such that

max
Œ0;T �

kx.t/k � C kf kL1.0;T IX/ :

Proof. From the assumption and Theorem 3.4 we find that N.I � U.T // D f0g
for all T > 0, and this, again by assumption and Theorem 3.3 and Proposition 3.3,
ensures the existence of T -periodic solutions corresponding to (sufficiently regular)
T -periodic f of arbitrary period T > 0. The last statement is a consequence of the
global invertibility of the operator I � U.T /. ut
Remark 3.9. As an immediate application of the above finding, and in view of
(3.11) we deduce the absence of resonant periods for a linearized elastic material
with linear damping. In view of Remark 3.2 the same conclusion holds for one-
dimensional thermoelasticity, in agreement with Theorem 3.1.

On the opposite side, we shall now investigate the occurrence of resonance
for systems of equations that are (at least) partially conservative, namely, where
the “energy” kU.t/xk2, or “part” of it, is conserved at all times. In this situation
we are expecting the existence of at least one resonant period. Actually, as we
know from Sects. 3.2 and 3.3, Remark 3.4, this is indeed the case, for example,
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in linearized elasticity, where, in fact, the whole energy is conserved, and in linear
thermoelasticity with periodic boundary conditions, where only a part of the energy
is conserved. The next result confirms the above expectation, and makes it precise
from the rigorous mathematical viewpoint.

Theorem 3.7. Let X be a Hilbert space, and let X0 be a subspaces that is left
invariant by U.t/. Suppose that kU.t/xk D kxk, for all t � 0 and all x 2 X0.
Then, there exists at least one resonant period for (3.48).

Proof. Without loss, we can take X0 D X . Assume, by contradiction that for any
T -periodic force f , (3.48) admits a corresponding T -periodic strong solution. In
view of Lemma 3.2, we may then expand both f and x in Fourier series:

f .t/ D
X
k2Z
fk e{ k ! t ; x.t/ D

X
k2Z
xk e{ k ! t :

Thus, from (3.48) we deduce that the Fourier coefficients xk , fk satisfy the equations

k ! xk �Lxk D 1

{
fk ; k 2 Z ; (3.78)

where L WD { A.14 Since U.t/ is a semigroup of isometries, by the Cooper–Phillips
theorem [14, Theorem 2(a)], [40, Theorem 1.1.4], L is maximal symmetric. As a
result, at least one of the deficiency indices of L has to be zero and, therefore, the
spectrum of L must contain (at least) a non-empty subset, O , of the real line [27, p.
271]. We then choose T in such a way that k! 2 O , for some k 2 Z, and conclude
that (3.78) does not have a solution for k D k, provided we pick fk appropriately.
In fact, if k! is an eigenvalue, we take fk in the corresponding eigenspace, while if
k! is in the continuous or residual spectrum of L, we take fk 62 R.k! I � L/. The
proof of the theorem is completed. ut

3.5 Some Applications

Objective of this section is to provide several applications of the theory developed
in Sect. 3.4 to a number of problems involving hyperbolic–parabolic couplings,
including thermo- and magneto-elasticity and certain basic models of liquid–
structure interaction.

3.5.1 Three-Dimensional Linear Thermoelasticity (Revisited)

As we know from the results of Sect. 3.3, while in the one-dimensional case one
eliminates the occurrence of resonance (at least for a class of sufficiently regular

14Notice that, of course, xk 2 D.A/, because x.t/ 2 D.A/ for all t � 0.
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data) in three dimensions the validity of an analogous result was left open with
Dirichlet boundary conditions, whereas, in fact, in the case of (spatially) periodic
boundary condition it was shown that resonance does take place.

However, by Proposition 3.1, we know that the semigroup generated by the linear
elasticity equations is strongly stable, provided � is such that (3.15) has only the
zero solution (and we know that this happens for “most” C2-domains). Therefore,
in view of Theorem 3.4 and Corollary 3.1 we deduce the following.

Theorem 3.8. Let � � R
3 be a bounded domain of class C2, and assume that

problem (3.15) has only the trivial solution  D 0 for all � > 0. Then, there
exists a dense set Q � L1.0; T I ŒL2.�/�3 � L2.�// such that for any T -periodic
.f ;Q/ 2 Q, problem (3.12)–(3.13) has one and only one mild T -periodic solution.
Furthermore, for any T -periodic .f ;Q/ 2 L1.0; T I ŒL2.�/�3 � L2.�// and any
" > 0, there is .f ";Q"/ 2 L1.0; T I ŒL2.�/�3 �L2.�// with

k.f ";Q"/kL1.0;T IŒL2.�/�3�L2.�// < "

such that (3.12)–(3.13), with .f ;Q/ replaced by .f C f ";Q CQ"/, has one and
only one mild T -periodic solution.

Owing to the special structure of problem (3.12)–(3.13) we are, in fact, able to
apply Theorem 3.5(a), and obtain a more precise information about the absence of
resonance, as a consequence of the following result.

Theorem 3.9. Let � � R
3 be a bounded domain of class C2, and assume that

problem (3.15) has only the trivial solution  D 0 for all � > 0. Moreover, let
f ;Q be periodic in time with period T > 0 and such that

f .x; t/ D
NX

nD�N
f n.x/e

{n!t ; Q.x; t/ D
NX

nD�N
Qn.x/e

{n!t

with N 2 N, ! WD 2�=T , and f n;Qn 2 L2.�/, for all 0 � jnj � N . As we know
from Lemma 3.2, the linear space constituted by the above finite sums is dense in
L2].0; T IL2.�//. Then (3.12)–(3.13) has a corresponding solution .u; �/ of period
T given by

u.x; t/ D
NX

nD�N
un.x/e{n!t ; �.x; t/ D

NX
nD�N

�n.x/e
{n!t

where .un; �n/ 2 ŒH2.�/ \ H1
0 .�/�

2. Moreover, there exists a constant C D
C.n; !;�; �; �; �; �; �1; �2/ > 0 such that

kunk2;2 C k�nk2;2 � C
�kf nk2 C kQnk2

�
; for all 0 � jnj � N: (3.79)
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Finally, if .w; / is another T -periodic solution to (3.16) corresponding to the same
data with

w 2 W 2;2.0; T IL2.�/ \W 1;2.0; T IH1.�// \ L2.0; T IH2.�// ;

 2 W 1;2.0; T IL2.�// \ L2.0; T IH2.�//

then necessarily .u; �/ D .w; /.

Proof. Equations (3.12)–(3.13) can be written in the form (3.69), for a suitable
choice of spaces and operators involved. To this end, we choose H1 WD ŒL2.�/�3,
H2 WD L2.�/. Moreover, we set A1 	 .1=�/L , A2 	 ��� with D.A2/ 	
H2.�/ \ H1

0 .�/, B 	 r with D.B/ 	 H1
0 .�/, B

� 	 �div with D.B�/ 	
H1.�/, �1 	 �1=�, and �2 	 ��2. In view of the properties of L recalled
in Sect. 3.2, and with the help of classical results on regularity for the Poisson
equation along with Rellich theorem, it is readily established that the operators
thus defined satisfy all the assumptions stated in Theorem 3.5. Furthermore, the
requirement (3.70) is equivalent to the conditions that problem (3.15) has only the
trivial solution for all � > 0. The proof is then completed. ut
Remark 3.10. If the domain � is such that problem (3.15) has a nonzero solution
then, in view of Theorem 3.5(b), resonance does occur. As we previously noticed,15

this is indeed the case for “few” but significant three-dimensional domains such as
a ball.

Remark 3.11. It is interesting to observe that a result analogous to that of Theo-
rem 3.9 continues to hold for linear, homogeneous poroelastic materials. We recall
that the equations governing the dynamics of such materials are given by the
classical Biot system [47]

� ut t � ��u � .�C �/r.div u/ D ˛1rp C �f

pt � c0�p D ˛2 div ut C h

�
in � � .0;1/ ;

where p is pressure, c0 > 0 is the ratio of hydraulic conductivity to specific heat
and ˛i , i D 1; 2, are coupling constants. By direct inspection we see that the
above equations formally coincide with those of linear thermoelasticity (3.12). As
a consequence, the result proved in Theorem 3.9, as well as all results proved in
Sect. 3.3 for (3.12) hold also for homogeneous, linear poroelastic materials.

3.5.2 Linear Magnetoelasticity

Another remarkable application of Theorem 3.4, Corollary 3.1, and Theorem 3.5
regards the occurrence of resonance in conducting non-ferromagnetic elastic bodies

15See Footnote 6.
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subject to the action of a constant magnetic fieldH 0, and whose motion is governed
by the equations of magnetoelasticity. If we neglect the displacement current,
assume that the material is homogeneous and isotropic and, finally, disregard
nonlinear couplings, the above equations can be written as follows [6, Chap. 9]

� ut t � ��u � .�C �/r.div u/ D 1
�0

curlh �H 0 C �f

ht � 1
��0

curl curlh D curl .ut �H 0/

divh D 0

9>=
>; in � � .0;1/ ;

(3.80)

where h is the magnetic field, � > 0 is the conductivity of the material, and �0 > 0
the magnetic permeability of the vacuum. We shall consider the above equation with
the following boundary conditions

u.x; t/ D 0 ; n�h.x; t/ D 0 ; n�curlh.x; t/ D 0 ; .x; t/ 2 @��.0;1/ ; (3.81)

where n is the unit outer normal to @�.
We shall assume that� is of class C2 and, for simplicity, also simply connected.
As in the thermoelastic case, also in the case at hand the relevant Eqs. (3.80)–

(3.81) are partially dissipative. In fact, if we set f 	 0, the total energy

E WD 1
2

�
�kut .t/k22 C kh.t/k22 C �kruk22 C .�C �/kdiv uk22

�
;

is shown to be a decreasing function of time as a consequence of the following
equation

dE

dt
D � 1

��0
kcurlhk22 :

The latter is easily established by dot-multiplying (3.80)1 by u, (3.80)2 by h and
integrating the resulting equations by parts over �. Moreover, in [39] it is shown
that (3.80)–(3.81) generates a strongly continuous semigroup of contractions, U.t/,
in the (Hilbert) space, H, of functions having finite energy, namely

H WD ˚
.u;ut ;h/ 2 ŒH1

0 .�/�
3 � ŒL2.�/�3 �H.�/� ; (3.82)

with

H.�/ WD ˚
h 2 L2.�/ W divh D 0 h � nj@� D 0

�
; (3.83)

(where the trace is meant in the sense of H�1=2.@�/). In [39] it is also shown that
E.t/ ! 0, provided only that E.0/ < 1 and �;� satisfy � C � ¤ 0 (in addition
to (3.3)). This result provides a rigorous proof of the damping effect of the magnetic
field over the free vibration of the elastic material (within the model adopted). In
addition, in view of Theorem 3.4 and Corollary 3.1 it also ensures the existence of
T -periodic solutions corresponding to “generic” T -periodic loads f .
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We shall next show that (3.80)–(3.81) can be put in the abstract form (3.69), for
an appropriate choice of spaces and operators involved, and that the assumptions of
Theorem 3.5 are satisfied. As a consequence, resonance cannot occur, whenever the
periodic load has a finite (but, in principle, arbitrarily large) number of modes. To
achieve our goal, we begin to choose H2 WD ŒL2.�/�3, and H1 WD H.�/. as in the
previous subsection, we set A1 WD 1

�
L , with L the linearized elasticity operator

introduced in Sect. 3.1, and

A2 WD 1

��0
curl curl

with

D.A2/ D fh 2 H2.�/\H.�/ W curlh � n D 0 at @�
�
:

We have R.A2/ � H.�/. In fact, for an arbitrary ' 2 C1.�/ and h 2 D.A2/ we
show, by integration by parts,

Z
�

curl curlh � r' D
Z
@�

r' � curlh � n D 0 ;

which by [18, Lemma III.2.1] proves the assertion. Actually, A2 is a homeomor-
phism of D.A2/ (endowed with the H2.�/-norm) onto H . This property is a
particular case of [20, Theorem 3.2.3]. Moreover, A2 is strictly accretive. In fact,
for all h 2 D.A2/,

Z
�

curl curlh � h D
Z
@�

n � curlh � hC
Z
�

jcurlhj2 D
Z
�

jcurlhj2 � 0 :

However, choosing the equality sign in the last step would imply, in view of the
assumption on�, h D r� for some � 2 H1.�/, which, since h 2 H.�/ furnishes
� D const and h 	 0, thus proving the desired property. We next define

Bh WD curlh �H 0

with

D.B/ D fh 2 H.�/ W curlh �H 0 2 ŒL2.�/�3g

and (clearly) R.B/ � ŒL2.�/�3. Finally, we set

B�v D curl .v �H 0/

with

D.B�/ D fv 2 ŒL2.�/�3 W curl .v �H 0/ 2 H.�/g:
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We have that D.A1/ � D.B�/. To show this, is of course enough to show that
H1
0 .�/ � D.B�/. In turn, to prove the latter, we observe that for any ' 2 C1.�/

and v 2 H1
0 .�/, we have by integration by parts,

Z
�

curl .v �H 0/ � r' D
Z
@�

n � .v �H 0/ � r' D 0 ;

and the property follows from [18, Lemma III.2.1]. By another simple integration by
parts, we prove that B� is the adjoint of B . Furthermore, using the abovementioned
functional properties of Ai , i D 1; 2, along with Rellich theorem we infer that the
compactness properties of B and B� stated in Theorem 3.5 are secured.

Thus, in order to apply Theorem 3.5(a) to the magnetoelastic case, it remains to
investigate under which circumstances (3.70) holds. The latter, in our case, reduces
to show that the following problem

���w � .�C �/rdiv w D 
2w
curl .w �H 0/ D 0

in � (3.84)

with the boundary condition

w D 0 at @� ; (3.85)

has only the solution w 	 0, for all 
 2 R; see [39]. In [39] and [44] it was shown
that, if (in addition to (3.3)) �, � are such that � C � ¤ 0, then (3.84)–(3.85) has
only the trivial solution.

We thus conclude with the following.

Theorem 3.10. Let � � R
3 be a bounded, simply connected domain of class C2.

The following properties hold.

(a) Suppose the Lamé coefficients satisfy ((3.3) and) �C� ¤ 0. Let f be periodic
in time with period T > 0 and such that

f .x; t/ D
NX

nD�N
f n.x/e

{n!t ;

with N 2 N, ! WD 2�=T , and f n 2 L2.�/, for all 0 � jnj � N . As we know
from Lemma 3.2, the linear space constituted by the above finite sums is dense
in L2].0; T IL2.�//. Then (3.80)–(3.81) has a corresponding solution .u;h/ of
period T given by

u.x; t/ D
NX

nD�N
un.x/e{n!t ; h.x; t/ D

NX
nD�N

hn.x/e
{n!t
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where .un;hn/ 2 ŒH2.�/\H1
0 .�/�� ŒH2.�/\H.�/�. Moreover, there exists

a constant C D C.n; !;�; �; �; �; �0; �;H 0/ > 0 such that

kunk2;2 C khnk2;2 � C kf nk2 ; for all 0 � jnj � N: (3.86)

Finally, if .w;b/ is another T -periodic solution to (3.80) corresponding to the
same data with

w 2 W 2;2.0; T IL2.�/\W 1;2.0; T IH1.�// \ L2.0; T IH2.�// ;

b 2 W 1;2.0; T IL2.�// \L2.0; T IH2.�//

then necessarily .u;h/ D .w;b/.
(b) Suppose the Lamé coefficients satisfy ((3.3) and) �C � D 0. Then, there exists

at least one resonant period for (3.80)–(3.81).

Proof. In view of what we already proved in this section and of Theorem 3.5(a), we
have to show only part (b). To this end, without loss we may take H 0 D H0 e3, so
that, setting u D .u3;u0/, Eq. (3.80) with f 	 0 becomes

� .u3/t t � ��u3 D 0

� u0
t t � ��u0 D 1

�0
curlh �H 0

ht � 1
��0

curl curlh D curl .u0
t �H 0/

divh D 0

9>>>=
>>>;

in � � .0;1/ ; (3.87)

Recalling (3.82), from (3.87) it is clear that the space

H0 WD ˚
.u;ut ;h/ 2 H W u D .u3; 0/; ut D ..u3/t ; 0/; h D 0g

is a subspace of H left invariant by the action of the semigroup U.t/. Moreover,
from (3.87)1 and the fact that u3 vanishes on @� at all times, by a simple procedure
we infer

�ku3.t/k22 C �kru3.t/k22 D �ku3.0/k2 C �kru3.0/k22 ; for all t � 0 ;

and the desired property follows from Theorem 3.7. ut

3.5.3 A Liquid–Structure Interaction Problem Showing
Generic Absence of Resonance

In the present and following sections we will investigate the occurrence of resonance
within a certain class of linear models of liquid–structure interactions. The motion
of the liquid is assumed to be governed by the Stokes (linearized) equations, while
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that of the structure by the usual Navier (or else membrane) equations, so that we are
still in presence of a parabolic–hyperbolic coupling. However, the chief difference
between this case and those treated previously is that the coupling (interaction) now
takes place at the interface liquid–solid, rather than in the “bulk” of the structure,
and in a totally different manner.

The main characteristic of the models we will consider throughout, besides the
latter being a linearized version of the original ones, consists in the fact that the
interface liquid–solid is assumed to be fixed. Even though such an assumption is
at first sight questionable from the physical viewpoint, it can be still considered
suitable and, to an extent, useful for the following reason. Typically, strong solutions
to liquid–structure interaction problems are constructed around the solution to a set
of “approximate equations” obtained by disregarding the nonlinearity and fixing the
interface as the reference configuration for the structure; see [19] and the reference
therein. Thus, our models are exactly described by these “approximate equations”
and, therefore, their investigation may lay the foundation for results pertaining
to more physically relevant situations. Mathematically, there is a vast amount of
literature dedicated to problems of this type, too long to be included here. We limit
ourselves to refer to [4, 12] and the bibliography therein.

It is also important to remark that the fact that the liquid–solid interface is kept
fixed, brings in an entire one-parameter family of (non-zero) steady-state solutions
in absence of any driving mechanism, constituting a one-dimensional space of the
underlying (Hilbert) space. Being the problems linear, this amounts to say that 0 is
an eigenvalue of the infinitesimal generator of the appropriate associated semigroup.

In view of Theorem 3.3(i), this circumstance may have, in principle, a significant
bearing on our investigation on the occurrence of resonance, in that any steady-
state solution is left invariant by the relevant dynamical semigroup. It is therefore
worth spending a few words about this issue. In every incompressible liquid/elastic
solid interaction problem, in absence of external forces there is always, regardless
of the model, a steady-state solution describing the equilibrium configuration of
the coupled system characterized by having velocity field of the liquid identically
zero (the liquid is at rest), and a constant distribution of pressure (hydrostatic
pressure). The latter, in turn, determines a corresponding deformation of the solid
that fixes the “shape” of the (constant) volume occupied by the liquid [22]. Clearly,
different (constant) hydrostatic pressures may generate different shapes. In the
models we shall consider, however, the “shape” of the region occupied by the liquid
is fixed and, as a consequence, any constant hydrostatic pressure is admissible, thus
generating a one-dimensional space of equilibrium solutions corresponding to the
same configuration. Therefore, in order to avoid this “unphysical” situation, one can
work in the orthogonal complement of such solutions, which is left invariant by the
semigroup.

The first liquid/structure model we shall consider is described as follows [4, 17].
Let �;�S be smooth bounded domains of R3 with �S � �. We shall assume that
�S is the region occupied by the elastic structure, while the viscous liquid moves
within the region �F WD � � �S . Moreover, we suppose that the motion of the
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liquid is slow enough as to apply the Stokes approximation. We thus have

�ut t � ��u � .�C �/rdiv u D �f in �S � .0;1/ ;

vt � divT .v; p/ D 0

div v D 0

�
in �F � .0;1/

(3.88)

where v; p are velocity and pressure fields of the liquid,

T .v; p/ D �p1 C �
�rvC .rv/>� (3.89)

is the Cauchy stress tensor, and � > 0 the shear viscosity coefficient. To (3.88) we
have to append the conditions at the interface � WD @�S , of continuity of stress
vector and velocity:

� .u/ � n D �T .v; p/ � n ; v D ut on � ; (3.90)

where

� WD �.ru C .ru/>/C � .div u/1 ;

is the (linearized) Cauchy stress tensor, and n is the unit outer normal to �S , along
with the adherence condition for v

v D 0 on @�F � � : (3.91)

In [4] it is shown, among other things, that the problem (3.88)–(3.91) defines a
strongly continuous semigroup of contractions, U.t/, on the space of “finite energy”
X WD ˚

.u;ut ; v/ 2 ŒH1.�/�3�ŒL2.�/�3�H.�/�where, we recall,H.�/ is defined
in (3.83). Moreover, in [4, Theorem 4.2(ii)] it is also proved that the infinitesimal
generator, A, of the semigroup has 0 as an eigenvalue, with corresponding one-
dimensional eigenspace. As we mentioned earlier, this is due to the circumstance
that the pressure field associated with steady-state solutions to (3.88)–(3.95) is
determined only up to a constant, due to the (restrictive) hypothesis that the interface
is fixed. To see this, if in the above equations with f 	 0 we assume u; v and p
independent of t , (3.88)1 and (3.88)2;3 decouple. In particular, from (3.88), (3.90)2,
and (3.91) we get v 	 0, p D �, arbitrary � 2 R, and u D u0.x/ satisfying the
following pure traction problem

div� .u0/ D 0 in �S ;

� .u0/ � n D ��n on � :

A way of avoiding this “unrealistic” family of solutions is to restrict the study of
the evolution to the space orthogonal to N.A/. This is exactly what is done in [3],
where it is shown that, in fact, the restriction U0.t/ of U.t/ to the space X0 WD
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X�N.A/ leavesX0 invariant. Like in the thermoelastic case discussed in Sect. 3.5.1,
the asymptotic behavior of U0.t/ and, in particular, its strong stability depends on
whether an overdetermined boundary-value problem admits only the zero solution.
More specifically, let

�div � . / D � in �S ;

� . / � n D � n ;  D 0 on � ;
(3.92)

where � > 0 and � 2 R. Then, if � is such that for all � > 0 problem (3.92)
has only the trivial solution  D 0 and � D 0, then U0.t/ is strongly stable [2, 4].
As shown in [3, Appendix] for a similar model problem, there is a large class of
domains where the model-analogue of (3.92) has only the zero solution. However,
in [3] it is also shown domains, like a ball, where the model-problem is an infinite
number of nontrivial solutions.

These considerations lead to the following.

Theorem 3.11. Let �;�S be sufficiently regular domains, and T > 0. The
following properties hold.

(a) Assume that for any given � > 0 problem (3.92) has only the solution  D 0,
� D 0. Then, there exists a dense set Q � L1.0; T IX0/ such that for any T -
periodic f 2 Q, problem (3.88)–(3.91) has one and only one mild T -periodic
solution. Furthermore, for any T -periodic f 2 L1.0; T IX0/ and any " > 0,
there is f " 2 L1.0; T IX0/ with

kf "kL1.0;T IX0/ < "

such that (3.88)–(3.91), with f replaced by f Cf ", has one and only one mild
T -periodic solution.

(b) Conversely, assume that there is �0 > 0 such that (3.92) has a solution  6	 0,
� 2 R. Then, there exists at least one resonant period for (3.88)–(3.91).

Proof. Part (a) is an immediate consequence of Theorem 3.4 and Corollary 3.1
since, under the given assumption, U0.t/ is strongly stable. To show part (b) we
follow the same lines of the proof of Theorem 3.5(b). Let . 0; �0/ be the solution
to (3.92) with  0 6	 0 and � D �0 > 0. Choose f D  0e

{!0 t . where
!20 D p

�0=�. If a corresponding 2�
!0

-periodic solution .v; p;u/ to (3.88)–(3.91)
exists, then after expanding it in a Fourier series, we find that the (only nonzero)
mode .v0; p0;u0/ corresponding to the frequency !0 must satisfy, in particular, the
following equations

��0u0 � div � .u0/ D  0

div v0 D 0

�
in �S

{ !0u0 D v0 on � :
(3.93)
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Notice that from (3.93)2;3 it follows that

Z
�

u0 � n D 0 : (3.94)

We next dot-multiply both sides of (3.93)1 by  0 and integrate by parts over �S .
Recalling that . 0; �0/ satisfies (3.92), and using (3.93)3 we thus deduce

�0

Z
�

u0 � n D k 0k22 :

However, by (3.94) the left-hand side of this equation vanishes and we reach a
contradiction that completes the proof of the theorem. ut

3.5.4 Interaction of a Viscous Liquid with a Thin Structure:
The Flat Case

The fundamental reason why, in the model described in the previous section, one
cannot be sure that resonance does not occur, even when the domain is such
that (3.92) has only the trivial solution, has to be ascribed to the fact that the
dissipation due to the viscosity of the liquid, is not able to “propagate” from the
liquid/solid interface into the bulk of the elastic solid. To explain this issue in more
mathematical terms, we observe that setting

E.t/ WD 1
2

�kut .t/k22 C �kru.t/k22 C .�C �/kdiv u.t/k22 C kv.t/k22
�
;

from (3.88) to (3.91) with f 	 0 we can readily show that

dE

dt
D �2�

Z
�F

jD.v/j2 ; (3.95)

where D.v/ is the symmetric part of rv. Now, from (3.91) and the second Korn
inequality (e.g. [48, Theorem 2]) it follows that

kD.v/k2 � C kvk1;2 : (3.96)

As a result, by the trace theorem and the continuity condition (3.90)2, we deduce

kD.v/k2 � C kutk1=2;2;� ;

which, once used into the energy equality (3.95) produces

dE

dt
� �� K�kD.v/k22;�F C kutk21=2;2;�

�
;
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for a suitable choice of the positive constant K . Therefore, the liquid adds a further
damping term into the energy equation, which, however, being restricted to the
interface � , is not able to spread the dissipation also in the interior of the structure,
in a way to ensure the uniform decay of the energy.

However, in the case of a “thin” structure that can be modeled as a two-
dimensional manifold,16 like a plate or a membrane, the interface liquid/solid
coincides with the elastic structure, and one may expect that the viscosity effects
of the liquid are “strong” enough as to prevent the occurrence of resonance.

In the present and following sections we shall show that this is indeed the case
for two prototypical models mostly used in blood flow, and investigated in [12] and
[37], respectively. This circumstance is indicative of the fact that the “thickness”
of the elastic wall may act in favor of the event of resonance. In that regard, we
refer the reader to Sect. 3.6, where numerical tests are presented that confirm the
theoretical prediction.

In this section we shall consider the case when the “thin” structure is flat
(a smooth portion of a plane). This model, introduced in [12], can be roughly
regarded as a “drum completely filled with a viscous liquid,” and will be specified
next. Consider a sufficiently regular domain � � R

3 with a connected boundary
constituted by two open components, �1 and � such that �1 \ � D ;. Moreover,
we assume that � (the elastic structure) is flat, namely,

� � fx D .x1; x2; 0/ W x0 WD .x1; x2/ 2 R
2g ;

with a smooth boundary @� , while �1 is a surface lying in the half-space fx3 � 0g.
The domain� is completely filled with a viscous liquid that moves in the vanishing
Reynolds number approximation, so that its motion is governed by the Stokes
equations

vt � divT .v; p/ D 0

div v D 0

�
in � � .0;1/: (3.97)

As for the motion of the “plate” � , we assume that it can only undergo transversal
displacements u D u.x; t/, therefore directed along the x3 axis. In such a case, the
governing equations become (e.g., [29])

ut t C�2u D �e3 � T .v; p/ � e3 C f ; in � � .0;1/. (3.98)

To (3.97)–(3.98) we have to append boundary conditions. As for the liquid, it
adheres at the “rigid” as well as the elastic walls:

v.x; t/ D 0 ; .x; t/ 2 �1 � .0;1/ I v.x0; t/ D ut .x
0; t/e3 ; .x0; t/ 2 � � .0;1/ ;

(3.99)

16In the case of three-dimensional flow, or else as a “string,” in the two-dimensional case.



3 Hyperbolic–Parabolic Coupling and the Occurrence of Resonance in. . . 243

whereas the “plate” is clamped at its boundary:

u.x0; t/ D n � r 0u.x0; t/ D 0 .x0; t/ 2 @� � .0;1/ ; (3.100)

where r 0 operates only on the x0-variable. In view of (3.97)2 and (3.99)2, the plate
equation (3.98) can be simplified. In fact, from (3.89) and (3.99)2 deduce

e3 � T .v; p/ � e3 D 2�
@v3

@x3
� p on � ;

so that, again by (3.99)2, and (3.97)2 we conclude

e3 � T .v; p/ � e3 D �p on � ;

and (3.98) becomes

ut t C�2u D p C f ; in � � .0;1/. (3.101)

We next observe that also this model, as the one discussed in the previous section,
allows for a continuum of steady-state solutions (even) in the case f 	 0. In fact,
if we take v; p and u independent of t , say, v D v0.x/; p D p0.x/; u D u0.x0/ we
deduce from (3.97) to (3.99) (with f 	 0) that v0 satisfies (3.97) with homogeneous
boundary conditions on the whole @�. Consequently, v0 	 0, p0 D �, � 2 R, and
by (3.101),

�2u0 D � ; in �: (3.102)

The above observation suggests that the “interesting” dynamics should be
restricted to the space orthogonal to the one-dimensional space characterized by
v0 D 0 and �2u0 D const: To this end, following [12], we introduce the “energy
space”17

H WD f.v; u:ut / 2 QH.�/ �H2
0 .�/ � OL2.�/g

where

QH.�/ WD fv 2 L2.�/ W div v D 0 ; v � n D 0 on �1g ;
OL2.�/ WD fu 2 L2.�/ W .u; 1/� D 0g ;

along with

OH WD f.v; u:ut / 2 QH.�/ � OH2
0 .�/ � OL2.�/g;

17Notice that the requirement ut 2 OL2.�/ follows from (3.97)2 and (3.99)2 .
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where

OHs
0 .�/ WD Hs

0 .�/\ OL2.�/ ; s > 0 :

It is readily seen that OH is orthogonal to the one-dimensional space18

N WD f.0; u; 0/ 2 H W �2u D �; � 2 Rg ;

and that

H D OH ˚ N : (3.103)

Moreover, from [37, Theorem 2.2] it follows, in particular, that (3.97), (3.99)–
(3.101) generates a strongly continuous semigroup of contractions in H, U.t/,
whose restriction, OU.t/, to OH in view (3.103), must leave OH invariant. Finally, in [12,
Theorem 3.3] it is shown that OU.t/ is uniformly stable. Therefore, from Theorem 3.6
we deduce the next theorem which, in particular, rules out the event of resonance
for this particular model.

Theorem 3.12. Let T an arbitrary positive number. For any T -periodic f 2
L1.0; T I OH/, problem (3.97), (3.99)–(3.101) has one and only one mild T -periodic
solution.

3.5.5 Interaction of a Viscous Liquid with a Thin Structure:
The Curved Case

The model considered here is similar to that presented in the previous section, the
only (main!) difference being that now the elastic part, � , of the boundary is no
longer assumed flat. Therefore, the relevant equations for the liquid are still given
by (3.97), while that of the structure (3.98) are replaced by the following one [37]

ut t CBu D �n � T .v; p/ � nC f; in � � .0;1/ ; (3.104)

where n is the unit outer normal at � , while B is a fourth-order differential operator
such that the associated bilinear form

b.u;w/ WD
Z
�

.Bu/w (3.105)

18H2
0 .�/ is endowed with scalar product .�u1; �u2/.
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is symmetric, and, in addition, coercive in H2
0 .�/, namely, there is ˛ > 0 such that

b.u; u/ � ˛kuk2;2;� ; for all u 2 H2
0 .�/ : (3.106)

Likewise, the boundary conditions (3.99) and (3.100) become

v.x; t/ D 0 ; .x; t/ 2 �1 � .0;1/ I v.x0; t/ D ut .x
0; t/n ; .x0; t/ 2 � � .0;1/ ;

(3.107)
and

u.t/ 2 OH2
0 .�/ ; for all t 2 .0;1/ ; (3.108)

respectively.
Our objective is to show that, also for this model, the occurrence of resonance

is ruled out, thanks to the “thinness” of the structure. More precisely, we have the
following result.

Theorem 3.13. Let T > 0 and f 2 W 1;2.0; T IL2.�// be T -periodic. Then, there
exists one and only one corresponding T -periodic solution .v; p; u/ to (3.104)–
(3.108) such that

v 2 L2.0; T IH2.�// \W 1;2.0; T IH1.�// ; p 2 L2.0; T IH1.�/=R/

u 2 L2.0; T I OH2
0 .�// \W 1;2.0; T IH1=2.�//\W 2;2.0; T IL2.�// :

Proof. The method used in [12] for the “flat” case to show the exponential decay
of the semigroup—and that leads to the conclusion in Theorem 3.12—is seemingly
not directly applicable when the structure is “curved.” As a consequence, we shall
use a different and more direct approach based on time-Fourier series development
and some arguments employed in previous sections. To this end, we formally write

v.x; t/ D
X
k2Z

vk.x/e{ k ! t ; u.x; t/ D
X
k2Z

uk.x/e{ k ! t ; f .x; t/ D
X
k2Z

fk.x/e{ k ! t

with ! WD 2�=T , and replace these expressions back in (3.97), (3.104), (3.107)–
(3.108) to obtain, for all k 2 Z,19

{ k ! vk � ��vk C rpk D 0

div vk D 0

�
in �

vk D 0 on �1 ; vk D { k ! uk n on �
�k2!2uk C Buk D �n � T .vk; pk/ � nC fk in � ;

uk 2 OH2
0 .�/ :

(3.109)

19Here and in the rest of the proof, all Banach spaces are meant over the field C of complex
numbers.
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Our next goal is to prove that, for each k 2 Z, problem (3.109) has one and only
one solution (in appropriate spaces). To this end, let

V.�/ WD fv 2 H2.�/ W div v D 0 in �; v D 0 on �1 ; v � � D 0 on �g ;

where � D �.y/ is an arbitrary unit vector belonging to the tangent space to � at y,
and set

H WD f.v; p; u/ 2 V.�/ �H1.�/=R � OH2
0 .�/ W v � n D { ˇ u at �g

H0 WD ŒL2.�/�3 �L2.�/ ;

where ˇ 2 R is given. We next define the operator A :

A W
0
@ vp

u

1
A 2 H 7!

� ���vC rp
Bu C n � T .v; p/ � n

�
2 H0 ;

and begin to show that A is a homeomorphism. The latter amounts to say that
for any given .G ; f / 2 H0 there exists a unique triple .v; p; u/ 2 ŒH2.�/�3 �
H1.�/=R � OH2

0 .�/ such that

���vC rp D G

div v D 0

�
in �

v D 0 on �1 ; v D { ˇ u n on �
Bu D �n � T .v; p/ � nC f in � :

(3.110)

Uniqueness is easily demonstrated. In fact, by dot-multiplying (3.110)1 with G 	 0

by v,20 integrating by parts over � and then using (3.110)2;3;4 and (3.110)5 with
f 	 0, we deduce

�kD.v/k22 C { ˇ b.u; u/ D 0 ; (3.111)

which, in turn, by Korn inequality (3.96), (3.106), and (3.110)3 furnishes v 	 0,
u 	 0, kpkH1.�/=R D 0. Existence can be established by means of Leray–Schauder
principle [50, Theorem 6.A]. In fact, consider the map

T W w 2 OH3=2
0 .�/ 7! .v; p/ 7! u 2 OH3=2

0 .�/ ;

where

20Recall that “ ” = c.c.
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���vC rp D G

div v D 0

�
in �

v D 0 on �1 ; v D { ˇ wn on �
Bu D �n � T .v; p/ � nC f in � :

(3.112)

Existence then follows from the above principle if we show that T is compact, and
that there exists a constant, �, depending only on the data such that all possible
solutions .v; p; u/ 2 ŒH2.�/�3 �H1.�/=R � OH2

0 .�/ to the problem

���vC rp D �G

div v D 0

�
in �

v D 0 on �1 ; v D { ˇ � u n on �
Bu D �n � T .v; p/ � nC f in � :

(3.113)

with � 2 .0; 1/, obey the a priori estimate

k.v; p; u/kŒH2.�/�3�H1.�/=R� OH2
0 .�/

� � : (3.114)

The compactness property of T is shown as follows. By well-known results on the
Stokes problem [18, Theorem IV.6.1], and the assumption on w andG , we prove the
existence of a unique solution .v; p/ 2 ŒH2.�/�3�H1.�/=R to (3.112)1;2;3. By the
trace theorem, we then infer (at least) T .v; p/j� 2 L2.�/, so that, from (3.112)4 we
deduce that u satisfies Bu D F 2 L2.�/. This equation, in turn, in view of (3.107)
and the other properties of b, by the Lax–Milgram theorem has one and only one
solution u 	 T .w/ 2 OH2

0 .�/ �� OH3=2
0 .�/, and the compactness of T is achieved.

In order to prove procedure leading to (3.111) we can show

�kD.v/k22 C { ˇ b.u; u/ D � Œ.G ; v/C { ˇ .f; u/� ;

from which, recalling (3.107), Korn’s and Poincaré’s inequalities, and that � < 1,
we deduce

kvk21;2 � c1
	j.G ; v/j C j.f; u/j


kuk22;2;� � c2
	j.G ; v/j C j.f; u/j
 ;

for suitable positive c1; c2 independent of �. From these inequalities it easily follows
that

kvk1;2 C kuk2;2;� � c3
�kGk2 C kf k2

�
; (3.115)

for some c3 > 0. Again applying [18, Theorem IV.6.1] to (3.112)1;2;3, we show that
.v; p/ 2 ŒH2.�/�3 �H1.�/=R along with the estimate:

kvk2;2 C kpkH1.�/=R � c4 .kGk2 C kuk2=3;2;� /
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where c5 > 0. Then, (3.114) is a consequence of the latter and of (3.115). This
concludes the proof that the operator A is a homeomorphism. We next observe that
setting

V k WD
0
@ vkpk

uk

1
A ; f WD

�
0

f

�

problem (3.109) can be written in the following abstract form

A V k C K V k D f ; in H0 ; k 2 Z ; (3.116)

where ˇ WD k!,21 and

K W V k 2 H 7!
�
{ k ! vk

�k2!2uk
�

2 H0 :

Clearly, by Rellich’s theorem, K is compact, so that M WD A CK is Fredholm of
index 0. As a result, the surjectivity of M and, therefore, the existence of solutions
to (3.109) for all k 2 Z and any given fk 2 L2.�/, is secured if and only if we can
show N.M / D f0g. This property is equivalent to show that .v D 0;rp D 0; u D
0/ is the only solution in ŒH2.�/�3 �H1.�/=R� OH2

0 .�/ to the following problem

{ k ! v � ��vC rp D 0

div v D 0

�
in �

v D 0 on �1 ; v D { k ! u n on �
�k2!2u C Bu C n � T .v; p/ � n D 0 in � ;

(3.117)

for all k 2 Z. However, this is easily established. Actually, if k D 0, by classical
results on the Stokes problem, from (3.117)1;2;3 we immediately get v 	 rp 	 0,
which, in turn, once replaced in (3.117)5 deliversBu D � on � , � 2 R. Multiplying
both sides of this equation by u, integrating over � and recalling that .u; 1/� D 0,
by (3.106) we deduce u 	 0, which completes the proof if k D 0. If k ¤ 0, we
dot-multiply both sides of (3.117)1 by v, integrate by parts over� and then use the
other equations in (3.117) to show

{ k ! kvk22 C �kD.v/k22 � { k3!3kuk22;� C { k ! b.u; u/ D 0 : (3.118)

From this and (3.96) we at once deduce v 	 0 that, by (3.117)1;4 gives rp 	 0,
u 	 0. This finding completes the proof of the desired property, that is, for any
fk 2 L2.�/ and any k 2 N, problem (3.109) admits one and only one solution
.vk; pk; uk/ 2 ŒH2.�/�3 �H1.�/=R � OH2

0 .�/. Our next goal is to prove estimates
of this solution in terms of the data with the involved constants independent of

21See the definition of the space H.
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k. In what follows, we denote by Ci , i 2 N [ f0g, generic positive constants
possessing this property. We commence to observe that, if k D 0, from well-known
results on the homogeneous Stokes problem and the property of the bilinear form b,
from (3.109) we readily show

v0 D rp0 D 0 ; ku0k2;2;� � C0 kf0k2;� : (3.119)

If k ¤ 0, proceeding exactly as in the proof of (3.118), from (3.109)1�5 we conclude

{ k ! kvkk22C�kD.vk/k22� { k3!3kukk22;� C { k ! b.uk; uk/ D .fk; uk/� ; (3.120)

which, by Korn’s, Poincaré’s, and Schwarz’s inequalities implies

kvkk21;2 � C1 kfkk2;�kukk2;� :

Moreover, by (3.109)4 and the trace theorem, we have

jkj kukk1=2;2;� � C2 kvkk1;2 (3.121)

that once combined with the previous inequality furnishes

jkj2 kukk1=2;2;� C jkj kvkk1;2 � C3 kfkk2;� : (3.122)

If we employ (3.122) into (3.120), with the help of (3.106), and recalling that jkj � 1

we show that

kukk2;2;� � C4 kfkk2;� : (3.123)

Finally, combining (3.123) with classical estimates for solutions to the Stokes
system (3.109)1�4, we conclude

kvkk2;2 C kpkkH1.�/=R � C5 jkj kfkk2;� : (3.124)

The existence result stated in the theorem is then a direct consequence of
(3.119), (3.122)–(3.124) and of Plancharel theorem. Finally, uniqueness is discussed
exactly as in Theorem 3.5, and its proof will therefore be omitted. ut

3.6 Numerical Experiments

Objective of this section is to present some numerical experiments aimed at
investigating the “generic” absence of resonance in liquid–structure models of the
type considered in Sect. 3.5.3 (see Theorem 3.11(a)). The idea is that if the absence
of resonance is only “generic,” namely, for T -periodic forces only a dense set of the
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Fig. 3.1 An idealized sketch of the domains �f ; �s and of the corresponding partition of
their boundaries is reported on the left. The actual configuration of the domains as well as the
computational grids used in the simulations is shown on the right

data space, we should be able to find (at least) one particular force f and a sequence
ffN g with the following property: The total energy of the uniqueT -periodic solution
corresponding to fN should increase as N ! 1. However, our finding does not
seem to corroborate this view, at least for the type of forces that we have considered
(squared profile). The only (expected) phenomenon observed is that the oscillation
energy of the solid may increase as the viscosity of the liquid decreases.

For the sake of clarity, we recall below the precise problem formulation,
including initial, boundary, and interface conditions. For practical reasons, we
slightly modify the definition of the fluid Cauchy stress using the dynamic viscosity,
namelyT .v; p/ D �f .rvC.rv/>�p1. Then, the problem solved in the numerical
simulation is the following,

�sut t � �s�u � .�s C �s/rdiv u D �sf in �s � .0;1/

�f vt � r � T .v; p/ D 0; div v D 0 in �f � .0;1/

T .v; p/ � n D � .u/ � n; v D ut on � � .0;1/

u D 0 on �s;2 [ �s;4 � .0;1/

� .u/ � n D 0 on �s;3 � .0;1/

T .v; p/ � n D 0 on �f;2 [ �f;4 � .0;1/

v � n D 0; t � T .v; p/ � n D 0 on �f;1 � .0;1/

u D ut D 0 in �s � f0g
v D 0 in �f � f0g

(3.125)

The fluid and solid domains are represented by two rectangular adjacent regions,
of vertical and horizontal sides a; b, respectively. We refer to Fig. 3.1 for a sketch
of the domains and a precise definition of the boundaries �f;i ; �s;i ; i D 1; : : : ; 4.
We observe that the interface � coincides with �s;1 and �f;3. These domains are
embedded in R

2, endowed with a Cartesian coordinate system x; y with origin in
the bottom left corner of �f .

As discussed in Sect. 3.2, resonance effects emerge only when some precise
vibration frequencies of the system are excited. For the particular case of the
linear elasticity equation on a rectangular domain, the characteristic frequencies
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and the corresponding modes of vibration can be analytically determined by means
of separation of variables. At the boundaries, the structure is clamped on the left
and right sides and subject to zero traction forces on the upper and lower sides,
in agreement with the boundary conditions of system (3.125). In order to facilitate
the calculations, it is convenient to drop the term .�s C �s/rdivu in the elasticity
equation. This can be easily done by adopting a particular choice of the second
Lamé coefficient �s , that is �s D ��s . As a result, the operator �sut t � �s�u can
be split and analyzed independently for the x and y components of the displacement
and the characteristic modes of vibration of each component are,

um;n.x; y; t/ D  m;n.x; y/�m;n.t/;

 m;n.x; y/ D sin
�
m�
a
x
�

cos
�
n�
b
y
�
; �m;n.t/ D sin

�
2� t

Tm;n

�
:

The characteristic period of each vibration mode can be calculated as

Tm;n D 2�

�m;n

r
�s

�s
; �2m;n D

�m�
a

�2 C
�n�
b

�2
:

The fundamental vibration mode is obtained by setting m D n D 1 and
the corresponding period can be quantified as follows, in terms of the physical
parameters of the problem,

T D 2abp
a2 C b2

r
�s

�s
:

According to these considerations, to excite the fundamental vibration mode of the
structure, the right-hand side f of the elasticity equation in (3.125) is defined as
follows:

f D f0; gN .t/ sin.�x/g; gN .t/ D
NX
nD1

2

�n
sin
��
2
n
�

cos

�
2�n

t

T

�
; (3.126)

where gN .t/ is a truncated Fourier series of functions whose frequency is equal
or multiple of the fundamental one. To investigate the impact of Theorem 5.4 on
the occurrence of resonance, we design gN .t/ such that in the limit N ! 1 it
approximates a singular function. In the case of (3.126), the limit function (almost
everywhere) is a T -periodic square wave g.t/ 2 f� 1

2
; 1
2
g, as shown in Fig. 3.2. For

a finite number of modes gN .t/ belongs to the dense set D. As explained at the
beginning of this section, according to the generic absence or resonance we posit
that for N ! 1 the forcing term f may no longer belong to this special set in
which resonance is excluded.

For the numerical simulations we use the finite element method for the spatial
approximation and a finite difference scheme to discretize the time derivatives. After
defining an uniform, triangular grid on each subdomain, shown in Fig. 3.1, such
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Fig. 3.2 Plots of the functions g1.t/ and g101.t/ used to excite the structure vibration modes
(dashed line and continuous line, respectively)

that the conformity of grid edges is preserved at the interface, we discretize the
fluid velocity field using piecewise quadratic finite elements, while the pressure is
approximated by means of piecewise linear functions. These are the classical Taylor-
Hood mixed finite elements. The structure displacement is discretized with the same
finite elements used for the velocity field, in order to facilitate the approximation of
the interface conditions and in particular the exchange of discrete functions between
the two subdomains.

The main difficulty at the numerical level is to appropriately approximate the
interaction between the fluid and the structure. This is a well-explored topic
in the recent numerical literature. In particular, we apply here the algorithm
proposed and analyzed in [10]. The distinctive feature of this algorithm consists
in the weak enforcement of the interface conditions between the fluid and the
structure. It is particularly interesting to our purpose because it allows to satisfy two
important properties, usually incompatible for fluid-structure interaction methods:
(1) unconditional stability with respect to the time and space approximation steps;
(2) the ability to decouple the solution of the fluid and structure problems at each
time step. For this reason, it is classified as a loosely coupled algorithm. Using
this algorithm, we simulate the interaction of the fluid and the structure for a
time interval equivalent to 40 periods of the fundamental vibration frequency of
the structure. The time discretization step is appropriately chosen to guarantee an
accurate approximation of each cycle.

The fundamental mechanism governing the possible occurrence of resonance in
fluid-structure interaction is the ability of the elasticity equation to preserve the
energy of the structure, competing with the dissipative nature of the adopted viscous
flow model. For this reason, the numerical experiments are focused to investigate the
behavior of the energy, when the viscosity of the fluid is varying. In particular, the
energy of the fluid-structure system consists of the following terms:

Ef WD 1
2
�f kvk2

L2.�f /
;

E 0
s WD 1

2
�skutk2L2.�s/; E 00

s WD 1
2

�
�skruk2

L2.�s/
C �skdivuk2

L2.�s/

�
;
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Fig. 3.3 Time evolution of the structure kinetic energy E 0

s for different values of �f ; �f and for
different functions g1.t/, g101.t/ defining the oscillating load

which represent the fluid kinetic energy, structure kinetic energy, and stored energy,
respectively.

Figure 3.3 shows the temporal evolution of E 0
s for different fluid properties,

while the structure mechanical parameters remain unchanged. In particular we
adopt �s D 100; �s D ��s , while the fluid density and viscosity decrease from
�f D 1; �f D 1 to �f D 10�4; �f D 10�4. The force f is characterized by a
single vibration mode, basically we choose f D f0; g1.t/ sin.�x/g, where g1.t/ is
proportional to cos

�
2�n t

T

�
. The simulations confirm that the structure is subject to

a periodic oscillatory motion under the action of the forcing term f . However, the
amplitude of the oscillations is not constant in time, but it features a periodic trend
as well. Indeed, this is due to the competing role of the conservation and dissipation
properties of structure and fluid, respectively. The energy of the structure tends to
monotonically increase under the action of the force. In absence of dissipation, the
structure displacement will eventually tend to an unbounded motion, that is the
occurrence of resonance. The dissipation due to the viscous liquid acts against the
latter, in such a way that the larger is the displacement of the structure, the more
relevant becomes the dissipative effect. Figure 3.3 suggests that the system reaches
a dynamic equilibrium between these opposing trends. The numerical investigation
also confirms that the displacement of the structure significantly increases when the
density and viscosity of the fluid decrease. Again, this confirms the fundamental
role of viscous effects in the control of resonance. Finally, we study the case where
the number of vibration modes contributing to f is increased up to N D 101.
In practice, we switch from g1.t/ to g101.t/ in equation (3.126), as illustrated in
Fig. 3.2. The perturbation due to the high frequency modes doesn’t introduce any
significant changes in the time evolution of E 0

s reported in Fig. 3.3. Unfortunately,
this result does not inform us on the impact of Theorem 5.4 on the occurrence of
resonance, because it is open to two possible interpretations. On the one hand, it is
possible that the sequence gN .t/ is not an appropriate example to capture the effect
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of forcing terms that do not belong to the dense set Q defined in Theorem 3.11 The
identification of functions in the complementary of this set and their appropriate
approximation in the framework of a fluid-structure interaction simulator is a very
challenging task, indeed. On the other hand, the current analysis may be still
incomplete, and the occurrence of resonance for model (3.125) may be excluded
for reasons that go beyond the theory established by Theorem 3.11.
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Chapter 4
Topics in the Mathematical Theory
of Interactions of Incompressible Viscous Fluid
with Rigid Bodies

Matthieu Hillairet

Abstract In this paper, we review recent results devoted to the interactions between
a collection of rigid bodies .Bi /iD1;:::;n and a surrounding viscous fluid L, the whole
system filling a container�. We assume that the motion of L (resp. the rigid bodies
Bi ) is governed by the incompressible Navier Stokes equations (resp. Newton laws),
and that velocities and stress tensors are continuous at the fluid/body interfaces. Our
concern is the well-posedness of the associated Cauchy problem, with a specific
eye towards the handling of contact between bodies or between one body and the
container boundary.

Keywords Cauchy theory • Contact issue • Fluid–solid interactions

MSC2010: 35Q35, 35B44, 35Q74, 74F10, 76D03, 76D05

4.1 Introduction

Studying the motion of rigid bodies inside a viscous fluid is crucial to many natural
and engineering problems such as sedimentation, filtration or slurry erosion, to men-
tion a few. In biological flows also, a disperse phase containing rigid bodies appears
in many contexts: in the modeling of rigid tracers [11] or sprays [17], in rheological
studies on active suspensions [14, 36]. In all these cases, bodies/swimmers might
exhibit a complex behavior because of their elastic properties or their elaborate
retroaction on the fluid. They also can be numerous so that their collective behavior
is efficiently described by an equation of Vlasov type (see [31, 32] and [63],
for instance). Nevertheless, a toy-model to tackle such complex problems is to
assume that the bodies/swimmers behave as a finite number of undeformable bodies
submitted to Newton laws. As for the surrounding fluid, assumptions on its behavior
might contain more-or-less complexity. In studies on micro swimmers, for instance,
Reynolds numbers are so small that a stationary Stokes system is relevant. To keep

T. Bodnár et al. (eds.), Fluid-Structure Interaction and Biomedical Applications,
Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-0348-0822-4__4,
© Springer Basel 2014
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the unity of this paper, we consider herein that the fluid behavior is computed by
integrating the incompressible Navier Stokes equations. We give some insights into
the Stokes problem in Sect. 4.4.3. We refer the interested reader to [21, 45] and the
references therein for studies considering compressible or inviscid fluids.

4.2 Basic Equations

In this review, we consider three-dimensional as well as two-dimensional problems
discriminating both cases with a dimension parameter d 2 f2; 3g. At first, we
consider the time-evolution of the system under the action of gravity g on a time
interval .0; T /, where T 2 .0;1�.

4.2.1 Notations

As the bodies are rigid, their mechanical properties are characterized by their shapes
B0i and their densities �0i W B0i 7! .0;1/. Without further notifications, we assume
that the shapes are bounded open subsets of Rd having smooth boundaries and that
the densities are bounded and strictly positive, i.e.:

0 < c � �0i .x/ � 1

c
; 8 x 2 B0i ; 8 i D 1; : : : ; n; (4.1)

When the bodies move, there exist two families of (sufficiently smooth) mappings
t 7! Qi .t/ 2 SOd.R/ and t 7! Gi.t/ 2 Rd such that the body domains at time t
read:

Bi .t/ WD Qi .t/B0i CGi.t/; 8 t 2 .0; T /; 8 i 2 f1; : : : ; ng: (4.2)

The corresponding isometries are denoted

Mt
i W x 7! Qi .t/x CGi .t/; 8 t 2 Œ0; T /: (4.3)

To fix completely the description, we always assume in what follows that:

Gi.0/ D 0; Qi .0/ D Id ; 8 i 2 f1; : : : ; ng: (4.4)

Introducing this convention, we identify the shapes of the rigid bodies with their
initial position. The motions of the rigid bodies are associated with the eulerian
velocities:

ui .x; t/ D �i .t/C !i .t/ � .x �Gi.t//; 8 x 2 Bi .t/; (4.5)
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where

�i .t/ D PGi.t/; 8 t 2 .0; T /; (4.6)

!i .t/ � x D PQi .t/Qi .t/
>x; 8 x 2 Rd ; 8 t 2 .0; T /: (4.7)

These identities stand for definitions of the translational (resp. angular) velocity �i
(resp. !i ) of Bi . In the two-dimensional case, there holds !i 2 R and

!i � x D !i x
?; 8 x 2 R2;

with ? denoting the rotation with angle �=2. In the three-dimensional case !i 2 R3

and � stands for the usual vector product. To include this dimensional phenomenon,
we shall write !i 2 Rd�

where d� D 3 for d D 3 and d� D 1 for d D 2.
Finally, the body unknowns are .Bi .t/; �i ; !i /iD1;:::;n. We note that, given t 7! Bi .t/,
we might compute .�i ; !i / through (4.2) and (4.6)–(4.7). Conversely, given our
convention (4.4), the identities (4.6)–(4.7) represent differential equations which
enable to compute Gi and Qi in terms of �i and !i . Eventually, one might restrict
the set of body unknowns either to .�i ; !i /iD1;:::;n or to .Bi .t//iD1;:::;n.

As for the fluid, we denote uf D .uf;1; : : : ; uf;d / the velocity-field and pf the
pressure of L. These are the only fluid unknowns. They are defined over the (time–
space) fluid domain

QF D
[

t2.0;T /
ftg � F.t/;

where, for all t 2 .0; T /, the F.t/ stands for the complement in � of the body
domains:

F.t/ D � n S.t/; where S.t/ D
n[
iD1

Bi .t/:

Corresponding to the time–space fluid domain, we denote QS the time–space body
domain:

QS D
[

t2.0;T /
ftg � S.t/:

For simplicity, we assume that the fluid has constant density �f D 1. We denote
� its kinematic viscosity. We deal with newtonian fluids, so that the Cauchy stress
tensor in the fluid T is given by Newton law:

T D T.uf ; pf / WD 2�D.uf /� pf Id ; (4.8)

whereD.uf / stands for the symmetric part of ruf .
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4.2.2 Equations of Motion

The time-evolution of the full system is governed by the classical equations of fluid
and solid mechanics. Interactions between the fluid and the bodies are fixed by
assuming continuity of the velocity-field and of the stress tensor at the fluid/body
interfaces.

First, the fluid unknowns .uf ; pf / satisfy the incompressible Navier Stokes
equations:

@tuf C uf � ruf D ��uf � rpf C g

r � uf D 0

)
in QF : (4.9)

The right-hand side of the momentum equation is also written r � T.uf ; pf /. As
long as the bodies do not collide or do not collide with the container boundary, we
have the following partition of the fluid-domain boundary:

@F.t/ D @� [
n[
iD1

@Bi .t/:

The Navier Stokes system is then completed with no-slip boundary conditions:

uf D ui ; on @Bi .t/; 8 i D 1; : : : ; n; (4.10)

uf D 0; on @�: (4.11)

When contact occurs, these boundary conditions provide uf with two values on
some parts of @F.t/. Depending on the contact dimension (whether the contact
holds in a point, on a curve, or on a surface), this problem should be paid attention.
We discuss this question in Sect. 4.4.2.

The Navier Stokes equations are associated with Newton laws for the rigid
bodies. In these laws, we only consider the actions exerted by gravity and the viscous
fluid. Hence, the Newton laws read:

dmi�i

dt
D �

Z
@Bi .t /

Tnd� Cmig (4.12)

dJi!i
dt

D �
Z
@Bi .t /

.x �Gi.t// � Tnd�: (4.13)

Here the symbol n stands for the normal to @F.t/ directed outside the fluid domain.
For all integers i 2 f1; : : : ; ng, we introduced the mass mi of the body Bi W

mi WD
Z

Bi .t /
�0i .ŒMt

i �
�1.x//dx; (4.14)
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and its inertia Ji , which reads

Ji WD
Z

Bi .t /
�0i .ŒMt

i �
�1.x//.jx�Gi.t/j2I3� .x�Gi .t//˝ .x�Gi.t///dx; (4.15)

in the three-dimensional case, and

Ji WD
Z

Bi .t /
�0i .ŒMt

i �
�1.x//jx �Gi.t/j2dx; (4.16)

in the two-dimensional case. The mass mi and the two-dimensional inertia Ji are
constant scalars whereas the three-dimensional inertia is a 3 � 3 time-dependent
positive-definite symmetric matrix. In the three-dimensional case, we recall that �
stands for the classical vector product, whereas in the two-dimensional case we need
to define a new operator:

a � b D a? � b; 8 .a; b/ 2 R2:

We underline that � is defined in two different ways in the two-dimensional case
depending on whether the first operand is a vector or a scalar.

We denote (FRBI) (for fluid rigid-body interaction system) the full system (4.2)–
(4.6)–(4.7)–(4.9)–(4.10)–(4.11)–(4.12)–(4.13). The unknowns of this system are
..Bi .t/; �i ; !i /iD1;:::;n; uf ; pf /. It is completed with initial conditions:

Bi .0/ D B0i ; uf .0; �/ D u0f ;

�i .0/ D �0i ; !i .0/ D !0i ;
8 i D 1; : : : ; n: (4.17)

Multiplying formally (4.9) with uf and combining with (4.12)–(4.13), we obtain
that reasonable solutions to this system should satisfy:

1

2

d

dt

"Z
F.t/

juf j2 C
nX
iD1

�
mi j�i j2 C Ji!i � !i C 2.mi � jB0i j/g �Gi

�#

C 2�

Z
F.t/

jD.uf /j2 D 0: (4.18)

This formal estimate states the decay of the total energy of the system. It is then
natural to consider initial conditions with bounded kinetic energy:

E0c WD 1

2

"Z
F0

ju0f j2 C
nX
iD1

�
mi j�0i j2 C J

0
i !

0
i � !0i

�#
;

which amounts to require that u0f 2 L2.F0/. We shall restrict to this case throughout
the paper.
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4.2.3 Outline of the Paper

The Cauchy problem for (FRBI) has been the subject of many studies in the last
15 years. Several existence results have been obtained introducing little by little
complexity in the geometrical configurations under consideration. As classical when
dealing with Navier Stokes equations, two families of solutions are constructed:
classical solutions for which (4.9) is satisfied almost everywhere, weak solutions
for which a specific definition of solving (4.9)–(4.13) is introduced. In Sect. 4.3, we
first describe the construction of weak solutions up to contact between bodies in the
case of several bodies moving inside a bounded container. The second part of this
section is devoted to the construction of classical solutions in the case of one rigid
body inside a bounded container.

All the results of Sect. 4.3 concern solutions prior to contact between bodies
or bodies and the container boundary. We analyze how contacts are handled by
solutions to (FRBI) in the last section. Several questions are discussed. First, in
the frame of classical solutions, we show that contact implies blow-up and discuss
which norms of the solution blows up in case of contact. We envisage then the
extension of classical solutions by weak solutions after contact. We show that such
an extension is possible with the method described in Sect. 4.3 and reduces to
completing (FRBI) with a sticky contact law. Finally, we discuss the possibility
of contact occurrence in finite time for weak and strong solutions to (FRBI).

4.3 Existence and Uniqueness for the Initial Boundary-Value
Problems

The first modern contributions to the study of the Cauchy problem associated with
(FRBI) are the references [47, 52] which tackle the free-fall of one rigid body in
an unlimited container (L fills the whole three-dimensional space). Following these
seminal works, the (two-dimensional and three-dimensional) case of one rigid body
moving inside a bounded container is considered in [5, 33–35, 43, 44]: in [33, 34],
existence of classical solutions is obtained (under restrictive assumptions on the
body densities), while the same problem is solved in a weak setting in [5,35,43,44]
(see also [4]). We point out that existence of solutions is obtained up to contact
between the body and the container boundary in [5,34,35], while [43,44] are the first
occurrences of existence results without this restriction. The case of several rigid
bodies moving inside a bounded container is then tackled in [15, 16, 20, 51, 56, 57].
First, existence up to contact is proven in [15,16], for weak solutions, and in [56,57],
for classical solutions. In these latter references, the method of [33, 34] is improved
yielding existence of classical solutions without restriction on the magnitude of the
body densities. Then, global existence of weak solutions regardless contact is also
obtained for the “several rigid body” case [20,51]. Uniqueness of weak solutions in
the two-dimensional case is tackled in [30]. Finally, the configuration of one body
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moving in an unlimited container is provided with existence of classical solutions
[8, 9, 24, 58]. Contrary to the assumptions herein, the densities of the rigid bodies
are assumed to be constant in most of the references above.

4.3.1 Many Bodies in a Container: Weak Solutions

In the first part of this section, we detail the theory of weak solutions for (FRBI):
we provide a definition that is adapted to the case of non-smooth bodies, we recall
the main difficulties to be handled by a construction and we conclude by describing
the answers given in the references above. The first part of this section relies on
[4, 20, 43, 51].

Let ..�0i ; !
0
i ;B0i /iD1;:::;n; u0f / be an initial condition with a smooth u0f and

consider that the collection ..�i ; !i ;Bi /iD1;:::;n; uf ; pf / represents an associated
classical solution to (FRBI) on .0; T / satisfying (4.18). To derive a weak formu-
lation, we assume that rigid bodies remain far from contact i.e.:

dist.B0i ;B0j / > 0; dist.B0i ; @�/ > 0; 8 i ¤ j; (4.19)

dist.Bi .t/;Bj .t// > 0; dist.Bi .t/; @�/ > 0; 8 i ¤ j; 8 t 2 .0; T /: (4.20)

We also eliminate gravity for simplicity: g D 0.
We introduce the extended velocity-fields (see (4.5) for a definition of the body

velocity-fields ui ):

u WD 1F.t/uf C
nX
iD1

1Bi .t /ui ; u0 WD 1F0u0f C
nX
iD1

1B0i
u0i : (4.21)

Because of the no-slip boundary conditions (4.10)–(4.11), we obtain divergence-free
vector-fields which are defined on � and continuous through fluid–body interfaces.
We first define Sobolev-like function spaces adapted to such velocity-fields. Namely,
given an open domain O, we introduce:

• the classical function spaces of incompressible hydrodynamics:

D.O/ WD fu 2 C1
c .O/ s.t. r � u D 0g; (4.22)

and H.O/ (resp. V.O/) the closure of D.O/ in L2.O/ (resp.H1
0 .O/),

• the set of rigid velocity-fields:

R WD
n
� C ! � x; 8 x 2 Rd I .�; !/ 2 Rd � Rd�

o
:
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We define then:

Definition 4.1. Given O an open domain and an open set S � O, we denote:

KŒS;O� WD f� 2 V.O/ s:t: D.�/ D 0 on Sg;
K0ŒS;O� WD KŒS;O�L

2.O/
:

Given T > 0 and an open set QS � .0; T / ��, let us denote

S.t/ WD fx 2 � s.t. .t; x/ 2 QS g:
Then, we set:

Lp.0; T IKŒQS ;��/

WD ˚
� 2 Lp.0; T IH1

0 .�// s.t. �.t; �/ 2 KŒS.t/;�� a.e. on .0; T /
�
;

KŒQS ;O� WD f� 2 C1
c .Œ0; T /ID.�// s.t. D.�/ D 0 in a neighborhood of QS g:

According to formal energy estimate (4.18), reasonable solutions and initial
conditions should then satisfy:

u0 2 K0ŒS0;��; u 2 L1.0; T IL2.�// \L2.0; T IKŒQS ;��/:

Conversely, given a vector-field u having this latter regularity, one recovers the fluid
and body velocity-fields thanks to the classical lemma (see [59, Lemma 1.1]):

Lemma 4.1. Let � be an open subset of Rd and Q� 2 H1
0 .�/. Assume that there

exists an open connected set QS � � such that D. Q�/ vanishes on QS. Then, there
exists � 2 R such that Q�j

QS D �j
QS .

Once the extended velocity-fields are introduced, it is classical to rephrase the
body kinematics in terms of the indicator functions of their domains. Indeed, let us
denote 'i the indicator function of Bi .t/. As Bi follows the characteristics asso-
ciated with the extended (divergence-free) velocity-field u, this indicator function
satisfies:

@t'i C r � .'i u/ D 0; on .0; T / ��;
'i.0; �/ D 1B0i

; on �:

)
(4.23)

For weak solutions, we also introduce the transported densities �i W .t; x/ 7!
�0i .ŒMt

i �
�1.x//, where the mappingsMt

i are the isometries associated with the body
displacements (see (4.3)). They are solutions to:

@t�i C r � .�i u/ D 0; on .0; T / ��;
�i .0; �/ D �0i 1B0i ; on �:

)
(4.24)
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Hence, by combination, the extended density

�.t; x/ D
nX
iD1

�i .t; x/C 1F.t/.x/ D
nX
iD1

�i .t; x/C
�
1 �

nX
iD1

'i .t; x/
�
; (4.25)

is also a solution to

@t�C r � .� u/ D 0; on .0; T / ��;
�.0; �/ D �0; on �:

)
(4.26)

where

�0.x/ D
nX
iD1

�0i 1B0i
.x/C 1F0.x/; 8 x 2 �: (4.27)

As u vanishes on @�, we might introduce its trivial extension to Rd and consider
equations (4.24)–(4.26) as the restrictions to � of an equation in terms of the
unknowns � and �i on the whole Rd . Existence, uniqueness, and stability of
bounded solutions to such transport equations have been extensively studied.
Given the a priori regularity of u, namely u 2 L2.0; T IH1

0 .�// with r � u 2
L1.0; T IL1.�//, the well-posedness and stability results of [18] shall apply in
our case. For instance, these equations might be written in the following weak form:

Z T

0

Z
�

'.@t	C u � r	/ D
Z
�

'0	.0; �/; (4.28)

for all 	 2 C1
c .Œ0; T / ��/. Here ' denotes a general unknown standing for 'i , �i

or � and '0 is the associated initial data.
Next, we compute a weak formulation for (4.9)–(4.13). The body domain QS

being given as the disjoint union of the time–space domains occupied by the Bi ’s,
we multiply the momentum equation in (4.9) by w 2 KŒQS ;��. This yields:

Z T

0

Z
F.t/

.@tu C u � ru/ � w D
Z T

0

Z
F.t/

Œr � T� � w:

As F.t/ follows the characteristics associated with the velocity-field u, we integrate
by parts the left-hand side in time:

LHS D �
Z

F0

u0 � wjtD0
�
Z T

0

Z
F.t/

.@tw C u � rw/ � u;

D �
Z

F0

u0 � wjtD0
�
Z T

0

Z
F.t/

@tw � u �
Z T

0

Z
�

u ˝ u W D.w/: (4.29)
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Integrating by parts with respect to space the right-hand side yields:

RHS D
Z T

0

Z
@F.t/

Tn � wd� � 2�
Z T

0

Z
F.t/

D.u/ W D.w/

D
nX
iD1

Z T

0

Z
@Bi .t /

Tn � wd� � 2�

Z T

0

Z
�

D.u/ W D.w/; (4.30)

where we applied again that D.w/ D 0 on QS . According to Lemma 4.1, this
last property yields also that there exist .`i ; ri /iD1;:::;n 2 ŒRd � Rd�

�n such that
w.t; x/ D `i .t/ C ri .t/ � .x � Gi.t// on Bi .t/. Hence, introducing (4.12)–(4.13)
yields:

Z T

0

Z
@Bi .t /

Tn � wd� D �
Z T

0

�
mi

P�i � `i C d

dt
ŒJi!i � � ri

�

D mi�
0
i � `i .0/C J

0
i !

0
i � ri .0/C

Z T

0

�
mi

P̀
i � �i C Ji!i � Pri

�

D
Z

B0i
�0i u

0 � wjtD0
C
Z T

0

Z
Bi .t /

�iu � @tw: (4.31)

Combining (4.29)–(4.31) and introducing the extended density �, we obtain finally:

Z T

0

Z
�

.2�D.u/ W D.w/ � �u � @tw � �u ˝ u W D.w// D
Z
�

�0u0 � wjtD0
: (4.32)

All these computations motivate the following definition of weak solutions:

Definition 4.2. Let the following assumptions hold true:

• � is a bounded connected domain in Rd ,
• the initial shapes of rigid bodies B0i satisfy (4.19),
• the densities �0i 2 L1.B0i / satisfy (4.1).

Let u0 2 H.�/ and T 2 .0;1/. A weak solution to (FRBI) on .0; T / with initial
data u0 is a collection ..'i ; �i /iD1;:::;n; u/ satisfying

• For all i D 1; : : : ; n, �i 2 L1..0; T / ��/,
• For all i D 1; : : : ; n, 'i 2 L1..0; T / � �/ \ C.Œ0; T /IL1.�//, furthermore

Bi .t/ WD Supp.'i .t; �// is isometric to B0i for all t 2 Œ0; T /,
• u 2 L1.0; T IL2.�// \L2.0; T IKŒQS ;��/,
• For all i D 1; : : : ; n Eq. (4.28) is satisfied by ' D 'i , for all 	 2 C1

c .Œ0; T / �
�//, with '0 D '0i WD 1B0i

;

• For all i D 1; : : : ; n Eq. (4.28) is satisfied by ' D �i , for all 	 2 C1
c .Œ0; T / �

�//, with '0 D �0i WD �0i 1B0i ,

• Equation (4.32) is satisfied for all w 2 KŒQS ;�� with � and �0 defined by (4.25)
and (4.27), respectively,
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• For almost every t 2 .0; T / we have the energy estimate:

1

2

Z
�

�.t; �/ju.t; �/j2 C 2�

Z t

0

Z
�

jD.u/j2 � 1

2

Z
�

�0ju0j2: (4.33)

Definition 4.2 is an adaptation of [51] taking into account the improvements
of [20, 21]. We replaced Bi .t/ with its indicator function 'i as unknown. We
introduced the body densities �i as unknowns because we consider rigid bodies
having nonconstant densities here. We point out that the condition u.t; �/ 2 V.�/

implies that

2

Z
�

jD.u/.t; �/j2 D
Z
�

jru.t; �/j2; 8 t 2 .0; T /:

So, we might prefer to rewrite the last item:

• For almost every t 2 .0; T / we have the energy estimate:

1

2

Z
�

�.t; �/ju.t; �/j2 C �

Z t

0

Z
�

jruj2 � 1

2

Z
�

�0ju0j2; (4.34)

We also remark that this definition requires neither that the shapes B0i of rigid bodies
and the container � have smooth boundaries, nor that no contact occurs between
solid boundaries. So, we apply this definition in these cases beyond its initial
derivation. Finally, following [20], we extended the definition of weak solution
to initial datum u0 2 H.�/. This is possible as the initial datum appears only
through its norm in the energy estimate and through its multiplication by test-
functions wjtD0

2 D.�/ in the weak-form of (4.9)–(4.13). A drawback is that, if two
initial velocity-fields share the same projection on K0ŒS0;��, the associated weak
solutions should be equal. All these extensions in the definition of weak solutions
(considering non-smooth rigid boundaries and enlarging the set of initial data) have
been added in order to facilitate the construction of global-in-time weak solutions
without addressing the question of contact occurrence.

Compared to [51], we required the support of 'i .t; �/ to be isometric to B0i . This
enables to avoid splitting of the rigid bodies into sub-bodies. As is explained in
[21, Sect. 3], in the definition above, the velocity-field u is constrained to be a
rigid velocity-field on Bi .t/ by “D.u/ D 0 on Bi .t/.” However, this condition
creates as many rigid velocity-fields as the number of connected components of
Bi .t/. We observe here a kind of nonlinearity: the fact that Bi .t/ remains connected
should arise from the fact that it is connected. However, the possibility of body-
splitting has not been ruled out in full rigor, to our knowledge, requiring thus
special care. There are other ways to avoid body-splitting. In [21], the author
introduces a compatibility condition between Bi .t/ and the velocity-field u. Briefly,
this compatibility condition needs to introduce the isometries Mt

i and requires that
ujBi .t/ is equal to the time-derivative of these isometries. When the body boundaries
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are smooth, there are other alternatives. In [26], the authors require B0i and Bi .t/
to be connected. Applying Proposition 4.1, this implies that the rigid velocity on
Bi .t/ is uniquely defined, so that Bi moves as one block and cannot split. In [51],
the condition that Bi .t/ remains connected is obtained by construction. The authors
apply that, for any radial function � W Rd ! Œ0;1/ of unitary mass there holds
�  � D �, for all � 2 R (where  stands for the classical convolution operator).
Consequently, the authors choose to replace the unknown 'i with the indicator
function  i of the ı-interior of Bi .t/:

�Bi .t/Œı WD fx 2 Bi .t/ s.t. B.x; ı/ � Bi .t/g: (4.35)

This function is a weak solution to

@t i C r � . i Œu�ı/ D 0; on .0; T / ��;
 i .0; �/ D 1�B0i Œı ; on �:

)
(4.36)

where Œu�ı D u  �ı for a radial mollifier �ı such that Supp.�ı/ � B.0; ı/. Then,
'i is computed as the indicator of the ı-exterior of Supp. i /:

ŒSupp. i /�ı WD
[

x2Supp. i /

B.x; ı/: (4.37)

The parameter ı > 0 is fixed sufficiently small in order that the operation ı-exterior
is the converse operation of ı-interior on B0i :

� ŒB0i �ıŒıD Œ �B0i Œı�ı D B0i ; 8 i 2 f1; : : : ; ng: (4.38)

Such a ı exists if B0i has a sufficiently smooth boundary. When u is a rigid velocity-
field ui on Supp.'i /, there holds Œu�ı D ui D u on Supp. i /. Moreover as Œu�ı 2
L1.0; T IC1

loc.R
d //, the flow t 7! Mt

i associated with Œu�ı is well defined and
lipschitzian. In particular Bi .t/ D Mt

i .B0i / is an open connected subset of�, for all
i 2 f1; : : : ; ng and the difficulty is overcome.

Finally, once it is obtained that the body domain S.t/ is made of n rigid bodies,
it is classical to show that if u is smooth in the remaining fluid domain and
satisfies (4.32), then there exists a pressure p so that (4.9) holds true in a classical
sense. As long as no contact occurs and the solid boundaries are smooth, it is
also possible to lift any set of rigid velocities on the Bi .t/’s into a test-function
w 2 KŒQS ;�� in order to prove that (4.12) and (4.13) are also satisfied with �i
and !i computed w.r.t. ujBi .t/ . If the body boundaries and container boundary are
smooth, we might also apply trace arguments to recover (4.10)–(4.11).

We proceed with detailing the construction of weak solutions. As classical, the
main points in such constructions are

(i) Definition of approximate problems;
(ii) Existence of solutions to the approximate problems;
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(iii) Analysis of cluster points of solutions to approximate problems.

In the end of this section, we sketch methods to tackle the points (i) and (iii).

Construction of Weak Solutions I: Designing Approximate Problems

We recall that we do not consider contact for now and that we do not make any
assumption on the regularity of body boundaries (having in mind the construction
of global-in-time weak solutions without addressing the contact issue). In order to
introduce an approximate problem that one can tackle either by a Fadeo–Galerkin
method or by a semi-group approach, it is necessary to handle with care the
following difficulties in Definition 4.2:

• the space of test-functions depends on the solution itself through the constraint
that test-functions must be equal to a rigid velocity-field on body domains;

• the weak formulation of Navier Stokes equations contains a nonlinear term:

Z T

0

Z
�

�u ˝ u W D.w/ I

• the shapes of the rigid bodies do not have smooth boundaries a priori.

The most intriguing part of the construction is to deal with the first nonlinearity.
Classical methods enable to handle the nonlinear convective term. As for the regu-
larity of the bodies and container boundaries, we argue by compactness introducing
smoothened rigid bodies and container. We shall detail the regularization process in
the compactness argument. Hence, we assume for now that the body shapes have
smooth boundaries.

Concerning the convective term, a classical method is to linearize by replacing
one u either with a regularized velocity-field (see [35, 39]) or with a previous guess
of solution (in a fixed-point approach). We remark that this should be done with
care. For instance, let us denote by � this other velocity-field and assume that the
linearized problem is given by the following system:

8̂
<̂
ˆ̂:

@t Quf C � � r Quf D r�T.Quf ; Qpf / in QF.t/;
r � Quf D 0; in QF.t/;

Quf D Q�i C Q!i � .x �Gi/; on @ QBi .t/;
Quf D 0; on @�;

where the body domains QBi .t/ (and thus also the fluid domain QF.t/) are computed
with respect to the body motion prescribed by Quf . The unknowns in this new system
are .. QBi .t/; Q�i ; Q!i /iD1;:::;n; Quf ; Qpf /. Multiplying the linearized momentum equation
by Quf yields the following a priori estimate:
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1

2

d

dt

Z
QF.t/

jQuf j2 C 2�

Z
QF.t/

jD.Quf /j2

D
nX
iD1

Z
@ QBi .t /

T.Quf ; Qpf /n � ud� C
Z

QF.t/
.Quf � �/ � r jQuf j2

2

D
nX
iD1

Z
@ QBi .t /

�
T.Quf ; Qpf /nC ..Quf � �/ � n/ Quf

2


� Quf d�:

Hence, to close this a priori estimate (which entails that the linearized system is
well-balanced) one has to transform Newton laws into:

dmi
Q�i

dt
D �

Z
@ QBi .t /

�
T.Quf ; Qpf /nC ..Quf � �/ � n/ Quf

2


d� Cmig

dJi Q!i
dt

D �
Z
@ QBi .t /

.x �Gi.t// �
�
T.Quf ; Qpf /nC ..Quf � �/ � n/ Quf

2


d�:

The total kinetic energy of approximate solutions .. QBi .t/; Q�i ; Q!i /iD1;:::;n; Quf ; Qpf / is
then decaying with time.

Several methods have been introduced to handle the dependence of the set of
test-functions on the solution itself. One possibility is to remark that Definition 4.2
is similar to a classical definition of weak solutions to Navier Stokes equations on
a cylindrical domain with supplementary conditions penalizing the presence of the
body domains inside the container. In the case where the container contains only
one rigid body, an alternative approach consists in fixing the body domain and make
the container time-dependent, by applying a simple change of referential [5, 35].
Herein, we focus on the first approach.

Two ways to penalize the presence of the body domains have been introduced.
The first one refers to the Lemma 4.1 or to the definition ofKŒS.t/;�� and imposes
that the solution satisfies

'D.u/ D 0 with ' WD
nX
iD1

1Bi .t /:

Taking into account that one needs to keep the body domains connected, this
motivates the following definition of approximate solutions (adapted from [51]):

Definition 4.3. Let the following assumptions hold true:

• � is a container having a smooth boundary,
• the shapes of the bodies B0i are connected open subsets of � having smooth

boundaries satisfying (4.19),
• the densities �0i 2 L1.B0i / satisfy (4.1).
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Let ı > 0 such that (4.38) holds true, T 2 .0;1/ and " > 0. Given u0 2 H.�/,
we call " � H1 penalized solution on .0; T /, with initial datum u0, a collection
.. i ; �i /iD1;:::;n; u/ satisfying

PH1: for all i 2 f1; : : : ; ng, there holds  i 2 L1..0; T / � �/,
�i 2 L1..0; T / ��/,

PH2: u 2 L1.0; T IL2.�// \ L2.0; T IV.�//,
PH3: for all i 2 f1; : : : ; ng and all 	 2 C1

c .Œ0; T / ��//, there holds:

Z T

0

Z
�

 i .@t	C Œu�ı � r	/ D
Z
�

1�B0i Œı 	jtD0
;

where Œu�ı D u  �ı for a radial mollifier �ı such that Supp.�ı/ � B.0; ı/I
PH4: for all i 2 f1; : : : ; ng and all 	 2 C1

c .Œ0; T / ��//, there holds:

Z T

0

Z
�

�i .@t	C u � r	/ D
Z
�

�0i 1B0i
	jtD0

;

PH5: for all divergence-free w 2 C1
c .Œ0; T / ��/, there holds:

Z T

0

Z
�

��
2� C 1

"
'


D.u/ W D.w/ � �u � @tw � �u ˝ u W D.w/

�

D
Z
�

�0u0 � wjtD0
;

where

' WD
nX
iD1

1ŒSupp. i /�ı ; � WD
nX
iD1

�iC
 
1 �

nX
iD1

'i

!
; �0 WD

nX
iD1
.�0i �1/1B0i C1;

PH6: for almost every t 2 .0; T / we have the energy estimate:

1

2

Z
�

�.t; �/ju.t; �/j2 C
Z t

0

Z
�

2�jruj2 C
Z t

0

Z
�

'

"
jD.u/j2 � 1

2

Z
�

�0ju0j2:

For arbitrary " > 0, existence of " � H1 approximate solutions reduces to
a Navier Stokes problem for a nonhomogenous (nonconstant viscosity) fluid. We
recall that the introduction of the new unknowns . i /iD1;:::;n aims at ensuring the
connectedness of the body domains Bi .t/ and that ı is fixed w.r.t. the shapes
.B0i /iD1;:::;n. In this definition, letting " go to 0 we obtain formally that

Z T

0

Z
S.t/

jD.u/j2 D 0 H) D.u/ D 0 on QS :



272 M. Hillairet

Simultaneously, for test-functions w which vanish on a neighborhood of QS we
have:

Z T

0

Z
�

1

"
'D.u/ W D.w/ D 0:

Consequently, we might expect to pass to the limit " ! 0 in PH5 for test-functions
w 2 KŒQS ;�� in order to obtain a weak solution in the sense of Definition 4.2. This
H1-penalization is applied in [16, 20, 51] and also in [43, 44] with supplementary
regularizing terms.

The other approach consists in remarking that, for any open set S � � made of
n connected domains B1; : : : ;Bn, there holds:

v 2 KŒS; �� ” vjBi D PL2.�;�i dx/ŒR�.v/; 8 i D 1; : : : ; n:

where we introduced L2.�; �idx/ the space of square-integrable functions w.r.t.
the measure �idx and where PL2.�;�i dx/ŒR�.v/ is the orthogonal projector from
L2.�; �idx/ onto f�jBi I � 2 Rg. There exist explicit formulas for this projector:
for all � 2 L2.�; �idx/ setting:

mi WD
Z
�

�idx; hi WD 1

mi

Z
�

�ixdx; (4.39)

Ji WD
Z
�

�i
�jx � hi j2 � .x � hi /˝ .x � hi /

�
dx; (4.40)

�i WD 1

mi

Z
�

�i �dx !i WD J
�1
i

Z
�

�i .x � hi / � �dx; (4.41)

there holds:

PL2.�;�idx/ŒR�.�/ D �i C !i � .x � hi /; 8 x 2 Bi :

This leads to the following definition of approximate solutions that we adapt from
[4]:

Definition 4.4. Let the following assumptions hold true:

• � is a container having a smooth boundary,
• the shapes of the bodies B0i are open connected subset of � having smooth

boundaries satisfying (4.19),
• the densities �0i 2 L1.B0i / satisfy (4.1).

Let T 2 .0;1/ and " > 0. Given u0 2 H.�/, we call " �L2 penalized solution on
.0; T / with initial datum u0 a collection ..'i ; �i /iD1;:::;n; u/ satisfying:
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PL1: for all i 2 f1; : : : ; ng, �i 2 L1..0; T / � �/ and 'i.t; x/ 2 L1..0; T / �
�/\C.Œ0; T /IL1.�// is such that Bi .t/ WD Supp.'i /.t; �/ is a connected domain
of �I

PL2: u 2 L1.0; T IL2.�// \L2.0; T IV.�//I
PL3: for all i 2 f1; : : : ; ng and all 	 2 C1

c .Œ0; T / ��//, there holds:

Z T

0

Z
�

'i .@t	C ui � r	/ D
Z
�

1B0i
	jtD0

;

and
Z T

0

Z
�

�i .@t	C ui � r	/ D
Z
�

�0i 1B0i 	jtD0
;

where ui .t; �/ WD PL2.�;�idx/ŒR�.u.t; �// for all t 2 .0; T /I
PL4’: for all 	 2 C1

c .Œ0; T / ��//, there holds:

Z T

0

Z
�

�.@t	C u � r	/ D
Z
�

�0	jtD0
;

where

�0 WD
"

nX
iD1
.�0i � 1/1B0i C 1

#
I

PL5: for all divergence-free w 2 C1
c .Œ0; T / ��/, there holds:

Z T

0

Z
�

 
2�D.u/ W D.w/ � �u � @tw � �u ˝ u W D.w/C

nX
iD1

'i

"
.u � ui / � w

!

D
Z
�

�0u0 � wjtD0
I

PL6: For almost every t 2 .0; T / we have the energy estimate:

1

2

Z
�

�.t; �/ju.t; �/j2C
Z t

0

Z
�

2�jruj2C
nX
iD1

Z t

0

Z
�

'i

"
j.u�ui /j2 � 1

2

Z
�

�0ju0j2:

We emphasize that, in this definition, we compute the density �i and the extended
density � w.r.t. two different velocity-fields. When computing energy estimate,
we need � to follow the characteristics associated with u, while computing �i
w.r.t. characteristics of the projection ui guarantees that the domain Bi .t/ remains
isometric to B0i . Given " > 0, the construction of an "�L2 penalized solution is still
a highly nonlinear problem. In PL3 for instance, the computation of the velocity-
field ui depends itself on the value of the solution through formulas (4.39)–(4.41).
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Existence and compactness of solutions to this nonlinear sub-problem are studied
in details in [28, Sect. 3] in the case of constant densities. Extension of these results
to general bounded densities is straightforward. Hence, a Galerkin method enables
to construct an " � L2 penalized solution prior to contact between rigid bodies. We
note that from PL6, all "�L2 penalized solutions for a same initial data have kinetic
energy bounded by a same constant. This yields in particular that they all exist on a
fixed time interval independent of ".

To conclude this subsection, we mention that both penalization methods yield
different numerical approximations. The properties of these different methods are
analyzed in [1] in the case of fixed body domains for instance.

Construction of Weak Solutions II: Compactness Arguments

We proceed with the analysis of cluster points of a sequence of approximate
solutions. The ingredients detailed in this section apply in two different cases. First,
to construct weak solutions to (FRBI) when rigid bodies have smooth boundaries
and the container is also smooth, one applies arguments similar to the one below
in order to prove that a sequence of penalized solutions does converge to a weak
solution to (FRBI). In this case, the shapes B0i and the container � do not depend
on " and ..'"i ; �

"
i /iD1;:::;n; u"/">0 stands for a sequence of "-penalized solutions with

initial data which do not depend on ". Second, to construct weak solutions to (FRBI)
when the shapes B0i and the container � do not have smooth boundaries, we also
apply compactness arguments as the ones below. In this second case, we require
that B0i and Rd n � are connected. This yields that there exist sequences .B0;"i /">0
and .�"/">0 of open sets having smooth boundaries satisfying (4.19) such that
(see (4.35) and (4.37) for notations):

• B";0i converges to B0i in the sense that, for all 	 > 0 there exists "0 > 0 such that,
for all " < "0, there holds:

B0i � B";0i � ŒB0i �	I

• �" converges to � in the sense that, for all 	 > 0 there exists "0 > 0 such that,
for all " < "0, there holds:

��Œ	 � �" � �:

We also introduce sequences of densities .�";0i /">0 which are obtained from the
�0i by convolution and a sequence of approximate initial velocities .u";0/">0. They
satisfy:

• �
";0
i is uniformly bounded and converges a.e. to �0i 1B0 .

• u";0 2 HŒ�"� � HŒ�� and u";0 converges to u0 in H.�/.
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In this second case also, ..'"i ; �
"
i /iD1;:::;n; u"/">0, is a sequence of weak solutions

to (FRBI) associated with the container .�"/">0 and initial conditions given by
..B";0i ; �

";0
i /iD1;:::;n; u0;"/. One then shows that a weak cluster point of this sequence

of weak solutions to (FRBI) in the "-geometry yields a weak solution to (FRBI) in
the limit geometry.

For simplicity, we detail the computations in the second application only. We
point out the arguments that need to be adapted when dealing with a sequence of
penalized solutions. First, we extend all fields outside�" by 0. This yields sequences
we still denote '"i , �

"
i and u". As initial velocity-fields are bounded in H.�/ and

body densities are also uniformly bounded, it yields that, up to extract a subsequence
we do not relabel for simplicity, there holds:

'"i ! 'i in L1..0; T / ��/� w ; (4.42)

�"i ! �i in L1..0; T / ��/ � w ; (4.43)

u" ! u in L1.0; T IL2.�// � w  and in L2.0; T IH1
0 .�// � w. (4.44)

Our aim is to prove that the collection ..'i ; �i /iD1;:::;n; u/ is a weak solution to
(FRBI) for initial datum ..B0i ; �0i /iD1;:::;n; u0/ on .0; T / � �. The main ingredients
of the proof are

• passage to the limit in the transport equation satisfied by .'"i ; �
"
i /, and construc-

tion of the isometries Mt
i associated with the body motions,

• passage to the limit in the nonlinear term for any test-function w 2 KŒQS ;��:

Z T

0

Z
�

�"u" ˝ u" W D.w/:

We consider these two steps separately. For the second step, we detail a method
due to [43] well-adapted to this fluid/body problem. In this section, we consider
solutions prior to contact. We recall that energy estimate (4.34) is sufficient
to guarantee that the sequence ..'"i ; �

"
i /iD1;:::;n; u"/">0 remains far from contact

uniformly on some time interval .0; T / independent of " > 0.

Step 1. Construction of Isometries. As we noticed already, the results of [18]
apply to the sequence of divergence-free velocity-fields .u"/">0. On the one hand,
this sequence converges to u inL2.0; T IH1

0 .�//�w, on the other hand the sequence
of initial data .'";0i ; �

";0
i / converge a.e. to 1B0i and �0i 1B0i , respectively. Consequently,

there holds

'"i ! 'i ; in C.Œ0; T �ILq.�// for all finite q; (4.45)

�"i ! �i ; in C.Œ0; T �ILq.�// for all finite q; (4.46)

and 'i and �i satisfy (4.28) with '0 given by their respective initial data, for all
	 2 C1

c .Œ0; T /��/. This yields in particular that 'i .t; �/ is the indicator function of
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its support Bi .t; �/ and that u 2 L2.0; T IKŒQS ;��/. This yields also that B"i .t/ WD
Supp.'"i .t; �// converges to Bi .t/ in the following sense:

lim
"!0

sup
Œ0;T �

jB"i .t/�Bi .t/j D 0; 8 t 2 .0; T /:

and that, when " ! 0 W

�" ! � WD
nX
iD1

�i C
�
1 �

nX
iD1

'i

�
; in C.Œ0; T �ILq.�//; for all finite q. (4.47)

For all " > 0, there exist affine isometries M"
i 	 .Q"

i ; G
"
i /iD1;:::;n such that:

B"i .t/ D Q
"
i .t/B0i CG"

i ; 8 i D f1; : : : ; ng:

As u" coincides with the eulerian velocity of Bi on B"i .t/, there holds:

k PG"
i IL1.0; T /k C k PQ"

i ŒQ
"
i �

>IL1.0; T /k � CkuIL1.0; T IL2.�//k;

where the constant C is independent of " due to our uniform assumptions on initial
data. Consequently, up to the extraction of a subsequence, we have convergence
of the isometries to a mapping of isometries Mt

i 	 .Qi ; Gi / in C.Œ0; T �/ and in
W 1;1.0; T / � w. This entails that

Bi .t/ D Qi .t/B0i CGi ; 8 i D f1; : : : ; ng:

In particular, the convergence of B"i .t/ to Bi .t/ holds also in the following sense:
for all 	 > 0, there exists "0 > 0 such that, given " < "0, there holds:

B"i .t/ � ŒBi .t/�	 and Bi .t/ � ŒB"i .t/�	; 8 t 2 Œ0; T �: (4.48)

It is straightforward to adapt the above arguments to a sequence of " � L2

penalized solutions. In the case of "�H1 penalized solutions, there are no isometries
at the level of the approximation. However, it is possible to introduce the flows Mt;"

ı

associated with the velocity-fields Œu"�ı. These latter velocity-fields enjoy better
regularity and convergence properties. Eventually, one proves convergence of Mt;"

ı

to some Mt
ı in C0;˛..0; T /IC1.�// (for arbitrary ˛ < 1). The penalization terms

yielding that D.u/ D 0 on all
Sn
iD1ŒSupp. i /�ı , all the restrictions Mt

i of Mt
ı to

B0i are isometric (see [51, Sect. 5.2]).
Next, any test function w 2 KŒQS ;�� satisfies O WD S

t2Œ0;T � Supp.w.t; �// �
O � �. As a similar property holds for the domain where D.w/ D 0, the
convergence (4.48) of body domains yields that it is an admissible test-function
for the "-problem, given " sufficiently small. We can then apply convergence
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results (4.44)–(4.47) to pass to the limit in all terms of the weak formulation except

Z T

0

Z
�"
�"u" ˝ u" W D.w/ D

Z T

0

Z
O
�"u" ˝ u" W D.w/:

We need further properties of the limit u" ! u to compute the asymptotics of this
term. As D.w/ 2 L1..0; T / � O/ and �"u" already converges weakly to �u in
L2..0; T / � O/ it would be sufficient here to obtain that u" converges strongly to u
in L2..0; T / ��/, for instance. The rest of this section is devoted to the proof of a
variant of this statement.

Step 2. Asymptotics of the Nonlinear Terms. We extend herein to the several
body case the method applied by Hoffmann and Starovoitov in [43].

Given an admissible test-function w 2 KŒQS ;�� we first construct a cylindrical
decomposition of the fluid-domain adapted to the test-function w. As t 7! Mt

i is
continuous and the t 7! Mt;"

i are uniformly bounded in W 1;1..0; T / � �/ and
converge to t 7! Mt

i , there exists a non-decreasing sequence 0 D t0 < t1 < � � � <
tN D T and associated open sets .Ok/kD1;:::;N such that the Ek WD .tk; tkC1/ � Ok

satisfy:

• @Ok is the disjoint union of f†ik; i D 0; : : : ; ng for a collection of .n C 1/

smooth†ik , each one surrounding a rigid boundary (@� or
S
t2.tk;tkC1/

@Bi .t/ for
i D 1; : : : ; n);

• Ok � F ".t/ for all t 2 .tk; tkC1/, for sufficiently small "I
• .Œ0; T � ��/ n .SN

kD1 Ek/ � f.t; x/; s.t. D.w/.t; x/ D 0g.

Consequently,Ek is a cylindrical domain for all k 2 f1; : : : ; N g and w is a.e. a rigid
velocity-field on any connected subset of the complement of

SN
kD1 Ek in .0; T /��.

In particular, there holds:

Z T

0

Z
�

�"u" ˝ u" W D.w/ D
NX
kD1

Z Z
Ek

u" ˝ u" W D.w/:

Our problem reduces then to computing the limit of the N integrals on the right-
hand side of this last identity. We emphasize that N is fixed w.r.t. w independent of
" and that, in the integrals we want to compute now, we changed the space domain�
into a Ok which has smooth boundaries. We might now apply all the classical results
on hydrodynamic spacesH.Ok/ and V.Ok/: existence of traces, duality, (compact)
embeddings : : : see [23, Chap. III].

Let k 2 f1; : : : ; N g. We note that, as w is equal to a rigid velocity-field on the
smooth boundaries .†ik/iD1;:::;n it is possible to adapt the construction in [49] (see
Lemma 7.1 and more generally pp. 103–105) in order to obtain a divergence-free
W 2 C1.Œtk ; tkC1� � Ok/ such that W j†ki D wj†ki for all i D 1; : : : ; n and

ˇ̌
ˇ̌Z Z

Ek

u" ˝ u" W D.W /

ˇ̌
ˇ̌ � 	ku"IL2..tk; tkC1/IH1.�//k2;
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ˇ̌
ˇ̌
Z Z

Ek

u ˝ u W D.W /

ˇ̌
ˇ̌ � 	kuIL2..tk; tkC1/IH1.�//k2;

for arbitrary small 	. Hence, introducing Qw D w �W we have

ˇ̌
ˇ̌Z Z

Ek

u" ˝ u" W D.w/ �
Z Z

Ek

u ˝ u W D.w/
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z Z

Ek

u" ˝ u" W D. Qw/ �
Z Z

Ek

u ˝ u W D. Qw/
ˇ̌
ˇ̌C C	:

for arbitrary small 	 and a constant C uniform in ". Our proof thus reduces to show
that the first term on the right-hand side vanishes in the limit " ! 0, for arbitrary
Qw 2 C1.Œtk; tkC1��Ok/ such that Qw.t; �/ 2 V.Ok/ for all t 2 .tk ; tkC1/. We fix one
Qw in the remainder of this section and set:

I " WD
Z Z

Ek

u" ˝ u" W D. Qw/; I WD
Z Z

Ek

u ˝ u W D. Qw/:

Next, we split velocity-fields u" and u in an appropriate way. We introduce
P ŒH.Ok/� the orthogonal projector L2.Ok/ ! H.Ok/ and we set:

U " WD P ŒH.Ok/�.u
"/; U WD P ŒH.Ok/�.u/:

We have the following consequence of [23, Theorem 3.1.1]:

Proposition 4.1. There exists � 2 H1.Ok/ (resp. �" 2 H1.Ok/) such that

• u D U C r� (resp. u" D U " C r�") on Ok ,
• �� D 0 (resp. ��" D 0) on Ok .

In particular, we might decompose I WD Iuu C Iuz C Izz where:

Iuu WD
Z Z

Ek

U ˝ U W D. Qw/;

Iuz WD
Z Z

Ek

.U ˝ rz C rz ˝ U / W D. Qw/;

Izz WD
Z Z

Ek

rz ˝ rz W D. Qw/;

and similarly for I ".
The convergence of the last term is handled by the following algebraic trick:
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Proposition 4.2. Let O be an open bounded set having a C1;1 boundary. Let w and
� be two functions satisfying:

• u 2 H1.O/ is divergence-free and w � n D 0 on @O,
• � 2 H1.O/ and�� D 0 on O.

Then, there holds:

Z
O

r� ˝ r� W D.w/ D 0: (4.49)

Proof. The proof is a combination of algebraic relations and integration by parts:

Z
O

r� ˝ r� W D.w/ D
Z

O
r� ˝ r� W rw

D �
Z

O
r � Œr� ˝ r�� � u as w � n D 0 on @O

D �1
2

Z
O

rjr�j2 � w as �� D 0 on O

D 1

2

Z
O

jr�j2 r � w D 0: ut

This proposition entails I "zz D Izz D 0. Combining the weak convergence of u"

with the projector P ŒH.Ok/� we obtain that rz" (resp. U ") converges weakly to rz
(resp. U ) in L2..tk; tkC1/ � Ok/. We obtain finally that I "uu and I "uz converge to Iuu

and Iuz, respectively, by a classical application of the following strong-convergence
result:

Proposition 4.3. The sequence .U "/">0 is compact in L2..tk; tkC1/ � Ok/.

Proof. We detail here the proof sketched by Hoffmann and Starovoitov in [43,
p. 640].

First, we have by construction that U " is bounded in L2..tk; tkC1/IL2.Ok//. The
convergence of body domains implies that .tk; tkC1/ � Ok � Q"

F for sufficiently
small ", with obvious notations. We might then introduce the trivial extension of
any � 2 C1

c ..tk; tkC1/IV.Ok// as test-function in (4.32). This yields:

ˇ̌
ˇ̌Z tkC1

tk

U " � @t �
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z tkC1

tk

Z
Ok

2�D.u"/ W D.�/ � u" ˝ u" W D.�/
ˇ̌
ˇ̌

�CT k�IL2..tk; tkC1/IV.Ok//kku"IL2.0; T IH1.�//k�1Cku"IL1.0; T IL2.�//k�

Hence @tU " is bounded in the dual space L2..tk; tkC1/IV.Ok/
�/. As H.Ok/ �

V.Ok/
� with a compact embedding, we apply the Aubin–Lions lemma [53,

Corollary 4] and obtain that .U "/">0 is compact in L2..tk; tkC1/IV.Ok/
�).
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Second, we prove by a contradiction argument that for all 	 > 0 there exists
K.	/ > 0 for which, for all � 2 H1.Ok/, there holds:

kP ŒH.Ok/�.�/IL2.Ok/k � 	k�IH1.Ok/k CK.	/kP ŒH.Ok/�.�/IV.Ok/
�k:
(4.50)

We argue by contradiction. If this statement were false, there would exist 	 > 0

such that, for all K 2 N there is �K 2 H1.Ok/ such that

kP ŒH.Ok/�.�K/IL2.Ok/k > 	k�K IH1.Ok/k CKkP ŒH.Ok/�.�K/IV.Ok/
�k:

Without restriction, we assume that k�K IH1.Ok/k D 1. On the one hand, the
embedding H1.Ok/ � L2.Ok/ being compact and P ŒH.Ok/� being continuous
with respect to the L2-topology, there would exist a subsequence, that we do not
relabel, and � 2 L2.Ok/ such that:

lim
K!1P ŒH.Ok/�.�K/ D P ŒH.Ok/�.�/ in L2.Ok/:

In particular, the sequence P ŒH.Ok/�.�K/ is bounded so that:

	CKkP ŒH.Ok/�.�K/IV.Ok/
�k < kP ŒH.Ok/�.�K/IL2.Ok/k � C (4.51)

Consequently, there holds:

lim
K!1 kP ŒH.Ok/�.�K/IV.Ok/

�k D 0; and P ŒH.Ok/�.�/ D 0:

Conversely, (4.51) also implies:

kP ŒH.Ok/�.�K/IL2.Ok/k > 	; 8K 2 N:

We obtain a contradiction.
The expected result is then a corollary of [53, Theorem 1]. Indeed, as .U "/">0 is

compact in L2..tk; tkC1/IV.Ok/
�/, this theorem entails that:

lim
h!0

kU ".t C h; �/� U ".t; �/IL2..tk; tkC1 � h/IV.Ok/
�/k D 0; uniformly in "

On the other hand, applying (4.50) to U " and recalling that thanks to (4.34), .u"/">0
is already bounded in L2..tk; tkC1/IH1.Ok//, we obtain that there exists a constant
C > 0 for which:

kU ".t C h; �/� U ".t; �/IL2..tk; tkC1 � h/ � Ok/k

� C	CK.	/kU ".t C h; �/� U ".t; �/IL2..tk ; tkC1 � h/IV.Ok/
�/k;
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for arbitrary 	 > 0. Consequently, we also have:

lim
h!0

kU ".t C h; �/� U ".t; �/IL2..tk; tkC1 � h/ � Ok/k D 0 uniformly in ":

Finally, for all tk < 1 < 2 < tkC1, there holds:

Z 2

1

U ".t/dt D P ŒH.Ok/�

�Z 2

1

u".t/dt

�
:

Again, because of the uniform bound on .u"/">0 in L2..tk; tkC1/IH1.Ok//, we
have that .

R 2
1

u".t/dt/">0 is relatively compact in L2.Ok/. The mappingP ŒH.Ok/�

being continuous, this entails that .
R 2
1
U ".t/dt/">0 is relatively compact in L2.Ok/.

This ends the proof. ut
From the construction we presented here, we obtain the following theorem:

Theorem 4.1. Let the following assumptions hold true:

• � is a container such that Rd n� is connected,

• the shapes of the bodies B0i are open subsets of � such that Bi
0

is connected
and (4.19) holds true,

• the densities �0i 2 L1.B0i / satisfy (4.1).

Given u0 2 H.�/, there exists T > 0 and a weak solution ..'i ; �i /iD1;:::;n; u/
to (FRBI) on .0; T /. Furthermore, no contact occurs between rigid boundaries on
.0; T / in this solution.

To conclude, we note that we have used here an algebraic trick (namely
Proposition 4.2) which enables to rule out the question of the compactness of
the velocity-fields .u"/">0 in L2..0; T / � �/. In [51] or in [16], two methods are
proposed to obtain such a compactness result (see also [20]). Briefly, in [20, 51]
the proof consists in projecting locally in time the u" on a set of velocity-fields
which coincides with a rigid velocity-field on a fixed neighborhood QS of the S.t/
(this neighborhood is in particular locally constant in time and independent of ").
Adapting the arguments of this section, compactness of the projected sequence is
obtained in L2..0; T / � �/. Finally, a trace result due to Fujita and Sauer [22]
entails that the sequence of projections gets closer to u" (“uniformly” in ") when QS
gets closer to S.t/. This yields the expected compactness of .u"/">0.

4.3.2 Motion of One Body in a Bounded Domain: Classical
Solutions

Up to now, we solved (FRBI) in a weak setting via the introduction of extended
fields defined on the whole container. Another approach to tackle this system is
to fix the fluid-domain by applying a change of unknown. This transforms (FRBI)
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into a quasilinear system completed with boundary conditions interacting with the
nonlinearities. This method is applied in [8,9,24,33,34,56–58] to study the existence
and uniqueness of classical solutions to (FRBI) in the two-dimensional and three-
dimensional cases. Before going further, we mention that constructing classical
solutions to (FRBI) is also possible by showing that weak solutions satisfy better
regularity estimates [15]. We choose to detail the alternative approach here to give a
broader picture of the methods that have been introduced in order to handle (FRBI).

Constructing classical solutions to (FRBI) requires the treatment of three major
difficulties. First, in the very definition of classical solutions, it has to be noted that
the fluid velocity-field is defined on a moving domain. Hence, one must find a new
way for stating the usual regularity of classical solutions to Navier–Stokes equations
in cylindrical domains:

uf 2 H1.0; T IL2.F// \ C.Œ0; T �IH1.F//\ L2.0; T IH2.F//:

Second, a standard method to construct classical solutions to nonlinear PDEs is
to apply a perturbation argument relying on a linearized problem having good
properties. A genuine difficulty here is that, even if the geometry is fixed via a
change of unknown, the fluid and body dynamics are still coupled at the linearized
level. It is tempting to discouple both equations (as in [33, 34]). However, dealing
with the full system then requires to make smallness assumptions on the coupling.
A monolithic approach introduced in [56–58] is necessary to handle the general
case. Finally, it is also standard that the perturbation argument entails existence and
uniqueness of classical solutions locally-in-time. In the two-dimensional case, it is
possible to extend classical solutions up to the first time of collision between rigid
bodies or between rigid bodies and the container boundary. This result is based on
the classical remark that theH1-norm of solutions to Navier Stokes equations do not
blow-up in finite time in the two-dimensional case. However, compared to the usual
case of Navier Stokes equations in cylindrical domains, supplementary difficulties
arise here as the velocity-field uf satisfies nonhomogeneous boundary conditions
at the moving fluid/body interfaces. In this paragraph, we detail the treatment of
these three difficulties in the two-dimensional case of one rigid body moving inside
a bounded container. This part of the section relies on [56].

Definition of Classical Solutions. Let us consider the case of one body B1 moving
inside a bounded container �. A first way to measure the regularity of a classical
solution ..�1; !1/; uf ; pf / is to introduce a mapping transforming a velocity-field
and pressure defined on the moving domain QF into something defined on the
cylindrical domain QF WD .0; T / � F0. One then measures the regularity of the
images of u and p through this mapping. Of course, this mapping depends on the
solution itself.

For instance, assuming, on the one hand, that ..�1; !1/; uf ; pf / is a classical
solution on .0; T / having sufficient time-regularity i.e.,

�1 2 H1.0; T /; !1 2 H1.0; T /;
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and, on the other hand, that the distance between B1.t/ and @� remains bounded
from below by a strictly positive constant, it is possible to construct a vector-field
ƒ 2 H1..0; T /IC1

c .�// satisfying the following properties:

• divƒ D 0 on .0; T / ��,
• ƒ.t; x/ D �1 C !1.x �G1/

? in a neighborhood of B1.t/, for all t 2 Œ0; T /,
• Supp.ƒ.t; �// � � for all t 2 Œ0; T �.
Classical results on differential systems entail that the associated flow .t; x/ 7!
X.t; x/ solution to

@tX.t; y/ D ƒ.t;X.t; y//; 8 .t; y/ 2 .0; T / ��;
X.t; y/ D y; 8 y 2 �;

is then well defined globally and satisfies:

• X 2 C1.Œ0; T �I Diff1.�// (where Diff1.�/ stands for the set of smooth
diffeomorphisms of �),

• X.t;B01/ D B1.t/, for all t 2 .0; T /,
• X.t; �/ is an isometric mapping on B01 for all t 2 Œ0; T �,
• X.t; y/ D y for all .t; y/ 2 .0; T / � @�.

Hence, we might define the associated change of unknown:

A.t; y/ D a.t; X.t; y//; 8 .t; y/ 2 QF : (4.52)

We keep the convention that capital letters are associated with the change of
unknown computed in this construction. Next, a classical solution is defined as
follows:

Definition 4.5. Given T > 0, we call classical solution to (FRBI) on .0; T / any
collection ..�1; !1/; uf ; pf / satisfying

• �1 2 H1.0; T / and !1 2 H1.0; T /I
• there exists ı > 0 such that the associated body motion t 7! B1.t/ satisfies

dist.B1.t/; @�/ > ı; 8 t 2 .0; T /I

• Uf 2 H1.0; T IL2.F0// \ C.Œ0; T �IH1.F0// \L2.0; T IH2.F0//I
• Pf 2 L2.0; T IH1.F0//I
• ..�1; !1/; uf ; pf / satisfies (FRBI) almost everywhere.

We note that, as long as no contact occurs, straightforward computations entail
that the regularity statements in the above definition yield:

@tuf 2 L2.QF /; .uf ;ruf ;r2uf / 2 L2.QF /; rpf 2 L2.QF /: (4.53)

Consequently, the last statement in this definition makes sense.
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Definition 4.5 will be easy to handle as it fits the construction scheme we detail
below. In particular, it will be obvious that the classical solutions we obtain satisfy
the regularity statements of this definition. A drawback is that the definition requires
the introduction of the change of variable X whose existence relies on the no-
contact assumption. In particular, it seems more adapted to introduce an “eulerian”
definition of classical solution in order to be able to consider contact in what follows.
This is the aim of the following definition we adapt from [26, 39]:

Definition 4.6. Given T > 0, we call classical solution to (FRBI) on .0; T / any
collection ..�1; !1/; uf ; pf / such that:

• �1 2 H1.0; T / and !1 2 H1.0; T /I
• there exists ı > 0 such that the associated body motion t 7! B1.t/ satisfies

dist.B1.t/; @�/ > ı; 8 t 2 .0; T /I

• uf 2 H1.QF / with r2uf 2 L2.QF /I
• pf 2 L2loc.QF / satisfies rpf 2 L2.QF /I
• ..�1; !1/; uf ; pf / satisfies (FRBI) almost everywhere.

We note that, in this second definition, we consider uf and pf as space/time
functions defined on the (open) set QF . In particular, the condition uf 2 H1.QF /

includes time and space derivatives. This has to be compared with the other
regularity statements which do only involve space derivatives.

Fortunately, both definitions of classical solution are consistent. In order to avoid
confusion, we provide the following proposition:

Proposition 4.4. Definitions 4.5 and 4.6 are equivalent.

Proof. Following the remark after Definition 4.5, and in particular (4.53), we have
that any classical solution ..�1; !1/; uf ; pf / in the sense of Definition 4.5 is a
classical solution in the sense of Definition 4.6.

Conversely, letting ..�1; !1/; uf ; pf / be a classical solution in the sense of
Definition 4.6, similar computations to the ones entailing (4.53) yield that

Uf 2 H1.0; T IL2.F0//\ L2.0; T IH2.F0//; Pf 2 L2.0; T IH1.F0//:

The only point requiring more care is the proof that Uf 2 C.Œ0; T �IH1.F0//. To
this end, we first note that

• on @B01 , there holds

Uf .t; y/ D �1 C !1.y �G0
1/

? 2 H1.0; T IC1.@B01//I

• on @�, Uf vanishes.

Consequently, we might construct a velocity-field Ubdy 2 H1.0; T IH2.F0// lifting
these boundary conditions and such that V WD Uf � Ubdy satisfies also
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V 2 H1.0; T IL2.F0//\ L2.0; T IH2.F0//:

We have then (up to a regularization argument we skip for conciseness):

d

dt

Z
F0

jrV.t; y/j2dy D �
Z

F0

@t V ��V 2 L1.0; T /:

Consequently, kV.t; �/IH1.F0/k 2 C.Œ0; T �/. Combining this relation with @tV 2
L2..0; T / � F0/ entails that V 2 C.Œ0; T �IH1

0 .F0//� w and then

V 2 C.Œ0; T �IH1
0 .F0//:

Adding the function Ubdy (for which we already have Ubdy 2 C.Œ0; T �IH1.F0//),
we get finally that U 2 C.Œ0; T �IH1.F0//. This ends the proof. ut
Analysis of the Linearized Problem. As we mentioned above, to construct
solutions to (FRBI) with the regularity of Definition 4.5 or Definition 4.6, one way
is to go into a fixed geometry by introducing a change of unknown similar to (4.52).
Actually, in order to keep the divergence-free condition, a better-adapted change of
unknown reads:

QUf .t; y/ D ŒrX��1.t; X.t; y// uf .t; X.t; y//;

QPf .t; y/ D pf .t; X.t; y//:

System (FRBI) is then transformed into a quasilinear PDE in terms of the collection
..�1; !1/; QUf ; QPf / that we do not write for conciseness. Let us only mention that,
when ..�1; !1/; uf ; pf / is small, the diffeomorphisms fX.t; �/; t 2 .0; T /g are close
to the identity. Consequently, the linearized version of this quasilinear system reads:

@tU � ��U C�P D FNS
divU D 0

�
in QF WD .0; T / � F0; (4.54)

with boundary conditions

U.t; y/ D � C !.y �G0
1/

?; on @B01; (4.55)

U.t; y/ D 0; on @�; (4.56)

and coupled with Newton laws:

m1
P� D �

Z
@B01

T.U; P /nd� C FLM ; (4.57)

J1 P! D �
Z
@B01
.y �G0

1/
? � T.U; P /nd� C FAM : (4.58)
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In this system FNS ; FLM ; FAM are, respectively, source terms in the Navier–
Stokes equations, linear momentum equation, and angular momentum equation. The
system is completed with initial data:

U.0; �/ D U 0; �.0/ D �0; !.0/ D !0: (4.59)

In the works of Grandmont and Maday [33, 34], this system is treated uncoupling
at first the Stokes system (4.54) with boundary conditions (4.55)–(4.56) and the
Newton laws (4.57)–(4.58). Namely, initial conditions and data .FNS ; FLM ; FAM /
being fixed, the Stokes system (resp. the Newton laws ) is solved for given boundary
data t 7! .�.t/; !.t//, (resp. for a given fluid flow .t; x/ 7! .U.t; x/; P.t; x///. A
solution to the coupled linearized system is then obtained by constructing a fixed
point of the mapping:

.�; !/ �! .U; P / solution to (4.54)–(4.55)–(4.56)

�! . N�; N!/ solution to (4.57)–(4.58): (4.60)

The shortcoming of this method appears computing rough energy estimates. Indeed,
let us consider the case where source term FNS , FLM , and FAM vanish. Then,
given sufficiently smooth boundary data t 7! .�.t/; !.t//, we introduce a smooth
divergence-free vector-fieldUbdy which lifts boundary conditions (4.55)–(4.56). The
differenceV D U �Ubdy whereU is the solution to (4.54)–(4.55)–(4.56) with initial
data U 0 satisfies:

@tV � ��V C�P D �@tUbdy C ��Ubdy

divV D 0

�
in QF ; (4.61)

and vanishes on boundaries. Classical energy methods yield the estimates:

sup
t2.0;T /

kV.t; �/IL2.F0/k C �

Z T

0

krV.t; �/IL2.F0/j2

� C0 C CF

Z T

0

k@tUbdy � ��UbdyIL2.F0/k2;

� C0 C CF
�k�IH1.0; T /k2 C k!IH1.0; T /k2� ;

and

sup
t2.0;T /

�krV.t; �/IL2.F0/k C
Z T

0

�kV IH2.F0/k2 C krP IL2.F0/k2�

� C0 C CF
�k�IH1.0; T /k2 C k!IH1.0; T /k2� ;
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with a constant CF which depends only on the geometrical properties of the fluid
domain F0. Next, one computes solutions to (4.57)–(4.58) with data .t; x/ 7!
.U; P /. Applying classical trace inequalities entails:

kN�IH1.0; T /k2 C k N!IH1.0; T /k2

� C0 C CF

m2
1 C J

2
1

Z T

0

kU IH2.F0/k2 C krP IL2.F0/k2;

� C0 C CF

m2
1 C J

2
1

�k�IH1.0; T /k2 C k!IH1.0; T /k2� :

These formal considerations show that constructing a fixed-point to (4.60) requires
to control a little time-regularity of � and ! and to assume smallness of the coupling
(i.e., here that m1 and J1 are sufficiently large). Indeed, we need the coefficient
CF=.m

2
1 C J

2
1/ to be small enough in order that the mapping (4.60) fixes some ball

of H1.0; T /.
This limitation is overcome in the works of T. Takahashi and co-authors by

solving the full system (4.54)–(4.55)–(4.56)–(4.57)–(4.58) at once. In [58], this
linear problem is endowed with the semi-group structure associated with the
generator A defined as follows. Let us denote:

D.A/ D
n
U 2 KŒB01;�� such that UjF0 2 H2.F0/

o
;

and set A D P ŒK0ŒB01;���AU where:

AU WD
�

��U; in F0;

F C T .y �G0
1/

?; in B01;

with the conventions that:

F WD �2�
m

Z
@B01

D.U /nd�; T WD �2�
J1

Z
@B01
.z �G0

1/
? �D.U /nd�;

and that P ŒK0ŒB01;��� stands for the orthogonal projector L2.�; �dy/ !
K0ŒB01I��.

We remark that in this “classical solution framework,” we actually reintroduce
the extended unknowns that were used in the “theory of weak solutions” developed
in the previous section. In particular, we introduced here the extended density

� D �11B01
C 1F0 ;

and used abusively symbol U to denote extended velocity-fields. We recall that
the spaces KŒB01;�� and K0ŒB01;�� are introduced in Definition 4.1 and that the
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restriction of the L2.�; �dy/ scalar product to K0ŒB01;�� reads:

.U; V / D
Z

F0

U � V C
Z

B01
�1U � V;

D
Z

F0

U � V Cm1�V � �U C J1!V !U ;

with the notations

UjB01
.x/ D �U C !U .x �G0

1/
?; resp. VjB01

.x/ D �V C !V .x �G0
1/

?:

In [58], the authors prove that the operator .D.A/;A/ is self-adjoint and positive
yielding a contraction semi-group t 7! S.t/ onK0ŒB01;��. We note that, as classical
in incompressible fluid problems, the formalism presented here gets rid of the
pressure P . This pressure is reintroduced afterwards as follows. In the case FNS ,
FLM , and FAM vanish, let U.t; �/ WD S.t/U 0. For sufficiently smooth data U 0, we
have U.t; �/ 2 D.A/ for all t > 0, so that we set

U.t; x/ D
(
�1.t/C !1.t/.y �G0

1/
?; on B01;

Uf .t; x/; on F0:

By construction, Uf is divergence-free and satisfies boundary conditions:

Uf .t; y/ D �1 C !1.y �G0
1/

?; 8 y 2 @B01; Uf .t; y/ D 0 on @�:

Then, we have

@tU D AU on .0; T /: (4.62)

Multiplying this equation by the trivial extension of any W 2 D.F0/ yields that:

Z
F0

.@tUf � ��Uf / �W D 0:

Applying DeRham theory, we construct a pressure Pf such that ..�1; !1/; Uf ; Pf /
satisfies (4.54). Multiplying then (4.62) with anyW 2 C1

c .�/ \KŒB01;�� yields:

m1�W � P�1 C J1!W P!1 C
Z

F0

@tU �W

D
Z

F0

��U �W �
Z
@B01

2�D.U /nd� � �W �
Z
@B01

2�.y �G0
1/

? �D.U /nd�!W
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Introducing (4.54) and integrating by parts, we obtain finally:

m1�W � P�1 C J1!W P!1 D �
Z
@B01

T.U; P /nd� � �W

�
Z
@B01
.y �G0

1/
? � T.U; P /nd� !W :

As �W and !W are arbitrary, we obtain that Newton laws (4.57)–(4.58) are also
satisfied.

Combining this analysis of the linearized problem with the computation of
nonlinear terms (convective terms and geometrical terms due to the change of
unknown), one obtains local-in-time existence and uniqueness of classical solutions
(see [56, Proposition 6.1]):

Theorem 4.2. Let " > 0 and C1 > 0. Given B01 � � and .�01 ; !
0
1 ; u

0
f / 2 R2 � R �

H1.F0/ such that:

dist.B01; @�/ > " ku0IH1.F0/k C j�01 j C j!01 j < C1:

Assume initial data satisfy compatibility conditions:

div u0f D 0; on F0; (4.63)

u0f .x/ D �01 C !01.x �G0
1/

?; on @B01; (4.64)

u0f .x/ D 0; on @�; (4.65)

then there exists T0 depending only on " and C1 such that there exists a unique
classical solution ..�1; !1/; .uf ; pf // to (FRBI) with initial condition ..�01 ; !

0
1 /; u

0
f /

on .0; T0/.

Computation of Regularity Estimates. It is well known that Theorem 4.2 implies
the existence of a unique maximal solution for arbitrary initial data ..�01 ; !

0
1 /; u

0
f /

satisfying compatibility conditions (4.63)–(4.64)–(4.65). Given the restrictions on
the time T0 in this local-in-time existence result, we also have the following blow-
up alternative. Let .Tmax; ..�1; !1/; uf ; pf // be a maximal solution to (FRBI) then,
there holds:

• either Tmax D C1,
• either Tmax < 1 and we have:

lim sup
t!Tmax

�
kuf .t; �/IH1.F.t//k C j�1.t/j C j!1.t/j C 1

dist.B1.t/; @�/

�
D 0:

In the two-dimensional case that we detail here, we might prove that blow-up only
arises because of contact between B1.t/ and @�. Thanks to the previous alternative,
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this amounts to computing an a priori estimate on kuf .t; �/IH1.F.t//k C j�1.t/j C
j!1.t/j locally-in-time. To this end, we go back in the moving geometry. As the
Navier Stokes equations (4.9) are satisfied in L2.QF /, it can be multiplied by uf
yielding that classical solutions satisfy the basic kinetic-energy estimate (4.18).
Consequently, we have a uniform bound on j�1.t/jCj!1.t/j and the problem reduces
to compute a bound on kuf .t; �/IH1.F.t//k.

In the remainder of this paragraph, we fix one maximal solution to (FRBI),
.Tmax; ..�1; !1/; uf ; pf //. When there are no rigid bodies inside the container,
regularity estimate for the velocity-field is obtained by multiplying the Navier
Stokes equations with @tuf . When there are bodies in the container, one way to
extend this estimate is to multiply the Navier Stokes equations with:

v WD v1 � v2 v1 WD @tuf Cƒ � ruf ; v2 WD uf � rƒ;

where ƒ is an extension of the velocity-field of B1 such as defined in the first
paragraph of this section (see p. 283). We point out that the first part of v stands
for a material time-derivative of uf while the second part compensates the fact that
v1 is not divergence-free. Both properties appear in the computations below. Indeed,
assume for simplicity that u is smooth in the fluid domain. Multiplying (4.9) with v,
we get:

Z
F.t/

@tuf � v C
Z

F.t/
divT.uf ; pf / � v D �R0; (4.66)

where

R0 D
Z

F.t/
.uf � ruf / � v:

On the left-hand side, a straightforward decomposition of v yields:

Z
F.t/

@tuf � v D
Z

F.t/
j@tuf j2 CR1 with R1 WD

Z
F.t/

@tuf � .ƒ � ruf � uf � rƒ/:

Next, we integrate by parts the second term:

Z
F.t/

divT.uf ; pf / � v D
Z
@F.t/

T.uf ; pf /n � vd� �
Z

F.t/
T.uf ; pf / W rv:

The construction of v yields that:

• v.t; x/ D . P�1 � !1�?
1 /C P!1.x �G1.t//

? on @B1.t/,
• v vanishes on @�,
• div v D 0 on QF ,
• D.v/ D D.@t v/Cƒ � rD.v/C rurƒ�D.u � rƒ/ on QF .
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Consequently, we have:

Z
@F.t/

T.uf ; pf /n � vd� D �m1j P�1j2 � J1j P!1j2 CR1

with R1 WD m1!1�
?
1 � P�1. Similarly, we have:

Z
F.t/

T.uf ; pf / W rv D 2�

Z
F.t/

D.uf / W D.v/

D �
d

dt

Z
F.t/

jD.uf /j2 CR2

with:

R2 WD 2�

Z
F.t/

D.uf / W .ruf rƒ�D.uf � rƒ//:

Finally, (4.66) reads:

�
d

dt

Z
F.t/

jD.uf /j2 C
Z

F.t/
j@tuf j2 Cm1j P�1.t/j2 C J1j P!1.t/j2 D R; (4.67)

with R D R0 C R1 � R2. This remainder term is controlled by the energy on the
right-hand side reproducing the classical arguments applied in the case of Navier
Stokes equations on cylindrical domains: interpolation estimates to control the
remainder terms with the H2-norm of uf and ellipticity of the stationary Stokes
problem to bound this H2-norm by the L2-norm of @tuf . Several new terms are
involved because of the presence of ƒ. However, as ƒ is smooth and depends
on the solution only through �1 and !1 they do not represent critical terms. We
refer the reader to [8, 9] for more details. Beyond the control of these remainder
terms, we also point out that these references apply a careful density argument to
justify the formal integration by parts above. Indeed, we assume here that @tuf is
sufficiently smooth in the fluid domain. However the only a priori information we
have is @tuf 2 L2.F.t// with div@tuf D 0. Consequently, only the normal trace of
@tuf on @B1.t/ is a priori well defined in H�1=2.@B1.t//. Computing the trace of v
on @B1.t/ requires thus special care.

To conclude this section, we mention that the construction of classical solutions
has been extended to the case of bodies having singular shapes (namely, C1;˛ with
˛ 2 .0; 1/) [26]. In this latter case, H2-regularity of the velocity-field is out of
reach as elliptic regularity for the stationary Stokes problem no longer holds in this
function-space for non-smooth fluid domains. It is replaced with a BMO-gradient
regularity. We also note that the study of the semi-group S.t/, that is introduced in
the second paragraph, has been extended to a non-Hilbertian framework in [25] and
[19]. The motivation in the first of these papers is to extend the Cauchy theory to
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non-newtonian fluids while the second reference aims at computing the long-time
behavior of solutions to (FRBI) in an unbounded container (� D R2).

4.4 The Contact Issue

We proceed by analyzing the way classical and weak solutions to (FRBI) handle
contacts between rigid bodies or between a body and the container boundary.
Several questions are in order. First, in the framework of classical solutions that
we detailed in Sect. 4.3.2, contacts between rigid boundaries imply blow-up of
the classical solution because they are excluded by definition. However, with our
definitions, one may continue a priori a classical solution after contact by a weak
solution. It is then critical to determine what regularity of the solution is lost in the
extension process. It is also necessary to prove that weak solutions do exist after
contact and to discuss the interpretation of these solutions. Indeed, we derived the
definition of weak solution starting from a classical solution for which no contact
occurs and explained the computations backwards as long as no contact occurs. We
extended then arbitrarily the definition of weak solution after contact as it made
sense. However, the computations backwards are no longer valid after a contact and
a novel approach is required. These questions arise only if contact occurs. The last
(but not least) question is to determine if and when contact between rigid boundaries
do actually hold in (weak or classical) solutions to (FRBI).

The section is organized as follows. We first deal with the blow-up criterion
of classical solutions. We then tackle the behavior of weak solutions with contact.
These two parts rely on the two notes by Starovoitov [54, 55]. In the last part, we
discuss contact occurrence in solutions to (FRBI). We detail in this part the studies
[26, 38–40]. Similar results are obtained by T.I. Hesla in his Ph.D. dissertation for
other two-dimensional configurations [37].

4.4.1 Blow-Up Criterion for Classical Solutions

We first mention a heuristic argument which shows that a solution might not remain
smooth through a contact. Indeed, assuming that the fluid does not slip on solid
boundaries, we imposed that the boundaries of rigid bodies and of the container
follow the characteristics associated with the velocity-field uf . Contact between
bodies may then be interpreted as a crossing of two fluid-characteristics. Hence, if
contact occurs in T� > 0, contradicting the Lipschitz criterion for uniqueness in
differential systems entails:

Z T�

0

kuf .t; �/IC0;1.F.t//kdt D C1:
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We aim here at generalizing this condition in the framework of Sobolev spaces,
keeping in mind that all constants in Sobolev imbeddings depend on the geometry
of the domain. Our main result reads as follows:

Theorem 4.3. Let ..�i ; !i /iD1;:::;n; uf ; pf / be a classical solution to (FRBI) on
.0; T�/ and assume that contact occurs in T�. Then,

(i) there holds:

Z T�

0

kruf .t; �/ILdC1.F.t//kdt D C1I (4.68)

(ii) if n D 1 and B01 is a ball, there also holds:

Z T�

0

kr2uf .t; �/IL2.F.t//kdt D C1: (4.69)

We note that both criteria do not prevent from continuing a solution s.t.
kuf IL2.F.t//k and kruf IL2.F.t//k remain bounded with time. However, the
second implication prevents from requiring that r2uf 2 L2.QF / after collision.

Proof of Item (i). Let us consider ..�i ; !i /iD1;:::;n; uf ; pf / a classical solution to
(FRBI) on some time-interval .0; T�/. We define:

B0.t/ WD Rd n�; 8 t 2 Œ0; T�/;

and

dŒfBi .t/giD0;:::;n� WD inf
n
dist.Bi .t/;Bj .t//; i ¤ j 2 f0; : : : ; ng2

o
; 8 t 2 Œ0; T�/:

By assumption, we have

lim inf
t!T�

dŒfBi .t/giD0;:::;n� D 0:

The cornerstone of the proof is the following proposition adapted from [54,
Theorem 3.1]:

Proposition 4.5. Let B1 WD B.X1; ı/ and B2 WD B.X2; ı/ be two disjoint balls of
Rd and denote

e12 WD .X2 � X1/

jX2 � X1j ; d12 WD dist.B1; B2/:

Let � 2 W 1;p.Rd / such that

• r � � D 0 on Rd ,
• �.x/ WD �i C !i � .x � Xi/; 8 x 2 Bi :



294 M. Hillairet

Then, if d12 is small, there exists a constant C depending only on the radius ı and
the dimension d , for which:

j.�2 � �1/ � e12j � C jd12jp kr� I Lp.Rd /k; (4.70)

where:

p D 1

2

�
3 � d C 1

p

�
:

Proof. For the proof, we introduce e1; : : : ; ed an orthonormal basis of Rd and
.x1; : : : ; xd / the corresponding components of x 2 Rd . Without further restriction,
we assume that

B1 WD B.�ıed ; ı/; B2 WD B..ı C d12/ed ; ı/:

This yields in particular that e12 D ed . For legibility, we denote d12 DW h in what
follows. In a neighborhood of 0, the boundaries of B1 and B2 are, respectively,
parametrized by:

xd D 
1.j.x1; : : : ; xd�1/j/; xd D 
2.j.x1; : : : ; xd�1/j/;

where, for s 2 Œ0; ı/ W


1.s/ D �ı C
p
ı2 � s2; 
2.s/ D hC ı �

p
ı2 � s2:

Finally, for arbitrary l 2 .0; ı/, we denote�l the symmetric set between B1 and B2
with horizontal width 2l :

�l WD
n
.x1; : : : ; xd / s.t. j.x1; : : : ; xd�1/j < l;

xd 2
�

1.jx1; : : : ; xd�1j/; 
2.j.x1; : : : ; xd�1/j/

�o
:

Given l 2 .0; ı/, integrating that � is divergence-free on �l yields:

Z
@�l\.@B1[@B2/

� � n d� C
Z
@�ln.@B1[@B2/

� � n d� D 0: (4.71)

On the one hand, we replace � with its explicit values on B1 [B2. This entails that:

Z
@�l\.@B1[@B2/

� � n d� D �d l
d�1Œ.�2 � �1/ � ed �; (4.72)
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where �2 D 2 and �3 D � . On the other hand, we rewrite:

Z
@�ln.@B1[@B2/

� � nd� D
Z 
2


1

Z
j.x1;:::;xd�1/jDl

� � n ld�2d� 0 dxd :

Here “d� 0 D ıx1Dl C ıx1D�l” in the two-dimensional case and “d� 0 = d�”
corresponding to cylindrical coordinates .r; �; z/ associated with .x1; x2; x3/ in the
three-dimensional case. We note that:

Z
j.x1;:::;xd�1/jDl;xdD
1.l/

� � nd� 0 D 0:

Consequently, we bound from above the lateral flux by combining a Hölder
inequality with a Poincaré inequality:

ˇ̌
ˇ̌Z
@�ln.@B1[@B2/

� � nd�

ˇ̌
ˇ̌

� .
2.l/� 
1.l//
2� 1

p l
.d�2/.1� 1

p /

�Z
j.x1;:::;xd�1/jDl

jr�jpd�

 1
p

: (4.73)

Finally, introducing (4.72) and (4.73) into (4.71) yields:

j�d ld�1Œ.�2 � �1/ � ed �j

� .
2.l/ � 
1.l//2�
1
p l
.d�2/.1� 1

p /

�Z
j.x1;:::;xd�1/jDl

jr�jpd�

 1
p

:

We can now integrate this identity between l D 0 and l D r 2 .0; ı/. As 
2 � 
1 is
non-decreasing, this entails that:

jŒ.�2 � �1/ � ed �j � C.
2.r/ � 
1.r//
2� 1

p r
.d�1/.1� 1

p /�dkr�ILp.Rd /k;

with a constant C depending on d . For h sufficiently small, we might choose r Dp
h to obtain:

jŒ.�2 � �1/ � ed �j � QCh1
2 .3�.dC1/ 1p /kr�ILp.Rd /k;

where QC depends now on d and ı. ut
We conclude the proof of Theorem 4.3, item (i), as follows. Assume that the

distance dŒfBi .t/giD0;:::;n� goes to 0 for a sequence of time t ! T�. Then, by
a compactness argument, there exist X0

1 and X0
2 such that B.X0

1 ; ı/ � B0i and
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B.X0
2 ; ı/ � B0j for which

lim inf
t!T�

dist.B.Qi .t/X
0
1 CGi.t/; ı/; B.Qj .t/X

0
2 CGj .t/; ı// D 0:

Let us now denote by u the extension of uf on � as defined in (4.21) (in full rigor,
we should say that u corresponds to the trivial extension to Rd of the field defined
in (4.21)). For all t 2 .0; T�/ this extended velocity-field satisfies the assumption of
Proposition 4.5 with

B1 WD B.Qi .t/X
0
1 CGi.t/; ı/; B2 WD B.Qj .t/X

0
2 CGj .t/; ı/:

Hence, we have, with p D d C 1 and the notations of this proposition, for t close
to T� (say t 2 .T1; T�/):

j.�2.t/ � �1.t// � e12j � Cd12.t/ kru.t; �/ I LdC1.Rd /k:

In our case, .�2.t/ � �1.t// � e12 D Pd12.t/, so that this last inequality reads:

ˇ̌
ˇ̌ d
dt

h
ln d12

i
.t/

ˇ̌
ˇ̌ � C kru.t; �/ I LdC1.Rd /k:

Integrating between T1 and t going to T� and introducing that d12 vanishes for a
sequence of t ! T�, we obtain:

Z T�

0

kru.t; �/ I LdC1.Rd /kdt D C1:

It remains then to remark that rujBi .t/ coincides with the angular velocity of Bi so
that the decay of the kinetic energy of the whole system implies that

kru.t; �/ I LdC1.Rd /k D kruf .t; �/ I LdC1.F.t//k CO.1/:

Proof of Item (ii). The proof of this second item is similar to the first one. It relies
on the following variant of Proposition 4.5:

Proposition 4.6. Let � be a smooth domain and B1 WD B.X1; ı/ � � such that
dist.B1; @�/ > 0. Given X 2 @�, let us denote:

eX WD .X1 �X/
jX1 �X j ; dX WD dist.B1;X/:

For arbitrary " > 0 and � 2 H1
0 .�/ \H2.� n B1/ such that

• r � � D 0 on �,
• �.x/ WD � C ! � .x � X1/; 8 x 2 B1;
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there exists a constant C depending only on the radius ı, the dimension d and the
parameter ", for which:

j� � eX j � C jdX j 9�d4 �" kr2� I L2.� n B1/k: (4.74)

Proof. We note that, as � vanishes on @�, inequality (4.74) is a straightforward
consequence to classical trace inequalities for large values of dX . This inequality is
thus only relevant for small dX . We restrict to this case in what follows.

The proof is then similar to the proof of Proposition 4.5. We introduce similar
notations. We keep .x1; : : : ; xd / as system of coordinates such that B1 D B..dX C
ı/ed ; ı/ and replace dX with h. In the neighborhood of the origin we keep 
1 and

2 for the respective parametrizations of @B1 and @�. The only modification here
is that 
2 depends a priori on all variables .x1; : : : ; xd�1/ and that we no longer
have an explicit value for 
2. Furthermore, we do not assume here that @B1 and @�
share the same tangent space in the origin. Consequently, 
1 admits the following
expansion in .x1; : : : ; xd�1/ D 0:


2.x1; : : : ; xd�1/ D L> � .x1; : : : ; xd�1/CO.j.x1; : : : ; xd�1/j2/:

for some L 2 Rd�1. We note that the orientation of our system of coordinates is
fixed by B1 so that L depends on B1 (but the second order term does not and the
expansion is valid when .x1; : : : ; xd�1/ ranges a neighborhood V depending on X
only). However, whenB1 is sufficiently close toX , we prove that all possible values
of L satisfy a uniform bound. Indeed, as B1 � � we have that


1.j.x1; : : : ; xd�1/j/ > 
2.x1; : : : ; xd�1/; 8 .x1; : : : ; xd�1/ 2 V :

For h sufficiently small, we might apply this inequality to all .x1; : : : ; xd�1/ D
h
1
2C".y1; : : : ; yd�1/ with j.y1; : : : ; yd�1/j in B.0; 1/. This yields that jLj � Ch

1
2�"

for h sufficiently small w.r.t. ".
We now introduce similar domains �l as in the proof of Proposition 4.5 and

integrate that � is divergence-free on these domains. Repeating the computations in
the proof of Proposition 4.5 yields:

Z
@�l\.@B1[@�/

� � n d� D �d l
d�1Œ� � ed �; (4.75)

and
Z
@�ln.@B1[@�/

� � nd� D
Z 
2


1

Z
j.x1;:::;xd�1/jDl

� � n ld�2d� 0dxd :
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Here we note that � vanishes on @� and is equal to a rigid motion on @B1. Symmetry
arguments then yield that:

Z
j.x1;:::;xd�1/jDl;xdD
1.l/

� � n ld�2d� 0 D
Z

j.x1;:::;xd�1/jDl;xdD
2.l/
� � n ld�2d� 0 D 0:

Consequently, we apply the Poincaré inequality two times to obtain:

ˇ̌
ˇ̌Z
@�ln.@B1[@�/

� � nd�

ˇ̌
ˇ̌

� .
2.l/� 
1.l//
5
2 l

d�2
2

�Z
j.x1;:::;xd�1/jDl

jr2�j2d�
 1
2

: (4.76)

Combining (4.75) and (4.76) and integrating between l D 0 and l D r 2 .0; ı/, we
get:

j� � ed j � C
.
2.r/ � 
1.r// 52

r
dC1
2

:

We finally obtain the expected result by setting r D h
1
2�Q" for a sufficiently small Q".

ut
The end of the proof of Theorem 4.3, item (ii), follows the line of the previous

item. Briefly, we first constructX 2 @� such that contact holds in X when t ! T�.
Then we integrate the bound (4.74) for t between 0 and T� noticing that the exponent
on the right-hand side of (4.74) might be chosen greater than 1 for " sufficiently
small.

Comments. In [54], the author extends the content of Proposition 4.5 to more
general geometries. For bodies having smooth shapes, this would enable to compute
sharper estimates on the blow-up of the W 1;p norm of the solution when contact
occurs. For bodies having shapes with typical regularity C1;˛ , the inequality proven
by V. Starovoitov yields that an equivalent blow-up criterion to (4.68) holds with
p D d C 1 replaced by p˛ D .p C ˛/=˛. This criterion is applied in [26] to prove
that classical solutions to (FRBI) blow up also when contact occurs if rigid bodies
do not have smooth boundaries.

In the framework of weak solutions, inequality (4.70) furnishes other types of
information. Indeed, reproducing the arguments in the end of the proof of item (i),
we get that, if contact occurs in a weak solution at time T�, then we can construct two
ballsB0

1 andB0
2 inside two distinct rigid bodies such that h.t/ WD dist.B1.t/; B2.t//

satisfies lim infh.t/ ! 0 when t ! T� and

j Ph.t/j
jh.t/j 5�d4

� Ckru.t; �/IL2.�/k:
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We note here that .5�d/=4 is always smaller than 1 so that this last inequality does
not rule out contact. Nevertheless, if contact occurs in T � we might integrate the
above inequality between t and T� for arbitrary t < T�, this yields that:

jh.t/j d�1
4 D o..T� � t/

1
2 /; as

Z T�

0

kru.t; �/IL2.�/k2dt < 1:

Adding that dŒfBi .t/giD0;:::;n� � h.t/, we finally obtain:

• dŒfBi .t/giD0;:::;n� D o..T� � t/2/ when d D 2, yielding that a contact is glueing
in the sense that both relative velocity and acceleration of colliding bodies vanish
at contact-time;

• dŒfBi .t/giD0;:::;n� D o.T� � t/ when d D 3.

In the two-dimensional case, the content of this remark is due to [51].
The second criterion (4.69) appears in [40]. We generalize it here to the case of

a container � having a smooth but arbitrary boundary. Prior to contact, a solution
..�i ; !i /iD1;:::;n; uf ; pf / with smooth initial datum satisfies:

Z T

0

	kr2uf IL2.F.t//k2 C krpf IL2.F.t//k2
 dt < 1:

The second criterion shows that this estimate does not hold any longer after
a contact. We believe it is possible to generalize the computation to arbitrary
geometries. The difficulties here are that, on the one hand, the second order
derivatives of the extended velocity-field are not a prioriL2-functions on�, because
of the discontinuities in the stress tensor on solid boundaries. So, we might not
reduce our computations to the case of rigid disks as in the first criterion. On
the other hand, we need the symmetries of the ball B1 in order that the lateral
flux cancels on @B1 and @�. To generalize the computations above to arbitrary
configurations, it should be possible to define domains .�l/l>0 adapted to the shape
of the rigid bodies in order that this cancellation property is preserved.

4.4.2 On Weak Solutions with Contact

In Sect. 4.3.1, we presented a proof of existence of local-in-time weak solutions to
(FRBI). Prior to studying the meaning of weak solutions in case of contact, we show
in this section that it is possible to construct global-in-time weak solutions, whether
contact occurs or not.

Global Existence of Weak Solutions. Following the arguments in [20], we obtain:

Theorem 4.4. Let the following assumptions hold true:

• � is a container having a smooth boundary,
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• the shapes of the bodies B0i are open connected subsets of � having smooth
boundaries and such that (4.19) holds true,

• the densities �0i 2 L1.B0i / satisfy (4.1).

Given u0 2 H.�/ and T > 0, there exists a weak solution ..'i ; �i /iD1;:::;n; u/ to
(FRBI) on .0; T /.

The proof is a combination of [20, Lemma 2.2] and of the construction of weak
solutions adapted to non-smooth body shapes that we presented in Sect. 4.3.1. We
recall the main ingredients.

First Step: Extension of Weak Solutions up to Contact. In Theorem 4.1, existence
of weak solutions is proven locally in time. In order to extend existence of weak
solutions up to contact between rigid bodies, we remark that the time of existence is
only limited by the L2-norm of the initial data and the initial distance between rigid
bodies. Existence of weak solutions up to contact then yields from a concatenation
principle for weak solutions to (FRBI) that we adapt from [20, Lemma 2.2 and
Sect. 4].

Let ..'i ; �i /iD1;:::;n; u/ be a weak solution with initial data ..B0i ; �0i /iD1;:::;n; u0/
defined on .0; T0/. Let us denote Mt

i the isometries such that

Mt
i .B0i / D Bi .t/; 8 t 2 .0; T0/:

As u 2 L1.0; T IL2.�// and the eulerian velocity of Mt
i coincides with u, we have

that Mt
i 2 W 1;1.0; T / � C.Œ0; T0�/. Hence, we might define

QB0i D MT0
i .B0i /; 8 i D f1; : : : ; ng:

Assuming that we remain far from contact, these new shapes are open subsets of
� having smooth boundaries and satisfying (4.19). Similarly, when t ! T0 the
densities �i .t; �/ converge almost everywhere (and thus in all Lp-spaces for finite
p) to

Q�0i .x/ D �0i .ŒM
T0
i �

�1x/1 QB0i :

Obviously, these new initial densities satisfy (4.1). Finally, for all w 2 D.�/ s.t.
D.w/ D 0 in the neighborhood of S.T /, we might introduce w� as a test-function in
the weak formulation (4.32), for arbitrary � 2 C1

c .0; T0/, with support sufficiently
close to T0. This yields that

f .t/ D
Z
�

�.t; �/u.t; x/ � w.t; x/ 2 H1.0; T0/ � C.Œ0; T0�/:

Because of energy estimate (4.34), there holds:

jf .t/j � p
Ec.0/k

p
�.t; �/wIL2.�/k:
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Hence, the limits of the functions f when t ! T define a linear form

L W fw 2 D.�/ s. t. D.w/ D 0 on S.T /g ! R

s.t.

jL.w/j � p
Ec.0/kwIL2.�; Q�0.x/dx/k:

where

Q�0 WD
nX
iD1

Q�0i C .1�
nX
iD1

1 QB0i /:

Applying the Hahn–Banach theorem in .H.�/ endowed with the Hilbert structure
associated with the norm on L2.�; Q�0dx/, we finally construct Qu0 2 H.�/ such
that:

L.w/ D
Z
�

Q�0.x/Qu0.x/ � w.x/dx; 8 w 2 H.�/;

and such that:
Z
�

Q�0.x/jQu0.x/j2dx � Ec.0/:

The new initial data .. QB0i ; Q�0i /iD1;:::;n; Qu0/ are suitable for applying Theorem 4.1.
We obtain QT0 and a weak solution .. Q'i ; Q�i /iD1;:::;n; Qu/ without contact on .0; QT0/.
Concatenating then the solutions ..'i ; �i /iD1;:::;n; u/ and .. Q'i ; Q�i /iD1;:::;n; Qu/, classi-
cal computations yield a solution on .0; T0 C QT0/.
Second Step: Extension of Weak Solutions Through a Contact. We now assume
that a solution ..'i ; �i /iD1;:::;n; u/ exist on .0; T0/ and that contact occurs in T0.
Proceeding exactly as in the first step, we construct .. QB0i ; Q�0i /iD1;:::;n; u0/. Following
[20, Sect. 4], we then set QB00 D Rd n � and construct .M0; : : : ;Mn0/ a partition of

f0; : : : ; ng corresponding to the partition of the body domain QS0[ QB00 into connected
components:

QS0 [
n[
iD1

QB0i D
n0[
iD1

[
j2Mi

QB0j :

We then set:

OB0i D
[
j2Mi

QB0j ; O�0i D
nX

jD1
Q�0j :
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By construction, the new container� D Rd n OB00 and initial data .. OB0i ; O�0i /iD1;:::;n0 ; Ou/
satisfy the assumptions of Theorem 4.1. This yields OT0 and a weak solution to
(FRBI) .. O'i ; O�i /iD1;:::;n0 ; Ou/. Applying the associated isometries to the QB0i , we might
then split

OBi .t/ D
[
j2Mi

QBj .t/; O'i D
nX
iD1

Q'i O�i D
X
j2Mi

Q�i :

where:

Q'j .t; �/ D 1 QBj .t/; Q�j D O�i Q'j 8 i 2 f1; : : : ; Qng 8 j 2 Mi:

Finally straightforward computations show that we obtain a weak solution on
.0; T0 C OT0/ when concatenating ..'i ; �i /iD1;:::;n; u/ and .. Q'i ; Q�i /iD1;:::;n; Ou/. This
ends the proof.

Properties of Weak Solutions with Contact. We extended the definition of weak
solutions for (FRBI) after contact. However, even if the initial body shapes had
smooth boundaries and the fluid velocity-field uf of the weak solution were smooth,
there would remain several discrepancies between the weak solution and what we
expect a classical solution of (FRBI) to be.

The first difference comes from the set of test-functions that we have chosen.
Indeed, we require that a test-function w coincides with a rigid velocity-field on
a neighborhood of S.t/ for all t . This restriction does not enable to distinguish
between rigid bodies which belong to the same connected component of S.t/, or
equivalently, between rigid bodies in contact. For instance, let two indices i and
j satisfy Bi .t/ \ Bj .t/ ¤ ; for t 2 .0; T /. Then, we have that any test-function
w 2 K.QS/ satisfy:

w.t; x/ D � C ! � x; 8 x 2 Bi .t/ [ Bj .t/:

Consequently, setting ! D 0, letting � take arbitrary values and reproducing
formally the computations of Sect. 4.3.1, we do not get (4.12) for i and j separately
but merely the equation:

d

dt

	
mi�i Cmj�j



.t/ D �

Z
@Bi .t /[@Bj .t/

Tnd�:

Similarly, only one equation holds for a combination of !i and !j . Consequently,
the system is algebraically underconstrained unless a compatibility condition
between .�i ; !i / and .�j ; !j / is implied by the property that contact holds between
Bi and Bj .
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This latter question is analyzed by Starovoitov in [54, Sect. 2]. In the case of
bodies with smooth boundaries, he proves:

Proposition 4.7. Let B1 and B2 be two disjoint open subsets having smooth
boundaries and assume X 2 B1 \ B2. Given u 2 H1.Rd / such that

u D �i C !i � .x �X/; 8 x 2 Bi ; for i D 1; 2;

there holds:

• if d D 2: �1 D �2 and !1 D !2,
• if d D 3: �1 D �2 and the projections of !1 and !2 on the common tangent space

to @B1 and @B2 in X coincide.

The proof is a variant of the proof of Proposition 4.5. We refer the reader to [54,
Theorems 2.1 and 2.2] for more details. In both dimensions, this result yields that,
if contact occurs on a curve or on a surface, then the rigid bodies in contact have the
same rigid velocity. In particular, in case of contact, the boundary conditions (4.10)
might only prescribe different values in isolated points.

In the three-dimensional case, this proposition shows that we have indeed one
more degree of freedom than the number of equations that are imposed by the weak
formulation. The system is thus really underconstrained. We note also that, in the
construction we presented above, if there is contact between two rigid bodies Bi and
Bj at time T > 0, then

• the rigid bodies Bi and Bj remain stuck for ever after T ,
• the rigid bodies Bi and Bj share the same velocity-field after T .

In particular, whereas it is possible that the rigid bodies roll one on the other right
before contact occurs, we impose that they do not after contact. The construction
above creates a discontinuity in the body motions that seems to be non-physical.

In the two-dimensional case, Proposition 4.7 yields that rigid bodies in contact
share the same velocity-fields. Hence, the definition of weak solution is alge-
braically well-posed and the construction above corresponds to “sticky contacts.”
An open question is to determine whether weak solutions remain unique after con-
tact taking into account this supplementary rebound law. We recall that uniqueness
prior to contact is already proven in [30].

Without a supplementary rebound law, Starovoitov shows that uniqueness is lost
[55]. We detail briefly his construction below. This construction holds in the two-
dimensional space R2, endowed with the orthonormal basis .e1; e2/, in the case n D
1, � D B.0;R/ and B01 D B.0; r/. Let � be a truncation function Œ0; R� ! R such
that:

�.r/ D 1 �0.r/ D 0 D �.R/ D �0.R/:

For arbitrary b 2 Œ0; .R� r//, let us denote Fb a smooth diffeomorphismB.0;R/ n
B.0; r/ ! B.0;R/ n B.be1; r/ and Gb its converse application (see [55, p. 4895]
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for explicit formulas). Let then introduce, for all b 2 Œ0; R � r/ W

�b.x/ D
8<
:

r?.x2�.jGb.x/j//; 8 x 2 B.0;R/ n B.be1; r/;
e1; 8 x 2 B.be1; r/:

The vector-field � satisfies the following straightforward properties:

�b 2 V.B.0;R//\ C1.B.0;R/ n B.be1; r//; 8 b 2 .0;R � r/:

On the basis of explicit formulas for G, it satisfies also the supplementary ones:

Proposition 4.8. There exists an absolute constant C < 1, such that, for all b 2
Œ0; R � r/:

k�bIL2.B.0;R//k � C

kr�bIL2.B.0;R//k � C

.R � r � b/ 34

Then, one looks for a solution of the form:

u.t; x/ D Pb.t/�b.t/.x/; 8 t 2 .0; 2T /; 8 x 2 B.0;R/:

Given T > 0, and b given by:

�.t/ WD
�
1 � t

T

�4
; b.t/ D �.t/.R � r/; 8 t 2 .0; 2T /;

it yields that, .1B.b.t/e1;r/; u/ is a weak solution to (FRBI) with a source term

g 2 L2.0; T I ŒV .B.0;R//��/:

We would also be able to construct a weak solution . N'; Nu/ to (FRBI) with the initial
condition .1B.0;r/; u.0/// and the same source term g 2 L2.0; T I ŒV .B.0;R//��/
applying the method of the previous subsection. However both weak solutions
might not coincide. Indeed, in our construction the body B1 remains stuck to
the container boundary after contact whereas it splits from the boundary in the
case of the solution constructed by V. Starovoitov. Hence, in the two-dimensional
case, uniqueness of the weak solution including contact does not hold for arbitrary
initial condition without a supplementary rebound law. We point out that, in this
construction, existence of a contact is enforced by the introduction of a singular
source term g.
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4.4.3 Contact vs No-Contact

We discuss now on the possibility of contacts in weak and classical solutions to
(FRBI). This question is tackled by Vázquez and Zuazua [61] on the following one-
dimensional baby-model introduced in [60]:

8<
:
@tu C �u@xu � �@xxu D 0; in R n fhi .t/giD1;:::;n

u.t; hi .t// D Phi .t/; for i D 1; : : : ; n;

Œ�@xu�.t; hi .t// D mi
Rhi .t/; for i D 1; : : : ; n:

(4.77)

In this system the hi ’s stand for the position of the bodies (which are points in
the one-dimensional case). For simplicity, we assume that they are numbered in
increasing order: hi < hiC1. The two last equations mimic the no-slip boundary
conditions and body dynamics, respectively. We used the convention that:

Œu�.t; h/ D lim
x!h;x>h

u.t; x/ � lim
x!h;x<h

u.t; x/; 8 t > 0; 8 h 2 R:

In the first equation, of viscous Burgers type, we introduced the parameter � > 0

which stands for the viscosity of the fluid, and � 2 R a dimensionless parameter.
For this system, J.L. Vázquez and E. Zuazua prove among other results that,

whatever the choice of the initial data:

u0 2 L2.R/; .h0i ;
Ph0i / 2 R2n; s.t. inf

i2f1;:::;n�1g
jh0iC1 � h0i j > 0;

the system (4.77) admits a unique global solution in which no contact between rigid
bodies occurs in finite time:

inf
i¤j

jhiC1.t/ � hi .t/j > 0; 8 t > 0:

In this one-dimensional case, the regularity estimate for classical solutions yields
the bound:

Z T

0

"
n�1X
iD1

Z hiC1.t/

hi .t/

j@xxu.t; z/j2dz C
nX
iD1

mi j Rhi j2
#

dt < C0.T /; (4.78)

where C0 depends on initial data and T only. Applying classical arguments to
the no-slip boundary condition seen as a differential equation, this control on
@xxu induces that hiC1 might not collide hi in finite time. The result extends
to the case of L2 initial data due to the classical smoothening properties of the
viscous Burgers equations. In the multi-dimensional case, the regularity estimate
for solutions to (FRBI) relies on ellipticity of the Stokes problem which depends
itself on the minimal distance between two rigid boundaries (see [15, Sect. 4.1]).
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As a consequence, it is unlikely to obtain an equivalent bound to (4.78) prior to a
detailed analysis of the contact issue.

First studies tackling the question on contact occurrence, in the multi-dimen-
sional case, go back to the 1960s. In a series of papers, M.E. O’Neill and his
collaborators consider a rigid sphere moving close to a plane wall and compute
the forces exerted by a solution to the stationary Stokes system on the sphere
[6, 7, 13, 50]. They apply methods previously developed by Brenner [3] to the case
where the ratio distance between the ramp and the body vs radius of the body is
small. They show that the drag, which the sphere undergoes, diverges rapidly when
the ratio goes to 0 and prevents the sphere from touching the wall in finite time.
This is called afterwards the no-collision paradox. Similar computations in the
lubrication approximation are gathered in [10]. In the more recent papers [26, 38–
40], the authors show that the no-collision paradox for the Stokes system extends
to solutions to (FRBI) in many cases. In [38, 39], the two-dimensional and three-
dimensional cases of a sphere, or a cylinder, moving close to a plane wall, are
considered. As in the studies of M.E. O’Neill and his collaborators, it is proven
that no-contact between the rigid body and the wall occurs in finite time. In [39], an
example of a three-dimensional configuration in which contact occurs is exhibited.
However, this construction is limited to a very peculiar configuration so that the
no-collision paradox seems to hold generically.

All the results concerning the full system (FRBI) are obtained by applying a
multiplier method. This multiplier is constructed thanks to a detailed analysis of
solutions to the stationary Stokes problem and the associated drag. In this section,
we first present an efficient method to compute the drag in the frame of the Stokes
problem. We then recall the Lorentz formula associated with the Stokes problem
and discuss its application in the extension of the no-collision paradox to solutions
to (FRBI) yielding the results in [26, 38–40].

To conclude this introductory part on the contact issue, we note that all the
mentioned results underline that the system (FRBI) is not relevant to describe the
close-contact interactions between rigid bodies. In real life, one expects contact
between rigid bodies to occur in much more general contexts than the one exhibited
in [40], see [46] for experiments. In order to derive (FRBI) we assumed implicitly
that the relative velocity of two bodies is slow w.r.t. their distance so that we might
neglect several phenomena in the fluid and bodies behaviors. In particular, when
the distance between rigid bodies becomes very small with the bodies having fast
relative velocities:

• the fluid pressure diverges so that non-newtonian properties [2] and compress-
ibility [48] might become critical in the fluid behavior;

• the fluid strain-tensor becomes large so that slip at the fluid/bodies interface [42]
and also elasticity in the bodies equations [12] should be considered;

• the fluid-layer is thin so that asperities in the description of the bodies surfaces
and container boundaries should be included [62].
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In [26–29], the influence of various roughness models for fluid/bodies interactions
(singular body boundaries and slip at the fluid/body interface) is discussed. With
any of these models, the no-collision paradox is ruled out.

Analysis of the Stokes System. Let us first consider the same system as in [7].
Namely, we assume that � D RdC, that n D 1 and that B1.t/ D B.G.t/; 1/ has
constant density �1 > 0. Without restricting the generality, we set the radius of
the moving body to be 1. The fluid/disk system evolves according to the following
simplified system:

��uf � rpf D 0; in QF ; (4.79)

r � uf D 0; in QF ; (4.80)

uf D � C ! � .x �G/; on @B1.t/; (4.81)

uf D 0; on @� and at infinity; (4.82)

PG D �; (4.83)

m1
P� D �

Z
@B1.t/

T.uf ; pf /nd� Cmg (4.84)

J P! D �
Z
@B1.t/

.x �G.t// � T.uf ; pf /nd�: (4.85)

This system is obtained from (FRBI) by deleting the convective terms in the Navier
Stokes system (yielding a stationary Stokes system). We normalized the pressure
in order that the gravity does not appear in the fluid equation. This yields the term
mg corresponding to Archimedes’ force, we denoted m D m1 � 4=3�f � where
m1 is the mass of the rigid body and �f D 1. We also applied that the body is a
homogeneous sphere so that its inertia reduces to a scalar matrix J1 D J Id .

In (4.79)–(4.85), the unknowns are ..B1.t/; �; !/; uf ; pf / a priori. However, we
remark that the body domain is completely fixed byG.t/ so that we might reduce the
unknown B1.t/ to G.t/. Furthermore, we note that (4.79)–(4.82) is a Stokes system
with unknowns .uf ; pf / and data .G.t/; �; !/. As this system is well-posed (see
[23, Chap. V]), .uf ; pf / might be seen as a function of these data. Finally (4.79)–
(4.85) reduces to an autonomous differential system:

PG D � (4.86)

m P� D F.G; �; !/Cm1g (4.87)

J P! D T .G; �; !/ (4.88)

in the unknown .G; �; !/ and where F.G; �; !/ (resp. T .G; �; !/) is the force (resp.
torque) exerted on B1 by the solution .uf ; pf / to the Stokes system (4.79)–(4.82).
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We complete (4.86)–(4.88) with initial conditions

G.0/ D G0; �.0/ D �0; !.0/ D !0; (4.89)

where initial data satisfy the initial no-contact assumption:

.�0; !0/ 2 Rd � Rd� G0 2 fX D .X1; : : : ; Xd / 2 Rd s.t. Xd > 1g: (4.90)

Because of a symmetry arguments that we skip for conciseness, discussing the
possibility of contact in solutions to (4.86)–(4.89) reduces to determine whether
in solutions of the form G.t/ D .0; : : : ; h.t/C 1/, �.t/ D .0; : : : ; Ph.t//, !.t/ D 0,
the distance function h might vanish in finite time or not. For such solutions (4.86)–
(4.89) reduces to

m1
Rh D � PhF.h/Cmg � ed ; (4.91)

where, denoting Bh WD B..0; : : : ; 0; .1C h//; 1/ for arbitrary h > 0, we have:

F.h/ D
Z
@Bh

T.uh; ph/nd� � ed ;

with .uh; ph/ solution to

��uh � rph D 0; in RdC n Bh ; (4.92)

r � uh D 0; in RdC n Bh; (4.93)

uh D ed ; on @Bh; (4.94)

uh D 0; on @RdC and at infinity: (4.95)

An analytical expression for the drag force F.h/ is provided in [7] and asymptotic
expansions on the basis of lubrication approximations are also given in [10]. We
present here an alternative approach for extracting the size of this drag when h << 1
(see [27, 41]):

Proposition 4.9. Let h > 0. Then setting

Yh WD
n
u 2 C1

c .R
dC n Bh/ s.t. r � u D 0 and uj@Bh D ed

o
;

there holds:

F.h/ D inf

(
�

Z
Rd

C
nBh

jruj2 I u 2 Yh

)
: (4.96)
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Proof. Before going into the proof, we note that, up to extend any element of Yh by
ed inside Bh and 0 outside Rd , we might rewrite Korn equality on Rd as:

Z
Rd

C
nBh

jruj2 D 2

Z
Rd

C
nBh

jD.u/j2; 8 u 2 Yh:

We deal indifferently with both forms of this quantity in what follows.
We recall that from the theory for the Stokes problem in [23, Chap. V]:

• there exists a unique vector-field uh in the closure of Yh (for the norm
kr � I L2.RdC n Bh/k) such that, for all w 2 D.RdC n Bh/:

2�

Z
Rd

C
nBh

D.uh/ W D.w/ D 0: (4.97)

• there exists a unique pressure ph (up to a constant) such that .uh; ph/ 2 C1.Rd n
Bh/ and (4.92)–(4.95) holds true pointwise.

We point out that the lack of uniqueness in the pressure has no influence on the
computation of F.h/. Hence, we fix a pressure ph in what follows. Because of the
two items above, there holds:

Z
Rd

C
nBh

jruhj2 < 1;

and there exists a sequence of vector-fields un in Yh converging to uh for the
topology associated with kr � I L2.RdC n Bh/k. For this sequence, we have on the
one hand:

Z
Rd

C
nBh

jruhj2 D lim
n!1

Z
Rd

C
nBh

jrunj2

On the other hand, for arbitrary n, multiplying (4.92) by un and integrating by parts
yields that:

0 D
Z

Rd
C

nBh
Œr � T.uh; ph/� � un

D
Z
@Bh

T.uh; ph/d� � ed � 2�
Z
Bh

D.uh/ W D.un/:

Hence, in the limit n ! 1, we obtain:

F.h/ D 2�

Z
Rd

C
nBh

jD.uh/j2 D �

Z
Rd

C
nBh

jruhj2:
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Now, given u 2 Yh, we denote u D uh C � with � 2 C1.RdC n Bh/ and split the
integral:

�

Z
Rd

C
nBh

jruj2 D �

Z
Rd

C
nBh

jruj2 C 4�

Z
Rd

C
nBh

D.uh/ W D.�/C �

Z
Rd

C
nBh

jr�j2:

By construction, we have � D limn!1 �n, with �n WD u � un 2 D.RdC n Bh/, for
the topology associated with the norm kr � I L2.RdC n Bh/k. Hence, passing to the
limit in (4.97), we obtain:

2�

Z
Rd

C
nBh

D.uh/ W D.�/ D 0:

Finally, there holds:

�

Z
Rd

C
nBh

jruhj2 D �

Z
Rd

C
nBh

jruj2 C �

Z
Rd

C
nBh

jr�j2

� �

Z
Rd

C
nBh

jruhj2:

This ends the proof. ut
Relying on this minimizing property, one might prove that h 7! F.h/ is

locally lipschitz on .0;1/. This would justify rigorously that the Cauchy problem
associated with (4.91) is locally well-posed. We do not go into the details and only
write the subsequent existence result:

For arbitrary h0 > 0 and Ph0 2 R, there exists a unique maximal solution .T�; h/
to (4.91) with initial data:

h.0/ D h0; Ph.0/ D Ph0:

Furthermore, we have the alternative:

• either T� D 1,
• either T� < 1 and

lim sup
t!T�

�
1

h.t/
C h.t/C Ph.t/


D C1:

We are more interested here in analyzing the blow-up of the maximal solutions:

Proposition 4.10. Assume that the gravity brings the sphere to the wall, i.e., mg �
ed < 0. Given h0 > 0 and Ph0 2 R and .T�; h/ the associated maximal solution,
there holds T� D 1. In particular, there exists a function hmin W Œ0;1/ ! .0;1/
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depending only on initial data, such that:

h.t/ � hmin.t/; 8 t 2 Œ0;1/:

Proof. Let .T�; h/ be a maximal solution. First, we multiply (4.86) with Ph and
remark that F is always positive. This yields that the total energy of the system:

E.t/ WD m1

2
j Ph.t/j2 � Œmg � ed �h.t/

is decreasing. Assuming mg � ed < 0, we obtain that

j Ph.t/j �
�

j Ph0j2 � 2Œmg � ed �
m1

h0
� 1

2

; h.t/ � � m1

2Œmg � ed � j
Ph0j2 C h0:

for all t 2 .0; T�/. Hence, blow-up of the maximal solution occurs if and only if
h.t/ goes to 0. We integrate now once (4.91) between 0 and t 2 .0; T�/. This yields:

m1. Ph.t/ � Ph.0// D �
Z h.t/

h.0/

F .z/dz C Œmg � ed �t:

Hence:

Z h.t/

h.0/

F .h/dh � �2m1

�
j Ph0j2 � 2Œmg � ed �

m1

h0
� 1

2

C Œmg � ed �t: (4.98)

To prove contact never holds, we bound now from above the integral on the left-
hand side by a function of h.t/ which diverges to �1 when h.t/ ! 0. To this end,
we note that, given u 2 Yh we might apply Proposition 4.5 with B1 WD Bh, B2 WD
B.�1; 1/ and p D 2. Inequality (4.70) then yields that there exists an absolute
constant C for which:

1

h.3� dC1
2 /

� C

Z
Rd

jruj2 D C

Z
Rd

C
nBh

jruj2:

As for d D 2; 3 the exponent in the denominator of the left-hand side is greater
than 1, this yields that there exists a constant C0, depending only on the maximal
distance reached by our solution, for which:

F.h.t// � C0

h.t/
; 8 t 2 .0; T�/:
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Introducing this information into (4.98), we obtain that there exists a constant C0
depending only on initial data for which:

h.t/ � C0 exp
�
Œmg � ed �t

�
; 8 t 2 .0; T�/:

This yields the expected results. ut
This proposition states in particular that no-contact between the sphere, or the

cylinder, and the ramp occurs in finite time. In the three-dimensional case, it
corresponds to the no-collision paradox that was pointed out in [7].

We note that, in the last proof, applying Proposition 4.5 furnishes a bound from
below that may only enable to prove a no-contact result. In order to obtain contact,
or simply to ensure that the bound from below which we obtain is asymptotically
equivalent to F.h/, we compute a bound from above for F.h/. To this end, we apply
again the characterization (4.96). This yields that any u 2 Yh satisfies:

Z
Rd

C
nBh

jruj2 � F.h/;

so that extracting a sharp bound reduces to construct a good candidate u (of course,
the solution to the Stokes problem (4.92)–(4.95) would be the best choice) We detail
here the construction provided in [27, 41] in the two-dimensional case.

We recall notations from the proof of Proposition 4.5. We have @R2C WD
f.x1; 0/; x1 2 Rg and, close to the origin, @Bh WD f.x1; 
h.x1//; jx1j < 1=2 g
with


h.s/ D hC 1 �
p
1 � s2; 8 s 2 .�1; 1/: (4.99)

We also denote:

�1=2 WD f.x1; x2/ 2 R2C s.t. jx1j < 1=2 0 < x2 < 
h.x1/g:

We focus on the construction in �1=2. As Bh remains away from @R2C outside this
domain, one may extend the constructed vector-field with something independent
of h and yielding O.1/ terms when computing the H1-norm to be minimized. In
�1=2, any u 2 Yh reads u D r? , where, normalizing  to vanish in the origin,
boundary conditions satisfied by u imply that:

 .x1; 0/ D 0;  .x1; 
h.x1// D x1 C C: (4.100)

Extracting the dominating part of the minimizing problem characterizing F.h/, we
look for  solution to the approximate minimizing problem:
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 WD argmin
nZ

�1=2

j@22 j2;  2 C1.�1=2/;  satisfies (4.100)
o
:

Explicit computations yield:

 .x1; x2/ D x1�

�
x2


h.x1/

�
with �.t/ D t2.3 � 2t/. (4.101)

Setting Quh, an extension of r? we obtain that:

Z
R2

C
nBh

jr Quhj2 D
Z
�1=2

j@22 j2 CO.1/ � C

h
3
2

:

Consequently, the rate of divergence of F.h/ when h ! 0 is indeed h�3=2 in the
two-dimensional case. A comparable construction in the three-dimensional case
yields that F.h/ diverges like 1=h when h ! 0. This yields that Proposition 4.5
gives the sharp rate of divergence of F.h/ when h ! 0 and it also confirms
the asymptotic computations in [7, 10]. We give very rough information on the
asymptotics of F.h/ herein. We note that one can extract much better information
on the comparison of the asymptotics of F.h/ and the norm of the constructed  
(see [27]).

The method for computing bounds on F.h/ can be transposed to many geome-
tries. When considering spheres in the three-dimensional case, it enables to exhibit
configurations for which contact occurs in finite time. Indeed, consider the case of
a sphere falling down between two spheres (as is suggested in [37, p. 152] and
computed in [40]). To fix ideas, we set

� WD R3 n B..�2; 0; 0/; 1/[ B..2; 0; 0; /; 1/;

with B1.t/ D B.G.t/; 1/ and look for a solution to (4.79)–(4.82). For symmetry
reasons, we restrict to the case where B1 does not rotate and G.t/ D .0; 0; a.t//.
Then, (4.79)–(4.82) reduces to:

m1 Ra D �
Z
@B1.t/

T.uf ; pf /nd� � e3 Cmg � e3: (4.102)

We still assume that the gravity brings the body toward @�, i.e., a.0/ > 0 and
mg � e3 DW f < 0. Arguing with the variational approach of Proposition 4.9, one
might show that, when a gets close to 0, a good approximation of the force is

�
Z
@B1.t/

T.uf ; pf /nd� D Ph QF .h/eC C Ph QF .h/e�; (4.103)
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where h WD dist.B1.t/; B..�2; 0; 0/; 1// (D dist.B1.t/; B..2; 0; 0/; 1// by sym-
metry), the drag QF .h/ diverges like 1=h when h ! 0 and the vectors eC; e� are
defined by:

eC D .0; 0; a/� .2; 0; 0/; e� D .0; 0; a/� .�2; 0; 0/:

In (4.103) the first contribution on the right-hand side is an approximation of the
drag force exerted by the fluid on B1 due to the presence of the holeB..�2; 0; 0/; 1/
whereas the second term stands for the drag force due to the presence of the hole
B..2; 0; 0/; 1/. Consequently, a good approximation of (4.102) reads:

m1 Ra D �2 Ph QF .h/.eC � e3/e3 C f:

Integrating once, we obtain:

m1Œ Pa.t/ � Pa.0/�C
Z t

0

2 Ph QF .h/.eC � e3/ds D f t:

where, introducing that the total energy of the system decreases with time, we obtain
that jŒ Pa.t/ � Pa.0/�j � C0 is bounded w.r.t. initial data only before contact. Finally,
computing eC � e3 w.r.t. h, we obtain that:

0 � �.h/ D QF .h/.eC � e3/ � Cp
h

for small h.

This entails that before contact:

2

Z h.t/

h.0/

�.h/dh � C0 C f t:

and we prove that a contact must occur by a contradiction argument. Indeed, � 2
L1.0; h.0// so that the left-hand side of this last inequality is bounded from below by
a fixed constant depending on initial data, whereas the right-hand side goes to �1
when t ! 1. Hence, contact must occur in finite time. More details and rigorous
estimates for remainder terms in this construction (for the full system (FRBI)) can
be found in [40].

From the Stokes System to (FRBI). As shown in the previous construction, lack
of contact in solutions to the Stokes problem comes from overestimating the drag
force that rigid bodies undergo. This property is transferred to solutions to (FRBI)
thanks to the Lorentz reciprocal theorem:

Proposition 4.11. Let O be an open bounded set of Rd having a smooth boundary.
Let .ui ; pi / 2 H2.O/ �H1.O/ .i D a; b/ such that:

r�ua D r�ub D 0; on O:



4 Topics in the Mathematical Theory of Interactions of Incompressible. . . 315

Let .fi ; u�
i / 2 L2.O/ �H3=2.O/ be defined by:

��ui � rpi D fi ; on O;

ui D u�
i ; on @O:

Then, there holds:

Z
@O

T.ua; pa/n � u�
bd� �

Z
@O

T.ub; pb/n � u�
ad� D

Z
O
fa � ub � fb � ua:

This proposition is a consequence of the symmetry of the Stokes operator. Its
proof is a standard combination of integration by parts. In the case of contact issues,
it applies in the following way. Let us consider for simplicity the case of a disk
falling over a wall as in the previous section. Let ..�1; !1/; u; p/ be a (classical)
solution to (FRBI). For simplicity, let also drop the index 1 in what follows and
assume that the fall of the disk is vertical so that the distance h.t/ between the wall
and the body domain B.t/ fixes completely the geometrical configuration at time
t > 0. Given h > 0, we introduce a (sufficiently regular) pair .�h; qh/, such that:

���h � rqh D fh; in RdC n Bh ; (4.104)

r � �h D 0; in RdC n Bh; (4.105)

�h D ed ; on @Bh; (4.106)

�h D 0; on @RdC and at infinity: (4.107)

Then, for any t > 0 prior to contact, we apply Lorentz reciprocal theorem with
.ua; pa/ D .�h.t/; qh.t// and .ub; pb/ D .u.t/; p.t//. This yields:

Z t

0

Ph.s/ QF .h.s//ds D
Z t

0

Z
F.t/

fh.s/.x/ � u.s; x/�
�
m1

Ph.t/C
Z

F.s/
u.s/ � �h.s/

t
0

Cmg � ed t �
Z t

0

Z
F.s/

u � �@t �h.s/ C u � r�h.s/
�
: (4.108)

where:

QF .h/ D
Z
@Bh

T.�h; qh/nd� � ed :

For instance, setting .�h; qh/ WD .uh; ph/, the solution to the Stokes system (4.92)–
(4.95) yields:
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Z t

0

Ph.s/F.h.s//ds D �
�
m1

Ph.t/C
Z

F.s/
u.s/ � uh.s/

t
0

Cmg � ed t �
Z t

0

Z
F.s/

u � �@tuh.s/ C u � ruh.s/
�
: (4.109)

where F is computed by Proposition 4.9 and has been shown to diverge like h�3=2
when h ! 0. Proving that the no-collision paradox extends to the nonlinear system
(FRBI) then reduces to bound the remainder term on the right-hand side locally
in time, having in mind that u satisfies (4.34). The main difficulty here is thus to
extract fine properties of the solution to the Stokes problem in the limit h ! 0.
Hesla applies this method in [37] to the case of one cylinder inside a cylindrical
domain and proves no contact occurs between the cylinder and the domain boundary
in finite time.

An alternative method, proposed in [38], is to set �h D Quh the approximate Stokes
solution constructed in the previous section. One then note that, in the gap between
the cylinder and the wall, there holds Quh D r? (see (4.101) for a definition of  )
so that:

��Quh D �

���@112 � �@222 

�@111 C �@221 

�

Setting

Qph.x1; x2/ D ��@�1
1 @222 .s; x2/ds � �@12 

yields:

��Quh � r Qph D
�

0

�@111 C 2�@221 

�
:

We emphasize that a remarkable feature of  here is that it is polynomial of degree
3 in x2 so that the @�1

1 @222 does not depend on x2. The pressure is extended to the
whole RdC n Bh by truncation. This yields (see [26, Proposition 9] for instance):

Proposition 4.12. There exists a constant C < 1 s.t. for all h < 1 and � 2
KŒBh;RdC� there holds:

ˇ̌
ˇ̌
ˇ
Z

Rd
C

nBh
.��Quh � r Qph/ � �

ˇ̌
ˇ̌
ˇ � Ck�IH1.RdC/k:

With these test-function Quh and associated pressure Qph we rewrite the right-hand
side of (4.108) as
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m1
Ph.0/ �m1

Ph.t/C
Z

F.0/
u0 � Quh.0/ Cmg � ed t C I0 C I1 C I2 C I3;

with:

I0 D
Z

F.t/
u.t/ � Quh.t/;

I1 D
Z t

0

Z
F.t/

.��Quh.s/ � r Qph.s// � u.s; �/;

I2 D
Z t

0

Z
F.s/

u � @t Quh.s/;

I3 D
Z t

0

Z
F.s/

u � r Quh.s/ � u:

Combining Proposition 4.12 with kinetic energy estimate, we obtain:

jI1j � C

Z t

0

kru.s; �/IH1.F.s//k;� C
p
tEc.0/:

Introducing Hölder inequalities together with Poincaré inequalities (taking into
account that u vanishes on x2 D 0 and that the geometry depends on x1) the
contribution of the gap to other remainder terms are bounded by introducing
weighted norms of the test-function Quh that one computes explicitly. This yields
finally that

ˇ̌
ˇ̌Z t

0

Ph.s/ QF .h.s//ds
ˇ̌
ˇ̌ � C.1C Ec.0/Cp

tEc.0//

Combining this inequality with (in the two-dimensional case)

QF .h/ � C

h
3
2

entails (see [38] or [26] for more details):

Proposition 4.13. Let the shape B01 beB.G0
1 ; 1/ withG0

1 �e2 > 0, the initial density
�01 satisfy (4.1), and� WD R2C. Given initial data u0 2 H.�/ and T > 0, any weak
solution ..�; '/; u/ to (FRBI) on .0; T / satisfies:

dŒfB1.t/;Rd n�g�.t/ > 0; 8 t 2 Œ0; T �:

This result extends to the case of a sphere above a wall in [39]. Relying
on a similar method, it is possible to study the influence of the body geometry
[26] and of the boundary condition [29] for the full (FRBI) system (not only its
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Stokes approximation). In particular, in these references, it is shown at the level
of the nonlinear (FRBI) system that the no-collision paradox is ruled out either by
considering asperities at the bodies surfaces or by including slip in the fluid/body
interfaces.
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Chapter 5
Numerical Simulation of Fluid–Structure
Interaction Problems with Applications
to Flow in Vocal Folds

Miloslav Feistauer, Petr Sváček, and Jaromír Horáček

Abstract Recently, the numerical solution of FSI problems has become important
also in biomechanics, among others in voice modelling. The numerical analysis of
this case is very complicated: Human voice is created by passage of air flow between
vocal folds, where the constriction formed by the vocal folds induces acceleration
of the flow and vocal fold oscillations, which generates the sound. The modelling of
such a complex phenomenon encounters many difficulties as it is a result of coupling
complex fluid dynamics and structural behavior. We focus on mathematical and
numerical modelling of nonlinear coupled problems of fluid–structure interactions
(FSI). The main attention is paid to the mathematical description of a relevant
problem and to the description of the applied numerical methods. The mathematical
description consists of the elasticity equations describing the motion of an elastic
structure, and the air flow modelled by the Navier–Stokes equations. Both models
are coupled via interface conditions.

The solution of dynamic elasticity equations is realized with the aid of con-
forming finite elements or the elastic structure motion is modelled by a simplified
model of vibrating rigid body. Both compressible and incompressible fluid model
is considered. The approximation of flow in moving domains is treated with the aid
of the arbitrary Lagrangian–Eulerian method. The incompressible Navier–Stokes
equations are approximated by the stabilized finite element method. The compress-
ible Navier–Stokes equations are discretized by the discontinuous Galerkin finite
element method. The time discretization based on a semi-implicit linearized scheme
is described and the solution of the coupled problem of FSI is realized by a coupling
algorithm.

Keywords Aeroelasticity • ALE method • Biomechanics of voice • Compress-
ible flow • Coupling algorithm • Discontinuous Galerkin method • Dynamic
elasticity problem • Fluid–structure interaction • Navier–Stokes equations • Sta-
bilized finite element method • Time and space discretization • Two degrees of
freedom model • Vocal folds
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Notation
t time (s)
�t fluid current configuration at time instant t
�0 fluid reference configuration

x D .x1; x2/ point of current configuration
� fluid/air density
p pressure
� dynamic fluid viscosity

v D .v1; v2/ fluid velocity vector
w D .w1;w2;w3;w4/ state vector


f
ij fluid stress tensor
�s structural reference configuration

X D .X1; X2/ point of reference configuration
u D .u1; u2/ displacement vector
z D .z1; z2/ ALE domain velocity

w1;w2 vocal fold generalized coordinates
�s structural density
sij structural stress tensor
esij structural strain tensor
�s; �s Lamé coefficients of the structure

5.1 Introduction

The flow-induced vibrations of structures are usually associated with various
technical applications, however recently fluid–structure interactions (FSI) problems
become important also in biomechanics and especially here in biomechanics of
human voice [93]. Voice is one of the basic characteristics of human beings,
enabling their communication and playing an important role in the quality of human
life. Understanding the basic principles of voice production is important for better
interpretation of clinical findings, detection of laryngeal cancers or other pathologies
and for treatment of laryngeal disorders, and in development of voice prostheses for
laryngectomized patients, see, e.g., [91]. Despite all the efforts, all the details of the
voice production mechanisms are not yet fully understood.

Voice production is a complicated and complex biomechanical process, which
involves several basic factors: airflow coming from the lungs, vocal fold self-
oscillations, and acoustic resonances of the cavities of the human vocal tract (see
Fig. 5.1). Primary pressure fluctuations arise in the human larynx as a result of
the airflow being modulated by the vibrating vocal folds (also called vocal cords).
The narrow oscillating constriction between the two vocal folds is called glottis.
The vocal fold tissue is composed of the muscle vocalis and ligament covered by
epithelium. The vocal folds are fixed between the thyroid and cricoid cartilages
enabling to change their longitudinal tension, which determines the fundamental
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Fig. 5.1 Schema of the human vocal tract with a detail of the laryngeal part

Fig. 5.2 Example of 2D shape of vocal fold measured in phonation position for female and
fundamental frequency 304 Hz at a cross-section in the middle of the vocal fold length, see [71]

frequency of the human voice. The vocal folds can start to oscillate and close the
channel periodically for certain airflow rate and a defined prephonatory position. For
higher flow rate, the glottis is almost (or completely) closing during vibrations and
the vocal folds collide generating the primary voice source sound. The modelling
of such a complex phenomenon encounters many difficulties as it is a result of
coupling complex fluid dynamics and structural behavior including contact and
acoustic problems. Figure 5.2 shows an example of a real size and geometry of
human vocal fold during phonation, i.e., when the vocal folds are pre-stressed in
the longitudinal direction in an active phonation position. We should note that in
addition to the fundamental phonation frequency the dimensions of the vocal folds
depend on gender and human age, see [93].
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The acoustic resonant supraglottal spaces, formed by the air cavities upstream
the vocal folds, modify the sound and codetermine its quality [28,80,92]. The vocal
folds, excited by the airflow, generate a primary laryngeal tone whose fundamental
frequency corresponds to the vibration frequency of the vocal folds. In the airways
above the vocal folds, i.e., in the vocal tract, the acoustic resonant phenomena
modify the spectrum of the primary laryngeal tone, especially the higher harmonics.
The acoustic resonances of the vocal tract create the so-called formants, which occur
as peaks in the voice spectrum. The formants in human voice define vowels and
cause differences in the voice timber. The formant frequencies are determined by
the size and shape of the vocal tract cavities that can be varied, for instance, by
changing the position of the tongue or by mouth opening.

Understanding the fluid–structure–acoustic interaction between the airflow,
vibrating compliant vocal folds and sub- and supraglottal acoustic spaces relies
on three physical domains: aerodynamics, acoustics, and geometrical and material
properties of the vocal fold tissue. Considering the inaccessibility of the vocal folds,
it is close to impossible to perform exact airflow or tissue measurements in vivo
and it is rather complicated in vitro. Thus, most experimental data on the laryngeal
airflow has been obtained using physical models [46].

The airflow coming from the trachea accelerates in the glottis. Near the narrowest
cross-section, airflow separates from the surface of the vocal folds due to adverse
pressure gradient and forms a jet. The glottal jet pulsates due to vocal fold
oscillations. The jet inclination angle, jet core flow velocity, and the position of the
flow separation point are highly sensitive to the geometry of the vocal folds (which
is, in real subjects, never perfectly symmetric), to the position within the oscillation
cycle and magnitude of the subglottal pressure. Further downstream of the glottis,
the jet interacts with laryngeal walls and supraglottal large-scale vortical structures,
which leads to a complex flow field.

There is a number of experimental papers using laser visualization techniques
and Particle Image Velocimetry (PIV). These include results obtained on externally
driven models [27, 49, 51, 95], and self-oscillating models [13, 44, 50, 58, 72, 90]. A
comprehensive overview of the physical vocal fold models used in voice research is
given in a recent paper of [46].

Due to the difficulties encountered in both in vivo and in vitro measurements,
there have always been efforts to develop mathematical models. The computational
modelling of voice production enables generating numerous model situations even
if due to the lack of precise data in literature, most of the computational models have
grossly simplified geometries and mechanical properties.

Among the computational models, the 2-mass model of the vocal folds of [45] is
usually regarded as a cornerstone of vocal fold modelling. A number of subsequent
works, e.g., [39,40,54,61,68,76] used a similar concept: the vocal fold modelled by
discrete masses connected by springs and dampers, coupled to 1D or 2D simplified
airflow model (potential flow or using only Bernoulli equation). Simple mass-spring
models coupled with a quasi-1D airflow proved very useful and its variants are
widely used up to present [102,103]. For example, the developed aeroelastic model
[41] has applications in simulation of vowels phonation [5] and in estimation of
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the vocal folds loading by impact stress and inertial forces [42, 43]. The phonation
onset was studied by using the potential flow model and three-mass lumped model
for the vibrating vocal folds in [39, 40] and later in [103, 104]. The main advantage
of these models is the fact that the equations may be solved either analytically, or
using simple and very fast numerical methods for ordinary differential equations,
making it possible to perform nearly real-time simulations on current computers.

Since the fluid models based on potential flow theory do not provide much
information on the glottal airflow, increasing effort has been devoted to numerical
solution of the 2D Navier–Stokes equations in computational domains approximat-
ing the glottal channel. We can note that for an inviscid incompressible flow model
(e.g., using the Euler equations) the maximum flow velocity tends to infinity just
before the glottis closes when the viscous forces are important and the use of such
models is problematic.

The finite volume approximations of the Navier–Stokes equations on Cartesian
grids were coupled with the two-mass [45] dynamic model of the vocal folds in [22].
The 2D finite element approximations of the Navier–Stokes equations were coupled
in [81, 83, 84] with the vibrating vocal fold described by a mechanically equivalent
two degrees of freedom system (see [39, 40]). There are many other similar studies
focused on the unsteady flow field in the glottis and considering prescribed (forced)
vocal fold oscillations (see, e.g., [2, 3, 9, 56, 66, 67, 69, 73, 105, 108]).

de Oliviera et al. [21] and Thomson et al. [90] can be considered as first authors
that modelled the vocal fold fluid–structure interaction using the coupled finite
element (FE) models of the vocal folds and airflow. Consecutive FE models with
the airflow fully coupled with elastic tissue oscillations were published by Tao and
Jiang [88], Luo et al. [55], Link et al. [52], Zheng et al. [106].

Only a few of the computational studies [21, 56, 73] solve the flow field in 3D.
One of the most complex approaches to phonation modelling was recently published
by Zheng et al. [107,109], and Seo and Mittal [70], who use the immersed boundary
method for incompressible low-Mach number flow coupled with a finite element
solver for the viscoelastic tissue to calculate the 3D flow field and flow-induced
vibrations of the vocal folds including glottal closure and contact forces. Using the
aerodynamic–acoustic splitting technique, the acoustic field is then calculated by
solving linearized perturbed compressible equations. An extensive overview of the
computational vocal fold models can be found in a recent review paper [4].

The Reynolds numbers found in airflow past vocal folds range from 1,000 up
to about 5,000–10,000 [27]. This implies that the subglottal flow may be laminar.
However, Neubauer et al. [58] showed that near the glottal region, transition from
laminar to turbulent flow occurs and that the supraglottal flow field, dominated by
separated jet flow and recirculation, is rather turbulent. The Reynolds-Averaged
Navier–Stokes (RANS) turbulence modelling was used in [67].

A current challenging question is a mathematical and physical description of the
mechanism for transforming the airflow energy in the glottis into the acoustic energy
representing the voice source in humans. The flow velocities in the human glottal
region are lower than 100 m s�1 and thus the influence of fluid compressibility on
the flow-induced instability of the vocal folds and their vibrations can be mostly
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neglected. However, the voice production is based on aero-acoustics phenomena
associated with the fluid compressibility and a direct numerical simulation of the
voice production using the compressible Navier–Stokes equations is problematic
because the difference between the magnitudes of amplitudes of the aerodynamic
pressure fluctuations, given by the channel closure at the glottis, are several orders
higher than the acoustic pressure radiated from the mouth. This is why the hybrid
methods, solving the flow and acoustic fields separately is option in computational
aero-acoustics. Acoustic wave propagation in the vocal tract is usually modelled
separately using linear acoustic perturbation theory, the wave equation for the poten-
tial flow [93] or the Lighthill approach on sound generated aerodynamically [52,74].

Suh and Frankel [79] solved the compressible Navier–Stokes equations in 3D
by the FE method in order to study the flow–acoustic interaction in a rigid glottis.
Tao et al. [89] used FLOTRAN coupled with a two-mass model programmed in
ANSYS. Link et al. [52] solved the full fluid–solid–acoustic interaction in vocal
folds using a FEM solver and Lighthills analogy. Numerical simulation of the 2D
compressible flow field in the glottis region by finite volume method was recently
published in [63, 65, 66]. The changes of the channel cross-section are prescribed
and the channel is harmonically opening and nearly closing in the narrowest cross-
section of the channel. Particular attention is paid to the analysis of the position of
the flow separation point on the vibrating surface, and to the effect of nonsymmetric
flow appearing in a symmetric channel due to the so-called Coanda effect.

Recently, the discontinuous Galerkin finite element method (DGFEM) for the
space–time discretization of a nonstationary convection-diffusion initial-boundary
value problem with nonlinear convection and linear diffusion applied separately in
space and time using different space grids on different time levels was applied to
the simulation of vibrations of vocal folds during phonation onset, see [17, 33, 37].
The time-dependence of the domain occupied by the fluid is treated by the ALE
(Arbitrary Lagrangian–Eulerian) method, when the 2D compressible Navier–Stokes
equations are formulated in the ALE form. The deformation of the elastic body is
described by the dynamic elasticity equations. Both these systems are coupled by
the transmission conditions. The DGFEM is used for the space discretization of
the flow problem. The time discretization is realized by the backward difference
formula. The structural problem is discretized by the conforming FE method and
the Newmark method. The FSI is realized via weak or strong coupling algorithms.

The results of direct numerical simulation of vowels phonation using the
originally developed full FSI model based on the FE solution of the 3D compressible
Navier–Stokes equations by the CFD/ANSYS program code were recently pub-
lished in [86, 87].

Acoustic wave propagation in the vocal tract is usually modelled separately
using linear acoustic perturbation theory. The fundamentals of vocal tract acoustics
are summarized in the monographs by Fant [28] and Titze [92]. Using magnetic
resonance imaging (MRI), Story et al. [78] acquired 3D vocal tract shapes that
correspond to particular vowels and consonants. A set of vowel area functions, based
on MRI measurements, has been parameterized by Story and Titze [77]. Later Story
[75] modelled vocal tract by the transfer matrix method using cylindrical elements.
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Fig. 5.3 Scheme of coupled fluid–structure problem

Adachi et al. [1] applied this method to tuning the vocal tract shape. Recently, a
theory of interaction between the source of sound in phonation and the vocal tract
filter was proposed by Titze [94]. The 3D FE models of the human vocal tract for
vowels were developed by Švancara et al. [85] and Vampola et al. [96,97] and based
on the MRI and computer tomography measurements during phonation.

Mathematical models for the human phonation process are valuable tools for pro-
viding insight into the basic mechanisms of phonation and in future could help with
surgical planning, diagnostics, and voice rehabilitation. Our goal in this monograph
is to present our original, recently developed numerical methods based on the finite
element simulation of 2D incompressible and compressible laminar viscous flow
described in the glottal region by the Navier–Stokes equations in interaction with a
compliant tissue of the human vocal folds. The vocal folds are either modelled by a
2D elastic layered structure or as a vibrating rigid body. Some methods and results
presented here were obtained in the works [17, 33, 37, 47, 48, 83, 84].

5.2 Incompressible Flow in Time-Dependent Domains

The mathematical description of the interaction of incompressible flow and vocal
folds consists of equations of motion for the vocal folds coupled with the incom-
pressible Navier–Stokes equations via interface conditions. First, for simplicity and
clarity of aeroelastic principles, the vocal folds are modelled as rigid bodies with two
degrees of freedom, elastically supported in the glottis, and then as linear 2D elastic
continuum. The solution of the 2D dynamic elasticity equations for the vocal fold
tissue is realized with the aid of conforming finite elements on a reference domain
of �s

t . The flow in a time-dependent domain �t (see Fig. 5.3) is treated with the
aid of ALE method. The incompressible Navier–Stokes equations are approximated
by the stabilized finite element method. The time discretization based on a semi-
implicit linearized scheme is described. The solution of the coupled problem of
FSI is realized by coupling algorithms enforcing the interface conditions at a fluid–
structure interface.
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5.2.1 Incompressible Navier–Stokes Equations

Let us consider a two-dimensional computational domain �t depending on time
t 2 Œ0; T �; T > 0, with a Lipschitz-continuous boundary @�t . The flow of an
incompressible viscous fluid in the domain �t is described by the system of the
incompressible Navier–Stokes equations (cf. [29])

�
@vi

@t
C �.v � r/vi D

2X
jD1

@
f
ij

@xj
; i D 1; 2; (5.1)

r � v D 0:

Here v D .v1; v2/ is the fluid velocity vector, � > 0 is the constant fluid density,
and fij are the components of the fluid stress tensor given by


f
ij D � @p

@xi
ıij C �

�
@vi

@xj
C @vj

@xi

�
; (5.2)

where p is the pressure, � > 0 is the constant fluid viscosity and ıij denotes the
Kronecker symbol.

Initial and Boundary Conditions. System (5.1) is equipped by the initial condi-
tion

v.x; 0/ D v0.x/ for x 2 �0; (5.3)

where v0 is a prescribed initial velocity, and boundary conditions. The boundary
@�t of the computational domain is assumed to be formed by mutually disjoint
parts �I—inlet, �O—outlet, �W t—impermeable wall, whose part may move in
dependence on time, and possibly �S—symmetry axis x2 D const. We consider
the following boundary conditions:

(a) v D vI on �I ; (b) v D zW on �W t ;

(c).i/ v2 D 0; .ii/
@v1

@x2
D 0 on �S; (5.4)

(d) �
2X

jD1

f
ij nj C 1

2
�.v � n/�vi D prefni ; i D 1; 2; on �O:

The following notation is used: n—unit outer normal vector to @�t , vI—inlet
velocity,pref—reference pressure value, zW —velocity of the wall motion (of course,
zW D 0 on fixed parts of the wall). Further, ˛� denotes the negative part of a real
number ˛, i.e., ˛� D min.0; ˛/. (As for the condition (5.4), (d), see, e.g., [16, 38]).
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On the inlet �I condition (5.4), (a) can be replaced by the condition

�
2X

jD1

f
ij nj C 1

2
�.v � n/�vi D pinletni ; i D 1; 2: (5.5)

This means that on the inlet we prescribe either the inlet flow velocity vI or the inlet
pressure pinlet D pref C �p, where �p is the pressure drop between the inlet and
outlet. The reference pressure pref can be chosen arbitrarily and, therefore, we set
pref D 0 in what follows.

5.2.2 Arbitrary Lagrangian–Eulerian Method

In order to take into account the time dependence of the domain, we use the so-
called ALE technique, proposed, e.g., in [59]. It is based on a regular one-to-one
ALE mapping of the reference configuration�0 onto the current configuration�t :

At W �0 �! �t ; i:e: X 2 �0 7�! x D x.X; t/ D At .X/ 2 �t :

Here we use the notation X for points in �0 and x for points in �t .
Further, we define the domain velocity

Qz.X; t/ D @

@t
At .X/; t 2 .0; T /; X 2 �0; (5.6)

z.x; t/ D Qz.A�1
t .x/; t/; t 2 .0; T /; x 2 �t

and the ALE derivative of a function f D f .x; t/ defined for x 2 �t and t 2 .0; T /:

DA

Dt
f .x; t/ D @ Qf

@t
.X; t/; (5.7)

where

Qf .X; t/ D f .At .X/; t/; X 2 �0; x D At .X/:

The following lemma formulates the relation between the partial time derivative
and the ALE derivative.

Lemma 5.1. Let the ALE mapping At .X/ D ˆ.X; t/ have continuous first order
derivatives and let At D ˆ.�; t/ W �0 ! �t be a bijective mapping of �0 onto �t

for any t 2 .0; T /. Let a function f D f .x; t/; x 2 �t ; t 2 .0; T /, be continuously
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differentiable. Then

DAf

Dt
.x; t/ D @f

@t
.x; t/C z.x; t/ � rf .x; t/; (5.8)

where z is the domain velocity defined by (5.6).

Proof. Let us set x D ˆ.X; t/: Then by (5.7) and (5.6), we get

DAf

Dt
.x; t/ D @ Qf

@t
.X; t/

D d

dt

h
f .ˆ.X; t/; t/

i

D @f

@t

�
ˆ.X; t/; t

�C
2X
iD1

@f

@xi

�
ˆ.X; t/; t

� @ˆi
@t
.X; t/

D @f

@t
.x; t/C z.x; t/ � rf .x; t/ : ut

Using the relation (5.8), we can rewrite the Navier–Stokes system (5.1) in the
ALE form

�
DAvi

Dt
C �..v � z/ � r/vi D

2X
jD1

@
f
ij

@xj
; i D 1; 2; r � v D 0: (5.9)

5.2.3 Numerical Approximation of the Incompressible
Navier–Stokes Equations

This section will be concerned with the discretization of the flow problem (5.9),
(5.3), (5.4) (where the condition (5.4), (a) can be replaced by (5.5)).

Time Discretization

First let us describe the time discretization of the problem. We consider a partition
0 D t0 < t1 < � � � < T; tk D k�t , with a constant time step �t > 0, of the time
interval Œ0; T � and approximate the solution v.tn/, p.tn/ (defined in �tn ) at time
tn by vn, pn. For the time discretization we use the second-order two-step scheme
using the computed approximate solution vn�1, pn�1 in �tn�1 and vn, pn in �tn for
the calculation of vnC1, pnC1 in the domain� WD �tnC1

.
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We approximate the ALE velocity z.tnC1/ by znC1, where

znC1.x/ D 3AtnC1
.X/ � 4Atn .X/C Atn�1 .X/

2�t
; (5.10)

x D AtnC1
.X/ 2 �tnC1

:

Further, it is necessary to approximate the ALE derivative of the velocity v at time
tnC1. To this end, for i D n; n � 1 we set Ovi D vi ı Ati ı A�1

tnC1
, which is defined in

the domain�tnC1
(the symbol ı denotes the composite function). Then, by (5.7), for

x 2 �tnC1
andX D A�1

tnC1
.x/, using the second-order backward difference formula,

we can write

DAv

Dt
.x; tnC1/ D @ Qv.X; tnC1/

@t
(5.11)

� 3 Qv.X; tnC1/� 4 Qv.X; tn/C Qv.X; tn�1/
2�t

� 3vnC1.x/ � 4 Ovn.x/C Ovn�1.x/
2�t

:

This leads to the problem of finding unknown functions v D vnC1 W � ! R2 and
p D pnC1 W � ! R satisfying the equations

�
3v � 4 Ovn C Ovn�1

2�t
C �

�
.v � znC1/ � r� v � r � ��.rvC rT v/

�C rp D 0;

div v D 0; in �; (5.12)

and the boundary conditions (5.4) (where condition (a) can be replaced by (5.5)—in
what follows, this eventuality will not be emphasized).

Weak Formulation

The starting point for the finite element discretization of problem (5.12) with the
boundary conditions (5.4) is the so-called weak formulation. To this end, we define
the velocity spaces W;X and the pressure space Q:

W D .H1.�//2; X D fv 2 W I vj�I[�W t D 0; v2j�S D 0g; (5.13)

Q D L2.�/; (5.14)

where L2.�/ is the Lebesgue space of square integrable functions over the domain
�, and H1.�/ is the Sobolev space of square integrable functions together with
their first-order derivatives.
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Now, we multiply the first and second equation in (5.12) by any function ' 2 X
and q 2 Q, respectively, sum them, integrate over �, transform the viscous term
containing second-order derivatives of v and the term rp with the aid of Green’s
theorem and use the boundary conditions (5.4), (c)(ii), (d). We define the weak
solution of the problem (5.12), (5.4) as a couple U D .v; p/ 2 W � Q satisfying
the conditions (5.4), (a), (b), (c)(i) and the identity

a.U;U; V / D f .V /; for all V D .'; q/ 2 X �Q: (5.15)

We use the notation

.˛; ˇ/! D
Z
!

˛ � ˇdx; (5.16)

for the scalar product in L2.!/ for a set !. It generates the norm k �kL2.�/. The form
a.U �; U; V / is defined by

a.U �; U; V / D 3�

2�t
.v;'/� C �

2

�rvC rT v;r'C rT'
�
�

C �c.v�; v;'/

�� �znC1 � rv;'�
�

� .p;r � '/� C .r � v; q/� ; (5.17)

f .V / D �

2�t

�
4 Ovn � Ovn�1;'

�
�

�
Z
�O

pref' � n dS;

U D .v; p/; U � D .v�; p/ 2 W; V D .'; q/ 2 X;

where the convective form c.v�; v;'/ reads

c.v�; v;'/ D 1

2

�
.v� � r/v;'�

�
� 1

2

�
.v� � r/'; v�

�
C
Z
�O

1

2
.v� � n/Cv � ' dS:

(5.18)

The form c.v�; v;'/ is obtained from the convective term .v� � rv;'/� by
integration by parts, using the boundary conditions e (5.4) (d) at the outlet and the
definition of the space X (i.e., ' D 0 on �I [�W t and ' � n D 0 on �S ). For ˛ 2 R
we set ˛C D max.0; ˛/.

Space Discretization and Stabilization

In order to apply the Galerkin finite element method (FEM) to the discretization of
the problem (5.15), we approximate the spacesW ,X ,Q from the weak formulation
by finite dimensional subspacesWh, Xh, Qh, h 2 .0; h0/, h0 > 0,

Xh D fvh 2 WhI vhj�I\�W t D 0; v2j�S D 0g: (5.19)
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Then we define the approximate solution as a couple Uh D .vh; ph/ 2 Wh � Qh

such that vh satisfies approximately conditions (5.4), (a), (b), (c)(i) and the identity

a.Uh; Uh; Vh/ D f .Vh/; for all Vh D .'h; qh/ 2 Xh �Qh: (5.20)

The couple .Xh;Qh/ of the finite element spaces has to satisfy the Babuška–
Brezzi (BB) inf–sup condition (see, e.g., [35,36] or [99]), i.e., we assume that there
exists a constant ˇ > 0 such that

sup
v2Xh

.p;r � v/
krvkL2.�/

� ˇkpkL2.�/; 8p 2 Qh: (5.21)

In practical computations we assume that the domain � is a polygonal approx-
imation of the region occupied by the fluid at time tnC1. The spaces Wh; Xh; Qh

are defined over a triangulation Th of the domain �, formed by a finite number of
closed trianglesK 2 Th with the following properties:

(a) � D S
K2Th K ,

(b) the intersection of two different elements K;K 0 2 Th is either empty or a
common edge or a common vertex of these elements,

(c) the vertices lying on @� belong to @�tnC1
,

(d) the end points of �I ; �O , and �W t are vertices of some elementsK 2 Th.

We shall denote by QhK the length of the maximal side and we assume the index h
is chosen as h D maxK2Th

QhK . The spacesWh; Xh, andQh are formed by piecewise
polynomial functions. In our computations, the well-known Taylor–Hood P2=P1
conforming finite elements are used for the velocity/pressure approximation. This
means that ph is a linear function and vh is a quadratic vector-valued function on
each elementK 2 Th, i.e., the spaces Wh, Xh, andQh are defined by

Hh D f' 2 C.�/I'jK 2 P2.K/ for eachK 2 Thg;
Wh D ŒHh�

2 ; Xh D Wh \ X; (5.22)

Qh D ˚
' 2 C.�/I 'jK 2 P1.K/ for each K 2 Th

�
;

where Pk.K/ denotes the space of all polynomials on K of degree less or equal to
k.

The standard Galerkin discretization (5.20) may produce approximate solutions
suffering from spurious oscillations for high Reynolds numbers. In order to avoid
this drawback, the stabilization via streamline-diffusion/Petrov–Galerkin technique
is applied (see, e.g., [34, 53]). The stabilization terms are defined as

Lh.U �; U; V / D
X
K2Th

ıK

�
3�

2�t
v � r � �.rvC rT v/C �

�
.v� � znC1/ � r� v



334 M. Feistauer et al.

Crp; ..v� � znC1/ � r/'C rq
�
K
;

Fh.V / D
X
K2Th

ıK

� �

2�t
.4 Ovn � Ovn�1/; ..v� � znC1/ � r/'C rq

�
K
; (5.23)

U D .v; p/; V D .'; q/; U � D .v�; p�/;

where ıK � 0 are suitable parameters. Moreover, the additional div–div stabilization
form

Ph.U; V / D
X
K2Th

K.r � v;r � '/K (5.24)

is introduced with suitable parameters K � 0.
The stabilized discrete problem reads: Find Uh D .vh; ph/ 2 Wh �Qh such that

vh satisfies approximately conditions (5.4), (a), (b), (c)(i) and

a.Uh; Uh; Vh/C Lh.Uh; Uh; Vh/C Ph.Uh; Vh/ D f .Vh/C Fh.Vh/

for all Vh D .'h; qh/ 2 Xh �Qh: (5.25)

Stabilization Parameters

The choice of the parameters ıK and K is carried out according to [53] and [82].
The parameter ıK is defined on the basis of the local transport velocity v��znC1 and
local element size hK ofK measured in the direction of the vector .v� � znC1/.bK/,
where bK denotes the barycenter of K . In the case of the Taylor–Hood finite
elements the following choice of parameters appears suitable:

K D �; ıK D ı�h2K; (5.26)

where � > 0 and ı� > 0 are fixed constants.
The fully stabilized problem allows also the application of the equal-orderP1=P1

finite elements, which do not satisfy the BB condition. In this case, we set � D �=�

and introduce the parameters

K D �

�
1CReloc C h2K

� �t

�
; ıK D h2K

K
; (5.27)

where the local Reynolds numberReloc is defined as

Reloc D hKkvkK
2�

: (5.28)
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5.2.4 Numerical Solution of the Nonlinear Discrete Problem

Oseen Linearization Process

The nonlinear discrete problem (5.25) is solved on each time level tnC1 with the aid
of the linearized Oseen iterative process

a.U
.`/

h ; U
.`C1/
h ; Vh/C Lh.U .`/

h ; U
.`C1/
h ; Vh/C Ph.U .`C1/

h ; Vh/ (5.29)

D f .Vh/C Fh.Vh/ for all Vh 2 Xh �Qh;

where we start from the initial approximation U .0/

h D . Ovn; Opn/ or U .0/

h D .2 Ovn �
Ovn�1

; 2 Opn� Opn�1/. Numerical experiments show that it is usually enough to compute
5–8 Oseen iterations on each time level.

Solution of the Linear Algebraic System

The solution of the linear algebraic system equivalent to (5.29) can be realized by
the direct solver UMFPACK [19], which works sufficiently fast for systems with
up to 105 equations. For larger systems it is necessary to apply more robust and
efficient iterative techniques, such as the domain decomposition approach and/or
the multigrid method.

5.3 Structural Models

5.3.1 Aeroelastic Model of Vocal Folds Vibration with Two
Degrees of Freedom

Original theoretical model for vibration onset of the vocal folds in the airflow
coming from the human subglottal tract allows studying the influence of the physical
properties of the vocal folds (e.g., geometrical shape, mass, and damping) on the nat-
ural frequencies, mode shapes of vibration, and the thresholds of instability [40,41].

The model of the vocal fold is designed as a simplified dynamic system with
two degrees of freedom (rotation and translation) vibrating on an elastic foundation
in the wall of a channel conveying air. The phonatory airflow is approximated by
unsteady one-dimensional flow theory for inviscid incompressible fluid. A generally
defined shape of the vocal fold surface is considered for expressing the unsteady
aerodynamic forces in the glottis. The parameters of the mechanical part of the
model, i.e., the mass, stiffness, and damping matrices are related to the geometry and
material density of the vocal folds as well as to the fundamental natural frequency
and damping known from the experiments. The coupled numerical solution yields
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Fig. 5.4 (a) Simplified model of the glottis with vibrating vocal folds in the airflow coming from
the trachea and (b) scheme of the equivalent mechanical system with two-degrees of freedom for
one vocal fold

the instability thresholds of the aeroelastic system. The model is particularly suitable
for studying the phonation threshold, i.e., the onset of vibration of the vocal folds.

The model of the glottis with the vocal folds is shown in Fig. 5.4a, the glottis
forms a channel with planar symmetry conveying air. In this section, the first
coordinate x1 shall be denoted by x and the second coordinate x2 by y for simplicity.
The length L of the channel is measured parallel to both the plane of symmetry and
the direction of airflow. The channel walls are created by two vocal-fold-shaped
rigid bodies of massm and moment of inertia I , which are vibrating symmetrically
in the opposite phase with identical amplitudes on an elastic foundation modelled
by two springs and dampers. The rigid bodies oscillate in the fluid of density �
flowing from the trachea, where Psub denotes the mean subglottal pressure. The
mean airflow velocity at the inlet of the glottal channel (x D 0), where its cross-
section equals 2H0, is denoted as U0. The minimum cross-section of the channel,
the so-called glottal width, is denoted as 2g. The vibrating element has a smooth
convergent glottal inlet and a short, not highly divergent outlet, where the flow
separation is supposed. Symmetric oscillations of the vocal folds are assumed,
allowing modelling only a half of the glottal region.
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The simplified fluid-elastic system is schematically shown in Fig. 5.4b including
a scheme of the equivalent mechanical part. The vocal fold can be approximated
by a two-degrees-of-freedom rigid body element with a defined shape a.x/, where
x is the axial coordinate. The element is supported by two discrete springs with
stiffnesses c1 and c2 and its vibration is described by its rotation and translation.
An equivalent three-mass system is used to formulate the equations of motion of
the element, based on three conditions of identical total mass, static moment and
moment of inertia of the rigid body. The vibrating rigid body with the center of
gravity T at the location (xT , yT ) is replaced by three masses m1, m2, and m3

joined together by a rigid massless rod of the total length L.
The distance between the positions of the masses m1 and m2 is denoted as 2l .

The distance between the location of the mass m3 from the upstream end of the rod
is denoted by L1. The displacements of the masses m1 and m2 are denoted as w1.t/
and w2.t/, where t is time. The length L should approximately correspond to the
anatomical data, the lengths l and L1 can, however, be varied for the purpose of
tuning of the model.

Equations of Motion for the Equivalent Mechanical System of the
Vocal-Fold-Shaped Vibrating Element

The three masses m1, m2, m3 of the equivalent mechanical system shown in
Fig. 5.4b can be calculated from the following equations: equivalent mass of the
system:

m1 Cm2 Cm3 D m; (5.30)

equivalent static moment

�m1

L

2
Cm2

L

2
D me; (5.31)

equivalent moment of inertia

m1

�
L

2

�2
Cm2

�
L

2

�2
D I Cme2; (5.32)

which gives

m1;2 D 1

2l2

�
I Cme2 �mel

�
; m3 D m

�
1 �

�e
l

�2� � I

l2
: (5.33)

The displacement of the rigid massless rod can be written as

w.x; t/ D .x � L1/V1.t/C V2.t/; (5.34)
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where the rotation and translation of the rigid body element was introduced as

V1.t/ D w2.t/ � w1.t/

2l
; V2.t/ D w2.t/C w1.t/

2
: (5.35)

The equivalent aerodynamic excitation forces F 1.t/ and F 2.t/ Fig. 5.4b are given
by the integrals of perturbation aerodynamic pressure Qp.x; t/ along the vibrating
body surface

F 1.t/ D hs

2l

Z L

0

Qp.x; t/�l C L1 � x � �
a0.x/C V1.t/

�

� .a.x/ � .x � L1/V1.t/ � yT /
�

dx;

F 2.t/ D hs

2l

Z L

0

Qp.x; t/�l � L1 C x � �
a0.x/C V1.t/

�

� .a.x/ � .x � L1/V1.t/ � yT /
�

dx;

(5.36)

where hs is the width of the channel measured perpendicular to the direction of
airflow and parallel to the plane of symmetry, hs is identical with the width of the
rigid body. Then by calculating the integrals (5.36) the aerodynamic forces F 1.t/

and F 2.t/ can be expressed as functions of the displacements V1.t/ and V2.t/.
After expressing the potential and kinetic energies of the system in a similar way

as in the article [40] and their substitution in the Lagrange equations (see, e.g., [15]),
the equations of motion are obtained in the form:

After substitution in the Lagrange equations, the equations of motion are
obtained in the form

M RV C B PV C KV C F D 0; (5.37)

where the following displacement and excitation force vector were introduced

V D
�
V1.t/

V2.t/

�
; F D

�
F 1.t/

F 2.t/

�
; (5.38)

and where M, B, K are the structural mass, damping, and stiffness matrices:

M D
��lm1 m1 C m3

2

lm2 m2 C m3
2

�
; B D "1M C "2K; K D

��c1l c1
c2l c2

�
: (5.39)

The damping matrix B represents a proportional model of structural damping (see,
e.g., [15]) and "1, "2 are constants adjusted according to the desired damping ratios
for the two natural modes of vibration of the system. The structure of the matrices
M and K reveals that a mass coupling caused by the mass m3 is generally in the
system even if F D 0.
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Fig. 5.5 Simplified model of a channel

Aerodynamic Forces

The one-dimensional (1D) model of the unsteady incompressible fluid flow in the
rectangular channel of the height H.x; t/ and the width hs D const. is given by
the following Euler (momentum) and the approximation of the continuity equations
with a space increment�x (see [60] and Fig. 5.5):

�
@U

@t
.x; t/C �U.x; t/

@U

@x
.x; t/C @P

@x
.x; t/ D 0; (5.40)

@.�hsH.x; t/�x/

@t

D
�
�U.x; t/hsH.x; t/

�
�
�
�U.x C�x; t/hsH.x C�x; t/

�
; (5.41)

where the flow velocity U.x; t/ and the pressure P.x; t/ can be considered to be
composed of the steady and perturbation parts as follows:

U.x; t/ D U o.x/C Qu.x; t/; P.x; t/ D P0.x/C Qp.x; t/: (5.42)

According to the previous section and Fig. 5.5,

H.x; t/ D H0 � w.x; t/ � a.x/: (5.43)

Substitution of the expressions (5.42) into Eq. (5.40) yields

@Qu
@t

C @.QuU0/
@x

C Qu @Qu
@x

D �1
�

@ Qp
@x
; (5.44)
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where the Bernoulli equation

1

2
�U

2

0 C P0.x/ D const. (5.45)

was used. Here, the attention is focused on the phonatory threshold states, for
the purpose of which only small velocity perturbations (Qu @Qu

@x
) can be considered.

Introducing the velocity potential

Q̂ .x; t/ D ˆ.x; t/C�.t/ (5.46)

where �.t/ is a nonspecified (dummy) time function,

Qu D @ Q̂
@x

D @ˆ

@x
; (5.47)

the integration of Eq. (5.44) over x gives

@ˆ

@t
C @�

@t
C QuU0 D �1

�
Qp C ��.t/: (5.48)

When setting

��.t/ D @�

@t
;

the perturbation pressure can be expressed as

Qp D ��
�
@ˆ

@t
C U 0.x/

@ˆ

@x

�
: (5.49)

Substitution of the expressions (5.42) for U.x; t/ and (5.43) for H.x; t/ into (5.41)
and the limit process for �x ! 0 yield

@w

@t
D �@.wU0/

@x
CH0

@Qu
@x

� @.Quw/

@x
� @.a Qu/

@x
; (5.50)

where the continuity equation

U 0.x/
�
H0 � a.x/

� D const.; (5.51)

for the steady flow was used. Integration of Eq. (5.50) over x gives

Qu.x; t/ D 1

H0 � a.x/ � w.x; t/
(5.52)
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�
�
@

@t

�
x2

2
V1.t/C

�
V2.t/ � L

2
V1.t/

�
x C C.t/

�
C w.x; t/U 0.x/

�
:

For the phonatory threshold states only small displacements w.x; t/ � H0 can be
assumed, and substituting w from Eq. (5.34) into Eq. (5.52), the derivative (5.47) of
the potential becomes

@ˆ

@x
D 1

H0 � a.x/
�
x2

2
PV1.t/C

�
PV2.t/ � L

2
PV1.t/

�
x C PC.t/ (5.53)

C
��
x � L

2

�
V1.t/C V2.t/

�
U 0.x/

�
;

where C.t/ is an unknown function of time. The integration gives the potential in
the form

ˆ.x; t/ D PV1.t/I1.x/C PV2.t/I2.x/C PC.t/I3.x/C V1.t/I4.x/

CV2.t/I5.x/C C.t/; (5.54)

where C.t/ is another unknown time function and Ii .x/, i D 1; : : : ; 5, are the
integrals given in [39, 40]. Using the boundary conditions for the flow at the inlet
(x D 0) and outlet (x D L):

Qu D @ˆ

@x
D 0jxD0; and Qp D 0jxDL; (5.55)

considering the displacement w.x; t/ � H0 and using the same procedures as in the
papers [39,40], the unknown time functionsC.t/ and C.t/ can be determined. Then
the unsteady component of the pressure Qp.x; t/ can be obtained from Eq. (5.49) and
the resulting aerodynamic forces F 1.t/ and F 2.t/ are computed from Eq. (5.36).
We note that the mean flow velocity in the glottis for x 2 Œ0; L� can be expressed
from the continuity equation as

U .x/ D U0

1 � a.x/

H0

; (5.56)

where U0 and H0 are the flow velocity and the height of the channel, respectively,
at the inlet (x D 0) to the glottal region and the function a.x/=H0 is given by the
geometry of the vocal folds and larynx. The airflow velocity U0 [m s�1] is simply
related to the so-called glottal volume velocity (glottal flux)

Q D 2U0H0; (5.57)

which belongs to the most important physiological characteristics of voiced sound
production, and for the male adults it is normally in the rangeQ � 0:08–0:6 l/s.
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Substituting the linearized aerodynamic forces F 1.t/, F 2.t/ in the equations of
motion (5.37) and dividing this equation by ml=2 yields the following physically
well-structured equations of motion of the coupled aeroelastic system in a linear
approximation:

M
R
V C B

P
V C KV D �hsL3

mH0

�
OM R
V C U0

L
OB P
V C U 2

0

L2
OKV

�
; (5.58)

where

M D
0
@�

�
I
ml2

C �
e
l

�2 � e
l

�
1 � e

l�
I
ml2

C �
e
l

�2 � e
l

�
1C e

l

1
A ;B D "1M C "2K ;K D !20

 
�1 1
c2
c1

c2
c1

!

(5.59)

are the dimensionless mass, damping, and stiffness matrices for the rigid body
vibrating in vacuo, !20 D 2c1=m. The expression

V D
�
1 0

0 1=l

�
V (5.60)

denotes the vector of dimensionless displacements. The matrices OM, OB, and OK
are aerodynamic mass, aerodynamic damping, and aerodynamic stiffness matrices,
respectively. Their elements are complicated functions of the channel geometry.
Because of their complicated form, we do not introduce it. For details see [41].

The unsteady aerodynamic forces on the right-hand side of Eq. (5.58) are

obviously proportional to the dimensionless added mass of fluid ( �h
sL3

mH0
) and they

have a lucid physical meaning. The first term corresponds to the aerodynamic inertia
forces, the second term to the aerodynamic damping forces (� U0) related to the
Coriolis forces and the third term to the aerodynamic stiffness forces (� U 2

0 ),
which are related to the centrifugal forces. The Coriolis and centrifugal forces are
increasing functions of the fluid flow velocity U0 causing aeroelastic instability and
self-oscillations.

Assuming V D V 0e
st for the dynamic response, the solution of Eq. (5.58)

is given by the numerical computation of the eigenvalues s D Re.s/ C iIm.s/

and eigenmodes V 0 D .V01; V02= l/
T for the eigenvalue problem. In this way, it

is possible to calculate the critical flow velocity U0;crit at which the real part of
the eigenvalue changes the sign from a negative value Re.s/ < 0 to a positive
value Re.s/ > 0. Here, the system either becomes unstable by divergence (when
Im.s/ D 0), or it becomes unstable by flutter simulating the start of phonation
(when Im.s/ > 0).
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Vocal Fold Modelled as a Flexibly Supported Rigid Body Coupled with the
Navier–Stokes Equations

The aerodynamic forces can also be computed from a numerical approximation of
the Navier–Stokes equations (5.1). In order to solve the coupled problem, the motion
equations (5.37)–(5.39) are rewritten with the aid of the two displacements w1;w2
(upward positive), see Fig. 5.4b. The vibrating part (vocal folds) of the channel
walls (computational domain) is governed by the motion of �W t driven by the
displacements w1.t/ and w2.t/ of the two masses m1 and m2, respectively (see
Fig. 5.4b).

The displacements w1.t/ and w2.t/ are then described by the following equa-
tions:

M

� Rw1
Rw2
�

C B

� Pw1
Pw2
�

C K

�
w1
w2

�
D
��F 1

�F 2

�
: (5.61)

Here M and K are the mass and stiffness matrices, respectively, given by

M D
�
m1 C m3

4
m3
4

m3
4

m2 C m3
4

�
; K D

�
c1 0

0 c2

�
;

wherem1;m2;m3 are the equivalent masses, c1; c2 are the spring constants,

B D "1M C "2K

is the matrix of the proportional structural damping and F 1; F 2 are the aerodynamic
forces (downward positive), see Fig. 5.4b.

Time Discretization

Similarly as in Sect. 5.2.3, we consider the partition tk of the time interval Œ0; T �
with the same constant time step �t > 0 and use the approximations wni � wi .tn/
and Pwni � dwi

dt
.tn/. We transform the system (5.61) to the first order system, use

the notation �n D .wn1;w
n
2;

Pwn1; Pwn2/T , and discretize in time with the aid of BDF2
formula. Then we get the system

�
E O

O M

�
3�nC1 � 4�n C�n�1

2�t
D
�

O E

�K �B

�
�nC1 C

0
BBB@

0

0

�F nC1
1

�F nC1
2

1
CCCA ; (5.62)

where E is the unit 2 � 2 matrix and O is the zero matrix.
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5.3.2 Dynamic Elasticity Problem

If the vocal folds are constructed as a compliant 2D structure and small displace-
ments are supposed, we can formulate the governing equations of motion of the
structure using linear elasticity theory. In what follows, �s � R2 will denote a
bounded open set representing the vocal folds as an elastic body. We denote by
u.X; t/ the displacement of the structure at a time instant t 2 .0; T / and a point
X D .X1;X2/ 2 �s , and define the components of the small strain tensor

eij .u/ D 1

2

�
@ui
@Xj

C @uj
@Xi

�
; i; j D 1; 2: (5.63)

The deformation of the elastic body is modelled by the dynamic elasticity system of
equations with the generalized Hooke law for isotropic material in the form

sij D �sdiv uıij C 2�seij ; i; j D 1; 2; (5.64)

where �s and �s are the so-called Lamé coefficients. In practice the Young modulus
Es of elasticity and the Poisson ratio �s ,

Es D �s.3�s C 2�s/

�s C �s
; �s D �s

2.�s C �s/
; (5.65)

are often used.
The equations of motion of an elastic body have the form

%s
@2ui
@t2

C C%s
@ui
@t

�
2X

jD1

@sij

@Xj
D fi ; in �s � .0; T /; i D 1; 2: (5.66)

Here f D .f1; f2/ is the density of the volume force. In reality, mechanical systems
dissipate mechanical energy. The expression C%s @ui

@t
, where C � 0, is a dissipative

damping of the system. By %s we denote the density of the solid material. We
complete the elasticity problem by initial and boundary conditions. The initial
conditions read

u.�; 0/ D 0;
@u
@t
.�; 0/ D 0 in �s: (5.67)

By �sW � �W 0 we denote a moving interface between the vocal folds and the
domain occupied by the fluid at the initial time t D 0. We assume that �sW and �sD
are disjoint parts of @�s and @�s D �sW [ �sD: Let the aerodynamic surface force
T n D .T n1 ; T

n
2 / be prescribed on the boundary �sW . This leads to the condition

2X
jD1

sij nj D T ni on �sW � .0; T /; i D 1; 2: (5.68)
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Here n D .n1; n2/ denotes the outer normal to @�s .
On the boundary �sD we prescribe the zero displacement:

u D 0 on �sD � .0; T /: (5.69)

In the dynamic elasticity problem we look for the displacement u satisfying
Eq. (5.66), the initial conditions (5.67), and the boundary conditions (5.68) and
(5.69).

5.3.3 Finite Element Space Discretization of the Elasticity
Problem

In this section we shall be concerned with the discretization of the dynamic elasticity
problem. We reformulate the problem in a weak sense and apply the Galerkin
finite element method. The semidiscretized problem is equivalent to a second-
order system of ordinary differential equations. For the time discretization we apply
the Newmark scheme. In each time step we get a linear algebraic system with a
symmetric positive definite matrix. The solution of this system can be realized by
the preconditioned conjugate gradient method.

The space semidiscretization of the structural problem will be carried out by the
conforming finite element method. By �s

h we denote a polygonal approximation of
the domain�s . We construct a triangulation T s

h of the domain�s
h formed by a finite

number of closed triangles with the following properties:

(a) �
s

h D S
K2T s

h
K ,

(b) the intersection of two different elements K;K 0 2 T s
h is either empty or a

common edge or a common vertex of these elements,
(c) the vertices lying on @�s

h belong to @�s ,
(d) the set �

s

W \ �sD is formed by vertices of some elementsK 2 T s
h .

By �sW h and �sDh we denote the parts of @�s
h approximating �sW and �sD .

The approximate solution of the structural problem will be sought in the finite-
dimensional space Xh D Xh �Xh, where

Xh D
n
vh 2 C.�s

h/I vhjK 2 Pk.K/; 8K 2 T s
h

o
; (5.70)

k � 1 is an integer and Pk.K/ denotes the set of all polynomials in x1; x2 of degree
� k onK . In Xh we define the subspace Vh D Vh � Vh, where

Vh D
n
yh 2 XhIyhj�sDh D 0

o
: (5.71)
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The derivation of the space semidiscretization can be obtained in a standard way.
Multiplying system (5.66) by any test function yhi 2 Vh; i D 1; 2, applying Green’s
theorem and using the boundary condition (5.68), we obtain the identity containing
the forms defined for uh D .uh1; uh2/; yh D .yh1; yh2/ 2 Xh:

ah.uh;yh/ D
Z
�sh

�sdiv uh divyh dX C 2

Z
�sh

�s
2X

i;jD1
esij .uh/ e

s
ij .yh/ dX; (5.72)

and

.'; /�sh D
Z
�sh

' � dX; .'; /�W h
D
Z
�sW h

' � dS: (5.73)

We shall use the approximation T nh � T n and the notation u0
h.t/ D @uh.t/

@t
and

u00
h.t/ D @2uh.t/

@t2
. Then we define the approximate solution of the structural problem

as a function t 2 Œ0; T � ! uh.t/ 2 V h such that there exist the time derivatives
u0
h.t/, u00

h.t/ and the identity

.%su00
h.t/;yh/�sh C .C%su0

h.t/;yh/�sh C ah.uh.t/;yh/ D .T nh.t/;yh/�W h ;

8yh 2 V h; 8t 2 .0; T /; (5.74)

and the initial conditions

uh.X; 0/ D 0; u0
h.X; 0/ D 0; X 2 �s

h: (5.75)

are satisfied.
The discrete problem (5.74), (5.75) is equivalent to the solution of a system of

ordinary differential equations. Let functions '1; : : : ; 'm represent a basis of the
space Vh. Then the system of r D 2m of the vector functions .'1; 0/, : : :, .'m; 0/,
.0; '1/, : : :, .0; 'm/ form a basis of the space V h. Let us denote them by '1; : : : ;'r .
Then the approximate solution uh can be expressed in the form

uh.t/ D
rX

jD1
pj .t/'j ; t 2 Œ0; T �: (5.76)

Let us set p.t/ D .p1.t/; : : : ; pr .t//
T . Using 'j ; j D 1; : : : ; r; as test functions in

(5.74), we get the following system of ordinary differential equations

Mp00 D G � Kp � CMp0; (5.77)

where M D .mij /
r
i;jD1 is the mass matrix and K D .kij /

r
i;jD1 is the stiffness matrix

with the elements mij D .�s'i ;'j /�sh and kij D ah.'i ;'j /�sh , respectively. The
aerodynamic force vector G D G .t/ D .G1.t/; : : : ; Gr.t//

T has the components
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Gi.t/ D .T nh.t/;'i /�W h ; i D 1; : : : ; r . System (5.77) is equipped with the initial
conditions

pj .0/ D 0; p0
j .0/ D 0; j D 1; : : : ; r: (5.78)

5.3.4 Time Discretization of the Structural Problem

The discrete initial value problem (5.77), (5.78) is solved by the Newmark method
[18]. We consider the partition of the time interval Œ0; T � formed by the time instants
tk D k�t with a time step �t introduced in Sect. 5.2.3. Let us set p0 D 0; z0 D
0;Gk D G .tk/, and introduce the approximations pk � p.tk/ and qk � p0.tk/ for
k D 1; 2; : : :. The Newmark scheme can be written in the form

pkC1 D pk C�tqk C�t2
�
ˇ
�
M

�1G kC1 � M
�1
KpkC1 � CqkC1

�
(5.79)

C
�
1

2
� ˇ

� �
M

�1G k � M
�1
Kpk � Cqk

� �
;

qkC1 D qk C�t

�


�
M

�1G kC1 � M
�1
KpkC1 � CqkC1

�
(5.80)

C .1 � 
/ �M�1G k � M
�1
Kpk � Cqk

� �
;

where ˇ; 
 2 R are parameters. From Eq. (5.80) we get

qkC1 D 1

1C C
�t

�
qk C�t

�


�
M

�1G kC1 � M
�1
KpkC1

�

C .1 � 
/
�
M

�1G k � M
�1
Kpk � Cqk

� ��
:

(5.81)

The substitution of (5.81) in (5.79) yields the relation

pkC1 D pk C�tqk C ˇ�t2
�
M

�1G kC1 � M
�1
KpkC1 � C

1C C
�t
qk

� C
�t

1C C
�t

�
M

�1G kC1 � M
�1
KpkC1

�

� C�t

1C C
�t
.1 � 
/ �M�1G k � M

�1
Kpk � Cqk

� �

C
�
1

2
� ˇ

�
�t2

�
M

�1G k � M
�1
Kpk � Cqk

�
:

(5.82)
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Then we find that

pkC1 D pk C�tqk � C�kqk C �k
�
M

�1G kC1 � M
�1
KpkC1

�

C
��

1

2
� ˇ

�
�t2 � C .1 � 
/ �k�t

� �
M

�1G k � M
�1
Kpk � Cqk

�
;

(5.83)

which can be written in the form

�
I C �kM

�1
K
�
pkC1 D pk C .�t � C�k/ qk C �kM

�1G kC1C

C
�
C .
 � 1/ �k�t C

�
1

2
� ˇ

�
�t2

� �
M

�1G k � M
�1
Kpk � Cqk

�
:

(5.84)

where we set for the sake of simplicity

�k D ˇ�t2
�
1 � C
�t

1C C
�t

�
D ˇ�t2

1C C
�t
: (5.85)

If pk and qk are known, then pkC1 is obtained from system (5.84) and afterwards
qkC1 is computed from (5.81).

In numerical examples presented in Sects. 5.7.2 and 5.10.2, the parameters ˇ D
1=4 and 
 D 1=2 were used. This choice yields the Newmark method of the second
order.

5.4 Coupled FSI Problems

In the previous sections, the flow and structural problems were considered sepa-
rately. In what follows, we shall be concerned with complete coupled FSI problems.

5.4.1 Coupled Problem of Incompressible Flow and Vocal Fold
Rigid Body Model

The flow model (5.9), (5.4) is coupled with the equation of motion (5.61) by
interface conditions. First, the boundary condition (5.4), (b) must be satisfied on
Q�W t , where the domain velocity is given by Eq. (5.6). Further, the aerodynamic
forces F 1; F 2 in (5.61) depend on the flow velocity v and the pressure p. The
forces F 1 and F 2 are computed with the aid of the aerodynamic lift force L and
the aerodynamic torsional momentM as

F 1.t/ D �L.t/
2

� 1

2l
M.t/; F 2.t/ D �L.t/

2
C 1

2l
M.t/; (5.86)
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Fig. 5.6 Stress tensor extrapolation from elements K adjacent to the boundary Q�W t

where l denotes the distance of the massesm1 andm2 from the center massm3 (see
Fig. 5.4b). The aerodynamic quantities are defined by

L.t/ D hs
Z
�W t

2X
jD1


f
2j nj dS; M.t/ D � hs

Z
�W t

2X
i;jD1


f
ij nj r

ort
i dS; (5.87)

where rort
1 D �.x2 � xC2/, rort

2 D x1 � xC1, .xC1; xC2/ D .0; L=2/ and the

components fij are defined by (5.2).
The evaluation of the lift L and the moment M at time t D tnC1 from the

approximate solution Uh D .vh; ph/ can be carried out in two ways.

Stress Tensor Extrapolation

One possibility is to compute the components fij of the stress tensor at time t D
tnC1 on the elements K 2 Th adjacent to the boundary Q�W t , extrapolate fij to Q�W t ,
see Fig. 5.6, and then to compute L andM by the integration along Q�W t .

This approach can be improved by using the idea of superconvergence of gradient
in the center of triangles, cf. [14,110]. It means that for any vertexA 2 Q�W t the value
of the stress tensor fij can be reconstructed using least squares approximation from
the patches of neighboring elements. See Fig. 5.7.

Weak Formulation of Lift Force

In this paragraph Q�W t represents again the interface between the structure and the
domain�t . The Navier–Stokes equations in the ALE form discretized with respect
to time at instant t WD tnC1 can be expressed component-wise as
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Fig. 5.7 Stress tensor extrapolation from the patches of elements adjacent to the point A of the
boundary Q�W t

�
3vi � 4 Ovni C Ovn�1

i

2
C �

�
.v � znC1/ � r� vi D

2X
jD1

@
f
ij

@xj
; (5.88)

in �t ; i D 1; 2:

Let us set

Q��W t D [fK 2 ThI K \ Q�W t ¤ ;g: (5.89)

This represents a one-layer strip around the vibrating body formed by finite
elements. Multiplying Eq. (5.88) with i D 2 by a function ' 2 Wh such that

'.x/ D 1 for x 2 Q�W t ; (5.90)

'.x/ D 0 outside the set Q��W t ;

integrating over ��W t , applying Green’s theorem to the terms with fij and finally,
writing the already known finite element approximations vh; vnh and vn�1

h instead
of the functions v; vn and vn�1, respectively, we arrive at the representation of the
force L:

L

hs
D �

Z
Q��W t

2
4�
�
3vh2 � 4 Ovnh2 C Ovh2

2
C ..vh � wnC1/ � r/vh2

�
'�

2X
jD1


f
2j

@'

@xj

3
5dx:

(5.91)

Let us remind that vh D .vh1; vh2/, Ovnh D . Ovnh1; Ovnh2/, etc. Using the vector-valued
function  D . 1;  2/ D ' .rort

1 ; r
ort
2 /, the aerodynamic moment M can be

computed as
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M

hs
D
Z

Q��W t

2
4�

�
3vh � 4 Ovnh C Ovh

2
C �

.vh�wnC1/ � r� vh
�

� �
2X

i;jD1

f
ij

@ i

@xj

3
5 dx:

(5.92)

5.4.2 Coupled Problem of Incompressible Flow Problem and
Elastic Structure

In the same way as in Sect. 5.3.2, by u D u.X; t/; X 2 �s; t 2 .0; T /, we denote
the displacement defining the deformation of the elastic body �s , which represents
the vocal folds. Then the common boundary Q�W t between the fluid and the structure
at time t is given by

Q�W t D ˚
x 2 R2I x D X C u.X; t/; �sW

�
: (5.93)

It means that the domain �t is determined by the displacement u of the part �sW
at time t . If we know the domain �t occupied by the fluid at time t , the flow
problem can be solved and the aerodynamic surface force acting on the body on
Q�W t can be determined by extrapolation. Then the transformation of the surface
force to the reference configuration, i. e., to the interface �sW is realized. In the case
of the linear elasticity model, when only small deformations are considered, we get
the transmission condition

2X
jD1

sij .X/ nj .X/ D �
2X

jD1

f
ij .x/ nj .X/; i; j D 1; 2; x 2 Q�W t ; X 2 �sW ;

(5.94)

where fij are the components of the fluid stress tensor given by (5.2) and the points
x and X satisfy the relation

x D X C u.X; t/; x 2 Q�W t ; X 2 �sW : (5.95)

By n.X/ D .n1.X/; n2.X// we denote the unit outer normal to the body �s on
�sW at the point X . Further, the fluid velocity is defined on the moving part of the
boundary �W t by the transmission condition

v.x; t/ D zW .x; t/ WD @u.X; t/
@t

; (5.96)

where the points x and X satisfy (5.95). (Of course, zW .x; t/ D 0 on �W t n Q�W t .)
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5.5 Construction of the ALE Mapping

An important concept in the analysis of flow in the time-dependent domain�t is the
ALE mapping. Various strategies for its construction can be found, cf., e.g., [20] and
[101]. Here we shall describe two possibilities, one based on analytical extension of
the deformation given by two degrees of freedom, and the other one based on a
linear elasticity analogy.

5.5.1 Analytical Definition of the ALE Mapping for Two
Degrees of Freedom

First, let us define the ALE mapping for the case of the known geometry of the
channel with vocal fold (see Fig. 5.8), which is displaced by the relation (5.34).
Here we present the method, which can be used for the case of the flexibly supported
structure with two degrees of freedom w1 and w2. In this case, the description of the
ALE mapping differs in three subdomains of the undeformed computational domain
�, subdomain �G (0 < X1 < L), pre-glottal subdomain �pre (X1 < 0) and post-
glottal subdomain�post (X1 > L), see Fig. 5.8. We define the vertical displacement
UG
2 as

UG
2 .X; t/ D 1

2l
Œ.L=2C l � X1/w1.t/C .X1 �L=2C l/w2.t/� : (5.97)

The displacement UG
2 is then extended to the computational domain by

U2.X; t/ D UG
2 .X; t/ �G.X/ �pre.X/ �post.X/ �base.X/; (5.98)

where the blending functions �G , �pre, �post, �base are defined as follows:

�G.X1;X2/ D
(

X2�a.X1/
X2;max�a.X1/ ; for X2 � a.X1/; X1 2 Œ0; L�;

1 otherwise,

�pre.X1;X2/ D
�

maxf0; .X1 C�L/=�Lg; for X1 < 0;
1 otherwise,

�post.X1;X2/ D
�

maxf0; .LC�L� X1/=�Lg; for X1 > L;
1 otherwise.
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Fig. 5.8 The detail of buffer zone

The function �post measures the distance from the vocal fold region to the pre- or
post-glottal part. Further, also the distance from the base of the vocal fold (X2 D 0)
can be used

�base.X1;X2/ D
(

�H0CX2
�H0

; for X2 < 0;

1 otherwise.

Finally the ALE mapping can be defined for any X D .X1;X2/ by

At .X1;X2/ D ŒX1;X2 C U2.X; t/� : (5.99)

An extension of this approach to more complicated situation, as elastic structure
deformation, is not possible. In the other approach, the ALE mapping can be
constructed as an extension of the displacement of the vocal fold surface at time
instant t given by At .X/ D X C u.X; t/, where X 2 Q�sW , u D .0; U G

2 .X; t// and
UG
2 .X; t/ is given by (5.97).

5.5.2 Artificial Elasticity Problem

In case of more complicated flow domains, the ALE mapping At can be determined
with the aid of an artificial stationary elasticity problem, where we seek d D
.d1; d2/ defined in �0 as a solution of the elastic system

2X
jD1

@aij

@Xj
D 0 in �0; i D 1; 2; (5.100)

where aij are the components of the artificial stress tensor

aij D �a divdıij C �aeaij .d/; eaij .d/ D 1

2

�
@di

@Xj
C @dj

@Xi

�
; i; j D 1; 2:

(5.101)
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The artificial Young modulus Ea and the artificial Poisson ratio �a can be derived
from Lamé coefficients �a and �a in the same way as in (2.11). The problem is
completed by the boundary conditions

d j�I[�O D 0; d j�W 0n�sW D 0; d.X; t/ D u.X; t/; X 2 �sW ; (5.102)

where u is the solution of the elasticity problem treated in Sect. 5.3.2.
The solution of the problem (5.100)–(5.102) gives us the ALE mapping of �0

onto�t in the form

At .X/ D X C d.X; t/; X 2 �0; (5.103)

for each time t .
System (5.100) is discretized by the conforming piecewise linear finite elements

on the mesh Th0 used for computing the flow field in the beginning of the
computational process in the polygonal approximation �h0 of the domain �0. We
introduce the finite element spaces

Xh D fdh D .dh1; dh2/ 2 C.�h0/
2I dhi jK 2 P1.K/ 8K 2 Th0; i D 1; 2g; (5.104)

Vh D f'h 2 XhI'h.Q/ D 0 for all verticesQ 2 @�0g;

and the form

Bh.dh;'h/ D
Z
�h0

�adivdh div'h dX C 2

Z
�h0

�a
2X

i;jD1
eaij .dh/ e

a
ij .'h/ dX:

(5.105)

The approximate solution of problem (5.100), (5.102) is defined as a function
dh 2 Xh satisfying approximately the Dirichlet boundary conditions (5.102) and
the identity

Bh.dh;'h/ D 0 8'h 2 Vh: (5.106)

Then the approximate ALE mapping Aht is given by (5.103) with d WD dh and
X 2 �hs:

Aht .X/ D X C dh.X; t/; X 2 �h0: (5.107)

The use of linear finite elements is sufficient, because we only need to know the
movement of the points of the mesh. The domain velocity is approximated by (5.10).

In our computations we choose the Lamé coefficients �a and �a as constants
corresponding to the Young modulus and Poisson ratio Ea D 10;000 and �a D
0:45.
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5.6 FSI Algorithms

For the solution of coupled FSI problems various strategies are applied. One
possibility is to use a de-coupled scheme (i.e., scheme, where both structural and
flow field are resolved separately, using only the information from the previous
time steps). However, such de-coupled schemes have only limited applicability.
Here we shall use more sophisticated methods based on weak (loose) or strong
coupling algorithms. In what follows, we shall describe these algorithms applied to
the simulation of vocal folds vibrations.

5.6.1 Algorithms for Interaction of Fluid Flow and Vibrating
Rigid Body

We consider the following coupled problem at time instant tnC1.

Problem 5.6.1 (Flow Interacting with Two Degrees of Freedom Vocal Fold).
Find the approximate flow velocity vnC1

h and pressure pnC1
h satisfying (5.25) on

an approximation of the domain �tnC1
, which is defined with the aid of the

approximation AhtnC1
of the ALE mapping given either by (5.99) or (5.106). The

domain velocity znC1
h is given by (5.10). The ALE mappingAnC1;h depends on wnC1

1

and wnC1
2 , where wnC1

1 , wnC1
2 , PwnC1

1 , PwnC1
2 satisfy (5.62), with the forces F

nC1
i given

by (5.86) evaluated at tnC1.

Weak Coupling

0. Initialization. Start from the approximations wni , Pwni , vnh, pnh , F
n

1 , F
n

2 at time tn
(as well as on previous time levels).

1. Extrapolation step. Extrapolate aerodynamic forces

F
nC1
i WD F i .tn/ � F i .tnC1/; i D 1; 2:

2. Structural step. Solve (5.62) for wnC1
1 and wnC1

2 .
3. Mesh step. Find the approximation of the ALE mapping AhtnC1

W �h0 7! �htnC1

at tnC1 given either by (5.99) or (5.106), and approximate the domain velocity
znC1
h by (5.10).

4. Fluid step. Solve (5.25) for the approximations of vnC1
h , pnC1

h on �htnC1
.

5. n WD nC 1, go to 1.

This algorithm can be sensitive to the choice of the time step and the structural
parameters. In order to make the computational process robust, the strong coupling
is applied.
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Strong Coupling

0. Initialization. Start from the approximations wni , Pwni , vnh, pnh , F
n

1 , F
n

2 known at
time tn (as well as on previous time levels).

1. Extrapolation step. Extrapolate aerodynamic forces

F
nC1
i WD F i .tn/ � F i .tnC1/; i D 1; 2:

2. Structural step. Solve (5.62) for wnC1
1 and wnC1

2 .
3. Mesh step. Find the approximation of ALE mapping AhtnC1

W �h0 7! �htnC1
at

tnC1 given either by (5.99) or (5.106), and approximate the domain velocity znC1
h

by (5.10).
4. Fluid step. Solve (5.25) for the approximations vnC1

h , pnC1
h on �htnC1

.
5. Aerodynamic forces. Using the approximations vnC1

h , pnC1
h , compute the

aerodynamic forces F
nC1
1 , F

nC1
2 .

6. Structural step. Solve (5.62) for QwnC1
1 and QwnC1

2 . Compute the difference " WDP2
iD1 j QwnC1

i � QwnC1
i j.

7. If the difference " is sufficiently small, go to 8. Else, set wnC1
1 WD QwnC1

1 , wnC1
2 WD

QwnC1
2 and go to 3.

8. n WD nC 1, go to 1.

In our computations, the strongly coupled scheme was used in order to guarantee
the stability of the computational process. Usually, if the time step is small enough,
only few iterations need to be computed.

5.6.2 Algorithms for Interaction of Fluid and Elastic Structure

In the case of the interaction of fluid and elastic structure we can formulate the
following continuous FSI problem: Our aim is to determine the domain �t , t 2
.0; T �, and functions v D v.x; t/; p D p.x; t/, x 2 �t , t 2 Œ0; T � and u D u.X; t/,
X 2 �

s
, t 2 Œ0; T � satisfying Eqs. (5.9), (5.66), the initial conditions (5.3), (5.67),

the boundary conditions (5.4), (5.69), and the transmission conditions (5.94), (5.96).
Here we consider the following discrete coupled problem at time tnC1.

Problem 5.6.2 (Flow Interacting with Elastic Structure). Find the approximate
flow velocity vnC1

h and pressure pnC1
h satisfying (5.25) on the approximation�htnC1

of the domain �tnC1
, which is defined by the approximation of the ALE mapping

AhtnC1
given by (5.106). Find unC1

h defined by (5.76) with pkC1 satisfying (5.84).
The domain velocity znC1

h is given by (5.10).
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Weak Coupling

1. Compute the approximate solution of the flow problem (5.9), (5.4) on the time
level tn.

2. Compute the corresponding fluid stress tensor fij and the aerodynamic force
acting on the structure and transform it to the interface �sW h by (5.94).

3. Solve the discrete elasticity problem (5.74)–(5.75) at time tn (by the Newmark
method) and compute the deformation unh at time tn. On the basis of (5.93) set

Q�W tnC1;h D fx D X C unh.X/I X 2 �W s
h
g; (5.108)

and determine the domain�htnC1
:

4. Determine the ALE mapping AhtnC1
by (5.107) and approximate the domain

velocity znC1
h by (5.10).

5. Set n WD nC 1, go to 1.

Strong Coupling

PrescribeN—maximal number of inner iterations and " > 0—maximal error in the
iterative process. Now proceed in the following way:

1. Assume that the approximate solution Un
h of the flow problem and the deforma-

tion unh of the structure are known on the time level tn:
2. Set u0h;nC1 WD unh; k WD 1 and apply the iterative process:

(a) Compute the fluid stress tensor fij and the aerodynamic force acting on the
structure and transform it to the interface �sW h.

(b) Solve the elasticity problem, compute the approximation of the deformation
ukh;nC1, and construct the approximation �k

htnC1
of the flow domain at time

tnC1.
(c) Determine the approximations of the ALE mapping Ak

htnC1
and the domain

velocity zkh;nC1.
(d) Solve the flow problem in �k

htnC1
and obtain the approximate solution

U k
h;nC1.

(e) If the variation jukh;nC1 � uk�1
h;nC1j � " and k < N , go to (a) and k WD k C 1.

Else �htnC1
WD �k

htn
; U nC1

h WD U k
h;nC1; unC1

h WD ukh;n; n WD n C 1 and go
to 2.
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Fig. 5.9 The considered geometry of the vocal folds for the female model F (left) and example of
the vocal fold in displaced position (right)

5.7 Numerical Examples

5.7.1 Interaction of Incompressible Flow with Rigid Body
Models of Vocal Folds

For the numerical analysis the following parameters were used. The distance of the
masses m1 and m2 from the center was l D L=2 (see Fig. 5.4b). The total mass
m of the vocal folds, the inertia moment I , and the eccentricity e were computed
using the vocal fold shape a.x/ and the material density �s D 1;020 kg m�3, length
(depth of the channel) hs D 18mm and thickness L D 6:8mm, see [39] for details.
The fluid density was �f D 1:2 kg m�3 and the dynamic viscosity � D 1:896 �
10�5 kg m�1 s�1.

The geometry of vocal folds depends on the tension in the vocal folds and varies
with the fundamental vibration frequency, loudness, and mode of phonation. For
the purposes of numerical analysis in this paper the geometry of the vocal folds
was chosen as linear function according to [40] as af .x/ D 0:77120x [m] (linear
shape, approximation of the vocal fold for female—model F) or the vocal fold with
intermediate bulging am.x/ D 1:858x � 159:861x2 [m] (parabolic shape, approx-
imation of the vocal fold for male—model M), see Figs. 5.9 and 5.10, respectively.
The channel half-height (at time t D 0) is chosen as H0 D maxx2Œ0;L� a.x/ C g0,
where g0 is the initial half-gap, i.e., g.0/ D 2g0. The considered initial half-gap was
chosen g0 D 0:25mm and g0 D 0:3mm for model F and model M, respectively.
In all computations the subglottal length L0 D 1:5L and the supra-glottal length
L2 D 5L were used. The computations were performed in the domains �t shown
in Fig. 5.11 with H0 D 5:54416mm and H0 D 5:7mm for model F and model M,
respectively.

Aeroelastic Simulations for Model F with Inlet Pressure Condition

First, the problem of interaction of air flow with aeroelastic model F was considered
with the inlet pressure boundary condition. The structural parameters and the
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Fig. 5.10 The considered geometry of the vocal folds for the male model M (left) and example of
the vocal fold in displaced position (right)
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Fig. 5.11 The computational domain �t for models F (above) and M (below) surrounding the
vocal fold shape given by af .x/ and am.x/, respectively. The lower shaded part is used for
computations assuming the symmetry boundary condition on the axis of symmetry

natural frequencies f1, f2 for the structure vibrating in vacuo are listed in Table 5.1.
The results are shown in Figs. 5.12 and 5.13, where the aeroelastic response
w1.t/, w2.t/ and the mean inlet velocity in dependence on time t are shown for
several prescribed pressure differences �p � 100�3;200Pa (the inlet velocity
V0 oscillated in the interval V0 � 0:55–3:13m s�1). In this range, the simplified
method in [40] predicted the aeroelastic instability of flutter type for the inlet
velocity Vcrit D 0:87m s�1, but in the mentioned paper the inlet/outlet velocity
formulation was used.
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Table 5.1 Structural
parameters considered for the
model F (female vocal fold)

Input data for model F

Shape af .x/ f1 (Hz) 100

m (kg) 3:274 � 10�4 f2 (Hz) 160

I (kg/m2) 1:341 � 10�9 c1 (N/m) 44:8

e (m) 1:133 � 10�3 c2 (N/m) 84:6

"1 (s�1) 120:35 "2 (s) 6:12 � 10�5
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Fig. 5.12 The mean inlet velocity oscillations (left column) and the aeroelastic response of the
system w1.t /, w2.t / (middle and right columns) for model F and the prescribed inlet pressure
boundary conditions. The inlet pressure was chosen (a) �p D 100 Pa, (b) �p D 200 Pa, (c)
�p D 400 Pa

The vibrations of the vocal fold in Figs. 5.12 and 5.13 dies out for all the values
of the inlet pressure with no significant decrease or increase of the aerodynamic
damping. Particularly, the aerodynamic damping is quite strong for all studied cases.
The aeroelastic instability was never observed for the physically relevant values
of the inlet pressure (values of �p up to 5;000Pa were tested). This behavior is
probably caused by “additional damping” effects due to the prescribed inlet pressure
boundary condition. Particularly, in Figs. 5.12 and 5.13 the inlet velocity oscillations
are shown, where the inlet velocity is increasing with a wider opening of the glottal
part g.t/ and similarly decreasing with a narrower enclosure of g.t/. The inlet
velocity oscillations (as well as consequently the flow rate oscillations) influence
the aerodynamic forces and are leading to damped vibrations of the structure.

Aeroelastic Simulations for Model F with Inlet Velocity Condition

The problem with the same input parameters used in previous section was also
numerically analyzed with the inlet velocity boundary condition.
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Fig. 5.13 The mean inlet velocity oscillations (left column) and the aeroelastic response of the
system w1.t /, w2.t / (middle and right columns) for model F and the prescribed inlet pressure
boundary conditions. The inlet pressure was chosen (a) �p D 800 Pa, (b) �p D 1;600 Pa, (c)
�p D 3;200 Pa
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Fig. 5.14 The aeroelastic response of the aeroelastic system for model F with the prescribed inlet
velocity; the graphs of w1.t /, w2.t / in dependence on time t are shown for the different inlet
velocities (a) V0 D 0:45m s�1 and (b) V0 D 0:55m s�1

The values of the inlet velocity V0 were considered in the range 0.2–0.7 m s�1
in order to detect the critical velocity for the flutter type of aeroelastic instability
leading to self-sustained vibrations of the vocal fold. The aeroelastic responses are
shown in Figs. 5.14 and 5.15 for the inlet flow velocities V0 D 0:45m s�1, V0 D
0:55m s�1, V0 D 0:6m s�1 and V0 D 0:65m s�1. For the velocities 0:45m s�1 and
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Fig. 5.15 The aeroelastic response of the aeroelastic system for model F with the prescribed inlet
velocity; the graphs of w1.t /, w2.t / in dependence on time t are shown for the different inlet
velocities (a) V0 D 0:6m s�1 and (b) V0 D 0:65m s�1

Table 5.2 Structural
parameters considered for the
model M (male vocal fold)

Input data for model M

Shape am.x/ f1 (Hz) 100

m (kg) 4:812 � 10�4 f2 (Hz) 160

I (kg/m2) 2:351 � 10�9 c1 (N/m) 56

e (m) 0:771 � 10�3 c2 (N/m) 174:3

"1 (s�1) 120:35 "2 (s) 6:12 � 10�5

0:55m s�1 the structural vibrations are damped in time and the aeroelastic system is
stable. Nevertheless, the aerodynamic damping for the velocity 0:55m s�1 is weaker
compared to the lower inlet velocity. With the further increase of the inlet velocity
to V0 D 0:6m s�1 the self-oscillations can be observed in Fig. 5.15a. For the inlet
velocity V0 D 0:65m s�1 the vibrations of the vocal folds are growing very fast
(see Fig. 5.15b). The simulation for V0 D 0:65m s�1 is only shown in the time
interval to 0:175 s, where the computations crashed due to the high distortion of the
computational mesh.

Aeroelastic Simulations for Model M

Furthermore, the aeroelastic model of flow interaction with the vocal fold given
by the parabolic shape am.x/ shown in Fig. 5.10 was analyzed. The structural
parameters are listed in Table 5.2 (see also [39,40]). The aeroelastic response w1.t/,
w2.t/ is shown in Figs. 5.16 and 5.17 and plotted over time in terms of displacements
for the inlet flow velocities V0 D 1:0–1:2m s�1. For the inlet velocities lower or
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Fig. 5.16 The response of the aeroelastic system for model M with the prescribed inlet velocity
boundary condition; the graphs of w1.t /, w2.t / in dependence on time t are shown for the different
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Fig. 5.17 The response of the aeroelastic system for model M with the prescribed inlet velocity
boundary condition; the graphs of w1.t /, w2.t / in dependence on time t are shown for the different
inlet velocities (a) V0 D 1:15m s�1 and (b) V0 D 1:2m s�1

equal to 1:1m s�1 the vocal fold oscillations die in time due to both structural and
aerodynamic damping. For the flow velocity V0 D 1:15m s�1 the self-oscillations
of the vocal folds were obtained.
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Fig. 5.18 Comparison of the flutter velocities computed by the FE method with the simplified
flow theory [39–41]

Fig. 5.19 Comparison of the subglottal pressures (phonation threshold pressures—PTP) com-
puted by the FE method with the simplified flow theory [39–41]

Simulation examples of the flow velocity distribution in the glottis during the
aeroelastic instability for V0 D 1:5m s�1 are shown in Figs. 5.21, 5.22 at several
time instants marked in the graph of w1.t/ and w2.t/. The maximal flow velocities
in the channel are increasing when the glottal gap is becoming narrower, i.e., for
high values of w2.t/; the maximum flow velocity in the glottal gap is lower than
40m s�1, which is in agreement with reality. Small changes in the position of the
flow separation point on the vocal fold surface can be also detected in the flow field
patterns in the glottal gap (see, e.g., the details in Fig. 5.22 at the time t4 and t5).

Comparison of the Results with Simplified Theory

The results obtained by the developed numerical method based on the FE solution
of the 2D Navier–Stokes equations are compared with the results computed by the
perturbation theory for 1D potential flow model [40] in Figs. 5.18, 5.19, and 5.20.
The computed flutter airflow velocities V0;flutter, the pressure drop �pflutter, i.e., the
so-called phonation threshold pressures (PTP), and the flutter frequencies F0, i.e.,
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Fig. 5.20 Comparison of the flutter (phonation) frequencies computed by the FE method with the
simplified flow theory [39–41]
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Fig. 5.21 The aeroelastic response w1.t /, w2.t / for model M for the inlet velocity 1:5m s�1

the so-called fundamental phonation frequencies, are shown in dependence on the
prephonatory glottal half gap g0 for the male and female models of the vocal folds.
The computed results: V0;flutter � 0:5–4m s�1 (corresponding to the flow rates
0:1 � 0:9 l/s), �pflutter � 100–700Pa and F0 � 130–150Hz are in physiologically
relevant intervals for the phonation threshold in humans; the values for V0;flutter and
�pflutter for the female model are lower than for the male model and the opposite
is valid for the phonation frequencies; the computed values V0;flutter and �pflutter

increase with the prephonatory glottal half-gap g0 (see, e.g., [10, 41, 42]).
In general, the flutter velocities V0;flutter resulting from the FE simulations

are lower than the flutter velocities computed according to the simplified theory
presented in [40]. These differences (see Fig. 5.18) can be explained by the
fluid viscosity considered in the FE simulations because the developed boundary
layer on the surface of the vocal fold model results in narrowing of the glottal
gap g0. The second reason can be the position of the flow separation point
which was in [40] artificially fixed at the vocal fold supraglottal edge, however,
according to the FE computations the flow separation point was slightly moving
(see Figs. 5.21, 5.22). These differences are smaller for the female model because
the triangle shape satisfies better the conditions used in the simplified theory. The
difference between the FE results and the results of the simplified theory [40] for the
critical pressure drops �pflutter and the flutter frequencies F0 is much smaller (see
Fig. 5.20).
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Fig. 5.22 The flow velocity isolines in the channel for model M for the inlet velocity 1:5m s�1

(top panel) with details in the glottal gap (bottom panel) shown at time instants t1, t2, t4, and t5
marked in the graphs of w1.t / and w2.t / in Fig. 5.21

5.7.2 Interaction of Incompressible Flow with Elastic Model of
Vocal Folds

Here we present numerical results obtained with the aid of the coupling of
incompressible flow with the elasticity model described in Sect. 5.4.2. We consider
model of human vocal folds and a simplified vocal tract, see also [47]. The vocal
folds are isotropic bodies represented by the set �s , which have different material
characteristics in different subdomains (see Fig. 5.23 and Table 5.3). The material
density �s D 1;040 kg m�3 for all subdomains. The domain �t is occupied by
air at time t . By Q�W t we denote the movable common part of both domains.
The other parts of the boundary are fixed. The method for the solution of the
coupled air flow and elasticity problem use the same time step  D 5 � 10�5 s. The
computational process started by the solution of the flow problem in the domain
�t˛ at the initial time t˛ D �10�4 s. We use the data � D 1:755 � 10�5 kg m�1 s�1,
%f D 1:17 kg m�3, initial velocity v0 D 0. The boundary conditions on the walls
of the channel are zero for impermeable fixed parts and on the elastic boundary
are given by the domain velocity, (5.4) (b). On the inlet and outlet the boundary
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Fig. 5.23 The model of vocal fold

Table 5.3 Material
characteristics

Subdomain Es �s

�s
1 100;000 0:4

�s
2 12;000 0:4

�s
3 8;000 0:4

�s
4 1;000 0:495

conditions (5.4)(d) and (5.5) are used with the pressure drop�p D pinlet D 600 Pa,
pref D 0 Pa.

At time t D 0 the structure was released and the solution of the complete FSI
started. As for the domain �s , we distinguish subdomains with different material
characteristics.

The part of the boundary �sD is fixed, i.e., u0 D 0. On the other part of boundary
�sW we prescribe the conditions for the movable boundary. We shall retrieve the
surface forces T n by solving the fluid flow problem. We neglect the outer forces
and prescribe the initial displacement and the deformation velocity u0 D 0, z0 D 0,
in �s .

Figures 5.24 and 5.25 show the computed velocity of fluid flow and the
displacement of the computational domain at several time instants. Figure 5.26
shows the horizontal and vertical displacement of a sensor point.

In another example we consider the model of human vocal folds and the vocal
tract as in [48]. In this case, the vocal folds have different material characteristics in
three different subdomains. The material density %s D 1;040 kg m�3 is constant over
all subdomains, but the values of the Young modulusEs and the Poisson ratio �s are
variable, see Table 5.4 and Fig. 5.27. We use the same time step  D 5 �10�5 s for the
solution of the coupled flow and elasticity problem and the input data � D 1:755 �
10�5 kg m�1 s�1, %f D 1:17 kg m�3, structural damping coefficient C D 0:1 s�1,
the initial velocity v0 D 0m s�1. Similarly as in the previous example, on the inlet
and outlet the boundary conditions (5.4)(d) and (5.5) are used with the pressure drop
�p D pinlet D 600 Pa, pref D 0 Pa.

The computational process started by the solution of the flow problem in the
domain �t0 at the initial time t˛ D �10�4 s. At time t D 0 the structure was
released and the solution of the complete FSI started.
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Fig. 5.24 Flow velocity isolines at time instants t D 0:00125 and 0.025 s

Fig. 5.25 Flow velocity isolines at time instants t D 0:05275 and 0.5375 s
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Fig. 5.26 Horizontal and vertical displacement of a point with the initial position [0.008, 0.001]
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Table 5.4 Material
characteristics for the second
considered case

Subdomain E �

�s
1 25;000 0:49

�s
2 65;000 0:4

�s
3 8;000 0:49

Fig. 5.27 Vocal folds model with three types of the tissue for epithelium (�s
1), muscle (�s

2), and
ligament (�s

3)

Fig. 5.28 Streamlines at time instants t D 0:005, 0.0425, 0.04615, 0.0597 and 0.0605 s

Figure 5.28 shows streamlines and the deformation of the computational domain
at several time instants, when the vibrating vocal folds are nearly closing the channel
creating a pulsating jet, and large eddies traveling behind the glottis to the outlet end
of the channel, similarly as in the previous example.
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5.8 Interaction of Compressible Flow with Elastic Structure

In the numerical solution of compressible flow it is necessary to overcome diffi-
culties caused by nonlinear convection dominating over diffusion, which leads to
sharp boundary layers and wakes for large Reynolds numbers, shock waves and
contact discontinuities for high Mach numbers and instabilities caused by acoustic
effects for low Mach numbers. There are various numerical techniques for the
solution of a compressible flow—see, e.g., [31]. It appears that a suitable numerical
method for the solution of a compressible flow, which overcomes successfully
the abovementioned obstacles, is the DGFEM. It employs piecewise polynomial
approximations without any requirement on the continuity on interfaces between
neighboring elements. The theory of the DGFEM is treated in a number of works
devoted to the solution of scalar equations. Let us mention, e.g., [7, 8] concerned
with linear elliptic problems. The DGFEM applied to nonlinear parabolic problems
is analyzed, for example, in [6, 25].

The DGFEM was used for the numerical simulation of the compressible
Euler equations, for example, by Bassi and Rebay in [11], where the space DG
discretization was combined with explicit Runge–Kutta time discretization. In [12]
Baumann and Oden describe an hp version of the space DG discretization with
explicit time stepping applied to compressible flow. Van der Vegt and van der
Ven apply space–time discontinuous Galerkin method to the solution of the Euler
equations in [98], where the discrete problem is solved with the aid of a multigrid
accelerated pseudo-time-integration. The papers [24, 32], and [23] are concerned
with a semi-implicit DG unconditionally stable technique for the solution of an
inviscid and viscous compressible flow. In [30], this method was extended so
that the resulting scheme is robust with respect to the magnitude of the Mach
number.

In this section we describe the numerical technique for the solution of the
compressible Navier–Stokes equations in time-dependent domains. The main ingre-
dients of the method is the discontinuous Galerkin space semidiscretization of the
Navier–Stokes equations written in the ALE form, semi-implicit time discretiza-
tion, suitable treatment of boundary conditions so that they are transparent for
acoustic waves at the inlet and outlet and the shock capturing avoiding Gibbs
phenomenon at discontinuities. First, the numerical experiments were carried
out for a compressible flow in a channel representing a model of a part of
the vocal tract, with a prescribed motion of the channel walls. They prove the
stability and robustness of the method and its applicability to complicated fluid–
structure problems. Then the DGFEM solution of compressible flow is coupled
with dynamic elasticity problem and applied to the flow-induced vocal folds
vibrations.



5 Numerical Simulation of Fluid–Structure Interaction Problems with. . . 371

5.8.1 Compressible Navier–Stokes Equations

We consider compressible flow in a bounded domain �t � R2 depending on time
t 2 Œ0; T �. Let the boundary of�t consist of three different parts: @�t D �I [�O [
�Wt , where �I is the inlet, �O is the outlet, and �W t denotes the impermeable walls
that may move in dependence on time.

The system describing compressible flow consisting of the continuity equation,
the Navier–Stokes equations, and the energy equation can be written in the form

@w
@t

C
2X
sD1

@fs.w/
@xs

D
2X
sD1

@Rs.w;rw/
@xs

; (5.109)

where

w D .w1; : : : ;w4/
T D .�; �v1; �v2; E/

T 2 R4; (5.110)

w D w.x; t/; x 2 �t ; t 2 .0; T /;
fi .w/ D .fi1; : : : ; fi4/

T D .�vi ; �v1vi C ı1i p; �v2vi C ı2i p; .E C p/vi /
T ;

Ri .w;rw/ D .Ri1; : : : ; Ri4/
T D �

0; Vi1 ; 
V
i2; 

V
i1 v1 C Vi2 v2k@�=@xi

�T
;

Vij D � divv ıij C 2�dij .v/; dij .v/ D 1

2

�
@vi

@xj
C @vj

@xi

�
:

We use the following notation: �—density, p—pressure, E—total energy, v D
.v1; v2/—velocity, �—absolute temperature, 
 > 1—Poisson adiabatic constant,
cv > 0—specific heat at constant volume, � > 0; � D �2�=3—viscosity
coefficients, k > 0—heat conduction. The vector-valued function w is called the
state vector, the functions fi are the so-called inviscid fluxes, Ri represent the
viscous terms, and Vij are the components of the viscous part of the fluid stress
tensor.

The above system is completed by the thermodynamic relations

p D .
 � 1/.E � �jvj2=2/; � D
�
E

�
� 1

2
jvj2

�ı
cv: (5.111)

The complete system is equipped with the initial condition

w.x; 0/ D w0.x/; x 2 �0; (5.112)

and the following boundary conditions:

(a) �j�I D �I ; (b) vj�I D vI D .vI1; vI2/
T; (5.113)
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(c)
2X

i;jD1
Vij nivj C k

@�

@n
D 0 on �I ; (5.114)

(a) vj�W t D zW D velocity of the moving wall; (5.115)

(b)
@�

@n
j�W t D 0 on �W t ;

(a)
2X
iD1

Vij ni D 0; j D 1; 2; (b)
@�

@n
D 0 on �O: (5.116)

Here w0; �I ; vI and zW D .zW1; zW 2/ are prescribed functions.

5.8.2 ALE Form of Compressible Navier–Stokes Equations

Similarly as in Sect. 5.2.2 we shall apply the ALE method to the formulation of flow
in the domain�t . By (5.8), we have

DAf

Dt
D @f

@t
C div .zf /� f div z; (5.117)

which allows us to write the compressible Navier–Stokes equations (5.109) in the
ALE form

DAw
Dt

C
2X
sD1

@gs.w/
@xs

C w divz D
2X
sD1

@Rs.w;rw/
@xs

; (5.118)

where

gs.w/ WD fs.w/� zsw; s D 1; 2;

are the ALE modified inviscid fluxes. We see that in the ALE formulation of the
compressible Navier–Stokes equations the time derivative @w=@t is replaced by the
ALE derivative DAw=Dt , the inviscid fluxes fs are replaced by the ALE modified
inviscid fluxes gs , and a new additional “reaction” term w divz appears.

5.9 Discretization of Viscous Compressible Flow

In what follows, the viscous compressible flow problem will be discretized in space
and time.
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5.9.1 Discontinuous Galerkin Space Semidiscretization

For the space semidiscretization we use the DFGEM. We construct a polygonal
approximation �ht of the domain �t . By Tht we denote a partition of the closure
�ht of the domain �ht into a finite number of closed triangles K with mutually
disjoint interiors such that�ht D S

K2Tht K .
By Fht we denote the system of all faces of all elements K 2 Tht . Further,

we introduce the set of all interior faces F I
ht D f� 2 Fht I � � �g, the set of

all boundary faces FB
ht D f� 2 Fht I � � @�ht g, and the set of all “Dirichlet”

boundary faces FD
ht D ˚

� 2 FB
ht I a Dirichlet condition is prescribed on �

�
. Each

� 2 F is associated with a unit normal vector n� to � . For � 2 FB
ht the normal

n� has the same orientation as the outer normal to @�ht . We set d.�/ D length of
� 2 Fht .

For each � 2 F I
ht there exist two neighboring elements K.L/

� ;K
.R/
� 2 Th such

that � � @K
.R/
� \ @K

.L/
� . We use the convention that K.R/

� lies in the direction

of n� and K.L/
� lies in the direction opposite to n� . The elements K.L/

� ; K
.R/
� are

called neighbors. If � 2 FB
ht , then the element adjacent to � will be denoted by

K
.L/
� .
The approximate solution will be sought in the space of discontinuous piecewise

polynomial functions

Sht D ŒSht �
4; with Sht D fvI vjK 2 Pr.K/ 8K 2 Tht g; (5.119)

where r � 0 is an integer and Pr.K/ denotes the space of all polynomials on K of
degree � r . A function ' 2 Sht is, in general, discontinuous on interfaces � 2 F I

ht .

By '.L/� and'.R/� we denote the values of' on� considered from the interior and the

exterior ofK.L/
� ; respectively, and set h'i� D .'

.L/
� C'.R/� /=2, Œ'�� D '

.L/
� �'.R/� .

The discrete problem is derived in the following way: We

– multiply system (5.118) by a test function 'h 2 Sht ,
– integrate overK 2 Tht ,
– use Green’s theorem,
– sum over all elements K 2 Tht ,
– introduce the concept of the numerical flux,
– introduce suitable terms vanishing for a regular exact solution.

In this way we get the following identity:

X
K2Tht

Z
K

DAw
Dt

� 'h dx C bh.w;'h/C ah.w;'h/C Jh.w;'h/C dhw;'/ (5.120)

D `h.w;'h/:
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Here

bh.w;'h/ D �
X
K2Tht

Z
K

2X
sD1

gs.w/ � @'h
@xs

dx (5.121)

C
X
�2F I

ht

Z
�

Hg.w
.L/
� ;w.R/� ;n�/ � Œ'h�� dS

C
X
�2FB

ht

Z
�

Hg.w
.L/
� ;w.R/� ;n�/ � '.L/h� dS

is the convection form, defined with the aid of a numerical flux Hg. We require
that it is consistent with the fluxes gs: Hg.w;w;n/ D P2

sD1 gs.w/ns .n D
.n1; n2/; jnj D 1/, conservative: Hg.u;w;n/ D �Hg.w;u;�n/, and locally
Lipschitz-continuous.

Further, we define the viscous form

ah.w;'h/ D
X
K2Tht

Z
K

2X
sD1

Rs.w;rw/ � @'h
@xs

dx (5.122)

�
X
�2F I

ht

Z
�

2X
sD1

hRs.w;rw/i�.n�/s � Œ'h�� dS

�
X
�2FD

ht

Z
�

2X
sD1

Rs.w;rw/.n�/s � '.L/h� dS

(we use the incomplete discretization of viscous terms—the so-called IIPG version),
the interior and boundary penalty terms and the right-hand side form, respec-
tively, by

Jh.w;'h/ D
X
�2F I

ht

Z
�

�Œw� � Œ'h�� dS C
X
�2FD

ht

Z
�

�w � '.L/h� dS; (5.123)

`h.w;'h/ D
X
�2FD

ht

Z
�

2X
sD1

�wB � '.L/h� dS: (5.124)

Here � j� D CW �=d.�/ and CW > 0 is a sufficiently large constant. The “reaction”
form reads

dh.w;'h/ D
X
K2Tht

Z
K

.w � 'h/ divz dx: (5.125)
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The boundary state wB is defined on the basis of the Dirichlet boundary
conditions and extrapolation:

wB D .�I ; �I vI1; �I vI2; cv�I �
.L/
� C 1

2
�I jvI j2/ on �I ; (5.126)

wB D w.L/� on �O;

wB D .�
.L/
� ; �

.L/
� zW1; �

.L/
� zW 2; cv�

.L/
� �

.L/
� C 1

2
�
.L/
� jzW j2/ on �W t :

The approximate solution is defined as wh.t/ 2 Sht such that

X
K2Tht

Z
K

DAwh.t/
Dt

� 'h dx C bh.wh.t/;'h/C ah.wh.t/;'h/

C Jh.wh.t/;'h/C dh.wh.t/;'h/ D `h.wh.t/;'h/

(5.127)

holds for all 'h 2 Sht , all t 2 .0; T /, and wh.0/ D w0h is an approximation of the
initial state w0.

5.9.2 Time Discretization by the BDF Method

Let us construct a partition 0 D t0 < t1 < t2 � � � of the time interval Œ0; T � with
tk D k�t and time step �t . We use the approximations wh.tn/ � wnh 2 Shtn ,
z.tn/ � zn; n D 0; 1; : : : and introduce the function Owkh D wkh ı Atk ı A�1

tkC1
, which

is defined in the domain�htkC1
. In order to approximate the ALE derivative at time

tkC1, we start from its definition (5.7) and then use the backward difference:

DAwh
Dt

.x; tkC1/ D @ Qwh
@t
.X; tkC1/

� QwkC1
h .X/ � Qwkh.X/

k
D wkC1

h .x/ � Owkh.x/
k

; x D AtkC1
.X/ 2 �htkC1

:

(5.128)

By the symbol .�; �/ we shall denote the scalar product in L2.�htkC1
/. A possible

full discretization reads

.a/ wkC1
h 2 ShtkC1

; (5.129)

.b/

 
wkC1
h � Owkh
k

;'h

!
C bh.wkC1

h ;'h/C ah.wkC1
h ;'h/
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CJh.wkC1
h ;'h/C dh

�
wkC1
h ;'h

�
D `h.wkC1

h ;'h/

8'h 2 ShtkC1
; k D 0; 1; : : : :

However, this problem for wkC1
h is equivalent to a strongly nonlinear algebraic

system and its solution is rather difficult.

5.9.3 Semi-implicit BDF Scheme

Our goal is to develop a numerical scheme which would be accurate and robust, with
good stability properties and efficiently solvable. Therefore, we proceed similarly to
[24] and use a partial linearization of the forms bh and ah. This approach leads to
a scheme that requires the solution of only one large sparse linear system on each
time level.

The linearization of the first term of the form bh is based on the relations

gs.w
kC1
h / D .As.wkC1

h / � zkC1
s I/wkC1

h � .As. Owkh/� zkC1
s I/wkC1

h ;

where As.w/ is the Jacobi matrix of fs.w/, cf. [31]. The second term of bh is
linearized with the aid of the Vijayasundaram numerical flux (cf. [100]) defined
in the following way. Taking into account the definition of gs , we have

Dgs.w/
Dw

D Dfs.w/
Dw

� zsI D As.w/� zsI; (5.130)

and we can write

Pg.w;n/ D
2X
sD1

Dgs.w/
Dw

ns D
2X
sD1

.As.w/ns � zsnsI/ : (5.131)

By [31], this matrix is diagonalizable. It means that there exists a nonsingular matrix
T D T.w;n/ such that

Pg D TI�T�1; I� D diag.�1; : : : ; �4/; (5.132)

where �i D �i.w;n/ are the eigenvalues of the matrix Pg. Now we define the
“positive” and “negative” parts of the matrix Pg by

Pġ D TI�˙
T

�1; I�˙ D diag.�1̇ ; : : : ; �4̇ /; (5.133)

where �C D max.�; 0/; �� D min.�; 0/. Using the above concepts, we introduce
the modified Vijayasundaram numerical flux (cf. [100] or [31]) as
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H g.wL;wR;n/ D P
C
g

�
wL C wR

2
;n

�
wL C P

�
g

�
wL C wR

2
;n

�
wR: (5.134)

Using the above definition of the numerical flux, we introduce the approximation

Hg.w
kC1.L/
h� ;wkC1.R/

h� ;n�/ � P
C
g .h Owkhi�;n�/wkC1.L/

h� C P
�
g .h Owkhi�;n�/ Owk.R/h� :

In this way we get the form

Obh. Owkh;wkC1
h ;'h/ (5.135)

D �
X

K2ThtkC1

Z
K

2X
sD1

��
As. Owk.x// � zkC1

s .x/I
�

wkC1.x/
�

� @'h.x/
@xs

dx;

C
X

�2F I
htkC1

Z
�

�
P

C
g

�˝ Owkh˛;n��wkC1.L/
h C P

�
g

�˝ Owkh˛;n��wkC1.R/
h

�
� Œ'h� dS

C
X

�2FB
htkC1

Z
�

�
P

C
g

�˝ Owkh˛;n��wkC1.L/
h C P

�
g

�˝ Owkh˛;n�� Owk.R/h

�
� 'h dS:

The linearization of the form ah is based on the fact that Rs.wh;rwh/ is linear
in rw and nonlinear in w. We get the linearized viscous form

Oah. Owkh;wkC1
h ;'h/ D

X
K2ThtkC1

Z
K

2X
sD1

Rs. Owkh;rwkC1
h / � @'h

@xs
dx (5.136)

�
X

�2F I
htkC1

Z
�

2X
sD1

˝
Rs. Owkh;rwkC1/

˛
.n�/s � Œ'h� dS

�
X

�2FD
htkC1

Z
�

2X
sD1

Rs. Owkh;rwkC1
h /.n�/s � 'h dS:

5.9.4 Realization of the Boundary Conditions

If � 2 FB
ht , it is necessary to specify the boundary state Owk.R/h� appearing in

the definition of the inviscid form Obh. For simplicity we shall use the notation
w.R/ for values of the function Owk.R/h� which should be determined at individual

integration points on the face � . Similarly, w.L/ will denote the values of Owk.L/h�

at the corresponding points.
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On the inlet and outlet, which are assumed fixed, we proceed in the same way as
in [30], Sect. 4. Using the rotational invariance, we transform the Euler equations

@w
@t

C
2X
sD1

@fs.w/
@xs

D 0

to the coordinates Qx1, parallel with the normal direction n D .n1; n2/ D n� to the
boundary, and Qx2, tangential to the boundary, neglect the derivative with respect to
Qx2 and linearize the system around the state q.L/ D Q.n/w.L/, where

Q.n/ D

0
BB@
1; 0; 0; 0

0; n1; n2; 0

0; �n2; n1; 0
0; 0; 0; 1

1
CCA (5.137)

is the rotational matrix. Then we obtain the linear system

@q

@t
C A1.q

.L//
@q

@ Qx1 D 0 (5.138)

for the transformed vector-valued function q D Q.n/w, considered in the set
.�1; 0/ � .0;1/ and equipped with the initial and boundary conditions

q. Qx1; 0/ D q.L/; Qx1 < 0; and q.0; t/ D q.R/; t > 0: (5.139)

The goal is to choose q.R/ in such a way that this initial-boundary value problem
is well posed, i.e., has a unique solution. The method of characteristics leads to the
following process:

Let us put q� D Q.n/w�, where w� is a given boundary state at the inlet or outlet.
We calculate the eigenvectors r s corresponding to the eigenvalues �s; s D 1; : : : ; 4,
of the matrix A1.q

.L//, arrange them as columns in the matrix T and calculate T
�1.

Now we set

˛ D T
�1q.L/; ˇ D T

�1q� (5.140)

and define the state q.R/ by the relations

q.R/ WD
4X
sD1


srs; 
s D
�
˛s; �s � 0;

ˇs; �s < 0:
(5.141)

Finally, the sought boundary state w.R/ is defined as

w.R/ D Q
�1.n/q.R/: (5.142)
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On the impermeable moving wall we prescribe the normal component of the
velocity

v � n D zW � n; (5.143)

where n is the unit outer normal to �Wt and zW is the wall velocity. This means
that two eigenvalues of Pg.w;n/ vanish, one is positive and one is negative. Then,
in analogy to [31, Sect. 3.3.6], we should prescribe one quantity, namely v � n, and
extrapolate three quantities—tangential velocity, density, and pressure.

However, here we define the numerical flux on �Wt as the physical flux through
the boundary with the assumption (5.143) taken into account. Thus, on �Wt we write

2X
sD1

gs.w/ns D .v � n � zW � n/w C p .0; n1; n2; v � n/T (5.144)

D p .0; n1; n2; zW � n/T DW H g:

5.9.5 Stabilization by the Local Artificial Viscosity

In high-speed inviscid gas flow with large Mach numbers, discontinuities—called
shock waves or contact discontinuities—appear. In viscous high-speed flow these
discontinuities may be smeared due to viscosity and heat conduction. In both cases,
near shock waves and contact discontinuities, the so-called Gibbs phenomenon,
manifested by nonphysical spurious overshoots and undershoots, usually occurs in
the numerical solution. The same phenomenon appears in the boundary layer in the
case of a large Reynolds number. In order to avoid this undesirable phenomenon, it
is necessary to apply a suitable stabilization procedure. Here we use the approach
proposed in [30] using a local artificial viscosity. It is based on the discontinuity
indicator

gk.K/ D
Z
@K

Œ O�kh�2 dS
ı
.hK jKj3=4/; K 2 ThtkC1

; (5.145)

introduced in [26]. By Œ O�hh� we denote the jump of the function O�kh on the boundary
@K and jKj denotes the area of the element K . Then we define the discrete
discontinuity indicator

Gk.K/ D 0 if gk.K/ < 1; Gk.K/ D 1 if gk.K/ � 1; K 2 ThtkC1
;

(5.146)

and the artificial viscosity forms
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Ǒ
h. Owkh;wkC1

h ;'h/ D �1
X

K2ThtkC1

hKG
k.K/

Z
K

rwkC1
h � r'h dx (5.147)

and

OJh. Owkh;wkC1
h ;'h/ (5.148)

D �2
X
�2F I

ht

1

2

�
Gk.K

.L/
� /CGk.K

.R/
�

� Z
�

ŒwkC1
h � � Œ'h� dS

with parameters �1; �2 D O.1/.
It is important that the indicator Gk.K/ vanishes in regions where the solution

is regular and the artificial viscosity is applied only locally in the vicinity of
discontinuities or steep gradients. Therefore, the numerical solution does not lose
the accuracy in regions, where the exact solution is regular and, moreover, it does
not contain any nonphysical entropy production in these regions.

The complete resulting scheme has the following form:

.a/ wkC1
h 2 ShtkC1

; (5.149)

.b/

 
wkC1
h � Owkh
k

;'h

!

C Obh. Owkh;wkC1
h ;'h/C Oah. Owkh;wkC1

h ;'h/

CJh.wkC1
h ;'h/C dh

�
wkC1
h ;'h

�

C Ǒ
h. Owkh;wkC1

h ;'h/C OJh. Owkh;wkC1
h ;'h/ D `.wkB;'/

8'h 2 ShtkC1
; k D 0; 1; : : : :

The above scheme is of the first-order accuracy in time. The linearized second-
order scheme can be written in the form

�3wkC1
h � 4 Owkh C Owk�1

2�t
;'h

�
C Obh.wkC1

h ;wkC1
h ;'h/C Oah.wkC1

h ;wkC1
h ;'h/

C Jh.wkC1
h ;'h/C dh.wkC1

h ;'h/C Ǒ
h. Owkh;wkC1

h ;'h/

C OJh. Owkh;wkC1
h ;'h/ D `.wkC1

B ;'h/; 8'h 2 ShtkC1
; (5.150)

where

wkC1
h D 2 Owkh � Owk�1

h ; wkC1
B D 2 OwkB � Owk�1

B : (5.151)
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In practical computations, integrals appearing in the definitions of the forms
Oah; Obh; : : : are evaluated with the aid of quadrature formulae.

The linear algebraic system equivalent to (5.149) or (5.150) is solved by a
direct solver UMFPACK [19] or by the GMRES method with a block diagonal
preconditioning.

5.9.6 Coupling Procedure

Similarly as in the case of incompressible flow, in the solution of the complete
coupled FSI problem we apply the coupling algorithms.

Weak Coupling

1. Compute the approximate solution wnh of the compressible flow problem on the
time level tn (from (5.149) or (5.150)).

2. Compute the corresponding fluid stress tensor fij and the aerodynamic force
acting on the structure and transform it to the interface �sW h by (5.94).

3. Solve the elasticity problem (5.74)–(5.75) and compute the deformation unh at
time tn. On the basis of (5.93) set

Q�W tnC1;h D fx D X C unh.X/I X 2 �sW hg; (5.152)

and determine the domain�tnC1;h:

4. Determine the ALE mapping AhtnC1
by (5.106) and approximate the domain

velocity znC1
h by (5.10).

5. Set n WD nC 1, go to 1.

Strong Coupling

Prescribe N -maximal number of inner iterations and " > 0-maximal error in the
iterative process. Now proceed in the following way:

1. Assume that the approximate solution wnh of the compressible flow problem and
the deformation unh of the structure are known on the time level tn:

2. Set u0h;nC1 WD unh; k WD 1 and apply the iterative process:

(a) Compute the fluid stress tensor fij and the aerodynamic force acting on the
structure and transform it to the interface �sW h.

(b) Solve the elasticity problem, compute the approximation of the deformation
ukh;nC1, and construct the approximation �k

htnC1
of the flow domain at time

tnC1.
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Fig. 5.29 Computational domain (cf. [64])

(c) Determine the approximations of the ALE mapping Ak
htnC1

and the domain

velocity zkh;nC1.
(d) Solve the flow problem in �k

htnC1
and obtain the approximate solution

wkh;nC1.
(e) If the variation jukh;nC1 � uk�1

h;nC1j � " and k < N , go to (a) and k WD k C 1.

Else �htnC1
WD �k

htn
; wnC1

h WD wkh;nC1; unC1
h WD ukh;n; n WD nC 1 and go to

2.

5.10 Numerical Results Obtained by the Discontinuous
Galerkin Method

5.10.1 Flow in a Channel with Prescribed Motion of Walls

Here we present results of numerical experiments carried out for the flow in a
channel with geometry inspired by the shape of the human glottis and a part of
supraglottal spaces as shown in Fig. 5.29. The walls are moving in order to mimic
the vibrations of vocal folds during the voice production. The lower channel wall
between the points A and B and the upper wall symmetric with respect to the axis
of the channel are vibrating up and down periodically with frequency 100 Hz. This
movement is interpolated into the domain resulting in the ALE mapping At . For
the same geometry and similar data the computation was also carried out in [64]
with the use of the finite volume method and assuming the symmetry of the flow
field.

The width of the channel at the inlet (left part of the boundary) is H D 0:016m
and its length is L D 0:16m. The width of the narrowest part of the channel (at the
point C) oscillates between 0.0004 and 0.0028 m. We consider the following input
parameters and boundary conditions: magnitude of the inlet velocity vin D 4m s�1,
the viscosity � D 15 � 10�6 kg m�1 s�1, the inlet density �in D 1:225 kg m�3,
the outlet pressure pout D 97;611Pa, the Reynolds number Re D �invinH=� D
5;227, heat conduction coefficient k D 2:428 � 10�2 kg m s�2 K�1, the specific
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Fig. 5.30 Streamlines at time instants t D 29; 31ms

Fig. 5.31 Streamlines at time instants t D 33; 34ms

heat cv D 721:428m2 s�2 K�1, the Poisson adiabatic constant 
 D 1:4. The inlet
Mach number is Min D 0:012. In the numerical tests, piecewise quadratic elements
(r D 2) are used.

Figures 5.30, 5.31, and 5.32 show the computed streamlines at different time
instants t D 29; 31; 33; 34; 36; 37; 39ms during the fourth period of the motion. In
the solution we can observe a flapping jet in the glottis and large vortex formations
convected through the domain downstream. The flow field is not periodic and not
axisymmetric, although the computational domain is axisymmetric and the motion
of the channel walls is periodic and symmetric as well.
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Fig. 5.32 Streamlines at time instants t D 36; 37; 39ms

5.10.2 Interaction of Compressible Flow with a Model of
Elastic Vocal Folds

We consider the model of flow through a channel with two bumps which represent
time-dependent boundaries between the flow and a simplified model of vocal
folds (see Figs. 5.33, 5.34). The numerical experiments were carried out for the
following data: magnitude of the inlet velocity vin D 4m s�1, the viscosity
� D 15 � 10�6 kg m�1 s�1, the inlet fluid density �in D 1:225 kg m�3, the outlet
pressure pout D 97;611Pa, the Reynolds number Re D �invinH=� D 5;227,
heat conduction coefficient k D 2:428 � 10�2 kg m s�2 K�1, the specific heat
cv D 721:428m2 s�2 K�1, the Poisson adiabatic constant 
 D 1:4. The inlet
Mach number is Min D 0:012. The parameter of the computational accuracy of
the GMRES solver was 10�10: The Young modulus and the Poisson ratio of the
structure have the values Es D 25;000Pa and �s D 0:4, respectively, the structural
damping coefficient is equal to the constant C D 100 s�1 and the material density
�s D 1;040 kg m�3: The artificial Young modulus Ea D 10;000 and the Poisson
ratio �a D 0:45. The used time step was 8 � 10�6 s.

We present here the flow-induced deformations of the vocal folds model. The
character of the vocal folds vibrations can be indicated in Figs. 5.35 and 5.36,
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Fig. 5.33 Computational domain at time t D 0 with a finite element mesh and the description of
its size: LI D 50mm, Lg D 15:4mm, LO D 94:6mm, H D 16mm. The width of the channel
in the narrowest part is 1:6mm

Fig. 5.34 Allocation of the sensors

which show the displacements dx and dy of the sensor points on the vocal folds
surface (marked in Fig. 5.34) in the horizontal and vertical directions, respectively.
Moreover, the fluid pressure fluctuations in the middle of the gap as well as the
Fourier analysis of the signals are shown here. The vocal folds vibrations are not
fully symmetric due to the “Coanda effect” (a flapping jet—see [57]) and are
composed of the fundamental horizontal mode of vibration with the corresponding
frequency 113 Hz and by the higher vertical mode with the frequency 439 Hz.
The increase of vertical vibrations due to the aeroelastic instability of the system
results in a fast decrease of the glottal gap. At about t D 0:2 s, when the gap
is nearly closed, the fluid mesh deformation in this region is too high and the
numerical simulation stopped. The dominant peak at 439 Hz in the spectrum of
the pressure signal corresponds well to the vertical oscillations of the glottal gap,
while the influence of the lower frequency 113 Hz associated with the horizontal
vocal folds motion is in the pressure fluctuations negligible. The modelled flow-
induced instability of the vocal folds is called phonation onset followed in reality
by a complete closing of the glottis and consequently by the vocal folds collisions
producing a source acoustic signal for voicing.
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Fig. 5.35 Vibrations of sensor point 00 on the vocal folds in horizontal and vertical directions,
and their Fourier analysis
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Fig. 5.36 Vibrations of sensor point 01 on the vocal folds in horizontal and vertical directions,
and the fluid pressure fluctuations in the middle of the gap, and their Fourier analysis
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5.11 Conclusion

5.11.1 Discussion of the Results

The coupled FSI problem of air flow through a vibrating glottal region was
numerically analyzed and the comparison to the relevant results obtained by the
theoretical analysis in [39] was presented. An attention was paid to the investigation
of the flutter boundary for which self-sustained vibrations of vocal folds occur: the
physical meaning of such instability is the so-called phonation onset which is an
important voice production characteristic in humans.

In the case of the incompressible flow model, the aeroelastic response was
studied in dependence on the type of the inlet boundary condition used. The inlet
pressure and inlet velocity formulations were used, and the numerical results for
the case with the same geometrical shape and the same structural parameters
were compared. For the inlet pressure boundary condition the vibrations of the
vocal fold were strongly damped for all values of the inlet pressure in the range
corresponding to physiological flow rates and the self-oscillations were not observed
in the considered range of the flow rates. In the same range of the flow rates
with the prescribed inlet velocity the self-sustained oscillations were obtained. The
results show that the presence of self-oscillations of vocal folds is influenced by the
prescribed inlet boundary condition. This is extremely important as the inlet and
outlet are the “artificial boundaries,” where the values of aerodynamic quantities are
only known approximately.

As a next part, we have been concerned with the numerical simulation of the
interaction of fluid flow with an elastic body. The fluid flow was described by
the incompressible or compressible Navier–Stokes equations formulated in the
ALE form and the deformation of the elastic body was modelled by the dynamic
elasticity system with the generalized Hooke law. The coupling of both systems was
realized via suitable transmission conditions. The numerical methods for solving the
problem have been developed and they were applied to the simulation of air flow in
human vocal folds. Results of such computations can also be used as an acoustic
source term in modelling of voicing, cf. [73], particularly at the phonation onset.

An efficient numerical method for the solution of the compressible Navier–
Stokes equations in time-dependent domains is based on several important ingre-
dients:

• the formulation of the Navier–Stokes system with the use of the ALE method,
• the application of the discontinuous Galerkin method for the space discretization,
• special treatment of boundary conditions,
• semi-implicit linearized time discretization,
• suitable limiting of the order of accuracy in the vicinity of discontinuities or steep

gradients.

Numerical tests proved that the developed method is practically unconditionally
stable. This means that the length of the time step is limited only by the requirement
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of the accuracy in time resolution. Moreover, it is robust with respect to the
magnitude of the Mach number.

5.11.2 Open Problems and Topics for Future Work

Future work in computer modelling of voice production could be concentrated
mainly on the following issues:

• Numerical simulation of the complete closure of the channel during the vocal
folds collision including the remeshing of the flow region inside the closing
glottis.

• Further analysis of various treatments of boundary conditions at the inlet and
outlet of the channel modelling the vocal tract.

• Consideration of a real geometry of the vocal tract for specific vowels and
consonants.

• Simulation of the full fluid–structure–acoustic interaction in a complete model
consisting of the subglottal spaces, the vibrating vocal folds and the acoustic
spaces of the supraglottal part of human vocal tract—numerical simulation of
phonation and the human voice production in general.

• Consideration of nonlinear elasticity for large deformations of the vocal fold
tissue.

• Modelling of contacts during vocal folds collisions and resulting stresses in the
soft tissue of the vocal folds important for estimation of fatigue loading of the
vocal folds during voicing.

• 3D modelling of problems in biomechanics of voice.
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42. J. Horáček, A.M. Laukkanen, P. Šidlof, Estimation of impact stress using an aeroelastic model
of voice production. Logoped. Phoniatr. Vocol. 37, 185–192 (2007)
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Chapter 6
Data Assimilation in Cardiovascular
Fluid–Structure Interaction Problems:
An Introduction

Luca Bertagna, Marta D’Elia, Mauro Perego, and Alessandro Veneziani

Abstract Numerical methods for incompressible fluid dynamics have recently
received a strong impulse from the applications to the cardiovascular system. In
particular, fluid–structure interaction methods have been extensively investigated
in view of an accurate and possibly fast simulation of blood flow in arteries
and veins. This has been strongly motivated by the progressive interest in using
numerical tools not only for understanding the general physiology and pathology
of the vascular system. The opportunity offered by medical images properly
preprocessed and elaborated to simulate blood flow in real patients highlighted
the potential impact of scientific computing on the clinical practice. Therefore, in
silico experiments are currently extensively used in bioengineering for completing
(and sometimes driving) more traditional in vivo and in vitro investigations.
Parallel to the development of numerical models, the need for quantitative analysis
for diagnostic purposes has strongly stimulated the design of new methods and
instruments for measurements and imaging. Thanks to these developments, a huge
amount of data is nowadays available. Data Assimilation is the accurate merging
of measures (including images) and numerical simulations for a mathematically
sound integration of different sources of information. The outcome of this process
includes both the patient-specific measures and the general principles underlying
the development of mathematical models. In this way, simulations are adapted to
the availability of individual data and are therefore supposed to be more reliable;
measures are correspondingly filtered by the mathematical models assumed to
describe the underlying phenomena, resulting in a (hopefully) significant reduction
of the noise.

This chapter provides an introduction to methods for data assimilation, mostly
developed in fields like meteorology, applied to computational hemodynamics. We
focus mainly on two of them: methods based on stochastic arguments (Kalman
filtering) and variational methods. We also address some examples that have
been approached with different techniques, in particular the estimation of vascular
compliance from displacement measures.
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Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-0348-0822-4__6,
© Springer Basel 2014

395



396 L. Bertagna et al.

Keywords Biological flows • Data assimilation • Fluid–structure interaction •
Kalman filter • Variational parameter identification

MSC2010: 49N45, 35Q35, 74F10, 76Z05, 62M20, 49M05, 49M15, 49M29,
60G25, 60G35, 90C46, 93E10, 93E11, 93E12

6.1 Preliminaries

Numerical methods for incompressible fluid dynamics have recently received a
strong impulse from the applications to the cardiovascular system (see, e.g., [25,
30]). In particular, fluid–structure interaction (FSI) methods have been extensively
investigated in view of an accurate and possibly fast simulation of blood flow in
arteries and veins (see, e.g., the recent works by Y. Maday and by J.F. Gerbeau
and M. Fernandez, Chaps. 8 and 9 of [25], respectively, or the chapter of the
present book by C. Grandmont, M. Lukáčová, and Š. Nečasová). Beyond the
intrinsic mathematical interest, the development of reliable tools for the numerical
simulations of cardiovascular problems—and FSI in particular—has an impact
on bioengineering and medical research. Thanks to the opportunity offered by
improvements in imaging and measurement devices and the subsequent elaboration
(see Chap. 4 of [25] authored by L. Antiga, D. Steinman and J. Peiró), nowadays
scientific computing is not only a tool for investigating the physiopathology of the
cardiovascular system at a general level, but also a way for analyzing in detail the
single patient. Mathematical models, properly numerically approximated complete
the patient-specific information provided by traditional (yet progressively improved)
diagnostic tools. The complete patient-specific picture provided by numerical
models may (and most likely will) have a diagnostic and prognostic impact and,
more in general, provide a decision-making support in clinical practice. However,
this fascinating perspective raises some important challenges. The general problem
of quantifying and reducing uncertainty in mathematical models and to certify the
quality of numerical simulations—common to any computer aided activity—is even
more important when supporting the clinical practice, for its individual and social
impact. This is related to the problem of validating numerical models. “Validation
is the process of determining the extent to which the computer implementation
corresponds to the real world. If solution verification has already been demonstrated,
then validation asks whether the mathematical model is effective in simulating those
aspects of the real world system under study” (from [22]).

Parallel to the development of numerical models, the need for quantitative
analysis for diagnostic purposes has strongly stimulated the design of new methods
and instruments for measurements and imaging. Thanks to these developments, a
huge amount of data is nowadays available to bioengineers and medical doctors.
Also, the reliability of these data and their significance in clinical practice needs to
undergo a strict analysis and assessment, since they are typically affected by noise
and errors.
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Data Assimilation (DA) is a process for integrating the knowledge provided by
numerical models and measurements with the purpose of improving the reliability
of quantitative analysis. This approach has been developed since the mid of the
twentieth century having as preferential application the weather forecasting. The
rationale is that the predictions provided by numerical models, that we may
call a background knowledge, being partially based on universal physical and
constitutive laws, are affected by uncertainties in real-world problems. These are
the consequence of simplifying assumptions as well as of an incomplete knowledge
of parameters usually needed by the constitutive laws forming a mathematical
model. For instance, referring to biomedical applications, blood viscosity (that in
a Newton constitutive law is supposed to be constant) or compliance of an artery
(that in a Hookean material is supposed to be represented by a parameter, the Young
modulus) is available as estimated on samples, but when dealing with a specific
patient they are in general not known, being impossible or inconvenient to measure.
The integration with available measures, that we may call a foreground knowledge,
since they are specific of the case, is expected to be beneficial to the quantitative
analysis, reducing the uncertainty in the mathematical models. On the other hand,
background models improve the knowledge extracted from the data, providing a
way for filtering noise. In particular, this is important for at least three purposes,

1. estimate the state of a dynamical system (e.g., the velocity, the pressure) or its
derivated quantities for which noisy data and mathematical models are available,

2. predict the state of a dynamical system for which data are available in the past,
3. identify one or more parameters involved in the mathematical model, adjusting

their values on the basis of available data.

In the global picture—that we have represented in Fig. 6.1—DA reduces possibil-
ities of failure in estimating, predicting, and identifying by merging background
and foreground in a unique quantitative analysis. The necessity of this process in
the traditional development of numerical models in cardiovascular mathematics
becomes progressively more urgent with the increment of available data and, more
importantly, of patients that may benefit from quantitative analysis.

In this chapter we want to provide an introduction to some topics brought in by
DA in Cardiovascular Mathematics, with a particular emphasis to FSI problems.
It is important to stress that, as such, this introduction cannot be complete. First,
there are several ways for approaching DA and it is basically impossible to provide
an exhaustive global picture of the possible methodologies. We refer to [8] as a
more general introduction. Second, DA in cardiovascular modeling is a relatively
recent topic and many questions and challenges are still open, so it is hard to draw
conclusive statements about the adequacy of a methodology for a specific problem.
Our perspective is to provide some examples that have been recently considered
in the literature and a self-contained introduction to the methods used there. In
particular, we have selected examples tackled with different approaches, providing
different perspectives for solving the same problem. This is intended to give not only
the idea of the complexity of the problems but also of the variety of approaches, the
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Fig. 6.1 The general framework of Data Assimilation as a process for improving the reliability of
quantitative analyses (BG D background, FG D foreground)
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differences and the complementary nature of the methods. In particular, we will
consider two classes of methods,

1. stochastic approaches, when some probabilistic knowledge of the uncertainty
affecting the model and the noise affecting the measures are available; in
particular we refer to methods related to Kalman filtering and its extension to
nonlinear problems; these methods will be addressed in Sect. 6.2;

2. deterministic approaches, when no clue on the statistical features of uncertainty
is available; in particular, we will see variational methods based on the minimiza-
tion of the mismatch between the data and numerical results, constrained by the
background model; these methods are introduced in Sect. 6.3.

The above distinction is not strict. In fact, available statistical information can be
included in variational models.

The FSI problem and more in general the problems involved in cardiovascular
mathematics—usually represented by a system of partial differential equations—are
complex and per se challenging. In the framework of DA, the issue of computational
costs becomes even more important, as DA typically involves the solution of inverse
problems. In practice, these problems can be solved by iterative approaches, where
the solution of the FSI system (or more in general of the “forward” problem)
needs to be performed at each iteration. It is promptly realized that this requires
specific techniques to make the computational costs affordable. We address this
issue in Sect. 6.3, in particular referring to methods for reducing the costs of each
iteration by representing the solution on a “smart” low-dimensional basis functions
set that strongly reduces the number of degrees of freedom required by a traditional
numerical method (like finite element or spectral methods).

Detailed examples are provided in Sect. 6.4. In particular, we consider the
assimilation of velocity measures with the numerical simulation of the Navier–
Stokes equations for improving the estimate of blood velocity on an artery. We
address two different deterministic approaches and how they can be reinterpreted
or improved by a stochastic Bayesian perspective. Finally, we present in detail the
problem of estimating vascular compliance by solving an inverse FSI problem.
Again, we present both a stochastic approach based on Kalman filtering and a
deterministic constrained minimization approach. In the latter case, we present a
technique for reducing the computational costs by representing the solution on a
low-dimensional basis obtained with a Proper Orthogonal Decomposition (POD)
approach.

As we have pointed out, the methodological picture in the field of DA is
pretty articulated, encompassing statistical as well as numerical issues for inverse
problems [17, 71]. Here, we mention some references for the reader interested in
having more details on the topics covered only partially in this introduction. The
importance of uncertainty quantification in any field of scientific computing has
been recently underlined in [22]. An excellent introduction to statistical methods
for computational inverse problems is given in the books [13, 28, 47, 68]. A recent
collection of contributions in the numerical solution of inverse problems and
computational costs reduction is [7].
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A classical book on methods for solving constrained minimization for flow
problems is [38]. Fundamental contributions can be found in [33, 34], recently
collected in [35]. Parameter estimation for partial differential equations has been
extensively covered in [3] (see also the recent [2]).

6.1.1 An Introductory Example

To illustrate some basic concepts in DA, we refer to an oversimplified example. Let
us assume to have a pipe where an incompressible fluid flows. We also suppose that
N measures of velocity are available in N points Pi (i D 1; : : : ; N ). Our goal is to
compute the shear stress at the wall of the pipe, which is defined as1

�
�ru C ruT

�
n � �

�
n
�ru C ruT

�
n
�

n (6.1)

where � is the blood viscosity, u is the velocity, n the unit vector normal to the
surface. In particular, if we are interested in the estimate of the stress at the times
for which velocity measures are available, this is an estimate or filtering problem.

There are different approaches for this.

1. Data fitting approach: a functional form for the velocity is decided (for instance,
polynomial) and fitted with the data. Successively the WSS is obtained by
applying (6.1) with the fitted velocity. The quality of the computation depends on
the number and location of the measures, and the amount of noise. Fitting can be
performed with either interpolation or least square approximation depending on
how trustworthy the measures are considered. In this approach, we do not assume
any background knowledge of fluid mechanics.

2. Model based computation: we may assume that blood flow is an incompressible
Newtonian fluid. Under these assumptions, for a cylindrical pipe described by
the coordinates z; r; � , we can derive the Poiseuille solution (outlined in color in
Fig. 6.2),

uz D GP

4�
.R2 � r2/; ur D u� D 0; p D GP z C C (6.2)

where GP is the pressure gradient, R is the radius of the pipe, and C is an
arbitrary constant. Should GP and � be available, we compute the WSS; such
parameters are needed to get the final estimate of the stress, while measures are
not needed. The quality of the estimate depends on the reliability of the model
assumption. In general, the analytical solution may be replaced by a numerical

1We remind that the wall shear stress (WSS) is a quantity of great relevance in biomedical
applications for its correlation with pathologies such as atherosclerosis—see, e.g., [14].
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P 1 P 4

u;p

P3

P 2
P 5

Fig. 6.2 Pipe where an
incompressible fluid flows
and velocity measures are
available in the points Pi :
how is it possible to reliably
compute the wall shear stress
at the wall?

solution. In such case, the accuracy of the estimated stress will also depend on
the numerical approximation.

3. Data assimilation procedure: suppose that the assumptions behind the Poiseuille
solution are acceptable but our knowledge is incomplete, for instance the
viscosity � and the pressure gradient GP are unknown; in this case, we may
take advantage of the velocity measures to fill the gap and eventually to compute
the WSS by formulating the following problem. Find � and GP such that u
minimizes the mismatch

J D
NX
iD1

�
um.Pi /� up.Pi /

�2

where um.Pi / is the measured velocity and up is the Poiseuille solution (6.2). In
this way, we are fitting the physical parameters � andGP so that the background
model is matching the foreground knowledge. Once� andGP are computed, the
WSS (both as an estimate or as a prediction) is quantified. Contextually, the noise
affecting the data is filtered by our background knowledge of fluid mechanics in
the physically driven least squares procedure. Notice that when quantifying the
viscosity we are solving an identification problem.

In the more realistic case that the Poiseuille solution cannot be applied, we
replace up with the (numerical) solution of the Navier–Stokes equations. In this
case, the minimization procedure requiring to find the stationary points of J
regarded as a function of � and GP is clearly nontrivial (as we will see in the
next sections).

This simple example (that will be developed in Sect. 6.4) shows the relevance
of DA in biomedical applications, especially related to the clinical practice. As
a matter of fact, patient-specific knowledge of parameters that form a mathe-
matical/numerical model is always incomplete. As for the boundary conditions,
this has led to extensive investigation of the so-called defective boundary data
problems (see, for instance, [24, 26]). Concerning parameter identification, we
mention elastography as a method for detecting the rigidity of soft tissues by solving
inverse elasticity problems [4, 5]. In this case, parameter identification is not only
functional to the computation of a specific variable of interest, but it is by itself an
important procedure for diagnostic purposes (e.g., breast cancer).
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In the previous example, the DA procedure is performed without any real
assumptions on the quantity we want to estimate and on the noise affecting the
measures. However, in many cases some a priori knowledge is available and may be
used to drive the assimilation process and eventually reduce the uncertainty affecting
the final results. For instance, we speculate that fluid viscosity is a Gaussian variable
whose average and variance are known. Similarly, we may assume that the noise
features a probabilistic density function whose moments are available. Availability
of trustworthy probabilistic information on quantities of interest and noise may be a
discriminant for the choice of the DA methods. In Sect. 6.2 we address probabilistic
approaches, while Sect. 6.3 is devoted to deterministic methods. As already pointed
out, the two classes of approaches are somehow contiguous. As we will see in
Sect. 6.4, solution obtained with one approach can be reinterpreted in the other
framework, when the reliability of a priori knowledge tends to 0.

6.2 Probabilistic Approach

In this section, we consider the estimation/prediction/identification of quantities
when we assume stochastic a priori information to be available. We may take
therefore advantage of this knowledge to integrate models and measures. The latter
are in turn considered to be the realization of a stochastic process, whose features
are known.

The ingredients of the problem (see Fig. 6.3) are: (1) a variable w—for generality
we assume it is an n-dimensional random vector, whose probability density function
(see below) is known—and (2) a set of observations z—we assume to have p
observations organized in an n�p matrix Z, regarded as p realizations drawn from a
known probability density function. Our goal is to find an estimate Ow of w based on
both the a priori and the a posteriori knowledge we have. To introduce fundamental
concepts, we start considering w as an instantaneous (or time independent) variable.
Assume, for instance, that the distribution of the variable of interest is a Gaussian
probability density function (p.d.f.) then the solution of the estimate problem is
given by the average and the variance (and generally the statistical moments) of
this distribution2. We will see several ways for obtaining these quantities, namely
the minimum variance (MV), the maximum a posteriori probability (MAP), the
maximum likelihood (ML).

Then, we consider the case when the variables of interest are part of a dynamical
system. As a matter of fact, in the applications we are interested in there is a
dynamics and we have a mathematical model describing how a variable of interest,
that we call u (the state of the system), evolves according to a sequential parameter
that will be in general the time. This may be either the fluid or the fluid coupled
with the arterial wall, etc. In general, this is the knowledge given by mathematical

2Precise definitions of average and variance of a Gaussian variable will be given later on.
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Measure

Noise

zw

Fig. 6.3 In/Out system: z is the quantity measured, w is the quantity to be estimated

System Dynamics Measure z(k+1)

u(k+1)

k = k + 1

Input

Noisei Noisem

Observability

Fig. 6.4 Possible approaches for the estimate with a system dynamics. Here we rely upon the
observability of the system and the knowledge of the statistical features of the stochastic process

modeling. In most of the cases, this is a system of partial differential equations and
a numerical discretization procedure is necessary for its quantitative solution. The
numerical model (i.e., the discretized mathematical model) reads

u.kC1/ D u.kC1/.Past; Input;Noise/:

Assume that we measure z.k/ and we want to estimate u.k/ (filtering problem)
or u.kCp/ (p-step prediction problem). If the variable u that we want to estimate
is a parameter of the original model (as it was the viscosity on the previous
example), this is an identification problem. In the simplest case, assume that the
system dynamics is linear and that noise affects both the input of the system and
the measures. The system dynamics is regarded as the mechanism converting the
p.d.f. of the input to the p.d.f. of the output. From the latter, we want to infer the
state variable. If we apply the criterion of finding the estimate by minimizing the
variance of the estimate, we will get a sequential estimate/prediction procedure
called Kalman filter. Although the method strongly relies on the linearity of the
system, that is not changing the nature of the p.d.f. , we will see that the method
can be properly extended to non-linear cases. The effectiveness of the procedure
relies upon the “observability” of the system, i.e., on how the output information is
actually representative of the state of the system (Fig. 6.4).

As pointed out, our goal here is to give a short introduction to probabilistic
estimation theory. For a more complete and extensive presentation, we refer to [68],
Chaps. 4–6.
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6.2.1 Basic Notation and Concepts

We summarize some fundamental concepts and notation that are useful in the
remainder of this section. For a complete and rigorous introduction and explanation
of these concepts, we refer, e.g., to [55].

Random Variables

For a random variable w, i.e., a variable whose value depends on a random
experiment !, we introduce the distribution function

FW .w/ 	 P.! W w.!/ � w/

where the notation on the right-hand side represents the probability that the
realization of w associated with ! is � w. Elementary properties of probability
imply that limw!�1 FW D 0 and limw!C1 FW D 1 and that the function is non-
decreasing. The corresponding p.d.f. is defined as

pW .w/ 	 dFW

dw
:

For the properties of distribution, pW .w/ � 0 and
Z

R

pW dw D 1.

The Gaussian p.d.f. for instance reads

gW .w/ D 1p
2��

exp

�
� .w � �/2

2�2

�
: (6.3)

A p.d.f. can be characterized by its moments. In particular, we define the
expectation operator E .�/ as

E .w/ 	
Z

R

wpW .w/dw;

that associates the random variable with a number called mean. Similarly, we may
consider the moments and the central moments of orderm defined, respectively, as

E .wm/ 	
Z

R

wmpW .w/dw; E .wm/ 	
Z

R

.w � E .w//m pW .w/dw:

The central moment of order 2 is called variance. For the Gaussian p.d.f. gW , the
mean is � and variance is �2.
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Jointly Distributed Random Variables

We may consider the case of multiple random variables depending on ! according
to a joint distribution

FW1W2:::Wn 	 P.! W w1 � w1; : : : ;wn � wn/:

In this case, the joint p.d.f. reads

pW1W2:::Wn 	 @n

@x1@x2 : : : @xn
FW1W2:::Wn :

First order moments read

E
�
wj
� D

Z

Rn

wj pW1W2:::Wndw1dw2 : : : dwn:

Second order central moments form the symmetric covariance matrix

�jk 	 ŒE
�
.wj � E

�
wj
�
/.wk � E .wk//

�
�

D
Z

Rn

.wj � E
�
wj
�
/.wk � E .wk//pW1W2:::Wndw1dw2 : : : dwn

where clearly �jj D �2j , the variance of wj . The correlation coefficient between wj
and wk is defined as

�jk 	 �jk

�j�k
: (6.4)

For instance, two jointly distributed Gaussian variables have the distribution

pW1W2.w1;w2/ D 1

2�
pjƒj exp

�
�1
2
ıT ƒ�1ı

�
;

where ı D
�

w1 � �1
w2 � �2


; ƒ D

�
�21 �12

�12 �
2
2


is the covariance matrix, jƒj stands for its

determinant, and �1 and �2 are the means of the two variables.
In the sequel, this distribution is denoted by G.	; ƒ/. In particular a distribution

with 	 D 0 and ƒ diagonal (that means that the components of the vector are not
correlated) is considered as a model for random disturbances or white noise.3

3The choice of Gaussian distribution for white noise is reasonable, but arbitrary. We could have
considered other distributions for zero-mean, uncorrelated components.
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The marginal density function of one of the random variables wj in the pool may
be obtained by the joint one after integration over the range of the other variables,

pWj D
Z

Rn�1

pW1W2:::Wndw1 : : : dwj�1dwjC1 : : : dwn

Conditional Probability

The conditional p.d.f. of the random vector w given the occurrence of the random
vector y is defined as

pW jY .wjy/ 	 pW;Y .w; y/
pY .y/

:

Similarly, we have the definition

pY jW .yjw/ 	 pW;Y .w; y/
pW .w/

;

from which we obtain the Bayes law

pW jY .wjy/ D pY jW .yjw/pW .w/
pY .y/

: (6.5)

The conditional expectation is defined consequently as

E .wjy/ D
Z

Rn

wpW jY .wjy/dw:

From the previous relations, it follows that

E .w/ D
Z

Rn

wpW .w/dw D
Z

Rn

Z

Rn

wpW;Y .w; y/dydw

Z

Rn

0
@
Z

Rn

wpW jY dw

1
ApY dy D E .E .wjy// :

6.2.2 Minimum Variance and Other In-Out Estimators

Let us consider a first example of estimator Ow of the random vector w upon data z
in the “steady” case—Fig. 6.3. Let e 	 Ow � w be the estimate error, and define

J.e/ D eTEe; (6.6)
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where E is a symmetric positive definite (s.p.d.) matrix. We assume J to be the
measure of the estimate error or “risk.” Here, Ow depends on z and w, and it is
regarded as a stochastic process. With our definition of risk we may introduce the

functional J . Ow/ 	 E .J.e// D
Z

Rn

J.e/ pW dw and in order to minimize the risk we

refer to the estimator

Ow D arg minJ . Ow/ 	
Z

Rn

Z

Rn

J.e/ pW;Z.w; z/dzdw:

By exploiting the properties of p.d.f. recalled above, we rewrite the risk to
minimize as

J . Ow/ D
Z

Rn

0
@
Z

Rn

eT EepW jZdw

1
ApZdz D

Z

Rn

J . Owjz/ pZdz;

for

J . Owjz/ 	
Z

Rn

.w � Ow/TE.w � Ow/pW jZdw:

Since the outer integral in the definition of the cost J . Ow/ does not involve Ow and
pZ � 0, we minimize the risk by minimizing J . Owjz/.

Recall that for a generic vector x and a symmetric matrix A of proper size [60],

we have
@xTAx
@x

D 2Ax. Then the minimization of J . Owjz/ leads to

0 D @J . Owjz/
@ Ow D �2E

Z

Rn

.w � Ow/pW jZdw:

Independently of E, we have the equation

Ow
Z

Rn

pW jZdw D
Z

Rn

wpW jZdw D E .wjz/ :

Since
Z

Rn

pW jZ.wjz/dw D 1, we have

Ow D E .wjz/ : (6.7)

This is called minimum variance estimator, hereafter denoted by OwMV . An impor-
tant property of this estimator is that it is unbiased, i.e., E .e/ D E . OwMV � w/ D 0.
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In fact, we have

E . OwMV / D
Z

Rn

OwMV pZdz D
Z

Rn

Z

Rn

wpW jZ dwpzdz

D
Z

Rn

Z

Rn

wp.w; z/ dwdz D E .w/ :

It is also possible to verify that
@2J . OwMV /

@ Ow2
D 2E > 0, so OwMV is indeed a

minimum [68].

Maximum A Posteriori Estimator

Other estimators may be computed with a similar approach but referring to a
different risk J . Ow/,

J . Ow/ D E .J.e// D
Z

Rn

J.e/pW dw D
Z

Rn

Z

Rn

J.e/pW;Zdwdz

for different choices for J.�/. For instance, another possible choice is the “uniform”
(thresholding) cost:

J.e/ D
8<
:
0 for kek1 < "
1

2"
for kek1 � "

;

where k � k1 is the maximum norm. With this cost function, we obtain

J . Ow/ D
Z

Rn

Z

Rn

J.e/ pW jZ dwpZdz D
Z

Rn

1

2"

0
B@

Z

Rnnf OwCŒ�";"�ng
pW jZdw

1
CApZdz:

By definition

Z

Rnnf OwCŒ�";"�ng
pW jZdw D 1 �

Z

OwCŒ�";"�n
pW jZdw

so that

J . Ow/ D 1

2"

Z

Rn

pZdz � 1

2"

Z

Rn

Z

OwCŒ�";"�n
pW jZdwpZdz:
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The first term on the right-hand side is constant and does not affect the minimization
process. Let us focus on the second term. The mean value theorem states that there
exists a � 2 x C Œ�"; "� such that

1

2"

xC"Z

x�"
f .�/d� D 1

2"
2"f .�/ D f .�/:

For " ! 0 we have
1

2"

xC"Z

x�"
f .�/d� D f .x/. In particular, in our case, we obtain

lim
"!0

0
B@� 1

2"

Z

OwCŒ�";"�n
pW jZdw

1
CA D �pW jZ. Owjz/:

In other terms, the cost function to quantify the risk selected here leads to the

maximization of the a posteriori p.d.f. pW jZ . This estimator, such that
@pW jZ
@w

D 0,

is denoted OvMAP and it is not necessarily unbiased.

Example. In this example, we assume that the scalar variables w and z are
statistically related by having a joint Gaussian distribution G.Œ0; 0�;ƒ/. The two
variables features a Gaussian marginal p.d.f. with mean and variance 0; �2w and 0; �2z ,
respectively.

As for the conditional p.d.f. we have

pW jZ D pWZ.w; z/

pZ
D

p
�2zp

2�jƒj exp

�
�1
2
Œw z�T ƒ�1Œw z�C z2

2�2z

�
:

Define �2 	 �2w � �2wz

�2z
. Then, by direct inspection, one verifies that .wjz/ is a

random vector with Gaussian distribution G
�
�wz

�2z
z; �2

�
.

Because for Gaussian distributions, the value where the maximum is achieved
corresponds to the mean, we have that

OwMV D OwMAP D �wz

�2z
z:

Using the definition of correlation coefficient given in (6.4), we have

OwMV D OwMAP D �2w�wzz:
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From here, we can check the consistency of our estimate with intuitive situations:
if w is not correlated to z, the estimate is 0, which is the mean value of the marginal
p.d.f. of w. In this case, the knowledge of z does not bring any advantage and the
best estimate remains the a priori expected value of w.

Maximum Likelihood Estimate

Another reasonable approach is to compute the estimator Ow as the value that
maximizes the probability of measuring z. In other terms, we get OwML D
arg maxpZjW .zjw/ or

OwML W @pZjW
@w

j OwML D 0:

The p.d.f. pZjW is a measure of the likelihood that z is measured, so this estimate is
called maximum likelihood.

It is interesting to establish a relation between this estimator and the previous
ones. We do this for the case of Gaussian variables, even though the same conclusion
holds in the general case.

We know that estimator OwMAP is such that
@pW jZ
@w

j OwMAP D 0:

Then, thanks to the Bayes Theorem, we have

pW jZ D pWZ

pZ
D pZjW pW

pZ
:

Maximizing pW jZ is equivalent to the maximization of its logarithm, so we have

@pW jZ
@w

D 0 ) @ lnpW jZ
@w

D
@ ln pZjW pW

pZ

@w
D 0

) @ lnpZjW
@w

C @ lnpW
@w

� @ lnpZ
@w

D @ lnpZjW
@w

C @ lnpW
@w

D 0

since pZ is independent of w.
Now, for a Gaussian variable, such that

pW D 1p
.2�/njƒj exp

�
�1
2
.w � E .w//Tƒ�1.w � E .w//

�
;

we have

@ lnpW
@w

D �1
2

@.w � E .w//Tƒ�1.w � E .w//
@w

D �ƒ�1.w � E .w//:

When the variance of a random variable is large, this means that our a priori
knowledge is not trustworthy. The limit case of ƒ�1 ! 0 corresponds to a total
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lack of a priori information on w. Notice that in this condition

@ lnpW jZ
@w

D @ lnpZjW
@w

C @ lnpW
@w

.ƒ�1D0/D @ lnpZjW
@w

:

We conclude therefore that OvML can be considered the estimator in the “limit” case,
when we do not have an a priori distribution for w, i.e., when we assume that the
variance of w is approaching 1.

Example. Let us consider two scalar variables w and z with

z D Hw C � (6.8)

where w � G.0; �2w/, and the noise � � G.0; r2/ is assumed to be uncorrelated with
w. Then it is possible to verify that z � G.0;H2�2w C r2/ and that w and z have a
joint Gaussian distribution with �wz D H�2w. In fact

E .z/ D HE .w/C E .�/ D 0

�2z D E
�
z2
� D E

�
H2w2 C 2Hw� C �2

� D H2�2w C 0C r2

�wz D E .wz/ D E
�
Hw2 C �w

� D H�2w:

Using the results of the previous example, in this case we can compute

OwMV D OwMAP D H�2w
H2�2w C r2

z D z

H

H2�2w
H2�2w C r2

D z

H

�
1 � r2

�2z

�
:

Using again the result of the previous example, we find that pZjW D pWZ

pZ
is

a Gaussian distribution with mean
�wz

�2w
w. The maximum of pZjW is obtain in

correspondence of its mean, i.e., for z D �wz

�2w
w or, equivalently, for w D �2w

�wz
z.

Therefore the ML estimator reads

OwML D �2w
�wz

z D z

H
:

As expected, lim
�w!1 OwMAP D OwML. The estimators coincide also when r2 D

0, and return z=H . In fact, in this case the noise is 0, so the estimators give the
deterministic relation (obtained by (6.8) for � D 0) w D z=H .

Example. Assume now that w and z are n-dimensional vectors, w � G.	; ƒ/ and

z D Hw C 


where 
 � G.0;R/ is the noise independent of w. H is called observation matrix.
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It is possible to prove that z � G.	z; ƒz/ with

	z D E .Hw C 
/ D H	
ƒz D E

�
.z � 	z/

T .z � 	z/
� D HƒHT C R:

For the conditional probabilities, we find that

pwjz D
pjƒzjp

.2�/njƒjjRj exp

�
�1
2

J

�

where J D .w � Ow/Tƒ�1
e .w � Ow/ and ƒ�1

e D ƒ�1 C HTR�1H and

OwMV 	 E
�
pwjz

� D ƒe
�
HTR�1z Cƒ�1	

� D OwMAP:

Moreover, we find that pzjw has average Hw and ƒzjw D R. If we maximize the
likelihood, we obtain

OwML D H�1z:

Again, it is possible to verify that the MV/MAP estimator is unbiased and the
ML estimator is obtained by the MAP, whenƒ�1 ! 0.

Remark 6.1. Contrarily to what previous examples may suggest, the coincidence of
MV and MAP is not true in general.

6.2.3 The Kalman Filter for Linear Problems

Kalman filter [48] is one of the most important algorithms of the twentieth century,
with an exceptional number of applications, ranging from robotics to mathematical
finance. It is concerned with the case of a dynamical system, when the variable to be
estimated is supposed to be the solution of a time-dependent linear system. Since for
the biomedical applications of interest here, dynamics is in general given by the time
discretization of a PDE (as we will see later on), here we consider a time-discrete
case, even though the time-continuous case can be investigated as well. The time
index will be denoted by k, and we represent the dynamics of interest (indexed by
k) of the system as

u.k/ D Ak�1u.k�1/ C b.k�1/ (6.9)

where b.k�1/ is a Gaussian white noise in time representing the model error, i.e.,
b.k/ � G.0;Qk/, and the errors are not correlated in time, i.e.,

E
�
b.k/b.l/;T

� D Qkıkl :



6 Data Assimilation in Cardiovascular Fluid–Structure Interaction Problems:. . . 413

Here ıkl is the Kronecker delta (D 1 if k D l , 0 elsewhere).
The measurement process is denoted by

z.k/ D Hku.k/ C 
.k/; (6.10)

where 
.�/ is a Gaussian white noise with variance matrix Rk and assumed
uncorrelated with b.�/.

In absence of observations of z.k/, a natural prediction is simply the one obtained
by dropping the noise in the system. In other terms a first reasonable prediction
would be

u.k/p D Ak�1u.k�1/� : (6.11)

For the moment being, we assume that u.k�1/
� is the “true” state u.k�1/.

This is a deterministic forecast that we take as starting point of our probabilistic
measure. The fundamental questions now are: how can the measure z.k/ improve
this estimate? How can we reduce the error between the state and its prediction?

As an arbitrary but reasonable choice, we postulate a correction step which is a
linear combination between the prediction u.k/p and the data at the same instant z.k/,

u.k/c D Lku.k/p C Kkz.k/:

The first term on the right-hand side measures how much the deterministic model
is trustworthy, the latter defines the gain due to the observation. The weighting
matrices Lk , Kk need to be determined. Let us introduce the estimate errors

e.k/p D u.k/p � u.k/; e.k/c D u.k/c � u.k/:

Notice that e.k/p D �b.k�1/ by construction (for u.k�1/
� D u.k�1/).

We have then

e.k/c D Lku.k/p C Kkz.k/ � Lku.k/ C Lku.k/ � u.k/

D Lke.k/p C Kk

.k/ C .Lk C KkHk � I/u.k/:

In order to have an unbiased correction, i.e., E
�

e.k/c
�

D 0, we write

E
�
e.k/c

� D LkE
�

e.k/p
�

C KkE
�

.k/

�C .Lk C KkHk � I/ E
�
u.k/

�

D �LkE
�
b.k�1/�C KkE

�

.k/

�C .Lk C KkHk � I/ E
�
u.k/

� D 0: (6.12)

Because we assume that the noise has null mean, the first two terms are zero. To
have an unbiased estimate we need to force

Lk C KkHk � I D 0 ) Lk D I � KkHk:
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With this position, we have

u.k/c D u.k/p C Kk.z.k/ � Hku.k/p /:

This representation is extremely expressive:

1. the first term on the right-hand side u.k/p is the deterministic estimate purely based
on the model, with no observations;

2. z.k/ � Hku.k/p is the innovation, i.e., what is new in z.k/ and that is not predictable

by u.k/p ;
3. Kk , to be determined, is called the gain matrix, since it weighs the improvement

brought to the deterministic estimate by the measures.

The two estimation errors are then related by the following equation

e.k/c D u.k/c � u.k/ D u.k/p � u.k/ C Kk.Hku.k/ C 
.k/ � Hku.k/p /

D .I � KkHk/ e.k/p C Kk

.k/: (6.13)

However, in the sequential process we do not know the true state u.k�1/ in (6.11).
We replace u.k�1/

� with what we consider sequentially our best estimation of the
state, which is u.k�1/

c . The recursive prediction step reads therefore

u.k/p D Ak�1u.k�1/
c : (6.14)

From this equation, we derive another relation for the errors

e.k/p D u.k/p � u.k/ D Ak�1u.k�1/
c � u.k/ D

Ak�1
�

u.k�1/
c � u.k�1/

�
� b.k�1/ D Ak�1e.k�1/

c � b.k�1/ (6.15)

giving an evolution equation for the deterministic forecast error.

Remark 6.2. In this analysis, we are considering one-step prediction estimates,
where the deterministic estimate is obtained by the previous step (6.14). We may
consider also q-step predictions, obtained by dropping the noise at each step,

u.k/p D
qY

jD1
Ak�ju.k�q/

c :

For the sake of simplicity, here we develop the case q D 1 and refer the interested
reader to [68].

Let us compute the variance matrix of e.k/p and e.k/c , i.e.,

ƒ.k/
p 	 E

�
e.k/p e.k;T /p

�
; ƒ.k/

c 	 E
�
e.k/c e.k;T /c

�
: (6.16)
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From (6.15), we have

e.k/p e.k/;Tp D Ak�1e.k�1/
c e.k�1/;T

c AT
k�1 C b.k�1/b.k�1/;T

CAk�1e.k�1/
c b.k�1/;T C b.k�1/e.k�1/;T

c AT
k�1; (6.17)

leading to

ƒ
.k/
p D Ak�1ƒ.k�1/

c AT
k�1 C Qk�1 (6.18)

because b.k�1/ has no correlation with e.k�1/
c .

Similarly, from (6.13) we obtain

ƒ
.k/
c D .I � KkHk/ƒ

.k/
p .I � KkHk/

T C KkRkKT
k : (6.19)

usually called Joseph formula.

The Kalman Gain Matrix

Finally we determine the gain matrix. We will follow an optimality criterion.
According to the (weighted) minimal variance approach, we could minimize

E
�

e.k;T /c Eke.k/c
�

, where Ek is an s.p.d. weight matrix. Note that

e.k/;Tc Eke.k/c D Tr.Eke.k/c e.k/;Tc /

) E
�
e.k/;Tc Eke.k/c

� D E
�
Tr.Eke.k/c e.k/;Tc /

� D Tr.Ekƒ.k/
c /:

Using the following properties of the trace:

Tr.A C B/ D Tr.A/C Tr.B/; Tr.AB/ D Tr.ATBT /;

we get that

Tr.Ekƒ.k/
c / D Tr.Ekƒ.k/

p /� 2Tr.Ekƒ.k/
p HT

k KT
k /C Tr.EkKk.Hkƒ

.k/
p HT

k C Rk/KT
k /:

Moreover, we recall that [60] for a generic matrix A and symmetric matrices B and
C we have

@Tr.AXT /

@X
D A;

@Tr.BXCXT /

@X
D 2BCX:



416 L. Bertagna et al.

From these relations we obtain that the gain matrix Kk that minimizes the variance
is such that

@E
�

e.k;T /c Eke.k/c
�

@Kk

D �2Ekƒ.k/
p HT

k C 2EkKk.Hkƒ
.k/
p HT

k C Rk/ D 0

) K�
k D ƒ

.k/
p HT

k

�
Hkƒ

.k/
p HT

k C Rk
��1

:

From the Joseph formula we have

ƒ.k/
c D .I � KkHk/ƒ

.k/
p �ƒ.k/

p HT
k KT

k C Kk.Hkƒ
.k/
p HT

k C Rk/KT
k :

By using K�
k in this formula, the last two terms cancel out and we are left with

ƒ.k/
c D .I � KkHk/ƒ

.k/
p :

The matrix K�
k is the so-called Kalman gain matrix.

The entire estimate process may be summarized as follows.

1. PREDICTION

(a) u.k/p D Ak�1u.k�1/
c

(b) ƒ.k/
p D Ak�1ƒ.k�1/

c AT
k�1 C Qk�1.

2. CORRECTION

Kalman gain: K�
k D ƒ

.k/
p HT

k

�
Hkƒ

.k/
p HT

k C Rk
��1

:

(a) State estimate:

u.k/c D u.k/p C K�
k .z

.k/ � Hku.k/p /: (6.20)

(b) Covariance estimate:

ƒ.k/
c D �

I � K�
kHk

�
ƒ.k/
p : (6.21)

This yields the MV Kalman filter estimation for a time-discrete system. When
we want to estimate the state of the system by merging the mathematical model and
the available measure, we refer to u.k/c . When we want to predict the evolution of
the state, using all the information we have at time tk , we refer to the prediction4

step u.kC1/
p D Aku.k/c .

4The third problem addressed in the Introduction, the identification of the system will be considered
later on.
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Remark 6.3. In many cases, the dynamical system features a deterministic input
f.k/, so that (6.9) modifies in

u.k/ D Ak�1u.k�1/ C Ck�1f.k�1/ C b.k�1/: (6.22)

This reflects in a change of the prediction step, that reads

u.k/p D Ak�1u.k�1/
c C Ck�1f.k�1/:

All the other steps drawn above remain unchanged.

Properties of the Kalman Filter

Orthogonality of the Estimate/Prediction and the Estimate/Prediction Error

Following an induction argument, it is possible to prove that when we select the
Kalman gain matrix to compute the estimate, then

E
�
u.k/c e.k/;Tc

� D 0: (6.23)

With this relation, it is possible to prove a similar relation between the prediction
and the prediction error

E
�

u.kC1/
p e.kC1/;T

p

�
D E

�
Aku.k/c

�
Ake.k/c

�T � D 0: (6.24)

These relations have an interesting geometrical interpretation that provide a jus-
tification to the “optimal” nature of Kalman estimate/prediction. The two equa-
tions (6.23) and (6.24) state that the estimate and the prediction are “orthogonal” to
their respective errors. Here we mean “orthogonal” in the sense of random vectors
(see [68] page 9). (see Fig. 6.5).

Innovation

As we pointed out, the innovation

z.k/ � Hku.k/p D z.k/ � HkAku.k�1/
c

plays an important role in understanding how the Kalman estimate works. When we
do not have other a priori information, from Ak and u.k�1/

c the best we can do is

– to predict the state at k as u.k/p D Aku.k�1/
c ;

– to guess accordingly an “expected measure” HkAku.k�1/
c .
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Innovation
z(k)

Hku
(k)
p

u(k)
c

u(k)

e(k)c

Fig. 6.5 The innovation is orthogonal to the past (left). The estimate error is orthogonal to the
estimate itself (right)

This is the part of knowledge in the measure we could extract from the state at
the previous time step, or from the past. We do expect that z.k/ is adding new
information. The novel part of the information added by the measure is exactly the
innovation z.k/ � Hku.k/p .

Notice that

z.k/ � Hku.k/p D Hku.k/ C 
.k/ � Hku.k/p D 
.k/ � Hke.k/p ;

consequently

E
�

z.k/ � Hku.k/p
�

D E
�

.k/

� � HkE
�

e.k/p
�

D 0:

In addition, we compute the variance of the innovation

E
�
.z.k/ � Hku.k/p /.z.k/ � Hku.k/p /T

�

D E
�
.
.k/ � Hke.k/p /.
.k/ � Hke.k/p /T

�
D Rk C Hkƒ

.k/
p HT

k

because the noise at k is not correlated to e.k/p D Ak.u
.k/
c � u.k�1// � b.k�1/.

It is also possible to prove [68] that for j � 1

E
�
.z.k/ � Hku.k/p /.z.k�j / � Hku.k�j /

p /T
�

D 0:

This means that the innovation at time k has no correlation with the innova-
tion at the previous time steps, so that we can conclude that the innovation is
a white process.
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Also in this case, we may give a geometrical interpretation to this equation,
concluding that the splitting z.k/ D Predicted measure C Innovation is actually an
orthogonal decomposition. Since the predicted measure Hku.k/p depends entirely on
the past, we say that innovation is orthogonal to the past (see Fig. 6.5).

Variance Reduction

Let us establish a relation between the variance of u.k/p and of u.k/c . We show that the
Kalman correction in fact reduces the variance of the estimate. Let us introduce an
auxiliary variable that we call pseudo-observation, i.e., an observation based on the
prediction of the measure added by noise,

z.k/po D Hku.k/p C 
.k/:

It is possible to verify that

ƒ
.k/
po D Hkƒ

.k/
p HT

k C Rk; ƒ
.k/
p;po WD E

�
u.k/p z.k/;Tpo

�
D ƒ

.k/
p HT

k :

With this notation, we may rewrite the correction step of the Kalman filter as
follows:

K�
k D ƒ.k/

p;po.ƒ
.k/
po /

�1; ƒ.k/
c D ƒ.k/

p �ƒ.k/
p;po.ƒ

.k/
po /

�1ƒ.k/;T
p;po :

Since ƒ.k/
po is s.p.d., we have that ƒ.k/

p � ƒ
.k/
c is positive. This relation outlines the

reduction of the variance induced by the correction step with respect to the variance
of the prediction.

Recursive Formula for the Variance Equations, Riccati Equations

Let us eliminate ƒ.k/
c from the equations of the Kalman filter, in particular we

compute the varianceƒ.kC1/
p as function of ƒ.k/

p . We get

ƒ.kC1/
p D Akƒ

.k/
c AT

k C Qk

D Ak.ƒ
.k/
p � KkHkƒ

.k/
p /A

T
k C Qk (6.25)

D Akƒ
.k/
p AT

k C Qk � Akƒ
.k/
p HT

k .Hkƒ
.k/
p HT

k C Rk/
�1Hkƒ

.k/
p AT

k :

In addition, by using the well-known Sherman–Morrison–Woodbury formula
[36], we can write also the recursive variance matrix equation of the Kalman
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estimate

ƒ
.k/
c D �

I � K�
kHk

�
ƒ
.k/
p D

�
.ƒ

.k/
p /

�1 C HT
k R�1

k Hk

��1

D
��

Ak�1ƒ.k�1/
c AT

k�1 C Qk�1
��1 C HT

k R�1
k Hk

��1
:

(6.26)

Let us assume that the matrices A;H;R;Q do not depend on k. The latter
equation in (6.25) reads then

ƒ.kC1/
p D Aƒ.k/

p AT C Q � Aƒ.k/
p HT .Hƒ.k/

p HT C R/�1Hƒ.k/
p AT :

This is called Difference Riccati Equation (DRE). A reasonable question related to
this equation for time-independent dynamics refers to the existence of a stationary
variance matrix. This is a variance matrix such that

ƒ.kC1/
p D ƒ.k/

p D ƒp:

The latter can be clearly obtained as a fixed point of the DRE. This leads to solve
the so-called Algebraic Riccati Equation (ARE)

ƒp D AƒpAT C Q � AƒpHT .HƒpHT C R/�1HƒpAT :

This equation has been largely investigated by several authors [1, 46, 51], to
determine under which conditions the solution ƒARE exists and it can be computed
as the asymptotic limit of the corresponding DRE. In particular, let us assume that
the dynamical system is asymptotically stable and converges to a steady solution.
Clearly a good predictor is expected to follow the system dynamics, converging to
the asymptotic estimate. Correspondingly, in this case we expect ƒ.k/

p to converge
to the asymptotic matrix ƒARE. Otherwise, our predictor would be unable to follow
the system dynamics converging to the stationary solution. As a matter of fact, it
is possible to prove that if the system is stable, then the predictor is stable and
its variance gets closer to the solution of the associated ARE (see, e.g., [46] for a
precise statement of the theorem).

In addition, we point out that this solution can be interpreted as an “approximate“
Kalman filter, where the matrixƒ.k/

p is replaced byƒARE to save the computational

costs of computingƒ.k/
p at each step. This provides a stationary filter which is clearly

sub-optimal, since the associated error is not orthogonal to the estimate. However,
it may be computationally convenient.

Another possible use of ƒARE is to provide a bound to the variance of the
“optimal case” when we apply the Kalman filter with no approximations.

Example. Let us consider the scalar case, with

u.k/ D u.k�1/ .A D 1; b D 0/

z.k/ D u.k/ C �.k/ .H D 1; � � G.0; 1//:
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Assume also that the initial data u.1/ � G.�; 1/. Set u.1/p D �. Then, the Kalman
filter formulas read

u.k/p D u.k�1/
c ; �.k/;2p D �.k�1/;2

c

Kk D �
.k/;2
p

�
.k/;2
p C 1

u.k/c D u.k/p C �
.k/;2
p

�
.k/;2
p C 1

.z.k/ � u.k/p / D 1

�
.k/;2
p C 1

u.k/p C �
.k/;2
p

�
.k/;2
p C 1

z.k/

�.k/;2c D �
.k/;2
p

�
.k/;2
p C 1

D �
.k�1/;2
c

�
.k�1/;2
c C 1

:

We have therefore

u.1/p D �; �.1/p D 1; K1 D 1

2
; u.1/c D �C z.1/

2
D u.2/p :

Notice that the prediction at k D 2 is just the sample average of the “past” and the
new data. Similarly we obtain at a generic step k

ukC1
p D ukc D �CPk

jD1 z.j /

k C 1
:

Actually, we have the arithmetic average of the available data at tk , that is somehow
intuitively expected. Moreover, we have the recursive formula

�.kC1/;2
p D �

.k/;2
p

�
.k/;2
p C 1

; with �.1/p D 1:

By induction one can check that �.k/;2p D 1

k
: Consequently we have that

1. lim
k!1�

.k/
p D 0, i.e., the prediction is asymptotically exact; similarly, the estimate

is asymptotically exact;
2. the ARE �2 D �2=.1C �2/ has only one solution, that is 0;
3. the Kalman filter is asymptotically stable, whereas the dynamic system is not

asymptotically stable.

This example provides the case of an asymptotically stable estimator even when
the dynamical system is not stable. As we have pointed out, the “reverse” situation
(system is stable, estimator is unstable) is not possible: when the system is stable,
the predictor is automatically stable.
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An Alternative Look at the Kalman Filter

The Kalman filter can be obtained in different ways. Among the others, in particular
here we mention a recent approach presented in [43], where the algorithm is the
result of an application of the Newton root finding method with an appropriate initial
guess. Beyond its intrinsic interest, this approach is actually oriented to extension to
nonlinear systems in the form of an application of the Gauss–Newton method.

More precisely, assuming to have the exact initial state u.0/, let us consider the
prediction-mismatch functional

Jk;p D 1

2

kX
jD1

ku.j / � Aj�1u.j�1/k2
Q�1
j

C 1

2

k�1X
jD1

kz.j / � Hju.i/k2
R�1
j
:

and the corresponding one for the estimate

Jk;c D Jk;p C 1

2
kz.k/ � Hku.k/k2

R�1
k

:

The latter has the “natural” recursive formulation

Jk;c D Jk�1;c C 1

2
ku.k/ � Ak�1u.k�1/k2

Q�1
k

C 1

2
kz.k/ � Hku.k/k2

R�1
k

:

We estimate u.k/ as the arg min of Jk;c . When solving rJk;c D 0, we apply the
Newton method, that reads

H .unew � uold/ D �rJk;c.uold/ (6.27)

where H is the Hessian matrix associated with Jk;c . By selecting uold D u.k/p D
Ak�1u.k�1/

c , it is possible to prove [43] that the Kalman estimate u.k/c is the solution
unew of (6.27). In the case of a linear system, unew D u.k/c minimizes Jk;c . In fact,
Newton method converges in one iteration when applied to linear equations.

Computational Issues Associated with the Kalman Filter

There are several issues associated with practical computation of the Kalman filter.
Here we mention just a few.

From the numerical viewpoint the implementation of the filter following closely
the formulas given above has a cost ofO.n3/ operations at each time iteration, where
n is the dimension of the matrix A. This cost is basically driven by the computation
of the variance and gain matrices. For systems coming from the discretization of
partial differential equations, nmay be a fairly large number. However, the matrix is
usually sparse and—as it is well known—this may reduce significantly the storage
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requirements and the number of operations. In addition, computational cost may
still be an issue and specific methods for reducing the costs are mandatory. Among
the others, we mention the replacement of the estimate covariance matrix with
the asymptotic one (when the system dynamics is time independent) obtained by
solving the ARE, as pointed out above.

Another computational issue is numerical stability. In particular, when comput-
ing the estimate variance matrix, Eq. (6.21) depends linearly on the computation
error associated with the Kalman gain matrix K. In this respect, using Joseph
formula is beneficial, since numerical errors are propagated quadratically. More in
general, numerical errors may lead to computing non-positive covariance matrices.
This problem can be faced by resorting to appropriate Cholesky or LDLT factoriza-
tions of the covariance matrices that guarantee their numerical positiveness, leading
to the so-called square root form of the filter.

6.2.4 Extension of the Kalman Filter to Nonlinear Problems

The most relevant limitation of the Kalman filter theory presented is that it relies
upon linearity of the dynamical system, and that Gaussian densities remain Gaussian
after linear transformations. However, in most of practical applications, the problem
to solve is nonlinear. We show an important example hereafter (and many others
later on, for the applications relevant to the contents of the present book).

We need therefore to find a way for extending the method to nonlinear cases, by
properly approximating the procedures. We see methods based on both linearization
and sampling.

Parameter Identification Via Kalman Filter

Consider a problem represented by a dynamical system with some parameters
that we want to identify. We defined this as an identification problem. A possible
approach to the problem is to add the parameter to the list of state variables and then
to perform an estimation procedure. In general, this leads to a nonlinear dynamics.
This approach is called state augmentation technique. We illustrate this in a case
with a linear dynamics for the state variable u

u.k/ D A.#/u.k�1/ C b.k/

z.k/ D H.#/u.k/ C 
.k/: (6.28)

We assume for simplicity that # is a time independent stochastic variable, so we
have

#.k/ D #.k�1/ C ".k/
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with ".k/ � G.0; sk/, uncorrelated with other sources of noise. We augment the list
of state variables of the parameter, so we have

v.k/ D
�

u.k/

#.k/


) v.k/ D

�
A.#.k�1//u.k�1/

#.k�1/


C
�

b.k/

".k/


; (6.29)

with

z.k/ D H.#.k//u.k/ C 
.k/:

In general, this is now a nonlinear augmented system so that the Kalman filter
method presented above cannot be applied.

The Extended Kalman Filter

The Extended Kalman Filter (EKF) is the most immediate approach to extend the
filter based on the linearization of both the system dynamics and of the observation
process. Let us consider the nonlinear dynamic system

�
u.k/ D A.u.k�1//C b.k/

z.k/ D H.u.k//C 
.k/:

We still follow the minimal variance approach and introduce the tangent operators,
i.e., the Jacobian matrices

A0.�/ D @A.�/
@u

; H0.�/ D @H.�/
@u

:

After linearization, we get an extension of the Kalman filter. This reads

1. PREDICTION

(a) u.k/p D A.u.k�1/
c /,

(b) ƒ.k/
p D A0.u.k�1/

c /ƒ
.k�1/
c .A0.u.k�1/

c //T C Qk�1:

2. CORRECTION

Kalman gain:

Kk D ƒ
.k/
p H0.u.k/p /T

�
H0.u.k/p /ƒ.k/

p .H0.u.k/p //T C Rk
��1

.

(a) State estimate:

u.k/c D u.k/p � Kk

�
z.k/ � H.u.k/p /

�
.

(b) Covariance estimate:
ƒ
.k/
c D ƒ

.k/
p � Kk H0.u.k/p /ƒ.k/

p :
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As to be expected, most of the analysis holding for the linear case cannot
be trivially extended to this case, since the covariance matrices associated with
the errors depend on the linearization procedure. In particular, they depend on
the set of observations so they are a random process. In addition, they are only
an approximation of the error covariance and this leads to biased state estimates

(E
�

e.k/c
�

¤ 0). Another drawback is the computational cost associated with

the tangent operators, that for problems coming from the discretization of partial
differential equations may be fairly expensive.

Nevertheless, we address the case of parameter estimation with the EKF.

EKF and Parameter Estimation

Let us apply EKF to (6.29), with

A0.v/ D
2
4A.#/

@A

@#
u

O I

3
5 ;H0.v/ D

�
H.#/

@H

@#
u


:

In many cases, H is independent of # so that the last entry in H0.v/ is zero. We
assume that this is the case hereafter. In this form, the parameter estimation is
performed following the EKF steps. The covariance matrix of the augmented status
will be

ƒaugm;� 	
�
ƒu;� ƒu#;�
ƒu#;� ƒ#;�



where the dot can be either p in the prediction or c for the correction (or estimate).
Then, we have the following steps.

1. PREDICTION

(a) u.k/p D A.#.k�1/
c /u.k�1/

c ; #
.k/
p D #

.k�1/
c

(b) ƒ.k/
augm;p D

"
Aƒ.k�1/

u;c AT C B C BT C @A

@#
u.k�1/
c ƒ

.k�1/

#;c u.k�1/;T
c

@AT

@#
C

CT ƒ
.k�1/

#;c

#

where B D Aƒ.k�1/
u#;c u.k�1/;T

c

@AT

@#
, C D Aƒ.k�1/

u#;c C @A

@#
u.k�1/
c ƒ

.k�1/
#;c and all

the occurrences of A and its derivative are computed in #.k�1/
c .

2. CORRECTION

Kalman gain:

Kk D
"
ƒ
.k/
p;uHT

ƒ
.k/

p;u#HT

#�
Hƒ.k/

p;uHT C Rk
��1 D

�
Kk;1

Kk;2


:
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(a) State and Parameter:

u.k/c D u.k/p � Kk;1

�
z.k/ � H.#.k/p /u.k/

�
;

#.k/c D #.k/p � Kk;2

�
z.k/ � H.#.k/p /u.k/

�
:

(b) Covariance estimate:

ƒ.k/
augm;c D ƒ.k/

augm;p �
"

Kk;1H.#
.k/
p /ƒ

.k/
p;u Kk;1H.#

.k/
p /ƒ

.k/

p;u#

Kk;2H.#
.k/
p /ƒ

.k/
p;u Kk;2H.#

.k/
p /ƒ

.k/

p;u#

#
:

It is worth noting that in this way we have a sort of adaptive filtering, since
the improvement of the knowledge of the parameter affects the quality of the state
estimate in a self-learning process.

As we have pointed out in the Introduction, there are several ways to perform
parameter estimation (see, e.g., [2, 3]), this one is just an example. In Sect. 6.4.2 we
present an example relevant to FSI. Since EKF suffers from the computation of the
tangent operators, this can be avoided by resorting to a different extension of the
Kalman Filter, that we introduce in the next section.

Remark 6.4. EKF can be regarded as the result of the application of one iteration of
the Gauss–Newton method for the minimization of a suitable mismatch functional,
as we have seen for the linear case. For more details, see [43]

6.2.5 The Unscented Kalman Filter

As pointed out above, errors associated with the linearization of EKF lead in
general to sub-optimal performances. In the unscented Kalman filter (UKF) [45],
the basic idea is to approximate the evolution of the nonlinear dynamic system not
by linearization but by deterministic sampling, following the so-called unscented
transformation (UT). The basic idea of UT is that “it is easier to approximate a
Gaussian distribution than it is to approximate an arbitrary nonlinear function or
transformation” [44]. For this reason, the nonlinear dynamics in UKF is statistically
approximated by mean and covariance of samples suitably selected for the state
variable to be estimated.

For instance, suppose to have a scalar Gaussian random variable u.k/ with mean�
and variance �2. At the first step we determine two samples of u.k/, as s1;2 D �˙�.
If we need to approximate a nonlinear evolution u.kC1/ D f .u.k//, we compute the
samples fi 	 f .si / and take

E
�
u.kC1/� � w1f1 C w2f2 	 f ;

E
��
f .u.k// � E

�
f .u.k//

��2� � w1.f1 � f /2 C w2.f2 � f /2;

where wi are suitable weighting coefficients.
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The selection of the sampling points (called �-points) is clearly of paramount
importance and can be done in different ways. In general [44, 45, 73], a canonical
choice for a state variable u.k/ of size n, with Gaussian distribution with mean
E
�
u.k/

�
and covariance matrixƒ reads

s0 D E
�
u.k/

�
; si D E

�
u.k/

�C
�p

.nC �/ƒ
�
i
;

siCn D E
�
u.k/

� �
�p

.nC �/ƒ
�
i
;

w0 D �

� C n
; wi D wiCn D � C n

2
;

i D 1; 2; : : : ; n;

where � is a real scaling factor and
�p

.nC �/ƒ
�
i

is the i -th row of the matrixp
.nC �/ƒ. This can be computed by a Cholesky factorization of the s.p.d. matrix.

Other criteria for sampling can be, however, pursued [6].
The UKF will eventually consist of a sampling step, followed by the “Kalman-

like” prediction and correction steps.

1. SAMPLING: Let C.�/ denote the Cholesky decomposition of an s.p.d. matrix. We
take

C.k�1/ D p
nC �C.ƒ.k�1/

p /

u.k�1/
0 D u.k�1/

c ;

u.k�1/
i D u.k�1/

c C C.k�1/;i ; i D 1; 2; : : : ; n;

u.k�1/
iCn D u.k�1/

c C C.k�1/;i ; i D 1; 2; : : : ; n:

2. PREDICTION: Let wi be the weight coefficients.

u.k/p;i D A.u.k�1/
p;i / sample evolution

u.k/p D
X
i

wiu
.k/
p;i ; ƒ.k/

p D
X
i

wi
�

u.k/p;i � u.k/p
� �

u.k/p;i � u.k/p
�T

3. CORRECTION:

z.k/i D H.u.k/p;i /

ƒ.k/
po D

X
i

wi
�

z.k/i � H.u.k/p /
� �

z.k/i � H.u.k/p /
�T

ƒ.k/
p;po D

X
i

wi
�

z.k/i � H.u.k/p /
� �

u.k/p;i � u.k/p
�T

Kk D ƒ.k/
p;po

�
ƒ.k/

po

��1

u.k/c D u.k/p C Kk

�
z.k/ � H.u.k/p /

�

ƒk
c D ƒk

p �ƒ.k/
p;po

�
ƒ.k/

po

��1
ƒ.k/;T
p;po :
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Examples of this method can be found in [73]. UKF dual estimation is in
particular the identification of parameters of the model simultaneous to the state
estimation, similarly to what we have illustrated for the EKF. In this respect, we
will see an example in Sect. 6.4.2. A smart implementation of the methods may
be necessary for problems coming from the discretization of partial differential
equations, using, for example, the so-called Factorized UKF. In particular, for
parameter estimation, computational cost can be reduced by assuming that
uncertainty affects only the parameter of interest and not the entire state. For
more details, see [6, 54].

6.3 Deterministic Variational Assimilation Methods

In this section, we consider a different approach for data assimilation, based on a
deterministic approach. We do not necessarily rely upon a priori statistical knowl-
edge of the process and we formulate the problem as a minimization procedure,
where the mathematical paradigm acts as a constraint. For instance, referring to
Fig. 6.3, with an educated guess we can decide a functional form for w and then fit
this form with the measures. In other words we find w belonging to some class of
functions V such that

dist.z;Observation.w// � dist.z;Observation.v//

for all v 2 V , where Observation.v/ is the application of the mathematical
representation of the measure process to v, to be compared with the “real” measure
z. If the measures are trustworthy, we could derive a model for capturing exactly
the data pursuing an interpolation approach. In general measures are noisy and we
resort to a Least Squares (LS) procedure, so that the model fits the data in a “weaker”
sense. Notice that the definition of the distance is somehow arbitrary. For instance,
it could include an a priori knowledge of the location of data more trustworthy than
others by means of proper coefficients that give more relevance to these data.

In the general case of interest for our applications when we have a dynamical
system evolving, we can recast the assimilation procedure as a control problem. In
a very abstract setting, we may list the ingredients of this approach as follows (see
Fig. 6.6).

A mathematical model describing the dynamics of interest for the variables or
physical quantities describing the state of the system we are interested in. In
our problems, this model or paradigm is given by a system of partial differential
equations and, more precisely, a model describing FSI. In this case, the state
variables are represented by the velocity, the pressure of the fluid, and the
displacement of the structure.

A set of observations or measurements of the state variables or, more in gen-
eral, of a function of the state.
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k = k + 1

System Dynamics

Input u(k+1)

Output −

+

Control

Controllability

z(k+1)

Noisem

Control Variable

Fig. 6.6 Possible approaches for the estimate with a system dynamics: here we do not use
stochastic knowledge and we refer to the concept of CONTROLLABILITY: the estimate is
reformulated as a control process

A functional J to be minimized. In general, this is the discrepancy between the
results obtained by the mathematical (numerical) model and the available data.

A control variable (CV), which is the variable that we tune to get the minimiza-
tion done. Its choice strongly depends on the purpose of the assimilation. For
instance, in identification (parameter estimation) problems, the parameter(s) to
be identified will be the control variable(s) to drive the minimization.

Solution of constrained minimization problems with distributed models (partial
differential equations) acting as constraint has been considered by several authors
[3,35,66,69]. With no claim to be exhaustive, in the present section we provide some
general solution methods with simple examples, that have been used in applications
of interest for biomedical FSI problems. Since minimization procedures resort
typically to iterative methods, the solution of the system of partial differential
equation representing the model needs typically to be solved several times. This
rapidly leads to high computational costs, in particular when working on unsteady
problems, as the ones we are interested in. We need to address therefore the problem
of reducing the computational costs.

The key concept in this case is controllability—which is the dual concept of
observability advocated in the previous section—in other terms the effectiveness of
the control strongly depends on the sensitivity of the functional to be minimized
to the control variable. More the functional is sensitive to the control and most
likely the minimization will be successful. This is somehow a change in the usual
perspective of solving problems in engineering. As a matter of fact, high sensitivity
comes from a lack of stability or robustness and the control action is intended to
recover these properties. For instance, in the case of fluids we should expect a
control to be more effective when the Reynolds number is high, because in this
case, in general, the variable of interests are more sensible to perturbations and for
this reasons they may be controlled.

The entire section is largely based on [38, Chaps. 2 and 5].
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6.3.1 Least Squares Estimators

As we have done in the previous section, we start with some considerations on the
“steady” case, when we perform an In-Out constrained minimization (Fig. 6.3).

Suppose that we have a sequence of measures of the same variable w 2 R
n

affected by noise,

zi D Hiw C noisei ; i D 1; 2; : : : ; m:

We do not postulate any a priori probabilistic knowledge of the noise. The problem
of estimating w from these measures has a classical deterministic formulation given
by the Least-Squares (LS) approach. More precisely, the problem is formulated as:
find the optimal w such that

w D arg minJ ;

where

J D 1

2

mX
iD1
.zi � Hiw/T��1

m .zi � Hiw/

and��1
m is an n � n weight matrix, which is assumed to be s.p.d. Let

OHm D

2
664

H1

H2

: : :

Hm

3
775 2 R

nm;n; Oz D

2
664

z1
z2
: : :

zm

3
775 2 R

nm; O�m D

2
64
�m O

: : :

O �m

3
75

then,

J D 1

2
.Oz � OHmw/T O��1

m .Oz � OHmw/:

Solving

@J
@w

D 0

we find

OHT
m

O��1
m

�
Oz � OHmwLS

�
D 0:

Thus,

wLS D
� OHT

m
O��1
m

OHm

��1 OHT
m

O��1
m Oz D ƒm

OHT
m

O��1
m Oz:

whereƒm D . OHT
m�

�1
m

OHm/
�1.
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Remark 6.5. Let us consider a recursive formulation of this problem, obtained
adjusting an available estimate (based on previous observations) when a new
observation becomes available. Let us write recursively for k > 1

OHk D
� OHk�1

Hk


; Ozk D

� Ozk�1
zk


:

We also write

c�k
�1 D

� O��1
k�1 0

0 ��1
k


;

where��1
k is an s.p.d. matrix. With this notation, we may write

OHT
k

O��1
k

OHk D OHT
k�1 O��1

k�1 OHk�1 C HT
k �

�1
k Hk:

or, with the (suggestive) notation introduced above

ƒ�1
k D ƒ�1

k�1 C HT
k �

�1
k Hk:

By the Sherman–Morrison–Woodbury formula we obtain

ƒk D �
ƒ�1
k�1 C HT

k �
�1
k Hk

��1 Dƒk�1 �ƒk�1HT
k

�
�k C Hkƒk�1HT

k

��1
Hkƒk�1:

Let us introduce the matrix

Gk D ƒk�1HT
k

�
�k C Hkƒk�1HT

k

��1
;

so we have

ƒk D .I � GkHk/ƒk�1:

From here, we can obtain the recursive formula (see [68, Sect. 4.3])

OwLS
k D OwLS

k�1 C Gk

�
zk � Hk OwLS

k�1
�
;

that has a formal analogy with Kalman filter formulas, even though in this case
the dynamics is not related to the state (no dynamics occurs on w) but just to the
addition of new measures. In this respect, zk � Hk OwLS

k�1 represents the net content of
new information brought by the new measure.

When we assume that the state evolves, the mathematical equation describing
the dynamics may be used as a constraint to the minimization process. Algebraic
aspects of constrained LS problems, with both equality and inequality constraints,
have been addressed in [36, Chap. 12]. For instance, we may consider the problem:
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find x such that

x D arg min kAx � bk2; Bx D d

where A is anm�nmatrix, B is p�n, b 2 R
m, d 2 R

p . We assume that the matrices
are both full-rank. The problem can be solved by an application of the Generalized
Singular Value Decomposition (GSVD),

UT AX D diag.˛1; ˛2; : : : ; ˛n/ D DA; VTBX D diag.ˇ1; ˇ2; : : : ; ˇp/ D DB;

with U and V orthogonal matrices and xi are the columns of X for i D 1; 2; : : : ; n.
The solution to this problem then reads [36]

x D
pX
iD1

vTi d
ˇi

xi C
nX

iDpC1

uTi b
˛i

xi :

We can consider the associated unconstrained LS problem

x D arg min k
�

A
�B


x �

�
b
�d


k2

This can be solved with an ordinary LS procedure. Using the GSVD, it is possible
to find the solution

x.�/ D
pX
iD1

˛iuTi b C �2ˇivTi d

˛2i C �2ˇ2i
xi C

nX
iDpC1

uTi b
˛i

xi ;

from which it is promptly realized that the solution to the constrained minimization
problem x D lim�!1 x.�/. In the next section, we see a similar approach for
solving unconstrained minimization when the constraint is represented by a partial
differential equation.

6.3.2 Constrained Minimization Problems with PDEs:
A Simple Working Example

To be concrete, we illustrate techniques of constrained minimization with partial
differential equations on the following problem. Let � � R

n (n D 2; 3) and @�
be denoted by � . We assume that u.x/ is the state variable that obeys the following
equation

��u C b � ru C 
u C u3 D
KX
iD1
˛ifi ; in � (6.30)
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 and ˛i (i D 1; : : : ; K) are real coefficients. ˛ 2 R
K is the vector with entries

˛i . b is a divergence-free vector function. In our applications, b may represent the
blood flow, and u the concentration of some solute in the blood. We assume to have
a reference or desired function d.x/ we would like to be approximated by u.x/. We
assume moreover

u D 0 on @�: (6.31)

We assume that 
 and ˛i are unknown parameters. They need to be computed so
to drive the state variable to the reference behavior. We formulate therefore the
problem5: find 
;˛ to minimize

J .u/ D 1

2

Z

�

.u.x/� d.x//2dx;

where u.x/ solves (6.30), (6.31).
Quite often J is added with a term depending explicitly on the parameters to be

estimated in the form

JR.u;˛; 
/ D J .u/C �1

2
k˛k2 C �2

2
k
 � 
refk2; (6.32)

where �1 and �2 are constants and k � k denotes a generic (convenient) norm; in the
remainder of the section we assume k � k D k � k2. This modification may have both
practical and theoretical reasons.

1. First practical motivation: When the control variable corresponds to a physical
control, like the coefficients ˛, it implies a practical cost (intended in a broad
sense as the energy required to apply it). For this reason, the “size” of the control

cannot be too large. The correction of J with
�1

2
k˛k2 is a “penalization” that

includes the cost of the control.6

2. Second practical motivation: In some cases, in particular when identifying a
parameter, a “nominal” reference guess is available, based, for instance, on
averaging available measures or samples. This is denoted here by 
ref and the
real value is supposed to be “not too far” from this value. This leads to the term
�2

2
k
 � 
refk2 that penalizes the difference respect to the nominal value.

3. Mathematical motivation: If we hypothetically consider only the terms

JR.u; d / D �1

2
k˛k2C �2

2
k
 �
refk2, the function to be minimized has excellent

mathematical properties. It is actually quadratic and the minimization leads
clearly to the solution .˛; 
/ D .0; 
ref/. We infer therefore that the term JR

5A similar problem has been investigated as a simplified model of superconductivity in [69].
6This could be done also with unilateral constraints k˛k � max-cost-allowed.



434 L. Bertagna et al.

has a regularizing effect on the minimization properties, balancing the bad (or
not so good) properties of the original constrained minimization. As a matter of
fact, in general the original problem may be ill-posed, featuring multiple local
minima or none. The term JR with a proper selection of the weights �1 and
�2 allows us in general to have a well-posed problem. For this reason, when
solving this kind of inverse problems, this term is often called regularization
(Tikhonov regularization in the form in (6.32)). Other forms of regularization
may be considered in practice, but they will not be addressed here (see [23, 39]).

The appropriate selection of weights �1;2 is not trivial. It is actually a trade-
off between the minimization of the mismatch (that requires these weights to be
small) and the regularization of the problem (that in general is improved for large
positive values). Different strategies are possible. A general approach is to identify
values such that the impact of additional terms on the non-regularized functional is
bounded by the numerical errors, so to reduce the effects on mismatch minimization
within the range acceptable after approximations, while improving the conditioning
properties of the problem. See, e.g., [67, 72].

Gâteaux and Fréchet Derivatives

For the solution of a PDE constrained optimization problem, we need to be able to
differentiate operators acting between functional spaces. In particular, let F W X !
Y , X and Y being appropriate functional spaces and let u, v 2 X . The derivative of
F , in the direction, v can be computed as

DF.uI v/ WD lim
"!0

F.u C "v/ � F.u/
"

:

Such derivative is called Gâteaux derivative. As an example, take G.u/ D .u � f /2,
then

D G.uI v/D lim
"!0

.u C "v�f /2�.u�f /2
"

D lim
"!0

2".u �f /vC "2v2

"
D 2.u �f /v:

It is often possible to write the Gâteaux derivative of F in any direction v, as the

application of a bounded linear operator
DF
Du

ˇ̌
ˇ̌
u

to v. Such operator is called Fréchet

derivative. In the following we assume that the Fréchet derivative exists and we write

DF.uI v/ D DF
Du

ˇ̌
ˇ̌
u

.v/:

In our example,
DF
Du

ˇ̌
ˇ̌
u

D 2.u�f /. It is possible to show that the Gâteaux derivative

of G.u/ D uT A u, in the direction v, where u and v are vector functions and A is a
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constant square matrix of compatible dimensions, reads

D G.u; v/ D uT A vC vT A u D uT .AC AT /v;

while its Fréchet derivative reads

DG
Du

ˇ̌
ˇ̌
u

D uT .AC AT /;

with the understanding, in this case, that the application of the operator
DG
Du

ˇ̌
ˇ̌
u

to

v is the usual matrix vector product of the one-row matrix
DG
Du

ˇ̌
ˇ̌
u

and the vector v.

As another example, consider G.u/ D ��u, then DG.u; v/ D ��v and
D G
Du

ˇ̌
ˇ̌
u

D
��. In general, the derivative of a linear operator (the Laplacian operator in this
case) is the linear operator itself.

The usual chain rule holds for the differentiation of composite functions

D .G ı F/.u; v/ D D G .F.u/; DF.u; v// ;

or

D .G ı F/
Du

ˇ̌
ˇ̌
u

D D .G ı F /
DF

ˇ̌
ˇ̌
F.u/

�
DF
Du

ˇ̌
ˇ̌
u

�
:

Gradient-Based Optimization Approaches

A common and effective approach to deal with optimization constrained by partial
differential equations is to include directly the constraint in the functional to be
minimized. In this way, the minimization procedure is recast in an unconstrained
case and the solution is obtained with classical arguments. In particular, the first
order necessary conditions are obtained by setting to 0 the gradient of the functional.

In our case, this means that the solution u is computed as a function of the
control variables ˛ and 
 and the total derivative of JR, regarded as function of
these variables, is set to 0. This procedure admits an iterative implementation. Let
us denote the state problem (6.30), (6.31) with the abstract notation F.u;˛; 
/ D 0.

Assume that an initial guess ˛.0/ and 
.0/ is given. Typically, we take 
.0/ D 
ref.
Then, we perform the following steps for j D 0; 1; 2; : : ::

– find the state variable u.j / solution to F.u;˛.j /; 
 .j // D 0;
– compute DJR.u.j /;˛.j /; 
 .j //=D˛

ˇ̌
˛.j /

and DJRu.j /;˛.j /; 
 .j /=D

ˇ̌

.j /

;

– if kDJR.u.j /;˛.j /; 
 .j //=DŒ˛; 
�k is sufficiently small, solution is reached;
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else compute a new guess ˛.jC1/, 
.jC1/, for instance by setting

˛
.jC1/
i D ˛

.j /
i � !

.j /
i

DJR.u.j /;˛.j /; 
 .j //
D˛i

; i D 1; 2; : : : ; K


.jC1/ D 
.j / � !.j /KC1
DJR.u.j /;˛.j /; 
 .j //

D

;

(6.33)

where !.j /i , i D 1; 2; : : : ; K C 1 are numerical coefficients that drive the
convergence of the procedure.

This approach, based on (6.33), belongs to the family of steepest descent methods
and the parameters !i define the step performed in updating the solution along the
line identified by the gradient. These coefficients, in general, may be dynamically
determined at each iteration. Other iterative methods may be considered for the
sake of effectiveness. Among others, a method that usually outperforms the steepest
descent approach is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (see,
e.g., [58]); another common choice is the Gauss–Newton method. The latter finds
the roots of DJR=DŒ˛; 
� D 0 using the Newton method, that means that, at
each iteration j , the minimization of the paraboloid tangent to JR in ˛.j /; 
 .j / is
performed. The method is potentially second order, but it has the drawback that the
Hessian of the functional JR is needed.

The most troublesome step in the previous algorithm is the computation of the
gradientsDJR.u.j /;˛.j /; 
 .j //=DŒ˛; 
�. Let us address two possible methods.

Gradient Computation Through Sensitivities

A possible way for computing the gradients relies upon the chain rule

DJR
D˛i

ˇ̌
ˇ̌
˛.j /

D @JR
@u

ˇ̌
ˇ̌
u.j /

 
@u

@˛i

ˇ̌
ˇ̌
˛
.j /
i

!
C @JR

@˛i

ˇ̌
ˇ̌
˛
.j /
i

; i D 1; 2; : : : ; K C 1

where for easiness of notation we set ˛KC1 D 
 . We call sensitivities the derivatives

�i 	 @u

@˛i
; 8i D 1; 2; : : : ; K C 1

as they quantify the sensitivity of the solution to each control variable. From

F.u.j /;˛.j // D 0 ) DF
D˛i

ˇ̌
ˇ̌.j / D @F

@u

ˇ̌
ˇ̌
u.j /

�
�
.j /
i

�
C @F
@˛i

ˇ̌
ˇ̌.j / D 0;

we have

@F
@u

ˇ̌
ˇ̌
u.j /

�
�
.j /
i

�
D � @F

@˛i

ˇ̌
ˇ̌.j / : (6.34)
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Sensitivities can be retrieved by solving this set of equations for i D 1; 2; : : : ; KC1.
In particular, for our working example we have

DJR
D˛i

ˇ̌
ˇ̌
˛
.j /
i

D @JR
@u

ˇ̌
ˇ̌
u.j /

�
�
.j /
i

�
C @JR
@˛i

.j /

D
Z

�

.u � d/�i C �1˛i ; i D 1; 2; : : : ; K

DJR
D


.j /

D @JR
@u

ˇ̌
ˇ̌
u.j /

�
�
.j /
KC1

�
C @JR

@˛i

ˇ̌
ˇ̌
˛
.j /

KC1

D
Z

�

.u � d/ .�KC1/C �2.
 � 
ref/:

Notice that from the state equations (6.30), (6.31), we have for i D 1; 2; : : : ; K C 1

@F
@u

ˇ̌
ˇ̌
u.j /
.�i / D ���i C b � r�i C 
�i C 3.u.j //2�i ;

and

@F
@˛i

ˇ̌
ˇ̌.j / D �fi ; i D 1; 2; : : : ; K

@F
@


ˇ̌
ˇ̌.j / D u.j /:

Then, the sensitivities equations read

8<
:

���i C b � r�i C 
�i C 3.u.j //2�i D fi in �
���KC1 C b � r�KC1 C 
�KC1 C 3.u.j //2�KC1 D �u.j / in �
�i D 0; i D 1; 2; : : : ; K C 1 on �:

(6.35)

Notice that these equations are linear in the sensitivities. Finally, we have

DJR
D˛i

ˇ̌
ˇ̌.j / D

Z

�

.u.j / � d/�i C �1˛
.j /
i ;

DJR
D


ˇ̌
ˇ̌.j / D

Z

�

.u.j / � d/�KC1 C �2

.j /:

Gradients of the functional with respect to the control variables following this
approach requires therefore the solution of the K C 1 sensitivity equations.

Gradient Computation Through Adjoint Equations

In the following, we omit the iteration index j for simplicity. In the previous section

we computed the operator
@F
@u

ˇ̌
ˇ̌
u

applied to the sensitivities �i . Let us consider the
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adjoint of this operator, which is the operator

�
@F
@u

��ˇ̌ˇ̌
u

such that

<

�
@F
@u

��ˇ̌ˇ̌
u

.�/ ; v > D < � ;
@F
@u

ˇ̌
ˇ̌
u

.v/ >; (6.36)

for any v belonging to an appropriate functional space. Here < �; � > indicates
a duality pairing. In particular, in a finite dimensional setting, < �; � > typically
denotes the usual Euclidean dot product, while in the continuous setting, it denotes
one of the integrals

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

< u; v >	
Z

�

u v; for scalar functions;

< u; v >	
Z

�

u � v; for vector functions;

< U; V >	
Z

�

U W V for tensor functions:

In our example, we have

< �;
@F
@u

ˇ̌
ˇ̌
u

.v/ >D
Z

�

�
���v C b � rv C 
v C 3u2v

�
:

Integrating by parts, and choosing � to vanish on � , we get7

< �;
@F
@u

ˇ̌
ˇ̌
u

.v/ >D
Z

�

���� � b � r�C 
�C 3u2�
�
v:

Therefore, the adjoint operator reads

�
@F
@u

��ˇ̌ˇ̌
u

D ��� � b � r�C 
�C 3u2�:

We consider the following adjoint problem, whose solution, as we will see later, is
crucial to find the derivatives of J with respect to the parameters.

<

�
@F
@u

��ˇ̌ˇ̌
u

.�/ ; v >D @JR
@u

ˇ̌
ˇ̌
u

.v/; (6.37)

7We remind that we assumed b to be divergence free.
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for any v belonging to appropriate functional spaces. In our specific example, this
problem reads

Z

�

���� � b � r�C 
�C 3u2�
�
v D

Z

�

.u � d/ v;

for any v, with � vanishing on � . Since such equation must hold for any v, we get
the strong form of the adjoint equation

� ��� � b � r�C 
�C 3u2� D u � d in �
� D 0 on �

:

Notice that once � is computed by solving this equation, we may write for i D
1; 2; : : : ; K C 1

DJR
D˛i

D @JR
@u

�
@u

@˛i

�
C @JR
@˛i

D<
�
@F
@u

��ˇ̌ˇ̌
u

.�/ ;
@u

@˛i
> C@JR

@˛i

D< � ; @F
@u

ˇ̌
ˇ̌
u

�
@u

@˛i

�
> C@JR

@˛i
D � < � ;

@F
@˛i

> C@JR
@˛i

;

(6.38)

where we exploit (6.37), (6.36), and (6.34). In other words, all the gradients needed
by the iterative procedure are promptly computed after � is calculated. In the
example, this reads for i D 1; 2; : : : ; K

DJR
D˛i

D �1˛i C
Z

�

.u � d/
@u

@˛i
D �1˛i C

Z

�

.u � d/�i

D �1˛i C
Z

�

���� � b � r�C 
�C 3u2�
�
�i

D
(by parts)

�1˛i C
Z

�

����i C b � r�i C 
�i C 3u2�i
�
�

D �1˛i C
Z

�

fi�;

and similarly we obtain
DJR
D


D �2.
 � 
ref/�
Z

�

u�.

According to this procedure, it is enough to solve a differential problem in the
adjoint operator to compute all the gradients needed by the iterative procedure. This
approach is therefore more efficient, when the computation of the adjoint operator
is possible (and doable).
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The Lagrange Multiplier Approach and the KKT Conditions

Let us consider a different approach for reformulating the constrained minimization
problem into an unconstrained one. It is a classical argument in which a companion
functional is introduced to include the constraints. We stick to our simple working
example to introduce the idea, referring to the mentioned references for a more
complete presentation. Let us consider the functional

L.u;˛; 
; �/ D JR.u;˛; 
/� < �; F.u;˛; 
/ >;

where � is the adjoint (or co-state) function, the so-called Lagrange multiplier. The
idea behind this approach is that solutions of the constrained minimization problem
are stationary points of L. As such they solve the following system of equations,
representing the first order necessary conditions of optimality

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

@L
@�

D 0 State equations

@L
@u

D 0 Adjoint/Co-state equations

@L
@˛

D 0 Optimality conditions

@L
@


D 0 Optimality condition:

(6.39)

Here, each variable is independent of the others since no constraint holds. In our
specific example, we have8

L.u;˛; 
; �1; �2/

D JR.u;˛; 
/�
Z

�

�1

 
��u C b � ru C 
u C u3 �

KX
iD1
˛ifi

!
�
Z

�

�2u:

Here, we considered the integral formulation of (6.30), (6.31), where �1 and �2
are the functions enforcing the constraint given by the state equation. To obtain the
stationary points, we need to perform the Gateaux differentiation

@L
@�1

ˇ̌
ˇ̌
�1

.ı�1/ D lim
"!0

1

"

�
L.u;˛; 
; �1 C "ı�1 ; �2/ � L.u;˛; 
; �1; �2/

�
(6.40)

8Here we used the Lagrange multiplier �2 to prescribe the Dirichlet homogeneous boundary
condition. Often, such condition is prescribed without using Lagrange multipliers but requiring
directly that u and �1 vanish on the boundary.
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where ı�1 is an admissible variation. We find

Z

�

ı�1

 
��u C b � ru C 
u C u3 �

KX
iD1
˛ifi

!
D 0:

Since ı�1 is arbitrary, from this equation we promptly obtain the state prob-
lem (6.30). Similarly,

@L
@�2

ˇ̌
ˇ̌
�2

.ı�2/D lim
"!0

1

"

�
L.u;˛; 
; �1; �2 C "ı�2/�L.u;˛; 
; �1; �2/

� D
Z

�

ı�2u D 0

(6.41)
leading to (6.31).

Let us write explicitly now the adjoint equation

@L
@u

ˇ̌
ˇ̌
u

.ıu/ D lim
"!0

1

"
.L.u C "ıu;˛; 
; �1; �2/ � L.u;˛; 
; �1; �2//

D
Z

�

.u � d/ ıu �
Z

�

�1
���ıu C b � rıu C 
ıu C 3u2ıu

�

�
Z

�

�2ıu D 0: (6.42)

Let us factor out the arbitrary variation ıu. If we integrate by parts the second and
first order terms, we get

Z

�

ıu
�
u � d C��1 C b � r�1 � 
�1 � 3u2�1

�

C
Z

�

�1rıu � n �
Z

�

.r�1 � n C �1b � n C �2/ıu D 0:

Because ıu is arbitrary, this equation is equivalent to

���1 � b � r�1 C 
�1 C 3u2�1 D u � d in �
�1 D 0 on �
�2 D �b � r�1 � n � �1n on �:

Notice that �2 does not affect the solution of the problem, therefore in the following
we drop the last equation because we are not interested in the particular value
assumed by �2. Finally, we compute the derivative with respect to the control
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variables

@L
@˛i

D
Z

�

�1fi C �1˛i ;
@L
@


D
Z

�

� u�1 C �2.
 � 
ref/: (6.43)

Summarizing, the optimality system to be solved reads

8̂
<
:̂

��u C b � ru C 
u C u3 D
KX
iD1
˛ifi in �

u D 0 on @�

State equations

� ���1 � b � r�1 C 
�1 C 3u2�1 D u � d in �
�1 D 0 on @�

Adjoint equations8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

˛i D � 1

�1

Z

�

�1fi i D 1; : : : ; K


 D 
ref C 1

�2

Z

�

�1u

Optimality conditions

(6.44)

This set of equations represents the so-called Karush–Khun–Tucker (KKT) condi-
tions [69].

In principle, this system provides the solution to the optimization problem in a
monolithic or “one-shot” fashion. In practice, the cases of interest when the system
can be solved directly are rare—in particular for nonlinear state problems, and we
need again to resort to iterative procedures.

Let a guess for ˛ and 
 be given at the iteration j . Again, typically, we take

.0/ D 
ref. A reasonable iterative procedure reads as follows.

1. Solve the state equations to compute u.jC1/;
2. Solve the adjoint problem to compute �.jC1/

1 and �.jC1/
2 .

3. Update the control variables using the optimality conditions. In this example it is
natural to choose

˛
.jC1/
i D � 1

�1

Z

�

�
.jC1/
1 fi and 
.jC1/ D 
ref C 1

�2

Z

�

�
.jC1/
1 u.jC1/;

until a convergence criterion is satisfied.
This procedure corresponds in fact to a fixed-step steepest descent method for

JR regarded as a function of the control variables. In fact, notice that the Lagrange
multiplier � introduced here corresponds to � introduced in the previous section.
With this perspective, Eq. (6.38) reads

DJR
D˛

D 0
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that is exactly what we want to obtain when we are looking for a minimum of JR.
As a matter of fact, the iterative algorithm introduced in the previous section to
minimize JR is an iterative algorithm to solve the KKT conditions.

Sequential Quadratic Programming Algorithm

In contrast with what is done in the unconstrained approach considered so far, con-
strained algorithms try to compute the solution to the minimization problem through
the convergence of the state and parameter variables (u.j /; ˛.j // simultaneously.
This approach can be very effective in presence of nonlinear constraints, as the
constraints need not to be solved at each iteration. In this section we consider one
of these methods, the sequential quadratic programming (SQP) method [12] which
consists of iteratively approximating the original problem with a quadratic problem
subject to linear constraints. Such quadratic problem is then solved using quadratic
programming (QP) algorithms. Assume that the problem is already discretized, and
let the vector x.j / include both the state (u.j /) and the parameter (˛.j /) vectors

x.j / D
�

u.j /

˛.j /


:

The Lagrangian functional of the problem L.x;�/ D JR.x/� < �; F.x/ > is
approximated at iteration j with the paraboloid tangent to the Lagrangian in x.j /,
i.e.,

L
�
x;�.j /

� � L.x.j /;�.j //C L.j /;Tx ı.j /x C 1

2
ı.j /;Tx H.j /ı.j /x ;

where L.j /x D @L
@x

ˇ̌
ˇ̌
x.j /

, ı.j /x D x � x.j /, and H.j / D @2L
@x2

ˇ̌
ˇ̌
x.j /

is the Hessian

matrix. Such approximation of the Lagrangian is minimized w.r.t. ı.j /x , subject to
the linearization of the constraint F.x/ D 0

F
�
x.j /

�C F.j /;Tx ı.j /x D 0: (6.45)

where the matrix F.j /x D @F
@x

ˇ̌
ˇ̌
x.j /

. Exploiting the fact that F.j /;Tx ı.j /x is constant w.r.t.

ı.j /x because of (6.45), one can reformulate the quadratic programming problem as

ı.j /x D argmin J
.j /;T
x ı.j /x C 1

2
ı.j /;Tx H.j /ı.j /x

s.t. F.j /;Tx ı.j /x D �F
�
x.j /

�
;

(6.46)

where the column vector J .j /x D @JR
@x

ˇ̌
ˇ̌
x.j /

. The value x.jC1/ is obtained as

x.jC1/ D x.j / C �ı.j /x , where the step length � 2 .0; 1� is chosen using a line
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search method. The Lagrangian multiplier �.jC1/ can be computed as �.jC1/ D
�.j / C 
.�opt � �.j //, where �opt is the optimal Lagrangian multiplier associated
with problem (6.46). In order to avoid the computational costs associated with the
evaluation of the Hessian, the matrix H can be replaced by a suitable approximation.
A common approach is to use instead the matrix generated by the BFGS method. In
general the effectiveness of the SQP method relies on the method used to solve the
QP problem. Inequality constraints (e.g., the constraint that some parameters must
be nonnegative) can be easily handled using SQP approach. In addition, we point
out that when the exact Hessian is used, 
 D 1, and only equality constraints are
considered, the method is equivalent to solve the KKT conditions with the Newton
method.

Notice that from the formulation of the SQP problem that the solution at iteration
j does not need to be feasible, i.e., to satisfy the constraints. This approach allows
to save a lot of time because we do not have to enforce the feasibility of the solution
at each iteration. However, this lack of feasibility might affect the robustness of the
method.

Unsteady Problems

The procedure illustrated above can be extended to unsteady problems, that are of
major interest in FSI applications. However, in this case, it is important to notice that
the adjoint problem (in any of the formulations we encountered) is a final-boundary
value problem. This means that it is backward in time. This feature introduces high
computational costs either when we solve the problem via the KKT system or we
follow a gradient-based procedure based on the adjoint problem. In fact, the state
problem (which is forward in time) and the adjoint problem need to be solved all
together in space–time. The computational costs for this approach are therefore in
many cases not affordable, not to mention the storage cost of the solutions at each
time step. For this reason, different workarounds have been considered. For instance
[38], the solution may be stored only on a predefined set of instants Tk (subset of
the time discretization steps) called checkpoints and the state required by the opti-
mization for computing the adjoint solution is locally recomputed or approximated.

Following a different approach, time discretization may be performed before the
optimization, leading to a sequence of pseudo-steady optimization problems at each
time step. An example of this approach will be provided in the next section for
estimating the compliance of an artery.

Interplay Between Numerical Discretization and Solution of the Control
Problem

In the numerical solution of control problems there is an usual dilemma, concerning
the order of the steps for the optimization and the numerical approximation.
We may summarize this as “Discretize then Optimize” (DO) vs. “Optimize then
Discretize” (OD). The two operations are in general non-commutative and the
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solutions obtained with the two approaches are in general different. It is difficult to
draw general indications about the most appropriate approach, which is basically
a trade-off between accuracy and computational costs. The issue is extensively
discussed in [38]. There are clearly pros and cons in both the sequences. With DO
we may say that

– we avoid inconsistencies induced by the numerical differentiation of the KKT
conditions; in other terms, the numerical approximation of the KKT conditions
introduces a discrepancy with the real optimization condition;

– we can even use automatic differentiation software;
– we can split an unsteady problem into a sequence of pseudo-steady optimization

problems.

On the other hand with OD:

– we do not deal with the differentiation of numerical artificial terms (like
stabilization of advection terms for high Reynolds numbers);

– managing moving boundary problems as in shape optimization is easier, since we
do not need the derivative of the grid with respect to the optimization parameters.

In the examples that follow we stick to a DO approach. A parameter estimation pro-
cedure based on OD can be found in [74] for the estimate of cardiac conductivities.

6.3.3 Reducing the Costs Via Solution Reduction

As we have pointed out several times, the optimization methods presented above
suffer from high computational costs for different reasons. The state equations and
possibly the adjoint problem need to be solved at each iteration, not to mention the
additional costs in terms of computations and storage for unsteady problems, that
need to be truly tackled in 4D (space and time).

In order to reduce the computing time we need to reduce either the number
of iterations or the cost of each iteration (or both). The number of iterations
may be reduced by using effective optimization algorithms as the BFGS method
for updating the current solution. The cost of each iteration can be reduced by
treating the constraints in a “flexible” way. This means that the fulfillment of the
constraints may be relaxed in particular in the first iterations when this does not
prevent the convergence to the admissible solution. This can be done by accepting a
solution to the state equations featuring relatively large residuals or by replacing the
state equations themselves with a simplified model. These approaches are mostly
problem-dependent, being based on the possible simplifications offered by the
problem at hand. For instance in electrocardiology, the Bidomain equations that
describe the dynamics of the extra and intra-cellular potentials may be replaced by
the simplified Monodomain system (see, e.g., [27]). When solving FSI problems in
hemodynamics a fully 3D coupling may be downscaled to a 3D Fluid/2D Structure
problem [57], as we see in the next section.



446 L. Bertagna et al.

Here we address another (somehow complementary) way for reducing the
computational costs, which is based on reducing more specifically the number of
degrees of freedom required to give an accurate representation of the solution. As
a matter of fact, a function in a (separable) Hilbert space (for instance, L2 or H1)
admits the representation

u D
1X
iD1

Ui i ;

for a proper selection of the basis functions  i . In the Galerkin approach for
approximating the solution, we generally find a basis function set to represent the
approximate solution uN .x/ as

uN D
NX
iD1

UN;i 'i :

The basis functions may be piecewise polynomials as in the finite element method,
or global polynomials as in spectral methods. In general, those basis functions can
be defined to be general purpose, in the sense that they do not specifically rely on the
feature of the problem to be solved and can be applied to a vast class of problems.
This versatility has the drawback that, in general, to achieve accurate solutions the
number N of degrees of freedom is high. This clearly implies high computational
costs as the associated linear(ized) systems are large.

A somehow opposite approach would be to give up pursuing a general basis,
using an “educated” basis that incorporates specific information of the problem. For
instance, in modal analysis the solution is represented on the basis given by the
eigenfunctions of the problem. The basis is therefore problem-dependent, bringing
intrinsically information on the problem to be solved. The gain is that it is generally
possible to achieve a good accuracy when truncating to a low number of degrees
of freedom. However, this is not for free, as the basis needs to be specifically
computed. In particular, computation of eigenfunctions is in general not trivial and
quite costly [15].

Following the same idea of constructing an informed basis, we may consider
snapshot-based approaches. In this case, the basis is the result of the elaboration
of the solutions of the problem for particular configurations useful for the solution
of the state problem in the optimization process. For instance, when the control
variable is a parameter to be identified (as 
 was in our working example), snapshots
may be the solution of the state problem for a particular set of values of the
parameter. The proper identification of this set is clearly crucial for the effectiveness
of the entire procedure. This can be realized by considering that if the optimal
value of the control variable falls within the range considered in the snapshots,
the entire procedure configures as a sophisticated “interpolation,” for which several
convergence results are available. On the contrary, if the range of the snapshots
computation is not well defined, we are actually performing an “extrapolation” and
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the convergence is not necessarily guaranteed. Again, the final goal is to keep the
size N of the finite dimensional approximation of the solution as small as possible,
thanks to the information contained in the basis.

From the computational standpoint, this snapshot-based approach relies on the
off-line/on-line paradigm, namely

1. computation of the basis is “off-line,” and it is intended to be an accurate
(and therefore expensive) numerical approximation of the solution for different
configurations that are considered to be relevant to the basis;

2. solution of the optimization problem, and in particular the computation of the
coefficients UN;i along the iterations of the minimization procedure is “on-line,”
and contributes to the actual cost of the control procedure.

In this way, the computational costs are factorized, the major contribution being
carried out in a step preliminary to the optimization. This paradigm clearly makes
sense whenever the “off-line” part can be recycled for the solution of several
optimization problems.9

Among the different snapshot-based strategies, we mention the reduced basis
method and the POD. In the former, the snapshots are computed for values of
the parameters that are evaluated to perform the best control of the error on the
basis of rigorous error estimates (see [65, 70]). In particular, we mention [52] for
an application of the reduced basis method to FSI problems. The latter is known
also as Karhunen–Loève decomposition or principal component analysis and it is
illustrated more in detail in the next paragraph.

POD Basis Selection

We start assuming that a set of size M of solutions is available, for instance, by
computing snapshots for M different values of the parameter of interest after a
uniform sampling of an appropriate range. We assume that M is still large for the
purpose of reducing the computational costs and that a reduction of the size of the
basis is required, by properly filtering redundancy in the snapshots set. Denote by
�j 2 R

N theM snapshots of the (approximate) solution, with j D 1; : : : ;M . Then,
we perform the following steps.

1. Sample average: � D 1

M

MX
jD1
�j .

2. Sample Covariance: Compute C 2 R
M�M , whose elements are defined as cij WD

1

M
.�i � �/T .�j � �/. Matrix C is positive semidefinite and symmetric so the

9This can be problematic in a clinical context, where patient-specific geometries differ one from
the other and the snapshot computation is not trivially recycled. Anatomical atlas mapping ideal to
real geometries are required.
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eigenvalues are all real and the eigenvectors
˚
xj
�

form an orthonormal basis in
R
M . We order the eigenvalues as

�1 � �2 � � � � � �M � 0:

3. Thresholding: Select a tolerance  2 Œ0; 1� and pick the minimum QM such that

P QM
iD1�iPM
iD1�i

� :

Here  is a threshold that identifies the “essential” information. Hopefully, this
happens for QM � M .

4. New basis. Let us select a new basis fyi g consistent with the eigenvalues
threshold. We take for i D 1; : : : ; QM

yi D
QMX

jD1
.xi /j .�j � �/;

where .xi /j is the j -th entry of the i -th eigenvector. Then, we normalize y�
i D

1

kyikyi .

This is by construction an orthonormal basis. In addition and more importantly,
this basis fulfils an optimal property. As a matter of fact [15, 38], the space spanned
by the POD basis is the best QM -dimensional subspace approximation of the space
spanned by the snapshots (in the 2-norm sense). A vector x in R

M can then be
approximated in terms of the POD basis as

x D N�C
QMX

iD1
ciy�

i

For particular problems, such as progressive waves, reduction of the size for the
solution and eventually of the computational costs after this procedure may be not
enough. In this case, other reduced solution techniques may be considered [31].
Nevertheless, an example of POD for the solution of an inverse FSI problem is
illustrated in the next section.

Remark 6.6. Here we have presented a particular application of POD for reducing
the dimension of the solution forward problem. However, POD can be used for
reducing the dimensionality in different contexts. For instance, in [7, Chap. 7], POD
is advocated also for reducing the dimensionality of the size of the parameter space,
which is crucial when the parameter is a function represented by a large number of
degrees of freedom.
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Remark 6.7. Here we introduced the POD using the eigenvalue decomposition of
the sample covariance matrix. Alternatively, one can perform the Singular Value
Decomposition (SVD) of the snapshots matrix X D Œ�1; : : : ;�M �. This can be
efficiently done by first performing a QR factorization of X and then by computing
the SVD of the triangular factor. In other words, X D QR D QU†V T D QU†V T .
The POD basis is then made of the first QM left singular vectors (the columns of QU ),
where QM is chosen with the same procedure as before, using the singular values of
the snapshots matrix rather than the eigenvalues of the covariance matrix.

6.4 Some Applications of Data Assimilation in
Hemodynamics Problems

In this section we consider some applications of DA and Parameter Estimation in
computational hemodynamics.

First, we present the problem of reconstructing the blood flow in a vessel
assimilating sparse noisy measures of the velocity with the numerical results
obtained by solving the incompressible Navier–Stokes equations. Successively, we
consider the problem of estimating the compliance of a vessel based on measures
of the displacement retrieved from medical images. The solution to this problem
leads to an inverse fluid–structure interaction (IFSI) problem. These are not the only
examples of data assimilation in biomedical applications. We mention, for instance,
the work in electrocardiology for the setup of patient-specific models in [19], and
for estimating cardiac conductivities [32, 37, 74]. Other applications can be found,
e.g., in [17, 29]. In particular, in [24, 26] DA methods are advocated for filling the
gap between available boundary data and mathematical conditions required to solve
the problem.

We have selected these examples because they offer the opportunity to see in
action different methodologies based on the techniques illustrated in the previous
sections.

6.4.1 Assimilation of Velocity Measures in Blood Flow
Simulations

We consider the problem of merging velocity measures and the numerical simula-
tion of blood flow. The DA problem can be addressed in several and diverse ways,
as described in the previous sections. More precisely, we present two approaches
introduced in two recent papers; in the first one [18] the problem is faced with a
variational (control) method, where the control variable is the normal component of
the stress at the inflow section of the vessel. In the second paper [40] the authors
exploit a Least Squares Finite Element (LSFE) approximation treating internal
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Fig. 6.7 On the left, view of blood measured velocities in an MRI of the ascending aorta. On the
right, examples of a three-dimensional and two-dimensional domain for which data are collected
on internal layers transversal to the flow

layers, where measures are available, as artificial boundaries. This approach can
be reinterpreted as a MAP Bayesian estimate, as pointed out in [21].

We introduce the formal statement of the problem. Let us denote by � a domain
in R

d (d D 2; 3; in real applications d D 3). We assume (see Fig. 6.7) that �
features an inflow boundary �in, an outflow boundary �out, and the physical wall of
the vessel �wall. �in and�out can possibly consist of several sections. The variables of
interest are the velocity u.x/ 2 ŒH1.�/�d and the pressure p.x/ 2 L20.�/. Also, we
assume to have some velocity measures as in, e.g., Fig. 6.7 or sparse in the domain.

Velocity and pressure are assumed to obey the incompressible Navier–Stokes
equations (NSE)

@u
@t

� � r � .ru C ruT /C .u � r/u C rp D f in �;

r � u D 0 in �;

u D 0 on �wall;

�� .ru C ruT / � n C p � n D h on �in;

�� .ru C ruT / � n C p � n D g on �out:

(6.47)

A Newtonian rheology is supposed to hold, which is a common assumption in large
and medium vessels [25], and � is the constant kinematic viscosity. The choice
of homogeneous Dirichlet boundary conditions on �wall reflects the fact that we
consider fixed geometries.

In this section we consider the steady case
@u
@t

D 0.

Variational Approach

In [18] a variational DA procedure for the inclusion of velocity measures in
the simulation of the NSE in hemodynamics is proposed. Sparse noisy velocity
measures d1; : : : ; dNs are assumed to be available in the domain and possibly on
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the boundary at some sites10 xmi 2 �, i D 1; : : : ; Ns , that do not necessarily belong
to a plane or a layer inside of �.

The assimilation technique in [18] is formulated as a control problem where the
misfit between computed data (the NSE solution) and observed data is minimized.
The equations of incompressible fluid dynamics are the constraint to the minimiza-
tion procedure. The control variable is selected to be the inflow normal (or natural)
stress h; knowledge of this quantity is quite often not available in practice. The
variational problem is formulated as

min
h

J .u; h/ D kf .u/ � dkl2 C R.h/
s.t. Steady version of (6.47):

(6.48)

Here, f is a filtering vector function that returns the value of the velocity field
evaluated on the measurement sites; R is a regularization term added to prevent
potential ill-posedness and ill-conditioning of the problem due to the location of
data and the presence of noise.

For the numerical solution of the problem (6.48) we first consider the linearized
NSE; then, we discuss the nonlinear case; in the linearized formulation the term
.u � r/u is substituted by .ˇ � r/u, where ˇ is a known advection field. We follow
a DO approach (see Sect. 6.3.2), thus, after the discretization (via, e.g., the finite
element method) of the functional and the linearized state equations we resort to the
following algebraic optimization problem

min
H
J.V; H/ D 1

2
kDV � dk22 C ˛

2
kLHk22

s.t. SV D RTinMinH C F:
(6.49)

Here, V D ŒU P� 2 R
NuCNp is the vector of discretized velocity U 2 R

Nu and
pressure P 2 R

Np ; H 2 R
Nin is the discretization of the control variable h;Nin is the

number of degrees of freedom of the velocity on �in; d D Œd1 : : : dNs � 2 R
dNs is the

vector of the available measures. For ˛ > 0, ˛
2
kLHk22 is a Tikhonov regularization

term, see Sect. 6.3.2. The matrix S is defined as follows:

S D
�

C C A BT

B O


; (6.50)

where C, A 2 R
Nu ;Nu , and B 2 R

Np;Nu are the discretization of the diffusion,
advection, and divergence operators. D is the selection or observation matrix and
it is defined as D D ŒQ O�, where Q 2 R

dNs ;Nu is such that ŒQU�i is the
numerical solution evaluated at the data sites. Rin 2 R

Nin ;NuCNp is a restriction

10Notice that we use the word “sites” for the location of measurements, as opposed to the word
“nodes” for points where velocities are computed. In general sites and nodes are different, but we
do not exclude that the intersection of sites set and nodes set in non-empty.



452 L. Bertagna et al.

matrix which selects the degrees of freedom of the velocity on �in. Min 2 R
Nin;Nin is

the discretization of the mass operator restricted to inlet boundary nodes.
For the solution of problem (6.49) we use the Lagrange multiplier approach, so

we consider the Lagrange functional

L.V;H;X/ D 1

2
kDV � dk22 C ˛

2
kLHk22 C XT .SV � RTinMinH � F/; (6.51)

where X 2 R
NuCNp is the discrete Lagrange multiplier. The set of necessary

conditions for optimality is given by the KKT system

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@L

@V
D DT .DV � d/C ST X D 0

@L

@H
D ˛LTL H � MT

inRinX D 0

@L

@X
D SV � RTinMinH � F D 0:

(6.52)

By defining Z D DS�1RTinMin and W D ZTZC˛ LTL the reduced system, obtained
by block elimination, reads WH D ZT .d � DS�1F/, where W is the so-called
reduced Hessian matrix.

The following theorem states the necessary and sufficient conditions for the well-
posedness of problem (6.49).

Theorem 6.1. For ˛ D 0, W is non-singular, i.e., (6.49) is well-posed, ,

Null.D/\ Range.S�1RTinMin/ D f0g: (6.53)

For the proof see [18]. Condition (6.53) is satisfied when “enough” data are available
on the inflow section (number and location of the measures that guarantee the well-
posedness depend on the discretization method used).

In order to consider the nonlinear advection term .u � r/u and to solve the
nonlinear PDE constrained optimization problem (6.48), we combine the DA
procedure for the linearized case and classical fixed point schemes for the solution
of the NSE. In particular, we refer to the Picard and Newton methods [62]. The
assimilation problem is solved iteratively as follows.
Given a guess for the velocity field at iteration k C 1, Uk ,

solve

8<
:

min
Hk

1

2
kDVkC1 � dk22 C ˛

2
kLHkC1k22

s.t. SkVkC1 D RTinMinHkC1 C Fk
(6.54)

until kVk � VkC1k � ı, being ı a user defined tolerance. Here,

Sk D
�

C C Ak BT

B O


; and Fk D F C wYk: (6.55)
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Fig. 6.8 On the left, the colored vector field consists in the available measures whereas the black
one corresponds to the noise-free data. In the center, the magnitude of the assimilated vector field
is reported. On the right, the colored vector field corresponds to the assimilated velocity, the black
one to the noisy data and the colored field in the background corresponds to the magnitude of the
velocity

Ak comes from the discretization of .uk � r/ukC1 C w.ukC1 � r/uk (w D 0 for
Picard method, 1 for Newton); Yk is the discretization of .uk � r/uk . Here uk is
defined as #uk�1 C .1�#/uk , being # 2 Œ0; 1�, w is a relaxation parameter, chosen
empirically.

Numerical tests. In Fig. 6.8 we report the numerical results obtained on two
geometries approximating blood vessels. In Fig. 6.8 (left) the computational grid
is an approximation of a carotid artery; the colored vector field consists in the
actual data used in the assimilation, these are generated adding Gaussian noise to
a reference solution; to appreciate the presence of the noise the noise-free data are
also reported in black. In the center, the magnitude of the assimilated velocity is
displayed; a comparison with a reference solution (conducted in [18]) shows that
the noise is filtered and that the assimilated solution is close to the reference one.

On the right, a three-dimensional cylindrical domain is reported, this case
is treated with an axisymmetric formulation. On selected internal surfaces the
assimilated field and its magnitude are reported; it is important to note that the noise
affecting the components of the velocity parallel to the flow is significantly filtered.

Next, we consider the problem of estimating the WSS already described in
the introductory example of Sect. 6.1. An accurate approximation of the WSS is
fundamental in the investigation of cardiovascular pathologies since it is an index
of the possibility of rupture of the vessel wall and formation of stenosis [25].
Approximations of the WSS retrieved from indirect measurements are in general
unreliable because of the post-processing numerical errors and the noise affecting
the measures. Including measurements in simulations is a way for improving the
reliability of the computed solutions and, on the other hand, the introduction of
the mathematical (numerical) model results in noise filtering. For the geometry
of Fig. 6.8 (left), we compute the WSS on a selected internal wall. In order to
quantify the accuracy of this solution we compare the assimilated WSS with
the one associated with a reference solution, we introduce the index of accuracy
EWSS D kWSS � WSSFEk2=kWSSFEk2 where WSSFE is the value retrieved from
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Table 6.1 Comparison of
relative errors for the WSS
computed with DA and
forward solution

SNR EWSS;DA EWSS;FW

100 0.2536 0.2667
20 0.2591 0.3030
10 0.2738 0.3861
5 0.3149 0.6114

the reference solution. In correspondence of decreasing values of signal to noise
ratio11 (SNR), the WSS errors obtained with the assimilated velocity field,EWSS;DA,
compared with those obtained from a forward simulation on the same grid with the
same noisy measures (used for DA) as boundary data on the inflow section are
reported in Table 6.1. With high SNR the gain obtained with DA is not significant,
however as we decrease SNR we can obtain up to the 50 % of gain with respect to
the forward simulation.

Bayesian Approach

A Variational Bayesian approach to the assimilation problem is possible. This
formulation features an overlap between statistical and variational techniques; both
point estimators and confidence regions for the velocity are considered. Here,
we recall the method for the computation of the MAP and ML estimators (see
Sect. 6.2.2) and present some numerical results that illustrate how the knowledge
of the nature of the measurement noise can significantly improve the quality of the
estimation with respect to the deterministic estimates.

We assume to deal with discretized variables, all treated as random; in the
remainder of this section the bold variables denote random vectors while the capital
plain variables a specific realization. With an abuse of notation we introduce the
random variable H which describes the normal stress of the fluid at the inflow
section; M is the random variable that describes the measures and 
 the noise
perturbing the measurements. We let pH be the p.d.f. of H, or its a priori distribution,
and p� the one of 
; these distributions are assumed to be known. As described
in Sect. 6.2.2 the purpose of the Bayesian procedure is to estimate the posterior
distribution pH jM exploiting the Bayes formula (6.5) in the form

pH jM D pM jH pH

pM
I (6.56)

where pM is the p.d.f. of the measures.
First, we assume that the relation between the random vectors H and U, the

random variable that describes the velocity, is linear (i.e., we consider the linearized
NSE), then we treat the nonlinear case.

11We define the signal to noise ratio as the ratio between the maximum of the absolute value of the
signal and the standard deviation of the noise
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In the linearized formulation H and M are related by the following additive noise
relation

U C 
 D M ) ZH C 
 D M: (6.57)

Here, the observation operator between H and M (see the example in Sect. 6.2.2
for Gaussian vectors) is actually the inverse of a (discrete) differential operator;
Z D DS�1RinMin has been introduced after (6.52) and it describes the deterministic
relation between the velocity and the normal stress. The random variable 
 accounts
for the measurement noise. We make the assumption of mutual independence of U
and 
. Since H and U are related by a linear relation this implies the independence
of H and 
. As a consequence, the p.d.f. of 
 is independent of any realization of H
and the likelihood function, pM jH , can be expressed as

pM jH .M/ D pM jH .� C ZH/ D p�.M � ZH/: (6.58)

Next, we consider the realizationM D d (the vector of available velocity measures
introduced previously), we have

pH jM.H/ / pM jH.d/ pH .H/ D p�.d � ZH/pH.H/: (6.59)

Now we make the assumption that all variables are Gaussian and we define the a
priori distribution and the noise distribution as follows:

pH D gH / exp

�
�1
2
.H �H0/

Tƒ�1
H .H �H0/

�
;

p� D g� / exp

�
�1
2
.� � �0/

Tƒ�1
� .� � �0/

�
I

(6.60)

where H0 and �0 are the expectation values and ƒH and ƒ� are the correlation
matrices for H and 
, respectively. The analysis of Sect. 6.2.2 shows that the
posterior distribution pH jM is a Gaussian distribution itself with covariance and
mean given by

ƒH jM D .ƒ�1
H C ZTƒ�1

� Z/�1;
E.H/ D ƒ�1

H jM.Z
Tƒ�1

� .d � �0/Cƒ�1
H H0/:

(6.61)

We recall that the mean value of the posterior distribution is the value that maximizes
pH jM , and then, by definition, it is the MAP estimator of H, say OHMAP. On the
other hand, the value that maximizes the likelihood function, with respect to H ,
corresponds to the ML estimator for H and has the following expression

OHML D .ZTƒ�1
� Z/�1.ZTƒ�1

� .d � �0//: (6.62)

In treating the nonlinearity we consider an iterative approach similar to the
deterministic one described in the previous section; in fact, also in this case, we
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rely on the Newton method for the NSE. The distribution pH jM for the nonlinear
model is still Gaussian, the following algorithm is used to determine its mean and
covariance.
Given a guess for the random vector Uk D Zk OHMAP;k at iteration k C 1,

.1/ compute ƒH jM;kC1 D ƒ�1
H C ZTk ƒ

�1
� Zk

.2/ solve ƒH jM;kC1. OHMAP;kC1/ D ZTƒ�1
� .d � �0/Cƒ�1

H h0;
(6.63)

until a convergence criterion is satisfied.
Here, for Zk D DS�1

k RTinMin we define

Sk D
�

C C Ak BT

B O


: (6.64)

Ak is the discretization of the advection operator with advection field Uk , the
velocity vector associated with the normal stress E.H/k . Note that with this
formulation H and U, at each iteration, are related by a linear model and, for this
reason, U can still be considered normally distributed.

Numerical tests. We assume to have an exact, analytic solution of the NSE and
we compare the accuracy of the MAP and ML estimators vs. the “deterministic
estimator” introduced in the previous section, i.e., the solution of the variational
formulation. The index of accuracy is related to the velocity fields, OU, retrieved from
OHMAP, OHML and OHdet (the deterministic estimate); it is defined as E. OU/ D k OU�Uanlk2

kUanlk2 ,
where Uanl is the discretized analytic solution. We also define an average error
over a set of noise realizations f
gniD1, E. OU/ D 1

n

Pn
iD1 E. OU; i / where E. OU; i / is

associated with the i -th realization of noise 
i . In addition, we consider a measure
of the gain, 
 , in using statistical estimators as opposed to deterministic ones:


 D 1 � E. OUstat/

E. OUdet/
where “stat” stands for either MAP or ML.

The details of the numerical tests are fully reported in [16].
In a square domain we consider data on �in and internal data located on ten

internal slices. In Table 6.2 we report results obtained in correspondence of SNR
of 20 and 10. In the computation of OHMAP and OHdet the regularization parameter
˛ = 0.5 is chosen empirically (left table in Table 6.2). In the computation of
OHML and OHdet on the right table the regularization parameter ˛ is set to 0.
From the results we infer the following facts. (1) Compared to the deterministic
estimator, the statistical estimators are always more accurate since they take into
account additional information brought by statistical properties of the data. (2) The
computational time required in solving the statistical formulations is, in average,
1.3 times bigger than the one required by the deterministic one. (3) The poor gain
in correspondence of SNR D 20 means that statistical information associated with
a low amount of noise is not significant enough to make a considerable difference
with respect to deterministic estimates in terms of accuracy.

As a second example we consider the same problem setting of the previous
section for the flow in a cylinder, see Fig. 6.8 (right); we consider measures on the
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Table 6.2 Accuracy results
for statistical and
deterministic solutions for the
NSE

SNR EU;det EU;MAP 


20 0:0822 0:07371 10%
10 0:1394 0:1041 25%

SNR EU;det EU;ML 


20 0:0855 0:0579 6%
10 0:1675 0:1363 18%

Table 6.3 Accuracy results
for statistical and
deterministic solutions for the
axisymmetric case

SNR EU;det EU;MAP 


20 0.0396 0.0308 22 %
10 0.1423 0.0978 31 %

inflow boundary and internal data located on five internal slices. We only compute
the MAP estimator (the problem for the computation of OHML is ill-posed). In this
experiment ˛ D 1e�7; results in Table 6.3 show that with the MAP estimator we
have a significant gain in accuracy. Moreover, the computational time required by
the statistical estimators is the same as for the deterministic one.

Weighted Least Squares Finite Element Method

Another approach to the assimilation of measured velocities has been proposed
in [40]. This work is mainly inspired by the development of a new experimental
technique, the particle imaging velocimetry [41], that can be used to determine two
components of the blood velocity along a single plane within the ventricle of the
heart. The proposed method relies therefore on the hypothesis that the measures
are collected inside a three-dimensional region on a two-dimensional plane (as in
Fig. 6.7); the latter is basically treated as a (artificial) boundary.

This variational technique exploits a weighted least squares finite element
method (WLSFEM), based on the LSFEM [9–11]; the latter has been utilized in
general for the solution of PDEs. It features great flexibility in the enforcement
of various types of boundary conditions. However, the LSFE method has also
been applied to inverse problems since the 1990s for the numerical solution of
PDE constrained control problems; main contributors are Bochev and Gunzburger
[9–11].

We consider the problem of solving the following generic boundary value
problem

Lu D f in �

u D g on @�;
(6.65)

where L is a first order linear differential operator and J.u/ is a cost functional
defined as

J.u/ D kLu � f k2
L2.�/

C ku � gk2
H1=2.@�/

: (6.66)

Then, the LSFE solution u is obtained as the minimal of J.u/.
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Assume we have Ns measures di .x/ of the variable u on some layers,
�1; : : : ; �Ns , internal to �. We want to perform DA for problem (6.65), i.e., we
want to merge fdig and the numerical solution of (6.65). The idea of the WLSFEM
is to add penalization terms to the functional J . The internal layers are considered
part of the boundary and the corresponding measures are treated as boundary data;
these terms are then properly weighted according to the level of confidence of the
measure. Thus, the cost functional is defined as

OJ .u/ D J.u/C w1ku � d1k2H1=2.�1/
C � � � wNsku � dNsk2H1=2.�Ns /

; (6.67)

where w1; : : : ;wNs are the weights. Note that (1) with the introduction of these
additional terms that penalize the difference between the observed data and the
solution, the assimilation is weakly enforced; (2) DA introduces an additional extra
cost to LSFE calculation.

When applying the WLSFE method to the NSE one has to keep in mind that it
is designed for first order linear differential operators; thus, we must recast the fluid
dynamic equations into a linearized first order differential system. To this end, we
consider a non-primitive variable set: we introduce the variable ! D �r � u, the
negative vorticity, and the variable

r D rp C
p

Re

2
rjuj2;

commonly referred to as the “gradient of pressure,” where Re is the Reynolds
number. Then, we apply the WLSFE method to the equivalent problem in � (see
[40] for details on how to derive the following system)

r � u C ! D 0

r � u D 0
1p
Re

r � ! � r � p
Re.u � !/ D 0

r � ! D 0

r � r D 0

r � r � p
Re.! � !/ � Re.u � r/ D 0:

(6.68)

The optimization problem, formulated as in (6.66) withLu D f given by Eq. (6.68),
is then solved with standard techniques from the calculus of variations. Again, we
stress the fact that, being L a linear operator, the cost of the WLSFE formulation is
of the same order of the solution of the NSE. However, this approach, as opposed
to primitive variables formulations might be less conducive than the straightforward
inclusion of available measures.

Numerical tests. Consider a cylindrical geometry and assume the measures to be
located on internal layers parallel to the flow; in Fig. 6.9 (left) the noisy data on the
layer crossing the axis of symmetry of the cylinder are reported. It is also assumed
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Fig. 6.9 On the left the synthetic measures generated adding Gaussian noise to an analytical
solution are reported on a layer crossing the axis of symmetry. On the right, on a layer close to
the one where the measures are collected, the assimilated velocity is reported. Adapted from [40],
with permission of c� Elsevier 2010

that the noise affects the boundary data (whereas in [18] they are considered exact),
which is always the case in real applications. For the numerical solution with the
WLSFE method the boundary and internal data are properly weighted according
to the noise level (assumed known in this particular experiment); the assimilated
solution, on an internal layer close to the measurement one, is reported in Fig. 6.9
(right). The filtering action of the DA on the noise is evident. Quantitative analysis,
not reported here, reveals a good level of accuracy [40].

WLSFEM as a Bayesian Approach to DA

In [21] a reinterpretation of the WLSFEM in terms of Bayesian approach to DA
is proposed; in fact, in [40] the method is not presented in an inverse problem
framework. Here we show that the WLSFE solution can be interpreted as the
maximum a posteriori (MAP) estimator in a variational Bayesian approach to DA,
for a certain choice of a priori distribution and likelihood function. A statistical
interpretation of the weights is also provided.

In describing the method we refer to the general boundary value problem (6.65).
We recall that in a Bayesian approach to DA all variables are treated as random,
the goal is to determine the p.d.f. of u conditioned on realizations of the measures
d1; : : : ; dNs available on the internal layers �1; : : : ; �Ns . We assume that the
measures are affected by the measurement noise �1; : : : ; �Ns such that di .x/ D
u.x/j�i C�.x/i , for i D 1; : : : ; Ns. To apply the Bayes theorem we need to define an
a priori distribution for u, pu, based on our prior belief on u and a likelihood function
for the measurement noise �i , p�;i . In order to show the equivalence between the
WLSFE deterministic solution, or WLSFE estimator, and the MAP estimator in the
Bayesian setting we make the following choices.

We define a prior distribution which is large when u satisfies the governing
equations (6.65) “well” and small otherwise; in this way the prior describes to what
extent the equations are a good model for the observations. Formally

pu.u/ / exp f�J.u/g ;

where J is defined as in (6.66).
Next, in defining the likelihood functions for �i , we assume that the measurement

errors �i are independent and normally distributed with null mean and variance
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1
2wi

, being wi the weights introduced in the previous section. Applying the Bayes
theorem we have

pujd1:::dNs / exp
n
�J.u/� w1ku � d1k2H1=2.�1/

C � � � wNsku � dNsk2H1=2.�Ns /

o
)

pujd1:::dNs / exp
n
� OJ .u/

o
;

for OJ as in (6.67). The MAP estimator is then the value of u that maximizes the
posterior distribution pujd1:::dNs , thus

OuMAP D arg maxpujd1:::dNs D arg min OJ .u/ D uWLSFE;

This leads to the conclusion that the WLSFE solution, uWLSFE, is actually a Bayesian
estimator for the variable u; thus, we have the following statistical interpretations

– the mathematical model encodes our prior belief on u;
– the data is a correcting likelihood;
– the weights reflect the variance of the measurement noise, i.e., are an index of

the reliability of the measures.

This procedure, and the associated considerations, naturally apply to the first
order form of the NSE so that the velocity estimated via WLSFEM is a Bayesian
estimator. The latter differs from the one introduced in [16] in the choice of the
prior distribution and likelihood function. The first approach is certainly more
general as does not require the measures to be on a plane and more straightforward
because formulated for the primitive variable, on the other hand, the second is
computationally cheaper as it deals with the recast (linear) form of the NSE. As
for the accuracy, an extensive comparison is still missing.

6.4.2 Estimation of the Arterial Compliance from
Measurements of Displacement: An Inverse
Fluid–Structure Interaction Problem

As a second example, we consider the estimation of the compliance of an artery. The
problem consists of estimating the compliance of an artery wall, based on (noisy)
data of the displacement of the wall, obtained using medical devices such as Mag-
netic Resonance Imaging (MRI) during a heart beat. We focus on two approaches
that have been recently adopted in the literature. In [59] a variational approach
is pursued: the compliance is used as control variable for minimizing the misfits
between the results of a FSI problem and the displacement of the vessel (possibly
retrieved from images). In [6] a Reduced Order UKF is advocated to solve the same
problem. In the following we summarize these two approaches and present some
results of these works. For details we refer the reader to the corresponding works.
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Fig. 6.10 Representation of the domain of the FSI problem: fluid domain on the left, structure
domain on the right

Problem Formulation

We consider a domain of a vessel (structure domain) perfused by blood (fluid
domain) as depicted in Fig. 6.10. We make the simplistic assumption that the vessel
is (linearly) elastic, with the stress tensor � s depending on the vessel displacement
� as

� s.�/ 	 
1.r�C .r�/T /C 
2.r � �/I ;

where


1 WD E

2.1C �/
; 
2 WD E�

.1C �/.1 � 2�/ ;

are the Lamé constants, I is the identity tensor, E is the Young’s modulus, and � is
the Poisson’s ratio. For the sake of notation, we factor the Young’s modulus E out
of the stress tensor, and so that we can write

� s D E Q� s ; Q� s WD 1

2.1C �/
.r�C .r�/T /C �

.1C �/.1 � 2�/.r � �/I :

The vessel deforms under the stress coming from the blood, and in turn, the
elastic structure of the vessel affects the blood flow. This problem has been largely
investigated in other chapters of this book (see also, e.g., [25]). For the sake of
numerical approximation of the problem, the problem is formulated on a frame of
reference moving with the physical wall of the artery and fixed on the artificial
boundaries (inflow/outflow). This approach is known as the Arbitrary Lagrangian
Eulerian (ALE) formulation, see, e.g., [20, 42]. We write the problem according to
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the ALE frame of reference. At time t the blood velocity u and pressure p live in
the fluid domain�t

f , whereas the vessel displacement � lives in the structure vessel
domain �t

s . We denote the interface between the fluid and the solid domains with
†t (see Fig. 6.10). It is more convenient to model the structure displacement � in
the reference configuration O�s ; we denote a variable in the reference configuration
with aO, e.g. O�.

1. Fluid–Structure problem. Find fluid velocity u, pressure p and structure displace-
ment � such that

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�f
DAu
Dt

C �f ..u � w/ � r/u � r � � f D ff in �t
f � .0; T /;

r � u D 0 in �t
f � .0; T /;

�s
@2 O�
@t2

� r � .EbQ� s/ D Ofs in �s � .0; T /;
u D @�

@t
on †t � .0; T /;

� s n � � f n D 0 on †t � .0; T /;

(6.69)

where � f .u; p/ D �p I C �.ru C .ru/T /, �f and �s are the fluid and
structure density, � is the constant blood viscosity, ff and fs are the forcing

terms. Here,
DA

Dt
is the so-called ALE derivative and w is a lifting of the velocity

at †t in �t
f . Typically (but not necessarily) this lifting is obtained by solving

a Poisson problem (harmonic lifting). At the inlet and outlet sections, proper
boundary conditions have to be prescribed. In particular, it is important to use
absorbing boundary conditions at the outlet to avoid unphysical solutions. The
two matching conditions enforced at the interface are (6.69)4 (continuity of fluid
and structure velocities ) and (6.69)5 (continuity of stresses).

Before moving to the problem of the estimation of the parameters, to reduce
computational costs a simplified set of equations for the FSI problem can be used.
In fact, for large arteries, the wall thickness is in general significantly smaller than
the dimension of the lumen, so that the arterial wall can be described as a 2D surface
rather than a 3D structure. If we also assume that the displacement occurs only in
the normal direction12 it can be shown [57] that the structure equations reduce to

�shs
@2	

@t2
CEˇ	 D fs

where 	 refers to the normal displacement on the boundary of the vessel, ˇ is a
parameter embedding both geometrical and physical properties of the membrane,
whose expression is given by ˇ D hs

1��2 .4k
2
m � 2.1 � �/kg/. Here km and kg are,

12This assumption may be questionable for arteries close to the heart (like the aortic arch), however
it is in general quite acceptable.



6 Data Assimilation in Cardiovascular Fluid–Structure Interaction Problems:. . . 463

respectively, the mean and gaussian curvature of the membrane and hs is the wall
thickness. Discretizing the problem in time (using for instance backward Euler)
and imposing the conservation of the normal stresses on the interface, the Fluid–
Membrane Interaction (FMI) problem can be written as

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�f

�t
.un � un�1/C �f ..u� � w�/ � r/un C r � � f D ff in ��

r � un D 0 in ��

un � � D 0 on †�

n � � f n C
�
�shs

�t
C Enˇ�t

�
un � n D

�
�shs

�t
un�1 � n �Enˇ	n�1

�
on †�

	n D 	n�1 C�tun � n on †�

(6.70)

where � is any unit versor in the tangent space to †�. Notice how the effect of
the structure is now expressed as a Robin-type boundary condition for the fluid
equations. The superscript � denotes a suitable extrapolation of the quantity at the
time tn. Notice that if we use a semi-implicit scheme to deal with convective and
geometric non-linearities, so that �� D �n�1 and the fluid and structure equations
are then decoupled (within the time step). In particular, the equation for 	n can be
promptly solved once the fluid equations have been solved. We will make use of this
model in the following sections.

Parameter Estimation Problem

The displacement of a vessel can be retrieved from images properly segmented and
registered in time. This means that at each available snapshots, the arterial wall is
reconstructed as a triangulated surface; then, a map is properly computed to identify
the image of each point at the subsequent snapshots (see, e.g., [53, 61]). The map
is obtained by minimizing the mismatch between the image of its application to a
snapshot and the successive one. In particular we denote by k the instants when
images are available and by � the length of each time interval. Once the map is
computed, the displacement is promptly available. In [61], for instance, the Iterative
Closest Point criterion is used to quantify the mismatch and to compute the map.
Our goal now is to estimate the compliance of the vessel such that the mismatch
between the retrieved and the computed displacement is minimized. To this end, we
introduce the following cost functional

J1 D 1

2

NX
kD1

Z

†

.�meas.x; k/ � �.x; k//2 d�: (6.71)

where �.x; k/ solves Eq. (6.69) at instants k and �meas is the (noisy) observed
displacement. Here, we are assuming to have a continuous displacement field �meas
defined on �s . In case we only have sparse measurements of the displacement, it is
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reasonable to use the following cost functional

J2 D 1

2

NX
kD1

MX
jD1

k�	j; kk2R�1
k

; (6.72)

where �	j;k D �meas.xj ; k/ � �.xj ; k/, R�1
k is a weight s.p.d. matrix. Should

probabilistic information on the displacement be available, R�1
k is the covariance

matrix of the noise of the displacement retrieval process.
As anticipated, we consider two approaches to solve this problem: a deterministic

variational approach and a Kalman-based approach.

Remark 6.8. Typically, the time step �t of the numerical scheme is smaller than
the time sample � , requiring more observations than those available. A common
practice is to recover the observation at needed time steps by interpolation. In the
following we will use this approach.

Variational Approach

In order to minimize J1 we can use a gradient-based optimization approach as
discussed in Sect. 6.3.2. However, as outlined there, the solution of an unsteady
minimization problem, such as the FSI problem, would be very expensive because
all the steps are coupled together, and it would also require the evaluation of shape
derivatives since the geometry is evolving in time. To reduce the computational
costs and the algorithm complexity, we exploit the fact that the parameter E does
not change in time and solve the following suboptimal problem. First, we discretize
the system in time. Then, at each time instant tn we solve a steady suboptimal
optimization problem, finding the value En which minimizes the functional

J n
3 D 1

2

Z

†

.�meas.x; n/ � �.x; n//2 d�; (6.73)

constrained by the time-discrete FSI problem at time tn. Finally, we compute E as
the average of En: E D 1

N

PN
nD1 En.

Numerical Solution

For the sake of clarity, we focus on the simplified membrane model (6.70), already
discretized in time. However, note that the optimization strategy described in the
following has been applied to the original FSI problem (6.69) in [59]. When
considering the membrane approximation, the cost functional J n3 becomes

J n
m D 1

2

Z

†

�
	nmeas � 	n

�2
d�;
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and the adjoint of problem (6.70) reads13

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�f

�t
.�n � un�1/� �f ..u� � w�/ � r/�n C r � � f .�n/D�t.	nmeas � 	n/n in ��

r � �n D 0 in ��

�n � � D 0 on †�

n � � f .�/n C
�
�shs

�t
C Enˇ�t

�
�n � n D 0 on †�

	n D 	n�1 C�t�n � n on †�:

The gradient of the cost functional with respect to the parameter En is obtained
using the adjoint variable � and relation (6.38), which, for the problem at hand
reads

DJ n
m

DE

ˇ̌
ˇ̌
En

D �
Z

†�

ˇ
�
�tun � n C 	n�1� .�n � n/d�:

The optimization is performed using the BFGS method. In particular, at each time
step, for a given initial guess of the parameter En;.0/, the BFGS method iteratively
provides parameter guesses En;.j /, based on the values of the cost functional

J n
m

�
En;.j�1/� and its derivative

DJm
DE

ˇ̌
ˇ̌
En;.j�1/

. The iterative procedure stops when

the norm of
DJm
DE

ˇ̌
ˇ̌
En;.j�1/

is less than a given tolerance.

Remark 6.9. BFGS is a method devised for unconstrained optimization, while the
problem at hand features the constraint E > 0. Unilateral constraints can be
managed as indicated in [58]. Here, we include this, with a simple change of
variable, by using as a control variable  D log.E/, so that E D exp. / > 0

for every  .

Numerical Results on a Simplified Geometry Representing an Abdominal
Aneurysm

In the numerical results presented in this section, we will use the simplified
membrane model (6.70). The optimization strategy depicted above, however, can
be equally applied to this simplified problem.

We consider a 2D axisymmetric geometry which represents an abdominal
aneurysm (see Fig. 6.11, top-left). The radius of the vessel varies from 1 to
2.5 cm and the vessel length is 6 cm. We perform a synthetic simulation in

13See (6.37), and note that here the adjoint variable is denoted with � as in this context � is used
for the density.
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Fig. 6.11 Aneurysm simulation. Top-left: Mesh used for the simulation. Bottom-left: Piecewise
linear approximation of the Young’s modulus E in the forward simulation. Top-right: Velocity
vectors and pressure at time t D 0:96 s. Bottom-right: Comparison between the displacement
obtained with the forward simulation, the noisy data and the computed displacement, at time t D
0:96 s and for P D 0:1

which we prescribe the piecewise linear Young’s modulus shown in Fig. 6.11
(bottom-left). For the forward simulation, we take Ea D 4 � 106 dyne/cm2; Eb D
107 dyne/cm2; Ec D 5 � 106 dyne/cm2. We prescribe at the inlet a parabolic profile
for the velocity, whose maximum umax lies on the axis of symmetry and it is given by

umax D u0max C Amax

�
sin

�
2�t

T

�
I 0
�
;

where u0max D 5 cm/s, A D 55 cm/s and T D 0:6 s. At the outlet we prescribe the
absorbing boundary conditions proposed in [57]. We run the simulation for two heart
beats, i.e., for 0 < t � 2T . We add a uniform noise �P to the forward displacement
	fwd and we use the result as data for the control problem. In Fig. 6.11 (bottom-
right) we report a comparison between the displacement obtained with the forward
simulation, the noisy data and the computed displacement at time t D 0:96 s. The
agreement is very good.
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Table 6.4 Noisy case. Mean and standard deviation (to be multiplied by 106) of the ten estimates
for Ea, Eb, Ec and number of state and adjoint iterations (bottom) for different values of the noise
percentage P

SNR Ea Eb Ec iter.(statejadjoint)

34 4:047˙ 0:118 10:19˙ 0:295 5:194˙ 0:240 12:9j3:5
.1:2%/ .1:9%/ .3:9%/

17 4:034˙ 0:281 10:40˙ 0:505 5:507˙ 0:584 14:8j3:8
.0:9%/ .4%/ .10%/

8 4:200˙ 0:550 10:89˙ 0:850 � 16:0j4:2
.5%/ .8:9%/

The initial guess is Ea;0 D Eb;0 D Ec;0 D 2 � 107 dyne/cm2

Table 6.5 Noisy case with regularization term

SNR Ea Eb Ec iter.(statejadjoint)

34 4:032˙ 0:119 10:15˙ 0:320 5:123˙ 0:129 13:1j3:7
.0:8%/ .1:5%/ .2:5%/

17 4:222˙ 0:238 10:17˙ 0:510 5:349˙ 0:368 14:2j3:6
.5:5%/ .1:7%/ .7:0%/

11 4:446˙ 0:426 10:57˙ 0:780 7:036˙ 3:90 15:5j4:1
.11%/ .5:7%/ .41%/

8:3 4:386˙ 0:570 11:09˙ 1:519 7:802˙ 4:12 16:9j4:1
.9:6%/ .11%/ .56%/

Mean and standard deviation (to be multiplied by 106) of the ten estimates for Ea, Eb, Ec and
number of state and adjoint iterations (bottom) for different values of the noise percentage P .
The initial guess is Ea;0 D Eb;0 D Ec;0 D 107 dyne/cm2

In Table 6.4, we report the average, over the ten realizations, of the estimated
values of Ea;Eb, and Ec and the number of times the state and the adjoint problem
have needed to be solved. Different noise percentage P are considered. The initial
guess is Ea;0 D Eb;0 D Ec;0 D 2 � 107 dyne/cm2. The estimated values for P D
0:1 and P D 0:2 are quite accurate. For P D 0:3 we do not find a converged
value for Ec . To overcome this problem, we add a regularization term to the cost
functionalJ n

3 , penalizing values ofE far from the initial guess. Table 6.5 shows that
the regularization term is effective. The estimates for Ec are still the more sensible
to the noise, but now the estimated values are acceptable. In the first time steps of
the simulation, the displacements computed by the FSI solver are very small for
x > 3 cm, hence the data is dominated by the noise in that region. This fact can be
an explanation of the high sensibility to the noise of the estimated value for Ec .

Reduction of the Computational Costs Via POD

In this section we show an example of how the POD procedure explained in
Sect. 6.3.3 can be used for reducing the computational costs of the problem of the
estimation of the Young’s modulus explained in the previous paragraph. We assume
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Fig. 6.12 Example of piecewise constant (along the axial direction) Young’s modulus

that the structure is approximated as a 2D membrane, which allows us to use the
simplified model (6.70). Furthermore, we divide the structure in a predetermined
number k of regions along the axial direction of the vessel, and we consider the case
where the Young’s modulus is globally piecewise constant, with a constant value in
each (predetermined) region (Fig. 6.12). This choice is driven by both practical and
theoretical reasons. On the one hand, it can allow us to model the scenario where,
due, for instance, to the presence of some pathology, the local properties of the tissue
are altered. On the other hand, this choice guarantees the existence of a solution for
the inverse problem, as shown in [59].

To show why a POD approach is reasonable, let us consider a flow in a cylinder,
where the membrane has been divided into three regions in which the Young’s
modulus is constant, and let us consider for the inflow a sinusoidal pressure wave of
the type

p.t/ D 500 sin.50�t/:

We solve the forward problem for different values of each of the Young’s moduli
in the three regions and we compute the correlation matrix of the Finite Element
snapshots for fluid velocity, denoted uh, and membrane displacement, denoted by
	h. The number of degrees of freedom is 9186 for the fluid velocity and 3540 for
the membrane displacement.

The figures suggest that the unknowns can be well approximated by vectors
belonging to spaces of dimensions much lower than the corresponding Finite
Element ones. Therefore, it is natural of think to POD, as a possible strategy to
reduce the computational costs.

At time tn the fully discrete Inverse Fluid–Membrane Interaction (IFMI) problem
reads: find En

opt such that
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Fig. 6.13 Singular values of the velocity (left) and membrane displacement (right) snapshot
matrix. Here we chose E D .E1; E2; E3/, with Ei 2 f1; 1:5; 2g � 106 dyn/cm2 , and performed
60 time step

En
opt;h D arg min

E2Rk
C

J n.E/

s:t:

2
4 C.E/ BT O

B O O
��tP O I

3
5
2
4 unh
ıpnh
	nh

3
5 D

2
4f

n
h .Eh/

0

	n�1
h

3
5 (6.74)

where P is a projection matrix, that extracts the normal component of the computed
velocity on †. Here the dependence of the velocity matrix C and the velocity right-
hand side fh on Eh comes from the Robin boundary conditions in (6.70). We also
point out that here we switched to an incremental formulation for the pressure, and
we included the term BT pn�1

h in f n
h .Eh/ for the sake of brevity.

To generate the POD basis, we solve the forward problem (6.70) for different
values of the Young’s modulus and we store the snapshots at each timestep. By this
we mean that unh and unC1

h are two different snapshots, even if they correspond to
the same Young’s modulus. However, we expect the solution to change smoothly in
time, and therefore the singular values of the snapshots matrix should decay fast.
This is confirmed by the numerical experiments in Fig. 6.13.

When building our reduced order model for the FMI problem, we want to exploit
the divergence-free velocity snapshots. Assume we have stored the velocity vectors
in the matrix Wu. When we project the momentum equation onto the range of Wu

we obtain

WT
u Cun C WT

u BT ıpnh D WT
u f

n
h : (6.75)

Should the geometry be constant in time, then the product WT
u BT D .BWu/

T would
be identically zero, being the discrete space divergence-free, and the pressure incre-
ment term would disappear. When the geometry is moving, this is not true, since
each snapshot is strictly speaking divergence free only in the geometry in which it
was computed. However, for a small time step (and for small displacements) we do
expect the increment ıpn to be small. For the sake of the computational costs, we
drop the pressure correction term in the reduced problem. This can be regarded as an
explicit treatment of the pressure in the time advancing scheme. Once the reduced
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momentum equation has been solved, the pressure can be recovered by solving the
least square problem in the full Finite Element space, that is,

pnh D min
qh2Qh

jjf nh � Cunh � BT qjj2: (6.76)

The solution to this problem exists and is unique, provided that the velocity and
pressure FE spaces satisfy the inf–sup condition, which guarantees that BT has
full column rank. In order to have a representation of the pressure in the reduced
space, one has to make sure that the reduced saddle point problem is non-singular.
In literature this issue has been tackled by enriching the velocity reduced space [64].

We therefore construct the reduced basis only for the fluid velocity and mem-
brane displacement fields. To this end, we solve the forward problem for a given
set of Young moduli E1; : : : ; EM and store the corresponding solutions (snapshots)
uh;i ; 	h;i . In order to deal with nonhomogeneous boundary conditions at the
inflow/outflow sections, we modify the velocity snapshots in the following way

Ouh;i D uh;i � u` (6.77)

where u` is the solution of a steady rigid-wall Stokes problem used as a lifting
function for the nonhomogeneous boundary conditions. This choice allows us
to preserve the divergence-free nature of the snapshots which are then collected
(amended by the lifting) in the snapshots matrices Xu and X	. We compute the SVD
of these matrices and let W˛ be the matrices containing the first k˛ left singular
vectors of X˛ (˛ D u; 	), with k˛ such that

kX̨
iD1

�i � 

NX̨
iD1

�i (6.78)

where �i are the singular values of X˛,  is the fraction of data variability that we
want to capture (typically we take  D 0:9; 0:95 or 0:99) and N˛ is the dimension
of the FE space. The columns of Wu and W	 form the reduced basis for the fluid
velocity and membrane displacement spaces.

If we project the IFMI problem (6.74) onto the reduced space, we then obtain

En
h D arg min

Eh2Rk
J n
r .Eh/ D 1

2
jj	nr;h � dnr jj2† C R.Eh/

s.t.

�
Cr O

��tPr I

 �
unr
	nr


D
"
f n
r;h

	n�1
r;h

# (6.79)

where Cr D WT
u CWu, Mr D WT

	 M†W	, Pr D WT
	 PWu, f n

r;h D WT
u .f

n
h � BT p�

h /,
dnr;h D WT 	h	

n
meas, and the dependence of C and f n

h on E is understood for brevity.
The minimization problem is then solved as in the previous section, using the

BFGS method. In particular, in order to evaluate the functional and its gradient, we
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solve the state and adjoint problems, respectively, which are given by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

"
Cr O

��tPr I

#"
unr;h
	nr;h

#
D
"
f n
r;h

	n�1
r;h

#
.State/

"
CTr ��tPTr
O I

#"
�u

�	

#
D
"

0

�Mr .	
n
r � dnr /

#
.Adjoint/

(6.80)

Numerical Results on an Idealized Aortic Arch

In this section we study the flow in a curved pipe resembling the shape of an
idealized aortic arch. In particular, the geometry consists of a half torus joint with
a cylinder. We chose the major and minor radii of the torus (i.e., the distance
between the center of the torus and the centerline of the pipe and the radius of
the pipe, respectively) to be R D 1:5 cm and r D 0:5 cm, while the length of
the cylindrical part is L D 5 cm. At the inflow/outflow sections we prescribe the
Neumann conditions

pn � �
�ru C ruT

� D gn

with g D 0 at the outflow and g.t/ D 500 sin.100�t/ at the inflow.
As in the previous section, we solve the forward problem for a given Young’s

modulus and we store the corresponding membrane displacement. This provides
the synthetic measures to be used in the DA procedure. In order to not commit an
“inverse crime” we solve the forward problem on a finer mesh, then we add some
noise to the computed membrane displacement and we project it on the (coarser)
mesh used for the solution of the inverse problem. In other words, we use the
measures given by

	m D …	f;h C jj	f;hjj1�e

where … is a projection from the fine to the coarse mesh, 	f;h is the displacement
computed on the fine mesh, e � U.�1; 1/ is a random vector, and � is the noise
level, reciprocal of the SNR.

The Young modulus used to generate the measures is E D Œ1:3; 1:8; 1:3� �
106 dyn/cm2, assuming a piecewise constant profile along the axial direction. In
particular, E1 is the value of the Young modulus for the first quarter of the torus,
E2 is the value for the second quarter, and E3 is the value in the cylindrical part.
For the generation of the POD basis, we use the sample S D fE 2 R

3 W Ei 2
f1; 2g � 106 dyn/cm2g. In Table 6.6 we report the dimension Nu; N	 of the velocity
and displacement POD basis for different choices of the POD threshold  .
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Table 6.6 Dimension of the fluid velocity and membrane
displacement POD basis for different values of the POD
threshold for the idealized aortic arch test case

 0.9 0.95 0.99

Nu 5 8 22
N	 5 7 12
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Fig. 6.14 History of the Young modulus estimates for SNR D 10. On the left, the estimates
obtained by solving the inverse problem on the full finite element space. On the right, the estimates
obtained by first projecting the problem on the reduced space. The colors refer to the different
components of the vector E (E1 (blue), E2 (red), E3 (green))

Table 6.7 Comparison
between Full Space (FS) and
Reduced Space (RS)
performance for the idealized
aortic arch test case

FS RS

E [1.33, 1.84, 1.31]�106 [1.34, 1.80, 1.33]�106
Rel. error 1.91 % 2.01 %
Exec. time 3,176 s 277 s
NS solves 492 s 480 s

Table 6.8 Time average of the estimates and relative error for different values of the POD
threshold for the idealized arch test case

 = 0.9  = 0.95  = 0.99

E [1.37, 1.81, 1.32]�106 [1.34, 1.80, 1.32]�106 [1.30, 1.78, 1.29]�106
Rel. error 2.83 % 1.97 % 0.87 %

In this test we compare the reduced space approach with the full space approach
(i.e., the minimization in the full Finite Element space). The history of the estimates
at each time step for the case SNR D 10 and  D 0:95 is shown in Fig. 6.14, while
in Table 6.7 we report their performance. The optimal estimate for the Young’s
modulus is computed by averaging all but the first 10 time steps estimates, which
are clearly significantly affected by the initial guess.

We can see in addition that the reduced space approach estimates are as good as
the full space approach. Moreover, the error on the estimates is remarkably smaller
than the intensity of the noise in the measures, for both the approaches, dropping
from 10 % to about 2 %, that shows also how DA filters the noise in the measures.
Regarding the behavior of the estimates with respect to the POD threshold, in
Table 6.8 we report the time averages (excluding the first ten time steps) and the
corresponding relative error for three different POD thresholds.
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Fig. 6.15 History of the Young modulus estimates for SNR D 5 for different values of the POD
threshold for the aortic arch test case. (a)  D 0:9 (Nu D 5; N	 D 5), (b)  D 0:95 (Nu D
8; N	 D 7), (c)  D 0:99 (Nu D 22; N	 D 12). The colors refer to the different components of
the vector E (E1 (blue), E2 (red), E3 (green))

Finally, in Fig. 6.15 we show the history of the Young modulus estimates for
different choices of the POD threshold in the case of SNR D 5. It is interesting
to notice that, despite the fact that the level of the noise is as large as 20 % of the
intensity of the signal, the average estimates are still close to the correct values.
In particular, even when using a low dimensional size for the reduced model, the
optimization procedure clearly detects that the Young modulus in the second region
is larger than in the other two regions.

A Kalman-Based Parameter Estimation Approach

Let us consider the FSI system after time–space discretization and linearization that
we write as

U k D Ak�1U k�1 C F k�1;

where U k 2 R
N is the vector of velocity and pressure degrees of freedom. In order

to estimate the parameter E 2 R
p the augmented state approach is used. Define

X .k/ WD ŒU .k/;E .k/�, then the system becomes

X .k/ D A
.k�1/
X X .k�1/ C F

.k�1/
X ; A

.k/
X D

�
A.k/ 0

0 I


; F

.k/
X D

�
F .k/

0


:

(6.81)
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Fig. 6.16 Left: Idealized abdominal aortic aneurysm geometry with subregions and fluid velocity
field; displacement and pressure fields at the outlet as a function of time. Right: Noise compared
to the typical wall displacements in the five regions and signal to noise ratios. Adapted from [6],
with permission of c� J. Wiley & Sons, 2012

The initial state is assumed to be X .0/ D ŒU .0/;E ref C  .0/�, and F .k/ D 0, i.e., the
initial velocity and displacement are assumed to be known without uncertainty and
the model is considered exact. The variables to be estimated are denoted by  . The
measures of the displacement are affected by a white noise 
.k/, i.e.,

�.k/meas D HkX
.k/ C 
.k/:

Since the problem is nonlinear, an UKF approach (see Sect. 6.2.5) is used where
.N C p C 1/ sample points (for details see [6]) are needed to approximate the
average and the covariance of the evolving state. As explained in Sect. 6.2.5, the
predictor phase consists in evaluating X .k/

i for each sample X .k�1/
i , which requires

the solution of the FSI problem .N C p C 1/ times at each time step. This is
computationally prohibitive, therefore a model reduction is performed. The idea
is to exploit the fact that the initial covariance is given by

ƒ.0/ D
"
0 0

0 Cov
�
 .0/

�
#
;

and to use a factorized formulation of the UKF. In this way [6] it is possible to use
only p C 1 sample points, which significantly reduce the computational cost of the
method when p � N , i.e., when the number of parameters is much smaller than
the dimension of the state.

Consider the idealized 3D geometry of an abdominal aortic aneurysm showed in
Fig. 6.16, left. The structure is divided, a priori, into five regions featuring different
values of the Young modulus E , corresponding to different colors in Fig. 6.16. The
typical displacements and noise recorded in the five regions are shown in Fig. 6.16,
right.
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Fig. 6.17 Mean values (thick solid lines) and plus/minus standard deviations (thin solid lines) of
the logarithm of estimated Young modulus, for ˛ D 4, ˇ D 100 (left) and ˛ D 9; ˇ D 20 (right).
Adapted from [6], with permission of c� J Wiley & Sons 2012

Numerical Results

Consider the idealized 3D geometry of an abdominal aortic aneurysm showed in
Fig. 6.16, left. The length of the geometry, the minimum and maximum diameters
are 23 cm, 1.7 cm, and 5 cm, respectively. The Poisson ratio, density, and viscosity
of the structure are 0:46, 1:2 g/cm3 and 10�3 s, respectively. The fluid density
and viscosity are 1 g/cm3 and 0:035Po, respectively. A Windkessel boundary
condition is used at the outflow (see Fig. 6.16 for details). We assume to have
displacement measures at each grid point of the mesh and that 
.k/ � N .0; �2I /. In
analogy with the variational approach, comparing the FE discretization of the cost
functional (6.71) and the cost functional (6.72), we assume the covariance matrixRk
to be inversely proportional to the M†

k , the mass matrix on †. In particular we take

R�1
k D ˇ��2 m

Tref

M†
k

j†j ;

where m is the time sampling of the measurements, Tref is a reference time, and
ˇ is a positive scalar used to weight the importance of the measurements. Also we
assume that �.0/ � N.0; ˛I /. Figure 6.17, shows the reconstructed Young modulus
in the different regions, as a function of ˛ and ˇ. The coefficient ˇ represents the
level of confidence attributed to the displacement measures, whereas ˛ is the a priori
covariance. As expected, the sensitivity with respect to ˇ is higher when ˛ is larger
and the sensitivity with respect to ˛ is higher in regions with smaller SNR. Together
with the estimated parameters, the Kalman filter provides also their covariances,
which is an important index to evaluate the confidence we should have in the results.
The results are in fact more (less) reliable when the covariances are small (large).
For more results see [6].



476 L. Bertagna et al.

With respect to the variational method, the filtering approach has the advantages
that only the solution of the forward problem is needed and that it provides an
estimate of the covariance of the parameters. Also, it is computationally cheaper
when the parameter space is much smaller than the state space. However, the
nonlinearities are not solved accurately and this can lead to a suboptimal estimate
of the parameters. Also, when the space of the parameters is large (e.g., E is a
finite element field with as many DOFs as the number of grid points), the Kalman
approach may become expensive.

6.5 Conclusions

Cardiovascular Mathematics is nowadays a mature discipline not only for under-
standing and improving basic knowledge of diseases but also for supporting the
clinical practice, with an accurate quantitative estimate, prediction, identification
of optimal therapies. In particular, the common denominator of this exciting
perspective is the presence of inverse problems, where problems related to blood
flow and FSI, traditionally per se challenging, need to be solved several times,
assimilated to available measures, analyzed with probabilistic tools. This is true not
only for DA but also for the identification of the optimal realization of a therapy
or, more specifically, of a surgical intervention. For instance, in [49, 50, 56] the
identification of the optimal placement of leads for optimizing pacemaking action in
the heart is addressed; the computation of a personalized patient-specific peritoneal
dialysis is addressed in [63, Chap. 7]. In Fig. 6.18 we report the aortic blood flow
simulated with different options of a Left Ventricular Assisted Device (LVAD)
implant; in particular, the emphasis is on the location of the cannula from the pump.
The identification of the optimal location is still an open problem whose solution
certainly depends on the patient-specific morphology.

This process bringing complex quantitative analyses from the computer to the
bedside requires a strong integration with available data, shifting the goal of
performing a patient-specific computation to the patient-specific “assimilation”
[71]. This is a crucial step for improving reliability of numerical elaborations,
reducing uncertainty and eventually the risks of failure.

Several methods can be pursued to this goal and extensive investigation is
required to establish the most appropriate approach for the different problems.
A genuinely numerical-statistical research is necessary for understanding how to
reduce the computational costs to be able to tackle challenges presented by clinical
problems that typically feature short timelines and large number of patients.

This chapter intended to offer a short introduction with a special emphasis on FSI
problems to some possible methods and to their interplay. Far to be a conclusive and
exhaustive presentation, we aimed at turning on interest for the emerging topic of
Inverse Cardiovascular Mathematics, with the final—ambitious but possible—goal
of introducing mathematically advanced methods in the clinical practice to improve
doctors activity and—more importantly—patients healthcare.
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Fig. 6.18 Simulation of different locations of the cannula of an LVAD in a real aorta. Leftmost:
Pre-op fluid dynamics. Images reproduced with permission of c� D. Gupta, Emory University
Hospital, image processing and simulations in collaboration with M. Piccinelli (Radiology, Emory
University) and T. Passerini (Math & CS, Emory University)
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Chapter 7
Mathematical Models for Blood Coagulation

Tomáš Bodnár, Antonio Fasano, and Adélia Sequeira

Abstract This chapter presents an overview and introduction to blood coagulation
models. The historical exposure of the development of classical coagulation model-
ing theories is followed by a basic overview of blood coagulation biochemistry. The
recent developments of cell-based models are explained in detail to demonstrate the
current shift from the classical cascade/waterfall models. This phenomenological
overview is followed by a survey of available mathematical concepts used to
describe the blood coagulation process at various spatial scales including some of
the related biophysical phenomena. A comprehensive survey of basic literature is
provided for each of these topics.

Keywords Blood • Coagulation • Coagulation cascade • Coagulation model •
Chemical reaction • Kinetics rate • Platelet • Red blood cell • Thrombin •
Thrombosis
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7.1 Introduction

Blood coagulation is a very complex process that plays an indispensable role in wide
variety of living organisms. Better understanding of this process is both important
and complicated. The extreme complexity of blood coagulation has several origins.

Complexity of blood . Blood itself, even without considering its biochemistry and
coagulation, is an extremely complicated fluid. It exhibits many unique properties
and its behavior is not yet fully described and understood.

Sensitivity . Both, the external and internal stimuli can alter and heavily affect the
blood coagulation process. This sensitivity is a major problem in repeatability of
experiments and their interpretation.
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Variability . Despite many similarities, there are important differences in coagula-
tion processes between various biological species. Non-negligible variances also
exist between individuals of the same species, depending on a great number of
factors.

Multiscale nature. Blood coagulation process has a multiscale nature in both,
space and time. This is not only very demanding when it comes to experimental
studies, but the multitude of spatial and temporal scales is also hard to include
within a single mathematical model.

Multidisciplinary nature. Blood coagulation is a typical example of a multidis-
ciplinary problem requiring detailed knowledge of many areas of physics,
chemistry, biology, medicine, and other branches of science. It’s impossible to
get a full picture of the coagulation process from a narrow point of view of a
single scientific discipline.

These are few from many problems that make the studying and modeling of
blood coagulation so challenging. Within this chapter we will try to introduce and
address some of the most important concepts forming the basis of current theories
and models of blood coagulation. The beginning of the chapter focuses on the
historical background and evolution of the traditional, biochemical approach to
blood coagulation. Special attention is paid to recent discoveries and consequent
revisions of historical models. The second part of the chapter is more oriented
towards the mathematical description of coagulation models. It shortly reviews
various methods and models used to describe blood coagulation and related
phenomena.

7.2 Historical Remarks

Despite the familiarity with the phenomenon of coagulation following bleeding,
its scientific explanation had to go through the knowledge of blood composition
and above all the development of biochemistry, which took place in relatively
recent times. Actually, the process, which is not confined to external wounds, is
so complicated that the theory of blood coagulation is still in full evolution. A great
help came from the observation of how the process can fail. Roughly speaking,
there are two ways blood clotting can go wrong: excessive coagulation and defective
coagulation. The first case may produce thrombosis with the possible occlusion of
blood vessels. Defective coagulation instead may end up with severe hemorrhages.
Both kind of disorders can be lethal. Therefore, it is not surprising that the history
of blood coagulation has much to do with the observation of clotting disorders. In
this section we will shortly review the history preceding the twentieth century.
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Thrombosis was one of the first reported clotting disorders, though just through
its symptoms, namely limb swelling, most frequently in pregnant women.1 For a
review on pregnancy and post-partum related thrombosis, see [234]. Gender-specific
studies on thrombosis are presented in [52, 252].

A very well-written historical review on thrombosis in general is [13], which
contains many important references. Symptoms attributable to arterial thrombosis
have been described in the old traditional Chinese medicine, whose development
is attributed to the legendary Yellow Emperor (Huang Di), who is supposed to have
reigned between 2698 BC and 2599 BC.

Documents from Ancient Egypt, like the Edwin Smith Papyrus (written around
1700 BC, but based upon much earlier material2 ) and the Ebers Papyrus (existing in
a copy of the sixteenth century BC, but probably having its roots back to 3000 BC)
make no reference to blood coagulation, nor does the readable part of the Kahun
Gynecological Papyrus (nineteenth century BC).

Thus our history jumps to Hippocrates (ca. 460 BC–370 BC). He was a central
character in the medicine of the classic world3 and he coined the term leucophlegma-
tia to denote limb swelling, though this term was later used to indicate symptoms of
various origin. The Greek Galen of Pergamon (131–201), who acquired great fame
in Rome where he became known as Aelius (Claudius) Galenus,4 was the first to

1Pregnancy may increase the risk of thrombosis in various ways. The swollen uterus can
compress pelvic vessels, reducing blood circulation in the legs. Hormonal changes can also
produce hypercoagulability by increasing the concentration in blood of pro-coagulant factors and
reducing the concentration of anticoagulant factors. A more serious condition sometimes related to
pregnancy is the Antiphospholipid Antibody (or sticky blood) Syndrome, due to the autoimmune
production of antibodies against a cell membrane substance called phospholipid causing platelets
aggregation.
2The most famous physician of ancient Egypt was Imhotep (a semi-divine character, he lived during
the twenty-seventh century BC and is supposed to be the legendary author of this papyrus). The
practice of mummifying corpses must have taught much to Egyptians about the human body, but
the papyrus (mainly dealing with wounds healing) can hardly be considered a scientific document
and the suggested remedies could easily be fatal to the patients because they could produce
infections.
3He was the author of the humoral theory, according to which four humors (blood, phlegm,
black bile, and yellow bile) had to be in a proper balance in healthy individuals. The theory,
somehow anticipated by Alcmaeon of Croton (fifth century BC), parallels the contemporary claim
by Empedocles that four elements (air, water, fire, earth) are the basic constituents of the world
and which may have had a much older origin. Hippocrates tremendous authority (and the immense
reputation of Galen, who took his legacy to the Roman world and passed it on to the next era)
prevented the development of medicine on a scientific basis for centuries, thanks to the blindness
of his followers. The humoral theory found its way through Islamic medicine: the Persian Avicenna
(Ib Sı̄nā, 980–1037) based his Canon of Medicine (1025) on Hippocrates’ and Galen’s theories. It
was instead opposed by another Persian, Razi (Muhammad ibn Zakariyā Rāzı̄, 865–925) an eclectic
scientist, very famous in his times, who explicitly questioned several of Galen claims on the basis
of his own experimental observations.
4He adopted and propagated Hippocrate humoral theory, adding his own theory of four tem-
peraments (choleric, melancholic, sanguine, phlegmatic), resulting from the combinations of the
humors with four qualities of (cold, warm, moisty, dry). He sketched an erroneous scheme of the



486 T. Bodnár et al.

use the term thrombosis in connection with limb swelling (from Greek thrombos,
meaning clot).

Throughout middle ages and even for most of the eighteenth century, still
under Galen’s influence, humors were considered responsible for limb swelling.5

Particularly interesting was the point of view of Aristotle (384–322 BC) about blood
clotting, which he claimed to be caused by heat loss. This is of course a very naïve
claim, but he also said that a fibrous material was necessary for clotting.6

Coming closer to our times, while a lot of humoral trash was still invading the
medical literature, fundamental discoveries were made in the seventeenth century,
laying the foundation for a scientific approach to biology.7 These were mainly
related to the development of microscopy, particularly in the Netherlands. Anthony
Leeuwenhoek (1632–1723) can be considered the initiator of microbiology. With
the help of his instruments he studied Red Blood Cells8 (1674), previously identified
by Marcello Malpighi (1628–1694).9

Clearly, the knowledge of blood composition is indispensable to formulate any
theory on coagulation, but that was just a first step. The famous French surgeon
Jean-Louis Petit (1674–1750) recognized that blood clotting was part of the process
of hemostasis. A description of vein occlusion by blood clots was provided (1676)
by the celebrated English surgeon Richard Wiseman (1601–1686). Much before the
so-called Virchow triad became famous (see below) he recognized two different
causes of thrombosis: stasis and hypercoagulability.

circulatory system. We had to wait until the famous treatise Exercitatio anatomica de motu cordis et
sanguinis in animalibus (1628) by William Harvey (1578–1657) for a correct systematic description
of blood circulation (limited to great vessels: microcirculation was a later discovery). It is worth
mentioning at this point the important contributions later given by the English eclectic scientist
Stephen Hales (1677–1761), who determined the blood volume, the heart output and who first
measured arterial blood pressure. For completeness we recall the revolutionary work of Andreas
Vesalius (Latinized from Andries van Wesel) (1514–1564), who opened a new era in physiology.
It is interesting to note that Vesalius studied Rāzı̄’s books and that he based his famous treatise
De humani corporis fabrica libri septem (1543) on direct observation of dissected human bodies.
He pointed out several of Galen’s mistakes (particularly in the description of circulatory system),
indifferent to the harsh criticism of Galen’s followers.
5Explanations given to pregnancy or post-partum related limb swelling by various authors during
the seventeenth and eighteenth centuries, largely based on humors look today simply ridiculous.
See the paper [13].
6Such a fibrous component was isolated much later by Marcello Malpighi (1628–1694), the Italian
physician famous above all for his studies on kidneys.
7A new course in the medical studies was set by the book The Philosophical Principles of Medicine
(1725) by Thomas Morgan.
8Cells were first observed at the microscope by the physicist Robert Hooke (1635–1703) (the
founder of the theory of elasticity) in a thin sample of cork (1665). He did not know what cells
were, but he called them that way because of their particular and regular arrangement in the sample,
resembling the one of monks cells.
9Malpighi first described RBC as fat corpuscles (1663). Actually RBCs had been observed
earlier (1658) by the Dutch Jan Swammerdam (1637–1680). Malpighi was also the discoverer
of capillaries (1661).
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Attention towards blood composition in the interpretation of the coagulation
process was brought by William Hewson (1739–1774), who isolated a “coagulation
lymph” responsible for the process (identifiable with what is known today as
fibrinogen).

In the first part of the nineteenth century it became clear that limb swelling
had to be attributed to veins obstruction, though the struggle against the humoral
theory was still going on!10 One of the most revered physician of the nineteenth
century was Rudolph Virchow (1821–1902), today still remembered in the field of
blood coagulation for his Virchow Triad, emphasizing three elements contributing
to thrombosis. In the modern language we can list them as hypercoagulability,
alterations of hemodynamics (stasis), and endothelial injuries.11 He introduced the
term embolia. Of course there were many other physicians who had similar views,
but since this is not a historical paper it is more urgent to deal with the discovery of
platelets.

However, before we come to that, let us briefly mention some historical remark
about bleeding disorders. It is natural that such phenomena have been important to
people practicing circumcision.12 Babies whose blood could not coagulate properly
could bleed to death. In the second century AD Rabbi Judah haNasi exempted
babies from circumcision when two sons of the same mother had previously died
after the operation (Babylonian Talmud). The Islamic physician Albucasis (Abu al-
Qasim Khalaf ibn al-Abbas Al-Zahrawi , 936–1013, dates are uncertain) who lived
in Andalusia, reported cases of what today is known to be hereditary hemophilia.
Accounts of bleeding disorders of hereditary type can be found in many later sources
and with different names. The term hemophilia was used for the first time by
Friedrich Hopff in his 1828 treatise Über die haemophilie oder die erbliche Anlage
zu todlichen Blutungen (Zurich). We know today that some classes of disorders
known as hemophilia (namely hemophilia A and B) are due to a defective gene in
the X-chromosome. That explains why it is extremely rare in women (possessing
two X-chromosomes),13 who can however carry the illness (only one chromosome
being defective) without symptoms and transmit it through their genealogic tree.

10It is really amazing that a well-known scientist like the Swedish Robin Fåhraeus (1888–1968),
still quoted today, for instance, in the field of blood rheology, believed to have found a confirmation
of Galens theories on the basis of the observation that blood coagulates in four layers with different
colours, corresponding to the famous humors [121].
11Virchow described the mechanism of thromboembolism [240], a phenomenon that was by no
means clear at his time (inflammation was considered by many physicians the real cause of
thrombosis: this was the subject of a famous dispute with the French pathologist Jean Cruveilhier).
Curiously, he did not formulate the famous triad which for some reason found a firm place in the
literature much after his death (apparently not before 1950!). See the interesting review [17].
12Circumcision is a very old practice, already found in the ancient Egypt and that was widely
adopted also in the Islamic world. Its origin in ancient Egypt was probably as an initiation practice
to religious offices. The Book of the Dead describes self-circumcision by the sun-god Ra: Blood
fell from the phallas of Ra after he had finished cutting himself .
13In numbers, 1 over 10,000 men is hemophilic. The probability that a woman is hemophilic is the
square of that number.
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Fig. 7.1 Queen Victoria’s family tree, showing hemophiliac descendants

We refer to the important review paper [117], containing a large section on the
Royal hemophilia. It is well known that Queen Victoria was a carrier of the disease
and that members of many royal families got from her the defective chromosome
(Fig. 7.1), a fact that was going to have important historical consequences [139,227].
Hemophilia used to be a life-threatening illness and any minor injury could be fatal.
Later on patients could benefit transfusions, but at the insurgence of HIV infection
a great number of them died.

Relationship between cancer and thromboembolism was recognized already in
the 1860 by Armand Trousseau (1801–1867), who had the chance to diagnose in
that way his own fatal illness.

But let us finally come to platelets. Due to their smallness, their discovery was
delayed until sufficiently powerful microscopes became available. In 1865 Max
Johann Sigismund Schultze (1825–1874) made an accurate description of tiny cells
that he recognized as normal constituents of blood. However, there were previous
observations: in 1836 by Hermann Nasse, and in 1842 by the French Alfred Donné
(1801–1878), frequently referred to as the discoverer of platelets, and many others
(see the review paper [51]). It was however Giulio Bizzozero (1846–1901) who
understood their role in blood coagulation (1881) as Fibrin producers.14 He coined
the Italian name Piastrine and the German Blutplächtten. This was the starting point

14In this connection the name of the eminent French hematologist Georges Hayem (1841–1933)
has to be remembered as one of the founders of modern hematology. He performed the first count
of platelets. In 1882 he illustrated the effects of thrombocytopenia (low platelets count).
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of modern investigations on blood coagulation. The reader is referred to the papers
[38, 88, 203].

Of course that was just the beginning, since platelets, in spite of their smallness,
are a very complex universe, still offering new surprises.

7.3 Cells and Proteins Intervening in the Formation and
Dissolution of Clots

Clotting and fibrinolysis are the result of cascades of chemical reactions, charac-
terized by strong positive feedback, with the active participation of platelets and of
endothelial cells, particularly those making the blood vessels (see [1] for a review
on their specialization according to the vessel size, and on thrombosis in general).
In this section we will list the many substances involved in clotting and fibrinolysis,
grouping them in classes according to their role and nature. The exposition will be
only moderately technical, since all we need to know is the role these elements have
in the process, not, for instance, the details about their chemical structure, nor how
the reactions actually take place.15 The reader may be discouraged by the length of
this section, but at least a quick glance at it is necessary before to proceed.

7.3.1 Blood Cells

1. Platelets

Platelets are cells with no nucleus produced in the bone marrow, having a diameter
of 2–4�m and a lifespan of 5–9 days.16 Their average concentration in blood is
1:5–4 � 105=mm3. In the rest state their shape is discoid, but in response to various
stimuli they may become star shaped (rolling over blood vessels wall to inspect
its integrity), or they may assume a very irregular shape. The latter transformation
characterizes activated platelets, with the emission of philopodia (or pseudopods).
In this stage they can bind both among themselves and (in the fastest stage of the
coagulation process) to the growing fibrin network.

Despite their smallness, platelets can perform an incredible number of actions,
interacting with the environment by means of the many receptors on their membrane
(Fig. 7.2). Concerning this subject we quote the review paper [207].

Figure 7.2 shows the specialization of each class of receptors, emphasizing the
ability of platelets to interact with specific elements. Engaging receptors provide
stimulus for platelet activation. The substances recognized by receptors will be

15Large molecules like proteins have specific sites which are engaged in specific reactions.
16All data concerning human blood are subjected to large variations, according to sex, body weight,
and health conditions.
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Fig. 7.2 Schematic representation of main platelets receptors

described in the sequel. Drugs neutralizing some of the receptors are administered
to prevent blood clotting, particularly after heart surgery. The most known among
a long list are Plavix (Clopidogrel), acting on the ADP and other receptors, and
Aspirin, inhibiting the Thromboxane A2 production. A natural platelet inhibitor,
synthesized in the endothelium, is NO (nitric oxide). Platelets exhibit also an intense
internal activity, since they possess corpuscles, called ˛-granules and dense (or
ı) granules. The ˛-granules secrete, under activation, the binding factors vWF
and Fibrinogen (see Coagulation Factors) in addition to Platelet Factor 4 (another
platelet activator) and other proteins having different functions. For instance,
Thrombospondin 1, a multifunctional protein (e.g., antiangiogenic), and Nexin II,
whose role will be discussed later. Platelets also release Growth Factors which help
repairing the damaged tissue. The ı-granules produce platelet activators like the
already mentioned Thromboxane A2 and ADP, thus triggering positive feedback,
but also Serotonin (5-hydroxytryptamine), a vasoconstrictor. Activated platelets are
also able to synthesize some of the coagulation factors.

An important role in platelets (and other cells activity) is played by the
membrane. Not only through the receptors, but also by exposing negative charges to
the exterior, which become sites of attraction of active coagulation factors.

Finally, we recall that in most cases the presence of the ion Ca++ is necessary
for receptors to perform their action. Such an ion is also contained in the ı-granules.
Drugs containing citrates have the effects of lowering Calcium concentration,
inducing some anticoagulant effect. Therefore their use must be avoided while
assuming potent anticoagulants.

Literature on platelets is extremely large and includes several books (e.g., [171],
whose foreword [50] contains a huge bibliography). An accurate review paper on
platelets receptors is [207], also with numerous references.

2. White Blood Cells (WBC)

Also called Leukocytes, they are distinguished in various classes (Granulocytes:
neutrophils, eosinophils, basophils; Lymphocytes, including T-cells; Monocytes,
further differentiated in Macrophages) possessing nuclei with different shapes.
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Their concentration in blood ranges between 4;500 and 11;000=mm3 (neutrophils
making 50–70% of the whole population) and they have generally short life (up to
about a week, with the exception of Lymphocytes who can live some weeks). Their
diameter can be up to �20�m. They are highly specialized cells performing many
important functions, particularly in the immune system (T-cells). Their importance
in the coagulation process consists in the ability of monocytes to produce Tissue
Factor (defined below), which we will see to be a triggering factor for clotting, see,
e.g., [53].

3. Red Blood Cells (RBC)

They make �45% of blood, with a concentration of 5–6�106=mm3, lifespan �120
days. They have a diameter of �8 �m and no nucleus. Normally they have a discoid
shape, but they are very flexible and they bent to flow in capillaries. In conditions of
low shear rate they may aggregate forming rouleaux. This fact is responsible for the
shear-thinning property of blood. They are considered just as passive elements in
blood coagulation, being trapped in the fibrin network and providing a large part of
the clot volume. However, the discovery that they can synthesize NO [131], which
we know to down regulate platelets activity, may open new perspectives.

7.3.2 Platelet Regulators

Here we list stimulators or inhibitors of platelets activity. Some of them have been
already mentioned as a comment to Fig.7.2.

1. Activators

• TXA2 (Thromboxane A2). It is produced by activated platelets, thus triggering
a positive feedback. It favors platelets aggregation. It degrades to Thrombox-
ane B2, eliminated through urine.

• ADP (Adenosine-Di-Phosphate).A very important molecule,17 contained also
in RBCs. For this reason hemolysis (RBCs disruption, which may occur under
excessive mechanical stress18) can liberate ADP in the bloodstream, activating
platelets.

• Serotonin is a vasoconstrictor, thus favoring hemostasis.
• Platelet Factor 419 is an antagonist of heparin (see Sect. 7.3.5(2))

17AMP, ADP, ATP contain 1 (Mono-), 2 (Di-), 3 (Tri-) atoms of phosphorus and they are obtained
in that sequence by addition of a P atom (a process called phosphorylation). ATP has a vital
importance in cells metabolism.
18This condition can be produced by arterial stenosis, possibly as a consequence of clotting itself,
or due to the mechanical action of implanted devices (rigid artificial heart valves).
19Platelet Factors 1–3 actually regulate interactions with the Coagulation Factors IIa (thrombin),
V, X.
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2. Inhibitors

• NO (Nitric Oxyde), produced by endothelial cells, is a platelet inhibitor. Its
main function in the body is vasodilation via relaxation of the vessel smooth
muscle.

• Prostacyclin (or Prostaglandin I2, PGI2), also released by endothelial cells,
prevents platelets adhesion and also counteracts the effects of TXA2 binding.

• Ecto-ADP-ase, synthesized by the endothelium,20 neutralizes ADP.

7.3.3 The Coagulation “Factors”

1. Von Willebrand Factor (vWF)

The Finnish physician Erik Adolf von Willebrand (1870–1949) studied a severe, often
fatal, bleeding disorder (which later took his name) affecting several individuals in
a remote Finnish village, recognizing that it was different from hemophilia (indeed
also girls had the symptoms).

He published his studies in 1926, though he could not provide any explanation of
the disease. We know today that the cause of that disease is deficiency or dysfunction
of the so-called von Willebrand Factor, which is a large multimeric molecule stored
in cytoplasmic granules (Weibel–Palade bodies) of many cells (and in the platelet ı-
granules, as we said), but also circulating in blood (see the subsection Complexes).
vWF molecules of smaller size are produced by cleavage of larger molecules by the
enzyme ADAMTS13. The fragmentation of the very large molecules is essential
for vWF to work correctly. The configuration of vWF molecules is sensitive to
stress, which tends to unfold them thus exposing more binding sites to platelets.
vWF stress-induced self-association is a property having a special influence on
platelets adhesion to fibrin (see [211]). The papers [209, 210] are excellent sources
of information about vWF.

2. Tissue Factor (TF)

Frequently called Thrombokinase or Thromboplastin.21 The chemical cascade
leading to the final formation of the fibrin network is initiated by the exposition of
endothelial TF to blood, following an injury (for instance the rupture of a plaque).
Thus TF has a fundamental role in the clotting process. We have mentioned that
TF can be produced by monocytes, so that blood born TF is available. This fact is
not a recent discovery (see [104]). Instead, what is really new is the evidence that
platelets can synthesize TF (see [58]). To our knowledge this fact has not yet been

20Ecto-enzymes act at the exterior of cells. For more details about this enzyme see, [87].
21Though there is some disagreement on the exact meaning of this name, it is very frequently
attributed to TF.
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taken into account in any mathematical model, but it may deeply modify the whole
picture of the process.

3. The numbered Factor pairs

The path which leads from TF exposure at the injury site to the formation of the
fibrin network is basically a cascade of chemical reactions in which a zymogen is
modified to an enzyme (a serine protease),22 which is said to be the active form of
its precursor. In the cascade the enzyme will perform a similar operation on another
zymogen (what is called an enzymatic reaction). Thus many factors come in an
activated and in a non-activated form. This is the basic structure of the biochemical
model that will be illustrated in Sect. 7.4, though the actual cascade requires the
intervention of platelets and of complexes (combinations of factors) and is also
accompanied by antagonist reactions. Some of the factors once activated do not
possess an enzymatic activity, but they bind in a very active complex with another
activated factor, to which, so to speak, they are subsidiary. For this reason they
are called cofactors. In 1954 the International Committee for the Nomenclature
of Blood Clotting Factors was created with the aim of standardizing the names of
the coagulation factors pairs that had been discovered at that time23 (some of the
former names are still in use). The reader can find a short report of the activity this
Committee in [255, 256]. In 1957 the Committee met for the first time in Rome.

Roman numbers were attributed following the chronological order of discovery,
following the trend already established by Paul Morawitz at the beginning of the
twentieth century, when only the first four were known, and continued by the
Norwegian Paul Owren, who called Factor V the one he discovered in 1944 [188].
The final list is the following (alternative names in italic)24:

• FI Fibrinogen25 /FIa Fibrin, resulting from polymerization of Fibrinogen
• FII Prothrombin/FIIa Thrombin (the main enzyme in the cascade, deserving its

name)26

• FIII is nothing but Tissue Factor
• FIV identifiable with CaCC
• FV/FVa (formerly proaccelerin and accelerin, resp.), FVa is cofactor of FXa
• FVI, later recognized to be identical to FVa
• FVII/FVIIa (formerly proconvertin–convertin)
• FVIII/FVIIIa, FVIIIa is cofactor of FIXa

22Serine proteases are a large class of enzymes including the amino acid serine. The list of serine
proteases is impressively long. See http://biochem.wustl.edu/~protease/ser_pro_help.html.
23Simultaneous and independent discoveries had produced a great confusion in nomenclature.
24Actually there were many more names: see [208] for a complete list.
25Fibrinogen is not just the precursor of Fibrin, but it has also other specific functions, illustrated
in this chapter. It is also known to stimulate RBCs aggregation (forming the so-called rouleaux), a
phenomenon of some importance in blood rheology.
26In order to prevent coagulation and keep blood flowing through the wound it produces, the Hirudo
Medicinalis (leech) secretes Hirudin, a natural and very effective inhibitor of thrombin.

http://biochem.wustl.edu/~protease/ser_pro_help.html
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• FIX Christmas Factor27 / FIXa
• FX Stuart–Prower Factor28/ FXa
• FXI (formerly Plasma Thromboplastin Antecedent, PTA)/FXIa
• FXII Hageman Factor29/FXIIa
• FXIII Laki–Lorand Factor30/FXIIIa

Factors VIII, IX, XI are called antihemophilic factors A, B, C, respectively. We will
explain why in the section about bleeding disorders. A review of the intense activity
that led to the discovery of Coagulation Factors can be found in the papers [15,208]
and [228].

4. Other Proteins involved in blood coagulation

One more zymogen–serine protease pair is

• Protein C (PC), rarely called FXIV, with its activated version APC. Activation is
performed by the Thrombin–Thrombomodulin complex (see below). Its action is
contrasting coagulation, since it inactivates FVa and FVIIIa.

The just mentioned action of APC is mediated by

• Protein S31 (PS) as a cofactor.

A protein structurally related to serine proteases is

• Protein Z (PZ) has a role in the degradation of FXa.

This is a very appropriate place to mention

• Vitamin K32 (actually a family of vitamins produced in the liver, as PC is),

since many coagulation factors (FVII, FIX, FX) and the Proteins C, S, Z are vitamin
K-dependent. It means that they cannot perform their action in the absence of
vitamin K. Hence its fundamental importance. Drugs inhibiting vitamin K are
widely used as anticoagulants. Since the most rapid action is on the anticoagulant
proteins PC, PS, PZ, they first favor clotting, while the strong anticoagulant effect

27Stephen Christmas was the first patient diagnosed with FIX deficiency (hemophilia B) (1952) at
the age of five. He died in 1993 by AIDS. Many of the transfusion-dependent patients were infected
by the HIV virus before blood screening became obligatory. A case which became emblematic was
the one of Ryan Wayne White, affected by hemophilia A, who became discriminated when he was
diagnosed with AIDS. He died still a teenager in 1990.
28Named after the patients Rufus Stuart and Audrey Prower.
29Named after Ratnoff’s patient John Hageman (1955).
30Laki and Lorand suggested its existence in 1948 [138].
31A very important function of Protein S in the organism is to facilitate phagocytosis of apoptotic
cells by macrophages. Discovered in 1979 in Seattle, takes its name after that city.
32Denominated after the German name Koagulationvitamin. Discovered in the 1930 a Nobel prize
was attributed in 1943 for studies on it, though its real action in the coagulation process became
clear only in the 1970.
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is seen with some delay. For this reason heparin (see next section) is simultane-
ously administered. Drugs neutralizing vitamin K are on the market with various
trademarks. The most known are Warfarin (in the USA)33 and Coumadin.

Activated factors have their own inhibitors, that will be described below
(Sect. 7.3.5).

5. Complexes

The following Factor Complexes have an important role in the coagulation pro-
cess:

• Complex FVIII-vWF is the main carrier of inactive FVIII in blood.34 Under the
action of FIIa it dissociates and FVIII is rapidly activated.

• Complexes FVII-TF, FVIIa-TF intervene in the initiation phase of the cascade.
• Complex FVIIIa-FIXa (CCaCC) is called Tenase35 because it activates FX.
• Complex FVa-FXa (CCaCC) is called Prothrombinase because it promotes the

transition from FII to FIIa. We will discuss its pivotal role in the cascade.
• Complex Thrombin–Thrombomodulin. Thrombomodulin is a protein expressed

by endothelial cells. This complex induces the activation of Protein C and turns
TAFI (see Sect. 7.3.4) into its active form, providing protection to Fibrin.

6. More Coagulation Factors

According to the Cell-Based Model (Sect. 7.4), all the Factors listed above enter
the chemical cascade leading to Fibrin production, except FXII . This is the main
discrepancy with the 3-pathway Cascade Model (Sect. 7.6), used until recently. In
the latter, activation of FXII is the triggering event of the intrinsic pathway of
coagulation (i.e., a process originated within blood, independently of exposure to
TF, which is of extrinsic nature). Since there is evidence of clotting of intrinsic
origin, and also of the fact that FXII can become activated when blood comes into
contact with artificial materials, the intrinsic pathway, though not endorsed in the
Cell-based Model, still is worth being considered. It is also called contact activation
pathway. Here we list the Factors which, in addition to FXII, take part in it.

• Prekallikrein (PK), also known as Fletcher Factor,36 complexes with High
Molecular Weight Kininogen (HMWK) by contact with collagen, in the presence
of FXII.

33Patented in 1948 as a rat poison and used as anticoagulant for humans since 1954. It was isolated
in 1941 by a group at the University of Wisconsin after a 6-year work investigating a widespread
hemorrhagic disease that affected cattle in the USA, the so-called sweet clover disease (the research
was funded by WARF, i.e., Wisconsin Alumni Research Foundation). See [248].
34Already in the 1950 it was known that deficiency of vWF was accompanied by a deficiency of
FVIII (see [208]).
35The symbol X-ase is sometimes used.
36Also referred to as Williams Factor or Flaujeac Factor.
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• High Molecular Weight Kininogen37 (HMWK), also known as Fitzgerald Factor.
• Kallilkrein,38 the active form of PK, following the formation of the complex PK-

HMWK. In turn, Kallikrein is a fast activator of FXII.

7.3.4 Fibrinolysis Factors

Fibrinolysis is the process eventually destroying the clot. It goes through positive
feedback too, with the intervention of the following factors.

• Plasminogen (a zymogen)
• Plasmin (a serine protease), the active form of its precursor, attacks fibrin,

gradually destroying the clot. Plasmin is also active on vWF and other proteins.
• Tissue Plasminogen Activator (tPA), a serine protease catalyzing the transition

from plasminogen to plasmin.
• Urokinase39 (urokinase-type Plasminogen Activator: uPA) (a serine protease),

another activator of plasminogen.40

• Thrombin Activatable Fibrinolysis Inhibitor (Carboxypeptidase B2), or TAFI,
when activated (by the thrombin-thrombomodulin complex) is an enzyme which
protects fibrin from the action of plasmin by slightly modifying its structure.

Besides tPA and uPA, plasminogen can be activated to plasmin by the Hageman
factor FXII, a fact established long ago by Ratnoff himself and coworkers [96].
One more strong plasminogen activator is the enzyme streptokinase, used as a
trombolytic.

7.3.5 Factors Inhibitors

Both coagulation and fibrinolysis factors have their inhibitors, as all proteases do.
The delicate game played in the body by proteases and their inhibitors tells us that
indeed health requires the equilibrium of a huge number of substances in permanent
mutual conflict. In a sense this fact expands to an unthinkable scale the naïve idea
of the equilibrium among the four Hippocratic humors!

37Kininogens are proteins which are precursors of kinins (see next footnote), such as bradikinin
and kallidin, which are vasodilator.
38Here we refer to Plasma Kallikrein, distinct from the numerous group of Tissue Kallikreins,
which are enzymes performing various actions. Discovered in 1934, it was named after the Greek
words kalli (sweet, in this context) and krein (flesh) referring to pancreas tissue. Plasma Kallikrein
(like some of its tissue analogs) liberates kinins from the kininogens. The so-called kinin-kallikrein
system has a role in regulating blood pressure, owing to the vasodilation action.
39First isolated in the urine.
40Also Kallikrein and FXIIa can activate plasminogen.
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Serine Protease Inhibitors make a large group of proteins neutralizing specific
serine proteases. Of course their list is as long as the one of serine proteases. The
acronym serpin is frequently used to denote any of these proteins. For our purposes
we are interested in the following ones.

1. Serpins Neutralizing Pro- or Anti-coagulation Factors

• Antithrombin. Most commonly referred to as Antithrombin III (ATIII),41 it
inhibits most of the activated coagulation factors (FIXa, FXa, FXIa, and FIIa)
and the FVIIa-TF complex. Its action is enormously enhanced by Heparin.42

• Tissue Factor Pathway Inhibitor (TFPI) can inhibit thrombin (FIIa) and also
FXa by forming a complex with it. In turn the latter complex can inhibit the
FVIIa-TF complex (the initiator of coagulation). It is released by endothelial
cells and also by platelets.

• Alpha 1-antitrypsin. This serpin interacts with many proteases and therefore
is particularly important.43 It is known to inhibit APC.

• Protein C inhibitor limits the expression of Protein C.
• Protein Z-related protease inhibitor. It neutralizes FXa in the presence of PZ.

It also inhibits FXIa.
• Kallistatin, an inhibitor of Kallikrein.
• Heparin cofactor II rapidly inhibits thrombin in the presence of heparin.

Another protease inhibitor, not frequently quoted in the literature in the context
of blood coagulation, is

• Nexin II, an inhibitor of FXIa, secreted by activated platelets (see [244]).

2. Serpins Neutralizing Pro- or Anti-fibrinolytic Factors

• Plasminogen activator inhibitor-1 (PAI1) and Plasminogen activator
inhibitor-2 (PAI2)44 inactivate both tPA and urokinase.

• Neuroserpin inhibits tPA and urokinase.
• Alpha 2-antiplasmin is an inhibitor of plasmin.
• Alpha 2-Macroglobulin is another multifunction serpin. It inhibits plasmin and

Kallikrein.

41AT I–IV are also found in the literature, with specific targets.
42Discovered in 1918 [109], though isolated in 1916 in canine liver tissue [167]. There has been
some controversy about heparin discovery (see [248] and [162]]). It is a large polymer, also
naturally produced by endothelial cells (as heparan sulfate). A side effect can be a strong reduction
of platelets count (Heparin Induced Thrombocytopenia, HIT), see [128]. HIT can be sometimes
observed in patients undergoing hemodialysis, during which heparin is supplied to prevent clotting
(after passing through the dialyzer and before being returned to the patient, protamine sulfate is
added, which neutralizes heparin’s action). Platelet Factor 4 contrasts the action of heparin on
platelets.
43Its deficiency leads to degradation of tissues, particularly in the lungs, causing emphysema.
Smoke is believed to inactivate this serpin, thus causing additional damage to lungs.
44PAI2 is detectable only in pregnant women, a fact that may justify the increased risk of
thrombosis during pregnancy.
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We hope that this long list has not been too tedious. We believe it can be
very useful not only for understanding the rest of the paper, but also as a kind of
glossary to move around in the field of blood coagulation. Having introduced all the
characters, let us now see how they play the game.

7.4 The Cell-Based Model for Secondary Hemostasis

During the last decade it became apparent that the Cascade (or Waterfall) model
for secondary hemostasis elaborated during the 1960s and long considered the
correct explanation of the complex blood coagulation process was in need of a
deep revision. In Sect. 7.6 we will illustrate both the model and the reasons for its
final rejection. The model that took its place is known as the Cell-Based Model
and has its roots in many papers (see [56, 67, 106, 160, 161, 206, 216, 219] and
the literature quoted therein). The very synthetic exposition in [22] is interesting
because it contains some details not frequently recalled elsewhere.

According to the cell-based model, the fibrin production process goes through
four steps (initiation, amplification, propagation, termination). Fibrinolysis goes in
parallel and becomes visible over a longer time scale. The necessity of having two
separate time scales comes from the fact that the clot has to be formed soon, but
it has to dissolve slowly. Indeed it has to stay in position long enough to allow
wound healing (at least partial) and it must not break into pieces which would be
dangerously released in the bloodstream.

7.4.1 Secondary Hemostasis

1. Initiation (Fig. 7.3)

Once the tissue factor has become exposed to blood at the injury site, the complex
FVII-TF is readily formed, and the tiny amount of FVIIa which normally circulates
in blood gives rise to the FVIIa-TF complex.45

The latter activates FVII-TF and (at a low rate) FIX, FX. Now we have a small
amount of FIXa, FXa (in turn able to activate more of the complex FVII-TF). In
particular, at this stage, a small quantity of FVa is produced as the result of the action
of FXa on FV. The ability of FXa to activate FV has been proved long ago (in [176],
see also [82]). Though the main activator of FV is thrombin and the activation rate by
FXa is orders of magnitude less, the production of FVa even in very small quantity

45Some FVIIa can reach TF in nonvascular tissues even in the absence of a lesion [279], thus
making FIXa and FXa accidentally available. However, coagulation does not start because it
requires, for instance, the intervention of platelets, which are not available out of the bloodstream.
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Fig. 7.3 Sketch of initiation phase

is absolutely crucial in order to give rise to complex FVa-FXa (prothrombinase),
which transforms FII (prothrombin) to FIIa (thrombin). Thus the initiation stage has
the fundamental task of making some thrombin available. We must not forget that
in the meanwhile platelets keep accumulating at the lesion site.

It is now important to say that Fig. 7.3 tells only part of the story. Indeed two
additional considerations are in order.

ı FXa and thrombin leak from the clotting site and are carried by blood. However,
they are not going to trigger clotting downstream, because FXa is neutralized
by ATIII (more rapidly than thrombin, and the same happens to FIXa) and by
endothelium produced TFPI, while thrombin reaching endothelium combines
with thrombomodulin (TM), losing its procoagulant activity. Moreover, the
thrombin–thrombomodulin complex is an activator of Protein C, and APC
strongly inhibits FVa on the surface of endothelial cells, thus helping to keep
the coagulation process confined close to the initiation site.

ı In addition, the complex FXa-TFPI has an inhibiting action on the complex
FVIIa-TF (see [185]). Therefore we can say that, due to the formation of FXa-
TFPI, and of APC, during this stage a regulatory mechanism is present, somehow
delaying the exit to the next stage.46

46The proteins responsible for this regulatory action have a fundamental role in eventually halting
the clot growth. They are inevitably produced at this initial stage too, but it is known that FVa
inhibition by APC is far less efficient than on the surface of endothelial cells [106, 219]. One can
wonder whether, besides the clotting confining action, the simultaneous slowing down of the initial
process may have a precise aim, for instance letting the platelet plug become thicker.
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Fig. 7.4 Sketch of amplification phase

2. Amplification (Fig. 7.4)

Thrombin produced in the previous stage exerts many actions both at this and at
later stages. We list them as (Thr. n):

• (Thr. 1). It dissociates the complex FVIII-vWF, at the same time activating FVIII,
• (Thr. 2). It activates FV, stimulating platelets to produce more of FV,
• (Thr. 3). It activates FXI.

These actions have important consequences. FXIa is a fast activator of FIX, so
that the amplification stage makes both FIXa and FVIIIa available. Moreover vWF
can promote further platelets aggregation (if stress conditions are favorable). Finally,
platelets become fully activated, releasing the granules content.

3. Propagation (Fig. 7.6)

The coagulation machine is now ready to produce the thrombin burst (during
which 95 % of thrombin is produced [160]). The surface of activated platelets
provides the ideal site for the combination of FVIIIa, FIXa into the complex tenase,
activating FX very rapidly. FXa combines with the available FVa (still on activated
platelets surface) yielding the prothrombinase complex. From now on activation
of prothrombin occurs at a large speed and the processes already described in the
previous stage trigger an enormously effective positive feedback. The onset of the
propagation phase is indeed recognizable by the sudden and marked increase of
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thrombin production rate shown in the sketch in Fig 7.5 (for experimental evidence
of this behavior, see, e.g., [40, 161, 186]).

Besides continuing actions (Thr. 1–3), thrombin performs two more important
tasks:

• (Thr. 4) transition from FI (fibrinogen) to polymer FIa (fibrin),
• (Thr. 5) activation of FXIII.

Fibrinogen polymerization occurs at a high rate. From now on the fibrin
network traps blood constituents and we may say that the clot progression is fibrin
dominated. Fibrin generation is just the first step of the network production, which
results from the aggregation of polymer chains into fibers [79]. The role of FXIIIa is
to consolidate the fibrin network by forming cross links among fibers. Clots lacking
cross links are unstable, as proved by the fact that a nontrivial bleeding disorder is
associated with deficiency of FXIII.

A further remark is about the fact that, while FVa is effectively inactivated by
APC (Activated Protein C) when not included in the prothrombinase complex, it
appears to be protected from this action if combined with FXa. Protection of FVa
from APC exerted by FXa was established in [181, 243].

4. Termination (Fig. 7.7)

As we have said several times, the biological processes of clot formation and dis-
solution are the result of an unbalance between contrasting elements which happen
to be first in one direction and then in the opposite. If starting and accelerating the
growth of a thrombus is important for arresting bleeding, terminating it is absolutely
essential to prevent vessel occlusion. We have seen how thrombin helps in confining
clotting. By means of the very same reaction it actually starts the termination
mechanism:

• (Thr. 6) The thrombin-TM complex activates PC.
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Fig. 7.6 Sketch of propagation phase

APC (with the cofactor PS) inhibits both cofactors FVa and FVIIIa, thus
switching off the production of tenase and of prothrombinase. Surviving FIXa, FXa,
FXIa, and thrombin are inactivated by ATIII (this action is greatly accelerated by
heparin), and TFPI complexes with FXa, inhibiting FVIIa-TF at the same time.

The clot has grown to its maximum size and it is now time to take care of its
gradual dissolution, which, however, needs to be delayed. Once more thrombin has
a leading role:

• (Thr. 7) thrombin activates TAFI, which makes fibrin more resistant to the attack
of plasmin.
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Fig. 7.7 Sketch of termination phase

Fig. 7.8 Sketch of fibrinolysis pattern

7.4.2 Fibrinolysis (Fig. 7.8)

As we said, fibrinolysis goes in parallel to clotting, but it is regulated so that the
fibrin network can develop sufficiently rapidly and that the clot dissolves slowly
and gradually, without delivering dangerous fragments in the bloodstream. Since the
clot is basically impervious to new plasma and all diffusion processes (particularly
of heavy molecules) are considerably slow in it, the fibrinolytic elements have to be
stored within the clot during its growth. We have listed them in Sect. 7.3.
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Plasminogen, synthesized by the liver, is available in circulating blood, so it is
naturally trapped in the clot. We know that it is activated to Plasmin by the serine
proteases tPA and urokinase (and also by Kallikrein and FXIIa). We recall that
plasmin and plasminogen activators have their own serpins, making sure that those
proteases are eliminated once they have performed their task. We have seen that
TAFI, accumulated during clot formation, reduces plasmin action, retarding the pro-
cess. Secretion of additional tPA by the endothelium is stimulated by the clot itself.
At the early stage of fibrinolysis fragments of the fibrin network may recombine.

A product of fibrin degradation is the so-called D-dymer, whose presence in
blood reveals ongoing thrombosis.

7.5 Bleeding Disorders

There are two classes of coagulopathies:

(1) hypocoagulability, generally with bleeding diathesis, i.e., spontaneous
bleeding,

(2) hypercoagulability or thrombophilia, producing thrombosis.

Such phenomena can occur with different levels of intensity and consequently with a
different impact on health. This is largely an open field for mathematical modeling.

We can review bleeding disorders according to their origin. So a natural way of
exposing this material is to follow the same articulation as Sect. 7.3.

7.5.1 Platelet-Related Bleeding Disorders

Since platelets are so complicated there are several types of dysfunctions that may
produce bleeding disorders.

• Thrombocytopenia Literally it means scarcity of thrombocytes (i.e., platelets).
It is diagnosed if the platelet count drops below 1/3 of the minimum (i.e., less
than 50;000=mm3). There are very many possible causes of different gravity.
For instance, the spleen may start storing too many platelets, sequestering them
from the bloodstream, or the immune system may produce antibodies attacking
platelets (Immune Thrombocytopenia), or it can be related to other pathological
conditions. It can also be drug induced. A striking and puzzling example in the
latter class is

– Heparin-Induced Thrombocytopenia (HIT). Thrombotic episodes (also of a
massive character) were observed in patients under anticoagulant treatments
with heparin. This counterintuitive phenomenon has been the object of many
controversial studies. Today it is believed to result from an immune reaction
triggered by heparin, which induces platelets activation and clustering. We
recommend the reading of [128].
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Thrombocytopenia is frequently accompanied by the appearance of bruises on
the skin associated with subcutaneous bleeding (purpura) 47 and some forms of
the disorder are associated with this name:

– Idiopathic 48 Thrombocytopenic Purpura (ITP). It can sometimes be of
immune (rather than unknown) origin (in that case the I in the acronym can
stand for Immune). It can be a very serious illness. Treatments include the
surgical removal of spleen. The interesting paper [39] develops a mathematical
model helping clinicians to decide whether or not the spleen removal can be
advantageous, depending on the measurements of specific parameters.

– Thrombotic Thrombocytopenic Purpura (TTP). This is in a sense the opposite,
since it produces microscopic clots in the microcirculation. It is a rare disorder,
actually only indirectly related to platelets, since it is caused by inhibition, or
dysfunction or deficiency49 of the enzyme ADAMTS13 (see the subsection
on vWF, Sect. 7.3), which results in an excessive interaction between platelets
and the uncleaved large vWF multimers.

• Thrombocytosis is the abnormally high platelet count (say, twice the maximum).
It can be due to excessive production by the bone marrow, or to spleen
dysfunction, or to medical treatments. It predisposes to thrombophilia.

• Platelets receptors dysfunctions. We have seen the crucial importance of the
various platelets receptors both for primary and secondary hemostasis. They are
all rare disorders.

– Glanzmann’s thrombasthenia [94] involves receptors of the Gp-family, reduc-
ing the ability of binding with fibrinogen, vWF, etc.

– Bernard Soulier syndrome (Giant Platelets Syndrome) [25] also relates to
inability of binding to vWF because of defective GpIb receptors. It has an
influence on platelet morphology.

– Scott syndrome is a defect in a delicate mechanism occurring on the membrane
which prevents the formation of complexes tenase and prothrombinase, while
the typical functions in primary hemostasis are not altered.

– Stormorken syndrome, still related to wrong membrane reactions, but with the
opposite consequence of a self-activation of platelets, inducing thrombophilia.

• Granules dysfunctions. Also rare disorders. We just mention

– Gray platelet syndrome consists in ˛-granules deficiency with the consequent
lack of the proteins there synthesized.

47The Latin word for purple. Purpura denotes spots in the range 3–10 mm, smaller spots are called
petechiae, and those more extended are called ecchymoses.
48The Latin equivalent of the Greek derived word idiopathic is sui generis. In this context it means
of no specific origin.
49Congenital deficiency accounts for a small fraction of TTP cases and is known as Upshaw–
Schülman syndrome.
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– Quebec Platelet Disorder: the plasminogen stored in platelets is abnormally
converted to plasmin, destroying proteins in the ˛-granules.

Actually, the list of diseases due to defective platelets is much longer. Besides
[49], a good review is [100].

7.5.2 Disorders Due to Coagulation Factors Deficiency

• von Willebrand Disease (vWD). We have already illustrated the circumstances
of its discovery in the mid-1920s. Many children in the Åland islands were
affected by life-threatening bleeding diathesis (consanguineous mating was an
important factor, revealing the hereditary character of the disease). Both sexes
were affected (girls could die by menorrhagia). Von Willebrand recognized it was
not one of the disorders known at that time. Since vWF is known to be a carrier
of FVIII in blood (as a complex), its deficiency can be accompanied by FVIII
deficiency. A recent study [202] indicates that vWF deficiency is accompanied
by reduced platelets activation. We refer to [20] and once more the basic reviews
[209, 210].

• Hemophilia. In the historical section we have already said much about
hemophilia. There are three types:

– Hemophilia A, namely FVIII deficiency,
– Hemophilia B, or FIX deficiency,
– Hemophilia C, or FXI deficiency,50

justifying the alternative names of anti-hemophilic factors A,B,C for FVIII, FIX,
FXI, respectively. The first two types are ascribable to defective genes in an X
chromosomal branch and are therefore extremely rare in women. Hemophilia C
instead affects both sexes with equal probability and is a less severe form. If
one inspects the role of FXI in the cell-based model, the latter statement may
look very surprising, since FIX is activated by FXIa, suggesting that deficiency
of FXI should prevent the activation of FIX, with effects completely similar
to Hemophilia B. The explanation can be found in the ability of platelets to
synthesize FXI, thus compensating the deficiency of the blood born factor (see
[86, 195]).

• FV Leiden mutation. First identified in the homonymous Dutch city (1994), it
is probably the most frequent cause of thrombophilia. This mutated version of
FV can do the same job of the normal protein, but the corresponding protease
FVa is not attacked by Activated Protein C. Other (rarer) mutations of FV (FV
Cambridge, FV Hong Kong) have similar effects.

50More common among Ashkenazi Jews.
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• More disorders due to factors deficiency or malfunction. They all cause
thrombophilia and are usually rare or very rare. We omit listing them for the
sake of brevity.

7.5.3 Disorders Due to Proteins C, S, Z or to Vitamin K
Deficiency

• Protein C deficiency.
• Protein S deficiency.
• Protein Z deficiency.

Due to the anticoagulant actions of PC, PS, PZ deficiency in each of these proteins
predisposes to thrombophilia. They are rare. We quote [57].

• Vitamin K deficiency. Induced by warfarin treatment or (rarely) occurring
naturally. We have already discussed its consequences.

We omit mentioning disorders linked to other serpins deficiencies and to fibrinolysis
factors deficiencies, since they are very rare.

7.5.4 Deep Vein (or Venous) Thrombosis (DVT)

Blood stasis or significantly reduced circulation in limbs is known to be responsible
of clot formation in deep veins, particularly in the large veins in the legs (femoral,
popliteal, saphenous, etc.).51 It can also affect deep veins of the pelvis and more
rarely in the arms (succlavian or axillary veins).52 It causes swelling and it may
cause pulmonary embolism. For that reason it has to be treated as soon as possible
with strong anticoagulants.53 A typical consequence is a permanent damage of
vein valves.54 Altered circulation can produce conditions favorable to clotting
particularly in the valves pocket.

Clot formation in the absence of lesions and in an environment of reduced
stress is difficult to explain on the basis of the cell-based model, since the process
has a clear intrinsic origin. It is out of question that fibrin production requires

51Because immobilization is a frequent cause, DVT is also called the economy class syndrome,
since many cases have been reported in passengers after long flights.
52In that case it is known as Paget–Schrötter disease.
53Not with fibrinolytic proteins (like tPA or UPA), because they could fragment rather than
gradually dissolve the clot. Fibrinolytic therapies are instead used to attack arterial thrombosis
in the heart or the brain.
54Major veins are provided with valves preventing flux inversion, thus helping circulation in the
presence of reduced pressure gradients.
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the prothrombinase complex, thus the activation of both FV and FX. Rather than
appealing to the contact activation pathway, involving FXII (see next section),
the modern view is to identify TF delivery as a triggering cause. An interesting
discussion about DVT in different veins can be found in [1], where some hypotheses
are presented for the TF source (see also [44]). It can be secreted by the endothelium
(particularly the endothelial cells lining the valves) into the blood under abnormal
condition, or it can be attributed to leucocytes (which can even happen to remain
trapped in the valves). Hypoxia55 is also an element to be considered as a possible
stimulus for TF release. In addition we know that platelets (that can suffer hypoxia
and can also be trapped in the valves) are able to produce TF. To these considerations
we may add that RBCs severe hypoxia (worsen by RBCs aggregation) could
lead to the release of ADP, activating platelets. DVT can also be induced by
other pathological conditions. For instance, it was noted long ago [235] that DVT
occurrence was more frequent in patients with tumors. Today this is attributed to an
overexpression of TF [205].56

7.5.5 Heart Arrhythmia and Thromboembolism

In the family of disorders related with altered blood flow we must include the
possible formation of clots caused by atrial fibrillation.57 To prevent the risk of
strokes, patients suffering from atrial fibrillation are frequently given an anticoagu-
lant therapy.

7.5.6 Coagulation on Artificial Surfaces

This is a very important subject, because the implant of artificial bodies (heart
valves, stents, joints, etc.) is likely to be followed by blood coagulation. Clotting can
be caused by high shear stress (also possibly causing hemolysis). Some materials
have affinity to fibrinogen, which can produce platelet aggregation on the body
(similarly to vWF in primary hemostasis), and/or trigger immune reaction, by
aggregating leukocytes.58 Cell-born TF does the rest. Hence the particular attention

55Reduced oxygen concentration is more marked in valves, since, differently from veins and other
blood vessel, they do not possess their own vessels (vasa vasorum).
56This paper is an extensive study on the role of TF and of thrombin in promoting angiogenesis
and contains a large bibliography. Excessive TF production may be accompanied by upregulated
expression of VEGF (the angiogenic factor) and downregulated expression of thrombospondin 1
(see Sect. 7.3).
57Clots are mostly originated in the left atrium and more precisely in an area called left atrial
appendage.
58See, e.g., http://courses.washington.edu/overney/NME498_Material/NME498_Lectures/
\Reading_on_Adsorption_Kinetics.pdf.

http://courses.washington.edu/overney/NME498_Material/NME498_Lectures/Reading_on_Adsorption_Kinetics.pdf
http://courses.washington.edu/overney/NME498_Material/NME498_Lectures/Reading_on_Adsorption_Kinetics.pdf
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in designing anticoagulant coatings. Traditionally this kind of coagulation used to
be attributed to self-activation of FXII on artificial surfaces (a fact established by
the discoverer of FXII, Ratnoff [201]), initiating the so-called intrinsic pathway
(see next section)). This can be a concomitant process, but, as we shall see, the
intervention of TF is anyway required.

7.5.7 Disseminated Intravascular Coagulation

This disorder consists in a deep dysregulation of the entire coagulation-fibrinolysis
system, which may be caused by other pathologies (sepsis, tumors, etc.). It
occurs when abnormal, critical conditions stimulate TF secretion in blood, e.g., by
leukocytes, resulting in the production of circulating thrombin. As a consequence
microthrombi are diffusely generated, sequestering platelets from blood. Therefore,
paradoxically, hypocoagulability sets in, with resultant bleeding in various parts of
the body. Blood perfusion of vital organs is altered which may induce failure.

7.6 The 3-Pathway Cascade Model

Figure 7.9 shows a typical sketch for the 3-pathway (or Cascade or Waterfall)
model, proposed independently in 1964 by Davie and Ratnoff [59] and by Macfar-
lane [158]. For more than four decades it has been theİ coagulation model, though
it had eventually to be replaced because of its inability to explain hemophilia A
(see [206]). Let us comment this important aspect. The extrinsic origin starts with
the formation of the FVIIa-TF complex, exactly like in the cell-based model. The
intrinsic origin requires the activation of the Hageman factor FXII.

The original scheme was conceived so to provide two independent ways of
leading to the FVa-FXa complex.

The extrinsic pathway leads directly from the formation of complex FVIIa-TF
to the activation of FX. Then, entering the common pathway, the subsequent pro-
duction of prothrombinase takes place via the activation of FV and its complexing
with FXa and Ca++. Thus the extrinsic pathway is sufficient to eventually produce
thrombin and fibrin.

In the intrinsic pathway a small amount of FXII gets activated in contact with
negatively charged surfaces, like collagen or the membrane of activated platelets
(but also, e.g., of foreign bacteria). This phenomenon is mediated by HMWK and
induces the Prekallikrein to Kallikrein conversion. Kallikrein is now a fast activator
of FXII, so that a positive feedback sets in. FXIIa activates FXI, and FXIa activates
FIX. At this point the former scheme by Davie and Ratnoff (1964) was as follows59

59The scheme is inspired to an original document held by Ratnoffs heirs (see [208]).



510 T. Bodnár et al.

Fig. 7.9 Scheme of the 3-pathway cascade model. Extrinsic pathway is also called TF-pathway.
An alternative name for the intrinsic pathway is contact activation pathway
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Ca++

Ca++

FIaFI

FIIaFII

FVa

FXaFX
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FXI FXIa

FIXa

FXIIaFXII
?

Fig. 7.10 Sketch of the waterfall model of Davie and Ratnoff

(it includes the question mark concerning the activation of FXII) (Fig. 7.10). From
the appearance of FIXa onward the sequence in the sketch above is rather different
from the one we know (in which FVIII is activated by thrombin, FXa is a product of
the tenase complex, and thrombin is generated by prothrombinase) and in this form
it is autonomous from the extrinsic pathway.

The sketch of Fig. 7.9 has instead the correct chemical correlations, letting
products from extrinsic pathway (thrombin, FXa) enter the intrinsic pathway, which
becomes so to speak subsidiary. The purely intrinsicİ pathway is instead based on
the assumption that FVIII is directly activated by FIXa (as in the original scheme),
which makes it really independent of the parallel extrinsic pathway.
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Two main experimental observations clash with the former 3-pathway cascade
model:

• The TF-pathway bypasses FVIII, but is nevertheless sufficient to produce
clotting,

• FXII deficiency, as we have seen in the previous section, produces no significant
bleeding disorder.

So the troubles about the 3-pathway cascade model come from the position
occupied by FVIII, whose deficiency we know to be associated with Hemophilia
A. If the TF-pathway alone would be enough for clotting, FVIII deficiency would
be inessential. Moreover, FXII deficiency would exclude FVIII from the process,
causing the same effects as FVIII deficiency. None of these facts are true, hence the
necessity of a model, like the cell-based model, which can produce the clot without
FXII and recognizes the crucial role of FVIII.

Nevertheless, it would be wrong to dismiss the role of FXII altogether. Its ability
of becoming activated on artificial surfaces can enhance clotting on implanted
bodies. A paper recently devoted to FXII and its possible alternative functions
is [212].

7.7 Mathematical Description of Coagulation Models

Mathematical models of blood coagulation are at the same time the main tools as
well as outputs to study the coagulation processes. Solutions of these models are
used for comparison with experimental observations to test our understanding of the
underlying processes. The wide range of physical phenomena to be considered and
the complexity of their interactions are responsible for a high number of different
models being developed for specific use.

There is a large number of coagulation models that can be applied for various
specific purposes [266]. They differ in many aspects like physical features to be
considered, scales of the phenomena, or the biochemistry model to be coupled to
biomechanics. Important differences are also in the mathematical formulation of
the coagulation models and in the numerical methods to solve them.

In order to give a brief overview of some of the existing mathematical models
of blood coagulation, we will classify the models in two ways. First, the models
will be grouped together according to the (spatial) scales they are able to describe
and resolve. Second, the models can be classified according to the physical features
they are including. These two classification schemes are not independent, as some
physical phenomena can only be described at appropriate scales. Nevertheless, these
classification schemes will be useful to demonstrate some of the main trends in the
past and current evolution of mathematical models of blood coagulation.
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7.7.1 Scale-Based Classification of Coagulation Models

Blood coagulation is a highly complex process that involves various mechanisms
acting at a wide range of spatial scales. It is hardly possible to include all of them
in one single model. The main problem is not just in the number of processes to
be considered, but also in the need of using different scale-specific mathematical
formulations and numerical solvers. This led to the development of a whole range
of models, each one of them treating specific coagulation problems from the point of
view of a specific spatial scale. This approach is reflected in the hereinafter adopted
models classification.

1. Sub-microscale Models

By the sub-microscale (or nanoscale) in the coagulation models we understand the
sub-cellular scale with characteristic dimensions up to the order of 0:1 �m. At this
scale the internal structure of various proteins and macromolecules plays a major
role. The interaction between them, their activity, and sensitivity with respect to
external chemical, mechanical, or electrical stimuli has to be taken into account.
The information about the three-dimensional structure of proteins and the functional
activity of molecules can be gained using a wide range of computational methods
and tools commonly associated under the label of Structural Bioinformatics. This
rather new scientific area is quite rapidly developing together with the increasing
power of modern computers. This sub-microscale approach is somehow at the edge
of the scope of the present survey and thus only a very brief note with few references
is given here to point out where the blood coagulation models come from and where
the most detailed models are able to go in terms of prediction accuracy.

For a detailed understanding of the molecular mechanism of protein functions
it is essential to know their 3D structure. Although some experimental tools are
available,60 an important insight can be gained using computational simulations.
The underlying mathematical models are mainly based on some elementary physical
principles including Newtonian laws of motion, classical electrostatics, or thermo-
dynamics.

There are now several mathematical methods used for modeling at the sub-
microscale biochemistry level. Starting from the atomistic scale, the most detailed
information can be derived from the molecular dynamics models.

Molecular Dynamics (MD). These models were developed in the late 1950s [2],
used later, e.g., in inorganic chemistry [198] and quickly entering in biochemical
applications [166]. They are based on solving the Newtonian equations of motion
for point masses (particles, i.e., atoms, molecules, etc.), following the Newton’s
second law:

mi

d2r i

dt2
D f i i D 1; : : : ; N (7.1)

60e.g., Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography.
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The set of N particles is described by their three-dimensional position vectors r i .
The acceleration of i -th particle is then driven by the corresponding force f i . This
is a net force summarizing the effects of inter- and intra- molecular forces acting
on each particle. These forces are usually expressed in the form of potentials Vi
depending on the positions of all particles in the system:

f i D �rVi .r1; r2; : : : ; rN / (7.2)

For each particle the potential Vi accounts for all important non-bonded (e.g.,
external, the Lennard–Jones or the Coulomb potential) and bonded (e.g., related
to stretching, angular or torsion intra-molecular deformations) interactions. The
numerical evaluations of these potentials and of the corresponding forces are the
most time-consuming part of the whole numerical solution procedure. Thus the
potentials should be kept as simple as possible, but capturing all the major physical
characteristics of interactions. Using these methods it is possible to study the
spatial structure, kinematic behavior (e.g., folding) as well as some other functions
(or dysfunctions) of enzymes [126, 141]. This kind of information concerning
blood coagulation factors is of key importance in the mathematical modeling and
experimental investigation of the coagulation process [238, 239].

MD models are very detailed, capable of highly accurate predictions, but com-
putationally extremely expensive. So far they can only be applied to spatially very
small systems (typically N D 103–108 particles, i.e., to regions with dimensions
of nano-meters) to study their short-term (typically 100 ps–100 ns) evolution.61 To
avoid these severe spatio-temporal limits a number of simplified techniques have
been developed and used so far. The family of Coarse-Grained MD models is based
on the idea of creating larger pseudo-particles (e.g., whole molecules, their parts, or
ensembles) with defined mean properties. By solving the equations of motion for
these coarse-grained pseudo-particles, a significant amount of computational effort
can be saved at the price of losing some micro-scale details in the simulations [247].

Besides the coarse-grained models, many further levels of simplifications are
possible on the way from the most detailed fully deterministic atomic Molecular
Dynamics simulations up to stochastic simulations of bulk properties. Among these
intermediate simplified and hybrid models we mention the following ones:

Steered Molecular Dynamics (SMD). One of the techniques used to overcome the
simulation time limitations relies on applying an external force to the studied
model system and analyzing its response [118, 229]. This method was used to
study some elementary elasticity properties of the clot in [147].

Poisson–Boltzmann (PB) model . A completely different approach is based on the
(continuous) theory of electrostatic interactions [61, 107]. The key point in this
method is to solve a Poisson type equation for electrostatic potential and use the
result to reconstruct the spatial structure of macromolecules.

61See [237] for historical evolution and future trends in MD simulations complexity with respect
to computational power growth.
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Langevin Dynamics (LD). The molecules of the solvent (in which the molecules or
proteins of interest are dissolved) are approximated using additional force terms
expressing drag and random collisions associated with the thermal motions of
the solvent molecules [19, 81]. The modified molecular dynamics equation can
now be written as

mi

d2r i

dt2
D f i � 
 dr i

dt
CR.t/ i D 1; : : : ; Np (7.3)

where the first additional term reflects the friction force while the second, time-
dependent term R.t/, approximates the stochastic collision force. The exclusion
of the solvent molecules from the simulated particle set reduces the number of
numerical degrees of freedom of the problem and saves a significant part of the
computational time.

Brownian Dynamics (BD). This method can be seen as a viscous limit of the
Langevin Dynamics. The viscosity is assumed to be large and the inertial effects
are suppressed [85].

Normal Mode Analysis (NMA). This method is based on the harmonic analysis
of the system (e.g., protein) oscillations about its local minimum energy state.
Based on experimental observations it is assumed that only the slowest harmonic
modes of protein oscillations have some functional consequences. In the original
implementation of NMA, the force field is required as in MD simulations.
However, instead of solving the Newtonian equations of motion, an harmonic
analysis is performed to find the slow, most important oscillation modes. For
further details on this method, see, e.g., [84,145,156,218]. Some simplifications
were introduced using Coarse Grained NMA [18], Elastic Network Model [102],
or Essential Dynamics [5, 236].

2. Microscale Models

In this case the coagulation models consider microscale objects, i.e., cellular scale
matter with dimensions of the order of 1–10�m. The need for modeling blood flow
and coagulation at microscale has at least two different motivations.

Micromechanics of blood clotting. The importance of the role of RBCs, platelets,
and other microparticles in the blood coagulation process can be better understood
and captured by models that are actually resolving all these objects. The motion,
deformation, aggregation, and adhesion dynamics as well as other microscopic
behavior of blood cells can only be accurately described in this scale. So the first
motivation is to gain detailed and high-resolution simulation results.

Blood coagulation in microvessels. The blood flow and thus also blood coagula-
tion in microvessels, which are vessels with diameter comparable with the size of
RBCs, cannot be accurately described by any macroscopic (continuous or statistical)
model. The continuum hypothesis is no more valid at this scale and thus the use of
models explicitly taking into account the blood cells is inevitable [70]. The second
motivation is thus the necessity of adjusting the scale of the resolved object to the
spatial size of the domain of interest.
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The microscale models are typically built on Lagrangian tracking of red blood
cells, platelets, and other cellular matter within the blood flow. As such, they are
often closely related to blood rheology and cellular mechanics. Many of these
models are used as microscale components of more general hybrid multiscale
models that include also components from macroscopic continuum models. Here
we only focus on some of the methods often used at the microscopic scale. Although
the models are in principle very similar to each other, at least three major groups can
be distinguished among them.

Euler–Lagrangian Particle Tracking methods (ELPT). Within this subclass of
microparticle tracking methods we classify those where Lagrangian methods
are used for tracing particles, while an independent Eulerian description is used
for the fluid flow field. The particles are typically only coupled to the fluid flow
by a one-way coupling scheme, i.e., particle trajectories depend on the fluid
velocity field, which however is not affected by the presence and motion of the
particles.

The fluid field is described by the Navier–Stokes like equations for incompress-
ible, but possibly non-Newtonian fluid:

r � u D 0 (7.4)

�

�
@u
@t

C u � ru
�

D �rp C divT (7.5)

The stress tensor T is given by an appropriate rheological constitutive relation.
The fluid velocity u.x; t/ and pressure p.x; t/ are first computed (independently
of particles’ motion) and further used to evaluate the forces acting on each particle
that follows the trajectory being governed by the Newtonian second law of motion:

mp

dv

dt
.x0; t/ D F D C F P C F G (7.6)

This means that the particle at position x0 in time t having the velocity v.x0; t/
and mass mp accelerates due to the action of the drag force F D , pressure gradient
force F P , and gravity force F G . These forces can be expressed in terms of particle
parameters and actual fluid velocity field. For spherical particles with diameter dp
and density �p the drag force can be expressed as

F D D 1

8
��pd

2
pCD.u.x

0; t/ � v.x0; t//ju.x0; t/ � v.x0; t/j (7.7)

Here the fluid velocity at the position x0 is denoted by u.x0; t/ while v.x0; t/ stands
for the velocity of the particle, as mentioned above. The drag coefficientC

D
depends
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on the local Reynolds number Rep of the relative motion of the particle as:

CD D 24

Rep

�
1C 0:15Re0:687p ;

�
where Rep D �ju � vjdp

�
(7.8)

Using the local pressure gradient rp.x0; t/ the corresponding force can be com-
puted as

F P .x0; t/ D �1
6
�d3prp.x0; t/ (7.9)

In a similar way the gravity force (due to gravity acceleration g) acting on a particle
with density �p in a fluid with density � can be computed according to

F G.x0; t/ D �1
6
�d3p.� � �p/g (7.10)

Based on these forces and corresponding particle velocity v.x0; t/, their positions
can be updated from

dx0

dt
D v.x0; t/ : (7.11)

A simple implementation of this method was used, e.g., in [21]. A particle transport
and deposition study for different variants of the carotid artery bifurcation was
presented in [115]. For blood coagulation and atherosclerosis trajectories of par-
ticles and their near-wall residence times this method gives important results. These
quantities were simulated using the above described approach, e.g., in [154, 155] or
[132]. Slightly different modeling assumptions, based on Stokes background flow
(see [165]), have been, used e.g., in [270] or [178].

Immersed Boundary methods (IB). This is probably the most commonly used
method in biological multiphase microfluid mechanics. Similarly to the ELPT
methods the basic idea is to solve the fluid phase (Eulerian) equations in parallel
with the solid phase (Lagrangian) equations and perform a two-way coupling of
these two phases via an extra solid–liquid (fluid–structure) force(s). For blood
flows, the generic IB algorithm starts from the classical Navier–Stokes equations
describing the flow of a viscous incompressible Newtonian62 fluid.

r � u D 0 (7.12)

�

�
@u
@t

C u � ru
�

D �rp C ��u C f : (7.13)

62This can easily be applied to non-Newtonian fluids, if necessary. However, for blood flows
we usually assume the fluid phase being the blood plasma which is a Newtonian fluid under
physiological conditions.
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As usual � denotes the (constant, in this case) fluid density, u.x; t/ is the fluid
velocity depending on spatial coordinate x and time t , p is the pressure and
� stands for the dynamical viscosity of the fluid. The solid-to-fluid coupling
force f .x; t/ is expressed using the structural force F .x0; t/ assigned to the
solid phase point x0 and interpolated to the fluid domain using a Dirac function63

ı.x � x0/ as

f .x; t/ D
Z
�S

F .x0; t/ ı.x � x0/dx0: (7.14)

The integration over �S denotes the domain occupied by the solid phase. This
domain can either be a volume or just a membrane represented by fictitious
particles connected by elastic links. Important is the (numerical implementation
of) Dirac function that allows the interpolation of the force from the solid phase
(moving) grid to the fluid phase (fixed) grid. The key point and most tricky part
in this method is thus the appropriate parametrization of the structure force64

F .x0; t/.

In the inverse direction, i.e., for the fluid-to-solid coupling the link is established
by assuming that the solid phase velocity v.x0; t/ can be interpolated from the
background fluid velocity field u.x; t/

v.x0; t/ D
Z
�F

u.x; t/ ı.x � x0/dx: (7.15)

The integral over the whole fluid domain �F is restricted by the Dirac function
in order to take into account only the fluid velocity in the close proximity of the
material point x0. The solid phase particles positions x0 are then simply updated
using the velocity v.x0; t/

dx0

dt
.t/ D v.x0; t/ : (7.16)

There exist numerous variants and different implementations of this basic
method. The Immersed Finite Element Method (IFEM) was used in [150, 276] to
model a wide range of biological systems at various scales. A lattice Boltzmann
method implementation of the IB method was used, e.g., in [54, 258, 277].

In the context of blood microflows and coagulation, the IB method was used,
e.g., in [190, 191] to simulate leukocytes rolling and adhesion. The erythrocytes
aggregation and deformation have been studied using IFEM method in [148, 149].
Platelets interactions were studied, e.g., in [192]. The lattice Boltzmann version
of IB method was recently used to simulate flexible fiber suspensions in [257] or

63approximated numerically in the simulations.
64See, e.g., [192] for platelet simulations.
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to investigate platelet activation and blood damage in [259]. Platelets were also
investigated using an IB model in [215], where different versions of immersed
boundary representations of platelets are tested or as a part of a complex multiscale
model in [78]. Aggregation of RBCs under shear flow was studied using IB in [268]
or [16].

Discrete-Particle Methods (DPM). This subclass of Lagrangian tracking-based
methods is characterized by using both real and fictitious particles to describe
the whole fluid mechanics problem including the fluid, the immersed structure,
or domain boundaries. In these methods the mesh generation is unnecessary
for typical Eulerian fluid description. The motion of continuum is reconstructed
from the assembly behavior of discretized particles carrying the information
about physical quantities such as position, velocity, pressure, and density.
Many different implementations of DPM are used for specific applications
[37, 66, 135, 269]. Only few examples will be mentioned here to demonstrate
the basic modeling principles and possible biomedical applications with special
focus on blood coagulation.

(a) Dissipative Particle Dynamics (DPD). In this method the dissipative particles
represent mesoscopic portions (e.g., clusters of molecules) of a real fluid [108].
These fictitious coarse-grained particles interact with the surrounding particles
through elementary pair-wise forces. The particles motion is governed by the
Newton’s second law. For a given set of N particles having mass mi , positions
r i and velocity vi , this can be written as:

dr i

dt
D vi i D 1; : : : ; N (7.17)

mi

dvi

dt
D

NX
jD1;j¤i

�
F C
ij C F D

ij C F R
ij

�C F E
i : (7.18)

The three main interaction forces applied in DPD are the conservative force
F C
ij , the dissipative force F D

ij , and the random force F R
ij . The external force

F E
i represents, e.g., the contributions of the pressure gradient or gravity forces.

Let’s denote by r ij D .r i � rj / the vector connecting the particle j with the
particle i , rij D .r ij � r ij /1=2 being the magnitude of this vector and Or ij D r ij =rij
the corresponding unit vector. Similarly vij D .vi�vj / denotes the relative velocity
of particles i and j . The forces are assumed to act only within a spherical cut-off65

region with the characteristic radius rc .

65In a similar way as in Smoothed Particle Hydrodynamics (SPH) [146,175] where the interpolation
kernel is usually truncated to have a compact support. The SPH method differs significantly from
many other particle methods because the equations of motion for the fictitious particles in SPH are
derived directly from the partial differential equations of fluid mechanics by integration using an
interpolation kernel [66].
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Conservative force. This is the repulsive potential force acting between particles
i and j .

F C
ij .rij / D

na �1 � rij
rc

�
Or ij rij � rc

0 rij > rc

(7.19)

Here a denotes the repulsive force coefficient corresponding to the maximum of
this force at distance rij D rc .

Dissipative force. Represents the friction force approximated by

F D
ij .rij / D �
 wD.rij / . Or ij � vij / Or ij (7.20)

where 
 is the friction coefficient and wD stands for the dissipative force
amplitude weight function

wD .rij / D
n�1 � rij

rc

�2k
rij � rc

0 rij > rc

(7.21)

The exponentk D 1=2 is used in the standard DPD method, however other values
are possible (e.g., k D 0:25 see [222]) to modify the diffusivity of the method.

Random force. Based on the Brownian motion of particles, the random forces can
be expressed as

F R
ij .rij / D � wR.rij / �ij dt

�1=2 Or ij ; (7.22)

where �ij is a random variable with normal distribution, zero mean, and unit
variance satisfying the symmetry �ij D �j i . The random force coefficient is
linked to friction coefficient 
 and absolute temperature T via the Boltzmann
constant kB by the relation � D p

2
kBT . The random force weight function is
in this case given by

wR.rij / D
n�1 � rij

rc

�k
rij � rc

0 rij > rc

(7.23)

The random and dissipative forces form must satisfy the fluctuation–dissipation
theorem so that the DPD model preserves the equilibrium temperature. This leads
to the condition wD D w2

R
which is satisfied in the above case. Parametrization for

external forces F E
i as well as for various additional structural (bonding, torsion,

adhesion, etc.) forces can be found in specialized literature.
The DPD method has been successfully used for simulations of blood coagula-

tion related phenomena. For details on the implementation of the DPD model of
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thrombosis, see, e.g., [75,233]. The influence of RBCs on platelets aggregation was
studied using DPD in [193] or more recently in [222].

(b) Fluid Particle Model (FPM). This method can be seen as an extension of the DPD
method, i.e., the interactions in the FPM are modeled by forces of a finite range.
In comparison with the DPD method the FPM allows the fluid particles to rotate
in space and also the interaction range for FPM is usually shorter due to a more
realistic interaction forcing model [65]. Some information about the theoretical
background of this method can be found, e.g., in [184]. The blood coagulation
related applications of this method can be found, e.g., in [36] simulating fibrin
aggregation and blood flow in capillaries. The RBCs aggregation in capillary
vessels was studied using FPM e.g., in [65].

(c) Moving Particle Semi-implicit (MPS) method . This method has been introduced
in [135]. Its formulation is based on the Lagrangian form of the Navier–Stokes
equations for a viscous incompressible fluid

D�

Dt
D 0 (7.24)

�
Du
Dt

D �rp C ��u C f : (7.25)

External forces (including inter- and intra-cellular bonding) are summed up in
f . The spatial gradients and Laplacians of quantities in MPS formalism are
approximated in a specific way. Let’s consider a scalar quantity � assigned to a
particle with index i . The gradient of this quantity is approximated by66:

r�i D dim

n0

NX
jD1;j¤i

�j � �min

rij
Or ijw.rij / (7.26)

where dim is the spatial dimension of the considered model, i.e., dim D 2; 3 in
practical simulations. The initial (reference) particle number density is denoted
by n0. The �min stands for the local discrete minimum of the quantity � among
the particles surrounding the one with index i (within the radius of influence
rc). The kernel (weighting) function w.rij / is defined by the following formula

w.rij / D
n� rc

rij
� 1

�
rij � rc

0 rij > rc

(7.27)

with rc being the cut-off distance (radius of influence) assuring the compact sup-
port for particle interaction forces. Similarly, the Laplacian can be expressed as

66We use the same notation of particles position vectors as in the description of the DPD method.
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��i D 2 dim

�in0

NX
jD1;j¤i

.�j � �i/w.rij / (7.28)

The coefficient �i is expressing the increase in the statistical diffusion for the
distribution of physical quantities. It is calculated from:

�i D
PN

jD1;j¤i .�j � �i/
2 w.rij /PN

jD1;j¤iw.rij /
(7.29)

These approximations are applied to velocity and pressure gradients and
to Laplacians in a time-advancing algorithm with pressure-correction semi-
implicit coupling [182]. For a more detailed description of the computational
algorithm, see, e.g., [123].

From the blood flow and coagulation simulation point of view, the crucial part
of the model is the realistic representation of platelets and RBCs. To simulate these
blood cells, a specific form of the inter-particle external force f can be adopted

f D f el C f ad C f ag„ ƒ‚ …
platelets

Cf s C f b„ ƒ‚ …
RBCs

(7.30)

to represent the platelets elasticity force f el, adhesion bonding force f ad, aggrega-
tion force f ag and similarly for the RBCs elastic membrane stretching and bending
forces f s and f b .

For example, using the simple mechanical spring model, the platelets elasticity
force67 is simulated using the linear spring model defined by

f el
ij D kel

�
rij � rel

ij

�
Or ij (7.31)

where kel is the adhesion elastic (spring) force coefficient and rel
ij is the natural length

of the spring connecting particles i and j .
A similar model is used to evaluate the platelet-to-wall adhesion force, but with

an important limitation. The adhesion of a platelet to an injured wall is only activated
when a platelet comes within the distance rad from the injured wall.

f ad
ij D

nkad

�
rij � rad

ij

�
Or ij rij � rad

0 rij > rad

(7.32)

67The net force acting on the particle i is f i D P
i¤j f ij .
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where again kad is the adhesion elastic (spring) force coefficient and rad
ij is the natural

length of the spring.
Further details on the platelets and RBCs models within the MPS method

framework can be found, e.g., in [123] or [124], where the mechanical interaction
between a thrombus and red blood cells was studied. A more detailed MPS-based
model of platelets adhesion dynamics under shear flow taking into account various
receptors bonding forces was recently published in [125]. A specific problem of
malaria infected RBCs flow in capillaries was studied using an MPS model in [116]
or [134].

Cellular Potts Model (CPM). The CPM is a cell-level lattice model based on
energy-minimization68 following the ideas of [95]. The effective energy E of
the system sums up the true energies, like the cell-to-cell adhesion associated
energy, with other energy-like contributions, e.g., the effects of blood flow on
cell or virtual energies arising from dimensions constraints and chemotaxis (see,
e.g., [262, 263]).

E D EAdhesion C EFlow C EDim C EChem (7.33)

From an effective energy the resulting cell motion can be calculated using
algorithms based on the Monte–Carlo Boltzmann acceptance rule. The CPM uses
integer indices defined on a lattice to describe cells. The value of the index (kind
of marker) at a specific lattice site (in the position .i; j; k/ within the cartesian
lattice) is equal toC if the site lies in the cellC . The sets of lattice sites having the
same index represent cells. The cell is thus treated as a set of discrete sub-cells
that can rearrange to form a cell motion or shape changes.

The CPM is capable to predict, e.g., microscopic cell motion, aggregation and
interaction of cells, their adhesion, differentiation or division. The CPM was used in
[45–47] as a component of a multiscale model in three-dimensional morphogenesis
simulations. Thrombus development was studied using CPM in [262, 263].

3. Mesoscale Models

The mesoscale in this context refers to models at the sub-continuum scale. They
are classified in this group mainly due to their common modeling principles based
on statistical methods, rather than to their spatial resolution. The particulate matter
in blood is treated in ensembles, described, e.g., using particle probability densities
and their spatial integrals. This statistical approach requires spatial control volumes
being much larger than typical particle sizes or inter-particular distances. The
mesoscale methods typically use information about microscopic particle interac-
tions to provide information about macroscopic quantities.

Lattice Boltzmann Method (LBM). This method is often used as a discretization
tool for numerical simulations of Navier–Stokes like models in fluid mechanics.

68It uses similar principles as the Monte Carlo method in sub-microscale models.
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LBM simulates the flow using the evolution of fictitious microscopic particles
living on a set of discrete lattice nodes. Their dynamics depend only on
interactions between particles in neighboring lattice points. The LBM tracks
particle distribution functions at points of a lattice, instead of tracking discrete
particles. The LBM can also be seen as a discrete approximate solution method
for a specific form of the continuous Boltzmann equation known in statistical
mechanics [54].

The fictitious particles in LBM only live in lattice nodes, thus only discrete
particle velocity (shift) vectors are allowed. These discrete velocities are denoted by
ei . The spatio-temporal distribution of the particles having velocity ei is described
by a scalar function fi .x; t/. The evolution in time of these particle distribution
functions is governed by:

fi .x C ıt ei ; t C ıt/ D fi .x; t/� 1



	
fi .x; t/ � f

eq
i .�;u/



(7.34)

Here ıt is the time-step,  is the relaxation time. The equilibrium distribution
f
eq
i .�;u/ depends on the macroscopic fluid velocity u, on the density �, and of

course on the structure of the computational lattice, resp. on the discrete velocities
ei , see, e.g., [54, 258]. The macroscopic density �.x; t/ and the velocity u.x; t/ at
point x and time t can be evaluated using the following simple relations:

�.x; t/ D
X
i

f .x; ei ; t/ (7.35)

�.x; t/u.x; t/ D
X
i

f .x; ei ; t/ei (7.36)

A more detailed description of the LBM method can be found, e.g., in [197]. In most
cases the LBM is only used for (blood) flow simulations. Some applications also
include coagulation related phenomena. For example, the platelet motion induced
by RBCs was simulated in [54]. A study of fully resolved blood flow (including
blood cells representation with IB method) through aneurysmal vessels using LBM
was shown in [180]. Red blood cell aggregation and dissociation in shear flows is
simulated by the lattice Boltzmann method in [278]. An interesting extension of
LBM for deformable particles and flexible fibers was used in [257, 258]. A simple
LBM-based model of thrombosis in intracranial aneurysms was used in [187]. A
clotting initiation mechanism based on particle residence time was adopted in [101]
and [27]. A blood damage model using the LBM approach was developed in [172].

Statistical methods for simulations in (bio)chemistry are much less common. An
important contribution in this field was provided in [89, 90] where a model based
on the exact stochastic simulation of coupled chemical reactions was introduced for
well-stirred chemical systems.69 A very comprehensive review of these stochastic

69See [93] for the relation between this stochastic approach and continuous deterministic reaction
rate equations.
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techniques can be found in [91] with further details in [92]. This approach forms a
starting point, e.g., for the class of Kinetic Monte Carlo (KMC) methods. Variants of
this technique were used, e.g., in [151] to simulate the blood coagulation initiation
or in [140] to study the aggregation kinetics of platelets.

A mechanical model of fibrin polymerization based on probabilistic approach
was used in [174]. It focuses on the polymerization processes under shear flow
and thus it is assumed that platelets have already been activated and have released
thrombin into the blood plasma, initiating fibrinogen polymerization into fibrin
fibers. The density of connected fibrin links n.x; t/ is described by the following
transport equation

@n

@t
C vri � rn D KCT f .r/ � .1 � n/ �KCP � n (7.37)

The left-hand side of Eq. (7.37) describes an advection process governed by a
relative (slip-like) velocity vri at the interface between fixed and moving parts of
the polymeric network (resp. i.e., clot and blood). The K and K are the chemical
reaction rates for cross-link formation and dissociation, respectively, and CT , CP
are the concentrations of thrombin and plasmin. The f .r/ is a probability function
(based on random walk theory) that describes the probability of finding a fibrin fiber
link at distance r . More details can be found in [174], mentioning [127] as a basic
reference.

Another important class of methods fitting into the mesoscale group is based
on the Population Balance Equation (PBE). It is a general mathematical concept
used to describe various aggregation and disaggregation processes in physics and
technology. A simple population balance model of coagulation can be described
by an integro-differential equation70 for particle size distribution [136]. The density
s.v; t/ of particles of size71 v at time t changes according to:

@s.v; t/

@t
D 1

2

Z v

0

K.v � w;w/s.v � w; t/s.w; t/dw (7.38)

� s.v; t/

Z 1

0

K.v;w/s.w; t/dw

The first integral on the right-hand side follows the idea that a particle of size v can
only be created by aggregation during collision of particles with sizes .v � w/ and
w. The second integral represents the situation when a particle of size v aggregates
with another particle and thus it increases its size and has to be withdrawn from
the particle count of v-sized particles. The aggregation rate K of these particles is
described by the so-called aggregation kernel K.v�w; v/. It is usually a symmetric
function of particle sizes of colliding particles. The specific form of this kernel

70This equation is also known as Smoluchowski coagulation equation [221].
71The size can be, e.g., particle volume, mass, or dimension.
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depends on the physical nature of the collision process. It has a different form, e.g.,
for shear flow than for Brownian motion or gravitational settling. More details can
be found, e.g., in [62, 63, 220] or in the review [3].

Such coagulation model based on coagulation Eq. (7.38) was used, e.g., in [24]
for the analysis of shear-induced platelet aggregation. The coagulation kernel used
in this model has a specific shear-dependent form

K.v;w/ D G

�

	
v1=3 C w1=3


3
(7.39)

with G being a shear rate and v, w the particles (platelet aggregates) volumes.
Another implementation of the PBM model was, e.g., used to study the aggregation
of tumor cells in [157].

This simplest version of the model describes a spatially homogeneous process
of pure coagulation, i.e., just the aggregation of particles without any breakup
or disaggregation. These processes can be added to the model equation, e.g.,
considering a fragmentation kernel72 F.v;w/ and extending the model (7.38) by
two additional integrals [83]:

@s.v; t/

@t
D 1

2

Z v

0

K.v � w;w/s.v � w; t/s.w; t/dw (7.40)

� s.v; t/

Z 1

0

K.v;w/s.w; t/dw

C
Z 1

0

F.v;w/s.v C w; t/dw � s.v; t/
Z w

0

F.v � w;w/dw

The first breakup integral expresses the increase of the number of particles of size
v due to disaggregation of larger particles of size .v C w/. The second integral
reduces the count of v-sized particles due to their breakup into smaller particles of
size v � w. This general breakup model can be simplified to the form investigated
earlier in [169, 170]. This simplified version was used in the platelet aggregation
studies [111–113].

Further generalization of population balance models leads to their spatially
nonhomogeneous versions taking into account also the advection of particles in
flow.73 This extension of the coagulation balance equation is described, e.g., in [64]
and the references therein.

Besides the above described continuous model a discrete variant is often used as
in [140] or [3].

72Also called breakage function.
73A basis for this approach comes from atmospheric science where it was used to describe cloud
formation [28].
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4. Macroscale Models

The class of macroscale models is based on the continuum hypothesis and macro-
scopic description of blood with typical scales being larger than 100�m. Although
scales are similar to the previously introduced mesoscale models, the model-
ing assumptions, formalisms, and methods have a completely different (more
macroscopic-oriented) basis. It is assumed that at this scale the single particles
are not resolved, particulate character of blood is not essential and thus continuum
description can be used without introducing large errors. The blood flow and the
coagulation process are described using macroscopic variables and parameters like
velocity, concentration, viscosity, or diffusivity. The simplest models within this
class are dealing with concentrations of coagulation factors and other chemicals
described using coupled systems of ODEs. At a more complex level the diffusivity
and advection effects should be taken into account. The coagulation model is then
written in the form of a large coupled system of nonlinear advection–diffusion–
reaction equations. If blood flow is simulated alongside with the coagulation
process, it can be described using Navier–Stokes like models. A very detailed review
of recent developments and use of these models and of the corresponding numerical
methods can be found, e.g., in [71] or [48].

Most of the information concerning the biochemical basis of macroscopic
models was already included in the historical introduction part of the chapter.
The mathematical description is covered in great detail in Sect. 7.7.2 on feature-
based classification of coagulation models. This gives us a chance and space to
present here some results of numerical simulations based on macroscopic models to
demonstrate the kind of results and outputs that can be expected and obtained from
the contemporary methods of this type. As examples, two models from recent works
of the authors will be used.

Coagulation Cascade and Viscoelastic Flow Model

A typical modern macroscopic blood coagulation model was presented in [8, 9]
and solved in a simplified form in [32, 34]. It is a model describing a coupled
problem of blood flow and biochemistry of thrombus development in a three-
dimensional vessel with simulated arterial wall damage. Basic elements of this
model are described at several places in this chapter.

Blood Flow Model. The flow is described by a nonlinear shear-thinning viscoelas-
tic model following the thermodynamic framework established in [199] and
extended for blood flow in [7]. The set of governing equations is based on the
conservation of mass (reduced to divergence-free constraint) and conservation of
linear momentum for an incompressible fluid.

r � u D 0: (7.41)

�

�
@u
@t

C u � ru
�

D r � ��p1C 	B�p.t/ C �1D
�

(7.42)
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where D D .L C LT /=2 denotes the symmetric part of the velocity gradient
tensorL and 1 stands for the identity tensor. The upper-convected time derivative
of the elastic stretch tensorB�p.t/ is given by:

O
B�p.t/D � 1

.B�p.t//

	
B�p.t/ � �1



(7.43)

Here the  D .B�p.t// defined by Eq. (7.44) has the dimension of time and
plays a role similar to the relaxation time in the classical Oldroyd-B (Maxwell)
model [33].

1

.B�p.t//
D 2K

�
tr.B�p.t//� 3�

�n
(7.44)

The coefficient � depends on the trace of the inverse of the tensor B�p.t/

according to

� D 3

tr
�
B�1

�p.t/

� : (7.45)

The remaining model coefficients for blood are taken exactly from [7]:

�1 D 0:01 Pa sI 	 D 0:1611N=m2I n D 0:5859I

K D
� 	
˛

�1C2n D 58:0725 s�1

Using the definition of the upper-convected time derivative,74 the left-hand side
can be rewritten in a more conventional form

@B�p.t/

@t
C .u � r / B�p.t/ D �1



	
B�p.t/ � �1
C 	

LB�p.t/ CB�p.t/L
T



(7.46)

where the coefficients � and  are scalar functions of the tensor B�p.t/ and its
invariants.

Biochemistry Model. The biochemistry model is based on a coupled set of
advection–diffusion–reaction (ADR) equations. It has been originally developed
in [8] and further extended in [11]. It describes the spatio-temporal evolution of
concentrations ŒCi � of 23 chemical constituents (enzymes, zymogens, proteins,
etc.) and takes the form

@ŒCi �

@t
C u � r ŒCi � D r � .Dir ŒCi �/CRi (7.47)

74See p. 555 for details.
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The nonlinear chemical reaction terms Ri are mainly based on second order or
Michaelis–Menten kinetics. As an example we mention the reaction term RIa in
the equation for fibrin75:

RIa D k1ŒIIa�ŒI �

K1M C ŒI �
� h1ŒPLA�ŒIa�

H1M C ŒIa�
(7.48)

The concentrations of thrombin (ŒIIa�), fibrinogen (ŒI �), fibrin (ŒIa�), and
plasminogen ([PLA]) are used to evaluate the reaction term RIa. The chemical
kinetics rates k1, h1 and constants K1M , H1M are known (taken from [11]). The
values of the diffusion parameters Di and the exact form of the reaction terms
Ri are given in [32], where the model has been for the first time implemented
and used in 3D simulations. The clot formation is initiated by flux boundary
conditions imposed within a small region on the internal surface of the vessel.
No-flux, homogeneous Neumann conditions are imposed elsewhere.

Coupling Strategy. The coupling between blood flow and biochemistry is based
on the fibrin concentration. It is described in detail elsewhere in this chapter.76

The fluid viscosity �1 is multiplied by a non-dimensional factor Q�1 that locally
depends on fibrin concentration ŒIa�.

Q�1.ŒIa�/ D min

�
1C �� � 1

Cclot
ŒIa�; ��

�
(7.49)

In this case the values �� D 100 and Cclot D 1;000 nM were used. In practice,
when the fibrin concentration is sufficiently large such a high viscosity is
generated to immobilize the clot.

Numerical Methods. The system of governing equations is rather complex and
highly nonlinear. A semi-discretization approach is adopted to first discretize the
PDEs in space and then integrate in time the resulting system of ODEs. The
same discretization is employed for flow variables, viscoelastic stress tensor, and
concentrations in the biochemistry model.

We adopted a space discretization based on a simple central finite-volume
discretization on a structured grid with hexahedral cells. The multiblock grid
topology with wall-fitted cells was used. The viscous fluxes were also discretized
using finite volumes over diamond-shaped cells adjoint to primary control volumes
faces. See, e.g., [31, 33, 35] for more details.

The time integration was performed using a Runge–Kutta (RK) multistage
scheme. A specific advection–diffusion optimized RK method has been used to
reduce the computational cost. The basic idea behind this subclass of RK methods
is to split the space-discretization operator into its inviscid and viscous parts. The

75The subscript Ia refers to the chemical notation for fibrin.
76See p. 554 for details.
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Fig. 7.11 Grid structure and clotting surface position

inviscid part is evaluated at every stage of the RK method, while the viscous fluxes
are only evaluated in few stages. This corresponds to an operator splitting technique
with different RK methods (coefficients) used for the advection step and another
for the diffusion step. This allows to save several (very expensive) evaluations of
diffusive fluxes per time-step while retaining the rather large stability region of the
RK method. For details see [119, 120] or [33, 35].

Along with these two basic components of the numerical solver a specific
stabilization technique was used to avoid nonphysical numerical oscillations arising
from high solution gradients and due to the use of central discretization. The
nonlinear TVD filter [68, 217] was used to smooth the concentration fields, as
reported recently in [30].

Numerical Results. The numerical test case follows almost exactly the setups
used in [32] and [34] where we refer for the complete parameter set for this
simulation. The geometry represents a straight section of a blood vessel with
diameter 6:2mm and length 31mm with grid shown in Fig. 7.11. The clotting
surface is simulated in a region that is formed by the intersection of a sphere
(with radius 3:1mm) with the blood vessel wall.

The evolution in time of some of the coagulation factors can be observed in
Fig. 7.12. The concentration is visualized in a single point located in the center of the
clotting surface on the vessel wall. These graphs show the nature of the coagulation
process, initially very fast, with a rather slow long-term evolution in the later phase.

The spatial extent of the clot can be shown using the contours of fibrin.
Figure 7.13 shows the contours of fibrin concentration on the surface of the
blood vessel. The velocity field is affected by the clotting which results in flow
deceleration and reduction of velocity in the regions of high fibrin concentrations.
A snapshot of the flow velocity reduction ı is shown in Fig. 7.14. It is evident that
the core of the clot is rather stable in time, while the downstream concentration field
varies in time as a consequence of the interaction with the flow of blood.
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a b

c d

Fig. 7.12 Time evolution of selected concentrations in the center of the clotting surface during the
initial 120 s. (a) Thrombin, (b) Fibrin, (c) Anti-Thrombin III, and (d) Tissue Plasminogen Activator

Fig. 7.13 Fibrin concentration contours at the vessel wall at the time 120 s
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Fig. 7.14 Near-wall velocity magnitude reduction ı at the time 120 s

A longer time evolution of the clot and its effect on blood flow can be seen from
Figs. 7.15–7.18. Besides the fibrin concentration on the deployed vessel surface,77 a
non-dimensional velocity reduction ı is defined

ı.x; t/ D q.x; 0/� q.x; t/

q.x; 0/
(7.50)

Here q.x; t/ is the local velocity magnitude q D p
u2 C v2 C w2. The velocity

reduction is evaluated in the first near-wall grid node, because evidently the no-slip
condition is imposed on the vessel wall.

The time evolution of the clot is depicted in Fig. 7.17. The resulting blood flow
velocity reduction is visualized in Fig. 7.18.

Simplified Cell Based Coagulation Model

Another macroscopic coagulation model was recently developed in [72].
Although it uses the same mathematical basis, i.e., a coupled set of ADR equations
linked to a non-Newtonian blood flow model, as the previously mentioned complex
coagulation model, its biochemical and biomechanical foundations are different.
In comparison with the above described model the model mentioned here differs
notably in several points:

– The biochemistry model follows the cell-based model formalism, rather than the
traditional three-pathway scheme.

– The model is simplified in terms of number of ADR equations being solved (13
equations compared to 23 in the previous model).

77The dimensions are normalized using the vessel radius (half-diameter) R D 3:1mm.
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Fig. 7.15 Clot evolution during the initial 120 s. The snapshots at the times t D 30; 60; 90; 120 s
are shown. (a) Fibrin concentration ŒIa�, (b) blood velocity reduction ı
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Fig. 7.16 Fibrin concentration evolution along an axial surface line during the initial 120 s
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Fig. 7.17 Fibrin concentration ŒIa� along the axial surface line

– Coupled flow model is generalized-Newtonian (i.e., with variable, shear-
dependent viscosity), compared to the more complex nonlinear viscoelastic
model used in previous case.

– Slip boundary conditions are used here, showing that blood slip influence can
be very important to the whole blood coagulation process, due to the consequent
supply of activated platelets in the clot region. Physical motivations for the use
of slip conditions in blood dynamics (usually disregarded in the recent literature)
are illustrated in [72].

The type of results produced by this model is similar to those of the previous model,
so only the basic features of this new model will be shown here.

Biochemistry Model. The biochemistry model can formally be written as a set
of 13 ADR equations describing the propagation and termination phases of
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Fig. 7.18 Flow velocity reduction ı in the near-wall layer along the axial direction

coagulation as well as of the clot lysis.

@ŒCi �

@t
C u � r ŒCi � D r � .Dir ŒCi �/CRi i D 1; : : : ; 13 (7.51)

The specific form of the corresponding reaction terms Ri is summarized below
in Eqs. (7.52)–(7.64). These equations can be grouped according to which coag-
ulation phase they describe. The initiation and amplification phases are modeled
explicitly using an equivalent chemical reaction (7.52). This equation for the
prothrombinase78 concentration ŒW � does not represent a chemical reaction
in the classical sense, but rather a virtual reaction synthesizing the positive
feedback loop prothrombinase-thrombin-prothrombinase in combination with
the thrombin production described below in (7.53).

RW D kW CP ŒIIa�

�
1 � ŒIIa�

ŒIIa�max

�
� h1W ŒAPC�ŒW � � h2W ŒATIII �ŒW �

(7.52)
The rate constants in (7.52) have to be carefully adjusted to reproduce results
comparable with the experimentally observed behavior of the realistic biochem-
ical cascade.

78We should clarify that the simplification introduced assigning a pivotal role to prothrombinase
and summarizing in one equation the complex process leading to its production makes sense only
in the framework of the normal physiological process. If we have to consider any type of pathology
referring, e.g., to a defective or missing factor, the model has to incorporate the equations involving
the dynamics related to that specific factor. In other words, the model is conceived in an elastic way,
adapting the number of equations to the complexity that needs to be taken into account.
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The consequent propagation phase is described by Eqs. (7.53)–(7.56):

RII D � k2ŒW �ŒII �

K2M C ŒII �
(7.53)

RIIa D �RII � h2ŒIIa�ŒATIII � (7.54)

RI D �k1ŒIIa�ŒI �
K1M C ŒI �

(7.55)

RIa D �RI � h1aŒPLA�ŒIa�

H1M C ŒIa�
(7.56)

The termination of clotting is described by (7.57)–(7.60):

RATIII D �h2ŒIIa�ŒATIII � � h2W ŒW �ŒATIII � (7.57)

RPC D �kPCŒIIa�ŒI �

KPCM C ŒI �
(7.58)

RAPC D �RPC � hPCŒAPC�Œ˛1AT � � h1W ŒAPC�ŒW � (7.59)

R˛1AT D �hPCŒAPC�Œ˛1AT � (7.60)

while the clot lysis is modeled by (7.61)–(7.64)

RtPA D 0 (7.61)

RPLS D �kPLAŒtPA�ŒPLS�

KPLAM C ŒPLS�
(7.62)

RPLA D �RPLS � hPLAŒPLA�Œ˛2AT � (7.63)

R˛2AT D �hPLAŒPLA�Œ˛2AT � (7.64)

For the full description of the biochemistry model, see the original paper [72] and
the references therein.

Flow Model. The flow is simulated using the generalized Newtonian model
similar to the one described in Sect. 7.7.2 using Eqs. (7.118), (7.119). With
respect to the classical Newtonian fluid case the model is altered to account for
shear rate P
 and fibrin concentration ŒIa� dependence in both, viscosity � and
density �. The corresponding modified momentum equations can be written as:

�.ŒIa�/

�
@u
@t

C u � ru
�

D �rp C r �
h
�. P
; ŒIa�/�ru C ruT

�i
(7.65)

The shear-rate P
 dependent (shear-thinning) fluid viscosity �. P
/ can be defined,
e.g., using the generalized Cross model (7.119). The change in values of � and
� depending on the fibrin concentration ŒIa� is governed by a Heaviside jump
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functionH.ŒIa�/:

H.ŒIa�/ D
n0 for ŒIa� � ŒIa��

1 for ŒIa� > ŒIa��
(7.66)

The step change79 between blood and clot values appears when the fibrin
concentration reaches a certain critical value ŒIa��:

�.ŒIa�/ D �Blood C .�Clot � �Blood/H.ŒIa�/ (7.67)

�.ŒIa�/ D �Blood C .�Clot � �Blood/H.ŒIa�/ (7.68)

One of the original features of this model is the choice of slip boundary
conditions on vessel walls (and clot boundaries). This choice is quite unusual in
classical continuum (bio-)fluid mechanics, but it is quite natural, given the partic-
ulate microstructure of blood resembling rather particle laden flows, well known
from industrial and environmental applications. This kind of boundary condition
can be characterized by a vanishing wall-normal component of the velocity on
the wall, while the tangent velocity is proportional to the corresponding stress
component. This can be summarized as:

u � On D 0 normal component (7.69)�
S .u; p/ On� � Ot D ˇu tangential component (7.70)

Here the S .u; p/ is the stress tensor including the spherical part coming from
pressure p. The normal and tangent unit vectors are denoted by On and Ot. The
adjustable slip coefficient is denoted by ˇ.

The slip condition is responsible for faster near-wall flow and thus the enhanced
supply of platelets needed to build the clot as mentioned above. This fact, together
with the explicit simulation of the clot initiation allows to impose no-flux80

boundary conditions for concentrations of all simulated chemicals at the whole
vessel wall. Additional arguments supporting this choice can be found again in [72].

5. Multiscale Models

The computational requirements associated with the fundamental micro- and sub-
microscale models are so far very high. This is one of the main arguments in
trying to couple some of the computationally cheaper, larger scale models with
those very expensive finer scale models. Typical multiscale computational methods
couple several elementary modules, such as fluid mechanics, coagulation cascade,

79In contrast to a linear, continuous change in the previous model.
80I.e. a homogeneous Neumann condition in the context of this model.
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cell mechanics, and receptor–ligand binding, where each of these modules focuses
on a specific range of the length scales.81

Multiscale models became standard in mathematical modeling of blood coagula-
tion. Most of the currently developed models use some of the forms of multiscaling.
There is an extensive body of literature published on this subject in the last couple
of years. We don’t aim to give a complete overview in this section, but rather point
out some of the recent models and associated techniques with few basic references.

An overview of multiscale models with application to platelet adhesion and
thrombogenesis was published recently, e.g., in [76, 246], and [267]. There are
several examples of successful application of multiscale models in practical appli-
cations. In [262] a model of thrombus growth was built from macroscopic models
for flow dynamics (Navier–Stokes equations) and chemical coagulation cascade
(advection–diffusion–reaction equations) while cells are simulated using meso-
scopic a stochastic model (Cellular Potts Model). This model was used to study the
effects of pulsatile and non-Newtonian behavior of flow on growing thrombus [263].
A porous media model was added to simulate the macroscopic effects of thrombus
on flow in [264, 265]. Another class of multiscale models was already discussed
in the section devoted to immersed boundary and Lagrangian particle tracking
microscale methods (see the references therein). For example, a model of thrombus
formation composed from macroscopic continuum-based fluid flow module coupled
with microscopic particle (blood cells) tracking sub-model was published, e.g.,
in [21] or [233]. A completely different implementation based on the same sub-
model splitting was used in [168] where the Lattice Boltzmann Method (LBM)
was applied to account for the plasma motion, and a modified molecular dynamics
scheme was used for the cellular motion. An extensive review of other particle-based
multiscale methods for optimization of cardiovascular implants can be found in
[173, 269]. Some theoretical aspects of such atomistic-continuum models coupling
were discussed in [241]. The microscale discrete stochastic Cellular Potts Model
was coupled with a macroscale advection–diffusion–reaction model in [45]. An
interesting three-scale algorithm starting from sub-microscale molecular dynamics
model with microscale dissipative particle dynamics and macroscopic Navier–
Stokes models was presented in [73].

Many other references can be given here concerning multiscale models. The
above list is, however, sufficiently representative and convincing to see that the
multiscale models are the most comprehensive mathematical modeling tools avail-
able for investigation of blood flow and coagulation. They represent not only a
rational compromise between computational cost and accuracy, but they are also
very efficient and versatile tools capable to focus on specific sub-problems in the
blood coagulation process.

81We don’t speak here about time-scales explicitly, however it is clear that each of the sub-models,
depending on its resolved spatial scale, has an associated time scale that is able to treat (within a
reasonable computational time and accuracy).
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7.7.2 Feature-Based Classification of Coagulation Models

Different coagulation models include different features, i.e., they take into account
different physical phenomena which results in more or less complete mathematical
models. Besides models for the biochemistry, additional models for the flow,
structure and other physical phenomena can be included. The reason for including
(resp. omitting) certain physical phenomena in a full model is mainly due to
economical reasons, i.e., based on the computational efficiency and accuracy of
the considered model. To some extent it also reflects the historical evolution of
coagulation models with visible trend to include more features and in the most
recent state-of-the-art models. In this section we will mainly, but not exclusively,
focus on the macroscopic continuum models, as many of the other biochemistry-
only sub-micro and microscale models were already described.

1. Biochemistry (Only) Models

Within this class, two separate subgroups of models can be recognized, based on
whether they allow just for temporal or also spatial variations of chemical fields.

Spatially Homogeneous Models

This class of models deals only with the chemical part of the coagulation process.
The stoichiometric equations used in classical chemistry are translated into the
mathematical language of ordinary differential equations describing the evolution in
time of concentrations Ci.t/ of various components taking part in the coagulation
process.

dCi

dt
D Ri.C1; C2; : : : ; CN / i D 1; : : : ; N (7.71)

These equations are called the Reaction Rate Equations (RRE). The corresponding
models are sometimes referred to as zero-dimensional82 models, because all spatial
variations of concentrations are excluded and thus no diffusion (or convection)
processes are taken into account. The functionsRi are in general nonlinear and can
depend on all considered concentrations. Typical forms are the first-order, second-
order, or Michaelis–Menten kinetics terms:

˛C i first order kinetics

˛C i Cj second order kinetics

˛C i Cj

ˇ C Cj
Michaelis–Menten kinetics

The rate constants ˛, ˇ in all reaction terms have to be determined experimentally.

82In contrast with spatially two- or three-dimensional models.
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One of the first modern coagulation models of this type was created in 1964 in
[158] based on the waterfall enzymatic cascade. This model was later formulated
mathematically in [144] and studied analytically as a biochemical amplifier system.
The resulting cascade of linear ODEs is built on very simple assumptions. A finite
sequence of N reactions, where at the i th stage the proenzyme (zymogen) with
concentration yi is converted to an active enzyme with concentration yia using the
enzyme concentrationy.i�1/a produced in the previous .i�1/th stage of the cascade.
The rate at which the active enzyme is produced is denoted by ki while the same
enzyme is destroyed at a rate Ki .

dy1a

dt
D k1y1I.t/

dy2a

dt
D k2y2y1a �K2y2a

::: (7.72)

dyN a

dt
D kN yN y.N�1/a �KNyN a

The initial impulse for this reaction cascade is provided by the time-dependent
function I.t/. This model is so simple that it can be (under certain assumptions)
solved analytically. This basic variant was later generalized to allow for time-
dependent concentrations of proenzymes [179], or by adding negative feedback
loops [163].

As a follow-up of these pioneering linear models a new wave of more realistic
nonlinear coagulation models was started by Khanin and Semenov [129]. This sim-
ple nonlinear coagulation model represents the extrinsic coagulation pathway con-
sisting of a cascade of four chemical reactions with a single nonlinear feedback loop.

This model can be written in the form of a system of ODEs for the concentra-
tions83 of coagulation factors VIIa, Xa, Va, IIa:

dŒVIIa�

dt
D k1˛ �K1ŒVIIa� (7.73)

dŒXa�

dt
D k2ŒVIIa� �K2ŒXa� (7.74)

dŒVa�

dt
D k3ŒIIa� �K3ŒVa� (7.75)

dŒIIa�

dt
D k4ŒXa�

ŒVa�

Ka C ŒVa�
�K2ŒIIa� (7.76)

83Square brackets are used to distinguish the concentrations of the corresponding chemicals from
their names.
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The coagulation cascade is initiated by a chemical substance84 with concentration
˛, called stimulation intensity.85 It is possible to show that there exists a threshold
value ˛THR for this stimulation intensity. For sub-threshold stimulation there only
exists a single steady solution in which all concentrations vanish, with the exception
of ŒVIIa�, while for higher stimulation an extra nonzero (i.e., positive) steady
state solution exists. The threshold value ˛THR is fully determined by the model
coefficients:

˛THR D Ka

K1K2K3K4

k1k2k3k4
(7.77)

Many other models of this type have been developed in the past and are still
used nowadays. After the success of the above simple nonlinear model, a more
complicated one was published in [253] with six equations combining linear first
order kinetics with second order and Michaelis–Menten kinetics reaction terms.
This model was capable to simulate the whole coagulation pathway starting from
extrinsic part up to fibrin production. The paper also provided valuable comparison
with experimental data. The same part of coagulation cascade was simulated later in
[122] using already 20 coupled ODEs. Even a more complicated model for Tissue
Factor activated coagulation was presented in [142] including already 36 equations
to simulate the serine protease inhibition. To study the contact activation (intrinsic
initiation) of blood coagulation, a model with nine equations was proposed and
theoretically studied in [196]. A special mathematical model with 35 equations was
proposed in [133] for the analysis of Activated Partial Thromboplastin Time (APTT)
commonly used as a laboratory test for diagnosis of blood coagulation disorders. To
include also the role of platelets a simple model with 6 equations was developed
in [260] assuming that the concentration of platelets is a function of thrombin
concentration. One of the most commonly used models was published in [105]
for the study of stoichiometric regulation of blood coagulation in extrinsic (and
common) pathway cascade. It describes the evolution of 34 species and contains 42
rate constants. This model was used, e.g., in [43] to evaluate the significance of the
circulating Factor IXa, in [40] for Factor Xa generation by computational modeling,
or in [41] to model thrombin generation and risk of disease.

The above list of models is incomplete and still open. Many other models are
used in their spatially nonhomogeneous version or as a part of more complex multi-
scale or multi-phenomena models. Some of those models are mentioned in other
parts of this overview.

84released from an injured vessel wall (Tissue Factor TF)
85From the biochemical point of view the first term on the right-hand side of (7.73) has a dubious
interpretation. Actually VIIa is present in small quantities but its production has to come from VII
and is mediated by VIIa itself (positive loop), in addition to the Xa coming out at the initiation
stage. All this is replaced by a constant stimulus ˛. Thus it should be kept in mind that this model
is a shortcut. Actually, it bypasses the action of the tenase complex, which in turn involves VIIIa
and IXa.



7 Mathematical Models for Blood Coagulation 541

In addition to the progress in the medical understanding of coagulation processes
via mathematical models, an important effort has also been devoted to the study of
the corresponding mathematical models. These theoretical aspects of the coagula-
tion models are studied, e.g., in [23, 55, 99, 179, 196, 260, 261] or [213].

The kinetic models based on RRE have proven to be a valuable tool in studying
the blood coagulation chemistry. One of the major drawbacks of these models lies in
their high requirement when it comes to rate constants. These are numerous and have
to be determined from data obtained in laboratory experiments. So the relatively
low computational cost is balanced by the high amount of laboratory experiments to
assembly and calibrate the model. A critical review of this class of models has been
recently published in [103].86

Some of these disadvantages concerning the number of parameters to be supplied
to such RRE-based models can be solved by using stochastic simulations of coupled
chemical reactions. These are, however, computationally much more expensive and
still not suitable for simulations of spatially nonhomogeneous large-scale problems.
They can, however, help in deeper understanding of the chemistry and can replace
some of the laboratory supplied data by outputs from microscale simulations.

Spatially Nonhomogeneous Models

The above described zero-dimensional spatially homogeneous models can be
extended for variable in space concentration fields Ci.x; t/. This allows to take
into account the clot growth including diffusion phenomena87 in two- or three-
dimensional models. Instead of ODEs, a set of coupled reaction–diffusion PDEs
can be built:

@Ci

@t
D Ri.C1; C2; : : : ; CN /C r � �DirCi

�
i D 1; : : : ; N (7.78)

In the diffusion part of the model it is assumed that the diffusive flux is proportional
to the concentration gradient rCi by the diffusion coefficientDi . This very simple
generalization of the purely chemical system leads to many interesting results
concerning the clotting process including the information about clot growth and
local structure.

One of the earliest models of this type was published in [273, 274] where a
model of the intrinsic coagulation pathway was built on tracking the spatio-temporal
dynamics of activation of factors Xl, IX, X, II, I, Vlll, V, and protein C. In the
spatially homogeneous version the model is described by the following set of

86This paper by H.C. HEMKER et al. is entitled Is there value in kinetic modeling of thrombin
generation? No (unless: : :) . This review presents a summary of models showing the number of
reactions they take into account, using the number of rate constants, based on the amount of cited
papers. The rather critical point of view from this paper is balanced by another paper in the same
issue of the journal written by K.G. MANN, under an almost identical title Is there value in kinetic
modeling of thrombin generation? Yes [159].
87in one or more spatial dimensions
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8 ODEs for concentrations of factors IXa, Xa, IIa (thrombin), II (prothrombin),
VIIIa, Va, APC (activated protein C), and Ia (fibrin).

@ŒIXa�

@t
D k9ŒXIa� �K9ŒIXa� D RIXa (7.79)

@ŒXa�

@t
D k10ŒIXa� �K10ŒXa� � k10ŒZ� D RXa (7.80)

@ŒIIa�

@t
D k2ŒXa�

ŒII �

k2m C ŒII �
�K2ŒIIa�C k2ŒW �

ŒII �

k2m C ŒII �
D RIIa (7.81)

@ŒII �

@t
D �k2ŒXa� ŒII �

k2m C ŒII �
� k2ŒW �

ŒII �

k2m C ŒII �
D RII (7.82)

@ŒVIIIa�

@t
D k8ŒIIa� �K8ŒVIIIa� � kaŒAPC�.ŒVIIIa�C ŒZ�/ D RVIIIa (7.83)

@ŒVa�

@t
D k5ŒIIa� �K5ŒVa� � kaŒAPC�.ŒVa�C ŒW �/ D RVa (7.84)

@ŒAPC�

@t
D kapcŒIIa� �KapcŒAPC� D RAPC (7.85)

@ŒIa�

@t
D k1ŒIIa� D RIa (7.86)

Concentrations of Z (tenase) and W (prothrombinase) were calculated from

ŒZ� D k8;9ŒVIIIa�ŒIXa�

K8;9 C kaŒAPC�
(7.87)

ŒW � D k5;10ŒVa�ŒXa�

K5;10 C kaŒAPC�
(7.88)

In the original paper this model was implemented in a one-dimensional form, with
a single spatial variable x. But it can easily be written in a multi-dimensional form
using the coupled set of equations (7.78), where the reaction termsRi correspond to
the right-hand side of Eqs. ((7.79)–(7.86)). For example, the equation for the spatio-
temporal evolution of factor IXa takes the form:

@ŒIXa�

@t
D k9ŒXIa� �K9ŒIXa�C r � �DIXarŒIXa�

�
(7.89)

The impulse for the initiation of the clotting cascade is provided by flux boundary
conditions88 written in the form of homogeneous/nonhomogeneous Neumann

88For homogeneous models the Initial Value Problem is solved subject to initial data. By adding
spatial variability to concentrations, the Initial Boundary Value Problem has to be solved using
both, initial and boundary conditions.
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boundary conditions simulating healthy/injured vessel wall. According to [273], the
activation stimulus is provided via an extra diffusion equation for factor XIa:

@ŒXIa�

@t
D k11 C r � �DXIarŒXIa�

�
(7.90)

supplemented by boundary conditions

@ŒIXa�

@ On D
nA on the clotting surface

0 elsewhere
(7.91)

where On is the boundary surface outer normal unit vector and the number (or
function) A is the prescribed activation.

The diffusion–reaction (without advection) models are usually studied to clarify
the spatio-temporal dynamics of clotting and pattern formation in quiescent blood.
To do so, the coagulation models are often simplified to allow at least partial
analytical solution or mathematical analysis [14, 275]. Some generalizations were
also introduced, e.g., to take into account spatially nonuniform diffusion coefficients
in a simple model of fibrin polymerization [153]. On the other hand, a much more
complicated model of this type was published in [189]. This model was developed
to describe the spatial propagation and localization of blood coagulation and their
regulation in intrinsic and protein C pathways. The whole model, however, consists
of almost 30 differential equations containing more than 100 parameters. This model
was used, e.g., in [230] to study the spatial dynamics of contact-activated fibrin clot
formation.

The diffusion coefficients Di enter the model as “tuning parameters” and
usually have to be determined from experiments, simplified analytical models or
microscopic numerical simulations. The diffusion coefficients for proteins were
estimated, e.g., in [272] using correlation based on Stokes–Einstein relation leading
to a simple expression

D D 8:34 � 10�8 T

�M1=3
.cm2 s�1/ (7.92)

depending just on the absolute temperature T , the solvent dynamic viscosity �, and
the molecular weightM . This approximation was developed under the assumptions
of relatively large (with respect to solvent) protein molecules with globular shape.
Another estimate relaxing these shape restrictions was published in [42]. There are
many other methods and models developed for prediction of diffusion coefficients.
For a detailed study the above papers and references therein can be used as a starting
point.
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2. Biochemistry and Flow models

It is evident that the biochemical reactions of blood coagulation are in physiological
situations strongly affected by the flow of blood. Most of the chemicals and
particulate matter necessary to build up the clots (or thrombus) are supplied by the
flowing blood. On the other hand, the flow itself is finally affected by the presence
and growth of the clot. Flow-induced shear stress (to which von Willebrand factor
is sensitive) is also known to affect the initiation of clotting as well as the structure
and mechanical properties of the resulting clot. The flow variables or fields can be
incorporated into the coagulation models in several ways.

(a) Parametric. A characteristic flow velocity or shear rate is used in some of the
model parameters to represent the effects of flow on blood coagulation. This
is typically only one way coupling, i.e., the coagulation has no direct effect
on the flow field that is usually considered as fixed (i.e., a priori prescribed).
This simplest approach was used, e.g., in the model published in [137]. This
is a rather complex, spatially homogeneous model of surface-mediated control
of blood coagulation described by reaction rate equations. It consists of 59
coupled ODEs and besides the chemistry it also includes the role of binding
site densities and platelet deposition. This model is coupled to flow via variable
(flow dependent) chemistry kinetics-like coefficients89:

kflow
c D 3

4

�
V 2D

R2L2

�1=3
(7.93)

This coefficient depends on flow velocity V , molecular diffusion coefficient
D, vessel size (radius) R, and injury length L. It is derived from steady state
advection–diffusion problem assuming a parabolic velocity profile and chemical
boundary layer over a finite-length surface source. Using this coefficient a first
order kinetics source/sink term is built

˙ kflow
c .C � Cout/

where C is the local concentration and Cout is the concentration far from the
injury. This extra term is used to take into account the combined effect of
advection and diffusion on the chemical transport to/from the coagulation site.

The flow parameters play also an important role in the diffusion processes
during coagulation. Quite common is to consider shear-dependent diffusion
coefficients. A correlation for the enhancement of diffusion depending on the
characteristic shear rate and hematocrit in concentrated erythrocyte suspensions
was described, e.g., in [245]. Another such shear rate-dependent diffusion

89See [80] for details of derivation and use.
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coefficients formulae has the form:

D D ˛ P
max where ˛ D 7:0 � 10�9cm2 (7.94)

It is based on [280] and uses the maximum shear rate P
max as a characteristic
flow parameter. It was applied, e.g., in a mechanical model of acute platelet
accumulation in thrombogenic stenoses [254].

(b) One-way coupling. The local velocity field enters the coagulation model mainly
in its advection part. The velocity field, steady or unsteady, is prescribed,
e.g., as an output from an external model or experimental measurement. The
velocity field affects, but is not affected by the blood coagulation process and
the growth and the presence of the clot. This approach is typical for some simple
implementations of Lagrangian particle tracking methods.90 As an example let’s
mention the Stokesian dynamics based on the additivity of velocities [178,270].
The velocity vi of a i th particle (blood cell) is expressed as a sum of fluid
velocity u (background flow velocity) at particle position xi and additional
velocity contribution due to binding and other non-hydrodynamic forces.

vi D u.xi /C 1

6�a�
F i C � � � (7.95)

Here a denotes the particle radius and � stands for the dynamic viscosity of the
solvent. The non-hydrodynamic force F i can, e.g., be considered as a sum of
binding force (acting between particles due to coagulation factors) and collision
force. This model was used, e.g., in [178, 270] to analyze thrombus formation
and destruction under flow.

Another example of one-way coupling is the model proposed in [69]. It
is a simple continuous macroscopic coagulation model that is coupled to a
(prescribed, fixed) flow field.

(c) Two-way coupling. In this case the flow-field is not a priori known and can be
affected by the spatio-temporal evolution of the clot. This approach requires
(in addition to the above described one-way coupling mechanisms) to have a
corresponding flow model, e.g., Navier–Stokes equations, coupled together with
the biochemistry model. The exact choice of this flow model depends mainly on
the considered rheological behavior of blood (e.g., shear-thinning, viscoelastic,
etc.). This kind of two-way coupling is evidently the most realistic way of blood
coagulation modeling. It is, however, also the most complicated and expensive.
At a microscopic level, e.g., the above described Immersed Boundary method
belongs to this category. An example of a macroscopic continuum model with
two-way coupling will be given later.

Most of the modern computational coagulation models include in some way the
effects of blood flow. Some of these models were already introduced in the previous

90See the paragraph on Euler–Lagrangian Particle Tracking methods (ELPT) in the section on
microscale coagulation methods.
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sections and classified according to their characteristic scale. Here we will mention
some additional references emphasize some interesting flow-related phenomena in
blood coagulation models.

The simplest, chemistry-free way to simulate some of the flow effects on
coagulation process is to use a residence time model. It is based on the assumptions
that clotting occurs after a certain time since the blood activation. A passive scalar,
governed by an advection–diffusion–reaction equation can be used as a tracer to
estimate the residence time of activated fluid. The local concentration of the tracer
can be used as a threshold parameter within the clotting (solidification) model. Such
model within the lattice Boltzmann framework was used, e.g., in [26] to investigate
the clotting in an idealized stenosed artery.

Very simple coagulation models were proposed in [152] and [69] to demonstrate
the combined effects of advection and diffusion on the spatial extent and structure of
the thrombus. For example, the model used in [152] consists only of three chemical
species (thrombin, protein C, and fibrin) and is described by the following set
of PDEs:

@�

@t
C u � r� D ˛�2

� C �0
� 
�' �K�� C r � .D�r�/ (7.96)

@'

@t
C u � r' D ˇ�

�
1 � '

C

��
1 � '2

'20

�
�K'' C r � �D'r'� (7.97)

@ 

@t
D K'� (7.98)

In this model � , ',  are concentrations of the activator, inhibitor, and fibrin (at
point x and time t). The diffusion coefficients for activator and inhibitor are denoted
byD� andD' . The remaining constants and chemical kinetics rates are determined
by fitting to experimental data. The first two equations for � and ' are of the
advection–diffusion–reaction type. The last equation only describes the conversion
of activator � to the final product  (fibrin) by a first order chemical reaction. The
velocity field u.x; t/ is prescribed and is not affected by coagulation. The model
solutions lead in the 1D case to the formation of various patterns of fibrin due to
the propagation of traveling and pulsing waves of the activator and inhibitor. The
same effects were also observed in 2D simulations. Similar problems were studied
in [152] using a simplified biochemistry model with only three ADR equations for
thrombin (IIa), activated factor XI (XIa), and activated protein C (APC).

The above described simple model belongs to a large family of continuum-based
macroscopic models that can be written in the form of Advection–Diffusion–Reaction
(ADR) equations:

@Ci

@t
C u � rCi D Ri.C1; C2; : : : ; CN /C r � �DirCi

�
i D 1; : : : ; N (7.99)

A model of that kind, consisting of seven ADR equations was used, e.g., in [224,
225] for the computational simulation of platelet deposition and activation. The pre-
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computed velocity field is used in the advection part of the biochemistry model
and also in the shear-enhanced diffusion coefficients due to the motion of RBCs
according to

D D 0:18 d2rbc P
=4 (7.100)

where drbc D 7�m is the RBC diameter and P
 is the characteristic shear rate (e.g.,
at the vessel wall) of the flow.

A much more complex model of this type was proposed in [8,9,11] consisting of
ADR equations for more than 20 chemicals and a simple two-way coupling strategy
[6] applied to a nonlinear viscoelastic model for blood flow. It includes various
mechanical and biochemical factors underlying clot formation and dissolution in
flowing blood. This model was used in [32] to simulate clot evolution in a straight
three-dimensional vessel segment. Some theoretical aspects of the stability of
the underlying biochemical model were presented in [213] together with clotting
simulations in 3D axisymmetric stenosed vessel. Another biochemistry model with
18 ADR equations was used in [29] for finite-element simulation of vortical flow
structures affecting the biochemistry in formation of intra-luminal thrombus in
abdominal aortic aneurysms. A non-Newtonian shear-thinning flow model of blood
was used to calculate the background flow (i.e., one-way coupling was used).
A two-way coupling mechanism was adopted in [216] where about 40 ADR
equations (originally proposed in [189]) were coupled to the Navier–Stokes flow
solver to perform a detailed 2D study of the mechanisms controlling the initiation
of coagulation in the presence of flow. It has been found that when sufficiently
strong blood flow is present, factor Xa is rapidly removed, and the rate of factor
X production becomes insufficient to create a fibrin clot.

Among the flow-coupled coagulation models, the most complex are probably
some of the multi-scale models. A detailed description of a model of this type can
be found, e.g., in [77]. It consists of several coupled blocks (sub-models) where a set
of ADR equations is used to describe macroscopic concentrations of non-activated
and activated platelets as well as the corresponding activator concentration. An extra
equation describes the transport of platelet–platelet elastic bonds which is used to
couple the whole platelet thrombosis model to the flow solver.

3. Biochemistry and Flow and Structure Models

The blood clot itself can typically be seen as a kind of solid (or elastic, viscoelastic)
material being bound to the vessel wall or to other clotting surface. From the
mechanical, structural point of view, it might be important to consider the defor-
mation or rupture of thrombi, the change of mechanical properties (e.g., elasticity)
of vessel wall due to clotting, and the flow deviations resulting from the presence
of clots. To account for these effects an appropriate structural model has to be used
and coupled to the rest of the coagulation and flow models.

Pure fluid–structure (without biochemistry) interaction models are quite often
used to evaluate possible effects of existing thrombus/embolus on surrounding blood
flow and consequent blood vessel deformations. Some of the flow–structure interac-
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tion aspects are naturally embedded in small-scale coagulation models dealing with
separate blood cells within the blood flow. Several examples can be found in micro-
scale ([123] using the MPS method, [193] with DPD method) or multi-scale models
([262, 265] using coupled continuous and CPM models) discussed in previous
sections of this text. These methods are capable to distinguish between blood,
thrombus, and vessel wall points or particles. This allows to use different rheological
and structural models for each of these distinct components of biological system.

Much less common are the macroscopic continuum-based flow–structure interac-
tion multiphase coagulation models. A simple model of this type was developed and
tested in [249, 250] and [251] solving a free boundary problem modeling thrombus
growth using the level set method. The mathematical model is composed of the
incompressible Navier–Stokes equations for blood flow description, coupled with
a single scalar transport equation for platelet concentration. The flow–structure
(thrombus) interaction is provided by tracking in time the spatial evolution of
thrombus and adjusting the blood/thrombus boundary. This moving boundary
problem is solved using the Level–Set Method (LSM). The flow model can be written
down as:

r � u D 0 (7.101)

�

�
@u
@t

C u � ru
�

D �rp C ��u (7.102)

This system is solved91 simultaneously with the platelet transport (advection–
diffusion) equation

@c

@t
C u � rc D r � .D rc/ (7.103)

Here c.x; t/ is the platelet concentration and D is the corresponding diffusion
coefficient. Considering wall-bounded flow, the platelet boundary condition can be
of Neumann-type:

�D
@c

@ On D
�
k.s/c on clotting (injured) surface

0 on impermeable (healthy) wall
(7.104)

Here the surface adhesion of platelets is described as a first order chemical reaction
with rate k.s/ depending on the local surface shear rate s D jS On � Otj=� with
S being the stress tensor and Ot, On the clotting surface tangent, resp. normal unit
vectors. When the volume growth of the thrombus is non-negligible, a level set
function �.x; t/ can be introduced to distinguish between fluid and structure (blood
and thrombus) regions. The function � is initialized as a signed-distance92 from the

91Subject to appropriate initial and boundary conditions.
92Being positive, e.g., in the fluid (blood) and negative in the solid (thrombus).
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clotting surface (thrombus–blood boundary) which is further evolved according to
the transport equation:

@�

@t
C v � r� D 0 (7.105)

The thrombus surface “advection” velocity can be approximated from the platelet
concentration field as v D ˛rc, i.e., proportional to the platelets density gradient,
neglecting the platelets rolling and other minor transport effects. Taking into
consideration the definition of the surface platelet flux (7.104) postulating that
D.rc � On/ D k.s/c, the level-set function transport equation can be rewritten as

@�

@t
C
�
˛k.s/

D
c On
�

� r� D 0 (7.106)

which can further be modified using the definition of unit normal vector On D
r�=kr�k where kr�k2 D r� � r�

@�

@t
C ˛k.s/

D
c kr�k D 0 : (7.107)

Using the function �, the blood/thrombus regions can be determined according to
the sign of � with the interface being characterized by � D 0. Distinct material
parameters can be prescribed in each one of these regions. Typically the velocity
is set to vanish inside the (wall attached) thrombus and also the diffusivity can be
set different for blood/thrombus regions. This model can easily be extended using
more complex biochemistry as it was done, e.g., in [231] where a level-set method
has been used coupled with a coagulation model taking into account concentrations
of activated and resting platelets in blood as well as in the aggregate, transport of
RBCs and ADP.

4. Biochemistry and Other Features Models

There are many important aspects affecting and being affected by blood coagulation.
This is why in certain models some features not previously mentioned have also
been implemented to deal with some specific effects. From the long list of more
or less important features to be included in coagulation models we will focus on
platelets activation due to mechanical stress and on the possible rheological effects
of blood coagulation and blood cells aggregation.

Stress-Induced Activation of Platelets

As already observed, platelets play an essential role in the whole coagulation
process. One of the important mechanisms of platelet activation is related to the
exposition of platelets to excessive stress. It is not just the local instantaneous stress
value, but it is the history of stress acting on the platelet that plays a crucial role.
This aspect of platelet activation and formation of clotting surfaces is especially
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important in evaluating the artificial mechanical devices coming into contact with
blood (e.g., blood pumps or mechanical heart valves).

Several models have been developed to quantify the blood damage and platelet
activation due to flow-induced stress. The most widely used approach defines the
Blood Damage Index D using an empirical power law relation

D D C ˛tˇexp (7.108)

where  is a scalar measure of stress and texp is the exposure time. The constants
C , ˛, and ˇ have to be determined experimentally depending on the type of
solvent, blood cells (RBCs or platelets), and other typical flow parameters. For
an overview of available model parameters see the summary in [114] and related
references therein. This model was used to integrate the blood damage along particle
trajectories in computational analysis of a blood pump in [223], or for numerical
investigation of the effects of channel geometry on platelet activation and blood
damage in [259]. A similar model, but a bit simpler in its form is the blood damage
index proposed in [204]

D D C

�
2 texp (7.109)

On the other hand, a more complicated differential model for this quantity was
proposed in [200]

dD
dt

D C

.1 � D/ı 
2 (7.110)

Here C and ı are case-dependent constants to be determined experimentally. A
model of this type93 was used, e.g., in [4] to study the flow-induced platelet
activation and damage accumulation in a mechanical heart valve. This approach
was generalized in [271]:

dD.t/
dt

D PD0 C F.D; /C OF . P/ (7.111)

where PD0 is the constant activation/damage rate, F.D; / is the stress-dependent
part, and OF . P/ is the stress rate-dependent contribution. A similar approach was
recently adopted in [222] to develop a mathematical model of activation and
sensitization of platelets subjected to dynamic stress histories.

These simple empirical laws are suitable for situations that can easily be
characterized by a single stress level and exposure time. This is, however, seldom the
case of realistic blood flow simulations. In order to be able to handle also complex
flows a more general Lagrangian approach is often adopted. The one introduced for
blood (erythrocyte) damage in [97] and [98] was extended for platelets activation in

93In Lagrangian particle tracking form.
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[183]. It is based on Platelet Activation State (PAS) associated with the kth platelet
at time t :

PASk.t/ D
Z t

t0

Ca

"Z  

t0

.�/b=ad� C PAS1=ak .t0/

C

#a�1
. /b=ad (7.112)

Here PASk.t0/ is the value of activation of the platelet at the starting time of
observation t0,  D .t/ is time-dependent (local, along platelet path) scalar value
of stress.94 The constants a D 1:3198, b D 0:6256, and C D 10�5 are tuning
parameters of the model obtained from experimental data fitting. This model was
used, e.g., in [164] to evaluate shear-induced platelet activation and its relationship
with blood flow in a model of stenosed carotid bifurcation, or in [177] to predict
blood damage in prosthetic heart valves.

A different approach to quantify platelet damage and activation in complex flows
was described in [6, 8]. It evaluates a platelet activation function A as an integral
over the platelet stressing history

A.t/ D A.t0/C 1

A0

Z t

t0

exp

�
k

�
.�/

c
� 1

�
H..�/ � c/d� (7.113)

where  D .t/ is again a scalar measure of stress with c being the critical value
of stress above which the platelets get potentially activated. The integral expresses
the accumulated stress acting on the platelets between the instants t0 and t . The
Heaviside functionH is defined as

H. � c/ D
n1 for  � c

0 for  < c
(7.114)

to assure that only supra-critical stresses are taken into consideration, i.e., contribut-
ing to platelet activation. Lower, physiologically standard values have no effect
on activation. The values of the activation function A.t/ are compared against the
platelet activation threshold Aact and damage threshold Adam to decide, whether the
platelet remains resting or gets activated. More details including the full activation
algorithm can be found in [8], where a complex blood flow and biochemistry model
is built for thrombus formation and lysis. In the abovementioned implementation,
the model is capable of platelet activation prediction for each separate platelet/fluid-
parcel at the price of Lagrangian tracing and damage integration for every such
particle. This is useful when effects of delayed platelet activation95 or damage have
to be included, i.e., the values of A.t � tact/ have to be considered when deciding
whether the platelets get activated. For immediate activation, i.e., negligible time tact

94Usually some kind of norm of the stress tensor. See, e.g., [214, 222].
95Platelet does not get activated immediately, but only after a certain time tact.



552 T. Bodnár et al.

the above Langrangian model for activation function A.t/ can be rewritten to more
computational friendly Eulerian form for function A.x; t/:

@A
@t

C u � rA D C0 exp

�
k

�
.x; t/

c
� 1

�
H..x; t/ � c/ (7.115)

This transport equation has a source term on the right-hand side, that only con-
tributes to the activation function A.x; t/ when .x; t/ � c . Otherwise the values
of A are only advected by the flow, i.e., remembered without modification.

Another non-Lagrangian platelet activation model was implemented in the lattice
Boltzmann framework in [172] based on the so-called Virtual Particle Integration.
The principle reminds the above Eulerian activation model. The Lagrangian integra-
tion of a quantity is simulated using source terms proportional to the quantity that
should otherwise be integrated along the particle pathway.

Blood Rheology Changes

One of the essential phenomena in blood rheology is the aggregation of
RBCs forming rouleaux. This aggregation is made possible by the presence of
macromolecules in blood plasma. Among them the fibrinogen is probably the most
important. It plays an essential role in both, blood coagulation and aggregation.
This is just one of the examples showing that blood rheology is closely related to
coagulation and deserves special attention.

Many of the methods used to resolve microstructure of blood and the process
of aggregation and adhesion of blood cells are also capable to predict the most
notable rheological properties of blood, such as shear-thinning, viscoelasticity, or
thixotropy. This is why blood rheology comes naturally into play when considering
blood coagulation models. Recent microscopic blood flow simulations have clearly
demonstrated that macroscopic rheological parameters of blood can be derived from
relatively simple assumptions imposed on micro-structural inter- and intra-cellular
bonds. For more details on this aspect of coagulation and aggregation models, see
the corresponding section in this chapter, devoted to micro and multi-scale models of
blood coagulation. Some more details and references can be found in recent reviews
[242] or [74]. By nature, the microscopic cell-oriented models are suitable for small-
scale simulations (e.g., [16, 232]) and cannot be efficiently used for macroscopic
problems. This is where the classical, macroscopic rheological models have to be
employed.

At a macroscopic continuum level the rheology of blood is often interpreted using
bulk material properties, such as viscosity in both Newtonian and non-Newtonian
models, yield-stress in thixotropic models or relaxation and retardation times in
viscoelastic models. There is an extensive amount of specialized literature on blood
rheology and its mathematical modeling. This section will just point out some of the
models that can be used within the coagulation models to simulate thrombus and its
interaction with blood flow.

Porous media models are often applied to describe the flow and transport
phenomena within the clot. Under the assumption of highly viscous flow with
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negligible inertia a simplified flow model can be built starting from the Navier–
Stokes equations. The resulting approximate model is known as the Darcy’s law. In
its generic form it leads to a velocity field inside the clot defined as

u D � k
�

rp (7.116)

The permeability k is related to the clot porosity � and to the diameter of fibrin fibers
Df by

k D D2
f

64.1� �/3=2 .1:0 � 56.1� �/3/
(7.117)

This model was used in [264, 265] as a component of a multi-scale model of clot
formation. A similar model with only slightly different coefficients was also used in
[60]. The same kind of permeability formulae, but with Brinkmann model instead
of the Darcy model was used, e.g., in [130] to study fibrin networks regulating
protein transport during thrombus96 development. The Brinkmann model adds an
extra Laplacian-like term to Darcy’s law (7.116) in low porosity (permeable external
clot) regions where viscous dissipation of momentum is no more negligible.

Generalized-Newtonian models are the most common non-Newtonian models
used to describe the macroscopic behavior of blood flow. They capture its shear-
thinning behavior by introducing a variable (local shear rate dependent) apparent
viscosity instead of the classical constant viscosity used for Newtonian fluids. This
type of non-Newtonian models was used in [32] for both, blood and clot in a
complex coagulation model adapted from [8,11]. The basic principle is very simple.
The concentration of one of the coagulation products, e.g., fibrin in the described
case, is used as a tracer (indicator) to distinguish between blood and clot regions.
The fluid (blood/clot) viscosity is adjusted according to this tracer concentration.
The resulting model equations can be written in the form generalized Navier–Stokes
equations:

�

�
@u
@t

C u � ru
�

D �rp C r �
h

Q�.ŒIa�/�. P
/�ru C ruT
�i

(7.118)

The shear-rate97 dependent (shear-thinning) fluid viscosity �. P
/ can be defined
using generalized Cross model:

�. P
/ D �1 C .�0 � �1/
1�

1C .� P
/b�a (7.119)

96The thrombus model employs a composite structure with an impermeable core (activated
platelets and fibrin) and a permeable shell (fibrin cap).
97The shear-rate is defined as P
 D 2

p
D W D where D D .ru C ruT /=2 is the symmetric part

of velocity gradient.
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Model adjustable parameters are taken from [143]:

�0 D 1:6 � 10�1 Pa s �1 D 3:6 � 10�3 Pa s
a D 1:23; b D 0:64 � D 8:2 s

The symbols �0 and �1 denote the zero- and infinity-shear rate limits of viscosity.
The apparent viscosity is multiplied by a non-dimensional factor Q� that locally
depends (linearly, up to a certain saturation value ��) on fibrin concentration ŒIa�.

Q�.ŒIa�/ D min

�
1C �� � 1

Cclot
ŒIa�; ��

�
(7.120)

where �� D 100 and Cclot D 1;000 nM was used in [32].
In this model the clot is simulated as a highly viscous fluid (up to �� times more

viscous than blood). The region occupied by the clot represents an obstacle to the
flow of blood having a much higher viscosity. This viscosity amplification effect is
even significantly magnified due to the shear-thinning non-Newtonian behavior of
blood, leading to a further increase of fluid viscosity in regions of low shear. The
biochemistry (i.e., fibrin)-induced changes in viscosity results into modifications
of the local flow field. These flow deviations consequently affect the concentration
field that lead to further changes in the viscosity. Using this algorithm the two-way
biochemistry-flow coupling is enforced.

Viscoelastic models are used in some recent blood flow and coagulation models
to account for more complex viscoelastic effects in the rheology of blood. One of the
simplest models of this kind, being implemented as a component of a coagulation
model, is the shear-thinning viscoelastic model proposed in [6]. It is a mathematical
model describing the change in the constitutive character of blood due to platelet
activation. The considered stress-induced activation of platelets is described by
the function A defined previously in (7.113). According to the local value of this
activation function the actual status of platelets (activated/resting) is decided and
corresponding parameters of the rheological model are adjusted.

In its simplest form the model can be written as a generalized Oldroyd-B
model with local shear-rate and platelet activation-dependent viscosity. As in the
Newtonian case for the Navier–Stokes model the equations of fluid motion are based
on the conservation of mass and linear momentum for an incompressible fluid:

r � u D 0 (7.121)

�

�
@u
@t

C u � ru
�

D �rp C r � T (7.122)

The (viscoelastic) stress tensor is in this case defined by:

T C �1
O
TD 2�

�
D C �2

O
D

�
(7.123)
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The parameters �1 resp. �2 denote the relaxation, resp. retardation times. Upper-
convected (time) derivative98 of tensors is marked by the symbol O. The viscosity
� (being constant in the original Oldroyd model) is defined as a product of a shear-
dependent apparent viscosity �. P
/ and an activation dependent factor Q�.A/, i.e.,
� D �. P
/ Q�.A/. For the shear-thinning part of viscosity, the model of Yeleswarapu
is suggested:

�. P
/ D �1 C .�0 � �1/
1C ln.1C� P
/

1C� P
 (7.124)

where P
 is the shear-rate and ƒ is an adjustable parameter. The platelet activation-
dependent multiplicative factor Q�.A/ is defined as99

Q�.A/ D
n 1 for resting platelets

�� 
 1 for activated platelets
(7.125)

A much more complex macroscopic coagulation biochemistry model, described
by a set of more than 20 coupled ADR equations, was introduced in [8]. To describe
the shear-thinning viscoelastic character of blood a nonlinear model was used based
on earlier works considering a novel thermodynamically consistent framework for
rate type fluid models [199]. Within this model the viscoelastic stress tensor T is
split as:

T D 	B�p.t/ C �1D (7.126)

whereD denotes the symmetric part of the velocity gradient tensor andB�p.t/ stands
for the elastic stretch tensor.100 The upper-convected time derivative of the tensor
B�p.t/ is then given by:

O
B�p.t/D �2K �tr.B�p.t// � 3��n 	B�p.t/ � �1



(7.127)

where the coefficient � depends on the trace of the inverse of the tensor B�p.t/

according to

� D 3

tr
�
B�1

�p.t/

� : (7.128)

98The upper-convected derivative
O

M of a tensor M is defined using the classical material time-
derivative PM and the symmetric resp. skew-symmetric parts of the velocity gradientD resp. W as
O

MD PM �WM CMW � .DM CMD/.
99See [6] for the complete algorithm of platelet activation depending on the values of A.
100The subscript �p.t/ is used to emphasize that the stretch is expressed with respect to natural
(time-dependent) configuration �p.t/. This notation follows exactly the original papers [7,12,199]
and [34] where the model has been introduced and used.
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The remaining model coefficients 	, �1, K and n are chosen depending on the
considered fluid. This model is able to capture both, the viscoelastic and shear-
thinning effects. In the coupled blood flow & coagulation model two distinct
parameter sets are used for the blood and the clot. To distinguish between the blood

Blood Clot

	 ŒPa� 0.0227 4.9
�1 ŒPa s� 0.01 0.1
K Œs�1� 1.2056 2.2
n Œ1� 0.7525 0.1

and the clot a combined chemo-mechanical indicator is used depending on the fibrin
concentration ŒIa� and platelet activation function A. For details see [8–11].

7.8 Conclusions and Remarks

One of the aims of this chapter was to present the complexity of the blood
coagulation process from different perspectives. These different points of view are
provided by a wide range of mathematical models and concepts being used to
describe and study blood coagulation. This very complicated picture is framed by
a historical time-line of the evolution of coagulation theories based on underlying
experimental discoveries.

There are several lessons to be learned from this chapter:

• The historical evolution of coagulation theories exhibits many breaking points
and bifurcations. An example is the recent shift from waterfall motivated
models to cell-based theories leading to major changes in the whole concept
of macroscopic biochemistry models of blood coagulation. Such a change of the
point of view not only generates new mathematical models, but it also leads to
new interpretation of many older experiments.

• It is evident that the traditional, purely macroscopic, and exclusively chemical
description of the coagulation process is not able to provide a complete picture of
blood coagulation. In the contemporary literature many efforts have been made
to include more of the physics involved in the mathematical models of blood
coagulation (fluid mechanics, structural mechanics, molecular dynamics, etc.).

• Recent rapid evolution of molecular chemistry and mechanics is mainly driven
by the increased availability of massive computational resources. This leads to
more information being obtained about the sub-micro and micro-scale nature of
blood coagulation. The corresponding mathematical models can not only provide
these very specialized microscopic level simulations, but more importantly they
can add more details to meso- and macro-scale models. This multiscale coupling
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is probably the most promising from the current trends in blood coagulation
modeling.

At this very end of the chapter it is fair to note that the theory and mathematical
modeling of blood coagulation is so complex, that despite our effort of producing a
comprehensive overview, our presentation is necessarily incomplete. There can be
different ways of organizing this large material, according to different viewpoints
and also to give more or less emphasis to the various subjects. Since the topics
treated here are in a stage of rapid evolution, as more and more is known about
key elements intervening in the process (e.g., platelets, anticoagulant therapies,
etc.), this chapter should be understood as a starting point for a more detailed and
specialized investigation in this very specific, challenging and fascinating scientific
area.
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