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Psychology at the beginning of the twenty-first century has
become a highly diverse field of scientific study and applied
technology. Psychologists commonly regard their discipline
as the science of behavior, and the American Psychological
Association has formally designated 2000 to 2010 as the
“Decade of Behavior.” The pursuits of behavioral scientists
range from the natural sciences to the social sciences and em-
brace a wide variety of objects of investigation. Some psy-
chologists have more in common with biologists than with
most other psychologists, and some have more in common
with sociologists than with most of their psychological col-
leagues. Some psychologists are interested primarily in the be-
havior of animals, some in the behavior of people, and others
in the behavior of organizations. These and other dimensions
of difference among psychological scientists are matched by
equal if not greater heterogeneity among psychological practi-
tioners, who currently apply a vast array of methods in many
different settings to achieve highly varied purposes.

Psychology has been rich in comprehensive encyclope-
dias and in handbooks devoted to specific topics in the field.
However, there has not previously been any single handbook
designed to cover the broad scope of psychological science
and practice. The present 12-volume Handbook of Psychol-
ogy was conceived to occupy this place in the literature.
Leading national and international scholars and practitioners
have collaborated to produce 297 authoritative and detailed
chapters covering all fundamental facets of the discipline,
and the Handbook has been organized to capture the breadth
and diversity of psychology and to encompass interests and
concerns shared by psychologists in all branches of the field.

Two unifying threads run through the science of behavior.
The first is a common history rooted in conceptual and em-
pirical approaches to understanding the nature of behavior.
The specific histories of all specialty areas in psychology
trace their origins to the formulations of the classical philoso-
phers and the methodology of the early experimentalists, and
appreciation for the historical evolution of psychology in all
of its variations transcends individual identities as being one
kind of psychologist or another. Accordingly, Volume 1 in
the Handbook is devoted to the history of psychology as
it emerged in many areas of scientific study and applied
technology.

ix

A second unifying thread in psychology is a commitment
to the development and utilization of research methods
suitable for collecting and analyzing behavioral data. With
attention both to specific procedures and their application
in particular settings, Volume 2 addresses research methods
in psychology.

Volumes 3 through 7 of the Handbook present the sub-
stantive content of psychological knowledge in five broad
areas of study: biological psychology (Volume 3), experi-
mental psychology (Volume 4), personality and social psy-
chology (Volume 5), developmental psychology (Volume 6),
and educational psychology (Volume 7). Volumes 8 through
12 address the application of psychological knowledge in
five broad areas of professional practice: clinical psychology
(Volume 8), health psychology (Volume 9), assessment psy-
chology (Volume 10), forensic psychology (Volume 11), and
industrial and organizational psychology (Volume 12). Each
of these volumes reviews what is currently known in these
areas of study and application and identifies pertinent sources
of information in the literature. Each discusses unresolved is-
sues and unanswered questions and proposes future direc-
tions in conceptualization, research, and practice. Each of the
volumes also reflects the investment of scientific psycholo-
gists in practical applications of their findings and the atten-
tion of applied psychologists to the scientific basis of their
methods.

The Handbook of Psychology was prepared for the pur-
pose of educating and informing readers about the present
state of psychological knowledge and about anticipated ad-
vances in behavioral science research and practice. With this
purpose in mind, the individual Handbook volumes address
the needs and interests of three groups. First, for graduate stu-
dents in behavioral science, the volumes provide advanced
instruction in the basic concepts and methods that define the
fields they cover, together with a review of current knowl-
edge, core literature, and likely future developments. Second,
in addition to serving as graduate textbooks, the volumes
offer professional psychologists an opportunity to read and
contemplate the views of distinguished colleagues concern-
ing the central thrusts of research and leading edges of prac-
tice in their respective fields. Third, for psychologists seeking
to become conversant with fields outside their own specialty
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and for persons outside of psychology seeking informa-
tion about psychological matters, the Handbook volumes
serve as a reference source for expanding their knowledge
and directing them to additional sources in the literature.
The preparation of this Handbook was made possible by
the diligence and scholarly sophistication of the 25 volume
editors and co-editors who constituted the Editorial Board.
As Editor-in-Chief, I want to thank each of them for the plea-
sure of their collaboration in this project. I compliment them
for having recruited an outstanding cast of contributors to
their volumes and then working closely with these authors to
achieve chapters that will stand each in their own right as

valuable contributions to the literature. I would like finally to
express my appreciation to the editorial staff of John Wiley
and Sons for the opportunity to share in the development of
this project and its pursuit to fruition, most particularly to
Jennifer Simon, Senior Editor, and her two assistants, Mary
Porterfield and Isabel Pratt. Without Jennifer’s vision of the
Handbook and her keen judgment and unflagging support in
producing it, the occasion to write this preface would not
have arrived.

IRVING B. WEINER
Tampa, Florida



Volume Preface

A scientific discipline is defined in many ways by the re-
search methods it employs. These methods can be said to rep-
resent the common language of the discipline’s researchers.
Consistent with the evolution of a lexicon, new research
methods frequently arise from the development of new
content areas. By every available measure—number of re-
searchers, number of publications, number of journals, num-
ber of new subdisciplines—psychology has undergone a
tremendous growth over the last half-century. This growth is
reflected in a parallel increase in the number of new research
methods available.

As we were planning and editing this volume, we dis-
cussed on many occasions the extent to which psychology
and the available research methods have become increasing
complex over the course of our careers. When our generation
of researchers began their careers in the late 1960s and early
1970s, experimental design was largely limited to simple
between-group designs, and data analysis was dominated by
a single method, the analysis of variance. A few other ap-
proaches were employed, but by a limited number of re-
searchers. Multivariate statistics had been developed, but
multiple regression analysis was the only method that was
applied with any frequency. Factor analysis was used almost
exclusively as a method in scale development. Classical test
theory was the basis of most psychological and educational
measures. Analysis of data from studies that did not meet
either the design or measurement assumptions required for an
analysis of variance was covered for most researchers by a
single book on nonparametric statistics by Siegel (1956). As
a review of the contents of this volume illustrates, the choice
of experimental and analytic methods available to the
present-day researcher is much broader. It would be fair to
say that the researcher in the 1960s had to formulate research
questions to fit the available methods. Currently, there are re-
search methods available to address most research questions.

In the history of science, an explosion of knowledge is
usually the result of an advance in technology, new theoreti-
cal models, or unexpected empirical findings. Advances in
research methods have occurred as the result of all three fac-
tors, typically in an interactive manner. Some of the specific
factors include advances in instrumentation and measure-
ment technology, the availability of inexpensive desktop

xi

computers to perform complex methods of data analysis, in-
creased computer capacity allowing for more intense analysis
of larger datasets, computer simulations that permit the eval-
uation of procedures across a wide variety of situations, new
approaches to data analysis and statistical control, and ad-
vances in companion sciences that opened pathways to the
exploration of behavior and created new areas of research
specialization and collaboration.

Consider the advances since the publication of the
first edition of Kirk’s (1968) text on experimental design.
At that time most studies were relatively small N experiments
that were conducted in psychology laboratories. Research ac-
tivity has subsequently exploded in applied and clinical
areas, with a proliferation of new journals largely dedicated
to quasi-experimental studies and studies in the natural envi-
ronment (e.g., in neuropsychology and health psychology).
Techniques such as polymerase chain reaction allow psychol-
ogists to test specific genes as risk candidates for behavioral
disorders. These studies rely on statistical procedures that are
still largely ignored by many researchers (e.g., logistic re-
gression, structural equation modeling). Brain imaging
procedures such as magnetic resonance imaging, magnetoen-
cephalography, and positron-emission tomography provide
cognitive psychologists and neuropsychologists the opportu-
nity to study cortical activity on-line. Clinical trials involving
behavioral interventions applied to large, representative sam-
ples are commonplace in health psychology. Research em-
ploying each of these procedures requires not only highly
specific and rigorous research methods, but also special
methods for handling and analyzing extremely large volumes
of data. Even in more traditional areas of research that con-
tinue to rely on group experimental designs, issues of mea-
suring practical significance, determination of sample size
and power, and procedures for handling nuisance variables
are now important concerns. Not surprisingly, the third edi-
tion of Kirk’s (1995) text has grown in page length by 60%.

Our review of these trends leads to several conclusions,
which are reflected in the selection of topics covered by the
chapters in this volume. Six features appear to characterize
the evolution in research methodology in psychology.

First, there has been a focus on the development of proce-
dures that employ statistical control rather than experimental
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control. Because most of the recent growth involves research
in areas that preclude direct control of independent variables,
multivariate statistics and the development of methods such
as path analysis and structural equation modeling have been
critical developments. The use of statistical control has al-
lowed psychology to move from the carefully controlled con-
fines of the laboratory to the natural environment.

Second, there has been an increasing focus on construct-
driven, or latent-variable, research. A construct is defined by
multiple observed variables. Constructs can be viewed as
more reliable and more generalizable than a single observed
variable. Constructs serve to organize a large set of observed
variables, resulting in parsimony. Constructs are also theoret-
ically based. This theory-based approach serves to guide
study design, the choice of variables, the data analysis, and
the data interpretation.

Third, there has been an increasing emphasis on the de-
velopment of new measures and new measurement models.
This is not a new trend but an acceleration of an old trend.
The behavioral sciences have always placed the most empha-
sis on the issue of measurement. With the movement of the
field out of the laboratory combined with advances in tech-
nology, the repertoire of measures, the quality of the mea-
sures, and the sophistication of the measurement models have
all increased dramatically.

Fourth, there is increasing recognition of the importance of
the temporal dimension in understanding a broad range of psy-
chological phenomena. We have become a more intervention-
oriented science, recognizing not only the complexity of
treatment effects but also the importance of the change in pat-
terns of the effects over time. The effects of an intervention
may be very different at different points in time. New statisti-
cal models for modeling temporal data have resulted.

Fifth, new methods of analysis have been developed
that no longer require the assumption of a continuous, equal-
interval, normally distributed variable. Previously, re-
searchers had the choice between very simple but limited
methods of data analysis that corresponded to the properties
of the measure or more complex sophisticated methods of
analysis that assumed, often inappropriately, that the measure
met very rigid assumptions. New methods have been devel-
oped for categorical, ordinal, or simply nonnormal variables
that can perform an equally sophisticated analysis.

Sixth, the importance of individual differences is increas-
ingly emphasized in intervention studies. Psychology has
always been interested in individual differences, but meth-
ods of data analysis have focused almost entirely on the rela-
tionships between variables. Individuals were studied as
members of groups, and individual differences served only to
inflate the error variance. New techniques permit researchers

to focus on the individual and model individual differences.
This becomes increasingly important as we recognize that in-
terventions do not affect everyone in exactly the same ways
and that interventions become more and more tailored to the
individual.

The text is organized into four parts. The first part, titled
“Foundations of Research,” addresses issues that are funda-
mental to all behavioral science research. The focus is on
study design, data management, data reduction, and data syn-
thesis. The first chapter, “Experimental Design” by Roger E.
Kirk, provides an overview of the basic considerations that
go into the design of a study. Once, a chapter on this topic
would have had to devote a great deal of attention to compu-
tational procedures. The availability of computers permits a
shift in focus to the conceptual rather than the computational
issues. The second chapter, “Exploratory Data Analysis” by
John T. Behrens and Chong-ho Yu, reminds us of the funda-
mental importance of looking at data in the most basic ways
as a first step in any data analysis. In some ways this repre-
sents a “back to the future” chapter. Advances in computer-
based graphical methods have brought a great deal of sophis-
tication to this very basic first step.

The third chapter, “Power: Basics, Practical Problems,
and Possible Solutions” by Rand R. Wilcox, reflects the crit-
ical change in focus for psychological research. Originally,
the central focus of a test of significance was on controlling
Type I error rates. The late Jacob Cohen emphasized that re-
searchers should be equally concerned by Type II errors.
This resulted in an emphasis on the careful planning of a
study and a concern with effect size and selecting the appro-
priate sample size. Wilcox updates and extends these con-
cepts. Chapter 4, “Methods for Handling Missing Data” by
John W. Graham, Patricio E. Cumsille, and Elvira Elek-Fisk,
describes the impressive statistical advances in addressing
the common practical problem of missing observations.
Previously, researchers had relied on a series of ad hoc pro-
cedures, often resulting in very inaccurate estimates. The new
statistical procedures allow the researcher to articulate the
assumptions about the reason the data is missing and make
very sophisticated estimates of the missing value based on all
the available information. This topic has taken on even more
importance with the increasing emphasis on longitudinal
studies and the inevitable problem of attrition.

The fifth chapter, “Preparatory Data Analysis” by Linda S.
Fidell and Barbara G. Tabachnick, describes methods of pre-
processing data before the application of other methods of
statistical analysis. Extreme values can distort the results of
the data analysis if not addressed. Diagnostic methods can
preprocess the data so that complex procedures are not un-
duly affected by a limited number of cases that often are the



result of some type of error. The last two chapters in this part,
“Factor Analysis” by Richard L. Gorsuch and “Clustering
and Classification Methods” by Glenn W. Milligan and
Stephen C. Hirtle, describe two widely employed parsimony
methods. Factor analysis operates in the variable domain and
attempts to reduce a set of p observed variables to a smaller
set of m factors. These factors, or latent variables, are more
easily interpreted and thus facilitate interpretation. Cluster
analysis operates in the person domain and attempts to reduce
a set of N individuals to a set of k clusters. Cluster analysis
serves to explore the relationships among individuals and or-
ganize the set of individuals into a limited number of sub-
types that share essential features. These methods are basic to
the development of construct-driven methods and the focus
on individual differences.

The second part, “Research Methods in Specific Content
Areas,” addresses research methods and issues as they apply
to specific content areas. Content areas were chosen in part to
parallel the other volumes of the Handbook. More important,
however, we attempted to sample content areas from a broad
spectrum of specialization with the hope that these chapters
would provide insights into methodological concerns and
solutions that would generalize to other areas. Chapter 8,
“Clinical Forensic Psychology” by Kevin S. Douglas, Randy
K. Otto, and Randy Borum, addresses research methods and
issues that occur in assessment and treatment contexts. For
each task that is unique to clinical forensic psychology
research, they provide examples of the clinical challenges
confronting the psychologist, identify problems faced when
researching the issues or constructs, and describe not only re-
search strategies that have been employed but also their
strengths and limitations. In Chapter 9, “Psychotherapy Out-
come Research,” Evelyn S. Behar and Thomas D. Borkovec
address the methodological issues that need to be considered
for investigators to draw the strongest and most specific
cause-and-effect conclusions about the active components of
treatments, human behavior, and the effectiveness of thera-
peutic interventions.

The field of health psychology is largely defined by three
topics: the role of behavior (e.g., smoking) in the develop-
ment and prevention of disease, the role of stress and emotion
as psychobiological influences on disease, and psychological
aspects of acute and chronic illness and medical care. Insight
into the methodological issues and solutions for research in
each of these topical areas is provided by Timothy W. Smith
in Chapter 10, “Health Psychology.”

At one time, most behavioral experimentation was con-
ducted by individuals whose training focused heavily on ani-
mal research. Now many neuroscientists, trained in various
fields, conduct research in animal learning and publish
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findings that are of interest to psychologists in many fields.
The major goal of Chapter 11, “Animal Learning” by Russell
M. Church, is to transfer what is fairly common knowledge in
experimental animal psychology to investigators with limited
exposure to this area of research. In Chapter 12, “Neuropsy-
chology,” Russell M. Bauer, Elizabeth C. Leritz, and Dawn
Bowers provide a discussion of neuropsychological inference,
an overview of major approaches to neuropsychological re-
search, and areview of newer techniques, including functional
neuroimaging, electrophysiology, magnetoencephalography,
and reversible lesion methods. In each section, they describe
the conceptual basis of the technique, outline its strengths and
weaknesses, and cite examples of how it has been used in
addressing conceptual problems in neuropsychology.

Whatever their specialty area, when psychologists evalu-
ate a program or policy, the question of impact is often at cen-
ter stage. The last chapter in this part, “Program Evaluation”
by Melvin M. Mark, focuses on key methods for estimating
the effects of policies and programs in the context of evalua-
tion. Additionally, Mark addresses several noncausal forms
of program evaluation research that are infrequently ad-
dressed in methodological treatises.

The third part is titled “Measurement Issues.” Advances in
measurement typically combine innovation in technology
and progress in theory. As our measures become more so-
phisticated, the areas of application also increase.

Mood emerged as a seminal concept within psychology
during the 1980s, and its prominence has continued unabated
ever since. In Chapter 14, “Mood Measurement: Current
Status and Future Directions,” David Watson and Jatin Vaidya
examine current research regarding the underlying structure
of mood, describe and evaluate many of the most important
mood measures, and discuss several issues related to the
reliability and construct validity of mood measurement. In
Chapter 15, “Measuring Personality and Psychopathology,”
Leslie C. Morey uses objective self-report methods of mea-
surement to illustrate contemporary procedures for scale
development and validation, addressing issues critical to all
measurement methods such as theoretical articulation, situa-
tional context, and the need for discriminant validity.

The appeal of circular models lies in the combination of a
circle’s aesthetic (organizational) simplicity and its powerful
potential to describe data in uniquely compelling substantive
and geometric ways, as has been demonstrated in describ-
ing interpersonal behavior and occupational interests. In
Chapter 16, “The Circumplex Model: Methods and Research
Applications,” Michael B. Gurtman and Aaron L. Pincus dis-
cuss the application of the circumplex model to the descrip-
tions of individuals, comparisons of groups, and evaluations
of constructs and their measures.
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Chapter 17, “Item Response Theory and Measuring Abili-
ties” by Karen M. Schmidt and Susan E. Embretson, de-
scribes the types of formal models that have been designed to
guide measure development. For many years, most tests of
ability and achievement have relied on classical test theory as
a framework to guide both measure development and mea-
sure evaluation. Item response theory updates this model in
many important ways, permitting the development of a new
generation of measures of abilities and achievement that are
particularly appropriate for a more interactive model of as-
sessment. The last chapter of this part, “Growth Curve Analy-
sis in Contemporary Psychological Research” by John J.
McArdle and John R. Nesselroade, describes new quantita-
tive methods for the study of change in development psy-
chology. The methods permit the researcher to model a wide
variety of different patterns of developmental change over
time.

The final part, “Data Analysis Methods,” addresses statis-
tical procedures that have been developed recently and are
still not widely employed by many researchers. They are typ-
ically dependent on the availability of high-speed computers
and permit researchers to investigate novel and complex re-
search questions. Chapter 19, “Multiple Linear Regression”
by Leona Aiken, Stephen G. West, and Steven C. Pitts, de-
scribes the advances in multiple linear regression that permit
applications of this very basic method to the analysis of com-
plex data sets and the incorporation of conceptual models to
guide the analysis. The testing of theoretical predictions and
the identification of implementation problems are the two
major foci of this chapter. Chapter 20, “Logistic Regression”
by Alfred DeMaris, describes a parallel method to multiple
regression analysis for categorical variables. The procedure
has been developed primarily outside of psychology and is
now being used much more frequently to address psycholog-
ical questions. Chapter 21, “Meta-Analysis” by Frank L.
Schmidt and John E. Hunter, describes procedures that have
been developed for the quantitative integration of research
findings across multiple studies. Previously, research findings
were integrated in narrative form and were subject to the bi-
ases of the reviewer. The method also focuses attention on the
importance of effect size estimation.

Chapter 22, “Survival Analysis” by Judith D. Singer and
John B. Willett, describes a recently developed method for
analyzing longitudinal data. One approach is to code whether
an event has occurred at a given occasion. By switching the
focus on the time to the occurrence of the event, a much more
powerful and sophisticated analysis can be performed. Again,
the development of this procedure has occurred largely out-
side psychology but is being employed much more fre-
quently. In Chapter 23, “Time Series Analysis,” Wayne

Velicer and Joseph L. Fava describe a method for studying
the change in a single individual over time. Instead of a sin-
gle observation on many subjects, this method relies on many
observations on a single subject. In many ways, this method
is the prime exemplar of longitudinal research methods.

Chapter 24, “Structural Equation Modeling” by Jodie B.
Ullman and Peter M. Bentler, describes a very general
method that combines three key themes: constructs or latent
variables, statistical control, and theory to guide data analy-
sis. First employed as an analytic method little more than
20 years ago, the method is now widely disseminated in the
behavioral sciences. Chapter 25, “Ordinal Analysis of Behav-
ioral Data” by Jeffrey D. Long, Du Feng, and Norman Cliff,
discusses the assumptions that underlie many of the widely
used statistical methods and describes a parallel series of
methods of analysis that only assume that the measure pro-
vides ordinal information. The last chapter, “Latent Class and
Latent Transition Analysis” by Stephanie L. Lanza, Brian P.
Flaherty, and Linda M. Collins, describes a new method for
analyzing change over time. It is particularly appropriate
when the change process can be conceptualized as a series of
discrete states.

In completing this project, we realized that we were very
fortunate in several ways. Irving Weiner’s performance as
editor-in-chief was simply wonderful. He applied just the right
mix of obsessive concern and responsive support to keep things
on schedule. His comments on issues of emphasis, perspective,
and quality were insightful and inevitably on target.

We continue to be impressed with the professionalism of
the authors that we were able to recruit into this effort.
Consistent with their reputations, these individuals deliv-
ered chapters of exceptional quality, making our burden
pale in comparison to other editorial experiences. Because of
the length of the project, we shared many contributors’
experiences-marriages, births, illnesses, family crises. A def-
inite plus for us has been the formation of new friendships
and professional liaisons.

Our editorial tasks were also aided greatly by the generous
assistance of our reviewers, most of whom will be quickly
recognized by our readers for their own expertise in research
methodology. We are pleased to thank James Algina, Phipps
Arabie, Patti Barrows, Betsy Jane Becker, Lisa M. Brown,
Barbara M. Byrne, William F. Chaplin, Pat Cohen, Patrick J.
Curren, Glenn Curtiss, Richard B. Darlington, Susan
Duncan, Brian Everitt, Kerry Evers, Ron Gironda, Lisa
Harlow, Michael R. Harwell, Don Hedeker, David Charles
Howell, Lawrence J. Hubert, Bradley E. Huitema, Beth
Jenkins, Herbert W. Marsh, Rosemarie A. Martin, Scott E.
Maxwell, Kevin R. Murphy, Gregory Norman, Daniel J.
Ozer, Melanie Page, Mark D. Reckase, Charles S. Reichardt,



Steven Reise, Joseph L. Rogers, Joseph Rossi, James
Rounds, Shlomo S. Sawilowsky, Ian Spence, James H.
Steiger, Xiaowu Sun, Randall C. Swaim, David Thissen,
Bruce Thompson, Terence J. G. Tracey, Rod Vanderploeg,
Paul F. Velleman, Howard Wainer, Douglas Williams, and
several anonymous reviewers for their thorough work and
good counsel.

We finish this preface with a caveat. Readers will in-
evitably discover several contradictions or disagreements
across the chapter offerings. Inevitably, researchers in differ-
ent areas solve similar methodological problems in different
ways. These differences are reflected in the offerings of this
text, and we have not attempted to mediate these differing
viewpoints. Rather, we believe that the serious researcher
will welcome the opportunity to review solutions suggested
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or supported by differing approaches. For flaws in the text,
however, the usual rule applies: We assume all responsibility.

JOHN A. SCHINKA
WAYNE F. VELICER
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FOUNDATIONS OF RESEARCH ISSUES:
STUDY DESIGN, DATA MANAGEMENT,
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CHAPTER 1

Experimental Design

ROGER E. KIRK

SOME BASIC EXPERIMENTAL DESIGN CONCEPTS 3
THREE BUILDING BLOCK DESIGNS 4

Completely Randomized Design 4

Randomized Block Design 6

Latin Square Design 9
CLASSIFICATION OF EXPERIMENTAL DESIGNS 10
FACTORIAL DESIGNS 11

Completely Randomized Factorial Design 11

Alternative Models 14

Randomized Block Factorial Design 19

SOME BASIC EXPERIMENTAL
DESIGN CONCEPTS

Experimental design is concerned with the skillful interroga-
tion of nature. Unfortunately, nature is reluctant to reveal
her secrets. Joan Fisher Box (1978) observed in her autobiog-
raphy of her father, Ronald A. Fisher, “Far from behaving
consistently, however, Nature appears vacillating, coy, and
ambiguous in her answers” (p. 140). Her most effective
tool for confusing researchers is variability—in particular,
variability among participants or experimental units. But
two can play the variability game. By comparing the variabil-
ity among participants treated differently to the variability
among participants treated alike, researchers can make in-
formed choices between competing hypotheses in science
and technology.

‘We must never underestimate nature—she is a formidable
foe. Carefully designed and executed experiments are re-
quired to learn her secrets. An experimental design is a plan
for assigning participants to experimental conditions and the
statistical analysis associated with the plan (Kirk, 1995, p. 1).
The design of an experiment involves a number of inter-
related activities:

1. Formulation of statistical hypotheses that are germane to the
scientific hypothesis. A statistical hypothesis is a statement

FACTORIAL DESIGNS WITH CONFOUNDING 21
Split-Plot Factorial Design 21
Confounded Factorial Designs 24
Fractional Factorial Designs 25
HIERARCHICAL DESIGNS 27
Hierarchical Designs With One or
Two Nested Treatments 27
Hierarchical Design With Crossed
and Nested Treatments 28

EXPERIMENTAL DESIGNS WITH A COVARIATE 29
REFERENCES 31

about (a) one or more parameters of a population or (b) the
functional form of a population. Statistical hypotheses
are rarely identical to scientific hypotheses—they are
testable formulations of scientific hypotheses.

2. Determination of the experimental conditions (independent
variable) to be manipulated, the measurement (dependent
variable) to be recorded, and the extraneous conditions
(nuisance variables) that must be controlled.

3. Specification of the number of participants required and
the population from which they will be sampled.

4. Specification of the procedure for assigning the partici-
pants to the experimental conditions.

5. Determination of the statistical analysis that will be
performed.

In short, an experimental design identifies the independent,
dependent, and nuisance variables and indicates the way in
which the randomization and statistical aspects of an experi-
ment are to be carried out.

Analysis of Variance

Analysis of variance (ANOVA) is a useful tool for under-
standing the variability in designed experiments. The seminal
ideas for both ANOVA and experimental design can be traced
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to Ronald A. Fisher, a statistician who worked at the Rotham-
sted Experimental Station. According to Box (1978, p. 100),
Fisher developed the basic ideas of ANOVA between 1919 and
1925. The first hint of what was to come appeared in a 1918
paper in which Fisher partitioned the total variance of a human
attribute into portions attributed to heredity, environment, and
other factors. The analysis of variance table for a two-treat-
ment factorial design appeared in a 1923 paper published with
M. A. Mackenzie (Fisher & Mackenzie, 1923). Fisher referred
to the table as a convenient way of arranging the arithmetic. In
1924 Fisher (1925) introduced the Latin square design in con-
nection with a forest nursery experiment. The publication in
1925 of his classic textbook Statistical Methods for Research
Workers and a short paper the following year (Fisher, 1926)
presented all the essential ideas of analysis of variance. The
textbook (Fisher, 1925, pp. 244-249) included a table of the
critical values of the ANOVA test statistic in terms of a func-
tion called z, where z = 1(In 6 Freatment — I Oro;). The statis-
tics 67 oyment AN Gy, denote, respectively, treatment and
error variance. A more convenient form of Fisher’s z table that
did not require looking up log values was developed by
George Snedecor (1934). His critical values are expressed in
terms of the function F = &7 ,ment/ T that is obtained
directly from the ANOVA calculations. He named it ' in honor
of Fisher. Fisher’s field of experimentation—agriculture—
was a fortunate choice because results had immediate applica-
tion with assessable economic value, because simplifying
assumptions such as normality and independence of errors
were usually tenable, and because the cost of conducting
experiments was modest.

Three Principles of Good Experimental Design

The publication of Fisher’s Statistical Methods for Research
Workers and his 1935 The Design of Experiments gradually
led to the acceptance of what today is considered to be the
cornerstone of good experimental design: randomization.
It is hard to imagine the hostility that greeted the suggestion
that participants or experimental units should be randomly
assigned to treatment levels. Before Fisher’s work, most
researchers used systematic schemes, not subject to the laws
of chance, to assign participants. According to Fisher, ran-
dom assignment has several purposes. It helps to distribute
the idiosyncratic characteristics of participants over the treat-
ment levels so that they do not selectively bias the outcome of
the experiment. Also, random assignment permits the com-
putation of an unbiased estimate of error effects—those
effects not attributable to the manipulation of the independent
variable—and it helps to ensure that the error effects are
statistically independent.

Fisher popularized two other principles of good experi-
mentation: replication and local control or blocking. Replica-
tion is the observation of two or more participants under
identical experimental conditions. Fisher observed that repli-
cation enables a researcher to estimate error effects and
obtain a more precise estimate of treatment effects. Blocking,
on the other hand, is an experimental procedure for isolating
variation attributable to a nuisance variable. As the name
suggests, nuisance variables are undesired sources of varia-
tion that can affect the dependent variable. There are many
sources of nuisance variation. Differences among partici-
pants comprise one source. Other sources include variation
in the presentation of instructions to participants, changes in
environmental conditions, and the effects of fatigue and
learning when participants are observed several times. Three
experimental approaches are used to deal with nuisance
variables:

1. Holding the variable constant.

2. Assigning participants randomly to the treatment levels so
that known and unsuspected sources of variation among
the participants are distributed over the entire experiment
and do not affect just one or a limited number of treatment
levels.

3. Including the nuisance variable as one of the factors in the
experiment.

The last experimental approach uses local control or blocking
to isolate variation attributable to the nuisance variable so
that it does not appear in estimates of treatment and error
effects. A statistical approach also can be used to deal with
nuisance variables. The approach is called analysis of covari-
ance and is described in the last section of this chapter.
The three principles that Fisher vigorously championed—
randomization, replication, and local control—remain the
cornerstones of good experimental design.

THREE BUILDING BLOCK DESIGNS

Completely Randomized Design

One of the simplest experimental designs is the randomization
and analysis plan that is used with a ¢ statistic for independent
samples. Consider an experiment to compare the effectiveness
of two diets for obese teenagers. The independent variable is
the two kinds of diets; the dependent variable is the amount of
weight loss two months after going on a diet. For notational
convenience, the two diets are called treatment A. The levels
of treatment A corresponding to the specific diets are denoted



by the lowercase letter a and a subscript: a, denotes one diet
and a, denotes the other. A particular but unspecified level of
treatment A is denoted by a;, where j ranges over the values 1
and 2. The amount of weight loss in pounds 2 months after
participant i went on diet j is denoted by Y;..

The null and alternative hypotheses for the weight-loss
experiment are, respectively,

Ho: py —py =0
Hyipy —py #0,

where w; and ., denote the mean weight loss of the respec-
tive populations. Assume that 30 girls who want to lose
weight are available to participate in the experiment. The
researcher assigns n = 15 girls to each of the p = 2 diets so
that each of the (np)!/(n!)? = 155,117,520 possible assign-
ments has the same probability. This is accomplished by
numbering the girls from 1 to 30 and drawing numbers from
arandom numbers table. The first 15 numbers drawn between
1 and 30 are assigned to treatment level a,; the remaining 15
numbers are assigned to a,. The layout for this experiment is
shown in Figure 1.1. The girls who were assigned to treat-
ment level a, are called Group,; those assigned to treatment
level a, are called Group,. The mean weight losses of the two
groups of girls are denoted by Y.; and Y .

The ¢ independent-samples design involves randomly
assigning participants to two levels of a treatment. A com-
pletely randomized design, which is described next, extends
this design strategy to two or more treatment levels. The com-
pletely randomized design is denoted by the letters CR-p,
where CR stands for “completely randomized” and p is the
number of levels of the treatment.

Again, consider the weight-loss experiment and suppose
that the researcher wants to evaluate the effectiveness of

Treatment
Level

Participant; a

Group; | Partlcjlpantz a'1 Yl
Paniéipantl 5 cil
Participant¢ @

Group, Partxcflpantn az 7,
Partiéipant30 az

Figure 1.1 Layout for a 7 independent-samples design. Thirty girls are ran-
domly assigned to two levels of treatment A with the restriction that 15 girls
are assigned to each level. The mean weight loss in pounds for the girls in
treatment levels a, and a, is denoted by Y.; and Y , respectively.
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Treatment
Level
Participant; ai
Group, Partlc?lpantz a.l 7«1
Partiéipant;S a
( Participant;g W
Group, Partlc.lpant” W ?2
Partiéipantm
[ Participants; a
Group; Paﬂ1§1pant32 @ Y3
L Partiéipant45 a3

Figure 1.2 Layout for a completely randomized design (CR-3 design).
Forty-five girls are randomly assigned to three levels of treatment A with the
restriction that 15 girls are assigned to each level. The mean weight loss in
pounds for the girls in treatment levels a,, a,, and a; is denoted by Y., Yo,
and Y 3, respectively.

three diets. The null and alternative hypotheses for the
experiment are, respectively,

Ho: oy = py = 3
Hy:p; # pn, for somejand j'.

Assume that 45 girls who want to lose weight are available to
participate in the experiment. The girls are randomly as-
signed to the three diets with the restriction that 15 girls are
assigned to each diet. The layout for the experiment is shown
in Figure 1.2. A comparison of the layout in this figure with
that in Figure 1.1 for a ¢ independent-samples design reveals
that they are the same except that the completely randomized
design has three treatment levels. The 7 independent-samples
design can be thought of as a special case of a completely
randomized design. When p is equal to two, the layouts and
randomization plans for the designs are identical.

Thus far I have identified the null hypothesis that the
researcher wants to test, p; = p, = W3, and described the
manner in which the participants are assigned to the three
treatment levels. In the following paragraphs I discuss the com-
posite nature of an observation, describe the classical model
equation for a CR-p design, and examine the meaning of the
terms treatment effect and error effect.

An observation, which is a measure of the dependent vari-
able, can be thought of as a composite that reflects the
effects of the (a) independent variable, (b) individual charac-
teristics of the participant or experimental unit, (c) chance
fluctuations in the participant’s performance, (d) measure-
ment and recording errors that occur during data collection,
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and (e) any other nuisance variables such as environmental
conditions that have not been controlled. Consider the weight
loss of the fifth participant in treatment level a,. Suppose that
two months after beginning the diet this participant has lost
13 pounds (Y5, = 13). What factors have affected the value of
Y5,? One factor is the effectiveness of the diet. Other factors
are her weight prior to starting the diet, the degree to which
she stayed on the diet, and the amount she exercised during
the two-month trial, to mention only a few. In summary, Y5, is
a composite that reflects (a) the effects of treatment level a,,
(b) effects unique to the participant, (c) effects attributable to
chance fluctuations in the participant’s behavior, (d) errors in
measuring and recording the participant’s weight loss, and
(e) any other effects that have not been controlled. Our con-
jectures about Y5, or any of the other 44 observations can be
expressed more formally by a model equation. The classical
model equation for the weight-loss experiment is

Yl'jz}.l,+0Lj+8i(j) (i:l,...,n;j:l,...,p),

where

Y., is the weight loss for participant i in treatment
level a;.

I is the grand mean of the three weight-loss popula-
tion means.

o;  isthe treatment effect for population j and is equal to
p; — p. It reflects the effects of diet a;.

€i(j) is the within-groups error effect associated with Y;;
and is equal to Y;; — p — ;. It reflects all effects
not attributable to treatment level a;. The notation
i(j) indicates that the ith participant appears only in
treatment level j. Participant i is said to be nested
within the jth treatment level. Nesting is discussed
in the section titled “Hierarchical Designs.”

According to the equation for this completely randomized
design, each observation is the sum of three parameters
W, o, and g;(j). The values of the parameters in the equation
are unknown but can be estimated from sample data.

The meanings of the terms grand mean, ., and treatment
effect, o, in the model equation seem fairly clear; the mean-
ing of error effect, &;;), requires a bit more explanation. Why
do observations, Y, S5 in the same treatment level vary from
one participant to the next? This variation must be due to dif-
ferences among the participants and to other uncontrolled
variables because the parameters p. and «; in the model equa-
tion are constants for all participants in the same treatment
level. To put it another way, observations in the same treatment

level are different because the error effects, g;;)s, for the
observations are different. Recall that error effects reflect idio-
syncratic characteristics of the participants—those character-
istics that differ from one participant to another—and any
other variables that have not been controlled. Researchers at-
tempt to minimize the size of error effects by holding sources
of variation that might contribute to the error effects constant
and by the judicial choice of an experimental design. Designs
that are described next permit a researcher to isolate and re-
move some sources of variation that would ordinarily be in-
cluded in the error effects.

Randomized Block Design

The two designs just described use independent samples. Two
samples are independent if, for example, a researcher ran-
domly samples from two populations or randomly assigns par-
ticipants to p groups. Dependent samples, on the other hand,
can be obtained by any of the following procedures.

1. Observe each participant under each treatment level in
the experiment—that is, obtain repeated measures on the
participants.

2. Form sets of participants who are similar with respect to
a variable that is correlated with the dependent variable.
This procedure is called participant matching.

3. Obtain sets of identical twins or littermates in which case
the participants have similar genetic characteristics.

4. Obtain participants who are matched by mutual selection,
for example, husband and wife pairs or business partners.

In the behavioral and social sciences, the participants are
often people whose aptitudes and experiences differ markedly.
Individual differences are inevitable, but it is often possible
to isolate or partition out a portion of these effects so that
they do not appear in estimates of the error effects. One design
for accomplishing this is the design used with a ¢ statistic for
dependent samples. As the name suggests, the design uses
dependent samples. A t dependent-samples design also uses a
more complex randomization and analysis plan than does a ¢
independent-samples design. However, the added complexity
is often accompanied by greater power—a point that I will de-
velop later in connection with a randomized block design.

Let’s reconsider the weight-loss experiment. It is reason-
able to assume that ease of losing weight is related to the
amount by which a girl is overweight. The design of the exper-
iment can be improved by isolating this nuisance variable.
Suppose that instead of randomly assigning 30 participants to
the treatment levels, the researcher formed pairs of participants



Treatment Treatment
Level Level
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Figure 1.3 Layout for a t dependent-samples design. Each block contains
two girls who are overweight by about the same amount. The two girls in a
block are randomly assigned to the treatment levels. The mean weight loss in
pounds for the girls in treatment levels @, and a, is denoted by Y.; and Y ,,
respectively.

so that prior to going on a diet the participants in each pair are
overweight by about the same amount. The participants in each
pair constitute a block or set of matched participants. A simple
way to form blocks of matched participants is to rank them
from least to most overweight. The participants ranked 1 and 2
are assigned to block one, those ranked 3 and 4 are assigned to
block two, and so on. In this example, 15 blocks of dependent
samples can be formed from the 30 participants. After all of the
blocks have been formed, the two participants in each block
are randomly assigned to the two diets. The layout for this ex-
periment is shown in Figure 1.3. If the researcher’s hunch is
correct that ease in losing weight is related to the amount by
which a girl is overweight, this design should result in a more
powerful test of the null hypothesis, w.; — ., = 0, than would
a t test for independent samples. As we will see, the increased
power results from isolating the nuisance variable (the amount
by which the girls are overweight) so that it does not appear in
the estimate of the error effects.

Earlier we saw that the layout and randomization proce-
dures for a ¢ independent-samples design and a completely
randomized design are the same except that a completely ran-
domized design can have more than two treatment levels.
The same comparison can be drawn between a ¢ dependent-
samples design and a randomized block design. A random-
ized block design is denoted by the letters RB-p, where RB
stands for “randomized block” and p is the number of levels
of the treatment. The four procedures for obtaining depen-
dent samples that were described earlier can be used to form
the blocks in a randomized block design. The procedure that
is used does not affect the computation of significance tests,
but the procedure does affect the interpretation of the results.
The results of an experiment with repeated measures general-
ize to a population of participants who have been exposed to
all of the treatment levels. However, the results of an experi-
ment with matched participants generalize to a population of
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participants who have been exposed to only one treatment
level. Some writers reserve the designation randomized
block design for this latter case. They refer to a design with
repeated measurements in which the order of administration
of the treatment levels is randomized independently for each
participant as a subjects-by-treatments design. A design with
repeated measurements in which the order of administration
of the treatment levels is the same for all participants is
referred to as a subject-by-trials design. I use the designation
randomized block design for all three cases.

Of the four ways of obtaining dependent samples, the use
of repeated measures on the participants typically results in
the greatest homogeneity within the blocks. However, if re-
peated measures are used, the effects of one treatment level
should dissipate before the participant is observed under an-
other treatment level. Otherwise the subsequent observations
will reflect the cumulative effects of the preceding treatment
levels. There is no such restriction, of course, if carryover ef-
fects such as learning or fatigue are the researcher’s principal
interest. If blocks are composed of identical twins or litter-
mates, it is assumed that the performance of participants hav-
ing identical or similar heredities will be more homogeneous
than the performance of participants having dissimilar hered-
ities. If blocks are composed of participants who are matched
by mutual selection (e.g., husband and wife pairs or business
partners), a researcher should ascertain that the participants
in a block are in fact more homogeneous with respect to the
dependent variable than are unmatched participants. A hus-
band and wife often have similar political attitudes; the cou-
ple is less likely to have similar mechanical aptitudes.

Suppose that in the weight-loss experiment the researcher
wants to evaluate the effectiveness of three diets, denoted
by a,, a,, and a,. The researcher suspects that ease of losing
weight is related to the amount by which a girl is overweight.
If a sample of 45 girls is available, the blocking procedure
described in connection with a ¢ dependent-samples design
can be used to form 15 blocks of participants. The three par-
ticipants in a block are matched with respect to the nuisance
variable, the amount by which a girl is overweight. The lay-
out for this experiment is shown in Figure 1.4. A comparison
of the layout in this figure with that in Figure 1.3 for a ¢
dependent-samples design reveals that they are the same ex-
cept that the randomized block design has p = 3 treatment
levels. When p = 2, the layouts and randomization plans for
the designs are identical. In this and later examples, I assume
that all of the treatment levels and blocks of interest are rep-
resented in the experiment. In other words, the treatment lev-
els and blocks represent fixed effects. A discussion of the case
in which either the treatment levels or blocks or both are ran-
domly sampled from a population of levels, the mixed and
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Treatment Treatment Treatment
Level Level Level
Block, a @ a }71
Block,y a @ a Y2
Blocks al @ @ Y.
Bléckls d1 dz d3 ?15.
7, Y, 2

Figure 1.4 Layout for a randomized block design (RB-3 design). Each
block contains three girls who are overweight by about the same amount.
The three girls in a block are randomly assigned to the treatment levels. The
mean weight loss in pounds for the girls in treatment levels a,, a,, and a5 is
denoted by Y1, Y5, and Y 3, respectively. The mean weight loss for the
girls in Block,, Blocks, . .., Block,s is denoted by Yi., Y2, ..., Yis.,
respectively.

random effects cases, is beyond the scope of this chapter. The
reader is referred to Kirk (1995, pp. 256-257, 265-268).

A randomized block design enables a researcher to test
two null hypotheses.

Ho: poy = py = ps
(Treatment population means are equal.)

Ho: oy =Py =+ = Wys.
(Block population means are equal.)

The second hypothesis, which is usually of little interest,
states that the population weight-loss means for the 15 levels
of the nuisance variable are equal. The researcher expects a
test of this null hypothesis to be significant. If the nuisance
variable represented by the blocks does not account for an ap-
preciable proportion of the total variation in the experiment,
little has been gained by isolating the effects of the variable.
Before exploring this point, I describe the model equation for
an RB-p design.

The classical model equation for the weight-loss experi-
ment is

Yij=|.L+OLj+1Ti+8ij (i=1,...,n;j=1,...,p),

where

Y;; is the weight loss for the participant in Block; and
treatment level a;.

i is the grand mean of the three weight-loss popula-
tion means.

o; 1is the treatment effect for population j and is equal to
p.; — p. Itreflects the effect of diet a;.

m;  is the block effect for population i and is equal to

W;. — W Itreflects the effect of the nuisance variable

in Block;.

&ij  Iis the residual error effect associated with Y;; and is
equal to ¥;; — p — o; — ;. Itreflects all effects not
attributable to treatment level a; and Block;.

According to the model equation for this randomized block
design, each observation is the sum of four parameters:
W, o, ™, and g;;. A residual error effect is that portion of an
observation that remains after the grand mean, treatment
effect, and block effect have been subtracted from it; that
is, g;j =Y;; — . —a; — ;. The sum of the squared error
effects for this randomized block design,

Do oe =2 Wi —p—o =)

will be smaller than the sum for the completely randomized
design,

YD e =) Yy —p )

if Tri2 is not equal to zero for one or more blocks. This idea is
illustrated in Figure 1.5, where the total sum of squares and
degrees of freedom for the two designs are partitioned. The F'
statistic that is used to test the null hypothesis can be thought
of as a ratio of error and treatment effects,

[ (error effects) + f (treatment effects)

F
f (error effects)

where f( ) denotes a function of the effects in parentheses. It
is apparent from an examination of this ratio that the smaller
the sum of the squared error effects, the larger the F statistic
and, hence, the greater the probability of rejecting a false null

SSTOIAL
np—1=44
CR-3 SSA SSWG
Design p~1=2 pn—1) =42
RB-3 SSA SSBL SSRES
Design| p-1=2 n—-1=14 (n—Dp—1)=28

Figure 1.5 Partition of the total sum of squares (SSTOTAL) and degrees of
freedom (np — 1 = 44) for CR-3 and RB-3 designs. The treatment and
within-groups sums of squares are denoted by, respectively, SSA and SSWG.
The block and residual sums of squares are denoted by, respectively, SSBL
and SSRES. The shaded rectangles indicate the sums of squares that are used
to compute the error variance for each design: MSWG = SSWG/p(n — 1)
and MSRES = SSRES/(n — 1)(p — 1). If the nuisance variable (SSBL) in the
randomized block design accounts for an appreciable portion of the total sum
of squares, the design will have a smaller error variance and, hence, greater
power than the completely randomized design.



hypothesis. Thus, by isolating a nuisance variable that ac-
counts for an appreciable portion of the total variation in a
randomized block design, a researcher is rewarded with a
more powerful test of a false null hypothesis.

As we have seen, blocking with respect to the nuisance
variable (the amount by which the girls are overweight)
enables the researcher to isolate this variable and remove it
from the error effects. But what if the nuisance variable
doesn’t account for any of the variation in the experiment? In
other words, what if all of the block effects in the experiment
are equal to zero? In this unlikely case, the sum of the squared
error effects for the randomized block and completely ran-
domized designs will be equal. In this case, the randomized
block design will be less powerful than the completely ran-
domized design because its error variance, the denominator
of the F statistic, has n — 1 fewer degrees of freedom than
the error variance for the completely randomized design. It
should be obvious that the nuisance variable should be se-
lected with care. The larger the correlation between the nui-
sance variable and the dependent variable, the more likely it
is that the block effects will account for an appreciable
proportion of the total variation in the experiment.

Latin Square Design

The Latin square design described in this section derives its
name from an ancient puzzle that was concerned with the
number of different ways that Latin letters can be arranged in
a square matrix so that each letter appears once in each row
and once in each column. An example of a 3 x 3 Latin square
is shown in Figure 1.6. In this figure I have used the letter a
with subscripts in place of Latin letters. The Latin square de-
sign is denoted by the letters LS-p, where LS stands for
“Latin square” and p is the number of levels of the treatment.
A Latin square design enables a researcher to isolate the ef-
fects of not one but two nuisance variables. The levels of one
nuisance variable are assigned to the rows of the square; the
levels of the other nuisance variable are assigned to the
columns. The levels of the treatment are assigned to the cells
of the square.

Let’s return to the weight-loss experiment. With a Latin
square design the researcher can isolate the effects of the
amount by which girls are overweight and the effects of a sec-
ond nuisance variable, for example, genetic predisposition to
be overweight. A rough measure of the second nuisance vari-
able can be obtained by asking a girl’s parents whether they
were overweight as teenagers: ¢, denotes neither parent over-
weight, ¢, denotes one parent overweight, and ¢, denotes both
parents overweight. This nuisance variable can be assigned to
the columns of the Latin square. Three levels of the amount by
which girls are overweight can be assigned to the rows of the

Three Building Block Designs 9

€l 2 €3

bil| @ | @ | «

bl @ | - | g

byl o | a | @

Figure 1.6 Three-by-three Latin square, where a; denotes one of the
ji=1..., p levels of treatment A; b, denotes one of the k = 1, ..., p levels
of nuisance variable B; and ¢, denotes one of the / =1, ..., p levels of nui-
sance variable C. Each level of treatment A appears once in each row and
once in each column as required for a Latin square.

Latin square: b, is less than 15 pounds, b, is 15 to 25 pounds,
and b, is more than 25 pounds. The advantage of being able to
isolate two nuisance variables comes at a price. The ran-
domization procedures for a Latin square design are more
complex than those for a randomized block design. Also, the
number of rows and columns of a Latin square must each
equal the number of treatment levels, which is three in the ex-
ample. This requirement can be very restrictive. For example,
it was necessary to restrict the continuous variable of the
amount by which girls are overweight to only three levels.
The layout of the LS-3 design is shown in Figure 1.7.

Treatment
Combination

Participant; arbicy

Group 1 ) : ) : Yl 11
Participants arbicy
Participantg arbycs

Group2 ) : . Yl 23
Participantyg arbsrcs
Participanty arbsycy

Group3 . Y.132
Participantys aibszco
Participantyg wbic

Group, i 5 Yo
Participantyg wmbicy
Participanty; wbicy

GI‘OUpg ) f. : Y331
Participantys abscy

Figure 1.7 Layout for a Latin square design (LS-3 design) that is based on
the Latin square in Figure 1.6. Treatment A represents three kinds of diets;
nuisance variable B represents amount by which the girls are overweight;
and nuisance variable C represents genetic predisposition to be overweight.
The girls in Group,, for example, received diet a,, were less than fifteen
pounds overweight (b)), and neither parent had been overweight as a
teenager (c,). The mean weight loss in pounds for the girls in the nine groups
is denoted by ?.111, 7.123 ..... ?.331 .
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The design in Figure 1.7 enables the researcher to test
three null hypotheses:

Hy: oy = po. = pa.
(Treatment population means are equal.)

Hp: oy = pg. = B,
(Row population means are equal.)

Ho:pp =Py =pos
(Column population means are equal.)

The first hypothesis states that the population means for the
three diets are equal. The second and third hypotheses make
similar assertions about the population means for the two
nuisance variables. Tests of these nuisance variables are ex-
pected to be significant. As discussed earlier, if the nuisance
variables do not account for an appreciable proportion of the
total variation in the experiment, little has been gained by iso-
lating the effects of the variables.

The classical model equation for this version of the
weight-loss experiment is

Yiim =W+ o + By +v, + &+ €igin

G=1....n;j=1,....p;k=1,....,p;1=1,...,p),

where

Yiju is the weight loss for the ith participant in treat-
ment level a;, row by, and column c,.

o is the treatment effect for population j and is equal
to ;.. — . It reflects the effect of diet a;.

B is the row effect for population k and is equal
to . — p. It reflects the effect of nuisance vari-
able b,.

v is the column effect for population / and is equal
to ., — w. It reflects the effects of nuisance vari-
able c,.

gkl is the residual effect that is equal to p;; — p;.—
Mg — By + 2.

€ijky 1s the within-cell error effect associated with Y,
and is equal to Yjiy — b — o; — By — v, — gju-

According to the model equation for this Latin square design,
each observation is the sum of six parameters: w, o, By,
Y;» €jki» and &;(jxy. The sum of the squared within-cell error
effects for the Latin square design,

ZZS%UH) = Z Z(Yijkl —p— =By — 8jkl)2’

will be smaller than the sum for the randomized block design,

ZZS,ZJ :ZZ(YU — - — )7,

if the combined effects of Y B}, Y v/, and ) &3, are
greater than ) 1'ri2. The benefits of isolating two nuisance
variables are a smaller error variance and increased power.

Thus far I have described three of the simplest experimen-
tal designs: the completely randomized design, randomized
block design, and Latin square design. The three designs are
called building block designs because complex experimental
designs can be constructed by combining two or more of these
simple designs (Kirk, 1995, p. 40). Furthermore, the random-
ization procedures, data analysis, and model assumptions for
complex designs represent extensions of those for the three
building block designs. The three designs provide the organi-
zational structure for the design nomenclature and classifica-
tion scheme that is described next.

CLASSIFICATION OF EXPERIMENTAL DESIGNS

A classification scheme for experimental designs is given in
Table 1.1. The designs in the category systematic designs do
not use random assignment of participants or experimental
units and are of historical interest only. According to Leonard
and Clark (1939), agricultural field research employing sys-
tematic designs on a practical scale dates back to 1834. Over
the last 80 years systematic designs have fallen into disuse be-
cause designs employing random assignment are more likely
to provide valid estimates of treatment and error effects and
can be analyzed using the powerful tools of statistical infer-
ence such as analysis of variance. Experimental designs using
random assignment are called randomized designs. The ran-
domized designs in Table 1.1 are subdivided into categories
based on (a) the number of treatments, (b) whether participants
are assigned to relatively homogeneous blocks prior to random
assignment, (c) presence or absence of confounding, (d) use of
crossed or nested treatments, and (e) use of a covariate.

The letters p and ¢ in the abbreviated designations denote
the number of levels of treatments A and B, respectively. If a
design includes a third and fourth treatment, say treatments C
and D, the number of their levels is denoted by r and ¢,
respectively. In general, the designation for designs with two
or more treatments includes the letters CR, RB, or LS to
indicate the building block design. The letter F or H is added
to the designation to indicate that the design is, respectively, a
factorial design or a hierarchical design. For example, the F in
the designation CRF-pq indicates that it is a factorial design;
the CR and pq indicate that the design was constructed by
combining two completely randomized designs with p and ¢
treatment levels. The letters CF, PF, FF, and AC are added to
the designation if the design is, respectively, a confounded
factorial design, partially confounded factorial design, frac-
tional factorial design, or analysis of covariance design.



TABLE 1.1 Classification of Experimental Designs
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Abbreviated Abbreviated
Experimental Design Designation® Experimental Design Designation®
I. Systematic Designs (selected examples). b. Randomized block completely confounded RBCF-p*
1. Beavan’s chessboard design. factorial design.
2. Beavan’s half-drill strip design. ¢. Randomized block partially confounded RBPF-p*
3. Diagonal square design. factorial design.
4. Knut Vik square design. 4. Designs with treatment-interaction confounding.
II. Randomized Designs With One Treatment. a. Completely randomized fractional CRFF-p*~
A. Experimental units randomly assigned to factorial design.
treatment levels. b. Graeco-Latin square fractional factorial design. GLSFF-p*
1. Completely randomized design. CR-p c. Latin square fractional factorial design. LSFF-p*
B. Experimental units assigned to relatively d. Randomized block fractional factorial design. RBFF-p*~
homogeneous blocks or groups prior to B. Hierarchical designs: designs in which one or
random assignment. more treatments are nested.
1. Balanced incomplete block design. BIB-p 1. Designs with complete nesting.
2. Cross-over design. CO-p a. Completely randomized hierarchical design. CRH-pg(A)
3. Generalized randomized block design. GRB-p b. Randomized block hierarchical design. RBH-pg(A)
4. Graeco-Latin square design. GLS-p 2. Designs with partial nesting.
5. Hyper-Graeco-Latin square design. HGLS-p a. Completely randomized partial CRPH-pg(A)r
6. Latin square design. LS-p hierarchical design.
7. Lattice balanced incomplete block design. LBIB-p b. Randomized block partial hierarchical design. RBPH-pg(A)r
8. Lattice partially balanced incomplete LPBIB-p c. Split-plot partial hierarchical design. SPH-p-qr(B)
block design. IV. Randomized Designs With One or More Covariates.
9. Lattice unbalanced incomplete block design. LUBIB-p A. Designs that include a covariate have
10. Partially balanced incomplete block design. PBIB-p the letters AC added to the abbreviated
11. Randomized block design. RB-p designation as in the following examples.
12. Youden square design. YBIB-p 1. Completely randomized analysis of covariance CRAC-p
III. Randomized Designs With Two or More Treatments. design.
A. Factorial designs: designs in which all treatments 2. Completely randomized factorial analysis CRFAC-pq
are crossed. of covariance design.
1. Designs without confounding. 3. Latin square analysis of covariance design. LSAC-p
a. Completely randomized factorial design. CRF-pq 4. Randomized block analysis of covariance design. RBAC-p
b. Generalized randomized block factorial design. GRBF-pg 5. Split-plot factorial analysis of covariance design. SPFAC-p-q
c. Randomized block factorial design. RBF-pq V. Miscellaneous Designs (select examples).
2. Design with group-treatment confounding. 1. Solomon four-group design.
a. Split-plot factorial design. SPF-p-q 2. Interrupted time-series design.
3. Designs with group-interaction confounding.
a. Latin square confounded factorial design. LSCF-p*

“The abbreviated designations are discussed later.

Three of these designs are described later. Because of space
limitations, I cannot describe all of the designs in Table 1.1.
I will focus on those designs that are potentially the most
useful in the behavioral and social sciences.

It is apparent from Table 1.1 that a wide array of designs
is available to researchers. Unfortunately, there is no univer-
sally accepted designation for the various designs—some
designs have as many as five different names. For example,
the completely randomized design has been called a one-way
classification design, single-factor design, randomized group
design, simple randomized design, and single variable exper-
iment. Also, a variety of design classification schemes have
been proposed. The classification scheme in Table 1.1 owes
much to Cochran and Cox (1957, chaps. 4-13) and Federer
(1955, pp. 11-12).

A quick perusal of Table 1.1 reveals why researchers
sometimes have difficulty selecting an appropriate experi-
mental design—there are a lot of designs from which to

choose. Because of the wide variety of designs available, it is
important to identify them clearly in research reports. One
often sees statements such as “a two-treatment factorial de-
sign was used.” It should be evident that a more precise
description is required. This description could refer to 10 of
the 11 factorial designs in Table 1.1.

Thus far, the discussion has been limited to designs with
one treatment and one or two nuisance variables. In the fol-
lowing sections I describe designs with two or more treat-
ments that are constructed by combining several building
block designs.

FACTORIAL DESIGNS

Completely Randomized Factorial Design

Factorial designs differ from those described previously in
that two or more treatments can be evaluated simultaneously
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in an experiment. The simplest factorial design from the
standpoint of randomization, data analysis, and model as-
sumptions is based on a completely randomized design and,
hence, is called a completely randomized factorial design. A
two-treatment completely randomized factorial design is de-
noted by the letters CRF-pg, where p and g denote the num-
ber of levels, respectively, of treatments A and B.

In the weight-loss experiment, a researcher might be inter-
ested in knowing also whether walking on a treadmill for
20 minutes a day would contribute to losing weight, as well
as whether the difference between the effects of walking or
not walking on the treadmill would be the same for each of
the three diets. To answer these additional questions, a re-
searcher can use a two-treatment completely randomized fac-
torial design. Let treatment A consist of the three diets (a,, a,,
and a,) and treatment B consist of no exercise on the tread-
mill (b,) and exercise for 20 minutes a day on the treadmill
(b,). This design is a CRF-32 design, where 3 is the number
of levels of treatment A and 2 is the number of levels of treat-
ment B. The layout for the design is obtained by combining
the treatment levels of a CR-3 design with those of a CR-2
design so that each treatment level of the CR-3 design ap-
pears once with each level of the CR-2 design and vice versa.
The resulting design has 3 x 2 = 6 treatment combinations
as follows: a,b,, a\b,, a,b,, a,b,, a;b,, a;b,. When treatment
levels are combined in this way, the treatments are said to be
crossed. The use of crossed treatments is a characteristic of
all factorial designs. The layout of the design with 30 girls
randomly assigned to the six treatment combinations is
shown in Figure 1.8.

The classical model equation for the weight-loss experi-
ment is

Yijk = w+ oy + By + (aB)jx + €iginy

G=1,....n;j=1,....,p;k=1,...,9),
where
Yijk is the weight loss for participant i in treatment
combination a;b;.
I is the grand mean of the six weight-loss popula-
tion means.
o is the treatment effect for population @; and is
equal to p;. — . It reflects the effect of diet a;.
B is the treatment effect for population b, and is

equal to w, — . Itreflects the effects of exercise
condition b,.

(aB)jx is the interaction effect for populations a;and b,
and is equal to p;; — w;. — e — P Interaction
effects are discussed later.

Treatment
Combination

Participant; arby _

GI'Ol.Ip 1 : : Y 11
Participants a1bq
Participantg arby

Group, : ; Yy,
Participantjg arbs
Participanty aby

Group3 : : Y5
Participant;s a by
Participant;g aby

Gr Oupy : : Y22
Participantyq Wby
Participanty; aby

Group5 : : Y31
Participantys a3 by
Participantyg aby

Groupg : : Y,
Participantsg aby

Figure 1.8 Layout for a two-treatment completely randomized factorial
design (CRF-32 design). Thirty girls are randomly assigned to six combina-
tions of treatments A and B with the restriction that five girls are assigned to
each combination. The mean weight loss in pounds for girls in the six groups
is denoted by 74]1, Y.12, ey Y";z

€i(jry 1s the within-cell error effect associated with Y;jx
and is equal to Yijx — p — o — By — (af)ji. It
reflects all effects not attributable to treatment
level a;, treatment level b,, and the interaction of a;
and b,.

The CRF-32 design enables a researcher to test three null
hypotheses:

Hoy: oy, = py. = pa.
(Treatment A population means are equal.)

Ho: g = oy

(Treatment B population means are equal.)
Ho: pji — Wjpr — W + Wi = 0 for all j and k

(All A x B interaction effects equal zero.)

The last hypothesis is unique to factorial designs. It states that
the joint effects (interaction) of treatments A and B are equal
to zero for all combinations of the two treatments. Two treat-
ments are said to interact if any difference in the dependent
variable for one treatment is different at two or more levels of
the other treatment.

Thirty girls are available to participate in the weight-loss ex-
periment and have been randomly assigned to the six treatment
combinations with the restriction that five girls are assigned to



TABLE 1.2 Weight-Loss Data for the Diet (aj) and Exercise
Conditions (b,)

ab, ab, ab, ab, asb, asb,
7 7 9 10 15 13
13 14 4 5 10 16
9 11 7 7 12 20
5 4 14 15 5 19
1 9 11 13 8 12

each combination. The data, weight loss for each girl, are given
in Table 1.2. A descriptive summary of the data—sample
means and standard deviations—is given in Table 1.3.

An examination of Table 1.3 suggests that diet a, resulted
in more weight loss than did the other diets and 20 minutes a
day on the treadmill was beneficial. The analysis of variance
for the weight-loss data is summarized in Table 1.4, which
shows that the null hypotheses for treatments A and B can be
rejected. We know that at least one contrast or difference
among the diet population means is not equal to zero. Also,
from Tables 1.3 and 1.4 we know that 20 minutes a day on
the treadmill resulted in greater weight loss than did the
no-exercise condition. The A x B interaction test is not
significant. When two treatments interact, a graph in which
treatment-combination population means are connected by
lines will always reveal at least two nonparallel lines for one
or more segments of the lines. The nonsignificant interac-
tion test in Table 1.4 tells us that there is no reason for be-
lieving that the population difference in weight loss between
the treadmill and no-treadmill conditions is different for the
three diets. If the interaction had been significant, our interest
would have shifted from interpreting the tests of treatments A
and B to understanding the nature of the interaction. Proce-
dures for interpreting interactions are described by Kirk
(1995, pp. 370-372, 377-389).

Statistical Significance Versus Practical Significance
The rejection of the null hypotheses for the diet and exercise

treatments is not very informative. We know in advance that

TABLE 1.3 Descriptive Summary of the Weight-Loss Data: Means
(Y) and Standard Deviations (S)

Mean
Standard
Diet a, Diet a, Diet a, Deviation
Notreadmill Y. =70 Y3 =90 Y3 =100 |Y. =87
exercise (b)) S.q1 =4.0 So1 =34  S3 =34 | S, =38
Treadmill Y12=90 Yon=100 Y»=160|Y.,=117
exercise (b,) S =3.4 Son =37 Si32 =32 S.2=46
Y. =80 Y,=95 Y3 =13.0
S1. =38 S, =3.6 S3. =44
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TABLE 1.4 Analysis of Variance for the Weight-Loss Data
Source SS df MS F P

Treatment A (Diet) 131.6667 2 65.8334 4.25 .026
Treatment B (Exercise) 67.5000 1 67.5000 4.35 .048
A X B 35.0000 2 17.5000 1.13 .340
Within cell 372.0000 24 15.5000

Total 606.1667 29

the hypotheses are false. As John Tukey (1991) wrote, “the
effects of A and B are always different—in some decimal
place—for any A and B. Thus asking ‘Are the effects differ-
ent?” is foolish” (p. 100). Furthermore, rejection of a null
hypothesis tells us nothing about the size of the treatment
effects or whether they are important or large enough to be
useful—that is, their practical significance. In spite of numer-
ous criticisms of null hypothesis significance testing, re-
searchers continue to focus on null hypotheses and p values.
The focus should be on the data and on what the data tell the
researcher about the scientific hypothesis. This is not a new
idea. It was originally touched on by Karl Pearson in 1901
and more explicitly by Fisher in 1925. Fisher (1925) pro-
posed that researchers supplement null hypothesis signifi-
cance tests with measures of strength of association. Since
then over 40 supplementary measures of effect magnitude
have been proposed (Kirk, 1996). The majority of the mea-
sures fall into one of two categories: measures of strength of
association and measures of effect size (typically, standard-
ized mean differences). Hays (1963) introduced a measure
of strength of association that can assist a researcher in as-
sessing the importance or usefulness of a treatment: omega
squared, o7 Omega squared estimates the proportion of the
population variance in the dependent variable accounted
for by a treatment. For experiments with several treatments,
as in the weight-loss experiment, partial omega squared is
computed. For example, the proportion of variance in the
dependent variable, Y, accounted for by treatment A eliminat-
ing treatment B and the A x B interaction is denoted by
(I)%,l A, ap- Similarly, &%,‘ .4, o denotes the proportion of the
variance accounted for by treatment B eliminating treatment
A and the A x B interaction. For the weight-loss experiment,
the partial omega squareds for treatments A and B are,
respectively,

o2 . (p=DFa—1
YIABAB T (p —1)(Fy — 1) + npq

(3 —1)(4.247 - 1)

= =0.18
B-1D#247-1)+(5B)(2)
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o2 . (@-DWFs—-1
AR T (g — D(Fg — 1) +npq

2-1@4376 - 1) B
2-1D4376 -1+ B)B3)Q)

Following Cohen’s (1988, pp. 284-288) guidelines for inter-
preting omega squared,

.010 is a small association
.059 is a medium association

.138 is a large association,

we conclude that the diets accounted for a large proportion
of the population variance in weight loss. This is consistent
with our perception of the differences between the weight-
loss means for the three diets: girls on diet a, lost five more
pounds than did those on a,. Certainly, any girl who is anx-
ious to lose weight would want to be on diet a,. Likewise, the
medium association between the exercise conditions and
weight loss is practically significant: Walking on the tread-
mill resulted in a mean weight loss of 3 pounds. Based on
Tukey’s HSD statistic, 95% confidence intervals for the three
pairwise contrasts among the diet means are

S99 <p;—py, <29
94 <p, —p3 <—06
=79 <y, —ps3 <09

Because the confidence interval for w.; — p.; does not con-
tain 0, we can be confident that diet a5 is superior to diet a,.
Hedges’s (1981) effect size for the difference between diets
a, and a, is

Y=Y, 18.0-13.0]

| - =127,
OPooled 3.937

a large effect.

Unfortunately, there is no statistic that measures practical
significance. The determination of whether results are impor-
tant or useful must be made by the researcher. However, con-
fidence intervals and measures of effect magnitude can help
the researcher make this decision. If our discipline is to
progress as it should, researchers must look beyond signifi-
cance tests and p values and focus on what their data tell them
about the phenomenon under investigation. For a fuller
discussion of this point, see Kirk (2001).

Alternative Models

Thus far, I have described the classical model equation for
several experimental designs. This model and associated

procedures for computing sums of squares assume that all
cell ns in multitreatment experiments are equal. If the cell ns
are not equal, some researchers use one of the following pro-
cedures to obtain approximate tests of null hypotheses: (a) es-
timate the missing observations under the assumption that the
treatments do not interact, (b) randomly set aside data to re-
duce all cell ns to the same size, and (c) use an unweighted-
means analysis. The latter approach consists of performing
an ANOVA on the cell means and then multiplying the sums
of squares by the harmonic mean of the cell ns. None of these
procedures is entirely satisfactory. Fortunately, exact solu-
tions to the unequal cell n problem exist. Two solutions that
are described next are based on a regression model and a cell
means model. Unlike the classical model approach, the
regression and cell means model approaches require a com-
puter and software for manipulating matrices.

Suppose that halfway through the weight-loss experiment
the third participant in treatment combination a, b, (Y320 = 7)
moved to another area of the country and dropped out of the
experiment. The loss of this participant resulted in unequal
cell ns. Cell a,b, has four participants; the other cells have five
participants. The analysis of the weight-loss data using the
regression model is described next.

Regression Model

A qualitative regression model equation with h —1 =
(p—1)+(@—-1)+(p—1)(g—1)=S5 independent vari-
ables (X}, X,,, ..., X;,X;;) and h = 6 parameters (B, B, ...,
BS);

A effects B effects Ax B effects

—_—~—
Yi =By + B Xit + By Xi2+ B3 Xis + B, Xi1 Xis + Bs Xin Xis + e

can be formulated so that tests of selected parameters of the
regression model provide tests of null hypotheses for A, B,
and A X B in the weight-loss experiment. Tests of the fol-
lowing null hypotheses for this regression model are of par-
ticular interest:

Hy: By =B,=0
H0:B3=O
Hy: By, =Bs=0

In order for tests of these null hypotheses to provide tests
of ANOVA null hypotheses, it is necessary to establish a
correspondence between the five independent variables of
the regression model equation and (p — 1)+ (¢ — 1) +
(p —1)(g — 1) =5 treatment and interaction effects of the
CRF-32 design. One way to establish this correspondence is
to code the independent variables of the regression model as



follows:

1, if an observation is in a;
X;1 = { —1, if an observation is in a3
0, otherwise

—_—

if an observation is in a,

Xi;» = { —1, if an observation is in a3
0, otherwise
x 1, if an observation is in b
i3 =

—1, if an observation is in b,

product of coded values

XXz = . .
A3 associated with a; and b,

product of coded values

X X3 = . .
2343 associated with a, and b,

This coding scheme, which is called effect coding, produced
the X matrix in Table 1.5. The y vector in Table 1.5 contains
weight-loss observations for the six treatment combinations.
The first column vector, X, in the X matrix contains ones; the
second through the sixth column vectors contain coded
values for X,;, X,,, . . ., X,,X;;. To save space, only a portion
of the 29 rows of X and y are shown. As mentioned earlier,
observation Ys,, is missing. Hence, each of the treatment
combinations contains five observations except for a,b,,
which contains four.

TABLE 1.5 Data Vector, y, and X Matrix for the Regression Model

y X
29x1 29%6
A B AXB
—_—— —— —_——
Xy X X, X3 XX3 X)X
77 [1 1 0 1 1 0

ab,

1 1 1 0 1 1 0

7 1 1 0 —1 —1 0
ab,

9 1 1 0 —1 —1 0

9 1 0 1 1 0 1
ab,

11 1 0 1 1 0 1

10 1 0 1 —1 0 -1
a,b,

13 1 0 1 —1 0 -1

15 1 -1 —1 1 —1 -1
asb, .

8 1 -1 —1 1 —1 -1

13 1 -1 —1 —1 1 1
asb,

12 L1 —1 —1 —1 1 1
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F statistics for testing hypotheses for selected regression
parameters are obtained by dividing a regression mean square,
MSR, by an error mean square, MSE, where MSR = SSR/ dfreg
and MSE = SSE/df,..... The regression sum of squares, SSR,
that reflects the contribution of independent variables X, and
X, over and above the contribution of X;, X, X5, and X,X, is
given by the difference between two error sums of squares,

SSE, as follows:

A B AXB
—— S ——
SSR(X1 Xo| X3 X1X3 X2X3)

B AXB A B AxB
I m——— —— I ———e
=SSE( X5 X1X3 X2X3) = SSE(X, X> X3 X1X3 X2X3)

An error sum of squares is given by
SSEQ) =¥y — [(X{X)™ Xy (Xy),

where the X; matrix contains the first column, x,, of X and
the columns corresponding the independent variables con-
tained in SSE( ). For example, the X matrix used in comput-
ing SSE(X; X, X; X,X;) contains four columns: X, X5, X,Xs,
and x,X,. The regression sum of squares corresponding to
SSA in ANOVA is

A B AXB
—— S ——
SSR(X1 Xo| X3 X1X3 X2X3)
B AxB A B AxB

I ——— —— N —
=SSE( X5 X1X3 X2X3) —SSE(X| X5 X3 X1X3 X2X3)
= 488.1538 — 360.7500 = 127.4038

with p — 1 =2 degrees of freedom. This sum of squares
is used in testing the regression null hypothesis Hp: B, =
3, = 0. Because of the correspondence between the regres-
sion and ANOVA parameters, a test of this regression null
hypothesis is equivalent to testing the ANOVA null hypothe-
sis for treatment A.

The regression sum of squares corresponding to SSB in
ANOVA is

B A AxB
—_ = —————
SSR( X3 | X1 X2 X1X3 X2X3)
A AxB A B AxB

—— — —— - — Y —
— SSE(X, Xo X1 X3 X2X3) — SSE(X, X2 X3 X1 X3 X2X3)
= 436.8000 — 360.7500 = 76.0500

with ¢ — 1 = 1 degree of freedom.
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The regression sum of squares corresponding to SSA x B
in ANOVA is

AXB A B
—_——
SSR(X1X3 X7 X5| X1 Xo X3)
A B A B
—— —— N —t—
— SSE(X, X5 X3) — SSE(X| X» X3 X, X3 X2X3)

AxB

= 388.5385 — 360.7500 = 27.7885

with (p — 1)(¢ — 1) = 2 degrees of freedom.
The regression error sum of squares corresponding to
SSWCELL in ANOVA is

A B
—— I~ —t—
SSE(X; X, X3 X1 X3 X2X3) =360.7500

AxB

with N — h =29 — 6 = 23 degrees of freedom.
The total sum of squares is

SSTO =y'y — yJyN~! =595.7931,

where J is a 29 x 29 matrix of ones and N = 29, the number
of weight-loss observations. The total sum of squares has
N — 1 = 28 degrees of freedom. The analysis of the weight-
loss data is summarized in Table 1.6. The null hypotheses
B; =B, =0 and B; = 0 can be rejected. Hence, indepen-
dent variables X, or X, as well as X; contribute to predicting
the dependent variable. As we see in the next section, the
F statistics in Table 1.6 are identical to the ANOVA F statis-
tics for the cell means model.

Cell Means Model
The classical model equation for a CRF-pgq design,

Yijk = w+ oy + B + (aB)jx + €iginy
i=1,....n;j=1,....p;k=1,...,q),

focuses on the grand mean, treatment effects, and interaction
effects. The cell means model equation for the CRF-pg design,

Yijk = Wi + i
i=1....n;j=1,....p;k=1,...,9),
focuses on cell means, where p;; denotes the mean in cell g;
and b,. Although I described the classical model first, this is
not the order in which the models evolved historically.
According to Urquhart, Weeks, and Henderson (1973),
Fisher’s early development of ANOVA was conceptualized
by his colleagues in terms of cell means. It was not until later
that cell means were given a linear structure in terms of the
grand mean and model effects, thatis, w; = p +o; + By +
(ap)jk. The classical model equation for a CRF-pg design
uses four parameters, p+ o; + B + (af)jx. to represent
one parameter, pjy. Because of this structure, the classical
model is overparameterized. For example, the expectation of
the classical model equation for the weight-loss experiment
contains 12 parameters: p, o, o, o3, By, By, (@B)y;, (@B))s,
(aB)y;, (@B)yy, (B3, (af);,. However, there are only six
cells means from which to estimate the 12 parameters. When
there are missing cells in multitreatment designs, a researcher
is faced with the question of which parameters or parametric
functions are estimable. For a discussion of this and other
problems, see Hocking (1985), Hocking and Speed (1975),
Searle (1987), and Timm (1975).

The cell means model avoids the problems associated with
overparameterization. A population mean can be estimated
for each cell that contains one or more observations. Thus,
the model is fully parameterized. Unlike the classical model,
the cell means model does not impose a structure on the
analysis of data. Consequently, the model can be used to test
hypotheses about any linear combination of population cell
means. It is up to the researcher to decide which tests are
meaningful or useful based on the original research hypothe-
ses, the way the experiment was conducted, and the data that
are available.

I will use the weight-loss data in Table 1.2 to illustrate the
computational procedures for the cell means model. Again,

TABLE 1.6  Analysis of Variance for the Weight-Loss Data (Observation Y, is missing)

Source SS df MS F P
X, X |1 X5 X X5 XX, 127.4038 p—1=2 63.7019 4.06 .031
XX, X, X\ X5 XX, 76.0500 g—1=1 76.0500 4.85 .038
XX, XX 1 X, X, X 27.7885 (p—D@-1)=2 13.8943 0.89 426
Error 360.7500 N—-h=23 15.6848

Total 595.7931 N—-1=28




we will assume that observation Ys,, is missing. The null
hypothesis for treatment A is

Hp: oy = o, = Py

An equivalent null hypothesis that is used with the cell means
model is

Ry — s = 0.

In terms of cell means, this hypothesis can be expressed as

O Bl L P Y il L)

Hy =0
2 2 (1.2)

Moi T B Hai t B3 —0

2 2 ’

where . = (Wi + R12)/2, po. = (M + P2)/2, and so
on. In matrix notation, the null hypothesis is

C,
(p—1)xh hx1
M
K12

Ho,l[l 1 -1 -1 0 0] 193} :[0]
210 0 1 1 =1 —1]| up 0|
31
32

(p—1x1

where p is the number of levels of treatment A and £ is the
number of cell means. In order for the null hypothesis
Cip = 0 to be testable, the Cj matrix must be of full row
rank. This means that each row of Cj must be linearly
independent of every other row. The maximum number of
suchrowsis p — 1, which is why it is necessary to express the
null hypothesis as Equation 1.1 or 1.2. An estimator of the null
hypothesis, Cj i — 0, is incorporated in the formula for com-
puting a sum of squares. For example, the estimator appears
as Cy . — 0 in the formula for the treatment A sum of squares

SSA = (Cif — 0)[CA(X'X)'CAT ' (ChL — 0), (1.3)

where ju is a vector of sample cell means. Equation 1.3 sim-
plifies to

SSA = (CA)'[CA(X'X)'CAT ' (CAL)

because 0 is a vector of zeros. In the formula, C, is a
coefficient matrix that defines the null hypothesis, L =
[(X'X)"'(X'y)] = [Y.11, V.12 -+ Y.53)’, and X is a struc-

tural matrix. The structural matrix for the weight-loss
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TABLE 1.7 Data Vector, y, and X Matrix for the Cell Means Model

y X
29x1 29x6
X X X3 Xy Xs X6
77 1 0 0 0 0 0 ]
ab, E
1 1 0 0 0 0 0
7 0 1 0 0 0 0
ab, : : : : :
9 0 1 0 0 0 0
9 0 0 1 0 0 0
ab, : : : : : : :
11 0 0 1 0 0 0
10 0 0 0 1 0 0
O L
13 0 0 0 1 0 0
15 0 0 0 0 1 0
azh, : : : : : : :
8 0 0 0 0 1 0
13 0 0 0 0 0 1
azh : : : : : : :
Li2d Lo 0 0 0 0 1

experiment is given in Table 1.7. The structural matrix is
coded as follows:

< = 1, if an observation is in a; b,
"= 10, otherwise

- — 1, if an observation is in a; b,
27 )0, otherwise

< 1, if an observation is in a>b,
3710, otherwise

.« — 1, if an observation is in azb,
=10, otherwise

For the weight-loss data, the sum of squares for treatment
Ais

SSA = (CAL)'[CAX'X)'CA17 ' (Cy ) = 127.4038

with p — 1 = 2 degrees of freedom.
The null hypothesis for treatment B is

Hy: g = po,.
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An equivalent null hypothesis that is used with the cell means
model is

Hy:py =y =0.
In terms of cell means, this hypothesis is expressed as

R Dl o Wl L U L0 Wl o P il L P

=0.
3 3

Hy
In matrix notation, the null hypothesis is

Cs 0

(g—1)xh hx1

M1

. K12
Hy=[1 -1 1 -1 1 —1]|M"=
3 K22
31

K32

(g—D)x1

= [0],

where ¢ is the number of levels of treatment B and £ is the
number of cell means. The sum of squares for treatment
Bis

SSB = (Cp)'[C5(X'X)~'C1 1 (Cz ) = 76.0500

with ¢ — 1 =1 degree of freedom.
The null hypothesis for the A x B interaction is

Ho: pjp — Mjer — Wjg + Wje = 0 for all j and k.
For the weight-loss data, the interaction null hypothesis is

Ho: oy — Pgp — Mo + R =0
Mop — Moy — M3 + 3 =0

The two rows of the null hypothesis correspond to the two
sets of means connected by crossed lines in Figure 1.9. In
matrix notation, the null hypothesis is

C./AXB ©n 0
(p—=D(g—1)xh hx1  (p—D(g—1)x1

Myt
M2
g1 -1 =1 10 0] my | _JO
0'[0 0 1 -1 -1 1] [T _[0]'
M3p
M32

by by

al :u’u ,"U'IZ
2Y)

a, oy
az | Hyp Uz

’
’
’

Figure 1.9 Two interaction terms of the form pj; — pjpr— pjrg + Py are
obtained from the crossed lines by subtracting the two ;s connected by a
dashed line from the two ;s connected by a solid line.

The sum of squares for the A x B interaction is

SSA x B = (Chxp) [Chxs(X'X) ' Cax ] (Chxpik)
= 27.7885

with (p — 1)(g — 1) = 2 degrees of freedom.
The within-cell sum of squares is

SSWCELL = y'y — i (X'y) = 360.7500,

where y' is the vector of weight-loss observations:
[7139...12]. The within-cell sum of squares has N — h =
29 — 6 = 23 degrees of freedom.

The total sum of squares is

SSTO =y'y — yJyN~! =595.7931,

where J is a 29 x 29 matrix of ones and N = 29, the number
of weight-loss observations. The total sum of squares has
N — 1 = 28 degrees of freedom.

The analysis of the weight-loss data is summarized in
Table 1.8. The F statistics in Table 1.8 are identical to those
in Table 1.6, where the regression model was used.

The cell means model is extremely versatile. It can be
used when observations are missing and when entire cells
are missing. It allows a researcher to test hypotheses about
any linear combination of population cell means. It has an
important advantage over the regression model. With the cell
means model, there is never any ambiguity about the hypoth-
esis that is tested because an estimator of the null hypothesis,
C'[v — 0, appears in the formula for a sum of squares. Lack of
space prevents a discussion of the many other advantages of
the model; the reader is referred to Kirk (1995, pp. 289-301,
413-431). However, before leaving the subject, the model
will be used to test a null hypothesis for weighted means.

Occasionally, researchers collect data in which the sample
sizes are proportional to the population sizes. This might
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TABLE 1.8 Analysis of Variance for the Weight-Loss Data (Observation Y, is missing)

Source SS daf MS F P
Treatment A (Diet) 127.4038 p—1=2 63.7019 4.06 .031
Treatment B (Exercise)  76.0500 qg—1=1 76.0500 4.85 .038
A X B 27.7885 (p—D@—-1)=2 13.8943 0.89 426
Within cell 360.7500 N —h=23 15.6848

Total 595.7931 N—-1=28

occur, for example, in survey research. When cell ns are
unequal, a researcher has a choice between computing un-
weighted means or weighted means. Unweighted means are
simple averages of cell means. These are the means that were
used in the previous analyses. Weighted means are weighted
averages of cell means in which the weights are the sample
cell sizes, nj;. Consider again the weight-loss data in which
observation Y, is missing. Unweighted and weighted sam-
ple means for treatment level a, where observation Ys,, is
missing are, respectively,

U 0 9.00 4 10.75
i, = Poi + Hoy _ + — 9388
q 2
~ _ mifly +nmfly  5(9.00) 4 4(10.75) _
i, = - 5 —9.78;
n;.

n;. is the number of observations in the jth level of treatment
A. The null hypothesis using weighted cell means for treat-
ment A is

Mg TRk 21k + 122k
ni. na.

H()Z =0

M1y +Nopgy  N31R3; + 13213
ny. ns.

=0.

The coefficient matrix for computing SSA is

s s _
C, = 10 10
0 0

where the entries in C} are 4nj;/n;. and zero. The sum of
squares and mean square for treatment A are, respectively,

S
0

Ol Ol
|
TSRS
|
(e
|
Sl o
1

—_

SSA = (C4) [CA(X'X)"1C417 1 (Chn) = 128.2375
MSA = SSA/(p — 1) = 146.3556/(3 — 1) = 64.1188.

The F statistic and p value for treatment A are

MSA 64.1188

F = = =4.09
MSWCELL  15.6848

p = .030,

where MSWCELL is obtained from Table 1.8. The null hy-
pothesis is rejected. This is another example of the versatility
of the cell means model. A researcher can test hypotheses
about any linear combination of population cell means.

In most research situations, sample sizes are not propor-
tional to population sizes. Unless a researcher has a com-
pelling reason to weight the sample means proportional to the
sample sizes, unweighted means should be used.

Randomized Block Factorial Design

Next I describe a factorial design that is constructed from two
randomized block designs. The design is called a randomized
block factorial design and is denoted by RBF-pg. The RBF-pq
design is obtained by combining the levels of an RB-p design
with those of an RB-¢ design so that each level of the RB-p
design appears once with each level of the RB-g design and
vice versa. The design uses the blocking technique described
in connection with an RB-p design to isolate variation attrib-
utable to a nuisance variable while simultaneously evaluating
two or more treatments and associated interactions.

In discussing the weight-loss experiment, I hypothesized
that ease of losing weight is related to the amount by which a
girl is overweight. If the hypothesis is correct, a researcher
can improve on the CRF-32 design by isolating this nuisance
variable. Suppose that instead of randomly assigning 30 girls
to the six treatment combinations in the diet experiment, the
researcher formed blocks of six girls such that the girls in a
block are overweight by about the same amount. One way to
form the blocks is to rank the girls from the least to the most
overweight. The six least overweight girls are assigned to
block 1. The next six girls are assigned to block 2 and so on.
In this example, five blocks of dependent samples can be
formed from the 30 participants. Once the girls have been
assigned to the blocks, the girls in each block are randomly
assigned to the six treatment combinations. The layout for
this experiment is shown in Figure 1.10.

The classical model equation for the experiment is

Yiig =+ m + o + By + (af)jx + (o) ki
G=1,....n;j=1,....p;k=1,...,9),
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Treatment  Treatment Trecatment  Treatment  Treatment  Treatment
Combination Combination Combination Combination Combination Combination
BlOCkl a1b1 a1b2 azbl a2b2 a3b1 a3b2 }—/I
BlOCkz a1b1 a b2 azbl a2b2 a3b1 a3b2 ?2
BlOCk3 a1b1 a1b2 a2b1 a2b2 a3b1 a3b2 Y_E,’
BlOCk4 a1b1 a b2 a2b1 a2b2 Cl3b1 a3b2 Y4
BlOCk5 a1b1 a) b2 a2b1 azbz a3b1 a3b2 }75
17-11 sz YZI Y-zz Y31 17-32

Figure 1.10 Layout for a two-treatment randomized block factorial design (RBF-32 design). Each block contains six girls who are overweight by
about the same amount. The girls in a block are randomly assigned to the six treatment combinations.

where

Yijk is the weight loss for the participant in Block;
and treatment combination ab;.

I is the grand mean of the six weight-loss popula-
tion means.

;i is the block effect for population i and is equal
to w;.. — . It reflects the effect of the nuisance
variable in Block;.

o is the treatment effect for population a; and is
equal to w.;. — . It reflects the effect of diet a;.

B is the treatment effect for population b, and is
equal to ., — . It reflects the effects of exer-
cise condition b,.

(aP)jx s the interaction effect for populations a; and b,

and is equal to Moje = Bojo = B — M
()i is the residual error effect for treatment combi-
nation a;b; and Block;.

The design enables a researcher to test four null hypotheses:

Ho py. = pop. = -+ = s,
(Block population means are equal.)

Hy: g = oy = W
(Treatment A population means are equal.)

TABLE 1.9 Weight-Loss Data for the Diet (aj) and Exercise
Conditions (b,)

a,b, ab, ab, ab, azb, asb,
Block, 5 4 7 5 8 13
Block, 7 7 4 7 5 16
Block; 1 14 9 13 10 12
Block, 9 9 11 15 12 20
Blocks 13 11 14 10 15 19

Ho: pg =y

(Treatment B population means are equal.)
Ho: pjp — b — Beji + o je = 0 forall jand &

(All A x B interaction effects equal zero.)

The hypothesis that the block population means are equal
is of little interest because the blocks represent different
amounts by which the girls are overweight.

The data for the RBF-32 design are shown in Table 1.9.
The same data were analyzed earlier using a CRF-32
design. Each block in Table 1.9 contains six girls who at
the beginning of the experiment were overweight by about
the same amount. The ANOVA for these data is given in
Table 1.10. A comparison of Table 1.10 with Table 1.4 re-
veals that the RBF-32 design is more powerful than the
CRF-32 design. Consider, for example, treatment A. The
F statistic for the randomized block factorial design is
F(2,20) = 8.09, p = .003; the F for the completely random-
ized factorial design is F(2, 24) = 4.25, p = .026. The ran-
domized block factorial design is more powerful because
the nuisance variable—the amount by which participants
are overweight— has been removed from the residual error
variance. A schematic partition of the total sum of squares
and degrees of freedom for the two designs is shown in
Figure 1.11. It is apparent from Figure 1.11 that the
SSRESIDUAL will always be smaller than the SSWCELL if

TABLE 1.10 Analysis of Variance for the Weight-Loss Data
Source SS daf MS F P

Blocks 209.3333 4 523333 643 .002
Treatments 234.1667 5
Treatment A (Diet) 131.6667 2 65.8334  8.09 .003
Treatment B (Exercise) 67.5000 1 67.5000 8.30 .009
A X B 35.0000 2 17.5000  2.15 142
Residual 162.6667 20 8.1333
Total 606.1667 29
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SSTOTAL = 606.2

npg—1=29
SSTREAT = 234.2 SSWCELL = 372.0
pqg—1=5 pqn — 1) =24
CREF-32 (SSA=131.7] |SSB=67.5 SSAB = 35.0 SSWCELL = 372.0
Design | ,_1=2 g-1=1]lp-D@g-1)=2 pa(n — 1) = 24
Design | p-1=2 g-1=1||p-g-1)=2{ | n-1=4 | |@ Dg—1D=20

Figure 1.11 Schematic partition of the total sum of squares and degrees of freedom for CRF-32 and RBF-32 designs.
The shaded rectangles indicate the sums of squares that are used to compute the error variance for each design:
MSWCELL = SSWCELL/pg(n — 1) and MSRES = SSRES/(n — 1)(pq — 1). If the nuisance variable (SSBL) in the
RBF-32 design accounts for an appreciable portion of the total sum of squares, the design will have a smaller error vari-

ance and, hence, greater power than the CRF-32 design.

the SSBLOCKS is greater than zero. The larger the SS-
BLOCKS in a randomized block factorial design are, the
greater the reduction in the SSRESIDUAL.

FACTORIAL DESIGNS WITH CONFOUNDING

Split-Plot Factorial Design

As we have just seen, an important advantage of a random-
ized block factorial design relative to a completely random-
ized factorial design is greater power. However, if either p or
g in a two-treatment randomized block factorial design is
moderately large, the number of treatment combinations in
each block can be prohibitively large. For example, an RBF-
45 design has blocks of size 4 x 5 = 20. Obtaining blocks
with 20 matched participants or observing each participant
20 times is generally not feasible. In the late 1920s Ronald
A. Fisher and Frank Yates addressed the problem of prohib-
itively large block sizes by developing confounding schemes
in which only a portion of the treatment combinations in an
experiment are assigned to each block. Their work was
extended in the 1940s by David J. Finney (1945, 1946) and
Oscar Kempthorne (1947). One design that achieves a re-
duction in block size is the two-treatment split-plot factorial
design. The term split-plot comes from agricultural experi-

mentation in which the levels of, say, treatment A are
applied to relatively large plots of land—the whole plots.
The whole plots are then split or subdivided, and the levels
of treatment B are applied to the subplots within each whole
plot.

A two-treatment split-plot factorial design is constructed
by combining two building block designs: a completely ran-
domized design having p levels of treatment A and a random-
ized block design having g levels of treatment B. The assign-
ment of participants to the treatment combinations is carried
out in two stages. Consider the weight-loss experiment again.
Suppose that we ranked the 30 participants from least to most
overweight. The participants ranked 1 and 2 are assigned to
block 1, those ranked 3 and 4 are assigned to block 2, and
so on. This procedure produces 15 blocks each containing two
girls who are similar with respect to being overweight. In the
first stage of randomization the 15 blocks of girls are randomly
assigned to the three levels of treatment A with five blocks in
each level. In the second stage of randomization the two girls
in each block are randomly assigned to the two levels of treat-
ment B. An exception to this randomization procedure must be
made when treatment B is a temporal variable such as succes-
sive learning trials or periods of time. Trial 2, for example, can-
not occur before Trial 1.

The layout for a split-plot factorial design with three
levels of treatment A and two levels of treatment B is
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Block,
Group; q :
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Figure 1.12 Layout for a two-treatment split-plot factorial design (SPF-3-2 design). The 3n
blocks are randomly assigned to the p = 3 levels of treatment A with the restriction that n
blocks are assigned to each level of A. The n blocks assigned to each level of treatment A con-
stitute a group of blocks. In the second stage of randomization, the two matched participants
in a block are randomly assigned to the ¢ = 2 levels of treatment B.

shown in Figure 1.12. Treatment A is called a between-blocks
treatment; B is a within-blocks treatment. The designation
for a two-treatment split-plot factorial design is SPF-p-g.
The p preceding the dot denotes the number of levels of the
between-blocks treatment; the ¢ after the dot denotes the
number of levels of the within-blocks treatment. Hence,
the design in Figure 1.12 is an SPF-3-2 design.

An RBF-32 design contains 3 x 2 = 6 treatment combi-
nations and has blocks of size six. The SPF-3-2 design in
Figure 1.12 contains the same six treatment combinations,
but the block size is only two. The advantage of the split-
plot factorial—smaller block size—is achieved by con-
founding groups of blocks with treatment A. Consider the
sample means Y.;., Y .,., and Y 3. in Figure 1.12. The differ-
ences among the means reflect the differences among the
three groups as well as the differences among the three
levels of treatment A. To put it another way, we cannot tell
how much of the differences among the three sample means
is attributable to the differences among Group,, Group,, and
Group; and how much is attributable to the differences
among treatments levels a,, a,, and a,. For this reason, the
three groups and treatment A are said to be completely
confounded.

The use of confounding to reduce the block size in an
SPF-p-q design involves a tradeoff that needs to be made
explicit. The RBF-32 design uses the same error variance,
MSRESIDUAL, to test hypotheses for treatments A and B
and the A x B interaction. The two-treatment split-plot
factorial design, however, uses two error variances.
MSBLOCKS within A, denoted by MSBL(A), is used to test

treatment A; a different and usually much smaller error
variance, MSRESIDUAL, is used to test treatment B and the
A x B interaction. As a result, the power of the tests for B
and the A x B interaction is greater than that for A. Hence,
a split-plot factorial design is a good design choice if a
researcher is more interested in treatment B and the A x B
interaction than in treatment A. When both treatments and
the A x B interaction are of equal interest, a randomized
block factorial design is a better choice if the larger block
size is acceptable. If a large block size is not acceptable and
the researcher is primarily interested in treatments A and B,
an alternative design choice is the confounded factorial
design. This design, which is described later, achieves a
reduction in block size by confounding groups of blocks
with the A x B interaction. As a result, tests of treatments
A and B are more powerful than the test of the A x B
interaction.

Earlier, an RBF-32 design was used for the weight-loss
experiment because the researcher was interested in tests of
treatments A and B and the A x B interaction. For purposes
of comparison, I analyze the same weight-loss data as if
an SPF-3-2 design had been used even though, as we will
see, this is not a good design choice. But first I describe the
classical model equation for a two-treatment split-plot facto-
rial design.

The classical model equation for the weight-loss experi-
ment is

Yijr = o+ o +mi) + By + (@B)jx + Bmic))
G=1,....n;j=1,....p;k=1,...,9),



where

Yijk is the weight loss for the participant in Block,;
and treatment combination a;b;.

W is the grand mean of the six weight-loss popula-
tion means.

o is the treatment effect for population a; and is
equal to ;. — . It reflects the effect of diet a;.

i) is the block effect for population i and is equal to
;j. — ... The block effect is nested within a;.

By is the treatment effect for population b, and is
equal to p , — w. It reflects the effects of exer-
cise condition b,.

(aP)jx s the interaction effect for populations @;and b,

and is equal to Mok = Mo — Mg + B

B is the residual error effect for treatment level b,
and Block;; and is equal to Yjjx —p —a; —
mi(j) = Br — (@B)jk-

The design enables a researcher to test three null hypotheses:

HO: M. = Hp. = Mg,

(Treatment A population means are equal.)
Hy: .y =p.,p

(Treatment B population means are equal.)
Hp: o jp — Pojp — B jig + W je = 0 forall jand &

(All A x B interaction effects equal zero.)

The weight-loss data from Tables 1.2 and 1.9 are recasts in
the form of an SPF-3-2 design in Table 1.11. The ANOVA
for these data is given in Table 1.12. The null hypothesis for
treatment B can be rejected. However, the null hypothesis
for treatment A and the A x B interaction cannot be rejected.
The denominator of the F statistic for treatment A
[MSBL(A) = 20.1667] is almost twice as large as the de-
nominator for the tests of Band A x B (MSRES = 10.8333).
A feeling for the relative power of the test of treatment A for
the SPF-3-2, CRF-32, and RBF-32 designs can be obtained
by comparing their F statistics and p values:

Treatment A
SPE32 desian . 131:6667/2 _ 65.8334
3. ion = = =
ese 242.0000/12 _ 20.1667

CRE32 dos o 1316667/2 _ 658334
- 12n = =
ese 372.0000/24  15.5000

326 p=.074

=425 p=.026
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TABLE 1.11 Weight-Loss Data for the Diet (aj) and
Exercise Conditions (b,)

Treatment Treatment
Level b, Level b,
Block; 5 4
Block, 7 7
Group, a, Block, 1 14
Block, 9 9
Block; 13 11
Blockg 7 5
Block; 4 7
Group, a, Blockg 9 13
Block, 11 15
Block;, 14 10
Block,, 8 13
Block , 5 16
Group; a; Block 5 10 12
Block,, 12 20
Block 5 15 19

effectiveness of the three diets, the SPF-3-2 design is a poor
choice. However, the SPF-3-2 design fares somewhat better
if one’s primary interests are in treatment B and the A x B
interaction:

Treatment B

_ 67.5000/1  67.5000
~130.0000/12 ~ 10.8333

SPF-3-2 design =623 p=.028

CRE3 desi o 67.5000/1 _ 675000 _, o
- S1gn = = =4, = .
g 372.0000/24 _ 15.5000 P
67.5000/1  67.5000
RBF-32 desi F= - —830 p=.009
esien 162.6667/20  8.1333 P
A X B interaction
35.0000/2  17.5000
SPF-3-2 design  F = 2 _ —1.62 p=.239

~130.0000/12 ~ 10.8333

. 35.0000/2  17.5000
CRF-32 d F= - — 113 p=.340
esien 372.0000/24 _ 15.5000 P

. 35.0000/2 17.5000
RBF-32 design F = =
162.6667/20 8.1333

=215 p=.42

TABLE 1.12  Analysis of Variance for the Weight-Loss Data
Source SS df MS F P

373.6667 14
131.6667 2 65.8334
242.0000 12 20.1667
232.5000 15
67.5000 1 675000 [5/7] 6.23 .028

1. Between blocks

2. Treatment A (Diet) [2/3]* 326 .074
3. Blocks within A

4. Within blocks
5

. Treatment B

(Exercise)
_ | 131.6667/2  65.8334 . 6. Ax B 350000 2 17.5000 [6/7] 162 239
RBE-32 design  F = {0 6667/20 ~ 81333~ >0% P =003 7. Residual 130.0000 12 10.8333
8. Total 606.1667 29

For testing treatment A, the SPF-3.2 design is the least
powerful. Clearly, if one’s primary interest is in the

*The fraction [2/3] indicates that the F statistic was obtained by dividing the
mean square in row two by the mean square in row three.
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The SPF-3.2 design is the first design I have described
that involves two different building block designs: a CR-p
design and an RB-g design. Also, it is the first design that
has two error variances: one for testing the between-blocks
effects and another for testing the within-blocks effects. A
weighted average of the two error variances is equal to
MSWCELL in a CRF-pq design, where the weights are the
degrees of freedom of the two error variances. This can be
shown using the mean squares from Tables 1.4 and 1.12:

p(n — HMSBL(A) + p(n — 1)(q — 1)MSRESIDUAL
pn—1)+pn—1D(¢g-—1)

= MSWCELL

3(5 — 1)20.1667 + 3(5 — 1)(2 — 1)10.8333
35-D+35-D@2-1)

= 15.5000

A schematic partition of the total sum of squares and degrees
of freedom for the CRF-32 and SPF-3-2 designs is shown in
Figure 1.13.

Confounded Factorial Designs

As we have seen, an SPF-p-g design is not the best design
choice if aresearcher’s primary interest is in testing treatments

A and B. The RBF-pq design is a better choice if blocks of size
p X q are acceptable. If this block size is too large, an alterna-
tive choice is a two-treatment confounded factorial design.
This design confounds an interaction with groups of blocks.
As aresult, the test of the interaction is less powerful than tests
of treatments A and B. Confounded factorial designs are con-
structed from either a randomized block design or a Latin
square design. The designs are denoted by, respectively,
RBCF-p* and LSCF-p*, where RB and LS identify the build-
ing block design, C indicates that the interaction is completely
confounded with groups of blocks, F indicates a factorial de-
sign, and p* indicates that the design has k treatments each
having p levels. The simplest randomized block confounded
factorial design has two treatments with two levels each. Con-
sider the RBCF-2% design in Figure 1.14. The A x B interac-
tion is completely confounded with Group, and Group,, as I
will now show. An interaction effect for treatments A and B
has the general form pj, — pjp — Mg + Rje- Let pyjy,
denote the population mean for the ith block, jth level of A,
kth level of B, and zth group. For the design in Figure 1.14,
the A x B interaction effect is

Mg = Moz — Mg + aoog
or

(Beogin + o2) — (K22 + Rap2)-

SSTOTAL = 606.2

npg—1=29
CRFE-32 SSA=131.7{ |SSB=67.5 SSAB = 35.0 SSWCELL = 372.0
Design | p-1=2 g-1=1| |p-Dg-1)=2 pq(n — 1) =24
]S)IZI:{;Z SSA=131.7 SSBL(A) = 242.0
Between| p-1=2 pin—1)=12
Blocks
SPE-3-2
Design SSB=67.5 SSAB =35.0 SSRES = 130.0
VB\;ithli(n g-1=1] [p-D@-1)=2 pln—1)g—1) =12
OCKS

Figure 1.13  Schematic partition of the total sum of squares and degrees of freedom for CRF-32 and SPF-3-2 designs.
The shaded rectangles indicate the sums of squares that are used to compute the error variance for each design. The
SPF-3-2 design has two error variances: MSBL(A) = SSBL(A)/p(n — 1) is used to test treatment A; MSRES =
SSRES/p(n — 1)(g — 1) is used to test treatment B and the A x B interaction. The within-blocks error variance, MSRES,
is usually much smaller than the between-blocks error variance, MSBL(A). As a result, tests of treatment B and the A x B

interaction are more powerful than the test of treatment A.
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Treatment  Treatment
Combination Combination
aby aby
BlOCkl al bl a2b2
Group, : : : Vi + Vo
Block,, a1b, ab,
BlOCkn +1 a1b2 azbl
Group, : : : Yip + Yo
BlOCkzn al b2 a2b1

Figure 1.14 Layout for a two-treatment randomized block confounded factorial design
(RBCF-2? design). A score in the ith block, jth level of treatment A, kth level of treatment B, and

zth group is denoted by Y.

The difference between the effects of Group, and Group,,

(Bopr = Baon) — (Megon + Hapo)s

involves the same contrast among means as the A x B inter-
action effect. Hence, the two sets of effects are completely
confounded because we cannot determine how much of the
difference (W.;1; + Ma21) — (20 + ppo) 1S attributable to
the A x B interaction and how much is attributable to the
difference between Group, and Group,.

The RBCF-p* design, like the SPF-p-g design, has two
error variances: one for testing the between-blocks effects
and a different and usually much smaller error variance for
testing the within-blocks effects. In the RBCF-p* design,
treatments A and B are within-block treatments and are eval-
uated with greater power than the A x B interaction that is a
between-block component. Researchers need to understand
the tradeoff that is required when a treatment or interaction is
confounded with groups to reduce the size of blocks. The
power of the test of the confounded effects is generally less
than the power of tests of the unconfounded effects. Hence, if
possible, researchers should avoid confounding effects that
are the major focus of an experiment. Sometimes, however,
confounding is necessary to obtain a reasonable block size. If
the power of the confounded effects is not acceptable, the
power always can be increased by using a larger number of
blocks.

One of the characteristics of the designs that have been
described so far is that all of the treatment combinations
appear in the experiment. The fractional factorial design that
is described next does not share this characteristic. As the
name suggests, a fractional factorial design includes only a
fraction of the treatment combinations of a complete factorial
design.

Fractional Factorial Designs

Two kinds of confounding have been described thus far:
group-treatment confounding in an SPF-p.g design and
group-interaction confounding in an RBCF-p* design. A third
form of confounding, treatment-interaction confounding, is
used in a fractional factorial design. This kind of confounding
reduces the number of treatment combinations that must be
included in a multitreatment experiment to some fraction—
3230703 9° and so on—of the total number of treatment
combinations. A CRF-22222 design has 32 treatment combi-
nations. By using a % or i fractional factorial design, the
number of treatment combinations that must be included
in the experiment can be reduced to, respectively,
1(32) =160r (32) = 8.

The theory of fractional factorial designs was developed
for 2% and 3* designs by Finney (1945, 1946) and extended by
Kempthorne (1947) to designs of the type p*, where p is a
prime number that denotes the number of levels of each
treatment and k denotes the number of treatments. Fractional
factorial designs are most useful for pilot experiments and
exploratory research situations that permit follow-up experi-
ments to be performed. Thus, a large number of treatments,
typically six or more, can be investigated efficiently in an
initial experiment, with subsequent experiments designed to
focus on the most promising independent variables.

Fractional factorial designs have much in common with
confounded factorial designs. The latter designs achieve a
reduction in the number of treatment combinations that must
be included in a block. Fractional factorial designs achieve a
reduction in the number of treatment combinations in the ex-
periment. The reduction in the size of an experiment comes at
a price, however. Considerable ambiguity may exist in inter-
preting the results of an experiment when the design includes
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only one half or one third of the treatment combinations.
Ambiguity occurs because two or more names can be given
to each sum of squares. For example, a sum of squares might
be attributed to the effects of treatment A and the BCDE in-
teraction. The two or more names given to the same sum of
squares are called aliases. In a one-half fractional factorial
design, all sums of squares have two aliases. In a one-third
fractional factorial design, all sums of squares have three
aliases, and so on. Treatments are customarily aliased with
higher-order interactions that are assumed to equal zero. This
helps to minimize but does not eliminate ambiguity in inter-
preting the outcome of an experiment.

Fractional factorial designs are constructed from com-
pletely randomized, randomized block, and Latin square de-
signs and denoted by, respectively, CRFF-pk"l, RBFF-pk"',
and LSFF-p. Let’s examine the designation CRFF-2°"!, The
letters CR indicate that the building block design is a com-
pletely randomized design; FF indicates that it is a fractional
factorial design; and 2° indicates that each of the five treat-
ments has two levels. The —1 in 2°~! indicates that the design
is a one-half fraction of a complete 2° factorial design. This
follows because the designation for a one-half fraction of a 2°
factorial design can be written as 12° =27123 =271 A
one-fourth fraction of a 2° factorial design is denoted by
CRFF-p°~2 because 12° = 2% =2722° =252,

To conserve space, I describe a small CRFF-23~! design.
A fractional factorial design with only three treatments is un-
realistic, but the small size simplifies the presentation. The
layout for the design is shown in Figure 1.15. On close in-
spection of Figure 1.15, it is apparent that the CRFF-23"! de-
sign contains the four treatment combinations of a CRF-22
design. For example, if we ignore treatment C, the design in
Figure 1.15 has the following combinations of treatments A
and B: a,b,, a,b,, a,b,, and a,b,. The correspondence be-
tween the treatment combinations of the CRF-22 and CRFF-
23~1 designs suggests a way to compute sums of squares for
the latter design—ignore treatment C and analyze the data as
if they came from a CRF-22 design.

Earlier, I observed that all sums of squares in a one-half
fractional factorial design have two aliases. It can be shown
(see Kirk, 1995, pp. 667-670) that the alias pattern for the
design in Figure 1.15 is as follows:

Alias (Name) Alias (Alternative name)
A B xC
B AxC
A X B C

The labels—treatment A and the B x C interaction—are two
names for the same source of variation. Similarly, B and the

Treatment
Combination

Participant; arbicy

Group, a : Yin
Participant, a1bicy
Participant,, . | arbycy

GroupZ . f' : Y122
Participanty, arbycy
Participanty, 4+ 1 wbicy

GI‘OUp3 ) 3_ : Y212
Participants, wbicy
Participants,, + | aybycy

Group4 ) 5. : Y221
Participanty, wbycy

Figure 1.15 Layout for a three-treatment completely randomized frac-
tional factorial design (CRFF-2°~! design). A score for the ith participant in
treatment combination a;b;c, is denoted by Y;jx;. The 4n participants are ran-
domly assigned to the treatment combinations with the restriction that n par-
ticipants are assigned to each combination. The mean for the participants in
the four groups is denoted by Y11, Y22, Yora, and Y ooog.

A x C interaction are two names for another source of varia-
tion, as are A x B and C. Hence, the F statistics

MSA MSB x C
F=——— and F=———
MSWCELL MSWCELL

test the same sources of variation. If ¥ = MSA/MSWCELL is
significant, a researcher does not know whether it is because
treatment A is significant, the B x C interaction is signifi-
cant, or both.

At this point you are probably wondering why anyone
would use such a design—after all, experiments are supposed
to help us resolve ambiguity, not create it. In defense of frac-
tional factorial designs, recall that they are typically used in
exploratory research situations where a researcher is inter-
ested in six or more treatments. In addition, it is customary to
limit all treatments to either two or three levels, thereby in-
creasing the likelihood that higher order interactions are
small relative to treatments and lower order interactions.
Under these conditions, if a source of variation labeled treat-
ment A and its alias, the BCDEF interaction, is significant, it
is reasonable to assume that the significance is probably due
to the treatment rather than the interaction.

Continuing the defense, a fractional factorial design can
dramatically decrease the number of treatment combinations
that must be run in an experiment. Consider a researcher
who is interested in determining whether any of six treat-
ments having two levels each is significant. An experiment
with six treatments and two participants assigned to each



treatment combination would have 64 combinations and re-
quire 2 x 64 = 128 participants. By using a one-fourth frac-
tional factorial design, CRFF202 design, the researcher can
reduce the number of treatment combinations in the exper-
iment from 64 to 16 and the number of participants from
128 to 32. Suppose that the researcher ran the 16 treatment
combinations and found that none of the F statistics in the
fractional factorial design is significant. The researcher has
answered the research questions with one fourth of the effort.
On the other hand, suppose that F statistics for treatments C
and E and associated aliases are significant. The researcher
has eliminated four treatments (A, B, D, F), their aliases, and
certain other interactions from further consideration. The
researcher can then follow up with a small experiment to
determine which aliases are responsible for the significant
F statistics.

In summary, the main advantage of a fractional factorial
design is that it enables a researcher to investigate efficiently
a large number of treatments in an initial experiment, with
subsequent experiments designed to focus on the most
promising lines of investigation or to clarify the interpreta-
tion of the original analysis. Many researchers would con-
sider ambiguity in interpreting the outcome of the initial
experiment a small price to pay for the reduction in experi-
mental effort.

The description of confounding in a fractional factorial
design completes a cycle. I began the cycle by describing
group-treatment confounding in a split-plot factorial design.
I then described group-interaction confounding in a con-
founded factorial design, and, finally, treatment-interaction
confounding in a fractional factorial design. The three forms
of confounding achieve either a reduction in the size of a
block or the size of an experiment. As we have seen, con-
founding always involves a tradeoff. The price we pay for re-
ducing the size of a block or an experiment is lower power in
testing a treatment or interaction or ambiguity in interpreting
the outcome of an experiment. In the next section I describe
hierarchical designs in which one or more treatments are
nested.

HIERARCHICAL DESIGNS

All of the multitreatment designs that have been discussed
so far have had crossed treatments. Treatments A and B are
crossed, for example, if each level of treatment B appears
once with each level of treatment A and vice versa. Treatment
B is nested in treatment A if each level of treatment B appears
with only one level of treatment A. The nesting of treatment
B within treatment A is denoted by B(A) and is read “B within
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A.” A hierarchical design has at least one nested treatment;
the remaining treatments are either nested or crossed.

Hierarchical Designs With One or
Two Nested Treatments

Hierarchical designs are constructed from completely
randomized or randomized block designs. A two-treatment
hierarchical design that is constructed from CR-p and CR-g
designs is denoted by CRH-pg(A), where pg(A) indicates that
the design has p levels of treatment A and ¢ levels of
treatment B that are nested in treatment A. A comparison of
nested and crossed treatments for a CRH-24(A) design and a
CRF 22 design is shown in Figure 1.16. Experiments with
one or more nested treatments are well suited to research in
education, industry, and the behavioral and medical sciences.
Consider an example from education in which two ap-
proaches to introducing long division (treatments levels a,
and a,) are to be evaluated. Four schools (treatments levels
by, ..., b,) are randomly assigned to the two levels of treat-
ment A, and eight teachers (treatment levels ¢, .. ., ¢g) are
randomly assigned to the four schools. Hence, this is a three-
treatment CRH-24(A)8(AB) design: schools, treatment B(A),
are nested in treatment A and teachers, treatment C(AB), are
nested in both A and B. A diagram of the nesting of treatments
for this design is shown in Figure 1.17.

A second example is from medical science. A researcher
wants to compare the efficacy of a new drug denoted by «,
with the currently used drug denoted by a,. Four hospitals,
treatment B(A), are available to participate in the experiment.
Because expensive equipment is needed to monitor the side
effects of the new drug, it was decided to use the new drug in
two of the four hospitals and the current drug in the other two
hospitals. The hospitals are randomly assigned to the drug
conditions with the restriction that two hospitals are assigned
to each drug. Patients are randomly assigned to the hospitals.
Panel A of Figure 1.16 illustrates the nesting of treatment B
within treatment A.

A CRH-24(A) design B

by b, by by b b b b

2 2
Figure 1.16 Comparison of designs with nested and crossed treatments. In
panel A, treatment B(A) is nested in treatment A because b, and b, appear
only with a; while b; and b, appear only with a,. In panel B, treatments A and
B are crossed because each level of treatment B appears once and only once
with each level of treatment A and vice versa.

CRF 22 design
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a, a4,

b, b b, b,

6] C2 C3 C4 CS C6 Cq CS

Figure 1.17 Diagram of a three-treatment completely randomized hierar-
chical design (CRH-24(A)8(AB) design). The four schools, b,, ..., b,, are
nested in the two approaches to introducing long division, treatment A. The
eight teachers, c,, . . ., ¢, are nested in the schools and teaching approaches.
Students are randomly assigned to the pq(j)rjk) = (2)(2)(2) = 8 treatment
combinations with the restriction that n students are assigned to each
combination.

As is often the case, the nested treatments in the drug and
educational examples resemble nuisance variables. The re-
searcher in the drug example probably would not conduct
the experiment just to find out whether the dependent vari-
able is different for the two hospitals assigned to drug a, or
the hospitals assigned to a,. The important question for the
researcher is whether the new drug is more effective than the
currently used drug. Similarly, the educational researcher
wants to know whether one approach to teaching long divi-
sion is better than the other. The researcher might be inter-
ested in knowing whether some schools or teachers perform
better than others, but this is not the primary focus of the re-
search. The distinction between a treatment and a nuisance
variable is in the mind of the researcher—one researcher’s
nuisance variable can be another researcher’s treatment.

The classical model equation for the drug experiment is

Yijk = p+ o + By + €ign
i=1....n;j=1,....p;k=1,...,9),
where

Yijx ~ is an observation for participant i in treatment lev-
els a; and by,
W is the grand mean of the population means.

o is the treatment effect for population @; and is
equal to p; — . It reflects the effect of drug a;.

Br¢j) s the treatment effect for population b, and is
equal to pj, — p; . It reflects the effects of hospi-
tal by, that is nested in a;.

gi(jky 1s the within-cell error effect associated with Y;jx
and is equal to Yjjx — p — o; — By(;). It reflects
all effects not attributable to treatment levels a;

and by ;).

Notice that because treatment B(A) is nested in treatment A,
the model equation does not contain an A x B interaction
term.

This design enables a researcher to test two null hypotheses:

Hy: . = po.
(Treatment A population means are equal.)
Ho: g = Bpp OF po3 = oy
(Treatment B(A) population means are equal.)

If the second null hypothesis is rejected, the researcher can
conclude that the dependent variable is not the same for the
populations represented by hospitals b, and b,, that the de-
pendent variable is not the same for the populations repre-
sented by hospitals b, and b,, or both. However, the test of
treatment B(A) does not address the question of whether, for
example, |L;; = 3 because hospitals b, and b; were as-
signed to different levels of treatment A.

Hierarchical Design With Crossed and
Nested Treatments

In the educational example, treatments B(A) and C(AB) were
both nested treatments. Hierarchical designs with three or
more treatments can have both nested and crossed treatments.
Consider the partial hierarchical design shown in Figure 1.18.
The classical model equation for this design is

Yij = o+ o + By + Vi) + @Bk + (@¥)ji) + &igjkn

=1,....m;j=1,....p;k=1,....q;l=1,...,r),
where

Yiin is an observation for participant i in treatment
levels a;, by, and ¢,

W is the grand mean of the population means.

Q; is the treatment effect for population a; and is
equal to B — M

By is the treatment effect for population b, and is
equal to wj. — .

Yite) is the treatment effect for population ¢, and is
equal to Wy — Py

(aP)jx  is the interaction effect for populations a; and b,

and is equal to Bk — Mk — M. + P
(ay)jix) 18 the interaction effect for populations a; and
Cypy and is equal to pup — Mgy — R+ Pojrer-
Ei(jki) is the within-cell error effect associated with
Yijw and is equal to Yijy —p — o — By—
Yoy — @Bk — (@) ji)-
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Cy C2 C3 Cy Cl C2 Cy Cy

Figure 1.18 Diagram of a three-treatment completely randomized partial
hierarchical design (CRPH-pgr(B) design). The letter P in the designation
stands for “partial” and indicates that not all of the treatments are nested. In
this example, treatments A and B are crossed; treatment C(B) is nested in
treatment B because ¢, and ¢, appear only with b, while ¢; and ¢, appear only
with b,. Treatment C(B) is crossed with treatment A because each level of
treatment C(B) appears once and only once with each level of treatment A
and vice versa.

Notice that because treatment C(B) is nested in treatment B,
the model equation does not contain B x C and A x B x C
interaction terms.

This design enables a researcher to test five null
hypotheses:

Hp: . = .
(Treatment A population means are equal.)
HO: M. = W,

(Treatment B population means are equal.)

Ho: g = Pupp O Py = Mgy

(Treatment C(B) population means are equal.)
Ho: pji — Wjp. — Bji. + Rjp. = 0 forall jand &

(All A x B interaction effects equal zero.)
Ho: Wiy — Wjrr — Wjng + Wj = 0 forall j, k, and {

(All A x C(B) interaction effects equal zero.)

If the last null hypothesis is rejected, the researcher knows
that treatments A and C interact at one or more levels of treat-
ment B.

Lack of space prevents me from describing other partial
hierarchical designs with different combinations of crossed
and nested treatments. The interested reader is referred
to the extensive treatment of these designs in Kirk (1995,
chap. 11).

EXPERIMENTAL DESIGNS WITH A COVARIATE

The emphasis so far has been on designs that use experimen-
tal control to reduce error variance and minimize the effects
of nuisance variables. Experimental control can take vari-
ous forms such as random assignment of participants to treat-
ment levels, stratification of participants into homogeneous
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blocks, and refinement of techniques for measuring a depen-
dent variable. In this section, I describe an alternative ap-
proach to reducing error variance and minimizing the effects
of nuisance variables. The approach is called analysis of co-
variance (ANCOVA) and combines regression analysis and
analysis of variance.

Analysis of covariance involves measuring one or more
concomitant variables (also called covariates) in addition to
the dependent variable. The concomitant variable represents
a source of variation that was not controlled in the experi-
ment and one that is believed to affect the dependent variable.
Analysis of covariance enables a researcher to (a) remove
that portion of the dependent-variable error variance that is
predictable from a knowledge of the concomitant variable,
thereby increasing power, and (b) adjust the dependent vari-
able so that it is free of the linear effects attributable to the
concomitant variable, thereby reducing bias.

Consider an experiment with two treatment levels a, and a,.
The dependent variable is denoted by Y;;, the concomitant
variable by X;;. The relationship between X and Y for a; and a,
might look like that shown in Figure 1.19. Each participant in
the experiment contributes one data point to the figure as de-
termined by his or her X;; and Y;; scores. The points form two
scatter plots—one for each treatment level. These scatter plots
are represented in Figure 1.19 by ellipses. Through each ellip-
sis a line has been drawn representing the regression of ¥ on X.
In the typical ANCOVA model it is assumed that each regres-
sion line is a straight line and that the lines have the same slope.
The size of the error variance in ANOVA is determined by the
dispersion of the marginal distributions (see Figure 1.19).
The size of the error variance in ANCOVA is determined by the

- Conditional
Marginal distributions
distributions of Y for a given

value of X

of Y \<_

|
%,
%,

Figure 1.19 Scatter plots showing the relationship between the dependent
variable, Y, and concomitant variable, X, for the two treatment levels. The
size of the error variance in ANOVA is determined by the dispersion of the
marginal distributions. The size of the error variance in ANCOVA is deter-
mined by the dispersion of the conditional distributions. The higher the cor-
relation between X and Y is, the greater the reduction in the error variance
due to using analysis of covariance.
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Figure 1.20 Analysis of covariance adjusts the concomitant-variable means, X.; and X 5, so that they equal the
concomitant-variable grand mean, X ... When the concomitant-variable means differ, the absolute difference between ad-
justed means for the dependent variable, |Y a1 — Yagj2|, can be less than that between unadjusted means, |Y.; — Y 2|,

as in panels A and B, or larger, as in panel C.

dispersion of the conditional distributions (see Figure 1.19).
The higher the correlation between X and Y, in general, the
narrower are the ellipses and the greater is the reduction in the
error variance due to using analysis of covariance.

Figure 1.19 depicts the case in which the concomitant-
variable means, X.; and X ,, are equal. If participants are
randomly assigned to treatment levels, in the long run the con-
comitant-variable means should be equal. However, if random
assignment is not used, differences among the means can be
sizable, as in Figure 1.20. This figure illustrates what happens
to the dependent variable means when they are adjusted for dif-
ferences in the concomitant-variable means. In panels A and B
the absolute difference between adjusted dependent-variable
means |Y 4.1 — Yaqj2| is smaller than that between unadjusted
means |Y.; — Y 5|. In panel C the absolute difference between
adjusted means is larger than that between unadjusted means.

Analysis of covariance is often used in three kinds of
research situations. One situation involves the use of intact
groups with unequal concomitant-variable means and is com-
mon in educational and industrial research. Analysis of
covariance statistically equates the intact groups so that their
concomitant variable means are equal. Unfortunately, a re-
searcher can never be sure that the concomitant variable used
for the adjustment represents the only nuisance variable or
the most important nuisance variable on which the intact

groups differ. Random assignment is the best safeguard
against unanticipated nuisance variables. In the long run,
over many replications of an experiment, random assignment
will result in groups that are, at the time of assignment, simi-
lar on all nuisance variables.

A second situation in which analysis of covariance is often
used is when it becomes apparent that even though random
assignment was used, the participants were not equivalent on
some relevant variable at the beginning of the experiment.
For example, in an experiment designed to evaluate the ef-
fects of different drugs on stimulus generalization in rats, the
researcher might discover that the amount of stimulus gener-
alization is related to the number of trials required to estab-
lish a stable bar-pressing response. Analysis of covariance
can be used to adjust the generalization scores for differences
among the groups in learning ability.

Analysis of covariance is useful in yet another research
situation in which differences in a relevant nuisance variable
occur during the course of an experiment. Consider the ex-
periment to evaluate two approaches toward introducing long
division that was described earlier. It is likely that the daily
schedules of the eight classrooms provided more study peri-
ods for students in some classes than in others. It would be
difficult to control experimentally the amount of time avail-
able for studying long division. However, each student could



record the amount of time spent studying long division. If test
scores on long division were related to amount of study time,
analysis of covariance could be used to adjust the scores for
differences in this nuisance variable.

Statistical control and experimental control are not mutu-
ally exclusive approaches for reducing error variance and
minimizing the effects of nuisance variables. It may be con-
venient to control some variables by experimental control
and others by statistical control. In general, experimental
control involves fewer assumptions than does statistical
control. However, experimental control requires more infor-
mation about the participants before beginning an experi-
ment. Once data collection has begun, it is too late to assign
participants randomly to treatment levels or form blocks of
dependent participants. The advantage of statistical control is
that it can be used after data collection has begun. Its disad-
vantage is that it involves a number of assumptions such as a
linear relationship between the dependent and concomitant
variables and equal within-groups regression coefficients that
may prove untenable in a particular experiment.

In this chapter I have given a short introduction to those
experimental designs that are potentially the most useful in
the behavioral and social sciences. For a full discussion of the
designs, the reader is referred to the many excellent books on
experimental design: Bogartz (1994), Cobb (1998), Harris
(1994), Keppel (1991), Kirk (1995), Maxwell and Delaney
(1990), and Winer, Brown, and Michels (1991). Experimental
designs differ in a number of ways: (a) randomization proce-
dures, (b) number of treatments, (c) use of independent sam-
ples or dependent samples with blocking, (d) use of crossed
and nested treatments, (e) presence of confounding, and (f)
use of covariates. Researchers have many design decisions to
make. I have tried to make the researcher’s task easier by em-
phasizing two related themes throughout the chapter. First,
complex designs are constructed from three simple building
block designs. Second, complex designs share similar lay-
outs, randomization procedures, and assumptions with their
building block designs.
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Quantitative research methods in the twentieth century were
marked by the explosive growth of small-sample statistics
and the expansion of breadth and complexity of models for
statistical hypothesis testing. The close of the century, how-
ever, was marked primarily with a frustration over the limita-
tions of common statistical methods and frustration with their
inappropriate or ineffective use (Cohen, 1994). Responding
to the confusion that emerged in the psychological commu-
nity, the American Psychological Association convened a
task force on statistical inference that published a report
(Wilkinson & Task Force, 1999) recommending best prac-
tices in the area of method, results, and discussion. Among
the recommendations in the area of conducting and reporting
results, the task force suggested researchers undertake a clus-
ter of activities to supplement common statistical test proce-
dures with the aim of developing a detailed knowledge of the
data, an intimacy with the many layers of patterns that occur,
and a knowledge of the implications of these patterns for sub-
sequent testing.

Unbeknownst to many psychological researchers, the gen-
eral goals recommended by the task force, as well as specific
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graphical techniques and conceptual frameworks mentioned
in the report, are rooted in the quantitative tradition of ex-
ploratory data analysis (EDA). Exploratory data analysis is a
well-established tradition based primarily on the philosophi-
cal and methodological work of John Tukey. Although Tukey
is clearly recognized as the father of EDA in statistical cir-
cles, most psychologists are familiar only with small aspects
of his work, such as that in the area of multiple-comparison
procedures. Although Tukey worked in mathematical statis-
tics throughout his life, the middle of his career brought
dissatisfaction with the value of many statistical tools for un-
derstanding the complexities of real-world data. Moreover,
Tukey fought what he perceived as an imbalance in efforts
aimed at understanding data from a hypothesis-testing or
confirmatory data analysis (CDA) mode while neglecting
techniques that would aid in understanding of data more
broadly. To fill this gap and promote service to the scientific
community, as well as balance to the statistical community,
Tukey developed and implemented the processes and philos-
ophy of exploratory data analysis to be discussed shortly. To
introduce the reader to this tradition, the chapter is divided
into four parts. First, the background, rationale, and philoso-
phy of EDA are presented. Second, a brief tour of the EDA
toolbox is presented. The third section discusses computer
software and future directions for EDA. The chapter ends
with a summary and conclusion.
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HISTORY, RATIONALE, AND PHILOSOPHY
OF EDA

John Tukey and the Origins of EDA

The tradition of EDA was begun and nurtured by John Tukey
and his students through his many years at Princeton Univer-
sity and Bell Laboratories. As a young academic, Tukey was
a prodigious author and formidable mathematical statistician.
He received his PhD in mathematics from Princeton at the
age of 25 and at 35 reached the rank of full professor at the
same institution (Brillinger, Fernholz, & Morgenthaler,
1997). A sense of Tukey’s breadth and impact can be gleaned
from examination of the eight volumes of his collected
works. Volumes 1 and 2 (Brillinger, 1984, 1985) highlight his
contributions to time-series analysis (especially through
spectral decomposition). Volumes 3 (Jones, 1986a) and 4
(Jones, 1986b) address Philosophy and Principles of Data
Analysis, and volume 5 is devoted to graphics (Cleveland,
1988). Volume 6 (Mallows, 1990) covers miscellaneous
mathematical statistics, whereas volumes 7 (Cox, 1992) and
8 (Braun, 1994) cover factorial and analysis of variance
(ANOVA) and multiple comparisons, respectively. More
may appear at a future date because Tukey remained an ac-
tive researcher and writer until his death in July of 2000.

In addition to the many papers in his collected works,
Tukey authored and coauthored numerous books. In the EDA
literature his central work is Exploratory Data Analysis
(Tukey, 1977), whereas Data Analysis and Regression: A
Second Course (Mosteller & Tukey, 1977) is equally com-
pelling. Three volumes edited by Hoaglin, Mosteller, and
Tukey (1983, 1985, 1991) complete the foundational corpus
of EDA. Brillinger, Fernholz, and Morgenthaler (1997) pro-
vide a Festschrift for Tukey based on writings of his students
at the time of his 80th birthday in 1995.

As Tukey became increasingly involved in the application
of statistics to solve real-world problems, he developed his
own tradition of values and themes that emphasized flexibil-
ity, exploration, and a deep connection to scientific goals and
methods. He referred to his work as data analysis rather than
statistics because he believed the appropriate scientific work
associated with data was often much broader than the work
that was followed by the traditional statistical community.
Tukey did not seek to supplant statistics; rather, he sought
to supplement traditional statistics by restoring balance to
what he considered an extreme emphasis on hypothesis test-
ing at the expense of the use of a broader set of tools and
conceptualizations.

Although most psychologists are unaware of the specific
proposals Tukey made for EDA (but see Tukey, 1969;

Behrens, 1997a, 2000), the work of EDA is slowly filtering
into daily practice through software packages and through
the impact of a generation of statisticians who have been
trained under the influence of Tukey and his students. For ex-
ample, although highly graphical data analysis was rare in
the 1970s, the current reliance on computer display screens
has led statistical graphics to hold a central role in data
analysis as recommended in common software packages
(e.g., Norusis, 2000; Wilkinson, 2001). Tukey’s work in-
spired entire paradigms of statistical methods, including re-
gression graphics (Cook & Weisberg, 1994), robustness
studies (e.g. Wilcox, 1997, 2001), and computer graphics for
statistical use (Scott, 1992; Wilkinson, 1999).

Despite these advances in the application of EDA-like
technique, statistical training remains largely focused on spe-
cific techniques with less than optimal emphasis on philo-
sophical and heuristic foundations (cf. Aiken, West, Sechrest,
& Reno, 1990). To prepare the reader for appropriate appli-
cation of the techniques discussed later, we first turn to a
treatment of the logical and philosophical foundations of
EDA.

Rationale and General Tenets
It’s all about the World

Exploratory data analysis is an approach to learning from
data (Tukey & Wilk, 1966/1986) aimed at understanding the
world and aiding the scientific process. Although these may
not be “fighting words” among psychologists and psycholog-
ical methodologists, they were for Tukey as he first raised his
concerns with the statistical community.

Tukey’s emphasis on the scientific context of data analysis
leads to a view of data analysis as a scientific endeavor using
the tools of mathematics, rather than a mathematical en-
deavor that may have value for some real-world applications.
A number of changes to standard statistical practice are im-
plied in this view. First, the statistician cannot serve as an
aloof high priest who swoops down to sanctify a set of proce-
dures and decisions (Salsburg, 1985). Data analysts and
scientists (not mutually exclusive categories) must work in-
teractively in a cyclical process of pattern extraction (mathe-
matics) and pattern interpretation (science). Neither can
function without the other. This view has implications for the
organization of academic departments and organization of
graduate training.

Second, because the effort of data analysis is to under-
stand data in all circumstances, the role of probability models
relates primarily to confirmatory aspects of the scientific
process. This leaves a wide swath of the scientific processes



for which researchers are left to use nonprobabilistic methods
such as statistical graphics. This emphasis is based on the
fact that in many stages of research the working questions are
not probabilistic. When probabilistic methods are applied,
there are layers of assumptions which themselves need to be
assessed in nonprobabilistic ways to avoid an unending loop
of assumptions. Contrasting classical statistics with data
analysis, Tukey (1972/1986a) wrote, “I shall stick to ‘data
analysis’ in part to indicate that we can take probability seri-
ously, or leave it alone, as may from time to time be appro-
priate or necessary” (p. 755).

The probabilistic approaches taken in most confirmatory
work may lead to different practices than the nonprobabilistic
approaches that are more common to working in the ex-
ploratory mode. For example, a number of researchers have
looked at the issue of deleting outliers from reaction time
data. From a probabilistic view this problem is addressed by
simulating distributions of numbers that approximate the
shape commonly found in reaction time data. Next, extreme
values are omitted using various rules, and observation is
made of the impact of such adjustments on long-run decision
making in the Monte Carlo setting. As one would expect in
such simulations, estimates are often biased, leading the re-
searcher to conclude that deleting outliers is inappropriate.

Working from the exploratory point of view, the data ana-
lyst would bring to bear the scientific knowledge he or she
has about the empirical generating process of the data—for
example, the psychological process of comparison. Using
this as the primary guideline, outliers are considered observa-
tions whose value is such that it is likely they are the result of
nonexperimental attributes. If common sense and previous
data and theory suggest the reaction times should be less than
3 s, extreme values such as 6 or 10 s are most likely the result
of other generating processes such as distraction or lack of
compliance. If this is the case, then a failure to exclude
extreme values is itself a form of biasing and is deemed
inappropriate.

These divergent conclusions arise from approaching the
problem with different assumptions. From a probabilistic
view, the question is likely to be formulated as If the underly-
ing process has a distribution of X and I exclude data from it,
is the result biased in the long run? On the other hand, the
exploratory question addressed is Given that I do not know
the underlying distribution is X, what do I know about the
processes that may help me decide if extreme values are from
the same process as the rest of the data? In this way EDA
emphasizes the importance of bringing relevant scientific
knowledge to bear in the data-analytic situation rather than
depending solely on probabilistic conceptualizations of the
phenomenon under study. As with all techniques, EDA does
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not reject probabilistic approaches, but rather considers them
within a larger context of the many tools and ideas that bear
on scientific work.

A central idea in the EDA corpus is the goal of developing
a detailed and accurate mental model that provides a sense of
intimacy with the nuances of the data. Such an experience as-
sists both in constructing scientific hypotheses and building
mathematical representations that allow more formal confir-
matory methods to be used later. All of these issues argue
against the routine use of statistical procedures and the lock-
step application of decision rules. Tukey (1969) saw the com-
monplace use of statistical tests to prove “truth” as a social
process of “sanctification.” In this approach, the codifying of
specific actions to be undertaken on all data obscures the
individual nature of the data, removes the analyst from
the details of the world held in the data, and impedes the de-
velopment of intimacy and the construction of a detailed
mental model of the world.

Consider the story of the researcher who sought to analyze
the ratings of university faculty of various ethnicities accord-
ing to the ethnicities of the students providing the ratings. To
make sure the job was done properly, the researcher con-
tacted the statistical consulting center and spoke with the di-
rector. After a brief description of the problem, it was clear to
the consultant that this situation required a series of two-way
ANOVAs of rating value across levels of teacher ethnicity
and student ethnicity. A graduate student was assigned to
compute the ANOVAs using commonly available statistical
software, and both the researcher and consultant were quite
pleased with the resulting list of p values and binary signifi-
cance decisions.

In this true story, as in many, it was unfortunate that the
discussion focused primarily on choosing a statistical model
(ANOVA) to fit the design, rather than being a balanced dis-
cussion of the need for a broader understanding of the data.
When the researcher later sought help in answering a re-
viewer’s question, a simple calculation of cell frequencies
revealed that the scarcity of students and faculty in many mi-
nority groups led to a situation in which almost half of the
cells in the analysis were empty. In addition, many cells that
were not empty had remarkably few data points to estimate
their means. In many ways the original conclusions from the
analysis were more incorrect than correct.

The error in this situation occurred because a series of un-
spoken assumptions propagated throughout the data analysis
processes. Both the researcher and the director were con-
cerned primarily with the testing of hypotheses rather than
with developing a rich understanding of the data. Because of
this, the statistician failed to consider some basic assump-
tions (such as the availability of data) and focused too much
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on an abstract conceptualization of the design. It was
such lockstep application of general rules (factorial means
between groups implies ANOVA) that Tukey sought to
discourage.

Unfortunately, it is not unusual that authors of papers pub-
lished in refereed journals neglect detailed examination of
data. This leads to inferior mental models of the phenomenon
and impedes the necessary assessment of whether the data
conform to parametric test assumptions. For example, after
reviewing more than 400 large data sets, Micceri (1989)
found that the great majority of data collected in behavioral
sciences do not follow univariate normal distributions.
Breckler (1990) reviewed 72 articles in personality and social
psychology journals and found that only 19% acknowledged
the assumption of multivariate normality, and fewer than
10% considered whether this assumption had been met. Re-
viewing articles in 17 journals, Keselman et al. (1998) found
that researchers rarely verified that statistical assumptions
were satisfied and typically used analyses that were nonro-
bust to assumption violations. These authors noted that many
of these types of problems could be detected by the applica-
tion of techniques from the EDA tradition.

Detective Work and the Continuum of Method

In working to learn about the world, EDA holds several com-
plementary goals: to find the unexpected, to avoid being
fooled, and to develop rich descriptions. The primary analogy
used by Tukey to communicate these goals is that of the data
analyst as detective. Detective work is held up as a valuable
analogy because the process is essentially exploratory and
interactive; it involves an iterative process of generating
hypotheses and looking for fit between the facts and the ten-
tative theory or theories; and the process is messy and replic-
able only at the heuristic level. Detective work also provides
a solid analogy for EDA because it is essentially a bottom-up
process of hypothesis formulation and data collection.
Tukey (e.g., 1972/1986a, 1973/1986b) did not consider
methodology as a bifurcation between EDA and CDA, but
considered quantitative methods to be applied in stages of
exploratory, rough confirmatory, and confirmatory data
analyses. In this view EDA was aimed at the initial goals of
hypothesis generation and pattern detection, following the
detective analogy. Rough CDA is sometimes equated with
null-hypothesis significance testing or the use of estimation
procedures such as confidence intervals with the aim to an-
swer the question, “With what accuracy are the appearances
already found to be believed?” (Tukey, 1973/1986b, p. 794).
With regard to strict confirmatory analysis Tukey notes,
“When the results of the second stage is marginal, we need a

third stage. . . . It is at this stage . . . that we require our best
statistical techniques” (Tukey, 1973/1986b, p. 795). As a re-
searcher moves through these stages, he or she moves from
hypothesis generation to hypothesis testing and from pattern
identification to pattern confirmation.

Whereas CDA is more ambitious in developing proba-
bilistic assessments of theoretical claims, the flexibility and
bottom-up nature of EDA allows for broader application. In
many cases an appropriate model of parametric statistics may
be unavailable for full CDA, while the simpler techniques of
EDA may be of use. Under such a circumstance the maxim
should be followed that “[f]ar better an approximate answer
to the right question, which is often vague, than an exact
answer to the wrong question, which can always be made
precise” (Tukey, 1962/1986¢, p. 407).

Summarization and the Loss of Information

Behrens and Smith (1996) characterize the nature of data
analysis as being oriented toward generating summary and
extracting gist. When faced with numerous pieces of data, the
goal of the analyst is to construct a terse yet rich mathemati-
cal description of the data. This is analogous to the summa-
rization process that occurs in natural language processing.
After reading a long book, one does not recall every individ-
ual word, but rather remembers major themes and prototypi-
cal events. In a similar way, the data analyst and research
consumer want to come away with a useable and parsimo-
nious description rather than a long list of data. An essential
concept associated with summarization is that every sum-
mary represents a loss of information. When some aspects of
data are brought to the foreground, other aspects are sent to
the background.

Algebra Lies, So You Need Graphics

Anscombe (1973) described a data set of numbers, each mea-
sured on the scales of x and y. He described the data as hav-
ing a mean of 9 and standard deviation of 3.3 in x and a mean
of 7.5 and standard deviation of 2.03 in y. The data were fit by
ordinary least squares (OLS) criteria to have a slope of .5, an
intercept of 3, and a correlation of .83. This allows the terse
and easily interpretable summary for the data in the form
y = 3 4 .5(x) + error. As a thought experiment, we encour-
age the reader to try to visualize a scatter plot that depicts
such data.

If you imagined a scatter plot similar to that shown in
Figure 2.1, then you are quite correct, because this represents
the data Anscombe provided that met the descriptive statis-
tics we described previously. This, however, is only a small
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Figure 2.1 Plot of bivariate normal version of Anscombe data.

part of the story, for if you imagined the data to have the
shape shown in panel A of Figure 2.2 then you are also cor-
rect. If you imagined the pattern in panels B or C of Figure
2.2, you are also correct because all the patterns shown in
Figures 2.1 and 2.2 conform to the same algebraic summary
statistics given by Anscombe. Although this example speaks
to the weakness of overdependence on algebraic representa-
tions alone, it points to the larger issue that all summarization
leads to a loss of information.

Graphics Lie, So You Need Algebra

Although graphics are a mainstay of EDA, graphics are not
immune from this general principle. Consider the follow-
ing data set: 1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,
9,9,10,10,11,11. Entering this data into a standard statistics
package produces the display presented in Figure 2.3. As the
reader can see, a slight skew is evident that may not be de-
tected in the listing of numbers themselves. It is important to
consider the computational model that underlies this graphic.
It consists of a mapping of bar height to frequency and bar
width to bin width in the frequency table. Bin width refers to
the size of the interval in which numbers are aggregated when
determining frequencies. (The term bandwidth is similarly
used in many domains, including nonparametric smoothing;
cf. Hardle, 1991). Different bin widths and starting points for
bins will lead to different tables, and hence, different graph-
ics. Using the same data with different combinations of bin
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starting point and bin widths produces the displays seen in
Figure 2.4.

In sum, all data analysis is a process of summariza-
tion. This process leads to a focus on some aspects of data
while taking focus off of other aspects. Conscious of these is-
sues, the exploratory analyst always seeks multiple represen-
tations of the data and always holds a position of skepticism
toward any single characterization of data.

The Importance of Models

Apart from the cognitive aspects of statistical information just
discussed, there is an additional epistemic layer of meaning
that must be dealt with. As George Box (1979) wrote: “All
models are wrong but some are useful” (p. 202). An important
aspect of EDA is the process of model specification and testing
with a focus on the value and pattern of misfit or residuals. Al-
though some psychologists are familiar with this view from
their experience with regression graphics or diagnostics, many
individuals fail to see their statistical work as model building.
In the EDA view, all statistical work can be considered
model building. The simple ¢ test is a model of mean difference
as a function of group membership considered in terms of
sampling fluctuation. Regression analyses attempt to model
criteria values as a function of predictor variables, whereas
analysis of variance (ANOVA) models means and variances of
dependent variables as a function of categorical variables.

Unaware of the options, many individuals fail to consider
the wide range of model variants that are available. In re-
gression, for example, the “continuous” dependent variable
may be highly continuous or marginally continuous. If the
dependent variable is binary, then a logistic regression is ap-
propriate and a multilevel categorical dependent variable can
likewise be fit (Hosmer & Lemeshow, 2000). The closely re-
lated variant of Poisson regression exists for counts, and pro-
bit and Tobit variants also can be used.

The application of models in these instances is central to
EDA. Different models will have different assumptions and
often describe the data well in one way, but fail in others. For
example, in the world of item response theory, there is often
great consternation regarding the choice of models to use.
One-parameter models may misfit the data in some way, but
have the desirable properties of sufficiency and consistent
ordering of individuals. Two- and three-parameter models
generally fit the data more tightly but without the conceptual
advantages of the one-parameter model. From an EDA point
of view, each model is “correct” in some respect insofar as
each brings some value and loses others. Depending on the
exact scientific or practical need, the decision maker may
choose to emphasize one set of values or another.
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Figure 2.2 Additional data sets with same algebraic summaries as the data in Figure 2.1, with varying patterns and model fit.
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Figure 2.3 Histogram of small data set revealing slight skew.

Regardless of individual decisions about models, the most
important issues are that one realizes (a) that there is always
model being used (even if implicitly), (b) that for real-world
data, there is no such thing as the perfect model, and (c) that
the way in which the model is wrong tells us something about
the phenomenon.

Abduction as the Logic of EDA

Because of the rich mathematical foundation of CDA, many
researchers assume that the complete philosophical basis for
inferences from CDA have been worked out. Interestingly,
this is not the case. Fisher (1935, 1955) considered his
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Figure 2.4 Additional histograms of the same data depicted in Figure 2.3 with varying appearances as a function of bin width and bin starting value.

approach to significance testing an as implementation of “in-
ductive inference” and argued that all knowledge is gained
in this way. Neyman and Pearson (1928, 1933a, 1933b), on
the other hand, developed the concepts of power, type II
error, and confidence intervals, to which Fisher objected
(Gigerenzer, 1987, 1993; Lehmann, 1993). Neyman argued
that only deductive inference was possible in statistics, as
shown in the hypothesis testing tradition he developed.
Others argue that classical statistics involves both logical
modes, given that the hypothesis is generated deductively
and data are compared against the hypothesis inductively
(Lindsey, 1996).

Where, then, does this leave EDA? Because Tukey was
primarily a mathematician and statistician, there has been lit-
tle explicit work on the logical foundations of EDA from a
formal philosophical viewpoint. A firm basis for understand-
ing EDA, however, can be found in the concept of abduction
proposed by the American philosopher Charles Sanders
Peirce. Peirce, whose name is pronounced “pers,” was a tour
de force in American philosophy as the originator of modern
semiotics, an accomplished logician in logic of probability,
and the originator of pragmatism that was popularized by
James and Dewey. Peirce (1934/1960) explained the three
logical processes by arguing, “Deduction proves some-
thing must be. Induction shows that something actually is

operative; abduction merely suggests that something may be”
(vol. 5, p. 171). Put another way: Abduction plays the role of
generating new ideas or hypotheses; deduction functions
as evaluating the hypotheses; and induction justifies the
hypotheses with empirical data (Staat, 1993).

Deduction involves drawing logical consequences from
premises. The conclusion is true given that the premises are
true also (Peirce, 1868). For instance,

First premise: All As are Bs (True).
Second premise: C is A (True).
Conclusion: Therefore, C is B (True).

Deductive logic confines the conclusion to a dichotomous
answer (true-false). A typical example is the rejection or fail-
ure of rejection of the null hypothesis. To be specific, the for-
mulated hypothesis is regarded as the first premise. When the
data (the second premise) conform to the hypothesis, the con-
clusion must assert that the first premise is true.

Some have argued that deduction is incomplete because
we cannot logically prove all the premises are true. Russell
and Whitehead (1910) attempted to develop a self-sufficient
logical-mathematical system. In their view, not only can
mathematics be reduced to logic, but also logic is the founda-
tion of mathematics. However, Godel (1947/1986) found that
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it is impossible to have such a self-contained system. Any
lower order theorem or premise needs a higher order theorem
or premise for substantiation, and it goes on and on; no sys-
tem can be complete and consistent at the same time. Build-
ing on this argument, Kline (1980) held that mathematics had
developed illogically with false proof and slips in reasoning.
Thus, he argued that deductive proof from self-evident prin-
ciples in mathematics is an “intellectual tragedy” (p. 3) and a
“grand illusion” (p. 4).

For Peirce, inductive logic is based upon the notion that
probability is the relative frequency in the long run and that a
general law can be concluded based on numerous cases. For
example,

Al, A2, A3 ... A100 are B.
Al,A2,A3...Al100 are C.
Therefore, B is C.

Hume (1777/1912) argued that things are inconclusive by
induction because in infinity there are always new cases and
new evidence. Induction can be justified if and only if in-
stances of which we have no experience resemble those of
which we have experience. Thus, the problem of induction is
also known as “the skeptical problem about the future”
(Hacking, 1975). Take the previous argument as an example.
If A101 is not B, the statement “B is C” will be refuted. We
never know when a line predicting future events will turn flat,
go down, or go up. Even inductive reasoning using numerous
accurate data and high-power computing can go wrong,
because predictions are made only under certain specified
conditions (Samuelson, 1967).

Induction suggests the possible outcome in relation to
events in the long run. This is not definable for an individual
event. To make a judgment for a single event based on prob-
ability, such as saying that someone’s chance of surviving
surgery is 75%, is nonsensical. In actuality, the patient will
either live or die. In a single event, not only is the probability
indefinable, but also the explanatory power is absent. Induc-
tion yields a general statement that explains the event of ob-
serving, but not the facts observed. Josephson and Josephson
(1994) gave this example:

Suppose I choose a ball at random (arbitrarily) from a large hat
containing colored balls. The ball I choose is red. Does the fact
that all of the balls in the hat are red explain why this particular
ball is red? No. .. “All A’s are B’s” cannot explain why “this A is
a B” because it does not say anything about how its being an A is
connected with its being a B. (p. 20)

The function of abduction is to look for a pattern in a
surprising phenomenon and suggest a plausible hypothesis
(Peirce, 1878). Despite the long history of abduction, it

remains overlooked among many texts of logic and research
methodology, while gaining ground in the areas of artificial
intelligence and probabilistic computing (e.g., Josephson &
Josephson, 1994; Schum, 1994). However, as logic is divided
into formal types of reasoning (symbolic logic) and informal
types (critical thinking), abduction is represented as informal
logic. Therefore, unlike deduction and induction, abduction
is a type of critical thinking rather than a formalism captured
by symbolic logic. The following example illustrates the
function of abduction, though illustrated with symbols for
simplification:

The surprising phenomenon, X, is observed.

Among hypotheses A, B, and C, A is capable of explain-
ing X.

Hence, there is a reason to pursue A.

At first glance, abduction may appear as no more than
an educated guess among existing hypotheses. Thagard and
Shelley (1997) addressed this concern. They argued that uni-
fying conceptions are an important part of abduction, and it
would be unfortunate if our understanding of abduction were
limited to more mundane cases where hypotheses are simply
assembled. Abduction does not occur in the context of a fixed
language, since the formation of new hypotheses often goes
hand in hand with the development of new theoretical terms
such as quark and gene. Indeed, Peirce (1934/1960) empha-
sized that abduction is the only logical operation that intro-
duces new ideas.

Although abduction is viewed as a kind of “creative intu-
ition” for idea generation and fact explanation (Hoffmann,
1997), it is dangerous to look at abduction as impulsive
thinking and hasty judgment. In The Fixation of Belief,
Peirce explicitly disregarded the tenacity of intuition as the
source of knowledge. Peirce strongly criticized his contem-
poraries’ confusion of propositions and assertions. Proposi-
tions can be affirmed or denied while assertions are final
judgments (Hilpinen, 1992). The objective of abduction is to
determine which hypothesis or proposition to test, not which
one to adopt or assert (Sullivan, 1991).

In EDA, after observing some surprising facts, we exploit
them and check the predicted values against the observed
values and residuals (Behrens, 1997a). Although there may
be more than one convincing pattern, we “abduct” only those
that are more plausible for subsequent confirmatory experi-
mentation. Since experimentation is hypothesis driven and
EDA is data driven, the logic behind each of them is quite
different. The abductive reasoning of EDA goes from data
to hypotheses, whereas inductive reasoning of experimenta-
tion goes from hypothesis to expected data. In fact, closely



(and unknowingly) following Tukey (1969), Shank (1991),
Josephson and Josephson (1994), and Ottens and Shank
(1995) related abductive reasoning to detective work. Detec-
tives collect related “facts” about people and circumstances.
These facts are actually shrewd guesses or hypotheses based
on their keen powers of observation.

In short, abduction can be interpreted as observing the
world with appropriate categories, which arise from the inter-
nal structure of meanings. Abduction in EDA means that
the analyst neither exhausts all possibilities nor makes hasty
decisions. Researchers must be well equipped with proper
categories in order to sort out the invariant features and pat-
terns of phenomena. Quantitative research, in this sense, is
not number crunching, but a thoughtful way of peeling back
layers of meaning in data.

Exploration, Discovery, and Hypothesis Testing

Many researchers steeped in confirmatory procedures have
appropriately learned that true hypothesis tests require true
hypotheses and that unexpected results should not be treated
with the same deference as hypothesized results. A corollary
is that one should keep clear what has been hypothesized
in a research study and not modify a hypothesis to match
data. This is certainly true and is an essential aspect of con-
firmatory inference. In some researchers, however, a neuro-
sis develops that extends the avoidance of hypothesis-
modification based on knowledge of the data to an
avoidance of intimacy with the data altogether. Sometimes
this neurosis is exacerbated by the fear that every piece of
knowledge has an amount of Type I error associated with it
and, therefore, the more we know about the data the higher
our Type I error. The key to appropriately balancing ex-
ploratory and confirmatory work is to keep clear what has
been hypothesized in advance and what is being “discov-
ered” for the first time. Discoveries are important, but do
not count as confirmations.

After years of extensive fieldwork an entomologist devel-
ops a prediction that butterflies with a certain pattern of spot-
ting should exist on top of a particular mountain, and sets off
for the mountaintop. Clearly, if the entomologist finds such
butterflies there will be evidence in support of her theory;
otherwise, there is an absence of evidence. On her way to the
mountain she traverses a jungle in which she encounters a
previously unknown species of butterflies with quite unantic-
ipated spottings. How does she handle this? Should she
ignore the butterfly because she has not hypothesized it?
Should she ignore it because it may simply be a misleading
Type I error? Should she ignore it because she may change
her original hypothesis to say she has really hypothesized this
jungle butterfly?
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For most individuals it is clear that a new discovery is
valuable and should be well documented and collected.
The entomologist’s failure to have hypothesized it does not
impugn its uniqueness, and indeed many great scientific
conclusions have started with unanticipated findings
(Beveridge, 1950). Should the entomologist worry about
Type I error? Since Type I error concerns long-run error in
decision making based on levels of specific cutoff values in
specific distributions, that precise interpretation does not
seem to matter much here. If she makes an inference about
this finding then she should consider the probabilistic basis
for such an inference, but nevertheless the butterfly should
be collected. Finally, should she be concerned that this find-
ing will contaminate her original hypothesis? Clearly she
should continue her travel and look for the evidence con-
cerning her initial hypothesis on the mountaintop. If the
new butterfly contradicts the existing hypothesis, then the
entomologist has more data to deal with and additional
complexity that should not be ignored. If she is concerned
about changing her hypothesis in midstream to match the
new data, then she has confused hypothesis generation and
hypothesis testing. With regard to any new theories, she
must create additional predictions to be tested in a different
location.

EDA and Exploratory Statistics

EDA and exploratory statistics (ES) have the same ex-
ploratory goals; thus, the question sometimes arises as to
whether ES is simply a subset of EDA or EDA is a subset of
ES. Because EDA is primarily an epistemological lens and
ES is generally presented in terms of a collection of tech-
niques, a more appropriate question is Can ES be conducted

Jfrom an EDA point of view? To this question we can answer

yes. Furthermore, EDA is a conceptual lens, and most re-
search procedures can be undertaken with an EDA slant. For
example, if one is conducting an “exploratory” factor analy-
sis without graphing of data, examination of residuals, or
attention to specific patterns of raw data underlying the cor-
relations that are central to the analysis, then little seems to be
consistent with the EDA approach. On the other hand, a
clearly probabilistic analysis can be well augmented by plots
of data on a number of dimensions (Hirdle, Klinke, &
Turlach, 1995; Scott, 1992), attention to residual patterns in a
number of dimensions, and the use of detailed diagnostics
that point to patterns of fits and misfits. Regardless of
the software or specific statistical procedures used, such
activity would clearly be considered EDA and ES. ES does
not necessarily imply EDA, but ES can be conducted as EDA
if the conceptual and procedural hallmarks of EDA are
employed.
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Summary

Exploratory data analysis is a rich data-analytic tradition de-
veloped to aid practical issues of data analysis. It recom-
mends a data-driven approach to gaining intimacy with one’s
data and the phenomenon under study. This approach follows
the analogy of the detective looking for clues to develop
hunches and perhaps seek a grand jury. This counters the
more formal and ambitious goals of confirmatory data analy-
sis, which seeks to obtain and present formal evidence in
order to gain a conviction. EDA is recommended as a com-
plement to confirmatory methods, and in no way seeks to re-
place or eliminate them. Indeed, effective researchers should
incorporate the best aspects of all approaches as needed.

HALLMARKS OF EDA

In this section, the techniques and attitudes that are standard
aspects of EDA are discussed. The tools described here are
only recommendations that have worked to allow researchers
to reach the underlying goals of EDA. However, it is the un-
derlying goals that should be sought, not the particular tech-
niques. Following Hoaglin, Mosteller, and Tukey (1983), we
discuss these tools under the four Rs of EDA: revelation,
residuals, reexpression, and resistance.

Revelation

Graphics are the primary tool for the exploratory data ana-
lyst. The most widely cited reason for this is Tukey’s (1977)
statement that “The greatest value of a picture is when it
forces us to notice what we never expected to see” (p. vi). In
many ways, the graphics in Figures 2.1 and 2.2 illustrate all
the rationale of graphics in EDA. First, even though the alge-
braic summaries are “sufficient statistics,” they are sufficient
for only the very limited purpose of summarizing particular
aspects of the data. For specifying the exact form of the data
without additional assumptions regarding distributional
shapes, the summary statistics are not only “insufficient”
but are downright dangerous. Second, the indeterminacy of
the algebra calls us to fill in the details with possibly unten-
able assumptions. In the Anscombe data-thought experiment,
participants almost universally imagine the data to be of the
canonical form shown in Figure 2.1. In the absence of a skep-
tical mind and in the light of the history of statistics textbooks
that are focused on mathematical idealizations at the expense
of real-world patterns, many psychologists have developed
schemas and mental models (Johnson-Laird, 1983) that lead
to erroneous inferences.

Another psychological advantage of graphics is that it al-
lows for a parsimonious representation of the data. The facts
that are easily derivable from the image include all the indi-
vidual values, the relative position of each data point to every
other, shape-based characterizations of the bivariate distribu-
tion, and the relationship between the data and the proposed
regression line. After some practice, the trained eye can eas-
ily discern and describe the marginal distributions as well as
the distribution of residuals. The construction of a text-based
representation of all of this information would require an ex-
tensive set of text-based descriptors. In short, visual images
of the type shown here exploit the visual-spatial memory sys-
tem to support efficient pattern recognition (Garner, 1974),
problem solving (Larkin & Simon, 1987), and the construc-
tion of appropriate mental models (Bauer & Johnson-Laird,
1993).

Tukey’s early work and concomitant advances in comput-
ing have led to an explosion in graphical methods over the
last three decades. Numerous authors, including Tufte (1990,
1997, 1983/2001) and Wainer (1997; Wainer & Velleman,
2001) have worked to popularize data-based graphics.
William Cleveland has had a large impact on the statistical
community with his empirical studies of the use of graphics
(Cleveland & McGill, 1984), the initiation of cognitive mod-
els of graph perception (Cleveland, 1985), and his applica-
tion of these principles to statistical graphics (especially
Cleveland, 1993). Wilkinson (1993, 1994, 1999) made sub-
stantial contributions to the study of proper use of statistical
graphics, and has recently provided a comprehensive volume
regarding graphics in software and statistical analysis
(Wilkinson, 1999) that is required reading for anyone inter-
ested in the field. Kosslyn (1994) provided a discussion of
numerous potential rules for graph construction from a psy-
chological perspective, and Lewandowsky and Behrens
(1999) provide a recent review of cognitive aspects of statis-
tical graphs and maps.

Graphics Made for EDA

During the emergence of the EDA tradition, Tukey developed
a large number of graphical tools, some of which have be-
come commonplace, others of which have had little visibility
outside specialized applications. It is important to remember
that at the time of their original construction, much of what
Tukey sought to do was to support quick summarization and
analysis when data were available, and the analysis was to
occur by hand.

Perhaps the best known of Tukey’s graphical devices
for EDA is the box-and-whisker plot, otherwise called the
box-plot. The box-plot is a graph based on a five-number



summary of a distribution of data; these numbers are the me-
dian, the first and second hinges, and either the lowest and
highest number or a similar measure of range number arrived
at by separating very extreme values. The median is equal to
the 50th percentile of the distribution. The hinges are either
equal to or very close to the 25th and 75th percentiles—
although they are found using a simpler rank-based formula
for computation. To construct a box-plot, a scale is drawn,
and a box is placed on the scale with one end of the box indi-
cating the scale value of the lower hinge (25th percentile) and
the other end of the box occurring at the scale position of the
upper hinge (75th percentile). An additional line is drawn in
the middle to indicate the scale value of the median. The
scale-value difference between the two hinges is called either
the hinge spread or the interquartile range (often abbreviated
IQR), and in a normal distribution corresponds to approxi-
mately 0.67 standard deviations on each side of the mean.

Rules for the construction of the “whisker” portion of the
display vary. In the most common version, lines are extended
along the scale from the hinges to the farthest data value in
each direction up to 1.5 hinge spreads. If there are data past
that point, the whiskers extend to the farthest data point prior
to the 1.5 hinge-spread cutoff. Data points beyond the
whiskers are usually identified individually to bring attention
to their extremeness and potential characterization as
outliers.

An example of multiple box-plots is presented in Fig-
ure 2.5, panel A, with individual raw data values presented in
panel B for comparison. These graphics depict the distribu-
tions of effect sizes from the meta-analysis of social memory
conducted by Stangor and McMillan (1992). The categorical
variable on the horizontal axis is the length of stimulus pre-
sentation in seconds. The continuous variable on the vertical
axis is the size of the effect for each study included in the
meta-analysis. As the reader may see, the box-plots provide a
compact description of each distribution and allow relatively
easy comparison of both the level and spread of each distrib-
ution. The distribution farthest to the left represents all the
studies for which no presentation speed is reported. The
range is approximately from —2 to +2, with a median
slightly below zero. The second box-plot depicts the distrib-
ution of effect sizes from studies that used a 2-s presentation
speed. It is the highest distribution of all, with some positive
skew. The median of this distribution is higher than the
75th percentile of the remaining distributions, indicating a
clear trend toward larger values. The median is also higher
than the 75th percentile of the 6- and 10-s studies. The stud-
ies with presentation times of 6 s show very little variance
with the exception of two outliers, which are indicated
separately.
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Figure 2.5 Panel A consists of multiple box-plots of effect sizes in social
memory meta-analysis, organized by presentation speed (from Stangor &
McMillan, 1992). Panel B depicts the same data by plotting individual
values in a dot-plot.

When two box-plots are compared, the analyst is under-
taking the graphical analog of the 7 fest. Displays with addi-
tional boxes, as shown here, are analogous to the analysis of
variance: Group-level measures of central tendency are dis-
played relative to the amount of within-group variability in
the data.

Although the box-plots are very useful and informative in
their current state, working in the exploratory mode raises
additional issues. First, how might we be fooled by these dis-
plays? The answer to this is that there are times when the
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Figure 2.6 Panel A is two box-plots with identical summary statistics.
Panel B depicts the underlying data used to make panel A, illustrating the
possibility that different data may produce identical graphs.

five-number summaries are the same for different distribu-
tions. This leads to a case in which the box-plots look identi-
cal yet the data differ in structure. Consider the top panel of
Figure 2.6, in which each of two box-plots is identical, indi-
cating identical values of the five-number summary. The
lower panel of Figure 2.6 depicts the underlying raw data val-
ues that vary in form. Distortions can also occur if there are
very few levels of the variable being measured, because it
will cause many data points to have the same value. In some
cases the appearance of a plot may be distorted if the hinges
are equal to the minimum or maximum, because no whiskers
appear.

A second point of interest concerns how we can learn
more from the data by enhancing the box-plot. Toward this
end, recommendations abound. Tufte (1983/2001) recom-
mended the omission of the box (an idea not well supported
by empirical data; Stock & Behrens, 1991). Other suggested
improvements include indicating the sample size of the sub-
set below the box (e.g., Becker, Chambers, & Wilks, 1988),
adding confidence intervals around the median in the box, or
distorting the box shape to account both for sample size and
the confidence intervals (McGill, Tukey, & Larsen, 1978).

Berk (1994) recommended the overplotting of a dot-plot (as
seen in the lower panel of Figure 2.6) on top of the box-plot
so that two levels of detail can be seen simultaneously.
Regardless of the exact implementation used, users must be
wary that software packages vary on the algorithms used
to calculate their five-number summaries, and they may not
be looking at the summaries one expects (Frigge, Hoaglin, &
Iglewicz, 1989).

Interactive Graphics

Although much can be gained by modifying the static ap-
pearance of plots such as the box-plot, substantial gains in
data analysis can be made in computerized environments
by using interactive graphics with brushing and linking
(Cleveland & McGill, 1988). Interactive graphics are
graphic displays that respond to the brushing (selection) ac-
tion of a pointing device (such as a mouse) by modifying the
graphics in real time. Linking is the connection of values on
the same observation through brushing or selecting across
different graphics. Highlighting an observation in one display
(say, a scatter plot) causes the value of the same observation
to appear highlighted in another display (say, a histogram) as
well. In this way, an analyst working to analyze one graphic
can quickly see how information in that graphic relates to in-
formation in another graphic. For example, in Figure 2.5 the
conditional level of each distribution varies greatly. An ana-
lyst may wonder if this is primarily from the categorical
variables listed on the horizontal axis, or if there are other
variables that may also covary with these medians. One pos-
sibility is that different research laboratories tend to use dif-
ferent speeds and therefore, that laboratory covaries with
speed.

Prior to the advent of interactive graphics, one would stop
the analysis in order to look in a table to determine which
data came from which laboratory. Such a process could eas-
ily become tedious and distracting from the main task. Using
a program that has high graphical interactivity, in this case
Data Desk (Data Description, 1997), highlighting the data of
interest in one graphical display highlights the same data in
other graphical displays or in the variable listings. To accom-
plish this in Data Desk we simply turn off the box-plots using
the pull-down menu at the top of the graph window (thereby
changing panel A of Figure 2.5 to panel B), indicate “Show
identifying text” from a menu at the top of the screen, click
on the identifying variable of interest (study name), and high-
light observations to be linked. The final outcome of these
few quick hand movements is presented in Figure 2.7. Here
the graphics reveal some unexpected results. Eight of
the nine effect sizes in this group come from only two studies
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Figure 2.7 Dot-plot with identifying text obtained by selecting and
linking.

and the studies are highly stratified by effect size. When the
eight data points of the 7-s effects are circled, the study
names indicate that all these effects come from a single study.

Moving Up the Path of Dimensionality

Whereas box-plots are often considered univariate graphics
because they are often used to display a single variable, our
simple example has demonstrated that the box-plot can easily
function in three variables. In this case the variables are pre-
sentation speed, effect size, and study origin. In highly inter-
active environments, however, additional variables are easily
added. For example, in Data Desk, palettes available on the
desktop allow one to choose the shape or color of symbols for
individual data points. This is accomplished through select-
ing the data points of interest by circling the points on the
graphic and clicking on the desired shape or color. Symbol
coloring can also be accomplished automatically by using a
pull-down menu that indicates a desire to color symbols by
the value of a specific variable. In our meta-analysis data,
coloring the data points by sample size and varying the shape
to indicate the value of another categorical variable of inter-
est may aid in finding unanticipated patterns. In this way,
we would have created a rather usable yet complex five-
dimensional graphic representation of the data.

For combinations of categorical and measured data, the
box-plot and corresponding dot-plot provide an excellent
starting point. For analyses that focus more heavily on
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measured (continuous or nearly continuous) data, the scatter
plot is the common fundamental graphic. Here variations
abound, as well. Whereas the scatter plot is often used to un-
derstand two dimensions of data, when faced with high-
dimensional data, one often uses a matrix of scatter plots to
see the multidimensionality from multiple bivariate views.
An example of a scatter plot matrix is presented in Figure 2.8.
The data portrayed here are a subset of the data that Stangor
and McMillan (1992) used in a weighted least-squares re-
gression analysis of the effect sizes. The plot can be thought
of as a graphical correlation matrix. Where we would have
placed the value of the correlation, we instead put the graph-
ical bivariate display. For each individual scatter plot, one
can identify the variable on the vertical axis by looking at the
variable named at the far left of the row. The horizontal axis
is identified by looking down the column of the matrix to the
variable identified at the bottom of the scatter plot. For exam-
ple, the plot in the upper right corner has “N” (sample size)
on the vertical axis and “con / incon” on the horizontal axis,
indicating the ratio of congruent to incongruent stimuli. The
top of the “con / incon” label is hidden due to plot size in the
plot in the lower right corner. The plots in the diagonal cells
are normal-probability plots whose interpretation is dis-
cussed below.

In this situation, as is often the case, the scatter plot matrix
does an excellent job of revealing unexpected structure. For
many of the bivariate relationships there is great departure
from bivariate normality. Of particular concern is the combi-
nation of high skew in the congruent-incongruent ratio and
the floor effect in the targets and traits variables. These issues
lead to L-shaped distributions that will present a clear chal-
lenge to any continuous linear model. Outliers and combina-
tions of missing data should also be considered carefully. Of
particular note in these data is that the higher level of the
dummy-coded delay variable exists in only two observations,
but one of those observations has no matching data on many
variables and thus functions as a single point. In a multi-
variate situation such as regression analysis, this is quite
problematic because the estimation of the relationship of this
variable with all others rests precariously on the value of the
single point. Error at this point will thereby be propagated
through the system of partial correlations used to estimate
regression effects.

Plots with multiple straight lines indicate the 0 and 1 lev-
els of dummy coding. A number of additional dummy-coded
variables subjected to simultaneous regression by Stangor
and McMillan (1992) were omitted because the number of
plots became too large to present here clearly. Earlier ver-
sions of this matrix revealed additional unusual values that
were traced back to the present authors’ transcription process
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Figure 2.8 Scatter plot matrix of meta-analysis data from Stangor and McMillan (1992).

and have been since corrected. In this case, the graphics
revealed structure and avoided error.

Going Deeper

Although the scatter plot matrix is valuable and informa-
tive, it is important that the reader recognize that a series of
two-dimensional views is not as informative as a three-
dimensional view. For example, when Stangor and McMillan
computed a simultaneous regression model, the variables in-
dicating the number of targets and traits used in each study
reversed the direction of their slope, compared with their
simple correlations. Although a classical “suppressor’” inter-
pretation was given, the exploratory analyst may wonder
whether the simple constant and linear functions used
to model these data were appropriate. One possibility is
that the targets variable mediates other relationships. For
example, it may be the case that some variables are highly
related to effect size for certain levels of target, but have
different relationships with effect size at other levels of
targets.

To provide a quick and provisional evaluation of this
possibility, we created a histogram of the target variables, se-
lected those bins in the graphic that represent low levels of
targets, and chose a unique color and symbol for the observa-
tions that had just been selected. From here, one can simply
click on the pull-down menu on any scatter plot and choose
“Add color regression lines.” Because the observations
have been colored by low and high levels of the target vari-
able, the plots will be supplemented with regression lines be-
tween independent variables and the effect size-dependent
variable separately for low and high levels of targets, as dis-
played in Figure 2.9.

Moving across the second row of Figure 2.9 (which corre-
sponds to the response variable), first we see two regression
lines with low identical slopes indicating little relationship be-
tween task and effect, which is constant across levels of target.
The delay variable in the next column shows a similar pattern,
whereas the next three variables show small indications of in-
teraction. The interaction effect is very clear in the relation-
ship between effect size and the congruent-incongruent ratio
in the rightmost column. This relationship is positive for
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Figure 2.9 View of computer screen using Data Desk software for selecting, brushing, and linking
across multiple plots. Several plots have been enhanced with multiple regression lines that vary by sub-
sets of selected data.

observations with high numbers of targets, but negative for
low numbers of targets. Unfortunately, in failing to recognize
this pattern, one may use a model with no interactions. In such
a case the positive slope observations are averaged with the
negative slope observations to create an estimate of 0 slope.
This would typically lead the data analyst to conclude that no
relationship exists at all, when in fact a clear story exists just
below the surface (one variable down!).

Although the graphics employed so far have been helpful,
we have essentially used numerous low-dimensional views
of the data to try to develop a multidimensional conceptual-
ization. This is analogous to the way many researchers
develop regression models as a list of variables that are “re-
lated” or “not related” to the dependent variable, and then
consider them altogether. Our brushing and coding of the
scatter plot matrix has shown that this is a dangerous
approach because “related” is usually operationalized as “lin-
early related”—an assumption that is often unwarranted.
Moreover, in multidimensional space, variables may be
related in one part of the space but not in the other.

Working in an exploratory mode, these experiences sug-
gest we step back and ask a more general question about the
meta-analytic data: In what way does the size and availability
of effects vary across the variety of study characteristics? To
begin to get such a view of the data, one may find three-
dimensional plots to be useful. A graphic created using a non-
linear smoother for the effect size of each study as a function
of the number of targets and presentation speed is presented
in panel A of Figure 2.10. The general shape is similar to the
“saddle” shape that characterizes a two-way interaction in
continuous regression models (Aiken & West, 1991). The
graphic also reveals that little empirical work has been un-
dertaken with high presentation speed and a low number of
targets, so it is difficult to assess the veracity of the smooth-
ing function given the lack of data in that area. At a mini-
mum, it suggests that future research should be conducted to
assess those combinations of study characteristics. Panel B of
Figure 2.10 shows an alternate representation of the data with
a traditional linear surface function that is designed to pro-
vide a single additive prediction across all the data.
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Figure 2.10 Panel A is a nonlinear surface estimate of the interaction of
presentation speed, number of targets, and effect size in the Stangor and
McMillan (1992) meta-analysis data. Panel B is a completely linear predic-
tion surface as would be obtained using common least squares regression.

For another impression of the data, we can take a series of
slices of the three-dimensional data cube and lay the slices
out side by side. Such an arrangement is possible using a gen-
eral framework called a trellis plot (Becker, Cleveland, &
Shyu, 1996; Clark, Cleveland, Denby, & Liu, 1999) as
implemented in Splus (Insightful, 2001) and shown in Fig-
ure 2.11. The three panels show progressive slices of the data
with linear regression lines overlaid. As the reader can see,
the plots correspond to three slices of the three-dimensional
cube shown in Figure 2.10, panel A, with changes in the re-
gression line matching different portions of the “hills” in the
data.

The simple graphics we have used here provide an excel-
lent start at peeling away the layers of meaning that reside in
these data. If nothing else is clear, the data are more complex
than can be easily described by a simple linear model in
multiple dimensions. The theoretical concerns of Anscombe
(1973) have proven to be realistic after all. Despite the inte-
rocular effect provided by these graphics, some readers will
assure themselves that such difficulties appear primarily in
data from meta-analyses and that the data they work with will
not be so problematic. Unfortunately this is not often the
case, and there is a cottage industry among EDA proponents
of reanalyzing published data with simple graphics to show
rich structure that was overlooked in original work.

Residuals and Models

In the EDA tradition, the second R stands for residual, yet
this word signifies not simply a mathematical definition, but
a foundational philosophy about the nature of data analysis.
Throughout Tukey’s writings, the theme of DATA = FIT +
RESIDUALS is repeated over and over, often in graphical
analog: DATA = SMOOTH + ROUGH. This simple for-
mula reminds us that our primary focus is on the develop-
ment of compact descriptions of the world and that these
descriptions will never be perfect; thus there will always be
some misfit between our model and the data, and this misfit
occurs with every observation having a residual.

This view counters implicit assumptions that often arise in
statistical training. First, many students acquire an unfortu-
nate belief that “error’” has an ontological status equivalent to
“noise that can be ignored” and consequently believe the
results of a model-fitting procedure (such as least squares
regression) is the “true” model that should be followed. Such
a view fails to emphasize the fact that the residuals are sim-
ply a byproduct of the model used, and that different models
will lead to different patterns of residuals. As we saw in the
previous section, different three-dimensional models provide
different degrees of hugging the data, and hence, different
amounts of residual. Second, in EDA the analyst focuses on
the size and pattern of individual residuals and subsets of
residuals. A curve that remains in a residual plot indicates the
model has failed to describe the curve. Multiple modes re-
maining in the residuals likewise suggest that a pattern has
been missed. On the other hand, if students are taught to
focus on only the gross summary of the sums of squares, they
will also miss much of the detail in the pattern that is afforded
by a careful look at residuals. For example, as indicated by
the common r among the Anscombe (1973) data sets, all four
data sets have the same sums-of-squares residual, but dra-
matically different patterns of residuals.
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Figure 2.11 Plot of presentation speed by effect size at different ranges of number of targets using a trellis display. Data are

identical with those presented in Figure 2.10.

This emphasis on residuals leads to an emphasis on an iter-
ative process of model building: A tentative model is tried
based on a best guess (or cursory summary statistics), residu-
als are examined, the model is modified, and residuals are
reexamined over and over again. This process has some
resemblance to forward variable selection in multiple regres-
sion; however, the trained analyst examines the data in great
detail at each step and is thereby careful to avoid the errors that
are easily made by automated procedures (cf. Henderson &
Velleman, 1981). Tukey (1977) wrote, “Recognition of the
iterative character of the relationship of exposing and
summarizing makes it clear that there is usually much value in
fitting, even if what is fitted is neither believed nor satisfacto-
rily close” (p. 7).

The emphasis on examining the size and pattern of resid-
uals is a fundamental aspect of scientific work. Before this
notion was firmly established, the history of science was re-
plete with stories of individuals that failed to consider misfit
carefully. For example, Gregor Mendel (1822-1884), who is
considered the founder of modern genetics, established the
notion that physical properties of species are subject to hered-
ity. In accumulating evidence for his views, Mendel con-
ducted a fertilization experiment in which he followed sev-
eral generations of axial and terminal flowers to observe how
specific genes carried from one generation to another. On

subsequent examination of the data, R. A. Fisher (1936)
questioned the validity of Mendel’s reported results, arguing
that Mendel’s data seemed “too good to be true.” Using chi-
square tests of association, Fisher found that Mendel’s results
were so close to the predicted model that residuals of the size
reported would be expected by chance less than once in
10,000 times if the model were true.

Reviewing this and similar historical anomalies, Press
and Tanur (2001) argue that the problem is caused by the
unchecked subjectivity of scientists who had the confirma-
tion of specific models in mind. This can be thought of as
having a weak sense of residuals and an overemphasis on
working for dichotomous answers. Even when residuals ex-
isted, some researchers tended to embrace the model for fear
that by admitting any inconsistency, the entire model would
be rejected. Stated bluntly, those scientists had too much
focus on the notion of DATA = MODEL. Gould (1996) pro-
vides a detailed history of how such model-confirmation bi-
ases and overlooked residuals led to centuries of unfortunate
categorization of humans.

The Two-Way Fit

To illustrate the generality of the model-residual view of
EDA, we will consider the extremely useful and flexible
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model of the two-way fit introduced by Tukey (1977) and
Mosteller and Tukey (1977). The two-way fit is obtained by
iteratively estimating row effects and column effects and
using the sum of those estimates to create predicted (model or
fit) cell values and their corresponding residuals. The cycles
are repeated with effects adjusted on each cycle to improve
the model and reduce residuals until additional adjustments
provide no improvement. This procedure can be applied di-
rectly to data with two-way structures. More complicated
structures can be modeled by multiple two-way structures. In
this way, the general approach can subsume such approaches
as the measures of central tendency in the ANOVA model, the
ratios in the log-linear model, and person and item parameter
estimates of the one-parameter item response theory model.

Consider the data presented in Table 2.1. It represents av-
erage effect sizes for each of a series of univariate analyses
conducted by Stangor and McMillan (1992). Such a display
is a common way to communicate summary statistics. From
an exploratory point of view, however, we would like to see
if some underlying structure or pattern can be discerned. Re-
viewing the table, it is easy to notice that some values are
negative and some positive, and that the large number of
—2.6 is a good bit larger than most of the other numbers
which are between 0 and +/— 1.0.

To suggest an initial structure with a two-way fit we cal-
culate column effects by calculating the median of each col-
umn. The median of each column then becomes the model for
that column, and we subtract that initial model estimate
from the raw data value to obtain a residual that replaces the

TABLE 2.1 Average Effect Sizes by Dependent Variable and Study
Characteristic. From Stangor and McMillan (1992).

Variable Recall Recognition Bias
Strength of expectations

a. Experimental session —-0.37 —-0.47 0.32

b. Existing 0.32 -0.8 0.93
Content of the stimuli

c. Behaviors —0.21 —0.1 0.66

d. Traits 0.71 —2.16 1.98
Type of behavioral inconsistency

e. Evaluative and descriptive —-0.27 0.1 0.29

f. Descriptive only 0.36 —0.54 0.85
Type of target

g. Individual —0.32 —1.14 1.04

h. Group 0.22 —0.38 0.33
Processing goal

i. From impressions —0.46 0.19 0.57

j- Memorize 0.12 —0.71 1.01
Interpolated task

k. No —0.44 —0.30 0.62

1. Yes 0.06 —1.26 0.75
Type of delay

m. Within single session —0.19 —0.65 0.82

n. Separate session —0.02 —0.03 0.66

original data value in the data matrix. After this simple first
pass, we have a new table in which each cell is a residual and
the data from the original table are equal to the column effect
plus the cell residual. The row effects are estimated next by
calculating the median value of residuals in each row and
subtracting the cell values (first-stage residuals) from these
medians. The row effects are generally placed in the margin
of the table and the new residuals replace the residuals from
the previous stage. A similar calculation occurs on the row of
medians that represents the column effects; the median of
the column effects becomes the estimate of the overall or
“grand” effect and the estimates of the column effects are
likewise adjusted through subtraction.

This process is repeated iteratively until continued calcu-
lation of effects and residuals provides no improvement. The
result of such a summary is provided in Table 2.2. Here
we see an overall effect of —.02 as well as a characterization
of each row and column. It is clear which columns are
low, medium, and high, and likewise which rows stand out.
Each cell in the original table can be reconstructed using
the formula Data = grand effect + row effect + column
effect + residual. For example, the memorization task for the
bias condition can be recreated using the model of 1.01 =
—0.02 4+ 0.69 + 0.14 — 0.02.

To form a visual impression of these values, Tukey (e.g.,
Mosteller & Tukey, 1977) recommended a two-way fit plot
such as that shown in Figure 2.12, panel A. In this figure,

TABLE 2.2 Two-Way Decomposition of Average Effect Sizes by
Dependent Variable and Study Characteristic. From Stangor and
McMillan (1992).

Variable Recall Recognition Bias Row Effect
Strength of expectations
a. Experimental session 0.00 0.43 0.00 —0.35
b. Existing 0.08 —0.51 0.00 0.26
Content of the stimuli
c. Behaviors —0.18 0.46 0.00 —0.00
d. Traits 0.00 —2.34 0.58 0.73

Type of behavioral inconsistency
e. Evaluative and descriptive 0.00 0.90 —0.13 —0.25

f. Descriptive only 020 —-0.17 0.00 0.19
Type of target

g. Individual 0.00 —0.29 0.67 —0.30

h. Group 0.07 0.00 —0.51 0.17
Processing goal

i. From impressions —0.34 0.84 0.00 —0.10

j- Memorize 0.00 —-0.30 0.20 0.14
Interpolated task

k. No —0.37 0.30 0.00 —0.05

1. Yes 0.00 —0.79 0.00 0.08
Type of delay

m. Within single session —-0.07 0.00 0.25 —0.10

n. Separate session 0.00 0.52 —0.01 0.00
Column effects 0.00 —0.53 0.69 —0.02
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Figure 2.12 Panel A is a plot of main effects of a two-way fit. The height
of the intersection of lines represents the sum of row, column, and grand
effects and the corresponding predicted value for that cell. Panel B shows
main effects of two-way fit with additional lines extending from predicted to
actual values to highlight the location and size of residuals.

there is a line for each row and column effect in the model.
For each row and column effect, the height of the intersection
of the two lines is equal to the value of the predicted value in
the model (overall effect + column effect 4 row effect). This
plot clearly portrays the separation of the bias, recall, and
recognition conditions, shows the clear separation of row d
(trait levels), and displays a cluster of common small effects
for rows a, g, and e. For us, this view was surprising because
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when we first characterized row d, it was with a focus on the
large —2.16 value, which is the largest (negative) value in the
table. This graphic, however, suggests more needs to be con-
sidered. Reexamining the data for that row we see that not
only does that row have the largest negative value, but also
two of the largest positive values. All together, we end up
with a strong positive row effect. For individual cells, how-
ever, the effect may be low or high, depending on the column.

Because the grand, row, and column effects represent the
model, an assessment of that model requires an examination
of where the model fits and does not fit. The residuals for
these models are presented in the center of Table 2.2. Exami-
nation of these values reveals that the extreme value observed
in the raw data remains extreme in this model, and that this
value is not simply the result of combining row and column
effects. A graphical analog to the residuals can also be pro-
vided, as shown in Figure 2.12, panel B. In this diagram, lines
are drawn from the value of the predicted values (the inter-
section of row and column lines), downward or upward to the
actual data value. The length of each line thereby indicates
the size of the residual. Clearly, the size of the trait residual
for recognition tasks dwarfs the size of all other effects and
residuals in the data. Other patterns of residuals may provide
additional information about the data because they tell us
what departs from a standard description.

In this example we used simple raw residuals. In other ap-
plications, the actual value of residuals may be modified in a
number of ways. One common method is to report residuals
reexpressed as normal-deviates in the distribution of residu-
als. This approach, often used in structural equation analysis,
can help identify the locations of the extremes, but hides the
scale values of the error. In the highly developed area of re-
gression diagnostics, residuals may be adjusted for the size of
the leverage associated with the value of the criterion vari-
able (studentized residuals) or calculated using a model that
obtained predicted values without the presence of the obser-
vation in the model (externally studentized). This prevents
extreme values from distorting the model to the point that
an aberrant value leads to a small residual, as displayed in
panel C of Figure 2.2.

As illustrated previously, complementary to the notion of
patterns of residuals and meaning in individual residuals is the
emphasis on mathematical models of effects that provide rich
and parsimonious description. This view is very much in line
with the recently emerging view of the importance of effect
sizes suggested by Glass (1976) and renewed by Cohen (1994)
and the APA Task Force on Statistical Inference (Wilkinson,
1999). EDA reminds us that at the same time we focus on ef-
fects as a description of the data, we must also focus on the size
and pattern of misfits between effects and the data.
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Reexpression

The data examined previously remind us that data often come
to the exploratory data analyst in messy and nonstandard
ways. This should not be unexpected, given the common as-
sumption that the data distributions are either always well be-
haved, or that statistical techniques are sufficiently robust
that we can ignore any deviations that might arise, and there-
fore skip detailed examination. In fact, it is quite often the
case that insufficient attention has been paid to scaling issues
in advance, and it is not until the failure of confirmatory
methods that a careful examination of scaling is undertaken
(if at all). In the exploratory mode, however, appropriate scal-
ing is considered one of the fundamental activities and is
called reexpression. Although mathematically equivalent to
what is called transformation in other traditions, reexpres-
sion is so named to reflect the idea that the numerical changes
are aimed at appropriate scaling rather than radical change.

Because reexpression requires an understanding of the un-
derlying meaning of the data that are being reexpressed, the
EDA approach avoids using the common categorizations of
data as nominal, ordinal, interval, and ratio that follow
Stevens (e.g., 1951). Rather, Mosteller and Tukey (1977)
discussed broad classes of data as (a) amounts and counts;
(b) balances (numbers that can be positive or negative with
no bound); (¢) counted fractions (ratios of counts); (d) ranks;
and (e) grades (nominal categories).

When dealing with common amounts and counts, Tukey
suggested heuristics that hold that (a) data should often be
reexpressed toward a Gaussian shape, and (b) an appro-
priate reexpression can often be found by moving up or down
“the ladder of reexpression.” A Gaussian shape is sought
because this will generally move the data toward more equal-
interval measurement through symmetry, will often stabilize
variance, and can quite often help linearize trend (Behrens,
1997a). In EDA, the term normal is avoided in favor of
Gaussian to avoid the connotation of prototypicality or social
desirability.

The ladder of reexpression is a series of exponents one
may apply to original data that show considerable skew. Rec-
ognizing that the raw data exists in the form of X', moving up
the ladder would consist of raising the data to X* or X°.
Moving down the ladder suggests changing the data to the
scale of X2, —x~2, —X~', —X~2, and so on. Because X’ is
equal to 1, this position on the ladder is generally replaced
with the reexpression of log,, (X). To choose an appropriate
transformation, one moves up or down the ladder toward the
bulk of the data. This means moving down the ladder for
distributions with positive skew and up the ladder for distrib-
utions with negative skew. By far the most common re-

expression for positively skewed data is the logarithmic
transformation. For ratios of counts, the most common rec-
ommendation is to “fold” the counts around a midpoint
(usually .5) so that equal fractions equal 0. This generally
means using P/1 — P, where P is the proportion of the total
that the count comprises. A second step is to take the log of
this folded fraction to create a “flog” equal to log(P/1 — P).
In more common parlance, this is a logit that serves as the
basis for logistic regression, survival, or event-history analy-
sis, and measurement via item response theory. Additional
techniques recommend that balances should generally be left
alone whereas grades and ranks should be treated much like
counted fractions (see, e.g., Mosteller & Tukey, 1977).

Although reexpression is a long-standing practice in the
statistical community, going back at least to Fisher’s (1921)
construction of the r to z transformation, only recently has its
use become more widespread in psychological literature. In
fact, it often continues to arise more out of historic tradition
than as the result of careful and comprehensive analysis.
Consider, for example, the subset of data from a word-
recognition experiment recently reported by Paap, Johansen,
Chun, and Vonnahme (2000) and depicted in Figure 2.13.
The experiment reported in this paper concerns the percent-
age of times participants correctly identify word pairs (%C)
from a memory task as a function of the word pair’s correct-
incorrect confusability (CIC), percentage correct-letter dis-
tinctiveness (CD), number of neighbors (&), percentage of
friends in the lexical neighborhood (%F), number of higher
frequency neighbors (H), log of frequency of the test word
(LTF), and log of frequency formed by incorrect alternative
(LAF).

As the reader may see, although the distributions associ-
ated with the logarithmic reexpression are quite Gaussian, the
variables that are not reexpressed differ quite a bit in this
respect and lead to quite non-Gaussian bivariate distribu-
tions. The CIC variable is the most skewed. This leads to
quite distorted correlations that would suffer from variance
compression. Distributional outliers in CIC are indicated
with X symbols, and regression lines on the %C against CIC
scatter plot are present both for all data (lower line) and for
the data with the outliers removed (sloped line).

Because these authors have already reexpressed the two
frequency (count) variables, it will be useful to reverse the
reexpression to see the original data, which are presented
in Figure 2.14. The top panels show the histograms of the
original raw data along with the quantile-quantile (QQ) plot,
which is often called the normal-probability plot in cases like
these because the ranks of the data are plotted against the z
scores of corresponding ranks in a unit-normal distribution.
When the points of the QQ plot are straight, this reflects the
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Figure 2.13  Scatter plot matrix of reaction time data from Paap, Johansen, Chun, and Vonnahme (2000).
Patterns in the matrix reflect skew and outliers in some marginal distributions as well as nonlinearity in bi-
variate distributions. Outliers are highlighted in all graphics simultaneously through brushing and linking.

match between the empirical and theoretical distributions,
which in this case is Gaussian. The data running along the
bottom of these displays reflect the numerous data values at
the bottom of the scales for the original frequency data. Pan-
els E and F show the scatter plot of the raw data before reex-
pression and the corresponding simple regression residuals,
which indicate that the spread of the error is approximately
equal to the spread of the data. Although this logarithmic
transformation is quite appropriate, it was chosen based upon
historical precedent with data of this type rather than on em-
pirical examination. Accordingly, in the view of EDA, the
outcome is correct while the justification is lacking.

Turning to how remaining variables may be improved, we
consider the four percentage variables, especially the highly
distorted CIC variable. Working directly with percentages
can be quite misleading because differences in values are not
equally spaced across the underlying continuum. For exam-
ple, it is generally easier to move from an approval rating of
50 to 55% than it is to move from 90 to 95%. All content

aside, the variance for the underlying binomial distribution is
largest around .5 and smallest near 0 and 1. As noted above,
this mathematical situation leads to a general rule for substi-
tuting logits (a.k.a., flogs) for raw percentages. Accordingly,
we move forward by converting each percentage into a pro-
portion (using the sophisticated process of dividing by 100)
and constructing the logit for each proportion. The effect of
this reexpression on the %C and CIC variables is portrayed in
Figure 2.15. As the reader can see, the distributions are
greatly moved toward Gaussian, and the appearance of the
scatter plot changes dramatically.

The impact of this reexpression is considerable. Using the
correlation coefficient in the original highly skewed and
variance-unstable scale of percentages resulted in a measure
of association of r = .014, suggesting no relationship be-
tween these two values. However, when the scale value and
corresponding variance are adjusted using the logistic reex-
pression, the measure of relationship is » = .775—a dramatic
difference in impression and likely a dramatic effect on
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Figure 2.14 Histograms, normal-probability plots, and scatter plots for reaction time data as they would appear without the logarith-

mic reexpression used by the original authors.

theory development and testing. In a similar vein, Behrens
(1997a) demonstrated how failure to appropriately reexpress
similar data led Paap and Johansen (1994) to misinterpret the
results of a multiple regression analysis. As in this case, a
simple plotting of the data reveals gross violations of distrib-
utional assumptions that can lead to wildly compressed cor-
relations or related measures.

The H variable is likewise of interest. Because it is a
count, general heuristics suggest a square-root or logarithmic
reexpression. Such reexpressions, however, fail to improve
the situation substantially, so another course of action is re-
quired. Because the H variable is a count of high-frequency
neighbors, and this number is bounded by the number of
neighbors that exist, a logical alternative is to consider H as
the proportion of neighbors that are high frequency rather

than the simple count. When such a proportion is computed
and converted to a logit, the logit-H variable becomes very
well behaved and leads to much clearer patterns of data and
residuals. The revised scatter plot matrix for these variables is
presented in Figure 2.16. As the reader may see, a dramatic
improvement in the distributional characteristics has been
obtained.

Although some researchers may reject the notion of reex-
pression as “tinkering” with the data, our experience has been
that this view is primarily a result of lack of experience with
the new scales. In fact, in many instances individuals often
use scale reexpressions with little thought. For example,
the common practice of using a proportion is seldom ques-
tioned, nor is the more common reexpression to z scores. In
daily language many people have begun to use the log,,
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99 <

reexpression of dollar amounts as “five-figure,” “‘six-figure,”
or “seven-figure.” Wainer (1977) demonstrated that the often
recommended reexpression of 1/X for reaction-time tasks
simply changes the scale from seconds per decision (time) to
decisions per second (speed). Surely such tinkering can have
great value when dramatic distributional improvements are

made and sufficient meaning is retained.

Resistance

Because a primary goal of using EDA is to avoid being
fooled, resistance is an important aspect of using EDA tools.
Resistant methods are methods that are not easily affected by
extreme or unusual data. This value is the basis for the gen-
eral preference for the median rather than the mean. The

mean has a smaller standard error than the median, and so is
an appropriate estimator for many confirmatory tests. On the
other hand, the median is less affected by extreme scores or
other types of perturbations that may be unexpected or un-
known in the exploratory stages of research.

In general, there are three primary strategies for improv-
ing resistance. The first is to use rank-based measures and ab-
solute values, rather than measures based on sums (such as
the mean) or sums of squares (such as the variance). Instead,
practitioners of EDA may use the tri-mean, which is the aver-
age of Q1, Q3, and the median counted twice. For measures
of spread, the interquartile range is the most common,
although the median absolute deviation (MAD) from the
median is available as well. The second general resistance-
building strategy is to use a procedure that emphasizes more
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Figure 2.16 Scatter plot matrix of reaction time data after full set of reexpressions. When compared with
the original data shown in Figure 2.13, this matrix reflects the improved ability to model the data using

linear models.

centrally located scores and that uses less weight for more
extreme values. This category includes trimmed statistics in
which values past a certain point are weighted to 0 and
thereby dropped from any estimation procedures. Less dras-
tic approaches include the use of the biweight, in which val-
ues are weighted as an exponential function of their distance
from the median. A third approach is to reduce the scope of
the data one chooses to model on the basis of knowledge
about extreme scores and the processes they represent.

Dealing with Outliers

The goal of EDA is to develop understandings and descrip-
tions of data. This work is always set in some context and
always presents itself with some assumptions about the scope
of the work, even when these assumptions are unrecognized.
Consider, for example, the task described in Behrens and
Smith (1996) of developing a model of state-level economic
aspects of education in the United States. In this analysis,

simple use of a scatter plot matrix revealed three consistent
outliers in distributions of variables measured in dollars. The
first outlier was the observation associated with the District of
Columbia. How should this extreme value be approached? If
the original intention was state-level analysis, the outlier in
the data simply calls attention to the fact that the data were not
prescreened for non-states. Here the decision is easy: Reestab-
lish the scope of the project to focus on state-level data.

The remaining two outliers were observations associated
with the states of Hawaii and Alaska. These two states had
values that were up to four times higher than the next highest
values from the set of all states. In many cases, the mean of
the data when all 50 states were included was markedly dif-
ferent from the mean computed using values from only the
contiguous 48 states. What should the data analyst do about
this problem? Here again, the appropriate role of the ex-
ploratory work has led to a scope-clarification process that
many data analysts encounter in the basic question Do I model
all the data poorly, or do I model a specific subset that I can



describe well? Although this question needs to be answered
on a case-by-case basis, in the situation described here there is
little doubt. Alaska and Hawaii should be set aside and the re-
searcher should be content to construct a good model for the
48 contiguous states. Furthermore, the researcher should note
that he or she has empirical evidence that Alaska and Hawaii
follow different processes. This is a process of setting aside
data and focusing scope. Clearly this process of examination
and scope revision would need to be reported.

In this case, the rationale is clear and the data have seman-
tic clarity. In other cases, however, quite extreme values may
be found in data that are not simply victims of poor measure-
ment models (e.g., the end of a long tail awaiting logarithmic
reexpression). Under these circumstances the fundamental
question to ask is Do we know something about these obser-
vations that suggest they come from a different process than
the process we are seeking to understand? In experimentally
oriented psychology, rogue values could be caused by nu-
merous unintended processes: failure to understand instruc-
tions (especially during opening trials), failure to follow the
instructions, failure to pay attention to the task (especially
during closing trials), or equipment or data transcription fail-
ures. Under such circumstances, it is clear the data are not in
the domain of the phenomenon to be studied, and the data
should be set aside and the situation noted.

In other cases, extreme values present themselves with lit-
tle auxiliary information to explain the reason for the extreme-
ness. In such a situation we may first assess how much damage
the values create in the model by constructing the model with
all the data involved as well as with the questionable data
set aside. For example, Behrens (1997b) conducted a meta-
analysis of correlations between subscales of the White Racial
Identity Attitude Scale (Helms, 1997). Initial review of the
data suggested the distributions were not homogeneous and
that some study results differed dramatically from the average.
To assess the effect of these extreme values, Behrens calcu-
lated the average correlations, first, using all the data, and sec-
ond, using a 20% trimmed mean. Results were consistent
across approaches, suggesting the data could remain or be set
aside with little impact on the inferences he was to make. What
would have happened if, on the other hand, the trimmed re-
sults deviated from the full-data results? In such a case both
sets of analysis should be conducted and reported and the dif-
ference between the two results considered as a measure of the
effect of the rogue values. The most important aspect in either
case is that a careful and detailed description of the full data,
the reduced data, and the impact of the rogue data be reported.
Unfortunately, the extremely terse and data-avoidant descrip-
tions of much research reporting is inconsistent with this
highly descriptive approach.
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Summary

The tools described in this section are computational and
conceptual tools intended to guide the skilled and skeptical
data analyst. These tools center on the four Rs of revelation,
residuals, reexpression, and resistance. The discussion
provided here provides only a glimpse into the range of tech-
niques and conceptualizations in the EDA tradition. In prac-
tice, the essential elements of EDA center on the attitudes of
flexibility, skepticism, and ingenuity, all employed with the
goals of discovering patterns, avoiding errors, and develop-
ing descriptions.

CURRENT COMPUTING AND FUTURE
DIRECTIONS

Computing for EDA

While EDA has benefited greatly from advances in statistical
computing, users are left to find the necessary tools and ap-
propriate interfaces spread across a variety of statistical pack-
ages. To date, the software most clearly designed for EDA is
Data Desk (Data Description, 1997). Data Desk is highly in-
teractive and completely graphical. Graphical windows in
Data Desk do not act like “static” pieces of paper with
graphic images, but rather consist of “live” objects that re-
spond to brushing, selecting, and linking. The philosophy is
so thoroughly graphical and interactive that additional vari-
ables can be added to regression models by dragging icons of
the variables onto the regression sums-of-squares table.
When this occurs, the model is updated along with all graph-
ics associated with it (e.g., residual plots). Data Desk has a
full range of EDA-oriented tools as well as many standards
including multivariate analysis of variance (MANOVA) and
cluster analysis—all with graphical aids. Because of its out-
standing emphasis on EDA, Data Desk has been slower to de-
velop more comprehensive data management tools, as has
been the case with more popular tools like those offered by
SAS, SPSS, and SYSTAT.

Both SAS (SAS Institute, 2001) and SPSS (SPSS, Inc.,
2001) have improved their graphical interactivity in recent
years. The SAS Insight module allows numerous interactive
graphics, but linking and other forms of interaction are less
comprehensive than those found in Data Desk. SYSTAT
serves as a leader in graphical and exploratory tools, placing
itself between the complete interactivity of Data Desk and the
more standard approach of SAS and SPSS.

The S language and its recent incarnation as S-PLUS
(Insightful, 2001) has long been a standard for research in
statistical graphics, although it appears also to be emerging as
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a more general standard for statistical research. Venables and
Ripley’s 1999 book titled Modern Applied Statistics with
S-PLUS (often called MASS) provides an outstanding intro-
duction to both the Splus language and many areas of modern
statistical computing of which psychologists are often un-
aware, including projection pursuit, spline-based regression,
classification and regression trees (CART), k-means cluster-
ing, the application of neural networks for pattern classifica-
tion, and spatial statistics.

High-quality free software is also available on the Internet
in a number of forms. One consortium of statisticians has cre-
ated a shareware language, called R, that follows the same
syntax rules as S-PLUS and can therefore be used inter-
changeably. A number of computing endeavors have been
based on Luke Tierney’s XLISP-STAT system (Tierney,
1990), which is highly extensible and has a large object-
oriented feature set. Most notable among the extensions is
Forrest Young’s (1996) ViSta (visual statistics) program,
which is also free on the Internet.

Despite the features of many of these tools, each comes
with weaknesses as well as strengths. Therefore, the end user
must have continuing facility in several computing environ-
ments and languages. The day of highly exchangeable data
and exchangeable interfaces is still far off.

Future Directions

The future of EDA is tightly bound to the technologies of
computing, statistics, and psychology that have supported its
growth to date. Chief among these influences is the rise of
network computing. Network computing will bring a number
of changes to data analysis in the years ahead because a net-
work allows data to be collected from throughout the world,
allows the data to have extensive central or distributed stor-
age, allows computing power a distributed or centralized lo-
cation, and allows distribution of results quickly around the
world (Behrens, Bauer, & Mislevy, 2001). With regard to the
increase in data acquisition, storage, and processing power,
these changes will lead to increasing availability and need for
techniques to deal with large-scale data. With increasingly
large data sets, data analysts will have difficulty gaining de-
tailed familiarity with the data and uncovering unusual pat-
terns. Hopefully, the capacity for ingenuity and processing
power will keep up with the increase in data availability.

Data Projections

Currently, most existing visualization tools are based upon
variable space, in which data points are depicted within the
Cartesian coordinates. With the advent of high-powered

computing, more and more statistical software packages
incorporate graphical tools that utilize other spatial systems.
For example, several statistical packages implement the bi-
plot (Gabriel, 1981; Gower & Hand, 1996), which combines
variable space and subject space (also known as vector
space). In subject space each subject becomes a dimension,
and vectors are displayed according to the location of vari-
ables mapping into this subject space. In addition, SYSTAT
implements additional projections, including triangular dis-
plays, in which both the Cartesian space and the barycentric
space are used to display four-dimensional data.

Interactive methods for traversing multivariate data have
been developed as well. Swayne, Cook, and Buja (1998)
developed the X-GOBI system, which combines the high-
dimensional search techniques of projection pursuit
(Friedman & Tukey, 1974) and grand tour (Asimov, 1985).
The grand tour strategy randomly manipulates projections for
high-dimensional data using a biplot or similar plotting sys-
tem, so that the user has an experience of touring “around”
three- (or higher) dimensional rotating displays. Projection
pursuit is a computing-intensive method that calculates an
“interestingness function” (usually based on nonnormality)
and develops search strategies over the multidimensional gra-
dient of this function. Grand tour can provide interesting
views but may randomly generate noninteresting views for
quite some time. Projection pursuit actively seeks interesting
views but may get caught in local minima. By combining these
two high-dimensional search strategies and building them into
ahighly interactive and visual system, these authors leveraged
the best aspects of several advanced exploratory technologies.

Data Immersion

To deal with the increasing ability to collect large data sets,
applications of EDA are likely to follow the leads developed
in high-dimensional data visualization used for physical
systems. For example, orbiting satellites send large quantities
of data that are impossible to comprehend in an integrated
way without special rendering. To address these issues,
researchers at the National Aeronautics and Space Adminis-
tration (NASA) have developed tools that generate images of
planetary surface features that are rendered in three-
dimensional virtual reality engines. This software creates an
imaginary topology from the data and allows users to “fly”
through the scenes.

Although most psychologists are unlikely to see such huge
(literally astronomical!) quantities of data, desktop computers
can provide multimedia assistance for the creation of inter-
active, three-dimensional scatter plots and allow the animation
of multidimensional data (e.g., Yu & Behrens, 1995).



Distributed Collaboration

Because data analysis is a social process and groups of re-
searchers often work together, EDA will also be aided by the
development of computer—desktop sharing technologies. In-
ternetworking technologies currently exist that allow individ-
uals to share their views of their computer screens so that
real-time collaboration can occur. As statistical packages be-
come more oriented toward serving the entire data-analytic
process, developers will consider the social aspects of data
analysis and build in remote data-, analysis-, image-, and
report-sharing facilities. Such tools will help highly trained
data analysts interact with subject-matter experts in schools,
clinics, and businesses.

Hypermedia Networks for Scientific Reporting

While the natures of scientific inquiry, scientific philosophy,
and scientific data analysis have changed dramatically in the
last 300 years, it is notable that the reporting of scientific
results differs little from the largely text-based and tabular
presentations used in the eighteenth century. Modern print
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journals, under tight restrictions for graphics and space, have
largely omitted the reporting of exploratory results or de-
tailed graphics. Although a textual emphasis on reporting was
necessary for economic reasons in previous centuries, the rise
of network-based computing, interactive electronic informa-
tion display, and hypertext documents supports the expansion
of the values of EDA in scientific reporting. In a paper-based
medium, narrative development generally needs to follow a
linear development. On the other hand, in a hypertext envi-
ronment the textual narrative can appear as traditionally im-
plemented along with auxiliary graphics, detailed computer
output, the raw data, and interactive computing—all at a
second level of detail easily accessed (or ignored) through
hypertext links. In this way, the rich media associated
with EDA can complement the terse reporting format of the
American Psychological Association and other authoring
styles (Behrens, Dugan, & Franz, 1997).

To illustrate the possibility of such a document structur-
ing, Dugan and Behrens (1998) applied exploratory tech-
niques to reanalyze published data reported in hypertext on
the World Wide Web. Figure 2.17 is an image of the interface
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used by these authors. The pages were formatted so that the
names of variables were hyperlinked to graphics that ap-
peared on a side frame, and the names of references were hy-
perlinked to the references that appeared on the top frame of
the page. References to F tests or regression-results linked to
large and well-formatted result listings, and the data were hy-
perlinked to the paper as well.

While we wait for arrival of widespread hypertext in
scientific journals, personal Web sites for improving the re-
porting of results can be used. For example, Helms (1997)
criticized the analysis of Behrens (1997b), which questioned
the psychometric properties of a commonly used scale in the
counseling psychology racial-identity literature. Part of the
concern raised by Helms was that she expected large amounts
of skew in the data, and hence, likely violations of the statis-
tical assumptions of the meta-analyses and confirmatory fac-
tor analyses that Behrens (1997b) reported. In reply, Behrens
and Rowe (1997) noted that the underlying distributions had
been closely examined (following the EDA tradition) and
that the relevant histograms, normal-probability plots, scatter
plot matrices (with hyperlinks to close-up views), and the
original data were all on the World Wide Web (Behrens &
Dugan, 1996). This supplemental graphical archive included
a three-dimensional view of the data that could be navigated
by users with Web browsers equipped with commonly avail-
able virtual-reality viewers. Such archiving quickly moves
the discussion from impressions about possibilities regarding
the data (which can be quite contentious) to a simple display
and archiving of the data.

Summary

Emerging tools for EDA will continue to build on develop-
ments in integration of statistical graphics and multivariate
statistics, as well as developments in computer interface de-
sign and emerging architectures for collecting, storing, and
moving large quantities of data. As computing power contin-
ues to increase and computing costs decrease, researchers
will be exposed to increasingly user-friendly interfaces and
will be offered tools for increasingly interactive analysis and
reporting. In the same way that creating histograms and scat-
ter plots is common practice with researchers now, the con-
struction of animated visualizations, high-dimensional plots,
and hypertext reports is expected to be commonplace in the
years ahead. To offset the common tendency to use new tools
for their own sake, the emergence of new technologies cre-
ates an increased demand for researchers to be trained in the
conceptual foundations of EDA. At the same time, the emer-
gence of new tools will open doors for answering new scien-
tific questions, thereby helping EDA evolve as well.

CONCLUSION

Despite the need for a wide range of analytic tools, training
in psychological research has focused primarily on statistical
methods that focus on confirmatory data analysis. Ex-
ploratory data analysis (EDA) is a largely untaught and
overlooked tradition that has great potential to guard psy-
chologists against error and consequent embarrassment. In
the early stages of research, EDA is valuable to help find the
unexpected, refine hypotheses, and appropriately plan future
work. In the later confirmatory stages, EDA is valuable to
ensure that the researcher is not fooled by misleading aspects
of the confirmatory models or unexpected and anomalous
data patterns.

There are a number of missteps the reader can make when
faced with introductory materials about EDA. First, some
readers may focus on certain aspects of tradition and see their
own activity in that area as compelling evidence that they
are already conducting EDA. Chief among these aspects is
the use of graphics. By showing a broad range of graphics,
we sought to demonstrate to the reader that statistical graph-
ics has become a specialization unto itself in the statistics
literature, and that there is much to learn beyond what is
commonly taught in many introductory courses. Whereas the
exploratory data analyst may use graphics, the use of graph-
ics alone does not make an exploratory data analyst.

A second pitfall the reader should be careful to avoid is re-
jecting the relevance of the examples used in this chapter.
Some might argue that the pathological patterns seen herein
exist only in data from meta-analyses or reaction time exper-
iments, or in educational data. Our own work with many
types of data sets, and in conversations with psychologists in
numerous specializations, suggests that these are not isolated
or bizarre data sets but are quite common patterns. The reader
is encouraged to reanalyze his or her own data using some of
the techniques provided here before making judgments about
the prevalence of messy data.

A third pitfall to avoid is overlooking the fact that em-
bracing EDA may imply some confrontation with traditional
values and behaviors. If EDA is added to the methodology
curriculum then other aspects may need to be deemphasized.
If new software is desired, changes in budgets may need to
occur, with their associated social conflicts. Additionally,
conflict may arise within the researcher as he or she works
to balance the value of EDA for scientific advancement
while finding little explicit value for EDA in manuscript
preparation.

Psychological researchers address complex and difficult
problems that require the best set of methodological tools
available. We recommend EDA as a set of conceptual and



computational tools to supplement confirmatory statistics,
and expect psychological research will increase in efficiency
and precision by its wider applications.
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There are, of course, two major types of errors one might
commit when testing any hypothesis. The first, called a Type 1
error, is rejecting when in fact the null hypothesis is true, and
the second is failing to reject when the null hypothesis is
false. Certainly it is undesirable to claim that groups differ or
that there is an association between two variables when this is
false. But simultaneously, it is undesirable to fail to detect a
difference or to detect an association that is real, particularly
if the difference has important practical implications. This
latter error, failing to reject when the null hypothesis is false,
is called a Type I error, and the probability of rejecting when
the null hypothesis is false is called power. The roots of mod-
ern approaches to power date back two centuries to Laplace,
who derived the frequentist approach to computing confi-
dence intervals used today. And even before Laplace, the
basic idea can be gleaned from the work of de Moivre, who
derived the equation for the normal curve.

Consider, for example, the usual one-way analysis of vari-
ance (ANOVA) design where the goal is to test the hypothe-
sis of equal means among J independent groups. That is, the
goal is to test

Hoi g == by,

where W, ..., W, are the corresponding population means.
Power analyses are used to plan studies with the goal that the
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power of the statistical tests used will be adequate for the
smallest effect deemed to be important. Under normality and
homoscedasticity (meaning that all J groups have a common
variance), exact control over the probability of a Type I error
can be achieved with the classic ANOVA F test, as is well
known. Moreover, there is a standard method for assessing
power as well, which is described and illustrated later in
this chapter. In essence, based on a certain measure of the dif-
ference among the population means, it is possible to deter-
mine power exactly given the sample sizes and a choice for
the probability of a Type I error. In particular, the adequacy of
proposed sample sizes can be assessed by determining how
much power they provide. Today, the term power analysis
brings to mind this technique, so it is important to cover it
here.

However, a goal in this chapter is to take a broader look at
power, paying particular attention to modern insights and ad-
vances. A half century ago, the method for assessing power
mentioned in the previous paragraph was certainly reason-
able, but little was known about its properties when violating
the assumptions of normality and homoscedasticity. Indeed,
there were some indications that assumptions could be vio-
lated with impunity, but during the ensuing years there have
been many insights regarding the consequences of violating
these assumptions that have serious practical implications.
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So one of the goals here is to summarize why there are prac-
tical concerns and how they might be addressed. The theme
in this paper is that conventional methods have proven to be
useful but that they are far from perfect and sometimes disas-
trous. Moreover, our understanding of factors that are rele-
vant to power continues to grow, as does the collection of
statistical tools for dealing with problems that have been dis-
covered. In addition, there is more to power than determining
adequate sample sizes. Generally, it is a complex problem
that requires a plethora of tools, and one goal is to describe
some of the tools that might be used.

A related issue is power when dealing with associations
among two or more variables. Again, relatively simple meth-
ods are available under normality and homoscedasticity. For
example, when testing the hypothesis that Pearson’s correla-
tion is zero, if in reality it is equal to .3, say, the sample size
can be determined so that the probability of rejecting is
equal to .8, say, or any value deemed important. But when
these assumptions are violated, practical problems are even
worse relative to ANOVA. Of course, one could simply ig-
nore these problems, so a goal in this chapter is to explain
why this strategy can be highly unsatisfactory and summarize
some of the modern methods that might be used instead. Sub-
stantial progress has been made, but it will be argued that
even more needs to be done.

Generally, achieving high power, and even judging
whether power will be high in a given situation, is an ex-
tremely complex problem that has seen many major advances
in recent years. These advances include a better understand-
ing of what affects power and how power might be maxi-
mized. Consider, for example, the problem of comparing two
groups in terms of some measure of location such as the
mean or median. A variety of factors affects power, and
some are well known whereas others are being found to be
more important than was previously thought. A basic factor is
the smallest difference between the groups deemed impor-
tant, which is reflected by some type of effect size, examples
of which will be given. Certainly the variance associated
with some outcome variable is well known to influence
power when making inferences based on sample means, and
additional factors influencing power are skewness, heavy
tailedness (roughly referring to situations where outliers are
common), and heteroscedasticity (unequal variances).
Achieving relatively high power, as well as understanding
the limitations of standard approaches to power, requires an
understanding of how these factors influence power, so
another goal here is to address this issue.

Note that at best, there is a limited amount of control one
can exert over these factors. In some situations, the outcome
variable of interest can be constructed in a way that influences

its variance, but once a population of individuals has been
selected for study, and once the outcome (dependent) variable
has been settled upon, the variance becomes an unknown
state of nature that is now beyond our control. Other factors
over which we have partial control are « (the probability of a
Type I error), the reliability of the measures being used, and
the sample sizes. Steps can be taken to improve reliability;
nevertheless, it remains an issue when dealing with power.
As is well known, the choice for a influences power, but
typically there are limits on how large o can be. And of
course there are limits on how many observations one can
obtain.

At this stage, factors that remain within our control in-
clude the estimator used (such as the mean vs. the median)
and the hypothesis-testing technique employed. It has long
been known that under normality and homoscedasticity,
Student’s T test achieves relatively high power. However, a
practical concern is that arbitrarily small departures from a
normal curve toward a heavy-tailed distribution can destroy
power when working with any method based on means. Also,
skewness can contribute to this problem in a substantial way,
and even under normality heteroscedasticity is yet another
factor that can lower power. Increasing sample sizes is one
way of dealing with these concerns, but as will be explained,
restricting attention to this one approach can be relatively
unsatisfactory.

A CONVENTIONAL POWER ANALYSIS

Although the goal in this paper is to provide a broad perspec-
tive on power, a description of a conventional power analysis
is first presented for readers unfamiliar with it. Consider two
independent groups, assume normality and homoscedasticity,
and assume that the population means are to be compared
with Student’s T test. If the means differ, we should reject, so
the issue is the probability of rejecting as a function of the
sample sizes. For example, if the sample sizes are n; =
ny = 20, what is the power, and if the power is judged to be
too low, how large must the sample sizes be to correct this
problem? Typically, a researcher specifies a desired amount
of power and consults specially designed tables or software
that indicates the required sample size. Doing this requires
first specifying some difference between the means that is
judged to be important. A natural way of doing this is with the
difference between the means, w; — p,, but it is impossible
to determine the required sample size based on this approach
(Dantzig, 1940). (Switching to a two-stage procedure, power
can be addressed based on the difference between the means,
as will be explained later.) If a standardized difference is used



instead, namely,

A = M — P«z,
g

where o2 is the assumed common variance, this technical dif-
ficulty is avoided. Cohen (1977) defined a large effect as some-
thing that is visible to the naked eye and concluded that for two
normal distributions having a common variance, small,
medium, and large effect sizes correspondto A = .2, A = .5,
and A = .8, respectively. Given that the probability of a Type I
error is o, Cohen provides tables for determining the required
sample sizes (also see Kraemer & Thiemann, 1987). For ex-
ample, with n; =n, =20, A = .8, and oo = .05, power is
.68. Rather than specify a value for A, one can plot a so-called
power curve where power is plotted versus A, given the sam-
ple sizes and «. An advantage of this approach is that it pro-
vides a more global sense of how power is related to A based
on the sample sizes used. (For software, see Bornstein, 2000;
Elashoff, 2000; O’Brien, 1998.)

An extension of this standard power analysis to more than
two groups, still assuming normality and homoscedasticity,
has been derived. That is, given «, the sample sizes corre-
sponding to J groups, and a difference among the means
deemed to be important, power can be computed. Assuming
equal sample sizes, now the difference among the means is
typically measured with

l Z(“‘j - E)Z
o J ’

where again ¢ is the assumed common variance. There are
fundamental problems with this standard approach, not the
least of which is the interpretation of this last equation when
dealing with nonnormal distributions. Some of these prob-
lems arise under arbitrarily small departures from normality,
as will be illustrated.

FACTORS OVER WHICH WE HAVE
LIMITED CONTROL

Achieving relatively high power requires, among other
things, a more detailed understanding about how factors over
which we have limited control are related to power so that the
relative merits of factors within our control can be under-
stood. Consider some population of individuals and suppose
that some outcome measure, X, has been chosen for study.
When working with means, it is well known that the variance
of a distribution, o2, has a direct effect on power: The larger
o happens to be, the lower power will be with o and the
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sample sizes fixed. More generally, power is related to the
squared standard error of the measure of location being used.
For the sample mean, X, the squared standard error is the
variance of the sample mean (if a study could be repeated
infinitely many times), which is

2
VAR(X) = —, (3.1)
n

where n is the sample size. It is this connection with the vari-
ance that wreaks havoc when using any method based on
means.

A classic illustration of why is based on a particular mixed
(or contaminated) normal distribution where with probability
.9 an observation is sampled from a standard normal distrib-
ution and otherwise sampling is from a normal distribution
having a standard deviation of 10. Figure 3.1 shows the stan-
dard and mixed normal distributions. The mixed normal is
said to have thick or heavy tails because its tails lie above the
normal curve, which implies that unusually small or large
values, called outliers, are more common when sampling
from the mixed normal versus the normal. As is evident, the
two distributions are very similar in a certain sense, but there
is a crucial difference: The standard normal has variance 1,
but the mixed normal has variance 10.9. This illustrates the
well-known result that an arbitrarily small change in any dis-
tribution, including normal distributions as a special case,
can cause the variance to become arbitrarily large. That is, o
is extremely sensitive to the tails of a distribution. One impli-
cation is that arbitrarily small departures from normality can
result in low power (relative to other methods we might use)
when comparing means.

To begin to appreciate that alternative estimators can
make a practical difference in applied work, consider the me-
dian versus the mean. Figure 3.2 shows a plot of 5,000 medi-
ans and means, each based on 20 observations randomly
sampled from the mixed normal shown in Figure 3.1. Note
that the medians are more tightly clustered around zero, the
value being estimated, than are the means. That is, the me-
dian has a much smaller standard error than the mean, which
can translate into more power. However, if observations are
sampled from a standard normal distribution instead, the plot
of the medians versus the means now appears as shown in
Figure 3.3. That is, using medians can result in low power
relative to using the mean (as well as other estimators
described later in this chapter).

To provide an explicit illustration regarding the effect of
nonnormality on power when using means, suppose that 25
observations are randomly sampled from each of two normal
distributions both having variance 1, the first having mean 0
and the second having mean 1. Applying Student’s T test with
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Figure 3.1 A mixed normal and standard normal distribution. Despite the similarity, the

mixed normal has variance 10.9, whereas the standard normal which has variance 1.

a = .05, the probability of rejecting (power) is .96. But if
sampling is from mixed normals instead, with the difference
between means again 1, power is only .28. (A complication
when discussing means vs. medians is that for skewed distri-
butions, each generally estimates different quantities, so it is
possible for means to have more power regardless of their
standard errors, and the reverse is true as well.)

For the situation just described, if medians are compared
with the method derived by McKean and Schrader (1984),
power is approximately .8 when sampling from the normal
distributions. So a practical issue is whether a method can be

found that improves upon the power of the McKean-Schrader
method for medians when sampling from normal distribu-
tions and continues to have relatively high power when sam-
pling from a heavy-tailed distribution such as the mixed
normal. Such methods are available and are described later in
this chapter.

Student’s T Can Be Biased

To illustrate the effects of skewness on power when using
Student’s 7, suppose that 20 observations are sampled from

Plot of the medians ———
/

Plot of the means

2 -1

0 1 2

Figure 3.2 Distribution of the mean versus median when sampling from a mixed normal

distribution.
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Plot of the medians —>

1 1 |

&—— Plot of the means

1 L 1

-0.6 -0.4 -0.2

0.2 0.4 0.6

Figure 3.3 Distribution of the mean versus median when sampling from a standard normal

distribution.

the (lognormal) distribution shown in Figure 3.4, which has a
mean of .4658. From basic principles, inferences about the
mean are based on

r-X-r

s//n
assuming 7 has a Student’s T distribution with n — 1 degrees
of freedom, where s is the sample standard deviation and . is
the population mean. In particular, the distribution of 7 is as-
sumed to be symmetric about zero, but when sampling from
an asymmetric distribution, this is not the case. For the situa-

tion at hand, the distribution of 7 is given, approximately, by
the asymmetric curve shown in Figure 3.5, which is based on

(3.2)

values for T generated on a computer. The symmetric curve
is the distribution of 7 under normality. The main point here
is that the mean (or expected value) of T is not O—it is ap-
proximately —.5. This might appear to be impossible because
under random sampling the expected value of the numerator
of T, X — w, is 0, which might seem to suggest that 7 must
have a mean of 0 as well. However, for nonnormal distribu-
tions, X and s are dependent, and this dependence makes it
possible for the mean of T to differ from zero. (Gosset, who
derived Student’s T distribution, was aware of this issue.)
This property is important because it has practical implica-
tions about power: Power can actually decrease as we move
away from the null hypothesis. That is, situations arise where

Figure 3.4 A lognormal distribution.
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Figure 3.5 The ragged line is the plot of 7" values based on data generated from a lognormal
distribution. The smooth symmetric curve is the distribution of 7 under normality.

there is a higher probability of rejecting when the null hy-
pothesis is true versus situations where the the null hypothe-
sis is false. In technical terms, Student’s T test is biased.

To provide perspective, Figure 3.6 shows the power curve
of Student’s T with n = 20 and when & is added to every ob-
servation. That is, when & = 0, the null hypothesis is true;
otherwise, the null hypothesis is false, and the difference be-
tween the true mean and the hypothesized value is 8. In this
case, power initially decreases as we move away from the
null hypothesis, but eventually it goes up (cf. Sawilowsky,
Kelley, Blair, & Markham, 1994). The value 8 = .6 repre-
sents a departure from the null value of slightly more than
one fourth of a standard deviation. That is, moving a quarter

standard deviation from the null, power is approximately the
same as when the null hypothesis is true.

The central limit theorem implies that with a sufficiently
large sample size, the distribution of 7" will converge to a nor-
mal distribution. It is known that for a lognormal distribution
(which is a skewed relatively light-tailed distribution among
the class of g-and-h distribution derived by Hoaglin, 1985),
even with 160 observations, there are practical problems with
obtaining accurate probability coverage and control over the
probability of a Type I error. (Westfall & Young, 1993, note
that for a one-sided test, the actual probability of a Type I
error is .11 when testing at the .05 level.) With about 200
observations, these problems become negligible. But when
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Figure 3.6 Power curve of 7 when sampling from a lognormal distribution.



sampling from a skewed, heavy-tailed distribution, a sample
size greater than 300 might be required. It remains unclear,
however, how quickly practical problems with bias disappear
as the sample size increases.

The properties of the one-sample T test, when sampling
from a skewed distribution, have implications about compar-
ing two independent groups. To get a rough indication as to
why, consider the sample mean from two independent groups,
X and X,. If the two groups have identical distributions and
equal sample sizes are used, the difference between the means
has a symmetric distribution, and problems with bias and
Type I errors substantially higher than the nominal level are
minimal. But when distributions differ in skewness, practical
problems arise because the distribution of X; — X, will
be skewed as well. This is not to suggest, however, that bias is
not an issue when sampling from symmetric distributions. For
example, even when sampling from normal distributions, if
groups have unequal variances, the ANOVA F test can be
biased (e.g., Wilcox, Charlin, & Thompson, 1986).

A possible criticism of the problems with Student’s T
illustrated by Figures 3.5 and 3.6 is that in theory the actual
distribution of 7 can be substantially asymmetric, but can this
problem occur in practice? Using data from various studies,
Wilcox (2001, in press) illustrated that the answer is yes.
Consider, for example, data from a study conducted by
Pedersen, Miller, Putcha, and Yang (in press) where n = 104.
Figure 3.7 shows an approximation of the distribution of T’
based on resampling with replacement 104 values from
the original data, computing 7, and repeating this process
1,000 times. (That is, a bootstrap- method was used, which is
described in more detail later.) In fact, all indications are that
problems with T are underestimated here for at least two
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reasons. First, an extreme outlier was removed. If this outlier
is included, the approximation of the distribution of 7" de-
parts in an even more dramatic manner from the assumption
that it is symmetric about zero. Second, studies of the small-
sample properties of the bootstrap-¢ suggest that Figure 3.7
underestimates the degree to which the actual distribution of
T is skewed.

SAMPLE SIZE AND POWER

Perhaps the most obvious method for controlling power is
simply to adjust the sample size. This is relatively easy to do
when working with means and when sampling is from nor-
mal distributions, but such methods are fraught with peril.

Choosing Sample Sizes Before Sampling Observations

First, consider how the sample sizes might be chosen prior to
collecting data when comparing the means of two indepen-
dent normal distributions. A commonly used approach is to
characterize the difference between the groups in terms of a
standardized effect size:

L — K
O' 9

A =

where by assumption the two groups have a common vari-
ance, o>. As mentioned, Cohen (1977) defined a large effect
as something that is visible to the naked eye and concluded
that for two normal distributions having a common variance,
small, medium, and large effect sizes correspond to A = .2,
A =.5, and A = .8, respectively. Given «, the sample sizes

Figure 3.7 An approximation of the distribution of 7 based on data with n = 104.
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can be chosen so that for a given value of A, power will be
equal to some specified value—assuming normality (e.g.,
Cohen, 1977; Kraemer & Thiemann, 1987).

For example, with A = 1, and o = .05, and sample sizes
of 25, power will be equal to .96 when using Student’s 7, as
previously indicated. What this reflects is a solution to
choosing sample sizes under the most optimistic circum-
stances possible. In reality, when comparing means, power
will be at most .96, and a realistic possibility is that power is
substantially lower than intended if Student’s 7 is used. As
already noted, an arbitrarily small departure from normality
can mean that power will be close to zero. Yet another con-
cern is that this approach ignores the effects of skewness and
heteroscedasticity.

Despite its negative properties, this approach to determin-
ing sample sizes may have practical value. The reason is that
when comparing groups with a robust measure of location
(described later) by design power will be approximately
equal to methods based on means and when sampling from a
normal distribution. Unlike means, however, power remains
relatively high when sampling from a heavy-tailed or asym-
metric distribution. So a crude approximation of the required
sample size when using a modern robust method might be
based on standard methods for choosing samples sizes when
comparing means.

Stein-Type Methods for Means

When some hypothesis is rejected, power is not an issue—the
probability of a Type II error is zero. But when we fail to re-
ject, the issue becomes why. One possibility is that the null
hypothesis is true, but another possibility is that the null hy-
pothesis is false and we failed to detect this. How might we
decide which of these two possibilities is more reasonable?
When working with means, one possibility is to employ what
is called a Stein-type two-stage procedure. Given some data,
these methods are aimed at determining how large the sample
sizes should have been in order to achieve power equal to
some specified value. If few or no additional observations are
required to achieve high power, this naturally provides some
assurance that power is reasonably high based on the number
of observations available. Otherwise, the indication is that
power is relatively low due to using a sample size that is too
small. Moreover, if the additional observations needed to
achieve high power are acquired, there are methods for test-
ing hypotheses that typically are different from the standard
methods covered in an introductory statistics course.

To describe Stein’s (1945) original method, consider a sin-
gle variable X that is assumed to have a normal distribution
and suppose that the goal is to test Hy: @ = py, where p is

some specified constant. Further assume that the Type I error
probability is to be a and that the goal is to have power at
least 1 — 3 when p — w, = 8. For example, if the goal is to
test Hp: w = 6, it might be desired to have power equal to .8
when in reality w. = 8. Here, | —3 =.8andd =8 —6 =2.
The issue is, given n randomly sampled observations, how
many additional observations, if any, are required to achieve
the desired amount of power. If no additional observations
are required, power is sufficiently high based on the sample
size used; otherwise, the sample size was too small. Stein’s
method proceeds as follows. Let #,_g and 7, be the 1 — 3 and
o quantiles of Student’s T distribution with v =n — 1 de-
grees of freedom. (So if 7 has a Student’s T distribution with
v =n — | degrees, P[T < tl,B] =1-—p.) Let

2
d= (L) |
g —la

Then the required sample size is

52
N = — 1
max(n,|:d:|+ ),

where the notation [s?/d] means that s>/d is computed and
rounded down to the nearest integer. For example, if s = 21.4,
6=20,1—-B=.9,a=.0l,andv =9, then

2
d=(— 2 ) _ 22.6,
1.383 — (—2.82)

SO
N = max(10, [21.4%/22.6] + 1) = max(10, 21) = 21.

If N = n, the sample size is adequate; but in the illustration,
N —n=21—-—10=11. That is, 11 additional observations
are needed to achieve the desired amount of power. With
d =29, N = 10, and no additional observations are required.

If the additional N —n observations can be obtained,
Hy: o = . can be tested, but for technical reasons the obvi-
ous approach of applying Student’s 7 is not used. Rather, a
slight modification is applied that is based on the test statistic

_ \/E(fk — )

N

Ty

where L is the mean of all N observations. You test hypothe-
ses by treating T as having a Student’s 7 distribution with
v = n — 1 degrees of freedom. What is peculiar about Stein’s
method is that the sample variance based on all N observa-
tions is not used. Instead, s, which is based on the original



n observations, is used. For a survey of related methods, in-
cluding techniques for controlling power when using the
Wilcoxon signed rank test or the Wilcoxon-Mann-Whitney
test, see Hewett and Spurrier (1983).

Stein’s method has been extended to the problem of com-
paring two or more groups. Included are both ANOVA and
multiple comparison procedures. The extension to ANOVA,
when comparing the means of J independent groups, was
derived by Bishop and Dudewicz (1978) and is applied as
follows. Imagine that power is to be 1 — 3 for some given
value of a and

=) m—-w

where L = Zuj /J. Further assume that n; observations
have been randomly sampled from the jth group, j =
1,...,J. One goal is to determine how many additional ob-
servations are required for the jth group to achieve the
desired amount of power.

Let zbe the 1 — 3 quantile of the standard normal random
distribution. For the jth group, let v; = n; — 1. Compute

J
V= + 2,
> 5
J—1
AUy
v—2
v J—1
B=—x——,
J v—2
3(J —1)
C=——,
v—4
J2—=2J+3
po L2
v—2
E =B(C+ D),
4E —2A?
M=———"——,
E— A2 —-2A
AM -2
Lo AM=2)
M
C=1L{f,

where fis the 1 — o quantile of an F distribution with L and
M degrees of freedom. The quantity c is the critical value
used in the event that the additional observations needed
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to achieve power equal to 1 — 3 can be obtained. Next,
compute

B (v —2)c
=

b

1
Al = (V22 4+ 2224+ AQ2b — J +2)},

2
B, = A} — b,
v—2 )
d= X —
v 1

Then the required number of observations for the jth group is

52
Nj:max{nj—i-l, |:E’:| —i—l}. 3.3)

For technical reasons, the number of observations needed for
the jth group, Nj, cannot be smaller than n; + 1. (The notation
[sj2 /d] means that sj2 /d is computed and then rounded down
to the nearest integer.) Software for applying this method
can be found in Wilcox (in press).

In the event the additional N; — n; observations can be ob-
tained from the jth group, exact control over both the Type I
error probability and power can be achieved even when the
groups have unequal variances—still assuming normality. In
particular, for the jth group compute

=) Xy

s
I
|

n; ’

<

The test statistic is
~ 1 ~ <
F=23) (X=X,

where

<

I
~| =
™
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The hypothesis of equal means is rejected if F > ¢ and
power will be at least 1 — [3.

Multiple Comparisons

Stein-type multiple comparisons procedures were derived by
Hochberg (1975) and Tamhane (1977). One crucial differ-
ence from the Bishop-Dudewicz ANOVA is that direct con-
trol over power is no longer possible. Rather, these methods
control the length of the confidence intervals, which of
course is related to power. When sample sizes are small, both
methods require critical values based on the quantiles of what
is called a Studentized range statistic. Tables of these critical
values can be found in Wilcox (in press). For the details of
how to use these methods, plus easy-to-use software, see
Wilcox (in press).

DEALING WITH SKEWNESS,
HETEROSCEDASTICITY, AND OUTLIERS

Although Stein-type methods are derived assuming normal-
ity, they deal with at least one problem that arises under non-
normality. In particular, they have the ability of alerting us to
low power due to outliers. When sampling from a heavy-
tailed distribution, the sample variance will tend to be rela-
tively large, which in turn will yield a large N when using
Equation 3.3. This is because the sample variance can be
greatly inflated by even a single outlier. In modern terminol-
ogy, the sample variance has a finite sample breakdown point
of only 1/n, meaning that a single observation can make it
arbitrarily large. As a simple example, consider the values 8,
8, 8,8, 8,8, 8,8, 8,8, 8. There is no variation among these
values, so s = 0. If we increase the last value to 10, the sam-
ple variance is s> = .36. Increasing the last observation to 12,
s? = 1.45, and increasing it to 14, s> = 3.3. The point is that
even though there is no variation among the bulk of the ob-
servations, a single value can make the sample variance arbi-
trarily large. In particular, outliers can substantially inflate 52,
but what can be done about improving power based on the
observations available, and how might problems due to
skewness, heteroscedasticity, and outliers be approached?

Heteroscedasticity

Today, virtually all standard hypothesis-testing methods
taught in an introductory course have heteroscedastic analogs,
summaries of which are given in Wilcox (in press). This is
true for methods based on measures of location as well as for
rank-based techniques such as the Wilcoxon-Mann-Whitney

test, and even for inferential methods used in regression and
when dealing with correlations. When comparing groups hav-
ing identical distributions, homoscedastic methods perform
well in terms of Type I errors, but when comparing groups that
differ in some manner, there are general conditions under
which these techniques are using the wrong standard error,
which in turn can result in relatively lower power. For exam-
ple, when using the two-sample Student’s 7 test, the assump-
tion is that the distribution of the test statistic 7" approaches a
standard normal distribution as the sample sizes increase. In
particular, the variance of the test statistic is assumed to
converge to one, but Cressie and Whitford (1986) described
general conditions under which this is not true. In a similar
manner, the Wilcoxon-Mann-Whitney test is derived under
the assumption that distributions are identical. When distribu-
tions differ, the wrong standard error is being used, which
causes practical problems. Methods for dealing with
heteroscedasticity have been derived by Fligner and Policello
(1981), Mee (1990), and Cliff (1994), as well as by Brunner
and Munzel (1999). The techniques derived by Cliff and
Brunner and Munzel are particularly interesting because they
include methods for dealing with tied values.

Skewness and the Bootstrap

The central limit theorem says that under random sampling
and with a sufficiently large sample size, it can be assumed
that the distribution of the sample mean is normal. Moreover,
Student’s T approaches a normal distribution as well, but a
practical concern is that it approaches a normal distribution
more slowly than X does when sampling from a skewed dis-
tribution (e.g., Wilcox, 2001). The problem is serious enough
that power is affected, as previously demonstrated.

One approach is to replace Student’s 7 and its het-
eroscedastic analogs with a bootstrap-t method. This ap-
proach is motivated by two general results. First, the theory
indicates that problems with nonnormality will diminish
more rapidly than with more conventional methods. To pro-
vide a rough idea of what this means, note that under nonnor-
mality there will be some discrepancy between the actual and
nominal level value for «, the probability of a Type I error.
When sample sizes are large, the rate at which conventional
(heteroscedastic) methods converge to the correct nominal
level is 1/4/n. In contrast, methods based on the bootstrap-
converge at the rate of 1/n—namely, faster. This does not
necessarily imply, however, that with small to moderate sam-
ple sizes, problems with low power due to skewness will be
negligible with a bootstrap technique. In terms of Type I er-
rors, for example, problems are often reduced considerably,
but for skewed heavy-tailed distributions, problems can



persist even with n =300 when attention is restricted to
means. Nevertheless, the bootstrap-t offers a practical advan-
tage because when making inferences based on means, it
generally performs about as well as conventional techniques
and in some cases offers a distinct advantage. As for power,
the bootstrap-¢ reduces problems due to bias, but just how
large the sample sizes must be to eliminate all practical con-
cerns remains unclear.

In the one-sample case, the bootstrap-f is applied as fol-
lows. Resample with replacement n observations from the
observed values X, ..., X, yielding a bootstrap sample:
X7, ..., X;. Compute

Ju(X* =X)

r"=-——
S*

where X" and s* are the mean and sample standard deviation
based on the bootstrap sample. Repeat this process B times
yielding 77, ..., Tj;. The middle 95% of these B values pro-
vides an approximation of the .025 and .975 quantiles of the
distribution of 7, which can be used to test hypotheses or
compute confidence intervals. That is, rather than approxi-
mate the distribution of 7' by assuming normality, approxi-
mate its distribution based on the data available.

Dealing With Low Power Using Robust Estimators

Robust estimators provide another method for dealing with
low power due to skewness, and they can provide a substan-
tial advantage in power when sampling from heavy-tailed
distributions such as the mixed normal. Moreover, some ro-
bust estimators have been designed to provide relatively high
power under normality and simultaneously provide high
power when sampling from a heavy-tailed distribution.

It is noted that three criteria are used to judge the robust-
ness of any measure of location (e.g., Huber, 1981). Roughly,
these criteria reflect how small changes in any distribution
(including normal distributions as a special case) can affect
their values. The population mean () and population vari-
ance (o) are not robust because arbitrarily small changes in
a distribution can alter their values by an arbitrarily large
amount. One practical consequence is that arbitrarily small
departures from normality can result in very poor power
compared to others methods that might be used.

As previously noted, outliers inflate the sample variance,
which can result in low power when comparing groups based
on means. So dealing with this problem might seem trivial:
Check for outliers, discard any that are found, and apply
some method for means to the data that remain. In symbols,
if we begin with N observations, discard those that are
declared outliers, leaving n observations, and then estimate
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VAR(Y), the squared standard error of the sample mean,
with s2 /n, where 52 is the sample variance based on the n
observations left after outliers are discarded. However, there
are two concerns with this approach. First, it results in using
the wrong standard error; second, discarding outliers in some
manner is often met with incredulity because it seems coun-
terintuitive based on what has become traditional training in
statistics. In particular, it might seem that this must result
in less accurate results and less power.

First consider the issue of accuracy and power when some
of the smallest and largest observations are discarded. To take
an extreme case, consider the usual sample median, which
discards all but the middle one or two values. As illustrated in
Figure 3.2, it can be more accurate on average versus the
mean, as was first noted by Laplace in 1775. By 1818
Laplace was aware of more general conditions under which
the median beats the mean in accuracy. To provide some
sense of why this occurs, imagine that 20 observations are
randomly sampled from a standard normal distribution. Now
put these values in ascending order and label the results
Xy < --- < Xqo. It can be shown that with probability
983, the smallest value will be less than —0.9. That is,
P(X1y <—0.9) = .983. Similarly, P(X 0 > 0.9) = .983.
That is, there is a high probability that the smallest and
largest observations will be relatively far from the population
mean, the value we are trying to estimate. Of course, averag-
ing these values gives a reasonable estimate of the population
mean, but the point is that in general we would expect them
to add a relatively large amount of variation versus the two
middle values, which have a much higher probability of
being close to the population mean. But as is well known, de-
spite this property, the sample mean performs much better
than does the median under normality. The concern, however,
is that for nonnormal distributions there are situations where
the opposite is true.

Why does the mean beat the median in accuracy under
normality? The answer is that when we put the observations
in order, they are no longer independent, and the correlation
among the ordered observations is such that under normality
the mean beats the median. To elaborate a bit, consider three
observations randomly sampled from a normal distribution:
X1, X5, and X3. Then each has probability .05 of being less
than or equal to —1.645. But suppose we put the observations
in ascending order, yielding X (1) < X2y < X(3). Thus, X(;) is
the smallest of the three observations, and X 3) is the largest.
To see why these three variables are no longer independent,
first note that there is some positive probability that X, is
less than —1.645. If X is independent of X ), then know-
ing the value of X1y should not alter the probabilities associ-
ated with X ). But given that Xy is greater than —1.645, for
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example, then P(X() < —1.645) =0, because by defini-
tion, X(2) > X(1y. Thatis, X1y and Xy are dependent. More
generally, if independent observations are put in order and
some extreme values are removed, the remaining observa-
tions are no longer independent.

When sampling from a normal distribution, or from any
light-tailed distribution, methods based on medians can have
substantially less power than do methods based on means.
Is there some alternative measure of location that performs
about as well as the mean under normality but that guards
against low power when sampling from a heavy-tailed distri-
bution? There are in fact three such measures of location that
seem to have considerable practical value: trimmed means,
M-estimators, and a modified one-step M-estimator called
MOM. Not only do they enhance power, but also excellent
methods for controlling the probability of a Type I error have
been devised that continue to perform well in situations
where methods based on means are highly unsatisfactory.

Trimmed Means

Trimmed means are characterized by trimming a fixed (pre-
determined) proportion of observations. Typically, the same
amount of trimming is done from both tails. That is, a
trimmed mean removes a specified proportion of the largest
observations and repeats this for the smallest observations;
then the remaining observations are averaged. Note that the
mean and median represent two extremes: no trimming and
the maximum amount of trimming that can be done.

Trimming 20% from both tails maintains relatively high
power under normality, but power remains fairly high when
sampling, for example, from the mixed normal. As previ-
ously mentioned, removing extreme values creates a techni-
cal problem: The remaining observations are dependent, so
there is the practical issue of how to estimate its standard
error. Tukey and McLaughlin (1963) were the first to deal
with this issue. A description of their method is given in the
next section.

Another strategy is to check empirically for outliers, re-
move any that are found, and average the values that remain.
This includes the class of skipped estimators that was origi-
nally suggested by Tukey. Recently, the particular variation of
this method called MOM has been found to be especially use-
ful (Wilcox, in press). In the past, technical problems precluded
the routine use of these estimators when testing hypotheses, but
recent advances make them a viable option.

To explain part of the motivation behind MOM requires
some preliminary remarks about detecting outliers. There are
some well known and fairly obvious ways of detecting
outliers based on the mean and variance. A commonly used

strategy is to declare the value X an outlier if it lies more than
2 standard deviations from the sample mean. That is, declare
X to be an outlier if

X - X|
_ >
s

2. (3.4)

However, it has long been known that this approach is highly
unsatisfactory (e.g., Rousseeuw & Leroy, 1987) because it
suffers from what is called masking. That is, outliers can
greatly influence the sample mean, and particularly the sam-
ple standard deviation, which in turn can mask outliers. For
example, consider the values

2,2,3,3,3,4,4,4,100,000, 100,000.

Surely, 100,000 is unusual compared with the other values,
but it is readily verified that 100,000 is not declared an outlier
when using Equation 3.4. Methods for dealing with this prob-
lem are available (e.g., Barnett & Lewis, 1994), and some
variation of these methods is recommended when dealing
with power. One method that stands out is based on the me-
dian, M, and a measure of scale called the median absolute
deviation (MAD) statistic, which is just

median(| X, — M|, ..., |X, — M]).

That is, MAD is the median of | X — M|, ..., |X, — M|. A
rule for detecting outliers that is a special case of a general
approach proposed by Rousseeuw and van Zomeren (1990)
is to declare X an outlier if

|X — M|

B B 7Y .
MAD/ 6745 (3-5)

(The constant .6745 stems from the fact that under normality,
MAD/.6745 estimates the population standard deviation, a.)

Now consider using as a measure of location the mean of
the observations left after outliers identified with Equation 3.5
are removed. Called MOM, the only difference between it
and Tukey’s skipped estimators is that Tukey’s estimator
identifies outliers using a box-plot rule rather than Equa-
tion 3.5. An appealing feature of MOM is that it introduces
more flexibility than does the trimmed mean. In particular,
MOM allows the possibility of no trimming and different
amounts of trimming from each tail, and it can handle more
outliers than can the 20% trimmed mean. An inconvenience
of MOM is that an explicit expression for its standard error
has not been derived, so the more obvious approaches to test-
ing hypotheses are not readily applied. However, a percentile
bootstrap method has been found to provide excellent control
over the probability of a Type I error. Moreover, good results



are obtained in situations where methods based on M-
estimators are unsatisfactory, and all indications are that using
MOM with a percentile bootstrap method competes well with
the best methods for comparing 20% trimmed means. By
design, methods based on MOM will have about as much
power as methods based on means when sampling from nor-
mal distributions, but power can be vastly higher when using
MOM because its standard error is relatively unaffected by
outliers. Moreover, ANOVA methods have been developed,
including methods where the goal is to compare dependent
groups; multiple comparison procedures are available also
(Wilcox, in press).

The third strategy is to alter how we measure the distance
between an observation and some constant, say ¢, which is
to be used as a measure of location. To elaborate, suppose
we measure the typical distance between the observations
we make and ¢ with the sum of squared differences:
3" (X; — ¢)%. The least squares principle is to choose as a
measure of location the value ¢ that minimizes this sum and
leads to ¢ = X, the sample mean. But if the typical distance
is measured with )" |X; — ¢| instead, minimizing this sum
results in ¢ = M, the sample median. That is, different mea-
sures of location are obtained depending on how distance
is measured. Rather than use squared error or absolute error,
M-estimators use other measures of error that result in mea-
sures of location with good properties under normality as
well as when sampling from skewed or heavy-tailed distribu-
tions. The idea appears to have been first proposed by Ellis in
1844, and a modern treatment of this approach was first
developed by Huber (1964). Among the measures of distance
that have been proposed, one due to Huber currently stands
out and leads to the so-called one-step M-estimator. (For
theoretical details, see Huber, 1981; Hampel, Ronchetti,
Rousseeuw, & Stahel, 1986.) To compute it, let L be the num-
ber of observation such that

Xi— M 1.28 (3.6)
—— < 1.28, .
MAD/.6745

and let U be the number of observation such that

XM og 3

MAD/.6745 ~ 37
That is, these last two equations are used to determine
whether an observation is an outlier. L is the number of out-
liers less than the median, and the number of outliers greater
than the median is U. The constant 1.28 arises because it pro-
vides relatively high power under normality. Let B be the sum
of the observations not declared outliers. Then the one-step
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M-estimator (based on Huber’s measure of distance) is

1.28(MADN)(U — L) + B
n—L—-U

. (3-8)

where MADN = MAD/.6745. Note that if 1.28 is changed
to 2.24 in Equation 3.7 and we calculate B/(n — L — U) in
place of Equation 3.8, we get MOM.

Inferences Based on a Trimmed Mean

This section illustrates that the choice of method can make a
substantial difference in the conclusions reached. Here, for
convenience, a nonbootstrap method based on 20% trimmed
means is described, the only point being that in some situa-
tions it can have a substantially lower significance level than
can a method based on means. (The choice of 20% trimming
is made because it provides relatively high power under nor-
mality, but power remains relatively high when sampling
from heavier tailed distributions.)

First we need an estimate of the standard error of the
trimmed mean. Recall that when computing a 20% trimmed
mean, the smallest and largest 20% of the observations are re-
moved. Winsorizing the observations by 20% simply means
that rather than remove the smallest 20%, their values are set
equal to the smallest value not trimmed when computing the
20% trimmed mean. Simultaneously, the largest 20% are
reset to the largest value not trimmed. The 20% Winsorized
variance is the wusual sample variance based on the
Winsorized values, which will be labeled si. It can be shown
that si/ .36n estimates the squared standard error of X,, the
sample trimmed mean.

Yuen (1974) proposed testing the hypothesis of equal pop-
ulation trimmed means for two independent groups with

_ Xu—Xo

YT VAt dy
where

g — (nj — l)sij
P hithy = 1)

h; is the number of observations left in the jth group after
trimming, and for the jth group, s?uj is the Winsorized

variance. The (estimated) degrees of freedom are

5 (di + dy)*
_y - —7
oy 4
=1 T e
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and the hypothesis of equal population trimmed means is
rejected if

|T,| > t,

where ¢ is the 1 — /2 quantile of Student’s ¢ distribution
with D, degrees of freedom. (With zero trimming, Yuen’s
method reduces to Welch’s test for means.)

Consider the following data, which are from a study deal-
ing with self-awareness:

Group 1: 77 87 88 114 151 210 219 246 253
262 296 299 306 376 428 515 666 1310 2611

Group 2: 59 106 174 207 219 237 313 365 458 497 515
529 557 615 625 645 973 1065 3215

(These data were generously supplied by E. Dana and reflect
the time participants could keep a portion of an apparatus in
contact with a specified target.) Comparing means with
Welch’s heteroscedastic test, the significance level is .475.
With Yuen’s test, the significance level is .053.

Judging Sample Sizes When Using
Robust Estimators

Stein-type methods provide a way of judging the adequacy of
a sample size based on data available. If a nonsignificant re-
sult is obtained, again there is the issue of whether this is due
to low power based on the available sample size. Under nor-
mality, and when working with means, this issue can be
addressed with Stein-type methods, but how might such tech-
niques be extended to other measures of location? Coming up
with reasonable methods for estimating power, based on esti-
mated standard errors, is a fairly trivial matter thanks to mod-
ern technology, and in fact there are many methods one might
use with robust measures of location. For example, theoreti-
cal results suggest how to extend Stein-type methods to
trimmed means, but finding a method that performs reason-
ably well with small or even moderately large sample sizes is
quite another matter. One practical difficulty is that the
resulting methods tend to be biased and that they can be rela-
tively inaccurate. For example, suppose that based on n
observations from each group being compared, the standard
error for each group is estimated, yielding an estimate of how
much power there is based on the observations available. For
convenience, let ¥ be some estimate of v, the true amount of
power. Of course there will be some discrepancy between vy
and 4, and typically it seems that this discrepancy can be
quite high. The problem is that estimated standard errors are

themselves inaccurate. That is, if the true standard errors
were known, methods for estimating power can be devised,
but because they are estimated, 4 can be rather unsatisfactory.
Moreover, methods for deriving an appropriate estimate of -y
usually are biased. Even when a reasonably unbiased estima-
tor has been found, what is needed is some method for as-
sessing the accuracy of 4. That is, how might a confidence
interval for y be computed based on the data available?
Again, solutions are available, but the challenge is finding
methods for which the precision of § can be assessed in an
adequate manner with small to moderate sample sizes.

A method that performs relatively well when working
with 20% trimmed means is described by Wilcox and
Keselman (in press). It is limited, however, to the one- and
two-sample case. A comparable method when comparing
more than two groups remains to be developed. The method,
along with easy-to-use software, is described in Wilcox
(in press) as well.

The method just mentioned could be extended to MOM
and M-estimators, but nothing is known about its small-
sample properties. This area is in need of further research.

Rank-Based Methods and Outliers

Yet another approach to low power due to outliers is to switch
to some rank-based method, but as already noted, modern
heteroscedastic methods are recommended over more tradi-
tional homoscedastic techniques. Ranks are assigned to
observations by putting the observations in ascending order,
assigning a rank of 1 to the smallest value, a rank of 2 to the
next smallest, and so on. So regardless of how extreme an
outlier might be, its rank depends only on its relative position
among the ordered values. Consider, for example, the values
198, 199, 245, 250, 301, and 320. The value 198 has a rank of
one. But if this smallest value were 2 instead, 2 is an outlier,
but its rank is still one, so when using a rank-based method to
compare groups, power is not affected. A summary of mod-
ern rank-based methods, developed after 1980, can be found
in Wilcox (in press).

REGRESSION
When dealing with regression, issues related to power be-
come more complex. To explain the basic issues, it helps to

begin with simple regression, where two variables are ob-
served, X and Y, and it is assumed that

Y =B, X +B+e 3.9)



where (3, and B, are the unknown population slope and
intercept, respectively; X and e are independent; and € has
variance o2. This model is homoscedastic, meaning that the
conditional variance of Y, given X, does not change with X. If
it is further assumed that € has a normal distribution, methods
for assessing power, given n, are available when the goal is to
test hypotheses about the slope and intercept based on the
randomly sampled pairs of observations (X, Yj),...,
(Xn, Yp) (e.g., Kraemer & Thiemann, 1987). But even under
normality, if the error term is heteroscedastic, meaning that
the conditional variance of Y varies with X, serious practical
problems with power can result. And under nonnormality, the
situation deteriorates even further. In fact, two fundamental
problems associated with heteroscedasticity affect power.
The first is that poor probability coverage can result when
using conventional methods for computing a confidence in-
terval for the slope or intercept. In terms of Type I errors, if
the goal is to test Hyp: 3; = 0 with o = .05, there are situa-
tions where the actual Type I error probability exceeds .5!
That is, when computing a .95 confidence interval for 3, the
actual probability coverage can be less than .5. Perhaps in
some situations this inadequacy unintentionally increases
power when in fact Hy is false, but it could decrease it as
well. Generally, if there is an association between two vari-
ables, there is no reason to expect homoscedasticity; under
heteroscedasticity standard hypothesis testing methods are
using the wrong standard error, and this can result in rela-
tively low power. A reasonable suggestion is to test the
hypothesis that the error term is homoscedastic and, if not
significant, to use a homoscedastic method when testing the
hypothesis of a zero slope. A practical problem, however, is
that researchers do not know how to determine whether a test
of homoscedasticity has enough power to detect situations
where heteroscedasticity creates practical problems. The sec-
ond fundamental problem is that there are situations where
the least squares estimator has a standard error thousands of
times larger than some competing method!

Heteroscedasticity and Probability Coverage

A variety of methods have been proposed for dealing with
poor probability coverage due to heteroscedasticity, several
of which were compared by Wilcox (1996) when making in-
ferences about the slope. The only method that performed
reasonably well among those that were considered is based
on a modified percentile bootstrap method. Derivation of the
method is based in part on Gosset’s approach, which led to
Student’s 7 distribution: When the sample size is small, make
adjustments to the critical value assuming normality and
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homoscedasticity, and then hope that good probability cover-
age (and accurate control over the probability of a Type I
error) is achieved when these assumptions are violated.
Although Student’s 7" does not perform well when these as-
sumptions are violated, it currently seems that a similar ap-
proach is relatively effective for the problem at hand.

To provide some detail, let (X, Y;),..., (X,, ¥;,) ben
randomly sampled pairs of points. A bootstrap sample is ob-
tained by resampling with replacement n pairs of points from
(X1, Y1),..., (X,, Yu). Let b be the least squares estimate
of the slope based on this bootstrap sample. Next, repeat this
process 599 times, yielding b7, . . ., b} 599. The standard per-
centile bootstrap method uses the middle 95% of these 599
bootstrap estimates as a .95 confidence interval for (3,. But
when using least squares, a modification is needed. In partic-
ular, put the 599 bootstrap estimates of the slope in ascend-
ing order yielding by, < --- < bj(s99)- The .95 confidence
interval is

( T(u)’ T(c)) (3.10)

where for n <40, a =7 and ¢ = 593; for 40 <n < 80,
a=8andc =592;for80 <n < 180, a = 11 and ¢ = 588;
for 180 < n < 250, a = 14 and ¢ = 585; while for n > 250,
a =15 and ¢ =584. More recently, an alternative het-
eroscedastic method was studied and recommended by Long
and Ervin (2000). However, there are situations where it is
rather unsatisfactory, in terms of probability coverage (or
Type I error probabilities), when the bootstrap performs
fairly well, and so far no situations have been found where
the reverse is true.

In some instances, simply restricting the range of the X
values to eliminate obvious outliers can make least squares
competitive with other estimators. And the derivation of the
standard error of the least squares estimator, assuming
homoscedasticity, remains valid because the X values are
treated as constants (i.e., the variance of the least squares
estimator is derived by conditioning on X). However, this
strategy does not necessarily address problems due to het-
eroscedasticity among the points that remain, and eliminating
points for which the Y values are outliers leads to technical
problems because the derivation of the standard error of the
least squares estimator is no longer valid (for reasons similar
to why the derivation of VAR[X] is invalid when outliers
among the X values are discarded).

Another facet to the relative merits of restricting the range
of the X values is related to good and bad leverage points. A
leverage point is an outlier among the X values. A bad lever-
age point is an outlier that is relatively far from the regression
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Good Leverage Point

Bad Leverage Point —————>e

Figure 3.8 An example of good and bad leverage points.

line for the bulk of the points. That is, it has a relatively large
residual. A good leverage point is a leverage point that is
reasonably close to the regression line. Figure 3.8 shows
both a good and bad leverage point. An advantage of a good
leverage point is that it lowers the standard error of the least
squares estimator, which helps increase power. But a bad
leverage point can result in a poor fit to the bulk of the points,
resulting in a misleading summary of the data.

ROBUST REGRESSION ESTIMATORS AND POWER

Although it has been clearly established that in terms of
power, simply applying the least squares estimator to data
can be highly unsatisfactory, no single alternative estimator
has been found that can be recommended for general use to
the exclusion of all estimators that have been proposed. All
indications are that several estimators should be considered,
particularly in the exploratory phases of a study. Indeed, once
some familiarity with the issues that affect power has been
obtained, it seems to be an almost trivial matter to find fault
with any single strategy that might be used. That is, situations
can be found where many estimators offer substantial gains
in power versus least squares, but among these estimators,
situations can be found where method A beats method B, and
situations can be found where the reverse is true as well.
Moreover, at least for the moment, certain strategies present
computational problems and inconveniences that need to be
addressed. Nevertheless, least squares can result in relatively
low power (and a poor reflection of the association among the
majority of points). Some simple and effective methods
are available for addressing this problem, so knowing some

alternative estimators is important and can make a substantial
difference in the conclusions reached.

The Theil-Sen Estimator

There are many alternatives to least squares regression that
offer important advantages, including the possibility of rela-
tively high power. The immediate goal is to illustrate the
potential advantages of just one of these methods with the un-
derstanding that arguments for other estimators can be made.
The estimator discussed here was proposed by Theil (1950)
and Sen (1968). For comments on the relative merits of some
competing estimators, see Wilcox (in press).

The Theil-Sen estimate of the slope is the value b that
makes Kendall’s T statistic, between Y; — bX; and X, (ap-
proximately) equal to zero. Alternatively, for any X; > X;,
let S = (Y; —Y;)/(X; — X;). That is, S is the slope of the
line connecting the ith and jth points. Then b, the median of
the S; values, is the Theil-Sen estimate of the slope. The
usual estimate of the intercept is M, — bM,, where M, and
M, are the sample medians corresponding to the Y and X
values, respectively. (For results on extending this estimator
to more than one predictor, see Hussain & Sprent, 1983;
Wilcox, 1998.)

Because power is related to the standard error of an estima-
tor, an indirect comparison of the power associated with least
squares, versus the Theil-Sen estimator, can be obtained by
comparing their standard errors. Here, consideration is given to
n = 20 with X and € having one of four distributions: normal,
symmetric with heavy tails, asymmetric with relatively light
tails, and asymmetric with relatively heavy tails. The specific
distributions used are from the family of g-and-# distributions



derived by Hoaglin (1985). The parameter g controls skew-
ness, and & controls heavy-tailedness. Here, both g and i were
taken to have one of two values: 0 and .5. Setting g = h =0
yields a standard normal distribution. (For more details about
these distributions, see Hoaglin, 1985.) Tables 3.1 and 3.2 pro-
vide an estimate (labeled R) of the standard error of the least
squares estimator divided by the standard error of the Theil-
Sen estimator. So R < 1 indicates that least squares is more ac-
curate on average, and R > 1 indicates the opposite. Included
are values for R when there is heteroscedasticity. Specifically,
observations were generated from the model ¥ = X 4+ N(X)e
with three choices for N(X):N(X) = | (homoscedasticity),
N(X) = X2, and N\(X) = 1 +2/(|X]| + 1). For convenience,
these three function are called variance patterns (VP) 1, 2,
and 3. (The values of R in Tables 3.1 and 3.2 are based on
simulations with 5,000 replications.)

Note that under normality and homoscedasticity, Table 3.1
indicates that least squares is slightly more accurate, the value
of R being 0.91. However, even when the error term is normal
but heteroscedastic, least squares performs rather poorly—
the Theil-Sen estimator can be hundreds of times more

TABLE 3.1 Estimates of R, the Ratio of the Standard Errors for
Least Squares, versus Theil-Sen When the X Distribution is
Symmetric, n = 20

X €

R

o
=
o0
=
=

0.0 0.0 0.0 0.0 0.91
2.64
202.22
4.28
10.67
220.81
1.13
3.21
183.74
8.89
26.66
210.37
0.81
40.57
41.70
3.09
78.43
38.70
0.99
46.77
39.32
6.34
138.53
43.63

0.0 0.0 0.0 0.5

0.0 0.0 0.5 0.0

0.0 0.0 0.5 0.5

0.0 0.5 0.0 0.0

0.0 0.5 0.0 0.5

0.0 0.5 0.5 0.0

0.0 0.5 0.5 0.5

LN = W= WK = WK = WK = W= W= WK —

Note. g = h =0 is standard normal; (g, &) = (0, .5) is symmetric heavy
tailed; (g, h) = (.5, 0) is skewed light tailed; g = h = .5 is skewed heavy
tailed.
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TABLE 3.2 Estimates of R, the Ratio of the Standard Errors
for Least Squares, versus Theil-Sen When the X Distribution is
Asymmetric, n = 20

X €

o9
=
o
=
3
=

0.5 0.0 0.0 0.0 0.88
6.83
207.35
4.27
30.57
404.35
1.08
8.44
151.99
8.62
79.52
267.09
0.78
87.64
55.71
3.09
182.12
7891
0.95
112.18
66.51
5.71
394.67
96.49

0.5 0.0 0.0 0.5

0.5 0.0 0.5 0.0

0.5 0.0 0.5 0.5

0.5 0.5 0.0 0.0

0.5 0.5 0.0 0.5

0.5 0.5 0.5 0.0

0.5 0.5 0.5 0.5

W DN = LN — LN~ W= WM — WM~ WM~ W~

accurate. Among the situations considered, there are many
instances where the Theil-Sen estimator provides a striking
advantage, and there are none where the reverse is true, the
lowest value for R being 0.76. It should be remarked that di-
rect comparisons in terms of power are hampered by the fact
that for many of the situations considered in Tables 3.1 and
3.2, conventional hypothesis testing methods based on least
squares perform very poorly. Perhaps there are situations
where the very inadequacies of conventional techniques re-
sult in relatively high power. That is, probability coverage
might be extremely poor, but in a manner that increases
power. Experience suggests, however, that it is common to
find situations where the hypothesis of a zero slope is rejected
when using Theil-Sen, but not when using least squares.

A technical issue when using the Theil-Sen estimator is
that when there is heteroscedasticity, an explicit expression
for its standard error is not available. However, a percentile
bootstrap method has been found to provide fairly accurate
probability coverage and good control over the probability of
a Type I error for a very wide range of situations, including
situations where the conventional method based on least
squares is highly inaccurate. But rather than use the modified
percentile bootstrap method previously described, now it suf-
fices to use the standard percentile bootstrap method instead.
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In particular, again let (X, Y;), ..., (X,, ¥,) be nrandomly
sampled pairs of points and generate a bootstrap sample
by resampling with replacement n pairs of points from
(X1, Y1),...,(X,, Y,). Let b} be the Theil-Sen estimate of
the slope based on this bootstrap sample. Next, repeat this
process B times yielding b}, ..., bjz. The standard per-
centile bootstrap method uses the middle 95% of these B
bootstrap estimates as a .95 confidence interval for slope.
That is, put the B bootstrap samples in ascending order, label
the results b ;) < --- < bjp,, in which case a 1 — o confi-
dence interval for the population slope is (bi+1), biw)),
where L = aB/2, rounded to the nearest integer, and
U = B — L. (B = 600 seems to suffice, in terms of accurate
probability coverage, when using Theil-Sen.) Obviously this
approach requires a computer, but even with a moderately
large sample size, execution time is fairly low.

CORRELATION
Certainly one of the most common goals is to test
Hy:p=0, (3.11)

the hypothesis that Pearson’s correlation is zero. One ap-
proach is to use what is called Fisher’s Z transformation,
which is also called the r-to-z transformation. It provides a
simple method for determining sample size when dealing
with power, but the method assumes normality. When sam-
pling from a nonnormal distribution, there are general condi-
tions under which Fisher’s Z does not converge to the correct

answer even as the sample size gets large (e.g., Duncan &
Layard, 1973).

A more general and perhaps a more serious problem is that
at least six features of data affect the magnitude of p (e.g.,
Wilcox, 2001), which in turn makes it very difficult to find a
satisfactory method for dealing with power. These six fea-
tures are (a) the slope of the line around which the points are
clustered, (b) the magnitude of the residuals, (c) outliers,
(d) curvature, (e) a restriction of range, and (f) reliability. So
if a sample size for achieving high power is determined under
normality, the extent to which power will indeed be high in
reality is far from clear.

Figure 3.9 illustrates the effect of outliers on r, the standard
estimate of p. Shown are the surface temperature and light in-
tensity of 47 stars plus the least squares regression line. As is
evident, the bulk of the points appear to have a positive asso-
ciation, but »r = —.21, and Student’s T test of Equation 3.10
has a significance level of .16. The points in the upper left cor-
ner of Figure 3.9 have a tremendous influence on r. A box plot
indicates that X values less than or equal to 3.84 are outliers.
If these points are eliminated, » = .68 with a significance
level less than .001. In this case, simply restricting the range
of X seems to correct problems with detecting a positive asso-
ciation among the majority of the points, but it is well known
that restricting the range of X values can lower r as well.

Robust Correlations

Another way of dealing with low power due to outliers is to re-
place Pearson’s correlation with some type of so-called robust
estimator. Such methods include Kendall’s tau, Spearman’s
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Figure 3.9 Surface temperature and light intensity of 47 stars.



rho, a Winsorized correlation, and what is called the percent-
age bend correlation. The first two are well known, so further
details are not given. Details about the Winsorized correlation
coefficient can be found in Wilcox (1997).

The percentage bend correlation is based in part on an
empirical check for outliers and is computed as follows: For
the observations Xy, ..., X,, let M, be the sample median.
Choose a value for & between 0 and 1 and compute

VVi = |Xl - Mx|a
m = [(1 —&)nl,

where the notation [(1 — &)n] is (1 — &)n rounded down to
the nearest integer. Using & = .2 appears to be a good choice
in most situations. Let W) < --- < W, be the W; values
written in ascending order and let

(:)x = W(m).

Let i; be the number of X; values such that (X; — é)/
®, < —1, and let i, be the number of X; values such that
(X; — 0)/®, > 1. Compute

Vl*l’z

i=ij+1

(i)x _ &)x(iZ - il) + Sx.

I’l—il—iz

Set U; = (X; — dA)x) /®,. Repeat these computations for the
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Y; values yielding V; = (Y; — (f)y)/d)y. Let
W(x) = max[—1, min(1, x)].

Set A; =WV(U;) and B; = W(V;). The percentage bend
correlation is estimated to be

> A:B;

JZ ) (B

Under independence, the population percentage bend
correlation is zero. To test the hypothesis that the population
percentage bend correlation is zero, compute

Fpp =

T n=2 (3.12)
=r .
pb pb 1-— rﬁb

and reject if [T}, > ti_q/2, Where tj_q)2 is the 1 —a/2
quantile of Student’s T distribution with n — 2 degrees of
freedom.

For the star data in Figure 3.9, r,;, = .31, and the signifi-
cance level based on the method just described is .03. That is,
without restricting the range of the X values, a significant re-
sult is obtained, and the percentage bend correlation indicates
a positive association among the bulk of the observations.
Spearman’s rho and Kendall’s tau are also positive with sig-
nificance levels of .044 and .013, respectively.

There are, however, situations where outliers can affect all
three of these correlation coefficients, which in turn can affect
power. Consider, for example, the 20 pairs of observations
shown in Figure 3.10 (ignoring the point in the lower right
corner) which were generated from the standard regression

Figure 3.10 Robust measures of correlation reduce the effects of outliers, but depending on
where they are located, outliers can still have an undue influence.
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model Y = X + € where both X and € have standard normal
distributions. All three of these correlation coefficients yield
significance levels less than .05.

Now suppose that two points are added, both at
(X, Y) = (2,—2.4), which correspond to the point in the
lower right corner of Figure 3.10. These two points are un-
usual compared to how the original 20 observations were
generated because they lie more than 4.5 standard deviations
away from the regression line. Note that in order to eliminate
these points by restricting the range of the X values, a point
that is not an outlier would be removed as well. Now the sig-
nificance levels based on Kendall’s tau, Spearman’s rho, and
the percentage bend correlation are .34, .36, and .26, respec-
tively. If these two aberrant points are moved to the left to
(X, Y) = (1, —2.4), the significance levels are now .23, .20,
and .165. All three of these correlation coefficients offer pro-
tection against outliers among X values; they do the same for
the Y values, but none of them take into account the overall
structure of the data. That is, the power of all three methods
can be affected by unusual points that are not outliers among
the X values (ignoring the Y values), nor outliers among the Y
values (ignoring X), yet they are outliers among the scatter
plot of points. There are methods for detecting outliers that
take into account the overall structure of the data, but the bet-
ter known methods (e.g., Rousseeuw & van Zomeren, 1990)
can eliminate too many points, resulting in a poor reflection
of how the bulk of the observations are associated (Wilcox,
in press). It seems that no method is perfect in all situations,
but a technique (called the MGV regression estimator) that
addresses this issue and that seems to have practical value
can be found in Wilcox (in press).

CONCLUDING REMARKS

It would be convenient if a single method could be identified
that has the highest power relative to all other statistical meth-
ods one might use. It is evident, however, that no such method
exists. The optimal method, in terms of maximizing power,
will depend on how groups differ or how variables are related,
which of course is unknown. However, the choice of statistical
method is far from academic. A general rule is that methods
based on least squares perform well under normality, but other
methods have nearly the same amount of power for this special
case yet maintain relatively high power under arbitrarily small
departures from normality—in contrast to methods based on
means or least squares regression. At a minimum, use a het-
eroscedastic rather than a homoscedastic method. Robust
measures of location and rank-based methods represent the
two main alternatives to least squares, but in terms of power

there is no clear choice between them. Each gives a different
and useful perspective on how groups differ. There is weak
evidence that in practice, methods based on robust measures
of location are a bit more likely to reject, but we can be fairly
certain that in some situations the reverse is true.

One of the many remaining problems is finding ways of
assessing power, based on available data, when using a robust
measure of location. If a nonsignificant result is obtained,
why? If power is low, it is unreasonable to accept the null hy-
pothesis. Relevant methods have been developed when using
conventional (homoscedastic) rank-based methods, but how
should power be assessed when using more modern tech-
niques? Progress has been made when comparing two groups
with 20% trimmed means, but extensions to other measures
of location are needed, as well as extensions to more complex
designs. Of course, similar issues arise when dealing with
correlation and regression.
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A LITTLE HISTORY

In the past, when data were missing from our data sets, any
number of reactions were common. Positive emotions, such
as happiness and contentment, never occurred. Rather, the
emotions we felt (often in this order) were frustration, anger,
guilt, fear, and sadness.

When we wanted to do a particular analysis but some
data were missing, the number of cases available for the
analysis was reduced to the point that the result was often not
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significant. It was particularly frustrating when data were
missing from one part of a model we might be testing, but not
from other parts, but we had to test the model using only
those cases with no missing data. Alternatively, we could test
something simpler than the preferred model. All of the
choices we seemed to face were bad. We could accept the
nonsignificant result. We could employ some procedure of
questionable validity. We could just lie. We could try again to
wade through one of the highly technical journal articles that
supposedly dealt with the issue of handling missing data.
After going around in circles, we always found ourselves
back again at the starting place, and angry.

If we tried one of the procedures that has questionable va-
lidity, we would immediately feel guilty. Questions would
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bedevil us: Do the results represent reality? Or are they just a
figment of our imagination? Will we be able to defend our
procedure to the reviewers? If by some miracle our article is
published, will we find out later that the results were not
valid? Not everyone in psychology faces the problem of
missing data, but we do. We knew that every time we em-
barked on an analysis, we could look forward to the sequence
of frustrating setbacks, and this knowledge always made
us sad.

Four separate pieces were published in 1987 that would
forever change the way researchers looked at data analysis
with missing data. Two papers were published describing a
procedure for analyzing missing data using standard struc-
tural equation modeling (SEM) software (Allison, 1987;
Muthén, Kaplan, & Hollis, 1987). Although somewhat un-
wieldy, and extremely error prone for most real-life applica-
tions, this procedure provided researchers with the first truly
accessible and statistically sound tool for dealing with miss-
ing data. Of course, this procedure assumed that one knew
how to use the SEM programs to begin with.

Little and Rubin’s (1987) highly influential book on analy-
sis with missing data also appeared in 1987. In this book,
Little and Rubin, following Dempster, Laird, and Rubin
(1977), laid the groundwork for development of the expecta-
tion maximization (EM) algorithm for numerous missing
data applications. In addition, Rubin (1987) published the
first book on multiple imputation in 1987. Although practical
applications of multiple imputation would not appear for an-
other 10 years, this was the beginning of what would be the
most general approach to handling missing data.

Since 1987, numerous software products have become
available that address the issue of missing data. Many of the
best of these are free. For the ones that are not free, the cost
is more than offset by their usefulness. Although we need to
continue to move forward in this area, we have made tremen-
dous progress in making missing data analysis accessible to
researchers all over the world. In fact, we stand at the begin-
ning of an era in which useful and accessible missing data
procedures are an integral part of mainstream statistical
packages.

ALITTLE PHILOSOPHY

One of the concerns most frequently heard in the early days
of missing data procedures was something like, “Aren’t you
helping yourself unfairly when you use this procedure?”” The
short answer to this questions is “no!” In general, use of the
prescribed missing data procedures does not give something
for nothing. These procedures simply allow one to minimize

losses. In particular, these procedures allow one to make full
use of any partial data one may have. As we shall see in the
following pages, making use of partial data often proves to be
a tremendous advantage.

A similar concern in the early days, especially with respect
to data imputation, was something along these lines: “How
can you say that this imputed value is what the person would
have given if he or she had given us data? It sounds like
magic.” Well, it would be magic if it were true. That is why
we always tell people not to focus on the imputed values
themselves. We do not impute a value because we are trying
to fathom what an individual would have said if he or she had
given us data. That would typically be impossible. Rather, we
impute in order to preserve important characteristics of the
whole data set. That is, we impute to get better estimates of
population parameters (e.g., variances, covariances, means,
regression coefficients, etc.) and distributions. As it turns out,
this is a very possible goal.

Any good procedure will yield unbiased and efficient pa-
rameter estimates. By unbiased, we mean that the expected
value of the parameter estimate (e.g., a b weight) is the
same as the true population value. By efficient, we mean
that the variability around the estimated value is small. A
second characteristic of a good missing data procedure is
that it provides a reasonable estimate of the variability
around the parameter estimate (i.e., standard errors or confi-
dence intervals).

MISSING DATA PATTERNS AND MECHANISMS

There are two general patterns of missing data. With the first
pattern, the respondent does take part in a measurement ses-
sion, but for whatever reason does not respond to some ques-
tions. This type of missingness might be referred to as item
nonresponse. With one manifestation of this pattern, the per-
son omits the last k items of a long survey, for example, due
to slow reading. Second, the respondent may fail to answer
individual items in the middle of a survey that is otherwise
complete. Third, the respondent may omit blocks of ques-
tions, but not necessarily at the end of the survey.

A second general missing data pattern occurs when the
respondent is missing from a whole wave of measurement in
a longitudinal study. This is sometimes referred to as attri-
tion and sometimes as wave nonresponse. With this sort of
missingness, the person may be absent from one or more
waves of measurement and then reappear at a later wave. Al-
ternatively, the person may fail to appear at one wave of
measurement and all subsequent waves. A third version of
this pattern occurs when the person is not present at the first



wave of measurement but drops in to the study at a subse-
quent wave.

Numerous explanations are possible for each of these
patterns of missing data. These explanations, or missing
data mechanisms, fall into three general categories (e.g., see
Little & Rubin, 1987). First, the data may be missing
completely at random (MCAR). Data are MCAR if the
mechanism for the missingness is a completely random
process, such as a coin flip. Data are also MCAR if the cause
of missingness is not correlated with the variable containing
missingness. An important consequence of MCAR missing-
ness is that there is no estimation bias if the cause of
missingness is omitted from the missing data model.

A second missing data mechanism has been referred to as
missing at random (MAR; e.g., Little & Rubin, 1987). With
this mechanism, the cause of missingness is correlated with
the variable(s) containing the missing data, but variables rep-
resenting this cause have been measured and are thus avail-
able for inclusion in the missing data model. Inclusion of
MAR causes of missingness in the missing data model cor-
rects for all biases associated with them.

Unfortunately, the term MAR (which is sometimes
referred to as ignorable missingness) has produced consid-
erable confusion among psychologists and other social sci-
entists. First, this mechanism is neither random (at least, not
in the sense that most of us think of when we see the word
random), nor is it ignorable (at least, not in the sense in
which the word ignorable is typically used). In fact, one of
the very characteristics of this missing data mechanism is
that one must not ignore it. Rather, one must include the
cause of missingness in the model, or there will be estima-
tion bias.

Technically, MAR missingness occurs when the missing-
ness is not due to the missing data themselves. Because of
this definition, it turns out that MCAR is a special case
of MAR missingness. The term missing at random does
make sense if we realize that the missingness is condition-
ally random. That is, once one has conditioned on the cause
of missingness (which is available), the missingness is
random.

The term accessible missingness (Graham & Donaldson,
1993) was coined in an attempt to define the mechanism in a
less confusing way. However, because the term MAR is so
well established in the statistical literature, it would be a dis-
service to psychologists not to use this term. Thus, we en-
dorse the term MAR and will use it exclusively in the future
to refer to this sort of missingness.

A third missing data mechanism has been referred to as
missing not at random (MNAR; Collins, Schafer, & Kam,
2001; Schafer & Graham, in press). In this case, the cause of
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missingness is correlated with the variable(s) containing
missing data, but the cause has not been measured, or it is
otherwise unavailable for inclusion in the missing data
model. This type of missingness is related to the missing
data, even after conditioning on all available data. Thus, it is
not missing at random.

Each of the two general kinds of missing data (item
nonresponse, wave nonresponse) can be caused by any of the
three missing data mechanisms (MCAR, MAR, MNAR).
Each of the six combinations may be represented in any
given data set. As we suggested above, missing data may
be due to (a) processes that are essentially random,
(b) processes that are represented by variables in the data set,
or (c) processes that have not been measured. In addition,
MCAR missingness within a wave, or even across waves, can
be part of a planned missing data design (Graham, Hofer, &
MacKinnon, 1996; Graham, Hofer, & Piccinin, 1994,
Graham, Taylor, & Cumsille, 2001; McArdle, 1994). Given
the increasing usefulness of missing data analysis proce-
dures, such as those described in this chapter, Graham,
Taylor et al. (2001) have argued that it may be time to begin
considering such designs in most research endeavors.

OLD (UNACCEPTABLE) PROCEDURES FOR
ANALYSIS WITH MISSING DATA

Complete Cases Analysis (Listwise Deletion)

Over the years, the most common approach to dealing with
missing data has been to pretend there are no missing data.
That is, researchers (including the present authors, of course),
have simply omitted any cases that are missing data on the
relevant variables. There are two possible problems with this
approach. At an intuitive level, it is easy to see that this ap-
proach could introduce estimation biases. The people who
provide complete data in a study are very likely going to be
different from those who do not provide complete data. There
has been ample evidence in the prevention literature, for ex-
ample, that people who drop out of a prevention study are
generally very different from those who remain in the study.
For example, adolescents who drop out of a longitudinal
study are much more likely to be drug users at the last wave
of measurement for which they did provide data.

Although bias with complete cases analysis is certainly a
possibility (e.g., see Schafer & Graham, in press; Wothke,
2000), we argue that for many kinds of analysis, for example,
for multiple-regression analysis, the amount of bias produced
by complete cases analysis will generally be small, even triv-
ial. For example, suppose we plan a multiple-regression
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analysis with several predictors (with no missing data) and a
dependent variable that is sometimes missing, for example,
due to attrition. If the dependent variable is missing due to an
MCAR mechanism, then complete cases analysis is known to
yield unbiased estimates. If the missing data mechanism is
MAR, that is, if the missingness on the dependent variable
is due to some combination of the predictor variables, then
the biases are completely controlled by the complete cases
analysis (e.g., see Heckman, 1979; also see Graham &
Donaldson, 1993). If the cause of missingness on the depen-
dent variable is an MNAR process, then the degree of bias
due to complete cases will be the same as the bias that will
occur with the acceptable analysis procedures described
below (e.g., Graham & Donaldson, 1993). Of course, this is
true only under somewhat limited conditions. In more
complex analysis situations, complete cases analysis could
introduce bias to the parameter estimates.

In short, we do not side with those who argue that com-
plete cases analysis should not be used because of the poten-
tial for bias. Rather, we argue that complete cases analysis
should not be used because of loss of statistical power. In
virtually all research situations, using complete cases analy-
sis means that the researcher must discard at least some in-
formation. In fact, it is becoming more and more common
that a large proportion of cases is lost if listwise deletion is
used.

In order to illustrate this issue, consider two proportions:
the proportion of complete cases, and the proportion of non-
missing data points. The latter figure is calculated easily by
considering the total number of data points in a data set,
N x k, where N is the number of cases and k is the number of
variables. One can simply divide the number of nonmissing
data points by N x k to determine the proportion of nonmiss-
ing data points. Of course, if most of the data points are
missing, the results may be suspect regardless of the analysis
used. However, there are many situations in which the pro-
portion of nonmissing data points is actually quite high
but the proportion of complete cases is disturbingly low.
Three common research situations can produce this pattern:
(a) missing data on different variables in different cases; (b) a
substantial amount of missing data in one part of a model,
with very little missing data in other parts of the model; and
(c) planned missing data designs such as the three-form
design (Graham et al., 1994, 1996, Graham, Taylor, et al.,
2001).

In sum, we argue that complete cases should not be used
as the general analysis strategy. Although bias may be mini-
mal in many research situations, the loss of power could be
tremendous. However, we explicitly stop short of saying that
complete cases analysis should never be used. First, we have

argued previously (Graham & Hofer, 2000; Graham, Taylor,
et al., 2001) that if the number of cases lost to missing data is
small, for example if 5% or fewer cases are lost, then the
amount of bias would very likely be trivial, and even the loss
of power would be minimal. Second, the standard errors (and
confidence intervals) based on complete cases are quite
reasonable (Schafer & Graham, in press).

Pairwise Deletion

Pairwise deletion (sometimes referred to as pairwise inclu-
sion) involves calculating each element of a covariance ma-
trix using cases that have data for both variables. Using this
procedure, one would then analyze the covariance matrix
using some analytic procedure that can analyze the covariance
matrix directly. Conceptually, this procedure makes sense in
that one appears to be making use of all available data. How-
ever, statistically, this is not a desirable procedure. Parameter
estimates based on pairwise deletion can be biased. More of a
problem, however, is the fact that the resulting covariance
matrix is not guaranteed to be positive definite; that is, there
may be less information in the matrix than would be expected
based on the number of variables involved.

A third problem with analysis based on pairwise deletion
is that one is limited to analyses that can be performed di-
rectly from the covariance matrix. Finally, there is no basis
for estimating standard errors of the parameters based on
the pairwise covariance matrix. Although all of these prob-
lems could be overcome—for example, standard errors
might be obtained with bootstrapping—the work required to
patch up the procedure will very likely turn out to be more
than what is involved in the preferred analyses to be de-
scribed later.

Even for quick and dirty analyses, we recommend other
procedures (see the section “A Few Loose Ends,” near the
end of this chapter).

Mean Substitution

With this procedure, whenever a value is missing for one case
on a particular variable, the mean for that variable, based on
all nonmissing cases, is used in place of the missing value.
(The term mean substitution, as it is used here, applies to
substituting the mean for the variable. It is also possible
to substitute the mean, for that particular case, of other highly
correlated variables. As described in a later section, we do rec-
ommend this latter procedure under some circumstances.)
Mean substitution has been shown in several simulation
studies to yield highly biased parameter estimates (e.g.,
Graham et al., 1994, 1996; Graham, Hofer, Donaldson,



MacKinnon, & Schafer, 1997). We argue that it should never
be used. Even for quick and dirty analyses, and even with
small rates of missingness, we recommend the procedures
described in the following sections.

Regression-Based Single Imputation

The idea of imputation is to substitute a plausible value for
the one that is missing. One of the most plausible values, at
least in theory, is the value that is predicted by a regression
equation involving a number of other predictor variables. In
brief, suppose a variable, Y, is sometimes missing, and an-
other set of variables, X; — X, is never missing. We can cal-
culate the predicted value for Y (i.e., Y-hat), based on the
cases for which we have data on Y. For cases with ¥ missing,
we can substitute Y-hat instead.

In theory, this is an excellent approach to doing imputa-
tion. The problem, however, is that regression-based single
imputation produces substantial bias, especially in the esti-
mates of variance (and therefore in correlations as well). Also,
it has been shown that this procedure is valid only under cer-
tain, rather limited, patterns of missing data (i.e., monotone
missing data patterns). In addition, there is no reasonable
basis for calculating standard errors. Regression-based sin-
gle imputation does form the statistical basis for many of the
acceptable procedures described below, but as a stand-alone
procedure it is not recommended. We argue that it should
never be used. Even for quick and dirty analyses, and even
with small rates of missingness, we also recommend the pro-
cedures described in the acceptable methods section.

Summary of Unacceptable Procedures

In summary, we argue that pairwise deletion, mean substitu-
tion, and regression-based single imputation should never be
used. Even for quick and dirty analyses, and even with small
rates of missingness, we recommend other procedures (see
section “A Few Loose Ends”). We do, however, conditionally
endorse the use of complete cases analysis. In particular,
when one loses only a small proportion of cases (e.g., 5% or
less), use of complete cases analysis seems reasonable. Please
note that we always prefer other methods (e.g., multiple im-
putation), even with small amounts of missing data. From our
perspective, further along on the learning curve, it costs us
very little to use the better procedures, and the payoff, how-
ever small, is worth it. However, for many researchers (nearer
the start of the learning curve), the payoff may not be worth it
under these circumstances. Still, in the very near future, these
better procedures, or at least rudimentary versions of them,
will be available in ways that are more or less transparent to
the end user. We look forward to those days.
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ACCEPTABLE MODEL-BASED MISSING
DATA PROCEDURES

Before embarking on a description of acceptable procedures,
we should note that our description of acceptable procedures
is neither highly technical nor exhaustive. For more technical
and more general treatments on these topics, other publica-
tions are available (e.g., Little & Schenker, 1995; Schafer &
Graham, in press).

Model-based missing data procedures deal with the miss-
ing data at the same time that they deal with parameter esti-
mation. That is, missing data and data analysis are handled in
a single step. As we see below, most of these procedures have
been built around latent variable procedures and are thus
somewhat less accessible for the average data analyst than
are the data-based procedures described next. Still, some of
these procedures are extremely easy to use and, when used
properly, can be enormously valuable as a general tool for
dealing with missing data.

Multiple Group Structural Equation Modeling

At the outset of this chapter we mentioned this method as
being one of the first accessible approaches to analysis with
missing data. We cannot go into great detail here in describ-
ing this procedure (greater detail about this procedure
may be found in Allison, 1987; Duncan & Duncan, 1994;
Graham et al., 1994). In brief, the procedure divides up the
sample into groups containing cases with the same pattern of
missing and nonmissing values. A system of equality con-
straints is then placed on the parameter estimates across
groups, such that parameters are estimated based only on
those cases having data that bear on that parameter estimate.
This procedure has some serious limitations and has thus
been supplanted by the other procedures to be described
below. However, this procedure continues to be valuable for
particular applications.

The main limitation of this procedure is that it can be
extremely unwieldy and error prone, especially when
there are many distinct missing data patterns. Because the
SEM code must be changed in subtle ways from group to
group in the multiple group design, it is very easy to intro-
duce errors into the code. In addition, one requirement of
this procedure is that there must be more cases than vari-
ables for every group. With a typical longitudinal data set,
this means that some data must be discarded in order to
produce groups (of missing data patterns) with sufficiently
large sample sizes.

Beyond these limitations, however, this procedure can be
quite good. The parameter estimates are good (i.e., unbiased
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and efficient), and the standard errors are reasonable. This
procedure can be especially good for certain specialty mod-
els. For example, Duncan, Duncan, and Li (1998; also see
McArdle & Hamagami, 1991) have shown how this proce-
dure can be useful with cohort sequential designs in which
not all combinations of measures are available. In addition,
Graham, Taylor, et al. (2001) have shown how this proce-
dure can be extremely useful in simulation work involving
missing data.

Full-Information Maximum Likelihood for SEM

Full-information maximum likelihood (FIML) procedures
for SEM, like other model-based procedures, solve the miss-
ing data problem and the parameter estimation problem in a
single step. With all of these FIML procedures for SEM, the
program yields excellent parameter estimates and reasonable
standard errors, all in a single analysis (however, see the dis-
cussion in the later section “A Comparison of Model-Based
and Data-Based Procedures” for some limitations to these
statements).

Amos

Amos (Arbuckle & Wothke, 1999) has become one of the
more commonly used SEM programs available today. Amos
provides good, quick parameter estimation, along with rea-
sonable standard errors, in the missing data case. Two of the
most desirable features of Amos are (a) that it has an excel-
lent and extremely flexible graphical interface and (b) that it
is now part of the SPSS package. This latter fact means that
one can create one’s SPSS data set, making any desired data
modifications, and then click on Amos as one of the available
analyses within the SPSS package. Despite the drawbacks
described in the next paragraph, the array of nifty features
makes Amos a highly desirable option for researchers in the
social sciences. Amos is not free, but it is available at a rea-
sonable price, especially if one can obtain it at the same time
one obtains the latest version of SPSS.

Unfortunately, Amos is not without limitations. Perhaps
the most important limitation is that one of its most desirable
features, the graphical interface, becomes quickly loaded
down with squares, circles, and arrows when more than a few
latent variables are included in the model. For example, a
model with five independent latent variables, three latent me-
diating variables, and three latent outcomes variables, would
be a jumble of wires (regression and correlation paths) and
extremely difficult to read. This problem is further exacer-
bated if one makes use of one of the models recommended
for enhancing the missing data estimation (described later).

Fortunately, Amos provides two solutions to these prob-
lems. First, Amos warns the user whenever two variables are
not connected by correlation or regression paths. Although
we cannot guarantee that this warning catches all possible
problems, we have found it to be very useful. Second, the text
version of Amos offers a clear solution for estimation of
larger models. Although the text version is a bit clunky in
comparison to the graphical version, it is a completely ser-
viceable alternative.

A second drawback to the use of Amos is that it is not quite
up to the state of the art regarding the SEM analysis itself.
First, the goodness of fit indices are a bit nonstandard in the
missing data case. The independence or null model, on which
many goodness of fit indices are based, assumes that all means
are zero. This assumption is so far wrong (unless the input
variables are standardized) that almost any model looks very
good in comparison. The solution is to estimate one’s own in-
dependence model, which estimates all item variances and
means, but no item covariances. This corresponds to the inde-
pendence model in use by the other major SEM programs.

A second way in which Amos is not quite up to existing
SEM standards relates to its modification indices. They are
not available at all in the missing data case and are sometimes
quite misleading even in the complete data case. Also not
available in Amos 4.0 is the Satorra and Bentler (1994)
correction to standard errors when data are not normally dis-
tributed. Note that some or all of these limitations may be
resolved in newer versions of Amos.

To finish on an up note, one of the key advantages of the
Amos program is that it provides a reasonable estimate of the
chi-square in the missing data case. This is something that is
not yet available with the data-based procedures described
next. In short, where possible, we highly recommend having
Amos as one of your missing data analysis tools.

Other FIML Programs for SEM

Three other options for FIML programs for SEM are LISREL
(Joreskog & Sorbom, 1996), Mx (Neale, Boker, Xie, &
Maes, 1999), and Mplus (Muthén, 2001; Muthén & Muthén,
1998). LISREL (Joreskog & Sorbom, 1996) has been the
most often used of the SEM programs since its introduction
in the late 1970s. The recently released version 8.50 has both
FIML and multiple-imputation capabilities. A single state-
ment converts the standard, complete-cases version of
LISREL to its FIML counterpart. The new missing data
features of this program are very good news for the regular
LISREL users.

Mx is a free program that takes the same analysis
approach as Amos. Although Mx’s interface is not as fancy



as Amos, it is an extremely useful program. The fact that it
is available for free makes it especially appealing for some
researchers. In addition, Mx has features that were espe-
cially designed to facilitate analysis of behavioral genetics
data.

Mplus is a flexible SEM program developed with the
intention of presenting the data analyst with a simple and
nontechnical language to model data (Muthén & Muthén,
1998). Mplus includes many of the features offered by other
SEM programs and a few that are not offered by other pro-
grams. For example, the ability to work with categorical vari-
ables is not easily implemented in other SEM programs. A
major innovation of Mplus is its ability to use mixture mod-
els to model categorical and continuous data simultaneously.
For example, Mplus allows one to model different latent
classes of trajectories in latent growth curve modeling, a kind
of model referred to as second-generation structural equation
modeling by Muthén (2001).

Mplus includes missing data analysis for continuous
outcomes under the assumption of MAR or MCAR. Parame-
ters are estimated using maximum likelihood. Mplus also
allows for missing data in categorical variables in mixture
models.

FIML for Latent Class Analysis

In addition to Mplus, which has latent class features, LTA
(Latent Transition Analysis; Collins, Hyatt, & Graham, 2000;
Hyatt & Collins, 2000) also offers missing data capabilities
in conjunction with latent class analysis. Although a full de-
scription of the capabilities of these programs is beyond the
scope of this chapter, both programs share with other FIML
procedures the feature of dealing with missing data and para-
meter estimation in a single step.

ACCEPTABLE DATA-BASED MISSING
DATA PROCEDURES

With data-based missing data procedures, the missing data
issues are handled in a preliminary step, and the main
data analysis (parameter estimation) is handled in a second,
separate step. The two procedures discussed here are
the EM algorithm for covariance matrices, and multiple
imputation.

EM Algorithm

The EM algorithm for covariance matrices reads in the data
matrix, with missing and nonmissing values, and reads out a
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maximum-likelihood variance-covariance matrix and vector
of means. This variance-covariance matrix and vector of
means may then be used by other programs for further analy-
ses of substantive interest. Analyses that may be performed
with the output from the EM algorithm include SEM (e.g.,
with LISREL or EQS), multiple regression (e.g., with SAS),
exploratory factor analysis (e.g., with SAS), and coefficient
alpha analysis (e.g., with the utility ALPHNORM).

EM Algorithm in Brief

Details of the EM algorithm for covariance matrices
are given in Little and Rubin (1987; also see Graham &
Donaldson, 1993; Schafer, 1997). In brief, EM is an iterative
procedure. In the E-step, one reads in the data, one case at a
time. As each case is read in, one adds to the calculation of
the sufficient statistics (sums, sums of squares, sums of cross
products). If nonmissing values are available for the case,
they contribute to these sums directly. If a variable is missing
for the case, then the best guess is used in place of the miss-
ing value. The best guess is the predicted score based on a
regression equation with all other variables as predictors.
For sums of squares and sums of cross products, if neither
element is missing, or if just one element is missing, the
best guess is used as is. If both elements are missing, a cor-
rection term is added. This correction term amounts to added
variability.

In the m step, once all the sums have been collected, the
variance-covariance matrix (and vector of means) can simply
be calculated. Based on this covariance matrix, the regression
equation can also be calculated for each variable as a depen-
dent variable. The regression equation from iteration 1 is then
used in the next e step for iteration 2. Another (better) covari-
ance matrix is produced in the m step of iteration 2. That co-
variance matrix and regression equations are used for the
next e step, and so on. This two-step process continues until
the change in the covariance matrix from one iteration to the
next becomes trivially small.

EM provides maximum-likelihood estimates of the vari-
ance-covariance matrix elements. Some analyses that are
based on this covariance matrix are also maximum likeli-
hood. For example, if the EM covariance matrix is used to
perform a multiple-regression analysis, the resulting regres-
sion weights are also maximum-likelihood estimates. With
this type of analysis, EM and FIML procedures (e.g., Amos)
yield identical results.

However, for other analyses—for example, SEM with
latent variables—parameter estimates based on the EM
covariance matrix are technically not maximum likelihood.
Nevertheless, even these parameter estimates based on the
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EM covariance matrix are excellent in that they are unbiased
and efficient.

The biggest drawback with EM is that it typically does not
provide standard errors (and confidence intervals) as a by-
product of the parameter estimation. Thus, although the para-
meter estimation itself is excellent with EM, it is not possible
to do hypothesis testing with the EM-based estimates unless
one does a separate step specifically for that purpose, such as
the bootstrap (Efron, 1982). The more common approach to
obtaining standard errors for general analysis is a procedure
related to EM: multiple imputation (described in a later
section).

However, for special purposes, using the excellent para-
meter estimation of EM serves an extremely useful function.
If hypothesis testing is not important, for example, with ex-
ploratory factor analysis, or coefficient alpha analysis, ana-
lyzing the EM covariance matrix is an excellent option. We
present an illustration of this type of analysis later in this
chapter. In a later section (A Few Loose Ends”), we also dis-
cuss briefly the use of the EM covariance matrix for taking a
quick and dirty look at one’s data, even when hypothesis
testing is required. Use of the EM matrix is also good for es-
tablishing goodness of fit in SEM when data are missing
(Graham & Hofer, 2000).

EM Algorithm Programs

There are many programs available for the EM algorithm for
covariance matrices. Perhaps the best option is Schafer’s
(1997) NORM program. The program is designed to perform
multiple imputation, but one of the intermediate steps is
to calculate the EM covariance matrix. Utility programs
(e.g., ALPHNORM) are easily written that allow the use of
NORM’s EM covariance matrix for performing analysis with
SAS (and other programs) and for doing coefficient alpha
analysis.

Other programs for performing EM include EMCOV
(Graham et al., 1994), SPSS, and SAS. EMCOV is a DOS-
based program that was developed in the early 1990s. Nearly
all of its functions are better handled by Schafer’s (1997)
NORM program, except that, as a stand-alone program,
EMCOV is sometimes easier to use with simulation studies.
The current implementation of the EM algorithm within
SPSS (version 10) is disappointing. First, the program is
painfully slow, and it often crashes with problems of any
size. Second, the EM routine is not integrated into the other
SPSS procedures. An excellent, but nonexistent option, for
example, would be to use the EM covariance matrix (auto-
matically) as input into the factor analysis and reliability
procedures. In fact, this should be the default for handling

missing data in these two procedures. Watch for substantial
improvements in future releases of SPSS. SAS 8.2 offers all
these functions in PROC MI. (Please check our web site,
http://methodology.psu.edu, for updated information relating
to the software described in this chapter.)

Multiple Imputation

The problem with regression-based single imputation is that
there is too little variability in the variables containing miss-
ing values. This lack of variability comes from two sources.
First, the singly imputed values lack error variance. Every
imputed value lies right on the regression line. In real (i.e.,
nonmissing) data, the data points are above or below the re-
gression line but seldom right on it. This sort of variability
can be restored simply by adding a random error term to each
imputed value (EM adds a similar kind of error to the sums of
squares and sums of cross products). This random error could
come from a distribution of the known error terms for the
variable in question, or it could simply be a value from a nor-
mal distribution. Schafer’s (1997) NORM program takes this
latter approach.

The second reason that single imputation lacks variabil-
ity is that the regression equation used for imputing values
is just one estimate of the regression equation. That is, this
regression equation is based on the data at hand, and the
data at hand represent just a single (random) draw from the
population. Another random draw from the population
would yield a slightly different regression equation. This
variability translates into slightly different imputed values.
Restoring this kind of variability could be done easily if a
person could simply make multiple random draws from the
population. Unfortunately, this is almost never possible; we
typically have just one data set to work with. However, it
may be possible to simulate multiple random draws from
the population.

One approach to this simulation is to use bootstrap meth-
ods. Creating multiple bootstrap data sets would (to an
extent) be like taking multiple random draws from the popu-
lation. Another approach is to simulate these random draws
with data augmentation (Tanner & Wong, 1987). Data
augmentation, which is used in Schafer’s (1997) NORM
program, bears some similarity to EM. Like EM, data aug-
mentation is a two-step, iterative procedure. For each step
of data augmentation, one has an i (imputation) step and a p
(posterior) step (the accepted jargon is steps of data augmen-
tation and iterations of EM). In each i step, data augmentation
simulates the data based on the current set of parameters. In
each p step, data augmentation simulates the parameters
given the current data.



With this process, which is one in a family of Markov
Chain Monte Carlo procedures, the parameters from one step
of data augmentation are dependent upon the parameters
from the immediately preceding step. However, as one
moves more and more steps away from the original step, the
parameter estimates become less and less dependent upon
the initial estimates, until the two sets of parameter estimates,
and the imputed data sets that are generated from them, are as
independent of one another as one might find with two ran-
dom draws from the same population. It is important to dis-
cover how many steps apart two imputed data sets must be in
order for them to simulate two random draws from the popu-
lation. We will elaborate on this point during the practical
example.

Doing Multiple Imputation

The multiple-imputation process requires three steps. First,
one creates m imputed data sets, such that each data set con-
tains a different imputed value for every missing value. The
value of m can be anything greater than 1, but it typically
ranges from 5 to 20. Second, one analyzes the m data sets,
saving the parameter estimates and standard errors from
each. Third, one combines the parameter estimates and stan-
dard errors to arrive at a single set of parameter estimates and
corresponding standard errors.

Implementation of Multiple Imputation

There are many implementations of multiple imputation. An
excellent option is Schafer’s (1997) set of programs, headed
by the NORM program for multiple imputation under the
normal model. This program works with continuous data, but
it has been shown to perform well with categorical data (3+
categories with no missing data, 2— category data with miss-
ing data). NORM performs well with nonnormal data and
with small sample sizes (Graham & Schafer, 1999). NORM
can also be used with longitudinal panel data and with cluster
data, as long as the number of clusters is relatively small
(cluster membership in k clusters is modeled as k — 1 dummy
codes, which are included in the multiple-imputation model).

Schafer’s (1997) NORM program (or any normal-based
imputation procedure) is an excellent choice with most longi-
tudinal data sets. Many longitudinal models—for example,
standard growth models—are fully captured by the NORM
model. Nothing is gained in this context by using specialized,
general linear mixed model programs, such as Schafer’s PAN
program. It is only under special longitudinal circumstances
(e.g., when all cases are missing for one variable at one point
in time, or when some pair of variables is missing for all
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subjects, as with cohort-sequential designs) that these spe-
cialized programs are better.

Schafer (1997) also has three other multiple-imputation
programs. PAN is available for special longitudinal panel
data situations and cluster data when there are many clusters
(Schafer, 2001; also see Verbeke & Molenberghs, 2000 for
another treatment of mixed models for longitudinal data).
CAT is available for strictly categorical data and is especially
suited for missing data when the categorical variable has
three or more levels. MIX is available for mixed categorical
and continuous data.

All four of the programs are available as Splus routines.
NORM is also available as a stand-alone Windows (95/98/
NT/2000) program, and the current implementation is ver-
sion 2.03. All of Schafer’s (1997, 2001) programs are avail-
able at no cost at http://methodology.psu.edu.

We have already mentioned that LISREL 8.50 (Joreskog &
Sorbom, 1996) has a multiple-imputation feature. In addition,
PROC MI and PROC MIANALYZE have been implemented
in SAS version 8.2. Both of these implementations of multiple
imputation are based on Schafer (1997) and promise to in-
crease greatly the usefulness of these procedures.

A COMPARISON OF MODEL-BASED AND
DATA-BASED PROCEDURES

The conventional wisdom regarding missing data procedures
holds that the model-based procedures and data-based proce-
dures, especially multiple imputation, are essentially equiva-
lent in the quality with which they deal with missing data and
differ only in the preferences researchers may have regarding
the use of one or the other. However, recent evidence has
shown that, although the conventional wisdom remains true
in theory, there may be important differences in the quality of
these two approaches as they are typically practiced (Collins
et al., 2001). The main difference relates to the use of model-
irrelevant variables.

Model-based procedures—for example, FIML procedures
for SEM—deal with the missing data and parameter estima-
tion at the same time. Thus, by their very nature, these mod-
els tend to be limited to the variables that are deemed to be of
substantive relevance. The idea of including substantively ir-
relevant variables into the model, although quite possible
with many model-based procedures, is not typical. With mul-
tiple imputation, it is quite common, and also quite easy, to
include substantively irrelevant variables into the model.
Without understanding fully the reasons behind this,
researchers have been adding such variables for some time
under the belief that it is valuable to do so in order to help
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with the missing data aspect of the model. It is not so much
the number of variables that is important, but which variables
are or are not included.

Recent research (Collins et al., 2001) has shown that there
is good reason for including such substantively irrelevant
variables into all missing data models. Collins et al. have
shown several points relevant to this discussion. All of these
points relate to the inclusion of variables, which, although
outside the model of substantive interest, are highly corre-
lated with variables containing missing data. First, including
such variables when the missing data mechanism is MCAR
can reduce the standard errors of estimated parameters. Sec-
ond, with MAR missingness, although there is bias when the
causes of missingness are not included in the model, the bias
is much less of a problem than previously thought. Also, in-
cluding highly correlated variables into the model under
these circumstances reduces the standard errors of estimated
parameters.

Finally, Collins et al. (2001) have shown that with MNAR
missing data mechanisms, where the cause of missingness
cannot be included in the missing data model, bias can be
substantial. However, including highly correlated, substan-
tively irrelevant variables into the model can reduce this bias,
often substantially and, as with the other missing data mech-
anisms, can reduce the standard errors of estimated parame-
ters, without affecting the important parameter estimates. In
short, it is essential to include variables that, although sub-
stantively irrelevant, are highly correlated with the variables
containing missing data.

Because of these recent findings, users of model-based
missing data procedures must make every attempt to in-
clude these model-irrelevant variables. With some model-
based procedures, such as LTA (Collins et al., 2000), this is
simply not possible (at least at present). Thus, for many
analysis problems, the use of multiple imputation is clearly
preferred. However, for FIML-based SEM programs such
as Amos, Mx, LISREL 8.50, and Mplus, it is quite possible
to introduce these substantively irrelevant variables into the
model in a way that helps deal with the missing data and
does not alter the substantive aspects of the original model.
Models of this sort have been described recently by Graham
(in press).

The preliminary evidence is that the practice of adding sub-
stantively irrelevant variables has no real drawback, other
than increased model complexity. One of the problems with
multiple imputation is that as the number of variables in-
creases, EM and data augmentation require more iterations
and more time for each iteration. Thus, one practical draw-
back to adding many extra variables to the model will be that
it may take longer to run. In extreme cases, it may even be

necessary to break the problem apart in reasoned fashion (e.g.,
see Graham & Taylor, 2001) and impute the parts separately.

ILLUSTRATIONS OF MISSING DATA
PROCEDURES: EMPIRICAL EXAMPLES

In this section, we illustrate the use of two basic missing data
procedures: multiple imputation with NORM (Schafer, 1997)
and FIML with Amos (Arbuckle & Wothke, 1999). We
illustrate these procedures with two types of data analysis.
First, we illustrate the use of NORM, along with the utility
ALPHNORM, to perform basic data quality analyses (coeffi-
cient alpha). We illustrate this by analyzing the EM covari-
ance matrix directly and also by imputing a single data
set from EM parameters. Second, we illustrate a straightfor-
ward multiple-regression analysis with multiple imputation.
We illustrate this with both SAS and SPSS. For comparison,
we perform this same multiple-regression analysis using the
Amos program. Although we do not illustrate latent-variable
regression analysis, we do discuss SEM analysis with multi-
ple imputation and Amos.

Participants and Missing Data Patterns

The empirical data for these examples are drawn from the
Alcohol-Related Harm Prevention (AHP) project (Graham,
Roberts, Tatterson, & Johnston, in press; Graham, Tatterson,
Roberts, & Johnston, 2001). The participants for the AHP
study were undergraduate college students, the majority of
whom were sophomores in fall 1999. Longitudinal data are
included from five waves of data collected from September
1999 to November 2000 from the same students.

Describing the sample size in a study with missing data is
not a straightforward thing. We recommend describing the
sample size as follows. First, the population was defined as
the 1,702 students enrolled in one large college course in fall
1999. Of this number, N = 1,024 took part in at least one of
the five waves of measurement. A subset of these students
(634, 489, 707, 714, 628, respectively) participated in waves
1 through 5 of measurement. Table 4.1 summarizes the stu-
dent participation over the course of the study.

The “0” values in Table 4.1 represent wave nonresponse
or attrition. In addition to the wave nonresponse, students
may not have completed all items within the questionnaire.
For example, due to slow reading, they may have left
questions blank at the end of the survey. To minimize this
problem, the AHP questionnaire used a version of the “3-form
design” (Graham et al., 1994, 1996, 1997; Graham, Taylor,
et al., 2001). With this measurement design, the order of



TABLE 4.1 Participation Patterns for the Five Waves of the
AHP Study

Wave
1 2 3 4 5 Frequency Percent
0 0 0 0 1 56 5.5
0 0 0 1 0 44 43
0 0 0 1 1 47 4.6
0 0 1 0 0 38 3.7
0 0 1 1 0 44 43
0 0 1 1 1 64 6.3
0 1 1 1 1 33 32
1 0 0 0 0 58 5.7
1 0 1 0 0 23 2.2
1 0 1 1 0 32 3.1
1 0 1 1 1 64 6.3
1 1 0 0 0 24 2.3
1 1 1 0 1 21 2.1
1 1 1 1 0 69 6.7
1 1 1 1 1 253 24.7
870 85.0

Note. 1 = participated; 0 = did not participate. The 15 patterns shown are
those involving the largest numbers of participants. Sixteen additional pat-
terns, each containing fewer than 20 students, are not shown.

presentation of the main item sets was rotated across the three
forms so that slow readers would leave different questions
blank depending upon which form they received.

Measures

Because the focus of this chapter is the methods more than
the substantive analyses, we describe the measures only
briefly. The main analysis to be described was multiple
regression.

Dependent Variable

For the main substantive analyses, we treated heavy alcohol
use at the last wave of measurement (November 2000) as the
dependent variable. This measure was made up of three ques-
tionnaire items. One question asked for the number of times in
the previous two weeks the person had consumed five or more
drinks in a row. A second asked how many times in the previ-
ous two weeks the person had consumed four or more drinks
in a row. The third question asked how many times in the pre-
vious 30 days the person had consumed enough alcohol to get
drunk. For the regression analyses, these items were summed
to form a composite scale for heavy alcohol use.

Predictors

There were six predictor variables in the multiple-regression
models. Three of these were considered background
variables: gender, religiosity, and the personality variable,
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introversion. Gender was coded 1 for women and 0O for men.
The gender variable was the average of the gender question
over the five waves of measurement. For 1,021 students, this
average was exactly 1 or exactly 0, implying complete con-
sistency. For two students, the average was 0.8, meaning
that these students were most likely women but responded
male on one of the five questionnaires. For this chapter, these
were assumed to be women. For only one student was this
variable missing altogether.

The religion question was a single item asking how
important it was for the student to participate in religion at
college. Because the answer to this question was so highly
intercorrelated from wave to wave, the religion variable used
in this chapter was a simple average of this variable over the
five waves of measurement.

The introversion variable was a composite of 10 items from
a 50-item version of the Big-5 (Saucier, 1994). The items were
scored such that higher values implied greater introversion.

Also included as predictors were three other variables
from the September 1999 survey: negative attitudes about
authority (DefyAuthority), perceptions of alcohol consump-
tion by students in general at this university (PeerUse), and
intentions to intervene in possible harm situations (Intent-
Intervene). The number of items and coefficient alpha for
each scale are presented in Table 4.2.

The patterns of missing data for the variables included in
the main regression analyses (described later) are shown in
Table 4.3. Two of the predictor variables (gender and reli-
giosity), which were formed by combining data from all five
waves of measurement, had so few missing values (12 cases
were missing for religiosity and 1 case was missing for gen-
der) that they were omitted from Table 4.3. A third predictor
variable (introversion) was measured at only one time (at
whichever time was the first measurement for any given indi-
vidual) but had slightly more missing data and appears in
Table 4.3.

TABLE 4.2 Summary of Questionnaire Items and Coefficient Alpha

Coefficient Alpha

Impute  Analyze
Number  from EM

AHP Predictors of Items EM Directly

gender (men = 0, women = 1) 1 — —

religion (higher value = religion 1 — —
more important)

introversion 10 .89 .89

Defy Authority (Sep 1999) 3 .60 .60

Perceptions of Peer alcohol use 3 .84 .85
(Sep 1999)

Intent to Intervene (Sep 1999) 4 74 74

Main DV: Heavy alcohol use (Nov 2000) 3 94 94
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TABLE 4.3 Missing Data Patterns for Variables Included in
Main Analyses

Variables

DV Predictors

Heavy

Drinking Intro- Defy  Peer Intent

Nov 2000  version Auth  Use  Intervene Freq  Percent
0 0 1 1 1 23 22
0 1 0 0 0 147 14.4
0 1 1 1 1 193 18.8
1 1 0 0 0 227 222
1 1 0 1 1 26 2.5
1 1 1 1 1 357 34.9

Totals 973 95.0

Note. “1” means student provided data; “0” means student did not provide
data. These six patterns are those involving the largest numbers of partici-
pants. Ten additional patterns, each involving fewer than 20 students, are not
shown. The predictor variables gender and religiosity, which were formed by
combining data from all five waves, had so little missing data that they are
not shown here.

Other Variables

As we noted previously, there is value in including other vari-
ables in the missing data model, whether or not they are re-
lated to missingness, if they are highly correlated with the
variables containing missing data. In any study involving
longitudinal data, it is always possible to include measures
from all waves of measurement, even if all waves are not in-
volved in the analysis of substantive interest. Because it is
often the case that measures from one wave are rather highly
correlated with the same measures from an adjacent wave, it
is generally an excellent idea, from a missing data standpoint,
to include such variables where possible.

For our analysis of substantive interest, the dependent vari-
able was from the November 2000 measure (wave 5), and the
predictors of interest were mainly from the September 1999
measure (wave 1). In our case, we also included 21 relevant
variables from all five waves of measurement. We included
measures of alcohol use (i.e., three items measuring alcohol
consumption without focusing on heavier drinking) from all
five waves, heavy drinking (same as main dependent variable)
from waves 14, and defiance of authority (same as predictor
variable), perceptions of peer alcohol use (same as predictor),
and intent to intervene (same as predictor) from waves 2-5.

Data Quality Analysis with NORM

With most analyses, the researcher wishes to test hypotheses.
For these analyses, it is important to have good parameter
estimation and good estimation of standard errors (and confi-
dence intervals). However, with data quality analysis, it is

generally sufficient to have good parameter estimation. Thus,
for data quality analysis, there are two good options that are
not available for hypothesis testing. These two options are
(a) to analyze the EM covariance matrix directly and (b) to
analyze a single data set imputed from the EM parameters
(with error).

EM produces maximum-likelihood estimates of the
covariance matrix. From this, one may perform exploratory
factor analysis and may get excellent estimation of coeffi-
cient alpha in the missing data case. The main drawback to
analyzing the EM covariance matrix has been the logistics of
producing a matrix that is readable by existing software. We
will describe a solution to this logistical problem.

Producing a single imputed data set from EM parameters is
not normally a good solution to hypothesis-testing problems.
Although the data set itself is a plausible one, the fact that there
is just one data set means that it is not possible to estimate
standard errors accurately for the parameters estimated from
this data set. Nevertheless, if one must produce a single im-
puted data set, using EM parameters is the best option in that
EM parameters are, in a sense, in the center of parameter
space. Another way of thinking about this is to note that the
EM parameters are very similar to the average parameters
obtained from a large number of imputed data sets.

The key advantage of using a single data set imputed from
EM parameters is that one is dealing with a data set with no
missing data. Thus, standard statistical software (e.g., SAS or
SPSS) can be used. The only caveat is that in analyzing this
single data set, one should NOT rely on the ¢ values and p
values generated by the analysis.

Multiple Imputation with NORM

In this section, we describe in some detail the use of the
NORM software (version 2.03; Schafer, 1997). NORM will
very likely be modified and improved in the future. In order
to maximize the value of the information provided in the pre-
sent chapter, step-by-step instructions for the operation of the
current version of NORM will be maintained at our web site,
http://methodology.psu.edu.

Although the step-by-step instructions described here
apply specifically to the NORM program, most of the issues
covered will, or should, have counterparts in any multiple-
imputation program. Thus, the instructions provided in the
following pages should be seen as being applicable in a
quite general way to other multiple-imputation software
as well.

In order to perform item analysis (coefficient alpha) or ex-
ploratory factor analysis, we must first perform the first part
of multiple imputation with NORM (Schafer, 1997). For



more detail about the operation of NORM, please see Schafer
and Olsen (1998; also see Graham & Hofer, 2000).

Running NORM, Step 1: Getting NORM

If you do not have NORM already, it can be downloaded for
free from our web site. Please note that all software illus-
trated in this chapter (except Amos) can be downloaded for
free from this web site. Click on Software and follow the
links for NORM. Once you have it downloaded, install the
program. The defaults usually work well.

Running NORM, Step 2: Preparing the Data Set

First, one must prepare the data set. Do this by converting
all missing values in the data set to the same numeric value
(e.g., —9). Whatever value it is, this missing value indicator
should be well out of the legal range for all variables in the
data set. Next, write the data out as an ASCII, or text data set.
We find that using the suffix .dat tends to work best, but .zxt
will also work. Each value in the output data set should be
separated by a space (i.e., it should be space delimited).
Be careful to write out the data for each case in one long line.

It really helps if you have a separate file containing just the
variable labels (in order) as one long column vector (i.e., one
variable name per line). This should also be an ASCII, or text
file, and it should have the same name as your data file, except
that it should have .nam as the suffix, rather than .dat or .zxt.

Many of these data preparation steps, which are required
with NORM 2.03, may not be required in other programs. For
example, one clear advantage of working with PROC MI in
SAS is that the data sets are already prepared, and this step is,
to a large extent, unnecessary.

Running NORM, Step 3: Variables

For the most part, NORM is a rather user-friendly program. It
works like most Windows programs, and very often one can
simply accept the default options at each step. With NORM
2.03, begin by starting a new session. Locate your recently
created data file, and read it into NORM.

Once your data have been read into NORM, you are ready
to go. If you want to name your variables (e.g., if you have
not created a separate .nam file), look at their distributions,
perform any temporary transformations, request rounding for
imputed values, or select variables for inclusion in the model.
You can do so by clicking on the Variables tab.

‘We have two points to make here. First, if you have a very
large data set (e.g., 100 variables and 3,000 cases), you will
want to consider applying appropriate transformations (e.g.,
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log transformation if skew is to the right or square transfor-
mation if skew is to the left) before running NORM. It will
speed up EM and data augmentation to a substantial degree.
Please note that if you choose to transform variables in
NORM, NORM uses these transformations during calcula-
tions but always writes out its imputed data sets using the
original, untransformed scales.

Second, NORM 2.03 has Not recommended for the No
rounding option. We take exactly the opposite view. Except
for special cases (e.g., needing a dichotomous dependent
variable for logistic regression), we argue that less rounding
is better. We argue that rounding is rather like adding more
random variability to a variable once it has been imputed.
This is typically not desirable. In any case, the difference be-
tween rounding and not rounding is generally small. For our
example, we changed all integer rounding (the default for in-
teger variables), to hundredths rounding.

Running NORM, Step 4: Summarize

Click on the Summarize tab, and click on Run (accepting
the defaults). The results of this summary will be much more
meaningful if you have included a .nam file with the variable
names or if you have explicitly named your variables in
the Variables tab. Otherwise, you have to know which vari-
able is which.

This summary is an extremely valuable troubleshooting
tool. Look at the number and percent missing for each vari-
able. Do the numbers make sense, given what you know
about the data set? If any variable is missing for 100% of the
cases, it may mean that you have made a coding error some-
where. If it is not an error, the variable should be omitted
from the analysis.

The matrix of missingness patterns is also very useful. If
the number of patterns is small, this could be reported, as is,
in your article where you would normally talk about the sam-
ple size. If the number of patterns is large, it might be useful
to present in table form only the patterns with the largest
numbers of cases. If there is a very large number of missing-
ness patterns, it will be necessary to summarize the patterns,
as we have done in this chapter.

Please note that the pattern representing complete data (if
it exists) always appears at the top and that the pattern with
the least data appears at the bottom. It is not good if the pat-
tern at the bottom shows all zeros (no data). If the number of
cases with no data is large or puzzling, it could be due to a
coding error somewhere. Whether or not it is an error, you
should delete such cases before continuing.

Our first example involved the 25 individual variables de-
scribed above and in Table 4.2, as well as the 21 variables
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included to help with imputation. In this first example, there
were 205 patterns of missing and nonmissing data. Most of
these patterns involved just a single individual. The largest
pattern (N = 106) was the pattern for which the cases had
complete data for all 46 variables included in the missing
data analysis.

Running NORM, Step 5: EM Algorithm

Next, click on the EM algorithm tab. It is often possible to ac-
cept all the defaults here and simply click on Run (this worked
in our example). However, there are some options you should
consider before doing this. For some of these options, click on
the Computing button. The options here are maximum itera-
tions, convergence criterion, and ML or posterior mode.

Maximum Iterations. The default here (1,000 itera-
tions) will usually be enough. However, if this is a large job
(e.g., anywhere near 100 variables), you might want to bump
this up to something larger (e.g., 2,000). Please note that you
can always stop the iterations at any point and use the interim
results as a new starting place. Also, if EM stops after 1,000
iterations and has still not converged, you can always use that
(interim) result as the new starting place.

Convergence Criterion. The defaultin NORM is.0001.
We have always used this default. NORM automatically stan-
dardizes all variables prior to running EM. All variables are
back-transformed to the original scales for imputation. Stan-
dardizing all variables to variance = 1 gives the convergence
criterion clear meaning. Bear in mind that other missing data
programs may not routinely standardize the variables prior to
running EM. Thus, the convergence criterion for other pro-
grams may have different meaning if the variables involved
have variances that are substantially smaller or larger than 1.
Also, note that for other programs the meaning of the conver-
gence criterion may be something different from the criterion
in NORM. With EMCOYV and SAS, for example, convergence
is achieved when the largest covariance matrix element
change is smaller than the convergence criterion. However,
with NORM, convergence is achieved when the largest
change, divided by the parameter value, is smaller than the
convergence criterion. Thus, the convergence criterion in ver-
sion 2.03 of NORM is generally more conservative than the
corresponding criterion in SAS PROC ML

ML or Posterior Mode. If you have a relatively large
number of complete cases, you should use the ML estimate
or at least try that first. Use of the ridge prior is not well
described in the substantive literature, but it is defensible if

you have relatively few complete cases. Adding a hyperpara-
meter has an effect similar to adding that number of new
(complete) cases to your data set, such that all the variables
are uncorrelated. The benefit of adding complete cases is that
it adds stability to the EM and data augmentation models.
The drawback of adding a hyperparameter is that all covari-
ances will be suppressed toward zero. For this latter reason, it
is critical that this hyperparameter be kept small. In fact,
Schafer (1997) talks about the possible benefit of a hyperpa-
rameter of less than 1. Think like a critic when selecting this
value. How would you, as a critic, react to someone’s adding
100 new (bogus) cases to a data set if the original sample
was only 200? On the other hand, how would you react to
someone’s adding 10 new (bogus) cases to a data set when
the original sample size was 1,000? We argue that the second
example is much easier to accept.

Other Options. The EM part of NORM produces two
files, em.out and em.prm. Em.out is a nicely formatted output
file that is meant to be viewed. The EM means, variances, and
covariances shown in this file are the best available single es-
timates of these values. We recommend that it is these values
that should be reported in your article. If you are interested in
seeing the EM correlations (rather than variances and covari-
ances), you can select Correlation matrix before you run EM.
The file em.prm is the parameter file and is meant to be used
in analysis, but not to be viewed. Be careful when you are
starting EM that you are not overwriting another file with the
same name. You could be throwing away hours of work! You
can rename these output files if you like.

It is also possible to specify one of these .prm files from a
previous job. For example, if you have previously allowed
EM to run for 1,000 iterations, and it did not converge, you
can rename the old em.prm file to be, say, em_old.prm, and
then specify that as your starting values for the new analysis.

Speed of EM. The speed of convergence of EM de-
pends on many factors. The most important factor is the num-
ber of variables. The number of cases does not matter as
much. Another factor that affects the speed of EM is the
amount of missing information. This is not the same as the
amount of missing data, per se, but it is certainly related to
that. If you have much missing data, EM (and data augmen-
tation) will take longer.

Our Example. In our initial example, we had 46 vari-
ables and 1,024 cases. EM converged normally in 146 itera-
tions. By normal convergence we mean that there were no
error messages and that the fit function changed monotoni-
cally throughout the iteration history.



Pause to Perform Data Quality Analyses with Interim
Results from NORM

Coefficient Alpha Analysis: Analysis of EM Covariance
Matrix With the ALPHNORM Utility

The ALPHNORM utility can be downloaded for free
from our web site (note that the current version of
ALPHNORM works only if you have made no data trans-
formations with NORM). This utility makes use of the EM
output from NORM. The current version of the program is a
bit clunky and works only from the DOS prompt. However,
it is useful for calculating standardized coefficient alpha
and alpha-if-item-deleted from the EM covariance matrix
produced by NORM. If you have previously used a .nam
file with NORM, then ALPHNORM reads these names.
Each variable is also identified by number. You select the
number of variables to be analyzed and the corresponding
variable numbers. ALPHNORM provides the standardized
coefficient alpha, along with information about alpha-if-
item-deleted.

We do not actually describe the coefficient alpha analysis
here, but the results of these analyses appear in the rightmost
column of Table 4.2.

Exploratory Factor Analysis: Using ALPHNORM to
Create SAS-Ready Data Sets

The ALPHNORM utility can also be used simply to write out
SAS-ready data sets. Specifying 1 when prompted results in
the utility’s writing out a SAS-ready version of the EM co-
variance matrix, along with the actual SAS code needed to
read that matrix. This SAS code (see Appendix A) includes
the variable names, if available. The SAS data step should
run as is. The utility also sets up the syntax for PROC FAC-
TOR, leaving out only the variable names. The utility also
provides syntax for PROC REG, but this should be used with
caution, because there is no basis for the T and p values. The
ALPHNORM utility sets the sample size arbitrarily to 500. If
there is a good rationale, you can change this number manu-
ally to something more reasonable.

We do not actually perform an exploratory factor analysis
here, but the code provided in Appendix A will facilitate this
analysis. With version 8.2 of SAS it is very convenient to do
exploratory factor analysis based on the EM covariance ma-
trix all within SAS. First, specify PROC MI nimpute = 0;
and EM emout = sasdatasetname. Then specify PROC FAC-
TOR data = sasdatasetname (type = cov). ... Unfortu-
nately, this shortcut is not available in earlier versions of
SAS, and a similar shortcut is not available for performing
coefficient alpha analysis.
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Multiple Imputation: Running NORM, Continued
Running NORM, Step 6: Impute From EM Parameters

To impute from EM parameters in NORM, simply click on
the Impute from parameters tab, and click on the Run button.
Be sure that the window Use parameters from parameter
(*.prm) file has been selected and that em.prm is indicated.
By default, NORM writes out a data set with the root of the
data set name, followed by _0.imp. This data set may then be
analyzed using SAS, SPSS, or any program of your choosing.

Coefficient Alpha Analysis: Using NORM to Impute From
EM Parameters (Analysis With SAS or SPSS)

We have argued above that using one imputed data set based
on EM parameter estimates is a reasonable way to proceed
for analyses that require raw data but not hypothesis testing.
Because this approach is so much like analyzing a complete
cases data set, many users will find this to be a desirable al-
ternative to analyzing the EM covariance matrix for perform-
ing coefficient alpha analysis or exploratory factor analysis.

We do not actually show these analyses here, but the re-
sults of the coefficient alpha analyses (using SAS) for these
data appear in Table 4.2. Note how similar these results were
in comparison with direct analysis of the EM covariance ma-
trix. Of the five scales analyzed, coefficient alpha was the
same (to two decimal places) for four and differed by only
one one-hundredth for the remaining scale.

Many programs have the capability of imputing a single
data set from EM parameters (e.g., SPSS and EMCOV). If
programs other than NORM are used for this purpose, be cer-
tain that error is added to each imputed value. In SPSS (ver-
sion 10.1), for example, the values are imputed, but error is
not added. This will produce important biases in exploratory
analyses.

Running NORM, Step 7: Data Augmentation
and Imputation

Please note that the following analyses were based on a
slightly different data set from what we just described. The
remainder of our empirical example involves imputation of
the seven intact scales described above and in Table 4.2,
along with the 21 other variables added to help with imputa-
tion. EM analysis of the individual items was required for the
coefficient alpha analysis. However, multiple imputation of
the intact scales, which was all that was required for per-
forming the multiple regression, was much more efficient.
For example, note the difference in number of iterations re-
quired for EM to converge (42 versus 146).



102 Methods for Handling Missing Data

We summarize briefly the preliminary NORM analyses
with this new data set. For these analyses, there were 28
variables in total. There were 105 patterns of missing and
nonmissing values, 56 of which involved just a single indi-
vidual. The largest pattern (N = 218) was the pattern of
complete data. For this data set, EM converged normally in
42 iterations.

Once you have run EM within NORM, the next step for
multiple imputation is data augmentation. Click on the Data
augmentation tab.

The Series Button. The information here is for setting
up the diagnostics for data augmentation. In order to run the
diagnostics, you should click on one of the Save options.
Click on Save all parameters to save information about all of
the parameters (variances, covariances, and means). If the
number of variables is small, or if you have little experience
with a particular data set, this may be a good option. However,
with this option, the program saves all parameter estimates at
every step of data augmentation. Thus, with a large number of
variables and a large number of steps, the file containing this
information could be huge (e.g., 50 to 100 MB or larger).

Thus, a good compromise is to click on Save only worst
linear function. If the results for the worst linear function are
acceptable, then the results for all other parameter estimates
will be no worse than this. This file is generally very small.

The Imputation Button. Usually you will want to click
on Impute at every kth iteration. However, what value should
be used for k? We noted earlier that one of the key questions
when doing data augmentation is how many steps are re-
quired before two imputed data sets are like two random
draws from a population. There are two approaches to be
taken here: (a) One can select a conservative number of steps
between imputed data sets, or (b) one can perform the diag-
nostics to see how many steps between imputed data sets are
suggested by the data. We recommend a combination of these
two approaches.

With other implementations of multiple imputation, the
entire process may be more automated than the process de-
scribed for NORM. For example, in SAS 8.2 one runs EM,
MCMC, and imputation all in a single step without user
input. This reduction of steps, however, is only apparent.
Regardless of what software one uses, the user must, as we
describe below, make decisions along the way.

First, determine how many iterations it took EM to con-
verge. We recommend that you begin with this number for k.
For example, it took EM 42 iterations to converge in our ex-
ample. Thus, to be somewhat conservative, we began by set-
ting k to 50. That means that NORM will produce an imputed

data set every 50 steps of data augmentation. If, after viewing
the diagnostics, you believe that k£ should have been larger,
you can (a) redo data augmentation using the larger value for
k, or (b) simply use every imputed data set with an even num-
ber, discarding those with odd numbers. This effectively dou-
bles k. Then create as many new imputed data sets as needed
using the larger number of k between imputed data sets.

The Computing Button. The number of iterations is the
total number of iterations. For example, if k is set to 50 and
you wish to produce 20 imputed data sets, this value should
be 20 X 50 = 1,000. If you have used the ridge prior for EM,
you should use the same thing here (this will be the default).

How many imputed data sets? Schafer and Olsen (1998)
provide a table for assisting with this decision. The larger the
fraction of missing information, the greater m should be. Un-
fortunately, one obtains the estimate of the fraction of miss-
ing information only after one imputes the data. Further, the
fraction of missing information provided by NORM is itself
just an estimate. Thus, for small values of m, this estimate is
rather unstable (unreliable). Thus, our somewhat nonstatisti-
cal recommendation is to set m to at least 10 (20 is better).
You can always decide to analyze only the first m = 5 im-
puted data sets if it turns out that is all you need.

Running Data Augmentation. Once all the informa-
tion has been given, click on run. With smaller problems (rel-
atively few variables), this process will be rather quick. With
larger problems (many variables), this may take some time.
You will notice that every time the number of steps passes a
multiple of k, NORM pauses to write out an imputed data set.

Multiple-Imputation Data Sets. The result of all your
efforts will be m imputed data sets. Each data set will be like
a complete data set. For every nonmissing value, that non-
missing value will appear in each of the data sets. For every
value initially missing, an imputed value will appear. That
value will be different, sometimes quite different, across the
m different data sets.

Our Example. In our example, we created 20 imputed
data sets. We set k = 50, and the total number of data aug-
mentation steps was 1,000. The imputation process took just
under three minutes on a 366 MHz Pentium II laptop.

Running NORM, Step 8: Data Augmentation Diagnostics

To check the diagnostics, click on the word Series at the top
of the screen. Click on Open to see a menu of the available



.7 Series plot

Illustrations of Missing Data Procedures: Empirical Examples 103

=101 x|

Properties
_ ‘ . Plot1 of 1
Series: worst linear function of parameters
value
0.4E-06
0.2E-06
0.0E+00
0 . 500 1000
iteration
Sample autocorrelation function (ACF)
correlation
1.0
0.5
Dn (TR S IatIIT FT1 PP T -
0 lag 50 100

Figure 4.1 Multiple Imputation Diagnostic Plots

series. The default name is da.prs. Once the data set is open,
click on Series again and on Plot. If you asked for the worst
linear function, that is all that will appear. Figure 4.1 shows
the diagnostic plots for the worst linear function from 1,000
steps of data augmentation for the sample data used in this
chapter. The upper plot is simply a plot of the value of the
worst linear function at each step of data augmentation.
Ideally, you will see a pattern in this upper plot that looks
something like a rectangle. The plot shown in Figure 4.1 is
reasonably close to the ideal. Schafer & Olsen (1998) show
figures of two additional NORM plots, including plots of so-
lutions that are problematic. Additional figures are presented
in the Help documentation for NORM. If the plot snakes
gradually up and down, you may have a problem. If you do
notice this sort of problem (please see Schafer & Olsen for a
particular kind of problem), you may be able to solve it ade-
quately by using the ridge prior with a small hyperparameter.

The lower plot (see Figure 4.1) is the plot of the autocorre-
lation. It is the correlation of a parameter estimate (in this case
the worst linear combination) at one step with the same esti-
mate 1, 2, 50, or 100 steps removed. When the autocorrelation
dips below the red line (and stays there), you have evidence

that this value of k (the number of steps of data augmentation
between imputed data sets) is sufficient to produce a non-
significant autocorrelation between estimates. That is, setting
k to this value will be sufficient for multiple imputation. In our
experience, this value is typically much smaller than the num-
ber of iterations it took EM to converge. In this context, we
caution that our experience is based on the use of NORM, for
which the convergence criterion is “the maximum relative
change in the value of any parameter from one cycle to the
next” (according to the NORM help documentation). That is,
the change in a parameter estimate from one iteration to the
next is scaled according to the magnitude of each parameter
estimate in question. Other software may use different conver-
gence criteria, in which case the relationship between the con-
vergence properties of EM and MCMC will be different.

In our example, it appeared that the autocorrelation plot
became nonsignificant around k = 10. That is, we would
have been justified in using £ = 10 for imputing our data sets.
Thus, our original decision to use k = 50 was fully justified
and, in fact, proved to be quite conservative. Based on the
diagnostics, we retained the 20 imputed data sets without
further work.
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Multiple-Regression Analysis With the
Multiple-Imputation Data Sets

The main analysis used here is one researchers use very
often. Thus, we will say only that this was a simultaneous
linear multiple-regression analysis. The dependent variable
was the composite scale for heavy alcohol use from the
November 2000 measure. The six independent variables
were described previously.

In theory, analysis with multiple imputation is extremely
easy to do. One simply runs the analysis of choice—for ex-
ample, SAS PROC REG—with one data set and then repeats
the process, changing only the input data set name. The whole
process takes only a few minutes. Because one is dealing with
raw data, it is very easy to recode the data (e.g., log transfor-
mations, reverse coding, or standardization) and to compute
new variables (e.g., averages of standardized variables).

The biggest problem one faces with multiple imputation is
saving parameter estimates and standard errors from each
analysis and combining them into a form that is usable with
NORM for hypothesis testing (MI Inference). Fortunately,
with SAS 8.2, even if one imputes the data with NORM,
analysis and MI Inference with SAS is extremely easy. This
process is outlined in the next section. With older versions of
SAS, with SPSS, and with other statistical programs, the
process is more complicated. However, SPSS and older ver-
sions of SAS do provide users with a macro language that
facilitates the process. The process of analysis and MI Infer-
ence with SPSS is described in a later section.

The SAS code we used to perform multiple imputation on
the 20 imputed data sets appears in Appendix B. SAS code
for other variations of PROC REG and for other procedures
can be found on our web site and on the SAS web site. SAS
code for the more complicated macro version (for use with
older versions of SAS) may be found on our web site.

Preparation of NORM-Imputed Data Sets

With NORM, one creates 20 separate imputed data sets. With
SAS PROC MI, the 20 imputed data sets are stacked into a
single large data set. The special variable _imputation_ keeps
track of the 20 different data sets. In order to prepare NORM-
imputed data sets for use with SAS 8.2, one simply needs
to stack them into one large data set. A utility for this is
available at our web site. Alternatively, one could simply read
in the data sets, create the _imputation_ variable, and use
the SET statement in SAS to stack the imputed data sets.
For the example given below (statements shown in Appendix
B), we used the utility that created a stacked version of the
NORM-imputed data sets.

The SAS code (see Appendix B) reads in the _imputation_
variable and all 28 substantive variables, standardizes the
variables to be used in the analysis (to facilitate comparison
with Amos results), and performs the regression analysis.
The regression parameter estimates are written out to a data
set (named c), and the option Covout also writes out a covari-
ance matrix of estimates, the diagonal of which is the square
of the standard errors. The BY statement in PROC REG
allows the analysis to be repeated for each imputed data set.

PROC MIANALYZE reads the data set containing parame-
ter estimates and standard errors. Except for specifying which
parameter estimates are of interest (in the VAR statement), this
procedure is automatic to the user. In the output from PROC
MIANALYZE, look for the Multiple Imputation Parameter
Estimates. The usual information is all there: parameter (pre-
dictor) name, b weight, standard error, 7 value, degrees of free-
dom (see below), p value, and confidence intervals. These are
the values to be reported in the formal write-up of the results.

The Fraction of Missing Information (which appears
under the output section Multiple Imputation Variance Infor-
mation) is also quite useful. This fraction (presented as a per-
centage) is related to the proportion of variability that is due
to missing data. Schafer and Olsen (1998) present a table
showing the percent efficiency of multiple-imputation (MI)
estimation based on the number of imputed data sets and the
fraction of missing information. From this table one can jus-
tify choosing a particular number of imputed data sets (m).
For example, if the fraction of missing information is .5, mul-
tiple-imputation parameter estimates are 86% efficient with
only m = 3 imputed data sets. With 5, 10, and 20 imputed
data sets, the same estimates are 91, 95, and 98% efficient, re-
spectively. Thus, when the fraction of missing information
is .5, one might decide that 10 imputed data sets are suffi-
cient, because the parameter estimates are 95% efficient.

Alternative Approach With SAS PROC MI

Although an SAS user could certainly impute with NORM
(as we have done here) and analyze the data with the proce-
dure of choice, summarizing with PROC MIANALYZE, a
second option is to impute in the first place using PROC MI.
This is indeed a desirable option for SAS users. However,
SAS users should be sure that for each decision made along
the way (described here using NORM), corresponding deci-
sions are all made with PROC ML

Analysis of Multiple Data Sets With SPSS Regression

The SPSS version of this process was much like that just
described with SAS. However, there were some important



differences, which we will point out here. First, the SPSS
macro language does a nice job of standardizing vari-
ables, computing the new composite scales, and performing the
regression analysis (the SPSS macro syntax for performing all
this appears in Appendix C). However, the regression results
themselves were in a form that was a bit difficult for NORM to
read directly, so a utility program, NORMSPSS.EXE, was cre-
ated to facilitate the process. This utility is available free from
our web site. The user executes NORMSPSS from the DOS
command line and is asked for a few pieces of information
along the way. In the middle of the largely automatic process,
SPSS is invoked, and the analyses are performed on the m
(e.g., 20) imputed data sets. After one (manually) closes SPSS,
the NORMSPSS utility asks how many imputations were per-
formed and then automatically performs the MI Inference for
hypothesis testing. In addition, a data set is saved that can be
used with NORM to perform a somewhat more complete ver-
sion of MI inference.

Regression Results

The summary regression results based on multiple imputa-
tion appear in Table 4.4. These are the results (after rounding)
from the output of PROC MIANALYZE, based on the SAS
PROC REG analysis. The results shown are also identical to
those obtained with the NORMSPSS utility based on the
SPSS regression results.

Meaning of Multiple Imputation Degrees of Freedom.
Degrees of freedom (DF) in the multiple-imputation analysis
are a little different from what typically appears in this sort of
analysis. It does not relate to the number of predictors, nor
does it relate to sample size. Rather, DF in the multiple-
imputation analysis relates much more closely to the fraction
of missing information in estimating a particular parameter. If
the amount of missing information is large, the DF will be
small (m — 1 is the minimum, where m is the number of
imputed data sets). If the amount of missing information

TABLE 4.4 Regression Results Based on Multiple Imputation

Fraction of

Predictor b SE t df p Missing Information
religion ~ —.160 .032 5.01 447 <.0001 21.0%
gender —.207 .034 6.00 271 <.0001 27.0%
introvert  —.199 .035 5.64 158 <.0001 35.5%
defyauth 146 036 4.07 183 .0001 32.9%
peeruse 161 .040  4.05 78 .0001 50.5%
intent —.122 .039 3.15 116 .0021 41.3%

Note. Sample size for multiple imputation was N = 1024. DV = Heavy
Alcohol Use at time 5.
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is small, the DF will be large. If the amount of missing
information is very small (e.g., if there are no missing data),
the DF will approach infinity, and the ¢ value becomes a Z
value. Key DF values very close to the minimum (m — 1) usu-
ally imply that the estimates are still somewhat unstable and
that m should be larger.

These results show that all six predictors had a significant,
unique effect on the dependent variable, heavy drinking at the
November 2000 measure. The results are not particularly sur-
prising. Students for whom religion is important drink less.
Women students drink less. Introverts drink less. Those who
dislike authority tend to drink more. Students who perceive
their college student peers to drink more also drink more. Fi-
nally, students who would intervene to prevent harm from
coming to a friend who was drinking tend to drink less them-
selves.

Multiple Regression With Amos

Because Amos 4.0 is distributed with SPSS, a good option is
to obtain the two products as a package through your organi-
zation. For information directly from the Amos distributor,
please see http://www.smallwaters.com.

Running Amos

Running Amos is exceptionally easy. Once you have a data
set in SPSS, you can simply click on Analyze and on Amos.
When Amos comes up, you draw your model by selecting
model components from the icon list and creating the compo-
nent in the drawing area. For the regression model in our ex-
ample, we selected the box from the icon list and drew one
box. We then selected the copy machine icon to make several
copies of the box. In total, we had six boxes on the left for the
predictors and one box on the right for the dependent vari-
able. Then select the single-headed arrow icon. First, click on
a left box and drag the arrow to the right box. When all the re-
gression arrows are drawn, click on the double-headed arrow
icon. This is the part of the process during which errors are
possible with larger models. However, if you are systematic,
the risk is not substantial. Click on each box for the predictor
variables and drag the double-headed arrow to each of the
other boxes. This models the correlations among the predic-
tors. Finally, select the icon with a little box with a circle
coming out of it. Then click on the box for the dependent
variable. This models the residual variance. The final model
(without labels) is now complete, and it should look like the
model shown in Figure 4.2.

With Amos, all enclosed objects (boxes and circles) must
have labels. A nice feature when working within SPSS is that
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Figure 4.2

all of the variables in the SPSS data set are available for in-
clusion in the model. Select the Variables in the data set icon.
It is not easy to describe, so as an alternative, click on
View/Set and on Variables in the data set. Find the variable
names corresponding to the predictors and dependent vari-
able, and simply click and drag the variable names to the
proper boxes in the model. We had previously standardized
the seven variables to be included in order that the results of
Amos and multiple regression would be more comparable.
This would not normally be a necessary step. Finally, double-
click on the small circle connected with the dependent vari-
able box. In the Object properties dialog box that pops up,
look for the Variable name box. Enter some label. It could be
something as simple as r for residual.

Before running the job, click on the Analysis properties
icon, or find it after clicking on View/set. Click on the
Estimation tab, and click in the box for Estimate means and
intercepts. Close the box, and you are ready. Click on the aba-
cus icon, and the job will run. If it is a small job like our
example, it will run in just a few seconds. If it is a larger job,
with many parameters, it may take some time.

When the job is finished, click on the View spreadsheets
icon (or find it under View/set under Table output). The key

TABLE 4.5 Comparison of Standardized b Weights and ¢ Values

information for our problem will be under Regression
weights. The results for the Amos analysis are summarized
below.

Comparison of Results for MI, Amos, and
Other Procedures

For comparison, Table 4.5 presents multiple-regression
results (b weights and ¢ values) for the same data using five
different missing data approaches. For convenience, the key
results from Table 4.4 are repeated in the leftmost column
under the MI/+ heading. Also presented are results based
on mean substitution, complete cases, multiple imputation on
just the seven variables included in the regression analysis
(under MI), and Amos (analysis just described).

Time after time, simulation results involving known
parameter estimates show multiple-imputation parameter
estimates to be unbiased, that is, very close to the population
parameter values (e.g., Collins et al., 2001; Graham et al.,
1994, 1996; Graham & Schafer, 1999). In addition, in multiple
imputation, standard errors are known to perform as well as
the same analysis when there are no missing data. Finally, in-
cluding additional variables is known to improve estimation
under some circumstances. With the addition of even 20 or 30
variables, there is no known statistical down side (Collins
et al., 2001).

For these reasons, we take the multiple-imputation re-
sults (MI+) to be the standard in Table 4.5, and any differ-
ences from the MI4- values shown in Table 4.5 should be
interpreted as estimation bias or as statistical conclusion
bias. In order to provide a summary of the results for each
method, we have included two statistics at the bottom of
each column in Table 4.5. The first is the simple mean of the
absolute values of the elements in the column. The second
is the sum of the squared differences between the elements

b weights t values
Mean Mean
Predictor MI+ Subst CC MI Amos MI+ Subst CC MI Amos
relig —.160 —.154 —.216 —.174 —.187 5.01 5.10 4.34 4.64 4.93
female —.207 —.162 —.156 —.220 —.206 6.00 5.24 2.92 5.71 5.14
introvrt —.199 —.148 —.142 —.181 —.177 5.64 4.89 2.79 4.97 4.64
defysep 146 .073 114 118 116 4.07 2.38 2.26 243 2.36
pusesep 161 .089 153 143 161 4.05 2.95 3.05 3.08 3.52
iintvsep —.122 —.068 —.131 —.065 —.077 3.15 2.19 241 1.47 1.56
mean .166 116 152 150 154 4.65 3.79 2.96 3.72 3.69
SumSq .018 .010 .005 .004 6.14 229 7.12 7.48

Note. MI+ = multiple imputation with 21 additional variables. Mean Subst = mean substitution. CC = complete cases (N = 357). MI = multiple imputation
with seven relevant variables only. Amos = Analysis with Amos (seven relevant variables only). Sample size for all analyses except complete cases was N =
1,024. Means shown at bottom of table are a simple average of the absolute value of the elements in that column. SumSq is the sum of squared differences be-
tween the elements in that column with those in the MI+4 column. In Amos, the figure corresponding to ¢ value is listed as CR (critical ratio).



in that column and the corresponding elements in the MI+
column.

The results appearing in Table 4.5 show the kinds of results
that are obtained with the four other procedures. For the most
part, parameter estimates based on complete cases are similar
to those obtained with multiple imputation. However, the stan-
dard errors were consistently larger (and 7 values consistently
smaller) because the estimation is based on fewer cases, so that
the power to detect significant effects is reduced.

Table 4.5 also illustrates the kind of result that is obtained
with mean substitution. Note that, for all six of the predic-
tors, the b weight based on mean substitution was smaller
than that obtained with multiple imputation, sometimes sub-
stantially so. The sum of squared differences between the
mean substitution b weights and MI+ b weights was the
largest of the other four methods.

Interestingly, the standard errors for the mean substitution
b weights (not shown) were smaller than what was estimated
with multiple imputation. The result was that the smallness of
the b weights was partially compensated for. However, we
view this as an example of two wrongs not making a right.
The clear bias in parameter estimates based on mean substi-
tution will be a big problem in many settings, and one cannot
count on the ¢ values to be reasonable (although they appear
to be in this case). Thus, we continue to reject mean substitu-
tion as a reasonable alternative for dealing with missing data.

Table 4.5 also illustrates the effects of failing to include
additional variables that may be relevant to the missing data
model, even if they are not relevant to the analysis model.
Both the MI and Amos models, although having reasonably
unbiased estimates of the b weights, had noticeably lower
t values compared to the MI+ analysis.

It should be noted that it is possible to include additional
variables in the Amos model (and other FIML/SEM models) in
a way that does not affect the model of substantive interest.
Graham (in press) has outlined two such models. The slightly
better of the two models, described as the “saturated correlates
model,” includes the additional variables as follows. The addi-
tional variables are all specified to be correlated with one an-
other and are specified to be correlated with all other manifest
variables in the model (or with their residuals, if they have
them). This model has been shown in simulations to perform
as well as MI+ and to have no effect on the model of substan-
tive interest when there are no missing data. This latter fact
means that any differences observed by estimating the satu-
rated correlates model are due to missing data correction, and
not to some sort of interference of the added variables. Unfor-
tunately, in the current version of Amos (4.0), this saturated
correlates model in our example with 21 extra variables would
be virtually impossible to draw with the Amos graphical inter-
face. However, it would be relatively straightforward with the
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text version of Amos, an example of which is included in Gra-
ham (in press). It is also straightforward in LISREL and other
text-based FIML procedures.

Latent-Variable Regression With Amos or With
LISREL/EQS and Multiple Imputation

A latent-variable example is beyond the scope of this chapter.
However, we would like to make a few points in this regard.
First, the extension to latent-variable analysis is trivial in
Amos (assuming prior knowledge of SEM). One simply per-
forms the analysis with individual variables as indicators of
latent variables rather than with the composite indices. Amos
handles the rest. The model for including additional variables
is the same as previously described.

With LISREL 8.50 (Mx, and the FIML aspect of Mplus),
latent-variable models with incomplete data are a trivial
extension of latent variable models with complete data. With
LISREL, one simply adds the statement “MI = —9” (assum-
ing the missing value indicator is —9) to the Data Parameters
statement. As previously mentioned, the addition of missing-
data relevant variables to the model is straightforward.

For using multiple imputation with EQS 5.x (Bentler,
1986) and Mplus (Muthén, 2001), the situation is a little more
complicated, but no more so than the analysis with SPSS pre-
viously described in this chapter. Utility programs have been
written to use these two programs with NORM (Schafer,
1997). The two utilities, NORMEQS and NORMplus, make
use of a single EQS 5.x or Mplus 2 input file to read and ana-
lyze the multiple imputed data sets, combine the results, and
provide MI inference. These utilities, along with user guides,
can be obtained free at our web site.

AFEW LOOSE ENDS

Recommendations for Quick and Dirty Analyses

In this chapter, we have said that we do not recommend pair-
wise deletion or mean substitution, even for quick and dirty
analyses. So what is the option? As we said earlier, if you do
not lose too many cases to missing data, complete cases
analysis is a quite reasonable basis for quick and dirty analy-
ses. However, what does one do if complete cases analysis is
not an option?

Perhaps the best of the quick and dirty analyses is to run
EM in NORM (or SAS) and to perform the analysis directly
from the EM covariance matrix. With NORM, this can
be done by making use of the ALPHNORM utility previ-
ously described. With SAS, the EM covariance matrix may
be used directly by certain other procedures (PROC REG,
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PROC FACTOR). The sample size can be set manually
(with NORM, this is done in the EM covariance matrix
itself; with SAS, one must add a sample size line to the out-
put EM matrix). If one is wise in choosing this sample size,
reasonable quick and dirty analyses can be done this way. It
is important to realize, however, that a different sample size
may be appropriate for different parameter estimates.

It is also possible to impute a single data set from EM pa-
rameters in NORM. This does not take long in most cases and
gives reasonable parameter estimates. Of course, it is more
difficult to adjust the sample size in this case. Still, if one is
judicious in interpreting the results, it is a reasonable option
for quick and dirty analyses.

Rubin (1987) argues that analysis based on even two im-
putations provides much better inference than analysis based
on just one. Using one of the macro language procedures de-
scribed previously for SAS or SPSS, analyzing a small num-
ber of imputed data sets (say, 2-5) would often constitute a
quite reasonable quick and dirty approach.

Some Practicalities

One of the problems that arises with missing data analysis is
the following dilemma. One would prefer to include as many
variables as possible in the missing data model, but one can-
not overload the model with estimation of massive numbers
parameters. One solution to the problem is to impute intact
scales rather than individual variables and then to create
scales. The problem is that the individual items that make up
the scale are sometimes missing. The potentially reasonable
solution is to estimate the scale score based on the variables
that are nonmissing. For example, if a scale has 10 variables
but the participant has given data for only 6, it may be rea-
sonable to estimate the scale score based on the 6 variables
for which you have data. This makes most sense when the
items are rather highly correlated, that is, when the scale has
high alpha. It also makes sense only when the variables have
equal variances and means. If the latter requirement is not
met, then the scale will have a different expected value
depending upon which items are missing. Sometimes this
procedure is used only when a certain proportion (e.g., more
than half) of scale items have data.

This procedure may be thought of as a kind of mean sub-
stitution, but it is the mean of nonmissing variables, not the
mean of nonmissing cases. This makes all the difference. In
one sense, this is a kind of regression-based single imputa-
tion, wherein the b weights are all equal. However, this
approach does not appear to present the problem of the usual
kind of single imputation (i.e., too little variability), because
in this case we are talking about the sum of items. In this

case, a scale based on the sum of 6 items will, quite appropri-
ately, have more error variability than the corresponding
scale based on the sum of 10 items.

One possible solution to the problem of having a large
number of variables is to break up the problem into two or
more subsets of variables. The general problem of excluding
a variable (say, X) from the imputation model is that the im-
putation proceeds under assumption that X has a zero correla-
tion with all other variables in the data set. This has the effect
of biasing all correlations toward zero. Thus, if you must di-
vide up a large set of variables, it makes most sense to do so
only if you can find two subsets that are relatively uncorre-
lated anyway. One approach to this might be to perform a
principal-components analysis on the overall set and examine
the two factor solution. Multiple imputation could then be
performed separately on the two sets (which are maximally
uncorrelated). There are other versions of this approach that
could be even more acceptable. For example, it might be pos-
sible to include a small number of linear composites to repre-
sent the excluded set of items (see Graham & Taylor, 2001).
More work is certainly needed in this area.

Recommendations

It should be obvious from even a cursory reading of this
chapter that we are partial to multiple imputation with
Schafer’s (1997) suite of programs. However, please do not
get the wrong idea. The best general solution to one’s missing
data problems is to have several tools available. There are
many things that multiple imputation (i.e., with NORM or
SAS) handles best. However, there are some things that EM
does best, and some things that FIML SEM procedures do
best. In fact, there are some things that the old multiple-group
SEM procedure handles best. Our general advice is to be
ready to use whichever tool is best for the particular situation.

One big reason that using one of the prescribed missing
data procedures is advisable has to do with the ability of all of
these procedures to include additional variables. Given the
recent evidence (Collins et al., 2001) and the empirical re-
sults shown in this chapter, it is obvious that you can help
yourself, in a completely acceptable way, by adding variables
to the missing data model that are highly correlated with vari-
ables containing missingness. One of the reasons that multi-
ple imputation has such appeal is that the process of adding
these variables is relatively easy.

Other Methods

One question that often arises when we discuss multiple im-
putation and FIML methods has to do with the assumptions
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underlying them. In particular, these methods assume that the
missing data mechanism is MAR but not MNAR. Pattern-
mixture methods have been developed for dealing with such
situations (e.g., see Little, 1994, 1995), but these are beyond
the scope of this chapter.

A Look at the (Near) Future

We now have several programs that help us deal with missing
data. In the future, these programs will be imbedded into
mainstream software in ways that allow the researcher to per-
form the correct analysis (or one that is very nearly correct)
without having to jump through hoops. The unveiling of
PROC MI (multiple imputation) in SAS version 8.2 is very
good news. LISREL has also unveiled multiple imputation
and FIML features in version 8.50. EQS has also added a (non-
FIML) missing data feature in its long-awaited version 6 and
is rumored to be preparing further missing data enhancements
for future release.

We have no knowledge of plans by SPSS to update its cur-
rent, very clunky missing data procedure. However, our
guess is that they will be making important updates in the
near future. SPSS has always been at the forefront of usabil-
ity, and this is a feature they simply must have to remain com-
petitive. They will have it.

Researchers around the world will continue to stay at the
forefront of research in analysis with missing data, and it is
very likely that the very latest techniques will not be avail-
able in the mainstream packages. Schafer and his colleagues
will continue to make improvements to NORM (Schafer,
1997) and its siblings CAT, MIX, and PAN. The latter three
programs will all be released as stand-alone Windows pro-
grams in the near future. The wide availability of PAN will
greatly improve the usefulness of MAR multiple-imputation
programs.

Some Final Thoughts

It is important not to draw too many generalizations from the
empirical example given in this chapter. Different analysis

situations pose different problems and potentially different
solutions. The empirical example in this chapter poses a par-
ticular challenge. Very clearly, complete cases analysis
would just not do here. Also, because of the particular nature
of the analyses described, the 21 additional variables were
extremely helpful. This was a sample of college students, and
the measures were taken at relatively close (2- to 3-month)
intervals. For both of these reasons, a variable at one
wave was very highly correlated (often with » > .90) with
the same variable measured at another wave. Under these
circumstances, the inclusion of the additional variables was
very valuable. However, if this were a sample of adolescents,
and the measures were taken at l-year intervals, or if this
were a cross-sectional sample, we would expect the correla-
tions to be much lower. Under such circumstances, including
the additional variables might be of much less value.

The missing data patterns in the empirical example pre-
sented here were such that the value of the missing data pro-
cedures was rather obvious. In other contexts, that value will
be less clear. If one has just two waves of data—for example,
a pretest and a single posttest—and if one has essentially
complete data at the pretest, then complete cases analysis
might be nearly as good as it gets, regardless of how much
data are missing at the posttest.

We simply cannot describe all possible missing data sce-
narios here. Suffice it to say that in some instances, the sta-
tistical advantage of the prescribed procedures will be small
in comparison to more traditional approaches (e.g., com-
plete cases analysis). However, the prescribed procedures
will always be at least as good as other approaches, and in
most circumstances, there will be a clear advantage of the
prescribed procedures, in terms of estimation bias, statistical
power, or both. In many circumstances, the advantage will
be huge.

Under these circumstances, the only reason for not em-
ploying these procedures is that they are not easy to use. As
the software developers erase this objection, and make the
best analysis more and more accessible, we end users will
begin to have the best of both worlds.

APPENDIX A: SAS PROC FACTOR CODE PRODUCED BY THE ALPHNORM UTILITY

options nocenter 1s=80;

data a(type=cov);infile ‘alphnorm.cov’ Irecl=5000;input
_type_$ 1-4 _name_$ 6-13

relig female wa242 wa222 ra215 ra246 wal86

ra243 ral95 wal92 wa202 ra225 wel5 wel6

wel7 wal27 ral28 wal29 wa23 wa24 wa27
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wa67 wal00 wal03 wal82 defynov defyfeb defyapr

defynv0 pusenov pusefeb puseapr pusenvO0 iintvnov iintvfeb
iintvapr iintvnv0 drunksep drunknov drunkfeb drunkapr alcsep
alcnov alcfeb alcapr alenvO ;

run;

proc factor data=a(type=cov) method=prin rotate=promax reorder round;var

##* Use of PROC REG with this EM covariance matrix should be done with extreme
caution, because sample size has been set arbitrarily at N=500 **%*;

/*

proc reg data=a(type=cov);

model . . .

*/

APPENDIX B: SAS DATA STEP AND PROC REG CODE FOR MULTIPLE IMPUTATION

data a;infile ‘jan0O6all.imp’ lrecl=5000;
input
_imputation_
relig female introvrt
alcsep alcnov alcfeb alcapr alcnv0
drunksep drunknov drunkfeb drunkapr drunknvO
defysep defynov defyfeb defyapr defynv0
pusesep pusenov pusefeb puseapr pusenv0
iintvsep iintvnov iintvfeb iintvapr iintvnvO0;
run;

*** The following statements standardize the variables for more
direct comparison with Amos results. ***

proc standard data=a out=b mean=0 std=1;var
drunknv0 relig female introvrt defysep pusesep iintvsep;
run;

*** This analysis is a simple regression analysis with several
predictor variables of interest, but only a single DV.
The ‘by _imputation_’ statement repeats the analysis with all 20 imputed data sets.

proc reg data=b outest=c covout noprint;model
drunknv0 = relig female introvrt defysep pusesep iintvsep;
by _imputation_;

run;
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*** PROC MIANALYZE performs the MI Inference Analysis similar to what is done with NORM.
The variables listed in the VAR statement below are the predictors in the regression analysis.

proc mianalyze;var intercept relig female introvrt defysep
pusesep

iintvsep;
run;

APPENDIX C: SPSS MACRO AND REGRESSION CODE FOR MULTIPLE IMPUTATION

Note: This code automates the process of standardizing items, computing new scales, and
performing the regression analysis for the 20 imputed data sets. However, the immediate results
of this macro are not readable by NORM.

For these analyses, we used the utility NORMSPSS to read the SPSS Regression output, create
the NORM-readable data set, and create a partial MI Inference data set (NORMSPSS.OUT)
automatically.

The NORMSPSS utility and related files can be obtained at our web site: http://methcenter.psu.edu.
DEFINE !NORMIMP ()

*** modify the following statement (number of imputed datasets)
as needed ***

!'DO !T = 1 !TO 20

*** modify the /FILE = line (shown as ‘jan06’) as needed ***

*** modify the /VARIABLES = statements as needed ***

*** NOTE that the format given behind each variables appears to

be necessary, but arbitrary ***

*** That is, it appears that F2.2 may be used for all numeric variables ***

GET DATA /TYPE = TXT
/FILE = !CONCAT (‘jan0O6_" , 'T , *.IMP’ )
/DELCASE = LINE
/DELIMITERS = “ *
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 1
/IMPORTCASE = ALL
/VARIABLES =

relig F2.2

female F2.2

introvrt F2.2

alcsep F2.2

alcnov F2.2

111



112 Methods for Handling Missing Data

alcfeb F2.2
alcapr F2.2
alcnv0 F2.2
drunksep F2.
drunknov F2.
drunkfeb F2.
drunkapr F2.
drunknv0 F2.
defysep F2.
defynov F2.
defyfeb F2.
defyapr F2.
defynv0 F2.
pusesep F2.
pusenov F2.
pusefeb F2.
puseapr F2.

DD N

DD DD DD DD NN

pusenv0 F2.
iintvsep F2.
iintvnov F2.
iintvfeb F2.
iintvapr F2.
iintvnv0 F2.

DN N

*** Modify the data manipulations as needed ***
*** The following standardizes variables for better comparison
with Amog ***

DESCRIPTIVES

VARIABLES=
drunknv0 relig female introvrt defysep pusesep iintvsep /SAVE
/STATISTICS=MEAN STDDEV MIN MAX

*** No computations are needed for this analysis, but if needed,
they could go here, for example ***

*** COMPUTE fuse7=mean (zwal, zwa3, zwab, zwa7)
*** EXECUTE

*** Modify the Regression analysis as needed ***
*** Ag 1is, the output dataset names are alll.out, all2.out, etc.
*** Keep them like this, or modify them as needed ***

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT zdrunknvO0
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/METHOD=ENTER zrelig zfemale zintrovrt zdefysep zpusesep

ziintvsep

/outfile=model (!CONCAT ( ‘nrmreg’ , !I, ‘.out’))

! DOEND

! ENDDEFINE

! NORMIMP
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RATIONALE FOR PREPARATORY DATA ANALYSIS

Preparatory data analyses are conducted to locate and correct
problems in a data set prior to a main analysis. Missing data are
located and dealt with (see chapter by Graham, Cumsille, &
Elek-Fisk in this volume), and various assumptions of the
planned analyses are tested. Much of the material in this chap-
ter is adapted from Chapters 2 and 3 in Tabachnick and Fidell
(2001a) and Chapter 4 in Tabachnick and Fidell (2001b),
where more extended discussions are available.

Previous cavalier attitudes toward violation of the as-
sumptions of an analysis have given way to a growing
concern that the integrity of the inferential test depends on
meeting those assumptions (Wilkinson & the Task Force on
Statistical Inference, 1999). Inferential tests are based on es-
timating probability levels for the null hypothesis from a
sampling distribution such as F, Wilks’s lambda, or chi-
square. The distribution of a statistic (e.g., the distribution of
all possible ratios of two variances drawn from the same pop-
ulation of scores) is tested against known sampling distribu-
tions (e.g., the F'ratio) to see which it most closely resembles.
If the distribution of the statistic is the same as that of a
known sampling distribution, probabilities associated with
various statistical values along the sampling distribution are
used to assess the Type I error rate. However, when the fit is
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assessed, it is with assumptions about the nature of the data
that are to be processed.

For an example, it may be assumed, among other things,
that the analyzed variable has a normal distribution. When
the analyzed variable is normally distributed, the probability
value associated with the statistical test is an accurate esti-
mate of the probability under the null hypothesis. But when
the analyzed variable is not normal, the estimated probability
value may be either too conservative or too liberal. The issue,
in this example and others, is how much the distribution of
the variable can deviate from the assumption of normality
without throwing the estimated Type I probability level into
disarray.

Preparatory data analysis is usually a time-consuming and
frustrating business. It is time-consuming because numerous
features of the data need to be examined and frustrating be-
cause the main analysis that provides the answer to your main
research question is often just a few menu selections away.
Further, violation of some assumptions is more serious than
violation of others because sometimes violation leads to the
wrong inferential conclusion and other times the analysis is
correct as far as it goes but misses certain additional rela-
tionships in the data. However, a believable (and replicable)
inferential result depends on assessing the fit between the
assumptions of the analysis used and the data analyzed, with
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correction for violations applied as necessary or an alterna-
tive analytic strategy employed.

SOME CONSIDERATIONS

Screening for violation of assumptions can be conducted in
several different ways. Relevant issues in the choice of when
and how to screen depend on the level of measurement of
the variables, whether the design produces grouped or un-
grouped data, whether cases provide a single response or
more than one response, and whether the variables them-
selves or the residuals of analysis are screened.

Level of Measurement: Continuous, Ordinal,
and Discrete Variables

One consideration in preparatory data analysis is whether the
variables are continuous, ordinal, or discrete. Continuous vari-
ables are also referred to as interval or ratio; discrete variables
are also called categorical or nominal; discrete variables with
only two levels are often called dichotomous. Continuous
variables assess the amount of something along a continuum
of possible values where the size of the observed value
depends on the sensitivity of the measuring device. As the
measuring device becomes more sensitive, so does the preci-
sion with which the variable is assessed. Examples of continu-
ous variables are time to complete a task, amount of fabric
used in various manufacturing processes, or numerical score
on an essay exam. Most of the assumptions of analysis apply
to continuous variables.

Rank-order/ordinal data are obtained when the researcher
assesses the relative positions of cases in a distribution of
cases (e.g., most talented, least efficient), when the researcher
has others rank order several items (e.g., most important to
me), or when the researcher has assessed numerical scores
for cases but does not trust them. In the last instance, the re-
searcher believes that the case with the highest score has the
most (or least) of something but is not comfortable analyzing
the numerical scores themselves, so the data are treated as
ordinal. Numbers reveal which case is in what position, but
there is no assurance that the distance between the first and
second cases is the same as, for instance, the distance be-
tween the second and third cases, or any other adjacent pair.
Only a few statistical methods are available for analysis of
ordinal variables, and they tend to have few or no assump-
tions (Siegel & Castellan, 1988).

Discrete variables are classified into categories. There are
usually only a few categories, chosen so that every case can
be classified into only one of them. For instance, employees
are classified as properly trained or not; eggs are divided into

medium, large, and extra large; respondents answer either
“yes” or “no”’; manufactured parts either pass or do not pass
quality control; or dessert choice is sorbet, tiramisu, choco-
late mousse, or apple tart. In many analyses, discrete vari-
ables are the grouping variables (treatment group vs. control)
for a main analysis such as analysis of variance (ANOVA) or
logistic regression. Assumptions for discrete variables relate
to the frequency of cases in the various categories. Problems
arise when there are too few cases in some of the categories,
as discussed later.

Grouped and Ungrouped Research Designs

Assumptions are assessed differently depending on whether
the data are to be grouped or ungrouped during analysis. The
most common goal in grouped analyses is to compare the
central tendency in two or more groups; the most common
goal in ungrouped analyses is to study relationships among
variables. Grouped data are appropriately analyzed using
univariate or multivariate analysis of variance (ANOVA and
MANOVA, including profile analysis of repeated measures),
logistic regression, or discriminant analysis. Ungrouped data
are analyzed through bivariate or multiple regression, canon-
ical correlation, cluster analysis, or factor analysis. Some
techniques apply to either grouped or ungrouped data. For
example, time-series analysis and survival analysis can be
used to track behavior over time for a single group of cases or
to compare behavior over time for different groups. Chi-
square and multiway frequency analysis can be used to com-
pare contingencies in responses among categorical variables
for a single group or to look for differences in responses
among different groups. Similarly, structural equations can
be used to model responses of a single group or compare
models among groups.

Tests of assumptions are performed differently depending
on whether data are to be grouped or ungrouped during
analysis. Basically, ungrouped data are examined as a single
set, while grouped data are examined separately within each
group or have entirely different criteria for assessing fit to
some assumptions, as discussed later.

Single Versus Multiple Responses

Participants provide a single response in the classical between-
subjects ANOVA or chi-square designs. In other designs par-
ticipants may provide several responses, and those responses
may be measured either on the same or on different scales.
Multivariate statistical techniques deal with multiple re-
sponses on different scales and are analyzed using such
methods as MANOVA, canonical correlation, discriminant
analysis, factor analysis, and structural equation modeling.



Multiple responses on the same scale (e.g., pretest,
posttest, and follow-up scores on a measure of depression)
are generally considered to produce univariate statistical
designs (e.g., within-subjects ANOVA), although they are
sometimes treated multivariately. Having multiple responses
complicates data screening because there are also relation-
ships among those responses to consider.

Examining the Variables or the Residuals of Analysis

Another issue is whether the examination of assumptions is
performed on the raw variables prior to analysis or whether
the main analysis is performed and its residuals examined.
Both procedures are likely to uncover the same problems. For
example, a peculiar score (an outlier) can be identified ini-
tially as a deviant score in its own distribution or as a score
with a large residual that is not fit well by the solution.

Temptation is a major difference between these two alter-
natives. When residuals are examined after the main analysis
is performed, the results of the main analysis are also avail-
able for inspection. If the results are the desired ones, it is
tempting to see no problems with the residuals. If the results
are not the desired ones, it is tempting to begin to play with
the variables to see what happens to the results. On the other
hand, when the assumptions are assessed and decisions are
made about how to handle violations prior to the main analy-
sis, there is less opportunity for temptation to influence the
results that are accepted and reported.

Even if raw variables are screened before analysis, it is
usually worthwhile to examine residuals of the main analysis
for insights into the degree to which the final model has cap-
tured the nuances of the data. In what ways does the model
fail to fit or “explain” the data? Are there types of cases to
which the model does not generalize? Is further research
necessary to find out why the model fails to fit these cases?
Did the preparatory tests of assumptions fail to uncover vio-
lations that are only evident in direct examination of residu-
als (Wilkinson et al., 1999)?

SCREENING CONTINUOUS VARIABLES

Univariate Assumptions

These assumptions apply to a single variable for which a con-
fidence interval is desired or, more commonly, to a single
continuous dependent variable (DV) measured for each
participant in the two or more groups that constitute the
independent variable (IV). We illustrate both statistical and
graphical methods of assessing the various assumptions.

Screening Continuous Variables 117

Normality of Individual Variables (or the Residuals)

Several statistical and graphical methods are available to
assess the normality of raw scores in ungrouped data or the
normality of residuals of analysis. The next section contains
guidelines for normality in grouped data.

Recall that normal distributions are symmetrical about the
mean with a well-defined shape and height. Mean, median,
and mode are the same, and the percentages of cases between
the mean and various standard deviation units from the mean
are known. For this reason, you can rescale a normally dis-
tributed continuous variable to a z score (with mean 0 and
standard deviation 1) and look up the probability that corre-
sponds to a particular range of raw scores in a table with a
title such as “standard normal deviates” or “areas under the
normal curve.” The legitimacy of using the z-score transfor-
mation and its associated probabilities depends on the nor-
mality of the distribution of the continuous variable.

Although it is tempting to conclude that most inferential
statistics are robust to violations of normality, that conclusion
is not warranted. Bradley (1982) reported that statistical
inference becomes less robust as distributions depart from
normality—and rapidly so under many conditions. And even
with a purely descriptive study, normality of variables (as
well as pair-wise linearity and homoscedasticity, discussed in
the section titled “Multivariate Assumptions”) enhances the
analysis, particularly when individual variables are nonnor-
mal to varying degrees and in varying directions.

Skewness and kurtosis are statistics for assessing the sym-
metry (skewness) and peakedness (kurtosis) of a distribution.
A distribution with positive skewness has a few cases with
large values that lengthen the right tail; a distribution with
negative skewness has a few cases with small values that
lengthen the left tail. A distribution with positive kurtosis is
too peaked (leptokurtic); a distribution with negative kurtosis
is too flat (platykurtic—think “flatty”). A normal distribution
is called mesokurtic. Nonnormal distributions have different
percentages of cases between various standard deviation
units than does the normal distribution, so z-score transfor-
mations and inferential tests applied to variables with non-
normal distributions are often misleading. Figure 5.1 shows
a normal curve and several that depart from normality.

In a normal distribution, skewness and kurtosis are zero.
The standard error of skewness is

/6
Sskewness — N 5.1

The standard error of kurtosis is

24
Skurtosis = ﬁ 5.2)
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Normal

Positive Skewness Negative Skewness

N

Negative Kurtosis

Positive Kurtosis

Figure 5.1 Normal distribution, distributions with skewness, and distribu-
tions with kurtosis. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).

For the fictitious data of DESCRPT.* (downloaded from
www.abacon.com/tabachnick) where N = 50 for all vari-
ables, the standard errors of skewness and kurtosis are

= ,/3 =0.346
50
24

= /= =0.693
50

These standard errors are used to test whether a distribu-
tion departs from normal by dividing the skewness or kurto-
sis values for the distribution by their respective standard
errors and looking up the result as a z score from a standard
normal table of values. For skewness,

Sskewness

Skurtosis

skewness — 0
Iskewness — - (53)
Sskewness

and for kurtosis,

kurtosis — 0
Zkurtosis — ——— (54)

Skurtosis

The output in Figure 5.2 shows, among other descriptive
statistics produced by SAS INTERACTIVE, skewness and
kurtosis values for the continuous variables in the data set.

After calculating the standard errors using Equations 5.1 and
5.2, the z score for Var_A for skewness is [0.220/0.346 =]
0.64, and the z score for kurtosis is —0.94. For Var_C (which
was generated with skewness) the z score for skewness is
3.92, and the z score for kurtosis is 2.65. (Var_D also has a z
score indicative of skewness, but it is due to the presence of
an outlier, as becomes clear in a later section.) Two-tailed
alpha levels of .01 or .001 and visual inspection of the shape
of the distribution are used to evaluate the significance of
skewness and kurtosis with small to moderate samples. There
also are formal statistical tests for the significance of the
departure of a distribution from normality such as Shapiro,
Wilks’s W statistic, and the Anderson-Darling test available
in MINITAB, but they are very sensitive and often signal
departures from normality that are not important for the
analysis.

By these criteria, Var_A is normal, but Var_C has statisti-
cally significant positive skewness. However, if the sample is
much larger, normality is assessed through inspection of the
shape of the distribution instead of formal inference because
the equations for standard error of both skewness and kurto-
sis contain N and normality is likely to be rejected with large
samples (e.g., around 300 or larger) even when the deviation
is slight.

Graphical methods for assessing normality include
frequency histograms and normal probability plots. SPSS
FREQUENCIES produced the frequency histograms in
Figure 5.3 for Var_A, which is relatively normally distrib-
uted, and Var_C, which is not. The normal curve overlay is
selected along with the frequency histogram to assist the
judgment of normality. The positive skewness of Var_C is
readily apparent.

Normal probability plots (sometimes called normal
quantile-quantile, or QQ, plots) require some explanation. In
these plots, the scores are first sorted and ranked. Then an
expected normal value is computed and plotted against the
actual normal value for each case. The expected normal value
is the z score that a case with that rank holds in a normal
distribution; the actual normal value is the z score it has in
the actual distribution. If the actual distribution is normal, the
two z scores are similar, and the points fall along the diago-
nal, running from lower left to upper right. Deviations from
normality shift the points away from the diagonal.

When normal probability plots are inspected side by side,
the equivalence of the standard deviations is also assessed by
looking at the slope of the pattern of points for each distribu-
tion; when the slopes for several distributions are relatively
equal, so are the standard deviations (Cleveland, 1993). This
can be useful for evaluating homogeneity of variance in
grouped data.
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Open SAS Interactive Data Analysis with appropriate data set (here SASUSER.DESCRPT).
Choose Analyze and then Distribution(Y).

Select Y variables: VARA, VARB, VARC, and VARD.

In Output dialog box, select Moments and Basic Confidence Intervals.

Moments
50.0000 : Sum Hgts 50.0000
Mean 51.1600 ; Sum 2558.0000
Std Dev 9.4747 Variance 89.7698
Skewness 0.2202 i Kurtosis -0.6498
uss 135266.000 i CSS 4398.7200
cv 18.5197  Std Mean 1.3399
95% Confidence Intervals
Parameter : Estimate ' LCL .~ UCL
Hean 51.1600 1 48.4673 53.8527
Std Dev 9.4747 7.9145 11.8067
Yar iance 89.7698 62.6398 139.3989
Moments
50.0000 | Sun Hgts 50.0000
Mean 49.7200 ; Sum 2486.0000
Std Dev 1.9171 [ Variance 3.6751
Skewness 0.0373 | Kurtosis ~-0.6842
uss 123784.000 : CSS 180.0800
Cv 3.8557 | 5td Mean 0.2711
B _95% Confidence Intervals
Parameter . Estimate LCL o,
Mean . 49,7200 49.1752 50.2648
Std Dev 1.9171 1.6014 2.3889
Var iance 3.6751 2.5644 5.7069
Moments
50.0000 | Sum Wgts 50.0000
Mean 49.8000 : Sum 2490.0000
Std Dev 11.6759 : Variance 136.3265
Skewness 1.3582 : Kurtosis 1.8361
uss 130682.000 : CSS 6680.0000
cv 23.4456 : Std Mean 1.6512
. 95Z Confidence Intervals
Parameter | Estimate LCL ucL 5
Mean 49.8000 46.4817 53.1183
Std Dev 11.6759 . 9.7533 14.5497
Var iance 136.3265 ! 95.1263 211,6944
N 50.0000 : Sum Hgts 50.0000
Mean 51.1200 | Sum 2556.0000
Std Dewv 8.1407 : Variance 66.2710
Skewness ~0,2307 Kurtosis -0.0263
uss 133910.000 : CSS 3247 .2800
cv 15.9247 : S5td Mean 1.1513
95% Confidence Intervals
Estimate : LcL ucL
S1.1200 : 48.8064 . 53.4336
8.1407 ¢ 6.8002 : 10.1444
Var iance 66.2710 : 46.2428 : 102.9088

Figure 5.2 Syntax and descriptive statistics for VAR_A to VAR_D; produced by SAS Interactive.

Figure 5.4 contains normal probability plots (requested
as NPPLOT) for Var_A and Var_C produced by SPSS

EXPLORE.

As shown in Figure 5.4, the data points fall very close
to the diagonal for Var_A but some distance from it for
Var_C. The low values and the high values of Var_C have

z scores that are too low, whereas the z scores for the
middle values are too high. (The data point far from the
others in the upper right-hand part of the plot for Var_C
also looks suspiciously like an outlier.) If a distribution is
acceptably normal, the mean is interpreted instead of the
median.
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FREQUENCIES
VARIABLES=var_a var_c
/FORMAT NOTABLE
/HISTOGRAM NORMAL
/ORDER ANALYSIS .
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Figure 5.3 Syntax and frequency histograms with normal curve overlay for VAR_A and VAR_C; produced by SPSS

FREQUENCIES for the DESCRPT.SAV data set.

Normality in Grouped Data

Less stringent guidelines are used when assessing grouped
data because tests of differences in means among groups use
sampling distributions rather than raw-score distributions. If
you have several DV scores at each level of the IV, you can
estimate the mean and standard error of the sampling distrib-
ution of all possible mean differences in the population under
the null hypothesis. The central limit theorem tells us that the
shape of this sampling distribution approaches normal as
sample size increases.

The reason that the advantages of sampling distributions
(i.e., their known shapes and corresponding probabilities)
are available for grouped but not ungrouped data can be
seen in Figure 5.5. Panel A shows a potential relationship
between the IV (plotted on the x-axis) and DV scores (plot-
ted on the y-axis) for grouped data. Notice that although
each group may have a different distribution of scores (with
size of circle indicating size of sample), there are numerous
scores for each group from which to estimate the sampling
distribution. When data are not grouped, as in panel B,
some values of X (e.g., 70) have a single associated Y score;

some have no associated Y score (e.g., X = 110); and some
have two or more associated Y scores (e.g., X = 80). Thus,
it is not possible to estimate central tendency or dispersion
of a sampling distribution of scores for each value of X un-
less data are grouped.

Because the assumption of normality for grouped data
applies to the sampling distribution, and because that distribu-
tion approaches normal as sample size increases, the as-
sumption is acceptably met with large enough sample sizes. A
useful guideline for both univariate and multivariate analyses
is at least 20 deg of freedom (df) for error. No such convenient
guideline is available for ungrouped data.

Although normality is not at issue when there are suffi-
cient df for error, it is still worthwhile to examine distribu-
tions of scores within each group for possible anomalies.
Frequency histograms may be especially interesting when
presented separately for each group on the same scale,
as in Figure 5.6, which uses the MANOVA.sas7bdat data
set (from www.abacon.com/tabachnick). The grouping
(class) variable, MASC, has two levels (high and low mas-
culinity on the Bem Sex Role Scale), and the continuous
variable ESTEEM (self-esteem) is shown for each group of



EXAMINE
VARIABLES=var_avar_¢
/PLOT NPPLOT
/COMPARE GROUP
/STATISTICS NONE
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
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Normal Q-Q Plot of VAR_A
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Normal Q-Q Plot of VAR_C
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Figure 5.4 Syntax and normal probability plots of VAR_A and VAR_C; produced by SPSS EXPLORE for the

DESCRPT.SAV data set.

women. A normal curve is superimposed over the his-
tograms by request, and the midpoints and scale intervals
(by) are defined. Remaining syntax defines the inset re-
quested for basic descriptive statistics. (This syntax also pro-
duces a great deal of statistical output that is not shown
here.)

The histograms show the lower self-esteem values for
women in group 2 (low masculinity) as well as a suggestion

of positive skewness for them, to be discussed in a later
section.

Absence of Outliers (in Variables or the Residuals)

Outliers are deviant cases with undue impact on the results of
analysis. They can either raise or lower means and, by doing
so, create artificial significance or cover up real significance.
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Figure 5.5 Grouped and ungrouped data, sampling distributions, and the central limit theorem.

They almost always increase dispersion, thereby increasing
Type II errors and distorting correlations. Their inclusion in a
data set makes the outcome of analysis unpredictable and not
generalizable except to a population that happens to include
the same sort of outlier.

An outlier is a score that is far from the grand mean in un-

and apparently disconnected from the rest of the scores. The
z-score (standard normal) distribution is used to assess the
distance of a raw score from its mean. In Equation 5.5, Y is
the raw score, Y is the mean, and sy_; is the unbiased esti-
mate of the standard deviation:

: _ Y -Y
grouped data or from the mean of its group in grouped data, 7= (5.5)
SN—-1
proc univariate data=SASUSER.MANOVA;
class MASC;
var ESTEEM;
histogram ESTEEM /
normal href=16.9
midpoints=6 to 32 by 2 vscale=count;
inset n="N" (5.0)
mean="Mean" (5.1)
std="Std Dev" (5.1)/
pos =ne height=3;
run;
6o : N 244
50 |- L~ Mean 169
c TN SdDev 37
o 401 / i \
I w30} :
n : \\
t 20 : \
i /174 | %t[—\
— 0 :
6o | N 125
c 50 - E Mean 13.5
o 40k E StdDev 3.3
2l u 30 ,
n L~ :
. 20+ // N
10k 4 N
L | 0 ! ! ! ! L #‘hﬁ; } } ! !
6 8 10 12 14 16 18 20 22 24 26 28 30

Self-esteem

Figure 5.6 Syntax and frequency histograms for ESTEEM on the same scale for two groups; produced by SAS

MANOVA.



If the sample is fairly large (e.g., 100 or more), a case with
an absolute z value of 3.3 or greater is probably an outlier be-
cause the two-tailed probability of sampling a score of this
size in random sampling from the population of interestis .001
or less. If the sample is smaller, an absolute value of z of 2.58
(p < .01, two-tailed) is appropriate. Visual inspection of the
distribution is also needed to conclude that a case is an outlier.

In DESCRIPT.*, Var_D was created with an outlying
score. Features of SPSS EXPLORE appropriate for identify-
ing outliers are shown in Figure 5.7. The PLOT instruc-
tion requests a BOXPLOT; the STATISTICS instruction
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requests EXTREME values (to identify outliers) as well as
DESCRIPTIVES. Box plots from two or more groups side
by side are available through box and whisker plots under
graphing or quality control menus. The remaining instruc-
tions are default values generated by the SPSS menu system.

The output segment labeled DESCRIPTIVES contains
most of the important descriptive statistics for a continu-
ous variable, and that labeled EXTREME values shows in-
formation relevant for identifying outliers. The case numbers
with the highest and lowest five scores are listed along
with the scores themselves. For Var_A the highest and

Extreme Values

Case
Number | Value
VAR_A  Highest 1 20 72.00
2 16 67.00
3 2 67.00
4 39 66.00
5 36 66.00
Lowest 1 45 32.00
2 8 36.00
3 22 36.00
4 1 39.00
5 30 a
VAR_D  Highest 1 48 69.00
2 40 64.00
3 5 63.00
4 41 62.00
5 38 b
Lowest 1 12 13.00
2 34 32.00
3 2 33.00
4 46 35.00
5 32 38.00

a. Only a partial list of cases with the value 40 are
shown in the table of lower extremes.

b. Only a partial list of cases with the value 62 are
shown in the table of upper extremes.

80 80
- 70 - -
70 -
60 -
60
50 -
50 40
30+ O34
40 -
20 -
30 %
10 12
20 : 0 .
N = 50 N = 50
VAR_A VAR_D

Figure 5.7 Descriptive statistics and outlier identification in VAR_A and VAR_D for the DESCRPT.SAV data

set through SPSS EXPLORE.
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lowest scores do not differ much from the scores near them,
but for Var_D the lowest score of 13 (case 12) appears
disconnected from the next higher score of 32, which
does not differ much from the next higher score of 34. The
z score associated with theraw score of 13 is extreme
[z =(13—-50.52)/9.71 = —3.86].

Further evidence comes from the box plot in Figure 5.7 for
Var_D where case 12 is identified as below the interval con-
taining the rest of the scores. In the box plot for Var_A no
case has a score outside the interval. The box itself is based
on the interquartile range—the range between the 75th and
25th percentile that contains 50% of the cases. The upper
and lower borders of the box are called hinges. The median is
the line through the box. If the median is off center, there is
some skewness to the data. The lines outside the box are
1.5 times the interquartile range from their own hinges. That
is, the top line is 1.5 x (75th percentile — 25th percentile)
above the 75th percentile, and the lower line is 1.5 x (75th
percentile — 25th percentile) below the 25th percentile.
These two lines are called the upper and lower inner fences,
respectively. (There can be outer fences, as well, which are
three times the interquartile range from their respective
hinges, but only if there are very extreme data points.) Any
score that is above or below the inner fences, such as that for
case 12, is likely to be an outlier.

Researchers often are reluctant to deal with outliers
because they feel that the sample should be analyzed as is.
However, not dealing with outliers is, in a way, letting them
deal with you because outliers potentially limit the popula-
tion to which one can generalize and distort inferential
conclusions. Once outliers are identified and dealt with, the
researcher reports the method used to reduce their impact
together with the rationale for the choices in the results
section to reassure readers concerning the generalizability
and validity of the findings.

The first steps in dealing with a univariate outlier are to
check the accuracy with which the score was entered into the
data file and then to ensure that the missing value codes have
been correctly specified. If neither of these simple alterna-
tives corrects the score, you need to decide whether the case
is properly part of the population from which you intended to
sample. If the case is not part of the population, it is deleted
with no loss of generalizability of results to your intended
population (although problems with the analysis—such as
unequal sample sizes in treatment groups—may be created).
The description of outliers is a description of the kinds
of cases to which your results do not apply. Sometimes
investigation of the conditions associated with production of
outlying scores is even more substantive because it reveals
unintended changes in your research program (i.e., shifts in

delivery of treatment). If the case is properly part of the sam-
ple, it may be retained for analysis by transforming the distri-
bution or by changing the outlying score.

When transformation of the entire distribution is under-
taken, the outlying case is considered to have come from a
nonnormal distribution with too many cases falling at extreme
values. After transformation, the case is still on the tail of the
distribution, but it has been pulled toward the center. The
other option for univariate outliers is to change the score for
just the outlying case so that it is one unit larger (or smaller)
than the next most extreme score in the distribution. This is an
attractive alternative to reduce the impact of an outlier if mea-
surement is rather arbitrary anyway. In the example, the score
of 12 for case 13 might be changed to a score of 30, for in-
stance. Such changes are, of course, reported.

Homogeneity of Variance and Unequal Sample Sizes
in Grouped Data

The ANOVA model assumes that population variances in
different levels of the IV are equal—that the variance of DV
scores within each level of the design is a separate estimate
of the same population variance. In fact, the error term in
ANOVA is an average of the variances within each level. If
those variances are separate estimates of the same population
variance, averaging them is sensible. If the variances are not
separate estimates of the same population variance, averag-
ing them to produce a single error term is not sensible.

ANOVA is robust to violation of this assumption as long
as there are no outliers, sample sizes in different groups are
large and fairly equal (say, ratio of largest to smallest n is not
more than about 4 to 1), a two-tailed hypothesis is tested, and
the ratio of largest to smallest sample variance between lev-
els is not more than 10 to 1. The ratio can be evaluated by
calculating the F, statistic, whose value should not exceed
10. If these conditions are met, there is adequate homogene-
ity of variance:

2
slargest

Fiax = B (56)

Ssmallest

As the discrepancy between cell sizes increases (say, goes to
9to I or so), an F,,, as small as 3 is associated with an in-
flated Type I error if the larger variance is associated with the
smaller cell size (Milligan, Wong, & Thompson, 1987). If
sample sizes are discrepant, a more formal test of homogene-
ity of variance is useful; some tests are described in Winer,
Brown, and Michels (1991) and in Keppel (1991). However,
all of these tests tend to be too sensitive, leading to overly
conservative rejection of ANOVA. Except for Levene’s

(1960) test, most also are sensitive to nonnormality of the



DV. Levene’s test performs ANOVA on the absolute values of
the residuals (differences between each score and its group
mean) derived from a standard ANOVA and is available in
SPSS ONEWAY and GLM. Significance indicates possible
violation of homogeneity of variance.

Violations of homogeneity can often be corrected by
transformation of the DV scores, with interpretation, then, of
the transformed scores. Another option is to test untrans-
formed DV scores with a more stringent alpha level (e.g., for
nominal a = .05, use .025 with moderate violation and .01
with severe violation of homogeneity).

Heterogeneity of variance should always be reported and,
in any event, is usually of interest in itself. Why is spread of
scores in groups related to level of treatment? Do some levels
of treatment affect all the cases about the same, while other
levels of treatment affect only some cases or affect some cases
much more strongly? This finding may turn out to be one of
the most interesting in the study and should be dealt with as an
issue in itself, not just as an annoyance in applying ANOVA.

Homogeneity of variance is also an assumption of planned
and post hoc comparisons where groups are often pooled and
contrasted with other groups. Details of adjustment for un-
equal sample sizes and failure of the assumption in various
types of comparisons are discussed in (gory) detail in
Tabachnick and Fidell (2001a, Sections 4.5.5, 5.6.4, 5.6.5).

Independence of Errors and Additivity in
Between-Subjects Designs

Two other assumptions of between-subjects ANOVA are in-
dependence of errors and additivity. The first assumption is
that errors of measurement are independent of one another—
that the size of the error for one case is unrelated to the size
of the error for cases near in time, space, or whatever. This
assumption is easily violated if, for instance, equipment drifts
during the course of the study and cases measured near each
other in time have more similar errors of measurement than
do cases measured farther apart in time. Care is needed to
control such factors because violation of the assumption
can lead to both larger error terms (by inclusion of additional
factors not accounted for in the analysis) and potentially
misleading results if nuisance variables are confounded with
levels of treatment.

Nonindependence of errors is possible also if an experi-
ment is not properly controlled. For experimental IVs, unless
all cases from all groups are tested simultaneously, errors
within groups may be related if all cases within a group are
tested together because cases tested together are subject to
the same nuisance variables. Thus, a mean difference found
between groups could be due to the nuisance variables unique
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to the group rather than to the treatment unique to the group.
If there are potentially important nuisance variables, cases
should be tested individually or simultaneously for all levels,
not in groups defined by levels. This assumption rarely is ap-
plicable for nonexperimental IVs because in the absence of
random assignment to levels of treatment, there is no justifi-
cation for causal inference to the treatments and the assump-
tion of independence loses relevance.

If cases are entered into the data set in sequential order and
the problem is analyzed through regression, the Durbin-
Watson statistic is a formal test of contingencies of errors
among scores close together in the sequence. This statistic
assesses autocorrelation among residuals. If the errors
(residuals) are independent, autocorrelation is zero. If you
suspect violation of this assumption due to contingencies in
the sequence of the cases, use of this analysis is appropriate.
If violation is found, addition of another IV representing the
source of the nonindependence (e.g., time: early, middle, and
late in the study) might account for this source of variability
in the data set.

For between-subjects designs, the assumption of additiv-
ity is that all the factors that contribute to variability in scores
are identified and their effects are properly included in the
model by summing those factors. Part of the assumption is
that there are no other cross products or powers of factors
present beyond the ones that are explicitly entered into the
general linear model (GLM) as sources of variability. The
GLM for a two-factor design (where, e.g., A is type of treat-
ment and B is type of participant) is written as follows:

Y=p+a+B+aB+e (5.7)

The sources of variability in the DV (Y) identified in this
equation are the grand mean (), type of treatment (), type
of participant (3), the interaction of type of treatment with
type of participant (a[3), and error (e). Here the interaction
term is explicitly part of the GLM and is automatically de-
veloped during the analysis. The assumption of additivity is
violated if scores are not simple sums of their components,
factors are not additive, or if cross products or powers of fac-
tors are present but not included in the analysis. In between-
subjects designs, assessment of this assumption is mostly the
logical problem of including all of the potential factors and
their interactions in an analysis.

Independence of Errors, Additivity, Homogeneity of
Covariance, and Sphericity in Within-Subjects Designs

In within-subjects ANOVA with more than two levels of the re-
peated measures, independence of errors and additivity are
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often untenable assumptions. In these designs, scores measured
more than once for each participant are almost always corre-
lated because of consistency in individual differences among
cases. Although some kinds of individual differences are re-
moved by calculating variance due to subjects in the analysis,
there are likely still correlations among the repeated measures.
When such correlations are present, the F test for the effect of
treatment is too liberal, and the probability of Type I error is
greater than the nominal value.

The relevant assumption of sphericity is violated when
the variances of difference scores among pairs of levels of a
repeated-measure IV are unequal. That is, the variance in dif-
ference scores between two adjacent levels (e.g., a, and a,) is
likely to differ from the variance in difference scores be-
tween, say, a, and as; when the IV is something like time
because scores taken at adjacent periods in time are apt to be
more like each other (lower difference scores) than are scores
taken farther apart in time.

There is some confusion in the literature regarding as-
sumptions of sphericity, additivity, and compound symmetry
(the combination of the assumption of homogeneity of vari-
ance and the assumption of homogeneity of covariance).
Often these are discussed as if they are more or less inter-
changeable. Table 5.1 describes differences among them in
greater detail (and a yet more extended discussion is avail-
able in Tabachnick & Fidell, 2001a).

Additivity is the absence of a true treatment (A) by partici-
pant (S) interaction (i.e., AS); this serves as the error term in
standard repeated-measures ANOVA and is supposed to rep-
resent only error. However, if treatment and participants truly
interact (i.e., if some participants react differently than other
participants to the different levels of treatment), this is a
distorted error term because it includes a true source of
variance (the interaction) as well as random error. Because
the interaction means that different cases have different pat-
terns of response to treatment, a better, more powerful, and

TABLE 5.1 Definitions of Sphericity, Compound Symmetry,
and Additivity

Assumption Definition

Variances of difference scores between
all pairs of levels of A are equal.

Sphericity

Compound symmetry
Homogeneity of variance
Homogeneity of

covariance

Variances in different levels of A are equal.

Correlations between pairs of levels of A
are equal, and variances of difference
scores between all pairs of levels of A
are equal.

There is no true AS interaction; difference
scores are equivalent for all cases.
Variances of difference scores are zero.

Additivity

generalizable design takes the interaction into account by
blocking on cases that have similar patterns of response to the
levels of IV. For example, if younger participants show one
consistent pattern of response over the levels of the repeated
measures [V and older participants show a different consistent
pattern of response, age should be included as an additional
between-subjects I'V. This provides an explicit test of the for-
mer nonadditivity (treatment by age) and removes it from the
error term.

The relevant assumption is of sphericity—that the vari-
ances of difference scores between pairs of levels of A are
equal. This explains why the assumption does not apply
when there are only two levels of A: There is only one vari-
ance of difference scores. With complete additivity, there is
zero variance in difference scores, and because all zeros are
equal, there is also sphericity. Thus, additivity is the most re-
strictive form of the assumption.

The next most restrictive assumption is compound sym-
metry: that both the variances in levels of A and correlations
between pairs of levels of A are equal. In this situation the
variances in difference scores are not zero (as they are with
additivity), but they are equal. With either additivity or com-
pound symmetry, then, the assumption of sphericity is met.
However, it is possible to have sphericity without having ei-
ther additivity or compound symmetry, as demonstrated in
Myers and Well (1991).

If your data meet requirements for either additivity or
compound symmetry, you can be confident about sphericity.
However, if requirements for additivity or compound sym-
metry are not met, you may still have sphericity and have a
noninflated F test of treatment. In practice, researchers rely
on the results of a combination of tests for homogeneity of
variance and the Mauchly (1940) test for sphericity.

SYSTAT ANOVA and GLM as well as SPSS GLM offer
the Mauchly test of sphericity by default; SAS GLM and
ANOVA produce it by request. In addition, all programs in
the three packages that do within-subjects ANOVA display
epsilon factors that are used to adjust degrees of freedom
should the assumption of sphericity be violated. (MINITAB
does not recognize within-subjects designs and thus offers no
information about sphericity or correction for its violation.) If
the Mauchly test is nonsignificant, if the adjustment based on
epsilon (described below) does not alter the nominal proba-
bility of rejecting the null hypothesis, and if conditions for
homogeneity of variance are met, the F' test for routine
within-subjects ANOVA is appropriate.

The Mauchly test, however, is sensitive to nonnormality
of the DV as well as to heterogeneity of covariance.
Therefore, it is sometimes significant when there is nonnor-
mality rather than failure of sphericity. If the Mauchly test is



significant, then, closer examination of the distribution of the
DV is in order. If it is markedly skewed, the sphericity test
should be repeated after a normalizing transformation of the
DV. If the test is now nonsignificant, the problem with the
data set is probably nonnormality rather than failure of
sphericity. If the test is still significant, there is probably
nonsphericity. The Mauchly test also has low power for small
samples and is overly sensitive with very large samples.
Thus, with large samples it is sometimes significant when de-
parture from sphericity is slight. It is always worthwhile,
then, to consider the magnitude of the epsilon factor, even
when the test of sphericity is explicitly provided.

There are five options when the assumption of sphericity
is not tenable: (a) use comparisons on the IV in question (usu-
ally trend analysis) instead of the omnibus test; (b) use an ad-
justed F test; (c) use a multivariate test of the within-subjects
effects; (d) use a maximum likelihood procedure that lets you
specify that the structure of the variance-covariance matrix is
other than compound symmetry; or (e) use a multilevel mod-
eling approach in which the multiple responses over time are
the lowest level of analyses and are nested with subjects, the
next higher level of analysis.

The first option—comparisons—takes advantage of the
fact that sphericity is not required when there is only one df
for the within-subjects I'V. This option, in the form of trend
analysis, is often a good one because questions about trends
in the DV over time are usually the ones that researchers want
answered anyway, and the assumption of sphericity is most
likely to be violated when the IV is time related. Trend analy-
sis asks, “Does the DV increase (or decrease) steadily over
time?” “Does the DV first increase and then decrease (or the
reverse)?” “Are both patterns present, superimposed on each
other?” and “Are there other, more complicated, patterns in
the data?” Before the sophisticated software was available
for other options, trend analysis (or other comparisons) was
preferred on strictly computational grounds. It is still pre-
ferred if the researcher has questions about the shape of the
patterns in the DV over time. However, a disadvantage of
trend analysis (or any set of comparisons) in within-subjects
design is that each comparison develops its own error term.
This reduces the number of df for error—and consequently
the power—available for the test of the comparison.

The second option is to use a more stringent F test of
the IV in question. Both Greenhouse-Geisser (1959) and
Huynh-Feldt (1976) adjustments are offered by all three
software packages that recognize within-subjects designs.
Both compute an adjustment factor, epsilon (¢), that is used
to reduce df associated with both numerator and denomina-
tor of the F test. Reducing df makes the F test more conser-
vative. Both Greenhouse-Geisser and Huynh-Feldt compute
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an epsilon value, but Greenhouse-Geisser usually produces
a stronger adjustment (larger value) than Huynh-Feldt. The
more liberal Huynh-Feldt adjustment is usually preferred be-
cause it seems to produce results closer to nominal alpha
levels.

The third option is to use the multivariate approach to re-
peated measures (a form of MANOVA called profile analysis
of repeated measures) that does not require sphericity. De-
scription of multivariate tests is available in Harris (2001),
Stevens (2001), and Tabachnick and Fidell (2001b, chaps. 9
and 10), among others.

A fourth option is to use a maximum likelihood strategy
instead of ANOVA, in which the variance-covariance matrix
is user-specified or left unspecified. SAS MIXED, SYSTAT
MIXED REGRESSION, and SPSS MIXED MODEL pro-
duce this type of analysis. The appropriate variance-covari-
ance matrix structure for a time-related within-subjects IV,
for example, is first-order autoregressive—AR(1)—in which
correlations among pairs of levels decrease the farther apart
they are in time.

The fifth option, multilevel modeling (MLM), circum-
vents the assumption of sphericity by viewing individuals as
levels of an IV, with repeated measurements nested (and
modeled) separately within each subject. An advantage of
MLM over repeated-measures ANOVA is that there is no re-
quirement for complete data over occasions (although it is as-
sumed that data are missing completely at random); nor need
there be equal intervals between measurement occasions for
any units. That is, there is no need for equal numbers or
intervals of measurements for each case. Another important
advantage of MLM for repeated-measures data is the oppor-
tunity to test individual differences in growth curves (or
any other pattern of responses over the repeated measure).
Are the regression coefficients the same for all cases? Each
case gets its own regression equation, and it is possible to
evaluate whether individuals do indeed differ in pattern of re-
sponses over the repeated measure or in their mean response.

ANOVA programs in all three packages that recognize
within-subjects designs give trend analyses, multivariate
tests, and Huynh-Feldt adjustment by default, so the re-
searcher can easily choose any of those three options. The
fourth and fifth options, maximum likelihood analysis and
multilevel, are included in special “mixed” programs.

Multivariate Assumptions

Multivariate analyses differ from univariate analyses by
simultaneously considering two or more variables. For exam-
ple, MANOVA is the multivariate extension of ANOVA
where all participants provide scores for two or more DVs
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(e.g., speed and accuracy of response). Multiple regression is
the extension of bivariate regression to predicting the DV
from several (potentially correlated) IVs instead of from a
single IV. Most multivariate analyses have all the assump-
tions of the univariate analysis plus others due to the rela-
tionships between multiple DVs or multiple IVs. For the
most part, these assumptions are a logical extension of their
univariate counterparts.

Multivariate Normality

Multivariate normality is the assumption that all variables and
all linear combinations of those variables are normally dis-
tributed. When the assumption is met, the residuals of analy-
sis are normally distributed and independent. The assumption
of multivariate normality is not readily tested because it is im-
possible to test all linear combinations of variables for nor-
mality. Those tests that are available are overly sensitive.

The assumption of multivariate normality is partially
checked by examining the normality of individual vari-
ables and the linearity and homoscedasticity of pairs of
variables (discussed later) or by examining the residuals
of analysis. The assumption is certainly violated, at least to
some extent, if the individual variables are not normally dis-
tributed (or lack pair-wise linearity and homoscedasticity) or
the residuals are not normally distributed. Figure 5.8 shows
scatter plots of some idealized residuals from a regression
analysis in which residuals for a group of IVs are plotted
against predicted scores on a DV (Y’). When there is multi-
variate normality, the envelope of residuals is roughly the
same width over the range of the predicted DV, and the rela-
tionship is linear. Similar residuals plots are available in
many programs of all major statistical packages.

Transformations that improve univariate normality also
facilitate multivariate normality. The analysis is likely to be
enhanced when variables are transformed to more nearly
normal, especially if the variables have different amounts and
directions of skewness and kurtosis.

Linearity and Homoscedasticity Between Pairs
of Variables

The assumption of multivariate linearity is that there are
straight-line relationships between all pairs of variables.
Multivariate analyses based on correlation capture only the
linear relationships among variables, so nonlinear relation-
ships among variables are ignored unless specifically added
into the analysis by the researcher.

The assumption of homoscedasticity for ungrouped data is
that the variability in scores for one continuous variable is

(A) Predicted Y"' (B) Predicted Y"'

Residuals (errors)
=

© (D)

Residuals (errors)
=}

Figure 5.8 Plots of predicted values of the DV (Y’) against residuals,
showing (A) assumptions met, (B) failure of normality, (C) nonlinearity, and
(D) heteroscedasticity. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).

roughly the same at all values of another continuous variable.
Failures of linearity and homoscedasticity of residuals are il-
lustrated in Figure 5.8 (panels C and D).

Heteroscedasticity, the failure of homoscedasticity, oc-
curs because one of the variables is not normally distributed
(i.e., one variable is linearly related to some transformation
of the other), because there is greater error of measurement
of one variable at some levels, or because one of the vari-
ables is spread apart at some levels by its relationship to a
third variable (measured in the design or not), as seen in Fig-
ure 5.9. An example of true heteroscedasticity is the rela-
tionship between age (X,) and income (X,), as depicted in
Figure 5.9, panel B. People start out making about the same
salaries, but with increasing age, people spread farther apart
on income. In this example, income is positively skewed,
and transformation of income is likely to improve the ho-
moscedasticity of its relationship with age. An example of
heteroscedasticity caused by greater error of measurement at
some levels of an IV might be weight. People in the age
range of 25 to 45 are probably more concerned about
their weight than are people who are younger or older. Older
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Figure 5.9 Bivariate scatter plots under conditions of homoscedasticity
and heteroscedasticity. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).

and younger people, then, are likely to give less reliable
estimates of their weight, increasing the variance of weight
scores at those ages.

Nonlinearity and heteroscedasticity are not fatal to an
analysis of ungrouped data because at least the linear com-
ponent of the relationship between the two variables is
captured by the analysis. However, the analysis misses the
other components of the relationship unless entered by
the researcher.

Nonlinearity and heteroscedasticity are diagnosed either
from residuals plots or from bivariate scatter plots. As seen in
Figure 5.8 (for residuals) and Figure 5.9 (for bivariate scatter
plots), when linearity and homoscedasticity are present, the
envelope of points is roughly the same width over the range
of values of both variables and the relationship is adequately
represented by a straight line. Departures from linearity and
homoscedasticity distort the envelope over certain ranges of
one or both variables. Normalizing transformations improve
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linearity and homoscedasticity of the relationship and, usu-
ally, the results of the overall analysis.

Sometimes, however, skewness is not just a statistical
problem; rather, there is a true nonlinear relationship between
two variables, as seen in Figure 5.10, panel A. Consider, for
example, the number of symptoms and the dosage of drug.
There are numerous symptoms when the dosage is low, only
a few symptoms when the dosage is moderate, and lots of
symptoms again when the dosage is high, reflecting a qua-
dratic relationship. One alternative to capture this relation-
ship is to use the square of the number of symptoms instead
of the number of symptoms in the analysis. Another alterna-
tive is to recode dosage into two dummy variables (using lin-
ear and then quadratic trend coefficients) and then use the
dummy variables in place of dosage in analysis. Alterna-
tively, a nonlinear analytic strategy could be used, such as
that available through SYSTAT NONLIN.

In panel B of Figure 5.10 two variables have both linear and
quadratic relationships. One variable generally gets smaller
(or larger) as the other gets larger (or smaller), but there is also
a quadratic relationship. For instance, symptoms might drop
off with increasing dosage, but only to a point; increasing
dosage beyond the point does not result in further change of
symptoms. In this case, the analysis improves if both the linear
and quadratic relationships are included in the analysis.

Assessing linearity and homoscedasticity through bivari-
ate scatter plots is difficult and tedious, especially with small
samples and numerous variables, and more especially when
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Figure 5.10 Curvilinear and curvilinear plus linear relationships.

Reprinted with permission of Tabachnick and Fidell (2001b), Using multi-
variate statistics (Boston: Allyn and Bacon).
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subjects are grouped and the search is conducted separately
within each group. If there are only a few variables, screening
all possible pairs is possible; but if there are numerous vari-
ables, you may want to use statistics on skewness to screen
for only pairs that are likely to depart from linearity. Think,
also, about pairs of variables that might have true nonlinear-
ity and heteroscedasticity and examine them through bivari-
ate scatter plots. Bivariate scatter plots are produced by
PLOT procedures in SPSS, SYSTAT, MINITAB, and SAS,
among other programs. You could also detect nonlinearity
and heteroscedasticity through residuals (cf. Figure 5.8).

Absence of Multivariate Outliers in Variables
and the Solution

A multivariate outlier is a case with a peculiar combination of
scores on two or more variables. For example, a person who
is 5 feet 2 inches tall is within normal range, as is a person
who weighs 230 pounds, but a short person who is that heavy
has an unusual combination of values. A multivariate outlier
such as this may have more impact on the results of analysis
than other cases in the sample. Consider, for example, the bi-
variate scatter plot of Figure 5.11, in which several regression
lines, all with slightly different slopes, provide a good fit to
the data points inside the swarm. But when the data point la-
beled A in the upper right-hand portion of the scatter plot is
also considered, the regression coefficient that is computed is
the one from among the several good alternatives that pro-
vides the best fit to the extreme case. The case is an outlier
because it has much more impact on the value of the regres-
sion coefficient than do any of those inside the swarm.

One statistic used to identify multivariate outliers is
Mahalanobis distance, the distance of a case from the centroid
of the remaining cases where the centroid is the intersection of
the means of all the variables in multidimensional space. In
most data sets the cases form a swarm around the centroid in
multivariate space. Each case is represented in the swarm by a

A

Figure 5.11 Bivariate scatter plot for showing impact of an outlier.
Reprinted with permission of Tabachnick and Fidell (2001b), Using multi-
variate statistics (Boston: Allyn and Bacon).

single point at its own peculiar combination of scores on all of
the variables. A case that is a multivariate outlier lies outside
the swarm, some distance from the other cases. Mahalanobis
distance is one measure of that multivariate distance, and it
can be evaluated for each case using the chi-square distribu-
tion with a very conservative probability estimate for a case
being an outlier (e.g., p < .001).

Other statistical measures used to identify multivariate
outliers are leverage, discrepancy, and influence. Although
developed in the context of multiple regression, these mea-
sures are now available for some other analyses. Leverage is
related to Mahalanobis distance (or variations of it in the hat
matrix) and is variously called HATDIAG, RHAT, or 7.
Although leverage is related to Mahalanobis distance, it is
measured on a different scale so that significance tests based
on a chi-square distribution do not apply. Lunneborg (1944)
suggested that outliers be defined as cases with leverage
greater than 2 (k/N), where k is the number of variables.
Equation 5.8 shows the relationship between leverage B(h,,)B
and Mahalanobis distance:

Mahalanobis distance = (N — 1)(h;; — 1/N) (5.8)
Or, as is sometimes more useful if you want to find a critical
value for leverage at a = .001 by translating the critical chi-

square value for Mahalanobis distance:

B — Mahalanobis distance " 1
" N—1 N

(5.9)

Cases with high leverage are far from the others, but they
can be far out along the same line as the other cases, or far away
and off the line. Discrepancy measures the extent to which
a case is in line with the others. Panel A of Figure 5.12 shows a
case with high leverage and low discrepancy; panel B shows a
case with high leverage and high discrepancy. Panel Cis a case
with low leverage and high discrepancy. In all of these figures,
the outlier appears disconnected from the remaining scores.

Influence is a product of leverage and discrepancy (Fox,
1991). It assesses the change in regression coefficients when
a case is deleted; cases with influence scores larger than 1.00
are suspected of being outliers. Measures of influence are
variations of Cook’s distance and are identified in output as
Cook’s distance, modified Cook’s distance, DFFITS, and
DBETAS. Fox (1991, pp. 29-30) described these statistics in
more detail.

Leverage or Mahalanobis distance values are available as
statistical methods of outlier detection in several statistical
packages. However, some studies (e.g., Egan & Morgan,
1998; Hadi & Simonoff, 1993; Rousseeuw & van Zomeren,
1990) indicate that these methods are not perfectly reliable.
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Figure 5.12 The relationships among leverage, discrepancy, and influence. Reprinted with permission of Tabachnick
and Fidell (2001b), Using multivariate statistics (Boston: Allyn and Bacon).

Unfortunately, methods with greater reliability are currently
unavailable in popular statistical packages. Therefore, multi-
variate outliers are detected through Mahalanobis distance,
or one of its cousins, but cautiously.

Statistics assessing the distance for each case, in turn,
from all other cases are available through SPSS REGRES-
SION (among others) when you specify some arbitrary
variable (e.g., the case number) as DV and the set of variables
of interest as IVs. Outliers are detected by evoking
Mahalanobis, Cook’s, or Leverage values through the Save
command in the Regression menu (where these values are
saved as separate columns in the data file and examined using

REGRESSION
/STATISTICS COLLIN
/DEPENDENT subno

standard descriptive procedures) or by examining the 10
cases with largest Mahalanobis distance printed out by SPSS
REGRESSION through the RESIDUALS subcommand. A
number of other regression programs, including those in SAS
and SYSTAT, provide a leverage value, A, for each case that
converts easily to Mahalanobis distance (Equation 5.8).
These values are also saved to the data file and examined
using standard statistical and graphical techniques.

Figure 5.13 shows syntax and output for identifying multi-
variate outliers for ungrouped data using the downloaded
SCREEN.SAV data set (available from www.abacon.com/

tabachnick). In this data set (described more fully in

/METHOD=ENTER ltimedrs attdrug atthouse income emplmnt mstatus race

/RESIDUALS=0UTLIERS(MAHAL) .

Outlier Statistics?

Mahal. Distance

7
2
3
4
5
6
7
8
9
10

Case
Number Statistic

117 21.837
193 20.650
435 19.968

99 18.499
335 18.469
292 17.518

58 17.373

71 17.172
102 16.942
196 16.723

a. Dependent Variable: Subject number

Figure 5.13 Syntax and Mahalanobis distance for ungrouped data produced by SPSS

REGRESSION for the SCREEN.SAV data set.
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ATTDRUG ATTHOUSE MSTATUS RACE

Mahalanobls distance-sguare from group means anc
Posterior probablilities for group membership

MODEL EMPLMNT = TIMEDRS
DISCRIM
PRINT NONE / MAHAL
ESTTMATE
PRINT SHORT
Priors = .500
0 1
0
2 -——> 1.7 .45
3 -—> 1.3 .44
6 > 1.1 .44
10 5.4 .74
16 11.7 .55 1
18 5.9 .76
20 -> 5.4 .36
21 -—— 3.7 .48
22 8.9 .58
23 —-—> 1.2 .44
25 -——> 2.7 .38
26 -> 7.0 .43
29 6.0 .78
30 - 4.6 42
31 4.1 51
32 2.7 .50
33 -—> 3.3 .41
36 4.9 .50
38 12.5 .60 1
39 - 4.2 .39
40 -—> 25.7 .30 2
a1 -— 2.1 .40
az - 2.5 .39
44 -—> 4.1 47

LE=RL PR s s I L |

b B b Lo Lo L s B B W W00 Oy

.500

Figure 5.14 Syntax and Mahalanobis distance for grouped data produced by SYSTAT

DISCRIM for the SCREEN.SAV data set.

Tabachnick & Fidell, 2001b), the TIMEDRS variable has been
logarithmically transformed to become LTIMEDRS. SUBNO
(case label) and is used as a dummy DV, convenient because
multivariate outliers among IVs are unaffected by the DV.
(The COLLIN instruction requests collinearity diagnostics,
described in a later section.) Mahalanobis distance is evalu-
ated as x? at p < .001 with degrees of freedom equal to
the number of variables, in this case five: LTIMEDRS,
ATTDRUG, ATTHOUSE, MSTATUS, and RACE. Any case
(such as cases 117 and 193) with a Mahalanobis distance
greater than 20.515 (2 value at @ = .001 with 5 df), then, is a
probable multivariate outlier.

In grouped data, multivariate outliers are sought sepa-
rately within each group. SYSTAT DISCRIM can be used
to print out Mahalanobis distance for each case with grouped
data. Use of other programs, including SPSS and SAS
REGRESSION, requires separate runs for each group. How-
ever, different error terms are developed, and different cases
may be identified as outliers when separate runs for each group
are used instead of a single run for within-group outliers.

Figure 5.14 shows syntax and output using SYSTAT
DISCRIM with the SCREEN.SAV data set. Mahalanobis
distance may be shown either in output or added to the data
file. Figure 5.14 shows part of the section that provides
Mabhalanobis distance for each case from the centroid of
each group. The grouping variable, EMPLMNT, has two
levels, 0 (paid workers) and 1 (housewives).

Mahalanobis distance is shown first for the paid workers
(group 0) with case sequence number in the first column. The
next two columns show Mahalanobis distance (and posterior
probability) for those cases from their own group. The last
two columns show Mahalanobis distance (and posterior
probability) for those cases from the other group (group 1).
Using x? =20.515 (¢ =.001 with 5 df) as the criterion,
Figure 5.14 shows that case 40 (identified as SUBNO = 48 in
the data set) is a multivariate outlier among paid workers.

Sometimes multivariate outliers hide behind other multi-
variate outliers (Rousseeuw & von Zomren, 1990). When the
first few cases identified as outliers are deleted, the data set be-
comes more consistent so that other cases become extreme.



Robust approaches to this problem have been proposed (e.g.,
Egan & Morgan, 1998; Hadi & Simonoff, 1993; Rousseeuw &
von Zomren, 1990), but these are not yet implemented in pop-
ular software packages. These methods can be approximated
by screening for multivariate outliers two or more times, each
time dealing with cases identified as outliers on the previous
run, until finally no new outliers are identified. But if there
seem to be too many outliers, do a trial analysis with and with-
out later-identified outliers to see if they are truly changing re-
sults. If not, retain them in the analysis. (This is also a worth-
while strategy to apply for early-identified outliers if there
seem to be too many of them.)

Once multivariate outliers are identified, you need to dis-
cover why the cases are extreme. (You already know why
univariate outliers are extreme.) It is important to identify the
variables on which the cases are deviant to help you decide
whether the case is properly part of your sample and to pro-
vide an indication of the kinds of cases to which your results
do not generalize. If there are only a few multivariate out-
liers, it is reasonable to examine them one at a time through
multiple regression in which a dichotomous DV is formed on
the basis of the outlying case. If there are several outliers, you
may want to examine them as a group to see if there are any
variables that consistently separate the group of outliers from
the rest of the cases. These procedures are illustrated in
Tabachnick and Fidell (2001b).

First, identify potential univariate outliers and then begin
the search for multivariate outliers. The solutions that elimi-
nate univariate outliers also tend to reduce the number of
multivariate outliers, but sometimes not completely because
the problem with a true multivariate outlier is the combina-
tion of scores on two or more variables, not the score on any
one variable. To deal with multivariate outliers, first consider
the possibility that one variable is implicated for many of
them. If so, and the variable is highly correlated with others
in a multivariate design or is not critical to the analysis, dele-
tion of it is a good alternative. Otherwise, multivariate out-
liers are usually deleted.

After the analysis is complete, look for outliers in the
solution as a hint to the kinds of cases for which the solution
does not work very well. Outliers in the solution for un-
grouped data are found through examination of residuals.
Outliers in the solution for grouped data are available as
Mahalanobis distance through SPSS DISCRIMINANT. This
program produces Mahalanobis distance based on discrimi-
nant function scores (with df = number of discriminant func-
tions) rather than raw scores and so provides information
about outliers in the solution. The lists of outliers produced
by SYSTAT DISCRIM are not the same because the program
identifies outliers among the original variables. Or you can
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visually examine residuals produced by running each group
separately through any multiple regression program.

Absence of Collinearity and Singularity

Problems with collinearity and singularity occur when two or
more variables are too highly or perfectly correlated. With
collinearity, the variables are very highly correlated—for ex-
ample, scores on the Wechsler Adult Intelligence Scale
(WAIS) and scores on the Stanford-Binet Intelligence Scale.
With singularity, the variables are redundant because one
variable is a combination of two or more other variables (e.g.,
total WAIS score is a combination of subscale scores). In sta-
tistical terms, a singular correlation matrix is not of full rank
because there are not as many variables as columns.

Collinearity and singularity cause both logical and statisti-
cal problems. The logical problem is that redundant variables
are not needed in the same analysis unless you are analyzing
structure (through factor analysis, principal components
analysis, or structural equation modeling), dealing with
repeated measures of the same variable, or dealing with in-
teractions or powers of variables along with the original
variables in the same analysis (Aiken & West, 1991). Before
including two variables with a bivariate correlation of, say,
.70 or more in the same analysis, consider omitting one of the
variables or creating a composite score from the correlated
variables.

Statistical problems with a singular correlation matrix
occur because matrix inversion (the equivalent of division in
scalar algebra) is impossible and the determinant is zero.
Therefore, runs for an analysis requiring matrix inversion are
aborted until the redundant variable is eliminated. With
collinearity, the determinant is not exactly zero, but it is zero
to several decimal places. Division by a near-zero determi-
nant produces very large and unstable numbers in the in-
verted matrix that fluctuate considerably with only minor
changes (e.g., in the second or third decimal place) in the
sizes of correlations. The portions of a multivariate solution
that follow this matrix inversion are unstable. In regression,
for instance, standard error terms for the regression coeffi-
cients get so large that none of the coefficients is significant
(Berry, 1993). When r is .9 or above, the precision of estima-
tion of weighting coefficients is halved (Fox, 1991).

Statistical problems are also present when there is
collinearity caused by interactions among continuous var-
iables or variables taken to powers. The remedy is to center
those continuous variables by replacing raw scores for
those variables with scores that are deviations from their
means (see Aiken & West, 1991, for further discussion of
centering).
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Collinearity Diagnostics?

Variance Proportions
Attitudes | Attitudes | Whether
Condition toward toward | currently
Model Dimension |Eigenvalue| Index (Constant) | medication | housework | married RACE | TIMEDRS
1 1 5.656 1.000 .00 00 00 .00 00 01
2 210 5.193 .00 00 00 .01 02 92
3 .026E-02 9.688 .00 00 01 .29 66 01
4 271E-02 11.508 .00 03 29 46 16 06
5 476E-02 15.113 .00 53 41 .06 04 00
6 .785E-03 28.872 .99 43 29 18 12 00

a. Dependent Variable: Subject number

Figure 5.15 Collinearity diagnostics produced by SPSS REGRESSION for the SCREEN.SAV data set. Syntax in

Figure 5.13.

Both bivariate and multiple correlations can be collinear
or singular. A bivariate collinear relationship has a correla-
tion of .90 or above and is resolved by deletion of one of
the two variables. With a multivariate collinear relationship,
diagnosis is more difficult because the collinearity is not
necessarily apparent through examination of bivariate cor-
relations. Instead, multivariate statistics are needed, such as
squared multiple correlations (SMCs, in which each vari-
able, in turn, serves as the DV with the others as IVs), tol-
erances (I — SMC), or collinearity diagnostics. SMCs are
available through factor analysis and regression programs
in statistical software packages. However, SMCs are not
evaluated separately for each group if you are analyzing
grouped data. PRELIS provides SMCs for structural equa-
tion modeling.

Most modern programs automatically protect against sin-
gularity. Screening for collinearity that causes statistical in-
stability is also routine with most programs because they
have tolerance criteria for inclusion of variables. If the toler-
ance is too low, the variable does not enter the analysis. De-
fault tolerance levels range between .01 and .0001, so SMCs
are .99 to .9999 before variables are excluded. You may wish
to take control of this process, however, by adjusting the tol-
erance level (an option with many programs) or deciding
yourself which variables to delete instead of letting the pro-
gram make the decision on purely statistical grounds.

SAS, SYSTAT, and SPSS have recently incorporated
collinearity diagnostics proposed by Belsley, Kuh, and
Welsch (1980) in which both a condition index and variance
proportions associated with each standardized variable are
produced for each root (dimension, factor, principal compo-
nent). Variables with large variance proportions are those
with problems.

Condition index is a measure of tightness or dependency of
one variable on the others. The condition index is monotonic

with SMC, but not linear with it. A high condition index is as-
sociated with variance inflation in the standard error of a para-
meter estimate for a variable. As the standard error increases,
parameter estimation becomes more and more uncertain.
Each root (dimension) accounts for some proportion of the
variance of each parameter estimated. There is a collinearity
problem when a root with a high condition index contributes
strongly (has a high variance proportion) to the variance of
two or more variables. Criteria for collinearity suggested by
Belsely et al. (1980) are a condition index greater than 30 for
a given root coupled with at least two variance proportions for
individual variables greater than 0.50.

Figure 5.15 shows output of SPSS REGRESSION for
assessing collinearity for the SCREEN.SAV data set. Al-
though the last dimension (root) has a Condition Index that
approaches 30, no variable (column) has more than one
Variance Proportion greater than .50. Therefore, no collinear-
ity is evident.

Homogeneity of Variance, Homoscedasticity,
and Homogeneity of Variance/Covariance Matrices
in Grouped Designs

The assumption of homoscedasticity for ungrouped data
becomes the assumption of homogeneity of variance for
grouped data where the variability in a DV is expected to be
about the same at all levels of an IV. As previously discussed,
heterogeneity of variance affects the robustness of ANOVA
and ANOVA-like analyses.

In multivariate ANOVA-like analyses, homogeneity of
variance becomes homogeneity of variance-covariance
matrices because more than one DV is measured each time.
Within each cell of the design, there is a matrix of variances
and covariances for the several DVs. Homogeneity of

variance is present if each of the DVs has an F,,  value



(Equation 5.6) of less than 10 across the cells of the design
(when there is nearly equal n). Further, within each cell, the
DVs covary (are correlated with each other) to varying
extents, and the pattern of those correlations should be about
the same across the cells. There is homogeneity of the
variance/covariance matrices, then, when the DVs have
about the same variability and are related to each other to
similar extents in all cells.

Box’s M is a formal test of homogeneity of variance/
covariance matrices, but it is too strict with the large sample
sizes and the roughly equal n often associated with multivari-
ate analyses. The researcher can, with confidence, assume
homogeneity of variance/covariance matrices if Box’s M is
not significant, if sample sizes are equal, or if larger sample
sizes are associated with larger variances. But Monte Carlo
studies by Hakstian, Roed, and Lind (1979) show that ro-
bustness is not guaranteed if Box’s M is significant, if there is
substantial unequal 7, and if the larger variances are associ-
ated with smaller samples. The greater the discrepancy in cell
sample sizes is, the greater the potential Type I error rate. One
remedy is to use an alternative criterion for testing the multi-
variate significance of differences among group means such
as Pillai’s criterion instead of the more common Wilk’s
lambda (Olson, 1979). Another is to equalize sample sizes by
random deletion of cases if power can be maintained at rea-
sonable levels.

Normalizing Transformations for Minimizing
Violation of Assumptions

Transformations are often undertaken because a variable vio-
lates normality, has outliers, has heterogeneity of variance, or
has heteroscedasticity and nonlinearity in its relationship
with other variables. Transformation is a sensible practice
when variables are assessed on scales that are more or less ar-
bitrary anyway, as are many scales in psychology. However,
interpretation is of the transformed variable and may be both-
ersome for scores measured on well-known scales or scales
with carefully developed psychometric properties.

If you decide to transform, check that the distribution is
improved by transformation. If a variable is only moderately
positively skewed, for instance, a square root transformation
may make the variable moderately negatively skewed so
nothing is gained. Often, you need to try first one transforma-
tion and then another until you find the transformation that
reduces skewness and kurtosis values to near zero, has the
fewest outliers, or produces homogeneity of variance and
linearity.

The type of transformation necessary to improve the fit to
assumptions also conveys substantive information. For ex-
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ample, a transformation that makes an IV-DV relationship
linear also conveys information about how much the DV is
changing with the same-sized changes in the IV. That is, the
DV may grow exponentially with linear changes in the IV,
the DV may grow linearly with exponential changes in the
IV, or there may be a linear relationship between the IV-DV
exponents. If the IV-DV relationship is linear, DV scores go
from 1 to 2 to 3 as the IV goes from 1 to 2 to 3; if the rela-
tionship is a square root, the DV scores go from 1 to 4 to 9 as
the IV goes from 1 to 3; and if the relationship is log,,, the
DV scores go from 10 to 100 to 1,000.

The log is probably the easiest transformation to under-
stand because in the simplest, most familiar situation (log,,
and, e.g., a DV score of 10 associated with a score of 1 on the
IV), a change in the IV from 1 to 2 changes the DV from 10
to 100, whereas a change in the IV from 2 to 3 changes the
DV from 100 to 1,000. Two therapy sessions are 10 times
more effective than one, and three therapy sessions are
100 times more effective than one (and three therapy sessions
are 10 times more effective than two). That is, each change of
one unit in the I'V increases the DV by a factor of 10. If log,
is used instead, a one-unit change on the IV changes the DV
by a factor of 2 (i.e., doubles it).

With square root transformations, the change is not as
rapid as with logs. For example, a change in the IV from 1 to
2 changes the DV from 3.16 (square root of 10) to 10 (square
root of 100) while a change from 2 to 3 changes the DV from
10 to 31.6 (square root of 1,000). That is, three therapy
sessions are 10 times more effective than one (instead of
100 times more effective than one), and two sessions are
about 3 times as effective as one.

Figure 5.16 presents distributions of single variables that
diverge from normality to different degrees, together with
the transformations that are likely to render them normal. If
the distribution differs moderately from normal, a square
root transformation is tried first. If the distribution differs
substantially, a log transformation is tried. If the distribu-
tion differs severely, the inverse is tried; or if preserving
order is desired, the negative of the inverse is used (Tukey,
1977). According to Bradley (1982), the inverse is the best
of several alternatives for J-shaped distributions, but even it
may not render the distribution acceptably normal. Finally,
if the departure from normality is severe and no transfor-
mation seems to help, you may want to try dichotomizing
the variable.

The direction of the deviation is also considered. When
distributions have negative skewness, the best strategy is to
reflect the variable and then apply the appropriate transfor-
mation for positive skewness. To reflect a variable, find the
largest score in the distribution and add 1 to it to form a
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EXAMINE
VARIABLES=var_a var_d
/PLOT BOXPLOT
/COMPARE GROUP

/STATISTICS DESCRIPTIVES EXTREME

/CINTERVAL 95
/MISSING LISTWISE

/NOTOTAL.
Explore
Descriptives
Statistic Std. Error
VAR_A Mean 51.1600 1.3399
95% Confidence Lower Bound 48.4673
Interval for Mean Upper Bound 53.8527
5% Trimmed Mean 51.1000
Median 50.0000
Variance 89.770
Std. Deviation 9.4747
Minimum 32.00
Maximum 72.00
Range 40.00
Interquartile Range 14.2500
Skewness .220 .337
Kurtosis -.650 .662
VAR_D Mean 50.5200 1.3727
95% Confidence Lower Bound 47.7615
Interval for Mean Upper Bound 53.0785
5% Trimmed Mean 511111
Median 50.0000
Variance 94.214
Std. Deviation 9.7064
Minimum 13.00
Maximum 69.00
Range 56.00
Interquartile Range 10.5000
Skewness -1.218 .337
Kurtosis 3.498 662

Figure 5.16 Shape of distributions and common transformations to produce normality. Reprinted
with permission of Tabachnick and Fidell (2001b), Using multivariate statistics (Boston: Allyn and

Bacon).

constant that is larger than any score in the distribution. Then
create a new variable by subtracting each score from the con-
stant. In this way, a variable with negative skewness is con-
verted to one with positive skewness prior to transformation.
When you interpret a reflected variable, be sure to reverse the
direction of the interpretation as well. For instance, if big
numbers meant good things prior to reflecting the variable,
big numbers mean bad things afterward.

Instructions for transforming variables in four software
packages are given in Table 5.2. Notice that a constant is
added if the distribution contains zero or negative numbers.
The constant (to bring the smallest value to at least 1) is
added to each score to avoid taking the log, square root, or in-
verse of zero.

This section on transformations merely scratches the sur-
face of the topic about which a great deal more is known. The
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TABLE 5.2 Original Distributions and Common Transformations to Produce Normality

MINITAB
LET*

COMPUTE DATA

SPSS SAS SYSTAT

DATA TRANSFORM

Moderate positive skewness
Substantial positive skewness

LET NEWX = SQRT(X).
LET NEWX = LOGTEN(X).

with zero
Severe positive skewness, LET NEWX = 1/X.
L-shaped
with zero LETNEWX = 1/(X + C).

Moderate negative skewness

Substantial negative skewness

Severe negative skewness,
J-shaped

LET NEWX = SQRT(X — X).
LET NEWX = LOG(K — X).
LET NEWX = 1/(K — X).

NEWX = SQRT(X)
NEWX = LG10(X)
LET NEWX = LOGTEN(X + C). NEWX =LG10(X + C) NEWX =LOGI0(X + C); LETNEWX = L10(X + C)
NEWX = 1/X

NEWX = 1/(X + C)
NEWX = SQRT(K — X) NEWX = SQRT(X — X);
NEWX = LG10(K — X) NEWX = LOGI0(K — X); LETNEWX = L10(K — X)
NEWX = 1/(K — X)

NEWX = SQRT(X);
NEWX = LOG10(X);

LET NEWX = SQR(X)
LET NEWX = L10(X)

NEWX =1/X; LET NEWX = 1/X

NEWX =1/(X+ C); LETNEWX = 1/(X + C)
LET NEWX = SQR(K — X)

NEWX = 1/(K — X); LETNEWX = 1/(K — X)

 Calc provides transforms in the MINITAB Windows menu system.

Note. C = a constant added to each score so that the smallest score is 1. K = a constant from which each score is subtracted to that the smallest score is 1; usually

equal to the largest score +1.

Source: Reprinted with permission of Tabachnick and Fidell (2001b), Using multivariate statistics (Boston: Allyn and Bacon).

interested reader is referred to Emerson (1991) or the classic
Box and Cox (1964) for a more flexible and challenging
approach to the problem of transformation.

DISCRETE DATA AND LOG-LINEAR ANALYSES

Several analytic techniques are available for discrete vari-
ables, or data sets with a combination of discrete and contin-
uous variables. The most familiar example is chi-square, an
inferential test of the relationship between two discrete vari-
ables (where one of them may be considered a DV). An ex-
tension is multiway frequency analysis, which provides a test
of relationships in a data set with several discrete variables;
sometimes the researcher is simply interested in which of
them are related to which others, and sometimes the re-
searcher seeks to examine whether a discrete DV is related to
several other discrete I'Vs. Logistic regression is available to
examine whether a discrete (or ordinal) DV is related to sev-
eral other IVs, both discrete and continuous.

Multiway frequency analysis and logistic regression de-
velop a linear equation that weights the IVs according to their
relationship with the discrete DV and with each other, similar
to the general linear model of Equation 5.7. In Equation 5.10,
! is the predicted value on the DV for the ith case, A is the
intercept (the value of ¥ when all the X values are zero), the
Xs represent the various IVs (of which there are k), and the Bs
are the coefficients assigned to each of the IVs during
regression:

Y'N=A+B X\ +BXo+ -+ B Xy (5.10)

Equation 5.10 is the familiar equation for multiple regres-
sion, but in analyses for discrete variables the equation is
called the logit and is found in the exponents of the equation

for predicting the DV (l?[). In Equation 5.11, Y; is the esti-
mated probability that the ith case is in one of the cells. That
is, there is a linear relationship among the IVs but it is in the
logit of the DV, and the goal of the equation is to predict the
frequencies (or probabilities) of cases falling into various
combinations of levels of variables rather than predicting the
DV score itself for each case.
e AT B X1+ B Xot+ B Xy

LT 1 ¥ eAtBIXitBaXot -+ BiXy .10

These analyses have many fewer assumptions than the
corresponding analyses for continuous variables and are
therefore sometimes preferred. In this context, recall that you
always have the option of rescaling a poorly behaved contin-
uous variable into a discrete one.

Adequacy of Expected Frequencies

The fitbetween observed and expected frequencies is an empir-
ical question in tests of association among discrete variables.
Sample cell sizes are observed frequencies; statistical tests
compare them with expected frequencies derived from some
hypothesis, such as independence between variables. The re-
quirement in chi-square and multiway frequency analysis and
for discrete variables in logistic regression is that expected fre-
quencies are large enough. Two conditions produce expected
frequencies that are too small: a small sample in conjunction
with too many variables with too many levels, and rare events.
When events are rare, the marginal frequencies are not
evenly distributed among the various levels of the variables. A
cell from a low-probability row or a low-probability column
will have a very low expected frequency. One way to avoid low
expected frequencies is to attempt to determine the levels that
are likely to be rare in advance of data collection and then sam-
ple until obtained frequencies on the margins are adequate.
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For chi-square and multiway frequency analysis, examine
expected cell frequencies for all two-way relationships to
ensure that all are greater than 1 and that no more than 20%
are less than 5. Except in some applications of chi-square,
inadequate expected frequencies do not lead to increased
Type I error but rather to reduction in power, which can be-
come notable as expected frequencies for two-way associa-
tions drop below 5 in some cells (Milligan, 1980).

If low expected frequencies are encountered, several
choices are available. First, you can simply choose to accept
reduced power. Second, you can collapse categories for vari-
ables with more than two levels. For example, you could
collapse the categories “three” and “four or more” into one
category of “three or more.” The categories you collapse
should be carefully considered because it is quite possible that
associations will disappear as a result. Because this is equiva-
lent to a complete reduction in power for testing those associ-
ations, nothing has been gained.

Finally, you can delete variables to reduce the number of
cells as long as care is taken to delete only variables that are
not associated with the remaining variables. For example, in
a table with three discrete variables you might consider delet-
ing a variable if there is no three-way association and if at
least one of the two-way associations with the variable is
nonsignificant (Milligan, 1980). The common practice of
adding a constant to each cell is not recommended because it
has the effect of further reducing power. Its purpose is to sta-
bilize Type I error rate, but as noted earlier, that is generally
not the problem, and other remedies are available when it is.
Some of the programs for multiway frequency analysis, such
as SPSS LOGLINEAR and HILOGLINEAR, add the con-
stant by default anyway under circumstances that do not
affect the outcome of the analysis.

In logistic regression, when a goodness-of-fit inferential
test is planned to compare observed with expected frequen-
cies in cells formed by combinations of discrete variables, the
analysis also has little power if expected frequencies are too
small. When inference is desired, the guidelines for chi-square
and multiway frequency analysis are applicable together with
the remedies for low expected frequencies. An additional rem-
edy in logistic regression is use of a goodness-of-fit criterion
that is not based on observed versus expected frequencies, as
discussed in Hosmer and Lemeshow (1989) and Tabachnick
and Fidell (2001b, Sections 7.3.2.2, 12.6.1.1).

Absence of Collinearity

Like their counterparts for continuous variables, these analy-
ses are degraded by inclusion of collinear variables. Signals
of the presence of collinearity include failure of the analysis

to converge or extremely large estimates of standard error for
one or more parameters. The solution is to identify and elim-
inate one or more redundant variables from the analysis.

Independence of Errors

In most circumstances, these analyses are used only for
between-subjects designs in which the frequency of cases in
each cell is independent of the frequencies in all other cells. If
the same case contributes a hash mark to more than one cell,
those cells are not independent. Verify that the total N for the
analysis is equal to the number of cases before proceeding.

McNemar’s test provides chi-square analysis for some
types of repeated measures when each case is in a particular
combination of “yes-no” cells. For example, in a 2 x 2 de-
sign, a person attends karate classes but does not take piano
lessons (yes on karate, no on piano), does neither (no on
both), does both (yes on both), or takes piano lessons but not
karate (no on karate, yes on piano). Independence of errors is
preserved because each case is in only one of four cells, de-
spite having “scores” on both karate and piano.

Absence of Outliers in the Solution

Multiway frequency analysis and logistic regression often
proceed by developing a model that provides the tightest fit
between the observed frequencies and the frequencies ex-
pected from the model in the many cells of the design. Along
the way, some variables are deleted because they do not con-
tribute to the fit. After the best model is chosen, there are
sometimes still substantial differences between observed fre-
quencies and the expected frequencies for some cells. If the
differences are large enough, there may be no model that
adequately fits the data until levels of some variables are re-
defined or new variables are added. Examination of the resid-
uals of the analysis reveals the adequacy of the analysis, as
discussed in Hosmer and Lemeshow (1989) and Tabachnick
and Fidell (2001b, Sections 7.4.3.1, 7.7.2.3, 12.4.4).

SPECIAL ASSUMPTIONS FOR SPECIAL ANALYSES

ANCOVA: Homogeneity of Regression

Analysis of covariance (ANCOVA) and multivariate analysis
of covariance (MANCOVA) are ANOVA-like analyses that
include covariates as well as the usual IVs and DVs. Covari-
ates (CVs) are variables known to be related to the DV that
increase the variability in DV scores. When CVs are assessed



and their effects on the DV accounted for in the analysis, the
error term for the test of the effect of the IV is usually smaller
because there is less spread in the DV; this increases the
power of the analysis. In some disciplines (and software pro-
grams), all continuous predictors are called covariates. That
is, continuous IVs are labeled covariates.

Covariates are usually continuous variables. One or sev-
eral of them may be in an analysis, and they may be measured
once or more than once during the course of a study. Use of
CVs is not controversial in experimental research when care
is taken to keep assessment of the CV uncontaminated by the
effects of the IV, but their use is problematic in other research
settings. These issues and others are discussed in Myers and
Well (1991), Tabachnick and Fidell (2001a, 2001b), and
elsewhere.

The special assumption of homogeneity of regression is
that the slope of the relationship between the DV and the CVs
is the same for all cells of a design. Put another way, the
assumption is that the DV and the CV have the same rela-
tionship in all levels of the IV—that there is no CV by 1V in-
teraction. Both homogeneity and heterogeneity of regression
are illustrated in Figure 5.17. During analysis, slope is com-
puted for every cell of the design and then averaged to pro-
vide the value used for overall adjustment of DV scores. It is
assumed that the slopes in different cells will differ slightly
due to chance, but they are really all estimates of the same
population value. If the null hypothesis of equality among
slopes is rejected, the analysis of covariance is inappropriate,
and an alternative strategy, such as blocking on the CV to
turn it into an additional IV, is required.

The most straightforward programs for testing homogene-
ity of regression in between-subjects designs are SYSTAT
GLM or ANOVA and SPSS MANOVA. The general strategy
involves inclusion of the IV by CV interaction in a preliminary
ANCOVA run; homogeneity of regression is signaled by a
nonsignificant interaction. Syntax for accomplishing this test

(A)
/ GI'OUp 3
< / Group 2
bt Group 1

Covariate (X)

Homogeneity of regression (slopes)
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is available in the SYSTAT manual (SPSS Inc., 2000, p. I-463)
and in the SPSS Base manual (SPSS Inc., 1999, pp. 159-160);
syntax for the test through SAS GLM and SPSS MANOVA is
available in Tabachnick and Fidell (2001a). Tabachnick and
Fidell also illustrated syntax for simultaneously testing homo-
geneity of regression for multiple, pooled CVs and syntax for
testing homogeneity of regression for covariates measured re-
peatedly, both through the SPSS MANOVA program.

Logistic Regression: Linearity in the Logit

Logistic regression investigates the predictability of group
membership from a set of both discrete and continuous
predictors. Although there is no assumption that the continuous
predictors themselves have pair-wise linear relationships, there
is the assumption that each of the continuous predictors has a
linear relationship with the logit. (Recall that the logit is the
GLM prediction of Equation 5.10 in the exponent of the solu-
tion.) Using the Box-Tidell approach (Hosmer & Lemeshow,
1989), the assumption is tested by forming interactions between
each continuous variable and its own natural logarithm and
adding the interaction terms to the equation. There is linearity in
the logit when these interaction terms are not significant.

Significance for one or more of the interaction terms leads
to transformation of the continuous variable. A test of this as-
sumption through SYSTAT DATA and LOGIT is provided in
Tabachnick and Fidell (2001b).

Survival Analysis

Survival analysis is a set of techniques for analyzing the
length of time until something happens and for determining if
that time differs for different groups or for groups offered dif-
ferent treatments. An approach similar to logistic regression
is used when assessing group differences. In medical settings
survival analysis is used to determine the time course of

(B)

Group 3
/ Group 2

\ Group 1

Covariate (X)

DV (Y)

Heterogeneity of regression (slopes)

Figure 5.17 DV-CV regression lines for three groups plotted on the same coordinates for conditions of
(A) homogeneity and (B) heterogeneity of regression. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).
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various medical conditions and whether different modes of
treatment produce changes in that time course. In industry the
same analysis is called failure analysis and is used to deter-
mine time until failure of a specific part and whether parts
manufactured differently have different rates of failure.

An advantage of survival analysis over traditional logistic
regression is that the analysis can handle censored cases. These
are cases for which the time is not known at the conclusion of
the study either because the case is still apparently well (or the
part is still functioning) or the case has been lost to follow-up.
However, there are special assumptions related to such cases,
as well as other assumptions particular to the analysis.

Differences Between Withdrawn and Remaining Cases

The first assumption is that the cases that have been lost to
follow-up do not differ from the cases with complete data at
the conclusion of the study. If there are systematic differences
between the two types of cases, you have a missing data
problem with nonrandom loss of cases. If the study was ini-
tially an experiment with random assignment to treatment
conditions, the advantages of random assignment have been
lost due to nonrandom loss of cases.

Change in Survival Conditions Over Time

Because these data are collected over time, it is assumed that
the factors that influence survival at the beginning of the study
are the same as the factors that influence survival at the end of
the study. Put another way, it is the assumption that the condi-
tions have not changed from the beginning to the end of the
study. If, for example, a new medical treatment is offered to
patients during the course of the study and that treatment in-
fluences survival, the assumption is violated.

Proportionality of Hazards

If the Cox proportional-hazards model, one of the more pop-
ular models, is used to evaluate the effects of various predic-
tors on survival, there is the assumption that the shape of the
survival function over time is the same for all cases and for
all groups. That is, the time until failures begin to appear may
differ from one group to another, but once failures begin to
appear, they proceed at the same rate for all groups. This as-
sumption is violated when there is interaction between time
and group. To test the assumption, a time variable is con-
structed and its interaction with groups tested. A test of
the assumption through SAS PHREG is demonstrated in
Tabachnick and Fidell (2001b).

Time Series: Analysis of Residuals

Time series analysis is used when numerous observations
(50 or more) are made of the same event over time. The event
can be the behavior of a single case or aggregated behavior of
numerous cases. One goal is to find patterns, if any, in the
behavior of the cases over time. A second goal is to determine
if an intervention (naturally occurring or an experimental
treatment) changes the pattern over time. A third goal may be
to forecast the future pattern of events.

The overall pattern of scores over time is decomposed into
several different elements. One element is random shocks,
conceptually similar to the random errors in other analyses. A
second element is overall trends (linear, quadratic) in the scores
over time; is the average generally increasing (or decreasing)
over time? A third element is potential lingering effects of ear-
lier scores. A fourth element is potential lingering effects of
earlier shocks. One popular time series model is ARIMA (auto-
regressive, integrated, moving-average). The auto-regressive
part represents the lingering effects of previous scores. The in-
tegrated part represents trends in the data; the moving-average
part represents lingering effects of previous shocks.

Patterns in the data (which may be completely random or
any combination of auto-regressive, integrated, or moving-
average) produce different patterns of autocorrelations (and
partial autocorrelations) among the scores. That is, scores at
adjacent time periods correlate differently with each other
depending on the types of contingencies present. The goal is
to provide an equation that mimics the patterns in the data
and reduces the residuals to random error. When the assump-
tions are met, the residuals have a normal distribution, with
homogeneous variance and zero mean over time, and no out-
liers. There are also no lingering autocorrelations (or partial
autocorrelations) among the residuals remaining to be ana-
lyzed. Tests of the assumptions and other issues in time series
analysis are discussed in McCleary and Hay (1980) and
Tabachnick and Fidell (2001b).
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A major task of science is to develop theoretical constructs
that bring together many observed phenomena. Historical
examples of doing this include both ability and personality
research. In the former, the moderate to high correlations
observed among ability measures have led to the theoretical
construct of general intelligence. In the latter, the moderate to
high correlations among personality variables such as emo-
tionality and frustration have led to the theoretical construct
of anxiety (also called neuroticism). The construct validity
of these theoretical constructs has been examined by factor
analyses. Factor analysis is a statistical technique that repro-
duces the data by as few factors (potential theoretical
constructs or latent variables) as possible.

A popular current use for factor analysis is scale develop-
ment. When selecting a subset of the items for a scale, one
needs to know how many constructs might be measured from
the item pool and which items could measure each construct.
This information is provided by a factor analysis. The items
are factor analyzed to find the fewest number of factors that
can represent the areas covered by the items. The relationship
of each item to the factors indicates how it might be used in
measuring one of the factors.

Whereas a factor analysis might result in a scale to mea-
sure a theoretical construct in a future study, confirmatory
factor analysis and extension analysis in exploratory factor
analysis allow another option. Factor analysis can be used in
a new study to confirm or disconfirm the relationships be-
tween factors themselves or with other variables not in the
factor analysis. No sales or factor scores are needed.
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Although no factor analysis is ever completely ex-
ploratory—there is always an underlying theoretical model
by which the data are collected—some factor analyses are
primarily exploratory with no hypotheses, and others are pri-
marily confirmatory, specifically testing hypotheses. Both
types of factor analysis are examined in this chapter.

The purpose of this chapter is to provide a basic but com-
prehensive treatment of factor analysis. The intention is to
give the reader the background to read, appreciate, and cri-
tique research from a factor analytic perspective, whether it
be an article using factor analysis, an article using factor
analysis inappropriately, or an article that could be strength-
ened if factor analysis were used. While no particular statisti-
cal package is assumed, this chapter also provides material
needed to select the options for a factor analysis that are most
appropriate to the purpose of the study.

The chapter starts with the basic equations and definitions
of factor analysis. This section introduces the terms needed
to understand factor analytic models and variations in the
models. The second section of the chapter presents factor
models, including component analysis (CA) and common
factor analysis (CFA). CFA includes both exploratory
(ECFA) and confirmatory (CCFA) factor analysis. In addi-
tion, all of these variants can be used with correlated or un-
correlated factor models. Presented with each model is the
essential theoretical information to understand the model and
the essential practical information to use the model.

Rather than reviewing all the possible procedures that
could apply to each model, each section includes the
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procedures that now have sufficient empirical and theoretical
support to be the generally desired procedures for that model.
In some cases, however, there are still minor variations in
what procedure is used, and these are discussed with the
model to which the variations apply.

Although the last decades have led to clear choices of
some procedures over others for one or more models, several
areas in factor analysis still present major unsolved problems.
Three such problems are addressed after the models have
been presented. The first is the continuing debate between ad-
vocates of two types of exploratory analysis: components and
common factor. Second is the issue of how many factors to
extract from a particular data set. Third is the question of how
the factors in one data set can be related to other variables
that were in the data set but were not included in the factor
analysis, and how factors may be related across studies.

The concluding section points to elements of all good re-
search designs that need to be remembered in designing a
factor analytic study. Included in this section are discussions
of the need for high-quality variables and how many cases
are needed.

Three examples are used to illustrate factor analysis. The
first example is of six psychological tests for which the struc-
ture is easily seen in the correlation matrix (Gorsuch, 1983).
Three of the variables are related to verbal ability and three to
anxiety. The second example is a case in which we know
what the factors should be: boxes (Gorsuch, 1983). Graduate
students took 10 measures from ordinary boxes they found in
their homes. Because these are all measures within three-
dimensional space, we expect the factors to be those three
dimensions: length, height, and width.

The third example uses the Canadian normative sample
for the Wechsler Adult Intelligence Scale-III (WAIS-III;
Gorsuch, 2000). The published correlation matrix among the
scaled scores form the basis of analysis. The factor structure
of the WAIS, and its children’s version, the WISC (Wechsler
Intelligence Scale for Children), have been extensively ana-
lyzed. (Detailed discussions of factor analytic topics are in
Gorsuch, 1983; when no other references are provided,
please consult that reference.)

BASICS OF FACTOR ANALYSIS

The purpose of factor analysis is to parsimoniously summa-
rize the relationships among that which is being factored, re-
ferred to here as variables, with a set of fewer constructs, the
factors. The analysis serves as an aid to theory development
and scale construction. The term variables is used because
most factor analyses are of scales and measures to which that
term is immediately applicable; however, other types of data,

such as people, can be used (see Gorsuch, 1983; Thompson,
2000).

Understanding is aided when several variables are found
to correlate sufficiently so that they are measuring the same
construct (i.e., factor). In the area of intelligence, for exam-
ple, scales with labels of vocabulary and similarities corre-
late highly together and can be considered manifestations of
verbal ability. Because vocabulary and similarities have been
found to relate to the same factor, theoretical development
may account for vocabulary and similarities simultaneously
by accounting for the factor.

Scale construction is aided when the correlations among
items show the items to fall into a certain number of clusters
or groups. In psychology of religion, motivation items, for
example, fall into groups of items representing an intrinsic
motivation (e.g., the main reason I go to church is to worship
God) and extrinsic motivations (e.g., the only reason to go to
church is to meet friends). The items fall into several groups
so that within a group the items correlate with one factor and
not with the other factors. Items can then be picked by their
correlations with the factors to form scales.

Note that there is little generalization across factors (be-
cause the variables of one factor do not correlate with the
variables of another factor) and so factor analysis identifies
qualitatively different dimensions. Within a factor there is
generalization identified with quantitative differences (i.e.,
how each variable correlates with the factor).

In addition to the classical factor analysis of scales, there
are other uses of factor analysis. It can be used to reduce sev-
eral problems encountered in data analysis.

One problem in data analysis is the multiple collinearity
problem. This occurs when several scales that are designed to
measure the same construct are used in the same study. Such
scales correlate so well that it affects the statistics, such as
multiple correlation. First, with multiple collinearity, multi-
ple regression beta weights are unstable, and therefore are
difficult to replicate. Second, another degree of freedom is
used for each additional scale that measures what one of the
other scales also measures. Yet having the additional mea-
sures is desirable because they increase the overall accuracy
of the study. Multiple collinearity can be among either the in-
dependent or dependent variables.

A solution to the multiple collinearity problem is to factor
the variables; then the factors are used instead of the variables.
The same domains are covered with the factor analysis as the
ones covered by the variables, and the factor analysis also
shows the overlap among the scales. The multiple collinearity
among the factors will be low.

Another problem with statistics such as multiple correla-
tion is that the regression weights have all the covariation



among the variables eliminated. It does this by partialing out
the other variables from the weights. The common—that is,
predictive variance that two or more variables have in com-
mon—may not be seen at all in the beta weights. Hence, a
multiple regression can be significant even though none of
the weights are significant; it is the variance that the vari-
ables have in common that predicts the dependent variable.
The solution is to extract as many factors as there are vari-
ables and restrict the solution so that the factors are uncorre-
lated. These are then orthogonalized versions of the original
variables. When these are used as the predictors in a multiple
regression, all of the covariation is distributed among the
variables and appears in the weights.

Development of factor analysis as a statistical procedure
proceeds from the generalized least squares (GLS) model
used in regression and other least squares analyses. Assuming
all variables to be in Z score form for convenience, the model
is based on this set of equations:

Xi1t = wiaA; + wipBi + wicCi +wipDi + -+ -+ uj
Xio = waA; +wapBi +wocCi +wop Dy + -+ -+ up
Xiz = w3sA; +w3pBi +w3cCi +w3pD; + -+ +u;3

Xiy = WyaA; +wypBi +wycCi +wypDj + -+ -+ ujy
6.1)

where, for the first line, X is the score for person i on variable
1, w is the weight for variable 1 for factor A, and A is the score
for person i on factor A. The equation shows factors A through
D and indicates that there may be more. Additional variables
are indicated, for a total of v variables in the analysis.

The last element of each equation, u, is that which is
unique to that particular variable, often called error or resid-
ual. Each u is in a separate column to indicate that each is dis-
tinct from any other u. There are as many distinct us as there
are variables. It is important to note that each variable’s
uniqueness (u#s) includes two sources of variance. First is ran-
dom error due to unreliability and second is that variance in
the variable that is not estimable from the factors.

When the preceding equation is solved for each dependent
variable, the multiple correlation of the factors with that vari-
able can be computed. In factor analysis, the square of that
multiple correlation is called the communality (h*) because it
is an index of how much that variable has in common with
the factors.

How high can the communality be? The absolute maxi-
mum is 1.0, because then all the variation of the variable
would be reproduced by the factor. But the psychometric
maximum is the variable’s reliability coefficient, which by de-
finition is the maximum proportion of the variable that can be
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reproduced from a perfect parallel form, although occasional
capitalization on chance may produce a sample communality
slightly above the reliability. (Note: The reliability referred to
in this chapter is always the reliability in the sample for the
factor analytic study.) Of course, the reliability gives the com-
munality only if all the nonerror variance is reproduced by the
factors. The more likely result is that the factors reproduce
only part of the reliable variance, and so the communalities
are expected to be less than the reliabilities.

While Equation 6.1 gives the mathematical definition of
factor analysis in terms of the data matrix (X), the analysis
itself can, as in regression analyses, proceed mathematically
from the Pearson correlations among the variables. Factor
analysis can be presented as an analysis of correlations with-
out reference to actual scores, but that can be misleading.
Some techniques that proceed from the correlation matrix
(e.g., cluster analysis) have no direct mathematical relation-
ship to the observed variables. Factor analysis does; it is an
analysis of the observed data using correlations only as a con-
venient intermediate step. (Note that phi, Spearman rank, and
point-biserial correlations are all special cases of the Pearson
correlation coefficient and so are appropriate for factor analy-
sis. Although other coefficients, such as biserial correlations,
have been tried, they do not proceed directly from Equa-
tion 6.1 and can produce matrices that cannot be factored.)

Factor analysis could proceed from covariances instead of
correlations. If covariances are used, then the variable with
the largest variance is given more weight in the solution. For
example, if income were measured in dollars per year and
education measured in number of years spent in schooling,
the former’s variance would, being in the tens of thousands,
influence the results much more than would the latter, whose
variance would be less than 10. With social science data in
which the variances are arbitrary, weighting the solution to-
wards variables with higher variances is seldom useful. How-
ever, do note that correlations are affected by restriction of
range. When the range is less than is normally found with a
variable, the correlations are lower. When such restriction
does occur, the factor loadings will be lower than when the
range is larger. In such a situation, it is appropriate to either
correct the correlations for the restriction of range or use
covariances. Factoring covariances produces factor weights
that are the same despite restrictions of range. However, they
may, in addition to the inconvenient weighting, be more dif-
ficult to interpret because they are not in the range of —1 to 1
as are correlations. The discussion here assumes that correla-
tions are being factored unless stated otherwise.

Table 6.1 gives a simple example of six variables (Gorsuch,
1983). The left part of the table gives the observed correlation
matrix, and the second part gives the factors’ correlations with
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TABLE 6.1 Factor Analysis of 6 Variables

r with Variables

r with Factors

Variable L. 2. 3. 4. 5 6. I 1L n
1. Information — .76 —.09 .59
2. Verbal ability .67 — 81 —.07 .66
3. Verbal analogies 43 49 — .58 -.07 34
4. Ego strength 11 12 .03 — .06 —.67 45
5. Guilt proneness —.07 —.05 —.14 —41 — —.05 .59 .35
6. Tension —-.17 —.14 —.10 —.438 40 — —.12 .66 45
Note. Correlation between factors = —.14.

the variables. They show that the first three variables form one
factor and the second three form another. The reason the
communalities are small is because these are all brief forms
with low to moderate reliabilities in this sample.

The results of a factor analysis includes the degree to
which each factor relates to each variable. When a factor re-
lates to a variable, the common usage is to say that the factor
loads the variable. Loading refers to the relationship of a fac-
tor to a variable in general but not to one particular numeric
values. It is appropriate to use the term loading when one
wishes to refer to whether the factor contributes to a variable.
However, whenever a number is referred to, the type of factor
loading must be reported. Thus it is appropriate to ask Does
factor A load variable 3? and appropriate to respond Yes, it
correlates .58 with the variable. There are three types of fac-
tor loadings. First are the weights for each factor’s z scores to
estimate the variable z scores. Second are the correlations of
each factor with each variable. The last, and least used, is the
partial correlation of each factor with each variable with the
other factors partialled out. (These are discussed more in this
chapter’s section on correlated factor solutions.)

There is an assumption in least squares analyses of Equa-
tion 6.1, including factor analysis. Use of the model assumes
that each equation applies equally to each person. It is difficult
for these analyses to work well if the X is a function of Factors
A and B for half the sample but a function of Factors C and D
for the other half. Such may occur, for example, when there
are multiple ways in which the variable can be changed. Con-
sider a hypothetical situation in which children in poor com-
munities only receive high exam scores if they are innately
bright (because poor communities, we shall assume, cannot
contribute much to their scores). Then those in rich communi-
ties would receive high exam scores less related to innate
brightness because of the resources that led to a strong learn-
ing environment. Because different influences are at work in
different parts of the sample, the factor analysis will be an
averaged one and not represent either community well.

In factor analysis, the desire is to find a limited number of
factors that will best reproduce the observed scores. These
factors, when weighted, will then reproduce the observed
scores in the original sample and, in new samples, will

estimate what the observed scores would be if measured. Of
course, the reverse may also be of interest: using the observed
scores to measure the factor. But in the latter case, the factor
is measured not to estimate the observed scores, but rather to
generalize to other variables that also are correlated with the
factor. These two approaches are seen in the examples. The
boxes are analyzed to identify the factors: length, height, and
width. Knowing the factors, we can in the future just measure
length, height, and width directly and compute other vari-
ables such as a diagonal. The reverse is of interest in intelli-
gence testing; scales such as Similarities and Vocabulary
are used to measure verbal capability. Psychologists then
examine, for example, a person’s college grades in courses
demanding high verbal capability to see whether they are as
expected, given the person’s verbal ability.

Note that in factor analysis, only the observed scores, the
Xs in Equation 6.1, are known; the factor scores (A, B, etc.),
the weights (the ws), and the uniquenesses (us) are unknown.
With one known and three unknowns, it is mathematically
impossible to solve for them without further restrictions. The
restrictions adopted to allow solving for both factors and
weights are a function of the factor model.

FACTOR ANALYTIC MODELS AND
THEIR ANALYSES

To solve Equation 6.1 for both the factors and the weights,
restrictions must be made. The restrictions can be minimal or
extensive. The former—minimal restrictions—includes the
class of models known as exploratory factor analysis (EFA).
Mathematical principles are selected for the restrictions but
there are no restrictions that take into account any theory that
the investigator might have. The results are based solely on the
observed data. The latter—extensive restrictions—includes
the models known as confirmatory factor analysis (CFA).
Based on theory or past research, a set of weights is proposed
and tested as to whether the weights adequately reproduce the
observed variables. Note that restrictions are not necessarily a
dichotomy between minimal and extensive. Some forms of
EFA are more restricted than others and some forms of CFA



are less restricted than others. These variations arise out of
what the investigator is willing to or needs to specify.

Component Analysis

Component analysis (CA) restricts Equation 6.1 by dropping
the uniqueness term, u. Thus the interest is in factors (also
called components when using CA) that reproduce all of each
and every variable, and so have expected communalities of
1.0. Of course, CA users would never argue their variables
have reliabilities of 1.0 and so the actual maximum commu-
nality is generally much lower than 1.0. And CA users know
the variables will not have multiple correlations of almost 1.0
with the other variables (needed for the factors to have a mul-
tiple correlation of 1.0 with each variable). Therefore no vari-
able can, except by capitalization on chance, actually have a
communality of 1.0. But proponents feel CA gives, with solid
variables that correlate well, a reasonable approximation,
with negligible distortion from the ignored unreliability and
ignored multiple correlations less than 1.0.

Derivations easily show that the first step in all exploratory
factor analyses is to compute the correlations among the ob-
served variables. It is important to note that technically it is a
covariance matrix among Z scores that is being factored. The
main diagonal contains the variances—which are 1.0 by the
definition of Z scores. The off-diagonal elements are techni-
cally the covariances among the Z scores which, because
Z scores have variances of 1.0, are also the correlations among
the variables. Procedures mentioned below are then applied to
the correlation matrix to extract the components.

To extract factors from the data matrix, more restrictions
need to be made than just assuming the us are zero. The restric-
tions are mathematical and use one of two procedures. The
first, principal components, has the restriction that the first fac-
tor is the largest possible one, the second is the largest one after
the first has been extracted, and so forth for all the factors. The
second, maximum likelihood, adds the restriction that each
should have the maximum likelihood of that found in the pop-
ulation. The latter is more difficult to compute, but both are
quite similar—and both become more similar as the N in-
creases. It would be surprising if there were any interpretable
difference between these two procedures with a reasonable V.

The factors as extracted are seldom directly interpretable.
Hence the factors are rotated (a term which comes from a
geometric development of factor analysis; see Gorsuch,
1983, particularly chapter 4)—that is, are transformed to
meet some criterion while keeping the same communalities.
The usual criterion for rotation is simple structure, which can
be briefly defined as the maximum number of variables load-
ing only one factor with a side condition that these loadings
be spread among as many factors as possible. Table 6.1
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shows excellent simple structure. Each variable is loaded by
only one factor and each factor loads a distinct set of vari-
ables. Because rotation applies to all EFA methods but has
correlated and uncorrelated models in terms of how the fac-
tors are restricted, it is discussed further in the section of this
chapter entitled “Restricting to Uncorrelated Factors” after
the other EFA methods are noted.

CA is more parsimonious than are other models based on
Equation 6.1 in that the equations are simpler when the unique
term is dropped from Equation 6.1. One of the effects is that
factor scores can be directly calculated (which, as noted
below, is not true for the other major exploratory model, com-
mon factor analysis). These factors are linear combinations of
the observed variables that can serve as summaries of the func-
tion represented by the factor. Such factors appeal to those
who wish to stay close to the data and who philosophically
hold that all constructs are just convenient summaries of data.
(This is a discussion to which we return later.)

CA has been considered to be only an EFA procedure, with
no CFA version. That is true within the narrower definition of
factor analysis generally employed. But in terms of the model
of Equation 6.1 and the logic of CA, a confirmatory compo-
nents analysis is technically possible. The problem is that no
significance tests are possible because the CA model has no
place for errors.

Common Factor Analysis

Common factor (CFA) models use Equation 6.1, including
the uniqueness term. Each uniqueness is the sum of several
types of variance not in the factor analysis. These include
random error (from unreliability and sampling error) and
residual error in the sense that part of the variable is unrelated
to the factors. The term uniqueness is used for all error be-
cause the random error, sampling error, and that which can-
not be estimated from the factors can be considered unique to
each variable. In CFA models, the focus is on the commonly
shared variance of the variables and factors, hence the name
common factor analysis.

Having the uniquenesses in the equations requires as-
sumptions to restrict the analysis sufficiently for there to be a
solution. These assumptions parallel those of residual-error-
uniqueness in regression analysis. The uniquenesses are
assumed to be both

¢ Uncorrelated with each other.

¢ Uncorrelated with the common factors.

Because nontrivial uniqueness may exist for each vari-
able, the variance associated with the factors is reduced
for each variable. The variables’ Z scores have an original
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variance of 1.0, but the part of each variable’s Z scores that
can be accounted for by the common factors is 1.0 minus #?,
and so will be less than 1.0. The importance of this for CFA
is that the correlation matrix of the observed scores needs to
be altered to take this into account. This is done by estimating
the expected communality of each variable (because that is
the squared multiple correlation of the factors with that vari-
able and so is the variance of the reproduced variable) and re-
placing the 1.0 in the main diagonal of the correlation matrix
with the communality. This is appropriate because the matrix
is technically a covariance matrix, with the main diagonal
elements being the variances of the variables.

Common factor analysis generally attracts those who wish
to acknowledge the fact that all psychological variables have
error and who prefer a model that is consistent with other
methods of analysis, such as regression analysis and struc-
tural equations modeling. Factor scores, they originally felt,
were not an issue because the factor score estimates correlate
so high with the factors that the problem of factor scores’
being only close approximations is minor; now proponents of
common factor analysis suggest that factor scores are seldom
needed because extension analysis can be used instead, and
so the factor score issue is a moot question. (We return to the
issue of CA vs. CFA later in this chapter.)

Common factor analysis has both an exploratory and a
confirmatory model. An exploratory common factor analysis
(ECFA) is one in which the restrictions are minimal both in
number and in regard to the investigator’s theories. It is an
inductive analysis, with the results coming from the data as
undisturbed by the investigator’s thinking as possible. The
advantage of not specifying an expectation is that the analy-
sis is a multitailed test of any theory or expectation the inves-
tigator might have. If the investigator’s expectations are
found by ECFA, then they would certainly be found by a con-
firmatory analysis. However, due to the lack of restrictions
and the complexities of the analyses, significance tests are
not available for ECFA, so large Ns are to be used to reduce
the need for significance tests.

Communalities could be calculated exactly if the factors
were known and vice versa: The factors could be calculated
exactly if the communalities were known. To cut this Gordian
knot, the communality can be estimated and then the factors
extracted. The observed communalities should differ only
slightly from the estimated communalities.

Communality estimation is readily done by several meth-
ods. The following are four:

* SMC: Use the squared multiple correlation (SMC) of all
other variables with that variable. This generally works
well and is independent of the number of factors.

Pseudoiteration: Use anything as the initial estimate,
solve for the number of factors (see the following discus-
sion for how to estimate the number of factors), and cal-
culate the communalities from these factors. Then use the
observed communalities as new estimates of the commu-
nalities, extract factors again, and calculate the commu-
nalities from these factors. Continue the process until little
change is noted from one pass to the next or a maximum
number of passes has made. Note that this is not true iter-
ation. True iteration occurs when it has been proven both
that the iterated values necessarily converge and that they
necessarily converge to the right values. But neither nec-
essarily happens with pseudoiteration. Gorsuch (1974,
1983) has noted a case in which the process would not
converge, so the requirement for true iteration that the val-
ues converge is not met. The condition that they converge
to the right values is not met because they sometimes con-
verge to an impossibly large value. For example, in prac-
tice, communalities computed by this process often ex-
ceed 1.0. (Values greater than 1.0 are referred to as
Heywood cases after the author of the first published dis-
cussion of the situation. Actually, those using the criterion
of 1.0 to conclude the estimates are incorrect are opti-
mists; the actual upper limit for communalities are the re-
liabilities of the variables, which are almost always less
than 1.0. Thus, more violations of the upper limit occur
than just the Heywood cases.) The fact that the process
need not converge to values that are possible means this
process is not an iterative process in the mathematical
sense. In mathematics a procedure is iterative if and only
if it is found to converge on the population value. There-
fore the so-called iteration for communalities is only
pseudoiteration. Why is pseudoiteration widely used? I
suspect that there are two reasons. First, mathematical it-
eration is an excellent procedure, so iteration was cer-
tainly worth a try even though there is no mathematical
proof it meets mathematical criteria for iteration. Second,
when starting from 1.0 as the initial communality esti-
mate, we see that the first few pseudoiterations obviously
lower the communality estimates from the too-high value
of 1.0 to a more reasonable estimate.

SMCs with two to three iterations: This procedure starts
with the SMC noted previously. Then the solution is iter-
ated two or three times and stopped. Although it is s