
Lecture Notes in Computer Science 1795
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Joseph Sventek Geoffrey Coulson (Eds.)

Middleware 2000

IFIP/ACM International Conference
on Distributed Systems Platforms
and Open Distributed Processing
NewYork, NY, USA, April 4-7, 2000
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Joseph Sventek
Agilent Laboratories Scotland
Mailstop SQFRD3, South Queensferry
West Lothian, EH 30 9TG, UK
E-mail: sventek@labs.agilent.com

Geoffrey Coulson
Lancaster University
Distributed Multimedia Research Group
Lancaster LA1 4YR, UK
E-mail: geoff@comp.lancs.ac.uk

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Middleware 2000 : proceedings / IFIP-ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing, New
York, NY, USA, April 4 - 7, 2000. Joseph Sventek; Geoffrey Coulson
(ed.). - Berlin ; Heidelberg ; NewYork ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1795)
ISBN 3-540-67352-0

CR Subject Classification (1991): C.2.4, D.4, C.2, D.1.3, D.3.2, D.2

ISSN 0302-9743
ISBN 3-540-67352-0 Springer-Verlag Berlin Heidelberg NewYork

Springer-Verlag is a company in the BertelsmannSpringer publishing group.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

©2000 IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg,Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by DA-TeX Gerd Blumenstein
Printed on acid-free paper SPIN 10720092 06/3142 5 4 3 2 1 0

Preface

Middleware is everywhere. Ever since the advent of sockets and other virtual-
circuit abstractions, researchers have been looking for ways to incorporate higher-
value concepts into distributed systems platforms. Most distributed applications,
especially Internet applications, are now programmed using such middleware
platforms.

Prior to 1998, there were several major conferences and workshops at which
research into middleware was reported, including ICODP (International Con-
ference on Open Distributed Processing), ICDP (International Conference on
Distributed Platforms) and SDNE (Services in Distributed and Networked En-
vironments). Middleware’98 was a synthesis of these three conferences.

Middleware 2000 continued the excellent tradition of Middleware’98. It pro-
vided a single venue for reporting state-of-the-art results in the provision of
distributed systems platforms. The focus of Middleware 2000 was the design,
implementation, deployment, and evaluation of distributed systems platforms
and architectures for future networked environments.

Among the 70 initial submissions to Middleware 2000, 21 papers were se-
lected for inclusion in the technical program of the conference. Every paper was
reviewed by four members of the program committee. The papers were judged ac-
cording to their originality, presentation quality, and relevance to the conference
topics. The accepted papers cover various subjects such as caching, reflection,
quality of service, and transactions.

We would like to express our deepest appreciation to the authors of the
submitted papers and the program committee members for their diligence in
reviewing the submissions. We would also like to thank IFIP and ACM for their
technical sponsorship and financial support, respectively. Finally, we would like
to thank the members of the steering committee and the other organizing com-
mittee members for their efforts towards making Middleware 2000 a successful
conference.

April 2000 Joseph Sventek and Geoffrey Coulson

VI Preface

Organization

Middleware 2000 was organized under the auspices of IFIP TC6WG6.1 (Interna-
tional Federation for Information Processing, Technical Committee 6 [Communi-
cations Systems], Working Group 6.1 [Architecture and Protocols for Computer
Networks]).

Steering Committee

Gordon Blair, Lancaster University, UK
Jan de Meer, GMD-Fokus, Germany
Peter Honeyman, University of Michigan, USA
Guy Leduc, University of Liege, Belgium
Kerry Raymond, DSTC, Australia
Alexander Schill, TU Dresden, Germany
Jacob Slonim, Dalhousie University, Canada

Sponsoring Institutions

IFIP (International Federation for Information Processing)
http://www.ifip.or.at/

ACM (Association for Computing Machinery)
http://www.acm.org

Supporting Companies

Agilent Technologies
http://www.agilent.com

BBN Technologies
http://www.bbn.com

Cisco Systems
http://www.cisco.com

IBM
http://www.ibm.com

Siemens
http://www.siemens.com

Preface VII

Organizing Committee

General Chair: Douglas C. Schmidt,
Univ. of California at Irvine, USA

Co-program Chair: Joseph Sventek , Agilent Technologies, UK
Co-program Chair: Geoffrey Coulson, Lancaster University, UK
Tutorials Chair: Douglas C. Schmidt,

Univ. of California at Irvine, USA
Publicity Chair: Guruduth Banavar,

IBM TJ Watson Research, USA
Local Arrangements Chair: Francis Parr , IBM TJ Watson Research, USA

Program Committee

Jean Bacon, Cambridge University, UK
Bela Ban, Cornell University, USA
Martin Chapman, ebeon, Ireland
Naranker Dulay, Imperial College, UK
Frank Eliassen, University of Oslo, Norway
Rachid Guerraoui, EPFL, Switzerland
Teruo Higashino, Osaka University, Japan
Peter Honeyman, CITI, University of Michigan, USA
Doug Lea, SUNY at Oswego, USA
Peter Linington, University of Kent at Canterbury, UK
Claudia Linnhoff-Popien, RWTH Aachen, Germany
Silvano Maffeis, Softwired, Inc., Switzerland
Louise Moser, UCSB, USA
Elie Najm, ENST, France
Kerry Raymond, DSTC, Australia
Richard Soley, OMG, USA
Jean-Bernard Stefani, CNET, France
Robert Strom, IBM TJ Watson Research, USA
Robert Stroud, Newcastle University, UK
Maarten van Steen, Vrije Universiteit, The Netherlands
Gregor von Bochmann, University of Ottawa, Canada

Table of Contents

Caching

Implementing a Caching Service for Distributed CORBA Objects 1
Gregory V. Chockler, Danny Dolev, Roy Friedman and Roman Vitenberg

A Middleware System Which Intelligently Caches Query Results 24
Louis Degenaro, Arun Iyengar, Ilya Lipkind and Isabelle Rouvellou

Distributed Object Implementations for Interactive Applications 45
Vijaykumar Krishnaswamy, Ivan B. Ganev, Jaideep M. Dharap and
Mustaque Ahamad

Indirection

MIMO – An Infrastructure for Monitoring and Managing
Distributed Middleware Environments . 71
Günther Rackl, Markus Lindermeier, Michael Rudorfer and Bernd Süss

Gateways for Accessing Fault Tolerance Domains . 88
P. Narasimhan, L. E. Moser and P. M. Melliar-Smith

An Architecture for Distributed OASIS Services . 104
John H. Hine, Walt Yao, Jean Bacon and Ken Moody

Reflection

Monitoring, Security, and Dynamic Configuration
with the dynamicTAO Reflective ORB .121
Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane,
Luiz Claudio Magalhães and Roy H. Campbell

Customization of Object Request Brokers by Application
Specific Policies .144
Bo Nørregaard Jørgensen, Eddy Truyen, Frank Matthijs
and Wouter Joosen

The Role of Software Architecture in Constraining Adaptation
in Component-Based Middleware Platforms . 164
Gordon S. Blair, Lynne Blair, Valérie Issarny, Petr Tuma
and Apostolos Zarras

X Table of Contents

Messaging

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 185
Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar,
Robert Strom and Daniel Sturman

The Design and Performance of a Scalable ORB Architecture
for CORBA Asynchronous Messaging . 208
Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt,
Michael Kircher and Jeff Parsons

A Publish/Subscribe CORBA Persistent State Service Prototype 231
C. Liebig, M. Cilia, M. Betz and A. Buchmann

Quality of Service

QualProbes: Middleware QoS Profiling Services for Configuring
Adaptive Applications . 256
Baochun Li and Klara Nahrstedt

Structuring QoS-Supporting Services with Smart Proxies 273
Rainer Koster and Thorsten Kramp

Trading and Negotiating Stream Bindings . 289
H. O. Rafaelsen and F. Eliassen

Transactions and Workflow

Strategies for Integrating Messaging and Distributed Object
Transactions .308
Stefan Tai and Isabelle Rouvellou

A Distributed Object Oriented Framework to Offer Transactional
Support for Long Running Business Processes . 331
Brian Bennett, Bill Hahm, Avraham Leff, Thomas Mikalsen,
Kevin Rasmus, James Rayfield and Isabelle Rouvellou

Active Middleware Services in a Decision Support System
for Managing Highly Available Distributed Resources . 349
Sameh A. Fakhouri, William F. Jerome, Vijay K. Naik,
Ajay Raina and Pradeep Varma

Composition

The Design and Performance of a Pluggable Protocols Framework
for Real-Time Distributed Object Computing Middleware372
Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman
and Jeff Parsons

Table of Contents XI

Customizing IDL Mappings and ORB Protocols . 396
Girish Welling and Maximilian Ott

Hierarchical Architecture for Real-Time Adaptive Resource Management . .415
Ionut Cardei, Rakesh Jha, Mihaela Cardei and Allalaghatta Pavan

Author Index .435

Implementing a Caching Service for Distributed

CORBA Objects�

Gregory V. Chockler1, Danny Dolev1, Roy Friedman2, and Roman Vitenberg2

1 Institute of Computer Science, Givat Ram,
The Hebrew University, Jerusalem Israel

{grishac,dolev}@cs.huji.ac.il
http://www.cs.huji.ac.il/{~grishac,~dolev}

2 Computer Science Department
Technion - Israel Institute of Technology, Haifa Israel

{roy,romanv}@cs.technion.ac.il
http://www.cs.technion.ac.il/{~roy,~romanv}

Abstract. This paper discusses the implementation of CASCADE, a
distributed caching service for CORBA objects. Our caching service is
fully CORBA compliant, and supports caching of active objects, which
include both data and code. It is specifically designed to operate over the
Internet by employing a dynamically built cache hierarchy. The service
architecture is highly configurable with regard to a broad spectrum of
application parameters. The main benefits of CASCADE are enhanced
availability and service predictability, as well as easy dynamic code de-
ployment and consistency maintenance.

1 Introduction

One of the main goals of modern middlewares, and in particular of the CORBA
standard [45], is to facilitate the design of interoperable, extensible and portable
distributed systems. This is done by standardizing a programming language
independent IDL, a large set of useful services, the Generic InterORB Protocol
(and its TCP/IP derivative IIOP), and bridges to other common middlewares.
Thus, CORBA compliant middlewares combined with the global connectivity of
the Internet, creates a potential for truly global services that are available for
clients anywhere in the world.

However, the long and unpredictable latencies of the Internet as well as its
unreliability, complicate the realization of this potential. We conducted a simple
test using the UNIX ping program to measure the Internet delays. The results of
this test demonstrate the variance of latencies incurred by the Internet: Pinging
a local host in the same LAN takes less than one millisecond, pinging a host
in the Hebrew University from the Technion takes about 11ms, while pinging a
machine in the USA takes almost 600ms. Therefore, the difference in the response
� This work was supported in part by the Israeli Ministry of Science grant number
1230-1-98.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 1–23, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Gregory V. Chockler et al.

time in accessing objects spread over the Internet might be dramatic, regardless
of the Object Request Broker (ORB) being used.

This calls for caching solutions for improving availability and predictability
of distributed services. In this paper we propose to enrich CORBA middleware
systems with generic caching service. We developed Caching Service for CORBA
Distributed objEcts (CASCADE) which offers a scalable and flexible framework
for general CORBA objects. CASCADE facilitates scalable application design
by building cache hierarchies for the objects it manages. The hierarchy con-
struction is dynamically adaptive with respect to service demand. As different
applications have different consistency, security, and persistence requirements,
our architecture is highly configurable with regard to a broad spectrum of appli-
cation parameters. CASCADE allows client applications to fully control many
aspects of object caching, by specifying a variety of policies for cache manage-
ment, consistency maintenance, persistence, security, etc.

Our work is based on a high abstraction level provided by standard, com-
mercially available CORBA compliant ORBs, and is aimed at preserving native
programming models wherever possible. Furthermore, as discussed in Section 3,
CASCADE design strictly follows the standard CORBA services design princi-
ples outlined in [46].

CASCADE caches both object data and code. Code caching allows us to pre-
serve the standard CORBA programming model: The application works with the
cached copy through the same interface it would have worked with the original
object. In addition, all object methods (including updates) can be invoked locally
eliminating the need to contact the remote object.

In this paper we report on the implementation of CASCADE, its perfor-
mance, and the lessons learned from the implementation experience.

2 Related Work

2.1 Object Caching in CORBA Compliant Systems

To the best of our knowledge, there is no any programming framework pro-
vided by commercially available ORBs that allows for caching general CORBA
objects. A very limited solution is provided by the so called smart stub mecha-
nism provided by some existing CORBA implementations (e.g., Orbix [26] and
VisiBroker). This mechanism allows an application programmer to override auto-
matically generated client stubs. Using smart stubs it is possible to cache results
of method invocations so that the subsequent method invocations will return
locally cached values without invoking the remote operation. This framework,
however, is not general enough for implementing a generic caching mechanism
that will allow for caching true CORBA objects and not just some method-
specific information. Moreover, with smart stub based caching the burden of
maintaining coherency of cached object copies lies entirely on the application
programmer.

MinORB [37] is a research ORB that allows caching partial results of read
method invocations at the client side. Since this system is conceptually similar

Implementing a Caching Service for Distributed CORBA Objects 3

to a caching solution that can be built using smart stubs, it bears the limitations
incurred by this approach (see above).

The ScaFDOCS system [32] is another research project concerned with the
object caching service for CORBA compliant systems. ScaFDOCS provides mul-
tiple consistency levels for copies of cached objects. This system supports several
protocols for various cache consistency semantics [31]. However, it does not sup-
port caching of active CORBA objects (both data and code). In addition, though
cache consistency protocols used in this system scale relatively well, the system
architecture is not hierarchical and is not aimed to operate in wide area networks.

2.2 The Service Approach to Caching and Migration

JavaTM [11] enables writing mobile programs that run on different hardware
platforms and operating systems. Recently, several distributed systems and ar-
chitectures (e.g., Voyager [43], FarGo [1] etc.) that utilize these features to pro-
vide a transparent or application-controlled object migration have emerged. Yet,
these systems dictate their own programming model to the application.

In contrast, our work is based on a higher abstraction level provided by
standard, commercially available CORBA compliant ORBs, and is aimed at
preserving native programming models wherever possible.

2.3 Consistency in Shared Memory and Distributed Systems

Our caching service is highly configurable with respect to a great variety of
consistency disciplines that can be enforced on the cached object copies. Here
we benefited from the vast amount of research that was dedicated to imple-
menting shared memory systems with various consistency guarantees, including
sequential consistency (sometimes referred to as strong consistency) [33], weak
consistency [25], release consistency [19], causal consistency [3,4], lazy release
consistency [29], entry consistency [14], and hybrid consistency [22]. In contrast
to our service, such systems are geared towards high-performance computing,
and generally assume non-faulty environments and fast local communication.
We refer the reader to [7,8,22,53] for other applied and theoretical studies of
consistency strategies.

The Globe system [49] follows an approach similar to CASCADE by pro-
viding a flexible framework for associating various replication coherence models
with distributed objects. Among the coherence models supported by Globe are
the PRAM coherence, the causal coherence, the eventual coherence, etc.

The recent LOTEC protocol [24] maintains consistency for nested object
transactions. This protocol spares the programmer the burden of explicitly spec-
ifying synchronization operations needed for transactional processing. Finally,
the novel Millipage [27] technique enables efficient control over the granularity
of a shared unit, thus enabling applications to achieve good performance while
maintaining sequential consistency.

Object-based shared memory systems, in which consistency guarantees are
given per object, have also been studied. Orca [10] supports object replication

4 Gregory V. Chockler et al.

and migration with strong consistency guarantees. However, all objects in this
system must be written in a special Orca language.

Spring [41] is a distributed operating system that provides a unified caching
architecture that can be used for caching different types of remote objects. How-
ever, this system does not provide generic support for a variety of consistency
and other requirements inherent for object caching. In order to address the re-
quirements of a specific object type, the application developer must reimplement
the object itself.

2.4 Object-Oriented Database Systems (OODS)

Some OODS have been designed to provide persistent storage for objects that
include methods, e.g., O2 [21], GemStone [16] and Thor [35]. For example, the
Thor system [35] supports highly-reliable and highly-available access to storage.
For this purpose its object repositories (ORs) can be replicated, and objects can
migrate from one OR to another. This system also supports client-side caching,
providing a mix of consistency guarantees that can be determined by the user.
It uses a variant of copying garbage collection [9] to manage the cache. In order
to achieve type-safe sharing, all object implementations in Thor are required to
be written in the Theta [36] programming language.

2.5 Web Caching

Caching web pages is nowadays a hot research topic (see, e.g., [2,5,12,17,38,39,44]
[47,51,52]). Web caching is intended for use in wide area internets, similarly to
our caching service, and scalability is also a major concern here. However, the
web caching model is limited to data objects (HTML pages) only and does not
deal with general objects that include executable code. Moreover, the contents
of caches can change only as a result of a primary copy update.

The idea of Active Web Caching [18] can be considered a step towards active
object caching. This work proposes to attach an applet to each web document.
When a document (or its cached copy) is retrieved, the applet is executed.

Another point to be stressed about web caching is that the user has extremely
limited control over caching decisions. The work of [42] describes several typical
Enterprise network scenarios when incorrect caching decisions eliminate any im-
provements in response time gained from using web caching. In contrast, caching
decisions in our service are application-controlled. Therefore, proper application
choice can eliminate all of the above mentioned problems.

3 CASCADE and the Standard CORBA Services

The CORBA standard specifies a collection of object services, called CORBAser-
vices that support basic functions for using and implementing objects [46]. These
services are needed to support meaningful and productive communication at the
application level and are useful for any CORBA applications regardless of their

Implementing a Caching Service for Distributed CORBA Objects 5

specialization. The most prominent examples of the CORBA services imple-
mented by almost any ORB vendor are the Naming Service, the Event Service
and the Transaction Service.

In this respect our design goal was twofold: to preserve the programming
framework provided by the standard CORBA services, and to allow co-existence
and cooperation with these services. To achieve this, we strictly followed the stan-
dard CORBA services design principles outlined in [46] (see below). Thus, our
caching service can be viewed as another useful object service aimed to improve
responsiveness and availability of any CORBA-based application independent of
application domain.

The following is a summary of the CASCADE features that place it in line
with the standard CORBA services:

– The design of CASCADE uses and builds on CORBA concepts: separation
of interface and implementation, object references are typed by interfaces,
clients depend on interfaces, not implementations, etc.

– The service provided by CASCADE is generic with respect to cached object
types.

– CASCADE allows local and remote implementations: The caching service
is structured as a CORBA object with an OMG IDL interface and can be
implemented as either an application library or a standalone server.

– CASCADE does not depend on any global identifier service or global id space
in order to function. All the internal CASCADE components that require
some kind of identification rely on ids generated internally by CASCADE.
These ids are unique only within the caching service scope and are invisible
for the client applications.

– Finding the caching service is at a higher level and orthogonal to using
the service. Since the caching service is structured as an object, all that is
needed for accessing the service is its interoperable object reference (IOR).
The latter can be found using any general purpose service (e.g., the Naming
Service).

4 CASCADE System Overview

Our caching service is designed along the following lines (see Figure 1): The
service is provided by a number of servers each of which is responsible for a spe-
cific logical domain. In practice, these domains can correspond to geographical
areas. We call these servers Domain Caching Servers (DCSs). Cached copies of
each object are organized into a hierarchy. A separate hierarchy is dynamically
constructed for each object. The hierarchy construction is driven by client re-
quests. The construction mechanism ensures that for each client, client’s local
DCS (i.e., the DCS responsible for the client’s domain) obtains a copy of the
object. In addition, this mechanism attempts to guarantee that the object copy
is obtained from the nearest DCS having a copy of this object (see Section 6.1
for further details). Once the local DCS has an object copy, all client requests

6 Gregory V. Chockler et al.

DCS

Original Copy of the
Object X

Cached Copy of the
Object X

Client Request

X

X

X X

X

Y

Y

Y

Y

A.B

X

X

A

A.C

A.D

A.E A.E.X

A.D.X

A.D.Y

X.Y.Z Domain Name

Fig. 1. The Caching Service Architecture

for object method invocation go to this DCS, so that the client does not have to
communicate to a far server.

The DCS that holds an original object becomes the root for this object cache
hierarchy. It plays a special role in building the hierarchy and in ensuring con-
sistency of the cached copies, as described below.

Hierarchies corresponding to each object are superimposed on the DCS in-
frastructure: Different object hierarchies may overlap or be completely disjoint.
Also overlapping object hierarchies do not necessarily have the same root. For
example, in Figure 1 the original copy of the object X is located in the DCS
of domain A.B. This DCS is the root of the X ’s hierarchy. The cached copies
of X are located in the DCSs of domains A, A.E, A.D and A.E.X . Note that, in
addition to being the holder of the cached copy of X , the DCS of domain A also
serves as the root of the object Y hierarchy. Further, the A.D’s DCS contains
only cached object copies and the A.D.X ’s DCS does not contain objects at all.

Compared with other distributed architectures, using a hierarchy has the
following advantages:

Conserved WAN bandwidth consumption : The bandwidth consumption
of communication over a tree is low because each message is sent only |V |−1
times, where V is the number of nodes in the tree.

Implementing a Caching Service for Distributed CORBA Objects 7

Improved scalability : The stateful communication over a hierarchical archi-
tecture is known to be scalable because of the low number of simultaneously
opened node to node connections and because of the small communication
state kept at each node.

Reduced initial response time : Since an object copy is obtained from the
nearest member of the object hierarchy, it takes less time on average to bring
this copy to a local DCS than to obtain the copy from the original object
holder. Thus, the client waits less for the result of its first request addressed
to this object.

Easy management : It is easier to add or to remove a server in a tree than
in other distributed architectures. In addition, a tree can be relatively easily
reconfigured (a root of the tree can be moved etc.).

Easy consistency maintenance : If strong consistency among cached copies
is required, a universally known root of the hierarchy can impose a total
order on object updates.

The main disadvantage of a tree is its vulnerability to node failures. A single
node failure can disconnect the whole branch of the tree. This problem can be
solved, for example, by local replication of each DCS using a primary backup
approach (see, e.g., [15]).

Note that the communication between DCSs is also implemented via
CORBA, so that each DCS provides a service for other DCSs and implements
a well defined IDL interface for internal requests. Thus, the inter-DCS com-
munication benefits from all CORBA advantages: interoperability, portability,
reliability guarantees for communication, and a wide spectrum of services which
can be used, e.g., for secure communication and for name resolution. It is also
important to emphasize that there is only one central object at each DCS imple-
menting this interface for internal requests and not one object per each cached
object. This reduces the number of stubs used for DCS to DCS communication
to one, rendering the system more scalable.

In the framework of the caching service we introduce two policy classes: per-
object policies and per-request policies. The per-object policies do not change
over the object life time, whereas the per-request policies specify a particular
request semantics. In order to provide an adequate interface for configuring the
system, we introduce the notion of a policy object , which is associated with either
an object or a request. These policies are used to specify the required behavior of
the caching service in terms of consistency guarantees, security, persistence, etc.

5 CASCADE System Modules

5.1 The Client Structure

The client structure is depicted in Figure 2. It consists of the following elements:

8 Gregory V. Chockler et al.

Client Application

Client Library

Interceptor

CORBA
Connection

Fig. 2. The Client Structure

Interceptor 1: This module is responsible for interception of client invoca-
tions of cached object methods and for altering the content of the request
transparently for the client application. This module is used for passing im-
plicit request parameters and invocation semantics (see Section 6.2). It is
also used for encryption, decryption and authentication of client requests
(see Section 6.5).

Client Library : The client library is aimed at facilitating the interaction be-
tween the client application and the caching service. In particular, the library
hides the interceptor from the application. Thanks to the client library, the
application interacts with the cached object in the same way as it would do
with an ordinary CORBA object.

5.2 The DCS Structure

Figure 3(a) shows the DCS breakdown into modules. The DCS object consists
of three parts:

Object cache : This is where objects cached in the local DCS actually reside.
Each cached object is wrapped into a proxy object whose structure is depicted
in Figure 3(b) and discussed in Section 5.3 below.

Policy implementations : This is a collection of implementations of various
per-object policies. Each policy implementation is shared among all cached
objects. However, for each cached object a policy implementation is parame-
terized by the corresponding policy object. Policy objects are located within
the object proxy (see Figure 3(b) and Section 5.3).

Common task implementations : This part includes the implementations of
the cache manager, the class loader and the hierarchy manager. The cache

1 Interceptors are a common way of gaining access to CORBA’s communication pro-
tocol; they are a part of the CORBA 2.3 standard [40]. While they are to undergo
a technical revision in CORBA 3, no conceptual changes are anticipated.

Implementing a Caching Service for Distributed CORBA Objects 9

Interceptor

CORBA Connection

Consistency
Impl.
xxx
xxx
xxx
xxx
xxx
xxx

. . .

Object
Proxy of
object O1

Object
Proxy of
object O2

Object
Proxy of
object On

. . .

Object Cache

Policy Implementations

Common Task Implementations

Persistence
Impl.
xxx
xxx
xxx
xxx
xxx
xxx

Security
Impl.
xxx
xxx
xxx
xxx
xxx
xxx

Cache
Manager
xxx
xxx
xxx
xxx
xxx
xxx

Class
Loader
xxx
xxx
xxx
xxx
xxx
xxx

Hierarchy
Manager
xxx
xxx
xxx
xxx
xxx
xxx

Domain Caching Server (DCS)

(a) The DCS Modules

Method
Invocation
Control
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

Accounting
Data

Policy Objects

O2

Hierarchy
Data

O2's Info Object

Object Proxy of object O2

A Policy
Impl.
xxx
xxx
xxx
xxx
xxx
xxx

A method
invocation

(b) The Proxy Modules

Fig. 3. The CASCADE System Modules

manager controls insertion/deletion of objects to/from the object cache. Its
implementation is based on a particular cache replacement policy imple-
mented by the DCS (see Section 6.4). The class loader is responsible for
loading the cached objects’ code into the Java virtual machine. Finally, the
hierarchy manager controls the hierarchy construction for all objects cached
within the DCS (see Section 6.1).

In addition, there is an interceptor object underneath the DCS that intercepts
client requests to cached objects. This is used to extract the implicit request
parameters added by client side interceptors (see Section 5.1).

5.3 The Proxy Object Structure

Figure 3(b) shows the internal structure of the proxy of a cached object O2. It
consists of the following elements:

The cached copy of O2 : This includes the copy of O2’s state and code.
O2’s info object : This object consists of two parts: O2’s policy objects and

O2’s accounting data. There is one policy object for each policy defined
for O2. The policies are configured when O2 is first registered with the CAS-
CADE system. O2’s accounting data includes various run-time statistics that
are collected during its life-time.

O2’s Hierarchy Data : The knowledge of this proxy node about its location
in the object hierarchy: its father node, its children nodes etc.

The method invocation control : This module processes incoming method
invocations based on the policies defined for the object: Whenever a method
is invoked on the cached object, it is forwarded to the object proxy. The
invocation is then processed by the method invocation control module that
passes control to the appropriate policy implementations and supplies the
requested invocation semantics (per-method policy) and the per-object poli-
cies as parameters.

10 Gregory V. Chockler et al.

6 CASCADE Implementation in Detail

6.1 Hierarchy Construction

A hierarchy construction is started when a client calls register object in order
to create a new hierarchy for the object (or for the group of objects). This call
registers the object (or the group of objects) with the local client’s DCS which
becomes the root of the new hierarchy. In the following description we call it
a root DCS for this hierarchy. It keeps the knowledge of the whole hierarchy
and it is responsible for the hierarchy construction. The root DCS also plays
a special role in achieving consistency among the cached copies of the object,
as we explain in Section 6.2. In addition, the root DCS registers itself with the
naming service as a caching service provider for its cached object (or the group
of objects).

Figure 4 shows the sequence of operations executed when a new DCS joins
the hierarchy. When a client wishes to start working with a cached object, it
calls copy object on its local DCS. Unless the local DCS has this object already
cached, it finds the root DCS for this object with the aid of the naming service.
Then it contacts the root DCS with a request to join the hierarchy for this
object. This request also contains the domain of the new DCS.

When the root DCS receives such a join request from a DCS of domain D,
it finds a domain D′ in the existing hierarchy such that D′ is the closest to D.
Then, the root DCS sends a reply specifying the location of the D′’s DCS to
the local client’s DCS. Upon receiving this reply, the latter sends a request to
its designated father node in order to register as its son in the hierarchy and in
order to obtain a cached copy of the object. The father node registers the new
son and sends its cached copy, thus, completing the join protocol.

The notion of a distance between different domains is still an open question.
Currently, we use symbolic domain names to determine the distance between
domains, e.g., we assume that domain a.b.c is closer to a.b than to x.y.z. This
approach works well for some Internet domain names, e.g., domain technion.ac.il
is indeed closer to huji.ac.il than to whitehouse.gov. On the other hand, this
scheme cannot differentiate between the enormous number of .com domains,
and thus, we are also going to investigate other approaches.

The hierarchy construction protocol guarantees that for each client there is
a local DCS that has a cached copy of the object; the local DCS handles the
client’s requests. It is this fact and the hierarchical architecture of the system
that allow to significantly reduce the response time, to distribute the load on
DCSs and to render the caching service scalable.

The disconnection from the hierarchy is currently supported only for leaves.
If some object is no longer used, and some intermediate DCS node wants to leave
the hierarchy for this object, this DCS should wait for its sons to disconnect first.

When a leaf DCS node D wishes to disconnect from the object hierarchy, it
first informs the root about this, so that the root updates its knowledge about
the hierarchy. Then D sends its father a request to detach it from the hierarchy.
Only when D receives a reply, it can safely disconnect.

Implementing a Caching Service for Distributed CORBA Objects 11

DCS for a
domain A.B.C

The Root DCS
for ObjName

DCS X
has a copy of

ObjName

1.
co

py
_o

bj(
ObjN

am
e)

8.
Obje

ctR
efe

re
nc

e

Client

4.
 jo

in
_h

ie
ra

rc
hy

()

5.
 D

C
S

 X
 is

 y
ou

r f
at

he
r

6. become_son()

7. The object copy and

the policy

Naming Service

2. Resolve ObjName

3. Return the reference to

the root DCS for ObjName

Existing hierarchy for
ObjName

Fig. 4. Joining the hierarchy

It should be emphasized that CASCADE takes care of all synchronization
problems that arise during joining and leaving the hierarchy.

6.2 Implementation of Cached Copies Consistency

When the system concurrently maintains several copies of the same object, it
should also guarantee mutual consistency of these copies. Different levels of con-
sistency are widely known, e.g., [13,14,23,28,33]. In general, the stronger the
consistency level, the higher latency its implementation incurs [8].

In order to make our service as flexible as possible, we support several con-
sistency policies. The set of supported policies is motivated by the guarantees
presented in [48] and [30]. Following [48] we present 6 consistency guarantees
that can be combined together to form a consistency model.

12 Gregory V. Chockler et al.

Update Propagation This requirement, called also update dissemination, en-
sures that each update is eventually received by each DCS.

Read Your Writes This condition ensures that the effects of every update
made by an application are visible to all subsequent queries of this applica-
tion.

Monotonic Reads This condition requires that the effects of every update seen
by an application query are visible to all subsequent queries of this applica-
tion (unless overwritten by later updates). The Monotonic Reads guarantee
implies that the observed object is increasingly up-to-date over time.

Monotonic Writes (FIFO ordering) This requirement guarantees that two
updates initiated by the same application are applied in order of their is-
suance.

Writes Follow Reads This condition entails that the updates whose effects
are seen by an application query are applied before all subsequent updates
issued by this application. The Writes Follow Reads requirement along with
Monotonic Writes ensure causal ordering of updates [34].

Total Ordering This requirement guarantees that all updates are applied in
the same order by all GCSs. In other words, it implies that there is a global
sequence of updates. Total Ordering entails Writes Follow Reads (see [50]
for a discussion about the relation of different ordering properties).

CASCADE always guarantees eventual Update Propagation. Other require-
ments are fulfilled only if requested by the application.

The use of Total Ordering is determined by the object policy. It affects the
way method invocation requests are applied and/or propagated through the
hierarchy: While queries are always locally executed at the DCS of a client,
updates might need to be propagated through the hierarchy before being applied
at the DCS which initiates them. If total ordering is required, updates first ascend
through the hierarchy towards the root. The root of the hierarchy orders the
updates in a sequence, applies them and propagates ordered updates through the
hierarchy downwards towards the leaves. At this point there are two possibilities
(the choice is policy configurable): the root DCS can either propagate the request
itself or the resulted version of the object, whichever is shorter. Of course, if the
request has a side effect of updating another, non-cached object through the
network (e.g., updating a non-distributed database), then the root can only
propagate the new object version.

If total ordering is not deployed, updates are first applied locally and then
propagate through the hierarchy. This shortens the latency of updates, and re-
duces the load imposed on the root DCS. However, different updates may be
applied in different order at different DCSs.

Other consistency requirements (i.e., Read Your Writes, Monotonic Reads,
Monotonic Writes and Writes Follow Reads) are part of a per-request policy.
This is more flexible than specifying the required set of these guarantees once
for the whole client session as implemented in Bayou. [20] contains a detailed
description of how these consistency requirements are implemented. It should
be noticed that in some cases (in particular when total ordering is not used)

Implementing a Caching Service for Distributed CORBA Objects 13

their implementation implies a cooperation of the client. Along with a method
invocation request, a client should provide consistency information such as the
last update the client has seen. This can be done either explicitly through a
special purpose interface or transparently for the client application by using
interceptor library (see [20] for a detailed description of the client interface).

As noted in [48], these four consistency conditions (required by all the clients)
in conjunction with total ordering guarantee the classical strong or sequential
consistency [33].

Object Group-Based Consistency The above mentioned consistency policies
apply to an individual object. However, some applications might wish to impose
sequential consistency across several objects. To address this, we introduce object
group-based consistency policy. With this policy, a group of objects, each one
having its own hierarchy, are to be maintained in a strongly consistent manner.
We impose a restriction for this policy that these hierarchies must have a common
root. Without such a limitation the algorithms for achieving group consistency
become prohibitively expensive.

This policy is implemented in the following way: The common root introduces
a total order on the updates of all the objects in the group. Then, updates of
each object are propagated through its own hierarchy. However, if some DCS has
cached copies of more than one object in the group, this DCS does not apply
updates to any object before it applies all other preceding updates, including
updates of other objects.

6.3 Support for Atomic Operations and Locking

Sometimes several requests are to be executed atomically, without being in-
terrupted by the execution of other requests. CASCADE provides the client a
possibility to specify several update operations in one request. Each DCS apply-
ing this request atomically processes the specified sequence of update operations.
When an object group-based consistency is used, and the client’s local DCS has
cached copies of two objects X and Y belonging to the same group, then the
client can invoke update object on X , and include an update of Y into the atomic
operation request.

Locking can be a very useful functionality for applications that deploy a
caching service with strong consistency semantics. When the local DCS possesses
a lock for an object, its clients can be sure that they work with the most up-
dated object copy. In addition, locking can be used for implementing distributed
transactions, even for objects with different root DCSs.

CASCADE supports three types of object locks defined in the specifications
of CORBA Concurrency Control Service [46]:Write lock conflicts with any other
lock, read lock conflicts only with a write lock, and upgrade lock conflicts with a
write lock and with other upgrade locks.

A lock is assigned to the client application following its request. Normally, a
lock is released also upon a client request. However, since CASCADE cannot rely

14 Gregory V. Chockler et al.

on the reliability of the client, special care should be taken so that the object
would not remain locked forever. Therefore, the DCS that obtained the locks
releases them automatically after a given timeout unless it receives another lock
request for the same object. Thus, if the client intends to continue updating the
object, it should issue another lock request before the timeout elapses.

6.4 Overview of Cache Management in CASCADE

Since the size of the cache is limited, a DCS can hold only a limited number of
cached copies. When a cached copy is to be brought to a DCS but there is no
more space in the cache, some other object is to be evacuated from the cache.
However, not all cached objects are suitable for evacuation. In particular, objects
locked by this DCS and/or objects whose methods are currently being executed
are never replaced. In addition, since each object registered with CASCADE
should remain available until it is explicitly unregistered, objects for which this
DCS is the root of the hierarchy are also never evacuated from the cache.

In order to prevent the uncontrolled growth of the total size of registered
objects, CASCADE imposes two limits: (1) on the maximal number of objects
registered at each DCS, and (2) on the maximal size of each registered object. If
the total number of registered objects reaches the limit, new register requests are
rejected. In addition, whenever the size of some registered object grows beyond
the limit, it is unregistered and its hierarchy is destroyed.

If some previously evacuated object is required later by a client, it will be
acquired again from the father node transparently for this client. In turn, if the
father node also does not have a copy of the requested object, it will try to
acquire it from its father node. This way the request ascends all the way up
along the hierarchy until the DCS that has a copy of the object is reached. (In
the worst case, the chain reaches the root of the hierarchy). The object copy
then descends along the hierarchy back to the request originator.

When an object copy is evacuated from the cache, the DCS continues to
keep a small record needed for information dissemination along the hierarchy.
This record is finally removed only when (1) no client has issued a request for
the object during a pre-defined timeout, and (2) this DCS becomes a leaf of the
object hierarchy. When this occurs, the DCS undertakes the steps detailed in
Section 6.1 in order to disconnect from the hierarchy.

In the current version of CASCADE, the decision about which objects to
evacuate from the cache is made by the LRU algorithm driven by client requests
to objects. That is, whenever a new or previously evacuated object O is to be
brought into the cache, currently cached objects are evacuated according to the
LRU criterion until there is enough space to accommodate O.

We intend to study the applicability of other cache replacement algorithms
(see [20] for a discussion of potential alternatives).

Implementing a Caching Service for Distributed CORBA Objects 15

6.5 Support for Security

CASCADE offers support for securing cached object access and communication
between clients and cached objects. This is done by encrypting and signing
communication and deploying object access control. Which of these measures
are undertaken is determined by means of per-object security policy that can be
specified by the object creator when the object is registered with CASCADE.

We are currently working on DCS protection from malicious objects and
malicious clients. [20] provides a more detailed description of these and other
issues related to security in CASCADE.

7 Applications

In this section we describe three typical applications that can benefit from our
caching service.

7.1 Yellow Pages Service

An example of a typical application that requires only Update Propagation and
Monotonic Updates consistency guarantees is a yellow pages service. The object
to be cached here is a catalogue of named information items. Clients can reg-
ister their names along with the information they would like to publish about
themselves. They can update information about themselves and they can also
query information about some particular name or search the catalogue for some
particular information.

Under the realistic assumption that no two clients will try to register under
the same name, updates from different clients are not interrelated. While syn-
chronous catalogue update provides better fairness, it will usually be permissible
for two clients to temporarily see different views of the catalogue. After all, even
the phone company does not deliver a new yellow pages book at the same time
to all houses. In addition, if the DCS hierarchy reflects the geographical location
of the servers, then, according to the principle of locality, if some client registers
information at some DCS, it is more probable that queries about this informa-
tion will be issued to the same DCS. Thus, additional consistency guarantees
are not required for this type of application.

7.2 Tickets Reservation Service

In contrast to the Yellow Pages Service, this service requires the classical strong
consistency [33]. The object to be cached here is a ticket reservations database.
Clients can book a ticket and they can also query information about ticket
availability. The service should not allow two clients to book the same ticket.
This implies that all reservation requests should be totally ordered.

This service can deploy a distributed transaction for booking a group of tick-
ets. In addition, this service can make use of a dirty query mechanism explained

16 Gregory V. Chockler et al.

below. Consider the following situation: Some client reserves a ticket at some
DCS, and then another client attempts to reserve the same ticket at the same
DCS before the previous update has been propagated. Then a dirty query can
already show that this ticket is not available before the actual update propaga-
tion. Note that the probability that the second client contacts the same DCS is
relatively high because of the above mentioned principle of locality.

Note also that our caching service can be used for both airline ticket reserva-
tions and theater reservations. Here, again, the fact that we cache active objects
is instrumental as the rules for performing reservations in both cases are differ-
ent. For example, airlines allow for over-booking, but over-booking might not be
acceptable in theaters.

It should be noticed that queries in a ticket reservation service can benefit
from dirty copy consistency [6]. Loosely speaking, a dirty copy consistency query
returns a value resulted from all locally known updates, even if some of these
updates were not ordered in the global sequence yet. Suppose, for example, that
a number of clients connect to their regional DCS and request to book a seat in
the same flight. Suppose also that as a result of all these booking requests the
flight gets overbooked. Now another client connects to the same DCS in order
to book a seat. It first wants to figure out the situation so it issues a dirty copy
query request and immediately learns that the flight is overbooked and therefore,
the chance for it to get a seat is small. The client can then go and try to book
a ticket for another flight to the same destination.

7.3 Distributed Bulletin Board

In a distributed bulletin board, users can post events, or poll the board for
recently posted events. Also, it is possible to define topics, in which case a user
may look for postings in a specific category, or get a listing of all postings. An
additional requirement from a bulletin board is to preserve causality [34] of event
postings so that a follow-up posting is always seen after the original posting it
is referring to. Thus, this application requires Update Propagation, Monotonic
Writes, Writes Follow Reads and Monotonic Reads consistency guarantees.

8 CASCADE Performance

In order to assess CASCADE performance we conducted a simple test involving
two DCSs: one running on a machine connected to the Hebrew University of
Jerusalem CS department LAN and another running on a machine connected to
the Haifa Technion CS department LAN. Both CS departments are connected to
the Israeli Academic and Research network and separated by 7 hops. Both hosts
are Intel architecture machines (Pentium II 300Mhz with 128MB RAM) running
Windows NT 4.0 operating systems. The ORB used in testing environment was
Visibroker 3.2 for Java.

Our goal was to evaluate the effect of using CASCADE on method invocation
time of a CORBA object. To achieve this, we measured the method invocation

Implementing a Caching Service for Distributed CORBA Objects 17

time twice: once for a standard CORBA remote invocation and another time
for an invocation when the object was cached with CASCADE. The test was
conducted with a 10 KB CORBA object whose interface consisted of both up-
dates and queries. Method argument data types were of small size and therefore
their marshaling/demarshaling had a little effect on overall invocation times.
The object consistency policy included only the Update Propagation guarantee
(see 6.2).

Tables 1 and 2 summarize our results (all the times are given in ms).

Table 1. Method invocation profiling on a DCS

Operation Avg. time Std. deviation

Processing in interceptors < 1 < 1

Request processing by proxy 0.83 2.87

Proper invocation time 2.4 6.59

Full invocation time 11.1 25

Table 2. Method invocation profiling on a client

Operation w/o CASCADE using CASCADE
Avg. time Std. deviation Avg. time Std. deviation

Marshaling/demarshaling 1.32 4.1 1.49 3.91

Client interceptors N/R N/R < 1 < 1

Request invocation 93 8 46.78 15.7

We measured the following times at a DCS:

Processing in interceptors - time spent on request processing by server in-
terceptors. It was always close to 0 because of the weak consistency policy
we chose. However, even when we measured this time for strong and group
consistency policy, it was never more than few milliseconds.

Proper invocation time - time spent in the invoke function of the cached
object. It was only few milliseconds for our lightweight object.

Request processing by proxy - time taken by an object proxy to process the
request in order to satisfy consistency and other policy requirements.

Full invocation time - this is the sum of the above times and the time of
the request processing by ORB. The latter includes the times of marshal-
ing/demarshaling.

We measured the following times at a client application:

Marshaling/demarshaling - time spent in the stubs on marshaling the in pa-
rameters and demarshaling out parameters. It was few milliseconds because
of the small size of parameter types.

18 Gregory V. Chockler et al.

Client interceptors - time spent on request processing by client interceptors.
All explained about time spent in server interceptors applies here as well.

Request invocation - time taken by request.invoke(). It consists of the time
spent in client interceptors, the full invocation time at the DCS, additional
request processing by ORB, and the network latency.

The results shown in the tables clearly indicate that the network latency is
the most influential factor in the overall invocation time. Since use of CASCADE
significantly reduces the network latency, it leads to a 2 times speedup for our
settings. Furthermore, taking into consideration that a ping from Israel to the
US or to Europe takes about 600ms, we expect the magnitude order of a speedup
to be 20-30 times for far objects.

In future we intend to conduct tests for a larger number of DCSs and cached
objects, for objects of different sizes and for more data transmitted during re-
quest invocation. We expect the speedup for bigger requests to be even greater
because the time of their transmission over the network will overweigh the dif-
ference in marshaling time.

9 Lessons Learned from CORBA Experience

Object by Value CORBA has the advantage over many commercial RPC sys-
tems in that it allows object references to be manipulated as regular data
type values in a straightforward manner. In particular, an object reference
can be passed as an argument of a method invocation on another object.
However, other parameter passing semantics are not supported by CORBA.
Specifically in CASCADE, there is a need to pass objects by value when the
object is cached at some DCS. Currently, this is implemented with the aid
of Java serialization. The shortcomings of this approach are that (a) we are
limited in the choice of programming language, and (b) the object state is
passed as a sequence of bytes. This does not stay in line with object-oriented
approach.
While CORBA 2.3 introduced the object-by-value standard to tackle this
problem, this standard is not mature enough and its implementations are
rare. Furthermore, CORBA lacks the ability to forward an incoming request
to another server, i.e., to pass it by value. This ability is important for
CASCADE that executes the same update request at multiple locations and
totally orders update requests in order to achieve consistency. Below we
explain how we circumvent the lack of this ability with the aid of interceptors.

Interceptors Use of interceptors is vital for CASCADE implementation. In-
terceptors allow CASCADE to perform a set of operations transparently to
the client applications: to encrypt and sign requests and replies, to maintain
consistency and to pass implicit per-request policy parameters.
Unfortunately, the interceptor standard of CORBA is to undergo a major
revision, and there are no implementations of the current standard. There-
fore, we used proprietary Visibroker 3.2 interceptors which conceptually cor-
respond to the standard of message-level interceptors. Per-request policies

Implementing a Caching Service for Distributed CORBA Objects 19

and consistency parameters were passed through the service context field of
a standard GIOP request message header. Unfortunately, Visibroker (and
even the CORBA standard) defines no means for encapsulating typed data
into service context, so we had to implement marshaling/demarshaling by
ourselves.
An additional use of interceptors in CASCADE is for forwarding an incoming
request to another DCS. This was implemented in the following way: when
DCS A receives a request to be propagated to its parent DCS B, A calls an
internal DCS interface method on B and passes the GIOP request message
body as a parameter (see [20] for a description of the internal DCS interface).
If B is to apply this request, it creates an instance of CASCADE class
that implements CORBA::ServerRequest and that is initialized with a GIOP
request message body.
However, in some ORBs, this solution could lead to little endian - big en-
dian incompatibilities: If A and B have the same endian order, the standard
CORBA input/output streams are used for marshaling/demarshaling: The
request message body is written to the CORBA::portable::OutputStream by
calling write octet array, CORBA::portable::InputStream is created out of
the OutputStream, and the typed data is read from this InputStream. How-
ever, if A and B have different endian order, we had no choice but to use
input and output streams implemented in CASCADE.
An alternative way of redirecting a request would be to use request-level
interceptors, to demarshal request parameters into anys, and to call an ap-
propriate method on B, passing the list of these anys. However, in this
solution the types of anys would be also passed on the wire, while these
types would be absolutely unnecessary.

10 Future Work

CASCADE is a rapidly evolving system that is under permanent development.
As part of our future work we intend to evaluate applicability of several existing
protocols for reliable multicast and dynamic resource discovery in the Internet
for improved hierarchy construction and update propagation. Other research
directions include evaluating cache replacement policies, working out the security
model, adding fault-tolerance, conducting thorough performance tests etc.

Another interesting problem to be addressed is whether the hierarchical cache
architecture employed by CASCADE is most adequate for wide area distributed
settings. To answer this question we intend to examine other possibilities for
replicating and caching CORBA objects. For example, an interesting option to
examine would be a hybrid architecture that combines replication of CORBA
objects at limited number of powerful servers with light-weight cache servers at
the end-user sites.

Also, it would be interesting to identify features provided by various CAS-
CADE components that are generic enough in order to be incorporated indepen-
dently into the CORBA standard. For example, consistency policy implementa-

20 Gregory V. Chockler et al.

tions can be beneficial for a wide range of distributed applications that involve
object replication for improved availability and fault-tolerance.

We are also working on development of various wide area CORBA based
distributed applications that will utilize CASCADE for improved availability and
service time predictability. Among the applications currently under development
are a distributed news facility and a shared whiteboard. These applications will
help us to assess the CASCADE impact on the service quality and to identify
the features that should be added to CASCADE in order to better meet the
application needs.

References

1. FarGo home page. http://www.dsg.technion.ac.il/fargo/. 3
2. Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and

Edward A. Fox. Caching proxies: limitations and potentials. In Proceed-
ings of the 4th International WWW Conference, December 1995. Available at
http://www.w3.org/pub/Conferences/WWW4/Papers/155/. 4

3. M. Ahamad, P. Hutto, and R. John. Implementing and programming causal dis-
tributed shared memory. Technical Report TR GIT-CC-90-49, Georgia Institute
of Technology, December 1990. 3

4. M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto. Causal memory: Defini-
tions, implementation, and programming. Distributed Computing, 9(1), 93. 3

5. Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Charac-
terizing reference locality in the WWW. In Proceedings of the IEEE Conference on
Parallel and Distributed Information Systems (PDIS), December 1996. Available
at http://cs-www.bu.edu/faculty/best/res/papers/pdis96.ps. 4

6. Y. Amir. Replication Using Group Communication Over a Partitioned Network.
PhD thesis, Institute of Computer Science, The Hebrew University of Jerusalem,
Israel, 1995. 16

7. H. Attiya and R. Friedman. A correctness condition for high-performance multi-
processors. In Proc. of the 24th ACM Symp. on the Theory Of Computing, pages
679–690, May 1992. Revised version: Technical Report #767, Department of Com-
puter Science, The Technion. Submitted for publication. 3

8. H. Attiya and J. Welch. Sequential consistency versus linearizability. ACM Trans-
actions on Computer Systems, 12(2):91–122, May 1994. 3, 11

9. Henry Baker. List processing in real time on a serial computer. Communications
of the ACM, 21(4):280–294, April 1978. 4

10. H. Bal, F. Kaashoek, and A. Tanenbaum. Orca: A language for parallel pro-
gramming of distributed systems. IEEE Transaction on Software Engineering,
18(3):190–205, March 1992. 3

11. H. J. Bekker. The Java Platform, A White Paper. JavaSoft, Sun Microsystems.
Available at http://www.javasoft.com/docs/white. 3

12. H. J. Bekker. Survey on caching requirements and specifications for
prototype. DESIRE European project deliverable D4.1. Available at
http://www.ruu.nl/˜henny/desire/survey.html. 4

13. J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory
based on type-specific memory coherence. In Proc. of the 2nd ACM Symp. on
Principles and Practice of Parallel Processing, pages 168–176, 1990. 11

Implementing a Caching Service for Distributed CORBA Objects 21

14. B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway dis-
tributed shared memory system. In Proc. of the 38th IEEE Intl. Computer
Conf. (COMPCON), pages 528–537, February 1993. Available at http://www-
cgi.cs.cmu.edu/afs/cs/project/midway/WWW/CompCon93.ps. 3, 11

15. K. P. Birman. Building Secure and Reliable Network Applications. Manning Pub-
lishing Company and Prentice Hall, December 1996. 7

16. P. Butterworth, A. Otis, and J. Stein. The GemStone database management sys-
tem. Communications of the ACM, 34(10), October 1991. 4

17. Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In Proceed-
ings of the 1997 Usenix Symposium on Internet Technologies and Systems (USITS-
97), December 1997. Available at http://www.cs.wisc.edu/ cao/papers/gd-
size.ps.Z. 4

18. Pei Cao, Jin Zhang, and Kevin Beach. Active cache: Caching dynamic contents
on the web. In IFIP Intl. Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware ’98), pages 373–388, 1998. 4

19. J. B. Carter. Efficient Distributed Shared Memory Based on Multi-Protocol Rel
ease Consistency. PhD thesis, Department of Computer Science, Rice University,
September 1993. 3

20. G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Cascade: Caching service
for corba distributed objects. Technical report, Department of Computer Science,
The Technion, October 1999. In preparation. 12, 13, 14, 15, 19

21. O. Deux et al. The story of O2. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91–108, March 1990. 4

22. R. Friedman. Consistency Conditions for Distributed Shared Memories. PhD
thesis, Department of Computer Science, The Technion, 1994. 3

23. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In Proc. of the 17th International Symposium on Computer Architecture,
pages 15–26, May 1990. 11

24. Peter Graham and Yahong Sui. LOTEC: A Simple DSM Consistency Protocol
for Nested Object transactions. In ACM Symposium on Principles of Distributed
Computing (PODC), 1999. To appear. 3

25. P. Hutto and M. Ahamad. Slow memory: Weakening consistency to enhance con-
currency in distributed shared memories. Technical Report TR GIT-ICS-89/39,
Georgia Institute of Technology, October 1989. 3

26. IONA. Orbix Programming Guide. IONA Technologies Ltd., November 1995. 2
27. Ayal Itzkovitz and Assaf Schuster. MultiView and Millipage — Fine-Grain Sharing

in Page-Based DSMs. In Proc. of the 3rd Symp. on Operating Systems Design and
Implemen tation (OSDI’99), New Orleans, February 1999. To appear. 3

28. K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. Crl: High-performance all-
software distributed shared memory. In 15th ACM SIGOPS Symposium on Oper-
ating Systems Principles (SOSP), pages 213–228, December 1995. 11

29. P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD thesis,
Department of Computer Science, Rice University, December 1994. 3

30. A. M. Kermarrec, I. Kuz, M. van Steen, and A. S. Tanenbaum. A Framework for
Consistent, Replicated Web Objects. In Proceedings of the 11th International Con-
ference on Distributed Computing Systems (ICDCS’98), Amsterdam, The Nether-
lands, May 1998. 11

31. R. Kordale and M. Ahamad. A scalable technique for implementing multiple consis-
tency levels for distributed objects. In 16th International Conference on Distributed
Computing, 1996. 3

22 Gregory V. Chockler et al.

32. R. Kordale, M. Ahamad, and M. Devarakonda. Object caching in a corba compliant
system. USENIX Computing Systems Journal, 9(4), 1996. 3

33. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, C-28(9):690–691, 1979. 3,
11, 13, 15

34. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 78. 12, 16

35. B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and efficient sharing of persistent objects in Thor. In
ACM SIGMOD International Symposium on Management of Data, pages 318–329,
June 1996. 4

36. Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawhat, Robert Gruber,
Paul Johnson, and Andrew C. Myers. Theta reference manual. Programming
Methodology Group Memo 88, MIT Lab. for Computer Science, feb 1994. Also
available at http://www.pmg.lcs.mit.edu/papers/thetaref/. 4

37. P. Martin, V. Callaghan, and A. Clark. High Performance Distributed Objects
using Caching Proxies for Large Scale Applications. In Proceedings of the IEEE
International Symposium on Distributed Objects and Applications (DOA’99), Ed-
inburgh, Scotland, September 1999. 2

38. Ingrid Melve. Web caching architecture. DESIRE European project. Available at
http://www.uninett.no/prosjekt/desire/arneberg/. 4

39. Ingrid Melve, Lars Slettjord, Henny Bekker, and Ton Verschuren. Build-
ing a Web caching system - architectural considerations. In Proceed-
ings of the 1997 NLANR Web Cache Workshop, June 1997. Available at
http://ircache.nlanr.net/Cache/Workshop97/Papers/Bekker/bekker.ps. 4

40. P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith. Using interceptors to enhance
CORBA. IEEE Computer, 32(7):62–68, July 1999. 8

41. M. N. Nelson, G. Hamilton, and Y. A. Khalidi. A framework for caching in an
object-oriented system. SMLI TR 93-19, Sun Microsystems Laboratories, Inc.,
October 1993. 4

42. Thomas Nolle. To cache or not to cache.
http://www.nwfusion.com/columnists/1109nolle.html (registration required). 4

43. ObjectSpace. Voyager home page. http://www.objectspace.com. 3
44. Katia Obraczka, Peter Danzig, Solos Arthachinda, and Muhammad Yousuf.

Scalable, highly available Web caching. Technical Report 97-662, USC Com-
puter Science Department, 1997. Available at ftp://usc.edu/pub/csinfo/tech-
reports/papers/97-662.ps.Z. 4

45. OMG. The Common Object Request Broker: Architecture and Specification. OMG,
1995. 1

46. OMG. CORBA services: Common Object Services Specification. OMG, 1995. 2,
4, 5, 13

47. Guillaume Pierre and Mesaac Makpangou. Saperlipopette!: a distributed Web
caching systems evaluation tool. In Proceedings of the 1998 Middleware conference,
September 1998.
Available at http://www-sor.inria.fr/publi/SDWCSET middleware98.html. 4

48. D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M. Theimer, and B.B.
Welsh. Session guarantees for weakly consistent replicated data. In Proceedings
of the IEEE Conference on Parallel and Distributed Information Systems (PDIS),
pages 140–149, Austin, TX, September 1994. 11, 13

49. M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A Wide-Area Distributed
System. IEEE Concurency, 7(1):70–78, January-March 1999. 3

Implementing a Caching Service for Distributed CORBA Objects 23

50. R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communication spec-
ifications: A comprehensive study. Technical Report MIT-LCS-TR-790, Mas-
sachusetts Institute of Technology, Laboratory for Computer Science, October
1999. Also: Technical Report CS #0964, Department of Computer Science, The
Technion. 12

51. Philip S. Yu and Edward A. MacNair. Performance study of a col-
laborative method for hierarchical caching in proxy servers. In Proceed-
ings of the 7th International WWW Conference, April 1998. Available at
http://www7.conf.au/programme/fullpapers/1829/com1829.htm. 4

52. Lixia Zhang, Sally Floyd, and Van Jacobson. Adaptive web caching. In Pro-
ceedings of the 1997 NLANR Web Cache Workshop, June 1997. Available at
http://ircache.nlanr.net/Cache/Workshop97/Papers/Floyd/floyd.ps. 4

53. R. N. Zucker and J.-L. Baer. A performance study of memory consistency models.
In Proc. of the 19th International Symposium on Computer Architecture, pages
2–12, May 1992. 3

A Middleware System Which Intelligently

Caches Query Results

Louis Degenaro1, Arun Iyengar1, Ilya Lipkind2, and Isabelle Rouvellou1

1 IBM Research, T. J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA,

{degenaro,aruni,isabelle}@watson.ibm.com
2 Courant Institute of Mathematical Sciences, New York University,

New York, NY, USA,
lipkind@cs.nyu.edu

Abstract. This paper describes how caching was used to improve per-
formance in the Accessible Business Rules framework (ABR) for IBM’s
Websphere. ABR is a middleware system which enables application writ-
ers to build applications where the time and situation-variable parts of
their business logic are externally applied entities known as business
rules. The cache significantly reduced the number of queries to remote
databases by storing query results. A key problem we faced was how to
keep the cache current after database updates. This was solved using
data update propagation (DUP). Two enhancements we made to DUP
were to employ an update strategy which considers the values of database
updates in order to perform intelligent cache invalidations and to auto-
matically compute dependencies using compile and run-time analysis.
Our techniques can be applied to other caching environments besides
ABR. We show how our cache invalidation strategies perform for appli-
cations with database updates having queries similar to those in the Set
Query benchmark.

1 Introduction

Caching is critical for improving the performance of many middleware applica-
tions. In order for an application to benefit from caching, it must repeatedly
use data which is expensive to calculate or fetch. By caching such data, the
application only needs to calculate or fetch the data once. Whenever the data
is needed after it has been cached, the application can fetch the data from the
cache instead of recalculating it or fetching it from a remote location.

This paper describes how caching is used to improve performance in the
Accessible Business Rules framework (ABR) for IBM’s Websphere. ABR is a
middleware system which enables application writers to build applications where
the time and situation-variable parts of their business logic are externally applied
entities known as business rules.

The techniques we have used for caching in ABR can be applied to other
applications as well. The General-Purpose Software cache (GPS cache) which

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 24–44, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Middleware System Which Intelligently Caches Query Results 25

we used is designed to be plugged into different applications. The GPS cache
has also been successfully deployed in a Web server accelerator. The GPS cache
has very efficient code for storing data in memory, on disk, or both. It also has
optimized support for invalidating objects based on expiration times and for
logging cache transactions.

The GPS cache, as applied in ABR, stores the results of queries ultimately
made to a database. A key problem with caching query results is determining
which queries are affected by changes that occur to the database. In order to keep
caches current after database updates, we use an enhanced version of data update
propagation (DUP) [2]. A query result may depend on several attributes, and
these dependency relationships are represented by an object dependence graph
(ODG).

DUP has been previously used to cache dynamic Web data. We made two key
innovations to DUP for caching in ABR. When attributes change, we consider
the old and new values of the attributes in order to determine how to update
the cache. This value-aware update policy is implemented by annotating edges
of ODG’s with values based on queries.

When DUP was used for caching dynamic Web data, an application program
was responsible for generating the ODG. The second key innovation we made to
DUP for ABR was to automatically generate ODG’s from the queries within an
ABR application.

Our techniques for caching queries in ABR can be deployed in other query-
based environments as well. This paper examines how our update policies per-
form under different update rates for queries similar to those used by the Set
Query benchmark.

The remainder of the paper is structured as follows. Section 2 presents an
overview of the ABR system which utilized our cache. Section 3 describes the
general-purpose software cache used to improve the performance of ABR. Sec-
tion 4 describes the techniques we used to keep cached data current in the
presence of updates. Section 5 discusses the performance of our cache update
schemes on applications with queries similar to those in the Set Query bench-
mark. Section 6 discusses related work. Finally, Section 7 summarizes our main
results and conclusions.

2 Overview of the Accessible Business Rules Framework
(ABR)

The techniques for intelligent query caching described in this paper were devel-
oped to improve performance for the Accessible Business Rule framework (ABR),
one of the e-business application frameworks available on IBM’s Websphere mid-
dleware [4]. ABR enables application writers to build applications where the time
and situation-variable parts of their business logic are externally applied entities
called business rules. The structure of the application then matches the built in
core behavior with variations specified, managed, and applied externally. Cus-
tomizable services and features (such as web personalization) can also be built

26 Louis Degenaro et al.

on top of ABR. An ABR rule is a persistent object encapsulating code imple-
menting variable behavior as well as a number of attributes defining the business
context in which this behavior applies. ABR defines structured exit points from
the main application logic which are referred to as variability points or decision
points. The code in decision points selects the particular business logic (rule or
rules) to be executed via a query. A query statement is a constraint on the con-
text attributes of the rule objects which reflect the business criteria and context
used to select the rules. Some contexts are fixed and represent a static busi-
ness situation (i.e. not dependent on run-time data). They are captured in ABR
with either a simple direct name (e.g. ComputeRateQuote) or a compound name
when the context is hierarchical (e.g. Vehicle::isEligible). Some contexts are sit-
uational; the correct rules then partly depend on a business context computed
or derived at run time (e.g. category of the customer accessing this web page,
season of the year). More details on ABR can be found in [19,9].

Externalizing business rules from the main code has invaluable benefits for
the clarity of the application and its ease of maintenance. However, this exter-
nalization, as first implemented, had significant overhead which largely resulted
from querying. Performance profiling clearly correlated the performance bottle-
neck with the overhead introduced by querying the persistent store (typically a
database) where the rules are stored.

Because business rules do not change very often, though much faster than the
core of the applications they are attached to, the benefits of caching the query
results in that context were apparent. However, because queries were dependent
on multiple objects in nontrivial ways, there was a need for a general cache
invalidation mechanism to avoid using stale objects when caching of query results
was desired.

Figure 1 depicts a Websphere system including an ABR Rule Server. This
configuration contains three cloned instances of the Rule Application Server
distributed on two different nodes (i.e. a physical system on which the application
server runtime is installed). Multiple server instances are defined and active on
a node, and each server is a single, multithreaded process. The three rule server
instances are in a Rule Server Group (i.e. a named collection of server instances)
and are all connected to the same database (IBM’s DB2). The Rule Server Group
is defined for availability and performance reasons, but client applications see
only a a single logical server instance. The figure shows two types of clients: a rule
administrator client which would typically be within the same Intranet as the
Rule Server and other browser-based clients accessing different rule-based Web
applications. Although not shown in the figure, clients may also have caches.

3 Caching Software Used by ABR

Caching is an extremely useful technique for improving performance in a variety
of software applications. We have used caching to significantly improve perfor-
mance of ABR and numerous Web applications [2,17,13]. In order to achieve
performance improvements for multiple applications, we have implemented a

A Middleware System Which Intelligently Caches Query Results 27

Load
Balancer

Load
Balancer

Load
Balancer

Load
Balancer

Database
Servers

Database
Servers

Database
Servers

Database
Servers

Database
Servers

Services
Server(s)

Rule Application ServerORB
Server

Servlet/JSP
EntitySession

JDBC

Web Shopping Application Server
ORB

Server

Servlet/JSP
EntitySession

JDBC

Web Shopping Application Server
ORB

Server

JDBC

Node Manager

Node Manager

Static
Content

.jsp
.class

Servlet.java

ORB
Server

Rule Application Server

Rule Application ServerORB
Server

Rules
(entity)

JDBC

Cache Manager

Query Cache
RMI/IIOP

Rule Admin Client

Web
Server
Process

ORB
Client

Plug-ins

Web
Server
Process

ORB
Client

Plug-ins

HTTP_Base Client

Fire Wall

JSP/Servlet Session Entity

Fig. 1. The ABR architecture

General-Purpose Software cache (GPS cache). The GPS cache is a POSIX-
compliant [18] C++ library. In order to use the GPS cache, an application uses
the GPS cache application program interface (API) to manage the cache and
is linked with the GPS cache library. Applications add, delete, and query the
cache via a set of API function calls. The GPS cache has been used to improve
performance in ABR and in a Web server accelerator [17].

Software designers without something similar to a GPS cache would have
to write their own caches for each application requiring one. This could require
considerable extra effort. A hastily designed cache is likely to have inferior per-
formance and less functionality than the GPS cache.

We would like to see the GPS cache or something similar to it become widely
available in operating systems or software development libraries. This would
allow software developers to easily improve performance via caching. Ideally, a
common API for invoking caching functions could be agreed upon.

The GPS cache can be configured to store data in memory, on disk, or both.
A common mode of operation is to use disk as secondary storage for cached data
which cannot fit in memory due to the presence of other cached data which are
accessed more frequently.

Cached objects can have expiration times associated with them after which
they are no longer valid. The GPS cache implements an efficient algorithm for
invalidating objects based on expiration times.

28 Louis Degenaro et al.

The GPS cache implements the data update propagation (DUP) algorithm
for invalidating cached objects [2,14]. This feature is useful for keeping complex
data current in the cache. DUP has proved to be extremely useful for caching
dynamic Web pages. Future sections of this paper describe how DUP was used
for ABR.

The GPS cache allows cache transactions to be logged in a file. In order to
reduce the overhead for logging, the frequency with which buffers containing
transaction information are flushed to the file system can be varied. If every
transaction record is flushed to disk as soon as it is generated, log files will
always be up to date, and no logs will be lost if the cache process fails. The
overhead for immediately flushing every transaction log is substantial, however.
An alternative approach is to accumulate several transaction records in a buffer
before flushing the buffer to disk. This approach has lower overhead. If the cache
process fails, however, transaction records which have not yet been flushed to
disk are lost. A detailed description of the GPS cache and its performance is
contained in [12].

4 Cache Invalidation Using the Data Update Propagation
Algorithm

Data update propagation (DUP) determines how cached data are affected by
changes to underlying data which determine the current values of the data. For
example, if a cache is storing results from querying databases, a method is needed
to determine which query results are affected by updates to the database. Such
a method could synchronize caches with databases so that the caches do not
contain stale data. Furthermore, the method should associate cached data with
parts of the database in as precise a fashion as possible. Otherwise, objects whose
values have not changed may be mistakenly invalidated or updated from a cache
after a database change. Such unnecessary updates to caches can increase miss
rates and hurt performance.

DUP maintains correspondences between objects which are defined as entities
which may be cached and underlying data which periodically change and affect
the values of objects. In the ABR system, the objects being cached are query
results and the underlying data are parts of the database. We have also employed
DUP for caching Web data in which the objects being cached are Web pages.

The system maintains data dependence information between objects and
underlying data. When the system becomes aware of a change to underlying
data, it examines the dependence information which it has stored in order to
determine which cached objects are affected. Caches use dependency information
to determine which objects need to be invalidated or updated as a result of
changes to underlying data.

Data dependencies between underlying data and objects are represented by
a directed graph known as an object dependence graph (ODG), wherein a vertex
usually represents an object or underlying data. An edge from a vertex v to
another vertex u, denoted (v, u), indicates that a change to v also affects u.

A Middleware System Which Intelligently Caches Query Results 29

Node v is known as the source of the edge, while u is known as the target of the
edge. For example, if node go2 in Figure 2 changes, then nodes go5 and go6 also
change. By transitivity, go7 also changes.

Edges may optionally have weights associated with them which indicate the
importance of data dependencies. In Figure 2, the data dependence from go1 to
go5 is more important than the data dependence from go2 to go5 because the
former edge has a weight which is 5 times the weight of the latter edge. Edge
weights can be used to quantitatively determine how obsolete a cached object is.
In some cases, it is acceptable to keep around a cached object which is not too
obsolete. Retaining slightly obsolete versions of cached objects results in better
performance than updating or invalidating an object every time it changes.

go1 go2
go3

go4

go5
go6

go7

10
12

5 1
8

2
3

Fig. 2. An object dependence graph (ODG). Weights are correlated with the
importance of data dependencies

For most situations in ABR, the object dependence graph is a simple object
dependence graph having the following characteristics:

– Each vertex representing underlying data does not have an incoming edge.
– Each vertex representing an object does not have an outgoing edge.
– All vertices in the graph correspond to underlying data (nodes with no in-
coming edges) or objects (nodes with no outgoing edges).

– None of the edges have weights associated with them.

Figure 3 depicts a simple ODG.

4.1 Constructing ODG’s from Queries

We now give an example of constructing an ODG from a query. The query:

30 Louis Degenaro et al.

ud3 ud4ud1 ud2

o1 o2

Fig. 3. A simple object dependence graph

select A where A.x > 2 and A.x < 9 and A.z = B.y

would generate the ODG shown in Figure 4. Each class.attribute term in the
query has a corresponding vertex in the ODG. Edges are drawn from each
class.attribute vertex to the query result objects it affects.

A key enhancement that we have used in applying DUP to ABR over previous
implementations of DUP is the use of annotations of graph edges in order to
achieve a value-aware invalidation scheme. For example, the annotation of the
edge originating from the A.x vertex indicates that if A.x changes, query result
Q1 would only be affected if either:

1. A.x was previously between 2 and 9 and is no longer in this range
2. A.x was previously not between 2 and 9 but now is in this range

A.x A.z B.y

Q1

2,9

Fig. 4. The ODG resulting from the query select A where A.x > 2 and A.x < 9
and A.z = B.y. The annotation of the edge from A.x to Q1 allows more selective
invalidations

A Middleware System Which Intelligently Caches Query Results 31

There are no annotations of edges originating from A.z and B.y. This indi-
cates that value-aware invalidation is not being used for these edges, and any
change to A.z or B.y might affect the value of Q1.

ODG’s constructed in this fashion are stored in the GPS cache. The GPS
cache has an efficient algorithm for traversing ODG’s in order to locate all cached
query results affected by changes to underlying data.

4.2 DUP Implementation in ABR

As mentioned in Section 2, ABR applications contain decision points which query
the ABR Rule Server for the collection of rules that presently apply. Once re-
trieved, these rules are “fired”, resulting in the appropriate application behavior
at this decision point (note that the “variable behaviors” encapsulated in rules
range from constraint checking to derivation of a particular value). Ordinarily,
such a query would be pushed down to the persistent store (typically a database).
Caching improves performance by avoiding the persistent store in many cases.

We now describe how ABR handles queries extracted from a particular rule-
based Web shopping application. This application serves pages to browsers. The
pages are created with “holes” which get filled with dynamic content (e.g. URLs
or images) according to business rules that are managed externally. The selection
of the content is typically situational (e.g. category of the customer accessing
this web page, season of the year). We focus below on a particular hole which is
to be filled with a product promotion based upon classification of the shopper’s
status into Gold, Silver, or Bronze. The code interacting with the ABR server
issues two queries. The first query, Q1, retrieves classifier rules which when
fired return the classification(s) of the current shopper. The second query, Q2,
retrieves promotion content rules defined for the current shopper classification
as established when firing the classifier rules returned by Q1.

Q1 and Q2 are shown below:

Q1 :
SELECT * FROM RULEUSETABLE WHERE

CONTEXTID LIKE ’customerLevel’
AND TYPE LIKE ’classifier’
AND COMPLETIONSTATUS LIKE ’ready’

Q2(userClassification):
SELECT * FROM RULEUSETABLE WHERE

CONTEXTID LIKE ’promotion’
AND CLASSIFICATION LIKE $1
AND TYPE LIKE ’situational’
AND COMPLETIONSTATUS LIKE ’ready’

Q1 is a static SQL statement for which the ODG is completely generated at
compile time. Q2 is a parametrized statement ($1 represents a variable whose

32 Louis Degenaro et al.

value isn’t known statically) for which all of the ODG, except for annotations of
edges dependent on parameters, is generated at compile time. Such annotations
are determined at run-time. In our example, the run-time work is limited to
setting a parameter and thus introduces minimal overhead. The ODG generated
from Q1 and Q2 is shown in Figure 5.

TYPE

COMPLETIONSTATUS

ready

classifiercustomerLevel

CONTEXTID CONTEXTID

TYPE
COMPLETIONSTATUS

CLASSIFICATION

Q1

ready

promotion

$1

situational

Q2($1)

Fig. 5. The ODG generated statically from the two ABR queries given in the
text. The actual value of “$1” is determined at run-time

The ABR Server API offers 23 queries for use in ABR-enabled applications.
These queries are constraints on all or a subset of the 13 attributes of the rule. All
but one of the queries are similar to the ones shown above and are therefore either
static or parameterized. ODG’s for dynamic SQL statements can be created from
scratch by the system at run-time.

Selective invalidation of the cache is triggered by invalidation code in the
attribute setter, creation and deletion methods. The code is automatically gen-
erated at compile time. Invalidation tokens need to be partially computed at
run-time in order to allow value-aware invalidation. Just as with parameterized
queries, much of the token is known statically, and the run-time computation
just involves determining a parameter, a process which usually introduces little
overhead.

Figure 6 shows the invalidation code in a set method. In this example, if a
new classifier establishing customer level is introduced (e.g. a Platinum level is
created, resulting in new classifier rules of ContextId “CustomerLevel”), Q1 will
be invalidated. Cached Q2 query results corresponding to the old classification
are still valid and don’t need not to be invalidated.

A Middleware System Which Intelligently Caches Query Results 33

void RuleUse.setContextId(String inContextId)

{

// Cache begin invalidate

if (!contextId.equals(inContextId)) {

cache.invalidate("RuleUse.contextId", inContextId);

}

// Cache end invalidate

contextId = inContextId;

...

}

Fig. 6. The invalidation code in a set method

Figure 7 shows how the ABR caching system works for two typical scenarios.
The first one is initiated by a client of a rule-enabled application; the second one
is initiated by a rule administration client.

In the first scenario, a client invokes the Web Shopping application which
runs until it encounters an ABR dynamic content decision point. This triggers
a (1) find to be requested for a set of rules to classify the current situation.
The query processor attempts a (2) cache lookup to retrieve the requested (3)
result from cache and returns it to continue the second phase of the decision
point processing for displaying dynamic content based upon classification. Each
individual RuleUse returned in the query result is interrogated via (7) get for
desired attributes. Then each RuleUse is fired to produce the current classifica-
tion, which is then used to locate and fire more RuleUses to render the dynamic
content. If not found in the cache, then the result is obtained via (4) database
access, followed by caching of (3) the result, which causes the appropriate ODG
to be constructed. Finally, the result is returned, and processing continues as
above. Future requests for the same result will be obtained from the cache until
the result is invalidated.

In the second scenario, a rule administration client has already performed
one or more queries to obtain collections of RuleUses. Now the administrator
decides to change one of the RuleUse attributes via (5) set attribute. This action
causes (6) invalidate to occur which will precipitate (10) result discard or update
of zero or more dependent query results from the cache, as prescribed by the
ODG. A similar invalidation sequence occurs when the administrator decides to
(8) create or (9) delete one or more RuleUses.

34 Louis Degenaro et al.

cache manager

data
source

A

Rules Administration
Application

Web Shopping
Application

Cache

RuleUse
Proxy RuleUse

Proxy

Query
Processor

RuleUse
Objects

Tier 2
Application Server

Tier 3
Data/Resources

Tier 1
Client/Presentation

RuleUse
Home
Proxy

RuleUse
Home
Proxy

Cached Query Results System Overview

data
source

B

Result

Delete
Processor

Create
Processor

RuleUse
Proxy

(1) find

(2) cache lookup

(4) database access

(3) result
into/from
cache

(6) invalidate

(7) get

RuleUse Home

 (9) delete(8) create
(5) set

(10) result
discard/
update
cache

Fig. 7. Typical interaction sequences with the ABR caching system

5 Performance of Query Caching Techniques

DUP with value-aware invalidations can be applied to a variety of query caching
environments and not just ABR. In order for DUP to show significant improve-
ment over conventional caching methods, some query results must change over
time. Our approach is particularly important for set queries which need to refer
to data from a potentially large set of table rows for an answer. Such queries are
common in document searching, direct marketing, and decision support.

To determine the quantitative benefits of using our caching techniques, we
have run a series of experiments designed to evaluate cache hit rates under dif-
ferent workload scenarios using the Set Query benchmark [10]. This benchmark
emphasizes set queries and is designed to model queries encountered in document
searching, direct marketing, and decision support. The benchmark includes nine
different types of queries. All of them are run against a single table of a million
entries that has thirteen different attributes. Each attribute spans a different set
of values ranging from 2 to 1,000,000 unique values. Queries involve multiple
attributes and ranges of values. A complete list of the queries is contained in the
Appendix.

The original benchmark designed to test the performance of the database
server did not contain any updates. Since we wanted to show how caches that

A Middleware System Which Intelligently Caches Query Results 35

use our invalidation scheme perform under different update rates, we introduced
updates into the mix of transactions.

In general, three types of events can potentially invalidate the results of a
query. They include change in the attribute value of a particular object, object
creation, and object deletion. From the perspective of the invalidation scheme,
object creation and deletion are equivalent to resetting all of the object’s at-
tributes. We varied two factors: the percentage of update transactions in the
total mix and the percentage of attributes updated per update transaction. The
attributes to update were chosen uniformly from the set of all attributes, while
the update value was chosen uniformly from the full range of possible values for
a specific attribute.

The experiments were conducted for three different invalidation policies. The
first policy (Policy I) invalidated all cached data after any update. Policy II used
the basic DUP algorithm described in [2] to invalidate query results. We refer
to this policy as being value-unaware because it uses only object dependency
information without considering the values involved in the update. Policy III,
the value-aware policy, uses the enhanced DUP algorithm with edge annotations
on the ODG (Figure 4).

We now give an illustrative example of how Policies II and III work for a
query of type Q3A. Generalization of this example to the other query types is
straightforward. Query Q3A is of the form:

Q3A: SELECT SUM(K1K) FROM BENCH
WHERE KSEQ BETWEEN 400000 AND 500000 AND KN = 3;

For each KN ∈ {K100K, ..., K4}. Figure 8 shows the ODG for the case where
KN = K100K. Using Policy II, any update to KSEQ or K100K would cause the
cached query result to be invalidated. Using Policy III, the cached query result
would only be invalidated if:

1. An update to KSEQ moved it from inside the range of 40000 and 50000 to
outside this range or vice versa.

2. An update to K100K changed it from 3 to something else or vice versa.

Figure 9 shows the hit rates for different types of queries. Queries 1, 2A and
2B involve one or two attributes and testing for specific values which explains the
high hit rates, especially for the value-aware invalidation scheme. Queries 3A, 3B,
4A and 4B involve ranges of values for combinations of different attributes, and
the performance numbers show that our techniques can be effectively used for
range type queries as well. Query 5 returns a count of records which fall in cells of
a two-dimensional array, determined by the specific values of each of two fields.
For this type of query, Policy II and III are equivalent and result in the same
hit rates. Finally, queries of Type 6 involve relationships between two different
attributes (A.x > A.y), where both Policy II and III are also equivalent. The
difference in hit rate for those queries is explained by the presence of additional
conditions of the type exhibited in Queries 1,2,3 and 4.

36 Louis Degenaro et al.

Q3A

KSEQ K100K

3bet.40000,50000

Fig. 8. An ODG resulting from a query of type Q3A

1 2A 2B 3A 3B 4A 4B 5 6A 6B

Set-Query benchmark's Query Type.

0

20

40

60

80

100

ca
ch

e
hi

t r
at

e

Policy I
Policy II
Policy III

Performance for different Query types (update rate fixed at 2%)

Fig. 9. Cache hit rates for different types of queries. Two percent of the trans-
actions are updates. Each update transaction modifies one attribute

A Middleware System Which Intelligently Caches Query Results 37

Overall, we see that the value-aware scheme improves performance signifi-
cantly for single value or range type queries (i.e low selectivity), and both are
vastly superior to Policy I.

The experimental results summarized in Figure 10 show the performance of
the cache under different update rates. The results demonstrate that that the
value-aware policy results in reasonably high hit rates even in the presence of
frequent updates.

1 2 5 10 25 50
update rate (% of total transactions)

0

20

40

60

80

100

ca
ch

e
hi

t r
at

e

Policy I
Policy II
Policy III

Performance for different update rates
(update size fixed at 15%)

Fig. 10. Cache hit rates for different update rates. Update rates are expressed
as the percentage of transactions which are updates. Each update transaction
modifies two attributes

Figure 11 show the effect of the percentage of attributes modified per update
transaction. Here the benefits of using value-aware invalidation increase with the
proportion of attributes being updated per transaction.

Figure 12 shows the effect of hot spots. For the data plotted in this figure,
80% of the accesses were uniformly distributed among 20% of the data. The
other 20% of accesses were uniformly distributed among the remaining 80% of
the data. Updates were uniformly distributed. Only one bar is shown for Policy
I because cache hit rates didn’t vary much in the presence of hot spots. Policy II
and III achieve more significant performance gains in the presence of hot spots
than when accesses are uniformly distributed. The advantages of these policies
increase with the update rate.

38 Louis Degenaro et al.

7.69 15.38 46.15 100
% of attributes updated per update transaction

0

20

40

60

80

100

ca
ch

e
hi

t r
at

e

Policy I
Policy II
Policy III

Performance for different update sizes
(update rate fixed at 2%)

Fig. 11. Cache hit rates as a function of attributes updated per update trans-
action. Two percent of the transactions are updates

2 25
update rate (% of total transactions)

0

20

40

60

80

100

ca
ch

e
hi

t r
at

e

Policy I
Policy II
Policy II with hot spot
access
Policy III
Policy III with hot spot
access

Hot Spot Effect (80/20)

Fig. 12. Cache hit rates in the presence of hot spots. Each update transaction
modifies two attributes. Since hit rates for Policy I are similar with and without
hot spots, only one bar for Policy I is shown

A Middleware System Which Intelligently Caches Query Results 39

1 2 5 10
update rate (% of total transactions) - update size fixed at 15%

0

0.5

1

1.5

2

2.5

3

of
 q

ue
ry

 in
va

lid
at

io
ns

 p
er

 tr
an

sa
ct

io
n

Policy II
Policy III

Number of invalidations for different
update rates

Fig. 13. Average number of query invalidations per transaction as a function of
update rate. Update rates are expressed as the percentage of transactions which
are updates. Each update transaction modifies two attributes

In our system, the cache runs on one machine, so the number of invalidations
per update does not affect the performance of the system in any significant way.
However, distributed caches running on clustered servers or even clients might
require some coherence traffic for invalidations. Figure 13 shows the number of
invalidations per transaction for Policies II and III. Under Policy I, we assume
that the cache can be purged completely in a single instruction, so the num-
ber of invalidations doesn’t affect the coherence traffic. The average number of
invalidations per transaction for the two invalidation schemes can be used for
predicting the invalidation traffic if a remote cache is used.

5.1 Other Benchmarks

We have also looked at how our cache invalidation techniques affect cache hit
rates for the commonly used benchmarks TPC-C and TPC-D [5]. TPC-C models
on-line transaction processing applications and has a high percentage of update
transactions. We did not see significant improvements in cache hit rates when our
methods were applied to TPC-C. TPC-D is a commonly used benchmark which
models data warehousing applications. Queries tend to be aggregations of large
amounts of data. Updates to such data tend to be done periodically in large
batches or not at all. For such situations, having a sophisticated invalidation
strategy such as ours is not important.

40 Louis Degenaro et al.

6 Related Work

A number of previous papers have examined query caching in various contexts.
Semantic caching at clients is compared to page and tuple caching in [6]. Clients
maintain semantic descriptions of cached data instead of maintaining a list of
physical pages or tuple identifiers. Query processing makes use of the semantic
descriptions to determine what data are locally available in cache, and what data
are needed from servers. Usage information for replacement policies is main-
tained in an adaptive fashion for semantic regions, which are associated with
collections of tuples. Maintaining a semantic description of cached data enables
the use of sophisticated value functions that incorporate semantic notions of
locality for cache replacement. The paper demonstrates advantages that seman-
tic data caching has compared with page and tuple caching. The use of data
replication and query caching to improve performance in client-server database
architectures is examined in [7]. A system known as DynaMat that dynamically
materializes information at multiple levels of granularity in order to match the
demand but also takes into account the maintenance restrictions for the ware-
house is presented in [16]. DynaMat unifies view selection and view maintenance
under a single framework that takes into account both the time and space con-
straints of the system. Query caching and optimization in distributed mediator
systems is analyzed in [1]. A predicate-based caching scheme for client-server
database architectures is presented in [15]. A query optimizer which integrates
query matching into optimization and generates more efficient query plans us-
ing cached results is presented in [3]. The query optimizer features data and
pointer caching, alternative cache replacement strategies, and different cache
update methods. Caching multidimensional queries using chunks is discussed
in [8]. This paper doesn’t focus on how to keep cached query results current in
the event of updates, however. Loading a cache with query results is discussed
in [11]. This paper also doesn’t focus on how to keep cached query results current
in the event of updates. The use of distributed query result caching to evaluate
queries for parallel data mining algorithms is discussed in [20].

The DUP algorithm used to keep caches updated was first deployed for
caching dynamic Web data [2]. We have generalized DUP for caching query
results which are not necessarily part of Web applications. Previous implemen-
tations of DUP require application programs to manually construct object de-
pendence graphs. The DUP implementation for ABR automatically constructs
object dependence graphs. We have also extended DUP to employ a value-aware
invalidation scheme which improves cache hit rates over previous implementa-
tions.

ABR is presented in [19,9]. Neither of these references discuss caching, how-
ever.

7 Summary and Conclusions

We have described how caching is used to improve performance in the Accessible
Business Rules framework (ABR) for IBM’s Websphere. ABR is a middleware

A Middleware System Which Intelligently Caches Query Results 41

system which enables application writers to build applications where the time
and situation-variable parts of their business logic are externally applied entities
known as business rules.

The General-Purpose Software cache (GPS cache) used by ABR is designed
to be plugged into different applications. The GPS cache, as applied in ABR,
stores the results of queries ultimately made to a database. A key problem with
caching query results is determining which queries are affected by changes that
occur to the database. In order to keep caches current after database updates, we
use an enhanced version of data update propagation (DUP). A query result may
depend on several attributes, and these dependency relationships are represented
by an object dependence graph (ODG).

DUP has been previously used to cache dynamic Web data. We made two key
innovations to DUP for caching in ABR. When attributes change, we consider
the old and new values of the attributes in order to determine how to update
the cache. This value-aware update policy is implemented by annotating edges
of ODG’s with values based on queries.

When DUP was used for caching dynamic Web data, an application program
was responsible for generating the ODG. The second key innovation we made to
DUP for ABR was to automatically generate ODG’s from the queries within an
ABR application.

Our techniques for caching queries in ABR can be deployed in other query-
based environments as well. We examined how our update policies perform under
different update rates for queries similar to those used by the Set Query bench-
mark.

References

1. S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query Caching
and Optimization in Distributed Mediator Systems. In Proceedings of ACM SIG-
MOD, 1996. 40

2. J. Challenger, A. Iyengar, and P. Dantzig. A Scalable System for Consistently
Caching Dynamic Web Data. In Proceedings of IEEE INFOCOM’99, March 1999.
25, 26, 28, 35, 40

3. C. Chen and N. Roussopoulos. The Implementation and Performance Evaluation of
the ADMS Query Optimizer: Integrating Query Result Caching and Matching. In
Proceedings of the 4th International Conference on Extending Database Technology,
1994. 40

4. IBM Corporation. IBM Software : Application Development : Component Broker
: Overview. http://www.software.ibm.com/software/ad/cb/. 25

5. Transaction Processing Performance Council. Welcome to the TPC Main Page!
http://www.tpc.org/. 39

6. S. Dar, M. Franklin, B. Jonsson, D. Srivastava, and M. Tan. Semantic Data Caching
and Replacement. In Proceedings of the 22nd VLDB Conference, 1996. 40

7. A. Delis and N. Roussopoulos. Performance and Scalability of Client-Server
Database Architectures. In Proceedings of the 18th VLDB Conference, 1992. 40

8. P. Deshpande, K. Ramasamy, A. Shukla, and J. Naughton. Caching Multidimen-
sional Queries Using Chunks. In Proceedings of ACM SIGMOD, 1998. 40

42 Louis Degenaro et al.

9. D. Ehnebuske, B. Mc Kee, I. Rouvellou, and I. Simmonds. Business Objects and
Business Rules. In Proceedings of the OOPSLA ’97 Business Object Workshop,
1997. 26, 40

10. J. Gray and R. Cattell. The Benchmark Handbook. Morgan Kaufmann Publishers,
Inc., second edition, 1993. 34

11. L. Haas, D. Kossmann, and I. Ursu. Loading a Cache with Query Results. In
Proceedings of the 25nd VLDB Conference, 1999. 40

12. A. Iyengar. Design and Performance of a General-Purpose Software Cache. In
Proceedings of the 18th IEEE International Performance, Computing, and Com-
munications Conference (IPCCC’99), February 1999. 28

13. A. Iyengar and J. Challenger. Improving Web Server Performance by Caching
Dynamic Data. In Proceedings of the USENIX Symposium on Internet Technologies
and Systems, December 1997. 26

14. A. Iyengar and J. Challenger. Data Update Propagation: A Method for Deter-
mining How Changes to Underlying Data Affect Cached Objects on the Web.
Technical Report RC 21093(94368), IBM Research Division, Yorktown Heights,
NY, February 1998. 28

15. A. Keller and J. Basu. A Predicate-based caching scheme for client-server database
architectures. The VLDB Journal, 5:35–47, 1996. 40

16. Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View Management System
for Data Warehouses. In Proceedings of ACM SIGMOD, 1999. 40

17. E. Levy, A. Iyengar, J. Song, and D. Dias. Design and Performance of a Web
Server Accelerator. In Proceedings of IEEE INFOCOM’99, March 1999. 26, 27

18. D. Lewine. POSIX Programmer’s Guide. O’Reilly & Associates, 1991. 27
19. I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehnebuske, and B. Mc Kee. Exter-

nalizing Business Rules from Enterprise Applications: An Experience Report. In
Practitioner Reports in the OOPSLA ’99 Companion, 1999. 26, 40

20. M. Taylor, K. Stoffel, J. Saltz, and J. Hendler. Using Distributed Query Result
Caching to Evaluate Queries for Parallel Data Mining Algorithms. In Proceed-
ings of the International Conference on Parallel and Distributed Techniques and
Applications, 1998. 40

A Appendix: Queries from the Set Query Benchmark

– A COUNT of records with a single exact match condition, known as query
Q1:

Q1: SELECT COUNT(*) FROM BENCH
WHERE KN = 2;

(Here and in later queries, KN stands for any member of a set of columns.
Here,

KN ∈ {KSEQ, K100K, ..., K4, K2}.
The measurements are reported separately for each of these cases.)

– A COUNT of records from a conjunction of two exact match conditions,
query Q2A:

Q2A: SELECT COUNT(*) FROM BENCH
WHERE K2 = 2 AND KN = 3;

A Middleware System Which Intelligently Caches Query Results 43

For each KN ∈ {KSEQ, K100K, ..., K4, K2}
or an AND of an exact match with a negation of an exact match condition:
query Q2B:

Q2B: SELECT COUNT(*) FROM BENCH
WHERE K2 = 2 AND NOT KN = 3;

For each KN ∈ {KSEQ, K100K, ..., K4}
– A retrieval of data (not counts) given constraints of three conditions, includ-
ing range conditions, (Q4A), or constraints of five conditions, (Q4B).

Q4: SELECT KSEQ, K500K FROM BENCH
WHERE constraint with (3 or 5) conditions ;

– A query where a SUM of column K1K values is retrieved with two qualifying
clauses restricting the selection.

Q3A: SELECT SUM(K1K) FROM BENCH
WHERE KSEQ BETWEEN 400000 AND 500000 AND KN = 3;

For each KN ∈ {K100K, ..., K4}
– In addition, Query Q3B captures a slightly more realistic (but less intuitive)
OR of several ranges corresponding to a restriction of Zip-codes:

Q3B: SELECT SUM(K1K) FROM BENCH
WHERE (KSEQ BETWEEN 400000 AND 410000

OR KSEQ BETWEEN 420000 AND 430000
OR KSEQ BETWEEN 440000 AND 450000
OR KSEQ BETWEEN 460000 AND 470000
OR KSEQ BETWEEN 480000 AND 500000)

AND KN = 3;

For each KN ∈ {K100K, ..., K4}
The SUM aggregate in queries Q3A and Q3B requires actual retrieval of up
to 25,000 records, since it cannot be resolved in index by current commercial
database indexing methods; thus, a large data retrieval is assured.

– A query which returns counts of records which fall in cells of a 2-dimensional
array, determined by the specific values of each of two fields.

Q5: SELECT KN1, KN2, COUNT(*) FROM BENCH
GROUP BY KN1,KN2;

For each (KN1, KN2) ∈ {(K2, K100), (K10, K25), (K10, K25)}
– Queries Q6A and Q6B exercise the join functionality that would be needed
when data from two or more records in different tables must be combined.

Q6A: SELECT COUNT(*) FROM BENCH B1,BENCH B2
WHERE B1.KN = 49 AND B1.K250K = B2.K500K;

For each KN ∈ {K100K, K40K, K10K, K1K, K100}

44 Louis Degenaro et al.

Q6B: SELECT B1.KSEQ, B2.KSEQ FROM BENCH B1,BENCH B2
WHERE B1.KN = 99
AND B1.K250K = B2.K500K
AND B2.K25 = 19;

For each KN ∈ {K40K, K10K, K1K, K100}

Distributed Object Implementations for

Interactive Applications �

Vijaykumar Krishnaswamy, Ivan B. Ganev, Jaideep M. Dharap, and
Mustaque Ahamad

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
{kv,ganev,jaideep,mustaq}@cc.gatech.edu

Abstract. As computers become pervasive in the home and community
and homes become better connected, new applications will be deployed
over the Internet. Interactive Distributed Applications involve users in
multiple locations, across a wide area network, who interact and cooper-
ate by manipulating shared objects. A timely response to user actions,
which can potentially update the state of the objects, is an important
requirement of interactive applications. Because of the inherent hetero-
geneity of the environment, distributed applications are built using tech-
nologies like distributed objects. Central server based implementations
of distributed objects cannot meet the response time needs of interac-
tive users because invocations are always subject to communication la-
tencies. Our approach is to extend these technologies with aggressive
caching and replication mechanisms to provide interactive response time
and to improve scalability. A flexible caching framework is presented,
where objects can be cached in an application specific manner. It pro-
vides multiple consistency protocols that enable tradeoffs between the
consistency of a cached object’s state at a particular client, and the
communication resources available to the client. At runtime, clients can
specify their consistency requirements via a Quality of Service specifi-
cation interface that is meaningful at the application level. This paper
presents the caching framework, its implementation and some prelimi-
nary performance results.

Keywords: Remote Method Invocation(RMI), Caching, Consistency
Protocols, Timeliness, Quality of Service.

1 Introduction

As computers become pervasive in the home and community and homes be-
come better connected, a new class of applications will emerge in the wide-area
distributed computing environment. We consider applications that we call in-
teractive distributed applications. These applications involve users in multiple
locations who interact and cooperate with each other by manipulating shared
� This work was supported in part by NSF grants CCR-961937 and a grant from the
Southeastern Universities Research Association.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 45–70, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

46 Vijaykumar Krishnaswamy et al.

objects. Examples of such applications include collaborative design, distributed
games, and group oriented educational applications.

The system support that will enable interactive distributed applications must
address a number of challenges. First, because the applications are interactive,
it is necessary to provide quick response to a user’s action even when the re-
mote users with whom he or she is interacting with are connected by a high
latency communication network. Users must also observe remote actions in a
timely fashion, and the timeliness requirements could vary across users due to
differences in available resources, or because of the differing roles users play in
the application. Finally, users must have a consistent view of the shared objects
that are manipulated by them.

Interactive distributed applications can be built using technologies such as
distributed objects (e.g, Java RMI, CORBA or DCOM). Although these tech-
nologies are attractive for building such applications in heterogeneous environ-
ments, they require that shared objects be implemented by common servers, and
users must access such an object by remotely invoking it at the server node. Such
centralized servers are undesirable because response time for user actions that
manipulate the objects cannot be independent of the communication latencies
in the system. Although proxy technology that allows a client site to cache an
object has been explored[24], many issues that arise when dynamically changing
state is cached have not been addressed. We are exploring an approach that
retains the ease of programming benefits of distributed objects while providing
interactive response time to the invocations made to them. This is done by repli-
cation and caching of object state where it is accessed. Consistency requirements
arise across the multiple copies that are created when replication and caching
are employed. We develop a quality of service (QoS) interface that allows ap-
plications to specify their consistency needs. For example, a client can specify
timeliness requirements to ensure that it learns of a remote update to a cached
object within a certain time period after the write is done.

We present a framework for caching Java distributed objects at client sites.
Since we want applications to control the level of consistency of a cached object
via a simple QoS interface, we chose BBN’s Quality Object (QuO) framework[28]
to specify shared state QoS metrics that are are meaningful at the application
level. The following are the primary contributions of the paper.

1. We develop a framework that allows clients to invoke cached objects trans-
parently. If a user action results in the invocation of one or more objects,
often their cached copies can be invoked and hence response time indepen-
dent of communication latencies can be provided. The clients only need to
specify their consistency needs for the cached object copies, which is done
at a high level using QuO’s contract object facility.

2. We implement consistency protocols that are particularly well-suited for a
heterogeneous environment. In particular, they offer consistency vs. resource
usage tradeoffs, and different clients may request different levels of consis-
tency.

Distributed Object Implementations for Interactive Applications 47

3. We develop a prototype system and use it to evaluate the costs of consistency
protocols. Using the prototype, we show that invoking a locally cached copy
is fifty times cheaper than a remote invocation at the server even in a local
area network. We also evaluate the impact of varying timeliness based con-
sistency on the response time of object invocation with a synthetic workload
for interactive applications.

Section 2 describes an interactive distributed application and some interesting
properties of such applications. Section 3 presents a brief overview of the system
architecture. The consistency protocols and their implementation in the caching
framework is described in Sect. 4. We present performance results in Sect. 5.
Related work is discussed in Sect. 6 and the paper is concluded in Sect. 7.

2 Interactive Applications

Interactive applications process user input and respond to user actions on a
continuous basis. We consider distributed interactive applications that involve
several users in different locations. The actions issued by one user could impact
other users and hence their actions. Many such distributed interactive applica-
tion scenarios can be developed easily. We briefly describe the AquaMoose[6]
system that is currently being developed at the Georgia Institute of Technology.
AquaMoose supports an online community of children interested in educational
activities. These children can be geographically distributed and can share and
manipulate a virtual world representing an ocean. A user can create various
entities in the world and entities created by different users may have rich inter-
actions. For example, two fish can race in trajectories defined by their creators
and the bigger fish may eat the smaller one. The virtual world visualization at
each user is driven by the state of the entities in the world (e.g., fish) including
their location and direction of movement. The entity state changes dynamically
as the virtual world evolves.

A closer study of AquaMoose and other such applications reveals some very
interesting properties. These applications have state that is highly dynamic.
Also, for these applications to perform well, the response time to the user actions
should be bounded. For example, a delay of more than 100ms in a direct ma-
nipulation interface is perceptible. As the delay for these user actions increases,
the user satisfaction with these applications worsens. If the participants in these
applications are connected via a wide area heterogenous network, network laten-
cies could be much larger than this threshold. One approach for developing such
applications is to maintain a replica of the shared application state on the local
machine and keep it consistent with the replicas at other participating sites by
using consistency protocols. This way invocations made by user actions can be
executed with the local copy. Also, different user actions may require different
levels of consistency for their replicas. For instance, in the AquaMoose example,
if two fish are far away from each other and are controlled by two geographi-
cally separated users, the updates made to their attributes (e.g. locations) can

48 Vijaykumar Krishnaswamy et al.

be disseminated relatively slowly to the other sites. But if these fish are in close
proximity, then the updates made to their locations should be quickly trans-
ferred to the other site for acceptable execution behavior of the application. In
the following sections we will explore the system support for developing such
highly interactive and dynamic distributed applications.

3 System Architecture

In a distributed object system, invocation to a remote object requires com-
munication with the server that implements the object. To provide acceptable
performance for user actions in interactive applications, it is desirable that la-
tencies associated with method invocations be minimized. In wide area systems,
a major portion of the invocation time can be attributed to network latencies.
This overhead can be avoided by locally caching the state of the objects used
for building these applications. Caching can be effective in such applications be-
cause of two reasons. First, GUI based visualization of the application is driven
by the state of the shared objects. Hence, their state is frequently accessed.
Second, updates to cached object state can be disseminated periodically, de-
pending on the consistency requirements of the applications. For example, in
the AquaMoose application, cached state (or computed state using techniques
such as dead reckoning[13]) can be used until a new update for a fish’s position
is received.

We have developed a caching framework for distributed objects that can
transparently cache the objects at the clients that invoke them. The consistency
requirements can differ depending on application needs and where the appli-
cation is deployed. The framework that we have developed addresses this by
providing facilities for dynamic specification of consistency protocols and its pa-
rameters. The Quality Objects(QuO)[28] project offers a framework for creating
applications that adapt to different Quality of Services (QoS) offered by the un-
derlying system. Rather than developing a new QoS specification interface from
ground up for our caching framework., we chose to use QuO to explore shared
state QoS. In the following section we will briefly discuss the support that we
have added to QuO for specifying and maintaining the QoS of an object’s cached
state.

3.1 QuO Framework

QuO is a framework that has been developed to support distributed applications
with QoS requirements. QuO provides the ability to specify, monitor, and control
QoS in an application. In a traditional CORBA application, a client makes a
method call on a remote object through its functional interface. The call is
processed by an object request broker (ORB) on the client’s host, delivered to
an ORB on the object’s host, and executed by the remote object. The client
sees it strictly as a functional method call. A QuO application adds additional
steps to this process for QoS evaluation. As shown in Fig. 1, all QuO application
consists of the following additional components.

Distributed Object Implementations for Interactive Applications 49

– A QoS contract between the client and the object. This specifies the level
of service desired by the client, the level of service the object expects to
provide, operating regions indicating possible measured QoS, and actions to
take when the level of QoS changes.

– A smart delegate of the remote object. The delegate provides a functional
interface identical to the remote object, but can trigger contract evaluation
upon each method call and return. The QoS developer can provide alterna-
tive behaviors and a dispatch statement based on the current state of the
contract.

– System condition objects interface between the contract and resources, ob-
jects and ORBs in the system. These are used to measure and control QoS.
They are shown as the polygons with Syscond label in Fig. 1.

Client

ORB Proxy

ORB

Smart Delegate

ObjectImpl

Smart Delegate

ORB Proxy

ORB

Network Resources

Contract Contract

Syscond

Syscond
Syscond

Syscond
System Resources

Fig. 1. The Quality Object Framework

A suite of Quality Description Languages (QDL) for describing contracts,
system condition objects and the adaptive behavior of objects and delegates is
provided by the QuO system. QDL consists of a Contract Description Language
(CDL) and a Structure Description Language (SDL). CDL is used to describe
the QoS contract between a client and an object. SDL describes the internal
structure of delegate’s implementations, such as implementation alternatives,
and the adaptive behavior of object delegates. The object delegate generator
creates client-side and server-side object delegate code from SDL, CDL, and IDL
code. When a client calls a remote method, the call is passed to the object’s smart
delegate instead. The delegate can trigger contract evaluation, which accesses the
current values of system condition objects. More details on QuO’s architecture
can be found in [28].

50 Vijaykumar Krishnaswamy et al.

We show how QuO’s contract facility can be used to manage the QoS of
the shared state of an interactive application such an AquaMoose. The entities
(fish) in the application are exclusively owned by users who create them. The
attributes of these entities are only changed by the owners, while other users who
are in the vicinity of these entities in the virtual world would like to observe these
changes. Thus, one set of users mostly read the shared state of the object while
the other one actively modifies it. Hence one set of users (i.e., the owners) would
like to have active control of the object, while passive reading would be fine
with the rest. These QoS requirements can be mapped onto the QuO’s quality
of service specification interface (i.e, the contract) as shown in the Fig. 2. A user
who modifies the state of a shared object negotiates for the ActiveUser QoS
region. PassiveUser region can be negotiated for by a user who mostly reads
the state of the shared object.

A simple contract CacheStateContract, specifying the QoS regions of oper-
ation for the example application is shown in Fig. 2. The different QoS levels of
operation are specified as regions in the contract. This contract is used to contin-
uously monitor the current state of a cached object. CacheStateContract has
several variable declarations. The variable ClientExpectedStaleness is used
to specify the current timeliness QoS required by the user. ClientCallback is
a handle to the callback object. This will be invoked whenever there is a dis-
crepancy between the requested QoS and available QoS. CacheMonitor object
is used to monitor the attributes of the caching framework that are of interest
to the clients.

As shown in Fig. 2, the contract is divided into a series of regions.
The users specify the desired region of operation through the variable
ClientExpectedStaleness (different users can choose different regions).

In this particular contract example, the negotiated regions are ActiveUser
and PassiveUser. A writer can choose the ActiveUser region while the readers
can choose PassiveUser as their QoS region of operation. As seen from the
sample code fragment in Fig. 2, the specification of a negotiated region triggers a
sequence of events. For example, if the user negotiates for the ActiveUser region,
then the transition any− > ActiveUser invokes the setProtocol method in
the CacheMonitor object. This sets the consistency policy to the one that
guarantees immediate dissemination of the new object values. Transition into
PassiveUser region will also trigger events as in the ActiveUser region.

The available QoS for a resource at a given time is represented by a reality
region. The QoS in a negotiated region can transition between the reality regions.
In our example, the reality regions are Xclusive, Shared and Stale for the
ActiveUser region. They correspond to the state in which the object is currently
cached. Green, Orange and Red are the reality regions for the PassiveUser
region. They indicate current age (potential staleness) of the cached object.
Transition to any reality region triggers handlers in the callback object, which
can be used to inform the client application.

Distributed Object Implementations for Interactive Applications 51

/*Example Contract that monitors the state of the cached object*/

contract CacheStateContract (

syscond ValueSC InitializedValueSCImpl ClientExpectedStaleness;

syscond ValueSC CacheStateSCImpl CacheMonitor;

callback CacheStateCallback ClientCallback){
/* The three names in a syscond variable declaration refer to*/

/*interface, implementation and the name of the variable respectively*/

/* Negotiated region -- ActiveUser, Reality regions -- Xclusive, Shared, Stale*/

region ActiveUser (ClientExpectedStaleness == 0) {
region Xclusive (CacheMonitor == 1){}
region Shared (CacheMonitor==2) {}
region Stale (CacheMonitor== 3) {}
transition any->Xclusive { synchronous {ClientCallback.nowXclusive();} }
transition any->Shared { synchronous {ClientCallback.nowShared();} }
transition any->Stale { synchronous {ClientCallback.nowStale();} }
}
/*Negotiated region -- PassiveUser, Reality regions -- Green, Orange and Red */

/*Timeliness value less than 10 seconds is represented by the reality region green */

/*Orange represents a timeliness value between 10 and 20 seconds */

/* Anything over 20 seconds is region Red */

region PassiveUser(ClientExpectedStaleness >= 1) {
region Green (CacheMonitor >= 1 && CacheMonitor <= 10000) {}
region Orange (CacheMonitor >=10000 && CacheMonitor <= 20000) {}
region Red (CacheMonitor >= 20000) {}
transition any->Green { synchronous {ClientCallback.nowGreen();} }
transition any->Orange{ synchronous {ClientCallback.nowOrange();} }
transition any->Red{ synchronous {ClientCallback.nowRed();} }
}
transition any->ActiveUser {
synchronous {

/*Choose a STRICT consistency protocol */

CacheMonitor.setProtocol(Consistency.STRICT,0);

}
}
transition any->PassiveUser {
synchronous {
/*Choose a TIME-BASED consistency protocol */

CacheMonitor.setProtocol(Consistency.TIMEBASED,ClientExpectedStaleness);

}
}
}

Fig. 2. A simple contract that exports the current state of the cached object to
an application defined Callback object

52 Vijaykumar Krishnaswamy et al.

3.2 Adding Caching to the QuO Framework

In order to cache objects locally at client sites and provide consistency guarantees
defined by the contract, the framework should address several important issues.

– How and when to cache an object? It should be possible to enable and disable
caching dynamically based on locality of access and resource availability.

– How does the system guarantee the consistency QoS requirements of an
application? How are the QoS levels associated with the appropriate consis-
tency protocol and its parameters such as the timeliness threshold?

– The consistency actions executed by the protocols depend on the type of
access, i.e., if an invocation results in reading of an object’s state or the
state is also updated. How is read/write access information for the object
member functions inferred?

The caching framework developed by us tries to address these issues. Our
current prototype has been developed in Java. Some of the objects that make
up the caching framework on the server and client sides are shown in Fig. 3.

The caching subsystem on the client side consists of a CConsistencyObject
which is responsible for maintaining the consistency of a cached implementation
or implementations. The policy for the CConsistencyObject can be specified
through a contract. The caching framework is accessed through SmartDelegate
that is specifically created by QuO’s stub generators for caching purposes. The
SmartDelegate has two references to the remote object. The first one is a direct
reference to the cached implementation. This is used whenever an invocation is
executed with the locally cached implementation. The second one is a Java RMI
remote object interface to the actual object implementation at the server. This
is used to invoke the object at the remote location when caching is disabled.
Assume that objects O1, O2, ..., On are currently cached at the client. The
objects, RW1, RW2, .., RWn in Fig. 3 have the read/write access information
for all the member functions of the implementations O1, O2, ..., On. These
objects are generated from compile time tags associated with method definitions
in the implementations. They are transferred along with object definitions to a
client’s address space, when the objects are cached for the first time at the client.
The caching subsystem has a TransportObjectwhich is used for communication
with other clients and the server.

The server side of the framework consists of a SConsistencyObject. This or-
ders the invocations that take place at the server with the ones that are executed
with cached copies at client sites. Further, it serves as a rendezvous point for
incoming clients, providing them with information to setup their caching frame-
work. If the consistency policy happens to be server based, then
SConsistencyObject plays a more active role in keeping the client copies con-
sistent. The ServerDelegate redirects all the direct invocations made on the
implementation at the server to SConsistencyObject, thus ensuring consistency
when both cached and non-cached invocations are executed. RemoteClassLoader
is used by the framework to remotely load the definitions of the implementations
O1, O2, . . . , On, the read-write access information objects RW1, RW2, . . . , RWn,

Distributed Object Implementations for Interactive Applications 53

and other objects that are referred to by the implementations in the server
process. RemoteClassServer is the server side component that serves the class
definition requests from the RemoteClassLoader.

The following are sequence of actions that are performed when an invocation
o.m(), is made on the cacheable object, o.

1. The application invokes the method m() in the SmartDelegate.
2. QuO semantics dictate a pre-method and a post-method evaluation of the

contract. The delegate does a pre-method evaluation of the contract object to
determine the current QoS region of operation. This can be used to determine
the current state of the cached object, staleness value, ownership etc.

3. The contract checks with the system condition objects to determine the
status of the cached object and if necessary, it also communicates with the
callback object.

4. The delegate consults the consistency object to ensure that the cached object
is in a consistent state with respect to the invocation. An invocation on the
object can either read or modify the object state. Invocation mode can hence
be either read or a write. Objects can be cached in shared or in exclusive
mode. If the object is not valid or if the invocation mode does not match
with the current mode in which the copy is cached, then the delegate asks
the consistency object to perform the necessary consistency actions to bring
the cached implementation to a consistent state. It also temporarily locks
the implementation for the duration of the call thus providing method level
atomicity.

5. The delegate invokes the method on the local object copy.
6. The delegate then makes a request to the the consistency object to free up

the resources held by the call, to allow any pending consistency actions to
be executed.

7. During the post-method evaluation, the delegate once again communicates
with the contract to determine the active region.

8. The contract probes the system condition objects for new values. This can
be useful for post method operations like starting new consistency actions
in the background without blocking the application.

9. The delegate finally returns the results to the application.

4 Consistency Protocols

Consistency protocols ensure that client invocations are executed with local ob-
ject copies that have consistent state. The consistency of a cached copy of an
object can be defined along two dimensions, namely orderliness and timeliness.
The orderliness property specifies how updates to the object done at various
nodes are ordered and viewed by read operations. For the convergence of an
object’s state (e.g., a unique final state of the object is obtained after the execu-
tion of the invocations), it is essential that all writes to it are ordered. Weaker

54 Vijaykumar Krishnaswamy et al.

Application

Fu
nc

tio
na

l I
nt

er
fa

ce

Q
os

 In
te

rf
ac

e

C
ac

hi
ng

 F
ra

m
ew

or
k

Server_Delegate

Callback
Object

Contract
Object

Consistency

transport
SysCondObj

O1 O3

RW1 RW2 RWn

Object

Transport Object

Channels to other Peers

Transport Object

Channels to other Participants

Object

RMI Skeleton

RMI Reference

RMI Transport

Impl

RMI Stub

RMI Reference

RMI Transport

SysCondObj

Delegate

Smart

Smart

Client

Server

O2

CConsistency

SConsistency

Fig. 3. The Caching Framework in the context of QuO

orderings are possible (e.g., causal[2]) when concurrent writes are rare or other
mechanisms can be used to fix divergent object state.

The timeliness property specifies the time interval after which an update to
an object must become visible at sites that are caching it. By controlling the
timeliness interval, updates can be propagated to remote sites with decreased
frequency which reduces the number of consistency messages. These two di-
mensions of consistency are independent. For example sequential consistency
provides strong ordering but no timeliness guarantees.

In this section we describe some of the consistency protocols that we have
implemented in the caching framework. The first one is an invalidation based
protocol (SCinv) and the second one, LCset, is the local consistency (LC) pro-
tocol which is based on invalidation sets. The two protocols present different
approaches for maintaining cache consistency. SCinv is an example of a strong
consistency protocol that provides a unique ordering for all the writes in the
system while providing immediate timeliness for the reads. It is used widely in
shared memory systems [8,16] as well as in file systems[9,19,22]. LCset allows the
timeliness threshold to be varied, but orders writes as in SCinv. By changing the
timeliness threshold for reads, LCset allows the consistency overhead of cached
objects to be varied.

Because our framework works at the object level, for the following discussion
we consider method invocations on cached objects as writes or reads, depending

Distributed Object Implementations for Interactive Applications 55

on whether the method modifies the object or not. We now proceed to describe
the details of the SCinv and the LCset protocols.

4.1 Server Based Invalidation Protocol (SCinv)

The SCinv protocol allows either a single writer or multiple readers at a given
time. We refer to the client that caches an object copy in exclusive mode as its
owner. The algorithm for this protocol is presented in the Fig. 4.

When a client Pi attempts to read an object copy and experiences a read-
miss, it communicates with the server. If no other client caches the object copy
in exclusive mode, then the server returns its copy to the client and adds the
client to its reader set. Otherwise, the server downgrades the owner’s copy to
read-only mode and provides Pi the latest copy from the owner. For a client Pi

to perform a write operation on an object x, it needs to cache it in an exclusive
mode. If x’s copy has not been already cached or, if a copy has been cached in the
shared mode, Pi experiences a write-miss,1 forcing it to communicate with the
server. The server returns its copy of x, immediately, if the object is currently not
cached by other nodes. If x’s copies exist at other nodes in shared mode, then
the server invalidates all such copies, and returns x to client Pi in an exclusive
mode. If another node happens to cache x in an exclusive mode, then the server
gets the recent state from that node, invalidates that copy and finally sends the
most recent copy to the requester. Although this protocol orders all writes and
provides immediate timeliness, its scalability, however, is limited because of the
high communication costs of synchronous invalidations for update operations.
The protocol presented next attempts to alleviate some of these problems.

4.2 Invalidation-Set Protocol (LCset)

The basic LCset protocol was first presented in [1] but we have improved it in
a number of ways. For example, we explore the timeliness aspect of consistency
in LCset, which was not explored in earlier work. Similar to SCinv, LC based
protocols also assume a single writer for an object at a time, but there are some
important differences between the invalidation protocol and those based on LC.

The LCset protocol permits control over the timeliness aspect of the con-
sistency of cached objects. The protocol orders all writes that are executed on
a group of related objects. However, it allows a writer to update the object
state while other clients are accessing the older state of the object in read only
mode. The writes are not immediately propagated to all the remote sites that
are caching a copy of the object. This delay may result in the reads at the remote
sites returning older values of the object state. The protocol guarantees that the
reads will never return a value for the object that is older than the timeliness
1 There are two cases: Write-miss and Write-fault. Write-fault occurs when the client
does not have a locally cached copy of the object and a write-miss occurs when the
local copy is in shared mode and needs to be upgraded. The consistency actions are
similar in the two cases and we do not consider them separately.

56 Vijaykumar Krishnaswamy et al.

ACTIONS AT CLIENT Pi :

readmiss(x)

x = x.server.access(x, Pi)

x.access = read

writemiss(x)

x = x.server.chngOwner(x,Pi)

x.access = write

downgrade(x)

x.access = read

return (x)

invalidate(x)

x.state = invalid

if(x.owner = self)

return(x)

ACTIONS AT SERVER :

access(x, Pi)

if(x.owner �= self)

x = x.owner.downgrade(x)

readerset.add(x.owner)

x.owner = self

readerset.add(Pi)

return (x)

chngOwner(x, Pi)

if(x.owner �= self)

x = x.owner.invalidate(x)

x.owner = Pi

else

for each client Pj �=Pi caching x

Pj.invalidate(x)

readerset = ∅
return (x)

Fig. 4. Central Server Invalidation protocol (SCinv)

threshold specified for the protocol. The client accesses that return older cached
copies are serialized before the writes that create the new values. An LC based
protocol orders all accesses to related objects by introducing new object copies
into the node’s cache in a systematic manner. At the time a new object copy is
added to a node cache, the node performs local consistency actions to ensure that
currently stored copies of shared objects are valid with respect to the informa-
tion received with the newly fetched object. Such consistency actions are carried
out based on meta-data received from the server and require no communication.

The server maintains meta-data about updates to objects and sends it to a
client whenever the client communicates with it. There are two cases in which it
becomes necessary for the client to communicate with the server. First, all misses
require communication with the server. The server does not send messages to
invalidate other copies in the system when a write-miss request is received. In-
stead, information about the object that needs to be invalidated is recorded
in an invalSet (for invalidation set). Because invalset stores the identities
of those objects which have been updated but the update related consistency
messages have not been propagated to the caching clients, invalset continu-
ously evolves as objects are updated and communication takes place between
the nodes. We can associate a time with each member of invalset. This can
be used to determine when updates to certain objects were done. The functions
update and merge in Fig. 5 are used to update an invalset. update adds an
object to invalset when the object is updated and also includes the time at
which this change to the invalset is made (if the object is already in invalset,
then only the time is changed). The merge function merges two invalidation sets
by keeping the information about the most recent update to each object listed
in the two sets. The newerthan function in the algorithm uses timing informa-
tion to order updates to an object. The function newWrite is called during each

Distributed Object Implementations for Interactive Applications 57

write operation (say on x) to update invalset (the entry corresponding to x)
to indicate that a more recent update has been done.

ACTIONS AT CLIENT Pi :

readmiss(x)

<x, receiveSet> =

x.server.access(x,Pi)

for each Obj in receiveSet

if ((receiveSet.state(Obj)

newerThan invalSeti.state(Obj))

and (Obj.owner �= self))

Obj.state = invalid

invalSeti.merge(receiveSet)

x.state = valid

writemiss(x)

<x, receiveSet> =

x.server.chngOwner(x,Pi);

for each Obj in receiveSet

if ((receiveSet.state(Obj)

newerthan invalSeti.state(Obj))

and (Obj.owner �= self))

Obj.state = invalid

invalSeti.merge(receiveSet)

x.owner = self

downgrade(x)

x.owner = server

return <x.value,

invalSeti>

fetchCopy(x)

newState[x] = false

return <x.value,

invalSeti>

timelinessCheck(x)

if (x.owner �= self and

Timecurrent - x.Timecached > T)

x.state = invalid;

newWrite(x)

if (newState[x] = false)

invalseti.update(x)

newState[x] = true

ACTIONS AT SERVER S :

access(x, Pi)

if (x.owner �= self)

<xval,receiveset> =

x.owner.fetchcopy(x)

invalSetS.merge(receiveSet)

x.value = xval

return (<x, invalSetS>)

chngOwner(x, Pi)

if (x.owner �= self)

<xval,receiveSet> =

x.owner.downgrade(x)

invalSetS.merge(receiveSet)

x.value = xval

x.owner = Pi

return (<x, invalsetS>)

Fig. 5. Invalidation-Set protocol (LCset)

As shown in the chngOwner and the access methods in Fig. 5, if a client
node’s (say Pi’s) request for an object x results in the server contacting the
owner of the object, and if the server determines that the recent copy of x from
the owner is newer than its copy, then this information is used to update the
invalSet. When Pi’s request returns, invalSet is piggybacked with the result
of the request. The second case when a client communicates with the server is
when the client timeliness threshold for an object expires. In this case the client
invalidates the cached object copy, but it does not immediately communicate
with the server to request the new copy of the object. A subsequent invocation
on this object triggers communication with the server.

Read misses are handled as in SCinv except that the owner node’s copy is
not downgraded. Instead the server gets the latest copy of the object from it

58 Vijaykumar Krishnaswamy et al.

and allows it to continue as the owner. Also, the invalset is returned to the
client as in the case of write misses. When a client receives an invalset from
the server, it invalidates the cached copies of objects listed in the invalset that
have been overwritten. Thus, object copies at a client are invalidated only when
the client communicates with the server and not when the object is written.

There are two different ways in which the server can maintain the invalset.
It can either maintain the set on a per-client basis or can have a single invalset
for all the clients. We chose the latter approach in our protocol to improve
scalability and to reduce the computation costs associated with updating each
client’s invalset, when an object is updated. The invalset can be viewed as
a table of records indexed by the object-id. Each record in the table is the tuple
{ modify-bit, epoch}. A value of 1 for the modify-bit indicates that the object
is currently cached in an exclusive mode by a client. If the invalset does not
contain an entry for an object, then it means that either the object has not been
cached by any client or is being cached in read-only mode by all the clients. The
epoch number can be considered as a generation identifier indicating how old the
object is. The server increments this epoch number whenever it receives a new
copy of the object from its current owner. The clients locally maintain an epoch
vector for all the objects they cache. Whenever a client receives the invalidation
set, it compares the epoch received for each object with its local epoch number
and it invalidates the cached copy only if the new epoch number is greater than
the local one. This ensures that the client does not invalidate an object if it has
the latest copy of the object.

An example of how the invalset is used by LCset to ensure ordering is shown
in Fig. 6. There are three clients C1, C2 and C3 and the server S. The application
has three shared objects, O1, O2 and O3 that get instantiated at the server at the
start. The figure also shows the sequence of operations executed at the clients.
The table in Fig. 6 gives a possible global serialization order of the operations
as provided by the LCset protocol, the consistency action description, the state
of the cached objects at the clients before and after the execution of consistency
actions, and the value of the epoch numbers in the invalset at the clients after
the completion of consistency actions. The clients first populate their caches with
the initial state of O1, O2 and O3 which are respectively v1, u1, and z1. As seen
from the figure, the operation c1:w(O1)v2 at client C1 triggers the consistency
action C1→ S (from C1 to S), which grants the exclusive ownership of O1 to
C1 . It also changes the invalset at C1 and S to 100, indicating that O1 has
been modified. During the write operation c2:w(O2)u2 at C2, the consistency
operation C2→ S, modifies the invalset at C2 to [110]. Since the epoch of O1

in the received invalset is higher than the locally stored epoch, C2 invalidates
its local copy of O1. During the next operation c2:r(O1)v2, C2 experiences a read
miss. The consistency action C2→ S → C1 brings the new state of O1 to C2 from
C1. Also during this transfer, a new invalidation set 110 is propagated to C1.
Again C1 invalidates O2 because of the higher epoch number received. When C3

writefaults during the operation c3:w(O3)z2, S sends the invalset [110] to C3.
C3 invalidates the local copies of O1 and O2 because their new epoch numbers

Distributed Object Implementations for Interactive Applications 59

are greater than the local epoch values. Subsequent read operations on them
experience read misses and the new states of O1 and O2 are brought in from C1

and C2.

S

o1 o2 o3

C1

o1 o2 o3

C2

o1 o2 o3

C3

o1 o2 o3

c3:r(01)v1, r(02)u1, r(03)z1, w(03)z2, r(01)u2, r(02)u2
c2:r(01)v1, r(02)u1, r(03)z1, w(02)u2, r(01)v2, r(03)z1
c1:r(01)v1, r(02)u1, r(03)z1, w(01)v2, r(02)u1, r(03)z1

Global Order
provided by LC

set

c2:r(02)u1

c3:r(02)u2

c3:r(01)v2

c3:w(03)z2

c2:r(03)z1

c2:r(01)v2

c2:w(02)u2

c1:r(03)z1

c1:r(02)u1

c1:w(01)v2

c3:r(03)z1

c3:r(02)u1

c3:r(01)v1

c2:r(03)z1

c2:r(01)v1

c1:r(03)z1

c1:r(02)u1

c1:r(01)v1 o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o o1

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o oo

o ooo o1

o o1

o o1 o oo

o oo

o oo

1 o1 1 o1 1 o1

1 o1 1 o1 1 o1

1 111 o1 1 o1

1 11 1 11 1 111 o1

1 11 1 11 1 11 1 11

o o1

1 o1 1 o1

1 11

o o1

o o1

At O1 O2 O3 At O1 O2 O3

State State

U - Uncached X - Exclusive S - Shared

C1

C1

C1

C1

C1

C1

C2

C2

C2

C3

C3

C3

C2

C2

C2C2

C2

C2

C2

C2

C2

C2

C3

C3

C3

C3

C3

C3

C3

C3

C3

C1

C1

C1

C1

C1

C1

U U U U U

UU U

U

S

S S

S

SS S

S S S

S S

S S

S

S

S

S S

S

S

U U U

U U

U

U U U

U

S S S S SX

X

X

S

SS

S S

S

S

S S S

I - Invalid

X SI

X SI S X S

S SX SS X

S S S I I X

I XS

S S XS XI

XI

U U

U

U U

S

U

S

S

S U

S U

X

X S

S

I

S

S

Consistency
Actions

C1->S

C1->S

C2->S

C2->S

C2->S

C3->S

C3->S

C3->S

C1->S

New
invalidation-set at

C1 C2 C3 S

C1->S

C3->S

C3->S->C1

C3->S->C2

C2->S->C1

null null

null

null

null

null

null

null

null

None

None

C2->S

None

Before Action After Action

Fig. 6. An example of Invalidation-set protocol.The figure shows the new
invalidation-sets at the three clients C1, C2 and C3 and the server S when the
shared objects O1, O2 and O3 are read or written

Clients that do not communicate with the server, will continue to read the
copies cached by them. To guarantee that the cached copy of an object does not
remain stale for more than the specified timeliness threshold, periodic commu-
nication between the client and the server is necessary. This could be ensured in
the following two ways.

– The server could maintain a global time clock and after every refresh-period
force the clients to invalidate the locally cached copies, by sending them the
latest invalset. This is a push based approach.

60 Vijaykumar Krishnaswamy et al.

– In a pull based approach, each client can locally timeout when the commu-
nication has not taken place with the server for a certain period of time. The
client can then locally invalidate the objects with expired timeliness so that
the next invocation on them will result in the client communicating with the
server and getting a more recent invalset.

We chose the second option to provide clients control over when to fetch the
object. Also, this way different clients can choose different timeliness thresh-
olds for their cached copies based on their needs and bandwidth availability. In
our implementation, whenever an object state is renewed at the client, it also
gets timestamped. The function timelinessCheck called during each invocation
checks if the time since the last communication with the server for that particular
object exceeds its timeliness bound. If so, then the object is marked invalid. This
will trigger a readmiss or a writemiss, forcing the client to communicate with
the server to retrieve the latest copy. The client will also receive the invalset
for the entire set of cached objects.

4.3 Implementation of Consistency Protocols

This section describes some implementation specific issues of the caching frame-
work. In particular, the programming interface to the caching system. The con-
sistency protocols are all implemented as Java classes and have a generic parent
class defining methods that are common to all the protocols. The parent class
also implements interfaces through which the consistency protocol objects may
be accessed from outside. The actual definitions of the methods in these inter-
faces may be delegated to the consistency policy class implementing a particular
consistency protocol. The details are as follows.

Consistency protocols implemented by the consistency objects on both the
client and server sides extend the ConsistencyModel class. They also implement
the ConsistencyScheme interface. The ConsistencyModel Class has a generic
set of routines that are suitable for any consistency protocol. The Consisten-
cyScheme interface defines methods, through which the consistency object is
accessed. In addition, the client side consistency object implements the Consis-
tencyScheme Client interface and the server side object implements the Consis-
tencyScheme Server interface. These interfaces contain methods specific to the
client side and the server side of the caching framework.

The ConsistencyModel is an abstract class. It contains definitions for the
methods that are common to all the consistency protocols and abstract methods
which are more protocol specific. Some of these methods are the following.

– setProtocol - It is used to set the consistency policy of the caching framework.
– fetchLatestCopy - It ensures that the reference to the cached copy is in a valid
state. It is an abstract method, whose definition is delegated to a particular
consistency protocol object.

– takeActions - It is invoked when a request for a consistency action is received
from other consistency objects at server or at other clients. The actual defi-
nition of the method is delegated to the protocol object.

Distributed Object Implementations for Interactive Applications 61

The ConsistencyScheme interface provides access points through which the
caching framework can be accessed from the outside (e.g. delegate). It declares
the following two functions:

– guard- It is invoked before the actual method invocation. This method locks
the object so that no consistency related actions are performed on the object
during the execution of the method.

– relax - It is invoked after the execution of the method is completed. It releases
the lock acquired during the guard method .

We chose an approach in which the framework provides synchronized access to
object state rather than delegating it to the object implementor. By allowing the
framework to control synchronization, we can allow invocations that only read
the object state to execute simultaneously at a node, increasing parallelism.

The ConsistencyScheme Client interface declares the method cacheObject,
which is called once when the object is cached for the first time at the client
node. The method adds the object to the set of objects cached at the client. The
ConsistencyScheme Server interface declares the cacheObject method which is
called once when an object is exported at the server node.

5 Performance

So far we have discussed the architecture of the caching system and the consis-
tency protocols that have been implemented to ensure that operations are exe-
cuted with consistent object state. The goal of this section is to experimentally
evaluate the performance of the caching system to quantify the improvements
that can be achieved by caching, and the impact of the consistency protocols on
the performance of caching. We first measure the costs associated with the basic
operations in the system such as the overhead imposed by the caching framework
to execute invocations that read or write the state of the invoked object. This is
followed by a more detailed evaluation of the system with a synthetic workload
derived from attributes of an interactive distributed application.

The experiments were conducted on a cluster of 248 MHz Sparc Ultra-30’s
connected by a 100 Mb Ethernet. The machines were all equipped with 128
MBytes of memory. The Java virtual machine used was Java2 from Javasoft
and we used it with the just-in-time (JIT) option enabled. There were no other
applications running on the machines when the experiments were conducted and
hence the numbers generated were repetitive. We ran each of the experiments
three times and the numbers presented here are averaged across multiple runs
and over multiple clients. It was difficult to generate numbers that were repetitive
for a wide-area configuration. This was primarily due to our lack of control on
the network. Because of this reason, we are only presenting the measurements
for the local-area environment in this paper. In the future, we plan to repeat
these with widely distributed sites connected by the Internet, possibly using an
Internet emulation testbed.

62 Vijaykumar Krishnaswamy et al.

In our experiments clients invoked an object O implemented by the server.
The definition of O has two member functions: read(), and write(). The read
method has a null body while the write method increments the state of a shared
counter. Since little time is spent in the execution of the methods, the average
invocation time obtained in the experiments is a direct measure of the commu-
nication and computation costs associated with the caching framework.

5.1 Basic Performance of Caching

Object caching enables a remote invocation to be completed locally when the
cached object is in a valid state and in proper mode. If the cached copy is not
consistent, the invocation will result in the client communicating with the server
to fetch the current copy which could generate one or more messages between
the server and clients. To measure the cost of completing a remote invocation in
different situations, we decided to measure the cost of invocations in the following
cases.

– The object is invoked remotely at the server without caching it locally. Thus,
this will be the base case where the existing Java RMI framework is used to
make the invocation at the remote server.

– The object is cached locally and is in a valid state and correct mode. This
invocation is local and will not result in any communication with the server.
This is the best case for caching.

– The object is locally cached but is not in a valid state, but a valid copy can
be found at the server. This will result in the client communicating with the
server, fetching the new copy from it.

– The object is locally cached and is not in a valid state. A valid copy can
be found at some other remote client Cn. This will result in the client com-
municating with the server followed by the server communicating with Cn,
which will return a copy via the server to the requesting client.

– The object is cached locally in shared mode and the invocation needs an
exclusive copy. The client has to communicate with the server, and the server
with other remote clients depending on the consistency protocol.

Table 1. Comparison of the time per invocation in milliseconds averaged over
10,000 invocations. The invocations were executed at the server and with locally
cached copies. The size of the object was 1024 bytes and a group of 8 related
objects were used

Invocation Execution Invocation Time in milliseconds

At remote server 1.244
At locally cached copy 0.025

Distributed Object Implementations for Interactive Applications 63

Table 2. Comparison of time per invocation in milliseconds averaged over 10,000
invocations. The invocations were executed at the cached object with a write-
miss resulting in the new state being fetched from the server. The size of the
object was 1024 bytes and the group had 8 objects. The Reader-set size corre-
sponds to the number of other clients in the system that had the object cached
in the shared state

Consistency actions for Protocol Number of Clients
Invocation Execution caching the object

0 2 4 8

With write-miss and SCinv 3.286 5.631 8.124 13.532
copy fetched from server LCset 3.575 3.575 3.575 3.575

Table 1 compares the costs of executing an invocation at the server and on
the locally cached copy. Eight objects, each of size 1024 bytes were used in the
evaluation. The average cost of a local invocation is about 25 microseconds,
while it takes 1.244 milliseconds for the remote execution to take place at the
server. Thus, there is a fifty fold improvement in performance if the execution
can be done locally. Table 2 compares the costs of similar actions, for cached
invocations when SCinv and the LCset protocols are employed for consistency
maintainence. For a reader to fetch a new copy from a writer via the server, it
costs about 3.575 milliseconds when using the LCset protocol. If every two out
of three invocations can be executed locally, then the total time spent on the
invocations is about 3.625 milliseconds, while the three remote invocations at
the server require 3.732 milliseconds. So for a hit-ratio greater than 67%, the
performance of LCset is better than executing the invocations at the server.

Table 2 also shows an interesting difference in the two consistency protocols.
As the size of the reader-set increases, there is an increase in the invocation
time for SCinv, while it does not change for the LCset protocol. This is because
SCinv allows either one exclusive owner or multiple shared readers to co-exist.
Therefore, before it can grant access to an exclusive copy for a write-miss, it
has to invalidate all the clients of the reader-set. The LCset allows one exclusive
writer and multiple shared readers to co-exist at the same time. A request for
write-miss does not result in any immediate invalidation messages from the server
to the reader clients. Hence the invocation cost does not vary with the number
of clients caching the object in the shared mode.

Table 3 compares the invocation cost for the LCset protocol for objects of
different sizes (8 bytes and 1024 bytes). There is a 20% increase in the invocation
time when the size of the invalidation-set is increased from 1 to 16 objects.
This can be attributed to the additional computation and communication costs
involved in marshalling and unmarshalling larger invalidation-set objects.

64 Vijaykumar Krishnaswamy et al.

Table 3. Time per invocation in milliseconds averaged over 10,000 invocations
for the LCset protocol

Consistency actions for Object Size Invalidation-Set Size in objects
Invocation Execution in bytes 1 2 4 8 16

With read-miss and 8 2.902 2.961 2.900 3.112 3.525
copy fetched from server 1024 3.296 3.309 3.401 3.575 3.955

With read-miss and copy fetched 8 5.477 5.482 5.488 5.830 6.421
from remote client via the server 1024 5.859 5.952 5.959 6.328 6.912

5.2 Workloads

Workload Modeling The cost of basic operations in the caching framework
clearly reveals that significant improvements can be achieved if invocations are
executed with cached copies. However, locality of access, which determines when
the cached copies can be used, depends on the behavior of the applications.
Hence, it is desirable to evaluate the system using actual distributed applica-
tions. Unfortunately currently available traces are mostly from the distributed
file system [5,9,10,19,22] and the world-wide web [20,21] domains. The read/write
sharing patterns for these are more coarse grained and often there is a single
writer for a given object. Hence we chose not to use these traces to evaluate
our system. Since interactive applications can involve actual users and their be-
havior can depend on response time for their actions, it is difficult to create
real traces [4]. We decided to use synthetically generated workloads based on
important parameters of interactive applications like Aquamoose described ear-
lier. Our synthetic workload can be described by the following parameters. The
values associated with the parameters below were those used in generating the
traces.
Number of Objects: There are N shared objects O1, O2, . . . , On each of size
S1, S2,. . . , Sn bytes that are governed by the consistency protocol. They are all
instantiated at the same server. In our experiment we assigned a value of 32 to
N and all of S1, S2,. . . , Sn were assigned a value of 64.
Number of Clients: There are C clients that can make invocations on the
objects. We assigned a value of 8 to C.
Number of Invocations per Client: Each client makes K invocations. K was
chosen to be 10,000.
Read Frequency: Assuming that interactive applications are visual and require
frequent screen updates, we generated read request to the objects once in every
30 milliseconds.
Write Frequency: The writes in these applications may be because of user
actions or because of movement of autonomous entities (e.g., movement of fish
in a predetermined trajectory). We also assumed that a user does not recognize
events happening in a time period less than 100ms. So the lower limit for the

Distributed Object Implementations for Interactive Applications 65

time between writes is 100ms (for autonomous entity movement) and the higher
limit was fixed at 3 seconds (for user actions). The writes were generated at
random with the above mentioned higher and lower time bounds.
Ownership: The ownership was assumed to be static for this trace. This is a
reasonable assumption because in many distributed applications like the virtual
world, the changes to object state are made only by the users who created them.

We use a trace generated based on the above parameters to evaluate the two
protocols.

Performance Evaluation The performance metrics that are of interest are
the average invocation time and the number of cache misses and server requests.
The experiments were conducted in the same lab environment in which the basic
benchmark tests were done.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

Timeliness in Milliseconds

In
vo

ca
tio

n
T

im
e

in
 M

ill
is

ec
on

ds

?

Interactive Workload@

At Server
Cached
LCset

Fig. 7. The invocation time averaged over 10000 invocations with 8 clients and
32 objects. The invocation time for the method execution at the server is 12.52
milliseconds while the invocation time for the method execution on the local
copy is 25 microseconds

Fig. 7 shows the average execution times for invocations at the server, locally
cached invocation and local invocation with the LCset protocol, for different val-
ues of the timeliness threshold. The average invocation time for execution at the
server is 12.52 milliseconds. This is different from the micro-benchmark results
and can be explained by the increase in server load because of 8 clients operat-
ing simultaneously while the average invocation time for a locally cached copy
is only 25 microseconds. The invocation time for the LCset protocol is an ex-
ponentially decreasing curve. It is about 28.84 milliseconds when the timeliness

66 Vijaykumar Krishnaswamy et al.

threshold is 0 and reduces to about 746 microseconds as the timeliness thresh-
old value is increased to 5 seconds. This can be explained from the way the
protocol works. The clients invalidate their local copies whenever they receive
an invalidation-set from the server or whenever the timeliness threshold expires.
When the timeliness threshold is set to 0, the object copy expires as soon as
it is locally cached. Hence all the invocations find the copy invalid, leading to
consistency actions. This accounts for higher method execution times. However,
when the timeliness threshold is increased, such invalidation and the resulting
communication decreases The system initially invalidates the objects when it
receives the invalidation-sets. As the steady state is reached, the cache gets pop-
ulated with objects in valid state. Thus, invalidation frequency due to the receipt
of invalidation-set decreases and beyond a point, the invalidations are only due
to the expiration of the timeliness threshold. This explains why the number of
cache-misses decrease as the timeliness threshold is increased, leading to much
smaller execution times for the invocations.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Timeliness in Milliseconds

N
um

be
r

of
 C

on
si

st
en

cy
 M

es
sa

ge
s

A

Interactive WorklaodB

SCinv
LCset

Fig. 8. The number of cache misses for 10000 invocations with 8 clients and 32
objects. The cache misses generated for the SCinv protocol is 1267

Fig. 8 shows the number of cache misses for the protocols SCinv and LCset.
The number of consistency messages generated by the SCinv protocol does not
depend on the timeliness value. While for the LCset protocol, it is an exponen-
tially decreasing curve. At a timeliness threshold of 0, every invocation other
than writes (because of the exclusive ownership assumption) will result in a
cache-miss for reasons explained earlier. This is why we experience 9532 cache
misses for the 10000 invocations executed during the experiment. As timeliness
threshold is increased, a lot more invocations are completed with the cached
object and hence the cache misses decrease.

Distributed Object Implementations for Interactive Applications 67

6 Related Work

Rich interactive distributed applications like Spline[3], Aquamoose [6] and other
virtual reality (VR) applications have been developed in the recent past which
could involve large numbers of geographically distant users interacting in real
time. In addition to interacting with each other, users also interact with com-
puter simulations which range from the very simple (e.g., a revolving door) to
the very complex (e.g., a human-like robot). These applications also allow users
to make temporary and permanent modifications and extensions to the envi-
ronment while they are running, so that the content of an environment can
dynamically change. For reasons of efficiency, consistency and scalability, these
applications are built with abstractions provided by a distributed communication
infrastructure. Some examples of such infrastructures include the MR toolkit [26]
and the dVS system [12]. They assume a client-server topology, where a client
is represented by a collection of processes. It uses message passing paradigm
to disseminate information between the participants. Any change in the state
at a client is propagated by the client’s network process to every other client’s
network process. DIVE [15] uses shared memory paradigm and uses object ab-
stractions for shared state. An ownership protocol and multicast mechanisms are
used to maintain the consistency of the state. SIMNET [7] and NPSNET [18]
are used to develop military battlefield simulations. They use a combination of
shared memory and message passing mechanisms. They use best-effort broadcast
or multicast to communicate user actions to remote sites. Scalability is achieved
by locally maintaining a copy of remote state and simulating remote actions
through one of the allowed set of behaviors of the application. High Level Ar-
chitecture (HLA) [11] is a system where messages across nodes can be ordered
at the receiver using one of the following ordering types: receive order, priority
order, causal order, time stamp order etc. Our distributed object caching sys-
tem also provides a platform that can be used by the applications mentioned
earlier. But it differs from them by allowing clients to specify their timeliness
constraints through a high level QoS interface. By separating out the QoS in-
terface from the functional part of the application, our system can execute the
same application program at different locations, but in different QoS domains.
For example, different clients can define different timeliness thresholds based on
their need and resources available to them. At the same time, the system can
provide consistency via its consistency protocols. It also tries to optimize commu-
nication overhead based on consistency policies used. The system can adaptively
change its timeliness requirements at runtime based on available resources and
application needs.

Commercial ORBs like Orbix[24] from Iona and Visigenic[23] from Borland
have a proxy technology that can be used to add caching to their remote object
framework. These are called smart proxies in Orbix and interceptors in Visigenic.
We could have used these systems but we chose QuO because QuO proxies are
generated from a high level QoS description language. Thus, it was easy to add
shared state QoS to the QuO framework. Other object systems such as Globe[25]
have multiple physical copies of an object residing on different machines. Clients

68 Vijaykumar Krishnaswamy et al.

may contact any copy to get methods executed without knowing the internal
structure and protocols used by the object implementation. This scheme allows
different objects to use different algorithms for data partitioning, replication,
consistency, and fault tolerance, in a way transparent to the users. We focus
on object caching and the consistency aspects of the cached copies in a QoS
framework.

A lot of consistency related work has been done in the areas of distributed
shared memory, distributed file systems and the world-wide web. Consistency
protocols for the web are described in [14,17,27]. Weak consistency protocols
based on time to live (TTL) for timeliness are presented in [14]. Although these
weaker consistency protocols provide better scalability and enhance system per-
formance, their notions of consistency are too weak to support interactive appli-
cations. Stronger notions of consistency based on invalidation and polling for the
web are presented in [17]. Different distributed file systems like XFS [9] employ
caching and replication to enhance performance. The invalidation based consis-
tency protocols used by them disallow the co-existence of readers and writers and
are more expensive to implement. The LCset protocol described in this paper
provides strong consistency but allows readers and a writer to co-exist, and ex-
plicitly addresses the timeliness dimension of consistency, providing consistency
vs. cost tradeoffs.

7 Conclusions

In this paper we have presented the architecture of an object caching system
that transparently caches objects. The framework is configurable and multiple
consistency protocols are used to govern the state of the cached objects based on
application requirements and resource availability. The high level specification
of the consistency requirements is done through the Quality Object’s Quality
Description Languages. We also presented the details of the caching framework
for the specification and governance of the consistency QoS requirements.

We have implemented two consistency protocols, a server based strict consis-
tency protocol, SCinv which provides a strict serialization order for all the reads
and writes in the system and the LCset protocol which provides a more relaxed
ordering for reads depending on the value of the timeliness threshold. The LCset

protocol provides better response time for invocations, almost as small as an
invocation on a local object, for interactive workloads, for a timeliness threshold
value greater than 1 second. Also, the number of consistency messages needed
for the LCset protocol is much lower than the the SCinv protocol for higher
timeliness thresholds.

In the future we would like to develop additional consistency protocols for the
framework providing different levels of guarantees based on the timeliness and
the ordering requirements. Also, we would like to develop synthetic workloads
for interactive applications. Actual experiments and simulations driven by the
workloads will allow us to perform a detailed evaluation of the protocol imple-

Distributed Object Implementations for Interactive Applications 69

mentations. We are also interested in developing some applications with which
we can drive the framework, to determine the effectiveness of the system.

References

1. M. Ahamad and R. Kordale. Scalable Consistency Protocols for Distributed Ser-
vices. IEEE Transcations on Parallel and Distributed Systems, 1999. 55

2. M. Ahamad, G. Neiger, J. E. Burns, P. W. Hutto, and P. Kohli. Causal Memory:
Definitions, Implementation and Programming. Distributed Computing, 9:37–49,
1995. 54

3. D. W. Anderson ,J. W. Barrus, J. W. Barrus, J. W. Howard, C. Rich, C. Shen,
and R. C. Waters. Building Multi-User Interactive Multimedia Environments in
MERL. IEEE Multimedia, 2(4):77–82, 1995. 66

4. S. Bhola and M. Ahamad. Workload Modeling for Highly Interactive Distributed
Applications. Technical Report GIT-CC-99-2, College of Computing, Georgia In-
stitute of Technology, 1999. 64

5. M. Blaze. Caching in Large-Scale Distributed File Systems. PhD thesis, Princeton,
1992. 64

6. A. Bruckman. Community Support for Constructionist Learning. In Proc. of the
7th ACM Conference on Computer Supported Cooperative Work, 1998. 47, 66

7. J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, and D. Owen. The SIMNET
Virtual World Architecture. In Proceedings of the IEEE VRAIS, pages 450–455,
1993. 67

8. J. Carter, J. Bennett, and W. Zwaenepoel. Implementation and Performance of
Munin. In Proceedings of the Thirteenth Symposium on Operating Systems Prin-
ciples (SOSP), pages 152–164, October 1991. 54

9. M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative
Caching: Using Remote Client Memory to Improve File System Performance. In
Proc. of ACM SIGMETRICS, 1994. 54, 64, 67

10. J. H. Howard. et.al. Scale and Performance in Distributed File Systems. ACM
Transactions on Computer Systems, Feburary 1988. 64

11. R. M. Fujimoto and R. M. Weatherly. Time Management in the DoD High Level
Architecture. In Proceedings of the Tenth Work-shop on Parallel and Distributed
Simulations, pages 60–67, 1996. 67

12. S. Ghee. DVS: A Distributed VR Systems Infrastructure. In ACM SIGGRAPH
Course Notes, 1995. 66

13. R. Gossweiler, R. J. Laferriere, M. L. Keller, and Paush. An Introductory Tuto-
rial for Developing Multiuser Virtual Environments. Presence: Teleoperators and
Virtual Environments, 3(4), 1990. 48

14. J. Gwertzman and M. Seltzer. World-Wide Web Cache Consistency. In Proc. of
the 1996 USENIX Technical Conference, Jan 1996, 1996. 67

15. O. Hagsand. Interactive Multiuser VES in the DIVE System. IEEE Multimedia,
1996. 67

16. K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM
Transactions on Computer Systems, 1989. 54

17. C. Liu and P. Cao. Maintaining Strong Consistency in the World-Wide Web. In
Proc. of the International Conference on Distributed Computing Systems, 1997. 67

18. M. R. Macedonia, M. Z. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz.
NPSNET: A Network Software Architecture for Large-Scale Virtual Environments.
Presence, 3(4):265–287, 1990. 67

70 Vijaykumar Krishnaswamy et al.

19. M. N. Nelson, B. B. Welch, and J. K. Osterhout. Caching in Sprite File Sytem.
ACM Transactions on Computer Systems, 1988. 54, 64

20. P. Cao. A Collection of Web Proxy/Client Traces.
http://www.cs.wisc.edu/ cao/icache/proxytrace.html. 64

21. P. Cao. A Collection of Web Server Traces.
http://www.cs.wisc.edu/ cao/icache/trace.html. 64

22. R. Sandberg, D. Boldberg, S. Kleiman, D. Walsh, and B.Lyon. Design and Imple-
mentation of Sun Network Filesystem. In Proc. of the Summer Usenix Conference,
1985. 54, 64

23. Borland Technologies. The VisigenicC++ Programmer’s Guide.
http://www.visigenic.com/techpubs/books/vbj/vbj40/framesetindex.html. 67

24. Iona Technologies. The Orbix C++ Programmer’s Guide.
http://www.iona.com/products/orbix/manuals/index.html. 46, 67

25. M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A Wide-Area Distributed
System. IEEE Concurrency, pages 70–78, January-March 1999. 67

26. Q. Wang, M. Green, and C. Shaw. EM - An Environment Manager for Building
Networked Virtual Environments. In Proceedings of IEEE VRAIS, 1995. 66

27. K. Worrell. Invalidation in Large Scale Network Object Caches. Master’s thesis,
University of Colarado, 1994. 67

28. J. Zinky, D. Bakken, and R. Schantz. Architectural Support for Quality of Service
for CORBA Objects. In Theory and Practice of Object Systems, pages 41–49, 1997.
46, 48, 49

MIMO – An Infrastructure for Monitoring and

Managing Distributed Middleware
Environments�

Günther Rackl, Markus Lindermeier, Michael Rudorfer, and Bernd Süss

LRR-TUM
Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Informatik

Technische Universität München, 80290 München, Germany
rackl@in.tum.de

Abstract. This paper presents the MIMO MIddleware MOnitoring sys-
tem, an infrastructure for monitoring and managing distributed, hetero-
geneous middleware environments. MIMO is based on a new multi-layer-
monitoring approach for middleware systems, which classifies collected
information using several abstraction levels. The key features of MIMO
are its openness, flexibility, and extensibility. MIMO’s research contribu-
tion is to enable easy integration of heterogeneous middleware platforms,
to be suited for large classes of online tools covering both monitoring and
management functionality, and therefore to be applicable for tools sup-
porting the complete software lifecycle. In addition to the core MIMO
system we outline exemplary instrumentation techniques for integrating
CORBA and DCOM platforms, and present the MIVIS visualization tool
demonstrating the features of the MIMO infrastructure.

1 Introduction and Overview

Developing and maintaining large distributed software environments is one of
the major challenges in computer science at the time. The usage of middleware
platforms abstracting from diverse and heterogeneous computing platforms is a
common approach to handle the complexity of such systems. Middleware plat-
forms include general purpose distributed object-computing environments [1]
like CORBA or DCOM, message-oriented middleware (MOM), transaction pro-
cessing monitors (TPMs), or meta-computing infrastructures like Globus [2].

A main drawback deploying all kinds of these platforms is the lacking support
for online tools which allow to monitor and manage the environments, especially
when various types of middleware products are combined within one computing
environment. Monitoring and management tools should cover the whole software
lifecycle, i.e the development and the deployment phases of middleware-based
software products.

In the past, several monitoring systems have been developed for specific kinds
of middleware products [3,4]. But, most systems are limited to one single type
� Research supported by German Science Foundation (DFG) SFB 342 (TP A1).

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 71–87, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

72 Günther Rackl et al.

of middleware platform, only concentrate on specific aspects of these platforms,
and are therefore only suited for a small class of tools.

This paper presents the MIMO MIddleware MOnitor infrastructure, a mon-
itoring and management system that addresses the following issues:

– Support for the whole software lifecycle: In order to be able to build tools for
the complete software lifecycle, information on all abstraction levels of the
system has to be gathered. This includes low-level information, e.g. needed
for debugging purposes during software development, as well as high-level
information for application management issues during software deployment.
MIMO solves this problem by introducing a multi-layer-monitoring model
that is used to classify data collected from the observed system.

– Integration of monitoring and management functionality: Supporting the
complete software lifecycle allows us to use a single system for monitoring
and management tasks; as the term “monitoring” is mostly used for low-level
aspects, and “management” rather for high-level administrative tasks, the
multi-layer-model makes it possible to build both kinds of tools only using
MIMO1.

– Integration of heterogeneous middleware platforms: MIMO is designed to
enable monitoring of different middleware platforms simultaneously. This is
done by introducing a generic interface for middleware platforms to MIMO,
such that heterogeneous systems can be easily integrated. As interoperable
applications are getting more and more popular (see e.g. CORBA-COM
bridges), the ability to observe heterogeneous systems simultaneously is one
of the key features for future monitoring systems.

As requirements for monitoring and management tools are very diverse, espe-
cially when allowing to observe heterogeneous components simultaneously, there
is no common definition of tool functionality or behavior. Therefore, the MIMO
approach is based on defining a general infrastructure, i.e. a framework [5] for
tools. This framework consists of basic monitoring system components which
offer defined and generic interfaces both for tools and middleware platforms.
Furthermore, access patterns defining how to make use of the components and
interfaces are defined. This combination of components and patterns makes it
possible to keep MIMO very generic and configurable, and thus allows to use it
for very diverse purposes without altering the core MIMO implementation.

This paper is organized as follows: Section 2 introduces the multi-layer-
monitoring approach on which MIMO is based. Section 3 presents the core
MIMO infrastructure, section 4 explains how information can be gathered from
various middleware platforms, and section 5 presents the MIVIS visualization
tool, an example for a fundamental tool making use of MIMO. Section 6 out-
lines an example scenario showing the usage of MIMO and MIVIS, and section
7 finally summarizes and concludes the paper.
1 In the following, we will not distinguish between the term “monitoring” and “man-
agement” anymore; we will mostly use the term “monitoring”, which shall cover
both classes of systems and tools.

MIMO 73

Related Work

Basic work on monitoring systems has be done in the OMIS project [6]. However,
OMIS is mainly aimed at lower-level monitoring of parallel applications using a
message-passing communication paradigm.

For CORBA, there are several management systems, which are mostly com-
mercial products tied to specific CORBA implementations. These include
e.g. ObjectObserver by Black&White Software, CORBA-Assistant by Fraun-
hofer Institute, or IONA’s OrbixManager. An overview of these systems can be
found in [4]. The main drawback of all these products is the lacking generic-
ity which allows to deal with heterogeneity in a way MIMO does, because they
are mostly tailored to one specific middleware product. Moreover, all of them
only allow to monitor the server-side of CORBA applications, client-side activity
cannot be observed explicitly.

2 Multi-Layer-Monitoring

This section describes the system model and multi-layer-monitoring approach,
on which the MIMO system is based.

2.1 Distributed Middleware Environment Model

Figure 1 shows an illustration of a typical distributed middleware environment
that we consider. The system to be monitored consists of six abstraction layers,
from which the monitor collects information and provides it to tools only by
means of the tool-monitor interface.

Fig. 1. Layer Model of the Distributed Environment

74 Günther Rackl et al.

The highest abstraction level within the system is the application level. Here,
only complete applications are of interest for the monitoring system. Within an
application, the whole functionality exported by the components is described by
interfaces. These interfaces are defined in an abstract way in the interface layer.
The implementation of the behavior described by these interfaces is done by ob-
jects within the distributed object layer. These objects may still be considered
as abstract entities residing in a global object space. In order to enable commu-
nication between the distributed objects, some type of middleware is required.
Especially, a mechanism to define and uniquely identify objects within the ob-
ject space is needed. All commonly used middleware standards use some kind
of globally unique object references. For example, CORBA uses Interoperable
Object References (IORs) to identify CORBA objects [7], Sun’s Java Remote
Method Invocation RMI uses Uniform Resource Locators (URLs), and Microsoft
DCOM [8] generates so-called Globally Unique Identifiers (GUIDs) or monikers.
As objects on the distributed object level are still abstract entities, they need
to be implemented in a concrete programming language. This implementation
of the objects is considered in the subsequent implementation layer. Obviously,
objects may be implemented using some O-O language, but also non-O-O lan-
guages may be used, e.g. for integrating legacy code. Finally, the implementation
objects are executed within a run-time environment which can be an operating
system or a virtual machine on top of an operating system that is being executed
by the underlying hardware nodes.

For various middleware platforms, this abstract model can be mapped to
concrete entity types related to the respective middleware environments like
e.g. CORBA or DCOM; Figure 2 shows the CORBA mapping of the MLM,
where the main entities of interest are CORBA objects; see [9] for details.

Fig. 2. CORBA Mapping

MIMO 75

2.2 Multi-Layer Monitoring

For the monitoring system, two aspects are important: First, it has to be possi-
ble to gather data on all abstraction levels in order to serve as an information
source for all kinds of online tools. And secondly, the mappings between the
different layers are of great importance. As all entities within a specific layer are
mapped onto appropriate entities within the layer on the next lower level until
the hardware layer is reached, keeping track of these mappings is essential be-
cause the relationships between entities in two adjacent layers are not necessarily
one-to-one relationships.

Tools making use of the monitoring system may be very diverse and therefore
operate only on specific abstraction levels (e.g. a visualizer might be interested
in interfaces and CORBA objects). For other tools, mappings between layers can
be of special interest (e.g. for performance analysis, the process distribution on
the nodes can be decisive).

As a consequence, a multi-layer monitoring (MLM) approach [9] which
closely reflects the structure of distributed object-environment is well suited for a
large class of online tools. For obtaining information from all abstraction layers,
specialized modules adapted to requirements of the layer to be observed can be
inserted into the monitoring system. Thus, the monitor is kept very modular and
flexible and can easily be adjusted to changes of the distributed environment.

3 MIMO

This section introduces the principle design of MIMO’s components and inter-
faces. An important issue for the overall design of MIMO was the genericity of
the approach; this means that MIMO is kept open to integrate various types
of middleware platforms, and to make it suitable for building any kind of tool.
As requirements for different middleware and tools can be very diverse, MIMO
itself is designed to depend as little as possible on concrete implementations
and semantics of events. Hence, only little information about common entities
within the environment is stored by MIMO, and flexibility is gained by tools and
intruders being adjusted to each other.

MIMO itself is completely implemented in Java (Java 2 platform), making
use of the ORBacus 3.2 [10] CORBA implementation.

3.1 Monitoring and Management Scenario

The MIMO MIddleware MOnitor provides a framework for online monitoring
and management tools which is compliant to the multi-layer-monitoring ap-
proach. The fundamental architecture relies on the separation of the tools from
the monitoring system and the observed applications [6]. Figure 3 illustrates
the resulting 3-tier model, which shows tools making use of MIMO by means
of a tool-monitor-interface, while MIMO collects information from the moni-
tored applications by means of intruders or adapters which communicate with

76 Günther Rackl et al.

Fig. 3. 3-Tier Model of the Monitoring Architecture

MIMO through a intruder-monitor-interface. The difference between intruders
and adapters is that intruders are transparently integrated into the application
(without rebuilding the application), while adapters might be built by inserting
code into the application (and rebuilding it).

An important aspect in this context is that MIMO makes it possible to
monitor both the client- and server-side of distributed applications. Most of the
existing management tools are limited to server-side monitoring and administra-
tion; MIMO’s approach in contrast is layed out for client-side instrumentation
too, which in most cases is implemented by proxy-instrumentation techniques.

Finding and Accessing MIMO Communication with MIMO is exclusively
handled by CORBA communication. So, when tools or intruders/adapters are
being started, they first need to get an IOR for the respective MIMO interfaces in
order to be able to communicate with MIMO. Therefore, every running MIMO
instance publishes its IOR at a CORBA naming service whose IOR is being
stored at a fixed URL which the clients need to access via http; this URL is kept
constant, so that clients can even find MIMO and the appropriate naming service
when they get restarted with different IORs over time. As multiple instances of
MIMO might be running at the same time, every registration at the naming
service includes the hostname on which the MIMO instance is running; thus,
client (tools, intruders/adapters) can easily choose a local MIMO instance, if it
exists.

3.2 MIMO Architecture

An illustration of the basic MIMO architecture is shown in Figure 4. Every
instance of MIMO keeps information about the current system state, i.e. data
about the applications currently attached to this instance via the
intruders/adapters. Furthermore, information about currently attached tools
and their active requests is stored. Information can also be exchanged between
various MIMO instances, but it is only stored once at the MIMO instance whose
intruder/adapter provided the data.

MIMO 77

Fig. 4. MIMO Communication: Interfaces and Event Channels

Tool-Monitor-Interaction The only entrance point for tools to MIMO is the
tool-monitor-interface, which is a CORBA IDL interface that basically provides
methods for attaching to and detaching from MIMO, and for starting and stop-
ping requests.

When requests are started, the result can either be returned synchronously
if this is possible (e.g. for system state queries), or in an event-based manner,
which is necessary for passing results of asynchronously occurring events (e.g. in-
teractions between entities). Events are passed from MIMO to the tool through
a CORBA event channel which is set up during the attachment of the tool. For
example, a tool might issue the simple command

request(”get objects”, < appl1, appl2 >, objList),

which provides a list of all objects belonging to applications appl1 and appl2
as an out parameter in objList. Or, as an asynchronous request, the tool might
get notified whenever obj2 makes use of the interface ifc1 with the request

start request(tid, ”get interactions”, < ifc1, obj2 >),

where tid is the tool-identifier which is needed to select the corresponding event
channel for passing the interaction-events from MIMO to the tool.

Intruder/Adapter-Monitor-Interaction The entrance point for adapters
and intruders is the intruder-monitor-interface, which provides methods for at-
taching and detaching intruders/adapters. After initialization, communication
between MIMO and the clients is only handled via two CORBA event channels
which are set up at startup. Event channels are mandatory because an asyn-
chronous way of interaction is needed in order to influence the observed system

78 Günther Rackl et al.

as little as possible. Whenever an “interesting” event occurs within the moni-
tored application, the intruder builds a CORBA event and passes it to MIMO
via the monitor-intruder event channel. Similarly, whenever MIMO needs to pass
information to the intruder, e.g. for configuring the intruder, it passes a CORBA
event to the intruder via its intruder-monitor event channel. This way of com-
munication results in a decoupled intruder/adapter-MIMO interaction scheme.
Moreover, it is very flexible due to the standardized protocol which allows for
easy integration of different types of middleware platforms which need to be
attached by very different intruder/adapter implementations.

4 Instrumentation of CORBA and DCOM Platforms

Enabling different middleware platforms to be observed by MIMO needs some
kind of instrumentation to get information out of the respective applications.
Instrumentation techniques can be very diverse, and consequently no general
approach that is suitable for all kinds of middleware products can be given,
but some basic mechanisms are shown here. Nevertheless, MIMO is kept open
and allows for using other instrumentation techniques, whenever they provide
information in the standardized way through the interfaces and event channels.

This section outlines two exemplary approaches to connect CORBA or
DCOM applications to MIMO; however, the general techniques can easily be
transferred to other similar middleware environments. Fundamental data to be
collected from CORBA and DCOM applications contain information about all
existing instances of distributed objects (i.e. CORBA or DCOM objects) within
the system, and their interactions (i.e. method calls to such objects). The fol-
lowing examples concentrate on gathering these data.

4.1 Instrumenting CORBA Applications

As mentioned above, data collection in MIMO can either be done by an adapter
or an intruder. Here, we outline both approaches for instrumenting CORBA
applications.

CORBA Adapter The CORBA adapter basically consists of a Java class pro-
viding a library of methods for communicating with MIMO. This includes func-
tions for attaching and detaching to/from MIMO easily, and for sending and
receiving CORBA events to and from MIMO. Events can be any kind of infor-
mation sent to MIMO, but for common tasks the following predefined functions
exist:

– Object creation and deletion
– Interaction between objects
– Any other calls to CORBA middleware functions

MIMO 79

These event types can easily be generated from within the application code
by calling the MIMO adapter functions. Adapters can be useful when the source
code is available, and when knowledge about the application domain can be used
to instrument the application manually in a way to get specifically interesting
events.

CORBA Intruder When the application cannot be rebuild, or instrumentation
needs to be inserted transparently, the CORBA intruder can be used. It is based
on the instrumentation of the used CORBA library (in our case the ORBacus
C++ library). With this technique, wrapper functions for the original CORBA
methods are created and inserted into the library. The original functions are
renamed and called by the MIMO wrappers. The approach is implemented by
using symbol replacement inside the CORBA library.

The problem with this approach is to find the appropriate CORBA methods
which need to be wrapped in order to get the required information. For our
CORBA intruder, the idea is as follows:

– For startup purposes, CORBA initialization functions like ORB::init need
to be wrapped for enabling the attachment to MIMO.

– To get information about newly created or deleted objects, keeping track of
the reference counter functions (duplicate and release) is a convenient way;
when the reference counter reaches zero, the CORBA object gets deleted.
Furthermore, observing the creation of client-side proxies is also possible by
looking at the string to object operation which instantiates a proxy for a
given CORBA object.

– Interactions between objects finally result in a call to a CORBA request’s
invoke (or related send oneway and send deferred) method. Thus, wrap-
ping this method allows us to observe all method calls to any CORBA ob-
jects.

– Any other CORBA method call can be instrumented, if given circumstances
need to access it.

Hence, this proceeding enables to monitor different aspects of CORBA systems.
The advantage is that information can be gathered at different levels of detail,
depending on the granularity required by a given tool.

Performance data evaluating the overhead introduced by the CORBA in-
truder will be available for a final version of the paper.

4.2 Instrumenting DCOM Applications

In DCOM, no direct way exists to get information about method calls to DCOM
objects. While there is no difference implementing objects for in-process, out-
of-process or remote access, there is a big difference in how they are called.
Out-of-process and remote calls base on the RPC protocol and a pair of proxy
and stub, in-process calls are direct procedure calls without any participation of
the COM library. Gathering information about all kinds of COM calls requires
other mechanisms than instrumenting the COM library.

80 Günther Rackl et al.

DCOM Wrapper The best way to achieve this goal is to use a wrapper for
each monitored object. This provides scalability because only calls of interest
are recorded. The wrapper has to provide hooks for requests orthogonal to the
method call. These requests could not only be auditing requests but also security
checks etc2. The approach applied in MIMO is based on a universal delegator ob-
ject [12,13], and trace hooks [14]. To work properly, the wrapper has to be called
instead of the original object, such that it can process the call first. Therefore,
the registry is manipulated to set up a special class factory for the monitored
object. This class factory first creates the monitored object using the original
class factory, then creates and initializes the wrapper with the object and gives
back a pointer to the wrapper. Once this is set up, the wrapper analyzes the call
stack every time a method call is received. Then it checks whether only to pre-
process the call or to pre- and postprocess it. It sends the required information
to the hook and forwards the call to the original object after changing the return
address to itself. The wrapper and the hook themselves are in-process objects
tied to the original object’s thread (Figure 5).

Original
IFoo

Universal
Delegator

IFoo

Delegator
Hook

IBar IBar

Fig. 5. DCOM Delegator

To work with MIMO, some additional work is required. Therefore, a univer-
sal framework was designed which supports any kinds of information sources and
any kinds of information processors. One component is a CORBA-COM bridge-
object, which provides the interface to MIMO. The main information source
is the combination of the wrapper (Universal Delegator) and the hook (Trace-
Hook). Other sources could be objects reading the event log or performance
data. The overall scenario is showh in Figure 6.

Performance and Limitations Performance tests have been carried out to
get an evaluation of the overhead of this solution. As the wrapper approach
implies a process switch during the call, it is only applicable for out-of-process
or remote calls, and not for in-process calls (as the overhead in this case would
2 In COM+, which ships with Windows2000, such a wrapper will be integrated into
the COM+ event service [11].

MIMO 81

Object Context

Any Object
Universal
Delegator

UDTrace
Hook

COMService

Publisher

CorbaCOM

Publisher

Event
Subscriber

Perform
Subscriber

COMLog

MIMO

Corba
Event

Channel

Fig. 6. Overview of the DCOM Instrumentation Approach

be tremendous). The measured overhead of the DCOM wrapper framework was
2.9 for out-of-process (but still local) calls, and 1.6 for remote calls. These values
show that it might not be useful to collect all available data, but to build a more
“intelligent” wrapper which only gathers information on request; this issue is an
implementation problem which will be solved in a future version of the wrapper.
More details can be found in [15].

5 MIVIS Visualization Tool

Here we describe the visualization tool MIVIS (MImo VISualizer). Our goal was
to develop a visualization tool that is based upon the multi-layer-monitoring
concept described earlier. It interacts with MIMO and presents data it receives
in an advantageous way to the user. Amongst the requirements for MIVIS were
scalability, uncomplicated extensibility, platform independence, an ergonomic
user interface, and the possibility of having several displays at a time.

A general problem of visualization is scalability: Huge amount of data have to
be presented in a way which allow the observer to keep track of the information
offered. Thus, there has to be the possibility to reduce data by means of filtering
mechanisms. MIVIS realizes this reduction by its selection mechanism which
provides a kind of filtering based on the multi-layer-monitoring model.

82 Günther Rackl et al.

5.1 MIVIS Concepts

All entities in the monitored application are shown inside the selection frame (see
Figure 7). Each layer of the multi-layer-monitoring model is represented in one

Fig. 7. MIVIS Displays

MIMO 83

tab of a tabbed pane. The user can select entities within the different layers and
thus control the granularity of his visualization. To gain an overall survey she
can monitor the system on the application layer or the hardware layer without
being bothered by details. To get more insight in the internals of the application
she can pick out a few interesting entities and go up or down to adjacent layers
to get more detailed information;

5.2 Implementation

To fulfill the requirement of uncomplicated extensibility of the visualization tool,
it is split into a main program and several JavaBeans software components. The
main program takes care of the communication with MIMO and the processing
of the data, and the JavaBeans do the graphical display.

All JavaBeans are discovered by MIVIS at startup time, and get dynami-
cally integrated into the GUI. If a different type of display is needed, a user can
program that display type using Java and turn it into a JavaBean. This compo-
nent is placed into a specific directory so that MIVIS can find and use it. The
main program does not have to be changed at all, the only requirement is that
the JavaBean implements a minimal interface that enables the main program to
communicate with the bean.

The bean-specific properties can be set by the user. MIVIS knows about
these properties by means of the introspection mechanism and provides editors
to change the settings of these properties. Additional editors for properties of
a special data type can be placed inside the JavaBean and used instead of the
standard editors. All properties together with their editors are shown inside the
Option Frame (see Figure 7). Hence, MIVIS allows the user to edit properties
which the tool itself does not know from the beginning. This approach offers a
very dynamic and flexible way to configure the behavior of various display types;
the concept of separating the display types from the main program makes it very
easy to generate new display types for MIVIS without the need of changing the
original code.

5.3 MIVIS Displays

So far, three display types have been implemented: text display, scroll display
and call frequency display. These three displays types can be seen in Figure 7.

– The text display prints out the events that are monitored in plain text, what
can basically be used for logging purposes; details that might not be visible
in a graphical display can be looked up here at a later time.

– The scroll display visualizes communication between entities. The selected
entities are displayed on the y-axis in a coordinate system. The x-axis shows
the time. When an entity communicates with another entity, an arrow be-
tween the two is shown in the coordinate system.

– The call frequency display visualizes communication in a different way: Only
cumulative data containing the number of calls are of interest are shown as
a vertical beam for each caller and for each called entity.

84 Günther Rackl et al.

These displays are only fundamental aspects of an application that might be of
interest, but others can easily be added by programming new JavaBeans.

In this sense, MIVIS can be seen as a general framework for GUI-based
MIMO-tools which provides the basic monitoring functionality, and can be ex-
tended with additional JavaBeans to fulfill any further monitoring requirements.

More details about MIVIS can be found in [16].

6 Example Scenario

To test MIVIS in a real-world scenario we picked a simple library application,
which represents a 3-tier client-server application with distributed data.

– The first tier consist of clients that can do various operations, such as search-
ing for books, inserting new book into the library etc; these clients can be
located on different machines.

– The second tier keeps the client interfaces which provide the business logic
of the application; they basically process the client requests, make database
queries to the third layer, assemble the results, and pass them back to the
clients. Client interfaces can also be located on several machines.

– The third tier contains library managers, which contain the actual library
databases. Different managers store information about different books.
Again, the library managers can be distributed over a set of nodes.

When a client starts a request, for example a search for a certain book, the
following things occur: The client selects a free client interface at random to
process the request. The client interface contacts all library managers that are
known to it and requests the information about the book. It waits for the answers
of the library managers and combines all answers to the final result which is sent
back to the client.

In our test scenario, clients periodically start search requests. Each call from
a client to a client interface is followed by several calls from the selected client
manager to all library managers. In our example we have three library man-
agers, so there are three calls from the client interface for each client request. In
Figure 7, every call is displayed as an arrow from the caller to the called entity.
As the time between the calls is very short, all arrows for one request seem to
be one line in this coarse illustration. In Figure 8, we can see that the vertical
beam for the calls from the client interface is three times the size of the one for
the calls from the client and for each library manager (because for each client
call, the client interface invokes every library manager).

Hence, his example briefly demonstrates how to use MIVIS to visualize the
behavior of distributed middleware applications. Clearly, in practice more so-
phisticated scenarios have to be analyzed, but the general approach to inves-
tigate request sequences in n-tier client-server applications is a very important
and helpful feature, either for debugging, performance analysis, or management
purposes.

MIMO 85

Fig. 8. MIVIS 3-tier Library Example

7 Conclusion

In this paper, we have presented the MIMO infrastructure for monitoring and
managing distributed middleware environments, and the MIVIS visualization

86 Günther Rackl et al.

tool demonstrating basic MIMO functionality, and which serves as a framework
for further tool extensions.

MIMO is based on a new multi-layer-monitoring approach for middleware
systems which allows us to handle complex middleware systems on several ab-
straction levels. This provides the possibility to build online tools supporting
the complete software lifecycle while integrating monitoring and management
functionality. The integration of different middleware platforms is reached by in-
troducing a standardized intruder-monitor-interface. To our knowledge, no other
monitoring infrastructure reaching this high degree of flexibility over several di-
mensions has been developed up to now.

What still needs to be completed is the distribution of MIMO itself (including
synchronization and event ordering issues, similar to OCM project [17]), and the
capability to dynamically insert code into intruders in order to reach an even
higher flexibility.

The main research contribution is motivated by the fact that common mid-
dleware environments and tool requirements are too diverse to be handled by a
single, static monitoring system. Instead, we propose and implement an open and
flexible monitoring and management infrastructure, which only provides basic
monitoring services, but is open to be extended easily.

References

1. Günther Rackl, Ivan Zoraja, and Arndt Bode. Distributed Object Computing:
Principles and Trends. In International Conference on Software in Telecommuni-
cations and Computer Networks – SoftCOM ’99, pages 121–132, Oct 1999. 71

2. I. Foster and C. Kesselman. The Globus project: A status report. In Proceedings
of the Heterogeneous Computing Workshop, pages 4–18. IEEE Computer Society
Press, 1998. 71

3. Ivan Zoraja, Günther Rackl, and Thomas Ludwig. Towards Monitoring in Par-
allel and Distributed Environments. In International Conference on Software in
Telecommunications and Computer Networks – SoftCOM ’99, pages 133–141, Oct
1999. 71

4. Bernfried Widmer and Wolfgang Lugmayr. A Comparison of three CORBA Man-
agement Tools. In Wolfgang Emmerich and Volker Gruhn, editors, Engineering
Distributed Objects (EDO’99), pages 12–21, Los Angeles, May 1999. 71, 73

5. Ralph E. Johnson. Frameworks = (components + patterns). Communications of
the ACM, 40(10):39–42, Oct 1997. 72

6. Thomas Ludwig, Roland Wismüller, Vaidy Sunderam, and Arndt Bode. OMIS
— On-Line Monitoring Interface Specification (Version 2.0), volume 9 of Research
Report Series, Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR-TUM),
Technische Universität München. Shaker, Aachen, 1997. 73, 75

7. OMG (Object Management Group). The Common Object Request Broker: Archi-
tecture and Specification — Revision 2.2. Technical report, February 1998. 74

8. Microsoft Corporation. DCOM Architecture. Technical report, 1998. 74
9. Günther Rackl. Multi-Layer Monitoring in Distributed Object-Environments. In
Lea Kutvonen, Hartmut König, and Martti Tienari, editors, Distributed Appli-
cations and Interoperable Systems II — IFIP TC 6 WG 6.1 Second Interna-
tional Working Conference on Distributed Applications and Interoperable Systems

MIMO 87

(DAIS’99), pages 265–270, Helsinki, June 1999. Kluwer Academic Publishers. 74,
75

10. Object Oriented Concepts Inc. ORBacus, Nov 1999. http://www.ooc.com/ob/.
75

11. David S. Platt. Understanding COM+. Microsoft Press, 1999. 80
12. Keith Brown. Building a Lightweight COM Interception Framework, Part 1: The

Universal Delegator. Microsoft Systems Journal, Jan 1999. 80
13. Keith Brown. Building a Lightweight COM Interception Framework Part 2: The

Guts of the UD. Microsoft Systems Journal, Feb 1999. 80
14. Simon Fell. Activation tricks. WWW, July 1999.

http://www.zaks.demon.co.uk/com/activation.htm. 80
15. Bernd Süss. Konzepte und Mechanismen zum on-line Monitoring von DCOM-

Anwendungen. Diploma thesis, Technische Universität München, 1999. In german.
81

16. Michael Rudorfer. Visualisierung des dynamischen Verhaltens verteilter objekt-
orientierter Anwendungen. Diploma thesis, Technische Universität München, 1999.
In german. 84

17. Roland Wismüller, Jörg Trinitis, and Thomas Ludwig. OCM — A Monitoring
System for Interoperable Tools. In Proc. 2nd SIGMETRICS Symposium on Parallel
and Distributed Tools SPDT’98. ACM Press, 1998. 86

Gateways for Accessing

Fault Tolerance Domains�

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

priya@alpha.ece.ucsb.edu {moser,pmms}@ece.ucsb.edu

Abstract. Enterprise applications can be structured as domains, where
each domain contains objects that are replicated for fault tolerance, with
the replication being managed by a fault tolerance infrastructure local to
the domain. Gateways can allow unreplicated clients to benefit from the
fault tolerance services of the replicated servers, without compromising
replica consistency within the fault tolerance domain. For CORBA-based
enterprise applications, the gateway mechanisms can be implemented
transparently to the ORB and to the application using interception; spe-
cific enhancements to existing ORBs make it possible for unreplicated
clients to enjoy a higher degree of reliability.

1 Introduction

Applications are increasingly spanning enterprises across the Internet, with the
application objects within one enterprise communicating with, and performing
operations on, the application objects of another enterprise. The reliability of the
application as a whole depends on the reliability of the objects in each of the com-
municating enterprises, which are separated possibly by a considerable distance,
as shown in Fig 1. Each enterprise is likely to be, and indeed should be, respon-
sible only for the reliability of the objects under its control, but each enterprise
must nevertheless allow the objects of a different enterprise to communicate with
its own objects without compromising the consistency of the replicated objects
of either enterprise. The domain of control of the fault tolerance infrastructure
of each enterprise constitutes a fault tolerance domain; different fault tolerance
domains can be connected through a gateway.

The concepts of fault tolerance domains and gateways are not restricted to
communication between enterprises. Internet-based applications such as stock
trading involve customers using Web browsers (typically unreplicated thin
clients) to communicate with the servers (typically replicated for fault toler-
ance) of a stock trading company. The unreplicated Web browser should not

� Research supported by the Defense Advanced Research Projects Agency in conjunc-
tion with the Office of Naval Research and the Air Force Research Laboratory, Rome,
under Contracts N00174-95-K-0083 and F3602-97-1-0248, respectively.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 88–103, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Gateways for Accessing Fault Tolerance Domains 89

(Unreplicated object with no
support for fault tolerance)

Contain replicated objects supported
by fault tolerance infrastructures,

with communication over reliable multicast

P1

P2 P4

TCP/IP
Connection

Wide-area
Fault Tolerance Domain

New York
Fault Tolerance Domain

Los Angeles
Fault Tolerance Domain

Customer in
Santa Barbara

P5

P6

P7

gate
way gate

way
gate
way

gate
way

gate
way

Fig. 1. Gateways bridge fault tolerance domains, and allow objects in one fault
tolerance domain to communicate with those in another. Pi represents a proces-
sor hosting some application objects

need to be aware of the replication of the stock trading servers, but can never-
theless benefit from the fault tolerance of the servers. The unreplicated clients
(the Web browsers) can be made to communicate with the replicated servers
(the stock trading servers) through a gateway that hides the replication of the
servers. The replicated servers are managed by the fault tolerance infrastructure
of the stock trading company, and the gateway serves as the “entry point” into
the fault tolerance domain. The gateway is a crucial element because it must
“understand” the reliability mechanisms inside the fault tolerance domain, as
well as the unreliable semantics of the external client, and must bridge these
different semantics and mechanisms, without compromising the reliability of the
objects within the fault tolerance domain.

A different motivation for a fault tolerance domain is that an application
might have a large number of objects that require replication, and it might not
be a scalable or feasible solution for a single fault tolerance infrastructure to
manage the replication of all of these objects. Instead, it would be preferable to
decompose the application into smaller collections of objects, with each collec-
tion of objects being managed by a distinct fault tolerance infrastructure, and
therefore constituting a fault tolerance domain.

Regardless of the motivation for a fault tolerance domain, the gateway mech-
anism is identical and essential. In this paper, a gateway mechanism is described
in the context of applications developed using the Common Object Request
Broker Architecture (CORBA) [9] distributed object standard established by
the Object Management Group (OMG). While CORBA currently does not pro-
vide support for fault tolerance, efforts [8] are underway within the OMG to
standardize interfaces for fault-tolerant CORBA.

A key issue in fault tolerance for CORBA will be the mechanisms to support
interaction of non-fault-tolerant CORBA systems with fault-tolerant CORBA
systems. The gateways described in this paper address the issues in the imple-
mentation of such mechanisms, the problems in building those mechanisms using

90 P. Narasimhan et al.

IIOP Messages

Platform

Reliable
Multicast

Reliable
Multicast

Logging &
Recovery

Mechanisms

Logging &
Recovery

Mechanisms

Platform

Interceptor

CORBA ORB CORBA ORB

CORBA Application

Client
Replica

Server
Replica

Reliable
Totally Ordered

Multicast Messages

Replication
Mechanisms

Replication
Mechanisms

Replication
Manager

Resource
Manager

Evolution
Manager

Log Log

Fig. 2. The Eternal system – the fault tolerance infrastructure within the fault
tolerance domain

existing ORBs, and enhancements to existing ORBs that might overcome these
deficiencies.

2 The Fault Tolerance Infrastructure

The Eternal system [5,6] constitutes the fault tolerance infrastructure (within
the fault tolerance domain) that provides reliability for applications running
over commercial-off-the-shelf implementations of CORBA. The mechanisms im-
plemented in different parts of the Eternal system work together efficiently to
provide strong replica consistency with low overheads, and without requiring
modification of either the application or the ORB.

In the Eternal system, the client and server objects of the CORBA appli-
cation are replicated, and the replicas are distributed across the system. Active
replication and passive replication of both client and server objects are sup-
ported. To facilitate replica consistency, the Eternal system conveys the Inter-
net Inter-ORB Protocol (IIOP) messages of the CORBA application using an
underlying reliable totally ordered multicast group communication system, such
as Totem [4].

The structure of the Eternal system is shown in Figure 2. The Eternal Repli-
cation Manager replicates each application object, according to user-specified
fault tolerance properties (including the choice of replication style – stateless,
cold passive, warm passive, active, active with voting) and distributes the replicas
across the system. The Eternal Resource Manager monitors the system resources,
and maintains the initial and minimum number of replicas.

The Eternal Interceptor captures the IIOP messages (containing the client’s
requests and the server’s replies), which are intended for TCP/IP, and diverts

Gateways for Accessing Fault Tolerance Domains 91

them instead to the Eternal Replication Mechanisms for multicasting via Totem.
The Eternal Replication Mechanisms, along with the Eternal Logging-Recovery
Mechanisms, maintain the consistency of the replicas, detect and provide recov-
ery from faults. The Replication Mechanisms and the Totem protocols run on
every processor within a fault tolerance domain.

The Eternal Evolution Manager exploits object replication to support up-
grades to the CORBA application objects. The Replication Manager, the Re-
source Manager and the Evolution Manager are themselves implemented as col-
lections of CORBA objects and, thus, can themselves be replicated and thereby
benefit from Eternal’s fault tolerance capabilities. They need not be present on
every processor; their replicas can run on any processor within the fault tolerance
domain.

The technology of Eternal formed the basis of our response [2] to the Object
Management Group’s Request for Proposals [8] on fault-tolerant CORBA. With
our close involvement in the ongoing OMG standardization process, it appears
likely that the technology of Eternal will form the basis of the forthcoming OMG
standard for fault tolerance for CORBA.

2.1 Transparency via Interception

The Eternal Interceptor [7] is a non-ORB-level, non-application-level component
that transparently “attaches” itself to every executing CORBA object, without
the object’s or the ORB’s knowledge, and is capable of modifying the object’s
behavior as desired. Because of its location underneath the ORB, Eternal’s Inter-
ceptor is transparent to the ORB and to the application, and can be implemented
in an ORB-independent manner.

Current operating systems provide “hooks”, such as library interpositioning,
that can be exploited to develop interceptors. Using library interpositioning,
the Eternal Interceptor can transparently override the default definitions for the
symbols in any dynamically linked library, without requiring modification of the
ORB, the CORBA application or the operating system.

The library routines that an interceptor is made to redefine in a library-
interpositioning implementation, depends on the extent of the information that
the interceptor must extract (from the ORB or the CORBA application) to en-
hance the application with new features. The interceptor may capture all, or a
particular subset, of the library routines used by the CORBA application, de-
pending on the feature being added. The library interpositioning approach used
by Eternal’s Interceptor has no overheads in the path of message transmission,
and can be deployed with various ORBs.

2.2 Strong Replica Consistency

The Replication Mechanisms, operating in concert with the Logging-Recovery
Mechanisms, provide for strongly consistent replication of the CORBA appli-
cation objects. Eternal provides support for the detection and suppression of
duplicate invocations and duplicate responses, and for state transfer to new and

92 P. Narasimhan et al.

Eternal ORB

Reliable totally ordered
multicast messages

TCP/IP connection
(IIOP messages)

Gateway converts
TCP/IP messages
into multicasts
and suppresses
duplicate responses

Standard ORB
unsupported by
Eternal’s
infrastructure

Gateway

Fault Tolerance
Domain

Unreplicated client object A
invoking operation on object B

Duplicate responses suppressed

Actively Replicated Server Object B

Fig. 3. Eternal’s gateways allow unreplicated clients to communicate with repli-
cated objects

recovering replicas for both actively and passively replicated objects. Most com-
mercial applications and/or ORBs use multithreading, a significant source of
non-determinism. To ensure strong replica consistency even for multithreaded
CORBA objects that are replicated, Eternal employs special Interceptor-level
mechanisms to enforce determinism for multithreaded CORBA applications,
without requiring them to be modified.

While the fault tolerance infrastructure ensures strong replica consistency
within the fault tolerance domain, it is the responsibility of the gateway to
ensure that unreplicated clients wishing to contact replicated objects within the
fault tolerance domain (through the gateway) do not compromise the replica
consistency of those replicated objects.

3 Gateways to Fault Tolerance Domains

Eternal must allow the CORBA applications that it supports to communicate
with unreplicated objects that are outside the fault tolerance domain, i.e., Eter-
nal’s domain of control. Some of these unreplicated objects (e.g., a Web browser
on a personal computer that provides no fault tolerance) may not be supported
by, or have access to, Eternal’s fault tolerance infrastructure, and may run over
standard IIOP-enabled ORBs.

Eternal ensures that these unreplicated objects outside the fault tolerance
domain can nevertheless communicate with the replicated objects that are un-
der Eternal’s control inside the fault tolerance domain. Eternal makes this com-
munication possible without the unreplicated object ever being aware of the
existence of a fault tolerance domain, of the replication of the objects within

Gateways for Accessing Fault Tolerance Domains 93

the fault tolerance domain, or of Eternal itself. Thus, Eternal extends the repli-
cation transparency that it provides to the application objects within the fault
tolerance domain equally to unreplicated objects outside Eternal’s control.

The gateways that the Eternal system provides serve as the “entry point”
for unreplicated clients into the fault tolerance domain, and allow unreplicated
external objects to invoke replicated Eternal-managed objects.

Within a fault tolerance domain:

– All objects are replicated, with the replication managed by Eternal’s fault
tolerance infrastructure. Each replicated object is assigned a unique object
group identifier.

– Communication between replicated objects occurs through a reliable totally-
ordered multicast protocol, thereby facilitating replica consistency, as de-
scribed in Section 2.2. The Replication Mechanisms hosting the replicas of
an object are addressed by multicasting messages to the object’s group iden-
tifier.

– Replicated clients do not use the TCP/IP {host, port} information within
the Interoperable Object Reference (IOR) of any of the server replicas to
contact the replicated server. Instead, the Eternal Interceptor transparently
diverts the socket establishment routines at every client replica to form a
connection to the local Eternal Replication Mechanisms, which then mul-
ticast the notification of the connection establishment to the Replication
Mechanisms hosting the server replicas.

Outside a fault tolerance domain:

– Objects are unreplicated, and are unaware of the internal mechanisms of,
and the replication within, the fault tolerance domain

– Communication occurs through CORBA’s TCP/IP-based Internet Inter-
ORB Protocol (IIOP)

– Clients use the TCP/IP {host, port} information within the Interoperable
Object Reference (IOR) of the target server to establish a connection with
the server.

Unreplicated objects outside the fault tolerance domain must never be al-
lowed to access the replicated objects within the fault tolerance domain directly.
Such direct communication, if permitted, would violate replica consistency. The
reason is that the unreplicated client can communicate only through TCP/IP,
thereby implying that it would contact only one of the server replicas, and invoke
an operation on that replica alone.

If the server is actively replicated, and only the single invoked server replica
performs the operation, it may have a different state from that of the other
replicas of the server object, resulting in inconsistent replication. If the server
is passively replicated, and the single primary replica is invoked, the primary
replica might itself invoke nested operations as a result of the original invocation.
If the primary fails before it receives the results of the nested invocations, a
new primary server replica will be elected. However, because the new primary

94 P. Narasimhan et al.

(formerly a backup replica) did not receive the original invocation, it will not be
able to handle the returned responses from the nested invocations and to return
a response to the original invocation. Thus, to ensure replica consistency, the
replicas of an object are contacted through a reliable totally-ordered multicast,
and not individually through TCP/IP.

Additional mechanisms are provided by Eternal so that an IOR published
by a replicated object within the fault tolerance domain “point” the external
clients in the direction of the IIOP-enabled gateway, rather than the target
replicated object. However, the external client that uses this IOR is unaware of
this. When using the information in the IOR for connection establishment, the
client implicitly assumes that the endpoint is the real server and, thus, sends
IIOP invocations (destined for the server) to the gateway.

Note that the gateway is not a CORBA object, but constitutes part of the
mechanisms provided by the fault tolerance infrastructure of Eternal. However,
by receiving the unreplicated client’s IIOP invocations without returning excep-
tions, and by forwarding the replicated server’s IIOP responses to the unrepli-
cated clients, the gateway appears to the client to be a remote CORBA server
object.

To perform the invocation (response) forwarding into (out of) the fault tol-
erance domain, the gateway must be able to interpret the IIOP messages sent
over TCP/IP connections from outside the fault tolerance domain, as well as
the reliable totally-ordered multicast protocol messages within the fault toler-
ance domain, and must provide the necessary translation between them. This
functionality of the gateway is shown in Figure 3.

Another aspect of the gateway is that it must “hide” the replication of the
servers from the external client. This involves detecting duplicate responses re-
turned by the replicas of the server, and filtering out only a single distinct re-
sponse to the external client. In addition, the gateway must itself be reliable so
that it does not constitute a single point of failure.

3.1 Connection Establishment

When a gateway is used, every unreplicated external client must continue to
“believe” that the remote endpoint to which it connects (using the information
in the server IOR) is the server when, in fact, the remote endpoint is the gateway.
This can be done by ensuring that the addressing information in the IOR is the
{gateway host, gateway port} and that the gateway always returns the expected
IIOP responses to the client’s IIOP invocations so that the client never suspects
otherwise.

Eternal replaces the {server host, server port} in the IOR of each server
replica with the {gateway host, gateway port} through the use of its Interceptor.
The intent of the Interceptor is to interpose at the point that the server-side
ORB queries the operating system for the host and the port information, prior
to publishing the IOR. By modifying the getsockname() call and/or the sysinfo()
call (with the SI HOSTNAME command) to return the gateway host and the
gateway port instead of the server host and the server port, respectively, the IOR

Gateways for Accessing Fault Tolerance Domains 95

TCP
Client

Id

Source
Group

Id

Target
Group

Id

Operation
Identifier

CORBA
Service Context

(a)

(b)

(c)

Message
Time-
stamp

Gateway
Group Id

Filled in by the
Replication Mechanisms

at the receiving end

TCP
Client

Id

Source
Group

Id

Reliable Multicast
Header

Fault Tolerance Infrastructure
and Gateway Header

IIOP Request or Reply Message

Target
Group

Id

Operation
Identifier

Message
Time-
stamp

Some
Unused
Value

Contains TCP Client Id
for enhanced Client ORBs

Contains TCP Client Id
for enhanced Client ORBs

Fig. 4. Messages sent (a) between an unreplicated client and the gateway, (b)
from the gateway to a replicated object within the fault tolerance domain, and
(c) between replicated objects within the fault tolerance domain

that the server-side ORB publishes automatically contains the {gateway host,
gateway port}. This eliminates the effort of having to parse the IOR string to
do the replacement, and also results in fewer undesirable interceptions. The
gateway host and the gateway port are dedicated choices that are supplied to
the interceptor at system configuration time.

When an unreplicated client uses this IOR, the client-side ORB, implicitly
assuming that the host and port in the IOR refer to the server object, connects
the client to the gateway. The gateway now becomes the recipient of every IIOP
message sent by the unreplicated client, which continues to “believe” that the
gateway is indeed the target server object. By extracting the server’s object key
(which the client-side ORB inserts into IIOP invocations to identify the target
server), the gateway identifies the target server, multicasts the client invocation
to the server object group. The gateway inserts sufficient information into the
multicast messages to enable it to associate the server’s response with the client’s
invocation.

The gateway process must be continuously listening for connections from un-
replicated clients on its dedicated {gateway host, gateway port}. For each new
client that contacts the gateway, the gateway spawns a new TCP/IP socket to
communicate solely with that client, and uses the original socket to listen for fur-
ther clients. The additional spawned sockets are destroyed when the connection
between the unreplicated client and the gateway terminates.

Note that the replacement of the {server host, server port} in the IOR does
not affect connection establishment or communication within the fault toler-
ance domain. Replicated clients wishing to communicate with replicated servers
within the fault tolerance domain never use this TCP/IP-specific addressing in-

96 P. Narasimhan et al.

formation, but use instead the server’s object group identifier to contact the
replicated server through the fault tolerance infrastructure.

3.2 Encapsulation of IIOP into Multicast Messages

A gateway must encapsulate the IIOP invocations from the external unreplicated
clients into multicast messages for transmission to the target replicated server
object within the fault tolerance domain. Similarly, the IIOP responses, encap-
sulated within the multicast messages returned by the replicated server object,
must be extracted by the gateway and returned to the unreplicated clients.

When an IIOP-encapsulating message is multicast by the gateway into the
fault tolerance domain, the message contains the gateway group id as the sender
group, and the server group id (determined by the gateway from the server’s
object key embedded in the client’s IIOP invocation) as the destination group.
The message is received in total order by the Replication Mechanisms hosting
each of the server replicas. The replicated server performs the operation, and
the fault tolerance infrastructure multicasts the results to the gateway. The
replicated server assumes that the gateway that sent the IIOP invocation is
a CORBA client object. Eternal’s transparency through interception effectively
ensures that neither the unreplicated client, nor any of the server replicas, is ever
aware of communicating through the fault tolerance infrastructure using reliable
multicast. The gateway (and, of course, the fault tolerance infrastructure itself)
is the only party in the chain of communication that is aware of the reliable
multicast and the fault tolerance infrastructure.

When the replicated server returns the response to the gateway, the IIOP
response from each server replica is encapsulated by the Replication Mecha-
nisms hosting that replica into a multicast message. The message contains the
server group id as the sender group, and the gateway group id as the destina-
tion group. This information is insufficient for the gateway to route the IIOP
response to the client replica that invoked the operation because multiple un-
replicated TCP/IP-based clients may have invoked the same replicated server
through the gateway. The gateway has no way of discriminating between these
clients.

Thus, every multicast message must contain additional information, inserted
by the gateway to identify each TCP/IP client that contacts the gateway. The
resulting multicast messages have the structure shown in Figure 4. For every
multicast message exchanged between replicated objects within the fault toler-
ance domain, the TCP/IP client identification is set to some unused value. The
gateway (as well as the fault tolerance infrastructure) uses the destination group
identifier, the source group identifier and the TCP/IP client identifier collectively
to route every message to its intended destination.

Ideally, the client identification information ought to be supplied by the
client-side ORB, as discussed in Section 3.5. Because this is not the case with
current ORBs, the gateway maintains a simple counter, one for each destination
server group. For each incoming TCP/IP client, the gateway first determines
the server group id from the first IIOP message received from the client. The

Gateways for Accessing Fault Tolerance Domains 97

for (every received IIOP message)
{

Obtain TCP client identifier
Map socket to client identifier
Generate operation identifier
Generate header containing:
– TCP client identifier
– Gateway group identifier
– Server group identifier
– Operation identifier

Convey header and IIOP message
via a multicast message

Send multicast message into the
fault tolerance domain

}

for (every received multicast message)
{

Extract operation identifier
Examine if message is a duplicate
if (non-duplicate message)
{
Extract TCP client identifier
Find corresponding socket
Extract IIOP message
Send IIOP message to the
client over the socket

}
else
Discard duplicate message

}

(a) (b)

Fig. 5. Actions of the gateway for incoming messages from (a) external un-
replicated clients outside the fault tolerance domain, and (b) replicated objects
within the fault tolerance domain

gateway then uses the value of the counter corresponding to that server group
as the TCP/IP client identifier. The counter is then incremented, to serve as
the identifier for the next TCP/IP client for the same replicated server. The
disadvantage of the gateway-assigned client identifiers, over identifiers supplied
by the client-side ORB, is discussed in Section 3.4.

Figure 5 shows the sequence of steps that the gateway executes for incoming
IIOP messages from outside the fault tolerance domain, and incoming multicast
messages from within the fault tolerance domain.

3.3 Duplicate Detection and Suppression

To ensure replica consistency, duplicate detection and suppression mechanisms
are used by Eternal throughout the fault tolerance domain; the gateways also
employ these mechanisms for filtering duplicate responses from the replicated
server objects within the fault tolerance domain. The gateway returns only a
distinct copy of each response to the invoking external client. The duplicate
copies of each response, if not suppressed, would be delivered to the client object,
and may cause the client object’s state to be corrupted.

To detect duplicate copies of each response, both the fault tolerance infras-
tructure and the gateway prepend an operation identifier to each message that is
multicast within the fault tolerance domain, as shown in Figure 4. The operation
identifier takes the form of either an invocation identifier for all multicast mes-
sages that encapsulate IIOP invocations, or a response identifier for all messages
that encapsulate IIOP responses.

98 P. Narasimhan et al.

Invocation (msg seq number = 120)

Parent Invocation
(msg seq number = 100)

Response (msg seq number = 171)

1st child
operation

2nd child
operation 3rd child

operation

Replica in
Group A

Replica in
Group B

Invocation Identifier

Operation
Identifier

Response Identifier

120 100 3A B

171 100 3B A

Invocation

Response

Source
Group

Target
Group IIOP Message

This
Message’s
Sequence
Number

Parent
Message’s
Sequence
Number

Child
Operation
Sequence
Number

Fig. 6. Assignment of invocation, response and operation identifiers

Operation Identifiers For each outgoing IIOP invocation received by the gate-
way from an unreplicated client, the gateway generates the invocation identifier
as shown in Figure 6. The gateway then inserts the invocation identifier into
the Eternal-specific header of the message that it multicasts into the fault tol-
erance domain. The timestamp of this multicast message, which forms a part
of the invocation identifier, is filled in by the fault tolerance infrastructure at
the receiving end, when the message is delivered. The timestamp information
is derived from the totally-ordered message sequence numbers assigned by the
multicast group communication system.

For each outgoing IIOP response sent by a server replica, Eternal “remem-
bers” and reuses a portion of the invocation identifier that was sent with the
corresponding invocation. The portion of the invocation identifier that is reused
in its counterpart response identifier is the operation identifier, which completely
and uniquely identifies the operation consisting of the invocation-response pair.
Both the invocation and the response identifiers have the same operation iden-
tifier fields. Furthermore, the operation identifier is identically determined at
every server replica.

The gateway, on receipt of multiple copies (one copy for each server replica
that returns a response) of a response to an IIOP invocation that it multicasts
into the domain, can deliver the first copy that it receives, and discard all subse-
quently received copies by simply comparing the response identifier fields of the
Eternal-specific header.

An invocation identifier has the form (TBinv , (TAinv , SAinv)), where TAinv is
the timestamp of the message containing the invocation of group A, TBinv is the
timestamp of the message containing the invocation of the group B, and SAinv

is the sequence number of the invocation of B in the sequence of invocations

Gateways for Accessing Fault Tolerance Domains 99

by group A. Similarly, a response identifier has the form (TBres , (TAinv , SAinv)),
where TBres is the timestamp of the message containing the response by group B
to group A and the other two fields are the same as for the invocation identi-
fier. These invocation and response identifiers are contained in the multicast
messages.

Note that the timestamps TAinv , TBinv and TBres are derived from the totally-
ordered message sequence numbers assigned by the Totem multicast group com-
munication system. The system-wide uniqueness of these timestamps (as a result
of the total ordering) contributes to the uniqueness of the operation identifiers,
and thus, to the detection of duplicate messages.

In the example of Figure 6, TAinv corresponds to 100, SAinv corresponds
to 3, TBinv corresponds to 120 and TBres corresponds to 171. In the case of the
gateway, A represents the gateway group and B represents the target replicated
server that the unreplicated client (that connects to the gateway) wishes to
contact.

3.4 Using Existing ORBs

Existing ORBs do not have the capability to traverse a list of profiles, and select
the next profile if the first one fails on connection. The disadvantage of this is that
redundant gateways are not possible. Clients may experience disconnection if the
processor hosting the gateway fails, and does not recover. The processor hosting
the gateway is a single point of failure. If the client ORB has the capability
to understand only the first IIOP profile (the standard TAG INTERNET IOP
profile), and if the gateway to which it connects using the first profile fails, the
client has no alternative but to abandon the request. Furthermore, the client
does not know the status of any invocations that it has already sent, for which
it is still awaiting responses.

An alternative to using multiple gateways might be to have a cold passively
replicated gateway. In this case, the gateway’s state should be checkpointed often
enough to allow it to be recovered. However, clients will still be disconnected from
the gateway if it fails, and must have mechanisms to allow them to reconnect to
the gateway, when it recovers.

In the case of redundant gateways, the new gateway to which the client
connects (on failure of the first gateway) has no way of “knowing” that this
is the same client. The simple counter mechanism, described in Section 3.2, is
insufficient in this case to identify the client. This means that, even if the new
gateway receives the response for an outstanding invocation sent by the client
through the first gateway, the new gateway does not know which of its connected
clients should receive this response. Secondly, if the client were now to re-issue all
of the pending invocations to the new gateway, the new gateway may, in turn,
re-issue these invocations to the replicated objects within the fault tolerance
domain, thereby corrupting their state.

Thus, due to lack of client-side identification provided by the ORB, the gate-
way cannot prevent duplication of client requests if

100 P. Narasimhan et al.

– The unreplicated client fails, recovers and resends its request (this is out-
side the fault tolerance domain’s and the gateway’s control, and cannot be
handled without extending some of the fault tolerance mechanisms to the
unreplicated client)

– The gateway process fails, and then recovers, and the client reconnects to
the gateway

– Redundant gateways are used, and the original gateway fails, and the client
switches to the next operational gateway

3.5 Enhancements to Existing ORBs

If only a single gateway is provided for a fault tolerance domain, it is insufficient
to guarantee the level of reliability that customers of Internet-based applications
have come to expect. For instance, if a customer uses an unreplicated Web
browser to connect to a replicated stock trading server through a gateway, the
failure of the gateway could leave the customer wondering about the status of any
outstanding invocations issued on the stock trading server. Because the gateway
constitutes a single point of failure, the benefits of the server replication are lost
to the customer.

The use of redundant gateways requires additional intelligence on the part
of the client-side ORB to exploit the multiple gateways. Unfortunately, the re-
quired mechanisms are not part of the current CORBA standard. In the absence
of the required support in current ORBs, we have implemented a thin client-side
interception layer that mimics the support that an enhanced client-side ORB
would provide to allow unreplicated CORBA clients to benefit from fault tol-
erance. As discussed in Section 3.5, we envisage that the functionality of this
interception layer will eventually incorporated into the client-side ORB itself.

According to the current CORBA standard, a profile contains addressing
information within an IOR. An object’s IOR can contain multiple profiles, with
each profile designating an alternative address for contacting the object. To allow
the addressing information for the multiple gateways to be made available to
unreplicated clients, the Eternal Interceptor “stitches”’ together the addressing
information for each gateway into a single multi-profile IOR.

On the client side, the thin interception layer has the capability of traversing
the profiles within the multi-profile IOR, should this be required. The intercep-
tion layer connects the client object to the first gateway listed in the multi-profile
IOR, and inserts a unique TCP/IP client identifier into the service context field
(a part of the IIOP request and reply messages), where the user may insert in-
formation; if a receiving ORB cannot interpret this information, it will ignore it)
of each IIOP message sent out by the client. The advantage of using the service
context field is that it can be safely ignored (as is the case here) by a server
ORB that does not understand it. It is intended purely for the consumption of
the gateway.

For each IIOP request message that a gateway receives from a client, the
gateway first multicasts the message to the group of gateways. This is done so
that every gateway in the group has a record of the invocation in case the first

Gateways for Accessing Fault Tolerance Domains 101

connected gateway fails. The gateway group then multicasts the message into the
fault tolerance domain, and the gateway group (and not the connected gateway
alone) receives the response.

If the first gateway fails to respond, the client-side interception layer trans-
parently skips to the next profile in the multi-profile IOR, and connects the
client to the next operational gateway, and reissues any pending invocations. If
the client object sent an invocation for which a response was expected from the
first gateway, the client-side interception layer obtains it from the next opera-
tional gateway. This is possible because the client-side interception layer supplies
the same unique client identifier for each of its requests, along with a unique re-
quest identifier, which would make it possible for the new gateway to detect
reinvocations due to reconnection of the client-side interception layer to a dif-
ferent gateway. The reason for the reinvocations is two-fold: firstly, it allows the
client-side interception layer to communicate the client’s unique identifier to the
gateway, and secondly, the client-side interception layer has no way of knowing
if the first invocation ever reached the original failed gateway. Each gateway also
contains the intelligence to inform all of the other gateways in the event that the
client fails. In this case, the gateways can delete any state that they may have
stored on behalf of the client.

Eternal’s duplicate detection and suppression mechanisms described in Sec-
tion 3.3, along with the unique client identifier, and CORBA’s existing request
identifier mechanisms, enable the gateway to preserve the replica consistency
within the fault tolerance domain, as well as to protect the unreplicated client
outside the fault tolerance domain from having its state corrupted. Furthermore,
the redundant gateways scheme enables the unreplicated client to benefit from
the fault tolerance of the server.

4 Related Work

Other systems have addressed issues related to consistent object replication and
fault tolerance for CORBA applications. The Object Group Service [3] provides
replication for CORBA applications through a set of CORBA services. Replica
consistency is ensured through group communication based on a consensus al-
gorithm implemented through CORBA service objects. Mechanisms have been
provided for duplicate detection and suppression, and for state transfer of ap-
plication state.

The Maestro toolkit [12] includes an IIOP-conformant ORB with an open
architecture that supports multiple execution styles and request processing poli-
cies. The replicated updates execution style can be used to add reliability and
high availability properties to client/server CORBA applications in settings
where it is not feasible to make modifications at the client side, as in the case
of unreplicated clients contacting replicated server objects. The Maestro toolkit
addresses some of the issues in the implementation of gateways.

The AQuA architecture [1,10] is a CORBA-based dependability framework
that provides object replication and fault tolerance. AQuA exploits the group

102 P. Narasimhan et al.

communication facilities and the ordering guarantees of the underlying Ensem-
ble and Maestro toolkits to ensure replica consistency for the application. The
AQuA gateway translates CORBA object invocations into messages that are
transmitted via Ensemble. Duplicate invocations and duplicate responses are
detected and filtered by the gateway.

The Distributed Object-Oriented Reliable Service (DOORS) [11] provides
fault tolerance through a CORBA-compliant service approach. DOORS consists
of CORBA objects that detect, and recover from, replica and processor faults.
The system provides support for management of resource and reliability require-
ments based on the needs of the CORBA application. DOORS employs libraries
for the transparent checkpointing of applications; however, duplicate detection
and suppression are not addressed.

5 Conclusion

The Eternal system allows applications to span multiple enterprises over the In-
ternet, with the application being decomposed into fault tolerance domains, with
the mechanisms of Eternal providing strong replica consistency within each fault
tolerance domain. In addition, Eternal provides gateways to allow unreplicated
clients and other fault tolerance domains to communicate with the replicated
server objects within a fault tolerance domain, without compromising the replica
consistency within any fault tolerance domain. Through the use of interception,
Eternal provides this fault tolerance transparently to the CORBA application
and to the ORB. The gateway mechanisms are crucial to today’s applications,
where clients are unreplicated, but nevertheless wish to benefit from the fault
tolerance provided for the servers.

References

1. M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken, M. E. Berman, D. A.
Karr, and R. Schantz. AQuA: An adaptive architecture that provides depend-
able distributed objects. In Proceedings of the IEEE 17th Symposium on Reliable
Distributed Systems, pages 245–253, West Lafayette, IN, October 1998. 101

2. Eternal Systems and Sun Microsystems. Fault tolerant CORBA using entity redun-
dancy: Initial joint submission. OMG Technical Committee Document orbos/98-
04-08, October 1998. 91

3. P. Felber, R. Guerraoui, and A. Schiper. The implementation of a CORBA object
group service. Theory and Practice of Object Systems, 4(2):93–105, 1998. 101

4. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system.
Communications of the ACM, 39(4):54–63, April 1996. 90

5. L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Consistent object replication
in the Eternal system. Theory and Practice of Object Systems, 4(2):81–92, 1998.
90

6. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Replica consistency of
CORBA objects in partitionable distributed systems. Distributed Systems Engi-
neering, 4(3):139–150, 1997. 90

Gateways for Accessing Fault Tolerance Domains 103

7. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using interceptors to en-
hance CORBA. IEEE Computer, pages 62–68, July 1999. 91

8. Object Management Group. Fault tolerant CORBA using entity redundancy: Re-
quest for proposals. OMG Technical Committee Document orbos/98-04-01, April
1998. 89, 91

9. Object Management Group. The Common Object Request Broker: Architecture
and specification, 2.3 edition. OMG Technical Committee Document formal/98-
12-01, June 1999. 89

10. R. Schantz, J. Zinky, D. A. Karr, D. Bakken, J. Megquier, and J. Loyall. An object-
level gateway supporting integrated-property quality of service. In Proceedings of
the IEEE 2nd International Symposium on Object-Oriented Real-Time Distributed
Computing, pages 223–234, Saint Malo, France, May 1999. 101

11. J. Schonwalder, S. Garg, Y. Huang, A. P. A. van Moorsel, and S. Yajnik. A man-
agement interface for distributed fault tolerance CORBA services. In Proceedings
of the IEEE 3rd International Workshop on Systems Management, pages 98–107,
Newport, RI, Apr. 1998. 102

12. A. Vaysburd and K. Birman. The Maestro approach to building reliable interoper-
able distributed applications with multiple execution styles. Theory and Practice
of Object Systems, 4(2):73–80, 1998. 101

An Architecture for Distributed OASIS Services

John H. Hine1,�, Walt Yao2,��, Jean Bacon2, and Ken Moody2

1 School of Mathematical and Computing Sciences
Victoria University of Wellington

2 Computer Laboratory
University of Cambridge

Abstract. Role based access control promises a more flexible form of
access control for distributed systems. Rather than basing access solely
on the identity of a principal the decision also takes into account the
roles that the principal currently holds. We present a distributed archi-
tecture that supports the OASIS role based access control model. The
OASIS model is based on certificates held by the client and validated by
credential records held by servers. We wish to replicate and distribute
the credential records to support high availability and reduce latency for
certificate validation. Protocols are presented for maintaining replicated
credential databases and coping with both server and network failures.

1 Introduction

Role based access control promises a more flexible form of access control for dis-
tributed systems. Rather than basing access solely on the identity of a principal
the decision also takes into account the roles that the principal currently holds.
This set of roles can change dynamically. Indeed the identity of the principal and
the roles held can be thought of as constituting a protection domain [7]. Propo-
nents of role based access control also argue that a formal representation of roles
can significantly improve the management of access control policies [10,2,12].

The concept that a principal should hold access control rights dates from
the development of capabilities [11]. The key problem with roles or capabilities
when compared with access control lists is the management of the distributed
representation of access control rights. To date there have been few designs for
role based access control that have adequately addressed this issue. In [2] the au-
thors describe a limited cgi-script based system for an organisational web server.
In [4] and [5] the authors describe an Open Architecture for Secure Interworking
Services, OASIS , a proposal for a more general design of a role based access
control system.

� The work described here was undertaken while John H. Hine was a visiting re-
search fellow in the Computer Laboratory, Cambridge University. The work was
supported by the U.K. Engineering and Physical Sciences Research Council, grant
no. GR/M37592.

�� Walt Yao was supported by the U.K. Engineering and Physical Sciences Research
Council, grant no. GR/M75686.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 104–120, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

An Architecture for Distributed OASIS Services 105

In this paper we present a distributed architecture for the OASIS service. The
distributed architecture increases availability and reduces latency. Both features
are critical to the successful deployment of role based access control into real
systems. We present a protocol using weak consistency that is sufficient for
maintaining the integrity of the access control policies; a protocol for recovering
from a server crash or network partition is also presented.

The following two sections provide an overview of OASIS , its major compo-
nents and operation. We then present the design of a distributed architecture
to support OASIS services. This is followed by consideration of the implications
of server failure and network partition faults. We conclude with a summary of
additional work that remains to be undertaken.

2 Policy, Roles, Certificates and Credentials

A claimed advantage of role based access control is the management of access
control policy. OASIS includes a Role Definition Language (RDL) for the rep-
resentation of policy. RDL supports the formal specification of the requirements
for all aspects of role membership: entry, retention and revocation. RDL speci-
fied policy can be translated into a compact form for interpretation by OASIS
servers. A full discussion of RDL is beyond the scope of this paper. See [4] and [5]
for details.

For our purposes it suffices to note that access control policy specifies the
necessary requirements for:

1. The entry of a principal into a role and continued possession of that role.
2. The allocation, by one principal to another, of entry to a role and the sub-

sequent revocation of that role.
3. A principal’s use of a role to access a service.

A principal requests entry to a role by presenting an OASIS server with the
prerequisite credentials. If the server is satisfied it grants the principal entry
to the requested role by returning a role membership certificate (RMC). The
RMC validates membership in the role and may subsequently be presented to
an OASIS aware service as part of the access control process.

It is important to note that the access control policy specifies both pre-
conditions for role entry and conditions which must remain true for a role to
remain valid. For example, it may be required for the principal Susan to hold
the role doctor-on-duty in order to be admitted to the role ward-charge-
doctor. We would also expect that for Susan to continue in the role ward-
charge-doctor she must also retain the role doctor-on-duty. The formal
nature of RDL allows OASIS to represent these dependencies as a proof tree
ensuring that if a certificate becomes invalid other certificates depending on it
will also be invalidated. For example if Susan loses the role doctor-on-duty
her certificate for role ward-charge-doctor would also become invalid. Role
membership certificates may be parameterised. We would expect the certificate
for ward-charge-doctor to be parameterised by the ward identifier.

106 John H. Hine et al.

OASIS also enables a principal holding a suitable role to request auxiliary
credentials that can be passed to a third party. In requesting an auxiliary cre-
dential the principal may specify pre-conditions, such as roles held, for its use.
These are then built into an auxiliary credential certificate (ACC), taking ad-
vantage of OASIS ’s existing functionality. The principal may also introduce an
arbitrary decision process in deciding which other principals will be passed the
ACC. Such a credential may be used by the recipient to obtain entry to addi-
tional roles provided the specified pre-conditions are met.

We will use an example to demonstrate the flexibility of auxiliary credentials.
Some authority such as a hospital or government health service might issue Susan
with an auxiliary credential, doctor, asserting her medical qualifications. The
auxiliary credential certificate would be valid only when used in conjunction with
some authenticated principal representing Susan, for example at a workstation
whose reader held her personal ID-card. Once issued the ACC would be retained
across sessions and so allow the doctor-on-duty role to be entered whenever
Susan logged in.

These auxiliary credentials, which can be used for traditional delegation
amongst other purposes, were referred to as delegation certificates in [5]. Spe-
cific to each ACC the issuer retains a revocation certificate, which allows the
credential to be revoked at any time. The mechanism allows an appropriate au-
thority to issue and withdraw credentials that control role entry on the basis of
alternative decision making processes, possibly external to the computer based
system.

3 Overview of OASIS

In this section we look at how a principal interacts with a single OASIS secured
service and how that service manages its role certificates and access control. A
principal is a process or thread acting on behalf of a particular user or organi-
sation. We assume that each principal has been issued with a unique identifier
by an underlying operating system.

Figure 1 shows a single principal interacting with a single service that is
secured with OASIS role based access control. Role entry and access control
are separate functions. As the role entry function issues each role membership
certificate a credential record supporting the RMC is stored for subsequent use
by the access control function.

It is not necessary that the components of Fig. 1 be combined within a single
application. For example, an OASIS aware service has only the access control
function and the secured service. It relies on a separate OASIS service to val-
idate certificates presented to it. At the other end of the spectrum an OASIS
issuing service has responsibility only for managing the access control policy by
performing the role entry function, storing credential records and validating cer-
tificates for various access control functions. Frequently, such an OASIS issuing
service will be set up to meet the specialized requirements of an application do-

An Architecture for Distributed OASIS Services 107

Role
Entry

Principal Policy

Credential
Records

Access Control

OASIS
secured
service

role certificate

Fig. 1. An OASIS service and client

main in which access to particular functions will be controlled on the basis of
the roles established.

3.1 Role Entry

In most cases a policy will require that an applicant for entry to a role already
holds one or more other roles. The applicant must present appropriate certificates
to prove membership of these roles.

Each principal must be able to obtain its first certificate(s) without presenting
other certificates. Like Kerberos [14] we assume the existence of some form of
initial login server. The user interacts with the login server using a password,
swipecard or similar technology to authenticate the user’s initial principal. Once
authenticated that principal is allowed to enter the role logged-in-user and is
granted a LoggedInUser certificate which may be used to enter further roles.

The role entry function will need to verify the principal and certificates as
described below. After the server has confirmed that a certificate is valid and
current the role entry function is able to issue a new membership certificate for
the requested role.

3.2 Certificates

Figure 2 shows the format of a role membership certificate. The first field iden-
tifies the role for which this RMC grants membership. This is followed by a set
of N parameters for this role.

The next field is a certificate identifier (CID) that uniquely identifies this
certificate. The CID has two components, an identifier of the issuing service and
a unique identifier for the certificate within the service. The CID may be used
to create an audit trail of access control decisions. The next field is a credential
record reference (CRR). The combined CID and CRR fields are used by an
access control mechanism to locate the credential record held by the service that
issued the certificate. The CID identifies the issuing service and certificate and
the CRR provides a hint to locate the credential record.

108 John H. Hine et al.

role N arg1 argN CID CRR signature

Fig. 2. A role membership certificate

The final field is a digital signature. Each certificate is held by a principal and
may be subject to theft, malicious modification or fabrication. This is guarded
against by using a hashing function such as MD5 to sign the certificate [15]. The
issuing OASIS service uses a secret known only to itself in hashing the certificate
to produce the signature. The fields that are hashed include the identity of the
principal. When the certificate is presented for use it is returned to the issuer
for verification. This is done by repeating the hash function and comparing the
result with the signature.

3.3 Credential Records

When an OASIS server issues a role membership certificate or an auxiliary
credential certificate it creates and stores a matching credential record. The cre-
dential record identifies the certificate and holds state relating to its validity.

The structure of stored credential records establishes a proof tree for each
RMC and ACC. Figure 3 demonstrates with a simple example. In this example
we assume that doctor is an auxiliary credential that has been issued to Susan.
Assume that entry to the role doctor-on-duty requires both this auxiliary
credential and the role logged-in-user. Susan requests the role doctor-on-
duty by presenting her ACC for doctor and her RMC for logged-in-user. This
enables the role entry function and the servers holding the existing credential
records to create the proof tree of Fig. 3. A pointer to the new credential record
is included with the credential records corresponding to the credential doctor
and the role logged-in-user. (Note that both of these certificates would be
parameterised with a persistent identifier for the doctor.)

An acyclic credential record graph is created with some of its links point-
ing from the credential record database of one service into the credential record
database of another. To revoke one of its certificates a service locates the corre-
sponding credential record and sets state to flag the certificate as invalid; it then
finds links to the credential records of all immediate dependants. These certifi-
cates can then also be revoked. The process continues, recursively invalidating
a sub-tree of the credential record database.

3.4 Role Use

A principal uses a role by presenting one or more role membership certificates
to the access control mechanism when requesting service. Since the certificate
has been held by the principal the access control mechanism must make the
following checks:

An Architecture for Distributed OASIS Services 109

state

state

state

DOCTOR-ON-DUTY

LOGGED-IN-USER

DOCTOR

Fig. 3. The certificates held by principal Susan and their credential record tree

1. Authenticate the identity of the principal presenting the certificate.
2. Verify that the certificate has not been tampered with.
3. Verify that the certificate has not been revoked and that all necessary con-

ditions for its use remain true.

The principal may be authenticated using a conventional authentication ser-
vice [9]. The process is completed by referring the certificate and the principal’s
identity to the OASIS service that issued the certificate. The service is identi-
fied from the CID. Each service will only recognize certificates issued by services
which are explicitly identified within its access control policy. The issuing server
recomputes the digital signature using the principal identity supplied. If the sig-
nature is correct it uses the CRR to locate the credential record for the certificate
in order to ensure that it has not been revoked.

Once the certificate and principal have been verified the access control mech-
anism uses the identity of the principal, the certified role, and any parameters
included in the certificate to determine whether or not to grant the access re-
quested.

3.5 Auxiliary Credentials

An important aspect of OASIS role based access control is the ability of one
principal to use auxiliary credentials to control another principal’s ability to
enter a role. Policy for role entry expressed in RDL can require the presentation
of an auxiliary credential certificate in addition to one or more role membership
certificates. The ACC may give details of additional RMCs required together
with any constraints on their parameters. It can therefore be used to extend the
role entry policy stored at the OASIS server.

Let us develop the example of Fig. 3. It is possible that a hospital manager
would appoint charge doctors for the various wards. This could be done by
supplying an auxiliary credential, charge, to the doctor, Susan, and requiring

110 John H. Hine et al.

2

5

Role
Entry

Access Control

Policy

OASIS

service
secured

1

3

4

6

Tom

Susan

Credential Records

WARD-CHARGE-DOCTOR

charge

MANAGER

DOCTOR-ON-DUTY

Fig. 4. Creation and use of auxiliary credentials

that she present the charge ACC along with her doctor-on-duty RMC in
order to enter the role ward-charge-doctor.

OASIS manages auxiliary credentials with two additional classes of certifi-
cates, the auxiliary credential certificate and the revocation certificate. Figure 4
shows the basic steps that would be used in our example. The six messages are:

1. Principal Tom requests entry to a role, Manager, that can distribute aux-
iliary credential certificates charge. Tom would need to satisfy the policy
requirements to enter Manager. Tom is issued with a role membership
certificate for Manager and a credential record is stored.
While Tom holds the role Manager he may request ACCs, charge, for
entering role ward-charge-doctor. When requesting an ACC Tom may
specify pre-conditions for its use when entering the role. These include roles
and constraints on parameters of those roles. These conditions are embedded
within the ACC and protected by the digital signature.

2. Tom allocates the right to enter role ward-charge-doctor to Susan, fol-
lowing a negotiation. Arbitrary information such as references or past experi-
ence can be taken into account. Tom now requests an ACC charge for Susan,
specifying any pre-conditions agreed during the negotiation. In our example,
the ACC charge would require an accompanying RMC for doctor-on-
duty. These conditions are in addition to any imposed by the role entry
policy for the role ward-charge-doctor.
When certificate charge is issued Tom also receives a matching revocation
certificate, revoke. A credential record for the ACC is stored. There is no
credential record for revoke.

3. Tom allocates the right to enter role ward-charge-doctor to Susan by
sending her the ACC, charge. Tom retains the revocation certificate, revoke.

4. Susan presents the ACC charge and the other prerequisites requesting entry
to role ward-charge-doctor.

5. Assuming entry to role ward-charge-doctor is granted an appropriate
RMC, WardChargeDoctor, is returned to Susan. A credential record for

An Architecture for Distributed OASIS Services 111

this RMC is stored such that it is dependent on the credential record for the
auxiliary credential certificate charge.

6. Susan presents the RMC WardChargeDoctor requesting an operation from
the service.

The auxiliary credential certificate contains the usual reference (CID plus
CRR) to its own credential record. The revocation certificate contains two fields,
the first a reference to the credential record for the ACC charge, and the second
the role Manager (possibly parameterised) under which it was issued.

The auxiliary credential may be revoked using the revocation certificate. This
must be presented together with an RMC for the role Manager. The CRR for
the ACC charge is used to locate the credential record and the certificate is then
invalidated. Any RMC WardChargeDoctor that depends on the ACC charge
will also be revoked.

Using auxiliary credentials it is possible to extend policy expressed in RDL.
First, before applying for an ACC the issuer may base the decision on arbitrary
logic, including human intervention. Secondly, the issuer can use the ACC to
specify roles and constraints on those roles that must be met by any principal.

4 A Distributed Architecture

The OASIS service shown in Fig. 1 implies a monolithic service including role
entry, access control and the service being secured. We mentioned earlier that
this need not be the case and there are strong arguments for separating an
OASIS aware service (access control, access policy and service) from an OASIS
certificate issuing and validation service (role entry, role entry policy, credential
record storage and certificate validation).

1. The functions of the certificate issuing and validation service are common
and can be shared amongst many OASIS services.

2. These functions are the foundation of the system’s security and should be
resident in a physically secured environment.

3. Validation of a certificate requires authenticated communication with other
OASIS services. By sharing validation services the number of servers is dras-
tically reduced and much of the communication becomes localised within a
server.

4. Similarly, the reduced number of servers reduces administration problems.

The deployment of OASIS within an enterprise requires consideration of
availability and performance. If the OASIS issuing service is not available the
entire distributed environment will come to a halt. The approach to take is a
question of scale. In a smaller organisation where a single server can provide good
performance a hot back up can be used to achieve availability. This technique
is common and well understood. In a larger enterprise a single server may not
meet performance requirements and/or the complexities of the network may
invalidate the use of backup for high availability. The architecture presented in

112 John H. Hine et al.

Service X

Credential
Records

Role Policy

Service Y

Credential
Records

Role Policy

Service Z

Credential
Records

Role Policy

Role Entry
Certificate
Validation

Principal

Service X

Access policy
Service

Access Control

Service X

Credential
Records

Role Policy

Service Y

Credential
Records

Role Policy

Service Z

Credential
Records

Role Policy

Role Entry
Certificate
Validation

Service X

Credential
Records

Role Policy

Service Y

Credential
Records

Role Policy

Service Z

Credential
Records

Role Policy

Role Entry
Certificate
Validation

Fig. 5. An architecture for distributed OASIS servers

this section is designed for a single enterprise that requires a more robust and
complex solution.

Our design allows the OASIS certificate issuing and validation servers (here
after simply called servers) to be arbitrarily replicated. The algorithms below
assume the credential database for each OASIS service is replicated on all of the
OASIS servers. Figure 5 shows three servers with the replicated databases of
three services. The service X which uses OASIS role based access control may
use any server to validate certificates. Clients use the role entry function of the
servers to obtain new certificates.

By replicating a service across several machines high availability can be
achieved, and by providing multiple points of access we decrease the latency
through increased concurrency and the possibility of local access. To further
ensure good concurrency, our design does not depend on locking protocols to
maintain consistency of the distributed data structure.

These federated servers are identical from the users’ viewpoint. That is, the
same result is obtained regardless of the server to which a request is addressed.
We achieve this using a weak consistency model which tolerates limited transient
inconsistency amongst distributed data structures at any instant in time.

Replication of the credential record graph leads to several problems that must
be addressed by any solution.

An Architecture for Distributed OASIS Services 113

Concurrent Update. Requests to update the CR graph for a particular service
may occur independently and concurrently on different servers. For example,
two clients may request entry to roles at the same time.

Propagation Delay. Race conditions may arise involving the propagation of a
change to a CR graph and the use of that change by a client.

Partial Failure. In many systems the goal of replication is to increase availabil-
ity and reduce latency. Algorithms that address partial failure are intended
to restore an inoperable or disconnected server to operation. OASIS servers
face the same problem but must also consider the implications of partial
failure on access control decisions.

The following assumes that a reliable transport protocol is available between
pairs of servers. Each server is assumed to have a persistent store capable of
withstanding machine crashes. We assume that a technique such as a redo log
allows updates to the credential database to be done atomically [8].

4.1 Distributing Updates

Each server maintains a full and complete replica of each service’s credential
record graph. This enables each server to validate any certificate issued by any
OASIS service. The next concern is the maintenance of consistency across the
servers. Although it would be possible to use a reliable multicast protocol, see [3],
the present application does not require causal ordering of messages.

Our consistency protocol is based on an update-notify model. Each server
may make modifications to its own credential database at any time. The server
then reliably broadcasts an update message communicating the change to the
other servers in the federation. An update message will indicate either an addi-
tion or a removal of a CR. A functional definition of these messages is:

add ((CID, CRR), new CR, parent list [(CID, CRR) list])
revoke ((CID, CRR))

An add message carries a new CR, its CID and CRR, and a list of CID and
CRR pairs indicating the certificates upon which this CR depends. The server
is required to insert the new CR and a new pointer from each CR on which it
depends. No existing information is modified.

A revoke message carries the CID and CRR pair of the CR which is to be
removed from the tree. This CR and any CRs that depend on it are removed.

Each server maintains a sequential count of the updates it initiates. This
count is included in each update message broadcast to other servers. Each server
maintains a list of the update messages it has seen from all other servers. The
sequence count is also used in creating the CID whenever a new certificate is
created. As a consequence we have a partial ordering of all messages and CIDs.

Upon receiving an update message, a server is expected to update the ap-
propriate graph to maintain consistency with its peers. Generally speaking the
add and revoke operations are idempotent and may be independently executed
in any order. However, there are two situations that can lead to one or more of

114 John H. Hine et al.

the CID/CRR pairs in an update message referring to a non-existent CR in the
current server’s graph 1) the referenced CR has been concurrently revoked, or
2) the pair refers to a new CR which has not yet been notified to this server.
In the prior case, the server should simply discard the update message since the
earlier revocation implies that the current tree is already the updated version.
In the latter case, the server should retain the update message until it receives
the update message notifying the creation of the referenced CR.

These cases can be distinguished by comparing the sequence number in the
CID with the messages seen from the originating server. If the CID has a higher
sequence number it refers to a new certificate for which no CR yet exists at this
server. If the CID is smaller it implies that the CR has been deleted.

4.2 Support for Fault Tolerance

In general replication is used to increase availability by allowing service to con-
tinue despite a failure. In replicating a security system great care must be taken
that operation during a partial failure does not jeopardise system security. The
protocol described below is designed to deal with server crashes and network
partitions of both a transient and persistent nature.

We assume a fail-silent system in which a crashed server simply stops send-
ing messages, rather than generates erroneous messages. Our aim is to provide
support for fault tolerance in the protocol level in order to maintain consistency
across replicated servers.

Failure Cases. The protocol described in Sect. 4.1 requires update information
to be broadcast to all servers to enable them to update their credential database
to reflect the current state of the service. Inconsistency is introduced if a server
does not receive one or more messages. The effect of this inconsistency is possible
ambiguity observed by the clients. For example, a certificate may be incorrectly
rejected if the validation is done by a server that has not received notification of
creation of the certificate.

Network partitioning presents a particularly difficult situation for a service
supporting security. If a partition separates a set of servers into two groups,
while all servers are functional in their own right, updates made to servers on
one side of the partition will not be reflected in servers on the other side. The
servers are active but have an inconsistent view of the state of the credential
records. This has two implications:

1. The creation or invalidation of certificates on one side will not be noticed on
the other side until the partition is repaired.

2. It may not be possible to revoke a role entered on the basis of an auxiliary
credential if the allocator resides on one side of the partition while the holder
is on the other.

We have designed protocols to address each issue. A heartbeat is used to
allow lazy consistency, but also detect failures and partitions. We recognise that

An Architecture for Distributed OASIS Services 115

many failures are transient and provide reliable messaging to overcome these. For
more persistent failures that result in a server’s database becoming significantly
out of date we restore the full database from an agreed checkpoint.

Finally, we address the question of how an operating server should respond
to a partial failure by deferring to policy. Some services may be prepared to
operate in a partitioned state. Other services may judge that this is too great
a risk. The correct place to make this decision is in the policy of each individ-
ual service. We accomplish this by providing a simple variable representing the
current operational state of each server within the system. The variable may be
used in expressing policy allowing decisions to include constraints such as “all
servers operating” or “a majority of servers operating”. Observe that while it is
quite feasible to make decisions on the validity of a certificate it would be unwise
to allow copies of the database on both sides of the partition to be updated. Our
recovery protocol for persistent failures will not merge two separate databases.

Recovery Protocols. We use separate protocols for recovering from transient
and permanent failures. Transient failures are addressed by introducing reliable
message logging [1] to the messaging protocol of Sect. 4.1. Where a long term
failure occurs the inconsistency of the database may be such that it is more
appropriate to download the entire database from another server or to introduce
a new replacement server. At this point we switch to a recovery protocol that is
a form of active replication [13].

We define five states which describe the state of a server at any given instant.

Normal The server is operating normally. It believes all its peer servers are also
alive and share a weakly consistent state.

Replay Logging A server enters this state when it has detected a failed server
amongst its peers. It maintains a redo log of all messages which have not
been delivered to the failed servers for replay in the future.

Down A server enters this state if it is crashed.
Recovering A server enters this state when it has rebooted following a crash, or

network communication to its peers is restored after network partitioning.
Coordinating A recovering server nominates a server to coordinate its recovery

phase. The nominated server enters this state.

Short term failures that cause update messages not to be delivered are han-
dled using reliable message logging. In handling a client request to add or revoke
a credential record, the server delays the reply until the update is fully logged in
its persistent store. It then broadcasts the updates to the other servers. It retains
a persistent copy of each broadcast message until it receives an acknowledgement
from all other servers.

A heartbeat protocol amongst the servers is used to maintain the currency
of connections. Where data is transmitted the heartbeat is piggybacked to avoid
unnecessary traffic. When a server detects that another server is down it enters
the Replay Logging state, maintaining a structured log of messages not acknowl-
edged by the failed or disconnected server. In this state all update messages are

116 John H. Hine et al.

P

A

B

C

service
request

update msg

recovery
request

checkpoint
request

checkpoint
ack

state
transfer

transfer
ack

replay
request

replay
msg

replay
msg

service
reply

Recovering

Down

Coordinator

Replay logging

Normal

Fig. 6. Recovery from a server crash

saved until the failed server rejoins the federation or a decision is made that any
future recovery will be made using a full restore.

If and when the failed server restarts it enters the Recovering state. In this
state it uses the last sequence numbers seen from each server to request that
all subsequent messages be resent. Once these messages have been received and
acknowledged all servers can return to the Normal state of operation.

If a server remains unavailable for a sufficient period of time recovery from
structured logs may be abandoned. If this happens all messages that are queued
for this server only may be deleted. If this empties the queue of logged messages
the server may return to a Normal state.

Where a long term failure occurs the inconsistency of the database may be
such that it is more appropriate to download the entire database from another
server. In this case other servers discard their redo logs and assume that if
the server returns it will recover by doing a full transfer. This allows the same
algorithm to support the introduction of an entirely new server and a restart of
the failed server.

The full restoration of a server consists of three operations: agreement on a
state, S, to be transferred, transfer of S, and transmission of messages arising
after the establishment of S. The new server selects one of the operating servers
as the coordinator of the recovery process.

Figure 6 demonstrates this recovery protocol. A, B and C are replicated
servers, and the state of each server is denoted by SA, SB and SC . Initially,
SA, SB and SC are identically equal to S. Let P be a principal requesting a
certificate from A. A validates the request and creates a certificate c for P. It
will then send an update message upd(c) to both B and C. Now, suppose C
crashes before receiving upd(c). Detecting the loss of contact with C, both A
and B will move from Normal state to Replay logging state, and log subsequent
messages for forwarding to C.

An Architecture for Distributed OASIS Services 117

At this point, we know there is some failure in our federation of replicated
servers. It is possible the failure is transient. If C resumes while A and B are in
Replay logging state, the recovery only involves re-sending any logged messages.
However if C remains down for an extended period of time, A and B will abandon
this and return to the Normal state. A serious fault has been detected and C has
left the federation.

When C returns it enters the Recovering state and broadcasts a message
seeking a partner to coordinate its recovery. It accepts one reply, in this example
B. B is responsible for coordinating all operating servers to ensure that state SC

is consistent at the end of the recovery protocol. B enters the Coordinator state.
On assuming the role of coordinator, B broadcasts a checkpoint request to all

other operational servers, in this example, A. The checkpoint request indicates
that C is recovering. Each server responds to the checkpoint request by providing
to the Coordinator the sequence number of the last message that it broadcast and
entering the Replay Logging state on behalf of the recovering server, C.

The Coordinator awaits the responses from all servers. When these have ar-
rived it confirms that its own database contains all the updates less than or
equal to the checkpoints it has received. (The assumption of an underlying re-
liable messaging protocol implies that this should have happened as a matter
of course.) At this point it transfers its entire database to the recovering server,
C. When this is acknowledged the Coordinator has finished. It now enters the
Replay Logging state, logging any further updates.

The recovering server, C, now completes the recovery process as it would
recover from a transient fault. It requests all logged messages from each server
specifying the sequence number reached in its database. This is just the sequence
number provided by the server to the Coordinator and all subsequent updates
are now provided directly to C.

4.3 Analysis

Our protocol solves the concurrent update problem by ensuring the consistency
of the final state after all updates. Take the simple example shown in Fig. 7.
Suppose we have two servers, A and B, replicating a CR tree. The initial state is
shown in (a). Assume a request is made to A to revoke CR4, and simultaneously
another request is made to B to create CR6 dependent upon CR4. Both A
and B would proceed with their individual requests, producing a temporarily
inconsistent state, as shown in (b).

However, A and B will send each other an update message after the local
modification has been made. A will notice that CR4 is no longer valid because
it was revoked, and it will discard the update message. A will also increment
its view of B’s current sequence number, since B has used the sequence number
to create CR6. B will remove CR4 as a result of receiving the update message
from A, producing a tree which is identical to A’s. This is the final state of the
consolidated CR tree, as shown in (c).

One may argue that there is a window of chance that the certificate for which
CR6 is a credential will be used before the revocation of CR4 takes place. If the

118 John H. Hine et al.

CR2

CR3

CR4

CR5

CR1

CR1

CR2

CR3

CR4

CR5 CR6

CR1

CR2

CR3

CR2

CR3

CR4

CR5

CR1

(a) Initial state

CR1

CR2

CR3

(b) CR4 is revoked

(a) Initial state (b) CR6 is added under CR4 (c) State consolidated

Server A

Server B

CR1

CR2

CR3

(c) State consolidated

Fig. 7. Resolution for concurrent updates

certificate is presented to A, it would treat it as a new unknown certificate. After
the reception of the update message from B, it will learn that the certificate
depends on a revoked CR, therefore the use of this certificate will be rejected. If
this certificate is presented to B, B will authorise its use if the update message
from A has not been received. We argue that this problem is an example of
a race condition. Even in a single server situation, the order of arrival of the
requests determines the exact consequences. There would still be a chance that
certificate CR6 may be used before it is revoked.

Our protocol also solves the problem of delayed propagation. The servers’
sequence numbers allow each server to determine whether a missing CR has
been revoked or is new. The servers can take appropriate action. For example, a
certificate issued by A may be sent for validation before B receives the update
message. If B has been asked to validate this certificate, it can determine that
this is a new CR. In this case it would wait for the update message from A.

Correctness of the Recovery Protocol. The recovery protocol is correct be-
cause the update operations are commutative, and every update made is recorded
by at least one server within the federation. The strategy depends on a weak
consistency model.

Updates made to a CR tree are either an addition of a new CR or a removal
of an existing one, with removal invalidating all dependent CRs. It is trivial to
see the commutativity if two updates are made on unrelated CRs. If two updates
are made on related CRs, this property still holds. Consider adding a CR that
depends on a CR which is being revoked. The addition will fail since there is
no valid CR for the new one to depend on in the tree. If the two operations are

An Architecture for Distributed OASIS Services 119

done in reverse order, the final result would still be the same. This is exactly the
case illustrated in Fig. 7.

Consider the case where two additions are made concurrently to a server,
with one creating a CR that depends on the CR created by another. If the
dependent CR has not been processed by the server, the addition will be left
pending until it has been created. This in effect guarantees a consistent final
state by serialising the addition operations. The last case involves two removal
operations made on related CRs. Removing a node of an inverted tree and its
dependents and subsequently removing a second node that the first depended
on results in exactly the same tree as removing just the second node.

The commutativity of update operations is crucial, since our recovery proto-
col must achieve the same result regardless of the order of replaying messages.

The requirement that a server must fully log an update before replying to
the client ensures that no orphan state can exist [1,6]. Therefore recovery is a
straightforward transfer of state followed by a resend of update messages. This
scheme also works in multi-node failure situations.

5 Conclusion

We have presented a description of OASIS role based access control and a dis-
tributed architecture for supporting it. Work continues on both the functionality
of OASIS and on the architecture. Our understanding of auxiliary credentials
and the different ways in which they may be applied is still evolving. This will
improve with experience applying role based access control in different contexts.

The protocols employed in the architecture presented here retain a relatively
high level of efficiency at the cost of replicating all services on each server. This
constrains the scale that can be achieved in several ways. The cost of updates is
proportional to the square of the number of servers. Partial failures may cause
some services to stop functioning when they could have functioned quite happily
with a smaller number of replicas all on operating servers. A next goal is to
produce a design that allows a subset of services to be replicated at each server.

An implementation of the distributed model is under way. It will be used to
address questions about the cost of protocols and the system’s ability to scale.
It will also be used to gain experience with the organisation of roles. We are also
investigating the use of OASIS role based access control in areas of electronic
health records and network management.

Role based access control promises a number of advantages for security in
large, complex distributed systems. In this paper we have presented a distributed
architecture that supports a resilient, highly available access control service
based on the OASIS model. This includes protocols supporting weak consis-
tency and recovery from server and network failures.

120 John H. Hine et al.

References

1. L. Alvisi, B. Hoppe, and K. Marzullo. Non-blocking and orphan-free message
logging protocols. 23rd Int. Conf. on Fault-Tolerant Computing (FTCS-23), pages
145–154, 1993. 115, 119

2. David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role-based access
control model and reference implementation within a corporate intranet. ACM
Transactions on Information and System Security, 2(1):34–64, Feb 1999. 104

3. S. Floyd, V. Jacobson, and S. McCanne. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing. In Proc. of the 1995 ACM
SIGCOMM Conference, pages 342-356, Cambridge, MA, Aug 1995. 113

4. Richard Hayton. OASIS An Open Architecture for Secure Interworking Services.
PhD thesis, Computer Laboratory, University of Cambridge, Mar 1995. 104, 105

5. Richard Hayton, Jean Bacon, and Ken Moody. Oasis: Access control in an open,
distributed environment. In Proc. of IEEE Symposium on Security and Privacy,
pages 3–14, Oakland, CA, May 1998. IEEE. 104, 105, 106

6. D. B. Johnson and W. Zwaenepoel. Sender-based message logging. 17th Int. Symp.
on Fault-Tolerant Computing, pages 14–19, 1987. 119

7. B. W. Lampson. Protection. In Proc. Fifth Princeton Symposium on Information
Sciences and Systems, pages 437–443, March 1971. reprinted in Operating Systems
Review, 8, 1 (Jan. 1974) pp. 417-429. 104

8. Tobin J. Lehman and Michael J. Carey. A recovery algorithm for a high-
performance memory-resident database system. In Proceedings of ACM SIGMOD
Annual Conference on Management of Data, San Francisco, May 1987. ACM. 113

9. R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, Dec 1978.
109

10. Matunda Nyanchama and Sylvia Osborn. The role graph model and conflict of
interest. ACM Transactions on Information and System Security, 2(1):3–33, Feb
1999. 104

11. J. H. Saltzer. Naming and binding of objects. In R. Bayer, R.M. Graham, and
G. Seegmuller, editors, Operating Systems, An Advanced Course, pages 99–208.
Springer-Verlag, Berlin, 1979. 104

12. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38-47, Feb 1996. 104

13. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299–319, Dec 1990. 115

14. J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service
for open network systems. In USENIX, Dallas, TX, 1988. Uniforum. 107

15. Gene Tsudik. Message authentication with one-way hash functions. In IEEE
Infocom 1992. IEEE Press, May 1992. 108

Monitoring, Security, and Dynamic Configuration

with the dynamicTAO Reflective ORB�

Fabio Kon��, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane, Luiz
Claudio Magalhães, and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

{f-kon,mroman1,pingliu,jinamao,yamane,magalhae,rhc}@cs.uiuc.edu
http://choices.cs.uiuc.edu/2K/dynamicTAO

Abstract. Conventional middleware systems fail to address important
issues related to dynamism. Modern computer systems have to deal
not only with heterogeneity in the underlying hardware and software
platforms but also with highly dynamic environments. Mobile and dis-
tributed applications are greatly affected by dynamic changes of the en-
vironment characteristics such as security constraints and resource avail-
ability. Existing middleware is not prepared to react to these changes.
In many cases, application developers know when adaptive changes in
communication and security strategies would improve system perfor-
mance. But often, they are not able to benefit from it because the mid-
dleware lacks the mechanisms to support monitoring (to detect when
adaptation should take place) and on-the-fly reconfiguration.

dynamicTAO is a CORBA-compliant reflective ORB that supports dy-
namic configuration. It maintains an explicit representation of its own
internal structure and uses it to carry out runtime customization safely.
After describing dynamicTAO ’s design and implementation, we discuss
our experience on the development of two systems benefiting from the
reflective nature of our ORB: a flexible monitoring system for distributed
objects and a mechanism for enforcing access control based on dynamic
security policies.

There is nothing permanent except change.
Heraclitus of Ephesus (535-475 BC)

1 Introduction

One of the major motivations for the development of middleware is the high
degree of hardware and software heterogeneity encountered in existing systems.
Middleware systems like CORBA are able to hide the specifics of the underlying
platform and provide a uniform high-level interface for application developers.

� This research is supported by NSF grants 98-70736 and 99-70139.
�� Fabio Kon is supported in part by a grant from CAPES-Brazil, proc.#1405/95-2.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 121–143, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

122 Fabio Kon et al.

However, the diversity in modern computer systems is not limited to differ-
ences in the underlying hardware and operating system. One must not forget
that even machines with the same hardware type and operating system may be
configured with extremely different resources (e.g., Ethernet versus ATM net-
working, different amounts of RAM and disk space) and with different software
packages.

Besides this “diversity in space”, we also find a huge “diversity in time”, i.e.,
a single machine typically experience drastic variations in CPU, memory, disk,
and network availability. Mobile computers experience changes in connectivity,
bandwidth, and error patterns as they move from one area to another. Lap-
tops are subject to different security policies as they are connected to different
domains.

Existing middleware systems are not ready to deal with these two kinds of
diversity. They are usually optimized to a particular architecture and to a par-
ticular configuration. But, computing environments are getting increasingly dy-
namic; if the next generation middleware is not capable of managing the dynamic
variations in the environment properly, a large amount of computing resources
will be wasted and application performance will be greatly affected.

In order to cope with these variations and still maintain a good performance
level, middleware and application components must be able to detect changes
in the environment and reconfigure themselves to optimize their performance
under the new conditions. We addressed this problem by adding support for
reconfiguration and runtime extensibility within TAO, an open source CORBA
Object Request Broker (ORB).

2 dynamicTAO

In order to deal with the highly dynamic environments described in the previ-
ous section, our group is developing the 2K distributed operating system [16],
which is based on a dynamically configurable middleware layer compatible with
CORBA. Rather than implementing a new ORB from scratch, we realized that
it would be more productive to modify an existing ORB to add the dynamism
we needed.

After carefully studying existing ORBs, we came to the conclusion that the
TAO ORB [29] would be the best starting point for developing our infrastructure.
TAO is a portable, flexible, extensible, and configurable ORB based on object-
oriented design patterns. It is written in C++ and uses the Strategy design
pattern [6] to separate different aspects of the ORB internal engine. A configu-
ration file is used to specify the strategies the ORB uses to implement aspects
like concurrency, request demultiplexing, scheduling, and connection manage-
ment. At ORB startup time, the configuration file is parsed and the selected
strategies are loaded.

TAO is primarily targeted for static hard real-time applications such as
Avionics systems. Thus, it assumes that, once the ORB is initially configured,

Monitoring, Security, and Dynamic Configuration 123

its strategies will remain in place until it completes its execution. There is very
little support for on-the-fly reconfiguration.

The 2K project, on the other hand, seeks to build a flexible infrastructure
to support adaptive applications running on dynamic environments. On-the-fly
adaptation is extremely important for a wide range of applications including
the ones dealing with multimedia, mobile computers, multiple security domains,
and other kinds of dynamically changing environments. We achieved the desired
level of configurability with dynamicTAO , our extension of TAO that enables
on-the-fly reconfiguration of its strategies.

2.1 A Reflective ORB

dynamicTAO is our first complete implementation of a CORBA reflective ORB.
As pointed out in [31,32], a reflective system is a system that gives a program
access to its definition and evaluation rules, and defines an interface for altering
them. In an ORB, client requests represent the “program” to be evaluated by
the system. The ORB implementation represents the “evaluator”, and “evalua-
tion” is simply remote method invocation. A reflective ORB makes it possible
to redefine its evaluation semantics.

dynamicTAO is a reflective ORB because it allows inspection and recon-
figuration of its internal engine. It achieves that by exporting an interface for
(1) transferring components across the distributed system, (2) loading and un-
loading modules into the ORB runtime, and (3) inspecting and modifying the
ORB configuration state. The infrastructure can also be used for dynamic re-
configuration of servants running on top of the ORB and even for reconfiguring
non-CORBA applications.

Reification in dynamicTAO is achieved through a collection of entities known
as component configurators [12,13]. A component configurator holds the de-
pendencies between a certain component and other system components. Each
process running the dynamicTAO ORB contains a component configurator in-
stance called DomainConfigurator. It is responsible for maintaining references
to instances of the ORB and to servants running in that process. In addition,
each instance of the ORB contains a customized component configurator called
TAOConfigurator.

TAOConfigurator contains hooks to which implementations of dynamicTAO
strategies are attached. Hooks work as “mounting points” where specific strategy
implementations are made available to the ORB. We currently support hooks
for different kinds of strategies such as Concurrency, Security, Monitoring, and
the like. The association between hooks and component implementations can be
changed at any time, subject to safety constraints.

Figure 1 illustrates this reification mechanism in a process containing a single
instance of the ORB. If necessary, individual strategies can use component con-
figurators to store their dependencies upon ORB instances and other strategies.
These configurators may also store references to client connections that depend
on the strategies. With this information, it is possible to manage strategy recon-
figuration consistently as we explain in section 2.3.

124 Fabio Kon et al.

TAOConfigurator

.

.

.

ConcurrencyStrategy

SchedulingStrategy

MonitoringStrategy

SecurityStrategy

Servant2ConfiguratorServant1Configurator

DomainConfigurator

Fig. 1. Reifying the dynamicTAO structure

Component implementations are shipped as dynamically loadable libraries,
so they can be linked to the ORB process at runtime. They are organized in
categories representing different aspects of the ORB internal engine (which are
associated with dynamicTAO hooks) or different types of servant components.
In future implementations, we intend to support category type-checking using
ANSI C++ runtime type information (RTTI).

The dynamicTAO architectural framework is depicted in figure 2. The Per-
sistent Repository stores category implementations in the local file system. It
offers methods for manipulating (e.g. browsing, creating, deleting) categories
and the implementations of each category. Once a component implementation
is stored in the local repository, it can be dynamically loaded into the process
runtime.

A Network Broker receives reconfiguration requests from the network and
forwards them to the Dynamic Service Configurator. The latter contains the
DomainConfigurator (shown in figure 1) and supplies common operations for
dynamic configuration of components at runtime. It delegates some of its func-
tions to specific component configurators (e.g., TAOConfigurator or a certain
ServantConfigurator).

We minimized the changes to the standard ACE/TAO distribution by dele-
gating some of the basic configuration tasks to components of the ACE frame-
work such as the ACE Service Config (used to process startup configuration
files and manage dynamic linking) and the ACE Service Repository (to man-
age loaded implementations) [9].

This architectural framework enables the development of different kinds of
persistent repositories and network brokers to interact with the Dynamic Service
Configurator. Thus, it is possible to use different naming schemes when storing
category implementations and different communication protocols for remote con-
figuration as described below.

Monitoring, Security, and Dynamic Configuration 125

ACE_Service_Repository ACE_Service_Config

Local
File

System

Network Broker

Dynamic Service Configurator

data/command
flow

DomainConfigurator

Process boundary

co
nf
ig
ur
at
io
nF
il
e

Administration
Panel

Agents
Reconfiguration

Persistent Repository

Servant1Configurator

TAOConfigurator

Fig. 2. dynamicTAO Components

We built the dynamicTAO components using the ACE wrappers [5] for oper-
ating system services. Thus, dynamicTAO runs on the several different platforms
to which ACE was ported.

2.2 Reconfiguration Interface

dynamicTAO supports three distinct forms of reconfiguration interfaces. In gen-
eral terms, they all provide the same functionality but each of them has charac-
teristics that makes it more or less appropriate for certain situations. A descrip-
tion of the interfaces follows.

1. The DCP Broker is a customized subclass of the Network Broker shown
in Figure 2. It listens on a TCP port, waiting for connection requests from
remote clients. Once a connection is established, a client can send inspection
and reconfiguration commands using DCP, our Distributed Configuration
Protocol [11]. This interface is particularly good for debugging and for fast
interaction with an ORB since the user can access the configuration interface
simply by establishing a telnet connection to the DCP Broker.

2. The Reconfiguration Agent Broker is also a customized subclass of the
Network Broker, it is useful for configuring a distributed collection of ORBs
as we describe in section 2.4.

3. The DynamicConfigurator is a CORBA object that exports an IDL inter-
face with operations equivalent to the ones offered by the DCP protocol. It
is the most convenient of the three interfaces for programmatic interactions
since all the communication aspects are hidden by the CORBA middleware.

126 Fabio Kon et al.

We now use the DynamicConfigurator IDL specification presented in figure 3
to explain the functionality of the dynamicTAO reconfiguration interfaces1.

interface DynamicConfigurator
{
typedef sequence<string> stringList;
typedef sequence<octet> implCode;

stringList list_categories ();
stringList list_implementations (in string categoryName);
stringList list_loaded_implementations ()
stringList list_domain_components ();
stringList list_hooks (in string componentName);
string get_impl_info (in string implName);
string get_comp_info (in string componentName);
string get_hooked_comp (in string componentName,

in string hookName);
string get_latest_version (in string categoryName);

long load_implementation (in string categoryName,
in string impName,
in string params
in Configuration::Factory factory,
out Configuration::ComponentConfigurator cc);

void hook_implementation (in string loadedImpName,
in string componentName,
in string hookName);

void suspend_implementation (in string loadedImpName);
void resume_implementation (in string loadedImpName);
void remove_implementation (in string loadedImpName);
void configure_implementation (in string loadedImpName,

in string message);

void upload_implementation (in string categoryName,
in string impName,
in implCode binCode);

void download_implementation (in string categoryName,
inout string impName,
out implCode binCode);

void delete_implementation (in string categoryName,
in string impName);

};

Fig. 3. The DynamicConfigurator interface

The DynamicConfigurator interface specifies the operations that can be per-
formed on dynamicTAO abstractions, namely, categories, implementations,
hooks, and configurable components. The first nine operations in the interface
are used to inspect the dynamic structure of that domain and retrieve infor-
mation about the different abstractions. A category represents the type of a
component; each category typically contains different implementations, i.e., dy-
namically loadable code stored in the Persistent Implementation Repository. For
example, a category called Concurrency contains the three threading models

1 To make figure 3 more clear, we omitted the exceptions that each operation can
raise.

Monitoring, Security, and Dynamic Configuration 127

that dynamicTAO currently supports: Reactive Strategy, Thread Strategy,
and Thread Pool Strategy.

Once an implementation is loaded into the system runtime, it becomes a
loaded implementation and can be associated with a logical component in the
ORB domain. Finally, components have hooks that are used to represent inter-
component dependence; if a component A depends upon component B then this
dependence is represented by attaching B to a hook in A.

load implementation dynamically loads and starts an implementation from
the persistent repository. hook implementation attaches it to a hook in one of
the components in the domain.

The next four methods allow operations on loaded implementations. It is pos-
sible to suspend and resume their main threads, remove them from the process,
and send them component-specific reconfiguration messages.

upload implementation allows an external entity to send an implementation
to be stored in the local Persistent Repository, so that it can be linked to a
running process and attached to a hook. Conversely, download implementation
allows a remote entity to retrieve an implementation from the local Persistent
Repository. Finally, delete implementation is used to delete implementations
stored at the ORB Persistent Repository.

Consider now the scenario in which a user wants to change the threading
model at runtime by using an implementation of the Concurrency strategy called
Thread Pool Strategy. Assuming that the user wants to start with a thread pool
of size 20, the required configuration steps are the following.

1. Load the implementation into memory:
version = load implementation("Concurrency","Thread Pool Strategy",

"20", 0, cc)

2. Attach the implementation to the Concurrency hook in TAO:
hook implementation("Concurrency":version,"TAO",

"Concurrency Strategy")

After the new implementation is attached, the ORB starts using it. In section 2.3,
we discuss what happens if a different concurrency strategy is in use.

Figure 4 shows C++ code that uses the Dynamic Configurator to retrieve
and print some information about the ORB internal configuration. The code
obtains a reference to the DynamicConfigurator object through the ORB’s re-
solve initial references() method.

To facilitate interactive configuration, we developed Doctor , a Dynamic ORB
Configuration Tool. As shown in figure 5,Doctor is a Java graphical user interface
that lets users manipulate both the ORB persistent repository and the runtime
configuration interactively. The tool establishes a connection to the ORB DCP
Broker and let users send DCP messages by using the mouse.

2.3 Consistency

Reconfiguring a running ORB while it is servicing client requests is a difficult
task that requires careful consideration. There are two major classes of problems.

128 Fabio Kon et al.

CORBA::Object_var dcObj;
DynamicConfigurator_var dynConf;
CORBA::ORB_var orb;

orb = CORBA::ORB_init (argc, argv);
dcObj = orb->resolve_initial_references ("DynamicConfigurator");
dynConf = DynamicConfigurator::_narrow (dcObj.in ());

stringList *list = dynConf->list_implementations ("Concurrency");

printf ("Available concurrency strategies:");
printStringList (list);

char *ret = dynConf->get_hooked_comp ("TAO", "Concurrency_Strategy");

printf ("Now, using the <%s> concurrency strategy.", ret);

Fig. 4. Inspecting the ORB internal state

Consider the case in which dynamicTAO receives a request for replacing one
of its strategies (Sold) by a new strategy (Snew). The first problem is that TAO
strategies are implemented as C++ objects that communicate through method
invocations; thus, before unloading Sold, the system must be sure that no one is
running Sold code and that no one is expecting to run Sold code in the future.
Otherwise, the system could crash. Thus, it is important to assure that Sold is
only unloaded after the system can guarantee that its code will not be called.

The second problem is that some strategies need to keep state information.
When a strategy Sold is being replaced by Snew, part of Sold’s internal state may
need to be transfered to Snew. Both problems can be addressed with the help of
the TAOConfigurator .

Consider, for example, the three concurrency strategies supported by dynam-
icTAO : single-threaded reactive, thread-per-connection, and thread-pool. If the
user switches from the reactive or thread-per-connection strategies to any other
concurrency strategy, nothing special needs to be done. dynamicTAO may sim-
ply load the new strategy, update the proper TAOConfigurator hook, unload the
old strategy, and continue. Old client connections will complete with the concur-
rency policy dictated by the old strategy. New connections will utilize the new
policy.

However, if one switches from the thread-pool strategy to another one, we
must take special care. The thread-pool strategy we developed maintains a pool
of threads that is created when the strategy is initialized. The threads are shared
by all incoming connections to achieve a good level of concurrency without hav-
ing the runtime overhead of creating new threads. A problem arises when one
switches from this strategy to another strategy: the code of the strategy being re-
placed cannot be immediately unloaded. This happens because, since the threads
are reused, they return to the thread-pool strategy code each time a connection
finishes. This problem can be solved by a ThreadPoolConfigurator keeping infor-
mation about which threads are handling client connections and destroying them
as the connections are closed. When the last thread is destroyed the thread-pool
strategy signals that it can be unloaded.

Monitoring, Security, and Dynamic Configuration 129

Fig. 5. The Doctor configuration tool

Another problem occurs when one replaces the thread-pool strategy by a new
one. There may be several incoming connections queued in the strategy waiting
for a thread to execute them. The solution is to use the Memento pattern [6]
to encapsulate the old strategy state in an object that is passed to the new
strategy. An object is used to encapsulate the queue of waiting connections. The
system simply passes this object to the new strategy which then takes care of
the queued connections.

2.4 Reconfiguration Agents

After implementing the first version of dynamicTAO we noticed that a signif-
icant limitation it presented was that, in order to configure a particular ORB,
it required a point-to-point connection between the administration node (e.g.
running Doctor) and the ORB process. Thus, if a system administrator needed
to upgrade a certain component of an on-line service composed of ten replicas
located in different countries, it was necessary to connect to each replica sepa-
rately, upload the new implementation of the component, and reconfigure the
replica. This process was extremely laborious and tiresome.

Our group had experience with the deployment of a large-scale Multimedia
Distribution System to broadcast live video and audio through a network of

130 Fabio Kon et al.

more than 30 multimedia servers spread across five continents. The system ran
24 hours per day for more than three months and delivered multimedia streams
to more than one million users in dozens of different countries [14]. The difficulty
in carrying out that experiment (managing more than 30 application nodes in
a wide-area network) exposed the extreme necessity of flexible mechanisms for
efficient runtime reconfiguration of long-running, large-scale systems. We believe
that this kind of application will become increasingly important and numerous
on the Internet in the next decade. Thus, a good infrastructure to support them
would be extremely useful.

As a first solution to the problem we considered implementing a management
front-end that would allow administrators to type sequences of DCP commands
that would be sent to a list of ORBs. Although this approach would simplify
the work of the administrator, it would not solve the problem of bandwidth
waste, i.e., sending large amounts of duplicated information across long-distance
Internet lines.

The solution we adopted was to allow administrators to organize the nodes
of their Internet systems in a hierarchical manner for reconfiguration purposes.
The administrator specifies the topology of the distributed application as a di-
rected graph and creates a mobile reconfiguration agent which is injected into the
network. The reconfiguration agent then visits the nodes of this graph of inter-
connected ORBs. In each ORB, the agents are received by the Reconfiguration
Agent Broker. The broker first replicates and forwards the agent to neighbor-
ing nodes, then processes the DCP commands locally, and finally, collects the
reconfiguration results, sending them back to the neighboring agent source.

Using this approach, the administrator can organize the reconfiguration hi-
erarchy to optimize the data flow between distant application nodes. The recon-
figuration commands are executed in parallel in the various nodes, improving
response time. If desired, the graph may contain different levels of redundancy
so that the system can tolerate the failure of some of the nodes in the reconfig-
uration network.

Administrators use a Java graphical administrative front-end for specifying
reconfiguration graphs and for assembling and sending reconfiguration agents.
Given the large variations on Internet line speeds, administrators should have an
approximate idea of the available bandwidth in each edge of the reconfiguration
graph. With this information it is possible to organize the graph to minimize
the transmission over low-bandwidth and congested Internet lines.

The administrator selects those ORBs that will be part of the reconfiguration
graph (see figure 6) and draws directed edges connecting the graph nodes (see
figure 7). Each time a new ORB is selected from the list on the left-hand side of
figure 6, a new node is added to the graph in figure 7.

Once the reconfiguration graph is defined, a new window assists the adminis-
trator to build a list of DCP commands that are codified into a reconfiguration
agent. Finally, the administrator instructs the graphical front-end to send the
agent to an initial node in the graph. Figure 8 shows the composition of an agent

Monitoring, Security, and Dynamic Configuration 131

Fig. 6. Selecting the nodes of the reconfiguration graph

Fig. 7. Defining the reconfiguration topology

132 Fabio Kon et al.

with three DCP commands: list categories, list loaded implementations,
and list implementations.

Fig. 8. Composing a reconfiguration agent

Securing Dynamic Configuration The initial implementation of dynamic-
TAO did not provide security either in the DCP Broker or in the Reconfiguration
Agent Broker. In other words, if these interfaces were enabled, any user could
contact one of the brokers and inject inspection and reconfiguration agents freely.
In order to solve this problem, we implemented a flexible security architecture
described in section 4. It relies on a Reference Monitor that allows for very
fine-grain control over the access to the DynamicConfigurator operations.

We are also working on a security mechanism for both the DCP and the
Reconfiguration Agent Brokers. We have a preliminary prototype supporting
encryption, authentication, and access control.

More details about the implementation and the issues related to reconfig-
uration agents can be found in [15]. In the following sections we describe how
the dynamicTAO infrastructure was used to implement Monitoring and Security
services.

3 Monitoring Object Interactions

To support the construction of effective adaptable applications and systems, the
middleware must provide a way to detect when adaptation should take place. In

Monitoring, Security, and Dynamic Configuration 133

the previous section, we showed how dynamicTAO could be used to adapt an
application. In this section, we show how an application can know when it is
time to adapt.

We built the 2K Monitoring Service [21] as a dynamically loadable compo-
nent that can be attached to and detached from dynamicTAO at any time by
using the configuration interfaces described in the previous section. It is able to
collect and consolidate information about the interactions (i.e., method invoca-
tions) among CORBA objects in the distributed system. By using the Monitoring
Service in conjunction with the 2K Resource Manager (which provides dynamic
information about hardware resource availability), a program can be completely
aware of the dynamics of the environment in which it is inserted.

By knowing the nature and magnitude of the interactions between compo-
nents, a system can reconfigure itself in order to adapt to different situations and
improve its performance. Moreover, if the information about component interac-
tion is exported to applications, they become capable of implementing their own
adaptation policies. Finally, exporting this information to system administrators
and users in a way that they can easily understand, might help them to identify
bottlenecks in their system. For example, by showing that applications spend
most of their time waiting to access the local file system might indicate that the
administrator should install a faster hard disk or that the system should adopt
a more effective caching policy.

We developed this service following having two major goals in mind: mini-
mum performance degradation and minimum interference. First, the Monitoring
Service should not slow down any part of the system significantly. Second, it
should not change the dependency relations among other system and applica-
tion components. That means that when the service is deactivated, it should be
as if the service did not exist. And when the service is activated, the system
and application components should not be aware of the service unless it needs
to use it.

3.1 Architecture

The Monitoring Service uses the reflective ORB DynamicConfigurator interface
for dynamically loading (and unloading) its modules. Once the service is loaded,
it is inserted into the invocation path by using a request-level interceptor2. Un-
loading it from memory or suspending its execution temporarily causes its re-
moval from the invocation path. When the service is not active, the overhead
for the interceptor is negligible (simply checking the nullity of a pointer).

Our architectural framework, shown in Figure 9, is composed of the Moni-
toring Interceptor, which collects information about selected client requests and
one or more Storage Servers, which are responsible for saving the data into a
persistent store and for processing queries about the stored data. In addition,
the dynamicTAO DynamicConfigurator is used to dynamically configure the in-
terceptor behavior. The Monitoring Service user depicted in Figure 9 is either
2 The interceptor mechanism is defined in the CORBA specification, chapter 18 [22].

134 Fabio Kon et al.

a computer program responsible for detecting special conditions in the environ-
ment or a programmer or system administrator using a text-based or graphical
front-end.

Interceptor
Monitoring

ORB

Servant 1 Servant 2

Configurator
Dynamic

obj1

Storage
Server

obj2 obj3 obj4 . . .

process boundary

Client

query
user

configuration

Fig. 9. The Monitoring Service Architecture

Upon initialization, the interceptor contacts the Name Server to locate a
Storage Server in the network. Users can then configure the monitoring process
through the configure method of the dynamicTAO DynamicConfigurator inter-
face. It is possible to specify (1) the name of the objects that should be mon-
itored, i.e., which objects should have their requests information sent to the
Storage Server, (2) which operations of each object should be monitored, and
(3) some interceptor internal parameters such as how often it sends the collected
information to the Storage Server.

Every time the interceptor detects a client request that should be sent for
storage, it creates a record containing five kinds of information about that re-
quest: client machine address, target object name, target operation name, times-
tamp, and server-side duration. The records are grouped in a local buffer and a
different thread sends them to the Storage Server periodically.

The Storage Server stores its data either in a file system or in a database
management system and exports two interfaces. The first is used by the mon-
itoring interceptor to publish the collected information and the second is used
by users to send queries about the collected information. The query interface
provides support for a wide range of query types. Users can ask, for example,
“When was the last call to operation A on object X?”, “What is the average
completion time for calls to operation A on object X from host P?”, “How many
times did object X receive requests between time t0 and t1?”, and so on.

Monitoring, Security, and Dynamic Configuration 135

3.2 Performance Measurements

We measured the latency on calls to a CORBA object in three different stages.
In stage one, we measured the latency on each of the method calls without
using the Monitoring Service. In stage two, we measured the latency after the
Monitoring Service was loaded and attached to the interceptor, but without
having it monitoring this particular object. In the last stage, we measured the
latency when the object is being monitored by the Monitoring Service. For each
stage, we tested both local and remote method calls. Table 1 shows the average
of the results for 50 experiments ran between a Sun Ultra2 and Ultra60 machines
running Solaris 2.6 and connected by fast Ethernet. Each experiment consists of
measuring the round-trip time for a call on a getHello() operation that simply
returns a 12-character CORBA string to the client.

Table 1. Monitoring Service overhead (in ms)

getHello Without Monitoring Monitoring
calls Monitoring Disabled Enabled

Local 0.781 0.803 0.941

Remote 1.252 1.277 1.379

As can be seen from Table 1, the overhead of the Monitoring Service on an
object that was being monitored was 20% and 10% for local and remote calls,
respectively. The overhead was reduced to 2.8% and 2.0% when the Monitoring
Service was active but not monitoring that particular object.

We are certain that there are still opportunities for optimizations that would
make the overhead smaller. However, it is important to notice that the getHello
operation is almost the worst case scenario because it has no parameters and
its returned value is very small. In common cases, CORBA operations carry a
large number of arguments that must be marshalled and demarshalled. In those
cases, the relative overhead of the Monitoring Service would be much smaller.

4 Dynamic Security

The second service we implemented on top of the dynamicTAO infrastructure
was the Reference Monitor [17], a flexible mechanism for enforcing access con-
trol based on dynamic security policies. This work consisted on deploying the
Cherubim security framework [2] in the dynamicTAO environment and adding
support for audit logging and caching of security decisions.

As we described in section 2.1, the TAOConfigurator contains a hook to which
security strategies can be dynamically attached. When this happens, the new
security strategy has the opportunity to add message-level interceptors (to en-
crypt/decrypt the message contents and authenticate communication peers) and
request-level interceptors (to control the access to CORBA objects).

136 Fabio Kon et al.

When using our Cherubim Security Strategy , applications are able to choose
from a large range of security models including Discretionary Access Control
(DAC), Double Discretionary Access Control (DDAC), and Mandatory Access
Control (MAC) [28]. Cherubim adopts the general CORBA Security Reference
Model and the OMG Security Service interfaces [23].

We are currently extending our implementation to support Role-Based Access
Control (RBAC) [26] and message-level authentication and encryption. The new
security system resulting from this effort will be the basis for security in the 2K
distributed environment.

4.1 Architecture

The Cherubim security framework supports access control by using Active Ca-
pabilities [2], pieces of Java bytecode that have the same role as conventional
capabilities but that carry objects instead of just data. Active Capabilities are
protected by digital signatures and encryption and are generated by an adminis-
trative tool that has access to a trusted secure store. All the information about
user (or principal) roles and privileges are maintained in a secure store object
called a credential. A single active capability can carry credentials for several ob-
jects and, since it contains interpretable code, it can support dynamic, flexible
security policies, making decisions based on changing attributes such as location,
resource availability, and other situation-specific parameters.

When a principal wants to access an object, it must first present the active
capability and then send the desired requests. In our model, clients access secured
objects by first installing an active capability into the Reference Monitor and
then using the objects without having to worry about security. Alternatively, the
active capabilities may be installed by a third party like an administrative tool,
or fetched transparently by the Reference Monitor so that the application can be
totally unaware of security. In our experiments, we adopted the last approach,
which works with security-unaware applications.

Figure 10 shows the major components of our Reference Monitor architecture.
If the Cherubim Security Strategy is attached to the Server Security Strategy hook
in the TAOConfigurator , then all client requests are intercepted and delivered to
the Reference Monitor module.

Before forwarding the call to the ORB, the Reference Monitor must check if
the principal associated to the client sending the request is allowed to call that
particular operation, on that particular object, with those particular arguments.
The Reference Monitor first checks whether that security decision is available in
the Authorization Cache. If the decision is cached, then it either forwards the
call to the ORB (if the security decision is to grant access) or throws a CORBA
NO PERMISSION exception.

If the security decision is not available in the Cache, the Reference Monitor
contacts the Active Capability Evaluator. If necessary, the Active Capability
Evaluator contacts the Policy Server to fetch the active capability from the
Secure Store. After the active capability is evaluated, the security decision is
stored in the Authorization Cache for future use. If any credential in an active

Monitoring, Security, and Dynamic Configuration 137

Servant

ORB

Reference
Monitor

Cache
Authorization

Client

Policy
Server

Secure
Store

Active Capability
Evaluator

Audit Log

process boundary

Fig. 10. The Reference Monitor Architecture

capability is revoked, the Policy Server contacts the Authorization Cache to
update its list of security decisions.

If desired, security decisions can be stored in the Audit Log. The log can be
used as a record of all security-sensitive operations performed in the system,
assisting in the detection of attempted security violations.

The possibilities for dynamically configuring the security subsystem that dy-
namicTAO provides are very useful for a wide range of applications in several
situations. As an example, consider a mobile computer moving from a corporate
intranet towards a wireless satellite network. It may be acceptable to use light-
weight encryption and soft access control in the intranet but it may be required
to apply strong encryption and very tight access control policies when switching
to the wireless network.

Each rectangle in figure 10 is a separate component that may be running
on a separate machine. Thus, the system is subject to network partitions and
to failures in individual components. Our current implementation requires that
all the components be available, otherwise, it denies the access by throwing a
security exception. The service could be extended to support different behaviors
in the presence of network outages such as relying on a local versions of the
policy server with limited functionality, and logging the events locally while the
remote Audit Log is unreachable.

5 Componentizing the ORB

After our experience in developing applications with both open source and com-
mercial ORBs, we came to the conclusion that typical applications utilize just

138 Fabio Kon et al.

a very small fraction of the services and functionalities provided by common
ORBs. Besides, one of the criticism that CORBA often receives is that it is
too big and heavy-weighted to be used in small devices and embedded systems.
Although dynamicTAO can be configured dynamically, its memory footprint is
never less than a Megabyte. It would be extremely difficult, if not impossible,
to run it on a PDA such as the PalmPilot III. This motivated us to develop
LegORB , which can be customized dynamically to adapt to resource availability
and to accommodate the requirements of different applications and devices at
different moments.

Mies van der Rohe’s dictum “Less is more” is LegORB ’s major tenet. It is
a component-based ORB that can be configured at runtime so that it loads
just enough components to provide the middleware services required by each
application. Applications can select from a range of different implementations
for each ORB component category and, as in dynamicTAO , replace components
on-the-fly. To achieve minimal code size and high performance, we are writing the
whole ORB source code from scratch, having small devices and componentization
as our fundamental goals.

Unlike dynamicTAO , LegORB was designed having componentization and
dynamic reconfiguration as a fundamental premise. We had embedded systems
and PDAs in mind since the very beginning, which allowed us to achieve surpris-
ing results in terms of code size. A minimal configuration of LegORB containing
just the basic infrastructure and a simple IIOP client engine that is able to
send CORBA requests to standard ORBs occupies only around 6Kbytes on the
PalmOS operating system for the PalmPilot. The server side includes extra func-
tionality to receive and process client requests. Still, its size can be limited to
around 10 to 20Kbytes. These LegORB instances are able to interoperate with
traditional ORBs such as Orbix, ORBacus, and Washington University’s TAO.

LegORB has a basic skeleton with a set of hooks to which infrastructure
components are attached. These components then collaborate to offer ORB func-
tionality. The set of hooks can be extended to accommodate situation specific
functionality like real-time processing. Even though the categories are already
defined, each category has different implementations. Combining different kinds
of categories leads to different ORB behaviors.

The current implementation of the client side of the LegORB defines seven
different categories: Invocation Interface, Connector, GIOP, IIOP, MIOP, Mar-
shaler, and Demarshaler. Each category defines a standard interface that imple-
mentations of that category must provide. In addition to that, each implementa-
tion can add more functionality by offering a more detailed interface to be used
by components that are aware of it.

One of the scenarios in which we are applying 2K is in the context of active
spaces such as smart rooms. These rooms contain computers, printers, video
cameras, projectors, microphones, digital white boards, as well as other kinds
of electric and electronic devices. In our preliminary experiments, we “COR-
BArized” some devices by implementing IDL interfaces that control video cam-
eras, light switches, and even a microwave oven. By using well-defined interfaces

Monitoring, Security, and Dynamic Configuration 139

and CORBA as a common communication substrate, we were able to integrate
all these highly heterogeneous devices into the distributed system and interact
with them not only by using powerful workstations running full CORBA im-
plementations but also by using hand-held PalmPilot computers running our
minimal ORB.

6 Related Work

Recent research in middleware have identified limitations on existing CORBA
implementations, which led to ORB extensions for dealing with specific aspects
such as real-time [7], group communication [20], and fault-tolerance [19]. Our
goal, on the other hand, is to provide a generic infrastructure in which different
kinds of customizations can be performed using reflection [18].

Other research groups have addressed the problem of middleware customiza-
tion by using different approaches. The Operating Systems group at the
Friedrich-Alexander University of Erlangen-Nürnberg is developing AspectIX [8],
a configurable middleware architecture based on the fragmented object model.
AspectIX clients would interact with a fragment of the global object (the frag-
ment implementation) by using an interface (the fragment interface). The global
object could be configured by using “profiles” which in turn specify “aspects”
that must be supported by the fragment implementations. AspectIX Aspects
can be compared to dynamicTAO category implementations with the differ-
ence that dynamicTAO implementations can be added on-the-fly. The AspectIX
group plans to implement a prototype of their model where each object running
within a single ORB would be able to specify its own policies and protocols. In
dynamicTAO , a similar effect could be achieved by using different ORBs inside
a single process and configuring each of the ORBs in a different way. In the
LegORB model, on the other hand, the ORB can be configured to support any
of the two approaches.

The Distributed Multimedia Research Group at the Lancaster University has
proposed a reflective architecture for next generation middleware [1,4]. They de-
veloped a prototype using the Python interpreted language in which the pro-
grammer is able to inspect and change the implementation at runtime. The level
of reflection is much higher than in dynamicTAO since, in their Python system,
it is possible to add or remove methods from objects and classes dynamically
and even change the the class of an object at runtime. Their research has empha-
sized dynamic configurability through a well-defined open binding model which
allows multiple reflective levels. In contrast, our research concentrates on a sim-
pler reflective model, focusing on high performance. In our model, the reflective
mechanisms are not included in the normal flow of control, they are only invoked
when needed.

The Distributed Adaptive Run-Time (DART) [25] provides a framework
where applications can modify their internal behavior as well as the behavior
of services that they are using. It distinguishes between internal application
adaptation (Adaptive Methods) and adaptation of the application’s environment

140 Fabio Kon et al.

(Reflective Methods). In the case of Adaptive Methods, applications offer several
implementations of each method. A special entity called selector chooses the
most effective one at each invocation. In its turn, reflective methods allow adap-
tation of the runtime environment. When calling a reflective method, the call is
redirected to a set of meta-level objects that manage run-time services. A DART
manager (which can be compared to the dynamicTAO DomainConfigurator)
stores adaptation information and references to applications and policies. Re-
configuration is triggered and controlled by using events that are also used to
maintain consistency. Entities known as policies have the knowledge required to
reconfigure applications. Policies use the DART manager to access applications
as well as the meta-objects associated with them.

COMERA [34] (COM Extensible Remote Architecture) provides a frame-
work based on Microsoft COM that allows users to modify several aspects of
the communication middleware at run-time. It relies on the Custom Marshaler
interface exported by COM, as well as the componentized architecture design
that allows the use of user-specified components. By using COMERA, system
developers can customize the middleware according to application requirements.

Previous work in system instrumentation and monitoring developed signifi-
cant contributions that could be applied in the context of CORBA. The Pablo
research group at the University of Illinois has developed a powerful framework
for performance analysis and visualization [27]. In this framework, raw perfor-
mance data is processed by performance visualization, correlation, evaluation,
and interaction tools. Data is then correlated with appropriate network and
computation components, both hardware and software, in order to highlight
performance problems in meaningful ways.

The Distributed Object Visualization Environment (DOVE) [10] supports
monitoring and visualization of applications and services in heterogeneous dis-
tributed systems. DOVE implements a flexible framework where DOVE-enabled
applications use application proxies to send collected information to DOVE
agents, which monitor and publish the information to DOVE-enabled browsers.

Unfortunately, most of the existing tools require that the applications be
modified to include calls to the instrumentation libraries or monitoring agents.
In our reflective approach, the monitoring system can be dynamically loaded
into dynamicTAO and start to collect information selectively according to the
user needs. There is absolutely no change required either in the application code
or in the Monitoring Service code.

Our work on security builds on previous and ongoing work in standards for
encryption, authentication, and access control [28,26,33]. Commercial products
providing security for CORBA systems are starting to appear. However, to the
best of our knowledge, no other implementation of the CORBA Security Service
provides the degree of flexibility and dynamic configurability that our security
architecture provides.

Monitoring, Security, and Dynamic Configuration 141

7 Future Work

We are currently developing new components for LegORB . Our long-term goal
is to support full CORBA functionality through a component-based ORB. For-
tunately, the LegORB architecture allows us to have working versions of the
ORB from its early stages. Now, our work is to add new components incremen-
tally until we achieve the complete functionality we desire. We are currently
working on LegORB components supporting quality of service for multimedia
applications [35] and fault-tolerance in real-time systems [30].

Our Monitoring Service currently does not provide support for visualizing
the data that it captures. We will investigate the possibility of utilizing existing
tools, like some of the DOVE components, to provide an interactive graphical
interface to visualize the data and to configure the monitoring process without
loosing the benefits of our system, namely, transparency, flexibility, and dynamic
configurability.

Finally, we are extending the security architecture to add support for encryp-
tion and role-based access control for the 2K distributed system by using UIUC
Sesame [3] and scalable, dynamic security mechanisms [24].

8 Conclusions

Computing devices tend to become more and more pervasive in our society. Users
will no longer tolerate having to adapt to different environments each time they
interact with a computer. On the contrary, users expect the computer software
to adapt itself to provide the service they need.

These highly dynamic environments with mobile computers, mobile software,
and mobile users require a new paradigm for software development and deploy-
ment. Heraclitus argued change is the only constant. Middleware systems must
be ready to adapt to change.

The ideas and architecture introduced by dynamicTAO provide a solid base
for supporting safe dynamic reconfiguration of scalable, high-performance dis-
tributed systems. We are convinced that our reflective approach to middleware
design provides the agility that modern applications require. Even though we
are still far from having a complete solution for every aspect of the problem,
preliminary results indicate that we are moving in the right direction.

The complete source code for dynamicTAO can be obtained from the 2K
web site at http://choices.cs.uiuc.edu/2k/dynamicTAO.

References

1. Gordon Blair, Geoff Coulson, Philippe Robin, and Michael Papathomas. An Archi-
tecture for Next Generation Middleware. In Proceedings of Middleware ’98, Lake
District, England, November 1998. 139

142 Fabio Kon et al.

2. Roy Campbell and Tin Qian. Dynamic Agent-based Security Architecture for Mo-
bile Computers. In Proceedings of the Second International Conference on Parallel
and Distributed Computing and Networks (PDCN’98), pages 291–299, Australia,
December 1998. 135, 136

3. Monika Chandak. Implementation of Sesame in Java. Master’s thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, 1999. 141

4. Fabio Costa and Gordon Blair. A Reflective Architecture for Middleware: Design
and Implementation. In Proceedings of the ECOOP’99 Workshop for PhD Students
in Object Oriented Systems, Lisbon, June 1999. 139

5. Schmidt Douglas C. The ADAPTIVE Communication Environment. In Proceed-
ings of the Sun User Group Conference, San Jose, California, December 1993. 125

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of
Object-Oriented Software. Addison-Wesley, 1995. 122, 129

7. Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-time CORBA Object Event Service. In Proceedings of the
OOPSLA. ACM, October 1997. 139

8. F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckmeier. Aspec-
tIX: A Middleware for Aspect-Oriented Programming. In Object-Oriented Technol-
ogy, ECOOP’98 Workshop Reader, LNCS 1543, pages 426–427. Springer-Verlag,
1998. 139

9. Prashant Jain and Douglas C. Schmidt. Dynamically Configuring Communication
Services with the Service Configuration Pattern. C++ Report, 9(6), June 1997.
124

10. Michael Kircher and Douglas C. Schmidt. DOVE: A Distributed Object Visual-
ization Environment. C++ Report, 11(3):42–51, March 1999. 140

11. Fabio Kon. Distributed Configuration Protocol. Project home page:
http://choices.cs.uiuc.edu/2k/DCP, June 1998. 125

12. Fabio Kon and Roy H. Campbell. Supporting Automatic Configuration of
Component-Based Distributed Systems. In Proc. 5th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS’99), pages 175–187, San
Diego, CA, May 1999. 123

13. Fabio Kon and Roy H. Campbell. Dependence Management in Component-Based
Distributed Systems. IEEE Concurrency, 2000. To appear. 123

14. Fabio Kon, Roy H. Campbell, See-Mong Tan, Miguel Valdez, Zhigang Chen, and
Jim Wong. A Component-Based Architecture for Scalable Distributed Multimedia.
In Proceedings of the 14th International Conference on Advanced Science and Tech-
nology (ICAST’98), pages 121–135, Lucent Technologies, Naperville, April 1998.
130

15. Fabio Kon, Binny Gill, Roy H. Campbell, and M. Dennis Mickunas. Secure Dy-
namic Reconfiguration of Scalable CORBA Systems with Mobile Agents. Technical
Report UIUCDCS-R-99-2131, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, December 1999. 132

16. Fabio Kon, Ashish Singhai, Roy H. Campbell, Dulcineia Carvalho, Robert Moore,
and Francisco J. Ballesteros. 2K: A Reflective, Component-Based Operating Sys-
tem for Rapidly Changing Environments. In ECOOP’98 Workshop on Reflective
Object-Oriented Programming and Systems, Brussels, Belgium, July 1998. 122

17. Ping Liu. The Design and Implementation of a Reference Monitor for the 2K
Operating System. Master’s thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign, July 1999. 135

18. P. Maes and D. Nardi, editors. Meta-Level Architectures and Reflection. North-
Holland, 1987. 139

Monitoring, Security, and Dynamic Configuration 143

19. Silvano Maffeis. Adding Group Communication and Fault-Tolerance to CORBA.
In Proceedings of the 1995 USENIX Conference on Object-Oriented Technologies.
The USENIX Association, June 1995. 139

20. Silvano Maffeis and Douglas C. Schmidt. Constructing reliable distributed commu-
nication systems with CORBA. IEEE Communications Magazine, 14(2), February
1997. 139

21. Jina Mao. Monitoring and Analyzing Method Invocations in the 2K Operating
System. Master’s thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, May 1999. 133

22. OMG. CORBA v2.2 Specification. Object Management Group, Framingham, MA,
February 1998. OMG Document 98-07-01. 133

23. OMG. Security Service Specification (revision 1.2). Technical Report ptc/98-01-02,
The Object Management Group, November 1998. 136

24. Tin Qian. Dynamic Authorization Support in Large Distributed Systems. PhD the-
sis, Department of Computer Science, University of Illinois at Urbana-Champaign,
November 1999. 141

25. P.-G. Raverdy and R. Lea. DART: A Distributed Adaptive Run-Time. In Work-
in-progress presented at the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware’98), September 1998. 139

26. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Chlarles E. Youman.
Role-based Access Control Models. IEEE Computer, 29(2):38–47, February 1996.
136, 140

27. Daniel A. Reed and Randy L. Ribler. Performance Analysis and Visualization,
chapter in the book “Computational Grids: State of the Art and Future Directions
in High-Performance Distributed Computing”. Morgan-Kaufman Publishers, Au-
gust 1998. 140

28. Ravi S. Sandu and Pierangela Samarati. Access Control: Principles and Practice.
IEEE Communications Magazine, 32(9):40–48, September 1994. 136, 140

29. Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Extensi-
ble ORB Middleware. IEEE Communications Magazine Special Issue on Design
Patterns, 1999. 122

30. Lui Sha, R. Rajkumar, and M. Gagliardi. Evolving Dependable Real Time Systems.
In Proceedings of the IEEE Aerospace Applications Conference, pages 335–346,
Aspen, CO, February 1996. IEEE Computer Society Press. 141

31. Ashish Singhai, Aamod Sane, and Roy Campbell. Reflective ORBs: Supporting
Robust Time-Critical Distribution. In Proceedings of the ECOOP’97 Workshop on
Reflective Real-Time Object-Oriented Systems, pages 55–61, Finland, June 1997.
ECOOP’97 Workshop Reader, LNCS 1357. 123

32. Ashish Singhai, Aamod Sane, and Roy Campbell. Quarterware for Middleware. In
Proc. 18th International Conference on Distributed Computing Systems (ICDCS),
pages 192–201. IEEE, May 1998. 123

33. M. Vandenwauver, R. Govaerts, and J. Vandewalle. Overview of Authentication
Protocols: Kerberos and SESAME. In Proceedings of the 31st Annual IEEE Car-
nahan Conference on Security Technology, pages 108–113, 1997. 140

34. Y. M. Wang and Woei-Jyh Lee. COMERA: COM extensible remoting architecture.
In Proceedings of the 4th Conference on Object-Oriented Technologies and Systems
(COOTS). Usenix, April 1998. 140

35. Dongyan Xu, Duangdao Wichadakul, and Klara Nahrstedt. Multimedia Ser-
vice Configuration and Reservation in Heterogeneous Environments. In Pro-
ceedings of the 20th International Conference on Distributed Computing Systems
(ICDCS’2000), Taipei, Taiwan, April 2000. 141

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 144-163, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Customization of Object Request Brokers by
Application Specific Policies

Bo Nørregaard Jørgensen1∗, Eddy Truyen2**, Frank Matthijs2**, and Wouter Joosen2**

1The Maersk Mc-Kinney Moller Institute for Production Technology,
University of Southern Denmark, Odense Campus,

DK-5230 Odense M, Denmark.
bnj@mip.sdu.dk

2Computer Science Department, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven Belgium

{Eddy.Truyen, Frank.Matthijs, Wouter.Joosen}@cs.kuleuven.ac.be

Abstract. This paper presents an architectural framework for customizing
Object Request Broker (ORB) implementations to application-specific
preferences for various non-functional requirements. ORB implementations are
built by reusing a domain-specific component-based architecture that offers
support for one or more non-functional requirements. The domain-specific
architecture provides the mechanism that allows the ORB to reconfigure its
own implementation at run-time on the basis of application-specific
preferences. This mechanism is based on a run-time selection between
alternative component implementations that guarantee different service-levels
for non-functional requirements. Application-specific preferences are defined in
policies and service-level guarantees are defined in component descriptors.
Policies and component descriptors are expressed using descriptive languages.
This gives application programmers an easy and powerful tool for customizing
an ORB implementation. To validate the feasibility of our architectural
framework we have applied it in the domain of robotic control applications.

1 Introduction

The success of distributed object technology in time-critical distributed systems, such
as robotic manufacturing systems, depends on the advent of Object Request Brokers
(ORBs) that integrate support for non-functional requirements. Non-functional
requirements pertain to requirements that are not directly included in the functionality
of the application (i.e. what the application does) but rather express additional

∗ This research was supported in part by the A. P. Møller and Chastine Mc-Kinney Møller
Foundation, The Danish National Centre for IT Research and …
** … by a grant from the Flemish Institute for the advancement of scientific-technological
research in the industry (IWT).

Customization of Object Request Brokers by Application Specific Policies 145

characteristics that the application should have. In industrial settings such additional
requirements include reliability and real-time.

In robotic manufacturing systems various non-functional requirements have effect
on the exchange of control messages. Control messages can be simple activation and
deactivation commands or commands containing isochronous data. Isochronous data
is characterized by being equidistant in time and requiring processing at equal time
intervals. In advanced model-based robotics [1] motion planning and joint control
result in control messages that contain isochronous data. Distributing these messages
in a timely manner requires real-time support from the ORB. By now, it is well
known that conventional ORBs like CORBA [2], DCOM [3], Java RMI [4] are not
designed to cope with real-time requirements [5].

The development of ORBs that support vertical integration of non-functional
requirements from the application level all the way down to the network layer is
crucial for successful application of distributed objects in robotic manufacturing
systems. To deal with the wide range of non-functional requirements, ORBs are
required that can be customized to application-specific preferences. Application-
specific customization of an ORB requires some level of flexibility and openness in
its implementation. Previous work has shown that meta-level architectures are a
powerful technique for opening the ORB’s implementation to the application
programmer [6]. However, full-scale meta-level architectures make the customization
process more complex than most application programmers can comprehend. This
results from the inherited complexity of reflective systems and the non-trivial
protocols and algorithms used to implement an ORB. As a result, it is very hard for
application programmers, who are typically not experts in meta-level architectures or
ORB development, to create specialized ORBs that satisfy their needs [7]. One way of
solving this problem is to provide tools that allow the application programmer to
customize an ORB without requiring him to understand the inner working of an ORB.

The approach we propose is based on architectural support for dynamic
reconfiguration of ORB implementations. Reconfiguration of the ORB is based on
policies that describe the non-functional requirements specific to the application and
descriptors that specify how non-functional requirements are supported by the
alternative implementations available for each ORB component. Policies and
component descriptors are defined with a specific language for expressing non-
functional requirements. At run-time the ORB interprets the policies and descriptors
to select the right components for configuring its implementation.

An important characteristic of our approach is that it does not enforce a particular
ORB architecture on the ORB developer but allows him to create the ORB
architecture that is most appropriate for his specific application domain. The rationale
behind this thought is that one size does not fit all. On the contrary, some application
domain may require some ORB components that are not present in other domains. For
example, embedded systems need compact ORBs with a small footprint, while e-
commerce applications need ORBs that support data integrity, authentication, and
authorization of remote method invocations.

This paper is organized as follows: section 2 gives an overview of the proposed
approach. Section 3 describes each of the elements of our architectural framework. In
section 4 we exemplify our architecture by showing how it can be used to create a

146 Bo Nørregaard Jørgensen et al.

customized ORB for a robotic control system. Related work is described in section 5.
Finally, section 6 concludes.

2 Overview of Our Approach

Traditionally, object oriented analysis and design only focus on the entities within the
problem domain, their relationships, and how they interact with external actors. This
is all part of describing the functional requirements of the system. However, non-
functional requirements, such as reliability, availability, performance, security, or
real-time are equally important for establishing a system that can deliver the expected
quality of service. Non-functional requirements should be dealt with during analysis
and design and should not be postponed until the implementation phase. During use-
case analysis some considerations about non-functional requirements often come up.
For instance, when describing the use-case for an ATM Cashier system the domain
expert may very well ask himself whether or not the transaction responsible for
money withdrawal should use a secure line to the main server. By extending the use-
case analysis phase to include the specification of non-functional requirements, the
domain expert can record non-functional requirements together with the functionality
they apply to.

This paper presents an architecture that offers an easy but powerful way for
integrating those non-functional requirements into ORB implementations. In the rest
of this section we describe the important features of our work.

2.1 Architectural Framework for Domain Specific ORBs

Since distributed technologies are nowadays applied in almost every application
domain, one general ORB architecture that is put forward as a fit for all applications,
is not realistic. Instead ORBs should be developed for a specific application-domain
or for a family of applications, incorporating support for only those non-functional
requirements that are relevant for that specific application domain or family of
applications.

Our approach supports this idea by providing the ORB developer with a domain-
specific component framework that defines a basic ORB architecture that is tailored
for a specific application domain or family of applications. The ORB developer uses
this basic architecture to build an ORB implementation that realizes all the non-
functional requirements recorded during the use-case analysis phase. However, since
the non-functional behavior is not necessarily the same for all parts of the application,
it is essential that the ORB implementation can be dynamic reconfigured with respect
to how non-functional requirements are realized. To enable this, we define the basic
ORB architecture in terms of architectural entities that abstract away from concrete
implementation details. This is possible by differentiating between the notions of
component types that constitute such architectural entities and component instances
that realize implementations of component types. Each component type defines a set
of contractually specified interfaces that describe the external characteristics of the

Customization of Object Request Brokers by Application Specific Policies 147

architectural entity, without stating anything about its implementation. The
architecture of an ORB is then defined as a static composition of component types
that are connected appropriately through their respective interfaces. A component
instance provides a specific implementation for a specific component type. There can
be more than one component instance per component type: various component
instances can differentiate in the non-functional requirements they support and how
this support is implemented.

Building an ORB implementation that realizes flexible support for the subset of
non-functional requirements, identified in use-case analysis, is then a matter of
instantiating the basic architecture with those component instances that provide the
expected service-level for each non-functional requirement.

2.2 Policies and Component Descriptors for QoS Specification

A second feature of our approach is that we use a descriptive language for specifying
Quality of Service (QoS) expectations of applications and QoS guarantees delivered
by component instances. QoS expectations reflect application specific preferences to
how well the system must perform with respect to a specific non-functional
requirement. QoS guarantees describe the service-level of a component instance for
one non-functional requirement. In our approach, QoS expectations are defined in a
policy, while QoS guarantees are specified in a component descriptor. For each non-
functional requirement, a separate descriptive language is used. Hence policies and
component descriptors are defined per non-functional requirement.

The application programmer defines specific policies for each method that takes
part in realizing the use-cases. An application specific policy specifies how the non-
functional requirement should be handled for the method that it applies to. Hence, an
application specific policy will be enforced per remote method invocation. Similarly
the ORB component developer defines component descriptors for the component
instances that he implements.

2.3 Dynamic Reconfiguration of ORB Implementation

Dynamic reconfiguration of an ORB implementation is supported by a run-time
selection mechanism between alternative component instances. This mechanism is
implemented within the component type as a generic variation point. A detailed
discussion of variation points can be found in [8]. The variation point performs the
selection on a per method invocation basis by comparing policies with component
descriptors. In our approach, method invocations are reified as typed objects that offer
introspection facilities for accessing parameters, method names, destination,
invocation context attributes, etc. This is done by stub objects, which also attach to
the reified method invocation the policies for that method. This provides the variation
point with the information it needs to make appropriate tradeoffs when selecting
between alternative component instances. Each variation point bases its choice of
component instance on a comparison between the application specific policies

148 Bo Nørregaard Jørgensen et al.

associated with the remote method invocation and the component descriptors
provided by the alternative component instances.

Inv.

policy
policy

Stub object

Application
object ORB componentORB component

ORB componentORB componentORB component
Component Type

Component Instance

V

V

Variation point for run-time selection of component instanceV

Fig. 1. Flow of reified invocation and policy object

Consequently, the customization of the ORB is controlled at runtime by the
application specific policies associated with the methods in the application objects.
Fig. 1 shows how the remote method invocation reified by the stub object traverses
through the ORB together with its associated policy objects. Propagating the policy
objects along with the reified remote method invocation allows all variation points to
make the proper choices with respect to the selection of the suitable component
instance.

3 Architecture for Customization of Object Request Brokers

In this section we discuss each of the basic building blocks of our architectural
framework in detail.

3.1 Variable Features in ORB Design

In general, the implementation of an Object Request Broker can be described as a
collection of features. A feature corresponds to an identifiable part of the ORB
functionality. Examples of such features are marshalling, invocation scheduling,
routing of invocations, etc.

In conventional ORB design, ORBs are viewed as black boxes. This information
hiding principle helps during ORB development, but it locks in decisions that can
effect QoS, after which those decisions are not readily reexamined. For instance, in
robotic manufacturing systems, some remote method invocations have strict timing
requirements. Hence the choice of scheduling algorithm in the ORB can effect
whether the ORB implementation is acceptable for such systems. In our opinion, an
ORB implementation must be designed for change by allowing different variants of
the implementation for one or more of its specific features. In the rest of this section

Customization of Object Request Brokers by Application Specific Policies 149

we give a non-exhaustive list of features that we believe are subject to variability,
limiting the scope to those features that are related to the implementation of remote
method invocation. The list of features covers ORBs as well as protocol stacks.

Invocation dispatching Invocation dispatching refers to the process of calling the
method corresponding to the invocation on the servant that implements the remote
object. Dispatching provides an interception point for reflecting on invocations at the
server side.

Marshalling Refers to the process of taking a collection of objects and assembling
them into a form suitable for transmission in a message. During marshalling objects
can be replaced, like it is the case with stubs in Java RMI. Furthermore marshalling
can be extended to perform data compression or encryption.

Unmarshalling This is the reverse process of marshalling. Unmarshalling is the
process of disassembling a marshalled message to produce an equivalent collection of
objects at the destination. When resolving an object during unmarshalling, it can have
its attributes modified or it can be replaced with an equivalent object.

Invocation Context This is a reification of the runtime context in which the
invocation takes place. The invocation context is often used to associate non-
functional requirements with the invocation, such as security context, priority, user
preferences, etc. In the CORBA specification the functionality of an invocation
context is provided by the Context object abstraction [2].

Invocation semantics In distributed systems asynchronous invocation semantics can
be preferable, since synchronous invocation semantics can result in unnecessary delay
at the caller side. Therefore both synchronous and asynchronous invocation semantics
should be supported by the ORB.

Invocation scheduling The decision on whether or not an invocation is to be
executed may depend on different factors, such as, the state of the servant
(preconditions), the priority associated with the invocation if any, the CPU load of the
node (resource admission control), etc.

Threading The number of threads available for executing object invocations
determines the degree of concurrency within the system. If only one thread is
available for executing object invocations, a purely sequential system is the result. In
contrast, multiple threads result in a truly concurrent system.

Channel Handle the responsibility of maintaining a session between two address
spaces. Session management comes in many flavors, for example object to object,
node to node (multiplexed), one per invocation.

150 Bo Nørregaard Jørgensen et al.

Reliability The kind of transport protocols available for transferring the invocation
may vary depending on the underlying network technology or according to
application domain specific requirements.

Routing According to the non-functional requirements of the application certain
types of network technologies may be preferable. This includes Ethernet, ATM,
Firewire, Canbus, etc. The availability of network technology is strongly dependent
on the application domain. For instance, the use of Canbus is common in industrial
automation.

3.2 Architectural Reuse in ORB Design

To facilitate the ORB development for a specific domain, a component framework is
used that offers a component-based ORB architecture that is tailored for that specific
domain. The architecture defines a set of component types and how these component
types cooperate together. In order to support variability, each component type reflects
upon a particular variable feature of an ORB in an implementation-independent
manner. In the implementation of the component type the variable feature is exploited
at a variation point. For each component type, the ORB developer selects one or more
component instances. The alternative component instances are characterized by
different service-levels for each non-functional requirement.

For example, in the context of a robot control project [1] we have build an ORB
component framework that defines an architecture tailored to real-time applications.
This architecture is explicitly represented by a composition of Java Beans, where each
component type is implemented as a separate Java Bean and component types
cooperate together through various classes of events. Fig. 2 gives an overview of the
architecture. It consists of the following component types:

ReferenceBean provides the support for the synchronous and asynchronous
invocation semantics.

MarshallerBean is responsible of marshalling outgoing invocations and replies, and
unmarshalling incoming invocations and replies.

ChannelBean is responsible for session management between address spaces.

TransportBean transmits messages containing invocations and replies between
address spaces.

InvocationSchedulerBean determines the order in which to dispatch incoming
invocations on the corresponding servant objects.

TaskSchedulerBean controls the threading strategy for executing all computations
within the system. This includes computations related to the basic functionality of the

Customization of Object Request Brokers by Application Specific Policies 151

ORB (e.g. listening for incoming requests) as well as computations related to method
execution on servant objects.

TaskScheduler
Bean

Reference
Bean

NewTaskListener

Marshaller
Bean

Channel
Bean

Transport
Bean

Invocation
SchedulerBean

IncomingInvocation
Listener

IncomingReply
Listener

OutgoingReply
Listener

OutgoingInvocation
Listener

IncommingMessag
eListener

OutgoingMessage
Listener

Outgoing
PacketListener

Incoming
PacketListener

Fig. 2. Bean model of the ORB architecture.

A real-time ORB implementation is constructed as an instantiation from this
architecture. The ORB developer just provides the component instances that have to
be available for each component type and glue code within each component type
connects a component instance - once selected - into the ORB implementation.

Component instances are also implemented as separate Java Beans that implement
one feature of the ORB. The design decisions made by the component developer
determine its QoS-level for the different non-functional requirements.

3.3 ORB Customization Through Descriptive Languages

ORBs have to take application-specific information into account, to achieve optimal
performance. In our approach, application-specific QoS expectations with respect to
the implementation of a specific non-functional requirement are defined in a policy.
The ORB implementation tries to offer the requested QoS expectations by integrating
those components that guarantee the expected service level for that non-functional

152 Bo Nørregaard Jørgensen et al.

requirement. In this way, by choosing appropriate individual components, the overall
ORB implementation is tailored to the application-specific QoS expectations. QoS
guarantees provided by a specific component are defined in component descriptors
that are packaged together with the component. As for policies, component
descriptors are specified per non-functional requirement.

The definition of policies is the task of the application programmer, whereas the
definition of component descriptors is the task of the ORB component developer.
However, they are both declared at a high level of abstraction in the same specialized
language. The vocabulary of such a language is defined by the ORB developer as a
general template. Application-specific policies and component descriptors are then
defined using this template. This means that their interpretation is done in terms of the
vocabulary defined by the template. The use of templates keeps the variation point
independent of specific characteristics of non-functional requirements, as well as
component instance implementations. As a consequence, a generic mechanism for
realizing variation points can be offered to the ORB developer. Note that the ORB
developer has to define a template for each non-functional requirement that he wants
to take into account.

3.3.1 Defining Templates, Policies and Component Descriptors
A template defines the vocabulary of a language for describing one specific non-
functional requirement. The vocabulary is defined as a set of parameters that can be
used to specify QoS expectations and guarantees for one non-functional requirement.
The possible service-levels available for each parameter are defined as an
enumeration. Each service-level can be further refined by associating it with a number
of attributes. For example, for reliability you could define a parameter called
tolerance that can have three different service-levels: “NONE”, “NOT_TRANS-
PARENT”, “TRANSPARENT”. The service-level “TRANSPARENT” has an
attribute for specifying the number of faults that are allowed. Another parameter is the
fault type. For this parameter three different service-levels can be defined:
“FAIL_STOP”, “BYZANTINE”, and “TIME”.

Defining a policy from a template consists of specifying the service-level for one
or more parameters and setting the associated attributes. A policy only has to define
the number of parameters from its template that are necessary to specify the QoS
expectations of its associated application method. Parameters that are not defined are
assigned a default service-level, by default this is the first service-level from the
parameter’s enumeration in the template. The process for defining a component
descriptor is similar. Each component implementation can have more than one
component descriptor, since it can have been built to support more than just one
specific non-functional requirement. For instance, a marshalling component can
provide support for real-time requirements as well as security requirements, but it
doesn’t has to do so. Examples for defining policies and component descriptors are
given in section 4.

Policies and component descriptors are transformed into objects by parsing their
definitions. The corresponding class diagram is shown in Fig. 3.

Customization of Object Request Brokers by Application Specific Policies 153

Attribute

$ EQUAL_TO : int = 0
$ LESS_THAN : int = 1
$ LARGER_THAN : int = 2
equality : int

getName()
setName()
getValue()
setValue()
setEquality()
equals()

Symbol

getIdentifier()
setIdentifier()
getAttributes()
addAttribute()
equals()

0..*

attributes

0..*

Parameter

getName()
setName()
getSymbol()
setSymbol()
equals()

1..* symbol1..*

vocabulary

getName()
setName()
getProperties()
addProperty()
equals()

1..*

properties

1..*

Fig. 3. Class diagram for representing policies and descriptors

3.3.2 Matching Policies with Component Instances
At run-time, all application specific policies that apply to a method are grouped
together. The variation points within the ORB component types traverse this group to
find the policy objects that influence their choice of implementation.

To make the best match the variation points apply a mapping function to the
application specific policies provided for the method and the component descriptors
of the component instances of the implicated component type. At each variation point
that component instance is selected whose component descriptors make the “best
match” with the application specific policies. The best match for an application
specific policy is the component descriptor that has the most parameters that match
the parameters in the policy. Matching is based on the notion of equality; that is, a
component descriptor matches a policy if the attributes associated with the service-
levels of its parameters equal with the corresponding attributes of the service-levels
defined by the policy. For instance, assume that the value of an attribute in a
component descriptor always has to be larger than the value of the attribute in the
corresponding policy. This relationship is expressed by setting the equality relation of
the attribute in the component descriptor to LARGER_THAN and the equality
relation of the attribute in the policy to LESS_THAN. The matching function will
then verify that the relation holds for the actual attribute values. An appropriate set of
keywords is provided for specifying such equality relations when defining policies
and descriptors.

The advantage of the ‘best match’ strategy is its generality. It is implemented once
and for all in one variation point and this variation point can immediately be used in
any component type. However, when dealing with more complex cases, the ‘best
match’ strategy may not be sufficient. Examples include the cases where none or
more than one component instance fails to completely match all QoS parameters for a
non-functional requirement. In these cases, different selection strategies could be

154 Bo Nørregaard Jørgensen et al.

preferable over the ‘best match’ strategy. For instance, when no component instance
makes a complete match, the selection strategy could prefer an instance that performs
weakly on some parameters rather than selecting one which fails completely on one
parameter.

Another complex situation occurs when combining non-functional requirements
that are not orthogonal. Non-functional requirements that are not orthogonal introduce
constraints that have to be taken into consideration by specialized variation points that
are able to enforce these constraints. For instance, when policies for real-time and
security are applied simultaneously for a method, an invocation of the method may
miss its deadline due to the additional overhead induced by encryption and
decryption. This constraint can be taken into account if the framework architect
constructs a third template that defines the vocabulary for expressing such a
constraint. Using this template the application programmer can for example specify a
desired upper limit for encryption overhead, leading to the definition of a third
'overlapping' policy. This provides the variation point with the information it needs to
make a good choice between component instances, without breaking the constraint.
Here again, different specialized selection strategies can be used. For example, one
variation point could decide - when the constraint is violated - to decrease the
required security level in favor of the timeliness requirement. One could also consider
a variation point that is able to customize its component instances by forwarding the
constraint information via a contractually specified meta-interface that the component
instances export. Which selection strategy is best, is however often not determinable
until the time of instantiating a specific ORB implementation from the ORB
component framework. Hence, component types must offer hooks that allow different
variation point implementations to be plugged in.

4 Applying the Approach to a Time-Critical Application

In this section we show how our approach can be used to customize an ORB for a
distributed robot controller application. The robot controller is part of the
SmartController project that addresses the development of a generic robot controller
for arbitrary robotic manipulators [1]. The robot controller is built as a component
framework, based on an extension of the JavaBeans model [9].

Basically, there are two primary functional aspects that a non-trivial robot
controller should take care of. First, there is the task of generating collision free
motion for the robot within the work cell. The robot should not collide with itself or
with the work piece. Secondly, there is the planning of the work that the robot has to
perform on the work piece. This work is described by a process description that
specifies the speed by which the robot should move over the surface of the work piece
to perform the work correctly. Deviation from the specified speed will have an impact
on the quality of the performed work. For instance in spray painting, deviation in the
speed by which the spray gun is moved over the surface of the work piece will either
result in a thinner or ticker layer of paint.

Customization of Object Request Brokers by Application Specific Policies 155

4.1 Defining a Template for Temporal Behavior

Object interactions within a real-time system can be characterized along the
dimensions of timeliness, temporal behavior, and invocation precedence. Timeliness
expresses whether an object interaction is time constrained. Temporal behavior
specifies how often an object interaction occurs. Finally, invocation precedence
specifies whether the next invocation of a method by the same caller is more
important than the present one. Invocation precedence is useful when old information
becomes obsolete as soon as new information is available. One example is proximity
sensors. In robotics, proximity sensors provide information about the distance to
nearby obstacles. The actuality of this information is crucial for collision avoidance.

In the context of this paper, timeliness of object interactions is classified by the two
values:

REALTIME Response must be timely; that is, within a specified deadline. A late
response will have undesirable consequences in the application domain.
NEUTRAL No timing constraint is imposed on the object interaction.

Timeliness says nothing about the magnitude of a timing constraint; it can be
microseconds or weeks. The temporal behavior of object interactions is classified as:

PERIODIC Object interactions that take place at regular time intervals and that
execute for a fixed amount of time. Each interaction has to finish before the end of
its period.
SPORADIC Object interactions triggered by external events or internal state
changes.

The precedence of subsequent invocations of the same method is classified as:

NEXT The next invocation has precedence over the present. The present
invocation can be skipped if it has not begun execution before the next one arrives.
CURRENT The current invocation has to be finished before the next one is
allowed to execute.

Based on these classifications we can define a template for specifying application
specific policies for temporal behavior. Fig. 4 shows the template definition.

template TemporalBehavior {

parameter timeliness enum NEUTRAL,REALTIME;

parameter temporal enum SPORADIC,PERIODIC;

parameter precedence enum CURRENT,NEXT;

REALTIME attributes DEADLINE Long;

PERIODIC attributes PERIOD Long;

}

Fig. 4. Template for specifying temporal behavior

156 Bo Nørregaard Jørgensen et al.

4.2 Defining an Application Specific Policy for Temporal Behavior

To illustrate how application specific policies are instantiated from the temporal
behavior template we apply it to two methods of the JointController component from
our robot controller framework. The result is shown Fig. 5. The JointController
component is responsible for applying the forces that describe the robot motion to the
robot's joint actuators.

TemporalBehavior JointController.

addSensorDataSubscriber(SensorDataSubscriber) {

timeliness NEUTRAL;

temporal SPORADIC;

precedence CURRENT;

}

TemporalBehavior JointController.onForceReady(Force) {

timeliness REALTIME attribute DEADLINE 100;

temporal PERIODIC attribute PERIOD 100;

precedence NEXT;

relation DEADLINE larger than;

relation PERIOD larger than;

}

Fig. 5. Temporal policy applied to an application class

The first part of the policy specifies that the method addSensorDataSubscriber
is only invoked sporadically and that there is no timing constraint on the execution of
the method. The second part specifies that the method onForceReady is invoked
periodically and that the execution of each invocation is constrained in time. The
precedence parameter tells that new force values are preferable over old ones. The
equality relation for the deadline and the period attribute specifies that it must always
be larger than the corresponding attribute provided by a component descriptor.

4.3 Defining Component Descriptor for Temporal Behavior

The ORB components that directly influence the temporal behavior of a distributed
application are the components responsible for executing and transmitting remote
method invocations. In our case these components are the TaskSchedulerBean and the
TransportBean. Before we show the descriptors for these components, we describe
each component in more detail to give the basis for understanding the meaning of
these descriptors.

4.3.1 TaskSchedulerBean
Predictions about the system’s temporal behavior can only be made if the execution of
all computations within the system is coordinated. Coordination ensures that all
computations advance, as they are required to. Introducing the concept of a task
enables this. A task represents the basic unit of computation. Examples of tasks within

Customization of Object Request Brokers by Application Specific Policies 157

the ORB include listening for and receiving messages from the network, dispatching
invocations to servant objects, etc. Hence, all execution within the ORB and its
application is represented as tasks that are scheduled by the TaskSchedulerBean. The
application programmer is not allowed to create threads within the application, since
they will interfere with the scheduling done by the TaskSchedulerBean. Component
instances of the TaskSchedulerBean can provide different scheduling guarantees. One
component instance can be used for tasks that only require best-effort scheduling and
execution; whereas, another component instance can be used for tasks that require
real-time scheduling. Here real-time scheduling refers to either Early-deadline-first or
Rate-monotonic scheduling [10].

The rationale for encapsulating the threading feature in the TaskSchedulerBean is
the fact that if a time-critical application is built on top of an ORB that does not apply
any strategy for coordinating the execution of threads, it can result in missed
deadlines for important operations. In the task-based approach this situation is
avoided by using a component instance which implements a real-time scheduling
algorithm for executing time constrained tasks and a component instance that
implements a non real-time scheduling algorithm for executing tasks that only require
best-effort service. The execution of tasks scheduled by the real-time scheduling
algorithm will be done in a thread given a real-time priority whereas execution of non
real-time tasks will be done in a thread with normal priority. Component descriptors
for two component instances of the TaskSchedulerBean that implements these
different scheduling strategies are shown in Fig. 6. In our current prototype, the
RealtimeTaskSchedulerBean uses a thread running at the highest priority.

TemporalBehavior FifoTaskSchedulerBean {

timeliness NEUTRAL;

temporal SPORADIC;

precedence CURRENT;

}

TemporalBehavior RealtimeTaskSchedulerBean {

timeliness REALTIME attribute DEADLINE 10;

temporal PERIODIC attribute PERIOD 10;

precedence NEXT;

relation DEADLINE less than;

relation PERIOD less than;

}

Fig. 6. Component descriptor for TaskScheduler component instances

4.3.2 TransportBean
The TransportBean is responsible for transferring object invocations to a different
address space. The most interesting case is when the source and destination address
spaces are located on different hosts. In that case, the object invocations are sent over
the network, which is an important factor affecting the overall QoS guarantees an
ORB is able to make. The TransportBean is implemented as a specialized
instantiation of our DIPS protocol stack framework [11]. The framework can

158 Bo Nørregaard Jørgensen et al.

instantiate dynamic protocol stacks which can cope with variability in much the same
way as the global ORB architecture. The TransportBean is in itself a component
framework with its own variation points. This nested structure has the advantage that
each variation point inside this Bean can be individually described, while the
TransportBean still fits in the global ORB architecture as one component which
supports the global QoS concerns. The designers of the TransportBean have to
determine which non-functional concerns they will support. For each non-functional
aspect they support, they have to provide a component descriptor. In the case of our
example, they will support the TemporalBehaviour template. The example of the
TransportBean is interesting in that it shows what happens when an ORB component
is itself built from components. In this case, the TransportBean consists of two
component types, namely the RoutingBean and the ReliabilityBean. The rest of the
TransportBean structure and functionality is not relevant for the discussion in this
paper. We like to stress, though, that as the TransportBean is built with a flexible
protocol stack framework, new versions can be built which expose additional internal
component types, should the need arise.

We now describe the function of each of the two nested component types in more
detail.

RoutingBean The RoutingBean is responsible for selecting the underlying network
technology. A selection is made based on the application requirements and on the
capabilities of the underlying communication technology. This resource-aware
routing is a variation point in the TransportBean, therefore the TransportBean exposes
the RoutingBean type. Depending on the type of remote method invocation that has to
be sent over the network, a specific RoutingBean instance will be chosen. For
example, a real-time invocation with a short deadline will be sent over a
communication channel which can guarantee timely delivery, such as IEEE 1394
Firewire. Neutral invocations are sent over another channel if possible, for example, a
cheap Ethernet connection, to avoid unnecessary usage of precious resources. The
cases discussed in this example are handled by the FirewireRoutingBean and the
EthernetRoutingBean component instances, respectively.

ReliabilityBean Many remote method invocations require reliable transmission. The
TransportBean therefore includes a ReliabilityBean for managing acknowledgements
and retransmissions. The retransmission strategy is an important ingredient of this
component which has a strong impact on the ability of the TransportBean to provide
QoS. Therefore, the TransportBean includes a variation point for the retransmission
strategy by exposing the ReliabilityBean component type. As a result, a specific
ReliabilityBean instance is chosen depending on the properties of the object
invocation at hand. For example, for a periodic remote method invocation for which
the precedence parameter has the value “NEXT”, the strategy takes into account the
period of the invocation and it does not perform retransmissions when the next
invocation is imminent. For sporadic invocations, a retransmission strategy such as
the one included in TCP is more suitable. These cases are handled by the
PrefernextReliabilityBean and the NormalReliabilityBean component instances,
respectively.

Customization of Object Request Brokers by Application Specific Policies 159

In order to support the automatic component instance selection, the TransportBean
component developer has to provide a component descriptor for every instance of
both the RoutingBean and the ReliabilityBean. See Fig. 7 for the descriptors of the
component instances from our example. The FirewireRoutingBean can cope with
remote method invocations with real-time constraints, whether they are sporadic or
periodic. The EthernetRoutingBean can only handle neutral sporadic invocations.
The ReliabilityBean instances can each handle a different kind of precedence.

TemporalBehavior FirewireRoutingBean {

timeliness REALTIME attribute DEADLINE undefined;

temporal SPORADIC,PERIODIC attribute PERIOD undefined;

relation DEADLINE less than;

relation PERIOD less than;

}

TemporalBehavior EthernetRoutingBean {

timeliness NEUTRAL;

temporal SPORADIC;

precedence CURRENT;

}

TemporalBehavior PrefernextReliabilityBean {

precedence NEXT;

}

TemporalBehavior NormalReliabilityBean {

precedence CURRENT;

}

Fig. 7. Component descriptors for the RoutingBean and the ReliabilityBean

In addition, the TransportBean itself needs a descriptor that describes its capabilities
to the rest of the ORB. This descriptor is simply the combination of the capabilities of
all internal component instances that make up the TransportBean. The result is given
in Fig. 8.

TemporalBehavior TransportBean {

timeliness NEUTRAL, REALTIME attribute DEADLINE undefined;

temporal SPORADIC, PERIODIC attribute PERIOD undefined;

precedence CURRENT, NEXT;

relation DEADLINE less than;

relation PERIOD less than;

}

Fig. 8. Component descriptor for TransportBean component implementation

This descriptor basically means that our TransportBean instance can cope with all
kinds of remote method invocations. Its internal variation points and nested
components will take care of it. Note that the values for the deadline and period

160 Bo Nørregaard Jørgensen et al.

attributes are left out for the TransportBean. This means that the values are
dynamically determined at run-time by the component instances.

4.4 Mapping Temporal Behavior to Component Instances

To exemplify how reconfiguration of the ORB works, we will discuss the invocation
of two methods with different temporal behavior. Both methods belong to the
JointController component from our SmartController framework.

When the method addSensorDataSubscriber is invoked on the JointController
stub, the invocation is reified and the application specific policies associated with the
method are retrieved. In the present case only one application specific policy has been
associated with the method, namely an instance of the TemporalBehavior template. Its
policy object is now propagated along with the invocation down through the ORB.
When the invocation arrives at the TransportBean at the client side, the RoutingBean
and the ReliabilityBean within the TransportBean decide to transmit the invocation to
the destination address space using the component instances EthernetRoutingBean
and NormalReliabilityBean, respectively. The TransportBean makes this decision
based on the value of the timeliness parameter, which is “NEUTRAL”. At the server
side, the TaskSchedulerBean assigns the Task responsible for executing the
invocation is the component instance FifoTaskSchedulerBean. This assignment is
based on the same reasoning.

Invocation of the method onForceReady leads to different choices within the
TransportBean and the TaskSchedulerBean, due to the different values of the policy
properties. Now the TransportBean chooses to use the component instances
FirewireRoutingBean and PrefernextReliabilityBean for transmitting the invocation.
This choice is made because the value of the timeliness parameter is “REALTIME”.
Similarly, the TaskSchedulerBean, at the server side, chooses to use the
RealtimeTaskSchedulerBean component instance. In general terms the temporal
nature of the method onForceReady can be characterized as isochronous. This is
specified by setting the timeliness parameter to “REALTIME”, the temporal
parameter to “PERIODIC”, and the precedence parameter to “NEXT”. The
retransmission algorithm within the PrefernextReliabilityBean can utilize this
information to optimize its performance for transferring the force information. Here
optimization consists in skipping retransmission of the current invocation in case of
transmission failures if the next invocation has become available in the meanwhile.

This example illustrates that the temporal behavior of a method depends on its
function within the application. Accordingly the ORB can not just handle all method
invocations equally. Run-time reconfiguration of the ORB is necessary to meet the
requirements of different methods.

5 Related Work

Related projects investigate ways of adding support for non-functional requirements
to distributed object systems, although many of them are concentrating on specific

Customization of Object Request Brokers by Application Specific Policies 161

application domains, such as ReTINA [12] (telecommunications), or restrict
themselves to non-functional requirements only concerning bandwidth and
throughput, such as TAO [5]. The ReTINA project has developed a distributed
processing environment for telecommunication applications that complies with the
Telecommunications Information Networking Architecture (TINA) standard.
ReTINA provides real-time audio and video, and network QoS guarantees. TAO is a
real-time CORBA compliant ORB that provides end-to-end QoS by vertically
integrating the ORB middleware with communication protocols and network
subsystems. TAO is the first real-time ORB supporting end-to-end QoS over COTS
platforms and ATM networks. Our research goals are much broader than the goals of
those projects, since we believe the dynamic reconfiguration offered by our
framework is applicable to a wide range of non-functional requirements.

Other related work, are projects where reflection and component-based techniques
are used to achieve open Object Request Brokers. Researchers at APM have
developed an experimental middleware platform called FlexiNet [13]. This platform
allows the programmer to tailor the underlying communications infrastructure by
inserting/removing meta-level components. Researchers at Illinois have developed
dynamicTAO [14], a CORBA compliant reflective ORB that supports run-time
reconfiguration. DynamicTAO maintains an explicit representation of its own internal
structure and uses it to carry out dynamic reconfiguration. Reconfiguration is
implemented by a so called TAOConfigurator that contains hooks to which
implementations of dynamicTAO strategies are attached. In our opinion, policies can
here be used to drive the configuration process implemented within the
TAOConfigurator. At Lancaster University researchers conduct research about a
generic reflective architecture for constructing open middleware platforms [6]. They
define three distinct meta-object protocols that reify specific aspects of the
middleware architecture: encapsulation, composition and environment. In their
approach they build an ORB at the base-level, that can customize itself through the
deployment of these three MOPs. However, a general problem of applying meta-level
programming for application-specific customization, is that it’s too complex for the
average application programmer to comprehend [7]. We address this problem by
introducing application-specific policies together with a reconfigurable ORB
architecture. However, we think that our work is also complementary to this related
work, since policies can be applied there as well.

Researchers at HPLabs have developed a general-purpose language for QoS, called
QML [15]. QML has three main abstraction mechanisms for QoS specification:
contract type, contract and profile. Although these abstractions are more generic than
ours, the first abstraction is similar to a template and the last two abstractions are
captured by a policy. They show how QML can be used to build a QoS-based trader
that matches client requirements with QoS properties of services [16]. In this case,
they don’t use QML for customization of the underlying distributed platform.

162 Bo Nørregaard Jørgensen et al.

6 Conclusion

In this paper we presented an architectural framework that can be used to implement
domain specific ORBs that can be dynamically configured to support different quality
of service levels for non-functional requirements. An important characteristic of the
ORB architecture is that it allows each remote method invocation to be treated
differently. This is particularly important in time-critical applications where some
remote method invocations have timing constraints and others don’t. For other
applications, such as e-commerce the situation is similar. Here security is an issue for
some remote method invocations and for others it is not. This variation between
methods is easily expressed by defining policies that describe how non-functional
requirements impact the invocations of each method. Our experiences with applying
policies for constructing open communication systems [17][11], and customizable
metalevel programs for non-functional requirements [7] have given us confidence in
the feasibility of our architecture.

To validate our ORB architecture we developed a prototype that integrates the
protocol stack with the ORB. We chose not to differentiate between the ORB and the
protocol stack like conventional ORB implementations, where the protocol stack is a
black-box because of the real-time requirements of our robot controller application.
Only by integrating the protocol stack with the rest of the ORB can we be sure that
the real-time requirements of the robot controller application are effectively enforced
at all levels.

The approach we have presented provides a simple but powerful tool for
customizing ORBs to support non-functional requirements. The approach divides the
responsibility for the different parts of the customization process to the people who
have the necessary knowledge to perform it. In future work we will investigate how
XML can be used for expressing policies and component descriptors. Using XML
will make our architecture more accessible since XML is becoming the universal
language for specifying meta-data.

References

1. Joosen W., Jørgensen B.N., Linder S.M., Olsen M.M., Perram J.W., Petersen H.G., Ruhoff
P.T., Sørensen A., Sørensen A.S. and Wagenaar J.M., “Towards a generic controller for
arbitrary robotic manipulators”, Submitted to ICRA2000.

2. Object Management Group, “The Common Object Request Broker: Architecture and
Specification”, 2.2 ed., Feb. 1998.

3. D. Box, “Essential COM”, Addison-Wesley, Reading, MA, 1997.
4. A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java System”,

USENIX Computing Systems, vol. 9, November/December 1996.
5. Douglas C. Schmidt, David L. Levine, and Chris Cleeland, “Architectures and Patterns for

High-performance, Real-time ORB Endsystems”, Advances in Computers, Academic
Press, Ed., Marvin Zelkowitz, to appear in 1999.

6. Blair, G.S., Coulson, G., Robin, P., Papathomas, M., "An Architecture for Next
Generation Middleware", Proc. IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware '98), pp 191-206, Springer, 1998.

Customization of Object Request Brokers by Application Specific Policies 163

7. Bert Robben, Bart Vanhaute, Wouter Joosen, Pierre Verbaeten, “Non-Functional
Policies”, In Proceedings of the Second International Conference on Metalevel
Architectures and Reflection, Saint-Malo, France, July 1999.

8. Jacobsen I., Griss M., Jonsson P., “Software Reuse; Architecture, Process and
Organization for Business Success”, Addison Wesley 1997, ISBN 0-201-92476-5.

9. B. N. Jørgensen, W. Joosen, “Classifying Component Interaction in Product-line
Architectures”, Proceedings of TOOLS PACIFIC 99, Melbourne, Australia, IEEE, 1999.

10. Liu C., Layland J., ”Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment”, JACM, vol. 20, pp. 46-61, January 1973.

11. Frank Matthijs, “A framework for the domain of protocol stacks: methodology, conception
and applications”, PhD thesis, Katholieke Universiteit Leuven, 1999.

12. Bosco, P.G., Dahle, E., Gien, M., Grace, A., Mercouroff, N., Perdigues, N., and Stefani,
J.B., “The ReTINA project: an overview”, ReTINA Technical Report, 1996.

13. Hayton R., "FlexiNet Open ORB Framework", APM Technical Report 2047.01.00, APM
Ltd., Poseidon House, Castle Park, Cambridge, UK, October 1997.

14. Manuel Román, Fabio Kon and Roy Campbell, ”Design and Implementation of Runtime
Reflection in Communication Middleware: the dynamicTAO Case”, in proceedings of the
ICDCS'99 Workshop on Middleware. Austin, Texas. May 31 - June 5, 1999

15. Svend Frølund, Jari Koistinen, “Quality-of-Service Specification in Distributed Object
Systems”, in Distributed Systems Engineering Journal, volume 5, number 4, December
1998.

16. Svend Frølund, Jari Koistinen, “Quality-of-Service Aware Distributed Object Systems”, in
proceedings of the 1999 USENIX Conference on Object-Oriented Technologies and
Systems (COOTS).

17. Eddy Truyen et. al., “Open Implementation of a Mobile Communication System”, In
Proceedings of the ECOOP' 98 Workshop on Mobility and Replication, July 1998,
Brussels, Belgium. http://www.cs.kuleuven.ac.be/~eddy/mp/smove.html

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 164-184, 2000.
 Springer-Verlag Berlin Heidelberg 2000

The Role of Software Architecture in Constraining
Adaptation in Component-Based Middleware Platforms

Gordon S. Blair1, Lynne Blair1, Valérie Issarny2, Petr Tuma3, Apostolos Zarras2

1Distributed Multimedia Research Group, Computing Department, Lancaster University,
Bailrigg, Lancaster, LA1 4YR, U.K.
{gordon,lb}@comp.lancs.ac.uk

2Solidor Research Group, INRIA-Rocquencourt, Domaine de Voluceau, Rocquencourt - BP
105, 78153 Le Chesnay Cédex, France.

{Valerie.Issarny,Apostolos.Zarras}@inria.fr

3Distributed Systems Research Group, Department of Software Engineering, Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic.

tuma@nenya.ms.mff.cuni.cz

Abstract. Future middleware platforms will need to be more configurable in
order to meet the demands of a wide variety of application domains.
Furthermore, we believe that such platforms will also need to be re-
configurable, for example to enable systems to adapt to changes in the
underlying systems infrastructure. A number of technologies are emerging to
support this level of configurability and re-configurability, most notably
middleware platforms based on the concepts of open implementation and
reflection. One problem with this general approach is that widespread changes
can often be made to the middleware platform, potentially jeopardizing the
integrity of the overall system. This paper discusses the role of software
architecture in maintaining the overall integrity of the system in such an
environment. More specifically, the paper discusses extensions to the Aster
framework to support the re-configuration of a reflective (component-based)
middleware platform in a constrained manner. The approach is based on i) the
formal specification of a range of possible component configurations, ii) the
systematic selection of configurations based on a given set of non-functional
properties, and iii) the orderly re-configuration between configurations, again
based on formally specified rules.

1 Introduction

Middleware technologies such as CORBA and DCOM are now established as central
elements in modern computer systems, offering portability and interoperability
through their platform independent programming models. However, with the rapid
deployment of such platforms, there is an increasing demand to introduce more
configurability and re-configurability into middleware. For example, configurability
is important to meet the often conflicting requirements in areas such as embedded
systems, real-time systems, telecommunications, digital libraries, etc. Similarly, re-
configurability is increasingly important to cope with rapidly fluctuating
environmental conditions as found, for example, in mobile computing. In addition, re-

The Role of Software Architecture in Constraining Adaptation 165

configurability can help enormously in supporting systems evolution, as functional or
non-functional requirements change over time (e.g. the scaling up of a system to deal
with an order of magnitude increase in activity).

A number of researchers have investigated issues of configurability and re-
configurability in middleware platforms. Such solutions often involve the selective
replacement or tailoring of key components of the system, e.g. parts of the protocol
stack. However, a more general solution is offered by emerging reflective
middleware platforms, exploiting the concepts of open implementation and reflection
to offer a more principled access to the underlying virtual machine. A number of such
platforms have been developed, including Open-ORB [Blair98], Dynamic TAO
[Román99], Open CORBA [Ledoux97], and Flexinet [Hayton97]. Such platforms
offer great flexibility in terms of meeting the needs of a wide range of application
domains. However, they all suffer from the problem of offering too much flexibility,
i.e. it is possible to compromise the overall integrity of the system by allowing
unbridled access to details of implementation. This paper examines this issue in
depth. In particular, the paper considers the role of software architecture in
constraining adaptation in reflective middleware platforms. More specifically, the
paper examines the results of the Aster Project [Issarny96] and considers the potential
of Aster tools and techniques to ensure robust adaptation in the context of Open-ORB
(although the results are equally applicable to a range of other reflective middleware
platforms). Some important extensions are suggested for Aster to ensure more
seamless support for adaptation in such environments.

The paper is structured as follows. Section 2 presents some background
information on reflective middleware in general, and the Open-ORB Project in
particular. Emphasis is given to the component-based design of this platform. Section
3 then examines the key results of the Aster Project, illustrating how Aster can be
used to support the automatic synthesis of middleware platforms from statements of
the required non-functional properties (cf configurability). Following this, section 4
provides a more in-depth examination of the adaptation process, highlighting 4 key
phases that must be supported. Our solution is then discussed in section 5. This
section also includes an explicit statement of the required extensions to Aster,
including exploitation of the specifics of reflective middleware. Finally, related work
and concluding remarks are given in sections 6 and 7 respectively.

2 Background on Open-ORB

2.1 Why Reflective Middleware?

The concept of reflection was first introduced by Smith in 1982 [Smith82]. In this
work, he introduced the reflection hypothesis which states:

"In as much as a computational process can be constructed to reason about
an external world in virtue of comprising an ingredient process (interpreter)
formally manipulating representations of that world, so too a computational
process could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) formally manipulating representations of its
own operations and structures".

166 Gordon S. Blair et al.

The importance of this statement is that a program can access, reason about and alter
its own interpretation. Access to the interpreter is provided through a meta-object
protocol (MOP) which defines the services available at the meta-level [Kiczales91].
Access to the meta-level is provided through a process of reification. Reification
effectively makes some aspect of the internal representation explicit and hence
accessible from the program.

The primary motivation of a reflective language or system is to provide a
principled (as opposed to ad hoc) means of achieving open engineering. In contrast,
the present-day approach to developing middleware platforms is generally to adopt a
black box philosophy, whereby implementation details are hidden from the platform
user (cf. distribution transparency). There is increasing evidence though that the black
box philosophy is becoming untenable. For example, the OMG have recently added
internal interfaces to CORBA to support services such as transactions and security.
The recently defined Portable Object Adapter is another attempt to introduce more
openness in their design. Nevertheless, their overall approach can be criticised for
being rather ad hoc. Similarly, a number of ORB vendors have felt obliged to expose
selected aspects of the underlying system (e.g. filters in Orbix or interceptors in
COOL). These are however non-standard and hence compromise the portability of
CORBA applications and services. The authors believe that the solution is to provide
flexible middleware platforms through application of the principle of reflection.

2.2 The Open-ORB Architecture

In the Open-ORB architecture, we adopt a component-based model of computation
[Szyperski98]. A middleware platform is then viewed as a particular configuration of
components, which can be selected at build-time and re-configured at run-time. We
therefore provide an open and extensible library of components, and component
factories, supporting the construction of such platforms, e.g. protocol components,
schedulers, etc. The use of components is important given the trend towards the
application of this technology in open distributed processing, e.g. CORBA v3
[OMG99] and DCOM. Note however that these technologies exploit component
technology at the application level; we extend this approach to the structuring of the
middleware platform itself. Our particular component model includes features to
support multimedia applications, and is derived from previous work on the
Computational Language from RM-ODP [Blair97]. One notable feature of this
component model is that communications channels are explicitly represented by
components. Such components are referred to as bindings and have the important role
in supporting inspection and adaptation of communications related aspects. A fuller
description of the component model can be found in [Blair97].

Each component (or more strictly, each interface) has an associated meta-space,
offering access to meta-level for the component, i.e. the underlying virtual machine
supporting the execution of this component. Because of the complexity of distributed
systems, this meta-space is partitioned into a number of orthogonal meta-space
models. This approach was first advocated by the designers of AL-1/D, a reflective
programming language for distributed applications [Okamura92]. The benefit of this
approach is to simplify the interface offered by the meta-space, by maintaining a

The Role of Software Architecture in Constraining Adaptation 167

separation of concerns between different system aspects. Currently, four meta-space
models are supported in Open-ORB as discussed below.

1. The Encapsulation Meta-model. This meta-model provides access to the
representation of a particular interface in terms of its set of methods and associated
attributes, together with key properties of the interface. This is equivalent to the
introspection facilities available, for example, in the Java language, although we go
further by also supporting adaptation.

2. The Compositional Meta-model. In reality, many components will in fact be
composite, using a number of other components in their construction. In
recognition of this fact, we also provide a compositional meta-model offering
access to such constituent components. In the meta-model, the composition of a
component is represented as a component graph, in which the constituent
components are connected together by local bindings1. The interface offered by the
meta-model then supports operations to inspect and adapt the graph structure, i.e.
to view the structure of the graph, to access individual components in the graph,
and to adapt the graph structure and content. This meta-model is particularly useful
when dealing with binding components [Blair98]. In this context, the composition
meta-model reifies the internal structure of the binding in terms of the components
used to realise the end-to-end communication path. For example the component
graph could feature an MPEG compressor and decompressor and an RTP binding
component. The structure can also be exposed recursively; for example, the
composition meta-model of the RTP binding might expose the peer protocol
entities for RTP and also the underlying UDP/IP protocol. It is argued in
[Fitzpatrick98] that open bindings alone provide strong support for adaptation.

3. The Environmental Meta-model. The environmental meta-model supports the
reification of activity related to a particular interface of a component. In terms of
middleware, this equates to functions such as message arrival, enqueueing,
selection, unmarshalling and dispatching (plus the equivalent on the sending side)
[Watanabe88, McAffer96]. At present, our architecture offers a simple
environmental meta-model enabling the insertion of pre- and post- methods. Such a
mechanism can then be used to introduce, for example, additional levels of
distribution transparency (such as concurrency control) or to insert functions such
as security managers or compression components.

4. The Resources Meta-model. Most reflective languages and systems restrict their
scope to the above styles of reflection. In experiments, however, we have identified
a significant weakness of this approach, namely that we have no means of
accessing the level of resources and resource management in the system. This is a
particular problem for mobile, multimedia and real-time systems where it is often
important to be aware of the resources currently available at a given node (e.g. if it
is intended to introduce a new software compression component). We therefore
introduce a fourth meta-model, referred to as the resource meta-model [Blair99a].

1 The RM-ODP inspired concept of local binding is crucial in our design, providing a
language-independent means of implementing the interaction point between interfaces within
a given address space.

168 Gordon S. Blair et al.

This meta-model supports the reification of resource creation, scheduling and,
more generally, management. The meta-model provides access to a set of
components representing resources, together with the associated managers. As with
other meta-models, it is then possible to either inspect or adapt activity associated
with resources. For example, it is possible to insert monitors to capture statistics on
the effectiveness of a thread scheduling policy and then possibly change this policy
based on the information collected.

The first two meta-space models support what is often referred to as structural
reflection in the literature, whereas the latter two models offer behavioural reflection
[Watanabe88].

The complete Open-ORB architecture is summarised in figure 1. This highlights
the recursive nature of the architecture in that each meta-space is populated by
components that, consequently, have their own meta-space models, etc.

Fig. 1. The Structure of Meta-Space in Open-ORB

An implementation of the Open-ORB architecture has been carried out using Python.
In addition, a second implementation is now underway using a lightweight and
efficient reflective component model, based on COM. Further information on the
reflective middleware architecture and associated implementation work can be found
in the literature [Blair98, Blair99a, Costa98].

2.3 Analysis

The Open-ORB architecture described above provides a principled means of
supporting both inspection and adaptation of the underlying middleware platform.
Through inspection, the programmer can discover information about the structure of a
component, together with any sub-components used in its construction. The

The Role of Software Architecture in Constraining Adaptation 169

programmer can also analyse the behaviour of key parts of the system and resource
usage through the insertion of monitoring behaviour. Based on this, the programmer
can then make a number of fine or course grained changes to the underlying platform.
For example, the programer can locate a key compression component and request a
change to the compression strategy (e.g. drop B-frames in MPEG). Alternatively, he/
she can change the compression and matching decompression component completely
(e.g. to H.263). Other strategies include allocating more resources or changing the
resource management policy for a subset of resources, or extending the system with
new capabilities (e.g. encryption).

As can be seen, this procedural approach provides great flexibility to the
programmer. Indeed, as argued in the introduction, there is often too much flexibility.
At present, this is constrained only by (run-time) type checking on creating a local
binding between components. While offering a degree of safety, this is clearly not
sufficient. What we therefore require is a mechanism that i) can delegate
responsibility for adaptation to a (trusted) management entity or entities, ii) can offer
a more declarative view of adaptation, and iii) can ensure the architectural integrity of
the system before, during and after re-configurations. This is precisely the problem
that is addressed in this paper, where we investigate the role of software architecture,
in general, and the Aster techniques and tools, in particular, in providing this level of
robust adaptation management.

3 Software Architecture for Component-Based Middleware

3.1 What is Software Architecture?

Research effort in the software architecture domain aims at reducing costs of
developing large, complex software systems. Towards that goal, formal notations are
being provided to describe software architectures, replacing the usual informal
description of software architectures in terms of box-and-line diagrams [Perry92].
These notations are generically referred to as Architecture Description Languages
(ADLs). Basically, an ADL allows the developer to describe the gross organisation of
the system in terms of coarse-grained architectural elements, thus abstracting away
from implementation details. Prominent elements of a software architecture subdivide
into the three following categories:

1. components that abstractly define computational units written in any programming
language,

2. connectors that abstractly define types of interactions between components (e.g.,
pipe or client-server), and

3. the configuration that defines an application structure in terms of the
interconnection of components through connectors.

The interested reader is referred to [Medvidovic97] for a survey of existing ADLs and
associated CASE tools.

170 Gordon S. Blair et al.

3.2 The Aster Approach

The main goal of the Aster Project is to apply ideas from the software architecture
community to the field of component-based middleware. More specifically, the aim of
the work is to support the systematic synthesis of middleware configurations from
architectural descriptions. Through this approach, it is then possible to match the
services offered by the middleware platform to the demands of a given application
domain. In more detail, the input of the synthesis process is an architectural
description of the application that, apart from specifying the overall structure of the
application in terms of components and connectors, also includes a specification of
the required properties of the middleware connectors that mediate the interaction
among the components, i.e. non-functional properties required by the application
(such as scalability, real-time performance, etc). The output of the process is a
middleware configuration (e.g. a component graph as exposed by the compositional
meta-model associated to the middleware in terms of Open-ORB) consisting of
components implementing services (e.g. OMG’s CORBA services, Open-ORB’s
constituent components) that are interconnected through a specific connector that
corresponds to the underlying middleware platform (e.g. OMG’s Object Request
Broker, Open-ORB’s base binding components). Interestingly, the whole
configuration can also be viewed as a connector (with added value) as it serves to
support interactions between application components (e.g. Open-ORB’s binding
components defined through composition). Given this, a recursive approach to
architectural description is required as already illustrated by the definition of the
Open-ORB’s compositional meta-model.

In more detail, the Aster environment for the systematic synthesis of middleware
relies on the following key elements:

1. An ADL for the description of both application and middleware software
architectures. Any architecture description may further embed the specification of
the non-functional properties that are either provided or required by the
constituting software elements, using the framework given below.

2. A framework for the formal specification of properties offered by middleware
configurations. The framework is based on linear temporal logic and has been used
so far for the specification of properties relating to dependability [Saridakis99],
security [Bidan98] and transactions [Zarras98]. This framework is central to the
Aster environment as it forms the basis for reasoning about the matching of
available middleware configurations to the properties required by applications.
Basically, a middleware configuration matches application requirements if the
properties enforced by the configuration, as specified by the corresponding logic
formula, imply the non-functional properties required by the application. In
addition, the framework is used for structuring a repository of available
middleware architectures according to a lattice structure, which encodes the
refinement relationship holding over properties provided by available middleware
elements. This repository effectively provides a pool of tried and tested software
architectures offering a variety of non-functional behaviour.

3. A tool for the integration of a chosen middleware configuration retrieved from the
repository with the application that initiated the search.

The Role of Software Architecture in Constraining Adaptation 171

As an example of Aster usage, consider an application that requires transactional
support from the underlying middleware. Given this, it is necessary to search the
Aster repository for an appropriate match. A possible repository structure is depicted
in figure 2. In this repository, all the architectures at the bottom of the figure match
the application’s requirements, with each corresponding to a different middleware
style (i.e. EJB, CORBA, DCOM). In the remainder of this paper, we will be using the
CORBA-style architecture of transactional middleware for illustration purpose. This
architecture is composed of the CORBA ORB together with OTS (Object Transaction
Service) and CCS (Concurrency Control Service) services. Due to the lack of space,
we do not provide here the Aster ADL description of the above architecture nor
formal specification of related non-functional properties; the interested reader is
referred to the aforementioned references for detail. However, let us notice that
property specifications within the ADL are given in terms of textual names in order to
simplify the developer’s task. However, these should have a corresponding formal
definition within the Aster environment, which stores each property as a pair giving
the name of the property and the corresponding temporal logic formula.

Fig. 2. A Middleware Repository

Each middleware architecture available within the repository may actually represent a
number of concrete middleware configurations, depending on available
implementations for the constituting components. Such configurations are stored
within the implementation bucket, as depicted in figure 2. When multiple
configurations implement a retrieved middleware architecture, the designer is

172 Gordon S. Blair et al.

requested to select the one that best suits the application regarding environmental
parameters such as available resources.

3.3 Analysis

Since the early design of the Aster environment presented in [Issarny96], prototype
implementation has been carried out so as to assess the proposed approach. The
current Aster prototype relies on the STeP theorem prover [Bjorner98] for the
implementation of property matching when either inserting or seeking an element in
the middleware repository. Experimentation has generally been carried out within the
CORBA framework. Although work is still needed for improving the environment’s
usability (e.g. the use of formal methods by software designers may be seen as a
challenge), our experience shows that the approach actually eases the construction of
middleware, contributes to software robustness, and fosters software and design reuse.

The Aster approach has focussed on the synthesis of middleware platforms whose
properties are defined at design time. However, it does not deal with the adaptation of
middleware at run-time, resulting either from evolution of the application design or
from changes in the underlying infrastructure. Hence, it does not yet provide the
mechanisms we seek for reflective middleware architectures (as identified in section
2.3 above). We believe though that the Aster approach a priori provides a way to
alleviate the penalty of middleware adaptation. Furthermore, the Aster approach
naturally extends to accommodate the seamless nature of the Open-ORB reflective
architecture, i.e. the use of components above and within the middleware platform. In
particular, we have already seen how the recursive nature of architectural description
in Aster can accommodate such structures. Before examining extensions to Aster, it is
helpful, however, to examine the issue of adaptation more closely.

4 A Closer Look at Adaptation

In order to manage the adaptation process, it is necessary to provide support for each
of the four phases presented below.

1. Identifying conditions for initiating middleware changes. We consider two separate
triggers for middleware adaptation: i) revision of the requested middleware
properties, and ii) modification of the environment. The former type of change
typically follows evolution of the application’s design. The latter type of change
results from the evolution of either the execution or the software environment,
requiring the corresponding revision of the middleware implementation.

2. Computing the middleware architecture complying to a requested change. Once it
has been determined that a change must take place, it is then necessary to compute
the corresponding impact on the middleware configuration. Note that such changes
may range from trivial component/connector exchanges to major structural
changes, including revision of the middleware architecture.

3. Detecting when it is safe to actually change the current middleware platform. The
adaptation process must ensure that an application remains in a consistent state
throughout the adaptation of the underlying middleware configuration. For

The Role of Software Architecture in Constraining Adaptation 173

example, in the case of a platform offering transactional support, the changes to the
configuration should not disrupt the execution of ongoing transactions. As such, it
is necessary to detect when it is safe to carry out such changes. In doing so, the
primary design concern is to find the right trade-off between minimal application
disruption and timely exchange.

4. Adapting the current middleware. This step is highly dependent on the support
provided by the underlying middleware platform, e.g. in terms of reflective
facilities (if available). In terms of Open-ORB, for example, the adaptation process
would exploit the different meta-space models, as appropriate. For example, the
adaptation may require access to a compositional meta-model to exchange one
component for another. Adaptation may also require additional support in terms of,
for example, the transfer of state information between configurations. Again, this
can often be supported by underlying reflective facilities.

We consider the support provided for each of these phases in some detail below.

5 Extensions to Aster to Support Architectural Adaptation

5.1 Overall Approach

There are a number of ways of approaching the problem of adaptation as defined
above. The most constraining solution consists of allowing only planned changes. In
such a case, the application designer must provide a specification of the range of
middleware configurations, together with the conditions for switching between
configurations. In such an approach, the number of possible configurations is clearly
finite and pre-determined. In contrast, the less constraining solution consists of
tolerating any change at runtime, almost independently of design decisions. We
believe that both these solutions are unsatisfactory. The former is impractical, as there
is no way to exhaustively anticipate changes to the middleware that may be required.
The latter option is more flexible from the standpoint of supported changes. However,
this is at the expense of software robustness because there is no way to guarantee that
the middleware adaptation still complies to the application design. It seems then
necessary to constrain the range of accepted changes at runtime whilst not requiring
an exhaustive list of supported changes.

This debate relates very closely to research in the area of dynamic reconfiguration
[Edler92]. Briefly stated, work in this area investigates support for expressing and
achieving reconfiguration of applications at runtime. Within this field, two general
approaches have been proposed: programmed and evolutionary reconfiguration2.
Programmed reconfiguration is a form of planned evolution where the set of possible
changes and conditions for changing are prescribed at design time (typically by
associating state predicates with each system configuration, e.g. see [Barbacci93]). In
evolutionary reconfiguration, in contrast, a configuration manager responds to
requests for reconfiguration (typically from the user) and ensures that the necessary
changes are carried out. Our proposal is for an evolutionary approach whereby a form

2 A number of hybrid solutions have also been defined.

174 Gordon S. Blair et al.

of configuration manager, which we refer to as an adaptation manager, takes
responsibility for all changes and also ensures that architectural integrity is
maintained. Further details of the role of the adaptation manager will emerge from the
discussion below.

5.2 The Four Steps Revisited

5.2.1 Conditions for Initiating Changes

Technical Approach
As stated above, there are two distinct cases that must be considered, i.e. revision of
the requested non-functional properties and modification of the environment.

Revision of non-functional properties can only be made known to the adaptation
manager through user interaction (typically, designer intervention) and hence this
requires a corresponding GUI tool. Such changes are expected to be infrequent as
they map on to evolution of the general design. Architectural constraints are
maintained by extending applications architectural descriptions with denotations of
the weakest properties that must be satisfied by the middleware configuration
supporting a given application. The adaptation manager can then accept such changes
as long as the required weakest properties remain satisfied. Note that, if we set the
weakest properties to true, then any changes will be tolerated. However, allowing
such flexibility is under the responsibility of the application’s designer who decides to
not constrain changes and hence to favor flexibility over robustness. In general terms,
this proposal favors software robustness without unduly restricting adaptation;
essentially, the application designer, based on knowledge of the application domain
and environmental conditions, determines the right trade-off between flexibility and
robustness.

In contrast, modifications of the environment can be initiated either through user
intervention or, more likely, as a result of events generated by underlying monitoring
components. Crucially, such monitoring components can be inserted dynamically into
the middleware configuration using reflection. For example, a monitor can be inserted
in the resource meta-space to report on the current processor load. Similarly, the
compositional meta-space can be used to insert a monitor into a binding object to
report on inter-arrival times of video frames. The frequency of such changes is
expected to be somewhat greater than that for non-functional properties.

Fig. 3. Support for Initiating Change

The Role of Software Architecture in Constraining Adaptation 175

Figure 3 summarises the support required for initiating middleware adaptation (with
highlighting in boldface).

Required Changes to Aster
The first change is the incorporation of weakest properties specifications into the
Aster framework. This can easily be achieved. The Aster ADL already supports the
specification of non-functional properties required from a middleware configuration
(as used by the synthesis process). Given this, it is sufficient to enrich such a
description with a clause prescribing the weakest properties that should always be
enforced by the middleware platform (written using temporal logic). The middleware
properties specified at design time should imply the weakest ones, a condition that
can easily be checked using the Aster toolset.

The proposed changes also require the introduction of an adaptation manager.
While the provision of such a manager relates more to the middleware infrastructure
than to the Aster environment, we present it here as an Aster extension as it is central
to the adaptation process.

5.2.2 Computing the New Middleware Configuration

Technical Approach.
Once the adaptation manager has checked the required properties, the corresponding
middleware architecture must be computed. This is easy to achieve using Aster, as it
amounts to exploiting the synthesis process. In general, though, this is a difficult
problem, potentially requiring complex analysis of the current configuration, the
desired non-functional properties, and the set of possible changes that can be made to
achieve such properties. Considering the Open-ORB infrastructure, this requires us to
identify the necessary updates within the current component graph managed by the
compositional meta-model. This is also made more difficult because of potential
dependencies between components in the current configuration, e.g. in the example of
transactional middleware in section 3.2., the OTS and CCS services are closely inter-
related at the implementation level. The Aster approach does not enable us to directly
deal with such dependencies due to the highly abstract description of middleware
properties. In addition, the synthesis process would need to be adapted so as to
integrate computation of a middleware configuration with respect to both an existing
configuration and required properties and not just middleware properties.
Investigation of this is an area for future work. Currently, we adopt a more pragmatic
approach, in order to minimise Aster extensions whilst supporting robust middleware
adaptation.

Dealing with changes in the required non-functional properties is quite
straightforward. In this case, the synthesis process is carried out with the new abstract
properties as input, the result being the target configuration. In other words, this
means that the component graph managed by the compositional meta-model is fully
replaced by the graph corresponding to the newly synthesized middleware
configuration. Dealing with environmental changes is however more complex and
requires further discussion. In this case, it is crucial to be able to distinguish between
middleware configurations implementing a given architecture with given non-

176 Gordon S. Blair et al.

functional properties but differing in terms of environmental parameters3. For
example, one architecture might be more appropriate in a resource rich environment
with plentiful bandwidth, processing capacity, battery life, etc, whereas other
solutions may be better in the cases of drops in bandwidth or problems with battery
life. It is important not to place bounds on the criteria taken into account in the
selection process of middleware configurations implementing a given architecture.
The only prerequisite is to ensure that the various concrete middleware configurations
implementing a single middleware architecture can be compared and hence all
prescribe the same set of selection criteria (or at least have a set of common selection
criteria). In addition, it should be possible to assess the environment features with
respect to those common criteria so as actually be able to select the most suitable
configuration. In the case where multiple configurations are still eligible, one is
chosen randomly. We now consider the impact of this on Aster.

Required Changes to Aster.
The current Aster repository enables us to distinguish middleware architectures with
respect to the abstract properties they provide. However, Aster does not enable us to
distinguish between valid implementations that differ in terms of environmental
parameters. In order to extend this, we introduce the concept of a sub-repository
(possibly empty) which gives all the eligible configurations for implementing a given
architecture, hence making the Aster repository close to a multi-dimensional database.
A sub-repository is further defined by a vocabulary of selection criteria and, for each
term of the vocabulary, a value needs to be specified for each embedded (concrete)
configuration. More formally, let P denote the power set, a sub-repository is denoted
by:

Concrete: P (CONFIGURATION)
Criteria: P (STRING)
Value: Criteria → TYPE

and each element of Concrete, which is a concrete configuration, is such that for all
the elements of Criteria, it defines a function:

Valid: Criteria → ConfigElement → TYPE ∪ ⊥

where ConfigElement is the set of configuration elements (i.e. component,
connector implementations) and TYPE should be equal to Value(c) with c being
the criterion under consideration. The Valid function then serves to identify for each
relevant criterion, the value of the environment parameter that is required for each
configuration element, ⊥ meaning that the criterion does not apply for this specific
element.

As an example, let us consider the CORBA-based transactional middleware
architecture that was discussed in Section 3.2. Although not part of the standard, we

3 A second important consideration is the cost of adaptation. As stated earlier, this can vary
between changing properties of a particular component, through to major reconstruction of
the configuration. This should be taken into account in the decision making process, e.g. by
associating a cost metric with each possible transition. This has not yet been addressed in our
work, although this is a crucial area for future research.

The Role of Software Architecture in Constraining Adaptation 177

may consider different implementations for the OTS service based on existing results
in the area of transaction management: transaction commitment using either a 2-phase
or a 3-phase protocol according to the frequency of failure occurrences, or transaction
management supporting transaction execution over a disconnected laptop. These
implementations relate to the same middleware architecture. However, the
corresponding configurations differ depending on the following set of criteria:
{MTBF, ConnectionMode}, where MTBF gives the Mean Time Between Failure of
components and takes its values in the set of integers (i.e. Value(MTBF) = INT),
and ConnectionMode gives the connection mode of components and takes its values
in the set {LAN, Wireless} (i.e. Value(ConnectionMode) = {LAN,
Wireless}). Hence, the middleware configuration made out of the OTS
implementing the 2-phase commit protocol is valid as long as the value of the MTBF
of each component exceeds a given threshold t, and the value of the ORB
ConnectionMode is equal to LAN. In the same way, the 3-phase commit
implementation is eligible when at least one of the MTBFs is lower than t, the value of
ORB’s ConnectionMode being still LAN. Finally, the middleware configuration
composed of the OTS implementation supporting disconnected transactions is valid
when the ConnectionMode is equal to Wireless, whatever are the values of the
MTBFs.

5.2.3 Detecting When it is Safe to Adapt the Configuration

Technical Approach
Adaptation of the middleware configuration should be carried out in a way that
maintains the overall system in a consistent state. At the time of middleware change,
there might be requests, qualified as pending, which are issued through the old
middleware and for which the requested properties (i.e. properties enforced by the old
middleware) are not yet satisfied. For the middleware exchange to be correct, it must
be ensured that, for all the requests pending at the time of the integration, the new
middleware satisfies the non-functional requirements for those particular requests. A
trivial pre-condition upon the middleware state for achieving exchange is then to have
no pending request. Such a state is qualified as idle. Requiring an idle state for the
middleware prior to carrying out adaptation is at the expense of timeliness. Although
the execution environment may enforce reaching an idle state by selectively blocking
requests (as long as this does not prevent termination of ongoing requests)
[Kramer90], this may take quite a long time. A weaker pre-condition is then to require
a safe state, which guarantees that for all the pending requests at the time of the
exchange, these requests will eventually be terminated and their non-functional
properties will be satisfied.

Middleware exchange under safe state detection requires the following capabilities
from the middleware, so as to ensure the correct termination of pending requests: i)
the non-functional properties provided by the new middleware should imply the
properties of the current configuration, and ii) part of the state of the current
middleware configuration relating to pending requests should be mapped onto the
state of the new middleware. The former condition always holds when the
middleware adaptation is due to environmental changes. On the other hand,

178 Gordon S. Blair et al.

adaptation due to new non-functional requirements must be dealt with on a case-by-
case basis. The latter condition requires the middleware to be able to import and
export its state (e.g. [Hofmeister93]), a function that can be directly supported by
reflective middleware (e.g. see [Killijian99]). Note that meeting this condition is
specific for each pair of middleware configurations involved in the exchange
(regarding implementation of the state mapping function). We cannot afford the
definition of an exhaustive mapping function, covering all the possible middleware
adaptations, due to either changing non-functional requirements or environmental
parameters. However, such a function may be devised for the specific case of
environmental changes: the range of middleware adaptations is bounded in this case
by the number of configurations stored within the corresponding sub-repository.
Consequently, middleware adaptation due to environmental changes is carried out
under safe state detection while idle state detection is used in the other cases.

Required Changes to Aster
Support for either safe or idle state detection does not require changes to Aster per se,
apart from enriching sub-repository management for storing and retrieving state
mapping functions. However, this imposes a number of requirements upon the
middleware infrastructure, which are easy to handle given a reflective middleware.

State mapping functions should be introduced within sub-repositories for pairs of
configurations; these functions are then used whenever the middleware changes relate
to the corresponding pairs. A safe state detector should also be provided with each
mapping function. This safe state detector can then be installed when the change is
requested, so as to detect when the safe state is reached. In the absence of this
information, idle state detection should be carried out by default.

Unlike safe state, the definition of idle state depends only on the properties of the
old middleware configuration. Hence, it is possible to build the required middleware
configuration with an idle state detection mechanism already in place. A second
important property of the idle state definition is that it is based only on predicates that
qualify the interaction between the middleware configuration and the application
components, which derives from the definition of middleware properties that are
always given in terms of component interactions. This makes it possible to implement
a module that detects whether a middleware is in an idle state with respect to a
specific property only by monitoring the interaction between the middleware and the
components. Since such an idle state detector is independent of the specific
middleware configuration, it can be stored in the middleware repository together with
each architecture, and integrated into the middleware configuration during the
middleware synthesis.

We do not further detail the implementation of idle and safe state detectors. These
exploit the meta-space models for inspecting the middleware state.

5.2.4 Carrying out the Adaptation

Technical Approach
Once the above adaptation decision has been taken, the task of re-configuration is
quite straightforward. In terms of implementation, re-configuration will make

The Role of Software Architecture in Constraining Adaptation 179

extensive use of the different meta-space models in carrying out the required
adaptation. For example, for fine-grained adaptations, the compositional meta-model
can be used to identify encapsulated components. Once identified, direct changes of
the properties of a given component can then be made. For more course-grained
adaptations, changes to the component graph can be requested. Note that support is
provided to enable smooth transition between different configurations. For example,
consider the transaction example given in section 5.2.2. In this example, support is
provided to enable the new configuration to be constructed and primed in parallel
with the operation of the old configuration. A hand-over can then be made as a single
action, thus minimizing the disruption to service. Further information on such
facilities can be found in [Fitzpatrick99].

Required Changes to Aster
The main change is to associate an adaptation script for pairs of configurations in the
sub-repository. This is then invoked when changes are due to environmental
conditions. For other changes (i.e. those due to evolving non-functional
requirements), it must be assumed that the code for adaptation is provided by the user/
designer. Note that, if an adaptation script is not provided for a given pair, then it is
necessary for the Aster environment to replace completely the old configuration with
the new one. In this respect, adaptation scripts can be viewed as an important
optimisation. For example, in many cases the adaptation could be quite lightweight,
e.g. changing the properties of a single component. It would then not make sense to
build a complete new configuration. Note also that this adaptation script should
invoke the state mapping function (as appropriate) as part of its operation.

5.3 Analysis

This section has considered extensions to Aster to deal with adaptation, both in terms
of the overall evolution of the design, e.g. to include new non-functional properties, or
in response to changes in the underlying environment. Briefly, the required changes
are as follows:

1. the incorporation of weakest properties specifications into architectural
descriptions, to place constraints on the range of possible responses to new
requirements,

2. the inclusion of environmental parameters in architectural descriptions to support
the selection of the most appropriate configuration following changes in
environmental conditions, through the introduction of a sub-repository of
configurations per middleware architecture.

3. the introduction of an adaptation manager as a key middleware service,
4. the definition of safe state or idle state detectors, again provided through the sub-

repositories, to indicate when it is safe to change,
5. the provision of a set of associated state mapping functions in sub-repositories to

perform the required state transfers between pairs of configurations, and
6. the provision of adaptation scripts, again in sub-repositories, to carry out the

necessary steps to switch between pairs of configurations.

180 Gordon S. Blair et al.

Let us further recall that the proposed extensions have been addressed assuming a
reflective middleware platform, which gives the necessary support for actually
changing middleware configurations in an efficient way. We believe that this
approach provides a good compromise between flexibility and robustness. In
particular, it enables the designer to constrain the supported middleware changes with
respect to the application’s requirements, and it relieves the application programmer
from writing code specific to middleware adaptation.

6 Related Work

Among existing ADLs, DARWIN [Magee92], DURRA [Barbacci93], and C2
[Medvidovic96] support dynamic configuration of applications. DARWIN provides
language primitives allowing the user to describe the dynamic instantiation, removal
and re-binding of ports. A DARWIN specific configuration manager is used to apply
changes into a running configuration. The basic language primitives that describe
dynamic instantiation and port re-binding can be used by both the application
components and the application administrator. In DURRA, runtime configuration
changes are modeled in terms of reconfiguration rules. A reconfiguration rule
describes a transition from one configuration to another. Possible transitions are
described at design time and are applied at runtime by a set of configuration
managers, with each manager being responsible for changing a particular cluster of
component instances. In C2, configuration changes are modeled as sequences of
primitive reconfiguration actions like component creation, removal, welding, etc. The
language provides corresponding primitives for the expression of such reconfiguration
actions. All the aforementioned ADLs provide support for creating, removing and re-
binding components of the application. However, none of them confronts changes in
the middleware connector that mediates the interactions among the components.

There are many projects investigating adaptation/ dynamic QoS management in
middleware platforms. BBN’s QuO (QUality Objects) project [Vanegas98] is perhaps
the closest in approach to our own work in that it adopts a similar open
implementation philosophy. QuO, however, adopts an approach reminiscent of
aspect-oriented programming [Kiczales97] to specify different aspects of QoS support
using a range of specialised (high-level) languages. As such, it provides a more
declarative, as opposed to procedural, approach to QoS management. Similarly,
researchers at the University of Illinois have developed a task control model to
support dynamic reconfiguration in middleware platforms [Li99]. This project is
complementary to the Dynamic Tao project mentioned earlier [Román99], exploiting
the openness of this underlying platform for more fine-grained control. Their
approach is based on the use of a fuzzy logic inference engine together with a rule
base of possible adaptations. The crucial difference between these projects and our
proposals is that our work introduces overall architectural constraints based on
explicit modeling of the software architecture. In previous research, the Lancaster
authors have also developed a QoS management scheme for adaptation based on the
use of timed automata [Blair99b]. While providing some support for adaptation, this
work does not have the breadth of coverage of the work described in this paper.
Finally, a number of other middleware projects include important elements of

The Role of Software Architecture in Constraining Adaptation 181

configurability and re-configurability including DIMMA [Donaldson98], Tao
[Schmidt97] and Jonathan [Dumant97], again, however, with limited coverage of the
range of issues raised by adaptation.

7 Concluding Remarks

This paper has argued that the next generation of middleware platforms will need to
be more configurable and re-configurable. Furthermore, it is argued that reflection,
together with component technology, provide the right technical solution to meet
these requirements. However, such approaches have significant problems in terms of
maintaining the integrity of the underlying configuration. We argue that such
problems can be overcome by adopting ideas from the software architecture
community.

More specifically, we have explored the role of the Aster framework in supporting
dynamic adaptation in the context of the Open-ORB middleware platform. Following
a detailed examination of adaptation, it was concluded that Aster could usefully be
extended to meet our requirements. The key extensions to Aster include the
incorporation of weakest properties and environmental parameters in architectural
descriptions to accommodate re-configurations due to changing non-functional
parameters and environmental conditions respectively.

The most significant contributions of this paper are:

1. the development of techniques to constrain changes in an open environment, and
2. the extension of software architecture techniques to accommodate dynamic change.

The work also has a more general contribution to make to the automatic synthesis of
component-based configurations, and their subsequent monitoring and adaptation,
based entirely on architectural descriptions.

The Aster toolkit is fully developed, although the changes described above have
not yet been incorporated. In addition, as mentioned above, prototype
implementations of Open-ORB have been developed. Although the proposed
framework still needs to be integrated within Aster for further validating our
approach, it is our belief that such an integration should not pose any difficulty,
although it would be demanding in terms of implementation effort. However, work is
still needed for a thorough assessment of our approach from a practical standpoint. In
particular, despite the benefits of our approach with respect to sofware system
robustness, it should be demonstrably efficient for it to be used in practice. We are
currently working on such an issue by further investigating support for efficient
middleware adaptation regarding both the implementation of the Aster extensions and
the OpenORB infrastructure. We are also investigating the application of our
framework to multimedia systems which are among the most demanding in terms of
middleware adaptation due to their highly demanding resource usage and increasing
use over heterogeneous platforms ranging from powerful workstations to wireless
PDAs.

182 Gordon S. Blair et al.

Acknowledgements

Research in the Open-ORB Project is partly funded by CNET, France Telecom
(CNET Grant 96-1B-239) and partly by the EPSRC together with BT Labs (Research
Grant GR/K72575). We would like to thank our collaborators for their support.
Particular thanks are due to Jean-Bernard Stefani and his group at CNET, and also Ian
Fairman, Alan Smith and Steve Rudkin at BT Labs. We would also like to
acknowledge the contributions of a number of researchers at Lancaster to the Open-
ORB Project, namely Mike Clarke, Fabio Costa, Geoff Coulson, Tom Fitzpatrick,
Hector Duran, Nikos Parlavantzas and Katia Saikoski.

Research in the Aster project has been partly funded by CNET, France Telecom,
and partly by the Esprit LTR C3DS project. Particular thanks are due to former
members of the Aster project, namely C. Bidan and T. Saridakis.

Finally, this joint paper would not have been possible without the support of
INRIA, which enabled Gordon and Lynne Blair to visit the Solidor Group during
Easter, 1999.

References

[Barbacci93] Barbacci, M., C. Weinstock, D. Doubleday, M. Gardner, R. Lichota, “DURRA: A
Structure Description Language for Developing Distributed Applications”, Software
Engineering Journal, pp 83-94, March 1993.

[Bidan98] Bidan, C., V. Issarny, “Dealing with Multi-Policy Security in Large Open
Distributed Systems”, Proceedings of the 5th European Symposium on Research in
Computer Security, pp 51-66, September 1998.

[Bjorner98] Bjorner N., A. Browne, M. Colon, B. Finkbeiner, Z. Manna, M. Pichora, H.B.
Sipma, T.E. Uribe, “STeP: The Stanford Temporal Prover Educational Release”, Stanford
University, 1.4-a edition, July 1998.

[Blair97] Blair, G.S., J.B. Stefani, “Open Distributed Processing and Multimedia”, Addison-
Wesley, 1997.

[Blair98] Blair, G.S., G. Coulson, P. Robin, M. Papathomas, “An Architecture for Next
Generation Middleware”, Proc. IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware’98), Springer, 1998.

[Blair99a] Blair, G.S., F. Costa, G. Coulson, H. Duran, N. Parlavantzas, F. Delpiano, B.
Dumant, F. Horn, J.B. Stefani, “The Design of a Resource-Aware Reflective Middleware
Architecture”, Proc. of the 2nd Int. Conference on Meta-Level Architectures and Reflection
(Reflection’99), St-Malo, France, Springer-Verlag, LNCS, Vol. 1616, pp 115-134, 1999.

[Blair99b] Blair, G.S., A. Amdersen, L. Blair, G. Coulson, "The Role of Reflection in
Supporting Dynamic QoS Management Functions", Proceedings of the IEEE/IFIP
International Workshop on Quality of Service (IWQoS'99), London, June 1999.

[Costa98] Costa, F., G.S. Blair, G. Coulson, “Experiments with Reflective Middleware”,
Proceedings of the ECOOP’98 Workshop on Reflective Object-Oriented Programming and
Systems, ECOOP’98 Workshop Reader, Springer-Verlag, 1998.

[Donaldson98] Donaldson, D., M. Faupel, R. Hayton, A. Herbert, N. Howarth, A. Kramer, I.
MacMillan, S. Waterhouse, “DIMMA - A Multi-media ORB”, Proc. Middleware ‘98, The
Low Wood Hotel, Ambleside, England, September 1998.

[Dumant97] Dumant, B., F. Horn, F. Dang Tran, J.B. Stefani, “Jonathan: An Open Distributed
Processing Environment in Java”, Proc. IFIP International Conference on Distributed

The Role of Software Architecture in Constraining Adaptation 183

Systems Platforms and Open Distributed Processing (Middleware’98), Springer, September
1998.

[Edler92] Edler, M., J. Wei, “Programming Generic Dynamic Reconfiguration for Distributed
Applications”, Proceedings of the International Workshop on Configurable Distributed
Systems, pp 68-79, March 1992.

[Fitzpatrick98] Fitzpatrick, T., G.S. Blair, G. Coulson, N. Davies, P. Robin, “Supporting
Adaptive Multimedia Applications through Open Bindings”, Proceedings of the 4th
International Conference on Configurable Distributed Systems, IEEE, 1998.

[Fitzpatrick99] Fitzpatrick, T., “Open Multimedia Component Middleware for Adaptive
Distributed Applications”, PhD Thesis, Computing Department, Lancaster University,
Bailrigg, Lancaster, LA1 4YR, UK, September 1999.

[Hayton97] Hayton, R., “FlexiNet Open ORB Framework”, APM Technical Report
2047.01.00, APM Ltd, Poseidon House, Castle Park, Cambridge, UK, 1997.

[Hofmeister93] Hofmeister, C., J. Purtilo, “Dynamic Reconfiguration for Distributed Systems,
Adapting Software Modules for Replacement”, Proceedings of the 13th IEEE International
Conference on Distributed Computing Systems (ICDCS’93), May 1993.

[Issarny96] Issarny, V., C. Bidan, “Aster: A Framework for Sound Customization of
Distributed Runtime Systems”, Proceedings of the 16th IEEE International Conference on
Distributed Computing Systems (ICDCS’96), May 1996.

[Kiczales91] Kiczales, G., J. des Rivières, D.G. Bobrow, “The Art of the Metaobject Protocol”,
MIT Press, 1991.

[Kiczales97] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J-M. Loingtier,
J. Irwin, “Aspect-Oriented Programming”, Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), Finland, Lecture Notes in Computer Science, Vol.
1241, Springer-Verlag, June 1997.

[Killijian99] Killijian, M.O., J.C. Ruiz-Garcia, J.C. Fabre, “Using Compile-Time Reflection for
Objects’ State Capture”, Proceedings of the 2nd International Conference on Meta-Level
Architectures and Reflection (Reflection’99), St-Malo, France, Springer-Verlag, LNCS,
Vol. 1616, pp 150-152, 1999.

[Kramer90] Kramer, J., J. Magee, "The Evolving Philosophers Problem", IEEE Transactions on
Software Engineering, Vol. 15, No. 1, pp 1293-1306, November 1990.

[Ledoux97] Ledoux, T., “Implementing Proxy Objects in a Reflective ORB”, Proc. ECOOP’97
Workshop on CORBA: Implementation, Use and Evaluation, Jyväskylä, Finland, 1997.

[Li99] Li, B. and K. Nahrstedt, “Dynamic Reconfiguration for Complex Multimedia
Applications, Proceedings of the IEEE International Conference on Multimedia Computing
and Systems (IEEE Multimedia Systems '99), Florence, Italy, June 7-11, 1999.

[Magee92] Magee, J., N. Dulay, J. Kramer, “Structuring Parallel and Distributed Systems”,
Proc. of the International Workshop on Configurable Distributed Systems, March 1992.

[McAffer96] McAffer, J., “Meta-Level Architecture Support for Distributed Objects”, In
Proceedings of Reflection 96, G. Kiczales (end), pp 39-62, San Francisco; Also available
from Department of Information Science, The University of Tokyo, 1996.

[Medvidovic96], “ADLs and Dynamic Architecture Changes", Proceedings of the 2nd ACM
SIGSOFT International Software Architecture Workshop (ISAW-2), pp 24-27, October
1996.

[Medvidovic97] N. Medvidovic, R. Taylor, "A framework for classifying and comparing
architecture description languages", Proc. of the Joint European Software Engineering -
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp 60-76, September
1997.

[Okamura92] Okamura, H., Y. Ishikawa, M. Tokoro, “AL-1/d: A Distributed Programming
System with Multi-Model Reflection Framework”, Proceedings of the Workshop on New
Models for Software Architecture, November 1992.

184 Gordon S. Blair et al.

[OMG99] The Common Object Request Broker: Architecture and Specification versions 3.0.,
available at http://www.omg.org/.

[Perry92] D. E. Perry, A. L. Wolf, “ Foundations for the Study of Software Architecture ”,
ACM SIGSOFT Software Engineering Notes, 17(4), pp 40-52, October 1992.

[Román99] Román, M., F. Kon, R. Campbell, “Design and Implementation of Runtime
Reflection in Communication Middleware: the dynamicTAO Case”, Proceedings of the
ICDCS'99 Workshop on Middleware, Austin, Texas, May-June 1999.

[Saridakis99] Saridakis, T., V. Issarny, “Developing Dependable Systems Using Software
Architecture”, Proceedings of the 1st Working IFIP Conference on Software Architecture,
pp 80-104, February 1999.

[Schmidt97] Schmidt, D.C., R. Bector, D. Levine, S. Mungee, G. Parulkar, “An ORB End
System Architecture for Statically Scheduled Real-Time Applications”, Proceedings of the
Workshop on Middleware for Real-Time Systems and Services”, IEEE, San Francisco,
1997.

[Smith82] Smith, B.C., “Procedural Reflection in Programming Languages”, PhD Thesis, MIT,
Available as MIT Computer Science Technical Report 272, Cambridge, Mass., 1982.

[Szyperski98] Szyperski, C., “Component Software: Beyond Object-Oriented Programming”,
Addison-Wesley, 1998.

[Vanegas98] Vanegas, R., J. Zinky, J. Loyall, D. Karr, R. Schantz, D. Bakken, “QuO’s
Runtime Support for Quality of Service in Distributed Objects”, Proc. IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware’98), Springer, September 1998.

[Watanabe88] Watanabe, T., A. Yonezawa, “Reflection in an Object-Oriented Concurrent
Language”, In Proceedings of OOPSLA’88, Vol. 23 of ACM SIGPLAN Notices, pp 306-
315, ACM Press, 1988; Also available as Chapter 3 of “Object-Oriented Concurrent
Programming”, A. Yonezawa, M. Tokoro (eds.), pp 45-70, MIT Press, 1987.

[Zarras98] Zarras, A., V. Issarny, “A Framework for Systematic Synthesis of Transactional
Middleware", Proc. IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware’98), pp 257-272, Springer, September 1998.

Exploiting IP Multicast in Content-Based

Publish-Subscribe Systems

Lukasz Opyrchal1, Mark Astley2, Joshua Auerbach2, Guruduth Banavar2,
Robert Strom2, and Daniel Sturman2

1 Dept. of EECS, University of Michigan,
1301 Beal Avenue, Ann Arbor, MI 48109, USA

2 IBM T.J. Watson Research Center,
30 Saw Mill River Rd., Hawthorne, NY 10532, USA

Abstract. Publish-subscribe systems are evolving toward using
content-based subscription rather than subject-based subscription. A key
problem in implementing such systems is that a straightforward mapping
from matching sets to multicast groups produces a number of groups that
rapidly grows beyond practical limits. This paper proposes a set of al-
ternative algorithms for solving this problem, by: (1) using a smaller set
of overbroad multicast groups, judiciously chosen to minimize impreci-
sion; (2) issuing multiple multicasts to appropriately chosen clusters; or
(3) sending an event over multiple hops each involving a multicast to a
set of neighbors. We evaluate these algorithms on a simulated wide-area
network. We find that (1) a simple flooding algorithm is viable over an
extensive range of conditions; and (2) under conditions of high selectivity
and high regionalism of subscriptions, the other approaches mentioned
above perform significantly better; however, the specific algorithm to use
depends upon the economics of deployment.

1 Introduction

Publish-subscribe systems provide a convenient approach for interconnecting ap-
plications on a distributed network. Publish-subscribe middleware is currently
being deployed for application integration in many domains including financial,
process automation, and transportation. In the publish-subscribe paradigm, in-
formation providers publish units of information called events, and information
consumers subscribe to particular categories of events. The middleware ensures
the timely delivery of published events to all interested subscribers.

The earliest publish-subscribe systems used subject-based subscription. In
the past decade, systems supporting this paradigm have matured significantly,
resulting in several academic and industrial strength solutions [3,16,18,19,21]. In
subject-based subscription, each event is classified and labeled by the publisher
as belonging to one of a fixed set of subjects (also known as groups, channels,
or topics). Consumers subscribe to all the events within a particular subject
or set of subjects. Except for the subject identifier, the information content of
events is opaque to the middleware. A strength of this approach is the potential

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 185–207, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

186 Lukasz Opyrchal et al.

to easily leverage group-based multicast techniques to provide scalability and
performance, by assigning each subject to a multicast group.

An emerging alternative to subject-based subscription is content-based sub-
scription [1,2,20]. These systems support an event schema defining the type
of information contained in each event. For example, applications interested
in stock trades may use the event schema [issue: string, price: dollar,
volume: integer]. A content-based subscription is a predicate against the ev-
ent schema, such as (issue="IBM" & price < 120 & volume > 1000). With
content-based subscription, subscribers have the added flexibility of choosing
filtering criteria along multiple dimensions, without requiring pre-definition of
subjects. In our stock trading example, a subject-based subscriber is forced to
select trades by issue name. In contrast, a content-based subscriber is free to use
an orthogonal criterion, such as volume, or indeed a collection of criteria, such
as issue, price and volume.

While content-based subscription is the more general and flexible paradigm,
providing efficient and scalable implementations of such systems is still an open
problem. In particular, existing group-based multicast techniques cannot readily
be applied to this problem. Each subscriber may have a unique subscription, and
therefore, each event may go to a widely varying group of subscribers. To naively
map these subscribers into groups may require a number of groups exponential
in the number of subscribers (i.e. 2N).

In this paper, we explore a number of approaches for exploiting group-based
multicast for event delivery in content-based publish-subscribe systems. In par-
ticular, we focus on being able to exploit widely available, best effort multicast
such as IP Multicast [8], or reliable multicast techniques built on top of IP
Multicast such as SRM [9].

We explore three approaches to reducing the number of groups needed: (1)
reducing precision: i.e., sending to overly broad groups where brokers may receive
events for which they have no client subscriptions, (2) multiple sends: i.e., sending
an event on multiple multicast groups instead of making a single multicast, or
(3) multi-hop routing: i.e. sending an event over a set of multiple hops each of
which entails a multicast to a set of intermediate brokers.

We define and evaluate five algorithms – traditional flooding, plus four newly
proposed algorithms – each of which exploits one or more of the above ap-
proaches. Each of the techniques we present in the paper is compared to an
abstract algorithm which we call “ideal multicast.” Ideal multicast assumes that
a perfect multicast group can be determined for each event. Ideal multicast pro-
vides a lower bound on network bandwidth utilization and latency.

We evaluate these algorithms on a simulated wide area network (WAN).
This network consists of 100 multicast-enabled routers supporting 88 publish-
subscribe servers (a.k.a. brokers), which include eight brokers with publishers
and 80 brokers with a total of 10,000 subscribers.

The remainder of the paper is organized as follows. In Sect. 2, we describe all
the evaluated algorithms. In Sect. 3, we provide details of the simulation setup
that we use to evaluate the various algorithms, and we summarize our findings.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 187

In Sect. 4, we review some of the previous work on event distribution systems
using content-based subscription, and on applications of group multicast. Finally,
Sect. 5 discusses conclusions of these experiments and suggests future directions
for our work.

2 Group Multicast Algorithms

As mentioned earlier, the naive use of group-based multicast for implementing
content-based publish-subscribe may require as many as 2N groups where N is
the number of communication end-points. Rather than treating each subscribing
client as a communications end-point, we assume that the communication end-
points are brokers, which are servers that manage client connection and event
distribution. Brokers reduce the complexity of routing events by reducing the
total number of endpoints known to the distribution system. Each end-point
broker performs a local matching operation before forwarding the event to the
subscribing clients. The local matching operation determines the set of interested
clients connected to that broker. An implementation of matching for content-
based subscription is described in [1] and shown to take time sub-linear in the
number of subscriptions.

The current IPv4 specification for IP Multicast provides a maximum of 224

locally scoped multicast addresses. The practical limit is smaller, since routing
table space in backbone routers is a scarce resource [4]. Thus, it is important to
reduce the number of groups needed. However, multicast technology is evolving
rapidly, so it is difficult to know how few is “few enough.” Rather than setting
an arbitrary limit (other than the architected limit of 224), we examine ways to
reduce the number of groups needed for a given number of brokers, favoring ap-
proaches that use fewer groups over those that use greater numbers. We explore
three general approaches to reducing the number of groups needed.

1. Reduce group precision. In this approach, events are sent to multicast groups
that may contain brokers that do not have subscriptions for the event. In
the extreme case, messages are sent to all brokers (Sect. 2.2). Another way
to reduce precision is to combine groups to form larger groups until the
number of groups is within an acceptable limit. This approach is explored
in Sect. 2.6.

2. Send multiple multicasts. In this approach, the set of end-points is divided
into mutually exclusive subsets, thereby reducing the total number of re-
quired groups. For example, if N endpoints are divided into two equal sub-
sets, the number of groups required in each subset is 2N/2, and the total
number of groups required is 2 × 2N/2. However, each event must be sent
to two groups in this case. This approach is explored by the algorithm in
Sect. 2.3.

3. Send over multiple hops. In this approach, each publisher sends to a small
subset of neighboring brokers, which in turn forward the event to their neigh-
bors, and so on. This approach is explored in Sect. 2.5.

188 Lukasz Opyrchal et al.

Hybrid approaches that combine more than one of the above approaches are also
possible; one such algorithm, explored in Sect. 2.4, combines approaches 1 and 2
above.

2.1 The Ideal Algorithm

In an environment where we could have as many groups as we need, we could
assign a multicast group to every required subset of the set of brokers. Every
such group may be reached using a single multicast, and every event published
is always sent to the group which contains exactly those brokers subscribing to
the event. We call this the Ideal algorithm.

Of course, for any system with non-trivial size, the ideal algorithm requires an
impractical number of multicast groups. This makes the ideal algorithm useless
in practice. Nonetheless, the ideal algorithm provides a useful benchmark for
evaluation – we expect the ideal algorithm to provide a lower bound on the
performance of each of our multicast strategies.

2.2 Flooding

A simple solution to the problem of content-based routing is to send every pub-
lished event to all brokers. In this approach, only one multicast group is needed
consisting of all the brokers in the system.

A simple optimization to avoid sending events that do not match any sub-
scribers is to first perform a matching operation at the publishing broker against
all subscriptions. The additional overhead of this matching step (on the order of
100 microseconds for 10,000 subscriptions) is not significant relative to overall
network latencies (on the order of a hundred milliseconds).

2.3 Clustered Group Multicast (CGM)

The CGM algorithm is based on the use of clusters: mutually exclusive subsets
of brokers where each subset has its own set of multicast groups. We observe
that if we divide N endpoints into 2 clusters, we reduce the number of groups
in each cluster to 2N/2 groups, and the total number of groups to 2× 2N/2. The
cost of this approach, however, is that it may be necessary to multicast an event
twice: once to a group in each cluster. In general, if we divide N into C clusters,
the total number of groups needed is given by g = C ∗ 2N/C. Figure 1 shows, for
a given number of groups and number of clusters, the number of endpoints that
can be supported. For example, if we have 213 multicast groups available, we
can support 80 broker end-points by dividing them into 8 clusters of 10 brokers
each. Since the groups within a cluster enumerate all possible combinations of
brokers, each broker must join half these groups (those that include the broker)
at system configuration time.

Each broker contains an instance of the subscription matching engine with
entries for all client subscriptions in the system. When an event is published,

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 189

Max Groups # Clusters # Endpoints

224 8 168

224 4 88

217 8 112

217 4 60

213 8 80

213 4 44

Fig. 1. Number of endpoints supported by CGM

the publisher’s broker matches the event against all subscriptions, and sorts the
resulting list of brokers by cluster. It then looks up the group in each cluster
that contains exactly those brokers destined to receive the event. The publisher’s
broker then performs up to C multicasts, where C is the number of clusters. Some
clusters may have no matching brokers and are therefore skipped.

The choice of cluster assignment has a significant impact on performance.
For example, brokers that match a single subscription, but that are spread over
multiple clusters will require multiple multicasts. One approach builds clusters
by grouping brokers with similar subscription sets. Another uses geographic (or
network) location data to group brokers into clusters. The algorithms described
here use the latter approach.

2.4 Threshold Clustered Group Multicast (TCGM)

The CGM algorithm described above requires a number of groups that may be
prohibitively large for many applications. The number of groups required may
be reduced by reducing the precision of the algorithm. One approach to reducing
the precision is to flood a cluster when more than a threshold number of brokers
within that cluster need to receive an event. That is, the algorithm behaves
like CGM unless the number of destinations in a cluster exceeds a threshold, at
which point the event is multicast to the entire cluster. We call this algorithm
Threshold CGM (or TCGM).

For each cluster, we pick a threshold T < K, whereK is the size of the cluster.
If an event matches more than T endpoints, the event is sent to all brokers in
one cluster. Otherwise, the event is sent only to the brokers subscribed to the
event (as in CGM). This algorithm requires multicast groups for all subsets of
brokers in a cluster of size T or smaller, plus one additional multicast group for
all brokers in the cluster. A closed form expression for the number of groups
required is given in Fig. 4. Figure 2 compares group requirements for CGM
and TCGM for three different values of threshold T , and for different numbers
of brokers and clusters. The group requirement for TCGM is many orders of
magnitude smaller than in the case of CGM.

190 Lukasz Opyrchal et al.

Nodes CGM TCGM, T = 5 TCGM, T = 4 TCGM, T = 3

168, 8 clusters 16,777,216 223,168 60,376 12,496

112, 8 clusters 131,072 27,784 11,768 3,760

112, 4 clusters 1,073,741,824 489,756 96,632 14,732

88, 4 clusters 16,777,216 141,776 36,436 7,176

Fig. 2. Group requirements of CGM vs. TCGM

2.5 The Neighbor Matching Algorithm

The neighbor matching algorithm is derived from our earlier work [2]. In this
approach, each broker designates a number of nearby brokers as “neighbors.”
Each broker performs just enough tests of the event content to determine which
subset of its neighbors are on the next hop to a final destination broker.

There is one major difference between the earlier work and the use of neighbor
matching in this paper: In the earlier work, we assumed a point-to-point link
to each neighbor (which is why in that work, the algorithm was named “link
matching”). In this paper, we are assuming that there is a multicast group
for each possible combination of neighbor brokers. When an event arrives at a
broker, the broker computes the set of brokers on the “next hop” and forwards
the event to the corresponding group.

There are a number of potential advantages of this approach. First of all,
it is more scalable as the number of brokers in the system grows. Each broker
has to know about only its immediate neighbors, not about all the brokers.
For k neighbors, a broker can have a maximum of 2k groups. Furthermore, the
knowledge of those group names does not need to be widely disseminated; only
neighbors need to subscribe to a group.

The disadvantages of the approach are that there is extra processing required
on brokers, extra bandwidth required on the links between brokers and the net-
work, and potential extra delay from publisher to subscriber because of the extra
hops required.

2.6 Group Approximation Algorithm

The group approximation algorithm is a single multicast approach which re-
duces the number of groups required by combining actual groups to approxi-
mate groups. This approach reduces precision because an approximate group
often contains a superset of the brokers which match an event. That is, some
brokers may receive waste events: events which do not match any subscription
held by a broker. The volume of waste events can affect system performance.
Thus, an important aspect of this technique is to construct approximate groups
which minimize the volume of waste events received by each broker, given a fixed
number of multicast groups.

One way to choose approximate groups is to make use of the information
contained in the subscriptions stored at each broker. In particular, we may re-

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 191

quire a separate group for each disjoint matching set entailed by a collection of
subscriptions. The matching set of a subscription is the set of events which sat-
isfy the constraints of the subscription. Figure 3 gives example subscriptions and
corresponding matching sets. Note that the ideal algorithm creates a multicast
group for each disjoint matching set.

The intuition behind the group approximation algorithm is the observation
that, in systems with large event schemas, many groups have a relatively low
probability of receiving events. Therefore, combinations of such groups also have
a relatively low probability of introducing wasted events.

[a = 1, b = *, c = 1]

[a = 1, b = 2, c = *]

[a = 1, b != 2, c = 1]

[a = 1, b = 2, c != 1]

[a = 1, b = 2, c = 1]

Fig. 3. Example subscriptions (on the left) and their corresponding disjoint
matching sets (on the right) for the simple event schema [a: integer, b:
integer, c: integer]. The events in the first set match the first subscrip-
tion, events in the second set match the second subscription, and events in the
third set match both

The group approximation algorithm operates as follows. Let g be the desired
number of groups, then:

1. Determine the set of required multicast groups and their probability of re-
ceiving an event.

2. Combine pairs of groups until there are no more than g groups in the system.

The choice of groups to combine at each step has a significant impact on the
waste generated by approximation. This waste may be characterized as follows.
Given a multicast group Gi, define:

pi The probability that Gi will receive an event.
li The loss factor of Gi. That is, the expected number of events wasted for each
multicast to Gi.

bi The set of brokers with a subscription containing the matching set repre-
sented by Gi.

The expected waste induced by a groupGi is pi×li. The net waste induced (NWI)
by combining two groups G1 and G2 is given by the expression NWI(1, 2) =
(p1 + p2)× l1,2 − p1 × l1 − p2 × l2 where l1,2 is given by:

192 Lukasz Opyrchal et al.

l1,2 =
(

p1

p1 + p2

)
× (|b2 − b1|+ l1) +

(
p2

p1 + p2

)
× (|b1 − b2|+ l2)

and |bi − bj | is the number of brokers in set bi but not in bj . Note that for the
combined group G1,2 we also have p1,2 = p1 + p2 and b1,2 = b1 ∪ b2, where the
former follows from the fact that G1 and G2 represent disjoint matching sets.
Reducing the equations above, NWI(1, 2) may be expressed as p1 × |b2 − b1| +
p2 × |b1 − b2|.

Typically, the set of disjoint matching sets is exponential in the number of
subscriptions (several million for the simulations described in the next section).
Moreover, the order in which we combine groups is significant. Therefore, an
ideal group reduction involves a search over all possible orders of combining
groups, and is therefore exponential in the size of the initial group set. Thus,
heuristics are the only practical approach for deriving approximate groups using
the expressions above. However, even in the case of polynomial heuristics, the
exponential size of the initial group set is still a limiting factor1.

In this paper, we use a hybrid approach where we approximate the set of
initial groups, and then use a heuristic to reduce to a final group set. We ap-
proximate the initial group set by reducing the selectivity of subscriptions by
eliminating rare attributes of the schema. We then combine groups to form an
approximate group set by first sorting the initial groups from least to greatest
according to probability of receiving an event. Groups with the same probability
are further sorted from greatest to least according to the expression |bi| − li.
We then compute NWI(i, j) for each combination of the first 100 groups, and
combine the pair with the minimal net waste induced. The combined group is
reinserted and the algorithm is repeated until we have reduced to the desired
number of groups.

The motivation for sorting the groups is that groups with small probability
pay less of a penalty for non-optimal combinations. In the case of the second
sorting term, the intuition is that groups with many members but little waste
are more likely to overlap in a productive manner. As a further check, we find
the best pair of groups to combine by considering the first 100 groups, rather
than simply combining the first two groups in sorted order. This algorithm is
O(log n) for each combination step.

Note that some error is introduced by only considering a subset of sub-
scription attributes. In particular, it is possible to discover an actual group at
run-time which has no corresponding approximate group. In this case, we dy-
namically map the actual group to the smallest approximate group which is a
superset of the actual group.

1 One simple heuristic is to use a greedy algorithm which combines pairs of groups
with minimal NWI. This algorithm is ≈ O(n3) which is still prohibitively expensive
for group sets with size in the millions.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 193

2.7 Summary

Each of the algorithms described above makes specific tradeoffs in order to ex-
ploit multicast. While a common goal is to reduce the number of groups, there
are several other criteria by which these algorithms may be categorized:

– Precision: Defined as the ratio # matched brokers
receiving brokers . Precision is one measure

of the amount of waste in the system.
– Number of Multicasts: The number of multicast sends required in order to
distribute an event.

– Total Number of Groups: A bound on the total number of groups required
in the system.

– Groups Per Broker: A bound on the number of groups each broker is required
to join.

– Configuration: The stage at which multicast groups must be created. “Static”
means that groups can be created before the subscription set is known.

– Manageability: An indication of the complexity and ease of management of
a particular algorithm.

Ideal Flooding CGM TCGM Neighbor Approx

Precision 1 Pb 1 [T+1
K

, 1] 1 1− W
N

Mcasts 1 1 1...C 1...C 1 per hop 1

Groups 2N 1 C × 2B C ×PT
i=0

�
B
i

�
N × 2k Configurable

Grps/Broker 2N−1 1 2B−1 PT−1
i=0

�
B−1

i

�
k × 2k−1 Variable

Config. Static Static Static Static Static Dynamic

Manag. Hard++ Trivial Moderate Moderate Moderate Hard

Fig. 4. Summary of event distribution algorithms where N is the number of
brokers, k is the average number of neighbors of each broker, Pb is the probability
that an arbitrary broker will match an event, C is the number of clusters, B is
the number of brokers in each cluster, T is the threshold value for TCGM, andW
is the total waste induced by the group approximation algorithm

Figure 4 summarizes the characteristics of each of the algorithms under con-
sideration. Note that the ideal algorithm is infeasible to implement in most
systems and is only presented for comparison purposes.

3 Evaluation

We have implemented the multicast algorithms described in the previous section
and tested them on a simulated network topology. The goals of our simulations
were:

194 Lukasz Opyrchal et al.

1. To measure the bandwidth utilization characteristics of the algorithms we
developed as well as the simple flooding algorithm and the ideal algorithm.

2. To measure the latency characteristics for the same set of algorithms. We
define latency as the delay from the time an event is published to the time
it is delivered to a subscribing client.

It should be noted that if subscriptions are uniformly distributed over a
geographic region, then for a high enough probability of match between a random
event and a random subscription, and a small enough set of brokers, it follows
from straightforward probability theory that most events will be required by all
brokers, and thus the behavior of ideal multicast and the behavior of flooding
will be the same. Therefore, we concentrate on evaluating other algorithms only
where these conditions do not occur, or in other words, where the following
conditions do occur:

1. High selectivity. The subscriptions are sufficiently selective that the average
probability of a match is very low; or

2. High regionalism. The subscriptions are sufficiently non-uniform that certain
kinds of events will have high interest in certain parts of the network and
low interest in other parts of the network.

3.1 Simulated System

We simulate an eighty-eight broker publish-subscribe network deployed across a
WAN. The WAN topology used in the simulations was generated using the Geor-
gia Tech Internetwork Topology Models [5]. We used the transit-stub topology
model [26] which approximates wide-area networks. The generated topology is
shown in Fig. 5. It consists of three kinds of nodes: eighty broker nodes with
only subscribing clients (rectangles), eight broker nodes with only publishing
clients (double circles), and one hundred multicast-enabled router nodes (cir-
cles). Links between these nodes are of three types: backbone links (bold lines)
that are OC-12 class (622Mbit), intermediate links (normal lines) that are OC-3
class (155Mbit), and fringe links (dotted lines) that are high-speed LAN class
(100Mbit). Latencies are labeled on individual links.

The multicast routers in the network are state of the art wire-speed routers.
That is, they are able to forward messages at the maximum bandwidth of their
incoming links. However, for each outgoing link, there is an output queue for
messages that are yet to be consumed by that link. Routers and links in the
network are also loaded with traffic unrelated to publish-subscribe traffic. This
ambient load is 25% of the link capacity on average, uniformly across the net-
work2.

Each of the eighty brokers with subscribing clients has twenty five clients
connected to it, with an average of five subscriptions per client (giving 10000 to-
tal subscriptions). Subscriptions are generated randomly using an event schema
2 We leave the study of a more realistic non-uniform ambient load as future work.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 195

Broker

Router

Publisher

X

Fringe Link

Intermediate Link

Backbone Link

Link with Latency X

Fig. 5. Simulated network topology

196 Lukasz Opyrchal et al.

with fifteen attributes, where each attribute has four possible values. For each
attribute, a subscription gives either a concrete value chosen from a Zipf dis-
tribution, or a “don’t care” value, which matches events with any value for the
attribute. Subscriptions are generated randomly in such a way that the first at-
tribute is a concrete value with probability of 0.98, and this probability decreases
from the first to the last attribute. We vary the rate of this decrease to obtain
results for different subscription match rates. For example, if the probability that
an attribute is a concrete value decreases at the rate of 78%, each event matches
about 2.24% of subscriptions. If the probability of a concrete value decreases at
the rate of 88%, each event matches about 0.21% of subscriptions.

There are also 8 publishers in the network that publish events tracked by
the simulator. Events are generated randomly, with attribute values in a Zipf
distribution. Events arrive at the publishing brokers according to a Poisson dis-
tribution with mean arrival rate of 200 µs. The size of each event is 1KB.

When an event is published, it is matched at the publishing broker and
then one of the previously described algorithms is used to forward it towards
other brokers. Along the way, it incurs latency delays along different links as
well as queuing delays at router output queues. Receiving brokers also perform
a matching operation before forwarding to clients or to other brokers (in the
case of neighbor matching). The brokers’ CPU utilization for performing the
matching operations is also modeled.

Simulations were run for all multicast algorithms described above with each
run consisting of 5000 published events. In all cases, this number of events guar-
antees less than a 1% error rate (with 99% confidence) for the bandwidth mea-
surements.

Additional Setup for Specific Algorithms

For the purposes of the neighbor matching algorithm of Sect. 2.5, the topology
described above also specifies a “neighbor” relation between brokers, as shown
in Fig. 6. Each circle in Fig. 6 corresponds to one of the broker nodes (rectangle
or double circle) in Fig. 5. Latencies between neighbors represent latencies on
the shortest path between corresponding brokers. In the particular experimental
configuration tested here, we assign neighbor relationships based upon proximity
in the network topology. We limit the number of neighbors so that the total
number of groups used in the system is approximately 213. We chose 213 to
match the number of groups used in the simulation of CGM-8 and in the group
approximation algorithm. Because no broker needs to know about any groups
other than those used by its immediate neighbors, the number of groups known
to any one broker is small — on the average a broker needs to know 100 groups
to which it can send, and needs to join 325 groups from which it can receive an
event.

For the purposes of the CGM algorithm of Section 2.3, we manually assigned
each broker to one of the required number of clusters, based on its geographical
location and its proximity to other brokers in the same cluster.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 197

Fig. 6. Broker “neighbor” relations

198 Lukasz Opyrchal et al.

Subscription Distributions

We ran simulations for two kinds of subscription distributions: non-regional,
and regional. In the non-regional distribution, the subscriptions are assigned
randomly with a uniform distribution, without regard to the location of the
subscribing client. In the regional distribution, topologically nearby clients are
more likely to be interested in the same events. This is achieved by assigning
one attribute of the event schema as the “regionalism” attribute. The value of
the regionalism attribute is a number between one and four, corresponding to
its “cluster” as determined by the CGM clustering algorithm (with 4 regions)
described above. With probability p, a subscription for a client in region i spec-
ifies an interest in an event with value i for the regionalism attribute; otherwise
it specifies a don’t-care for this attribute. This probability p is a simulation pa-
rameter we call the degree of regionalism. At p = 0, the distribution is equivalent
to the non-regional distribution. We refer to the distribution at p = 1 as “total
regionalism”.

The regionalism simulations were further refined according to whether or not
publisher events are assigned a regionalism attribute based upon the location
of the publisher. In one scenario, called “publisher regionalism”, all events are
assigned a regionalism attribute value equal to the publisher’s region number; in
the other scenario, the regionalism attribute is assigned randomly. As it turned
out, the results of the simulations were not sensitive to publisher regionalism. We
therefore present only the results with non-regional subscriptions and regional
subscriptions.

3.2 Bandwidth Utilization Results

To study the bandwidth utilization of the multicast algorithms described earlier,
we divide the links into three classes: backbone links, intermediate (router to
router) links, and fringe (router to broker) links, corresponding to link types in
Sect. 3.1. This classification is based not only on the bandwidth capacity, but also
on economic and administrative considerations. For example, the cost of using
a backbone link may be different from that of a fringe link. Similarly, economic
decisions regarding fringe links may affect the way in which subscriptions on a
broker are managed. For these reasons, we believe that these three classes of
links must be studied separately.

Highly Selective Non-Regional Subscriptions

For non-regional subscriptions, the various approaches are only distinguish-
able when match rates are low (e.g., less than 3%). Figure 7 charts the mean
bandwidth utilization per published event at various subscription match rates,
for different classes of links. On backbone links, the graph shows that cluster-
based algorithms use a factor of two or three more bandwidth on the backbone
than the other algorithms. This is because these approaches send multiple mes-
sages for each published event. The other algorithms perform similar to each
other on the backbone, and are close to ideal for almost all match rates. One

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 199

interesting observation here is that the neighbor matching algorithm is slightly
more efficient than the ideal algorithm even though it uses multiple sends, one
per hop. This is because hops from neighbor to neighbor may use an optimal
number of backbone links although a sub-optimal number of links overall.

On intermediate links, all the algorithms outperform flooding if the subscrip-
tion set is highly selective. In particular, the neighbor matching and CGM-4
algorithms perform better than others (excluding ideal) for subscription match
rates below 1.5%. Thus, if an application has a stable match rate in this region,
one of these algorithms may prove to be suitable. However, at higher match
rates, these algorithms perform worse than a simple flooding approach. Sim-
ilarly, CGM-8 and TCGM perform worse than flooding for anything but the
most highly selective subscriptions. The group approximation algorithm does no
worse than flooding asymptotically, but offers a slight benefit for match rates
below 0.5%.

On fringe links, bandwidth utilization is closely related to the precision of
algorithms. Single-hop precise algorithms, such as the cluster-based algorithms
perform similar to the ideal algorithm, the difference being the extra usage of
fringe links from publisher brokers. Single-hop imprecise algorithms, such as
TCGM and Approx utilize more bandwidth on the fringes, and quickly approach
flooding. Neighbor matching, although precise, utilizes worse amounts of band-
width on the fringes since it is based on multiple hops between brokers (which
are always on the fringes).

As expected, all algorithms (even ideal) eventually converge to the same (or
worse) bandwidth usage as the flooding approach. With 125 subscriptions per
broker and 2% subscription match rate, the fact that subscriptions are uniformly
distributed (as opposed to regionally distributed) gives a 92% probability that
an arbitrary broker will have a subscription matching a particular event. This
means that over 90% of the brokers receive each published event.

Regional Subscriptions

For regional subscriptions, all the algorithms have the same relative perfor-
mance (with the exception of approx) but show a marked improvement over
flooding as the degree of regionalism (as given in Sect. 2) is increased. Figure 8
illustrates the effect of regionalism on the various approaches at a fixed match
rate of 3%. At the top of the figure, intermediate link utilization is plotted as
a function of the degree of regionalism. It is interesting to note that none of
the algorithms perform significantly better than flooding until regional corre-
lation reaches 0.75. At this point, ideal, neighbor matching and CGM-4 begin
to show successively better improvement as the degree of regionalism increases.
CGM-8 and TCGM-4(3) also show improvement but do not compare favorably
with flooding until regional correlation is close to 1. The one exception to this
trend is the group approximation algorithm which does not improve because the
set of required groups is approximated and regionalism is not accounted for. In

200 Lukasz Opyrchal et al.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Match Rate (%)

Graph A - Backbone Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Match Rate (%)

Graph B - Intermediate Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Match Rate (%)

Graph C - Fringe Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

Fig. 7. Link utilization results for non-regional subscriptions

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 201

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Degree of Regionalism

Intermediate Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1

Re
lat

ive
 Li

nk
 U

tili
za

tio
n

Degree of Regionalism

Intermediate Links

cgm-4/ideal
cgm-8/ideal

flooding/ideal
ideal/ideal

neighbor/ideal
approx/ideal

tcgm-4(3)/ideal

Fig. 8. Effect of regionalism on intermediate link utilization

particular, it is possible for groups from separate regions to be combined into a
single group during the group combination phase3.

The bottom of Fig. 8 illustrates the performance of each algorithm relative
to the ideal algorithm. The peaks in the graph indicate regions where the ideal
algorithm improves at a faster rate than the other algorithms. The CGM-4 and
TCGM algorithms converge with ideal at total regionalism because the four
regions used in the experiment correspond exactly with the four clusters used in
these algorithms4.

3 The group approximation algorithm can be refined to take regions into account while
combining groups in order to eliminate this effect.

4 Also, under total regionalism, all matching subscriptions will be in the same region.
As a result, a match rate of 3% gives a high probability that every broker in a cluster
will require an event. Thus the flooding aspect of TCGM has no detrimental effect.

202 Lukasz Opyrchal et al.

Summary

These results illustrate that in scenarios with high selectivity (match rates
in the 1% range) or high regionalism (degree of regionalism greater than 0.8),
the algorithm of choice will depend on the economics of deployment. If the
cost of fringe links is the highest, a cluster-based algorithm may be feasible,
provided that the number of groups required can be supported. If intermediate
links are most expensive, that may suggest the neighbor matching approach. If
backbone is expensive, anything but the cluster-based algorithms are acceptable.
A weighted sum of the bandwidth utilizations, where the weights are based on
the cost of using each class of links, will suggest the optimal algorithm.

3.3 Latency Results

The latency metric compares the average time taken by an event to travel from
a publisher to all subscribers. It turns out that the latency of all algorithms
except neighbor matching were virtually identical for all match rates. All these
algorithms do not differ since the event publish rate used in our simulations
was not high enough to induce queueing delays at the various routers. Even
under regionalism, event rates were not sufficiently high to show any latency
variation. In all cases, however, neighbor matching was about 25% slower because
of the delays introduced by performing partial matching at broker nodes on
intermediate hops.

4 Related Work

The background of this study, and work related to it, will be reviewed in two
phases. First, we examine the event distribution algorithms of those systems
that support non-trivial subscription languages, with respect to how (if at all)
these systems exploit group multicast at the network level. Second, we examine
algorithms that employ multiple IP multicast groups, with respect to how closely
their semantics resemble those of content-based subscription systems.

4.1 Event Distribution Systems

Relatively few event distribution systems [25] allow subscriptions to be expressed
as predicates over the entire message content. A few noteworthy examples of this
emerging category are SIENA [6], READY [10], Elvin [20], JEDI [7], Yeast [12],
GEM [15], and Gryphon [2]. All of these systems support rich subscription predi-
cates, and thus face problems of scalability in their event distribution algorithms.

However, pure content-based systems are only one endpoint on a scale of sub-
scription “richness,” and an increasing number of publish-subscribe systems may
be expected to experience aspects of the problem explored here. The Java Mes-
sage Service (JMS) [22] enables the use of message selectors, which are predicates
over a set of message properties. Message designers are free to store information
in properties rather than the message body, making the resulting system behave

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 203

more like a content-based system. The OMG Notification Service [17] describes
structured events with a “filterable body” portion. Many vendors are imple-
menting JMS, or the OMG Notification service, or both, which has the result
of making this form of subscription more popular. The TIB/Rendezvous sys-
tem [23] available from the TIBCO corporation has a hierarchy of subjects and
permits subscription patterns over the resulting segmented subject field, also
approximating some of the richness available with content-based subscription.

The actual event distribution algorithms employed by the “richer” systems
vary. Some systems, such as Yeast [12] and Elvin [20], are centralized, with a
single server to which all events are first sent. The server evaluates subscription
expressions and sends the results to individual subscribers. Multicast is not used.
The Elvin server supports a “quench” function, wherein publishers are able to
find out if an event has any subscribers at all: such events are not sent to the
server.

TIB/Rendezvous uses LAN broadcast to deliver all events, and performs
event filtering in daemon processes at client machines. An extension to use IP
multicast [8] instead of LAN broadcast has been accomplished and it is report-
edly in use by some customers.5 This extends the reach of the Rendezvous solu-
tion to a somewhat wider network, but the solution still employs a single group
and is optimized for the LAN case, where the cost of multicast and unicast are
similar.

Both SIENA [6], and our previous work in the Gryphon project [2] explored
algorithms that delivered events over a logical network of brokers. These algo-
rithms delivered events only to interested subscribers, employed only links that
were along a path to an interested subscriber, and sent each message at most
once over each link. Both papers characterized their algorithms as forms of mul-
ticast, but neither system actually exploited multicast services at the network
level: their implementation assumed only point-to-point links.

READY [10] is a new, distributed version of Yeast. It offers two ways for
publishers and subscribers to connect to event brokers, via TCP connections,
or via a “reliable multicast” provider. However, what they mean by reliable
multicast is itself an event-based middleware layer such as TIB/Rendezvous
or IONA’s OrbixTalk [11]. Whether or not network-layer multicast is exploited
depends on how the underlying product achieves its reliable multicast semantics.
READY employs a peer group of equivalent servers rather than a graph of servers
as in SIENA or Gryphon.

Both READY and TIB/Rendezvous provide specialized routers between ad-
ministrative domains (called “boundary routers” in READY and “routing dae-
mons” in Rendezvous). The assumption is that the publishers and subscribers
within an administrative domain have high levels of traffic, while messages
cross domain boundaries less frequently. Elvin lists a similar function as future
work [20].

As far as we can determine, all previous solutions either do not use group
multicast at the network level, or employ a single group with filtering at the

5 See http://www.rv.tibco.com/faq.html.

204 Lukasz Opyrchal et al.

clients, or modify the second technique only at boundaries between administra-
tive domains. We wish, in contrast, to use network-level multicast as a flexible
building block in developing a specialized content-based multicast solution.

4.2 Other Algorithms That Exploit IP Multicast

Publish-subscribe systems are not the only domain in which information is peri-
odically delivered to a set of clients whose membership may vary from delivery
to delivery. IP multicast was, of course, designed for the case where the set of
interested clients was the same for a large set of related deliveries. So, the need
to use multiple, possibly overlapping, IP multicast groups may be expected to
arise in numerous domains.

One domain where the use of multiple IP groups is becoming popular is
web caching. The Adaptive Web Caching proposal [27] proposes a dynamically
maintained mesh of overlapping multicast groups, over which trees are implicitly
formed with web servers at their root and caches as nodes. A mixture of multicast
and unicast transmissions are used in constructing the protocol. Caching is based
on requests from clients, rather than pro-active “pushes” from servers, so the
relevance of this proposal to publish-subscribe systems is limited.

Other web caching proposals, however, have used a model in which servers
push content to proxy caches based on predictions concerning likely interest in
particular pages. This is much more like a publish-subscribe system. MMO [14]
and LPC [24] are two recent examples of multicast “push” caching proposals that
assign caches to multiple IP multicast groups based on clusters of web pages that
are expected to have “similar” hit patterns.

As far as we can determine, proposals in which web caches belong to multiple
IP multicast groups have assumed that the number of groups will be modest,
and that the limit of IP multicast addressing is not a factor in the scalability of
the proposals. In contrast, the present study contemplates algorithms in which
the number of groups can become a factor in scalability, and considers tradeoffs
to minimize the number of groups.

5 Conclusions and Future Work

One important result of this study is that the flooding algorithm is viable over an
extensive range of conditions. As pointed out earlier, when subscription patterns
do not vary by location in the network, even a fairly low match rate guarantees
that all or nearly all brokers will have some subscription matching each event.
For instance, under our simulation parameters (10,000 subscriptions distributed
among 80 brokers), with a match rate of about 3%, each event goes to over
91% of the 80 brokers. That is, there is less than 9% wasted work on the fringe
links and in the destination brokers if that event were broadcast to all brokers
(there is an even smaller percentage of wasted work on the other links). Even
with a match rate as low as 1.5%, each event goes to over 77% of all brokers.
Therefore, it is only useful to examine the non-flooding algorithms for cases with

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 205

high selectivity (i.e., match rates are low or highly variable), or high regionalism
(i.e., where the probability of match is biased according to the location of the
broker).

The algorithms being studied here do not begin to perform significantly bet-
ter than flooding until the match rate drops below 1%. CGM performs well in this
region, but still requires a very large number of groups and does not scale well.
Neighbor matching is the best of the candidates if intermediate link bandwidth
is the most important, but suffers in terms of latency. The group approximation
algorithm is potentially scalable but performs worse than neighbor matching in
the low match-rate region.

The case in which subscriptions display what regionalism is an important
one. In this case, flooding is less likely to perform well because subscriptions are
localized and wide-scale dissemination of events will unnecessarily congest the
network. Thus, it is not surprising that many of the approaches described in this
paper begin to perform better than flooding when more than 75% of subscrip-
tions have a regional correlation. In particular, CGM and neighbor matching
may provide significant bandwidth savings in these highly regional scenarios.
These results suggest a hybrid approach where our multicast techniques are
only utilized during high regionalism conditions. In particular, an important fu-
ture direction is to discover such conditions dynamically, and to exploit them in
creating small numbers of groups tailored to the most likely patterns of event
deliveries.

In evaluating multicast techniques, we have emphasized performance based
on a static set of subscriptions, based on the assumption that events are pub-
lished far more frequently than subscription changes. However, many systems
are likely to experience a flux of subscriptions. Thus, multicast groups may need
to be periodically reconstructed as subscription sets change. Of the approaches
considered, flooding, CGM, and neighbor matching are the most resilient to
subscription set changes, since these approaches organize brokers into multicast
groups which are fixed at system configuration time. For group approximation,
subscription changes may alter the waste incurred by existing groups. In the
worst case, the entire set of approximate groups must be reconstructed from
scratch. Some overhead may be reduced in each of these approaches by perform-
ing group reconstruction at idle times and using flooding for new subscriptions
in the interim. On the other hand, if subscription regionalism is also a dynamic
feature then both flooding and CGM may suffer in performance. Flooding, for
example, does not account for regionalism. Similarly, CGM may suffer from an
unfortunate choice of regions at configuration time. In contrast, the neighbor
matching algorithm is more adaptable to dynamically forming regions.

Any practical solution is likely to incorporate a hybrid of technologies. It
may be cost effective to incorporate a certain degree of higher-level function
in routers. For instance, neighbor matching or group approximation may be
combined with a form of network multicast that permits sending to a subset of a
group, as in AIM [13]. Moreover, as broker networks are consolidated and grow
into the hundreds of brokers, even clustering will not significantly reduce the

206 Lukasz Opyrchal et al.

number of required groups. Thus, it may be necessary to consider structuring
the larger network hierarchically, using different multicast algorithms internally
within the subnetworks and across subnetworks.

6 Acknowledgements

The authors wish to thank Arthur Goldberg for his comments and suggestions
regarding the cluster multicast algorithm, and Dilip Kandlur for his help in
understanding IP router characteristics. The authors also thank Sumeer Bhola
and the reviewers for their comments.

References

1. Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar D. Chandra. Matching Events in a Content-Based Subscription System.
In Proceedings of Principles of Distributed Computing (PODC ’99), Atlanta, GA,
May 1999. 186, 187

2. Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In International Conference on Dis-
tributed Computing Systems (ICDCS ’99), June 1999. 186, 190, 202, 203

3. Ken P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):36–53, December 1993. 185

4. S. Bradner and A. Mankin. The Recommendation for the IP Next Generation
Protocol. IETF. RFC 1752. 187

5. Ken Calvert, Matt Doar, and Ellen W. Zegura. Modeling Internet Topology. IEEE
Communications Magazine, June 1997. 194

6. Antonio Carzaniga. Architectures for an Event Notification Service Scalable to
Wide-area Networks. PhD thesis, Politecnico di Milano, December 1998. Available
from http://www.cs.colorado.edu/˜carzanig/papers/. 202, 203

7. G. Cugola, E. DiNitto, and A. Fuggetta. The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. Submitted to Transactions
on Software Engineering. 202

8. S. Deering. Host Extensions for IP Multicasting. IETF. RFC 1112. 186, 203

9. S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM
Transactions on Networking, 5(6):784–803, December 1997. 186

10. R. Gruber, B Krishnamurthy, and E. Panagos. An Architecture of the READY
Event Notification System. In Proceedings of the Middleware Workshop at the
International Conference on Distributed Computing Systems 1999, Austin, TX,
June 1999. 202, 203

11. IONA Corporation. OrbixTalk Fact Sheet.
http://www.iona.com/products/messaging/talk/index.html. 203

12. B. Krishnamurthy and D. Rosenblum. Yeast: A general purpose event-action sys-
tem. IEEE Transactions on Software Engineering, 21(10), October 1995. 202,
203

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 207

13. B. N. Levine and J.J. Garcia-Luna-Aceves. Improving internet multicast with
routing labels. In Proc. IEEE International Conference on Network Protocols,
pages 241–50, October 1997. 205

14. Dan Li and David R. Cheriton. Scalable Web Caching of Frequently Updated
Objects Using Reliable Multicast. In Proceedings of the USENIX Symposium on
Internet Technology and Systems, Boulder, Colorado, 1999. 204

15. M. Mansouri-Samani and M. Sloman. A Generalized Event Monitoring Language
for Distributed Systems. IEE/IOP/BCS Distributed Systems Engineering Journal,
4(2), June 1997. 202

16. Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Consul: A Com-
munication Substrate for Fault-Tolerant Distributed Programs. Technical Report
TR 91-32, Dept. of Computer Science, The University of Arizona, November 1991.
185

17. Object Management Group. Notification Service. http://www.omg.org/cgi-
bin/doc?telecom/98-06-15. 203

18. Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus -
An Architecture for Extensible Distributed Systems. Operating Systems Review,
27(5), December 1993. 185

19. David Powell. Group Communication. Communications of the ACM, 39(4):50–97,
April 1996. (Guest Editor). 185

20. Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe no-
tification service with quenching. In Proceedings of AUUG97, Brisbane, Australia,
September 1997. 186, 202, 203

21. Dale Skeen. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview.
Technical report, Vitria Technology Inc., 1996. http://www.vitria.com. 185

22. Sun Microsystems. Java Message Service. http://java.sun.com/products/jms. 202
23. TIBCO. TIB/Rendezvous White Paper.

http://www.rv.tibco.com/whitepaper.html. 203
24. J. Touch and A. S. Hughes. The LSAM Proxy Cache - a Multicast Distributed

Virtual Cache. Computer Networks and ISDN Systems, 30(22–23), November 1998.
204

25. Workshop on Internet Scale Event Notification.
See http://www.ics.uci.edu/IRUS/wisen/wisen98 for details. 202

26. Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee. How to Model an Internet-
work. In Proceedings of IEEE Infocom ’99, San Francisco, CA, April 1996. 194

27. L. Zhang, S.Floyd, and V. Jacobson. Adaptive Web Caching. In Pro-
ceedings of the 2nd NLANR Web Cache Workshop, Boulder, Colorado, 1997.
http://ircache.nlanr.net/Cache/Workshop97/Papers/Floyd/floyd.ps. 204

The Design and Performance of a Scalable ORB

Architecture for CORBA Asynchronous
Messaging�

Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael Kircher,
and Jeff Parsons

Department of Computer Science
Washington University, St. Louis, MO 63130

{alex,coryan,schmidt,mk1,parsons}@cs.wustl.edu

Abstract. Historically, method-oriented middleware, such as Sun RPC,
DCE, Java RMI, COM, and CORBA, has provided synchronous method
invocation (SMI) models to applications. Although SMI works well for
conventional client/server applications, it is not well-suited for high-
performance or real-time applications due to its lack of scalability. To ad-
dress this problem, the OMG has recently standardized an asynchronous
method invocation (AMI) model for CORBA. AMI provides CORBA
with many of the capabilities associated traditionally with message-
oriented middleware, without incurring the key drawbacks of message-
oriented middleware.

This paper provides two contributions to research on asynchronous invo-
cation models for method-oriented middleware. First, we outline the key
design challenges faced when developing the CORBA AMI model and
describe how we resolved these challenges in TAO, which is our high-
performance, real-time CORBA-compliant ORB. Second, we present the
results of empirical benchmarks that demonstrate the performance ben-
efits of AMI compared with alternative CORBA invocation models. In
general, AMI based CORBA clients are more scalable than equivalent
SMI based designs, with only a moderate increase in programming com-
plexity.

1 Introduction

Motivation:

Historically, applications based on the standard CORBA [1] distributed object
computing model have had to choose between three invocation models: one-way
operations, synchronous two-way operations, and deferred synchronous opera-
tions using the dynamic invocation interface (DII). Unfortunately, these alter-
natives are often inappropriate for applications with stringent quality of service
� This work was supported by DARPA contract 9701516, NSF grant NCR-9628218,
Siemens ZT, Sprint, Nortel, Boeing, SAIC, and Lucent.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 208–230, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The Design and Performance of a Scalable ORB Architecture for CORBA 209

(QoS) requirements. For instance, one-way operations lack well-defined seman-
tics [2], which reduces their portability and suitability for applications with non-
trivial reliability requirements. Likewise, synchronous two-way operations are not
scalable because they require a client thread for each pending request/response
invocation. Finally, the deferred synchronous model is inefficient and tedious to
program due to its reliance on the DII [3], which allocates memory and copies
data excessively.

To address these limitations, the OMG adopted a Messaging specification [4]
for the CORBA standard. One of the key features in the CORBA Messaging
specification is support for asynchronous method invocations (AMI).

Overview of CORBA AMI:

The CORBA AMI specification defines a polling model and a callback model, as
described below:

• Polling model: In this model, each two-way AMI operation returns a Poller
valuetype [5], which is very much like a C++ or Java class in that it has both
data members and methods. Operations on a Poller are just local C++ method
calls rather than remote CORBA operation invocations. The polling model is
illustrated in Figure 1. The client can use the Pollermethods to check the status

��������������

�����	�����	

��
��
��
��
��

����������������������������

���������	

���������

���������

�����	

	�
��		�
��	

�����	�����	
��

Fig. 1. Polling Model for CORBA Asynchronous Twoway Operations

of the request so it can obtain the server’s reply. If the server hasn’t replied yet,
the client can either (1) block awaiting its arrival or (2) return to the calling
thread immediately and check back on the Poller to obtain the valuetypes
when it’s convenient.

• Callback model: In this model, when a client invokes a two-way asynchronous
operation on an object, it passes an object reference for a reply handler servant
as a parameter. The reply handler object reference is not passed to the server,
but instead is stored locally by the client ORB. When the server replies, the
client ORB receives the response, and dispatches it to the appropriate callback

210 Alexander B. Arulanthu et al.

����������������

�����	�����	

���������	

���������

	�
��		�
��	

�����	�����	
��

���������

����������������� !���������������������� !�����

Fig. 2. Callback Model for CORBA Asynchronous Twoway Operations

operation on the reply handler servant provided by the client application, as
shown in Figure 2.

Reply handler servants are accessed through normal object references. There-
fore, it is possible for a client application to obtain an object reference for a
remote reply handler servant and use that object reference to make AMI calls.
In this case, replies for the asynchronous invocations will be handled in processes
other than the client or the server involved in the original invocations. The most
common use-case, however, is for the original client to process the response. In
this case, therefore, client application developers must obtain, initialize, and ac-
tivate reply handlers on a POA, which makes the application behave effectively
as both a client and a server.

In general, the callback model is more efficient than the polling model because
the client need not invoke method calls on a valuetype repeatedly to poll for
results. Moreover, compared with CORBA’s original invocation alternatives, the
new AMI models provide the following benefits:

• Simplified asynchronous programming model: CORBA AMI allows operations
to be invoked asynchronously using the static invocation interface (SII). Using
SII for AMI eliminates much of the tedium, complexity, and inefficiency inherent
in DII. In particular, DII requires programmers to allocate a new Request object
explicitly and insert the operation parameters into a list of name value pairs,
i.e., an NVList pseudo-object. Conversely, in SII the IDL compiler can use an
ORB’s internal mechanisms to avoid extra memory allocations and data copies.
Although deferred synchronous request implementations can exploit many AMI
optimizations, such as better utilization of the network resources and improved
parallelism, those improvements are hindered by DII’s extra overhead, which
often makes AMI a more attractive alternative.

• Improved quality of service: When implemented properly, AMI can improve the
scalability of CORBA applications. For instance, it allows “pipelining” of two-
way operations and minimizes the number of client threads that are otherwise
required to perform two-way synchronous method invocations (SMI). In addi-
tion, AMI is important for real-time CORBA applications [6] because it helps
to bound the amount of time a client spends blocking on two-way requests.

The Design and Performance of a Scalable ORB Architecture for CORBA 211

Synopsis of research contributions:

Our previous research has examined many dimensions of high-performance and
real-time ORB endsystem design, including static [7] and dynamic [8] schedul-
ing, event processing [9], I/O subsystem [10] and pluggable protocol [11] in-
tegration, ORB Core architectures [12], systematic benchmarking of multiple
ORBs [13], patterns for ORB extensibility [14] and ORB performance [15]. This
paper focuses on a previously unexplored dimension in the high-performance and
real-time ORB endsystem design space: the design and optimizations used to im-
plement the standard CORBA asynchronous method invocation (AMI) callback
model.

The vehicle for our research on high-performance and real-time CORBA is
TAO [7]. TAO is an open-source1, CORBA-compliant ORB designed to address
applications with stringent quality of service (QoS) requirements. In addition to
being the first ORB with a standard Portable Object Adapter [15], TAO was
the first ORB to implement the standard CORBA AMI callback model.

Related work:

The AMI polling model stems from research on programming language sup-
port for distributed computing. For instance, Futures [16] and Promises [17]
are language mechanisms that decouple method invocation from method return
values passed back to the caller when a method finishes executing. As with
AMI Pollers, calls are invoked asynchronously, clients can rendezvous with a
Future/Promise to obtain reply values when they become available.

Previous research onmethod-oriented middleware [9,18,19] has examined how
the CORBA Event Service can be used to perform asynchronous communica-
tion between CORBA applications. However, the CORBA AMI specification
provides a different programming model than the CORBA Event Service. For
instance, since the CORBA Event Service allows single-point-to-multi-point and
anonymous communication models, application developers must devise their own
means to send replies from event consumers back to event suppliers. In contrast,
AMI applications can receive replies that include multiple IDL types. Moreover,
CORBA Event Service participants communicate using a single Any argument.
Although Anys can send all IDL types, they incur significant marshaling and
message footprint overhead. In contrast, AMI clients can send and receive mul-
tiple IDL types and IDL compilers [20] can generate efficient marshaling and
demarshaling code for them.
Message-oriented middleware (MOM), such as the Isis [21] Message Distri-

bution System, TIBCO Information Bus, and IBM’s MQSeries, provide mecha-
nisms that allow suppliers to reliably transmit messages asynchronously to one or
more consumers. MOM systems typically consist of additional “router” processes
that store and forward messages on behalf of application processes. If a consumer
1 The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/∼schmidt/TAO.html.

212 Alexander B. Arulanthu et al.

happens to be unavailable due to scheduled downtime, a site crash, or a network
partition, the router will attempt to deliver the message periodically until the
consumer becomes available. The OMG Message specification defines similar
routing capabilities via its Time-Independent Invocation (TII) feature [22,4].
Both the TII and MOM asynchrony mechanisms are too heavyweight, however,
for many high-performance and real-time applications. Moreover, the message-
oriented invocation mechanisms of MOM systems can be harder to program
correctly due to the lack of strong typechecking.

The remainder of this paper is organized as follows: Section 2 outlines the
general structure and dynamics an ORB requires to support AMI callbacks;
Section 3 describes key design challenges faced when implementing the CORBA
AMI callback model and explains how TAO resolves these challenges; Section 4
empirically analyzes the performance of AMI callbacks in TAO [7] and compares
it with alternative communication models; and Section 5 presents concluding
remarks that summarize the lessons learned from implementing AMI callbacks
in TAO.

2 ORB Architectural Support for AMI Callbacks

This section outlines the general structure and dynamics an ORB requires to
support AMI callbacks.

2.1 AMI Callback Features

To support AMI callbacks, an ORB should implement the following
functionality:

1. AMI stubs: For each two-way operation in the IDL interface, an ORB’s
IDL compiler [20] should generate an AMI stub that applications can use to
issue asynchronous operations. Each AMI stub is responsible for (1) setting up
state in the ORB to receive the reply and dispatch it to the appropriate reply
handler, (2) marshaling the in and inout arguments provided by the application,
and (3) using the ORB Core to send the message to a remote ORB. High-quality
IDL compilers should provide an option to suppress the generation of AMI stubs
to reduce the footprint of applications that do not use them.

2. Manage pending invocations: The client ORB must store reply handler
object references for all asynchronous invocations. If the reply handler servant
is collocated with the client, the application developer must activate the reply
handler implementation with the client’s ORB POA. When a reply returns, the
client ORB locates the reply handler servant and invokes the callback method on
it. The client ORB delivers this new request to the reply handler servant using
its regular invocation path, which allows an ORB’s collocation optimizations [23]
to be used to minimize dispatching overhead.

The Design and Performance of a Scalable ORB Architecture for CORBA 213

3. Explicit event loop methods: An ORB must implement the standard
CORBA work pending and perform work operations. Clients can use these op-
erations to invoke the CORBA event loop in a client explicitly. In addition, if
asynchronous replies arrive while a client is blocked waiting for a synchronous
reply, the ORB can use the blocked thread to dispatch the asynchronous reply.

2.2 Collaborations between ORB Components for Asynchronous
Invocation

After an OMG IDL compiler generates the AMI callback stubs, the generated
code must collaborate with internal ORB components to send and receive asyn-
chronous invocations. To demonstrate how this works, Figure 3 depicts the gen-
eral sequence of steps involved when an asynchronous two-way get quote oper-
ation is executed.2 As shown in this figure, the interactions between client ORB

Fig. 3. Interactions Between Client ORB Components for Asynchronous Invo-
cation

components for an asynchronous invocation consist of the following steps:

– The client application invokes the sendc get quote method on the Stub to
issue the asynchronous operation (1). The client passes the
AMI QuoterHandler object reference, along with the name of the stock we’re
interested in, e.g., IBM.

– The Stub marshals its string argument into a buffer and instantiates an In-
vocation (2), which is a facade that delegates to internal ORB components
that establish connections (3) & (4) with a remote server (if necessary), the
ORB stores the AMI QuoterHandler object (5), and send the requests (6)
& (7) to the server.

– After the request is sent, Invocation returns control to the Stub (8), which
itself returns control to the client (9).

2 The names of certain objects in this discussion are specific to TAO, though the
general flow of control and behavior should generalize to other ORBs that implement
AMI callbacks.

214 Alexander B. Arulanthu et al.

– When a client application is prepared to handle callbacks, it calls the ORB’s
work pending and perform work (10) methods to receive and dispatch
replies associated with asynchronous invocations.

– When the reply arrives, the ORB demarshals the reply and demultiplexes it
to the callback method on the reply handler servant that was passed in by
the application when the AMI method was invoked originally (11).

Section 3.2 revisits these steps in more detail after we’ve explained the compo-
nents in TAO’s ORB architecture.

3 The Design of TAO’s AMI Callback Architecture

To make the discussion of ORB architectural support for AMI in Section 2 more
concrete, this section describes our resolutions to key design challenges encoun-
tered when implementing TAO’s AMI-enabled ORB architecture. Section 4 then
illustrates the performance characteristics of TAO’s AMI implementation com-
pared to alternative SMI and DII deferred synchronous communication models.

3.1 Design Challenges and Resolutions

To assist developers of distributed object systems in making informed choices
among alternative ORB middleware solutions, they should understand how the
ORBs are implemented. Below, we (1) outline the key design challenges we faced
when implementing AMI in TAO and (2) explain the patterns and components
we used to resolve these challenges.

Challenge: How to Process Asynchronous Replies Efficiently

Context: Early TAO implementations supported only the Synchronous Method
Invocation (SMI) model. In SMI, the calling thread that makes a two-way invoca-
tion blocks awaiting the server’s reply. The client ORB can use the calling thread
to process the response. For example, consider the Leader/Followers thread pool
concurrency model [12] illustrated in Figure 4. TAO uses this concurrency model
to support multi-threaded client applications efficiently, as follows:

– Each calling thread that invokes a two-way synchronous method (1) uses a
connection to send the request (2).

– The client ORB designates one of the waiting threads the leader and the other
threads as the followers. The leader thread blocks on the select operation
(3); the follower threads block on semaphores (4).

– When a reply arrives on a connection, the leader thread returns from select.
If the reply belongs to the leader, it continues to process the reply after first
promoting the next follower to become the new leader. If the reply belongs to
one of the followers, however, the leader signals the corresponding semaphore
to wake up the follower thread (5).

– The awakened follower thread reads the reply (6), completes the two-way
invocation (7), and returns to its caller.

The Design and Performance of a Scalable ORB Architecture for CORBA 215

�"�!!#$�#%#	�&

�
�!!��
�

#�&��'�
�#

���(�
)����*�
#

+,!������ -,!��.��

/,!���������
�

�
*

�
(

!!	
'

�

�
(

�
�

�
*

�
(

!!	
'

�

�
(

#

0,!1�����

!!�������	���

2,!��3����

4,!��5��6�1�1�7��

�,!1���!��

Fig. 4. Processing Synchronous Two-way Client Invocations using the
Leader/Followers Concurrency Model

Problem: Although the Leader/Followers thread pool model described above
works well for SMI, it does not work without modification for AMI. The problem
stems from the fact that the calling stub goes out of scope as soon as the request
is sent and control returns to client application code. Thus, the ORB must be
prepared to process an asynchronous reply in another context, possibly within
another client thread. Moreover, to complete the processing of server replies to
asynchronous invocations, the ORB must maintain certain state information,
such as reply handler object reference and a function to demarshal the reply
(the so-called reply-stub).

Forces: The mechanisms provided to support AMI replies should add no signif-
icant run-time overhead to the existing SMI mechanisms.

Solution → Strategizing the reply dispatching mechanisms: The problem of pro-
cessing asynchronous replies can be solved by strategizing the reply processing
and dispatching mechanisms used for AMI and SMI calls. Figure 5 illustrates
the components in TAO’s Reply Dispatcher hierarchy. A Synchronous Reply
Dispatcher is created by an Invocation object during a synchronous invoca-
tion on the local stack activation record. When the reply is received, the reply
buffer, i.e., TAO’s InputCDR object, is placed in the dispatcher and control re-
turns first to the Invocation object and then to the Stub. At this point, the
Stub obtains the reply buffer from the Invocation object, demarshals the re-
ply, and completes the invocation. Each Reply Dispatcher object maintains a
reply received flag that indicates if the reply has been received. This flag is
set when the reply is dispatched to this object and the thread waiting for the
reply returns to the Stub.

216 Alexander B. Arulanthu et al.

Fig. 5. Reply Dispatching Strategy

During an AMI call, an Invocation object creates an Asynchronous Reply
Dispatcher on the heap3 because the activation record where the Invocation
object is created is exited before the reply is received. The AMI stub, i.e., the
sendc * operation, stores the reply handler object reference provided by the
client in the Asynchronous Reply Dispatcher object. In addition, the AMI
stub stores the pointer to the appropriate reply-stub method in this object.

A Leader/Followers implementation using TAO’s Reply Dispatcher archi-
tecture is illustrated in Figure 6 and behaves as follows:

�"�!!#$�#%#	�&

�
�!!��
�

#�&��'�
�#

���(�
)����*�
#

�,!������

-,!��.��

�
�

�
*

�
(

!!	
'

�

�
(

�
�

�
*

�
(

!!	
'

�

�
(

#

+,!1�����

!!�������	���

8�,!��������!��

4,!��5��6�1�1�7��

�

���%!(�#��	�'�
#

2,!.������9!��

8�,!������

:,!��3��

0,!����!��

/,!1���!��

Fig. 6. TAO’s AMI-enabled Leader/Followers Implementation

– When application threads make two-way invocations (1), a Reply
Dispatcher object is created for each invocation (2) and the request is
sent (3).

– The leader thread then blocks on the select call (4) and the follower threads
block on the semaphores (5).

3 As an optimization, an ORB could use a pre-allocated pool to allocate these objects,
thereby alleviating heap fragmentation [15].

The Design and Performance of a Scalable ORB Architecture for CORBA 217

– When a reply arrives on a connection, the leader thread itself reads the
complete reply (6) and calls the Reply Dispatcher object that was created
for that invocation to dispatch the reply (7).

– For SMI calls, the Synchronous Reply Dispatcher signals (8s) the thread
waiting for that reply and completes the invocation (9). For AMI calls,
however, the Asynchronous Reply Dispatcher object invokes the callback
method in the reply handler servant (8a).

Challenge: How to Minimize Connection Utilization

Context: Early implementations of TAO supported only a non-multiplexed con-
nection model [12], which is not well-suited for hard real-time applications whose
QoS requirements include highly predictable response times. In this model, a
connection cannot be reused for another two-way request until the reply for the
previous request is received. Figure 7 illustrates TAO’s non-multiplexed connec-
tion model, where five threads make two-way invocations to the same server,

�"�!!#$�#%#	�&

�
�!!��
�

�����	

	
��#��
	!�����	#

	�

	

	 	 	 	

Fig. 7. One Outstanding Request Per-Connection

which creates five connections. TAO represents connections using a Transport
object that provides a uniform interface to the TAO’s pluggable protocols
framework [11], this framework abstracts various underlying transport mecha-
nisms, such as TCP, UNIX-domain sockets, and VME, implemented by TAO.
TAO’s pluggable protocols framework uses key patterns and components pro-
vided by ACE [24].

Problem: Non-multiplexed connection models are inefficient for CORBA AMI
because client applications can issue hundreds or thousands of asynchronous
requests before waiting for the replies. Thus, a non-multiplexed connection model
would use a correspondingly large number of connections.

218 Alexander B. Arulanthu et al.

Forces:

1. An ORB should implement connection multiplexing so that multiple out-
standing requests required to support the AMI model can be processed effi-
ciently.

2. When multiple threads access a connection simultaneously, they should be
synchronized so that requests are sent one-by-one and not corrupted through
intermingled I/O calls.

3. To accommodate various use-cases and QoS requirements, applications
should be able to configure multiplexed and non-multiplexed connection be-
havior both statically and dynamically.

Solution → Strategize the transport multiplexing mechanisms: To overcome the
scalability limitations of a non-multiplexed connection architecture, we extended
TAO to support a multiplexed connection option for both SMI and AMI. In
this design, many requests can be sent simultaneously over the same connection,
even when replies are pending for earlier requests. In general, multiplexing yields
better use of connections and other limited OS resources [12], such as memory
buffers.

To implement this design in TAO, we applied the Strategy pattern [25] and
defined a new strategy called Transport Mux Strategy that supports both mul-
tiplexed and the non-multiplexed connections. The components in this design are
illustrated in Figure 8.

Fig. 8. Transport Mux Strategy

The Exclusive Transport Strategy implements the non-multiplexed con-
nection strategy by holding a reference to a single Reply Dispatcher object.
This strategy is “exclusive” because only one outstanding request at a time can

The Design and Performance of a Scalable ORB Architecture for CORBA 219

pend on each connection. In contrast, the Muxed Transport Strategy uses a
hash table that stores multiple Reply Dispatchers, each representing a request
sent on the connection. As shown in Figure 8, the Transport Mux Strategy base
class provides a common interface for these two different implementations. TAO
uses the Service Configurator pattern [26] to allow applications to select between
these two strategies and thereby configure TAO’s Transport Mux Strategy ei-
ther statically or dynamically.

To synchronize access to a multiplexed connection among multiple threads,
the Transport object for that connection is marked as “busy” while one thread
is sending a request. If during that time another thread tries to send a request,
either a cached connection is recycled or a new connection is created. After the
request is sent, the Transport object is marked as “idle” and is cached so it can
be reused to send subsequent requests.

Challenge: How to Implement Scalable Reply Processing Mechanisms

Context: High-quality CORBA implementations should support “nested up-
calls”, in which an ORB processes incoming requests while it waits for replies.
This support can be implemented using select to wait for both the reply and
any incoming requests. This implementation can add unnecessary overhead, how-
ever, to “pure” clients that do not receive any incoming requests from servers.
Therefore, TAO provides the following three reply processing strategies that al-
low developers to select the most appropriate mechanism for their application
QoS requirements:

– Wait-on-Read: In this strategy, the calling thread blocks on read to receive
the reply. This is a very efficient strategy for pure clients that need not
receive requests or nested upcalls while waiting for server replies.

– Wait-on-Reactor: The Reactor [27] is a framework implemented in ACE [24]
that provides event demultiplexing and event handler dispatching. In this
strategy, a single-threaded Reactor is used to dispatch events, such as reply
arrivals and upcalls. This strategy supports single-threaded client applica-
tions efficiently by having the waiting thread run the event loop of the Re-
actor to check for server replies. When there is input on a connection, the
Transport object is notified and it reads the input message and dispatches
the reply. The Wait-on-Reactor strategy also works with multi-threaded ap-
plications that use a Reactor-per-thread to minimize contention and locking
overhead [12].

– Wait-on-Leader/Followers: If the application is multi-threaded and several
threads are sharing the same Reactor, only one of them can run the Reactor’s
event loop at a time. Therefore, this strategy uses the Leader/Followers pat-
tern [12] to synchronize access to the Reactor. In this pattern, the leader
thread runs the event loop of the Reactor. All other threads wait on a
semaphore. When a reply is available, the leader thread reads and dispatches
the complete reply. If the reply is for an AMI request, it is dispatched to the
callback method in the reply handler servant. For synchronous replies, the

220 Alexander B. Arulanthu et al.

reply buffer is transferred to the Synchronous Reply Dispatcher from the
Transport object. If a reply belongs to the leader thread, it selects another
thread as the leader and returns from the event loop. If the reply belongs to
another thread, however, it signals this thread so it can wake up from the
semaphore, return to its stub, and process the reply.

Problem: Pre-AMI-enabled versions of TAO implemented the three reply pro-
cessing strategies described above as Connection Handlers within TAO’s plug-
gable protocols framework, as shown in Figure 9. However, every Transport

Fig. 9. Initial Design of TAO’s Reply Processing Mechanisms

mechanism, such as IIOP and UNIX-domain sockets (UIOP), in TAO’s pluggable
protocols framework [11] required three Connection Handler implementations
to support all the reply wait strategies in its Transport implementation. Not
surprisingly, this approach did not scale up effectively when TAO incorporated
additional transport mechanisms, such as VME, Fibrechannel, or TP4. TAO’s
original design also complicated the integration of the AMI callback model be-
cause changes to the reply wait mechanisms were necessary for each Transport
implementation.

Forces: The semantics of the existing wait mechanisms, as well as the existing
optimizations, must be maintained while integrating the AMI callback model.
Moreover, applications should be able to configure TAO’s reply wait mechanism
according to their particular needs.

Solution → Refactor reply wait strategies: As part of our enhancement to TAO,
we moved the reply wait mechanisms from the Connection Handlers to the
new Wait Strategy and decoupled it from the underlying Transport and the

The Design and Performance of a Scalable ORB Architecture for CORBA 221

Connection Handler objects. TAO’s new Wait Strategy architecture is illus-
trated in the UML class diagram in Figure 10. In TAO’s enhanced architecture,

Fig. 10. Enhanced Design of TAO’s Reply Processing Strategies

each Transport implements only one Connection Handler. Due to the patterns-
based OO design [11] used in TAO, this modification required changes only to
its Transport and Connection Handler implementations; no other ORB com-
ponents were affected.

In addition to refactoring the wait strategies, a variation of the
Leader/Followers implementation has been integrated into TAO’s
Wait-on-Leader/Followers strategy. This change was necessary because the origi-
nal Leader/Followers implementation assumed non-multiplexed connections, i.e.,
only one request at a time was sent per-connection. Therefore, state variables,
such as semaphores, were kept in the Transport and the Connection Handler
objects, which are per-connection objects. Although this implementation works
for the Exclusive Transport strategy, it is unsuitable for Muxed Transport,
where multiple threads may wait simultaneously for replies on a single connec-
tion.

To address the multiplexing problem, we enhanced the
Leader/Followers model described earlier to create a variation called Muxed-
Wait-on-Leader/Followers strategy. This new strategy uses the Thread-Specific
Storage pattern [28] to store a per-ORB-per-thread condition variable. This con-
dition variable is created on-demand just once, by a factory method in TAO’s
ORB Core. This factory method provides a facade [25] to all ORB strategies,
helper classes, and global or thread-specific resources.

Challenge: How to Minimize Stub Footprint

Context: Earlier, we discussed the ORB components used by the client stub to
set up the connection, create the Reply Dispatchers, send the request, keep
track of the Reply Dispatchers and reply-stubs, wait for and process replies,
and deliver the replies to target threads or reply handler servants. A stub can
either invoke methods on these ORB components directly, or it can use helper
classes that can be implemented as part of the ORB. Helper classes can interact

222 Alexander B. Arulanthu et al.

with various ORB components on behalf of the stub and execute all functionality
outlined above.

Problem: If stubs interact with the internal ORB components directly, the code
size of the stub increases. In turn, this increases the footprint of the generated
C++ code because TAO’s IDL compiler creates stubs for each operation in the
IDL interface.

Forces: There is a tradeoff between code size and performance [29]. In gen-
eral, stubs could inline all the code required to complete their task [30]. How-
ever, inlining can cause unacceptably large memory footprint. Conversely, stubs
could simply pass parameter data to a shared interpreter, such as a DSI/DII
engine [31]. In this case, however, system performance would suffer.

Solution → Optimized invocation helper facades: To reduce memory footprint,
stubs should use helper classes to factor out common code from the stubs
into reusable ORB Core components. In TAO, these helper classes are called
Synchronous Invocation and Asynchronous Invocation. They provide stubs
with facades that encapsulate the details of various features implemented inter-
nally to the ORB to support both AMI and SMI.

When called by a stub on behalf of a client, the Synchronous Invocation
class establishes a connection4 to the remote host, sends the request, waits for
a reply, receives the reply, and returns control to the stub once the reply is
received. The Asynchronous Invocation class is similar, but it returns control
to the stub as soon as it sends the request. Thus, the Synchronous Invocation
object creates the Synchronous Reply Dispatcher on its local stack activation
record, whereas the Asynchronous Invocation object creates the Asynchronous
Reply Dispatcher on the heap.

As illustrated in Figure 11, TAO’s synchronous and asynchronous variants
inherit from a common Invocation class, which provides a uniform interface to
other components in the ORB. Both classes delegate the tasks described above
to other ORB components we discussed earlier.

3.2 Collaborations between Components in TAO’s AMI-Enabled
Architecture

Now that the preceding sections described TAO’s ORB architecture components
that process synchronous and asynchronous requests, we can present the overall
AMI-enabled ORB architecture of TAO, which is shown by the UML class dia-
gram in Figure 12. Moreover, Figure 13 reexamines the sequence of steps that
occur when an application issues an AMI or SMI call. Each of these steps is
described below:
4 TAO uses connection caching [12] to avoid establishing new connections if one is
already open to a particular ORB endpoint.

The Design and Performance of a Scalable ORB Architecture for CORBA 223

Fig. 11. Invocation Interface

– The Client calls the Stub to invoke an operation. In the case of an AMI
call, it passes a reference to a reply handler servant (1).

– The stubs generated by TAO’s IDL compiler are different for the SMI and
AMI calls. In particular, the SMI and AMI stubs instantiate their corre-
sponding Invocation objects (2).

– The Invocation object creates a Synchronous or Asynchronous Reply Dis-
patcher, depending on the type of the request (3). The Invocation object
then binds the Reply Dispatcher object with the Transport Mux Strategy
object (4 & 5).

– The Invocation object calls the Transport object, which in turn uses TAO’s
pluggable protocols framework [11] and ACE [24] to send the request (6 & 7).

– In the AMI model, the stub returns control to the application at this point.
Later, the Client can wait for the server’s reply. In the SMI model, con-
versely, the Invocation object calls the Transport to wait for the reply,
which delegates this task to the Wait Strategy (8).

– When the reply arrives, the Transport object is notified to read the reply
(9). It reads the complete reply and calls the Transport Mux Strategy
to dispatch the reply (10). The Transport Mux Strategy uses the correct
Reply Dispatcher object created for that invocation and calls its dispatch
method (11).

– If a Synchronous Reply Dispatcher is used, it simply stores the reply
buffer, sets the state variables within the object to indicate that the reply
has been received, and then returns. Conversely, the Asynchronous Reply
Dispatcher invokes the reply stub stored in the object, passing in the reply
handler servant and the reply buffer, and dispatches the reply (12).

224 Alexander B. Arulanthu et al.

Fig. 12. AMI-enabled TAO ORB Architecture

4 Evaluating the Performance of TAO AMI Callbacks

4.1 Overview

As discussed in Section 1, AMI can help improve the scalability of CORBA appli-
cations by minimizing the number of client threads required to perform two-way
invocations. In this section, we present empirical results that show how TAO’s
AMI implementation helps to increase application scalability by minimizing the
number of client threads. We demonstrate the efficiency of the implementation
by comparing both the latency and operation throughput of SMI and AMI two-
way invocations in TAO.

All experiments were performed on two 400 Mhz quad-CPU Dell 6300 com-
puters running Linux 2.2 and connected by a 100 Mbps Fast Ethernet. Each com-
puter has 1 GB of RAM. The benchmarks were compiled using the GCC v. 2.95
compiler with the highest level of optimization.

The server implementation is held constant in all our benchmarks. Moreover,
to minimize the overhead on the server, we use a simple interface that accepts
a single argument and returns it. The argument is a 64-bit unsigned long that
the client uses to send timestamps to the server to measure round-trip delays.
To minimize jitter, all client and server benchmarking processes were run in the
Linux real-time scheduling class.

4.2 Empirical Results

Two-way latency benchmark: In our first experiment, we compared the round-
trip latency of 10,000 two-way calls in single-threaded applications using three

The Design and Performance of a Scalable ORB Architecture for CORBA 225

Fig. 13. Sequence of Steps in TAO’s SMI & AMI Invocations

different invocation models: (1) SMI using the SII, (2) AMI using the SII, and
(3) deferred SMI using the DII. For the DII and AMI benchmarks we sent the
request and immediately waited for the asynchronous reply.

Table 1 compares the latency for the three invocation models. The best results

Table 1. µsecond Latency Results for Different Invocation Models

Test Minimum Average Maximum Jitter

SMI 455 497 684 2.7%

AMI 447 479 1,859 3.0%

DII 499 573 2,652 9.6%

are obtained using AMI requests, though the difference with respect to SMI
is small (3%). This difference is within the error margins defined by the jitter
measurements and is not significant. Compared to SMI, a larger amount of jitter
was observed for AMI, resulting from the extra locking overhead required to
dispatch the reply-stub. In contrast, the worst performance is obtained using
the deferred synchronous model, which averaged 20% slower than AMI because
it incurs additional DII processing overhead.

226 Alexander B. Arulanthu et al.

Operation throughput benchmark: In this experiment, we compared the through-
put (in number of requests per second) of the different invocation models. To
simulate asynchronous communication using ORBs without AMI support, appli-
cations have traditionally spawned additional threads. To compare this approach
with an AMI application, therefore, the client process creates a new thread for
each two-way SMI call, up to an OS imposed limit of 220.5 The benchmark sends
10,000 requests on each thread.

In contrast to the heavily threaded SMI client, the AMI client uses only two
threads. One thread sends as many two-way requests as required and the other
thread runs the ORB event loop to dispatch replies to the appropriate reply
handler. To match the number of calls performed by the SMI client, therefore,
the AMI client performs 2,200,000 calls. Finally, we perform the same test using
DII deferred synchronous requests.

The results of this experiment are shown in Figure 2. As shown by these

Table 2. Operation Throughput Results for Different Invocation Models

Test Average Calls/sec.

SMI (220 threads) 1914

SMI (7 threads) 7080

AMI 8524

DII 3816

results, the AMI client not only provides a more scalable design than the multi-
threaded SMI client, but also shows a significant performance improvement. This
improvement stems from the fact that (1) the TCP/IP stack can send larger data
packets containing multiple AMI requests, (2) the two threads in the AMI client
can overlap request invocations and response processing, and (3) the AMI client
fully utilizes the network resources, i.e., it can completely fill TCP/IP windows
because it can “pipeline” the two-way invocations.

In addition to scalability problems, the use of hundreds of threads in the SMI
client also increases its synchronization overhead. Table 2 shows how reducing
the number of threads in the SMI client test from 220 to 7 improved performance
significantly. This solution has the adverse affect of reducing the number of si-
multaneous two-way calls, however, which increases average latency. In contrast,
the AMI client do not suffer from this tradeoff.

Finally, note that that deferred synchronous requests can sometimes achieve
better performance than a naively designed, heavily-threaded SMI client. It is
unlikely, however, that the performance of deferred synchronous DII could ever

5 Note that we were unable to create more than 220 threads before running out of
resources on Linux. This illustrates one of the drawbacks of using threads to simulate
asynchronous communication.

The Design and Performance of a Scalable ORB Architecture for CORBA 227

rival that of AMI, due to the inherent overhead of memory allocation and data
copying. Moreover, DII’s invocation model is more tedious and error-prone to
program.

4.3 Summary of Results

The latency and operation throughput results presented above can be interpreted
as follows:

– For simple applications that require few request-response interactions, SMI
is almost as effective as AMI, with an insignificant difference in latency
within the error margins. In addition, SMI has slightly less jitter because its
implementation uses fewer locks.

– For more demanding applications, AMI applications can exhibit a measur-
able (20%) improvement in operation throughput compared with the best
SMI results. These performance improvements illustrate how AMI clients can
leverage network resources and inherent parallelism in distributed systems
more effectively than SMI clients.

5 Concluding Remarks

Asynchronous method invocations (AMI) are an important feature that has been
integrated into CORBA via the OMG Messaging specification [4]. A key aspect
of AMI is that operations can be invoked asynchronously, while still using the
static invocation interface (SII). The use of SII eliminates much of the complexity
and inefficiency inherent in the dynamic invocation interface (DII)’s deferred
synchronous model.

This paper explains how ORBs can be structured to support the CORBA
AMI callback model efficiently and scalably. The following is a synopsis of the
lessons learned developing TAO’s AMI callback implementation:

AMI requires a scalable ORB architecture: An ORB should implement the AMI
and SMI reply handling in a flexible and scalable manner. For instance, to sup-
port many simultaneous AMI requests efficiently, connection multiplexing opti-
mizations should be supported in the ORB Core.

Optimizations should be guided by empirical measurements: AMI and SMI en-
hancements should be guided by systematic blackbox benchmarks and whitebox
profiling so that existing optimizations in the ORB are preserved, while allowing
applications to configure the ORB based on their specific QoS requirements. For
example, during the validation phase of our AMI changes, we discovered that the
SMI model was performing one memory allocation more than it did before the
AMI changes. The problem was easily fixed, but it illustrates that careful, re-
peated whitebox analysis of the system and application of optimization principle
patterns [15] is required to ensure and maintain its quality.

228 Alexander B. Arulanthu et al.

The ORB should adapt readily to different use-cases: Design patterns should be
applied to configure ORBs with policies and mechanisms appropriate for par-
ticular application use-cases, while still preserving key optimizations necessary
to support stringent QoS requirements. In particular, we repeatedly applied the
Strategy pattern [25] to TAO’s AMI implementation to support scalable con-
nection multiplexing strategies, while retaining configurations that ensure the
determinism required for hard real-time applications. Applications can select
AMI or SMI strategies using the Service Configurator pattern [25], which makes
the TAO framework dynamically configurable and therefore highly flexible.

Both AMI and SMI are important invocation models: Enhancements needed to
support AMI should not add overhead to the ORB’s SMI processing. Patterns
like Strategy and Service Configurator can be used to make any additional over-
head optional for applications that do not require it.

Programming AMI clients requires application developers to make design deci-
sions: While developing our tests for the AMI implementations, we recognized
that the AMI model, while more intuitive and easier to use than the DII de-
ferred synchronous model, is more complex than simple SMI applications. For
instance, client developers must decide how to handle the replies, e.g., by using a
separate thread, waiting for replies after a fixed number of replies, or adaptively
waiting for replies. Developers must also decide how to connect the reply with
the original request, e.g., by using a different reply handler servant for each one,
returning some kind of request id from the server, or using the POA dynamic
activation mechanisms to distinguish between all the requests. Finally, client de-
velopers must be prepared to handle “inversion of control” in their applications,
i.e., by using a callback to handle the incoming reply.

These challenges should not be viewed as insurmountable problems, how-
ever. After developers master the appropriate patterns and idioms, AMI can be
significantly easier to program than the CORBA deferred synchronous model.
Moreover, it offers significant performance improvements over both SMI and
DII calls. Thus, CORBA AMI is an important addition to the CORBA family
of features and specifications.

References

1. Object Management Group, The Common Object Request Broker: Architecture and
Specification, 2.3 ed., June 1999. 208

2. D. C. Schmidt and S. Vinoski, “Introduction to CORBA Messaging,” C++ Report,
vol. 10, November/December 1998. 209

3. D. C. Schmidt and S. Vinoski, “Programming Asynchronous Method Invocations
with CORBA Messaging,” C++ Report, vol. 11, February 1999. 209

4. Object Management Group, CORBA Messaging Specification, OMG Document
orbos/98-05-05 ed., May 1998. 209, 212, 227

5. Object Management Group, Objects-by-Value, OMG Document orbos/98-01-18
ed., January 1998. 209

The Design and Performance of a Scalable ORB Architecture for CORBA 229

6. Object Management Group, Realtime CORBA Joint Revised Submission, OMG
Document orbos/99-02-12 ed., March 1999. 210

7. D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of Real-
Time Object Request Brokers,” Computer Communications, vol. 21, pp. 294–324,
Apr. 1998. 211, 212

8. C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and Performance of
a Real-Time CORBA Scheduling Service,” The International Journal of Time-
Critical Computing Systems, special issue on Real-Time Middleware, 2000. 211

9. T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and Performance
of a Real-time CORBA Event Service,” in Proceedings of OOPSLA ’97, (Atlanta,
GA), ACM, October 1997. 211

10. F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and Performance of a
Real-time I/O Subsystem,” in Proceedings of the 5 th IEEE Real-Time Technology
and Applications Symposium, (Vancouver, British Columbia, Canada), pp. 154–
163, IEEE, June 1999. 211

11. C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The Design and
Performance of a Pluggable Protocols Framework for Real-time Distributed Ob-
ject Computing Middleware,” in Proceedings of the Middleware 2000 Conference,
ACM/IFIP, Apr. 2000. 211, 217, 220, 221, 223

12. D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software Architec-
tures for Reducing Priority Inversion and Non-determinism in Real-time Object
Request Brokers,” Journal of Real-time Systems, To appear 2000. 211, 214, 217,
218, 219, 222

13. A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communication
Middleware on High-Speed Networks,” in Proceedings of SIGCOMM ’96, (Stanford,
CA), pp. 306–317, ACM, August 1996. 211

14. D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensible ORB
Middleware,” IEEE Communications Magazine, vol. 37, April 1999. 211

15. I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and A. Gokhale,
“Applying Optimization Patterns to the Design of Real-time ORBs,” in Proceedings
of the 5th Conference on Object-Oriented Technologies and Systems, (San Diego,
CA), USENIX, May 1999. 211, 216, 227

16. R. H. Halstead, Jr., “Multilisp: A Language for Concurrent Symbolic Computa-
tion,” ACM Trans. Programming Languages and Systems, vol. 7, pp. 501–538, Oct.
1985. 211

17. B. Liskov and L. Shrira, “Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems,” in Proceedings of the SIGPLAN’88 Con-
ference on Programming Language Design and Implementation, pp. 260–267, June
1988. 211

18. Y. Aahlad, B. Martin, M. Marathe, and C. Lee, “Asynchronous Notification Among
Distributed Objects,” in Proceedings of the 2 nd Conference on Object-Oriented
Technologies and Systems, (Toronto, Canada), USENIX, June 1996. 211

19. C. Ma and J. Bacon, “COBEA: A CORBA-Based Event Architecture,” in Proceed-
ings of the 4rd Conference on Object-Oriented Technologies and Systems, USENIX,
Apr. 1998. 211

20. A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, and M. Kircher, “Applying C++, Pat-
terns, and Components to Develop an IDL Compiler for CORBA AMI Callbacks,”
C++ Report, vol. 12, Mar. 2000. 211, 212

21. K. Birman, “The Process Group Approach to Reliable Distributed Computing,”
Communications of the ACM, vol. 36, pp. 37–53, December 1993. 211

230 Alexander B. Arulanthu et al.

22. C. O’Ryan and D. C. Schmidt, “Applying a Real-time CORBA Event Service to
Large-scale Distributed Interactive Simulation,” in 5th International Workshop on
Object-oriented Real-Time Dependable Systems, (Monterey, CA), IEEE, Nov 1999.
212

23. N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimizations for CORBA,”
C++ Report, vol. 11, October 1999. 212

24. D. C. Schmidt, “ACE: an Object-Oriented Framework for Developing Distributed
Applications,” in Proceedings of the 6th USENIX C++ Technical Conference,
(Cambridge, Massachusetts), USENIX Association, April 1994. 217, 219, 223

25. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995. 218,
221, 228

26. P. Jain and D. C. Schmidt, “Dynamically Configuring Communication Services
with the Service Configurator Pattern”, C++ Report, vol. 9, June 1997. 219

27. D. C. Schmidt, “The Object-Oriented Design and Implementation of the Reactor:
A C++ Wrapper for UNIX I/O Multiplexing (Part 2 of 2),” C++ Report, vol. 5,
September 1993. 219

28. D. C. Schmidt, T. Harrison, and N. Pryce, “Thread-Specific Storage – An Object
Behavioral Pattern for Accessing per-Thread State Efficiently,” C++ Report, vol.
9, November/December 1997. 221

29. A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol Engine for
Minimal Footprint Multimedia Systems,” Journal on Selected Areas in Commu-
nications special issue on Service Enabling Platforms for Networked Multimedia
Systems, vol. 17, Sept. 1999. 222

30. E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A Flexible, Opti-
mizing IDL Compiler,” in Proceedings of ACM SIGPLAN ’97 Conference on Pro-
gramming Language Design and Implementation (PLDI), (Las Vegas, NV), ACM,
June 1997. 222

31. A. Gokhale and D. C. Schmidt, “Principles for Optimizing CORBA Internet Inter-
ORB Protocol Performance,” in Hawaiian International Conference on System
Sciences, January 1998. 222

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 231-255, 2000.
 Springer-Verlag Berlin Heidelberg 2000

A Publish/Subscribe CORBA Persistent State Service
Prototype

C. Liebig, M. Cilia†, M. Betz, and A. Buchmann

Database Research Group - Department of Computer Science
Darmstadt University of Technology - Darmstadt, Germany

{chris,cilia,betz,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. An important class of information dissemination applications
requires 1:n communication and access to persistent datastores. CORBA’s new
Persistent State Service combined with messaging capabilities offer the
possibility of efficiently realizing information brokers between data sources and
CORBA clients. In this paper we present a prototype implementation of the
PSS that exploits the reliable multicast capabilities of an existing middleware
platform. This publish/subscribe architecture makes it possible to implement an
efficient update propagation mechanism and snooping caches as a generic
service for information dissemination applications. The implementation is
presented in some detail and implications of the design are discussed. We
illustrate the use of a publish/subscribe PSS by applying it to an auction
scenario.

1 Introduction

The deployment of large scale information dissemination systems like Intranet and
Extranet information systems, e-commerce applications, and workflow management
and groupware systems, is key to the success of companies competing in a global
marketplace and operating in a networked world. Applications like warehouse
monitoring, auctions, reservation systems, traffic information systems, flight status
tracking, logistics systems, etc. consist of a potentially large number of clients spread
all over the world demanding timely information delivery. Many of these applications
span organizational boundaries and are centered around a variety of data sources, like
relational databases or legacy systems that maintain business data. The business logic
may be spread over separate modules and the entire system is expected to undergo
continuous extension and adaptation to provide new functionality.
Common approaches in terms of systems architecture can be classified into traditional
2-tier client/server, 3-tier TP-heavy using TP monitors and n-tier Object-Web
systems.
In 2-tier client/server the client part implements the presentation logic together with
application logic and data access. This approach depends primarily on RPC-like
communication and scales well only if client and server are close together in terms of

† Also ISISTAN, Faculty of Sciences, UNICEN, Tandil, Argentina.

232 C. Liebig et al.

network bandwidth and access latency. However, it does not scale in the face of wide-
area distribution. Moreover, the fat-client approach renders the client software depen-
dent on the data model and API of the backend.
In a 3-tier architecture a middle-tier – typically based on a TP monitor - is introduced
to encapsulate the business logic and to hide the data source specifics. TP monitors
provide scalability in terms of resource management, i.e. pooling of connections,
allocating processes/threads to services and load balancing. The communication
mechanisms used in 3-tier architectures range from peer-to-peer messaging and
transactional queues to RPC and RMI. TP monitor based approaches assume that the
middle-tier has a performant connection to the backend data sources, because
database access protocols for relational systems are request/response and based on
“query shipping”. In order to reduce access latency and to keep the load of the data
source reasonably low, the application programmers are urged to implement their own
caching functionality in the middle-tier. A well known example of such an
architecture is the SAP system [21].
In n-tier Object-Web systems the clear distinction between clients and servers gets
blurred. The monolithic middle-tier is split up into a set of objects. Middleware
technology, such as CORBA, provides the glue for constructing applications in
distributed and heterogeneous environments in a component-oriented manner.
CORBA leverages a set of standard services [22] like Naming Service, Event and
Notification Service, Security Service, Object Transaction Service, and Concurrency
Control Service. CORBA has not been able to live up to expectations of scalability,
particularly in the information dissemination domain, because of a limiting
(synchronous) 1:1 communication structure and the lack of a proper persistence
service. The new CORBA Messaging standard [23] will provide true asynchronous
communication including time independent invocations. We argue, that the recently
proposed Persistent State Service [14], which replaces the ill-fated Persistent Object
Service, will not only play a key role as integration mechanism but also provides the
opportunity to introduce efficient data distribution and caching mechanisms.
A straightforward implementation of the PSS relying on relational database
technology is based on query shipping. The PSS must open a datastore connection to
the server, then ships a query that is executed at the server side and the result set is
returned in response. Such a PSS implementation realizes storage objects as stateless
incarnations on the CORBA side, that act as proxies to the persistent object instance
in the datastore. Operations that manipulate the state of objects managed by the PSS
are described in datastore terms. This approach generates a potential bottleneck at the
datastore side, because each operation request on an instance will result in a SQL
query. Furthermore, for information dissemination systems, where the user wants to
continuously monitor the data of interest, polling must be introduced which results in
a high load at the backend, wasting resources and possibly delivering low quality of
data freshness.
For information dissemination systems an alternate approach based on server-initiated
communication is more desirable. Techniques ranging from cache consistency
mechanisms in (OO)DBMSs [33,5] and triggers/active database rules [10] to
broadcast disks [1] can be used to push data of interest to clients. In the context of the
PSS a new publish/subscribe session is needed. A publish/subscribe session represents
the scope of the objects an application is interested in, i.e. subscribes to. For those

A Publish/Subscribe CORBA Persistent State Service Prototype 233

objects in a publish/subscribe session the cache is loaded and updated automatically.
Additionally, this session provides notifications about insert, modify and delete events
to the application. While publish/subscribe sessions currently are not part of the PSS
specification they are definitely not precluded by it and would represent a useful
extension to the spec.
In this paper we present an implementation of a PSS prototype that provides an
intelligent caching mechanism and active functionality in conjunction with message
oriented middleware (MOM) that is capable of 1:n communication. By removing two
crucial bottlenecks from the CORBA platform we claim that highly scalable Object-
Web systems become feasible.
In our PSS prototype1 we take advantage of commercial publish/subscribe
middleware that provides the paradigm of subject based addressing and 1-to-many
reliable multicast message delivery. We show how a snoopy cache can be
implemented for multi-node PSS deployment. We make use of a prototype of a
database adapter for object-relational databases (Informix IUS, in particular) that was
partially developed and extended in the scope of this project. The database adapter
allows to use publish/subscribe functionality in the database and to push data to the
PSS caches when update transactions are issued against the data base backend or
when new data objects are created.
This paper concentrates on the basic infrastructure needed to provide scalability with
respect to dissemination of information from multiple data sources. We explicitly
exclude from the scope of this paper federated database and schema integration
issues.
The remainder of this paper is organized as follows: Section 2 briefly introduces key
concepts of the PSS specification and the multicast-enabled message oriented
middleware; Section 3 provides an overview of the architecture of our prototype
implementation of the PSS and identifies the main advantages of integrating the
reliable multicast functionality of the TIBCO platform; Section 4 describes the
implementation; Section 5 introduces auctions as a typical scenario for middleware-
based Web-applications and Section 6 presents conclusions and identifies areas of
ongoing research.

2 CORBA PSS and Messaging Middleware

2.1 CORBA Persistent State Service

The need for a persistence service for CORBA was recognized early on. In 1995, the
Persistent Object Service was accepted but failed because of major flaws: the
specification was not precise, persistence was exposed to CORBA clients,
transactional access to persistent data was not covered, and the service lacks
integration with other CORBA services. Recently, the Persistent State Service (PSS)
was proposed to overcome those flaws. The goals of the PSS specification [14] are to
make the state of the servant persistent, to be datastore neutral and implementable
with any datastore, to be CORBA friendly, consistent with other OMG specifications

1 The work of this project is partially funded by TIBCO Software Inc., Palo Alto.

234 C. Liebig et al.

(Transactions, POA, Components, etc.) and also with other standards like SQL3 [18]
and ODMG [7].
The PSS provides a single interface for storing objects’ state persistently on a variety
of datastores like OO-, OR-, R-DBMS, and simple files. The PSS provides a service
to programmers who develop object implementations, to save and restore the state of
their objects and is totally transparent to the client. Persistence is an implementation
concern, and a client should not be aware of the persistence mechanisms. Therefore,
the PSS specification does not deal with the external interface (provided by a CORBA
server) but with an internal interface between the CORBA-domain and the datastore-
domain.
Due to numerous problems with IDL valuetypes - used in previous proposals as
requirement imposed by the RFP - the IDL was extended with new constructs to
define storage objects and storage home objects. The extended IDL is known as
Persistent State Definition Language (PSDL). Storage objects are stored in storage
homes, which are themselves stored in datastores. In order to manipulate a storage
object, the programmer uses a representative programming-language entity, called
storage object instance. A storage object instance may be connected to a storage
object in the datastore, providing direct access to the state of this storage object. Such
a connected instance is called storage object incarnation. To access a storage object, a
logical connection between the process and the datastore is needed. Such a connection
is known as session.
There is also a distinction between abstract storage type specification and concrete
storage type implementation. The abstract storage type spec defines everything a
servant programmer needs to know about a storage object, while an implementation
construct defines what a code generator needs to know in order to generate code for it.
A given abstract specification can have more than one implementation and it is
possible to update an implementation without affecting the storage objects’ clients.
So, the implementation of storage types and storage homes lies mainly in the
responsibility of the PSS. An overview of these concepts is depicted in Figure 1.

storage home
incarnations

storage object
incarnations

storage
homes

storage
objects

abstract
storage homes

abstract
storage objects

datastore

P
ro

ce
ss

A
P

ro
ce

ss
B sessions

implementation of

Fig. 1. PSS concepts [14]

A Publish/Subscribe CORBA Persistent State Service Prototype 235

A storage object can have both state and behavior, defined by the storage type : its
state is described by attributes (also called state members) and its behavior is
described by operations. State members are manipulated through equally named pairs
of accessor functions. Operations on storage objects are specified in the same manner
as with IDL. In addition to IDL parameter types, storage types defined in PSDL may
be used as parameters. In contrast to CORBA objects, operations on storage objects
are locally implemented and not remotely accessible.
A storage home does not have its own state, but it can have behavior, which is
described by operations in the abstract storage home. A storage home can ensure that
a list of attributes of its storage type forms a unique identifier for the storage objects it
manages. Such a list is called a key. A storage home can define any number of keys.
Each key declaration implicitly declares associated finder operations in the language
mapping. To create or locate a storage object, a CORBA server implementor calls
create(<parameters>) or find_by_<some key>(<parameters>) operations on
the storage home of the storage type and in return will receive the according storage
object instance.
The inheritance rules for storage objects are similar to the rules for interface
inheritance in IDL. Storage homes also support multiple inheritance. However, it is
not possible to inherit two operations with the same name; as well as to inherit two
keys with the same name.
In the PSS spec the mapping of PSDL constructs to several programming languages is
also specified. A compliant PSS tool must generate a default implementation for
storage homes and storage types based on the given PSDL definition.
For the case that the underlying datastore is a database system, the PSS introduces a
transactional session orchestrated by OTS through the use of the X/Open XA
interface [34] of the datastore. Access to storage objects within a transactional session
produces executions that comply with the selected isolation level i.e. read
uncommited, read commited. Note that stronger isolation levels like repeatable read
and serializable are not specified.

2.2 Multicast-Enabled MOM

We use COTS MOM [31] to build the PSS prototype, namely TIB/Rendezvous and
TIB/ObjectBus products. TIB/Rendezvous is based upon the notion of the
Information Bus [26] (interchangeable with the wording “message bus” in the
following) and realizes the concept of subject based addressing, which is related to
the idea of a tuple space, first introduced in LINDA [6]. Instead of addressing a
sender or recipient for a message by its identifier, which in the end comes down to a
network address, messages are published under a subject name on the message bus.
The subject name is supposed to characterize the contents - i.e. the type - of a
message. If a participant, who is connected to the message bus, is interested in some
specific message types, she will subscribe for the subjects of interest and in turn be
notified of messages published under the selected subject names. The subject name
space is hierarchical and subscribers may use subject name patterns to denote a set of
types to which they want to subscribe.
Messages are constructed from typed fields and can be recursively nested.
Furthermore, messages are self-describing: a recipient of a message can inquire about
the structure and type of message content. The abstraction of a bus inherently carries

236 C. Liebig et al.

the semantic of many-to-many communications as there can be multiple publishers
and subscribers for the same subject. The implementation of TIB/Rendezvous uses a
lightweight multicast communication layer to distribute messages to all potential
subscribers. On each machine, a daemon manages local subscribers, filters out
relevant messages according to subject information and notifies individual
subscribers. The programming style for listening applications is event-driven; i.e.
eventually the program must transfer control to the TIB/Rendezvous library which
runs an event-loop. Following the Reactor-Pattern [29] the onData() method of an
initially registered callback object will be invoked by the TIB/Rendezvous library
when a message arrives with a subject that the subscriber is listening to.
Message propagation can be configured to use IP multicast or UDP broadcast. In the
latter case, a special message routing daemon must be set up in each subnet in order to
span LAN (broadcast) boundaries. Optionally, TIB/Rendezvous can make use of
PGM, a reliable multicast transport on top of IP multicast, which has been developed
by Cisco Systems in cooperation with TIBCO and proposed to the IETF [30].
Two quality of service levels are supported by TIB/Rendezvous: reliable and
guaranteed. In both modes, messages are delivered in FIFO order with respect to the
publisher. There is no total ordering in case of multiple publishers on the same
subject. Reliable delivery uses receiver-side NACKs and a sender-side in-memory
ledger that buffers messages for some amount of time in case of retransmission
requests. With guaranteed delivery, a subscriber may register with the publisher for a
certified session or the publisher preregisters dedicated subscribers.
Strict group membership semantics must be realized at the application level if so
required. However, atomic message delivery is not provided. The TIB/ Rendezvous
library uses a persistent ledger in order to provide guaranteed delivery. Messages may
be discarded from the persistent ledger as soon as all subscribers have explicitly
acknowledged the receipt. In both variants, the retransmission of messages is
receiver-initiated by sending NACKs.
The diagram in Figure 2 depicts, how the multicast messaging middleware is
introduced to CORBA in ObjectBus, a CORBA 2.0 compliant ORB implementation.

TIB/Rendezvous TCP/IP

TIBIOP IIOP
protocols - GIOP

ORB interfaces

skeletons stubs

Application

TIB IIOP

Messaging
Applicaitons

ObjectBus
Services

CORBA 2.0
Applications

P
S
S

Fig. 2. ObjectBus Architecture

The General Inter-ORB Protocol (GIOP) is implemented both by a standard Internet
Inter-ORB Protocol (IIOP) layer and a TIBCO specific layer (TIBIOP). When using

A Publish/Subscribe CORBA Persistent State Service Prototype 237

TIBIOP, the GIOP messages are marshaled into TIB/Rendezvous messages and
published on the message bus on behalf of a specific subject. The CORBA (server)
object may be registered with the ORB presenting an application specific subject
name. In that case the returned Interoperable Object Reference (IOR) carries the
subject name on behalf of the TIBIOP addressing profile. In order to preserve
interoperability, server objects may be registered with both, TIBIOP and IIOP profiles
at the same time. Additionally, CORBA applications may access the TIB/Rendezvous
API directly to register listeners and publish messages on behalf of some subject. The
PSS prototype implementation is mainly based on this TIB/Rendezvous messaging
API.

3 Overview of the Prototype Architecture

In [13], the nodes in a general distributed information system are classified into: i)
data sources which provide the base data that is to be disseminated, ii) clients which
are net consumers of information and iii) information brokers (agents, mediators) that
acquire information from data sources and provide the information to the clients. Data
delivery mechanisms are distinguished along three main dimensions: push vs. pull,
periodic vs. aperiodic and 1:1 vs. 1:n.
An analysis of the large, scalable, distributed applications that we are addressing
reveals that they are best built using multi-tier architectures. The diagram in Figure 3
below shows this: clients can interact with an application either directly through an
ORB or via a Web-server (optionally using an applet). Both periodic and aperiodic
pull may be used to begin an interaction, while aperiodic notification and polling are
required to propagate change to the users. At the integration-tier the application logic
is realized through CORBA objects and services.
The interaction between the integration-tier and the backend-tier requires both pull
and push communication to initiate individual requests and to update the caches,
respectively. Further, aperiodic event-driven interaction is required and 1:n
communication capabilities are essential for effective dissemination of updates and
for snooping of load reply and creation/deletion events. Under these conditions, the
PSS provides the means to efficiently realize CORBA objects as information brokers
between data sources and CORBA clients.
In our prototype architecture of a publish/subscribe based PSS, we include a PSS
Connector on the side of the integration tier and its counterpart, the DB Connector on
the datastore. In terms of Object Oriented Database Systems architecture, the DB
Connector plays the role of an object server, leveraging extended relational data base
technology and the PSS Connector acts as the object manager.

238 C. Liebig et al.

P
S

S
C

on
ne

ct
or

A
pp

lic
at

io
n

lo
gi

c
(I

nf
or

m
at

io
n-

B
ro

ke
r)

client integration-tier backend-tier

N
ot

ifi
ca

tio
n

M
es

sa
ge

B
us

datastoreD
B

C
on

ne
ct

or

snooping

aperiodic pull

aperiodic
notificationaperiodic

notification

aperiodic pull

periodic pull

snooping

1:n delivery

aperiodic push

App. PSS

C
O

R
B

A

C
O

R
B

A

applet

Web
Server datastoreD

B
C

on
ne

ct
or

1:n delivery

domain:
auction.com

Fig. 3. Multi-tier Architecture for Information Dissemination Systems

We unbundle object caching and object-relational mappings and benefit from the
reliable multicast messaging services provided by publish/subscribe MOM:
1. The PSS Connector at the CORBA side interacts with the data sources at the

backend in aperiodic pull combined with 1:n delivery. A storage object lookup
request is initiated by some PSS Connector on application demand. The response is
published by the DB Connector under an associated subject and all PSS Connector
instances that have subscribed to that kind of object will snoop the resulting
messages and possibly refresh or add a new incarnation to their object cache.

2. Updates to storage object instances result in publishing update notifications under
an associated subject including the new state of the object, i.e. aperiodic push
combined with 1:n delivery. Again, the PSS Connector instances may snoop the
update notifications to update the cached incarnation of the object and notify the
application of the update.

3. In addition to update notifications, creation and deletion events can be signaled to
the application by letting the PSS snoop the respective messages. The application
is thus relieved from polling and may extend the chain of notification to the client-
tier in order to facilitate timely information delivery.

4. The implementation of the PSS uses a hierarchy of subject names to address
objects. Instead of addressing by location (i.e. IP number, DB listener socket
address), publish/subscribe interactions use the paradigm of addressing content
(i.e. subject based addressing). Thereby several data sources may be federated in a
single data source domain. Additionally, a labeling mechanism can be introduced
to support subscription to a collection of storage objects and simple subject-based
queries.

Given the potential distribution of clients and caches we expect to benefit from
reference locality not only in the scope of a single PSS instance but because of the
snooping of load replies and update notifications we benefit from reference locality
throughout the datastore domain across different PSS nodes.

A Publish/Subscribe CORBA Persistent State Service Prototype 239

4 Prototype Design & Implementation

The implementation consists of the realization of the PSS Connector and the DB
Connector including the definition of the corresponding formats and protocols (FAP),
provision of snoopy caching and active functionality, the mechanisms to adapt the
database to the TIB/Rendezvous message bus, the mapping between PSDL and the
(object-) relational data model, and last but not least the transactional semantics and
correctness criteria that can be enforced.

4.1 Formats and Protocols between Connectors

In defining the FAPs we must specify the basic functionality to create, lookup, load,
change/save and delete objects. More advanced features are snooping load replies,
generating and snooping update notifications, and generating and snooping create/
delete events. Most important for the implementation of the advanced features on top
of publish/subscribe messaging middleware is the definition of the subject namespace,
i.e. the categories an application can subscribe to and under which to publish.
Subjects must be chosen in a way that enables snooping load and update payload data,
as well as detecting create/update/delete events and signaling them to the application.
Appendix A presents the subject name space with respect to the FAP. Figure 4 below
shows the basic functional units of the PSS prototype.

TIB/ObjectBus

P
S

S
C

on
ne

ct
or

D
B

C
on

ne
ct

or

Message Bus Adapter

DB-Adapter

FAP

ca
llb

ac
k

ca
llb

ac
k

ca
llb

ac
k

interaction
protocol

SQL

Message Bus

IUS
persistent state

data tables

meta-data
repository

Application
generated code

notification
snoop F

A
P

object manager

Agent

P
ub

l.

Li
st

ne
r

Fig. 4. PSS Prototype Components

The FAP is materialized by type-specific generated storage object (home)
implementation on top of a general object manager library at the PSS Connector. At
the DB Connector the FAP is implemented using callback handlers (external SQL
UDR, see also 4.2). Additionally we must provide a DB Adapter that maps the
payload data to the constructs of the datastore as reflected in the metadata repository.

4.1.1 Loading a storage object in a publish/subscribe session
An application gets access to one or more storage object incarnations through its
respective storage home. Storage homes are managed by a publish/subscribe session,

240 C. Liebig et al.

which also defines the scope of the object cache. Before actually accessing a storage
object, the application must retrieve a handle to the object incarnation using
find_by_pid() or some other key-based finder operation, or using
find_by_label(). In the first case, the application is returned a handle to the
storage object incarnation. In the second case the storage home will return a sequence
of handles (see also ItemHome in Appendix C).
As the prototype is restricted to C++, the handle is realized by a C++ pointer. The
actual implementation of state and of the corresponding accessor functions is
delegated to a “data container” object. Thus the handle represents a smart-pointer [12]
to the actual storage object incarnation This approach is somewhat similar to
Persistence [28] and other OODB systems.
Although the handle is returned by the finder operation after the object lookup
returned successfully, the data container part is not populated by pulling the datastore
immediately. Instead, the respective delegate data container object subscribes to the
storage object’s subject name and snoops the message bus for LOADREPLY and
UPDATENOTIFY messages.

PSS-Connector DB-Connector

listen on
/* LOADREPLY.rep_id.pid.fragment_no.domain.> */

LOADREPLY.Item.1234.0.auction.com.>

IU
S

P
S

S
-

D
at

ab
la

de

persistent
state data

tables

�

� � � �

Message Bus

publish on
/* LOAD.rep_id.pid.domain */

LOAD.Item.1234.auction.com�

listen on
/* LOAD.rep_id.pid.domain */

LOAD.Item.*.auction.com�

publish on
/* LOADREPLY.rep_id.pid.fragment_no.domain.label */

LOADREPLY.Item.1234.0.auction.com.computer.hardware.misc�

Fig. 5. Object load with publish/subscribe

At the time the application accesses the storage object incarnation - by calling an
accessor method - we either have snooped the state in the meantime and can save
pulling the object from the data store, or we run into an object fault and initiate a
synchronous load request. Figure 5 depicts the object fault situation for a storage
object of type Item with identifier 1234 in the data store domain auction.com. Other
nodes running a publish/subscribe session may benefit from snooping message
number 4 – an example scenario is presented later in Section 5.
The proposed mechanism is realized by the object manager in the PSS Connector and
is transparent to the user. The proposed object faulting technique extends lazy
swizzling to the accessed root object, compared to lazy swizzling restricted to
contained references [20]. Fetching through collections of objects and navigating
through an object tree are typical scenarios where lookup and access are separated in
time and thus benefit most from the lazy swizzling with snooping.
As mentioned above, the publish/subscribe PSS provides a supplementary finder
operation find_by_label() which returns a collection of handles to storage
object incarnations. Storage object instances can be assigned a label, which will

A Publish/Subscribe CORBA Persistent State Service Prototype 241

become a postfix of the subject name in DB Connector reply messages as depicted in
Appendix A. The labeling mechanism presents the subject-based addressing paradigm
to the server implementor to explicitly take additional advantage of publish/subscribe
capabilities of the PSS implementation. By labeling a collection of related objects, the
application can issue subject-based queries to find all storage objects with a given
label. In contrast to traditional object server approaches, the result returned by the DB
Connector is a set of subject names merely representing the storage object instances.
The data container part of the incarnations is eventually filled by snooping on the
message bus. As labels can be hierarchically structured, storage objects can be
hierarchically categorized. The simple subject-based query mechanism is not
supposed to replace a full fledged query service, but comes with our prototype
implementation for no additional cost.

4.1.2 Snooping and state reassembling
As mentioned before, the data container of a storage object incarnation implements
the snooping algorithm. In order to collect the state of an storage object the data
container may subscribe to LOADREPLY as well as to UPDATENOTIFY messages.
Depending on the storage type definition, the storage object state may be mapped to
different tables in the data store (see 4.3) and published on the message bus in
different fragments per mapped table respectively. The data container reassembles the
fragments according to a common request_id which identifies a particular
request/reply interaction and which is enclosed in the message payload data (see
Appendix A).
Given a specific incarnation, the data container object subscribes to the message bus
using an appropriate subject mask. For example, to snoop for update notifications on
storage object of type Item with identifier 1234 in data store domain auction.com the
subject mask to use is “UPDATENOTIFY.Item.1234.*.auction.com.>”. The subject
mask for snooping load replies for the same storage object instance is
“LOADREPLY.Item.1234.*.auction.com.>”.
Figure 6 summarizes the swizzling with snooping mechanism implemented by any
data container in the object manager. Initially the handle to the incarnation is
unswizzled and snooping to loads and updates is initiated. Eventually, snooping the
collection of fragments is completed and the incarnation is switched to the valid state
or an accessor is called beforehand. In the former case, the storage object state
members can be accessed without going back to the data store. In the latter case, a
blocking load request is published – in turn, replies to this request may be snooped by
other PSS nodes. Once in a valid state, the storage object incarnation continuously
tracks updates by snooping UPDATENOTIFY fragment messages.
The construction of a valid state is possible only if the collection of incoming
fragments is complete and all fragments are compatible. We say, that two fragments
of a storage object instance are compatible if they carry the same request_id and thus
are published on behalf of the same interaction. Thereby we assure that we assemble
the object state belonging to the same snapshot of the object. The fragment buffer
needs only one slot for each fragment, as we are only interested in one version of the
object, i.e. the one that represents the latest snapshot.

242 C. Liebig et al.

Initial
state after creation

invalid
snooping on loads & updates

loading

valid
snooping on update

access:
publish load request

initial snoop
complete

write
access

read
access

start snooping

load complete

flush

LOADREPLY.rep_id.pid.*.domain.>
UPDATENOTIFY.rep_id.pid.*.domain.>

UPDATENOTIFY.rep_id.pid.*.domain.>

LOAD.rep_id.pid.domain

dirty

Fig. 6. Snooping states of the data container

As the snooping functionality is executed in an asynchronous thread with respect to
the application, we have to synchronize the application access on storage objects with
the snooping handler. In order to guarantee snapshot consistency (see also Section
4.4), even if the fragment buffer is complete, we may not unconditionally switch to a
new snapshot of the object state in some situations:
• the incarnation is marked as pinned: do not switch to a new state until the object is

unpinned; continue snooping in the background.
• a read accessor function is currently being executed: switch to the new state on

return of the accessor.
• the incarnation is marked as dirty: do not switch, until
• the incarnation has been updated and flushed: switch not before a corresponding

SAVEREPLY message is received.

4.1.3 Active functionality in PSS
So far, snooping and updating storage objects in the cache has been transparent to the
user. To enable the application to reactively monitor significant events like create,
update, delete, we extend the PSS API with a notification-channel-like interface.
Each storage home implementation acts as a push-style supplier. It exports the
ProxyPushSupplier [24] interface, extended with label-based filtering (see
ItemHomeImpl in Appendix C). An application may register a PushConsumer
object (IOR) with a storage home, to receive create (update, delete) events, when they
occur on any managed storage object whose label matches the given subject predicate.
The event parameter of the push(Any e) notification carries the type of event
(create, update, delete) and the identifier of the affected object. The notification may
then trigger appropriate reactions of the application. The addition of a push channel to
the PSS interfaces really enables to build CORBA based information brokers in
information dissemination systems.
For example, the application could proactively collect instances of objects of some
category - identified by label. To do so, the application registers a PushConsumer
with an appropriate label predicate. Each time a new instance appears the event is

A Publish/Subscribe CORBA Persistent State Service Prototype 243

pushed to the application. As a reaction, the application could then issue a
find_by_pid() using the event payload data and thus proactively start snooping
on the recently created object’s state. Optionally, the application may itself act as a
push-style supplier on behalf of an external notification channel which is connected to
the front-end application (e.g. implemented as Java applet).

4.2 Message Bus Adapter

The Message Bus Adapter provides the means to connect a relational database to the
Rendezvous message bus and thereby to provide transactional publish/subscribe
functionality in the database. We use a prototype for Informix Universal Server (IUS)
that initially was developed by TIBCO [8] and has been modified and extended by the
authors to suit the needs of the project. At the time of this writing, TIB/Adapter
ActiveDatabase [32] has been announced. This product shares many features with our
prototype of the Message Bus Adapter (see Figure 4).
The API is provided through SQL User Defined Routines which are implemented as
external routines in a datablade [15,16]. It is possible to publish row-type data using
EVBSendRow() as well as results of (restricted) queries using EVBSendSQL() on
a specific predefined subject.
Publishing is executed on behalf of a database transaction. The data is effectively
published iff the publishing transaction commits. If the transaction commits, the
published messages are guaranteed to be delivered to all (certified) subscribers
eventually. In certified mode, the implementation uses event-tables to intermediately
queue published messages which will be selected and sent on the message bus by a
dedicated publication agent process, which runs outside of the server. We added
functionality to publish in reliable mode directly out of the in-blade UDR, without the
overhead of persistently queuing events and switching to the agent process. The
reliable delivery multicast is more “lightweight” than the guaranteed delivery
multicast on the message bus [9]. In fact, nearly all DB Connector messages are
published using reliable mode, certified mode is used for incoming SAVE messages
that contain the state of updated storage objects - SAVE messages are also used when
creating an object to initialize its state.
As it is not possible to start a foreign event-loop in a datablade, there is the need for a
listener agent process, that subscribes to the message bus on behalf of listeners and
the associated subjects in the database. Our Message Bus Adapter provides support to
register callback handlers, i.e. SQL UDRs, that will be executed when the subscribed
subject is encountered for an incoming message. To implement the logic that is
needed to drive the data protocol (i.e. create, find, load, save, delete), we register
dedicated handlers for the respective subjects. The handlers are themselves
implemented as external UDR in a separate datablade.
A particular problem in the implementation of the DB Connector for the PSS
prototype is the need for extended trigger functionality in the database. In order to
publish UPDATENOTIFY messages, containing the new state of an object - be it,
because it was saved out of a PSS Connector or because the tables were modified
directly through SQL - we would like to implement so called sequential causal
dependent coupling [4] between the triggering transaction and the update notification
transaction. This coupling between transactions would assure that the notification is
only sent out if the update transaction is successfully committed and that no other

244 C. Liebig et al.

update transaction can modify the data before having sent out the new state. Such a
coupling mode is not supported for SQL3 triggers [18] (as well as Informix SQL [17]
and SQL92 [11]). There are different ways to tackle this problem. One is to make use
of database server extensions that allow to register callback handlers for transaction
state changes in database extension modules like datablades in Informix [16]. This
way, the DB Connector is able to detect the commit of an update transaction and act
accordingly. The IUS 9.14 version, however, does not allow to pass closure data to a
transaction state change handler and it is thus hardly feasible to know for which
object to send out an update notification. A working (and more portable) solution for
us is to let the listener agent run another callback handler after dispatching a save
handler. Doing so, situations might occur, when an older update is overwritten before
the next update on a storage object and only the latest state of the object will be
notified to the PSS connectors. As an effect, a writer may not be able to read its own
update, but already receives a more recent version of the storage object.

4.3 Mapper

This task is well understood in the database community [3,19]. Automated mapping
from PSDL to object-relational therefore is straightforward. However, the derivation
of an OO model from a relational schema may need user intervention. In our
prototype we implemented the PSDL-to-relational mapping at first and made sure,
that the meta-data and the algorithms allow to cope with relational-to-PSDL
mappings.The mapping mechanism consists basically of two phases: configuration at
compile-time and the mapping process at run-time. The first one is carried out by the
PSDL compiler, which maps the definition of storage objects into tabular structures
(here, we describe only the PSDL-to-relational mapping). This mapping process
involves the following issues:
• inheritance hierarchy: each storage type is mapped into a separate table that

contains only the specialized (new) state members, not the inherited ones;
• recursive storage object types: flattened into one table using an attribute as self

reference;
• constructed types (array, sequence, enum, union, etc.): mapped into

separate tables carrying a reference (primary key) of the related object;
• primitive types: mapped based on a predefined correspondence description

between PSDL primitive types and basic SQL types;
• complex SQL types (date, interval, blob etc.): predefined library of storage

types (homes) and their implementation.
The result of the configuration process populates the meta-data repository in the data
store, which contains all necessary information to transform an object into a tabular
structure and vice versa. Based on this meta-data repository the relational schema is
generated. Additionally, the mapper creates the messages types, subjects, senders and
listeners needed for the FAP in the Message Bus Adapter. One important consequence
of the mapping in conjunction with the way, the message bus adapter defines message
types is, that the state of a storage object might be fragmented into several messages
which have to be published separately. This is the case for derived storage object
types and storage object types containing sequences or unions. We are investigating,

A Publish/Subscribe CORBA Persistent State Service Prototype 245

in how far we can benefit from object-relational mappings to increase efficiency of
data shipping.
Once the configuration is established, the second phase is carried out at run-time
when the mapping algorithm is executed in the database adapter i.e. called by some
callback handler. We have to unmarshal the payload data of the incoming message,
e.g. a fragment of a save request, and update the storage object’s tabular
representation accordingly.

4.4 Transaction Properties

Accessing a state member of a storage object incarnation is guaranteed to return a
consistent value. The implementation of an accessor method is realized as atomic unit
of access isolated from concurrent updates on the same storage object in that same
publish/subscribe session and isolated from update notifications snooped from the
message bus, as described in Section 4.1.2. Using the pin() operation on a storage
object incarnation allows to extend the unit of isolation with respect to update
notifications until the unpin() operation is called. Thereby it is possible to bracket
several read accessor calls to the same storage object incarnation in order to read a
consistent snapshot of the object [2].
Note, that we do not use a lock based implementation of isolation as it would require
interaction with the DB Connector. As one consequence, the prototype does not
support bracketing access to more than one storage object incarnation for snapshot
consistency. Without locking, this would require the PSS Connector to assure a
quiescent state [27] of the objects in the readset. In fact, deciding quiescence depends
on a bounded transmission delay of update notifications [27], which we think is not
realistic in the envisaged scenarios. As another consequence, concurrent updates to
the same storage object from different sessions are possible. Updates to the same
storage object will be serialized by the DB Connector in reception order. Updates are
propagated to the datastore on session flush() using certified message delivery.
The save handler in the DB Connector updates all the state fragments of the storage
object in one database transaction and thus assures the atomicity of writes. Again, this
is restricted to single storage objects, there is no transaction bracketing provided. In
Section 4.2, we discussed a restriction imposed by the particular message bus adapter:
it is not guaranteed that each update on a storage object will result in the publication
of an update notification but two updates might be collapsed into one update
notification. Nevertheless, snapshot consistency is preserved, as the application will
never see an older update after a newer one.
The PSS prototype described in this paper does not support the notion of transactions
as proposed for transactional sessions in the PSS specification, which is targeted to
integration with OTS [25] and X/Open DTP XA compliant data bases [34]. Instead
we define a publish/subscribe session. We argue that for many applications the object
instance is a sufficient granularity of isolation, especially for long-running read-only
applications with monitoring semantics. In that respect we trade serializability of
computations for timely delivery and freshness of data.

246 C. Liebig et al.

5 Putting It all Together: An Auction Application Scenario

A worldwide person-to-person auction system (à la eBay) is the basic scenario. We
assume the reader is familiar with the basic auction process. Figure 7 depicts the
infrastructure of this application.
Beginning from the back-end, the DB Connector interacts with the datastore(s), where
all auction entities are stored. The middle-tier encapsulates the auction business logic
(see Appendix D) and the access to persistent auction entity instances through use of a
publish/subscribe PSS (see Appendix B). In this scenario, there are multiple middle-
tiers organized by region, providing similar functionality, and more important,
accessing common storage objects of the auction.com datastore domain. At the
front-end, clients use a browser interface, where auction applets are running that in
turn are connected to the “nearest” application through an ORB. To refresh the data in
the front-end, the user can configure the applet to automatically refresh the data when
it receives the corresponding change/update notifications (aperiodic push/pull
combination); the user can schedule a periodic refresh, e.g. every 5 minutes (periodic
polling) or can refresh information on mouse-click (aperiodic polling).
We present a few characteristic interactions that illustrate the operation of the PSS in
the context of the auction application. Space limitations preclude a more detailed
analysis.

load
i789

PSS
Connector

A
pp

lic
at

io
n

lo
gi

c
(I

nf
or

m
at

io
n-

B
ro

ke
r)GetItem(i789)

NewItem(i543,..)

A
pp

lic
at

io
n

lo
gi

c

b99

b99

b99

i543

i543

i543

newBidFor i123

newBidFor i123

newItem i543

client integration-tier backend-tier

newItem i543

GetItem(i543)

A
pp

lic
at

io
n

lo
gi

c
N

ot
ifi

ca
tio

n

Accessor

b99

i543

create i543

subscribe(i123)

pull

publish

notify

M
essage

B
us

RDBMSP
S

S
/D

B
C

on
ne

ct
or

i543

currentBid(i123)

i789

i789

PlaceABid(aa,i123,$3)

create b99 for i123

newBidFor i123

germany.auction.com

us.auction.com

france.auction.com

japan.auction.com

auction.com

a)

b)

c)

d)

e)

f)

g)

h)
I

b99

b99

b99

A
pp

lic
at

io
n

lo
gi

c

i123

i123

i123
GetItem(i123)

i543

Fig. 7. Auction application scenario

A Publish/Subscribe CORBA Persistent State Service Prototype 247

• A German user on client (a) is interested on item i789, the applet calls the
operation GetItem(i789) through the ORB on the application, which itself
issues a find_by_item_id() on ItemHome (see Appendix C). Given that the
object is not in the cache, the application will run into an object fault when reading
the state of item i789, causing a load request to be published. The responsible DB
Connector looks up the storage object instance and selects corresponding tabular
data and publishes the fragments on the message bus. As no sessions exist on other
nodes that hold an incarnation for i789, the item i789 is only loaded by the German
middle-tier.

• The user on client (d), playing the role of a bidder, places a bid issuing a
PutABid(aa,i123,$3) operation call on the application. This operation
involves the creation of the bid instance b99 with label “i123” for the item i123.
The BidHome creates this instance on the datastore by publishing a CREATE
request. The responsible DB Connector of the particular datastore domain, maps
the corresponding Bid storage object instance into its tabular structure, creates the
required types and subjects in the Message Bus Adapter, and publishes a
CREATEREPLY as well as the object state (after commit) on the message bus. All
BidHome instances in PSS Connectors for which the application has registered a
PushConsumer for create events with label “i123”, snoop the message bus and
signal the creation of bid b99 to the application. The respective storage homes will
proactively create a storage object incarnation in the cache, which instantaneously
snoops the new state. In the scenario, the PSS Connectors in Germany, U.S.A. and
France have subscribed to “i123” labeled bids. On notification, the corresponding
applications in turn read the new b99 storage object - which should already be in
the cache – and send a newBidFor i123 notification to clients (b), (f), and (g).

• An American seller, in front of client (e), wants to sell an item. She requests an
item number and fills out all the required information (title, category, description,
duration, first bid, etc.) and when completed the NewItem operation is called on
the application. This method creates a new item instance (through ItemHome)
identifying it with i543 and category label “comp.misc”, as explained before. All
applications that registered with a respective ItemHome for create events with
label “comp.misc” again receive a create notification from the PSS, while the item
incarnation is already snooped and placed in the cache. Since bidders can specify
their interest in categories to the application, all new items under the selected
categories can be notified to them. That is the case of germany.auction.com
and japan.auction.com, where notifications are sent to the clients (c) and
(h). The latter one pulls i543 item description calling GetItem on the application.

6 Summary and Future Work

We discussed the need for supporting information dissemination applications by
integrating relational databases in a fully distributed Object-Web system. We have
shown that this can easily be done in a CORBA framework through the use of a
publish/subscribe Persistent State Service. In this paper we introduced an architecture
that combines the reliable multicast capabilities of COTS middleware with the
requirements of the new PSS specification. We presented implementation details of a

248 C. Liebig et al.

prototype implementation based on Informix IUS 9.14 and TIBCO’s TIB/Rendezvous
and discussed the main implementation issues: design of PSS and DB Connectors and
the associated formats and protocols, realization of an object manager that provides
lazy swizzling with snooping techniques, the mechanisms for adapting a DBMS to
interact with the messaging middleware and how active event signaling capabilities
were built into the DBMS extensions, the mapping procedures between PSDL and the
relational model and the required session and transaction semantics. We illustrated the
use of the publish/subscribe PSS through an auction scenario and a few characteristic
user interactions and the dissemination of the pertinent information.
The main advantage of our publish/subscribe PSS is the ability to support both client-
and server-initiated interactions in contrast to typical client-initiated approaches based
on query shipping. By exploiting the reliable multicast capabilities of the middleware
we provide a scalable generic caching mechanism that enables the application
developer to concentrate on application development rather than on the
reimplementation of basic functionality. The prototype of our CORBA Persistent
State Service is well suited to build n-tier information dissemination systems that
require timely delivery of data and exhibit access patterns that are typical of
monitoring applications. The introduction of a push channel in the PSS interface
makes it possible to notify applications whenever an event of interest occurs. Through
the use of lazy swizzling combined with message-bus snooping and subject-based
addressing we provide the means to achieve efficient data staging across data stores.
The current PSS implementation is a good platform for further experimentation. On
the one hand, future research includes the deployment in a realistic testbed for
performance evaluation and the use of this platform in large-scale e-commerce
application scenarios. On the other hand, PSS capabilities must be expanded and the
interactions with other CORBA services must be tested. Specific issues to be resolved
in our ongoing research include the use of timestamp-ordering consistency protocols,
the extension of the caching mechanism to do proactive caching, replication among
data stores, the integration with query, notification, and transaction services, and tool
support for handling heterogeneous data stores.

Acknowledgements
We would like to thank Arvola Chan for his support and constructive feedback.

References

1. S. Acharya, R. Alonso, M. Franklin and S. Zdonik, Broadcast Disks: Data Management for
Asymmetric Communications Environments. In Proceedings of the International Conference
on Management of Data (SIGMOD 95), pp. 199-210, San Jose, June 1995.

2. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, P. O’Neil, A critique of ANSI SQL
Isolation Levels. In Proceedings of the International Conference on Management of Data
(SIGMOD 95), pp. 1-10, San Jose, June 1995.

3. M. Blaha, W. Premerlani and H. Shen, Converting OO Models into RDBMS Schema. IEEE
Software, Vol. 11, No. 3, pp. 28-39, May 1994.

4. H. Branding, A. Buchmann, T. Kurdass and J. Zimmermann, Rules in an Open System: The
REACH Rule System. In Proceedings of Intl. Workshop on Rules in Database Systems
(RIDS 93), pp. 111-126, Edinburgh, Scotland, September 1993.

A Publish/Subscribe CORBA Persistent State Service Prototype 249

5. M. Carey, M. Franklin, M.Livny and E. Shekita, Data Caching Tradeoffs in Client-Server
DBMS Architectures. In Proceedings of the International Conference on Management of
Data (SIGMOD 91), pp. 357-366, Denver, May 1991.

6. N.Carriero and D. Gelernter. Linda in Context. Communications of the ACM, Vol. 32, No.
4, April 1989.

7. R.G.G. Cattell et al (Editors). The Object Database Standard: ODMG 2.0. Morgan
Kaufmann Publishers, 1997.

8. A. Chan. Transactional Publish / Subscribe: The Proactive Multicast of Database Changes.
In Proceedings of the International Conference on Management of Data (SIGMOD 98), pp.
520, Seattle, Washington, 1998.

9. D.R. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally
Ordered Communication. In 14th ACM Symposium on Operating System Principles,
Asheville, NC, December 1993.

10.U. Dayal and A. Buchmann and D. McCarthy. Rules are Objects too: a knowledge model
for an active, object-oriented database system. In Proceedings of the 2nd Intl. Workshop on
Object-Oriented Database Systems, Lecture Notes in Computer Science 334, Springer,
1988.

11.C. Date and H. Darwen, The Guide of SQL Standard, 4th edition, Addison-Wesley, 1997.
12.D. Edelson, Smart Pointers: They’re Smart, but not They’re Not Pointers. Technical Report

UCSC-CRL-92- 27, Baskin Center of Computer Engineering & Information Science,
University of California, Santa Cruz, 1992.

13.M. Franklin and S. Zdonik, “Data in your Face”: Push Technology in Perspective. In
Proceedings of the International Conference on Management of Data (SIGMOD 98), pp.
516-519, Seattle, June 1998.

14.Fujitsu, Inprise, IONA Technologies, Objectivity, Oracle, Persistence Software, Secant
Technologies, Sun Microsystems and TIBCO, Persistent State Service 2.0, Joint Revised
Submission. OMG Document orbos/ 99-07-07, ftp://www.omg.org/pub/docs/orbos/99-07-
07.pdf, August 1999.

15.Informix Inc., Extending Informix Universal Server, User-Defined Routines, 1997.
16.Informix Inc., DataBlade API Programmers Manual, 1997.
17.Informix Inc., Informix Guide to SQL:Syntax, Version 9.1, 1997.
18.ISO-ANSI, Working Draft Database Language SQL (SQL / Foundation SQL3). Part 2,

X3H2-94-080 and SOU-003, 1995.
19.A. Keller, R. Jensen and S. Agrawal, Persistence Software: Bridging Object-Oriented

Programming and Relational Databases. In Proceedings of the International Conference on
Management of Data (SIGMOD 93), pp. 523-528, Washington, May 1993.

20.A. Kemper and G. Moerkotte, Object-Oriented Database Management: Applications in
Engineering and Computer Science, Prentice Hall, 1994.

21.R. Munz, Usage Scenarios for DBMS. Keynote, International Conference on Very Large
Data Bases (VLDB 99),
www.dcs.napier.ac.uk/~vldb99/IndustrialSpeakersSlides/SAPVLDB.pdf, Edinburgh,
September 1999.

22.Object Management Group (OMG), CORBA Services Specification. OMG Document
formal/98-12-09, ftp:/ /www.omg.org/pub/docs/formal/98-12-09.pdf, Famingham, MA,
December 1998.

23.Object Management Group (OMG), CORBA Messaging, OMG Document orbos/98-05-05,
ftp:// www.omg.org/pub/docs/orbos/98-05-05.pdf, Famingham, MA, May 1998.

24.Object Managment Group (OMG), CORBA Notification Service, OMG TC Document
telecom/99-07-01, ftp://www.omg.org/pub/docs/telecom/99-07-01.pdf, Famingham, MA,
August 1999.

25.Object Management Group (OMG), Transaction Service Specification, in CORBA Services
Specification, Chapter 10, Famingham, MA, May 1998.

250 C. Liebig et al.

26.B. Oki, M. Pfluegl, A. Siegel and D. Skeen, The Information Bus - An Architecture for
Extensible Distributed Systems. In Proceedings of SIGOPS 93, pp. 58-68, December 1993.

27.E. Pacitti, P. Minet and E. Simon. Fast Algorithms for Maintaining Replica Consistency in
Lazy Master Replicated Databases. In Proceedings of the Intl. Conference on Very Large
Data Bases (VLDB99), pp. 126- 137, Edinburgh, UK, September 1999.

28.Persistence Software, Persistence PowerTier: A Technical Overview. White Paper,
www.persistence.com/ Sources/Download/WP_Technical.pdf.

29.D.C. Schmidt. Reactor -- An Object Behavioral Pattern for Event Demultiplexing and Event
Handler Dispatching. Proceedings of the First Pattern Languages of Programs Conference
in Monticello, Illinois, August, 1994.

30.T. Speakman, D. Farinacci, S. Lin and A. Tweedly. PGM Reliable Transport Protocol
Specification. Internet Draft <draft-speakman-pgm-spec-02.txt>, Cisco Systems, August
1998.

31.TIBCO Software Inc. TIB/Active Enterprise.
http://www.tibco.com/products/active_enterprise/index.html, TIBCO Software Inc., Palo
Alto, USA.

32.TIBCO Software Inc. TIB/Adapter for ActiveDatabase.
http://www.tibco.com/products/adapter_adb/whitepaper.html, TIBCO Software Inc., Palo
Alto, USA.

33.W. Wilkinson and M. Neimat, Maintaining Consistency of Client-Cached Data. In
Proceedings of the Intl. Conference on Very Large Data Bases (VLDB 90), pp. 122-133,
Brisbane, Australia, August 1990.

34.X/Open DTP, Distributed Transaction Processing: Reference Model, The XA Specification,
Reading, Berkshire, England, X/Open Ltd., 1991.

A Publish/Subscribe CORBA Persistent State Service Prototype 251

Appendix A. Subject Namespace

Table 1. Subject Namespace.

Task Subject participant * mask content**

Create CREATE.rep_id. domain storagehome P CREATE.rep_id.domain rep_id,
[pid|{(key,value)}*]
label, request_id

DB-Connector S CREATE. *.domain
CREATEREPLY.rep_id.
domain.label

DB-Connector P CREATEREPLY.rep_id.
domain.label

rep_id, pid,
request_id,label,
result

“ snoop storagehome S CREATEREPLY.rep_id.
domain.>

storagehome S CREATEREPLY.rep_id.
domain.label

Delete DELETE.rep_id.domain storagetype P DELETE.rep_id.domain rep_id, pid,
request_id

DB-Connector S DELETE.*.domain
DELETEREPLY.rep_id.
pid.domain.label

DB-Connector P DELETEREPLY.rep_id.pid.
domain.label

rep_id, pid,
request_id,label,
result

“ snoop storage_type S DELETEREPLY.rep_id.pid.
domain.label

storagehome S DELETEREPLY.rep_id.*.
domain.label

Find FIND.rep_id.domain storagehome P FIND.rep_id.domain rep_id, pid,
request_id, {(key,
value)}*, label

DB-Connector S FIND. *.domain
FINDREPLY.rep_id.
Domain

DB-Connector P FINDREPLY.rep_id.domain (rep_id, pid, label)
collection,
request_id

storagehome S FINDREPLY.rep_id.domain
Load LOAD.rep_id. Pid.domain storagetype P LOAD.rep_id.pid. domain rep_id, pid,

request_id
DB-Connector S LOAD. *. *.domain

LOADREPLY. rep_id. pid.
fragment_no. domain.label

DB-Connector P LOADREYPL.rep_id. pid.
fragment_no.domain.label

fragment data

“ snoop storagetype S LOADREPLY.rep_id.pid.*.
domain.>

storagetype S LOADREPLY.rep_id. pid.*.
domain.>

Update
notification

UPDATENOTIFY.
rep_id.pid. fragment_no.
domain.label

DB-Connector P UPDATENOTIFY.rep_id.pid.
fragment_no.domain.label

fragment data

“ snoop storagetype S UPDATENOTIFY.rep_id.pid.
*.domain.label

Save SAVE.rep_id. pid.domain storagetype P SAVE.repid.pid.domain Fragment data,
request_id

DB-Connector S SAVE.*.*.domain
SAVECOMPLETE.
rep_id.pid.domain

storagetype P SAVECOMPLETE.rep_id.
pid.domain

rep_id, pid,
request_id

DB-Connector S SAVECOMPLETE.*.*.
domain

SAVEREPLY.
rep_id.pid.domain

DB-Connector P SAVEREPLY.rep_id. pid.
domain

rep_id, pid,
request_id, result

storagetype S SAVEREPLY.rep_id.pid.
domain

* P:publisher, S:subscriber
** rep_id: repository identification; pid:persistent state object identification.

252 C. Liebig et al.

Appendix B. PSDL (Auction Example)

abstract storagetype User {
//...

};

abstract storagetype Category {
//...

};

abstract storagetype Item;
typedef sequence<ref<Item>> item_seq;

abstract storagetype Bid{
readonly state long bid_no;
state ref<User> bidder;
state ref<Item> item;
state date when;
state money amount;

}

typedef sequence<ref<Bid>> bid_seq;
enum item_state {sold, cancelled, active, inactive};

abstract storagetype Item {
readonly state long item_no;
state string title;
state string description;
state ref<ItemDetails> details;
state ref<Category> cat_no;
state date from;
state date until;
state string location;
state ref<User> seller;
state item_state thestate;

};

abstract storagetype ItemDetails {
state ref<Item> item;
state string longdescription;
state blob image;

};

storagetype ItemImpl implements ItemDescription{};
storagetype ItemDetailsImpl implements ItemDetails{};
storagetype BidImpl implements Bid{};
// ...

abstract storagehome ItemHome of Item {
key item_no;

};
abstract storagehome BidHome of Bid {

key bid_no;
};
abstract storagehome ItemDetailsHome of ItemDetails {};

storagehome BidHomeImpl of BidImpl implements BidHome {;
primary key bid_no;

};
storagehome ItemHomeImpl of ItemImpl implements ItemHome {;

primary key item_no;
};
storagehome ItemDetailsHomeImpl of ItemDetailsImpl implements

ItemDetailsHome { };

A Publish/Subscribe CORBA Persistent State Service Prototype 253

Appendix C. PSS derived code (Auction Example)

// language mappings for special storagetypes date, money, blob
#include "sqltypes.h"

class Item : public virtual CosPersistentState::StorageObjectBase {
public:

virtual CORBA_Long item_no() = 0;
virtual const char* title() const = 0;
virtual void title(const char* s) = 0;
virtual void title(char* s) = 0;
virtual void title(CORBA::String_var& s) = 0;
virtual const char* description() const = 0;
virtual void description(const char* s) = 0;
virtual void description(char* s) = 0;
virtual void description(CORBA::String_var& s) = 0;
virtual ItemDetails* details() const =0;
virtual const ItemDetailsRef

details(CosPersistentState::YieldRef yr) const =0;
virtual void details(ItemDetails* id) = 0;
virtual void details(const ItemDetailsRef id) = 0;
//...

}

class ItemHome : public virtual CosPersistentState::StorageHomeBase {
public:

virtual Item* create(CORBA_Long item_no, const char* title,
const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
const char* label)=0;

virtual ItemRef create(CORBA_Long item_no, const char* title,
const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
CosPersistentState::YieldRef yr, const char* label,)=0;

// suppl. subscription based finder methods:
virtual item_seq* find_by_label(in string label)=0;
// finder methods for keys
virtual Item* find_by_pid(const CORBA_OctetSeq& pid) = 0;
virtual Item* find_by_item_no(CORBA_Long item_no) = 0;
virtual ItemRef find_by_pid(const CORBA_OctetSeq& pid,

CosPersistentState::YieldRef yr) = 0;
virtual ItemRef find_by_item_no(CORBA_Long item_no,

CosPersistentState::YieldRef yr) = 0;
}

class ItemImpl : public virtual Item {
public:

// accessors
CORBA_Long item_no();
const char* title() const;
void title(const char* s);
void title(char* s);
void title(CORBA::String_var& s);
const char* description() const;
void description(const char* s);
void description(char* s);
void description(CORBA::String_var& s);
ItemDetails* details() const;
const ItemDetailsRef

details(CosPersistentState::YieldRef yr) const;
void details(ItemDetails* id);
void details(const ItemDetailsRef id);
// ...

254 C. Liebig et al.

// methods inherited from StorageObjectBase:
void _add_ref();
void _remove_ref();
void destroy_object();
CORBA_Boolean object_exists();
CORBA_OctetSeq* get_pid();
CORBA_OctetSeq* get_short_pid();
StorageHomeBase_ptr get_storage_home();
void pin();
void unpin();

private:
ItemImpl() {};
ItemImpl(StorageHomeBase_ptr home, const CORBA_OctetSeq& pid,

OBCM_Session *obrvcm_session);
// ...
StorageHomeBase_ptr _home;
ItemImplData* _ptr;

}

class ItemHomeImpl : public virtual ItemHome {
Item* create(CORBA_Long item_no, const char* title,

const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
const char* label);

virtual ItemRef create(CORBA_Long item_no, const char* title,
const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
CosPersistentState::YieldRef yr, const char* label,);

// suppl. notification channel interface, inherited from
// StorageHomeBase:
virtual void connect_any_push_consumer(notification_type nt,

const char* label, const PushConsumer& pc);
virtual void disconnect_any_push_consumer(notification_type nt,

const char* label,const PushConsumer& pc);
};

A Publish/Subscribe CORBA Persistent State Service Prototype 255

Appendix D. IDL Interfaces (Auction Example)

// data structures for user, bid, item etc.
struct bid {...};
typedef sequence<bid> bid_seq;
struct item {...};
// ...

interface User
{

string NewUser(in string name, in string email,
in string password, in string address);

boolean LogIn(in string UserId, in string password);
boolean LogOut(in string UserId);
void ItemOfInterest(in string UserId, in string ItemNo);
void CategoryOfInterest(in string UserId, in long category);

// Seller:
string NewItem(in string title, in string descr,

in string details, in long category, in string seller,
in short days, in string location);

item_seq GetItemsForSale(in string UserId);

// Bidder:
boolean PlaceABid(in string Bidder, in string ItemNo,

in double amount);
item_seq GetInterests(in string UserId);

// ...
};

interface DataRetrieval
{

item GetItem(in string ItemNo);
itemDetails GetItemDetails(in string ItemNo);
item_seq SearchItem(in string text);
bid firstBid(in string ItemNo);
bid currentBid(in string ItemNo);
bid_seq BidHistory(in string ItemNo);
cat GetCategory(in long catNo);
user GetUser(in string UserId);
// ...

}

QualProbes: Middleware QoS Profiling Services

for Configuring Adaptive Applications �

Baochun Li and Klara Nahrstedt

Department of Computer Science
University of Illinois at Urbana-Champaign

{b-li,klara}@cs.uiuc.edu
http://cairo.cs.uiuc.edu

Abstract. It is widely accepted that in order to deliver the best Quality-
of-Service (QoS), applications need to be adaptive to the fluctuating
computing and communication environments. The middleware layer may
assist by controlling the behavior of the applications so that they adapt
and reconfigure themselves. In this paper, we present QualProbes, a set of
middleware QoS Probing and Profiling services to discover such relation-
ships at run-time. Our approach focuses on meeting the requirements of
the critical performance criterion in the application. Such criterion may
be affected by changes in more than one application-specific QoS param-
eters, and these parameters have diversely different resource usage pat-
terns. QualProbes services are able to precisely capture the effects made
to the critical performance criterion when resource availability varies, and
thus enable more effective control of the application to adapt to resource
variations. Our case study with OmniTrack, an omni-directional visual
tracking application, provides solid proof that QualProbes significantly
enhance our capabilities to satisfy the critical performance criterion, the
tracking precision, while controlling the adaptation process of the appli-
cation.

1 Introduction

Recent research advances in Quality-of-Service (QoS) and resource management
have brought forth numerous solutions to support QoS-aware applications, so
that their demands for both end system and network resources are met. Two
major categories of such solutions have evolved. First, reservation-based systems
employ various resource reservation and admission control mechanisms to en-
force the delivery of requested QoS to the applications. Such enforcement may
be deterministic or statistical, depending on the policies involved for resource
reservation. One drawback of this approach is that many reservation mecha-
nisms demand major overhaul in the design of prevalent operating systems in
use today, such as Windows NT, or networking protocols, such as TCP/IP. In
� This research was supported by the Air Force Grant under contract number F30602-
97-2-0121, NASA Grant under contract number NASA NAG 2-1250, and National
Science Foundation Career Grant under contract number NSF CCR 96-23867.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 256–272, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

QualProbes: Middleware QoS Profiling Services 257

contrast, adaptation-based systems operate based on best-effort environments,
and attempt to adapt themselves or the applications for the purpose of provid-
ing the best possible QoS under available resource conditions, and of achieving
the most graceful quality degradation in case of scarce resources.

It is advantageous to implement such adaptation-based systems in the mid-
dleware level, since it does not require tight integration or modifications to the
best-effort services in OS kernel and network protocol stack, which is the ma-
jor advantage of adaptation-based systems over reservation-based systems. In-
deed, notable examples of adaptation-based systems, such as the QuO [1] and
Da CaPo++ [2], implement adaptation-based services in the middleware. Natu-
rally, since both middleware components and the actual QoS-aware applications
may be reconfigured to adapt to the changing environment, two approaches ex-
ist with two distinctive focuses. One approach is to dynamically reconfigure the
middleware itself so that it can transparently provide a stable and predictable
operating environment to the application. This approach is attractive since it
does not require any modifications to the application, any legacy application
can be deployed with little efforts and with a certain level of QoS assurance.
However, since it can only provide a generic solution to all applications, a set of
highly application-specific requirements cannot be addressed. Alternatively, the
middleware may be active, and exert strict control of the adaptation behavior of
QoS-aware applications, so that these applications adapt and reconfigure them-
selves under such control. This approach enjoys the advantage of knowing ex-
actly what are the application-specific adaptation priorities and requirements, so
that appropriate adaptation choices can be made to address these requirements.
However, it lacks an easy way to manifest the relationship between application-
specific adaptation choices and the actual changes in resource demands, caused
by reconfiguring an adaptive application. We take the latter alternative in our
approach.

Since the primary objective common to all adaptation-based approaches is to
provide the best possible QoS with the current resource availability in a swiftly
changing environment, the problem comes to the proper choice of a certain cri-
terion that can assist the judgment of ”What is best?”. Most applications have
more than one QoS parameters that are application-specific, and any changes
in these parameters contribute to an increase or degradation of the delivered
quality. In this paper, we focus on the critical performance criterion, which con-
centrates on the satisfaction of requirements related to the most critical applica-
tion QoS parameter. The quality of other non-critical parameters can be traded
off. For example, in our case study of OmniTrack, an omni-directional visual
tracking application, the tracking precision1 is the most critical QoS parameter
in the tracking application. The critical performance criterion, therefore, is to
keep the tracking precision accurate and stable.

In this paper, we present QualProbes, a set of middleware QoS probing and
profiling services, that are uniquely designed to address the following problems:

1 The tracking precision is a quantitative measurement of the collective performance
of all concurrently running tracking algorithms, also referred to as trackers.

258 Baochun Li and Klara Nahrstedt

(1) How do changes in non-critical application QoS parameters relate to the
critical QoS parameter, and thus the critical performance criterion? (2) How
do the changes in application QoS parameters relate to changes in resource
demands or consumption? (3) How do the solutions to the previous problems
translate to appropriate control actions activated by the middleware, so that
the critical performance criterion, e.g., a stable tracking precision, are satisfied
and maintained? Once we have solved these problems, we are able to control the
adaptation process within the application from the middleware, so that under
any circumstances in a best-effort environment and with fluctuating resource
availability, the application is able to maintain the best possible quality-of-service,
in the sense that the critical performance criterion is always satisfied.

The rest of the paper is organized as follows. Section 2 briefly introduces the
design and architecture of Agilos (Agile QoS), a middleware control architec-
ture that actively controls the application’s adaptation behavior. The QualProbes
services are introduced and serve as critical core components in the Agilos archi-
tecture. Section 3 presents our theoretical and practical solutions to the above
problems, forming the basis of QualProbes. Section 4 shows a detailed experimen-
tal analysis of the control effectiveness from the middleware, with and without
the assistance of QualProbes. We use OmniTrack, our omni-directional visual
tracking application, as an example of complex applications. Section 5 discusses
related work and Section 6 concludes the paper.

2 Agilos Middleware: A Background Introduction

The ultimate objective of Agilos, our middleware control architecture, is to con-
trol the adaptation process within the application so that it is steered towards
the satisfaction of application-specific critical performance criterion. In order
to accomplish the objective, the core middleware components of Agilos consist
of application-neutral Adaptors and application-aware Configurators , which re-
flect a two-level hierarchy of middleware control. In the application-neutral level,
each Adaptor corresponds to a single type of resource, e.g., CPU Adaptors or
network bandwidth Adaptors. Though the Adaptors are specific to resources,
they are not aware of the semantics of individual applications. In contrast, the
Configurators in the application-specific level are fully aware of the application-
specific semantics, and thus each Configurator only serves one application. This
hierarchical design of the Agilos architecture is illustrated as in Figure 1.

Though the Adaptors and Configurators form the basis of the Agilos archi-
tecture, three additional components are necessary to complete the design and
to achieve the desired functionality. First, the Negotiator is responsible for all
communications among Agilos middleware components on different end systems.
Second, the Observer is responsible for monitoring resource availability and in-
specting any application-specific parameters. Third, QualProbes provide QoS
probing and profiling services so that application-specific mappings between the
two adaptation levels can be derived. This paper focuses on the algorithm design
of the QualProbes services.

QualProbes: Middleware QoS Profiling Services 259

 Engine

Omni-Directional Visual Tracking

Adaptor (Application-Neutral)

Configurator (Application-specific)
Negotiator

end systems
QualProbes

Other

Observer
CPU Network Bandwidth Other Resources

Agilos
Middleware
Control
Architecture

OS and Communication Protocol Stack

Middleware Layer

Application Layer

Application-specific Level

Application-neutral Level

Rule
Base

Membership
Functions

Fuzzy Inference

Fig. 1. The Hierarchical Design of the Agilos Architecture

QualProbes are designed to assist controlling the applications so that con-
trol actions are generated with better awareness of application’s behavior and
resource demands. To achieve this goal, the results of QualProbes are utilized
in replacing the ”fuel” of the Configurator. As detailed in previous work [3],
the Configurator is designed as a rule-based fuzzy control system. As illus-
trated, the Configurator can be partitioned into three parts: the Fuzzy Inference
Engine, Membership Functions and Rule Base. While fuzzy inference engine is
application-neutral, the ”fuel”, namely the rule base and membership functions
of associated linguistic variables, are application-specific. Such model guarantees
that discrete adaptation choices and a wide variety of resource/application QoS
mappings can be addressed easily with a replacement of the rules and member-
ship functions in the rule base.

Rules in the rule base are written using linguistic variables and values. In
OmniTrack, examples of variables are cpu demand and throughput demand, and
examples of values are below average or very low. These values are uniquely char-
acterized by membership functions, so that the inference engine can have exact
definitions of these values. The design of the rule base involves the generation of a
set of conditional statements in the form of if-then rules, such as if cpu demand
is very high and throughput demand is below average then configuration is
compress.

Apparently, the role of QualProbes is to capture the run-time relationships
between application QoS and their resource demands, so that the above rules
are activated with appropriate timing.

3 QualProbes: Investigating Application-Specific
Behavior

Since the ultimate objective is to steer adaptations towards satisfaction of the
critical performance criterion, the primary goal of QualProbes services is to
devise mechanisms that best facilitate such optimal steering of adaptation de-
cisions. To achieve this goal, QualProbes need to address the following issues.

260 Baochun Li and Klara Nahrstedt

First, QualProbes need to accurately capture the relationships between the most
critical application QoS parameter, such as the tracking precision, and other
non-critical ones. This is crucial to perform tradeoffs of non-critical parameters.
Second, QualProbes need to capture the resource demands of each non-critical
QoS parameters. Both of the above are achieved via run-time probing and pro-
filing mechanisms. Finally, such profiling results should be used to assist the
generation of application-specific control rules, which are integrated in the Con-
figurator.

We address the above issues in the following sections. We illustrate our so-
lutions with actual examples derived from OmniTrack.

3.1 Relations Among QoS Parameters and Resources:
The Dependency Tree Model

As previously noted, the application-specific QoS parameters can be classified as
critical (usually one parameter such as the tracking precision) and non-critical. In
addition, the changes of each parameter in the non-critical collection may cause
and be dependent on the changes of zero, one, or multiple types of resources.

Assume that we study m different resource types, and the current observation
of consumed resources are R1, R2, . . . , Rm, measured with their respective units.
Typically in OmniTrack, m = 2, and Rcpu is measured with the CPU load
percentage, while Rnet is measured with bytes per second.

In addition, assume that there are n unique non-critical QoS parameters that
may influence the critical parameter, pc, in the application. These parameters
are pi, i = 1, . . . , n. For pi, ∀i, there are l of resource types related to pi, where
l ≤ m. In the OmniTrack example, if pi is frame rate, its changes correspond
to Rnet and Rcpu. In contrast, if pi is the object velocity, it does not directly
correspond to any resources, though pc, the tracking precision, depends on its
variations.

The Application Model In all subsequent discussions about application QoS
parameters and resource types, we assume a Task Flow Model for distributed
applications. A complex distributed application can be modeled as several tasks,
each task generates output for the subsequent task, which can be measured by
one or more output QoS parameters. Such output forms the input of subsequent
tasks. In order to process input and generate output, each task requires a specific
amount of resources. An acyclic task graph, as shown in Figure 2 can be used
to illustrate such a model.

With such a conceptual model, we note that there may be various definitions
of the concept application task, distinguished among themselves by the granu-
larity of functional partitions in the application. Since we attempt to optimize
the adaptation behavior of the application to achieve a performance goal, we di-
vide the applications with coarse granularity, and demand that each task must
present a one-to-one mapping to an individual executable component within the
application. Static or dynamic linked library objects (such as codec or encryp-
tion modules) and individual working threads are not tasks themselves, though

QualProbes: Middleware QoS Profiling Services 261

Application Task: A Closer Look

Application
Task 1

Application

Application

ApplicationTask 2

Task 3

Task 4
Task Output

Resources

Input

A Generic Task Flow Graph

Fig. 2. Illustration of The Task Flow Model

Subtask

Frame Grabbing

Tracking Server

Transmission
Network

Omni-directional
Facilitator

SendDisplay

Tracking Algorithms

Receive Display

Interactive selection
of camera directions
and tracking servers

Task

Fig. 3. The Task Flow Model of OmniTrack

they may be partitioned as subtasks. As an example, the Task Flow Model of
OmniTrack is shown in Figure 3.

A Dependency Tree for Application QoS Parameters Although each pi

corresponds to resources Ri, i = 1, . . . , l, we observe that such dependencies are
generally hard to capture directly. We take the parameter frame rate in Omni-
Track as an example. Naturally, the frame rate of video streaming depends on
network bandwidth availability. However, the nature of such dependence is non-
deterministic: For the same available bandwidth, the frame rate varies diversely
for compressed video versus uncompressed video; different CPU load may limit
the capacity that trackers can consume the frames, thus limiting the frame rate.
Similar situation applies to other parameters.

Such observations illustrate that each pi, in addition to being directly de-
pendent on resource types, depends directly on a subset of pj , j �= i, and via
its dependence with this subset of parameters pj , indirectly corresponds to re-
sources. We define that if pi is dependent on pj, then changes in pj can cause
changes in pi. Ideally, a generic model for capturing the dependencies is by us-
ing an acyclic directed dependency graph, with the critical parameter pc as the
source, and resources Ri, i = 1, . . . ,m as the sink. For simplicity reasons, we
only consider a special case that all but the bottom levels of such a dependency
graph is a directed binary tree, with pc as the root of the tree, and resources as
the leaves. Each pi depends on zero, one or two other parameters or resources.

262 Baochun Li and Klara Nahrstedt

There are two key characteristics in such a dependency tree 2. First, the
resource types Ri, i = 1, . . . , l are always leaf nodes of the tree. This is based on a
simplified assumption that the changes of each resource type never depend on any
other resources, i.e., that resource types are independent with each other. Second,
we note that in addition to demanding resources of certain types, the changes
of an application QoS parameter may change the resource availability of some
other resource types, without demanding them. For example, while changing
the compression ratio in OmniTrack demands CPU resources, its changes will
have significant effects on available network bandwidth also, since less data is
necessary to be transmitted. This case is presented by a directed arrow from the
resource node Ri to the QoS parameter node pj, showing that the availability
of Ri relies on pj , rather than the usual case that pj demands and relies on Ri.
An illustration of our directed dependency tree model and an real-world example
with OmniTrack is given in Figure 4.

Dependency Tree of OmniTrack

c

1
R R

2

nil

p p

ppp

1 2

3 4 5

Tracking Precision

Object Velocity Tracking Frequency

Frame Rate

Number of
 Trackers

Property of
One Tracker

Size of
Region

Tracker
Type

Weighted Quantity of Trackers

Image
Properties

Codec
Type

Compression
Ratio

Dependency Tree
A Generic

nil

Resource

Image Size

Size
in pixelsCodec

Parameters

Color
depth

CPU Load Network Throughput

p

Fig. 4. The Dependency Graph for Application QoS Parameters

Characterizing the Relationship between Dependent Nodes Once we
have established the dependency tree of QoS parameters for an application 3, the
relationship between dependent nodes needs to be characterized appropriately.
We assume that for ∀i, ∀t, there exists {pi}min and {pi}max such that {pi}min ≤
pi(t) ≤ {pi}max, any values beyond this range is either not possible or not
meaningful. For example, the frame rate may vary in between [1, 30] fps. Assume
the parent node pi depends on two descendant nodes px and py. The dependency
can thus be characterized by a function fi,x,y, defined as:
2 To be exact, it is only a binary tree without considering the bottom level related to
resources. Otherwise, it is more of a lattice.

3 Such establishment is application-specific, and may be derived based on knowledge
of a specific application.

QualProbes: Middleware QoS Profiling Services 263

∆pi = fi,x,y(∆px, ∆py)
pk = {pk}min +∆pk, with k ∈ {i, x, y}
0 ≤ ∆pk ≤ {pi}max − {pi}min (1)

where ∆pk is a normalized value of pi. Function fi,x,y defines the dependence
relationship between the parent node pi and its descendant nodes px and py.
If pi only depends on one node px, then fi,x,y is equivalent to fi,x, where ∆pi =
fi,x(∆px). If one or two of the descendant nodes are resource types Rx and Ry,
then we define fi,rx,ry so that ∆pi = fi,rx,ry (∆Rx, ∆Ry). Note that for the
special case that the availability of resource type Ri depends on changes in pj ,
i.e., there is a directed link from Ri to pj , we define f r

ri,j
such that ∆Ri =

f r
ri,j

(∆pj). Figure 5 visually shows the above characterization.

∆ CPU Load
0

0

Weighted Quantity of Trackers

Frame Rate

f

f

One parent - one descendant case: One parent - two descendants case:
Two-Dimensional Characterization Three-Dimensional Characterization

Number
of Active
Trackers

Frequency
Tracking∆ ∆

∆

∆

Fig. 5. Characterization of Dependencies among QoS Parameters

If we obtained all fi,x,y in the dependency tree via probing and profiling
services, the relationship of any application QoS parameter pi and its related
resources can be characterized by a series of substitutions. As an example, for
the generic dependency tree in Figure 4, we have

∆pc = fc,1,2(∆p1, ∆p2)
= fc,1,2(f1,3,4(∆p3, ∆p4), f2,5(∆p5))
= fc,1,2(f1,3,4(f3,r1(∆R1), f4,r2(∆R2)), f2,5(f5,r1(∆R1)) (2)

and

∆R2 = f r
r2,5(∆p5) (3)

which characterizes the relationship between pc and resources R1 and R2.

3.2 QualProbes Services Kernel: The QoS Profiling Algorithm

QualProbes services are responsible for run-time capturing of the relationships f
and f r between dependent nodes in an application-specific dependency tree,

264 Baochun Li and Klara Nahrstedt

and for properly storing the results in profiles. QualProbes services are mid-
dleware components, and implement a QoS Probing and Profiling algorithm as
the kernel in each component. The QualProbes services kernel is designed to be
application-neutral, thus we require that all related application QoS parameters
should present the following properties:

1. Observable. Their run-time values at any instant can be obtained in a timely
manner. Implementation-wise, we utilize the CORBA Property Service. Ap-
plications report values of their QoS parameters as CORBA properties to the
Property Service when initializing or when there are changes, while Qual-
Probes services kernel retrieves these values from the Property Service when
necessary.

2. Tunable. They should be either directly or indirectly tunable from outside
of the application. Since the application exports interfaces to the middle-
ware Configurator for such tuning and reconfiguration, QualProbes services
only need to reuse these interfaces to control the QoS parameters in the
application.

Having ready ”read/write” access to the application QoS parameters, Qual-
Probes services execute a QoS Profiling algorithm in their kernel. The algorithm
traverses the dependency tree from leaves up to the root, and attempts to dis-
cover the function f and f r previously defined by tuning the values in descen-
dant QoS parameters or resource types and measuring those of the parent QoS
parameter. If f is three-dimensional, a nested loop involving both descendant
parameters is executed. Figure 6 demonstrates the QoS profiling algorithm in
the pseudo-code form. In this algorithm, function tune executes recursively in
order to tune an application QoS parameter indirectly.

As an concrete example, Figure 7 illustrates the results of tuning the QoS
parameters object velocity and tracking frequency in order to measure the tracking
precision. The output of the inner loop (by only tuning tracking frequency) is
shown as bold dotted lines.

3.3 Towards Better Middleware Control

The design of QualProbes services in previous sections addresses the problem
of discovering relationships between the critical performance criterion and re-
source demands of an application. In order to complete the solutions provided
by QualProbes, we need to address the issue of bridging the obtained profiles
with actual membership functions and inference rules in the Configurator.

The Inference Rules Based on our extensive experiences with the real-world
application OmniTrack, we believe that the inference rules inside the rule base
cannot be generated automatically. Such rules need to be written by the appli-
cation developer for a specific application. The reasons are two-fold: First, a rule
base customized by the application developer is best in exploiting all available

QualProbes: Middleware QoS Profiling Services 265

for each resource leaf node Ri in the dependency tree:

if link(Ri → pj) or link(pj → Ri) exists
for k = {pj}min to {pj}max step {pj}increment

tune(pj ,k); log observed Ri

for each non-leaf node pi in the dependency tree (nodes on descendant levels first):

if pi has one descendant parameter node px
for k = {px}min to {px}max step {px}increment

tune(px, k); log observed pi
else if pi has two descendant parameter node px and py
for k1 = {px}min to {px}max step {px}increment

for k2 = {py}min to {py}max step {py}increment
tune(px, k1); tune(py, k2); log observed pi

tune(pi, value)

if pi is directly tunable via exported interface
call application exported interface to set pi = value

else
assume descendant nodes of pi are px and py
for k1 = {px}min to {px}max step {px}increment

for k2 = {py}min to {py}max step {py}increment
tune(px, k1); tune(py, k2);
if ((observed pi) == value) return;

Fig. 6. QualProbes Services Kernel Algorithm

adaptation choices and best optimize the rich semantics of these choices, natu-
rally integrating the relative priorities of different application QoS parameters.
In other words, the application developer should decide the set of QoS parame-
ters to be traded off in the event of quality degradation. Second, the rules are not
constant. It should be tuned towards the needs and user preferences in different
occasions where the application is executed.

Thresholds: Towards Better Membership Functions Even though the
rules can not be generated automatically, the profiles discovered by QualProbes
services are of significant assistance in the process of determining the membership
functions of linguistic values in the inference rules. In order to demonstrate such
assistance, we take one inference rule in OmniTrack as an example:

if cpu demand is very high and throughput demand is very low then config-
uration is compress

This inference rule operates as follows. First, it takes the output of CPU
adaptor and Network Bandwidth Adaptor in the application-neutral level as in-
put. When the CPU is idle, the CPU adaptor will apply its application-neutral
control algorithm and suggests that the application under its control to demand
more CPU resources. This yields a high cpu demand value. Similarly, when the
network is congested and there are very low bandwidth available, the network

266 Baochun Li and Klara Nahrstedt

Object Velocity (pixels/sec)

1

max

0
0

Tracking Frequency (times/sec)

10 15

Tracking

2

Precision (pixels, smaller values shows better precision)

Fig. 7. QualProbes Services: An Example

bandwidth adaptor suggests that the application demand less network band-
width, thus yielding a low value in throughput demand. Second, the inference
rule decides that if cpu demand is high and throughput demand is low, the ap-
plication should reconfigure itself and add compression to its video streaming.
Third, the actual definitions, made via the membership functions, of linguistic
values very high and very low decide the activation timing of such reconfigura-
tion choice.

The question is: How ”high” is very high for this specific rule? As we have
observed in our experiences with OmniTrack, very frequently the discovered
profiles by QualProbes services are non-linear, and contain certain threshold
values. For example, by switch codec type from ”uncompressed” to ”Motion
JPEG”, we observe that ∆Rcpu steps up abruptly by a certain amount, e.g.,
60%, while ∆Rnet steps down by about 90% of the original value. The threshold,
thus, can be determined by the profiles obtained from QualProbes services. For
example, very high can be defined as higher than 60%, while very low can be
defined as lower than 90% of {Rnet}max.

As another example, let us examine the profiles obtained related to the top
level of dependency tree, the tracking precision. Such profiles are illustrated in
Figure 7. One of the corresponding inference rule is:

if tracking frequency is low and object velocity is medium then configuration
is remove tracker

As illustrated by Figure 7, QualProbes services have discovered an approx-
imate threshold value for tracking frequency at respective object speed levels.
If the tracking frequency drops below such threshold values, we could specu-
late that tracking precision may degrade. In order to keep the tracking preci-
sion, which is the critical performance criterion for OmniTrack, we define the
membership function of linguistic value low to cover the values lower than the
threshold value that we have discovered, e.g., 10 iterations per second. When
this definition is applied to the above inference rule, the configuration choice
of remove tracker will be activated when the tracking frequency falls below the
critical threshold value. This ensures that the tracking precision is kept stable
at all times.

QualProbes: Middleware QoS Profiling Services 267

4 Case Study: OmniTrack

4.1 OmniTrack: An Introduction

As a case study, we have developed OmniTrack, a distributed omni-directional
visual tracking system, using tracking algorithms in the XVision [4] project. Om-
niTrack is a flexible, multi-threaded and client-server based application, which
adopts complex tracking capabilities in multiple dimensions, such as visual ob-
ject tracking, camera tracking and switching, and features full integration of user
preferences. This application illustrates the coexistence of multiple adaptation
possibilities, ranging from image properties, codec choices, server selections, to
tracker quantities and variety. The actual adaptation choices are based on a
combination of user preferences and decisions made by the underlying Agilos
middleware control architecture. An illustration of OmniTrack architecture is
shown in Figure 8.

Negotiator

Client

Application
Tasks

Active
Middleware

OS and
Network

Gateway
Interface

Gateway

containing
Scene

tracked object

"F"

"L"

90

180"B"

"R"

270

0

Server Task

Negotiator

Server

Server

Server Task

Negotiator

Server Task

Negotiator

Server

Omni-Directional
Camera

Server

Server Task

Fig. 8. OmniTrack: A Distributed Omni-Directional Visual Tracking System

OmniTrack is implemented in Windows NT, deployed under the control of
Agilos middleware. OmniTrack exports a control interface which is clearly de-
fined in IDL. All control commands made by the Agilos middleware is carried out
through such a control interface via CORBA. This ensures that Agilos middle-
ware architecture is generic and not bound to any specific applications. Besides
exporting the control interface, OmniTrack reports on-the-fly observations of its
application-specific QoS parameters to the CORBA Property Service, so that
they are always observable from the middleware’s point of view.

268 Baochun Li and Klara Nahrstedt

4.2 Experiments with OmniTrack

We have carried out a series of experiments with OmniTrack. In our experimen-
tal setting, while the basic inference rules in the Configurator are hand-tuned,
we have been successful in applying the threshold values extracted from the pro-
files discovered by QualProbes services. Without QualProbes, it has been very
difficult to specify appropriate membership functions to complete the definitions
for the ”fuel” of Configurator, let alone to put the Configurator in active service.
With QualProbes services enabled and QoS profiles generated, such tasks have
been straightforward. We feel that with QualProbes services, we are able to ”see
through” the internal behavior of the OmniTrack application. Such transparency
has provided us with unparalleled assistance in our understanding of OmniTrack,
as well as its control optimally. The following preliminary results are obtained
in two different experimental scenarios.

(1) An animated video sequence is streamed from the server to the client using
Motion-JPEG compression. The animated sequence is 320*240 pixel frame size
video sequence. Within this scenario, we illustrate basic adaptation possibilities
by adapting the image size. We measure the tracking precision and show that
the tracking precision remains stable with fluctuating bandwidth availability.

(2) Live video is streamed from the active server to the client in a omni-
directional setting. The content of the live video is captured by the digital cam-
era and an image grabber. We use 320*240 pixel frame size for the default initial
properties of the live video. Within this scenario, we illustrate both throughput-
related and CPU-related adaptation in action simultaneously, such as compres-
sion and dropping trackers. We finally measure the tracking precision and show
that it remains stable with fluctuating CPU availability.

4.3 Experimental Results

Scenario 1 In Figure 9, we illustrate basic adaptations by adapting the image
size on a Motion-JPEG compressed video stream. We show from the results that,
despite the fluctuating network bandwidth availability, the tracking precision
remains stable under the control of Agilos middleware.

Scenario 2 Figure 10 and Table 1 show the experimental results. With respect
to parameter-tuning adaptations, Figure 10(b) shows the result of Adaptors
and Tuners by changing image size during the fluctuation of network band-
width shown in Figure 10(a). With respect to reconfiguration alternatives, Fig-
ures 10(c), 10(d) and Table 1 show the Configurator in action. In this experiment,
Figure 10(c) shows the CPU load fluctuation, while Table 1 shows the control
actions generated by the Configurator at various time instants, and executed by
the application. Figure 10(d) shows the actually measured tracking precision.
The first tracker tracks a more important object, so if a drop tracker event
is signaled, later trackers should be dropped. We note that the tracking preci-
sion stays stable in a small range, which shows that the adaptation efforts are

QualProbes: Middleware QoS Profiling Services 269

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

throughput

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

"thru.txt"

(a) Throughput

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250 300 350

fr
am

e
si

ze
 (

B
yt

es
)

time (s)

frame size

(b) Image Size

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200 250 300 350

fr
am

e
ra

te
 (

nu
m

be
r/

s)

time (s)

frame rate

(c) Frame Rate

0

20

40

60

80

100

0 50 100 150 200 250 300 350

tr
ac

ki
ng

 p
re

ci
si

on

time (s)

tracking precision

(d) Tracking Precision

Fig. 9. Scenario 1

successful to lock the trackers on the objects, before they are dropped for more
important trackers.

5 Related Work

It has been widely recognized that many QoS-constrained distributed applica-
tions need to be adaptive in heterogeneous environments. Recent research work
on resource management mechanisms at the systems level expressed much inter-
ests in studying various kinds of adaptive capabilities. Particularly, in wireless
networking and mobile computing research, because of resource scarcity and
bursty channel errors in wireless links, QoS adaptations are necessary in many
occasions. For instance, in the work represented by [5][6], a series of adaptive
resource management mechanisms were proposed that applies to the unique char-
acteristics of a mobile environment, including the division of services into several
service classes, predictive advanced resource reservation, and the notion of cost-
effective adaptation by associating each adaptation action with a lost in network
revenue, which is minimized. As another example, Noble et al. in [7] investigated

270 Baochun Li and Klara Nahrstedt

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 50 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

Observed Throughput (Bytes/s)

(a) Throughput

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250 300 350 400

fr
am

e
si

ze
 (

by
te

s)

time (s)

Frame Size (Bytes)

(b) Chopped Image Size

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

C
P

U
 L

oa
d

time (seconds)

CPU Load

(c) CPU Load

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400

tr
ac

ki
ng

 p
re

ci
si

on

time (s)

#1
#2
#3

(d) Tracking Precision

Fig. 10. Scenario 2

in an application-aware adaptation scheme in the mobile environment. Similarly
to our work, this work was also built on a separation principle between adap-
tation algorithms controlled by the system and application-specific mechanisms
addressed by the application. The key idea was to balance and tradeoff between
performance and data fidelity.

Another related group of previous work studies the problem of dynamic re-
source allocations, often at the operating systems level. Noteworthy work are
presented in [8][9][10]. The work in [8] focuses on maximizing the overall system
utility functions, while keeping QoS received by each application within a feasible
range (e.g., above a minimum bound). In [9], the global resource management
system was proposed, which relies on middleware services as agents to assist
resource management and negotiations. In [10], the work focuses on a multi-
machine environment running a single complex application, and the objective
is to promptly adjust resource allocation to adapt to changes in application’s
resource needs, whenever there is a risk of failing to satisfy the application’s
timing constraints.

Recently, in addition to studies in the networking and resource management
levels, many active research efforts are also dedicated to various adaptive func-

QualProbes: Middleware QoS Profiling Services 271

Table 1. Control Actions produced by the Configurator (follow the time scale
in Figure 10(c))

Time (sec) Control Action from Configurator

28.22 uncompress

51.24 add tracker

67.37 compress

167.7 drop tracker

320.4 drop tracker

tionalities provided by middleware services. For example, [11] proposes real-
time extensions to CORBA which enables end-to-end QoS specification and en-
forcement. [1] proposes various extensions to standard CORBA components and
services, in order to support adaptation, delegation and renegotiation services
to shield QoS variations. The work applies particularly in the case of remote
method invocations to objects over a wide-area network. The work noted in [12]
builds a series of middleware-level agent based services, collectively referred to
as Dynamic QoS Resource Manager, that dynamically monitors system and ap-
plication states and switches execution levels within a computationally intensive
application. These switching capabilities maximize the user-specified benefits, or
promote fairness properties, depending on different algorithms implemented in
the middleware.

In contrast, our approach is both unique and orthogonal in the following as-
pects. First, in defining QualProbes services, we defined a novel layered model
for application-specific QoS parameters, for the purpose that the relationships
between such parameters and system resource usage can be probed and pro-
filed with ease. Second, our Agilos middleware is active, in the sense that rather
than attempting to transparently provide adaptive services, it actively controls
the applications themselves so that the applications, not the middleware com-
ponents, are the ones to adapt. Third, our work is orthogonal in the sense that
we leverage the advantages of any service enabling platforms, including both
standard CORBA services or those with customized ORBs. Fourth, we attempt
to develop mechanisms that are as generic as possible, applicable to applications
with various demands and behavior. Finally, we attempt to provide support
in the Agilos middleware with respect to multiple resources, notably CPU and
network bandwidth.

6 Conclusion

This paper has presented new mechanisms with respect to investigating the be-
havior of the application, for the purpose of generating best control actions for
the application to adapt itself to the environmental variations. A detailed anal-
ysis of QualProbes services is presented, including the application model, the

272 Baochun Li and Klara Nahrstedt

dependency tree model for application QoS parameters, and the QoS profiling
algorithm implemented in the QualProbes services kernel. The key contribution
of this paper is that we have provided a unique approach to ”see through” the be-
havior of the application, especially when environmental or requirement changes
may occur. In addition, we have presented some preliminary experimental results
with OmniTrack, a complex multimedia application that we have developed, in
order to verify that our approaches are effective in assisting the understanding of
the application, and generating the ”fuel” of the Configurator, a key component
in the Agilos architecture.

References

1. J. Zinky, D. Bakken, and R. Schantz, “Architectural Support for Quality of Service
for CORBA Objects,” Theory and Practice of Object Systems, 1997. 257, 271

2. B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, “A Flexible Middle-
ware for Multimedia Communication: Design, Implementation, and Experience,”
IEEE Journal on Selected Areas in Communications, vol. 17, no. 9, pp. 1580–1598,
September 1999. 257

3. B. Li and K. Nahrstedt, “Dynamic Reconfigurations for Complex Multimedia
Applications,” in Proceedings of IEEE International Conference on Multimedia
Computing and Systems, 1999. 259

4. G. Hager and K. Toyama, “The XVision System: A General-Purpose Substrate
for Portable Real-Time Vision Applications,” Computer Vision and Image Under-
standing, 1997. 267

5. S. Lu, K.-W. Lee, and V. Bharghavan, “Adaptive Service in Mobile Computing
Environments,” in Proceedings of 5th International Workshop on Quality of Service
’97 , May 1997. 269

6. V. Bharghavan, K.-W. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer, “The TIMELY
Adaptive Resource Management Architecture,” IEEE Personal Communications
Magazine, 8 1998. 269

7. B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker,
“Agile Application-Aware Adaptation for Mobility,” in Proceedings of the 16th
ACM Symposium on Operating Systems and Principles, Oct. 1997. 269

8. R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource Allocation
Model for QoS Management,” in Proceedings of 18th IEEE Real-Time System
Symposium, 1997. 270

9. J. Huang, Y. Wang, and F. Cao, “On developing distributed middleware services
for QoS- and criticality-based resource negotiation and adaptation,” Journal of
Real-Time Systems, Special Issue on Operating System and Services, 1998. 270

10. D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha, “On Adaptive Resource Alloca-
tion for Complex Real-Time Applications,” in Proceedings of 18th IEEE Real-Time
System Symposium, 1997. 270

11. D. Schmidt, D. Levine, and S. Mungee, “The Design and Performance of Real-Time
Object Requests,” Computer Communications Journal, 1997. 271

12. S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A Dynamic Quality of Service
Middleware Agent for Mediating Application Resource Usage,” in Proceedings of
19th IEEE Real-Time Systems Symposium, Dec. 1998, pp. 307–317. 271

Structuring QoS-Supporting Services

with Smart Proxies

Rainer Koster and Thorsten Kramp

Distributed Systems Group, Dept. of Computer Science
University of Kaiserslautern, P.O.Box 3049, 67653 Kaiserslautern, Germany

{koster,kramp}@informatik.uni-kl.de
http://www.uni-kl.de/AG-Nehmer/Projekte/Squirrel

Abstract. While middleware platforms have been established in best-
effort environments nowadays, support for QoS-sensitive services is still
found lacking. More specifically, due to the high diversity of QoS re-
quirements, the abstractions provided for QoS-unaware services cannot
be maintained and the developer has to face the difficulties of low-level
networking in heterogeneous environments again. In this paper, we there-
fore propose the notion of smart proxies as an effective means for making
the use of QoS-sensitive services for the client-application developer as
comfortable as the use of QoS-unaware services. This is achieved without
imposing restrictions on the internal mechanisms and protocols used by
an QoS-sensitive service to guarantee an agreed on level of QoS. Basi-
cally, smart proxies encapsulate service-specific code which is downloaded
dynamically to the client during binding establishment. The benefits of
this model are discussed in general and exemplified in a case study.

1 Introduction

Today’s middleware platforms such as CORBA [17], DCOM [2], and DCE [4] have
emerged as key components in heterogeneous environments with best-effort re-
quirements. For QoS-sensitive application domains, however, the abstractions
provided are still insufficient at best and prohibitively unsuitable at worst. In
general, middleware platforms allow developing client and server applications
independently of each other, with abstract interface specifications that are writ-
ten in a language-independent interface definition language (IDL) and represent
the link between client and server programmers. Aside from the interface spec-
ification neither the client programmer needs to know how the servers used by
his client are implemented nor the server programmer needs to know about the
internals of the clients that will access her server. Stubs, skeletons, and commu-
nications protocols in concert, directed by the middleware core, shield the client
programmer from the low-level details of heterogeneous networking. Moreover,
while performance issues, additional failure modes, and restricted parameter-
passing rules tell the client that a service might be remotely located, it remains
unaware of the exact location of the service.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 273–288, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

274 Rainer Koster and Thorsten Kramp

This model works well for best-effort application domains, yet applications
with more stringent QoS requirements are not adequately supported. In fact,
considering the vast diversity of QoS requirements imposed on middleware plat-
forms by, for example, next-generation multimedia applications or within mobile
environments (Fig. 1), it is highly unlikely that a single middleware platform will
meet all these requirements equally well— specifically since, besides traditional
remote invocations, time-constraint messages and continuous media streams are
becoming more important. The latter demand protocols with predictable latency
and strictly controlled jitter while the respective mechanisms necessarily vary
with the underlying network technologies. For example, with a QoS-supporting
network such as ATM, bandwidth reservations can be easily mapped onto native
network parameters, whereas a best-effort network requires a feedback mecha-
nism and buffering on top to effectively control the stream according to given
QoS constraints. Moreover, bandwidth limitations often enforce data compres-
sion with an appropriate codec whose choice also depends on the processing time
and buffer space available at the client and the server. Consequently, CORBA,
for instance, does not attempt to define a one-size-fits-all streaming protocol
but only prescribes generic control and management interfaces for streams [16].
Since QoS inherently is an end-to-end issue, this leaves it to both the client and
the server application-developers to implement the low-level protocols needed
which, of course, cannot be generated automatically from an IDL description.

In this paper, we therefore propose the use of smart proxies as a structuring
mechanism for QoS-sensitive services. Basically, any service-specific code needed
at the client side is encapsulated in a smart proxy, which replaces the traditional
stub and provides to the client the same high-level service-centred interface as if
its remote server would be co-located with the client. This high-level interface,
in turn, can be described in an IDL and may provide for high-level QoS negoti-
ation in terms of, for example, frame rate or resolution, leaving it to the smart
proxy and the server to map service-level parameters to corresponding resource
requirements and low-level mechanisms. Access to a QoS-supporting service then
becomes as easy for the client programmer as it is to a conventional service that
does not need particular QoS provisions.

As a consequence, all low-level service-specific development efforts are shifted
to the service developer, who implements both the server and its smart proxies
using whatever protocol functionality and communications patterns are appro-
priate. Transparently to the client, different implementations may be tailored
for particular environments. The service interface, however, is unaffected by the
internal implementation and remains constant, shielding the client from all low-
level technicalities. Of course, while the client so far can be implemented without
knowing what service implementations it will connect to, all eligible proxies still
must be available at the client side beforehand. We therefore propose that smart
proxies are loaded dynamically from the server during binding establishment.
The middleware platform downloads the smart proxy to the client machine and
dynamically links its code to the client application on demand; from then on,
the smart proxy handles the communication to its server.

Structuring QoS-Supporting Services with Smart Proxies 275

client server

node

process

shmclient server
smart

proxy

node

process process

client

node node

server
smart

proxy

High speed LAN

client

node node

JPEG

encoder
server

JPEG

decoder

smart

proxy

Low speed

connection

modem modem

client

node node

feedback

control
server

rate

monitor

smart

proxy
InternetInternet

Fig. 1. Various Communication Scenarios

The remainder of this paper is structured as follows. Section 2 introduces
the notion of smart proxies in more detail. Sections 3 and 4 then discuss the
effects of downloading smart proxies dynamically at run time and what support
is required from the middleware platform, respectively, followed, in Section 5, by
a case study. Related work is summarised in Section 6 before the paper closes
with conclusions and a brief outlook on future work in Section 7.

2 Smart Proxies

A smart proxy is service-specific code added to a client application. The client
communicates with the smart proxy—and, thus, indirectly with the remote
server— through a local interface as it would do with a co-located server, includ-
ing QoS negotiation where appropriate. Whether the server is actually located
within the client address space, on the client machine, or on a remote machine

276 Rainer Koster and Thorsten Kramp

client server

OS OS

network

node node

client server
smart

proxy

OS OS

network

node node

service interface local resource

network resource

Fig. 2. Service Abstractions

is transparent to the client (performance issues, additional failure modes, and
slightly restricted parameter passing rules aside).

For simple communication mechanisms, this functionality is identical to that
provided by stubs automatically generated from an IDL description, as employed
in CORBA or DCE, for instance. These stubs are limited to marshalling and
unmarshalling of parameters, and sending requests via the standard protocols
provided by their request broker. A smart proxy, in contrast, can also provide
arbitrary functionality such as compression and sophisticated service-specific
QoS management, although it must be developed specifically for each service
instead of being automatically generated.

Since there is no one-size-fits-all protocol for applications that require partic-
ular performance optimisations or QoS functionality, it is highly unlikely that a
single platform can satisfy all these requirements. In cases in which the platform’s
default protocol proves insufficient, client and server then need to communicate
directly, that is, the low-level protocol used by the service actually becomes the
service interface or at least part of it (Fig. 2). Hence, server implementations pro-
viding the same functionality but using different internal protocols essentially
become different services and require different client software. This problem can
be mitigated by supporting a set of protocols at both sides and choosing one in
both sets during connection establishment. The CORBA telecoms specification
relies on this approach for streaming by merely defining compatibility of stream
endpoints [16]. The client, however, still needs to know how the internal com-
munication works, what capabilities are provided by the server, and where the
server is located.

Structuring QoS-Supporting Services with Smart Proxies 277

Server 1

UDP

raw

local

socket

Server 2

shared

memory

feedback

controlled

UDP

JPEG

TCP

H.263
Server 3

real

video

Client 1

Client 2

Client 3

Fig. 3. Exemplified Smart Proxy Usage

By integrating and hiding complex communication mechanisms in smart
proxies, the level of abstraction as provided by middleware platforms for QoS-
unaware remote invocations can also be achieved for QoS-supporting services.
There may be a variety of specialised server implementations and servers may
provide different communication mechanisms for different connections (Fig. 3).
For instance, a server could use shared memory locally, a compression mecha-
nism and UDP across the Internet, or raw Ethernet on a dedicated LAN. In any
case, the corresponding smart proxy implements the client side of the commu-
nication link, while, from the point of view of the client application, offering the
same service-oriented high-level interface.

Note that the development of a smart proxy is not an additional effort. If
complex functionality is required at the client and the server to appropriately
handle a connection, this functionality unavoidably must be implemented manu-
ally and cannot be automatically generated from an abstract interface specifica-
tion. Without smart proxies, however, the client developer as well as the service
developer need to know the details of the communication protocol, whereas with
smart proxies, the low-level details are hidden from the client developer and only

278 Rainer Koster and Thorsten Kramp

the service developer, who is more likely to be familiar with low-level aspects
of the service anyway, implements the low-level communication with the addi-
tional benefit of having both ends of the connection under control. The latter is
particularly important for QoS control, which inherently is an end-to-end issue;
in this case, both sides of a client/server connection must tightly cooperate to
provide the negotiated level of QoS.

Consider, for instance, a video-streaming service. Its interface could include
some high-level QoS parameters such as frame rate and resolution. With smart
proxies the mapping of different QoS settings to low-level resource reservations
and communication protocols can be handled transparently for the client devel-
oper:

1. If the underlying system supports resource reservation, the smart proxy can
map these parameters to low-level resource requirements for the local node
and the network connection in terms of CPU capacity and network band-
width, for instance. Then, the smart proxy can obtain local resources and
negotiate a guaranteed QoS with the server. This QoS then is reported to
the client application, again in terms of high-level parameters such as frame
rate and resolution.

2. If only a best-effort transport protocol is available, sophisticated feedback
mechanisms are frequently used for QoS adaptation to guarantee an agreed
on level of QoS. Such feedback loops, however, can be employed internally
between the smart proxy and server without affecting the client application.

3. If the client and server happen to be in the same address space, no smart
proxy is needed at all and the client can directly negotiate with the server
what quality can be achieved with the resources available at this node. Sub-
stituting the server for the smart proxy again is transparent for the client
since both share the same high-level interface.

In each of these example scenarios, the actual QoS management is hidden from
the client application, whereas, without smart proxies, every client would need
to handle all these cases itself. As a consequence, each client developer usually
would have to implement the functionality for each connection type and server
implementation himself.

Furthermore, smart proxies can also be beneficial for improving other non-
functional aspects. They may, for instance, implement caching or prefetching
strategies, which require service-specific knowledge about access patterns and
appropriate consistency models.

Finally, service updates that affect communication protocols usually require
updates of the client software as well, even if the high-level service interface is
unaffected by the update. While a new service additionally can implement the
old protocol, the benefits of the new features cannot be utilised in backward
compatibility mode. Smart proxies, in contrast, are developed along with the
server, and simply need to be replaced when updating a service without affecting
the actual client application.

Structuring QoS-Supporting Services with Smart Proxies 279

3 Proxy Shipping

In general, smart proxies and clients can be shipped either statically or dynam-
ically. With the static approach, the smart proxy is somehow sent to the client
developer out of band (e. g., via email) and linked with the application. Hence,
all smart proxies that a client might need must be present before the service
is accessed. Netscape plug-ins [3], for instance, work in a similar way. While
this is a more systematic approach than integrating smart-proxy functionality
directly into the client software, it only partially realises the benefits of smart
proxies.

Dynamic proxy shipping, in contrast, is much more flexible. The most ap-
propriate server, and then the most appropriate smart proxy of this server can
be chosen and shipped to the client during binding establishment, taking the
current resource availability into account. Moreover, as long as the service inter-
face remains stable, server updates become completely transparent to the client:
the updated smart proxy is simply sent and communicates with the new server
version. At the client side, only smart proxies currently in use need to be present
at the client.

However, regardless how a smart proxy is shipped, in an heterogeneous en-
vironment it must be available in several versions. If a server has m different
types of smart proxies supporting different types of network connections, and n
types of client applications run on p platforms, the service developer effectively
must implement m×p smart proxies, where p is typically small. Note that there
is still a lot less effort than implementing the same functionality in n × m × p
client versions. Furthermore, since smart proxies are implemented by the service
developer, often only a recompile or minor modifications are needed for different
platforms. If the development is spread among the client developers, in contrast,
the same functionality generally would have to be re-invented and implemented
over and over again.

To implement dynamic loading of smart proxies, code must be shipped from
the server to the client. One way to allow this is using a virtual machine (such
as provided by Java) for running the smart proxies. In this case, proxies need
to be programmed only for the virtual machine, but not for each possible client
platform in an heterogeneous environment. Yet, since smart proxies are meant
to perform computationally intensive tasks such as decoding video frames and
dealing with real-time constraints, run-time efficiency and predictability are im-
portant issues. Although considerable effort is being spent on improving virtual
machines to this respect, the current state of the art is hardly satisfactory. Hence,
we have explored a different approach. Many systems allow dynamic linking of
shared libraries at run time. Then, smart proxies can be built as native-code
shared libraries that are sent over the network and are dynamically linked to the
client. While this mechanism requires a different smart proxy version for each
supported client platform, language heterogenity is achieved to a certain ex-
tent since many languages share the same object-code format (e. g., ELF shared
libraries [19]) and, thus, can be linked to libraries written in another language.

280 Rainer Koster and Thorsten Kramp

Code shipping in general, however, also causes serious security risks which
are far easier to control with a virtual machine that ‘sandboxes’ smart proxies
and, thus, protects the client process from malicious operations. With native-
code libraries the problem is much more difficult and requires future research.
For now, the problems may be mitigated by using only trusted servers and
signing smart proxies cryptographically, or restricting the use of smart proxies
to security domains such as a cluster of computers.

4 Platform Support

Smart proxies as a structuring mechanism can be used without any particular
support from an underlying middleware platform. Developing services as a com-
bination of a server and smart proxies first of all is a reasonable way of building
distributed services. The smart proxies define the interface to the service from a
client developer’s point of view and only need to be linked to clients that want
to use it.

For dynamic proxy shipping, in contrast, client and server at least must be
able to transmit the proxy at connection setup and link it to the client appli-
cation. With Java, the virtual machine handles downloading the byte code of
smart proxies and running it, whereas the use of shared libraries with a language
such as C or C++ is slightly more difficult. Since the function definitions are not
available at compile time of the client, functions of smart proxies must be called
via function pointers. The machinery required for these indirections, however,
can be generated automatically from the header file of a smart proxy for which
we have developed a tool. Apart from this, there needs to be a standardized
way of retrieving the smart proxy from the server. The client may open, for ex-
ample, a TCP/IP connection to the server and download the smart-proxy code
to a local disk prior to linking it to the application code using the operating
system’s default dynamic-linking facilities such as dlopen under Unix. We have
implemented this mechanism on Linux and extended dlopen to read the code
to be linked directly from the network rather than from a file.

However, the functionality required for dynamically downloading and link-
ing smart proxies should be integrated with a middleware platform to be readily
available. The middleware platform then is responsible for the handling of ser-
vice references and locating the respective servers as well as performing the
the actual shipping and linking of smart proxies. For choosing the best-suited
smart proxy for a given client, the middleware platform automatically would
report the client’s operating system, hardware platform, and network technol-
ogy to server, possibly complemented by status information such as the current
processing load. It may also be useful to establish smart-proxy repositories to
keep smart proxy and server implementations consistent. Finally, a middleware
platform could provide some security in loading proxies such as checking their
integrity.

To this end, we are currently investigating how smart proxy support can be
integrated with CORBA. The ability to access objects by value [15] provides some

Structuring QoS-Supporting Services with Smart Proxies 281

prerequisites for proxy shipping and allows the development of a CORBA service
for this task. For continuous-media transmission, smart proxies can be built along
the lines of the CORBA telecoms stream-management specification [16], which
provides services with the ability to exploit protocols not directly supported
by the ORB itself. To fully utilise the potential of smart proxies with respect
to QoS, however, the underlying operating environment including the operating
system, the networking subsystem, and the middleware platform must support
some resource management. The system should at least provide mechanisms for
smart proxies and servers to reserve elementary resources such as CPU cycles
and memory buffers on the respective node, and to specify connection properties
such as guaranteed bandwidth and maximum latency. In this context, we are cur-
rently developing an open low-level foundation for QoS-supporting middleware
in combination with appropriate operating-system-level support [6,7,8,9].

5 Case Study

To demonstrate the benefits of using smart proxies, we have implemented a
live-video service providing access to a camera and to be used by, for example,
video-conferencing and video-surveillance clients. With this example application
we can demonstrate the following important features of smart proxies:

� Different service implementations that use different communication mecha-
nisms can be accessed transparently by clients through a uniform interface.

� Different QoS management strategies can be encapsulated in proxies.
� Different client applications using the same service all can utilise the set of
protocols supported by the service’s smart proxies without re-implementing
endpoint functionality in each client.

Right now, we have not implemented the example on a middleware platform, but
have used the modified dlopen mentioned above to prove the general feasibility
of smart proxies.

The video server runs on x86 PCs with Linux 2.2 using a Hauppauge frame-
grabber card with a camera as the video source. Clients and smart proxies have
been implemented in C++, according to the following service interface:

class live_video {

public:

void start(int frame_rate);

void stop();

void get_frame(char* &frame, struct timeval &when);

void free_frame(char* frame);

int request(int frame_rate);

};

Calling the startmethod initiates the transmission of video frames with a given
frame rate, calling stop terminates the transmission. Frame data can be read by
calling get frame which blocks until a frame becomes available and also reports

282 Rainer Koster and Thorsten Kramp

the recording time of each frame returned. Finally, frames need to be freed with
free frame. The only QoS parameter controlled by this simple example is the
frame rate. A client can try to make a reservation for some level of QoS using the
requestmethod. The frame rate returned can then be guaranteed by the system
with a return value of 0 indicating that only best-effort access is supported.

5.1 Various Communication Mechanisms

We have implemented smart proxies and servers for four ways of communication.
A simple UDP transmission just sends the frames over the network. Since UDP is
unreliable and does not preserve order, packet losses and out-of-order delivery
must be handled correctly. A second proxy-server pair also uses UDP but em-
ploys JPEG compression to save network bandwidth at the expense of higher
computational load. The third version uses the BEAT protocol for local net-
works [6], which is reliable and provides some level of QoS guarantees discussed
in more detail below. Finally, proxy and server can efficiently communicate via
shared memory if client and server happen to be co-located on the same node.
Based on information submitted by the client, the server chooses the smart proxy
which most closely matches the client requirements and is compatible with the
processing time and network bandwidth available.

The various performance characteristics of the different communication pro-
tocols are illustrated in Fig. 4. Transmitting video frames over an idle 10Mbps
Ethernet peaks at 8.5 fps (frames per second) for raw images and 12.8 fps for
JPEG-encoded images, independently of the network protocol used. For a co-
located client/server pair, finally, shared memory reaches the expected frame
rate of 25 fps.

5.2 QoS Management

The BEAT protocol provides deterministic network access on an Ethernet and a
means for bandwidth reservation, which is used as a simple example forQoSman-
agement. When a client application requests a particular frame rate from its
service, a best-effort smart proxy (i. e., one that relies on UDP) would simply
return 0 to indicate that there are no guarantees available. With BEAT, in con-
trast, a smart proxy could map the high-level parameter ‘frame rate’ to the
low-level parameter ‘bandwidth’. This mapping can be done as part of the ser-
vice logic since the smart proxy knows the size of the frames used. Then, the
smart proxy tries to reserve this bandwidth with the transport protocol and
checks with the server what frame rate can be delivered from the video source.
Finally, the frame rate that can be guaranteed by server and network is reported
to the client, which is unaware of the required low-level resource reservation and
mechanisms used to guarantee the frame rate.

The advantage of using a resource-reservation protocol shows when transmit-
ting video frames in competition with a synthetically generated load of 4Mbps
(Fig 5). Plain UDP peaks at a frame rate of only 4.3 fps for raw images, whereas
BEAT still allows up to 6 fps for raw images and about 12 fps for JPEG encoded

Structuring QoS-Supporting Services with Smart Proxies 283

5 10 15 20 25

5

10

15

20

25

frame rate requested

frame

rate

delivered

UDP

BEAT

UDP with JPEG

UDP over 100 Mb/s

Shared mem

Fig. 4. Different Communication Protocols

ones. While JPEG encoding induces an additional computational load it allows
to submit a reasonable frame rate even if the available network bandwidth would
not allow an uncompressed transmission.

In a similar manner, reservations with RSVP or other protocols could be en-
capsulated. For this case study, we have also assumed that network bandwidth is
the only potentially scarce resource. More elaborate smart proxy/server combi-
nations would also control other resources on the client and the server side such
as processing time or buffer space, as well as additional QoS parameters such as
jitter and latency bounds.

Even if there is no support for reservations, smart proxies can improve QoS.
Advanced best-effort transport protocols for continuous media typically employ
some feedback mechanism to adjust the send rate of the server to the resources
actually available [1,18]. The client-side code required for these features again
can be provided by smart proxies without modifying the client.

5.3 Proxy Reuse for Several Clients

As one example for the versatility of our smart proxies, we have used the live-
video service twice in our teleconferencing clients. A local server shows the pic-
ture of the person running the client while a remote server shows the person he
or she is talking to. The client accesses both servers in the same way, relying on
the smart proxies to take care of finding the best way of transmitting the video
frames.

284 Rainer Koster and Thorsten Kramp

5 10 15 20 25

4

6

8

10

12

frame rate requested

frame

rate

delivered

UDP

BEAT

BEAT with JPEG

Fig. 5. Reservation with Smart Proxies

Furthermore, we have implemented a surveillance tool re-using the live-video
server and its smart proxies. This tool connects to a remote video service and
compares adjacent frames, raising an alarm when the picture changes. Regard-
less of what type of connection is best, the same service as for the teleconfer-
encing can be used. Without smart proxies, all client-side functionality for the
respective connection types would have been to be re-implemented. Even for this
rather rudimentary example this would have resulted in a considerable effort in
developing each client.

6 Related Work

The notion of smart proxies is most closely related to the work on fragmented
or distributed objects as proposed by Makpangou et al. [12] and, more recently,
within the Globe [20,21] and AspectIX [5] projects. The fundamental idea
is to allow objects to be physically distributed and to consist of fragments at
several nodes; distribution and communication between fragments are hidden
from other (client) objects.

Globe is a middleware platform that employs distributed objects to pro-
vide scalability to wide-area distributed applications such as replication and
caching for web documents. Middleware services are used to locate and down-
load fragments, through which the object is accessed. The AspectIX project, in
contrast, while also being based on distributed objects, is focussed on enhanced

Structuring QoS-Supporting Services with Smart Proxies 285

QoS support, extending CORBA by support for mobile and reconfigurable object
fragments.

Smart proxies can be seen as a particular way of using distributed objects and
represent a simpler and more elementary model. In contrast to the symmetric
model of fragments in a distributed object, however, smart proxies and servers
have distinct roles. This approach is more similar to the familiar client and
server model and, hence, may be more easily adopted by programmers than the
development of servers as distributed objects. In addition, less platform support
is needed. For instance, proxies do not have persistent state, are selected by the
server, and need not be located independently of the server. Moreover, while we
try to provide QoS support for applications such as continuous media streaming
services, Globe focusses on scalability. It is not obvious, for instance, whether
complex transmission mechanisms such as compression or feedback can easily be
integrated with Globe’s object fragments.

The QuO architecture [11,22] takes a different approach to hiding QoS man-
agement issues from the client application. Separately from the IDL defining
the functional interface of an object, QoS parameters and adaptive behaviour
are specified by QuO description languages. From these QDL so called delegates
are generated and linked to the client application in a similar way as stubs are
generated from the IDL. Hence, the delegates are basically a kind of statically
shipped smart proxies. Compared to our approach, on the one hand, the QuO
architecture and the automatic code generation facilitate integration of function-
ality such as resource reservation, QoS monitoring, and adaptation. On the other
hand, complex delegate functionality not provided by the platform can only be
added to the QDL as source code in the implementation languages of the clients,
when the service interface is designed.

Within a more narrow context, the concept of embedding service-specific code
within client applications has also been explored by Yoshikawa et al. with so-
called smart clients [24]. These smart clients were primarily used to implement
caching and prefetching as a means for increasing the scalability of Internet
services in terms of performance, load balancing, and fault tolerance. Of course,
these tasks can also be encapsulated in smart proxies.

Proxies are also an important concept in Sun’s Jini environment [13,23], in
which services are defined in terms of Java interfaces. To access a service, a
lookup service returns sort of a smart proxy to the client that communicates
with the server. Jini mainly uses this mechanism to allow devices and services
to be dynamically added to and removed from the system. Of course, it also
allows server and proxy to choose their own protocol for communicating with
each other. Since Jini is based on Java, it inherits the advantages of security,
ease of code shipping, and platform independence, as well as the drawbacks of
being restricted to one language and the potential performance penalties and
unpredictability of a virtual machine.

Furthermore, there are several ongoing efforts to develop QoS supporting
middleware platforms in general and to improve real-time and QoS properties
of CORBA in particular. Specifically related to QoS for continuous-media trans-

286 Rainer Koster and Thorsten Kramp

mission are implementations of the CORBA telecoms specification [16] such as
the audio/video streaming service built on top of TAO [14]. Work on config-
urable middleware platforms, finally, is related to our work since these platforms
open a wider range of infrastructural support to smart proxies. TAO’s pluggable
protocol framework [10] is only one example of ongoing efforts in this context.

7 Conclusions

In this paper we have introduced the notion of smart proxies as an effective means
for structuring QoS-sensitive services. The benefits of this approach are threefold.
Firstly, service-specific client code is separated from the client application-code
and encapsulated in self-contained modules. This leads to a clear separation of
functionality as a prerequisite for dynamically substituting modules that adhere
to the same high-level interface. Secondly, all low-level service-specific devel-
opment efforts are shifted to the service developer, while the client developer
merely interacts with a high-level interface in the same way as he does with
QoS-unaware services. As a consequence, instead of developing low-level client-
side functionality over and over again for each client application anew, with
smart proxies this functionality is only developed once by the service developer
who knows the internals of his service best anyway. Thirdly, dynamic shipping of
smart proxies allows for the seamless introduction of improved service function-
ality or completely new service implementations without requiring modifications
of the client applications. Only the functionality actually used must be available
at the client.

To demonstrate the viability of smart proxies, we have implemented a video
service that supports a small range of different communication protocols, namely
unreliable UDP with and without compression,BEAT with explicit resource reser-
vation, and shared memory for co-located client and servers. The video service is
used both in a video-conferencing tool and a video-surveillance tool which only
interact with the high-level interface of the video service. The use of smart proxies
for low-level networking significantly reduced the development of both services
and both services automatically would benefit from adding another smart proxy
implementing, for example, a feedback loop over UDP.

As part of our future work we will integrate smart proxies with CORBA,
making use of and possibly expanding on the recent objects-by-value specifica-
tion. Furthermore, support for smart proxies will be integrated with our own
QoS-supporting middleware under development [6,7,8,9].

Acknowledgements

We are indebted to Marcus Demker for implementing parts of the case study.
Moreover, we thank the anonymous reviewers for their helpful comments.

Structuring QoS-Supporting Services with Smart Proxies 287

References

1. S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. A distributed real-time
mpeg video audio player. In Proceedings of the Fifth International Workshop on
Network and Operating Systems Support for Digital Audio and Video, volume 1018
of Lecture Notes in Computer Science, pages 142–153. Springer Verlag, April 1995.
283

2. Microsoft Corp. Distributed Component Object Model Protocol, 1998. 273
3. Netscape Communications Corporation. Plug-in guide.

http://developer.netscape.com/docs/manuals/communicator/plugin/

index.htm, January 1998. 279
4. The Open Group. Introduction to OSF DCE 1.2.2 , November 1997. 273
5. F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckermeier. As-

pectIX, an aspect-oriented and CORBA-compliant ORB architecture. Technical
Report TR-I4-98-08, Friedrich-Alexander-University, Erlangen-Nürnberg, Septem-
ber 1988. 284

6. R. Koster. Design of a real-time communication service for local-area networks.
Diplom thesis, Department of Computer Science, University of Kaiserslautern, May
1998. 281, 282, 286

7. T. Kramp and G. Coulson. The design of a flexible communications framework
for next-generation middleware. Technical Report SFB 501 12/99 and MPG-99-25,
Dept. of Computer Science, University of Kaiserslautern, and Dept. of Computing,
Lancaster University, 1999. 281, 286

8. T. Kramp and R. Koster. A service-centred approach to QoS-supporting middle-
ware. Work-in-Progress Paper presented at Middleware ’98 (IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing),
September 1998. 281, 286

9. T. Kramp and R. Koster. Flexible event-based threading for QoS-supporting mid-
dleware. In Proceedings of the Second International Working Conference on Dis-
tributed Applications and Interoperable Systems (DAIS). IFIP, July 1999. 281,
286

10. F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Parsons. The design
and performance of a pluggable protocols framework for object request broker
middleware. In Proceedings of the sixth IFIP International Workshop on Protocols
for High-Speed Networks (PfHSN), August 1999. 286

11. J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. A. Karr, R. Vanegas, and
K. R. Anderson. QoS aspect languages and their runtime integration. In Proceed-
ings of the Fourth Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computers (LCR98), volume 1511 of Lecture Notes in Computer Science.
Springer Verlag, May 1998. 285

12. M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro. Fragmented objects
for distributed abstractions. In T. L. Casavant and M. Singhal, editors, Readings
in Distributed Computing Systems, pages 170–186. IEEE Computer Society Press,
July 1994. 284

13. Sun Microsystems. Jini architectural overview, 1999. Technical White Paper. 285
14. S. Mungee, N. Surendran, and D. C. Schmidt. The design and performance of a

CORBA audio/video streaming service. In HICSS-32 International Conference on
System Sciences, minitrack on Multimedia DBMS and WWW, January 1999. 286

15. OMG. CORBA objects by value.
http://www.omg.org/cgi-bin/doc?orbos/98-01-18, 1998. orbos/98-01-18. 280

288 Rainer Koster and Thorsten Kramp

16. OMG. CORBA telecoms specification. http://www.omg.org/corba/ctfull.html,
June 1998. formal/98-07-12. 274, 276, 281, 286

17. OMG. The Common Object Request Broker: Architecture and Specification (Re-
lease 2.2), February 1998. 273

18. L. A. Rowe and B. C. Smith. A continuous media player. In Proceedings of
the third International Workshop on Network and Operating Systems Support for
Digital Audio and Video, volume 712 of Lecture Notes in Computer Science, pages
376–386. Springer Verlag, November 1992. 283

19. SunSoft. SunOS 5.3 Linker and Libraries Manual, 1993. 279
20. M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A wide-area distributed

system. IEEE Concurrency, pages 70–78, January-March 1999. 284
21. M. van Steen, A. S. Tanenbaum, I. Kuz, and H. J. Sips. A scalable middleware so-

lution for advanced wide-area web services. In Proceedings of Middleware ’98 (IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing), pages 37–53. Springer Verlag, September 1998. 284

22. R. Vanegas, J. A. Zinky, J. P. Loyall, D. A. Karr, R. E. Schantz, and D. E. Bakken.
QuO’s runtime support for quality of service in distributed objects. In Proceedings
of the IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’98). Springer Verlag, September 1998. 285

23. J. Waldo. The Jini architecture for network-centered computing. Communications
of the ACM, 42(7):76–82, July 1999. 285

24. C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using
smart clients to build scalable services. In Proceedings of the USENIX 1997 Annual
Technical Conference, January 1997. 285

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 289-307, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Trading and Negotiating Stream Bindings

H. O. Rafaelsen1 and F. Eliassen2

1University of Tromsø
Dept of Computer Science, 9037 Tromsø, Norway

hansr@cs.uit.no
2University of Oslo, Dept of Informatics,

P.O.Box 1080, 0316 Oslo, Norway
frank@ifi.uit.no

Abstract. Distributed multimedia information systems require a range of different
interaction styles ranging from simple remote operation interaction to complex
patterns of interaction involving both discrete and continuous data. The standardized
reference model for Open Distributed Processing (ODP) defines a binding model
that encapsulates different interaction styles within explicit binding objects. In this
paper we discuss mechanisms for selecting and negotiating appropriate explicit
stream bindings as required by the application. We describe the notion of explicit
bindings and introduce the idea of using a trading-like facility for selecting potential
binding types. We show how an earlier proposed type model for stream interfaces
can be used as a basis for binding type selection, and extended to support automatic
negotiation of binding properties.

1 Introduction

The notion of stream interface has been proposed as the preferred means to convey
media streams in distributed multimedia systems [3]. A stream interface consists of a
collection of source and/or sink media flows. The act of stream binding establishes a
logical association between compatible stream interfaces for the purpose of
exchanging continuous flows as dictated by the type and direction of the flows. During
binding interfaces to be bound must be type-checked for compatibility. Informally,
type-checking means ensuring that the properties of each source flow are as expected
by the corresponding sink flow.

In the reference model for Open Distributed Processing (RM-ODP) stream bindings
are explicit. This supports direct client control of the binding during its lifetime.
Furthermore, bindings are first class objects and are created, managed and invoked in
the same way as other objects [1]. The result of the binding action is a control
interface through which the binding object can be controlled. In figure 1, the binding
model is illustrated where a binding object connects four interfaces by means of local
bindings that associate the interfaces of the objects with the interfaces of the binding
object.

290 H. O. Rafaelsen and F. Eliassen

Fig. 1. The explicit binding model

Depending on the type of the binding object, new interfaces can be added to the
binding, and existing ones can be removed. After a new (stream) interface has been
added to the binding, it can be locally bound to a suitable application (stream)
interface. Hence, for example, binding objects of the appropriate type can describe
dynamic groups in which membership can change during the lifetime of the binding.
The main rationale for explicit bindings is to support QoS management in terms of
QoS specification, monitoring and control [1]. For example, the binding control
interface of a stream binding can be used to control and monitor the QoS of ongoing
streams.

A binding type (or template) defines a particular class of binding objects by
identifying the type of interfaces which can participate in the binding, the roles they
play, and the way behaviour at the various binding interfaces are linked [9]. For
example, a multicast video binding would typically support a producer role and a
consumer role. In some cases the binding will support operations for adding interfaces
to a binding in a named role (e.g. a new multicast receiver), and for removing
interfaces from the binding (e.g. remove a multicast receiver from the binding).

Binding factories are objects that create bindings. In our model, a binding factory is
associated to a binding type such that by invoking the factory object’s create
method, a new binding of the associated type is created.

Through the local bindings the binding object receives and delivers information for
binding participants according to the causality and type of the bound interfaces. Type
checking as explained above, is applied when creating the binding and when adding a
new interface to the binding. When creating the binding, type information about the
application object interfaces to be initially bound and the corresponding roles they will
fulfill in the binding, is provided as parameters of the create method call.
Corresponding interfaces with the appropriate roles are as a result added to the
binding. If an application object interface α is offered to fulfil a role β, then the type
of α must be compatible with the type of β.

In this paper we present an approach for applications to select binding types and
associated binding factories according to their needs based on a trading model. In this

local binding
control interface

Binding object

Trading and Negotiating Stream Bindings 291

scheme a set of binding factories are located based on a specification of the required
properties of the binding. The located set of binding factories are all capable of
instantiating binding objects with properties conforming to those specified by the
trading client. Furthermore, in those cases where binding objects specify alternative
stream behaviour (e.g. alternative encodings, resolutions, or frame rates) at its
supported interfaces, we also show how the notion of policy specification supports
automatic negotiation to choose the actual stream interface behaviour to be used.

In general terms, a trading facility as indicated above, supports the reuse of binding
factories. More specifically, it will allow evolution of supported binding types in a
distributed computing environment without sacrificing support of existing
applications. This can be ensured by requiring that a new version of a binding type
must conform to the older version. Run time trading of binding types is also required
for multimedia databases. In this case the required properties of the binding to be used
to present a query result are generally not statically known, but rather depends on the
specifics of each query [18].

The remainder of the paper is organized as follows. In section 2, we offer an
overview of the model of bindings and streams that we base our work on. Following
that, in section 3 we present a trading model for selecting binding types from binding
type requirement specifications and introduces a simple middleware architecture
illustrating the application of a binding type trader. Section 4 presents our approach to
automatic negotiation of binding properties for those cases where binding objects
specify alternative behaviour at its supported interfaces. In section 5 we discuss some
related work while section 6 concludes with an outlook to further work.

2 Model of Bindings and Streams (MBS)

For the explicit binding and stream abstractions, we have developed a generic model
called MBS (Model of Bindings and Streams). MBS will constitute a part of the
foundation for the programming model of an adaptive multimedia ORB called
MULTE-ORB [15]. The engineering of MULTE-ORB is based on the flexible
protocol system Da CaPo [17]. MBS is based on a proposed generic type model for
stream flows and associated type checking rules earlier proposed in [6]. This model is
open-ended and can in principle support any set of flow parameters. It also includes
compatibility rules ensuring the correctness of binding attempts of flow endpoints, and
conformance rules expressing conditions for substitutability [7]. An implementation of
the flow type model and examples of its application are described in [8].

2.1 Flow Type Model

In the flow type model a flow type is specified by indicating the media type of the
flow such as audio or video, its causality (source or sink), and a set of quality
attributes such as rate and resolution. Furthermore, an attribute value is specified as a
set of "atomic" values. This will in general enhance the chances of successful binding.

292 H. O. Rafaelsen and F. Eliassen

For example when a sink flow type specifies a set of different names on the video
encoding attribute, it actually declares that it can accept flows where the video can
have any of the indicated formats.

The following example of an H.261 video flow type features optional playback
rates.

flow videoPhone {
video V {encoding:H.261, rate:2..24)};
audio A {encoding:PCM, rate:{8000,16000}};
constraint (V & A) | A };

This specification states that a VideoPhone flow consists of two different
element types labeled V and A respectively. Each element type includes a declaration
of the generic media type such as Video or Audio, and a specific set of attributes,
referred to as a media descriptor, specifying quality properties of the element type.
The expression (V & A) | A is referred to as the structural constraints of the flow
[8]. It specifies legal configurations of flow elements that may occur in an instance of
the flow. The above structural constraint indicates that an instance of a flow can
consist of video and audio elements, or audio elements only. Hence, we may think of
the specification as modeling an adaptable flow endpoint.

A flow type specification is interpreted as a set of potential flow qualities (QI) and
flow configurations (SI) that can be produced by a source flow endpoint or is
acceptable to a sink flow endpoint. This interpretation of a flow type allows us to
define a variety of flow type relationships based on set theory. The quality
interpretation of a flow type is defined as the combination of the interpretation I of
each of its element types (for further details see e.g. [6]).

Flow quality subtype relationship. A flow type M is a subtype of the flow type N
if both the quality and structural interpretation of M is a subset of the corresponding
interpretations of N. Suppose A, B and C, D are element types of flows M and N,
respectively. We derive that M = Flow[A;B] is a strict quality subtype of N =
Flow[C;D], denoted M <q N, if I(A) ⊆ I(C) and I(B) ⊆ I(D). On the other
hand, a relaxed quality subtype may support fewer element types than the super type
such that, for example, M = Flow[A] is a relaxed quality subtype of N =
Flow[B;C], denoted M <~q N, when I(A) ⊆ I(B).

Flow structure subtype relationship. A flow type M is a structural subtype of N
denoted M <s N, if SI(M) ⊆ SI(N). This means that the subtype supports a sub-set of
the configurations supported by the supertype. Suppose b & c is the structural
constraint of M and (a | b) & c is the structural constraint of N. The SI(M) =
{{b,c}} and SI(N) = {{a,c},{b,c}}. Clearly we have SI(M) ⊆ SI(N).

Flow quality compatibility relationship. Compatibility is determined by
computing the set of common flow qualities and configurations supported by the two
endpoints. Compatibility requires that this set is not empty. If the two endpoints can
support more than one common flow quality and flow configuration, a flow property
negotiation protocol may be employed to choose the actual flow quality to be used.
Our approach for type checking binding attempts is to require that the source and the
sink can at least support one common flow quality. This relationship we refer to as

Trading and Negotiating Stream Bindings 293

quality compatibility. Informally, two flow types are strict quality compatible (denoted
<>q) if there exist a bijection between their respective sets of element types such that
each pair in the bijection have non-empty set intersection of their respective
interpretations. We may for example conclude that Flow[A;B] <>q Flow[C;D]
if I(A) ∩ I(C) ≠ ∅ and I(B) ∩ I(D) ≠ ∅. Two flow types M and N are relaxed
flow quality compatible (denoted <~>q) if there exist a bijection between subsets of
their respective element types such that each pair in the bijection is compatible. Thus
if I(A) ∩ I(C) ≠ ∅, Flow[A;B] <~>q Flow[C;D] even if B and D are
incompatible, i.e. I(B) ∩ I(D) = ∅.

Flow structure compatibility relationship. Two flows of type M and N are
structural compatible, denoted M <>s N, if their structural interpretations have non-
empty intersection. This means that they support a least one common flow
configuration. Suppose (a | d) & c is the structural constraint of M and (a |
b) & c is the structural constraint of N. Then SI(M) = {{a,c},{d,c}} and
SI(N) = {{a,c},{b,c}}. Clearly we have SI(M) ∩ SI(N) ≠ ∅.

Different variants of the compatibility relationship where some variants are weaker
than others, are the following:
i) fully strict compatible, if M <>q N and M <s N .
ii) partially strict compatible, if M <>q N and M <>s N.
iii) fully relaxed compatible, if M <~>q N and M <s N .
iv) partially relaxed compatible, if M <~>q N and M <>s N

For example, fully strict compatible is a stronger relationship than partially strict
compatible in the sense that the former logically implies the latter. These different
kinds of compatibility can be used by applications to state their requirement to the
degree of matching that must be fulfilled when an application object interface is
locally bound to a corresponding interface provided by the binding object.

2.2 Stream Type Model

In [6] a stream interface is simply specified as a collection of flows. In MBS we
extend this specification by adding the notion of configuration constraint which is a
specification of alternative combinations of flows that may be configured in a stream
binding. For example, a stream interface modeling an access point to a video
conference provider, may exploit this feature to express the alternative audio and
video flow configurations and qualities that can be supported.

A stream configuration constraint is written as a structural constraint over flow
labels. The set of alternative configurations of flows of a stream interface is referred to
as its structural interpretation SI.

Stream compatibility relationship. Two stream interfaces S and T are
compatible, denoted S <> T, if S and T have a common configuration of flows and
there exist a bijection between the set of flows in these configurations of S and T such
that for each pair of flows in the bijection, the pair is compatible. The kind of
compatibility required we assume is specified by the application. Consider, for
example, the following stream interface type of a video conference binding type

294 H. O. Rafaelsen and F. Eliassen

stream videoConfProducer {
sink flow a {

audio a1 {encoding:PCMA,
rate:{8000,16000}};};

sink flow v {
v1: Video[encoding:H.261,

rate:(2..24)};};
constraint a|(a&v) }; //end stream

and the interface type audioTalk offered by a potential participant of the binding

stream audioTalk {
source flow a {

audio a1 {encoding:{PCMA,GSM},
rate: 8000 }; }; //end flow

constraint a }; //end stream

The absence of a flow configuration constraint means that all element types of the
flow are required. The above interface types are compatible because they have a
common configuration {{a}} where the label a refers the audio flow in both stream
interfaces, and the two audio flows are compatible. By closer inspection it can be seen
that the audio flow of audioTalk is fully strict compatible to the audio flow of
videoConfProducer.

Stream conformance relationship. The MBS conformance rules express
conditions for substitutability of stream interfaces. If the stream interface T conforms
to the stream interface S, then S may be replaced transparently by T. A stream
interface T conforms to a stream interface S if and only if SI(S) ⊆ SI(T) and for
each stream configuration of T that is also a stream configuration of S there exists a
bijection between the set of flows in the two configurations such that for each pair in
the bijection the flow of S is a subtype of the flow of T.

The kind of flow subtype relationship required is subject to application policy. For
example, when trading for binding types, the client of the trader must specify the
required relationship as a parameter to the look_up method of the trader.

The following example illustrates a case where a video source mpgSource is
upgraded to support additional playback rates, video encodings and audio, all
encapsulated in the stream interface mpg_mjpgSource such that
mpg_mjpgSource conforms to mpgSource.

stream mpgSource {
source flow mpgFlow {

video h {encoding:mpeg,rate:{20,25};}; };
constraint mpgFlow }; //end stream

stream mpg_mjpgSource {
source flow mpgFlow {

video h {encoding:mpeg,rate:{20,25,30};};};
source flow mjpgFlow {

video hj {encoding:mjpeg,rate:{20,25,30};};
audio au {encoding:{PCMA,GSM},rate:8000};};

constraint mpgFlow | mjpgFlow }; //end stream

The stream interface mpg_mjpgSource conforms to mpgSource because the
structural interpretation of mpgSource (which is{{mpgFlow}}) is a subset of the

Trading and Negotiating Stream Bindings 295

structural interpretation of mpg_mjpgSource (which is
{{mpgFlow},{mjpgFlow}}), and the video flow labeled mpgFlow in the stream
interface mpgSource is a (strict) flow subtype of the video flow labeled mpgFlow
in the stream interface mpg_mjpgSource.

2.3 Binding Types

Our approach for specifying binding types is similar to the RIVUS template language
[9], the main difference being that binding requirements are specified using the stream
flow type model referred to above.

A binding type is defined as a 5-tuple �Τ,Ρ,Μ,∆,Ε� where Τ denotes a set of role
types, Ρ a set of roles, Μ a set role matching requirements (one for each role), ∆ a set
of role causalities, and Ε a set of role cardinality requirements.

A role type τ is defined as a set of stream interface types, i.e. τ={T1,…,Tn}. A role
defines binding object roles and is specified as a role name and a role type, r: τ. For
example, a video conference binding type could define the roles talk and listen
where the role talk could be of the role type {videoConfProducer}.

Role matching requirements apply to local bindings and specify for each role of the
binding type the kind of type matching required when an interface is offered to fulfil
the role. The kind of matching that can be specified is either a subtype or a
compatibility relationship. Thus we model role matching requirements as a set of pairs
{<r1,m1>,…,<rn,mn>} where ri is a role name an mi is a match kind.

A binding type may support several instances of each role. Binding behaviour
defines causalities between instances of roles. We model role causality as a tuple
<C,r1,r2,m> where C specifies a causality option, r1 and r2 are roles, and m specifies
whether conversion between r1 and r2 is supported by the binding. Conversion is
supported if m=conv, otherwise m=no_conv. Conversion is required if the roles r1

and r2 have incompatible roles types. Conversion may be required in those cases
where alternative behaviour is specified at the corresponding interfaces (e.g.
alternative encodings) and the behaviour of r1 is allowed to be incompatible with the
behaviour of r2 as a result of local binding negotiation. For example, suppose the type
of r1 and r2 is both video, and the type video specifies a flow with the two
alternative encodings mpeg and mjpeg. If during local binding of r1 to an
application object interface a configuration with mpeg is negotiated, and during local
binding of r2 to another application object interface a configuration with mjpeg is
negotiated, then a conversion between mpeg and mjpeg is needed. This might, for
example, be realized as a suitable transcoder running within an active network.

As in [9] we define three options for how roles can be mapped together. Specifying
<ONE-ONE,r1,r2,m> means that the binding object creates a one to one mapping
between a single instance of role r1 and a single instance of role r2, while <ONE-
MANY,r1,r2,m> means that the binding object creates a one to many mapping
between a single instance of role r1 and all instances of role r2. Finally, <MANY-
MANY,r1,r2,m> means that the binding object creates a mapping between all
instances of role r1and r2.

296 H. O. Rafaelsen and F. Eliassen

Role cardinality is a specification of the number of instances of a particular role the
binding object can support [9]. It is modeled as a pair <r,i> where r is a role and i
is a range where the minimum value states the number of instances of the role that is
needed for the binding object to make sense, while the maximum states the largest
number of instances of the role the binding object is willing to support. An example is
the specification <talk,2..10>.

Example: The following is an example of a specification of a binding type
supporting audio/video conferencing. We will later refer to this specification by the
name AVConf. The specification defines two role types
AVConfProducer={AVTalk} and AVConfConsumer={AVListen} where

stream AVTalk = {
sink flow a {

audio a1 {encoding:{PCMA,GSM};
rate:{8000,16000};};};

sink flow v {
video v1 {encoding:H.261;

rate:(2..24);};
constraint a|(a&v) }; //end stream

stream AVListen {
source flow a {

audio a1 {encoding:{PCMA,GSM};
rate:{8000,16000};};};

source flow v {
video v1 {encoding:H.261;

constraint a|(a&v) }; //end stream

Note that the causalities of the flows are specified as they are provided by the
binding. This means that a source flow of an audio conference participant (a talker)
must locally bind to a corresponding sink flow offered by the binding (in this case to
the flows of AVTalk)

The binding roles of the specification are

gen : AVConfProducer
rcv : AVConfConsumer

The role matching requirements are
<gen,fully_strict_compatible>
<rcv,fully_strict_compatible>,

while the role causality requirement of the binding type offer is

<MANY-MANY,gen,rcv,conv>,

and the role cardinality requirements are <gen,2..20> and <rcv,2..20>.

3 Trading Binding Types

In this section we present a trading model for selecting binding types from binding
type requirement specifications. The trading model is based on the notion
conformance between binding types.

Trading and Negotiating Stream Bindings 297

3.1 Binding Type Conformance

An application selects a binding type by stating binding type requirements to a trader
that compares the requirements to binding type offers. A binding type requirement
specification is with one exception only, identical to a definition of a binding type as
outlined above, while a binding type offer is simply a binding type specification.
Selection is based on a conformance relationship between binding type requirements
and binding type offers. The result of the selection is the identification of a set of
binding factories that are all capable of instantiating binding objects with properties
conforming to those specified by the client. A conformance relationship for binding
types must be based on conformance of stream interfaces and notions of role
matching, role causality, and role cardinality satisfaction.

While a role matching requirement of a binding type offer is specified as a pair
<r,m>, the role matching requirement of a binding type requirement is specified as a
triple <r,m,σ> where σ indicates whether a stricter role matching requirement than
m is acceptable (σ=narrow) or not (σ=no_narrow). It is easy to show that strict
subtype logically implies (�) all other match kinds, relaxed subtype logically implies
fully and partially relaxed compatibility, full compatibility logically implies partial
compatibility, and strict compatibility logically implies relaxed compatibility. Thus,
<r, full_compatibility> satisfies <r, relaxed_compatibility,
narrow > .

Definition 1 (role matching satisfaction) A role matching requirement <r1, m1>
of a binding type offer, satisfies a role matching requirement <r2, m2, σ > of a
binding type requirement if and only if m1=m2, or σ = narrow and m1 � m2. ❏

Definition 2 (role causality satisfaction) A role causality <C,r1,r2,m> is
satisfied by a role causality <C’,s1,s2,n> if and only if C = C’, s1 conforms to
r1, s2 conforms to r2, and if m≠n, then n=conv. ❏

Definition 3 (role type conformance) A role type τ={T1,…,Tn} conforms to a
role type σ={S1,…,Sn} if and only if there exists a bijection β between τ and σ such
that for all (Ti,Sj) ∈ β, Ti conforms to Sj. ❏

Definition 4 (binding type conformance) A binding type offer ΒΒΒΒ1111 =
�Τ1111,Ρ1111,Μ1111,∆1111,Ε1111� conforms to a binding type requirement ΒΒΒΒ2222 = �Τ2222,Ρ2222,Μ2222,∆2222,Ε2222� if
and only if there exists a bijection β between the sets of role causalities ∆1 1 1 1 and ∆2 2 2 2 such
that for all (δ,ε) ∈ β with δ = <C1,r1,s1,m1> and ε = <C2,r2,s2,m2>, δ satisfies
ε, and the role cardinality requirements <r1,i1> and <s1,j1> in Ε1111 satisfies the
corresponding role cardinality requirements <r2,i2> and <s2,j2> in Ε2222 such that i2

⊆ i1 and j2 ⊆ j1, and the role matching requirements <r1,m1> and <s1,n1> in
Μ1111 satisfies the corresponding role matching requirements <r2,m2, σ2> and
<s2,n2,µ2> in Μ2222. ❏

The kind of binding type conformance described above may be characterized as
structural since conformance largely is determined by comparing the syntactic
structure of binding type specifications (although for flows, attribute values are also
compared). The analogy to this approach in the world of operational interfaces is
signature matching [20]. A drawback of pure signature matching is that we might get
false positives since semantics is not taken into account. This can be compensated in

298 H. O. Rafaelsen and F. Eliassen

the case of stream bindings by “standardizing” the names of generic element types and
their attributes. This is the approach taken, for example, by the Internet Engineering
Task Force on a real time transport protocol [23] in which profiles standardize sets of
attributes for certain media types and specific payload types such as audio and video
encodings, are assigned unique names by an appropriate Internet authority.

3.2 Example

The following is a simple specification of a binding type requirement for an audio
conference binding. We will later refer to this binding type by the name audioConf.
We define two role types audioConfProducer={audioTalk} and
audioConfConsumer= {audioListen} where

stream audioTalk {
sink flow a {

audio a1 {encoding:{PCMA};rate: 8000};};
constraint a }; //end stream

stream audioListen {
source flow a {

audio a1 {encoding:{PCMA};rate: 8000};};
constraint a }; //end stream

The corresponding binding roles are
talk : audioConfProducer
listen : audioConfConsumer

The role matching requirements are

<talk,partially_relaxed,narrow>
<listen,partially_relaxed,narrow>,

while the role causality required by the audio conference application is

<MANY-MANY,talk,listen,no_conv>,

and the role cardinality requirements are <talk,2..6> and <listen,2..6>.
Taken as a binding type offer, it is easy to show that the binding type specification

referred to as AVConf in section 2.3, satisfies the above binding type requirement
AudioConf according to definition 4. We basically need to show that the role
causality requirements of the binding type offer, <MANY-MANY,gen,rcv,conv>,
satisfies the role causality requirements of the binding type requirement, <MANY-
MANY,talk,listen,conv>, and that role cardinality and role matching
requirements of corresponding roles are satisfied.

3.3 Architecture of Trading Binding Types

Architecturally a binding trader can be considered as an object service of middleware
platforms. The basic idea is that developers of binding factories register their
implementations at the binding trader. The information that must be registered
includes a specification of the binding type offer together with information on how to
activate the corresponding binding factory.

Trading and Negotiating Stream Bindings 299

An application may interrogate the trader to inquire about binding factories that
may create bindings satisfying the requirements of the application. For example, a
multimedia database may automatically generate the specification of the binding type
requirement based on meta-data describing the result of the query and QoS
requirements of the corresponding database clients [18]. Parameters of the inquire
operation to the trader must include a specification of a binding type requirement.

The result of the inquire operation will typically be a reference to (the service
interface of) a binding factory that is capable of instantiating bindings with properties
conforming to the specified requirements. The application may now call the create
method of the binding factory. Parameters of the method call include specifications of
the interfaces to be bound, and the roles in which the interfaces are offered by the
application. Upon completing the execution of the method, the binding factory returns
a reference to the control interface of the binding.

3.4 Trader Implementation Issues

The main challenge of our approach is its computational complexity. Although a
full implementation of a binding trader has not been made yet, some earlier results
might indicate its complexity. In [8] is presented an algorithm that determines
compatibility and subtype relationships between flows. The algorithm has polynomial
complexity in the number of element types of a flow. On a Sun Ultra 2 workstation
running Solaris 2.5.1 the execution time is demonstrated to be in the order of 1 ms to
determine the presence of a flow type relationship for flow types with 5 element types
or less, while flow types with 30 element types require about 50 ms execution time. It
is expected, though, that flow types with more than 5 element types will not be very
common.

Determining binding type conformance means matching r × s binding roles for
“correspondence” where r and s are the number of different role types in each
binding type. For each pair of role types to be compared, m × n flow types need to be
compared for some flow type relationship where m and n are the number of flows in
each stream interface. In an attempt to estimate the required execution time on the Sun
Ultra for determining the presence of binding type conformance, suppose each binding
type is composed of 4 different role types, and each role type is composed of one
stream interface having 4 flow types. Then a rough estimate of the required execution
time is in the order of a few hundreds of ms.

The performance of the trader task of finding a first conforming binding type offer
now largely depends on the efficiency with which binding type offers likely to
conform to the requirements can be located in the trader’s database. This will narrow
down the set of candidates that will be considered in detail such that all members of
the set have a similar structure as the binding type requirement. In our future work we
will investigate whether this can be efficiently achieved through proper indexing based
on a classification of the most discriminating properties of stream bindings.

An alternative to comparing syntactic structure as part of the trader look_up
operation, is declared conformance. This is the approach taken by the ODP/CORBA

300 H. O. Rafaelsen and F. Eliassen

Trader [22] in which service type offers and corresponding interface types are
(manually) registered in a service type repository as unique names. The registration
also encompasses information about which already registered service types the new
service type conforms to. One advantage of this approach is the obvious reduced
computational complexity. However, disadvantages are that only pre-registered
conformance relationships can be detected by the trader, and that importers can only
refer to registered service type offers in the trader look_up method, i.e. all
applications have to know in advance the kind of stream bindings they potentially may
need.

In our future work we will therefore look for ways to combine the above two
approaches to trader implementations.

4 Negotiating Local Binding Behaviour

After having traded a binding type and corresponding binding factory (BF) as outlined
in section 3.2, the BF type checks each application interface and the corresponding
role of the binding type. The type checking is performed by computing the common
flow properties of each pair of corresponding flows in the two interfaces. The result is
a new interface specification representing the common behaviour supported by both
interfaces [8]. We refer to this interface as the intersection interface.

In those cases where the intersection interface specifies alternative behaviours, it
becomes necessary to choose the (initial) interface behaviour to be used for each local
binding. The intersection interface may specify alternative behaviours with respect to
stream interface configurations (see section 2.2), for each flow alternative flow
configurations (see section 2.1), and for each possible flow configuration alternative
quality behaviour (c.f. set valued attributes described in section 2.1).

If the selected binding type does not support conversion between causally related
interfaces, the negotiations at one local binding will be constrained by the alternative
behaviours that are possible at causally connected interfaces. Otherwise, it is a matter
of BF policy how the negotiation at causally related interfaces are mutually
constrained.

In the following we focus on the issue of negotiating individual flow quality
behaviour.

4.1 Policy Specification

In order to support automatic negotiation of flow quality behaviour, we extend the
flow type model of [6] with policy specifications that can be associated to each flow
of a stream interface. A policy specification effectively specifies an order on the
quality interpretation of a flow type. This ordering can be taken to represent user
priorities with respect to desirable properties of the flow. The ordering is used as a
basis for negotiation of the (initial) flow quality behaviour to be used for the local
binding.

Trading and Negotiating Stream Bindings 301

The alternative quality behaviours of a flow configuration is given by the set of
quality attribute values associated to the flow elements of the flow. Given a set of
attributes A1, .., An such that the value of Ai is a set of values {v1, .., vm}. The Cartesian
product Α1 × … × An gives the total set of possible behaviours of the flow with respect
to the properties A1, ... , An as a set of n-tuples. This we refer to as the interpretation of
A1, .., An . A policy specification specifies a priority order on this set of n-tuples.

For example, suppose after type checking two interfaces to be bound, the
intersection includes a flow having the following alternative behaviours with respect
to the attributes depth, framerate, and size:

depth {24,16,8};
framerate {30,25,20,15};
size {800x600,640x480,320x200};

A language for specifying policies of flow quality should allow the specification of
arbitrary orderings of the Cartesian product of depth, framerate and size. On
the other hand, such a language should not force a user to enumerate explicitly the
ordering of all possible combinations of attribute values. The Cartesian product of the
above attributes, for example, will give a total of 36 possible unordered (or arbitrary
ordered) combinations.

Hence such a language should allow the users to specify orderings in a simple, yet
expressive way. Our policy specification language is an attempt to achieve this. The
language specifies value ranges for attributes assuming that attribute domains are
totally ordered (either implicitly or explicitly specified). If no policy is specified for a
flow, a default ordering is assumed derived from the ordering of the attribute domains.
Otherwise the default ordering can be overridden with fine granularity, by specifying
short attribute ranges, or with coarser granularity by specifying larger attribute ranges.
In the extreme case a user could explicitly specify the complete ordering by
consistently applying value ranges of length 1.

In our first version of a flow policy language, a policy specification is given by a
list of selection statements. Each selection statement defines an ordered partition of
the interpretation of the attributes. The total ordering is then achieved by
concatenating each partition in the order given by the list of selection statements. A
typical policy specification will have a structure as shown below.

A11r11, A12r12,..., A1jr1j;
A21r21, A22r12,..., A2jr2j;
...
Ai1ri1, Ai2ri2,..., Aijrij;

Aij denotes an attribute name, while rij denotes an attribute value range. A range is
written as (v,w) where v and w are atomic attribute values. The position of the
same attribute name might vary from selection element to selection element in the list.

The ordering implied by each selection statement is obtained by looping through a
set of nested loops, where the left most attribute given corresponds to the outer most
loop, and the right most corresponds to the inner most loop. Thus, all attribute values

302 H. O. Rafaelsen and F. Eliassen

of Ai,j+1 will be used before starting to using “lower” values of Ai,j. The range (v,w)
for a given attribute, specifies the range of values to be used for this attribute in this
selection. For example, the selection statement

Depth(24, 16), size(800x600,800x600), framerate(25,20)

specifies that we first want to select qualities with depth between 24 and 16, size of
800x600 and framerate between 25 and 20. Since framerate is listed rightmost, the
selector will first try out combination with lower frame rates, before starting to reduce
the depth.

Example: Below we show an example of a policy specification and the
corresponding ordering of the interpretation of the flow attributes given above.

1: size(800x600, 640x480), depth(24, 16),
framerate(30, 20);

2: size(640x480, 320x200), framerate(30, 15),
depth(24, 16);

3: depth(16, 8), framerate([20, 15),
size(320x200, 320x200);

Gives,
depth framerate size

1: 24 30 800x600
24 25 800x600
24 20 800x600
16 30 800x600
16 25 800x600
16 20 800x600
24 30 640x480
24 25 640x480
24 20 640x480
16 30 640x480
16 25 640x480
16 20 640x480

2: 24 30 640x480
...

3:
...
8 15 320x200

4.2 Negotiation

In this section we consider policy specifications as a foundation for QoS. In general, a
variety of possible QoS negotiation protocols can be considered. In the MULTE-ORB
architecture, QoS negotiation protocols are embedded within binding factories. Thus
different BFs might support different negotiation protocols. In the following we
discuss policy specification in the context of a simple, hypothetical negotiation

Trading and Negotiating Stream Bindings 303

protocol. For the sake of the discussion, we do not pay any attention to the efficiency
of the protocol, but rather approach the issues in a principled manner. Possible
optimizations are addressed in section 4.3 below.

Our approach to QoS negotiation is to take the ordering of alternative flow QoS
behaviours implied by a policy specification as the users priorities in the negotiation.
In the example above, the user gives priority to 24 bits pr pixel, 30 frames pr second,
and a frame size of 800x600 pixels. The main principle of the QoS negotiation
protocol is first to suggest a QoS level corresponding to the users first priority of QoS.
If this can not be achieved, then the second priority of QoS is tried, and so on.

This simple protocol is sufficient for application scenarios where a single user
retrieves a stream form a server, e.g. a video on demand server. In this case alternative
QoS parameter configurations will be tried. Configurations might be rejected due to
lack of resources. Alternatives are tried until either one configuration achieves enough
resources to create the binding, or all the configurations fails. In the latter case, the
binding attempt fails.

In other situations, when there are multiple receivers, there has to be a negotiation
in order to agree on a common QoS parameter configuration (assuming no conversion
such as scaling or transcoding of flows is supported). Below we outline such a
negotiation protocol.

The negotiation protocol aims at finding a QoS parameter configuration that
satisfies all the participants of the binding. In general, the various binding participants
will specify different policies of flow QoS behaviour. Hence, in this case the goal of
the protocol should be to find a QoS parameter configuration that is a “best fit”
according to some metric. Again one might consider many different metrics for
balancing the QoS parameter configuration between conflicting requirements. In the
following we describe one possible metric that could be used as a basis for the
negotiation.

Given that the negotiation is to be over a set of QoS attributes A1, .., An , the
starting point for the negotiation is the interpretation of A1, .., An. Additionally, each
participant specifies its own ordering of this interpretation as a flow QoS policy. Each
QoS parameter configuration has a distance from the top of the list. A given QoS
parameter’s aggregated distance, is the sum of its distances from the top of the priority
list over all participants lists. One possible metric to determine the “best fit” QoS
parameter configuration, is to choose the configuration for which the aggregated
distance to the top of the priority list is the shortest for all participants. If some
configurations have the same aggregated distance, then the aggregated relative
distance from the top is computed for these configurations. Relative distance is
computed as a configuration’s distance from the top in percents. This relative distance
is used to find the inter distance between the configurations. The configuration with
the shortest inter distance is considered the best. This corresponds to those
configurations which have a relative height closest to each other. If there still are more
than one candidate, one of them can be selected at random.

Below we give an example of the negotiation protocol for two receivers. Suppose
user A and user B have the following flow QoS policies:

304 H. O. Rafaelsen and F. Eliassen

A B
depth rate size depth rate size
24 30 800x600 16 30 640x480
24 25 800x600 16 25 640x480
16 30 800x600 16 20 640x480
16 25 800x600 16 30 320x200
16 30 640x480 16 25 320x200
16 25 640x480 16 20 320x200
...

From the above priorities and a “best fit” metric as described above, we see that the
best configuration is (16,30,640x480), having an aggregated height of 6 while the
second best is (16,25,640x480), having an aggregated height of 8. Thus, a binding
supporting the quality (16,30,640x480) will be tried created first. If the BF is
unable to create this binding, due to lack of available resources, a binding supporting
(16,25,640x480) will then be tried created. This will continue until either the BF
is able to create the binding, or it fails to create any binding due to lack of resources.

4.3 Design Issues of Negotiation Protocol

The above approach to a QoS negotiation protocol for a single flow did not
consider efficiency. The protocol as it stands might result in several rounds of message
exchanges in order to find a QoS parameter configuration. The reason for this is the
way resources are handled. The protocol finds a possible candidate configuration, and
then tries to allocate resources to support the binding for each of the binding parties. If
there is insufficient resources at any of the participants, the binding attempt for this
configuration will fail, and a new attempt has to be made.

The scalability of the negotiation protocol can be measured by the complexity of
the algorithms and the number of messages which have to be sent. The number of
messages exchanged will depend on how fast a “best fit” can be found. For this
reason, it will be important to develop a negotiation protocol which takes the current
resource situation into account when creating priority lists. Thus, an optimization of
the above protocol would be to have participants reserve sufficient resources before
they announce their policies. This might lead to participants having to remove some of
their configurations, due to lack of resources, before they start the negotiation
protocol. We may refer to the resulting policy at a resource adapted policy (RAP).
The result of this requirement will be that once the participants find a configuration,
they will have enough resources to create the binding.

With this new approach, a two-party negotiation for a single flow requires a two-
way handshake. One participant announces its RAP, and the other participant
subsequently intersects its RAP with the received RAP and communicates back its
selected configuration provided the intersection was non-empty. For a multi-party
negotiation a three-way handshake is required. First the initiator has to ask participants
for their RAPs. Once the result of all participants have been collected, the initiator will
select the configuration that is the “best fit” for all of the participants, if such a

Trading and Negotiating Stream Bindings 305

configuration can be found. Then it will inform the participants of the selected
configuration, or it will inform that it failed to create the binding. Thus, using RAP
specifications, the protocol will scale linearly to the number of participants, with
regard to message exchanges. A challenge for further work will be to develop an
efficient algorithm to calculate RAP specifications. Since the calculation of RAPs is
done at each participant’s node, scalability will not depend on this algorithm.

The scalability of the protocol will also depend on the efficiency of the “best fit”
algorithm. Thus, it is important to design an algorithm that scales well with the
number of participants. We are currently in the process of designing such an
algorithm. The results of this work will be reported elsewhere.

5 Related Work

Stream interfaces have been adopted in the work on Open Distributed Processing [11],
TINA-DPE [12] and OMG [13]. Compatibility and subtyping rules for stream
interfaces, however, have been deemed outside the scope of the RM-ODP standard
[11]. In the work of TINA-C, the need for a compatibility relationship for stream
flows that is more relaxed than equivalence, is recognized, but no definition is offered
[12]. A recent proposal for audio/video support in CORBA [14], also introduces the
notion of flow end-point compatibility. QoS parameters beyond media encoding are
not considered.

Microsoft's ActiveMovie framework [10] also includes the notion of "compatibility
negotiation" between "pins" (connection points that carry flows between different
processing objects). The subject of this negotiation is data compatibility rather than
QoS. There is no support for distribution.

QML is a recent proposal for a QoS specification language [5]. The semantics of
QML is similar to our stream and flow type model, and from our judgement should be
capable of specifying quality properties of stream interfaces. Its applicability has been
demonstrated for operational interfaces only. This work does not consider automatic
support of QoS negotiation from QML specifications.

Other work that considers QoS specifications and/or negotiations includes [16], [2],
[4], [19] and [21]. However, the focus of our work is different. These works do not
provide anything corresponding to a type model of streams and bindings, including
type relationships such as subtype, compatibility and conformance, and the derivation
of automatic systems support such as QoS negotiation from high-level interface
specifications.

6 Conclusions and Future Work

In this paper we introduced a trading model for selecting appropriate explicit stream
bindings based on statements of binding type requirements provided by the
application. We showed how an earlier proposed type model for stream flows can be

306 H. O. Rafaelsen and F. Eliassen

extended to support binding type selection based on a notion of binding type
conformance. In this scheme a set of binding factories are located based on a
specification of the required properties of the binding. The located binding factories
are all capable of instantiating binding objects with properties conforming to those
specified by the client.

Furthermore, in those cases where binding objects specify alternative behaviour at
its supported interfaces, we also introduced the notion of policy specification
supporting automatic negotiation to choose the actual interface behaviour to be used at
each interface. Finally, we demonstrated the usefulness of a trading facility and policy
specifications as indicated above, through a number of examples.

In our future work we will address some of the limitations of the current model. In
particular this includes automatic negotiation of stream interface configurations and
flow configurations. Furthermore, the integration of resource management into the
binding framework is a matter of high priority. In our current work we assume the
availability of a resource manager that only supports simple reservation requests that
can either be accepted or rejected depending on the availability of resources. This
might force binding factories to make repeated reservation requests corresponding to
different QoS parameter configurations. When one request is rejected, the binding
factory will have to try again with a different QoS requirement. In future work we will
give binding factories the possibility to examine the resource situation through the
resource managers. Knowledge of available resources can be used by binding factories
to reason about which QoS parameter configurations can currently be supported before
making reservation requests.

References

1. Blair, G. S. et al. (1997) Adaptive Middleware for Mobile Multimedia
Applications. Network and Operating System Support for Digital Audio and Video
(NOSSDAV '97), St Louis, USA, 1997.

2. Campbell, T. (1996) A Quality of Service Architecture. PhD Thesis, Lancaster
University.

3. Coulson, G., Blair G. S., Stefani, J. B., , Horn, F., Hazard, L. (1992) Supporting
the Real-Time Requirements of Continuous Media in Open Distributed
Processing. Technical Report MPG-92-35, Lancaster University.

4. Dini, P., Hafid, A. (1997) Towards Automatic Trading of QoS Parameters in
Multimedia Distributed Applications, In proceedings of IEEE/IFIP
ICODP/ICDP Conference, Toronto, Canada, 166 – 179.

5. Frølund,, S., Koistinen, J (1998) Quality-of-Service Specification in Distributed
Object Systems, Distributed Systems Engineering Journal, Vol.5, No.4

6. Eliassen, F., Nicol, J. R. (1996) Supporting Interoperation of Continuous Media
Objects. Theory and Practice of Object Systems: special issue on Distributed
Object Management (ed. G. Mitchell), Vol.2, No.2, Wiley, 1996, 95-117.

Trading and Negotiating Stream Bindings 307

7. Eliassen, F. (1997) A Conformance Relationship for Stream Interfaces, 2nd Int’l
Conf on Formal Methods in Open Object-based Distributed Systems
(FMOODS’97), Canterbury July 21-23, Chapman & Hall.

8. Eliassen, F., Mehus, S. (1998) Type Checking Stream Flow Endpoints.
Middleware’98, The Lake District, England, 16-18 Sept, Chapman & Hall, 305 -
322.

9. Lindsey, D., Linington, P.F. (1995) RIVUS: A Stream Template Language for
Capturing Multimedia Requirements, Lecture Notes in Computer Science (LNCS
1052), Springer Verlag, pp. 259 – 277.

10. Microsoft (1996), Microsoft ActiveMovie: Software Development Kit, Beta
Release, June 1996.

11. ITU-T X.901 | ISO/IEC 10746-1 (1995) ODP Reference Model Part 1: Overview.
Draft International Standard.

12. TINA-C (1995) TINA Object-Definition Language, Version 1.3. TINA-C
Deliverable.

13. Object Management Group (1996) Control and Management of A/V Streams
Request for Proposal. OMG Document: telecom/96-08-01.

14. IONA Technologies, Plc, Lucent Technologies, Inc, Siemens-Nixdorf, AG (1997)
Control and Management of A/V Streams Request for Proposal. OMG RFP
Submission, OMG Document: telecom/97-05-07.

15. Kristensen, T., Plagemann, T. (1999) Extending the Object Request Broker
COOL with Flexible QoS Support, Technical Report UniK – Center for
Technology, University of Oslo.

16. Nahrstedt, K., Smith, J. M. (1995) The QoS Broker, IEEE Multimedia, 2(1),
pp. 53-67.

17. Plagemann, T. (1994), A Framework for Dynamic Protocol Configuration”,
Dissertation at Swiss Federal Institute of Technology, Computer Engineering and
Networks Laboratory, Zurich, Switzerland, Sept. 1994.

18. Plagemann, T., Eliassen, F., Goebel, V., Kristensen, T., Rafaelsen, H. O.
(1999), Adaptive QoS Aware Binding of Persistent Objects, in IEEE Proceedings
of International Symposium on Distributed Objects and Applications (DOA’99),
Edinburgh, Scotland.

19. Vogt C., Wolf, L. C., Herrtwitch, R. G., Wittig, H. (1998), HeiRAT - Quality of
Service management for distributed multimedia systems, Multimedia systems,
6(3), ACM/Springer, pp. 152-166.

20. Zaremski, A.M., Wing, J. M. (1995), Signature matching: a tool for using
software libraries, ACM Trans. Softw. Eng. Methodol., Vol.4, No.2, pp. 146-170.

21. Zinky, A., Bakken, D.E., Schantz, R.D. (1997), Architectural Support for Quality-
of-Service for CORBA Objects, Theory and Practice of Object Systems, Vol.3,
No.1, Wiley.

22. ISO/IEC 13235-1 (1998) Information technology - Open Distributed Processing -
Trading function: Specification.

23. Schulzrinne, H., Casner, R., Frederick, R., Jacobsen, V. (1996), RTP: A transport
protocol for real-time applications, IETF, rfc 1889.

Strategies for Integrating Messaging and

Distributed Object Transactions

Stefan Tai and Isabelle Rouvellou

IBM T.J. Watson Research Center, New York, USA
{stai,rouvello}@us.ibm.com

Abstract. Messaging, and distributed transactions, describe two impor-
tant models for building enterprise software systems. Distributed object
middleware aims to support both models by providing messaging and
transaction services. But while the concept of distributed object trans-
actions is well-understood, support for messaging in distributed object
environments is still in its early stages, and not nearly as readily per-
ceived. Integrating messaging into distributed object environments, and
in particular with distributed object transactions, describes a novel and
complex software design problem. This paper details this problem, pre-
senting first results from our project of developing a messaging and trans-
action integration facility. The first contribution of this paper is a com-
prehensive messaging classification framework, which defines messaging
concepts and terminology, and enables us to compare different messag-
ing architectures. Second, we analyze sample messaging middleware us-
ing this framework, and identify the architectural messaging styles that
they induce. Third, we derive four different strategies for integrating
messaging and distributed object transactions. We discuss each of these
integration strategies, and outline the open research issues that need to
be solved. Overall, this paper advances our understanding of the moti-
vation for, the problems of, the current state-of-the-art in, and future
models for integrating messaging and distributed object transactions.

1 Introduction

Messaging, and distributed transactions, are among the most demanded and
important models that distributed object middleware is required to support.

Transactions, as known from database systems and transaction processing
monitors [1] [5], guarantee that a set of operations transforms the shared state
of a system from one consistent state to another consistent state. Standards like
the CORBA Object Transaction Service OTS [13] address transaction process-
ing in distributed object environments, and with CORBA Object Transaction
Monitors [15], or component technologies like Enterprise Java Beans [11], the
middleware for building transactional distributed object systems is available to-
day. Distributed object transactions are considered essential for the development
of industrial-scale n-tier distributed object systems, where some server layers
manage a persistent store [16].

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 308–330, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Strategies for Integrating Messaging and Distributed Object Transactions 309

Distributed object messaging, on the other hand, is not nearly as well-
understood and readily perceived as distributed object transactions. There exists
no common notion of messaging, and support for messaging in distributed ob-
ject environments is more in its experimental, than adopted stage. In general,
messaging refers to the communication model of asynchronous, possibly multi-
cast message exchange for event notification, or request processing. In addition,
messaging refers to the system development paradigm associated with messag-
ing middleware like message queueing (MQ) systems [2] [8]. This paradigm is
based on the strong decoupling of clients and servers using message queues as in-
termediators. Messaging is considered beneficial to enhancing system reliability,
stability, and flexibility for system evolution [2].

Distributed object middleware that supports both distributed transaction
processing, and messaging, promises to allow for addressing a large problem
domain of software systems. Consequently, messaging service specifications, in-
cluding CORBA Messaging [14], or the Java Messaging Service (JMS) [17], have
recently been proposed. These messaging services are intended to be used in
addition to the existing and already employed distributed object transaction
services, and are different from existing event notification services like CORBA
Events [13], or CORBA Notification [13].

The emergence, respective availability, of distributed object messaging and
transaction services now inaugurates the question, and potential, of distributed
objects integrating messaging and transactions. While middleware services in
general attempt to mimic the Bauhaus principle of clear separation of function-
ality and concern to enable service integration, the integration of messaging and
distributed transactions describes a more fundamental, complex problem. We
need to better understand messaging and different models of messaging in order
to approach integration with distributed transactions, and we need to identify
the different objectives of integration, and how these objectives can be achieved
in an efficient way.

We have begun to design a new middleware facility for integrating messaging
and distributed transactions in a distributed object environment. We aim to inte-
grate two advanced distributed object messaging and transaction services, which
are currently being developed in two related projects. In this paper, we present
the results from our first step in this design process, exploring the problem of
integrating messaging and distributed transactions in detail.

The paper is structured as follows. In Section 2, we present a novel messag-
ing classification framework, which defines messaging concepts and terminology.
The framework establishes a common language to communicate about messag-
ing, and enables us to compare different messaging architectures. In Section
3, we analyze sample messaging middleware using this framework, identifying
the architectural messaging styles that they induce. Though we will eventually
focus on a particular middleware and service environment for our integration fa-
cility, the objective in our first step has been to study messaging across different
messaging middleware. In Section 4, we present four strategies for integrating
messaging and distributed object transactions. We discuss each of these inte-

310 Stefan Tai and Isabelle Rouvellou

gration strategies, and outline the open research issues that need to be solved.
Section 5 concludes with a summary of the work presented, and discusses our
plans for future work.

2 Messaging Classification Framework

This section presents the messaging classification framework that is central to
understanding and discussing different strategies for the integration of messaging
and distributed transactions.

The framework is organized around three models: message delivery model,
message processing model, and message failure model. The message delivery
model defines fundamental properties of message delivery. The message pro-
cessing model extends the delivery model with properties additional to message
processing. The message failure model defines properties of message failure, with
respect to message delivery or message processing.

Message Processing Model

Message Delivery Model

Message
Failure
Model

Fig. 1. Messaging Classification Framework

The framework is quite comprehensive, and deliberately addresses a variety of
messaging aspects. Each model defines a number of messaging properties, and for
each model property, we describe different possible values. Combinations of such
values characterize a messaging architecture. Not all combinations of property
values can be implemented using currently existing messaging middleware, and
some combinations may not be feasible at all.

The properties that we define in each model represent those aspects of mes-
saging that we find important to capture differences between messaging models
and understandings. We have experienced practitioners and researchers to refer
to messaging as “programs communicating by putting messages on queues”, as
“multicast event notification”, or as “processing requests asynchronously”. The
classification framework aims to establish a common language to better com-
municate about messaging. We selected the properties based on communication
with colleagues, including [9].

2.1 Message Delivery Model

The message delivery model defines the properties related to exchanging (sending
and receiving) messages between message producers and message consumers.

Strategies for Integrating Messaging and Distributed Object Transactions 311

Message delivery is not concerned with the processing of messages, i.e., the
effects resulting from message exchange. Message delivery essentially is about
event notification: ways to inform interested consumers about the occurence of
some state transition.

The message delivery model comprises the following properties:
Representation defines how a message is represented in the system. A mes-

sage may be represented as an object, or as a data element (possibly following a
standard message format of message header and message body). Messages that
are represented as either objects or data can be passed as parameters to opera-
tions for message exchange. In lieue, a message may have no representation as an
entity, but corresponds to an (asynchronous) operation invocation on an object
only.

Messaging API defines whether application-independent, or application-
specific operations (or, the combination of both) are used for messaging. An
application-independent messaging API describes generic operations for sending,
receiving, or administering messages. An application-specific messaging API, on
the other hand, is an interface of application functionality defined by the appli-
cation developer.

Message representation, and messaging API, are the two most fundamental
aspects that distinguish different messaging middleware.

Table 1. Message Delivery Model (1)

1. Representation 2. Messaging API

1. as object 1. application-independent
2. as data 2. application-specific
3. operation invocation 3. combination of 1. and 2.

The property of initiation defines who causes a message delivery to happen.
The delivery can either be initiated by a producer who sends a message (push),
or by a consumer who queries for a message (pull). Mixed initiation refers to the
case where the same message is both pushed and pulled by different consumers.
Pull and mixed initiation require that a message is represented as an entity.

Intermediation defines whether or not intermediators such as message
queues or channel objects are part of the message exchange. There may be
none, exactly one, or a set of intermediators involved for a single message de-
livery. Intermediators are used when messages are represented as own entities
in the system, and they are essential to realize a messaging model on top of a
synchronous object invocation model.

The multiplicity of ultimate recipients defines the number of the final
(not intermediate) consumers of a message sent. If there is only one such ultimate
recipient, the message delivery is unicast, or point-to-point. The message delivery

312 Stefan Tai and Isabelle Rouvellou

is multicast, if there are multiple ultimate recipients. Broadcast is a special case
of multicast delivery, where the message is sent to all consumers on the network.

The anonimity of ultimate recipients defines whether the final consumers
are all known, partly known, or all unknown to the message sender. The con-
sumers typically are known to the messaging middleware, or to an intermediator
that is part of the message exchange.

The property of subscription defines whether consumers have declared their
interest in receiving messages by subscribing according to some subscription
mechanism, or whether no subscription was necessary for message exchange.
Consumers may subscribe to intermediators, or to message producers directly.
Subscription commonly is required for push event notification, and may address
all messages that a producer or intermediator publishes, or only selected mes-
sages, for example based on message types.

Synchronicity defines the model of synchronization that is used for message
delivery between a sender and its direct consumers (intermediators, or ultimate
recipients, if no intermediator exists).

Messaging in general implements an asynchronous communication model be-
tween a message producer and its ultimate recipients. However, as illustrated
in Figure 2, this asynchronicity may be implemented using synchronous com-
munication via an intermediator. Alternatively, direct asynchronous calls (e.g.,
CORBA IDL oneways [12], or CORBA AMI and TII [14]) may be used.

synchronous call
O1 O2

asynchronous call
O1 O2

O1 O2
Queue

O1 O2Channel

Message as Object Message as Data Message as Invocation

communication

between O1 and

O2 is asynchronous

(O1 is not blocked

waiting for O2 to

respond)

O1 and O2 are

decoupled and

need not be

available at the

same time

(CORBA TII)

Fig. 2. Event Notification

The property of delivery guarantee defines the level of guarantee that is
assured for message delivery. The best-effort delivery semantics is the lowest
level of guarantee, and essentially describes no guarantee. With at-most-once,

Strategies for Integrating Messaging and Distributed Object Transactions 313

we refer to the semantics of basic delivery guarantee, and with exactly-once, to
the highest level of delivery guarantee. The exactly-once delivery guarantee may
be implicit (is transparently assured by the middleware), or may be explicit (is
visible in the form of acknowledgments to the sender).

Table 2. Message Delivery Model (2)

3. Initiation 4. Intermediation 5. Multiplicity 6. Anonimity

1. by producer 1. none 1. unicast 1. known set
2. by consumer 2. exactly one 2. multicast 2. unkown set
3. push and pull 3. multiple 3. broadcast 3. mixed

7. Subscription 8. Synchronicity 9. Delivery Guarantee

1. subscription 1. synchronous 1. best effort
2. no subscription 2. asynchronous 2. at-most-once
3. mixed 3. implicit/explicit exactly-once

4. either 2. or 3.

In addition, there are also the following properties of message delivery that
are typically associated with intermediation (“queue-management”):

Persistence defines whether a message is persistent, or transient. Persistent
messages are messages that are copied to a persistent store (of the intermediator),
in order for the messages to survive failures such as system crashes. Transient
messages, on the other hand, are kept temporarily, based on message birth and
expiry times.

The ordering property defines the sequence in which a message is delivered
w.r.t. other messages. Intermediators may implement a temporal-based ordering
(first-in-first-out (FIFO), or last-in-first-out (LIFO)), a random ordering, or a
priority-based message delivery. Message priorities may include, for example,
the specification of an allowed time window of start time and end time inside of
which the message must be delivered.

Filtering defines whether a message is subject to a selection mechanism
by intermediators in order to be further distributed to consumers. Filters may
be defined for all kinds of selection, for example based on message timestamps,
message size, or message content. We subsume these under filtering based on
message headers (message properties), and filtering based on message bodies
(message content).

Filters allow a single intermediator to handle various messages for a set of
consumers with different interests. Filtering typically involves a prior subscrip-
tion of consumers to the intermediator.

314 Stefan Tai and Isabelle Rouvellou

Table 3. Message Delivery Model (3)

10. Persistence 11. Ordering 12. Filtering

1. persistent 1. FIFO 1. none
2. transient 2. LIFO 2. header/type
3. either 1. or 2. 3. random 3. body/content

4. priority-based 4. 2. and 3.

2.2 Message Processing Model

The message processing model defines the properties related to communicat-
ing back the results that are consequences of a message delivery. Message pro-
cessing goes one step further than event notification, as it is essentially about
asynchronous request processing: ways to asynchronously request results from a
remote server.

There are two major roles that software components play for asynchronous
communication: the role of a client, i.e., a sender of a request message and a
consumer of a reply message, and the role of a processing server, i.e., an ultimate
consumer of the request message and a sender of the reply message.

The message processing model defines the properties that characterize a pro-
cessing result, and how the result is communicated from a processing server to
the requesting client. These properties are in addition to those captured in the
message delivery model.

Processing result defines whether the result of a message sent is a single
return value, a single integrated return value, or a set of individual return values.
The latter two address multicast or broadcast messages, where multiple recip-
ients process the same message, and multiple acknowledgments of processing
and/or processing results have to be communicated back. An intermediator is
needed in order to integrate multiple returns.

Communication defines how the client receives the processing result. The
client may receive a separate reply message to the request message, for which
a message correlation mechanism (for example, using message ids) to associate
the two messages as one request/reply message pair is needed. Two other, com-
mon patterns for returning processing results are the callback approach and the
polling approach. With the callback approach, the client passes a callback ob-
ject reference with the request, which in turn is invoked by the server when the
results are ready. With the polling approach, a poller object is returned by the
request, which the client can query for results.

In all three of these cases, the client can continue its processing independent
of the request sent, but still expects a result of processing to be communicated
back to him. Using the polling approach, the client may become blocked until a
response is available to the poller. This model is also referred to as the deferred
synchronous model.

Strategies for Integrating Messaging and Distributed Object Transactions 315

Table 4. Message Processing Model

13. Processing Results 14. Communication

1. single return value 1. separate reply message
2. single integrated return value 2. callback
3. set of individual return values 3. polling

request/reply
message pairO1 O2 / Intermediator

callback
O1 O2 / Intermediator

polling
O1 O2 / Intermediator

Intermediator

O2

O3integrated processing result /
set of individual results

Fig. 3. Asynchronous Request Processing

2.3 Message Failure Model

The message failure model defines the properties related to message failures. The
message failure model is of predominant importance for integrating messaging
and distributed transactions, as any failure of a message affects the acidity (“all-
or-nothing”) property of transactions. But what constitutes a message failure
(respective success), and how is the failure detected?

The failure level defines whether a message success is based on its suc-
cessful delivery only, or whether a message success is based on the successful
delivery and the successful processing of the message as well. For example, a
debit(account, value) message can be considered successful if the message is
successfully delivered, or, if the message is successfully delivered and the actual
debit for the specified account is successful, too.

With failure scope, we distinguish whether the success of a message is based
on a defined set of particular, ultimate recipients (for example, one specific recip-
ient, or a defined list of recipients), a defined number or range of any recipients
(for example, exactly one, at least one, or 2-5 recipients), or all ultimate recipi-
ents. The failure scope thus describes how the messaging property of multiplicity
relates to message failure definition.

The property of failure detection finally defines how a messaging failure is
discovered. Acknowledgments of message reception are necessary for the message
delivery failure level, and actual results of processing are necessary for the mes-
sage processing failure level. System and user-defined exceptions, a timeout for

316 Stefan Tai and Isabelle Rouvellou

the acknowledgments/replies that is specified and monitored, or the combination
of both may be used for failure detection.

Table 5. Message Failure Model

F1. Failure Level F2. Failure Scope F3. Failure Detection

1. delivery 1. particular recipients 1. exceptions
2. processing 2. number of any recipients 2. timeout of ack/reply

3. all recipients 3. combination of 1. and 2.

3 Sample Messaging Middleware and Architectures

In this section, we analyze selected examples of messaging middleware: CORBA
Messaging, CORBA Events and CORBA Notification, Java Messaging, and Mes-
sage Queueing (MQ) systems.

The purpose of this section is not to evaluate each middleware regarding its
strengths and weaknesses, but to identify the messaging architectural styles that
they induce, and the commonalities and differences that exist between the differ-
ent styles. The notion of an architectural style has been introduced in software
architecture research to describe the communication and cooperation, and com-
position and design rules that a set of software systems shares. A middleware
has an impact on the architecture of a system that is implemented on top of
it, and implicitly defines an architectural style, or sub-style. [3] discuss event-
notification styles as defined by event-based middleware. Our work focuses on
messaging middleware for use in distributed object environments, and uses our
more comprehensive classification framework for this purpose.

We aim to understand the different notions of messaging that are suggested
by these middleware. Therefore, we focus on the messaging programming models
that the technologies offer to developers, but we are not concerned with internal
details of messaging middleware realization. The messaging classification frame-
work introduced in the previous section allows us to describe each technology
very briefly, by repeatedly looking at the same common messaging properties as
defined in the framework.

3.1 CORBA Messaging

CORBA Messaging refers to the messaging style based on asynchronous method
invocations (AMI) as proposed with the OMG CORBA Messaging service [14].

A message corresponds to an application-specific AMI on an object, which
can either be a callback- or a poller-based request. Callback-based AMIs work
on behalf of ReplyHandler CORBA object references, and poller-based AMIs

Strategies for Integrating Messaging and Distributed Object Transactions 317

on Poller objects that are instances of a CORBA value type. AMIs introduce
a truly asynchronous invocation model in addition to the standard synchronous
CORBA invocation model1.

With CORBA Messaging, an application-specific, standard CORBA IDL
server interface is mapped to an AMI “implied-IDL” interface, a client-side view
of the interface containing either callback or poller-based operation signatures.
In this way, servers need not be modified to serve asynchronous requests. Each
message (AMI) is client-initiated (push-model), and no intermediator is used.
Thus, the current CORBA messaging model does not support multicast, but is
unicast, and targeted (the server is nonimous).

CORBA AMIs are asynchronous calls with at-most-once delivery semantics.
For target servers that are not active (or, activatable) at the time the request is
issued, CORBA Messaging introduces the notion of a time-independent invoca-
tion (TII) as a special kind of AMI. TIIs can outlive client and server process
lifetimes (can be persistent, and have exactly-once delivery semantics). For both
AMIs and TIIs, priorities can be specified, otherwise the message delivery is tem-
poral, based on the time that the request is issued (FIFO). There is no filtering
supported.

CORBA Messaging addresses message processing (not only event notifica-
tion), and results are single return values due to CORBA AMIs being unicast.
Results are communicated back to a client using the callback, or polling ap-
proach, alternatively. The failure level of messages is the processing level, and
the failure scope are particular servers. CORBA Messaging does not support
user-defined exceptions for AMIs, but message failure detection is based on sys-
tem exceptions and processing results only (messages returning no results are
successful if they return without an exception).

3.2 CORBA Events and Notification

CORBA Events and Notification refers to the messaging style based on the
CORBA Events service [13], and its successor, the CORBA Notification ser-
vice [13]. A variety of CORBA products currently support both services.

CORBA Events distinguishes generic (untyped), and typed event architec-
tures. In the untyped case, a message corresponds to data that is passed in the
form of the CORBA IDL type any. In the typed case, a message corresponds to
an operation invocation of an application-specific IDL interface. In both cases,
an application-independent messaging API is used, which defines standard in-
terfaces for either push- or pull-based consumers and suppliers. Any number of
event channels (being standard CORBA objects) may be used as intermediators
1 CORBA also defines two other models of asynchronous invocation: IDL oneway
operations, and deferred synchronous invocations. IDL oneways are, however, of
unreliable best-effort delivery semantics, and serve only for event notification, but not
for request processing returning results. CORBA deferred synchronous invocations,
on the other hand, are only available with the CORBA dynamic invocation interface
DII, which is a very complex, and thus less practical model.

318 Stefan Tai and Isabelle Rouvellou

for event notification, and a standard subscription mechanism for consumers
and suppliers is defined. Using channels, multicast message distribution based
on subscription is supported. All communication partners are known to the in-
termediator, but suppliers and consumers are anonymous to each other.

Asynchronicity is obtained using synchronous calls via an intermediator. If no
intermediator is used, the communication is synchronous. With typed events, the
application-specific interfaces contain standard synchronous CORBA operations,
which in addition must not have any return values and out/inout-parameters.
The delivery guarantee is at-most-once (standard CORBA). Messages may be
persistent in the untyped case, if the intermediator (the service implementa-
tion) used supports persistence as a feature. The message delivery order is un-
defined for CORBA Events, but CORBA Notification supports per-consumer
priority-specified message ordering. Message filtering, both header (type)-based,
or content-based, is supported as well with CORBA Notification, but not with
CORBA Events.

CORBA Events and Notification address event notification, but not message
processing. Messages are parameters to standard CORBA requests, and results
of message processing would need to be communicated back as parameters of
separate reply requests. However, this is outside the scope of the services.

Figure 4 illustrates examples of channel-based messaging using the CORBA
Events or Notification service.

O4

O2

O3Channel

push

pull

Output Channel
with Objects

Input Channel
with Objects

O1 O1 O2

Fig. 4. Channel-based Messaging

3.3 Java Messaging

Java Messaging refers to the messaging style based on the Java Messaging Ser-
vice (JMS) [17]. JMS addresses the integration of message-oriented middleware
(MOM) to support messaging in Java object systems.

A message is an object of one of five JMS message types (BytesMessage,
TextMessage, MapMessage, StreamMessage, or ObjectMessage), which are all
specializations of the general JMS Message type, defining common message

Strategies for Integrating Messaging and Distributed Object Transactions 319

header fields, properties, and operations. The JMS messaging API is application-
independent, and comprises a set of interfaces for point-to-point (PTP) mes-
saging, and for publish/subscribe messaging. PTP is the model of sending a
message to a Queue object as an intermediator. A Queue encapsulates a specific,
single MOM message queue in order to integrate MOM-based applications. Pub-
lish/subscribe is the model of sending a message to a Topic object. A Topic is
an object in a content-based hierarchy, and serves as an intermediator to which
interested Java consumers can subscribe to. Queue objects and Topic objects
are specializations of the JMS Destination type.

Both models support multicast communication (to either MOM-based con-
sumers, or Java consumers), with the set of consumers being anonymous to the
message producer. A subscription mechanisms exists for the publish/subscribe
model. Asynchronicity is achieved using synchronous calls to Destination ob-
jects. Messages can be declared to be persistent, or transient. Persistent messages
are guaranteed to be delivered exactly-once, whereas delivery for non-persistent
messages is at-most-once. Messages are delivered in the order they were sent
(FIFO), however, message priorities can be specified. In addition, consumers
may select messages from intermediators.

JMS describes a message processing model, where results of message pro-
cessing are communicated back as separate reply messages (messages carry ids
and can be correlated). The failure level of messages is the processing level, and
the failure scope are specific servers. The combination of exceptions, processing
results, and/or timeouts can be used for message failure detection.

3.4 MQ Messaging

MQ Messaging refers to the messaging style as suggested by message queueing
(MQ) systems [2] [7].

A message corresponds to data that is structured according to a standard
format of message header and message body. Messages are exchanged using
(multiple, input and output) message queues as intermediators. On each pro-
cessor in the network, a queue manager exists, and clients and servers use an
application-independent message queue interface for exchanging messages, i.e.,
to put messages on queues (push), or to read messages from queues (pull). Target
queues must be specified, but ultimate message consumers (unicast, or multicast)
are anonymous to the sender. There is no subscription mechanism to queues, as
clients and servers always decide themselves when and if to take a message from
a queue2.

Asynchronicity is realized using synchronous calls to queues. Message delivery
is guaranteed to be exactly-once, when messages are declared to be persistent.
Delivery is FIFO, or priority-specified, and message selection is the responsibility
of the program reading from the queue.
2 The exception are MQ trigger queues, which notify an application about the arrival
of a message in a queue. The message itself is, however, not automatically pushed
by the queue to the application, but must be read by the application itself.

320 Stefan Tai and Isabelle Rouvellou

MQ Messaging addresses event notification, but also message processing us-
ing separate reply messages with correlated ids. If the request/reply message
model is selected, the message failure level is the processing level. Message fail-
ures are detected by queue managers and applications using exceptions and
timeouts. Figure 5 illustrates a common queue-based messaging architecture.

O1

OutputQueue
with Data

InputQueue
with Data

O2

InputQueue
with Data

OutputQueue
with Data

Fig. 5. Queue-based Messaging

3.5 Comparison

CORBA Messaging is the only messaging middleware that introduces an asyn-
chronous invocation model for distributed objects. All other middleware repre-
sent messages as objects or data that is send as parameters of requests, and
asynchronicity is achieved using synchronous communication via intermediators
and an application-independent messaging API. Message initiation is commonly
push and pull, but CORBA Events is the only model where messages can also
be pushed by intermediators. With all middleware except CORBA Messaging,
multicast (as well as unicast), and anonimity of ultimate recipients is supported.
Subscription models vary. Exactly-once message delivery guarantees are pro-
vided with persistent messages only, the at-most-once semantics is the common
case otherwise. Standard message ordering is FIFO (time the request is issued),
or priority-specified. Filtering by intermediators is only supported with CORBA
Notification. JMS and MQ provide, however, message selection features for ap-
plications connecting to an intermediator. None of the middleware provides a
feature to return a single, integrated processing result of a multicast message,
but results of a multicast message are returned as a set of individual reply
messages. All models except CORBA Events/Notification address message pro-
cessing, and not only event notification. The message failure level thus is the
processing level in these cases. The failure scope is in any case a defined set of
particular servers (or, intermediators) only (typically a single server). Failure
detection commonly is the combination of exceptions, processing results, and/or
timeouts.

Strategies for Integrating Messaging and Distributed Object Transactions 321

Table 6. Messaging Comparison Table

Middleware 1. Representation 2. Messaging API

CORBA Messaging 3. invocation 2. specific
CORBA Events untyped 2. data 1. independent
CORBA Events typed 3. invocation 3. combination
CORBA Notification 2. data 1. independent
JMS Messaging 1. object 1. independent
MQ Messaging 2. data 1. independent

3. Initiation 4. Intermediation 5. Multiplicity 6. Anonimity

1. by producer 1. none 1. unicast 1. known set
3. push and pull 3. multiple 3. both 2. unknown set
3. push and pull 3. multiple 3. both 2. unknown set
3. push and pull 3. multiple 3. both 2. unknown set
3. push and pull 3. multiple 3. both 3. mixed
3. push and pull 3. multiple 3. both 2. unknown set

7. Subscription 8. Synchronicity 9. Delivery Guarantee 10. Persistence

2. no subscription 2. asynchronous 4. either 2. or 3. 3. either 1. or 2.
1. subscription 1. synchronous 2. at-most-once 2. transient (*)
1. subscription 1. synchronous 2. at-most-once 2. transient (*)
1. subscription 1. synchronous 2. either 2. or 3. 3. either 1. or 2.
3. mixed 1. synchronous 4. either 2. or 3. 3. either 1. or 2.
2. no subscription 1. synchronous 4. either 2. or 3. 3. either 1. or 2.

11. Ordering 12. Filtering 13. Proc. Results 14. Communication

1. FIFO/4. priority 1. none 1. single value 2. callback/3. polling
undefined 1. none n/a n/a
undefined 1. none n/a n/a
any/4. priority 4. 2. and 3. n/a n/a
1. FIFO/4. priority 2. header/type 3. set of values 1. separate message
1. FIFO/4. priority 2. header/type 3. set of values 1. separate message

F1. Failure Level F2. Failure Scope F3. Failure Detection

2. processing 1. particular 3. combination
1. delivery n/a n/a
1. delivery n/a n/a
1. delivery n/a n/a
2. processing 1. particular 3. combination
2. processing 1. particular 3. combination

(*) Persistence may be supported by service implementations

322 Stefan Tai and Isabelle Rouvellou

4 Integration Strategies

There is no single approach to integrating messaging and distributed transac-
tions, due to different integration objectives, and the variety of the messaging
models existing. In the following, we present four integration strategies, which
all follow a distinct flavor of messaging set in the context of distributed object
transactions. The strategies include a discussion of the initial integration models
that are currently proposed by the JMS and CORBA Messaging.

The distributed transaction model that we use as a basis here is the two-phase
commit transaction model as proposed, for instance, by the CORBA OTS, the
transaction standard for distributed objects [13], and as specified by the X/Open
XA distributed transaction processing model [18]. The OTS is a common and
well-accepted transaction model, used by many modern middleware like CORBA
OTMs, and the Java transaction service JTS, the Java mapping of the OTS.

4.1 MQ-Integrating Transactions

The first strategy is called MQ-Integrating Transactions. This integration strat-
egy is the only one of the four strategies that is readily supported with current
messaging and distributed object transaction middleware.

Intent. The intent is to integrate message queues of common MQ-systems as
resource managers into the distributed object transaction. The distributed ob-
ject system can in this way make use and incorporate the quality-of-services that
are associated with message queues and MQ-systems.

Concept. MQ-integrating transactions integrate messaging in the sense that
messages are transactional data that are managed by persistent message queues
acting as resource managers. Data get() and put() calls on queues are made
within a transaction scope. The following simple example illustrates this.

try {
tx.begin();
{

data = inputQueue.getData();
result = distributedObject.process(data);
outputQueue.putData(result);

}
tx.commit();

} catch (Exception e)
{

tx.rollback();
}

Strategies for Integrating Messaging and Distributed Object Transactions 323

The transactional semantics here is that the dequeuing of the data from
the input queue, the processing of the data by the distributed object, and the
enqueuing of the data in the output queue, are executed as one atomic action.

Integrating message queues as resource managers basically compares to in-
tegrating a server that uses an XA-based database resource manager. Note that
all put- and get-calls on the queues are local calls, and not remote. With MQ-
integrating transactions, distributed message exchange is not part of the trans-
action. The transaction begins after a message has arrived in a local input queue,
and the transaction commits when data is written to a local output queue.

O1

O2local InputQueue

O3local OutputQueue

Fig. 6. MQ-Integrating Transactions

Implementation All major MQ-systems support the X/Open XA interface,
which allows a message queue to be easily integrated as a resource manager into
an OTS-like transaction.

4.2 Message Delivery Transactions

Message Delivery Transactions refers to the approach of integrating a message
delivery model into distributed object transactions.

Intent. The intent is to enable event notification between remote communi-
cation partners: a message is send from a client to one or multiple distributed
servers within the scope of a transaction, and among other, synchronous trans-
actional requests (to the same or different servers). The ACID properties of the
transaction must still be guaranteed, i.e., failure of message delivery must cause
the transaction to abort, and if the transaction fails for some reason after a
message has been sent out, a compensation strategy is needed to back out all
messages sent.

A typical scenario and use of message delivery transactions is illustrated in
Figure 7. The transactional client begins the transaction, sends out a message
m1 to a defined set of direct consumers, does some distributed transaction pro-
cessing, and sends out another message m2 to the same (or, a different) set of

324 Stefan Tai and Isabelle Rouvellou

consumers. If this transaction were to be implemented as a non-messaging, stan-
dard OTS-transaction, each message must be mapped to a number of individual,
synchronous, and blocking calls, leading to a more complex and time-consuming
transaction.

The main purpose and benefit of message delivery transactions is the ability
to send messages during the course of the transaction. Asynchronous event no-
tification is particularly useful for long-running transactions. Message delivery
transactions allow a client to begin or continue distributed transaction processing
without being blocked when sending notification messages.

O1 O2 O3 O4 O5 O1 O2 O3 O4 O5

m1

m2

m2

m1

m2

m2

m1

m1

t

Message Delivery Transaction Standard OTS Transaction

tx server objectstx client

set of message recipients

tx server objectstx client

set of message recipients

Fig. 7. Message Delivery Transactions Example

Concept. Message delivery transactions extend the standard transaction model
in that

1. messages can be send in addition to synchronous object invocations, at any
point in the transaction,

2. message delivery success is observed, and delivery failure can cause a trans-
action to abort, and

3. messages that are sent prior to a transaction failure are compensated.

Messages become part of the atomic sphere, the set of operations that make
up the transaction. Compensation can be achieved by dequeing an original mes-
sage from the intermediators that the message was sent to, if the message has

Strategies for Integrating Messaging and Distributed Object Transactions 325

not been read by consumers from the intermediators at the point of transac-
tion rollback. Otherwise, a separate message to undo the effects of the original
message is sent out to the same consumers, which requires the definition of a
compensation sphere, the set of compensating operations that are part of the
transaction [10].

Table 7 describes the messaging model for message delivery transactions.

Table 7. Messaging Model for Message Delivery Transactions

1. Representation any
2. Messaging API any
3. Initiation push-model: the message delivery is caused by the

transactional client as the message producer
(the pull-model is not desired, as this would require
the transactional client to wait for a message pull and
impact the transaction control flow)

4. Intermediators any
5. Multiplicity any
6. Anonimity any
7. Subscription any, if subscription is with intermediators

(subscription to the transactional client itself does not
affect the transaction)

8. Synchronicity any
9. Delivery Guarantee exactly-once semantics
10. Persistence persistent (exactly-once delivery guarantee)
11. Ordering any
12. Filtering any
13. Processing Results n/a
14. Communication n/a
F1. Failure Level delivery
F2. Failure Scope any
F3. Failure Detection combined model of exceptions and timeouts

for delivery acknowledgments

Implementation. Message delivery transactions are not readily supported with
current messaging and transaction services, as the integration model proposed
by messaging services does not conform to the model of message delivery trans-
actions. Most notably, current messaging middleware does not allow to send
messages at any point of a transaction, but if they allow to include messages in
a transaction, the messages are only send after and in case of a successful commit
the transaction. Consequently, message failure as well as message compensation
are not addressed at all.

326 Stefan Tai and Isabelle Rouvellou

For example, the JMS talks about transacted sessions, which allows to group
a set of produced messages and consumed messages as one atomic unit of
work [17]. However, transacted sessions are not distributed transactions, but
local, and the produced messages are sent out to distributed partners only in
case of a successful commit. JMS does not address distributed transactions, but
suggests to use the JMS-supported XA resource manager interface in the case
of distributed transactions. Thus, JMS distributed transactions essentially are
MQ-integrating transactions.

To implement message delivery transactions with current messaging and
transaction middleware, two principal options exist:

1. Messages are declared to be outside the scope of the transaction, and sent
concurrently to the running transaction. Message delivery observation, as
well as message compensation, must be implemented at own costs.

2. A series of transactions is defined. Each subtransaction represents a syn-
chronization point at which messages are sent. The series of transactions is a
saga transaction with a corresponding set of compensating transactions [4].
Sagas must be hand-coded as well.

Both solutions are unsatisfactory, as they are very costly to be implemented,
and even more, to be maintained. By matching Table 6 and Table 7, we can
further identify that none of the current messaging middleware allows for a
flexible message failure scope definition. Ideally, any cardinality specification for
message recipients is useful, especially as ultimate consumers are anonimous.

4.3 Message Processing Transactions

Message Processing Transactions refers to the approach of integrating a message
processing model into distributed object transactions.

Intent. The intent is to enable asynchronous request processing between trans-
actional distributed objects. A transactional client requests some distributed
processing within the scope of a transaction, but is not blocked until the process-
ing results for the request return. In addition, message processing transactions
do not require transactional servers to be available at the time that the request
is issued by the client. The ACID properties must still be guaranteed to the
transaction.

A typical scenario and use of message processing transactions is illustrated
in Figure 8. A transactional client begins a transaction, invokes on a distributed
transactional server O2 asynchronously, continues its processing, and eventually
receives a processing result from O2 prior to committing the transaction. This
transaction model cannot be mapped to a standard OTS transaction, due to the
fact that a standard OTS transaction requires all servers to be available at the
times that the client issues the request.

Strategies for Integrating Messaging and Distributed Object Transactions 327

O1 O2 O3 O4

m1

t

Message Processing Transaction

tx server objectstx client

m1 result

Fig. 8. Message Processing Transactions Example

Concept. Message processing transactions extend the conventional transac-
tion model in that the atomic sphere of the transaction includes asynchronous
requests. Different to message delivery transactions, this requires that the trans-
action context is shared between all transaction participants, i.e., the transaction
context must be propagated from the client to the processing server3. The pro-
cessing server is nonymous to the client, but need not be available at the time the
client request is issued. The main purpose and benefit is the ability to process
requests asynchronously, and to allow for independent client and server process
lifetimes.

The messaging model for message processing transactions must meet the
criteria as described in Table 8.

Implementation. The CORBA Messaging specification briefly addresses a spe-
cial, CORBA-specific case of message processing transactions. CORBA Messag-
ing refers to this transaction model as unshared transactions.

CORBA unshared transactions involve CORBA TIIs (time-independent re-
quests), and thus do not have end-to-end transaction semantics (transaction con-
texts are not propagated from client to server at the time the request is made).
Unshared transactions are different from CORBA messaging shared transactions,
which involve CORBA AMIs only, and therefore can be mapped to standard OTS
transactions that have an end-to-end transaction semantics.

CORBA unshared transactions describe a new transaction semantics. In prin-
ciple, they may be implemented using three separate transactions: (1) the send-

3 Transaction context propagation is not necessarily required for message delivery
transactions, due to the client declaring a lack of interest in the consequences and
processing of the message sent.

328 Stefan Tai and Isabelle Rouvellou

Table 8. Messaging Model for Message Processing Transactions

1. Representation any
2. Messaging API any
3. Initiation push-model
4. Intermediators any
5. Multiplicity unicast or multicast
6. Anonimity known set
7. Subscription any, if subscription is with intermediators
8. Synchronicity any
9. Delivery Guarantee exactly-once semantics
10. Persistence persistent
11. Ordering any
12. Filtering any
13. Processing Results any
14. Communication any
F1. Failure Level processing
F2. Failure Scope defined set of particular recipients
F3. Failure Detection combined model of exceptions and timeouts

ing of the request by the client, (2) the delivery of the request, and the reception
of the processing result, by the middleware, and (3) the propagation of the pro-
cessing result to the client. (This model corresponds to the non-object-oriented
notion of transactions as proposed with MQ systems.) However, such an imple-
mentation requires an ordering guarantee for requests, and a concept to identify
a set of ordered requests as a single entity. Both is not defined and supported
with CORBA and CORBA Messaging.

The problems described for CORBA unshared transactions apply to message
processing transactions in general. Table 8 also reveals other open issues. For
example, for communicating back processing results, a mechanism that supports
the integration of a set of results of a multicast request is highly desired.

4.4 Full Messaging Transactions

With Full Messaging Transactions, we refer to the approach of a complete dis-
tributed object transaction model that allows for message delivery transactions
and message processing transactions at the same time.

The intent is to enable event notification and asynchronous request process-
ing, alternatively, and in addition to synchronous object invocations, between
remote components and within the scope of a single transaction.

Full messaging transactions combine message delivery transactions and mes-
sage processing transactions. Thus, they require an even more flexible model for
defining messages and message failures, as they must distinguish the messaging
models and conflicting values such as failure scope definition (property F2 in
Table 7 and Table 8).

Strategies for Integrating Messaging and Distributed Object Transactions 329

4.5 Related Work

The ACS object communication protocol of the KAROS system [6] is a notable
previous work in this field. With ACS, a request message is associated to an
atomic action, which may comprise other messages. ACS thus provides transac-
tional semantics to nested actions through asynchronous communication. Three
different kinds of messages with different failure recovery semantics for asyn-
chronous request processing (apply, call), and for event notification (send), are
supported. ACS addresses reliable distributed object messaging using an im-
plicit atomic operation execution semantics, as opposed to explicit transaction
demarcation as proposed with distributed transaction services like the OTS. The
ACS protocol can thus not directly be adopted for distributed object messag-
ing/transaction architectures as discussed in this paper. Also, we aim at support-
ing asynchronous communication in addition to synchronous communication, but
not as an exclusive alternative.

5 Conclusion

In this paper, we addressed the problem of integrating messaging and distributed
object transactions. We stated the need for a common language to communicate
about messaging and different models of messaging, and introduced a compre-
hensive messaging classification framework that serves for this purpose. The
framework defines messaging properties and property values organized around
three models: message delivery model, message processing model, and message
failure model.

We demonstrated the use of this framework for two purposes: to study and
compare different messaging architectural styles as induced by messaging mid-
dleware, and to characterize the messaging models behind different strategies
to integrate messaging and distributed object transactions. The messaging mid-
dleware comparison revealed a number of important differences between the
notions of messaging currently supported, including fundamental differences, for
example, regarding message representation, synchronicity, or message delivery
guarantees, and more subtle differences, for example, regarding the support for
multicast communication, or for message filtering by intermediators.

We derived four strategies for integrating messaging and distributed object
transactions, each serving for a specific integration objective and following a dis-
tinct flavor of messaging: MQ-integrating transactions, message delivery trans-
actions, message processing transactions, and full messaging transactions. We
described the intent and concept for each of these strategies, and identified open
issues for future integration support. These include, most notably, the ability
to send messages at any point within the scope of the transaction, to support
message compensation, to allow for time-independent transaction context prop-
agation, and to support flexible message failure definition w.r.t. message delivery
and/or message processing.

Our plans for the future are to step-wise address the issues discussed for
each integration strategy, and to eventually provide a middleware support for

330 Stefan Tai and Isabelle Rouvellou

full messaging transactions. The basis for our integration facility are a novel
distributed object messaging, and an advanced distributed object transaction
model that are currently being developed in two related projects at IBM Watson.
We expect future work to expose additional, and more specialized aspects in
the problem domain of integrating messaging and distributed transactions in
distributed object environments, which we will need to address. The classification
framework and the integration strategies presented in this paper are the first step
towards our project goal.

References

1. Bernstein, P., Newcomer, E.: Principles of Transaction Processing. Morgan Kauf-
man. (1997) 308

2. Blakeley, B., Harris, H., Lewis, R.: Messaging and Queuing Using the MQI.
McGraw-Hill. (1995) 309, 319

3. Carzaniga, A., DiNitto, E., Rosenblum, D., Wolf, A.: Issues in Supporting Event-
based Architectural Styles. Proc. ISAW3, ACM. (1998) 316

4. Garcia-Molina, H., Salem, K.: Sagas. Proc. ACM SIGMOD. (1987) 326
5. Gray, R., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufman. (1993) 308

6. Guerraoui, R., Capobianchi, R., Lanusse, A., Roux, P.: Nesting Actions through
Asynchronous Message Passing: the ACS Protocol. Proc. ECOOP’92, LNCS 615,
Springer-Verlag. (1992) 329

7. IBM Corp.: MQSeries Application Programming Guide, 10th ed. IBM Corp. (1999)
319

8. IBM Corp.: An Introduction to Messaging and Queueing, 2nd ed. IBM Corp. (1995)
309

9. Jacobson,H. A., Olken, F., MacParland, C.: A Taxanomy of Event Services for
Internet-Scale Monitoring and Control Applications (Draft). Technical Communi-
cation. (1998) 310

10. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice-
Hall. (1999) 325

11. Monson-Haefel, R.: Enterprise JavaBeans. O’Reilly. (1999) 308
12. The Common Object Request Broker: Architecture and Specification. OMG.

(1995) http://www.omg.org 312
13. CORBAServices: The Common Object Service Specifications. OMG. (1997)

http://www.omg.org 308, 309, 317, 322
14. CORBA Messaging (Joint Revised Submission). OMG TC Document orbos/98-

05-05. (1998) http://www.omg.org 309, 312, 316
15. Orfali, R., Harkey, D.: Client/Server Programming with Java and CORBA, 2nd

ed. Wiley. (1998) 308
16. Slama, D., Garbis, J., Russell, P.: Enterprise CORBA. Prentice-Hall (1999) 308
17. Sun Microsystems: Java Message Service, version 1.0.1. (1998)

http://java.sun.com/products/jms/docs.html 309, 318, 326
18. X/Open Guide Distributed Transaction Processing: Reference Model, version 3.

X/Open Ltd. (1996) 322

A Distributed Object Oriented Framework to

Offer Transactional Support for Long Running
Business Processes

Brian Bennett1, Bill Hahm2, Avraham Leff1, Thomas Mikalsen1,
Kevin Rasmus2, James Rayfield1, and Isabelle Rouvellou1

1 IBM Research, T. J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA,

{bennett,avraham,tommi,jtray,isabelle}@watson.ibm.com
2 Country Companies Insurance,

Bloomington, IL, USA

Abstract. Many business processes are both long running and transac-
tional in nature. They are also mostly multi-user processes. Implemen-
tations such as the CORBA OTS (Object Transaction Services) mod-
eled on the lock-based systems used for classic transactions do not fully
support the requirements of such processes, and as a result, application
developers must develop custom-built infrastructure – on an application-
by-application basis – to support users’ transactional expectations. This
paper presents a novel approach to implementing long-lived transactions
within distributed object environments. We propose the use of the unit-
of-work (UOW) transaction model and framework, an advanced nested
transaction model that enables concurrent access to shared data with-
out locking resources. The UOW approach describes a well-structured
distributed object architecture that can easily be integrated with dis-
tributed object systems. The framework offers uniform (i.e., application
independent) structural transaction support for long running business
processes and provides them with the semantics of traditional, short,
transactions. Use of the framework enables object developers to focus
on business logic, with the framework infrastructure providing functions
required to support the desired semantics. We discuss the framework
programming model, how it provides transactional behavior to long run-
ning business processes and some of the research challenges still ahead
of us.

1 Introduction

Many business processes, such as mortgage application processing or insurance
policy underwriting, can run for several days to a month or even longer. Typi-
cally, more than one person is involved in the business process. The process may
start with data that is not fully validated, and that will be “cleaned up” over the
course of the process; in such cases a business often does not wish to allow other
processes to see the new information until it is sufficiently correct. If a customer

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 331–348, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

332 Brian Bennett et al.

backs out or changes her mind, the business may want the capability to easily
throw away unfinished work which it does not want cluttering its database.

The Long Running Unit Of Work (or LRUOW) framework provides struc-
tural transactional support for such long running business processes (LRBP). A
principal contribution of the framework is that a LRBP is treated as a single long
running transaction, rather than as a series of loosely connected short transac-
tions (the approach often used to implement business processes today). Frame-
work users interact with units of work (or UOW) that represent an application-
level structure following the structure of work done at a given enterprise. Once
started, a UOW may be suspended (with its state stored persistently) and sub-
sequently resumed. It continues to exist until it completes, which it may do by
committing or by rolling back. The current version of the LRUOW framework
has been implemented as a set of container managed, entity, Enterprise Java
Beans [1] running on top of the IBM Websphere Advanced platform [2].

Traditional transaction processing (TP) monitors such as CICS, Encina, and
Tuxedo, and databases such as DB2 and Oracle have successfully abstracted an
application design philosophy that separates the business logic of a flat transac-
tion from the transactional function (ACID1) provided by the underlying system.
However, an LRBP cannot be naively implemented on a traditional TP system
because of the interaction between the following important LRBP characteris-
tics:

– long duration (in contrast to traditional, short, transactions)
– concurrent access (in contrast to batch jobs or single-user systems)

Batch systems (in which a job is the equivalent of a long transaction) and
single-user systems (such as a spread sheet application, in which the time be-
tween saves corresponds to a non-ACID transaction) do lock resources and files
for moderate lengths of time (minutes to hours). Such exclusive usage is accept-
able because nobody else competes for the resources. While TP monitors and
databases allow concurrent usage, concurrency is provided by locking out other
users when another user accesses the resource. If one application locks data for
a long time, other applications that need the data must wait until the first ap-
plication completes and releases its lock. Long running applications (anything
over a few seconds) are thus unacceptable for a traditional transaction system.

Because an LRBP is multi-user it must be able to deal with concurrent ac-
cess, and because it is long, no single user can be permitted to lock the data for
the duration of the business process. Traditional TP monitors and databases,

1 The ACID properties are
Atomicity = the transaction is either executed entirely or not executed at all
Consistency= transactions transform a persistent data store from one consistent
state to another
Isolation= transactions do not read intermediate results of other non-committed
transactions
Durability = once a transaction is committed, its effects are guaranteed to endure
despite failures

A Distributed Object Oriented Framework to Offer Transactional Support 333

in other words, do not fully support an LRBP’s requirements, and as a re-
sult, application developers must develop custom-built infrastructure – on an
application-by-application basis – to support users’ transactional expectations.
Such infrastructures typically intermingle business logic with transactional func-
tion. By analogy to traditional TP monitors, the goal of the LRUOW framework
is to provide infrastructure that implements common transactional functions for
long running business processes. By providing LRBP developers with a consistent
set of transactional methods that are independent of business logic, development
and maintenance effort is reduced. Note that the LRUOW framework does not
intend by itself to provide full support for long running business processes, but
only to provide transactional functionalities (see Section 6).

The LRUOW framework provides three major pieces of functionality to the
LRBP application developer.

– packaging control of business activities into a UOW so the set of activities
can be committed or rolled-back as a unit

– visibility control so that the objects created or updated are only visible
within well defined scopes rather than visible to everyone

– concurrency control that manages the possibility that two users might add
or change the same data in conflicting ways

The paper starts with an example of a long running business process. This exam-
ple is used throughout the paper to illustrate our presentation of the LRUOW
framework. The way a LRBP is divided into UOWs is explained in Section 3.
Section 4 discusses how we control the visibility of the work done within the
scope of a UOW. Section 5 shows how transactional behavior is provided by the
framework. We conclude with a discussion on other components needed to fully
support LRBPs and how they relate to our framework.

2 Example of a Long Running Business Process

This section presents a (greatly simplified) LRBP example in which an insurance
company underwrites car policies. This example will be used in the next sections
to illustrate the different features of the framework. The LRBP begins when a
customer calls the company and requests coverage for her car. For its part,
the company must create a new Policy object; it will contain relationships to
new Car and Customer objects. The agent can get some information at the
time of the call (Car VIN, make, model and Customer name and address), but
much information can be collected only after various long running activities have
completed: e.g., a credit check (Customer credit status), a car inspection (Car
image), and a Department of Motor Vehicle (DMV) driver violations check. The
object model and task dependency graph are shown in Figure 1. The application
developers want the ACID properties that UOWs, like traditional, short running
transactions, provide. Thus, in our example, the insurance company:

– wants the Policy object, comprised of the Car and Customer objects, to be
created in “all or nothing” fashion (atomicity).

334 Brian Bennett et al.

– wants the state of the business to move only from one valid state (valid states
are defined by the business) to another (consistency).

– does not want the intermediate states of the new Car and Customer objects
to be visible to other parts of the business as the information has not been
validated yet (isolation).

– wants the final and intermediate results to be permanent in spite of failures
(durability).

We will use this example to illustrate the LRUOW programming model and
implementation in the following sections.

Customer

setName()
setAddress()
setViolations()
setCreditRating()
getName()
getAddress()
getViolations()
getCreditRating()

Policy

Car

setMake()
setModel()
setImage()
getMake()
getModel()
getImage()

Object model Task dependency graph

Phone Call

DMVCredit Check Car Inspection

Decision

Fig. 1. Example: Object Model and Task Dependency Graph

3 Programming Model Overview

A key feature of the LRUOW programming model is that business logic is sepa-
rated from the long running transaction semantics. Business object providers, in
other words, concentrate on developing the function required by the long running
business process: the framework is responsible for ensuring that long running
transaction semantics are provided when the objects are actually deployed. In
the client (application writer) view of the programming model, a LRBP contains
only two types of object: the unit of work (or UOW) object which represents a
nestable long running transaction (provided by the framework), and various base
objects (arbitrary, non UOW-aware, objects provided by business developers).
The framework takes those base objects and creates versions that are associated
with the UOWs. It transparently maps method invocations under a given UOW
context onto the set of objects associated with the UOW.

The LRUOW framework regards a LRBP as a directed, acyclic graph, whose
nodes consist of units of work (or UOW), each of which is a nestable long running
transaction [3]. Each UOW has one parent UOW (except for the root UOW

A Distributed Object Oriented Framework to Offer Transactional Support 335

refered to as enterprise level UOW) and may have multiple children UOWs. The
enterprise UOW owns all objects in the system and is never committed. Each
sub-task of the LRBP shown in the task dependency graph of Figure 1 is mapped
to a node in the uow tree (Figure 2).

Enterprise
UOW

New Policy
UOW

Inspection
UOW

DMV
UOW

Credit Check
UOW

Phone Call
UOW

Decision
UOW

Fig. 2. UOW Tree: Note that, at a given time, only some of the leaf nodes may
exist. Figure 3 and Figure 4 show snapshots of the UOW tree at different times

All activities done within the course of a LRBP are done within the context
of some UOW. The UOW context is established when the client either obtains,
or creates a new UOW, and joins the UOW using join() on the UOW object.
Subsequent method invocations are performed within the scope of that UOW.
This compares to a conventional transaction begin, or, to calling begin() on
the Current object in a CORBA OTS transaction [4]. A transaction can be
committed or rolled back by invoking the respective method on the UOW object.
In our example, the new policy LRBP is initiated by requesting that the parent
(or enterprise level) UOW create a child new policy UOW. Isolation is provided
during the course of the LRBP because nodes in the UOW tree obey the following
visibility rules [5]:

– The state of all objects in the scope of a parent UOW is visible to all children
of that parent.

– When a child UOW commits, state changes done to all objects within the
scope of the child UOW become visible to the parent UOW.

– State changes performed by a child UOW are not visible to its siblings until
the child UOW commits.

An object’s state and its visibility are modified over time as UOWs are
created, committed, or rolled back. Continuing our example, Figure 3 represents
a snapshot of the UOW tree as the phone call UOW (a child of the new policy
UOW) commits. As a result, the Car and Customer objects that were created
in the course of the customer’s phone call become visible (and made persistent).

336 Brian Bennett et al.

Car Customer

New Policy

Car Customer

New Policy

Car Customer

Phone Call Commit

Pre-Commit Post-Commit
Time

Fig. 3. UOW Tree: Effect of committing the Phone Call UOW (dotted lines are
used when the objects are not visible within the scope of the given UOW)

Figure 4 is a snapshot of the LRUOW tree as one of the 2nd-level tasks (the
car inspection) completes: the changes made to its version of the car (Car.image)
are propagated to the parent’s version. The car image was not visible to the
inspection UOW’s siblings until the commit.

Credit Check

Customer

Car Customer

New Policy

Car Customer

DMV

Car

Inspection

Car Customer

New Policy

Car Customer

DMV

Commit
car.setImage(image)

Customer

Credit Check

Pre-Commit Post-Commit
Time

Fig. 4. UOW Tree: Effect of committing the Inspection UOW

A Distributed Object Oriented Framework to Offer Transactional Support 337

4 Visibility and Isolation Enforcement:
Facade & Version Objects

The framework uses a client/server model. In the client view of the LRUOW
programming model, user interactions occur only with UOW objects and base
objects; they rely on the framework to transparently map method invocations
onto the set of objects associated with their UOW. The framework must enforce
the protection implied by the visibility rules and, when a participant commits,
must propagate the objects’ state changes to the parent UOW.

The server implements this transparent mapping by ensuring that the client
never actually accesses a base object instance. Instead, the client accesses a
facade object that, in turn, delegates the client’s method invocations to ver-
sion objects that are associated with individual UOWs. The transaction context
(UOW context) is implicitly propagated between the distributed EJB compo-
nents that participate in the transaction, using request interceptors. UOW con-
text propagation compares to propagation of transactional contexts in CORBA
OTS transactions using implicit propagation mode.

As shown in Figure 5, each instance of a base object (e.g., a Car with VIN =
42) is associated with an instance of a facade object which wraps the set of version
object instances. Each currently active UOW in which a client has referenced a
facade object instance has an associated version object in the facade’s version
set. Through use of reflection techniques, the framework automatically generates
facade and version objects from the base object. Users input the base objects
as a Jar file containing, for example, Car and CarHome interfaces and CarBean
and CarKey implementations. Based on this input, the framework generates the
corresponding CarFacade and CarVersion EJBs, deploying them into a relational
database container.

The fact that a client actually invokes methods on a facade requires the
facade to extend the Car interface (as shown in Figure 5): the facade then maps
from the client’s UOW context (e.g., inspection UOW) to the corresponding Car
version to which it delegates the method invocation. A Car version identity is
determined by the specific Car semantics and a UOW identifier. A Car version
has the Car interface, and uses the framework-independent implementation of
the car (CarImpl) that is provided by the business developer (see Figure 5).
The framework’s task of generating the server-side facade and version objects
on behalf of the client is made easier when base objects follow the Bridge design
pattern [6]. Since clients code to an interface (e.g., Car in Figure 5), the server-
side (facade) objects need only provide a shallow wrapping implementation to
satisfy the contract with the client. At run-time, the server substitutes a facade
for the base object.

4.1 Lifecycle

Although Figure 5 shows how the client view of a base object is actually imple-
mented on the server by facade and version objects, it does not explain how the
client gets a reference to a facade in the first place.

338 Brian Bennett et al.

CarFacade

setImage(img)
"Inspection" UOW

Client

CarVersion
"Inspection"

UOW

CarVersion
"New Policy"

UOW
setImage(img)

Car

setMake()
setModel()
setImage()
getMake()
getModel()
getImage()

CarFacade

createVersion()
findVersion()
removeVersion()
commit()
replay()

CarVersion**

CarImpl
make : String
model : String
image : Image

Fig. 5. Delegation of client methods / Facade and Version Car Objects

In addition to providing the base object interface and implementation (the
Car and CarImpl objects), the LRUOW programming model requires the busi-
ness object provider to supply an interface specifying how base object instances
are created, located (queried), and removed. Our implementation follows the
factory design pattern [6], so that clients access base object lifecycle function
by invoking methods on the associated factory class. The LRUOW framework
extends the base factory interface (e.g., with a CarFacadeFactory) such that the
server returns facade objects to the client instead of the base object.

The challenge addressed by the framework is how the programming model
used by LRBP participants – in which a single user accesses single instances of
base objects – is supplied in an environment of concurrent, multi-user, access
to sets of version objects. Users should be able to program as if there is only
a single instance of a given object (e.g., a car with VIN = 42 where VIN is a
unique key), even though the object accessed is actually one of a set of versions
whose relationships are determined by the structure of the LRBP unit of work
tree.

The key concept is that a business object’s existence is defined relative to a
specific UOW, so that an object may exist with respect to UOW1 and not exist
with respect to UOW2. The reason for this has to do with the visibility rules
discussed in Section 3 which we can now restate in terms of facade objects:

A business object exists with respect to UOWi if and only if a non-deleted ver-
sion, associated with UOWi, exists in the facade’s set of versions or the business
object exists with respect to the parent of UOWi in the LRUOW tree.

In our implementation, the facade and factory collaborate to provide business
objects to clients. A client can get a reference to a facade in one of two ways:
through object creation and through query (object location). Often, however,
a child UOW will invoke business methods on an object whose reference was
obtained in a parent UOW. The facade transparently creates a new version
(to be associated with the child UOW) the first time that one of its business

A Distributed Object Oriented Framework to Offer Transactional Support 339

methods are invoked. If the business object does not exist with respect to the
client’s UOW, the facade throws an exception. This code path (unlike the ones
for creation and location through query) is managed entirely by the facade, and
does not involve the factory object.

(a)

uow
1

root uow

uow
2

uow
11

VIN=42

carFactory.create(VIN=42)

uow1

root uow

uow
2

uow
11

carFactory.create(VIN=42)

VIN=42

VIN=42

(b)

uow
1

root uow

uow
2

uow
11

carFactory.create(VIN=42)

VIN=42

VIN=42

(c)

Fig. 6. (a) Client creation of a car, no pre-existing Facade car. (b) Client creation
of a car, with a pre-existing version visible to client. This is an illegal state that
results in an exception (c) Client creation of a car, with a pre-existing version
that is not visible to the client. The resulting clash on commit is dealt with in
Section 5

Creation Suppose that the base Car semantics specify that a new Car is created
when a client invokes CarFactory.create(VIN = 42). Figure 6 shows how the
framework deals with various scenarios; note that, in these figures, the client is
associated with UOW11.

– No CarFacade with the specified VIN exists with respect to any UOW: i.e.,
there are no versions of a car with the specified VIN in existence (Figure 6a).
• the CarFactory creates a FacadeCar with (VIN = 42).
• the CarFacade creates a CarVersion that will be associated with UOW11,

and inserts it into the set of version objects.

340 Brian Bennett et al.

– A CarFacade with the specified VIN exists with respect to UOW11 (Fig-
ure 6b), because a version is associated with its parent UOW1 – even though
it does not exist with respect to UOW2.
• the CarFactory determines that CarFacade with (VIN = 42) exists.
• the CarFacade determines that it is visible to UOW11. Since the object

already exists, the facade must therefore throw a creation exception; this
will be rethrown by the factory to the client.

– A CarFacade with the specified VIN does not exist with respect to UOW11 –
even though the facade object exists (Figure 6c). Even though sibling UOW2

has already created a car with the specified VIN, because UOW2 has not yet
committed (and propagated its state into UOW0) the car does not yet exist
with respect to UOW11. The impending clash when the last child commits
is discussed in Section 5.
• the CarFactory determines that CarFacade with (VIN = 42) exists.
• the CarFacade determines that it is not visible to UOW11.
• the CarFacade creates a CarVersion that will be associated with UOW11,

and inserts it into the set of version objects.

In order to separate a client’s UOW context (which can change over the course
of a LRBP) from the specific version object that is accessed at any given time,
the factory returns the facade – which is responsible for mapping the client’s
UOW to a specific version – instead of returning the newly created version.

Location through Query Object location is the mirror image of object cre-
ation: i.e., a facade object instance can be located by a client if and only if the
facade is visible to the client’s UOW.

Removal A client can remove a business object if and only if it is visible to
the client’s UOW. Object removal is, in this sense, similar to object location.
However, although the facade object cannot be actually removed until the top-
level UOW commits, from the client’s viewpoint once the remove method is
invoked, the object no longer exists. For example, in Figure 6c, if UOW2 deletes
the CarFacade with (VIN = 42), and commits into UOW0, the facade no longer
exists with respect to UOW1 and UOW11. It is therefore valid for UOW11 to
subsequently create a car with (VIN = 42).

To deal with such situations, whenever a client removes an object, the facade
marks the associated version as deleted but does not remove the object from its
set of versions (nor does it remove it from persistent storage). This tag allows
the framework to recognize when an existing, but deleted, object actually exists
with respect to a specific UOW.

5 UOW Transactional Behavior and Concurrency
Management

The challenge faced in providing transactional behavior for a LRBP is that lock-
ing resources on behalf of one LRBP participant prevents other participants from

A Distributed Object Oriented Framework to Offer Transactional Support 341

accomplishing their portion of work. On the other hand, not locking resources is
unacceptable because it implies that participants cannot be given any guaran-
tees about resource consistency. Our framework uses the following approach to
provide UOW transactional behavior.

A UOW executes in two phases: a long-running phase (termed the rehearsal),
and a short-running phase (termed the performance). Users accomplish work
during UOW rehearsal; but, as its name suggests, no work is actually commit-
ted (in a transactional sense) during this phase. More precisely, although user
work can be made persistent (so that if the system crashes, user activity will
resume from the last syncpoint), the UOW does not commit and make its work
visible to a parent UOW context until the user invokes UOW.commit(). If a
participant instead invokes UOW.rollback(), her work will be rolled back in tra-
ditional “all or none” fashion. The purpose of the rehearsal phase is to allow long
running, concurrent, activity to occur without locking resources – while, at the
same time, the system creates a persistent copy of the information needed to re-
solve conflicts at commit time (performance time). Because each UOW operates
on a private set of data (the versions discussed in Section 4), protection from
concurrent activity is automatically provided, making lock constraints unneces-
sary. The performance phase is in effect a short, traditional transaction (with
ACID properties) which modifies the versions of the objects in the parent UOW.
Thus, the LRUOW framework can be implemented on top of existing transaction
middleware products: the only requirement is that the system support external
transactional coordination (e.g., theX/Open XA interface).

During the performance phase, the framework must deal with the concur-
rency issues which were ignored during the rehearsal phase. We have included
two different concurrency control mechanisms. Both mechanisms seek to mini-
mize the possibility of not being able to commit because of irreconcilable con-
current activity. Both mechanisms include the concept that not all differences
between rehearsal and performance results are irreconcilable. The mechanisms
vary in whether the work needs to be on the front end or on the back end, their
impact on analysis and design, the types of problems they can be applied to, and
the way you go about manually resolving a concurrency problem if the system
can’t resolve it.

5.1 Predicate & Transform Approach

As mentioned above, the framework creates during the rehearsal phase of the
UOW a persistent copy of the information needed to resolve conflict at com-
mit time. In this first approach, the information kept is the user activity or
operational log. Facade objects record method invocations in an operational log;
entries contain sufficient information to enable subsequent method replay (see
Figure 7). Object state changes are preserved by logging method invocations;
arguments to these methods are recorded in the log using serialization tech-
niques. The original method invocation is later replayed using dynamic method
invocation. We must deal with one subtlety: if a client invokes method1 and
that method, in turn, calls method2, we log only method1 rather than logging

342 Brian Bennett et al.

both methods. Replay of method1 implicitly replays method2: if method2 were
to also be logged, the system would incorrectly apply method2 twice. To prevent
such behavior, the system associates a logging depth with a given uow which is
incremented each time a method is logged within that uow’s scope. Log depth is
decremented when the logging operation completes. An operational log record
is created only if a uow’s log depth corresponds to a top-level logging operation.
One benefit of this approach is that facade objects are independently responsible
for determining that an operation should be logged: the LRUOW framework is
responsible for determining the runtime nesting of method invocations, and thus
whether an individual invocation should be explicitly or implicitly logged.

CarFacade

setImage(img)
"Inspection" UOW

Client

CarVersion
"Inspection"

UOW

CarVersion
"New Policy"

UOW
setImage(img)

Operational Log Record
Unit of Work "Inspection"

Object "CarFacade"

Method "void setImage(Img)"

Arguments img

Return value void

Fig. 7. Operational Log Record (there is one record per highest level transform
invoked)

The operational log is a compressed copy of the LRBP in the sense that
user think time, business process time, and other activities that add to the
UOW’s clock time (in contrast to actual business method execution time) are
omitted. At performance time, the system begins a short transaction, replays
the operational log, and commits the transaction to the underlying datastore if
the replay is successful. Operational log replay is done with respect to a UOW’s
parent’s data. For example, when the inspection UOW of Figure 4 commits, the
set of methods that were invoked against its Car object are reinvoked against
the Car version associated with the new policy UOW. After the UOW commits,
the state of the parent UOW’s versions has been updated, and reflects the state
of the child UOW’s versions. So, although concurrency is not an issue during
rehearsal (because the inspection UOW manipulated its private Car version),
the framework must deal with concurrency during performance since it is at
this time that the inspection UOW Car version must be resolved with its parent
new policy UOW Car version. Although the framework allows state changes to
be applied only from within leaf UOWs, we must potentially resolve conflicts
between sibling UOWs.

A Distributed Object Oriented Framework to Offer Transactional Support 343

One approach is to log all methods (and their results) and allow a UOW to
commit only if the rehearsal phase result matches the performance phase result.
This has the advantage of being straightforward: a transaction is clearly not
affected by concurrent activity if the state of all of its objects is determined only
by the transaction’s activity. Unfortunately, this semantic – equivalent to that
of optimistic transactions [7] – can result in unnecessary transaction rollbacks.
For example, in a debit transaction, what is important is that there are sufficient
funds to cover the withdrawal – not the precise amount of funds in the account.
As long as an account can cover all concurrent withdrawals, we do not want
to rollback the transactions. Under the optimistic semantics, if the performance
phase replays the fund withdrawals in a sequence that differs from the rehearsal
phase, the difference in state (e.g., balance = getBalance()) is detected and
the transaction aborted. Such behavior is especially unacceptable in the case
of long running transactions: users will not be happy to be told that several
weeks of work must be aborted despite the fact that the state transformations
are compatible!

To achieve greater concurrency than what is offered by optimistic seman-
tics, the LRUOW uses the concept of predicates and transforms. This approach
is based on the concept of field calls. Field calls are a mechanism for increas-
ing concurrency of short transactions by reducing the “product” of the amount
of data and length of time, in which transaction locks must be held[5]. Field
calls are more general (and allow more concurrency) than either optimistic or
timestamp locking schemes. A field call consists of a predicate/transform pair
consisting of (1) a predicate, which is checked at the time of the call and at
commit time, and (2) a transform, which modifies transaction data in some way.
The predicate test uses a shared-mode lock, and the lock is released as soon as
the predicate is tested, thus allowing other transactions to read or update the
data. If the predicate is false at the time of the field call, the transaction aborts.
Otherwise, when the transaction is at phase 1 commit, it acquires exclusive locks
on data involved in transforms, and the predicate is tested again. If it is false, the
transaction aborts (no need to undo the transaction); otherwise the transform
is applied (phase 2 of the commit), and the locks are released.

The LRUOW predicate/transform approach extends the field calls concept
to long running processes. The application programmer has to code in terms
of predicates and transforms (see below). Programmers must therefore be more
aware of the fact that the LRUOW is running as a concurrent, transactional, pro-
gram. This contrasts with the programming model of classic, short, transactions
where application developers are almost completely oblivious of the transaction
framework: all that is required is transaction demarcation and code to deal with
situations where the transaction fails to commit. Note, however, that classic
transactions often relax classic serializability semantics so as to achieve greater
performance. Techniques such as cursor stability give greater concurrency at
the cost of similarly forcing programmers to be aware of, and deal with the fact,
that their application executes concurrently with other applications [5]. Different
techniques to alleviate the strictness of serializability by allowing some degree

344 Brian Bennett et al.

of inconsistency have been investigated before. One of them, epsilon serializ-
ability (ESR) allows read-only transactions that can handle a certain amount of
inconsistency to exploit that property in order to increase concurrency [8,9]. Up-
date transactions must be serializable amongst themselves. ESR works through a
high-level specification of inconsistency whereas our approach allows fine-grained
specifications of inconsistency that can be coded in many cases within the meth-
ods of the object itself and can be exploited by update transactions.

What is a LRUOW Transform? A transform is any state transforming
method on an object. State transforming methods are replayed so as to transform
the parent version to reflect the transforms applied to the child version.

What is a LRUOW Predicate? A LRUOW predicate is a piece of code
checking some arbitrarily complex condition on a number of objects. It protects
and validates one or several transform invocations. The simplest case of LRUOW
predicates are classic predicates that perform pre-condition or post-condition
validation. For example, a debit method on an account object will include a test
of the account balance.

Account::debit(x) {
If (this.balance < x) throw exception;
Else this.balance -= x;}

The business developer will use such predicates to validate the single-pass
code logic (by single pass, we refer to code execution that, in order to be valid,
executes only once). This predicate will implicitly be logged as part of the debit
transform and replayed during the performance phase. The replay will be suc-
cessful if the current parent UOW account version has sufficient balance. So, as
long as there are sufficient funds in the account, sibling UOWs can invoke the
debit method, and still successfully commit to the parent UOW. The key idea is
that a UOW will be rolled back 2 by the system only if a transform cannot be
replayed (against its parent’s state) because an associated predicate is no longer
true. Transforms are therefore logged with the best performance achieved when
the programmer specifies the least restrictive set of predicates. Concurrency will
not be a problem – i.e., the replay will succeed – as long as the predicates as-
sociated with the child’s transforms are not violated by the current state of the
parent’s version. For example, since the phone call UOW of Figure 3 creates new
Customer and Car objects, there is no conflict between the parent’s state (which
does not contain these Customer and Car objects): the performance phase sim-
ply recreates the objects in the parent new policy UOW’s scope. Of course one
could imagine that there is a limit in the number of customers that an insurance
company wants to consider. In this case, a predicate on createCustomer() will
assert that the total number of current customers is less than the maximum
2 Note that a non successful replay may also result in compensating actions needing
to be initiated (see Section 6).

A Distributed Object Oriented Framework to Offer Transactional Support 345

allowed. Only the business developer with knowledge of the desired semantics
can specify which predicates, if any, should be associated with the transform.

In addition to regular pre/post conditions, predicates may have to be used
to protect code with respect to two pass issues: i.e., issues that arise because
of the way that performance-phase code derives from rehearsal-phase code and
because of the manner in which state is derived during performance. For exam-
ple, selectors of branch conditions that determine execution (i.e., values which
control the sequencing of logged transforms) may need to be protected. The de-
fault assumption made by the framework is that differences between get results
do not matter – and thus need not be replayed – since read operations cannot
cause conflict among concurrent applications. But, when read-only data might
affect the outcome of a UOW (e.g., the application path differs based on an
attribute value, so that the commit does require that the attribute have a speci-
fied relationship to some value), the corresponding get methods can be specified
as a predicate. The framework recognizes special ApplicationPredicate objects
(APO) whose methods are always logged when invoked (like transforms). This
enables the framework to supply persistence for predicates in exactly the same
way that it provides persistence for transforms. An example is:

long netWorth = aCustomer.getNetWorth();
//invocation of a read method
CustomerAPO.assertGetNetWorth(netWorth, aCustomer);

where CustomerAPO.assertGetNetWorth() is a utility transform that throws
an exception if the result of invoking GetNetWorth on the customer object and
netWorth are not equal in value. During rehearsal, the value of netWorth is
(trivially) equal to that of getNetWorth since netWorth was just derived from
that method. During performance, this transform will be replayed among all
the other transforms, and the stored (rehearsal) value of netWorth compared
against the current value of getNetWorth. If the values do not match, the uow
predicate detects that the rule is violated, and an exception is thrown. Note that
the framework will generate a generic FooApplicationPredicate object for every
class Foo provided by the application writer. In particular, for every non-void
method x() of Foo, the generic FooApplicationPredicate has a corresponding
method assertX() to assert that invoking x() on Foo returns the same value at
rehearsal and performance time (as illustrated by the customer example above).
Less generic predicates will be coded by the application developer.

5.2 Conflict Detection/Resolution Approach

The second concurrency mechanism the framework offers is conflict detection
and resolution (CD/R). The information kept by the framework in this case is
not an operational log, but snapshots of the objects as they are first versioned in
the child UOW (see Section 4). Upon commit, a process goes through and checks
to see if any data in the parent UOW has changed since the object was copied
to the child UOW. If no changes are found, the parent versions are updated to

346 Brian Bennett et al.

reflect the data in the leaf UOW. If any changes are found, a conflict has been
detected. A conflict manager is then invoked. The conflict manager is passed a list
of participants in conflict. Its job is to select the resolution manager(s) that will
be charged with resolving the conflict. As resolution managers are invoked, they
apply the business logic necessary to resolve conflicts and arrive at the desired
parent data state (in a similar way to what the manual procedures accomplish
in a single-threaded multi-user system). Conflict and resolution managers have
to implement an interface defined by the framework. A given uow is associated
to one conflict manager and one or more resolution managers.

6 Further Challenges

The LRUOW framework provides structural transactional support for long run-
ning business processes. There are other aspects/issues however with LRBPs.
Workflow systems [10] for example are concerned with the routing and sequenc-
ing of work among individuals and groups. The workflow system assists in defin-
ing resources, assigning resources, or initiating tasks. It acts as the controller of
the overall business process. It takes a business process and breaks it into tasks
(nodes in a process network), and defines a list of persons or programs that can
perform tasks. Workflow systems manage recovery of the state of the workflow
by reliably knowing which tasks have started and which have completed. They
do not address recovery of resources manipulated in workflow tasks, nor provide
an approach for handling contention when different tasks concurrently access
shared data. The LRUOW framework addresses precisely these issues by provid-
ing transactional properties (including concurrency and durability) as well as an
application model that is familiar to developers. This functionality can be pro-
grammed into workflow, but generally requires considerable custom work with
high associated development and maintenance costs. Currently, the difficulty in
custom coding of transactional constructs often leads developers to change nat-
ural workflow task definition or task relationships. For instance, because locking
and visibility are complicated issues, a process – which may actually contain
much parallel activity – will be serialized so as to sidestep the problem. Or, to
avoid making “in process” data visible to other processes, much data will be
inserted into separate containers instead of writing to a common database. The
LRUOW framework greatly assists with such transactional concerns. Use of the
LRUOW framework within a workflow can thus lead to a simplified workflow
network, smaller workflow containers, a greater degree of parallelism, and less
custom work.

Another issue with long running business processes is that some of the ac-
tions performed in the context of such processes (e.g., sending a letter to a
customer) cannot be rolled-back. They can at best be compensated (e.g., send-
ing a second letter to the customer asking to ignore the first one). The concept
of compensation has been widely used in another approach to the problem of
long running activities referred to as sagas [11]. A saga consists of a sequence of
subtransactions T1,..., Tn and a corresponding sequence of compensation trans-

A Distributed Object Oriented Framework to Offer Transactional Support 347

actions C1,..., Cn−1 such that if the desired full sequence T1,...,Tn fails in Ti then,
by aborting Ti and executing Ci−1,..., C1, all trace of the overall transaction is
removed. Like the LRUOW approach, sagas do not hold long term locks on data;
unlike the LRUOW approach, sagas do not enforce visibility rules with the result
that other transactions see intermediate results of any subsequence of T1,..., Tn.
Compensating transactions are a convenient and easily understood way of back-
ing out transactions in simple systems. But they often need to be hand-coded,
which makes it impractical to deploy sagas in large, complex, business systems.
Also since humans must occasionally participate in the compensation process,
the recovery process cannot be fully automated. The LRUOW framework by re-
stricting the visibility of the work done in the course of the LRBP, and allowing
to rollback (in case of failure) many of the actions performed, simplify the design
of the compensation scheme.

Both the integration with workflow system and compensating schemes are
currently being investigated.

Another area of investigation are strategies to integrate legacy systems. In
order to provide ACID semantics to long running business processes, the frame-
work makes a basic assumption: namely, that (during the performance phase) all
resources used in the LRUOW can be externally coordinated to run in a single,
short-running, classic transaction. A large set of systems meet this requirement
– e.g., those that support the X/Open XA interface. However, many legacy data-
stores cannot be coordinated externally, and may not even supply transactions
internally. One challenge that we must address, therefore, is whether precise se-
mantics can be assigned to long running business processes that run on such
systems.

References

1. Enterprise JavaBean Specification Version 1.0, http://java.sun.com/products/
ejb/docs.html. 332

2. IBM Websphere Application Server, http://www.software.ibm.com/webservers/
appserv/. 332

3. J. E. B. Moss. : Nested Transactions: An Approach to Reliable Distributed Com-
puting. MIT Press. (1985). 334

4. Transaction Service Specification, in CORBA Services: Common Object Services
Specification. http://www.omg.org. 335

5. J. Gray and A. Reuter. Transaction Processing Concepts and Techniques. Morgan
Kaufmann, 1993. 335, 343

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pattern, Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994. 337, 338

7. H. T. Kung and J.T. Robinson, On Optimistic Methods for Concurrency Control,
ACM Trans. on Database Sys., Vol 6., No. 2, June 1981, pp. 213-226. 343

8. K. Wu, P.S Yu, and C. Pu, Divergence Control Algorithms for Epsilon Serializ-
ability, IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 2,
March-April 1997, pp. 262-274. 344

9. C. Pu et al., Divergence Control for Distributed Database Systems, Distributed
and Parallel Databases, Vol. 3, No. 1, Jan. 1995, pp. 85-109. 344

348 Brian Bennett et al.

10. Workflow Management Coalition (WfMC), http://www.aiim.org/wfmc/
mainframe.htm. 346

11. Modeling Long-Running Activities as Nested Sagas, H. Garcia-Molina, D. Gawlick,
J. Klein, K. Kleissner, and K. Salem. Data Engineering, Vol. 14, No. 1, March 1991.
346

Active Middleware Services in a Decision

Support System for Managing Highly Available
Distributed Resources

Sameh A. Fakhouri1, William F. Jerome1, Vijay K. Naik1,
Ajay Raina2, and Pradeep Varma3

1 IBM T. J. Watson Research Center, Hawthorne, NY 10532
{sameh,wfj,vkn}@us.ibm.com

2 IBM Global Services, Bangalore, India
rajay@in.ibm.com

3 IBM India Research Laboratory, New Delhi, India
pvarma@in.ibm.com

Abstract. We describe a decision support system called Mounties that
is designed for managing applications and resources using rule-based con-
straints in scalable mission-critical clustering environments. Mounties
consists of four active service components: (1) a repository of resource
proxy objects for modeling and manipulating the cluster configuration;
(2) an event notification mechanism for monitoring and controlling inter-
dependent and distributed resources; (3) a rule evaluation and decision
processing mechanism; and (4) a global optimization service for provid-
ing decision making capabilities. The focus of this paper is on the design
of the first three services that together connect and coordinate the dis-
tributed resources with the decision making component. We discuss the
overall architecture and design of these services. We describe in some
detail the asynchronous, concurrent, and pipelined nature of their inter-
actions and the fault tolerance designed in the system. We also describe a
general programming paradigm that we have followed in designing these
services.

1 Introduction

A cluster is a collection of resources (such as nodes, disks, adapters, databases,
etc.) that collectively provide scalable services to end users and to their appli-
cations while maintaining a consistent, uniform, and single system view of the
cluster services. By design, a cluster is supposed to provide a single point of con-
trol for cluster administrators and at the same time it is supposed to facilitate
addition, removal, or replacement of individual resources without significantly
affecting the services provided by the entire system. On one side, a cluster has
a set of distributed, heterogeneous physical resources and, on the other side, it
projects a seamless set of services that are supposed to have a look and feel (in
terms of scheduling, fault tolerance, etc.) of services provided by a single large
virtual resource. Obviously, this implies some form of continuous coordination

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 349–371, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

350 Sameh A. Fakhouri et al.

and mapping of the physical distributed resources and their services onto a set
of virtual resources and their services.

Typically, such coordination and mappings are handled by the resource man-
agement facilities, with the bulk of the work done manually by the cluster admin-
istrators. Despite the advances in distributed operating systems and middleware
technology, the cluster management is highly human administrator bound (and
hence expensive, error-prone, and non scalable beyond a certain cluster size).
Primary reasons for such a state-of-the-art is that existing resource manage-
ment systems adopt a static resource-centric view where the physical resources
in the cluster are considered to be static entities, that are either available or
not available and are managed using predetermined strategies. These strategies
are applied to provide reliable system-wide services, in the presence of highly
dynamic conditions such as variable load, faults, application failures, and so
on. The coordination and mapping using such an approach is too complex and
tedious to make it amenable to any form of automation.

To overcome these difficulties, we take an approach that is different from
the traditional resource management approach. In this approach, resources are
considered as services whose availability and quality-of-service depends on the
availability and the quality-of-service provided by one or more other services
in the cluster. For this, to state it informally, the cluster and its resources are
represented by two dimensions. The first dimension captures the semi-static
nature of each resource; e.g., the type and quality of the supporting services
needed to enable its services. Typically, these requirements are defined (explicitly
or implicitly) by the designers of the resource or the application. These may be
further qualified by the cluster administrators. These are formalized as simple
rules that can be dynamically and programatically evaluated, taking into account
the current state of the cluster. The second dimension is the dynamic state of the
various services provided by the cluster. The dynamic changes are captured by
events. Finally, all the coordination and mapping is done at a logically centralized
place, where the events are funneled in and the rules are evaluated. This helps
in isolating and localizing all the heterogeneity and associated complexity. By
separating the dynamic part (the events) from the semi-static parts (the rules),
and combining these in a systematic manner only when needed, the desired level
of automation in the coordination and mapping of resources and services can be
achieved.

While the general principles outlined above are fairly straightforward, there
is a nontrivial amount of complexity in managing the choreography. To show the
proof of concept, we have designed and implemented a system called Mounties
based on the above described general principles. The Mounties architecture itself
is composed of multiple components, a primary component being the modeling
and decision making engine. The remaining components together form an active
and efficient resource management layer between the actual cluster resources
and the decision-making component. This layer continuously transports the state
information to the decision maker and commands from the decision maker to
the cluster resources, back-and-forth in a fault-tolerant manner. In this paper,

Services for Managing Distributed Resources 351

we describe in detail the architecture and design of the services that form this
middleware.

The remainder of the paper is organized as follows. First we define some terms
and cluster concepts and then, in Sect. 3, briefly describe the overall Mounties
approach. Following that, in Sect. 3.3, we present a small example to illustrate
some of the key concepts. An overview of the Mounties architecture and its
design is described in Sect. 4. Described in Sect. 5 are the salient features of the
three main services that coordinate the actions between the cluster resources
and the decision making component. In Sect. 6, we describe the programming
paradigm that we have followed in designing these services. Finally, we conclude
the paper after reviewing the related work, in Sects. 7 and 8, respectively.

2 Definitions and Basic Cluster Concepts

In a cluster managed by Mounties, hardware components such as nodes,
adapters, memory, disks, and software components such as applications, database
servers, web servers are all treated as cluster resources. When there is no am-
biguity, in this paper, we use the terms resource and the service it provides,
interchangeably. A location is a unique place in the cluster where a resource or
service physically resides and makes its service available. Typically it is identified
by the node (or the processing element), but it could be any uniquely identifiable
location (such as an URL). To provide its intended services, a resource may need
services provided by one or more other resources. These are referred to as the
dependencies. In addition to the dependencies, a resource may have other limi-
tations and restrictions such as capacity (defined in the following) or location in
the cluster where it can provide its services. Some of these may be because of the
physical limitations of the resource while others may be imposed by the cluster
administrators. The dependencies and the specified limitations together form a
set of constraints that must be satisfied for making a service available. Usually
the cluster administrator satisfies these constraints by allocating appropriate re-
sources. Typically, a cluster is expected to support multiple services. To achieve
this, constraints for multiple resources must be satisfied simultaneously, by judi-
ciously allocating lower level supporting resources and services. This hierarchical
allocation of resources (i.e., one level of resources supporting the next level of
resources) gives rise to a particular cluster configuration where dependency rela-
tions are defined among cluster resources. Note that there may be more than one
possible cluster configuration to provide the same set of services. When there
are only a limited number of resources or when the constraints among resources
are complex, there may only be a small number of ways in which cluster can be
configured to satisfy all the constraints. Determining such unique configurations
is a hard problem.

Resources have attributes that distinguish them from one another. These
include Name, Type, Capacity, Priority, and State. Each resource has a unique
Name and resources are classified into multiple Types based on the functional-
ity they provide. Capacity of a resource is the number of dependent resources

352 Sameh A. Fakhouri et al.

that it can serve simultaneously. The capacity may be inherent in the design
of a resource or it may be imposed by cluster administrators for performance
or testing purposes. All allocations of a resource must ensure that its capacity
constraints are not violated. Priority denotes the relative importance of a re-
source or a service. In Mounties, the Priority is a number (on a scale of 1 to 10,
1 being the lowest) to indicate its relative value. It is used in more than one way.
For example, if two resources depend on a resource that can only support one
of them, then one way to resolve the conflict is to allocate the scarce resource
to the resource with higher priority. Similarly, in a cluster there may be more
than one resource of a certain type and a resource or service that depends that
type of resource may have a choice in satisfying that dependency. Here Priority
of the supporting resources may be used to make the choice. The Priority field
can also be used in stating the goals or objectives for cluster operation; e.g.,
resources may be allocated such that the sum of the Priorities of all services
made available is maximized. The State of a resource indicates the readiness of
its availability. In Mounties, the State of a resources is abstracted as ONLINE,
OFFLINE, or FAILED. An ONLINE resource is ready and is available for imme-
diate allocation, provided its capacity is not exhausted; An OFFLINE resource
could be made ONLINE after its constraints are satisfied. A FAILED resource
cannot be made available just by satisfying its constraints. The FAILED state
is indicative of either a failure because of an error condition or unavailability
because of administrative servicing requirements.

Finally, we note that throughout the paper we use the term end users to
mean the cluster administrators, the applications that use the cluster services,
or the end users in the conventional sense. In practice, cluster administrators
and high level applications tend to be the real users of the services provided by
Mounties.

3 The Mounties Approach

As described in the introductory section, Mounties introduces a constraint-based
methodology for the cluster configuration, startup and recovery of applications
and other higher level resources. The constraints are used to build relationships
among supporting and dependent resources/services. Under this approach, the
heterogeneity and nonuniformity of the physical cluster are replaced by the con-
sistent and single-system like service views. This is further enhanced by providing
higher-level abstractions that allow end users to express requirements and ob-
jectives that are tailored to a particular cluster and the organization using the
cluster.

3.1 Basic Rules and Abstractions

In a cluster, certain services are expected to be normally available. In Mounties,
this is expressed by means of a resource attribute called the NominalState. The
NominalState acts as a constraint for one or more resources in the cluster and

Services for Managing Distributed Resources 353

this information becomes a part of the cluster definition. To indicate the normal
availability of the services of a resource, the NominalState of that resource is set
to ONLINE. This constraint is satisfied when the State of that resource is ON-
LINE. Furthermore, the ONLINE NominalState implies that every effort must
be made to keep that service ONLINE. Similarly, a NominalState of OFFLINE
is sometimes desirable; e.g., for servicing a resource or when the cost of keeping
a resource on-line all the time is too high.

When a resource or service has an ONLINE NominalState, the cluster man-
agement system needs to be informed about how the resource or service can be
brought on-line. Typically, most services or applications depend on other lower
level services or resources. Mounties provides two main abstractions for express-
ing the inter-resource dependencies: the DependsOn relationship and the Collo-
catedWith relationship. Resource A DependsOn B if services of Resource B are
needed for the liveliness of A. Note that a resource or an application may require
services of more than one type of other resources. Generally these services may
be available anywhere in the cluster. In certain cases, only the services provided
by local resources can be used. To express such a location specific constraint a
CollocatedWith relationship is used. For example, Resource A CollocatedWith
B means Resource A must have the same location as that of B; i.e., they must
reside on the same node. Note that services of B may be available at more than
one location. In that case, there is a choice and a decision has to be made about
the location that is to be picked. Similarly, sometimes it is desirable not to locate
two resources on the same node. This is expressed by the Anti-CollocatedWith
constraint.

Mounties provides a new resource abstraction called an Equivalency. Infor-
mally, an equivalency is a set of resources with similar functionality, but pos-
sibly with different performance characteristics. It has a run-time semantics of
“choose one of these”. Since the selection of the most appropriate resource from
an equivalency depends on the cluster-state, the concept of equivalencies pro-
vides Mounties with a strong and flexible method to meet the service goals of the
cluster. With this abstraction, the end-user is freed from making ad-hoc deci-
sions and allows Mounties to choose the most appropriate resource based on the
conditions at run-time. An equivalency can also be associated with a weighting
function, called a policy. A policy can guide, but not force, the decision- making
mechanism within Mounties towards a particular selection based on end-user
preferences or advanced knowledge about the system. Since an equivalency can
be treated as a resource, it maintains uniformity in specifying constraints and
at the same time allows specification of multiple options that can be utilized at
run-time.

Finally, Mounties provides abstractions for defining business objectives or
goals of how the resources in the cluster are to be managed and configured.
These objectives typically consist of maintaining availability of cluster services
and of individual resources in a prioritized manner, allocation of resources so as
to balance the load or services, or delivering a level of service within a specified
range, and so on.

354 Sameh A. Fakhouri et al.

3.2 Management and Coordination of Resources

At the lowest levels, all resources are manipulated in a programmable manner or
from the command line. Mounties divides the work such that the decision mak-
ing and resource allocation processes (which require global knowledge about the
cluster) are distinct from the resource monitoring, controlling, and manipulating
processes (which require resource specific information) such as the resource man-
agers. This encapsulation of resource manipulation gives flexibility and requires
no special programming in order to add an application into the cluster once its
resource manager is available. For the purpose of this paper, we will not focus
on the topic of resource managers.

Mounties gathers and maintains information about the cluster configuration
and the dependency information for each resource at cluster startup or whenever
a new resource or application is introduced in the cluster. A continuous event
notification and heartbeat mechanisms are also needed for monitoring cluster-
wide activities. Using these mechanisms, Mounties continuously monitors the
cluster-wide events and compares the current cluster-state with the desired state.
Whenever there are discrepancies between the two, the best possible realignment
of resources is sought after taking into account the conditions existing in the
cluster and the desired cluster-wide objectives. If a new realignment of resources
can lead to a better configuration, commands are issued to the resources to bring
about the desired changes.

We now illustrate these concepts using a simple, but realistic example.

3.3 An Example

Our example involves a cluster of three nodes shown in Fig. 1. Both Node 0 and
Node 1 have disk adapters that connect them to a shared disk which holds a
database. Each node has a network adapter which connects it to the network.
The services of this cluster are used by a Web Server as shown in Fig. 2.

The hardware and software components shown the Fig. 1 are defined to
Mounties along with their attributes and are treated as resources. For example,
the disk adapter 0 has the following attributes:

Disk Adapter 0 Attributes
{

Capacity = 1
Priority = 2.0

}

The nodes and other adapters in the system are defined to Mounties in a similar
manner. Using these basic resources, a set of equivalencies are defined. As ex-
plained earlier, an equivalency is a grouping of the same type of resources and is
treated as an abstract resource. In our example, Equivalency 1 groups the two
disk adapters into one new resource. Similarly, Equivalency 2 groups the three
network adapters into one new resource.

Services for Managing Distributed Resources 355

Node 0 Node 2Node 1

Database

Disk

Adapter 0

Disk

Adapter 1

Network

Adapter 0

Network

Adapter 1

Network

Adapter 2

Network

Disk

Adapter 0

Disk

Adapter 1Equivalency 1

Network

Adapter 0

Network

Adapter 1

Network

Adapter 2

Equivalency 2

Fig. 1. An example cluster configuration managed by Mounties

The database itself has two engines that can be brought on-line only on the
nodes with both disk and network adapters. Figure 2 shows the dependencies
for the two database management engines. Database engine 0 has the following
attributes:

Database 0 Attributes
{

NominalState = ONLINE
Priority = 8.0
DependsOn = Equivalency 1, Equivalency 2
CollocatedWith = Equivalency 1,Equivalency 2

}

Database engine 1 is defined in the same manner. Aside from having a relatively
high priority of 8, both engines have a NominalState of ONLINE. This indicates
to Mounties that it should try an keep them both ONLINE at all times. In
addition, the database engines have dependencies and collocation constraints on
both Equivalency 1 and 2. Both constraints are represented in Fig. 2 by the
bi-directional arrows linking the Database engines to the Equivalencies.

Mounties represents these constraints as follows: For each Database engine
to be online we need a Disk Adapter, a Network Adapter and they must be
located on the same node as the Database engine. So, if Mounties were to pick
Disk Adapter 0 from Equivalency 1 to satisfy the requirements of Database 1
for a disk adapter, the collocation constraint will force it to also pick Network
Adapter 0 from the Equivalency 2. So, to make Database 1 ONLINE, Mounties
would perform the following allocations:

356 Sameh A. Fakhouri et al.

Disk

Adapter 0

Disk

Adapter 1

Equivalency 1

Network

Adapter 0

Network

Adapter 1

Network

Adapter 2

Equivalency 2

Database 1 Database 2

Web Server

Database

1

Database

2

Equivalency 3

Fig. 2. Dependencies for a Web Server supported by the example cluster of Fig. 1

Database 1
{

From Equivalency 1 = Disk Adapter 0
From Equivalency 2 = Network Adapter 0
Node Assignment = Node 0

}

These allocations satisfy all the constraints of Database 1, therefore it can
be brought ONLINE. When allocating resources for Database 2, neither Disk
Adapter 0 nor Network Adapter 0 are eligible because their capacity is exhausted.
Mounties cannot allocate Network Adapter 2 from Equivalency 2, since there is
no Disk Adapter on Node 2 that would satisfy the collocation constraint. The
only choice then is the following allocations for Database 2:

Database 2
{

From Equivalency 1 = Disk Adapter 1
From Equivalency 2 = Network Adapter 1
Node Assignment = Node 1

}

These allocations satisfy all the constraints of Database 2, therefore it can be
brought ONLINE.

Figure 2 also shows Equivalency 3, which contains both Database engines.
Shown also is a new resource, Web Server which has the following attributes:

Services for Managing Distributed Resources 357

Web Server Attributes
{

Nominal State = ONLINE
Priority = 6.0
DependsOn = Equivalency 2, Equivalency 3
CollocatedWith = Equivalency 2

}

The dependency and collocation constraints are shown with the bi-directional
arrows linking the Web Server to Equivalency 2. The dependency is shown with
the uni-directional arrow linking the Web Server to Equivalency 3.

Given the previous assignments that Mounties made to bring the Database
engines up (i.e., make their State ONLINE), the only available Network Adapter
from Equivalency 2 is Network Adapter 2. To satisfy the Web Server’s depen-
dency on Equivalency 3, Mounties could pick Database 1. So, to bring the Web
Server to the ONLINE state, Mounties would perform the following allocations:

Web Server
{

From Equivalency 2 = Network Adapter 2
From Equivalency 3 = Database 1
Node Assignment = Node 2

}

This completes the resource allocations necessary to bring all resources to the
ONLINE state. While running, if Database 1 should fail for any reason, Mounties
would switch the Web Server over to Database 2 and thus keep it ONLINE.

We note here that in the above, we have described the decision making pro-
cess in an intuitive manner. In Mounties, this process is formalized by modeling
the problem as an optimization problem with specific objective functions defined
by cluster administrators. The optimization problem encapsulates all the rele-
vant constraints for the cluster resources along with desired cluster objective.
Good solution techniques invariable involve performing global optimization.

4 Mounties Design Overview

In previous section, we have discussed the resource management concepts used
in Mounties. We now describe the Mounties architecture and its design in some
detail, and provide rationale for our design decisions where appropriate.

A cluster is a dynamically evolving system and is constantly subject to
changes in its state because of the spontaneous and concurrent behavior of the
cluster resources, random and unpredictable nature of the demands on the ser-
vices, and the interactions with end users. At the same time, a cluster is expected
to respond in a well-defined manner to events that seek to change the cluster-
state. Some of these events are:

358 Sameh A. Fakhouri et al.

1. Individual resource related events such as: resource is currently unavailable;
unavailable resource has become available; a new resource has joined the
cluster; a resource has (permanently) left the cluster.

2. Feedback response to a cluster manager command: successful execution of a
command such as go online or go offline; failure to execute such a command.

3. End user interactions and directives: cluster startup and shutdown; resource
isolation and shutdown; manual overrides for cluster configurations; move-
ment of individual and/or a group of resources; changes in dependency def-
initions and constraint definitions among resources; updates to business ob-
jectives; requests leading to what-if type of analysis, and status queries.

4. Resource groups related events, or virtual events, which arise from a combi-
nation of events/feedback related to individual resources.

5. Alerts and alarms from service and load monitors.

With these dynamic changes taking place in the background, a cluster man-
ager such as Mounties is required to make resource allocation and other changes
such that the predefined global objectives are met in the best possible manner,
while resource specific constraints are obeyed. The resource specific constraints
usually limit the number of ways in which the resources in the cluster can be con-
figured. These constraints include capacity constraints, dependency constraints,
location constraints, and so on. The objectives and the constraints lead to a
solution of a global optimization problem that must be solved in soft real-time.
This requires an efficient decision making component and a set of services that
form an efficient middleware connecting the resources with the decision mak-
ing component. Before describing how these components can be designed, first
we describe the overall clustering environment in which a system like Mounties
operates.

Mounties

Central

RMgr
RMgr

RMgr

Event

Facility

Commands

Events

Mounties

Agent

Cluster Infrastructure

E
vents

TS RM GS

Registry

Fig. 3. Mounties design and its relationship cluster services for high availability

Services for Managing Distributed Resources 359

4.1 Cluster Infrastructure

The Mounties system as described here can be used as an application/resource
management system or as a subsystem for guaranteeing high availability and
quality-of-service for other components in the cluster. When used an applica-
tion/resource management system, the Mounties system described here can ba-
sically be used in a stand-alone mode. When used as a guarantor of dependable
services, a few other cluster services are required. In Fig. 3, we illustrate a con-
ceptual design of Mounties on the top of basic high availability services. Using
these services, Mounties can then be used as an intelligent mechanism for guaran-
teeing high availability. Note that the basic cluster services that Mounties would
depend on are provided as standard services in state-of-the-art clusters such as
IBM’s SP-2 System [6,7]. As shown in Fig. 3, four additional cluster services are
needed to ensure high availability: (1) a persistent Cluster Registry (CR) to store
and retrieve the configuration of the resources; (2) a mechanism called Topol-
ogy Services (TS) for detecting node and communication adapter failures; (3) a
mechanism for Reliable Messaging (RM) for important communication between
Mounties Central and all the other Mounties Agents; and (4) a Group Services
(GS) facility for electing a leader (i.e., Mounties Central) at cluster initialization
and whenever an existing leader is unable to provide its services (because of a
node failure, for example). We note here that the Mounties Repository and the
Event Notification services (described in the next section) can be embellished
to incorporate the functions provided by Cluster Registry and Reliable Messag-
ing. Similarly, a customized version of Group Services can be designed into the
Mounties architecture to monitor and elect Mounties Central.

4.2 Internals of Mounties Design

Overview and the Ideal. In brief terms, designing the internals of the manager
described thus far is an exercise in coming up with software that can coordinate
the following choreography: Events arise asynchronously, throughout the cluster.
They are delivered to the coordinator (such as an ideal version of Mounties) using
pipelined communication channels. The coordinator is programmed to respond
to events in the context of a semi-static definition of the cluster, that consists
of dependencies, constraints, objective functions etc. The coordinator’s decision-
making component, basically an optimizer, has to combine the dynamic events
with the semi-static definition in order to arrive at a response to events. The
response has to translate into simple commands to resources such as go ONLINE
and go OFFLINE. The coordinator sends its commands to resources at the
same time as when various events arise and traverse the cluster. The commands
are also sent using pipelined communication channels. Thus there is a basic
dichotomy in the activity of coordinating the choreography. At the one end there
is the cluster of resources and the events it generates. At the other end there is
the decision-making optimizer. In between the two is middleware that along one
path, collects, transports, and fine-tunes events for the decision-maker, and on

360 Sameh A. Fakhouri et al.

the reverse path, decomposes the decisions of the decision-maker into commands
that are then transported to the individual cluster resources.

Ideally, the coordinator reacts to the events instantaneously. It is able to
account for faults in command execution–not all commands may succeed–along
with being able to respond to events and command feedback in a real-time man-
ner. Suppose the ideal coordinator is an infinitely fast computation engine. In
this case, the choreography becomes a seamless movement of events, commands,
and commands feedback in a pipelined/systolic manner throughout the cluster.
Events and feedback upon arrival at the coordinator get transformed instanta-
neously into commands that in turn get placed on channels to various resources.
The coordinator is able to ensure that globally-optimal solutions get deployed
in the cluster in response to cluster events.

In Mounties, the ideal coordinator as described above is approximated by
one active Mounties Central that resides on one node to which all events and
command feedback get directed. Mounties Central can change or migrate in
response to say node failure. However, at one time, only one Mounties Central
is active.

Command Execution Model. The next definition we add in deriving our
practical system from the ideal alluded to above is a command execution model.
The model builds fault tolerance and simplicity in the execution of commands
by sacrificing pipelining. It uses the following protocol: A command contains
all the state needed for its execution by a resource manager. A command is
only a simple directive to a resource manager; e.g., “go ONLINE using X, Y, Z
resources”, or “go OFFLINE”, and no more. A resource manager does not need
a computation engine to handle conditional behavior or context evaluation at
its site. To achieve this, no new command is sent out until Mounties is aware of
the positive outcome of the commands that the execution of the new command
depends on. It is up to Mounties Central to make the best use of the command
feedback it receives in order to minimize command failure. So for example, after
receiving an “go ONLINE” command, a resource manager need not find out
whether its supporting resources are actually up. The resource manager should
simply assume that to be the case. In general, the more effective Mounties is in
managing such assumptions, more efficient is the overall resource coordination.
Clearly, one of the things Mounties Central has to do is to issue the commands
in the partial order given by dependencies. Thus, in order for a resource to be
asked to go on-line, its planned supporting resources have to be brought up
first. Only after that the resource is to be asked to go on-line using the specific
supporting resources. Similarly, before bringing down a resource, all the resources
dependent on that resource must be brought down first. The existing and the
planned dependencies in the cluster thus enforce a dataflow or partial order on
the execution of the commands.

The above command execution model imposes minimal requirements on
resource managers. This allows our system to coordinate heterogeneous and
variously-sourced resources without requiring unnecessary standardization on

Services for Managing Distributed Resources 361

the implementation of resource managers. The command execution proceeds in
a dataflow or frontier-by-frontier manner. Within a frontier, commands do not
depend on one another, and thus can proceed concurrently. A preceding frontier
comprises of commands whose execution results are needed for the succeeding
frontier. For bringing up resources, the frontiers are arranged bottom up, from
the leaves to root(s), while for bringing down resources, the order is reversed.
For example, in shutting down the cluster in the example of Sect. 3.3, the first
the web server has to be brought down. The next frontier comprises of the two
databases and either can be brought down before the other. On the other hand,
in bringing up the same cluster, the order of the frontiers is reversed and the web
server is the last entity on which an up command gets executed. Note that order-
ing of the frontiers does not imply synchronized execution. Individual commands
in a frontier are issued as soon as the corresponding commands in the preced-
ing frontiers are executed successfully. Although commands across frontiers are
not pipelined, no artificial serialization is introduced either. The system remains
as asynchronous and concurrent as it can within the bounds of the commands
model described above.

Realizable Decision Making. An infinitely-fast or zero-time computation
engine is not realizable. Since the optimization decisions involve solution of NP-
hard problems [9], even an attempt at approximating zero time, or say hard
real time, for solving the optimization problem is not possible. The approach
we follow embraces global heuristic solutions that can be arrived at in soft real
time. The computationally intensive nature of the decision making component
predisposes us towards persisting with a previously derived global solution even
when there are a limited number of command failures. It is not computationally-
efficient to chart a totally new global course every time there is a command
failure. So for example, when a resource refuses to go ONLINE, Mounties looks
for an auxiliary solution from within the proposed solution that can substitute
for the failed resource. For example, a lightly-loaded resource can (and does)
replace a failed resource in case the two belong to the same equivalency. Auxiliary
solutions are local in nature. If the finally deployed solution turns out to have
too many auxiliary solutions, then the quality of the solution is expected to
suffer. To avoid the configuration to deviate too far from the globally optimal
solution, Mounties recomputes a global solution whenever the objective value
of the deployed solution is below a certain value as compared to the proposed
solution. This is done by feeding back an artificially-generated event that forces
recomputing the global solution. In summary, Mounties does not attempt to
maintain a globally-optimal cluster configuration at all times. Instead, Mounties
looks for global approximations for the same. The obvious tradeoff here is using
a suboptimal solution versus keeping one or more cluster services unavailable
while the optimal solution is being computed. The tradeoff could be unfavorable
for Mounties in a relatively uneventful and simple clusters where resources take
relatively long time to execute “go ONLINE” and “go OFFLINE” commands as

362 Sameh A. Fakhouri et al.

compared to the time spent in determining optimal solution. For such clusters,
it would be of merit to recompute a globally optimal cluster configuration.

Computing a globally optimal solution based on the constraints and the
current state of cluster, is a significant function of Mounties. The resulting op-
timization problem can be cast as an abstract optimization problem that can
be solved using many well known techniques such as combinatorial optimiza-
tion methods, mathematical programming and genetic/evolutionary methods.
For that reason and to bring modularity to the design, in Mounties, we treat
that as a separate module and is called, the Global Optimizer or simply, the
Optimizer. It is designed with a purely functional interface to the rest of the
system. A detailed discussion of the Optimizer is beyond the purview of this
paper and is discussed elsewhere [9,10]. The interface to the Optimizer module
completely isolates it from effects of concurrent cluster events on its input. A
snapshot of the current cluster-state, which incorporates all events that have
been recorded till the time of the snapshot, is created and handed over to the
Optimizer. The metaphor snapshot is meaningful since once taken, the snapshot
does not change even if new events occur in the cluster. The snapshot is thus
referentially transparent, i.e., purely functional and non-imperative, and refer-
ences to a particular snapshot return the same data time after time. Given a
snapshot, the Optimizer proceeds with its work of proposing an approximately
optimal cluster configuration that takes into account the current context and
the long-term objectives defined for the cluster.

Just as the Optimizer is not invoked whenever a new cluster event arrives, it
may not be interrupted if a new event arrives while it is computing a new global
solution. This is primarily to maintain simplicity in the design and implemen-
tation. Thus, when the Optimizer returns a solution, the state of the cluster,
as perceived by Mounties, may not be the same as the state at the time the
optimizer is invoked and that the results produced may be stale. Our system
however does try to make up for exclusion of newer events by aligning the solu-
tions proposed by the optimizer with any events that may have arrived during
the time the solutions were being created. Such an alignment however, is local
in nature. Over longer time intervals, the effects of newer events get reflected in
the global solutions computed subsequently.

Because of the nature of the problem, simple rule-based heuristics can be used
to make local optimization decisions prior to invoking the Optimizer. Such pre-
processing can significantly reduce the turnaround time in responding to events.
The preprocessing step is also necessary for isolating the Optimizer from the on
going changes in the system. This is referred to as the Preprocessor. Specifically,
the Preprocessor waits on a queue of incoming events and then processes an
eligible event all by itself or hands down a preprocessed version of the prob-
lem to the Optimizer. The decisions from the Optimizer or the Preprocessor
are directed to a module called the Postprocessor, which is the center of the
command generation and execution machinery. Figure 4 shows the interactions
among the Preprocessor, the Optimizer, the Postprocessor, and other modules.
These modules are discussed in detail next.

Services for Managing Distributed Resources 363

Optimizer

Evaluator & Decision

Processing Service

Pre-Processor

Post-Processor

Gossamers

Repository

Event Handling

E
vents F

rom

E
vent Facility

Fig. 4. Mounties Central: internal design

5 Main Services

5.1 The Resource Repository

The Repository of resource objects provides a local, somewhat minimal, and
abstract representation of the cluster. The repository cache is coherent with
the actual cluster to the extent that cluster events are successfully generated
and reported to Mounties. Mounties does safe/conservative cluster management
without any assumptions of: (a) completeness of the set of events received by it;
(b) correctness of any of the events received by it; and (c) (firm) significance of
the temporal ordering of the events received by it. Generally, the effectiveness
and efficiency of management depends upon the completeness, correctness, and
speed with which events are reported to Mounties, but Mounties does not be-
come unsafe even if event reporting degrades. Within the above event-reporting
context, Mounties does assume ownership of the management process, so re-
sources are not expected to configure themselves independently of Mounties.
If the context requires say human intervention and direct configuration of re-
sources, then either this can be routed through Mounties, or the semantics of
the events reported to Mounties modified so that Mounties remains conservative
in its actions.

Regardless of its current state, the repository is updated with an event before
the preprocessor is informed. The updating of the repository is an atomic act:
readers of the repository either see the update fully, or not at all. The repository
is partitioned, and individual resource objects can be accessed individually, so
the synchronization requirements of such updating are limited. Partitioning of
the repository serves many purposes, including permitting higher concurrent
access and better memory use and reduced traversal and searching costs.

Resource objects in the repository contain only a few fields representing nec-
essary information such as current status, desired status, and the current sup-

364 Sameh A. Fakhouri et al.

ports of the resource, etc. Snapshot related information (e.g., a time-stamp when
the last snapshot was taken and is the object now ready for another snapshot)
as well information on the planned actions to be taken are also stored in the
resource objects. Since the repository is read and modified concurrently, it is
mandatory to reason about all possible combinations of concurrent actions that
can take place in the repository so that no erroneous combination slips through.
This is carried out by (a) restricting the concurrent access and modifications to
only a small set of states in the resource objects, and (b) establishing/identifying
invariants and other useful properties of these fields such as monotonicity. For
example, we know that cluster events can only change the state of a resource
from on-line to off-line or failed and not from failed to on-line since the change
to on-line from any state requires a Mounties command.

5.2 The Evaluator and Decision Processing Mechanisms

The Preprocessor. As shown in Fig. 4, events arrive from the cluster and are
recorded in the repository module. If an event needs attention by the Prepro-
cessor, then the event is also placed in the input queue of the Preprocessor after
it has been recorded in the repository. When there are one or more events in its
input queue, the Preprocessor creates a snapshot of the relevant cluster-state by
identifying and making a copy of the affected part of the repository. While the
repository is constantly updated by new events, the snapshot remains unaffected.
Any further processing, in response to the event, takes place using the informa-
tion encapsulated in the snapshot. Note that the snapshot may capture some of
the events that are yet to show up in the Preprocessor queue. Since the reposi-
tory is more up-to-date, the Preprocessor treats the snapshot as representative
of all the events received so far. Note also that because of the atomic nature of
the updates to the repository, a snapshot captures an atomic event entirely, or
leaves it out completely. For identifying the part of the repository affected by an
event, the Preprocessor partitions the cluster resources into disjoint components,
called islands, by using the constraint graphs formed by the resource dependen-
cies and collocation constraints. Clearly, an event cannot directly, or indirectly
affect resources outside its own island. Such partitioning also serves the purpose
as an optimization step prior to applying the global optimization step, by cre-
ating multiple smaller size problems, which are less expensive to solve. This is
especially beneficial at cluster startup time, when each island can be processed
as a small cluster.

Preprocessing includes many more activities: excluding ineligible events (an
event can be ineligible for reasons like Mounties is busy with processing a previ-
ous snapshot comprising the event’s related resources, and thus processing the
same resources in another snapshot may lead to divergent action plans which
cannot be reconciled); clubbing multiple events (in conjunction with the repos-
itory’s predisposition) into a larger event; optimizing the snapshot associated
with one or more events so that either the event can be handled directly by the
Preprocessor, or can be posed as an optimization problem to the Optimizer. A
somewhat advanced, but optional treatment of the Preprocessor is to partially

Services for Managing Distributed Resources 365

evaluate an event using a basic set of rules so as to reduce the amount of pro-
cessing done by the Optimizer. In general, this can lead to globally non-optimal
solutions, but in many instances simple rules can be constructed and embedded
in the Preprocessor so as to keep the solutions globally optimal while reducing
the load on the Optimizer.

5.3 The Postprocessor

Using the cluster status contained in a snapshot, a new cluster configuration is
created by either the preprocessor alone, or by the preprocessor and the optimizer
jointly . The configuration primarily indicates the supporting resources to be
used in on-lining the resources in the snapshot. The solution is in the form of
a graph, outlining the choices to be made in bringing up the resources in the
snapshot. Note that, in the cluster, some of these resources may be yet to be
configured; some other resources may already be configured and up, as desired
by the solution, while the remaining resources may be configured differently and
may require alterations. The postprocessor takes this into account and partitions
this solution graph into one or more disjoint components that are then handled
by simple finite-automaton like machines called the up- and down-gossamers.
Commands within a disjoint region are executed in a pipelined or concurrent
manner, as discussed earlier. Across disjoint regions these can be carried out
concurrently.

When the Postprocessor picks up a solution to translate into commands and
control machinery (one or more gossamers), the Postprocessor notes into the
repository the availability of the resources comprising the solution for new anal-
ysis. This makes events related to these resources eligible for preprocessing (see
above). For Mounties Central supported by a single-processor node, a convenient
task size for the Postprocessor is from picking up a solution to the creation of gos-
samers related to the solution. The Postprocessor can make auxiliary solutions
available to a gossamer as the following. If a resource cannot come up because
of a failure of one or more issued commands and a suitable alternative resource
exists (with spare capacity to support another dependent resource) then that
alternative is treated as an auxiliary solution.

The Gossamers. Each gossamer is a simple finite-automaton like machine,
which is responsible for changing the state of its set of resources to ONLINE
or OFFLINE and follows the dataflow order. Simultaneous execution by mul-
tiple gossamers brings a high-degree of concurrency to the execution process.
The simplicity in their design allows these entities to be spawned just like aux-
iliary devices while the more interesting and “thinking” work is kept within the
other modules (e.g., the Postprocessor). A gossamer executes its commands by
“wiring up” the relevant part of the repository with the solution-set assigned to
it. Mounties attempts to bring down a resource only after it has confirmed that
all resources dependent on such a resource are currently down. A “go ONLINE”
command for a resource is dispatched only after receiving positive acknowl-
edgements for all the supporting resources, and checking that the supporting

366 Sameh A. Fakhouri et al.

resources have enough capacity for the upcoming resource (i.e. all necessary
resource downs have occurred). This naturally leads to the execution of the
commands in a dataflow manner.

The process of on-lining and off-lining of resources in unrelated parts of
a solution can proceed simultaneously in a distributed manner. If a resource
fails to come up after being asked to do so, the related gossamer asks (the
Postprocessor) for auxiliary solutions for the same resource in trying to bring
dependent resources of the same up, upon their individual turns.

5.4 Other Services

The Event Notification and Event Handler Mechanisms. Mounties Cen-
tral and Mounties Agents are associated with a component of the Event Handler.
We use Java RMI layer as the event notification mechanism. The central handler
gets requests from the agents, which are serialized automatically by Java RMI
and communicates back with the agents, again using Java RMI. Because we use
the standard services provided by Java RMI, we do not describe those in detail
here. We note here that the more reliable event notification mechanisms can
replace the RMI-based event notification layer, in a straightforward manner. All
resource managers in the cluster, various Mounties agents, and Mounties Cen-
tral, as well as Mounties GUI all are glued together by the event notification
mechanism. We describe the GUI component in some details here.

Mounties GUI. The GUI displays various graphical views of the cluster to the
end user, in response to the submitted queries and commands. These requests
are routed through the Event Notification mechanism. Java’s EventDespatcher
thread writes the request in the form of an event in an input queue of the Even-
tHandler. The EventHandler then requests for the required data from Mounties
Central. When the necessary information is received, the EventHandler commu-
nicates the same to the Mounties agent that local to the node where the initial
request came from. The actual rendering is then done by the GUI. The two-way
communication between the local Mounties agent and the Mounties Central is
done over a layer of Java RMI. Using the GUI, the user can view many of the
important characteristics of the resources being managed.

6 Structuring Mounties Implementation

Implementation of Mounties architecture and design imposes a challenging re-
quirement for the software developer–the challenge being how to ensure that
the software developed is correct, robust, extensible, maintainable, and efficient
enough to meet soft real-time constraints. In this section, we describe a pro-
gramming paradigm that is well suited to meet these requirements.

A concurrent specification is naturally suited to Mounties and is more likely
to yield a verifiably correct and robust implementation of the system. A sim-
ple and concurrent implementation of Mounties would comprise of a CSP-style

Services for Managing Distributed Resources 367

process [5] for each functional block described earlier. Each such process would
then communicate with other processes via communication channels, and the
entire operation would then proceed in a pipelined manner. Such a specification
however can suffer from two problems: (a) complexities associated with manag-
ing parallelism including state sharing and synchronization, and (b) inefficiency
of fine-grained parallelism. Both of these problems can be addressed by using a
different approach than the CSP approach, as described in the following. The
approach described here enables a variable-concurrency specification of Mounties
and is consistent with the overall operational semantics of Mounties described
previously. The paradigm also provides a few additional benefits such as: ef-
ficiency and ease in performance tuning; simple extensions to simulate events
using cloned copies of the repository; flexibility and amenability to changes in
functionality (e.g., adding more Preprocessor smarts).

6.1 Efficient and Flexible Concurrent Programming

The paradigm comprises of an approach of defining relatively short lived, dy-
namic, concurrent tasks wherein the tasks can be in-lined. In the limit of this
approach, all of the tasks can be in-lined, resulting in a sequential implementa-
tion of the system. The key issue in this approach is not to compromise on the
natural concurrency in the description of the system while defining the dynamic,
concurrent tasks, and task in-lining.

In this paradigm, computations are broken into a set of atomic tasks. Tasks
are defined such that (a) each task is computationally significant as compared to
the bookkeeping costs of managing parallelism; and (b) each task forms a natural
unit of computation so that its specification is natural and straightforward. In
initial prototyping, (b) can overrule (a), so that correctness considerations of
initial work can override performance considerations. Each atomic computation
described in a detailed Mounties semantics has to be contained in a task from
this set of atomic tasks. Although this is an optimization and not a requirement,
for reducing context-switching costs, the computation of a task should proceed
with thread-preemption/task-preemption disabled.

Under this paradigm, the operations within Mounties can proceed as fol-
lows. Each event from the event handler results in the creation of one or more
tasks, to be picked by the one or more threads implementing Mounties. The
tasks wait in an appropriate queue prior to being picked. In processing a task,
the thread/processor will compute it to completion, without switching to an-
other task. The task execution can result in one or more new tasks getting cre-
ated, which the thread will compute as and when it gets around to dealing with
them. So for example, say an event arises, that creates a Preprocessor-task. The
Preprocessor-task can end up creating an Optimizer-task, and a Postprocessor-
task. The Postprocessor-task can create gossamer-related tasks, and so on. Al-
lowing for performance tuning and also for later extensions, it may be desirable
for the Preprocessor to inline the Postprocessor task within itself and to create
the gossamer-related tasks directly, which can be done straightforwardly in this
paradigm since tasks are explicit and not tied to the executing threads.

368 Sameh A. Fakhouri et al.

In this programming paradigm, computation and communication are merged.
Generally a task is a procedure call, with its arguments representing the commu-
nicated, inter-process, channel data from the CSP model. In general inter-module
communication is carried out by task queues connecting the modules, wherein,
the scheduler is given the charge of executing a task for a module by causing a
thread to pick it up from the module’s incoming queue. Since in this paradigm,
just one thread can implement all the modules, it becomes possible to continue
thinking in terms of a purely sequential computation, and to avoid concurrency
complexity such as synchronization and locks. If this sequential exercise using
this paradigm is carried out in consistence with the Mounties choreography de-
scribed earlier, then a straightforward extension of the work to multi-threaded
implementation with thread safety is guaranteed. The accompanying complexity
of lock management and synchronization is straightforward.

7 Related Work

The Mounties system described here is of relevance to both the commercial
state-of-the-art products as well as to academic research in this area. First we
describe and compare the Mounties System with three important systems that
can be considered as the state-of-the-art: IBM’s HA/CMP, Microsoft’s MSCS,
Tivoli’s AMS system, and Sun’s Jini technology.

Application management middleware has traditionally been used for prod-
ucts that provide high availability such as IBM’s HA/CMP and Microsoft’s
Cluster Services (MSCS). HA/CMP’s application management requires cluster
resource configuration. Custom recovery scripts that are programmed separately
for each cluster installation are needed. Making changes to the recovery scheme or
to basic set of resource in the cluster requires these scripts to be re-programmed.
Finally, HA/CMP recovery programs are stored and executed synchronously on
all nodes of the cluster. MSCS provides a GUI-driven application manager across
a two-node cluster with a single shared resource: a shared disk [11]. These two
nodes are configured as a primary node and a backup node; the backup node is
used normally pure backup node and no service-oriented processing is performed
on it. Configuration and resource management is simplified with MSCS: there is
only one resource to manage with limited management capabilities.

Tivoli offers an Application Management Specification (AMS) mechanism,
which provides an ability to define and configure applications using the Tivoli
Application Response Measurement (ARM) API layer [12]. These applications
are referred to as instrumented applications. The information gathered from the
instrumented applications can be used to drive scripts by channeling the infor-
mation through the Tivoli Event Console (TEC). The TEC can be configured
to respond to specific application notification and initiate subsequent actions
upon application feedback. The current version of ARM application monitoring
is from a single system’s perspective. Future versions may include correlating
events among multiple systems.

Services for Managing Distributed Resources 369

Over the last few years several new efforts towards coordinating and manag-
ing services provided by heterogeneous set of resources in dynamically changing
environments. The examples of these include TSpaces [14] and the Jini Technol-
ogy [3]. The TSpaces technology provides messaging and database style repos-
itory services that can be used by other higher level services to manage and
coordinate resources in a distributed environment. Jini, on the other hand is
a collection of services for dynamically acquiring and relinquishing services of
other resources, for notifying availability of services, and for providing a uniform
means for interacting among a heterogeneous set of resources. Both TSpaces
and Jini technologies are complimentary to Mounties in the sense that they
both lack any systematic decision making and decision execution component.
However, the services provided by the Repository and Event Notification mech-
anisms in Mounties do overlap in functionality with the similar services provided
in TSpaces and Jini. Finally, there are several resource management systems for
distributed environments with decision-making capabilities. Darwin is an exam-
ple of such a system that performs resource allocations taking into account ap-
plication requirements [1]. Although there are similarities between Darwin and
Mounties, Mounties provides a much richer set of abstractions for expressing
complex dependency information among resources. Also, the Mounties system is
geared towards optimizing the allocation of services such that overall objectives
are met; in Darwin the goal seems to be more geared towards optimizing the
requirements of an application or of a service.

The Mounties services described here have some similarities with the Work-
flow management systems that are typically used in automating and coordinating
business processes such as customer order processing, product support, etc. As in
Mounties, workflow systems also involve coordination and monitoring of multiple
tasks that interact with one another in a complex manner [4]. Thus, the task and
data choreography can have similar implementation features. However, workflow
systems typically do not involve any type of global decision making component,
much less solution of an optimization problem resulting in commands for the
components of the system.

At the implementation level, Mounties software structuring approach or pro-
gramming paradigm provides a contrast with approaches such as CSP [5], and
Linda [2,13]. Briefly, in comparison to CSP, instead of defining static, concur-
rent tasks, our paradigm works with relatively short lived, dynamic, atomic tasks
that can be inlined. Since tasks in our approach are delinked from threads, our
approach has the advantage of allowing greater flexibility and control in soft-
ware development including variable and controlled concurrency, and a finer
level of control over task priority and data priority. In contrast to CSP, the
Linda approach and futures [8] provide a handle on dynamic threads, [8] pro-
vides a method of dynamic thread in-lining, and Linda in particular provides
a handle on a coordination structure, a tuplespace, that can straightforwardly
emulate and provide the equivalent of CSP channels for data communication.
Our paradigm is different from all these programming language approaches in
that it is an informal framework wherein implementation issues/idioms relevant

370 Sameh A. Fakhouri et al.

to Mounties-like systems find a convenient, and top-down expression, beyond
what these generic language approaches with their compiler/run-time support
provide. We leave a formalization of our paradigm as a language/framework for
say building domain-specific compilers as an exercise for the future.

8 Conclusions

In this paper, we have described the Mounties system that is designed to support
a diverse set of objectives including support for global cluster startup, resource
failure and recovery, guarantees for quality-of-service, load-balance, application
farm management, plug-and-configure style of management for the cluster re-
sources, and so on. The system itself is composed of multiple services and we
describe the design of the key services. The services described here are designed
to be general purpose and scalable. This modularity allows for substitution, at
run-time, by alternate services including alternate decision making components.
Moreover, the system is flexible enough to operate in a full auto pilot mode or
a human operator can control it partially or fully. The three services described
here (the repository services, the evaluation and execution services, and the event
notification services) are adaptable to changes in the system. New resources, con-
straints, and even new rules or policies can be defined and the system adjusts
the cluster-state around these changes. In that sense, these services are active
and dynamic components of the middleware. A fourth component of the system,
the Optimizer, is also capable of adjusting to such changes in the system. The
Optimizer, which is not described here, will be a topic of a separate publication.

Finally, we note here that the decision making capabilities and associated
support services are general enough to be applied in other scenarios including
in environments that are much more loosely coupled than clusters and that are
highly distributed such those encountered in mobile and pervasive computing
environments. In such environments, multiple independent decision support sys-
tems can co-exist in a cooperative and/or hierarchical manner. This is an area
we intend to explore in the future.

Acknowledgements

Many individuals have contributed to the concepts that lead to the Mounties
system as described in this paper. In particular the authors would like to thank
Peter Badovinatz, Tushar Chandra, and John Pershing, Jr. for many insightful
discussions. Many thanks to Rob Strom for his help in improving the style of
the paper.

Services for Managing Distributed Resources 371

References

1. P. Chandra, A. Fisher, C. Kosak, E. Ng, P. Steenkiste, E. Takahashi, and H. Zhang,
Darwin: Customizable Resource Management for Value-Added Network Services,
Proceedings of 6th International Conference on Network Protocols, pp. 177–188,
Oct. 1998. 369

2. N. Carriero, and D. Gelernter, Linda in Context, Communications of the ACM,
vol. 32, pp. 444–458, April 1989. 369

3. K. Edwards, Core JINI, The Sun Microsystems Press Java Series, 1999. 369
4. J. Halliday, S. Shrivastava, and S. Wheater, Implementing Support for Work Ac-

tivity Coordination within a Distributed Workflow System, Proceedings of 3rd
IEEE/OMG International Enterprise Distributed Object Computing Conference,
pp. 116–123, September, 1999. 369

5. C. Hoare, Communicating Sequential Processes, Prentice Hall International (U.K.)
Ltd., 1985. 367, 369

6. IBM Corp., RS/6000 SP High Availability Infrastructure, IBM Publication SG24–
4838, 1996. 359

7. IBM Corp., RS/6000 SP Monitoring: Keeping It Alive, IBM Publication SG24–
4873, 1997. 359

8. D. Kranz, R. Halstead, and E. Mohr, Mul-T: A High Performance Parallel Lisp,
Proceedings of the ACM Symposium on Programming Language Design and Im-
plementation, pages 81–91, June 1989. 369

9. K. Krishna and V. Naik, Application of Evolutionary Algorithms in Controlling
Semi-autonomous Mission-Critical Distributed Systems Proceedings of the Work-
shop on Frontiers in Evolutionary Algorithms (FEA200), Feb, 2000. 361, 362

10. V. Kumar and V. Naik, Modeling the Global Optimization Problem in Highly
Available Cluster Environments Submitted for publication, 2000. 362

11. M. Sportack, Windows NT Clustering BluePrints, SAMS Publishing, Indianapolis,
IN 46290, 1997. 368

12. Tivoli Corp., Tivoli and Application Management,
http://www.tivoli.com/products/documents/whitepapers/body map wp.html,
1999. 368

13. P. Varma, Compile-time analyses and run-time support for a higher order, dis-
tributed data-structures based, parallel language, University Microfilms Interna-
tional, Ann Arbor, Michigan, 1995. 369

14. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford, T Spaces, IBM Systems
Journal, pp. 454–474, vol. 37, 1998. 369

The Design and Performance of a Pluggable

Protocols Framework for Real-Time Distributed
Object Computing Middleware�

Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt,
Ossama Othman, and Jeff Parsons

Department of Computer Science, Washington University
St. Louis, MO 63130, USA

{coryan,fredk,schmidt,othman,parsons}@cs.wustl.edu

Abstract. To be an effective platform for performance-sensitive real-
time and embedded applications, off-the-shelf CORBA middleware must
preserve the communication-layer quality of service (QoS) properties of
applications end-to-end. However, the standard CORBA GIOP/IIOP in-
teroperability protocols are not well suited for applications that cannot
tolerate the message footprint size, latency, and jitter associated with
general-purpose messaging and transport protocols. It is essential, there-
fore, to develop standard pluggable protocols frameworks that allow cus-
tom messaging and transport protocols to be configured flexibly and used
transparently by applications.
This paper provides three contributions to research on pluggable proto-
cols frameworks for performance-sensitive distributed object computing
(DOC) middleware. First, we outline the key design challenges faced
by pluggable protocols developers. Second, we describe how we resolved
these challenges by developing a pluggable protocols framework for TAO,
which is our high-performance, real-time CORBA-compliant ORB.
Third, we present the results of benchmarks that pinpoint the impact
of TAO’s pluggable protocols framework on its end-to-end efficiency and
predictability.
Our results demonstrate how the application of optimizations and pat-
terns to DOC middleware can yield both highly flexible/reusable designs
and highly efficient/predictable implementations. In particular, the over-
all roundtrip latency of a TAO two-way method invocation using the
standard inter-ORB protocol and using a commercial, off-the-self Pen-
tium II Xeon 400 MHz workstation running in loopback mode is ∼189
µsecs. The ORB middleware accounts for approximately 48% or ∼90
µsecs of the total roundtrip latency. Using the specialized POSIX lo-
cal IPC protocol reduces roundtrip latency to ∼125 µsecs. These results
illustrate that (1) DOC middleware performance is largely an implemen-
tation detail and (2) the next-generation of optimized, standards-based
CORBA middleware can replace ad hoc and proprietary solutions.

Subject areas: Frameworks; Design Patterns; Distributed and Real-
Time Systems

� This work was supported in part by Boeing, DARPA contract 9701516, GDIS, NSF
grant NCR-9628218, Nortel, Siemens, and Sprint.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 372–395, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The Design and Performance of a Pluggable Protocols Framework 373

1 Introduction

Current trends and limitations: Three trends are shaping the future of commu-
nication application and system development. First, there is a movement away
from programming applications from scratch, using low-level protocols and op-
erating system APIs, to integrating applications, using reusable components [1],
such as ActiveX, Enterprise Java Beans (EJB), and CORBA components. Sec-
ond, there is great demand for DOC middleware that provides remote method
invocation and/or message-oriented middleware to simplify application compo-
nent collaboration [2]. Third, there are increasing efforts to define standard DOC
middleware, such as CORBA [3], that permits applications to interoperate seam-
lessly throughout heterogeneous networks and endsystems.

Standard DOC middleware now available off-the-shelf allows clients to invoke
operations on distributed components without concern for component location,
programming language, OS platform, communication protocols and intercon-
nects, or hardware [4]. However, off-the-shelf DOC middleware generally lacks
(1) support for QoS specification and enforcement, (2) integration with high-
speed networking technology, and (3) efficiency, predictability, and scalability
optimizations [5]. These omissions have limited the rate at which performance-
sensitive applications, such as video-on-demand, teleconferencing, and avionics
mission computing, have been developed to leverage advances in DOC middle-
ware.

Overcoming DOC middleware limitations with pluggable protocols: To address
the shortcomings of DOC middleware described above, we have developed The
ACE ORB (TAO) [5]. TAO is open-source,1 standards-based, high-performance,
real-time ORB endsystem DOC middleware that supports applications with de-
terministic and statistical QoS requirements, as well as “best-effort” require-
ments. TAO is the first ORB to support end-to-end QoS guarantees over
ATM/IP networks [6,7] and embedded backplanes [8,9].

We have used TAO to research many dimensions of high-performance and
real-time ORB endsystems, including static [5] and dynamic [10] scheduling,
request demultiplexing [11], event processing [8], ORB Core connection and
concurrency architectures [12], IDL compiler stub/skeleton optimizations [13],
systematic benchmarking of multiple ORBs [14], I/O subsystem integration [7],
and patterns for ORB extensibility [15]. This paper focuses on a previously
unexamined dimension in the high-performance and real-time ORB endsystem
design space: the design and implementation of a high-performance pluggable pro-
tocols framework for real-time communications middleware that can efficiently
and flexibly support high-speed protocols and networks, real-time embedded
system interconnects, and standard TCP/IP protocols over the Internet.

At the heart of TAO’s pluggable protocols framework is its patterns-oriented
OO design [16], which decouples TAO’s ORB messaging and transport interfaces
from its transport-specific protocol components. This design allows custom ORB

1 TAO is available at www.cs.wustl.edu/∼schmidt/TAO.html.

374 Carlos O’Ryan et al.

messaging and transport protocols to be configured flexibly and used transpar-
ently by CORBA applications. For example, if ORBs communicate over a high-
speed networking infrastructure, such as ATM AAL5 or specialized protocols like
HPPI, then simpler ORB messaging and transport protocols can be configured
to optimize unnecessary features and overhead of the standard CORBA General
Inter-ORB Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP). Likewise,
TAO’s pluggable protocols framework makes it straightforward to support cus-
tomized embedded system interconnects, such as CompactPCI or VME, under
standard CORBA inter-ORB protocols like GIOP.

For OO researchers and practitioners, the results in this paper are impor-
tant, because they demonstrate concretely that the ability of standards-based
DOC middleware to support high-performance, real-time systems is largely an
implementation detail, rather than an inherent liability. For instance, TAO’s
end-to-end latency overhead is only ∼110 µsecs using commercial off-the-self
200 MHz PowerPCs, a 320 Mbps VMEbus, and VxWorks, which is as fast, or
faster, than many ad hoc, proprietary solutions [9]. These results motivate the use
of well-tuned, standards-based DOC middleware, even for real-time embedded
applications with very stringent QoS requirements. The paper also explores how
patterns can be applied to resolve key design challenges. Our pattern-oriented
OO design can also be extended to other pluggable protocol frameworks, either
in standard middleware or in distributed applications using proprietary middle-
ware.

Paper organization: The remainder of this paper is organized as follows: Sec-
tion 2 motivates the requirements for standard CORBA pluggable protocols and
outlines TAO’s pluggable protocols framework; Section 3 describes the patterns
that guide the architecture of TAO’s pluggable protocols framework and resolve
key design challenges. Section 4 illustrates the performance characteristics of
TAO’s pluggable protocols framework; Section 5 compares TAO with related
work; and Section 6 presents concluding remarks.

2 The Design of a CORBA Pluggable Protocols
Framework

The CORBA specification provides a standard for general-purpose DOC middle-
ware. Within the scope of this specification, however, ORB implementors are free
to optimize internal data structures and algorithms [11]. Moreover, ORBs may
use specialized inter-ORB protocols and ORB services and still comply with the
CORBA specification.2 This section identifies contemporary limitations of and
requirements for protocol support in CORBA ORBs and describes how TAO’s
pluggable protocols framework is designed to overcome these limitations.

2 An ORB must implement GIOP/IIOP, however, to be interoperability-compliant.

The Design and Performance of a Pluggable Protocols Framework 375

2.1 Protocol Limitations of Conventional ORBs

CORBA’s standard GIOP/IIOP protocols are well suited for conventional re-
quest/response applications with best-effort QoS requirements [13]. They are
not well suited, however, for high-performance real-time and/or embedded ap-
plications that cannot tolerate the message footprint size of GIOP or the latency,
overhead, and jitter of the TCP/IP-based IIOP transport protocol. For instance,
TCP functionality, such as adaptive retransmissions, deferred transmissions, and
delayed acknowledgments, can cause excessive overhead and latency for real-time
applications [17]. Likewise, networking protocols, such as IPv4, lack the function-
ality of packet admission policies and rate control, which can lead to excessive
congestion and missed deadlines in networks and endsystems.

Therefore, applications with more stringent QoS requirements need opti-
mized protocol implementations, QoS-aware interfaces, custom presentations
layers, specialized memory management (e.g., shared memory between ORB
and I/O subsystem), and alternative transport programming APIs (e.g., sockets
vs. VIA [18]). Domains where highly optimized ORB messaging and transport
protocols are particularly important include (1) multimedia applications running
over high-speed networks, such as Gigabit Ethernet or ATM, and (2) real-time
applications running over embedded system interconnects, such as VME or Com-
pactPCI.

Conventional CORBA implementations have the following limitations that
make it hard for them to support performance-sensitive applications effectively:

1. Static protocol configurations: Conventional ORBs support a limited number
of statically configured protocols, typically only GIOP/IIOP over TCP/IP.

2. Lack of protocol control interfaces: Conventional ORBs do not allow appli-
cations to configure key protocol policies and properties, such as peak virtual
circuit bandwidth or cell pacing rate.

3. Single protocol support: Conventional ORBs do not support simultaneous use
of multiple inter-ORB messaging or transport protocols.

4. Lack of real-time protocol support: Conventional ORBs have limited or no
support for specifying and enforcing real-time protocol requirements across a
backplane, network, or Internet end-to-end.

2.2 Pluggable Protocols Framework Requirements

The limitations of conventional ORBs described in Section 2.1 make it hard
for developers to leverage existing implementations, expertise, and ORB opti-
mizations across projects or application domains. Defining a standard pluggable
protocols framework for CORBA ORBs is an effective way to address this prob-
lem. The requirements for such a pluggable protocols framework for CORBA
include the following:

376 Carlos O’Ryan et al.

1. Define standard, unobtrusive protocol configuration interfaces: To address lim-
itations of conventional ORBs, a pluggable protocols framework should define
a standard set of APIs to install ESIOPs and their transport-dependent com-
ponents. Most applications need not use this interface directly. Therefore, the
pluggable protocol interface should be exposed only to application developers
interested in defining new protocols or in configuring existing protocol imple-
mentations in new ways.

2. Use standard CORBA programming and control interfaces: To ensure applica-
tion portability, clients should program to standard application interfaces defined
in CORBA IDL, even if pluggable ORB messaging or transport protocols are
used. Likewise, object implementors need not be aware of the underlying frame-
work. Developers should be able to set policies, however, that control the ORB’s
choice of protocols and protocol properties. Moreover, these interfaces should
transparently support certain real-time ORB features, such as scatter/gather
I/O, optimized memory management, and strategized concurrency models [11].

3. Simultaneous use of multiple ORB messaging and transport protocols: To
address the lack of support for multiple inter-ORB protocols in conventional
ORBs, a pluggable protocols framework should support different messaging and
transport protocols simultaneously within an ORB endsystem. The framework
should transparently configure inter-ORB protocols either statically, i.e., during
ORB initialization [19], or dynamically, i.e., during ORB run-time [20].

4. Support for multiple address representations: This requirement addresses the
lack of support for multiple Inter-ORB protocols and dynamic protocol con-
figurations in conventional ORBs. For example, each pluggable protocol imple-
mentation can potentially have a different profile and object addressing scheme.
Therefore, a pluggable protocols framework should provide a general mechanism
to represent these disparate address formats transparently, while also supporting
standard IOR address representations efficiently.

5. Support CORBA 2.3 features and future enhancements: A pluggable protocol
framework should support CORBA 2.3 [21] features, such as object reference
forwarding, connection transparency, preservation of foreign IORs and profiles,
and the GIOP 1.2 protocol, in a manner that does not degrade end-to-end per-
formance and predictability. Moreover, a pluggable protocols framework should
accommodate future changes and enhancements to the CORBA specification,
such as (1) fault tolerance [22], which supports group communication, (2) real-
time CORBA [19], which includes features to reserve connection and threading
resources on a per-object basis, (3) asynchronous messaging [23], which exports
QoS policies to application developers, and (4) wireless access and mobility [24],
which defines lighterweight Inter-ORB protocols for low-bandwidth links.

6. Optimized inter-ORB bridging: A pluggable protocols framework should en-
sure that protocol implementors can create efficient, high-performance inter-
ORB in-line bridges. An in-line bridge converts inter-ORB messages or requests
from one type of IOP to another. This makes it possible to bridge disparate
ORB domains efficiently without incurring unnecessary context switching, syn-
chronization, or data movement.

The Design and Performance of a Pluggable Protocols Framework 377

7. Provide common protocol optimizations and real-time features: A pluggable
protocols framework should support features required by real-time CORBA ap-
plications [19], such as resource pre-allocation and reservation, end-to-end prior-
ity propagation, and mechanisms to control properties specific to real-time pro-
tocols. These features should be implemented without modifying the standard
CORBA programming APIs used by applications that do not possess real-time
QoS requirements.

8. Dynamic protocol bindings: To address the limitation of static protocol bind-
ings in conventional ORBs, a pluggable protocols frameworks should support
dynamic binding of specific ORB messaging protocols with specific instances of
ORB transport protocols. This design permits efficient and predictable configu-
rations for both standard and customized IOPs.

2.3 Architectural Overview of TAO’s Pluggable Protocols
Framework

To meet the requirements outlined in Section 2.2, we identified logical commu-
nication component layers within TAO, factored out common features, defined
general framework interfaces, and implemented components to support different
concrete inter-ORB protocols. Higher-level services in the ORB, such as stubs,
skeletons, and standard CORBA pseudo-objects, are decoupled from the imple-
mentation details of particular protocols, as shown in Figure 1. This decoupling

CLIENT

STUBS SKELETONS

TCP

MULTICAST

IOP

VMEUDP

ORB MESSAGING COMPONENT

ORB TRANSPORT ADAPTER COMPONENT

ESIOP

REAL-TIME

IOP
EMBEDDED

IOP

RELIABLE,
BYTE-STREAM

ATM
TCP

MEMORY

MANAGEMENT

CONCURRENCY

MODEL

OTHER

ORB
CORE

SERVICES

COMMUNICATION INFRASTRUCTURE
HIGH SPEED NETWORK INTERFACE

REAL-TIME I/O SUBSYSTEM

ORB MESSAGE

FACTORY

ORB TRANSPORT

ADAPTER FACTORY

OBJECT ADAPTER

GIOP GIOPLITE

ADAPTIVE Communication Environment (ACE)

OBJECT (SERVANT)operation (args)
IN ARGS

OUT ARGS & RETURN VALUE

POLICY

CONTROL

Fig. 1. TAO’s Pluggable Protocols Framework Architecture

is essential to resolve several limitations of conventional ORBs outlined in Sec-
tion 2.1, as well as to meet the requirements set forth in Section 2.2.

In general, the higher-level components and services of TAO use a facade [25]
interface to access the mechanisms provided by its pluggable protocols frame-
work. Thus, applications can (re)configure custom protocols without requiring
global changes to the ORB. Moreover, because applications typically access only

378 Carlos O’Ryan et al.

the standard CORBA APIs, TAO’s pluggable protocols framework can be en-
tirely transparent to CORBA application developers.

Figure 1 also illustrates the key components in TAO’s pluggable protocols
framework: (1) the ORB messaging component, (2) the ORB transport adapter
component, and (3) the ORB policy control component, which are outlined be-
low.

ORB Messaging Component This component is responsible for implement-
ing ORB messaging protocols, such as the standard CORBA GIOP ORB messag-
ing protocol, as well as custom ESIOPs. An ORB messaging protocol must define
a data representation, an ORB message format, an ORB transport protocol or
transport adapter, and an object addressing format. Within this framework,
ORB protocol developers are free to implement optimized Inter-ORB protocols
and enhanced transport adaptors, as long as the ORB interfaces are respected.

Each ORB messaging protocol implementation inherits from a common base
class that defines a uniform interface. This interface can be extended to include
new capabilities needed by special protocol-aware policies. For example, ORB
end-to-end resource reservation or priority negotiation can be implemented in an
ORB messaging component. TAO’s pluggable protocols framework ensures con-
sistent operational characteristics and enforces general IOP syntax and semantic
constraints, such as error handling.

In general it is not necessary to re-implement all aspects of an ORB messag-
ing protocol. For example, TAO has a highly optimized CDR implementation
that can be used by new protocols [11]. TAO’s CDR implementation contains
highly optimized memory allocation strategies and data type translations. Thus,
protocol developers can simply identify new memory or connection management
strategies that can be configured into the existing CDR components.

Another key part of TAO’s ORB messaging component is its message fac-
tories. During connection establishment, these factories instantiate objects that
implement various ORB messaging protocols. These objects are associated with
a specific connection and ORB transport adapter component, i.e., the object
that implements the component, for the duration of the connection.

ORB Transport Adapter Component This component maps a specific ORB
messaging protocol, such as GIOP or DCE-CIOP, onto a specific instance of an
underlying transport protocol, such as TCP or ATM. Figure 1 shows an example
in which TAO’s transport adapter maps the GIOP messaging protocol onto TCP
(this standard mapping is called IIOP). In this case, the ORB transport adapter
combined with TCP corresponds to the transport layer in the Internet reference
model. However, if ORBs are communicating over an embedded interconnect,
such as a VME bus, the bus driver and DMA controller provide the “transport
layer” in the communication infrastructure.

TAO’s ORB transport component accepts a byte stream from the ORB mes-
saging component, provides any additional processing required, and passes the
resulting data unit to the underlying communication infrastructure. Additional

The Design and Performance of a Pluggable Protocols Framework 379

processing that can be implemented by protocol developers includes (1) con-
currency strategies, (2) endsystem/network resource reservation protocols, (3)
high-performance techniques, such as zero-copy I/O, shared memory pools, peri-
odic I/O, and interface pooling, (4) enhancement of underlying communications
protocols, e.g., provision of a reliable byte stream protocol over ATM, and (5)
tight coupling between the ORB and efficient user-space protocol implementa-
tions, such as Fast Messages [26].

ORB Policy Control Component This component allows applications to
control the QoS attributes of configured ORB transport protocols explicitly.
It is not possible to determine a priori all attributes defined by all protocols.
Therefore, TAO’s pluggable protocols framework provides an extensible policy
control component, which implements the QoS framework defined in the CORBA
Messaging [23] and Real-time CORBA [19] specifications.

The CORBA QoS framework allows applications to specify various poli-
cies to control the QoS attributes in the ORB. The CORBA specification uses
policies to define semantic properties of ORB features precisely without (1)
over-constraining ORB implementations or (2) increasing interface complexity
for common use cases. Example policies relevant for pluggable protocols in-
clude buffer pre-allocations, fragmentation, bandwidth reservation, and maxi-
mum transport queue sizes.

Policies in CORBA can be set at the ORB, thread, or object level. Thus,
application developers can set global policies that take effect for any request
issued in a particular ORB. Moreover, these global settings can be overridden
on a per-thread basis, a per-object basis, or even before a particular request. In
general, CORBA’s Policy framework provides very fine-grained control over the
ORB behavior, while providing simplicity for the common case.

Certain policies, such as timeouts, can be shared between multiple protocols.
Other policies, such as ATM virtual circuit bandwidth allocation, may apply
to a single protocol. Each configured protocol can query TAO’s policy control
component to determine its policies and use them to configure itself for user
needs. Moreover, protocol implementations can simply ignore policies that do
not apply to it.

TAO’s policy control component enables applications to select their proto-
col(s). This choice can be controlled by the ClientProtocolPolicy defined in
the Real-time CORBA specification [19]. Using this policy, an application can
indicate its preferred protocol(s) and TAO’s policy control component attempts
to match that preference with the set of available protocols. TAO provides other
policies that control the behavior of the ORB if an application’s preferences can-
not be satisfied. For example, an exception can be raised or another available
protocol can be selected transparently.

380 Carlos O’Ryan et al.

3 Key Design Challenges and Pattern-Based Resolutions

The architecture overview in Section 2.3 outlines how TAO’s pluggable protocols
framework is designed. However, it does not motivate why this particular design
was selected. In this appendix, we explore each feature in TAO’s pluggable pro-
tocols framework and show how they achieve the goals described in Section 2.2.
To clarify and generalize our approach, the discussion below focuses on the pat-
terns [25] we applied to resolve the key design challenges we faced during the
development process.

3.1 Adding New Protocols Transparently

Context: The QoS requirements of many applications can be supported solely
by using default static protocol configurations, i.e., GIOP/IIOP, described in
section 2.1. However, applications with more stringent QoS requirements often
require custom protocol configurations. Implementations of these custom proto-
cols require several related classes, such as Connectors, Acceptors, Transports,
and Profiles. To be integrated into a common framework, all these classes must
be created consistently. In addition, many embedded and deterministic real-time
systems require protocols to be configured a priori, with no additional protocols
required once the application is configured statically. These types of systems
typically cannot afford to incur the footprint overhead associated with dynamic
protocol configurations.
Problem: It must be possible to add new protocols to the pluggable proto-
cols framework without making any changes to the rest of the ORB. Thus, the
framework must be open for extensions, but closed to modifications, i.e., the
Open-Closed principle [27]. Ideally, creating the new protocol and configuring it
into the ORB is all that should be required.
Solution: Use a Registry to maintain a collection of Abstract Factories [25]. In the
Abstract Factory pattern, a single class defines an interface for creating families
of related objects, without specifying their concrete types. Subclasses of the
Abstract Factory are responsible for creating concrete classes that collaborate
among themselves. In the context of pluggable protocols, each Abstract Factory
can create the Connector, Acceptor, Profile, and Transport classes for a
particular protocol.
Applying the solution in TAO: In TAO, the role of the protocol registry is played
by the Connector Registry for the client and the Acceptor Registry on the
server. This registry is created by TAO’s Resource Factory, which is a more
general Abstract Factory that creates all the ORB’s strategies and policies [15].
Figure 2 depicts the connector registry and its relation to the abstract factories.

Note that TAO does not use these Abstract Factories directly, however. In-
stead, these factories are accessed via the Facade [25] pattern in order to hide
the complexity of manipulating multiple factories behind a simpler interface. The
Registry described above plays the Facade role. As shown below, these patterns
provide sufficient flexibility to add new protocols transparently to the ORB.

The Design and Performance of a Pluggable Protocols Framework 381

ACCEPTOR_REGISTRY

IIOP ATM-IOPIIOP ATM-IOP

CONNECTOR_REGISTRY

CLIENT SIDE SERVER SIDE

Fig. 2. TAO Connector and Acceptor Registries

Establishing connections, manipulating profiles, and creating endpoints are
delegated to the connector and acceptor registries respectively. Clients will sim-
ply provide the connector registry with an opaque profile, which corresponds
to an object address for a particular protocol instance. The registry is respon-
sible for locating the correct concrete factory, to which it then delegates the
responsibility for establishing the connection. The concrete factory establishes
the connection using the corresponding specific protocol instance, notifying the
client of its success or failure. Thereafter, the client simply invokes method in-
vocations using the selected protocol.

The server delegates endpoint creation to the acceptor registry in a similar
manner. The registry is passed an opaque endpoint representation, which it pro-
vides to the corresponding concrete factory for the indicated protocol instance.
The concrete acceptor factory creates the endpoint and enables the ORB to
receive requests on the new endpoint.

3.2 Adding New Protocols Dynamically

Context: When developing new pluggable protocols, it is inconvenient to recom-
pile the ORB and applications just to validate a new protocol implementation.
Moreover, it is often useful to experiment with different protocols, e.g., systemat-
ically compare their performance, footprint size, and QoS guarantees. Moreover,
in 24×7 systems with high availability requirements, it is important to configure
protocols dynamically, even while the system is running. This level of flexibility
helps simplify upgrades and protocol enhancements.

Problem: How to populate the registry dynamically with the correct objects.

Solution: Use the Service Configurator [28] pattern, which decouples the imple-
mentation of a service from its configuration into the application. This pattern
can be applied in either of the following ways:

1. The Service Configurator pattern can be used to dynamically load the reg-
istry class, which is a Facade that knows how to configure a particular set of
protocols. To add new protocols, we must either implement a new Registry
class or derive from an existing one.

382 Carlos O’Ryan et al.

This alternative is well suited for embedded systems with tight memory
footprint constraints, because it minimizes the number of objects that are
loaded dynamically. Implementations of the Service Configurator pattern can
optimize for use cases where objects are configured statically. Embedded
systems can exploit these optimizations to eliminate the need for loading
objects dynamically in the pluggable protocols framework.

2. Use the Service Configurator to dynamically load the set of entries in the
Registry. For instance, a registry can simply parse a configuration script and
dynamically link the services listed in it. This is the most flexible approach,
but it requires more code, e.g., to parse the configuration script, load the
objects dynamically, etc.

Applying the solution in TAO: TAO implements a class that maintains all pa-
rameters specified in a configuration script. Adding a new parameter to represent
the list of protocols is straightforward, i.e., the default registry simply examines
this list and links the services into the address-space of the application, using the
ACE3 Service Configurator implementation [29] . Figure 3 depicts the connector
registry and its relation to the Service Configurator.

IIOP ATM-IOP

REGISTRY

SERVICE CONFIGURATOR

<<INSTANTIATES>>

<<INSTANTIATES>>

Fig. 3. TAO Connector Registry and the Service Configurator

3.3 Actively Establishing Connections

Context: When a client references an object, the ORB must obtain the corre-
sponding profile list, which is derived from the IOR and a profile ordering policy,
and transparently establish a connection to the server.
Problem: There can be one or more combinations of inter-ORB and transport
protocols available in an ORB. For a given profile, the ORB must verify the
presence of the associated IOP and transport protocol, if available. It must then
locate the applicable Connector and delegate it to establish the connection.
Solution: We use the Connector pattern [31] to actively establish a connection to
a remote object. This pattern decouples the connection establishment from the
processing performed after the connection is successful. As before, the Connector
Registry shown in Figure 4 is used to locate the right Connector for the current
3 ACE provides a rich set of reusable and efficient components for high-performance,
real-time communication, and forms the portability layer of TAO.

The Design and Performance of a Pluggable Protocols Framework 383

CONNECT (PROFILE2)

ATM TRANSPORT

OBJECT
CONNECTION HANDLER

OBJECT

CONNECTION HANDLER

OBJECT

ATM-IOP
OBJECT

1 - IIOP://HOSTA:PORT1/OBJECT_KEY

2 - ATM-IOP://HOSTA_ATM:SAP1/OBJECT_KEY

3 - IIOP://HOSTB:PORT2/OBJECT_KEY

PROFILE LIST FOR OBJECT A

IIOP ATM-IOP

CONNECTOR_REGISTRY
CONNECT (PROFILE_LIST A)

ACCEPTOR_REGISTRY

IIOP ATM-IOP
OBJECT A

ATM TRANSPORT

OBJECT

ATM-IOP
OBJECT

<<INSTANTIATES>>

CLIENT

SERVER

ESTABLISH CONNECTION

TO OBJECT A

PERFORM INVOCATION

ON OBJECT A

<<INSTANTIATES>>

<<INSTANTIATES>>

<<INSTANTIATES>>

<<INSTANTIATES>>

<<INSTANTIATES>>

Fig. 4. Connection Establishment Using Multiple Pluggable Protocols

profile. The actual profile selected for use will depend on the set of Policies active
at the time of connection establishment. However, once a profile is selected, the
connector registry matches the profile type, represented by a well known tag,
with an instance of a concrete Connector.
Applying the solution in TAO: TAO Connectors are adapters for the ACE imple-
mentation of the Connector pattern. Thus, they are typically lightweight objects
that simply delegate to a corresponding ACE component.

Figure 5 shows the base classes and their relations for IIOP. This figure
shows an explicit co-variance between the Profile and the Connectors for each
protocol. In general, a Connector must downcast the Profile to its specific
type. This downcast is safe because profile creation is limited to the Connector
and Acceptor registries. In both cases, the profile is created with a matching
tag. The tag is used by the Connector Registry to choose the Connector that
can handle each profile.

As shown in the same figure, the Connector Registry manipulates only the
base classes. Therefore, new protocols can be added without requiring any mod-
ification to the existing pluggable protocols framework. When a connection is
successfully established, the Profile is passed a pointer to the particular IOP
object and to the Transport objects that were created.

3.4 Passively Accepting Connections

Context: A server can accept connections at one or more endpoints, potentially
using the same protocol for all endpoints. The set of protocols that an ORB uses
to play the client role need not match the set of protocols used for the server
role. Moreover, the ORB can even be a “pure client”, i.e., a client that only
makes requests, in which case it can use several protocols to make requests, but
receive no requests from other clients.
Problem: The server must generate an IOR that includes all possible inter-ORB
and transport-protocol-specific profiles for which the object can be accessed. As

384 Carlos O’Ryan et al.

with the client, it should be possible to add new protocols without changing the
ORB.

Solution: We use the Acceptor pattern [31] to accept the connections. As with
the Connector pattern, an Acceptor decouples the connection establishment from
the processing performed on that connection. However, in the Acceptor pattern,
the connection is accepted passively, rather than being initiated actively.

Applying the solution to TAO: Figure 5 illustrates how TAO’s pluggable pro-

Connector
open ()
close ()
connect ()

Connector Registry

open ()
close ()
add_connector ()
get_connector (tag)
connect (stubobj)

registered connectors

1 N

IOP

start ()
invoke ()

open ()
close ()
connect ()

IIOP_
Strategegy_Connector

transport ()
object_addr ()
hash ()

Profile

IIOP_Profile

hint
object_addr
version

transport ()
object_addr ()
hash ()

1

1

GIOP

start ()
invoke ()

transport

handler_input ()
svc ()
transport ()

IIOP_Transport

receive ()
send ()
handler ();

handler_

1

1

receive ()
send ()
handler ()

Transport

IIOP_Connector

open ();
close ();
connect ();

transport_connector

IIOP_
Connection_Handler

<<instantiates>>

<<instantiates>>

1

1

1

11

1

<<instantiates>>

IIOP_Transport

receive ();
send ();
handler ();

handler_

Transport
receive ()
send ()
handler ()

transport_

IIOP_
Connection_Handler

handler_input ()
svc ()
transport ()

open ()
close ()
accept ()

IIOP_
Strategegy_Acceptor

GIOP

start ()
invoke ()

IOP

start ()
invoke ()

IIOP_Acceptor

create_profile ();
acceptor ();

transport_acceptor

Acceptor

create_profile ()
acceptor ()

transport ()
object_addr ()
hash ()

Profile

IIOP_Profile

hint = 0
object_addr
version

transport ()
object_addr ()
hash ()

<<instantiates>>

<<instantiates>>

<<Instantiates>>

N

1

1

1

1

1

11

1

1

<<instantiates>>

Acceptor Registry

add_acceptor ()
get_acceptor ()
create_ior ()

registered acceptors

1

Fig. 5. Client and Server Pluggable Protocol Class Diagram

tocols framework leverages the design presented in Section 3.1. The concrete
ACE Service Handler created by the ACE Acceptor is responsible for imple-
menting the External Polymorphism pattern and encapsulating itself behind the
Transport interface defined in our pluggable protocols framework.

TAO uses the Adapter pattern to leverage the ACE implementation of the
Acceptors. This pattern also permits a seamless integration with the lower lev-
els of the ORB. In the Acceptor pattern, the Acceptor object is a factory that
creates Service Handlers. Service Handlers are responsible for performing
I/O with their connected peers. In TAO’s pluggable protocol framework, the
Transport objects are Service Handlers implemented as abstract classes. This
design shields the ORB from variations in the Acceptors, Connectors, and
Service Handlers for each particular protocol.

When a connection is established, the concrete Acceptor creates the appro-
priate Connection Handler and IOP objects. The Connection Handler also
creates a Transport object that functions as a bridge. As with the Connector,
the Acceptor also acts as a bridge object, hiding the transport- and strategy-
specific details of the acceptor.

The Design and Performance of a Pluggable Protocols Framework 385

4 The Performance of TAO’s Pluggable Protocols
Framework

Despite the growing demand for off-the-shelf middleware in many application
domains, a widespread belief persists in the embedded systems community that
OO techniques are not suitable for real-time systems due to performance penal-
ties attributed to the OO paradigm [8]. In particular, the dynamic binding prop-
erties of OO programming languages and the indirection implied in OO designs
seem antithetical to real-time systems, which require low latency and jitter. The
results presented in this section are significant, therefore, because they illus-
trate empirically how the choice of patterns described in Section 3, allowed us to
meet non-functional requirements, such as portability, flexibility, reusability, and
maintainability, without compromising overall system efficiency, predictability,
or scalability.

To quantify the benefits and costs of TAO’s pluggable protocols framework,
we conducted several benchmarks using two different ORB messaging protocols,
GIOP and GIOPlite, and two different transport protocols, POSIX local IPC
(also known as UNIX-domain sockets) and TCP/IP. These benchmarks are based
on our experience developing DOC middleware for avionics mission computing
applications [8] and multimedia applications [32].

Note that POSIX local IPC is not a traditional high-performance network-
ing environment. However, it does provide the opportunity to obtain an accurate
measure of ORB and pluggable protocols framework overhead. Based on these
measurements, we have isolated the overhead associated with each component,
which provides a baseline for future work in high-performance protocol develop-
ment and experimentation.

4.1 Hardware/Software Benchmarking Platform

All benchmarks in this section were run on a Quad-CPU Intel Pentium II Xeon
400 MHz workstation, with one gigabyte of RAM. The operating system used for
the benchmarking was Debian GNU/Linux “potato” (glibc 2.1) with Linux ker-
nel version 2.2.10. GNU/Linux is an open-source operating system that supports
true multi-tasking, multi-threading, and symmetric multiprocessing.

For these experiments, we used the GIOP and GIOPlite [11] messaging pro-
tocols. GIOPlite is a streamlined version of GIOP that removes ≥15 extraneous
bytes from the standard GIOP message and request headers.4 These bytes in-
clude the GIOP magic number (4 bytes), GIOP version (2 bytes), flags (1 byte),
Request Service Context (at least 4 bytes), and Request Principal (at least 4
bytes).

Our benchmarks were run using the standard GIOP ORB messaging pro-
tocol, as well as TAO’s GIOPlite messaging protocol. For the TCP/IP tests,
4 The request header size is variable. Therefore, it is not possible to precisely pinpoint
the proportional savings represented by these bytes. In many cases, however, the
reduction is as large as 25%.

386 Carlos O’Ryan et al.

the GIOP and GIOPlite ORB messaging protocols were run using the standard
CORBA IIOP transport adapter along with the Linux TCP/IP socket library
and the loopback interface.

For the local IPC tests, GIOP and GIOPlite were used along with the op-
timized local IPC transport adapter. This resulted in four different Inter-ORB
Protocols: GIOP over TCP (IIOP), GIOPlite over TCP, GIOP over local IPC
(UIOP 5) and GIOPlite over local IPC. No changes were required to our stan-
dard CORBA benchmarking tool, called IDL Cubit [12], for either of the ORB
messaging and transport protocol implementations.

4.2 Blackbox Benchmarks

Blackbox benchmarks measure the end-to-end performance of a system from an
external application perspective. In our experiments, we used blackbox bench-
marks to compute the average two-way response time incurred by clients sending
various types of data using the four different Inter-ORB transport protocols.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

vo
id

sh
or

t
oc

te
t

lon
g

str
uc

t

sm
all

 se
q<

oc
te

t>

lar
ge

 se
q<

oc
te

t>

sm
all

 se
q<

lon
g>

lar
ge

 se
q<

lon
g>

sm
all

 se
q<

str
uc

t>

lar
ge

 se
q<

str
uc

t>

Data Type

C
al

ls
 p

er
 S

ec
o

n
d

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)

IIOP IIOP/GIOPlite
UIOP UIOP/GIOPlite
Performance Increase

Fig. 6. TAO’s Pluggable Protocols Framework Performance Over Local IPC and
TCP/IP

Measurement technique: A single-threaded client is used in the IDL Cubit bench-
mark to issue two-way IDL operations at the fastest possible rate. The server
performs the operation, which cubes each parameter in the request. For two-
way calls, the client thread waits for the response and checks that it is correct.
Interprocess communication is performed over selected IOPs, as described above.

We measure throughput for operations using a variety of IDL data types,
including void, sequence, and struct types. The void data type instructs the
server not to perform any processing other than that necessary to prepare and
5 For historical reasons, TAO retains the expression “UNIX-domain” in its local IPC
pluggable protocol implementation, which is where the name “UIOP” derives from.

The Design and Performance of a Pluggable Protocols Framework 387

����������	�������������	���

�
���
��

��
�����
������

������
���
���

��
�������	�
���
�������	�
�

������
��
�
�����
�
���

��
�������
�����

�����
��
������
��
�

��
������
���
������
�

�����
��
������
��
�

��
������
���
������
�

������
�������������
�������

����������	�������������	���

�����
�����

��
����
��

����	��	

�
�����
���
�����
��

�
��
�

������
����������

��������������

	�����
��	�����
��

������
�������������
�������

�
���
��

������
�������������
�������

����������	�������������	���

����������	�������������	���

�
���
��

��������
������
��

��������
������
����

��

������
�������������
�������

�
���
����

���
�����
��

�
��������
�������

	����
�
��	����
�
��

����

��������
������
��

����������	�������������	���

�
���
��

������
�������������
�������

�
���
��

	���
���
��	���
���
��

��
���
�

��
����
��

�
����
���

�
��������
�������

	����
�
��	����
�
��

��
���	������
���	����

������
�������������
�������

�
���
��

����������	�������������	���

�
���
��

��������
������
��

��������������

	����
�
��	����
�
��

�	
�������	
������

�
����
���

� �
��

!!

""

##
����

�$�$

�!�!

��
��������%�������������%�����

&&

""

��

!!

##

�$�$

���������������� ����������������

��
�
�
�
��

�
��

�
�
�
��

�

�
�
�
�
�
��

�
�
�
�
�
�
��

�

	��	��

�
����
���&&

Fig. 7. Timeprobe Locations for Whitebox Experiment

send the response, i.e., it does not cube any input parameters. The sequence and
struct data types exercise TAO’s (de)marshaling engine. The struct contains
an octet, a long, and a short, along with padding necessary to align those
fields. We also measure throughput using long and short sequences of the long
and octet types. The long sequences contain 4,096 bytes (1,024 four byte longs
or 4,096 octets) and the short sequences are 4 bytes (one four byte long or four
octets).

Blackbox results: The blackbox benchmark results are shown in Figure 6. All
blackbox benchmarks were averaged over 100,000 two-way operation calls for
each data type, as shown in Figure 6.

UIOP performance surpassed IIOP performance for all data types. The
benchmarks show UIOP improves performance from 20% to 50% depending on
the data type and size. For smaller data sizes and basic types, such as octet and
long, the performance improvement is approximately 50%. However, for larger
data payload sizes and more complex data types, the performance improvements
are reduced. This is a direct result of the increasing cost of both the data copies
associated with performing I/O and the increasing complexity of marshaling
structures other than the basic data types.

For certain data types, additional improvements are obtained by reducing
the number of data copies required. Such a situation exists when marshaling
and demarshaling data of type octet and long. For complicated data types,
such as a large sequence of structs, ORB overhead is particularly prevalent.
Large ORB overhead implies lower efficiency, which accounts for the smaller
performance improvement gained by UIOP over IIOP for complex data types.

GIOPlite outperformed GIOP by a small margin. For IIOP, GIOPlite perfor-
mance increases over GIOP ranged from 0.36% to 4.74%, with an average per-
formance increase of 2.74%. GIOPlite performance improvements were slightly
better over UIOP due to the fact that UIOP is more efficient than IIOP. GIO-
Plite over UIOP provided improvements ranging from 0.37% to 5.29%, with an
average of 3.26%.

Our blackbox results suggest that more substantial changes to the GIOP
message protocol are required to achieve significant performance improvements.
However, these results also illustrate that the GIOP message footprint has a
relatively minor performance impact over high-speed networks and embedded

388 Carlos O’Ryan et al.

interconnects. Naturally, the impact of the GIOP message footprint for lower-
speed links, such as second-generation wireless systems or low-speed modems, is
more significant.

4.3 Whitebox Benchmarks

Whitebox benchmarks measure the performance of specific components or lay-
ers in a system from an internal perspective. In our experiments, we used white-
box benchmarks to pinpoint the time spent in key components in TAO’s client
and server ORBs. The ORB’s logical layers, or components, are shown in Fig-
ure 7 along with the timeprobe locations used for these benchmarks.

Measurement Techniques

One way to measure performance overhead of operations in complex DOC
middleware is to use a profiling tool like Quantify [33]. Quantify instruments
an application’s binary instructions and then analyzes performance bottlenecks
by identifying sections of code that dominate execution time. Quantify is useful
because it can measure the overhead of system calls and third-party libraries
without requiring source code access.

Unfortunately, Quantify is not available for Linux kernel-based operating
systems on which whitebox measurement of TAO’s performance was performed.
Moreover, Quantify modifies the binary code to collect timing information.
Therefore, it is most useful for measuring relative overhead of different oper-
ations in a system, rather than measuring absolute run-time performance.

To avoid the limitations of Quantify, we therefore used a lightweight
timeprobe mechanism provided by ACE to precisely pinpoint the amount of
time spent in various ORB components and layers. The ACE timeprobe mecha-
nism provides highly accurate, low-cost timestamps that record the time spent
between regions of code in a software system. These timeprobes have minimal
performance impact, e.g., 1-2 µsec overhead per timeprobe, and no binary code
instrumentation is required.

Depending on the underlying platform, ACE’s timeprobes are implemented
either by high-resolution OS timers or by high-precision timing hardware. An
example of the latter is the VMEtro board, which is a VME bus monitor. VMEtro
writes unique ACE timeprobe values to an otherwise unused VME address. These
values record the duration between timeprobe markers across multiple processors
using a single clock. This enables TAO to collect synchronized timestamps and
accurately measure communication delays end-to-end across distributed CPUs.

Below, we examine the client and server whitebox performance in detail.

The Design and Performance of a Pluggable Protocols Framework 389

Whitebox Results

Figure 7 shows the points in a two-way operation request path where timeprobes
were inserted. Each labeled number in the figure corresponds to an entry in
Table 1 and Table 2 below. The results presented in the tables and figures which
follow were averaged over 1,000 samples.
Client performance: Table 1 depicts the time in microseconds (µs) spent in each
sequential activity that a TAO client performs to process an outgoing operation
request and its reply.

Table 1. µseconds Spent in Each Client Processing Step

Direction Client Activities Absolute Time (µs)

Outgoing 1. Initialization 6.30
2. Get object reference 15.6
3. Parameter marshal 0.74 (param. dependent)
4. ORB messaging send 7.78
5. ORB transport send 1.02
6. I/O 8.70 (op. dependent)

7. ORB transport recv 50.7
8. ORB messaging recv 9.25
9. Parameter demarshal op. dependent

Server performance: Table 2 depicts the time in microseconds (µs) spent in each
activity as a TAO server processes a request.

Table 2. µseconds Spent in Each Server Processing Step

Direction Server Activities Absolute Time (µs)

Incoming 1. I/O 7.0 (op. dependent)
2. ORB transport recv 24.8
3. ORB messaging recv 4.5
4. Parsing object key 4.6
5. POA demux 1.39
6. Servant demux 4.6
7. Operation demux 4.52
8. User upcall 3.84 (op. dependent)

Outgoing 9. ORB messaging send 4.56
10. ORB transport send 93.6

Depending on the type and number of operation parameters, the ORB trans-
port recv step typically requires the most ORB processing time. This time is

390 Carlos O’Ryan et al.

dominated by the required data copies. By using a transport adapter which
implements a shared buffer strategy these costs can be reduced significantly.

Component costs: Figure 8 compares the relative overhead attributable to the

11
2

11
1

52 51

49 48

49 47

24 23

27 27

31

27

30

27

0

50

100

150

200

250

IIOP IIOP w/GIOPlite UIOP UIOP w/GIOPlite

Transport Protocol

T
o

ta
l T

im
e

(u
se

cs
)

OS and I/O ORB Transport Messaging

Fig. 8. Comparison of ORB and Transport/OS Overhead Using Timeprobes

ORB messaging component, transport adaptor, ORB and OS for two-way
IDL Cubit calls to the cube void operation for each possible protocol combina-
tion. This figure shows that when using IIOP the I/O and OS overhead accounts
for just over 50% of the total round trip latency.

It also shows that the difference in performance between IIOP and UIOP is
primarily due to the larger OS and I/O overhead that TCP/IP has, as compared
to local IPC.

The only overhead that depends on size is (de)marshaling, which depends
on the type complexity, number, and size of operation parameters, and data
copying, which depends on the size of the data. In our whitebox experiment,
only the parameter size changes, i.e., the sequences vary in length. Moreover,
TAO’s (de)marshaling optimizations [13] incur minimal overhead when running
between homogeneous ORB endsystems.

In Figure 9, the parameter size is varied and the above test is repeated. It
shows that as the size of the operation parameters increases, I/O overhead grows
faster than the overall ORB overhead (including messaging and transport). This
result illustrates that the overall ORB overhead is largely independent of the
request size. In particular, demultiplexing a request, creating message headers,
and invoking an operation upcall are not affected by the size of the request.

TAO employs standard buffer size and data copy tradeoff optimizations. This
optimization is demonstrated in Figure 9 by the fact that there is a slight increase
in the time spent both in the transport component and in the ORB itself when
the sequence size is greater than 256 bytes. The data copy tradeoff optimization
is fully configurable via run-time command line options, so it is possible to

The Design and Performance of a Pluggable Protocols Framework 391

64 64 65 65 65 66 73 81 85 93

77 77 77 77 77 77 78 76 76 77

27 27 27 27 28 28 29 31 33

3627 27 28 28 28 28

30 34 34

35

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11

Bytes in Octet Sequence (powers of two)

T
o

ta
l T

im
e

(u
se

cs
)

OS and I/O ORB Transport Messaging

Fig. 9. ORB and Transport/OS Overhead Versus Parameter Size

configure TAO to further improve performance above the 256 byte data copy
threshold.

For the operations tested in the IDL Cubit benchmark, the overhead of the
ORB is dominated by memory bandwidth limitations. Both the loopback driver
and local IPC driver copy data within the same host. Therefore, memory band-
width limitations should essentially be the same for both IIOP and UIOP. This
result is illustrated in Figure 8 by the fact that the time spent in the ORB is
generally constant for the four protocol combinations shown.

In general, the use of UIOP demonstrates the advantages of this framework
and how optimized, domain-specific protocols can be deployed.

5 Related Work

The design of TAO’s pluggable protocols framework is influenced by prior re-
search on the design and optimization of protocol frameworks for communication
subsystems. This section outlines that research and compares it with our work.
Configurable communication frameworks: The x-kernel [34], Conduit+ [30], Sys-
tem V STREAMS [35], ADAPTIVE [36], and F-CSS [37] are all configurable
communication frameworks that provide a protocol backplane consisting of stan-
dard, reusable services that support network protocol development and experi-
mentation. These frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and connectionless message
delivery and routing, based on uniform interfaces.

The frameworks for communication subsystems listed above focus on imple-
menting various protocol layers beneath relatively low-level programming APIs,
such as sockets. In contrast, TAO’s pluggable protocols framework focuses on im-
plementing and/or adapting to transport protocols beneath a higher-level DOC
middleware API, i.e., the standard CORBA programming API. Therefore, exist-
ing communication subsystem frameworks can provide building block protocol
components for TAO’s pluggable protocols framework.

392 Carlos O’Ryan et al.

Patterns-based communication frameworks: An increasing number of communi-
cation frameworks are being designed and documented using patterns[15,30]. In
particular, Conduit+ [30] is an OO framework for configuring network proto-
col software to support ATM signaling. Key portions of the Conduit+ protocol
framework, e.g., demultiplexing, connection management, and message buffer-
ing, were designed using patterns like Strategy, Visitor, and Composite [25].
Likewise, the concurrency, connection management, and demultiplexing compo-
nents in TAO’s ORB Core and Object Adapter also have been explicitly designed
using patterns like Reactor, Acceptor-Connector, and Active Object [15].
CORBA pluggable protocol frameworks: The architecture of TAO’s pluggable
protocols framework is based on the ORBacus [38] Open Communications Inter-
face (OCI) [39]. The OCI framework provides a flexible, intuitive, and portable
interface for pluggable protocols. The framework interfaces are defined in IDL,
with a few special rules to map critical types, such as data buffers.

Defining pluggable protocol interfaces with IDL permits developers to fa-
miliarize themselves with a single programming model that can be used to im-
plement protocols in different languages. In addition, the use of IDL makes it
possible to write pluggable protocols that are portable among different ORB
implementations and platforms.

However, using IDL also limits the the degree to which various optimizations
can be applied at the ORB and transport protocol levels. For example, efficiently
handling locality constrained objects, optimizing profile handling, strategized
buffer allocation, or interfacing with optimized OS abstraction layers/libraries
are not generally supported by existing IDL compilers. Additionally, changes to
an IDL compiler’s mapping rules on a per protocol basis is prohibitive.

In our approach we use C++ classes and optimized framework interfaces to
allow protocol developers to exploit new strategies or available libraries. TAO
uses the ACE framework [29] to isolate itself from non-portable aspects of under-
lying operating systems. This design leverages the testing, optimizations, imple-
mented by ACE, enabling us to focus on the particular problems of developing
a high-performance, real-time ORB.

6 Concluding Remarks

To be an effective development platform for performance-sensitive applications,
OO middleware must preserve communication layer QoS properties of applica-
tions end-to-end. It is essential, therefore, to define a pluggable protocols frame-
work that allows custom inter-ORB messaging and transport protocols to be
configured flexibly and transparently by CORBA applications.

This paper identifies the protocol-related limitations of current ORBs and
describes a CORBA-based pluggable protocols framework we developed and
integrated with TAO to address these limitations. TAO’s pluggable protocols
framework contains two main components: an ORB messaging component and
an ORB transport adapter component. These two components allows applica-
tions developers and end-users to transparently extend their communication in-

The Design and Performance of a Pluggable Protocols Framework 393

frastructure to support the dynamic and/or static binding of new ORB mes-
saging and transport protocols. Moreover, TAO’s patterns-oriented OO design
makes it straightforward to develop custom inter-ORB protocol stacks that can
be optimized for particular application requirements and endsystem/network
environments.

This paper illustrates empirically the performance of TAO’s pluggable pro-
tocols framework when running CORBA applications over high-speed intercon-
nects, such as VME. Our benchmarking results demonstrate that applying appro-
priate optimizations and patterns to DOC middleware can yield highly efficient
and predictable implementations, without sacrificing flexibility or reuse. These
results support our contention that DOC middleware performance is largely an
implementation issue. Thus, well-tuned, standard-based DOC middleware like
TAO can replace ad hoc and proprietary solutions that are still commonly used
in traditional distributed applications and embedded real-time systems.

Most of the performance overhead associated with pluggable protocols frame-
work described in this paper stem from “out-of-band” creation operations, rather
operations in the critical path. We have shown how patterns can resolve key de-
sign forces to flexibly create and control the objects in the framework. Simple
and efficient wrapper facades can then be used to isolate the rest of the ap-
plication from low-level implementation details, without significantly affecting
end-to-end performance.

We are currently developing pluggable protocols for high-speed networks such
as ATM and Myrinet. One focus of our future work is to determine effective pat-
terns for supporting advanced I/O features, such as buffer management schemes
using intelligent I/O interfaces and shared memory, available in current high-
speed network adaptors. In addition, we are exploring the integration of high-
speed messaging protocols, such as Fast Messages [26], with standard CORBA
DOC middleware.

References

1. R. Johnson, “Frameworks = Patterns + Components,” Communications of the
ACM, vol. 40, Oct. 1997. 373

2. S. Vinoski, “CORBA: Integrating Diverse Applications Within Distributed Hetero-
geneous Environments,” IEEE Communications Magazine, vol. 14, February 1997.
373

3. Object Management Group, The Common Object Request Broker: Architecture and
Specification, 2.2 ed., Feb. 1998. 373

4. M. Henning and S. Vinoski, Advanced CORBA Programming With C++. Addison-
Wesley Longman, 1999. 373

5. D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of Real-
Time Object Request Brokers,” Computer Communications, vol. 21, pp. 294–324,
Apr. 1998. 373

6. G. Parulkar, D. C. Schmidt, and J. S. Turner, “amathrmItPm: a Strategy for
Integrating IP with ATM,” in Proceedings of the Symposium on Communications
Architectures and Protocols (SIGCOMM), ACM, September 1995. 373

394 Carlos O’Ryan et al.

7. F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and Performance of a
Real-time I/O Subsystem,” in Proceedings of the 5th IEEE Real-Time Technology
and Applications Symposium, (Vancouver, British Columbia, Canada), pp. 154–
163, IEEE, June 1999. 373

8. T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and Performance
of a Real-time CORBA Event Service,” in Proceedings of OOPSLA ’97, (Atlanta,
GA), ACM, October 1997. 373, 385

9. F. Kuhns, C. O’Ryan, D. C. Schmidt, and J. Parsons, “The Performance of TAO’s
Pluggable Protocols Framework on High-speed Embedded Interconnects,” Depart-
ment of Computer Science, Technical Report WUCS-99-12, Washington University,
St. Louis, 1999. 373, 374

10. C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and Performance of
a Real-Time CORBA Scheduling Service,” The International Journal of Time-
Critical Computing Systems, special issue on Real-Time Middleware, 2000. 373

11. I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and A. Gokhale,
“Applying Optimization Patterns to the Design of Real-time ORBs,” in Proceedings
of the 5th Conference on Object-Oriented Technologies and Systems, (San Diego,
CA), USENIX, May 1999. 373, 374, 376, 378, 385

12. D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software Architec-
tures for Reducing Priority Inversion and Non-determinism in Real-time Object
Request Brokers,” Journal of Real-time Systems, To appear 2000. 373, 386

13. A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol Engine for
Minimal Footprint Multimedia Systems,” Journal on Selected Areas in Commu-
nications special issue on Service Enabling Platforms for Networked Multimedia
Systems, vol. 17, Sept. 1999. 373, 375, 390

14. A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communication
Middleware on High-Speed Networks,” in Proceedings of SIGCOMM ’96, (Stanford,
CA), pp. 306–317, ACM, August 1996. 373

15. D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensible ORB
Middleware,” IEEE Communications Magazine, vol. 37, April 1999. 373, 380, 392

16. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture - A System of Patterns, Wiley and Sons, 1996.
373

17. R. S. Madukkarumukumana and H. V. Shah and C. Pu, “Harnessing User-Level
Networking Architectures for Distributed Object Computing over High-Speed Net-
works,” in Proceedings of the 2nd Usenix Windows NT Symposium, August 1998.
375

18. Compaq, Intel, and Microsoft, “Virtual Interface Architecture, Version 1.0.”
http://www.viarch.org, 1997. 375

19. Object Management Group, Realtime CORBA Joint Revised Submission, OMG
Document orbos/99-02-12 ed., March 1999. 376, 377, 379

20. F. Kon and R. H. Campbell, “Supporting Automatic Configuration of Component-
Based Distributed Systems,” in Proceedings of the 5th Conference on Object-
Oriented Technologies and Systems, (San Diego, CA), USENIX, May 1999. 376

21. Object Management Group, The Common Object Request Broker: Architecture and
Specification, 2.3 ed., June 1999. 376

22. Object Management Group, Fault Tolerance CORBA Using Entity Redundancy
RFP, OMG Document orbos/98-04-01 ed., April 1998. 376

23. Object Management Group, CORBA Messaging Specification, OMG Document
orbos/98-05-05 ed., May 1998. 376, 379

The Design and Performance of a Pluggable Protocols Framework 395

24. Object Management Group, Telecom Domain Task Force Request For Information
Supporting Wireless Access and Mobility in CORBA - Request For Information,
OMG Document telecom/98-06-04 ed., June 1998. 376

25. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Reading, MA: Addison-Wesley, 1995. 377,
380, 392

26. M. Lauria, S. Pakin, and A. Chien, “Efficient Layering for High Speed Communica-
tion: Fast Messages 2.x.,” in Proceedings of the 7th High Performance Distributed
Computing (HPDC7) conference, (Chicago, Illinois), July 1998. 379, 393

27. B. Meyer, Object Oriented Software Construction. Englewood Cliffs, NJ: Prentice
Hall, 1989. 380

28. P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for Dynamic Con-
figuration of Services,” in Proceedings of the 3rd Conference on Object-Oriented
Technologies and Systems, USENIX, June 1997. 381

29. D. C. Schmidt and T. Suda, “An Object-Oriented Framework for Dynamically Con-
figuring Extensible Distributed Communication Systems,” IEE/BCS Distributed
Systems Engineering Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994. 382, 392

30. H. Hueni, R. Johnson, and R. Engel, “A Framework for Network Protocol Soft-
ware,” in Proceedings of OOPSLA ’95, (Austin, Texas), ACM, October 1995. 391,
392

31. D. C. Schmidt, “Acceptor and Connector: Design Patterns for Initializing Com-
munication Services,” in Pattern Languages of Program Design (R. Martin, F.
Buschmann, and D. Riehle, eds.), Reading, MA: Addison-Wesley, 1997. 382, 384

32. S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and Performance of a
CORBA Audio/Video Streaming Service,” in Proceedings of the Hawaiian Inter-
national Conference on System Sciences, Jan. 1999. 385

33. P. S. Inc., Quantify User’s Guide. PureAtria Software Inc., 1996. 388
34. N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Architecture for Imple-

menting Network Protocols,” IEEE Transactions on Software Engineering, vol. 17,
pp. 64–76, January 1991. 391

35. D. Ritchie, “A Stream Input–Output System,” AT&T Bell Labs Technical Journal,
vol. 63, pp. 311–324, Oct. 1984. 391

36. D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dynamically Assembled
Protocol Transformation, Integration, and eValuation Environment,” Journal of
Concurrency: Practice and Experience, vol. 5, pp. 269–286, June 1993. 391

37. M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for High-Performance Com-
munication Subsystems,” IEEE Journal on Selected Areas in Communication, vol.
11, pp. 507–519, May 1993. 391

38. I. Object Oriented Concepts, “ORBacus.” www.ooc.com/ob. 392
39. I. Object-Oriented Concepts, “ORBacus User Manual - Version 3.1.2.”

www.ooc.com/ob, 1999. 392

Customizing IDL Mappings and ORB Protocols

Girish Welling and Maximilian Ott

C&C Research Laboratories, NEC-USA, Inc.
4 Independence Way, Princeton, NJ 08540, USA

{welling,max}@ccrl.nj.nec.com

Abstract. Current mappings of IDL to implementation languages such
as C++ or Java use CORBA specific data-types, which makes it impera-
tive for an object implementation to be CORBA-compliant. While being
completely CORBA-compliant ensures portability and interoperability,
several classes of enterprise applications may only require interoperability
with other CORBA applications. Other applications may be constrained
by such factors as a large existing code-base or a widely used communi-
cation protocol. In many cases, these applications can benefit from the
concise expressiveness of IDL without committing to the overhead of us-
ing a general-purpose CORBA ORB. To aid this process, we propose a
new approach to ORB design where the IDL mapping and ORB protocol
is completely configurable. As a motivation, we present our use of IDL
in the development of a large in-house application. In this application,
all interfaces are specified using IDL, which is mapped to C++ using a
custom mapping. We then present an architecture for a template-driven
IDL compiler and describe the implementation of a prototype we built.
With this compiler architecture, an IDL mapping can easily be specified
and customized by writing an appropriate template.

1 Introduction

CORBA [1] is an enabling technology for building distributed systems, permit-
ting the integration of distributed components at a higher level of communication
than traditional byte-streams. This is achieved by providing the communication
infrastructure for heterogeneous, distributed collections of objects, for which
CORBA presents the communication abstraction of a method call on remote
CORBA objects. The benefits derived are akin to the benefits of utilizing object
oriented programming for building non-distributed programs.

In order to promote language and platform independence, CORBA encour-
ages the use of an Interface Definition Language (IDL) specified by the Object
Management Group (OMG). OMG IDL can only be utilized to specify the inter-
face of a CORBA object, enforcing the separation of interface specification from
object implementation. This also ensures that a client of a CORBA object re-
mains unconcerned with the implementation of the object. Moreover, the client
is also unconcerned with the implementation language of the CORBA object,
simplifying the integration of distributed components that are implemented in
different languages.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 396–414, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Customizing IDL Mappings and ORB Protocols 397

Current mappings of IDL to implementation languages like C, C++ or Java
use data-types that are CORBA or ORB-vendor specific. Moreover, in the IDL-
C++ or IDL-Java mappings, the inheritance relations between the generated
stub/skeleton classes and implementation classes are usually fixed by the IDL
compiler. These factors impose additional constraints on the implementation of
applications that utilize IDL. The problem is especially acute in legacy applica-
tions, which are already associated with a large, well-established code-base.

In order to enable applications to benefit from the concise expressiveness of
IDL without committing to being completely CORBA compliant, the mapping
of IDL to a particular implementation language should be decoupled from the
IDL parser and code-generation engine. This makes it possible to customize
the bridge between the application and the underlying ORB, introducing ample
flexibility for building both, the application and the ORB. To aid this process, we
propose a template-driven IDL compiler architecture. This compiler architecture
not only permits the customization of an IDL mapping and generated code, but
also enables all aspects of the underlying ORB to be configured. This approach
can be considered to introduce the flexibility of tuning middleware to existing
code-bases rather than the more common other way around.

The rest of this paper is organized as follows: Section 2 describes the benefits
of customizing IDL mappings. Section 3 motivates our approach by presenting
the custom IDL to C++ mapping we utilize in Heidi, an existing in-house appli-
cation. Section 4 presents the architecture and implementation of our proposed
template-driven IDL compiler. Section 5 compares our approach with other ap-
proaches to customize ORBs, and Section 6 concludes this paper.

2 The Benefits of Customizing a Mapping

Among the important goals of the CORBA specification are portability and inter-
operability of CORBA compliant application code with different ORB implemen-
tations. Towards this end, CORBA defines mappings from OMG IDL to various
programming languages including Java, C, C++, Smalltalk, COBOL and Mod-
ula 3. The mapping process is automated in an IDL compiler, which generates
the framework for implementing a CORBA object from the IDL specification of
its interface. In addition, the IDL compiler also generates client-side stubs and
server-side skeletons, which collaborate with the underlying ORB to implement
such activities as object registration, method call parameter marshaling and un-
marshaling, and call dispatching. Usually, stubs and skeletons utilize an abstract
interface to the underlying ORB functionality so that the same generated code
can be utilized with ORBs that implement different on-the-wire protocols. The
portability of a CORBA compliant object implementation across IDL compil-
ers from different vendors is ensured in theory by each compiler conforming to
the specified IDL to implementation language data-type mapping (Table 1) and
object model. The interoperability between applications that utilize ORBs from
different vendors is guaranteed by each ORB conforming to such a standard
ORB protocol as the Internet Inter-ORB Protocol (IIOP).

398 Girish Welling and Maximilian Ott

Table 1. IDL to C++ Type Mappings

IDL Type Prescribed C++ Type Alternate C++ Mapping

long CORBA::Long long

boolean CORBA::Boolean XBool

float CORBA::Float float

The CORBA specification also provides guidelines for generating stubs and
skeletons from an IDL interface. A typical inheritance hierarchy for C++ stubs
and skeletons is shown in Fig. 1, where the non-shaded classes are generated
by the IDL compiler and the shaded classes implemented by the application
programmer. In this hierarchy, the implementation of a CORBA object can
inherit from the generated skeleton, or remain unrelated to the generated classes,
utilizing a tie class as a bridge to/from the ORB. Most IDL compilers generate
stubs and skeletons conforming to a variation of this inheritance hierarchy.

A_stub

A_tieA_impl Impl

A

A_skel

Fig. 1. Inheritance Hierarchy for C++ Stubs and Skeletons

Although portability and large-scale interoperability are important concerns
of building software for distributed systems, there are several situations when it
is useful to customize the code generated by an IDL compiler:

– Using legacy code for CORBA-object implementations: While being
completely CORBA-compliant ensures portability across different ORBs and
interoperability with other CORBA-compliant applications, several classes of
enterprise applications may only require interoperability with other CORBA
applications. This is especially true with legacy applications, which are often
constrained by such factors as a large existing code-base or a widely used
communication protocol. With most current IDL compilers, these applica-
tions can benefit from the concise expressiveness of IDL only by becoming
completely CORBA compliant. However, a legacy application may utilize the
C++ usages shown in Table 2, while the CORBA specification for mapping
an IDL interface A to a C++ interface class A states that it is non-compliant

Customizing IDL Mappings and ORB Protocols 399

to declare either an instance, pointer or reference to A. As this shows, it can
be an expensive, time-consuming process to integrate a legacy application
into a CORBA-based distributed system.

Table 2. CORBA-prescribed and Legacy C++ Usages

CORBA-prescribed Legacy

A var a; A a;

A ptr p; A* p;

void f(A ptr& r); void f(A& r);

– Customizing the ORB: An ORB that fully implements the CORBA spec-
ification is usually very big in terms of code size. For many classes of appli-
cations, this can be the major reason to decide against utilizing CORBA.
This issue has motivated a recent OMG effort towards identifying an irre-
ducible set of capabilities and characteristics for a minimal ORB. Such an
ORB would implement a CORBA subset that is useful and acceptable for
the applications in consideration. Keeping with this trend, we believe that it
is also useful to permit the customization of the ORB to implement exactly
the subset of CORBA functionality that is necessary for a particular class
of applications.

– Customizing the ORB Protocol and Messaging Formats: Utilizing
a standard inter-ORB protocol guarantees that an application can easily
interoperate with other applications. However, such protocols are often ex-
pensive to use because they are designed for generality. Moreover, for many
applications, a simple protocol or messaging format may suffice.
To address this issue, most IDL compilers generate stubs and skeletons that
utilize an abstract interface to the ORB. This keeps the IDL compiler, and
hence the generated code independent of any particular ORB protocol, per-
mitting the utilization of alternate protocols. With such an approach, uti-
lizing a particular protocol involves choosing the appropriate ORB run-time
library.

– Incorporating Custom Optimizations: Often, the code generated by an
IDL compiler is not well suited for optimization. For instance, many IDL
compilers use string comparisons to implement the dispatching logic in the
skeleton. Such a scheme can be very expensive for interfaces with a large
number of methods with long names. Alternate schemes that utilize nested
comparisons [2], or a hash-table can result in faster dispatching.
Marshaling/Unmarshaling code is typically associated with format conver-
sions and copying. As pointed out in the Universal Stub Compiler (USC)
work by O’Malley, et al [3], a user-level specification of the byte-level rep-
resentations of data types can be effectively utilized to optimize copying
operations, and therefore marshaling and unmarshaling code. It is clearly

400 Girish Welling and Maximilian Ott

beneficial to introduce such optimizations in generated stubs and skeletons
in order to improve the performance of a remote call.

3 HeidiRMI

In order to demonstrate that it is indeed useful to customize an IDL mapping, we
consider the motivation, design and implementation of HeidiRMI, the control-
messaging infrastructure for Heidi. Heidi is a large in-house project currently
being used to build and test prototype multimedia software systems [4]. In early
versions ofHeidi, all control messaging between distributed software components
utilized a simple text-based request-response protocol over dedicated TCP/IP
connections. This approach sufficed for the simple initial prototype applications
we built. However, as more complicated prototypes were developed, it clearly
became necessary to automate the process of generating control messaging sup-
port. OMG IDL was an available alternative, and was well suited to describe the
control messaging interfaces in Heidi.

Using IDL along with a general-purpose ORB in Heidi was associated with
problems that arose from the large amount of legacy code that was not CORBA-
compliant, and the non-blocking nature of communication in a Heidi applica-
tion. The large existing code-base clearly needed wide-spread changes before it
could be integrated with a general-purpose ORB. Even if this were done, it would
still be difficult to utilize a general purpose ORB because of the non-preemptive
computation model of Heidi.

To avoid the wide-spread changes necessary to make existing Heidi code
CORBA-compliant, we modified the OmniBroker1 IDL compiler [5] to generate
an alternate C++ mapping that conforms to existing Heidi code. The Hei-
diRMI mapping only utilizes Heidi defined data types, which simplifies the
use of legacy Heidi code. Besides utilizing only existing Heidi data-types, the
mapping also implements a delegation based relation between the skeleton and
implementation classes as shown in Fig. 2. This approach ensures that no re-
structuring of the existing Heidi class hierarchy is necessary.

A_stub A_impl

A

A_skel

Fig. 2. IDL to C++ Mapping in HeidiRMI

The delegation model of the HeidiRMI mapping is similar to the tie ap-
proach in the CORBA-prescribed IDL to C++ mapping. A tie is usually im-
1 OmniBroker is now called ORBacus.

Customizing IDL Mappings and ORB Protocols 401

plemented as a template to which the implementation class of the target object
must be specified. This approach makes it unnecessary for the implementation
class to depend on any of the classes generated by the IDL compiler. Although
this simplifies the utilization of legacy code, there still is the dependency on
CORBA-specific data types because method signatures in the implementation
class must exactly match method signatures in the interface class. We therefore
believe that ties alone are largely insufficient to address the problem of utiliz-
ing legacy code. Our approach of using a custom mapping on the other hand,
provides the desired flexibility while maintaining a simpler relation between the
implementation class and the skeleton. Moreover, such coding conventions as
class naming can be easily customized, saving large amounts of otherwise mun-
dane, but time consuming changes.

3.1 Implementation Details

We extended the IDL syntax in support of default parameters and passing pa-
rameters by value. Since legacy Heidi code extensively utilized the ability to
specify default parameters to a method in C++, we added support for the spec-
ification of default parameters in IDL. Default parameters are indicated as shown
in the IDL interface presented in Fig. 3, and have the same effect as that of
default parameters in C++ class specifications. Each default parameter to a
method in an IDL interface is mapped to an appropriate default parameter in
the generated C++ interface class.

In order to support passing parameters by value, we introduced the new in-
copy keyword, which is used as a qualifier for a method parameter. For simple
data types, the effect of incopy is identical to that of in. However, object refer-
ences passed incopy are copied across the IDL interface, if possible. The ORB
run-time utilizes marshaling/unmarshaling primitives that the object implemen-
tation may have provided. Whether a particular object has actually implemented
the required marshaling/unmarshaling primitives is determined by testing if it
implements the HdSerializable interface. The dynamic type checking support
that is implemented in Heidi is utilized for this purpose. The semantics of pass-
ing parameters by value in HeidiRMI are identical to the effect of passing a
Serializable object that is not Remote as a parameter to a remote method in
Java RMI [6].

Also shown in Fig. 3 are the relevant portions of the abstract C++ interface
class generated by our customized HeidiRMI IDL compiler. It can be seen that
no CORBA-specific types are utilized: primitive IDL data-types are mapped to
primitive C++ types, while sequence and boolean are mapped to the Heidi
specific HdList and XBool data types. Also, default parameters are mapped to
appropriate C++ constants. Note that the IDL interfaces Heidi::A and Heidi::S
are respectively mapped to the C++ interface classes HdA and HdS. This un-
conventional mapping facilitates the integration with legacy code, assuming that
HdA and HdS were existing Heidi interface classes.

Not shown in Fig. 3 is the generated support for dynamic type checking,
which all Heidi classes provide. Methods for marshaling and unmarshaling ob-

402 Girish Welling and Maximilian Ott

/� File A.idl �/
module Heidi f

// External declaration of Heidi::S
interface S;

// Heidi::Status
enum Status fStart, Stopg;

// Heidi::SSequence
typedef sequence<S> SSequence;

// Heidi::A
interface A : S

f

void f(in A a);

void g(incopy S s);

void p(in long l = 0);

void q(in Status s = Heidi::Start);

readonly attribute Status button;

void s(in boolean b = TRUE);

void t(in SSequence s);

g;

g;

/� File A.hh �/
// IDL:Heidi/Status:1.0
enum HdStatus f Start, Stop g;

// IDL:Heidi/SSequence:1.0
typedef HdList<HdS> HdSSequence;

typedef HdListIterator<HdS>

HdSSequenceIter;

// IDL:Heidi/A:1.0
class HdA : virtual public HdS

f

public:

virtual void f(HdA�) = 0;

virtual void g(HdS�) = 0;

virtual void p(long l = 0) = 0;

virtual void q(HdStatus s = Start) = 0;

virtual void s(XBool b = XTrue) = 0;

virtual void t(HdSSequence�) = 0;

virtual HdStatus GetButton() = 0;

virtual �HdA() fg

g;

Fig. 3. Example IDL Interface and Generated C++ Interface Class

jects that implement the generated interface have also been omitted. These
methods implement the logic for determining if a given object also implements
HdSerializable, and passing control to the implementation object specific meth-
ods for marshaling/unmarshaling object state. This simplifies generated code for
stubs and skeletons by putting together what would otherwise be redundantly
generated marshaling/unmarshaling code.

In HeidiRMI, each object is associated with a stringified object reference.
An object reference is composed of three parts: the bootstrap URL, the ob-
ject identifier, and the object type. The bootstrap URL consists of a protocol-
hostname-port tuple that provides a means to open a communication channel
to the object. The object identifier uniquely identifies the object in a particu-
lar address space, while the type information ensures that the correct stub and
skeleton is utilized in accessing the object. A typical stringified object reference is
@tcp:galaxy.nec.com:1234#9876#IDL:Heidi/A:1.0. Although a HeidiRMI ob-
ject reference may be considered minimal, it is not unlike an object reference in
CORBA or any other remote object system.

The interaction diagram on the client-side of a remote method invocation is
shown in Fig. 4. When a stub method is invoked, a new Call object that provides
the generic functionality for making a remote method call is created. The stringi-
fied object reference of the target remote object forms the header of the Call.
After any parameters to the remote method are marshaled into the Call object,
the Call is invoked, resulting in the call request being sent to the server-side.

Customizing IDL Mappings and ORB Protocols 403

An ObjectCommunicator provides the abstraction of a communication channel
on which individual requests can be demarcated. The current implementation
of Call and ObjectCommunicator utilize a newline terminated string of ASCII
characters to implement the on-the-wire protocol. The Call object provides the
functions for marshaling and unmarshaling all primitive data types, as well as
additional begin and end functions that permit structuring of the call request so
that such composite data types as structs or sequences can be easily represented.

Object
Communicator

Call

Stub

Send

operation

Marshal Parameters

Unmarshal Results

Invoke

Fig. 4. Remote Method Invocation in HeidiRMI

The interaction at the server-side is shown in Fig. 5. The bootstrap port
in each address space serves as means to initiate a communication channel.
When a client connects to the bootstrap port (1), a new ObjectCommunicator
is wrapped around the resulting connection. Connections are cached and reused
in HeidiRMI, and only if there is no available connection is a new connec-
tion opened. The ObjectCommunicator reads in an incoming request (2) and
encapsulates it in a Call object. The Call header contains the stringified ob-
ject reference, whose type information and object identifier permit the selection
of the appropriate Skeleton. Control is passed to the dispatch method of the
selected Skeleton, where the remote method call parameters are unmarshaled.
The skeleton then calls the desired method of the target object implementation,
marshals any return value into the Call object, and sends the result back to the
client-side.

An important aspect of HeidiRMI is that an implementation object is un-
concerned with being remote accessible. The skeleton for a particular object is
only created when a reference to it is being passed as either the parameter to, or
the result of a remote call. Moreover, if the implementation object is Serializable
and is being passed-by-value, then no skeleton is ever created. In this case, the
marshaling method defined by the object is utilized to copy the object. At the
receiving end, the type information contained in the object reference is utilized
to create a stub of the appropriate type. Both stubs and skeletons are cached in
each address-space in order to minimize the overhead of their creation.

404 Girish Welling and Maximilian Ott

Bootstrap
Port

Object
Communicator

Call

Skeleton Implementation

operation

Unmarshal
Parameters

Marshal Results

Send

Dispatch

1

2

Reply

Fig. 5. Server-side Method Call Dispatching in HeidiRMI

The implementation of stubs and skeletons for an IDL interface is straight-
forward. All stubs inherit from a base HdStub class which provides the generic
stub functionality. A stub also implements the C++ mapping of the IDL inter-
face, and reflects the IDL inheritance structure appropriately. For the running
example, the stub A stub for the IDL interface A inherits functionality from the
stub S stub for the IDL interface S, and in addition implements the methods of
interface A.

In HeidiRMI, skeletons do not share any inheritance relation with the ab-
stract interface class. However, similar to generated stubs, skeletons also reflect
the IDL inheritance structure. For the running example, the skeleton A skel
for interface A inherits from the skeleton S skel for interface S. The dispatch
method of A skel first attempts to dispatch an incoming request to methods
defined in the interface A. If this fails, then dispatching is delegated to the dis-
patch method of S skel, continuing recursively up the skeleton class hierarchy. If
A inherits from more than one interface, then dispatching is delegated to each
of the corresponding skeleton super-classes in order.

3.2 Shortcomings of This Approach

Early use of our compiler involved reverse-engineering existing C++ interfaces
into suitable IDL interfaces. However, the ease with which our approach per-
mitted us to quickly build Heidi components led us to begin specifying their
interfaces in IDL. HeidiRMI has thus become an integral part of the Heidi de-
velopment environment, and our custom compiler has evolved into a key tool
to build the system. Extensive utilization of HeidiRMI has strengthened our
belief that IDL is indeed a powerful tool for specifying the interfaces of mod-
ules in a large application. By customizing the IDL compiler for HeidiRMI, we
have succeeded in separating the utilization of IDL from the necessity of using
a complete CORBA-compatible ORB.

Customizing IDL Mappings and ORB Protocols 405

However, the evolution of the HeidiRMI IDL compiler has also raised con-
cerns regarding the limitations of the customization approach. It is evident that
even a minor change in the IDL to C++ mapping requires compiler source
code changes and recompilation. This concern led us to consider the alternative
of template-based code-generation. Here, details of the IDL to implementation
mapping are specified in a template, which the IDL compiler utilizes to drive
its code generation. This greatly simplifies customization of the IDL compiler
to generate code conforming to a desired mapping. Moreover, the very same
compiler can be utilized with alternate templates to generate code in different
implementation languages.

It should be noted, though, that our extensions for default parameters and
passing parameters by value required IDL syntax changes. Such syntax enhance-
ments must be reflected in the IDL parser, and is outside the scope of any tem-
plate scheme for code-generation.

4 Architecture of a Customizable IDL Compiler

As with OmniBroker, most current IDL compilers hard-code the IDL mapping.
Although this approach serves well to ensure CORBA-conformance, the inflexi-
bility restricts the ability to customize generated code. In order to overcome this
restriction, we propose the compiler architecture shown in Fig. 6. In this archi-
tecture, an IDL compiler consists of a generic parser that creates an enhanced
syntax tree (EST) representation of the IDL source, and a template driven code-
generator that utilizes the EST to generate stub/skeleton code. Figure 6 also
shows the languages utilized in our prototype implementation.

IDL
Parser

A.idl

A.est

C++.tmpl

Code
Generator

A.hh
A_skel.hh
A_skel.cc
A_stub.hh
A_stub.cc

Perl

Perl

C++/Java/Tcl

Code-generation
directives

C++

IDL

Fig. 6. Template-driven IDL Compiler Architecture

The key point to note in this compiler architecture is that the generated
code no longer depends on anything that is hard-coded in the compiler mod-
ules. While both modules clearly must understand the EST representation, the
parser must additionally understand the IDL syntax, while the code-generator
must understand the syntax for specifying a template. The generated code now

406 Girish Welling and Maximilian Ott

depends only on the template that is provided to the code-generator. This makes
it possible to tune generated code by only changing the template specification.
Moreover, this approach also makes it is possible to generate code for an IDL
mapping to any implementation language.

4.1 Prototype Implementation

In order to determine the feasibility of the template approach, we built a hybrid
two-stage IDL compiler using the OmniBroker compiler to parse IDL, and a
template-driven back-end code-generator that is based on Jeeves [7].

We modified the Omnibroker compiler to generate a perl program that en-
codes the EST representation of the IDL source. An EST representation is a
parse tree that is organized so that similar elements are grouped together. For
instance, IDL permits interspersing of attributes and methods in an interface.
This can be seen in the example of Fig. 3 where the attribute button occurs
between the methods q and s. The children of a node corresponding to an in-
terface in a regular IDL parse tree would therefore be ordered exactly as the
corresponding order of attributes and methods in the IDL. On the other hand,
an EST would be constructed so that nodes corresponding to all the attributes
are grouped, as are those corresponding to all the methods. This can be seen in
Fig. 7, where the EST for the IDL interface presented in Fig. 3 maintains the
node corresponding to the button attribute in a separate sub-tree of the node
corresponding to the interface A. Irrelevant parts of the EST have been omitted
from Fig. 7 for simplicity. A portion of the actual perl program that encodes the
EST is shown in Fig. 8.

ROOT

ModuleList

InterfaceList
EnumList

AliasList

"Heidi"

InheritedList

"A"

"S"

AttributeList

"button"
"readonly"
"Status"

MethodList

"p"
"void"

"g"
"void"

"f"
"void" "q"

"void"

"s"
"void"

"t"
"void"

paramList paramList

paramList

"in", "Status",
"s", "Start"

"incopy",
"S", "s"

"in",
"SSequence",

"s"

Fig. 7. Extended Syntax Tree for A.idl

Customizing IDL Mappings and ORB Protocols 407

#!/usr/bin/perl
use Ast;
use JeevesUtil;
$ROOT = $n0 = Ast::New("Root");
#

IDL:Heidi:1.0
#

$n1 = Ast::New("Heidi", "Module", $n0);
#

IDL:Heidi/Status:1.0
#

$n2 = Ast::New("Status", "Enum", $n1);
@m = [Start, Stop];
$n2→AddProp("members", @m);
#

IDL:Heidi/SSequence:1.0
#

$n2 = Ast::New("SSequence", "Alias", $n1);
$n2→AddProp("type", "sequence");
#-–––––––––––––––––

$n3 = Ast::New("", "Sequence", $n2);
$n3→AddProp("type", "objref");
$n3→AddProp("typeName", "Heidi S");
$n3→AddProp("IsVariable", true);

#

IDL:Heidi/A:1.0
#

$n2 = Ast::New("A", "Interface", $n1);
$n2→AddProp("Parent", "Heidi S");

#

IDL:Heidi/A/f:1.0
#

$n3 = Ast::New("f", "Operation", $n2);
$n3→AddProp("type", "void");
#-–––––––––––––––––

$n4 = Ast::New("a", "Param", $n3);
$n4→AddProp("type", "objref");
$n4→AddProp("typeName", "Heidi A");
$n4→AddProp("getType", "in");

. . .

Fig. 8. Portion of the generated Perl program representing the EST

408 Girish Welling and Maximilian Ott

Grouping similar nodes in the EST simplifies the specification of a tem-
plate that drives the code-generator back-end. This can be seen in Fig. 9, which
presents a template for the C++ interface class header as defined in the Hei-
diRMI mapping. The template syntax is straightforward: the ’@’ character
serves as an escape for code-generation commands, while the other lines are
just printed out with appropriate substitutions. The ’$’ indicates the name of
an attribute of the node under current consideration, and is substituted by its
text value before being printed out. The use of a map makes it possible to con-
vert an IDL name into one that is suitable in the context of the code that is
being generated, changing Heidi::A to HdA, for instance. The foreach command
walks through a list of nodes, examining each node in sequence. Since the EST
has already classified the nodes into separate sub-trees according to their types,
using the foreach command will in fact exhaustively enumerate all elements of
the lists of methods, attributes, or parameters.

In our current implementation, code-generation is a two-step process. In the
first step, a perl program that represents the actual code generator is automat-
ically produced from the given template. A modified version of Jeeves [7] is
utilized for this process. This program is then executed together with the perl
program generated in the IDL parse stage to produce the desired IDL mapping.
The latter program essentially rebuilds the EST within the perl interpreter, while
the former uses the EST to generate the desired code based on the template.

Although the two-step code-generation stage is akin to recompiling the com-
piler, it is possible to merge the two code-generation steps as we plan to do in
the future. It can also be noted that the first step of the code-generation stage
need only be performed once for a particular code-generation template. More-
over, evaluating a perl program that directly rebuilds the EST, as we do in the
second code-generation step, is certainly more efficient than parsing an external
representation of the EST.

4.2 Experience

Our template approach to generating code introduces the flexibility of quickly
building an ORB to suit an existing application. For instance, it took us about
two weeks and 700 lines of tcl code to build an IIOP compatible tcl ORB. This
exercise enabled the integration of an existing tcl management GUI applica-
tion with a CORBA-based distributed system. We utilized our template-driven
IDL compiler to generate an IDL-tcl mapping that suited the existing tcl code
(Fig. 10). Our experience goes to show that the template approach has intro-
duced the option of quickly developing an ORB to suit an existing application, as
opposed to only having the option of making the existing application CORBA-
compliant.

We have also utilized our hybrid compiler to generate an experimental Hei-
diRMI compatible IDL-Java mapping. The goal of this work was to enable the
use of HeidiRMI to configure a generic Heidi engine from within a Java pro-
gram. The class inheritance structure in our IDL-Java mapping was similar to the
HeidiRMI C++ mapping, but expanded multiple super-classes in order to get

Customizing IDL Mappings and ORB Protocols 409

@foreach interfaceList -map interfaceName CPP::MapClassName
@openfile ${interfaceName}.hh
/∗ File ${interfaceName}.hh ∗/
class ${interfaceName} :
@foreach inheritedList -ifMore ’,’ -map inheritedName CPP::MapClassName

virtual public ${inheritedName} ${ifMore}
@end inheritedList
{
@foreach attributeList -map attributeType CPP::MapType

${attributeType} ${attributeName};
@end attributeList
public:
@foreach methodList -map returnType CPP::MapReturnType

virtual ${returnType} ${methodName}(
@foreach paramList -ifMore ’,’ -map paramType CPP::MapType
@if ${defaultParam} == ""

${paramType} ${ifMore}
@else

${paramType} ${paramName} = ${defaultParam} ${ifMore}
@fi
@end parameterList

) = 0;
@end methodList

virtual ∼${interfaceName}() {}

// Attribute access methods
@foreach attributeList -map attributeType CPP::MapType

${attributeType} Get${attributeName}() const = 0;
@if ${attributeQualifier} �= "readonly"

void Set${attributeName}(${attributeType}) = 0;
@fi
@end attributeList

};
@end interfaceList

Fig. 9. Template for Generation of C++ Interface Class Header

410 Girish Welling and Maximilian Ott

if {[info vars "IDL:Receiver:1.0"] �= ""} return
set IDL:Receiver:1.0 1

BOA::addIdlMapping ::Receiver "IDL:Receiver:1.0"

class ReceiverStub {
inherit Stub

constructor {ior connector} {
Stub::constructor $ior $connector

} {}

public method print {text} {
set c [$pb connector getRequestCall $this "print" 0]
$c insertString $text
$c send
void return
$c release

}
}

class ReceiverSkel {
inherit Skel

constructor {implObj} {
Skel::constructor $implObj

} {}

public method print {c} {
set text [$c extractString]
$pb obj print $text
void return

}
}

Fig. 10. Sample tcl stub and skeleton code

Customizing IDL Mappings and ORB Protocols 411

around the unavailability of multiple inheritance in Java. The IDL-Java mapping
we implemented also does not support default parameters as the corresponding
C++ mapping does.

The template approach also makes it easy to customize primitive ORB func-
tionality and protocols. Assuming that all generated code utilizes generic ORB
functionality provided by an ORB library, it is possible to write templates for
stubs and skeletons that only use portions of the ORB library to minimize the
ORB footprint as may be required for small embedded devices. HeidiRMI itself
utilizes an entirely text-based wire-protocol that suffices for the control messag-
ing needed in Heidi. Utilizing such a text-based protocol permitted a “human”
client to telnet into the bootstrap port of a Heidi application and type in simple
HeidiRMI requests to debug the system. This was made possible by writing
templates that utilized a custom Call object that implemented the appropriate
marshaling/unmarshaling functionality.

5 Related Work

Although ORB customization has received the attention of many researchers,
current work has mostly concentrated on finding an appropriate balance between
ORB functionality, code-size and efficiency, while preserving a fixed, conform-
ing programming interface. By addressing the problem of customizing the ORB
interface, our approach can be considered to add an additional degree of flexi-
bility to ORB design. We first compare our approach with other approaches to
ORB customization, and then with other approaches to building configurable
IDL compilers.

One approach to customizing an ORB is to synthesize it from primitive com-
ponents. For instance, Quarterware [8] provides the core components required for
middleware implementations: data marshaling/unmarshaling, object references,
transport, dispatching, invocation policy, and wire protocol. Specific middleware
like CORBA or Java RMI are implemented by suitably selecting and customiz-
ing these Quarterware components. Similarly, Jonathan [9] provides interface
references, binding types, and binding factories using which a CORBA or RMI
personality can be implemented. While this approach can clearly be utilized to
customize ORB functionality to fit application requirements, it does not simplify
customizing the language interface presented by the ORB to the application. Our
template driven code-generation can therefore be considered to complement the
synthesis approach. Moreover, the availability of primitive components will cer-
tainly simplify designing suitable templates for a particular class of applications.

A less flexible approach to synthesizing an ORB is for it to expose certain
object patterns and interfaces. With this approach, certain aspects of a core
ORB engine can be customized by attaching a custom module. For instance a
strategy may be attached in TAO [10] and dynamicTAO [11,12], a subcontract in
Spring [13], or a policy in the extensions to RMI suggested in [14]. The CORBA
standard [1] provides the Object Adaptor (OA) through which server objects
interact with the ORB. An OA can make such services as a database appear as

412 Girish Welling and Maximilian Ott

an object. ORB implementations too provide features based on this approach:
Orbix [15] provides filters that are triggered in the dispatch path, and smart
proxies that can cache object state. Visibroker [16] provides similar features
called interceptors and smart stubs. Java RMI [6] permits the customization of
its reference layer so that alternate invocation semantics can be implemented.
While this approach certainly permits the customization of ORB functionality,
the degree of flexibility introduced is clearly limited to only those aspects of the
ORB that are actually exposed.

Our two-stage compiler architecture is not unlike that of the Omnibroker
compiler itself. The Omnibroker parser stores an abstract representation of the
IDL source in a possibly persistent global Interface Repository (IR) in support of
a distributed development environment. The code-generation stage then queries
the IR for details of each required IDL interface, generating code as it walks the
IDL parse tree. We believe our own code generator would integrate well with
the OmniBroker framework to directly utilize the OmniBroker IR. The EST that
our template code-generation requires could either be generated on the fly from
the parse tree in the IR, or the IR could modified to store the EST instead of
the parse tree.

An extensive effort towards modularizing IDL compilers has been made in
the Flick project at the University of Utah [2]. Although the Flick compiler
framework has been designed with the goal of supporting multiple IDLs, im-
plementation languages and protocols, the flexibility that has been introduced
does not simplify the tuning of generated code. Each new IDL mapping would
typically require the design and development of a new Flick back-end module,
which in turn would require recompilation for every change in the mapping.
In contrast, our approach of specifying the IDL mapping in a template clearly
simplifies the customization of a mapping. However, our approach of building
an IDL compiler is consistent with that of Flick and we believe that it is possi-
ble to incorporate the template approach into the Flick framework by writing a
suitable template-driven back-end.

We believe Flick is superior at providing certain sophisticated optimizations,
especially those involving marshal buffer management and parameter manage-
ment. However, code-generation optimizations involving inlining code or nested
message demultiplexing can easily be accomplished with the template approach.
A good strategy may be to utilize the template approach when code-generation
flexibility is desired, but resort to writing a custom Flick back-end for incorpo-
rating sophisticated optimizations.

Although the ILU project at XEROX, Palo Alto Research Center [17] also
emphasizes customizability, the customizability is restricted to primitive ORB
functionality rather than IDL mappings. For instance new messaging protocols,
URL parsing functions, or authentication and accounting schemes can be speci-
fied to the ILU kernel. Many different target languages including C, C++, Java,
and Modula-3 are supported, but the code-generation for each of these is based
on fixed mappings of ILU’s native IDL to the target language. This limitation

Customizing IDL Mappings and ORB Protocols 413

makes it hard to utilize ILU to generate code that is compliant with legacy
application code.

6 Conclusions

Most ORBs are designed to provide features that satisfy a large class of ap-
plications. However, not all available features are necessary for all applications.
Moreover, a particular set of features may not suffice for certain classes of ap-
plications. This makes it necessary for an ORB to be customizable and tunable
to the requirements of a particular class of applications.

In this paper, we first illustrated that there do indeed exist several classes
of applications where it is useful to customize the code that is generated to
bridge application code with the underlying ORB. We then presented a flexible
template-driven code-generator where the mapping of IDL to the implementa-
tion language is specified in a template. This approach simplifies tuning the
IDL mapping, and can be used to complement other approaches of ORB cus-
tomization. Extensive utilization of this approach suggests that it is a powerful
technique for tailoring an ORB to application requirements. Moreover, the tem-
plate approach can also be utilized to quickly generate the framework for object
implementations, which are often associated with fixed code patterns.

We have already strengthened our belief in the template approach by building
support for an IDL-Java mapping for HeidiRMI (without support for default
parameters), and a new IDL-tcl mapping that utilizes a custom tcl ORB. In the
future, we plan to further consolidate our position by considering the design of
IDL mappings for minimal, real-time ORBs based on IIOP.

References

1. Object Management Group, Inc., The Common Object Request Broker: Architec-
ture and Specification, Aug. 1996. Document PTC/96-08-04, Revision 2.0. 396,
411

2. E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A flexible, optimiz-
ing compiler,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, (Las Vegas, Nevada, USA), June 1997. 399,
412

3. S. O’Malley, T. Proebsting, and A. Montz, “USC: A universal stub compiler,”
in Proceedings of the Conference on Communication Architectures, Protocols and
Applications (SIGCOMM), (London, UK), Aug. 1994. 399

4. M. Ott, G. Michelitsch, D. Reininger, and G. Welling, “An architecture for adap-
tive QoS and its application to multimedia systems design,” Computer Communi-
cations, vol. 21, pp. 334–349, Feb. 1998. 400

5. Object Oriented Concepts, Inc., OmniBroker. http://www.ooc.com/ob/. 400
6. Sun Microsystems, Inc., Java Remote Method Invocation Specification.

http://java.sun.com/products/jdk/rmi/index.html. 401, 412
7. S. Srinivasan, “Template-driven code generation,” in Advanced Perl Programming,

ch. 17, O’Reilly Associates, Inc., Aug. 1997. 406, 408

414 Girish Welling and Maximilian Ott

8. A. Singhai, A. Sane, and R. H. Campbell, “Quarterware for middleware,” in Pro-
ceedings of the International Conference on Distributed Computing Systems, (Am-
sterdam, The Netherlands), May 1998. 411

9. B. Dumant, F. Horn, F. D. Tran, and J.-B. Stefani, “Jonathan: An open distributed
processing environment in Java,” in Proceedings of the IFIP International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing (Middle-
ware ’98), (The Lake District, England), Sept. 1998. 411

10. D. C. Schmidt and C. Cleeland, “Applying patterns to develop extensible and
maintainable ORB middleware,” Communications of the ACM, vol. 40, no. 12,
1997. 411

11. F. Kon and R. H. Campbell, “Supporting automatic configuration of component-
based distributed system,” in Proceedings of the USENIX Conference on Object-
Oriented Technologies (COOTS), (San Diego, California, USA), May 1999. 411

12. M. Roman, F. Kon, and R. H. Campbell, “Design and implementation of runtime
reflection in communication middleware: the dynamicTAO case,” in Proceedings of
the ICDCS ’99 Workshop on Middleware, (Austin, Texas, USA), May 1999. 411

13. G. Hamilton, M. L. Powell, and J. G. Michell, “Subcontract: A flexible base for dis-
tributed programming,” in Proceedings of the 14th ACM Symposium on Operating
Systems Principles, (Asheville, North Carolina, USA), Dec. 1993. 411

14. G. Welling and M. Ott, “Structuring remote object systems for mobile hosts with
intermittent connectivity,” in Proceedings of the 18th International Conference on
Distributed Computing Systems, (Amsterdam, The Netherlands), May 1998. 411

15. IONA Technologies, The ORBIX Architecture.
http://www.iona.com/products/orbix/. 412

16. Visigenic, Inc., The New Application Architecture, Version 3.0, 1997. 412
17. XEROX Corporation, ILU Reference Manual.

http://pubweb.parc.xerox.com/hypertext/ilu/index.html. 412

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 415-434, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Hierarchical Architecture for Real-Time Adaptive
Resource Management

Ionut Cardei1, Rakesh Jha2, Mihaela Cardei1, Allalaghatta Pavan2

Honeywell Technology Center
3660 Technology Drive, Minneapolis, MN 55418, USA

1{ionut, mihaela}@cs.umn.edu, 2{jha, pavan}@htc.honeywell.com

Abstract. This paper presents the Real Time Adaptive Resource Management
system (RTARM1), developed at the Honeywell Technology Center. RTARM
supports provision of integrated services for real-time distributed applications
and offers management services for end-to-end QoS negotiation, QoS
adaptation, real-time monitoring and hierarchical QoS feedback adaptation. In
this paper, we focus on the hierarchical architecture of RTARM, its flexibility,
internal mechanisms and protocols that enable management of resources for
integrated services. The architecture extensibility is emphasized with the
description of several service managers, including an object wrapper build
around the NetEx real-time network resource management. We use practical
experiments with a distributed Automatic Target Recognition application and a
synthetic pipeline application to illustrate the impact of RTARM on the
application behavior and to evaluate the system performance.

1 Introduction

Current distributed mission-critical environments employ heterogeneous resources
that are shared by a host of diverse applications cooperating towards a common
mission goal. These applications are generally a mix of hard-, soft- and non-real-time
applications with different levels of criticality and have a variety of structures,
ranging from periodic independent tasks, multimedia streams and parallel pipelines,
to event-driven method-invocation communicating components. The applications
usually tolerate a range of Quality of Services (QoS) and are ready to trade off QoS in
favor of the most critical functions they perform. The distributed systems must be
able to evolve and adapt to the high variability in resource demands and criticality of
the applications as well as to the changing availability of resources.

The current industry trend is to build distributed environments for mission-critical
applications using “Common-Off-The-Shelf” (COTS) commercial hardware and
software components. A middleware layer above the COTS components provides
consistent management for the system resources, decreases complexity and
development costs.

This paper presents the Real Time Adaptive Resource Management system
(RTARM), developed at the Honeywell Technology Center, that implements a

1 Funded by DARPA under NRaD Contract number N66001-97-C-8524.

416 Ionut Cardei et al.

general middleware architecture/framework for adaptive management for integrated
services aimed to real-time mission-critical distributed applications.

The RTARM system has the following basic features [5]: (1) scalable end-to-end
criticality-based QoS contract negotiation that allows distributed applications to share
common resources while maximizing their utilization and execution quality; (2) end-
to-end QoS adaptation that dynamically adjusts application resource utilization
according to their availability while optimizing application QoS; (3) integrated
services for CPU and network resources with end-to-end QoS guarantees; (4) real-
time application QoS monitoring for integrated services and (5) plug-and-play
architecture components for easy extensibility for new services.

The resource management architecture for RTARM uses an innovative approach
that unifies heterogeneous resources and their management functions into a
hierarchical uniform abstract service model [5]. The building block of the architecture
is the Service Manager (SM). It encapsulates a set of services and their management
functions and exports a common interface to clients and other service managers. This
facilitates recursive hierarchies, in which heterogeneous services are integrated
bottom-up. A higher-level service manager aggregates services provided by itself and
its lower-level SMs and provides clients with a higher-level QoS representation.

In this paper, we focus on the architecture, protocols and implementation of an
RTARM prototype that supports integrated services for real-time distributed
applications. It runs as a middleware on a network of workstations and uses CORBA
for portable communication. A major contribution of our work is the hierarchical
feedback adaptation mechanism [1] that provides efficient dynamic QoS control for
distributed data-flow applications. We illustrate the RTARM capabilities with a
practical experiment with an Automatic Target Recognition (ATR) distributed
application [9] and with a synthetic pipeline demonstration application.

The DARPA Quorum program [11] provides an extensive framework for QoS-
related research projects. Similar efforts for building adaptive management systems
for heterogeneous resources are GRMS [6,7], ARA [9,12], and QualMan [10]. GRMS
is a precursor of RTARM. It introduced the uniform resource model and the atomic
ripple scheduling protocol. Its hierarchical architecture reflects the application data
flow and does not offer feedback adaptation. ARA considers a discrete set of runtime
configurations for distributed applications and does feedback adaptation by resource
reallocation. The ARA architecture is non-recursive and differs considerably from the
uniform RTARM architecture by using proxies for specific service providers.
QualMan is designed for multimedia applications and defines two basic resource
management components, the resource scheduler and the QoS broker, that adhere to a
uniform resource model without considering deeper recursive structures and QoS
composition. [2] introduces a portable and QoS-enabled middleware platform suitable
for building multimedia and real-time distributed applications.

The rest of this paper is organized as follows. Section 2 describes the RTARM
hierarchical architecture, system models and interfaces. Section 3 presents the
architecture of a Service Manager and describes the CPU, network and a higher-level
SM. Section 4 continues with experiments involving an ATR application and
synthetic pipeline applications that emphasize the RTARM capabilities. The paper
concludes in Section 5 with a discussion and future plans.

Hierarchical Architecture for Real-Time Adaptive Resource Management 417

2 The RTARM System Architecture

We have designed and implemented the RTARM system prototype as a middleware
layer above the operating system and network resources. The middleware approach
provides the benefit of flexibility and portability but the increased distance to the
basic resources makes fine-grained control difficult. The RTARM servers, developed
in C++, run as user-level processes on Windows NT workstations and export a
CORBA (Orbix [8]) interface to clients and applications. The RTARM model
differentiates between clients and applications. A client is any entity that issues a
request for services and negotiates a QoS contract that defines the allocated services.
An application consumes services reserved by a client on its behalf and continuously
cooperates with the resource management system to achieve the best available QoS
while maintaining its runtime parameters within the contracted region. The QoS
contract may change during the application lifetime.

2.1 The Service Manager Hierarchy

The RTARM system employs a hierarchical resource management architecture that
facilitates provision of integrated services over heterogeneous resources. The uniform
resource model [5] defines a recursive structural entity called Service Manager (SM)
that encapsulates a set of resources and their management mechanism. At the bottom
of the hierarchy are SMs that provide management functions for basic resources, such
as CPU or network resources, and directly control resource utilization by application
components. Higher level services are assembled on top of lower-level services,
giving rise to a service hierarchy.

Integrated
Service

CPU SM Network
SM

Clients

APP1

HSM2

HSM1

F
i

APP2
ig. 1. Sample RTARM hierarchy consisting of one network SM, one CPU SM and two
ntegrated service managers

418 Ionut Cardei et al.

Resources as well as negotiation requests are treated uniformly across the entire
hierarchy. Higher-level service managers (HSM) may act as clients for lower-level
SMs (LSM). The hierarchy allows dynamic configuration as new service managers
can join the system at any time. A request for an integrated service sent to an HSM
may require resources from lower-level service providers. The admission protocol
builds a virtual reservation tree over the SM hierarchy that remains valid for the entire
application lifetime. The SM hierarchy forms a directed acyclic graph, with SM as
nodes and edges represented by the “uses-services-from” relation.

Figure 1 illustrates a simple RTARM hierarchy with two LSMs, a CPU and a
Network SM, at the bottom of the hierarchy. Two clients request services from the
two HSMs while applications are consuming CPU and network resources. Section 3
describes the service managers in more detail.

There are several benefits from a hierarchical, recursive, resource management
architecture. First, services with complex, composite QoS representations are easier to
implement on top of basic services. Complex distributed applications benefit from a
richer representation of QoS. It simplifies the application design and facilitates
consistent resource management for QoS-incompatible applications. Regardless of
how complex the application architecture and QoS semantics are at the top of the SM
hierarchy, at the bottom of the hierarchy everything translates to QoS requests for
basic services (CPU and network in our prototype).

The hierarchical architecture of RTARM scales well with large distributed
environments. Many SMs grouped in clusters may benefit from service localization
and avoid communication bottlenecks. Sharing of LSMs between HSMs adds
redundancy, fault tolerance and load balancing. In contrast, the centralized approach
for heterogeneous resource management in distributed environments may introduce
the drawbacks of a central controller: communication and processing bottleneck, one
point of failure and decreased flexibility, but has certain performance benefits and
lower latency.

A potential shortcoming for deep RTARM hierarchies derives from the increased
distance between the top-most-level SM and bottom layer in the hierarchy. This may
cause high latency for time sensitive RTARM functions, such as feedback adaptation
and application control in case of deep SM hierarchies.

Issues related to deadlock prevention and distributed SM synchronization have
been studied for the GRMS project [6,7] and can be easily extended to the RTARM
model.

2.2 RTARM System Models

2.2.1 QoS Model and Translation

The quality of the interaction of a mission-critical application with a dynamic
environment directly reflects its performance. The wide magnitude of this interaction
requires a range for the quality measures. RTARM supports a multidimensional QoS
representation, each dimension specifying an acceptable range [Qmin, Qmax] of a
quality parameter for the application. A set of range specifications, one per
dimension, defines a QoS region. This QoS model facilitates resource negotiation and
makes resource management more flexible.

Hierarchical Architecture for Real-Time Adaptive Resource Management 419

In the RTARM recursive hierarchy, the QoS representation at a SM reflects the
type of services provided by that SM. An HSM translates a QoS request for integrated
services into individual QoS requests for services provided by itself and its lower-
level SMs. When the SM receives replies from its LSMs, it reassembles the returned
QoS into its own QoS representation in a process called QoS reverse-translation.
RTARM uses a unique implementation for QoS, which is independent of the
addressed service. We define a QoS parameter as a set of name-value pairs, where the
value part is a sequence of one or more scalar primitive data values (string, short,
double, etc.) and the name indicates the specific QoS dimension, such as “rate”,
“workload”, “latency”, etc..

2.2.2 Adaptation Model

RTARM recognizes three situations when application QoS may be changed after
admission [5]: (1a) QoS shrinking/reduction of lower criticality applications when a
new application comes; (1b) QoS expansion/improvement when applications depart
and release resources, and (2) feedback adaptation. While (1a) and (1b) imply
contract changes and involve other applications, feedback adaptation does not change
the contract but only varies the current operational point of the application within the
contracted QoS region. Feedback adaptation is like closed loop control. It relies on
monitoring of delivered QoS and uses the difference between delivered and desired
QoS to adapt the application behavior.

2.3 RTARM Interfaces

Each SM implements and exports three interfaces: (1) Negotiator for admission
control, collateral adaptation, QoS expansion and application control, such as
suspend, resume and end; (2) Service Manager for SM hierarchy set up
(register/deregister SM) and (3) Monitor for application monitoring and event
propagation.

For admission control and adaptation RTARM uses a modified version of the
GRMS Ripple Scheduling algorithm [6,7]. A detailed description with examples
follows in Section 3.4. Briefly said, RTARM admission and adaptation employ a
transaction-based two-phase commit protocol applied recursively at each SM. The
first phase executes a service availability test starting from the SM that received the
admission request, down on the reservation tree that resulted from the QoS translation
and request dispatch process. The available, reserved QoS propagates back to the
initiator SM from the lowest SM layer, being reverse-translated along the way. In the
second phase, the initiator SM assesses the success status of the reservation phase and
the transaction is committed or aborted, implying service reservations along the
spanning tree to be committed, or to be cancelled, respectively. If not enough
resources are available, a SM will try to adapt lower criticality applications to their
minimum contracted QoS and use the released resources for the new application.
Later, when resources become available, the SM expands the QoS for the most critical
applications.

Sometimes in order to admit a new, more critical application, it is enough to
squeeze the QoS of only a part of an existing distributed application. Then, changes in

420 Ionut Cardei et al.

the high-level QoS may require collateral adaptation of other components of the
application that do not directly impact admission of the new application. For instance,
for a multimedia stream application having frame rate as QoS parameter, if one
processing stage is adapted to the minimum rate, than all other stages will run at the
same low rate, too.

The next section presents the object architecture of the SM and details the
implementation of a CPU, a Network and a Higher-level SM.

3 RTARM Service Managers

3.1 The Service Manager Architecture and Implementation

The unified resource model provides the benefits of a uniform internal architecture for
all service managers (Figure 2) and a common interface between them.

The arrows in the figure indicate object service requests. The components in a SM are
as follows:
• Negotiator: brokers contract admission, delegates responsibilities to other

components and exports the external RTARM CORBA interface.
• Translator: translates higher-layer integrated QoS into lower-layer QoS

representation.
• Allocator: handles resource allocation/release when no adaptation is necessary.
• Adapter: handles resource allocation/release with adaptation and QoS

expansion/contraction.
• Scheduler: determines whether allocation of resources and expansion of

application QoS are feasible.

Fig. 2. The internal object architecture of a service manager

Translator

Negotiator

Enactor

Allocator

Adapter

Scheduler
FB-Adapter Detector

Monitor

Shared Data Structures:
SMs, Application Contracts,
FB-Adaptation and Monitoring

Involved in Admission
Control and Cross-

Application Adaptation

Involved In Feedback
Adaptation Only

Configuration Manager

Hierarchical Architecture for Real-Time Adaptive Resource Management 421

• Enactor: enforces changes in application QoS or status.
• Monitor: keeps an eye on applications in execution and passes status information

and QoS usage to the Detector. Exports external RTARM CORBA interface.
• Detector: uses application runtime information (e.g. current QoS operational point)

to detect significant changes in application operation (e.g. overload,
underutilization, contract violation). Triggers Feedback Adapter actions.

• Feedback Adapter: decides corrective actions for applications when their runtime
status changes significantly.

Additional data structures exist to hold information regarding application contracts,
other service managers and available services.

Applications implement a simple CORBA interface that allows SMs to change
their QoS and status. LSMs keep proxies for the application CORBA server objects.
All RTARM CORBA servers and applications are started in the shared, multi-client
activation mode.

A SM component class has the same object interface regardless of the SM position
in the hierarchy or the resources the SM controls. For instance, the Adapter object
implements the same functions in all SMs, but in a way that depends actually on the
scope of the SM. Not all components are required within a SM. For example, a
Translator may exist only inside an HSM.

RTARM provides a common object oriented execution framework that allows
users to dynamically load SM components from shared libraries during runtime
configuration. A configuration manager uses a mechanism similar to a Factory
Method [4] to instantiate SM components. It also passes configuration information
extracted from a configuration file to the SM components during their initialization.

For all SMs there is a single executable program that originally contains the empty
SM framework and the configuration manager. By loading specialized components
from shared libraries, the configuration manager practically starts different SMs. We
use this technique when we initialize the CPU, Network and Higher-level SMs with
components from specific Windows NT DLLs.

The flexibility of this plug-and-play feature permits implementation of a new SM
by just replacing a set of components that realize a particular SM component
interface, without rewriting the whole program. Writing a new SM component only
requires the header file with the object interface, the executable program (common
execution framework) and its corresponding library.

3.2 The CPU Service Manager

The CPU SM provides periodic applications access to a processor resource. Each
computing node has a CPU SM, allowing concurrent applications to share a CPU. The
application QoS is bi-dimensional: application execution rate (R) and iteration
execution time (W) (Figure 3). The COP (Current Operational Point) represents the
current values for the multidimensional QoS.

422 Ionut Cardei et al.

3.2.1 Admission and Adaptation

The specific CPU scheduling policy is isolated within the Scheduler object and the
Monitor keeps track of application CPU utilization. The invariant condition for
admission and schedulability for n applications is Σi=1..nRiWi < 100% processor
utilization. A more sophisticated CPU SM can be implemented at any time, by just
using the plug-and-play feature, replacing the default Scheduler component with one
specific to the scheduling discipline used.

The CPU SM service allocation unit for each periodic application is the fraction of
CPU utilization (R x W). The CPU SM communicates this information to applications
and assumes they are well behaved and keep their process utilization below the
allocated limits. The SM scheduler only assigns application rates and does not control
the underlying OS scheduler. This policy works fine on a larger time scale and for our
experimental purposes. For real-time performance one solution is to implement a soft
real-time CPU scheduling server above the OS scheduler [10]. Commercial operating
systems with soft real-time capabilities, like Windows NT and Solaris, limit the
scheduler granularity to 10-20ms.

The CPU SM implements the Ripple Scheduling admission protocol. Because it is
at the bottom of the SM hierarchy and has no LSMs, it does not make any other
recursive calls. Adaptation and collateral adaptation reduce the application rate to the
minimum contracted value. QoS expansion increases the application contracted QoS
(rate) to the best available value.

3.2.2 Feedback Adaptation

The CPU SM controls the task rate in real-time. It cannot change the workload, which
is left exclusively under application control. Applications send their current QoS
operational point as events to the CPU SM monitor at the end of each periodic
iteration. At any moment, the QoS COP may vary so that R x W ≤ L, where L is the
fraction of the contracted processor utilization. The CPU SM adjusts the COP as

Workload

Requested
region

Feasible
region

Rate

C.O.P

RxW=%CPU utilization=constant

Fig. 3. CPU Service Manager QoS representation

Hierarchical Architecture for Real-Time Adaptive Resource Management 423

follows: (1) increase rate when workload decreases; (2) decrease rate on overload,
when the workload pushes the COP outside the contracted region.

3.3 The Network Service Manager

We integrated the NetEx real-time network management system [3,13] from Texas
A&M University into the RTARM system. NetEx runs as middleware and provides
connection-oriented real-time communication with guaranteed delay and bandwidth
over COTS network infrastructure, such as ATM and switched 10/100 Mbps Ethernet.
NetEx uses a tri-dimensional QoS: period, delay and message size and adds the
connection source and destination network addresses to the connection contract. The
NetEx resource management interface is, however, incompatible with the RTARM
interfaces. It has different semantics and it does not export the two-phase commit
protocol.

We built an object-oriented wrapper [4] around NetEx that hides the
incompatibilities and exports the RTARM interface to clients, applications and HSMs
(Figure 4). The wrapper method can be used to integrate any service provider in the
RTARM architecture.

The wrapper implements three SM components, Negotiator, Adapter and Enactor,
that map the RTARM interface calls for admission, adaptation and expansion to the
native NetEx API. NetEx does not provide feedback adaptation for connections, so
the wrapper SM does not implement feedback adaptation either. It is important to
note, however, that our HSM for integrated services for parallel pipeline applications
implements hierarchical feedback adaptation. This is detailed in the next section.

Negotiator

Adapter Enactor

NetEx Library

Allocator Scheduler

HSM

NetEx Object
Wrapper

Application

Fig. 4. The object wrapper for NetEx communication manager

424 Ionut Cardei et al.

3.4 The Higher-Level Service Manager for Integrated Services

Within the RTARM service manager hierarchy, HSMs aggregate services from LSMs
(CPU, Network or any other type of SM) and provide RTARM services to
applications that need a more complex QoS representation. The unified resource
model enables recursive deployment of HSMs. Our HSM implementation is generic
and is able to support various types of distributed applications with arbitrary QoS
representations that map to available LSM QoS. The only restriction is that the Ripple
Scheduling admission and adaptation procedure and the hierarchical feedback
adaptation must not contradict the application semantics. The QoS Translator SM
component inside an HSM is responsible for translating a QoS request into something
the LSMs understand. Replacing the translator component with a different one (for a
different QoS representation) produces a HSM capable of supporting different
integrated services.

3.4.1 Admission and Adaptation

The Negotiator implements the recursive two-phase admission protocol that runs at
the heart of each HSM. The code for the first phase, reservation, follows next:

test_reservation(in reqQos, out avQos, in candidates,
out adaptedApps)

// reqQoS is the requested QoS region
// avQoS is the returned (acceptable) QoS region
// candidates is the list of applications that may be
// adapted in order to accommodate the current request
// adaptedApps is the list of adapted applications
{
translate reqQos into:

LS – list of requested services from LSMs, and
LreqQos – corresponding QoS per service.

for each service S from LS {
for each LSM lsm that provides service S {

success = lsm->test_reservation(LreqQoS[lsm],
lsmAvQos[S],
candidates that run on lsm,
lsmAdaptedApps[S])

if success then mark admitted service
and continue with next service S from LS

}
if service S was not admitted then {
cancel all previous successful reservations
return false

}
}
// now all services from LS have been admitted
reverse-translate and maximize the returned QoS from

lsmAvQos into avQoS
perform collateral adaptation if necessary
return true

}

Hierarchical Architecture for Real-Time Adaptive Resource Management 425

The second phase that commits the resource reservation from phase I is
implemented like this:

commit_reservation(in committedQos, in adaptedApps)
// commitedQos is the QoS region to commit
// adaptedApps is a list of applications (adapted in phase
// I) whose adaptations have to be committed
{
translate commitedQos into:

Llsm – list of LSMs and
LcommittedQos – committed QoS per service

for each lsm from Llsm {
lsm->commit_reservation(LcommitedQos[lsm],

adaptedApps that run on lsm)
}
save committedQos into the application contract

}

The cancel_reservation() call is similar to commit_reservation() and is
omitted here.

Figures 5 and 6 illustrate examples of admission of a new application with id 3 at an
HSM H that has 3 LSMs, L1, L2, L3.

Applications 1 and 2 are already running at H and use services from L1, L2, L3. For
example, application 1 (denoted with 1 at H) runs also at L1 (1.1), at L2 (1.2) and L3

(denoted 1.3). The new application 3 requires two services and maps to 3.1 and 3.2. In
example a) both 3.1 and 3.2 are admitted at L1 and L2. Admission for 3.1 needs
adaptation of application 1.1 on L1. This triggers collateral adaptations for 1.2 as well
as 1.3, as the entire application 1 must be adapted. Calls 4 and 5 (test_adapt) ask
L2 and L3 to adapt collaterally application 1. During the execution of
commit_reservation on H (call number 6), the collateral adaptation of 1 is
committed on L1 and L2 with the two commit_reservation calls plus the extra
commit_adapt call (9) to L3. The example from Figure 6 shows the call sequence

1, 2

1.1
2.1
3.1

1.2
3.2

1.3
2.2

1-test_reservation(3)

2
7 3

4
8

5
9

RTARM calls:
1,2,3 – test_reservation
4,5 – test_adapt
6,7,8 – commit_reservation
9 – commit_adapt

6-commit_reservation(3)

L2L1 L3

H

Fig. 5. Example of successful admission of application 3 at the HSM “H”

426 Ionut Cardei et al.

when application 3 is accepted by L1, but rejected both by L2 and L3. HSM H finally
rejects 3 and returns false to the test_reservation call 1.

We have implemented a Pipeline Service Manager (PSM), an HSM that aggregates
services from lower-level SMs (CPU, Network, other HSMs) into a higher-level
integrated representation suited for pipeline applications. Our PSM supports periodic
independent tasks and periodic parallel pipeline applications, consisting of
communicating stages in an arbitrary configuration, with a single source and a single
sink node. We assume a sensor enters periodically data frames in the pipeline. Each
frame is processed by a stage or a composite stage [1] (consisting of parallel strings of

elementary stages) and then sent to the next stage. Such a pipeline application is
depicted in Figure 7.

For periodic pipeline applications, we use a QoS consisting of end-to-end message
latency and rate for the final stage. The admission contract also contains execution
time for each stage as well as the message size for each inter-stage connection. It is
the job of the pipeline translator to decompose the integrated-service pipeline request
into CPU and network admission requests. We assume all stages use the same range
for rate. The pipeline QoS (end-to-end latency, frame rate plus state workloads and
message sizes) translates into CPU QoS parameters for all stages and Network QoS

RTARM calls:
1,2,3,4 – test_reservation
5 – cancel_reservation

1, 2

1.1
2.1
3.1

1.2 1.3
2.2

2
5

3
4

3.2 not admitted

1-test_reservation(3)

H

L2L1
L3

Fig. 6. Example of failed admission of application 3 at the HSM “H”. Stage 3.2 is

denied by both L1 and L2

2

0

1

3 4 5 6

Fig. 7. Sample parallel pipeline application with 7 stages

Hierarchical Architecture for Real-Time Adaptive Resource Management 427

for all network connections. The CPU QoS rate range is the same as that for the
pipeline frame rate. The pipeline translator uses the same rate range and a fraction of
the end-to-end pipeline latency to generate the Network QoS parameters.

3.4.2 Hierarchical Feedback Adaptation for Parallel Data-Flow Applications

We have implemented an innovative and efficient hierarchical feedback adaptation
mechanism for parallel pipeline applications [1]. It performs feedback adaptation at
two levels in the SM hierarchy. The pipeline end-to-end latency is controlled at the
HSM level while the CPU SMs perform CPU feedback adaptation independent of the
HSM.

The pipeline QoS parameter we consider critical and want to control is the end-to-
end latency. As the pipeline evolves in time, rates of intermediate stages may change
as a result of CPU SM feedback adaptation. In normal circumstances, the input sensor
period is maintained at a value greater than the current period of any stage/substage of
the parallel pipeline application, but it can get lower because of independent CPU
feedback adaptation. When accumulation of queues between stages increases the end-
to-end latency beyond a maximum threshold, the PSM sets the input sensor period at
the maximum value from the pipeline contract. A finite state machine in the PSM
maintains this maximal period for a fixed time, allowing the queues to empty. Then,
the PSM sets again the input sensor period to the maximal current period of all stages,
typically lower than maximum period from the contract. We have proved in [1] that
the end-to-end latency decreases, and that after a finite number of frames the pipeline
enters a region of stability where the end-to-end latency and the output frame rate are
within the contracted region.

This method is simple and quite efficient, as the only parameter to be adjusted is
the sensor input period, while the pipeline stages are controlled only by the
corresponding CPU SM. This mechanism avoids costly communication and
coordination between the HSM and all the CPU SMs. The information required for
pipeline feedback adaptation is minimal: the end-to-end latency for the current frame
and the maximal current period of all stages.

In the next section we present experiments with synthetic pipeline applications and
an Automatic Target Recognition application and we give performance estimates for
the RTARM system.

4 Experiments and Performance Evaluations

In this section we present two preliminary experiments that reflect our current
research progress. We need further work to fully assess the implication of the
hierarchical architecture to the overall system performance. The first experiment deals
with synthetic pipeline applications and yields performance numbers for admission,
adaptation and QoS expansion for the CPU, Network and Pipeline SMs. The second
experiment tests feedback adaptation for parallel pipeline applications. The Forward
Looking Infrared Automatic Target Recognition application provides an excellent
testbed to prove the efficiency of our hierarchical feedback adaptation technique.

428 Ionut Cardei et al.

The runtime environment for these experiments consists of three 450MHz Dell
Workstation-400 machines, running Windows NT, connected via a Fore ATM switch
with OC-3c (155Mbps) links. Each machine hosts a CPU SM. Both the network SM
that controls the inter-stage communication and the pipeline SM run on one of the
three machines. We consider their own CPU resource consumption negligible. All
inter-SM CORBA communication uses a secondary Fast Ethernet network, so the
ATM lines remain 100% available for inter-stage communication. We used the NT
performance counter for precise time measurements.

4.1 Performance for Admission and Adaptation

For evaluating admission, adaptation and expansion performance for pipeline
applications we devised two scenarios.

Scenario 1.
1. We tested admission of three-stage pipelines on a SM hierarchy with one HSM (P),

one NSM (N) and two CPU SMs (C1, C2), as illustrated in Figure 8. The sequence
of events is:

2. admit pipeline 1; no adaptation required.
3. admit pipeline 2 with higher criticality; stage 1.1 is adapted due to CPU constraints

on SM C1; stages 1.2, 1.3 and network connections are adapted collaterally.
4. terminate pipeline 2; pipeline 1 is expanded back to its original QoS (all stages and

the network connections).
5. try admission for pipeline 3 with lower criticality than 1; not enough CPU

resources, admission is denied.
6. terminate pipeline 1.

Fig. 8. Scenario 1. SM configuration and stage mapping

Client

P

1.1
1.2

1.3

2.1
2.2

2.3

Pipeline 1

Pipeline 2

C2C1 N

Hierarchical Architecture for Real-Time Adaptive Resource Management 429

Scenario 2 runs on the same environment as Scenario 1 and is similar, except the
pipeline applications now have two stages and adaptation is caused only by network
bandwidth constraints, not by CPU resource insufficiency.

Throughout the tests we measured the time required to complete the RTARM
interface calls for admission, adaptation and expansion for the CPU, Network and
Pipeline SM. The measured time consists of the actual processing overhead and time
to complete nested calls to: (1) application CORBA servers for the CPU SM; (2) the
NetEx management subsystem and application CORBA servers for the Network SM
(NetEx wrapper) and (3) LSMs for the Pipeline SM.

The performance measurements for the Pipeline SM are listed in Table 1, for the
CPU SM in Table 2 and for the Network SM in Table 3. All values are expressed in
milliseconds.

Table 1. Performance measurements for the Pipeline Service Manager

w/o Adaptation with Adaptation
Total time Processing time* Total time Processing time

test_reservation 99.159 17.972 118.344 18.899
commit_reservation 2239.02 6.366 2376.34 11.338
cancel_reservation 7.102 0.313

test_expansion 212.751 4.508
commit_expansion 39.987 4.921

end_app 252.325 1.414 460.348 4.145

w/o Adaptation with Adaptation
with CORBA w/o CORBA with CORBA w/o CORBA

test_reservation 0.447 0.707
commit_reservation 525.165 0.474 544.796 1.397
cancel_reservation 0.146 0.168

test_adapt 0.234
test_expansion 0.189

commit_expansion 3.132 0.112
end_app 4.619 0.846

Table 2. Performance measurements for the CPU Service Manager

w/o Adaptation with Adaptation

Total
time

Processing
time

CORBA
time

NETEX
time

Total
time

Processing
time

CORBA
time

NETEX
time

test_reservation 22.475 3.147 0 19.328 48.414 3.901 0 44.513
commit_reservation 45.434 0.637 44.797 0 49.962 1.105 48.857 0
test_adapt 0.056 0.056 0 0
test_expansion 33.093 0.355 0 32.738
commit_expansion 0.697 0.697 0 0
end_app 10.08 0.289 0 9.791

Table 3. Performance measurements for the Network Service Manager

430 Ionut Cardei et al.

For the PSM the “Total Time” columns include the sequence of recursive RTARM
CORBA calls to the LSMs and the algorithm processing overhead. Some calls may
require adaptation of lower criticality applications, such as test_reservation() at
step 2 in scenario 1; other calls, like the expansion operations, are 100% with
adaptation. From Table 1 we notice that the reservation operations and end_app()
require extra processing work if adaptation is involved. Also the processing time for
test_reservation() is considerably larger than all other calls since it involves
back-and-forth QoS translation and reverse-translation. But what stands out is the
large total time consumed for commit_reservation() for a three stage pipeline
application, approximately 2.3 seconds. This time includes the duration for
commit_reservation() calls to the CPU SM that take more than 500ms for each
pipeline stage (see Table 2). A CPU commit_reservation() call actually
generates a set_qos() call with the committed application QoS to the application
stage CORBA server. The stages are not up and running when admission happens.

The Orbix daemon [8] starts the stage process and passes the CORBA server IIOP
TCP port number and IP address to the CPU SM. Only after the stage is up and
initialized it is able to respond to the set_qos() CORBA call from the CPU SM.
The time to start a Windows GUI application (the pipeline stage) on Windows NT 4.0
is around half a second for our test configuration.

Table 3 shows time measurements for the Nework SM These are more complex
since the NetEx wrapper communicates through TCP/IP with the NetEx Host Traffic
Manager [3,13] and stages through set_qos() CORBA calls (only during
commit_reservation()). The communication latency overhead caused by NetEx
is comparable to CORBA communication overhead, between 10 and 45ms.

We conclude that operation of the RTARM system is efficient, except the
commit_reservation() call for CPU applications. This major delay can be
completely avoided by pre-loading the applications before the client submits the
pipeline contract to the HSM. The overall system performance may further improve
by using a faster CORBA implementation that guarantees real-time operation
deadlines.

4.2 Performance for Hierarchical Feedback Adaptation

4.2.1.1 The Automatic Target Recognition Experiment

We tested the RTARM feedback adaptation mechanism on a true mission-critical
application. The ATR application, schematically shown in Figure 9, processes video
frames captured by a camera and displays recognized targets on a display. Stage 0
(the sensor) generates frames that are passed through a series of filters and processing
elements up to stage 6, which displays the original image and the identified targets.
The frames are 8-bit, 360x360 pixels, monochrome images, and contain a variable
number of targets (from 3 to 50), depending on the frame. Stages 4, 5 and 6 expose a
variable workload, proportional to the number of targets, that without feedback
adaptation would cause queue accumulations with negative effect on the end-to-end
frame latency.

Hierarchical Architecture for Real-Time Adaptive Resource Management 431

4.2.2 Performance Metrics and Evaluation

The ATR pipeline contract requires an acceptable output frame period interval of
[1,5] s, and a frame latency of 0.7-13 s. The seven ATR stages run at a variable
workload between 0.02s and 1.5s and within the same period interval [1,5] s. We first
present timing measurements for the feedback adaptation at the CPU SM and PSM
SM level (Figure 10). We measured the processing overhead of the feedback

adaptation code (part 2 in Figure 10) and the time it takes the SM to react from the
moment it receives the current QoS from the application until its adaptation command
is enforced (part 2 + part 3).

The measured times are displayed in Table 4. For the CPU feedback adaptation,
detection and enforcing the QoS adaptation takes around 4.4ms. Most of the time,
3.9ms, is spent in a set_qos() operation, a two-way normal, local CORBA call.
The pipeline adaptation enforcement includes a set_qos() call to the CPU SM that
controls the sensor (or first stage) that calls directly the first stage with a
set_qos()call. This explains why enacting pipeline QoS adaptation takes almost
double than for CPU SM QoS.

Application

1 3

set_qos(newQoS)event(COP)

CPU SM

2

CPU SM

1 3

set_qos(newQoS)event(COP)

Pipeline SM

2

...
Fig. 10. Measuring feedback adaptation performance

Fig. 9. ATR pipeline application and its high-level QoS

2

0

1

3 4 5 6

Frame Arrival PeriodEnd-to-End Latency

time

432 Ionut Cardei et al.

Figure 11 displays CPU feedback adaptation for stage 4 in the ATR pipeline. The
stage has variable workload that triggers its CPU SM to change its rate. Points A

indicate overload that triggers rate decrease and points B indicate chronic
underutilization that determines rate increase.

While running the ATR application, the pipeline feedback adaptation mechanism
makes sure the end-to-end latency and rate stay in the contracted range (Figure 12). In
order to practically demonstrate its effectiveness, we disabled the pipeline feedback
adaptation after some time while keeping the sensor input period at a sustained low
value of 1.48s (0.67Hz). This caused accumulation of frames in stage queues that
translated into an increasing end-to-end frame latency. While feedback adaptation was
disabled we actually did not get latency measurements, so we drew a dotted line
between points A and B. When the latency reached 30s, way above the contracted
value, we re-enabled pipeline feedback adaptation. Immediately the PSM sensor
increased the sensor input period up to 5s. The latency went rapidly down (B � C),
below the threshold, after a brief spike caused by the inertia of the more than 23
frames already in transit through the pipeline.

Table 4. Feedback adaptation performance results for CPU SM and PSM

Detection and

decision processing (2)

Decision

Enactment (3)

Total Time

(2+3)

CPU SM
0.508 ms 3.914 ms 4.422 ms

Pipeline SM
0.859 ms 6.816 ms 7.675 ms

Fig. 11. CPU SM feedback adaptation for a task with variable workload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 110 120 130 140 150 160 170 180 190 200

Experiment time (seconds)

Workload Rate CPU Load=Rate x W orkload

A

B

A

B

Hierarchical Architecture for Real-Time Adaptive Resource Management 433

The feedback adaptation algorithm we implemented tends to keep the intermediary
stage queues empty while changing the input sensor period only. This is effective but
introduces high oscillations for latency. Further research will use control theory to
design more efficient algorithms that use target history and prediction, able to smooth
down the end-to-end latency oscillations without compromising overall performance
and response time.

Our hierarchical feedback adaptation algorithm proved to be effective and
efficient. Detection, decision and enforcement take less than 8ms and involve only the
CPU SMs for the sensor and the last stage that actually reports the latency and rate.

5 Conclusions

This paper presents the middleware architecture and implementation of the RTARM
system. We have first focused on the architectural elements that enable RTARM
support for integrated services: (1) the uniform service management recursive
hierarchy and protocols, (2) the common architecture of a Service Manager that
facilitates rapid object-oriented prototyping, massive code reuse and features plug-
and-play support for SM components. Then we detailed the specific service managers
that constitute the RTARM hierarchy. The clean and flexible architecture of a SM
allowed us to integrate quickly a new service provider in the RTARM hierarchy. We
built an object wrapper around the incompatible interface of the NetEx network
management system that provided the same CORBA interface implemented by all
RTARM service managers.

Finally, we presented experiments that illustrate the practical use of the RTARM
system and its effectiveness for a real-world Automatic Target Recognition

Fig. 12. Latency variation for ATR with and without pipeline feedback adaptation

0

5

10

15

20

25

30

35

40

350 450 550 650 750 850
Elapsed Time (seconds)

s
e
c
o
n
d
s

Disable pipeline feedback
adaptation at t=460s

Enable pipeline
feedback adaptation at
t=764s

A

B

C

Sensor Input
Period

End-to-end
Latency

Threshold

434 Ionut Cardei et al.

application. We demonstrated that our hierarchical feedback adaptation mechanism is
able to efficiently control in real time the dynamic behavior of a parallel pipeline
distributed application.

We plan to port RTARM to a real-time CORBA implementation, such as WUStL
TAO [14] and to optimize its performance. We also intend to develop more
sophisticated feedback adaptation mechanisms with prediction features which would
further decrease the system reaction time while optimizing the application QoS.

References

1. Cardei, M., Cardei, I., Jha, R., Pavan, A., “Hierarchical Feedback Adaptation For Real-Time
Sensor-based Distributed Applications”, to appear in the Proceedings of the 3rd IEEE
International Symposium on Object-Oriented Real-time distributed Computing, 2000

2. Coulson, G., “A Configurable Multimedia Middleware Platform”, IEEE Multimedia, Vol 6,
No 1, 1999

3. Devalla, B., Sahoo, A., Guan, Y., Li,C., Bettati, R., Zhao, W., “Adaptive Connection
Admission Control for Mission Critical Real-Time Communication Networks”, to appear in
International Journal of Parallel and Distributed Systems and Networks, Special Issue On
Network Architectures for End-to-end Quality-of-Service Support

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns. Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1994

5. Huang, J., Jha, R., Heimerdinger, W., Muhammad, M., Lauzac, S., Kannikeswaran, B.,
Schwan, K., Zhao, W., Bettati, R.. “RT-ARM: A Real-Time Adaptive Resource
Management System for Distributed Mission-Critical Applications”, Proceedings of the
IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, December
1997

6. Huang, J., Wang, Y., Cao, F., “On Developing Distributed Multimedia Services for QoS and
Criticality Based Resource Negotiation and Adaptation”, Journal of Real-Time Systems,
May 1999

7. Huang, J., Wang, Y., Vaidyanathan, N.R., Cao, F., “GRMS: A Global Resource
Management System for Distributed QoS and Criticality Support”, Proceedings of the 4th
IEEE International Conference on Multimedia Computing and Systems, June 1997

8. IONA Technologies, “The Orbix Programmer’s Guide”, 1997
9. Jha, R., Muhammad, M., Yalamanchili, S., Schwan, K., Rosu, D., deCastro, C., “Adaptive

Resource Allocation for Embedded Parallel Applications”, Proceedings of the 3rd
International Conference on High Performance Computing, December 1996

10.Nahrstedt, K., Chu, H., Narayan., S., “QoS-aware Resource Management for Distributed
Multimedia Applications”, to appear in Journal on High-Speed Networking, Special Issue
on Multimedia Networking

11.Quorum, http://www.darpa.mil/ito/research/quorum
12.Rosu, D., Schwan, K., Yalamanchili, S., “FARA – A Framework for Adaptive Resource

Allocation in Complex Real-Time Systems”, Proceedings of the 4th IEEE Real-Time
Technology and Applications Symposium, June 1998

13.Sahoo, A., Li, C., Devalla, B., Zhao, W., “Design and Implementation of NetEx: A Toolkit
for Delay Guaranteed Communications”, Proceedings of Milcom, December 1997

14.Schmidt, D., Levine D., Mungee S., “The Design of the TAO Real-Time Object Request
Broker”, Computer Communications Special Issue on Building Quality of Service into
Distributed Systems, Elsevier Science, 1998

Author Index

Ahamad, Mustaque 45
Arulanthu, Alexander B. 208
Astley, Mark185
Auerbach, Joshua 185

Bacon, Jean 104
Banavar, Guruduth 185
Bennett, Brian331
Betz, M. 231
Blair, Gordon S. 164
Blair, Lynne 164
Buchmann, A. 231

Campbell, Roy H. 121
Cardei, Ionut 415
Cardei, Mihaela415
Chockler, Gregory V. 1
Cilia, M. .231

Degenaro, Louis 24
Dharap, Jaideep M. 45
Dolev, Danny . 1

Eliassen, F. 289

Fakhouri, Sameh A.349
Friedman, Roy 1

Ganev, Ivan B. 45

Hahm, Bill . 331
Hine, John H. 104

Issarny, Valérie 164
Iyengar, Arun24

Jerome, William F. 349
Jha, Rakesh 415
Joosen, Wouter 144
Jørgensen, Bo Nørregaard144

Kircher, Michael 208
Kon, Fabio . 121
Koster, Rainer 273
Kramp, Thorsten 273
Krishnaswamy, Vijaykumar 45
Kuhns, Fred 372

Leff, Avraham 331
Li, Baochun 256
Liebig, C. .231
Lindermeier, Markus 71
Lipkind, Ilya . 24
Liu, Ping . 121

Magalhães, Luiz Claudio 121
Mao, Jina . 121
Matthijs, Frank 144
Melliar-Smith, P. M. 88
Mikalsen, Thomas 331
Moody, Ken 104
Moser, L. E. 88

Nahrstedt, Klara 256
Naik, Vijay K. 349
Narasimhan, P. 88

O’Ryan, Carlos 208, 372
Opyrchal, Lukasz 185
Othman, Ossama 372
Ott, Maximilian 396

436 Author Index

Parsons, Jeff 208, 372
Pavan, Allalaghatta415

Rackl, Günther 71
Rafaelsen, H. O. 289
Raina, Ajay 349
Rasmus, Kevin 331
Rayfield, James 331
Román, Manuel121
Rouvellou, Isabelle 24, 308, 331
Rudorfer, Michael71

Schmidt, Douglas C. 208, 372
Strom, Robert 185
Süss, Bernd . 71
Sturman, Daniel 185

Tai, Stefan .308
Truyen, Eddy 144
Tuma, Petr . 164

Varma, Pradeep 349
Vitenberg, Roman 1

Welling, Girish 396

Yamane, Tomonori 121
Yao, Walt . 104

Zarras, Apostolos 164

	Front matter
	Lecture Notes in Computer Science
	Middleware 2000
	Preface
	Table of Contents

	Chapter 1
	Introduction
	Related Work
	Object Caching in CORBA Compliant Systems
	The Service Approach to Caching and Migration
	Consistency in Shared Memory and Distributed Systems
	Object-Oriented Database Systems (OODS)
	Web Caching

	CASCADE and the Standard CORBA Services
	CASCADE System Overview
	CASCADE System Modules
	The Client Structure
	The DCS Structure
	The Proxy Object Structure

	CASCADE Implementation in Detail
	Hierarchy Construction
	Implementation of Cached Copies Consistency
	Object Group-Based Consistency

	Support for Atomic Operations and Locking
	Overview of Cache Management in CASCADE
	Support for Security

	Applications
	Yellow Pages Service
	Tickets Reservation Service
	Distributed Bulletin Board

	CASCADE Performance
	Lessons Learned from CORBA Experience
	Future Work

	Chapter 2
	Introduction
	Overview of the Accessible Business Rules Framework (ABR)
	Caching Software Used by ABR
	Cache Invalidation Using the Data Update Propagation Algorithm
	Constructing ODG's from Queries
	DUP Implementation in ABR

	Performance of Query Caching Techniques
	Other Benchmarks

	Related Work
	Summary and Conclusions
	Appendix: Queries from the Set Query Benchmark

	Chapter 3
	Introduction
	Interactive Applications
	System Architecture
	QuO Framework
	Adding Caching to the QuO Framework

	Consistency Protocols
	Server Based Invalidation Protocol (SCinv)
	Invalidation-Set Protocol (LCset)
	Implementation of Consistency Protocols

	Performance
	Basic Performance of Caching
	Workloads
	 Workload Modeling
	Performance Evaluation

	Related Work
	Conclusions

	Chapter 4
	Introduction and Overview
	Multi-Layer-Monitoring
	Distributed Middleware Environment Model
	Multi-Layer Monitoring

	MIMO
	Monitoring and Management Scenario
	Finding and Accessing MIMO

	MIMO Architecture
	Tool-Monitor-Interaction
	Intruder/Adapter-Monitor-Interaction

	Instrumentation of CORBA and DCOM Platforms
	Instrumenting CORBA Applications
	CORBA Adapter
	CORBA Intruder

	Instrumenting DCOM Applications
	DCOM Wrapper
	Performance and Limitations

	MIVIS Visualization Tool
	MIVIS Concepts
	Implementation
	MIVIS Displays

	Example Scenario
	Conclusion

	Chapter 5
	Introduction
	The Fault Tolerance Infrastructure
	Transparency via Interception
	Strong Replica Consistency

	Gateways to Fault Tolerance Domains
	Connection Establishment
	Encapsulation of IIOP into Multicast Messages
	Duplicate Detection and Suppression
	Operation Identifiers

	Using Existing ORBs
	Enhancements to Existing ORBs

	Related Work
	Conclusion

	Chapter 6
	Introduction
	Policy, Roles, Certificates and Credentials
	Overview of OASIS
	Role Entry
	Certificates
	Credential Records
	Role Use
	Auxiliary Credentials

	A Distributed Architecture
	Distributing Updates
	Support for Fault Tolerance
	Failure Cases.
	Recovery Protocols.

	Analysis
	Correctness of the Recovery Protocol.

	Conclusion

	Chapter 7
	Introduction
	dynamicTAO
	A Reflective ORB
	Reconfiguration Interface
	Consistency
	Reconfiguration Agents
	Securing Dynamic Configuration

	Monitoring Object Interactions
	Architecture
	Performance Measurements

	Dynamic Security
	Architecture

	Componentizing the ORB
	Related Work
	Future Work
	Conclusions

	Chapter 8
		Introduction
		Overview of Our Approach
		Architectural Framework for Domain Specific ORBs
		Policies and Component Descriptors for QoS Specification
		Dynamic Reconfiguration of ORB Implementation

		Architecture for Customization of Object Request Brokers
		Variable Features in ORB Design
		Architectural Reuse in ORB Design
		ORB Customization Through Descriptive Languages
		Defining Templates, Policies and Component Descriptors
		Matching Policies with Component Instances

		Applying the Approach to a Time-Critical Application
		Defining a Template for Temporal Behavior
		Defining an Application Specific Policy for Temporal Behavior
		Defining Component Descriptor for Temporal Behavior
		TaskSchedulerBean
		TransportBean

		Mapping Temporal Behavior to Component Instances

		Related Work
		Conclusion

	Chapter 9
	1 	Introduction
	2 	Background on Open-ORB
	2.1 	Why Reflective Middleware?
	2.2 	The Open-ORB Architecture
	2.3 	Analysis

	3 	Software Architecture for Component-Based Middleware
	3.1 	What is Software Architecture?
	3.2 	The Aster Approach
	3.3 	Analysis

	4 	A Closer Look at Adaptation
	5 	Extensions to Aster to Support Architectural Adaptation
	5.1 	Overall Approach
	5.2 	The Four Steps Revisited
	5.2.1 	Conditions for Initiating Changes
	5.2.2 	Computing the New Middleware Configuration
	5.2.3 	Detecting When it is Safe to Adapt the Configuration
	5.2.4 	Carrying out the Adaptation

	5.3 	Analysis

	6 	Related Work
	7 	Concluding Remarks
	Acknowledgements
	References

	Chapter 10
	Introduction
	Group Multicast Algorithms
	The Ideal Algorithm
	Flooding
	Clustered Group Multicast (CGM)
	Threshold Clustered Group Multicast (TCGM)
	The Neighbor Matching Algorithm
	Group Approximation Algorithm
	Summary

	Evaluation
	Simulated System
	Additional Setup for Specific Algorithms
	Subscription Distributions

	Bandwidth Utilization Results
	Highly Selective Non-Regional Subscriptions
	Regional Subscriptions
	Summary

	Latency Results

	Related Work
	Event Distribution Systems
	Other Algorithms That Exploit IP Multicast

	Conclusions and Future Work
	Acknowledgements

	Chapter 11
	Introduction
	ORB Architectural Support for AMI Callbacks
	AMI Callback Features
	1. AMI stubs:
	2. Manage pending invocations:
	3. Explicit event loop methods:

	Collaborations between ORB Components for Asynchronous Invocation

	The Design of TAO's AMI Callback Architecture
	Design Challenges and Resolutions
	Challenge: How to Process Asynchronous Replies Efficiently
	Challenge: How to Minimize Connection Utilization
	Challenge: How to Implement Scalable Reply Processing Mechanisms
	Challenge: How to Minimize Stub Footprint

	Collaborations between Components in TAO's AMI-Enabled Architecture

	Evaluating the Performance of TAO AMI Callbacks
	Overview
	Empirical Results
	Summary of Results

	Concluding Remarks

	Chapter 12
	1 	Introduction
	2 	CORBA PSS and Messaging Middleware
	2.1 	CORBA Persistent State Service
	2.2 	Multicast-Enabled MOM

	3 	Overview of the Prototype Architecture
	4 	Prototype Design & Implementation
	4.1 	Formats and Protocols between Connectors
	4.1.1 	Loading a storage object in a publish/subscribe session
	4.1.2 	Snooping and state reassembling
	4.1.3 	Active functionality in PSS

	4.2 	Message Bus Adapter
	4.3 	Mapper
	4.4 	Transaction Properties

	5 	Putting It all Together: An Auction Application Scenario
	6 	Summary and Future Work
	References
	Appendix A. Subject Namespace
	Appendix B. PSDL (Auction Example)
	Appendix C. PSS derived code (Auction Example)
	Appendix D. IDL Interfaces (Auction Example)

	Chapter 13
	Introduction
	Agilos Middleware: A Background Introduction
	QualProbes: Investigating Application-Specific Behavior
	Relations Among QoS Parameters and Resources: The Dependency Tree Model
	The Application Model
	A Dependency Tree for Application QoS Parameters
	Characterizing the Relationship between Dependent Nodes

	QualProbes Services Kernel: The QoS Profiling Algorithm
	Towards Better Middleware Control
	The Inference Rules
	Thresholds: Towards Better Membership Functions

	Case Study: OmniTrack
	OmniTrack: An Introduction
	Experiments with OmniTrack
	Experimental Results
	Scenario 1
	Scenario 2

	Related Work
	Conclusion

	Chapter 14
	Introduction
	Smart Proxies
	Proxy Shipping
	Platform Support
	Case Study
	Various Communication Mechanisms
	QoS Management
	Proxy Reuse for Several Clients

	Related Work
	Conclusions

	Chapter 15
	1 	Introduction
	2 	Model of Bindings and Streams (MBS)
	2.1 	Flow Type Model
	2.2 	Stream Type Model
	2.3 	Binding Types

	3 	Trading Binding Types
	3.1 	Binding Type Conformance
	3.2 	Example
	3.3 	Architecture of Trading Binding Types
	3.4 	Trader Implementation Issues

	4 	Negotiating Local Binding Behaviour
	4.1 	Policy Specification
	4.2 	Negotiation
	4.3 	Design Issues of Negotiation Protocol

	5 	Related Work
	6 	Conclusions and Future Work
	References

	Chapter 16
	Introduction
	Messaging Classification Framework
	Message Delivery Model
	Message Processing Model
	Message Failure Model

	Sample Messaging Middleware and Architectures
	CORBA Messaging
	CORBA Events and Notification
	Java Messaging
	MQ Messaging
	Comparison

	Integration Strategies
	MQ-Integrating Transactions
	Intent.
	Concept.
	Implementation

	Message Delivery Transactions
	Intent.
	Concept.
	Implementation.

	Message Processing Transactions
	Intent.
	Concept.
	Implementation.

	Full Messaging Transactions
	Related Work

	Conclusion

	Chapter 17
	Introduction
	Example of a Long Running Business Process
	Programming Model Overview
	Visibility and Isolation Enforcement: Facade & Version Objects
	Lifecycle
	Creation
	Location through Query
	Removal

	UOW Transactional Behavior and Concurrency Management
	Predicate & Transform Approach
	What is a LRUOW Transform?
	What is a LRUOW Predicate?

	Conflict Detection/Resolution Approach

	Further Challenges

	Chapter 18
	Introduction
	Definitions and Basic Cluster Concepts
	The Mounties Approach
	Basic Rules and Abstractions
	Management and Coordination of Resources
	An Example

	Mounties Design Overview
	Cluster Infrastructure
	Internals of Mounties Design
	Overview and the Ideal.
	Command Execution Model.
	Realizable Decision Making.

	Main Services
	The Resource Repository
	The Evaluator and Decision Processing Mechanisms
	The Preprocessor.

	The Postprocessor
	The Gossamers.

	Other Services
	The Event Notification and Event Handler Mechanisms.
	Mounties GUI.

	Structuring Mounties Implementation
	Efficient and Flexible Concurrent Programming

	Related Work
	Conclusions

	Chapter 19
	Introduction
	The Design of a CORBA Pluggable Protocols Framework
	Protocol Limitations of Conventional ORBs
	Pluggable Protocols Framework Requirements
	Architectural Overview of TAO's Pluggable Protocols Framework
	ORB Messaging Component
	ORB Transport Adapter Component
	ORB Policy Control Component

	Key Design Challenges and Pattern-Based Resolutions
	Adding New Protocols Transparently
	Adding New Protocols Dynamically
	Actively Establishing Connections
	Passively Accepting Connections

	The Performance of TAO's Pluggable Protocols Framework
	Hardware/Software Benchmarking Platform
	Blackbox Benchmarks
	Whitebox Benchmarks
	Measurement Techniques
	Whitebox Results

	Related Work
	Concluding Remarks

	Chapter 20
	Introduction
	The Benefits of Customizing a Mapping
	HeidiRMI
	Implementation Details
	Shortcomings of This Approach

	Architecture of a Customizable IDL Compiler
	Prototype Implementation
	Experience

	Related Work
	Conclusions

	Chapter 21
	1 	Introduction
	2 	The RTARM System Architecture
	2.1 	The Service Manager Hierarchy
	2.2 	RTARM System Models
	2.3 	RTARM Interfaces

	3 	RTARM Service Managers
	3.1 	The Service Manager Architecture and Implementation
	3.2 	The CPU Service Manager
	3.3 	The Network Service Manager
	3.4 	The Higher-Level Service Manager for Integrated Services

	4 	Experiments and Performance Evaluations
	4.1 	Performance for Admission and Adaptation
	4.2 	Performance for Hierarchical Feedback Adaptation

	5 	Conclusions
	References

	Back matter
	Author Index

