
UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

Springer Science+Business Media, LLC

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Brooks, Problem Solving with Fortran 90

Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social Issues in the Information Age

Kozen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and Systems

Jon Pearce

Programming and
Meta-Programming in

Scheme

, Springer

JonPearce
Department of Mathematics and Computer Science
San Jose University
San Jose, CA 95192-0103
USA

Series Editors:
David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
Upson HalI
Ithaca, NY 14853-7501
USA

Library of Congress Cataloging-in-Publication Data
Pearce, Jon.

Programming and meta-programming in Scheme / Jon Pearce.
p. cm. - (Undergraduate texts in computer science)

Includes bibliographica1 references and index.
ISBN 978-1-4612-7243-4 ISBN 978-1-4612-1682-7 (eBook)
DOI 10.1007/978-1-4612-1682-7
1. Scheme (Computer program language) 1. Title. II. Series

QA76.73.s34P4 1997
005.13'~c21 97-28476

Prînted on acid-free paper.

© 1998 Springer Science+Business Media New York
Originally published by Springer-VerlagNew York,Inc. in 1998
Softcover reprint ofthe hardcover Ist edition 1998
AII rights reserved. This work may not be translated or copied in whole or in part without the written permis
sion of the publisher, Springer Science+Business Media, LLC, except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimiJar methodology now
known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are
not especialIy identified, is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Steven Pisano; manufacturing supervised by Johanna Tschebull.
Photocomposed pages prepared from the author's Microsoft Word files.

987654321

ISBN 978-1-4612-7243-4

To my parents

Preface

The current domination of computing by C and C++ is so complete that publishing a
book on Scheme almost seems subversive. My heresy goes beyond language. Infonned
by the anticorporate intellectual values of my computer gurus, I have come to possess the
unpopular notion that ideas are more important than technology, that principles like ab
straction and modularity take us further than gigabytes and megahertz. This is really a
book about those ideas disguised as a book about Scheme. Scheme was selected partly
for historical reasons, but mostly because it allows us to encounter ideas without first
mastering memory management, compilers, 110, and advanced idioms. I want to con
gratulate my co-conspirators at Springer for their courage in joining me.

For the last five years I have successfully used drafts of this book as a text in a junior
level declarative programming course taught at San Jose State University. The course is
modeled after Scheme-based freshman-level courses taught at other universities, hence
prerequisites are minimal. Motivated students with basic computer and mathematical lit
eracy will be able to read this book.

By confining lectures to the core sections of each chapter and a few critical appendi
ces, leaving the other appendices and problem sections as homework assignments, I typi
cally manage to cover all but the last chapter in a semester. Occasionally students read
and solve problems from the last chapter as special projects. Students who finish the
course know Scheme. They have been introduced to important principles, concepts,
paradigms, and techniques, and they have a functional perspective they confidently carry
into subsequent courses.

Jon Pearce

Contents

Preface vii

Introduction 1
1.1 LISP.. 1

1.1.1. liSP Dialects ... 2

1.2 Scheme 2
1.2.1. Scheme on the Web... 3

1.3. Structure of the Text.. 3
/.3.1. Themes ... 4

1. Expressions and Values 5
1.1. Values ,.. 5

1.1.1. Numbers ,.. 6
1.1.2. Characters.. .. 6
1.1.3. Booleans.. ... 7
1./ .4. Symbols .. 7
1.1.5. Procedures ... 8
1.1.6. Strings .. 9
1.1.7. Lists .. 10
1.I.B. Vectors ... 10
1.1.9. Pairs... 10
1.1.10. Other Value Domains ... 11

1.2. Expressions 11
1.2.1. Literals ... 12
1.2.2. Symbols and the Global Environment.. 12
1.2.3. Applications ... 13
1.2.4. Structures ... 16
1.2.5. Literals Revisited... 16

1.3. The Scheme Interpreter.. 17
1.3.1. The Expression Evaluator .. 17
1.3.2. The Control Loop ... 18

1.4. Defmitions ... 18

Appendices. 20
Appendix 1.1. Defining Domains ... 20

x Contents

Appendix 1.2. Sessions ... 22
Appendix 1.3. Numbers .. 24

Problems•..•....................... 26

2. Procedures 31
2.1. Derming and Applying Procedures ... 31

2.1.1. The Environmental Influence ... 32
2.1.2. The Modularity Principle and Top-Down Design.......................... 34

2.2. Building Procedures Using Application .. 36
2.2.1. Example: Coercions ... 36
2.2.2. Example: Palindromes ... 39

2.3. The Abstraction Principle•...•.•.............••••...........•.....•...•.•.................. 40
2.3.1. Constructors... 41
2.3.2. Selectors ... 43
2.3.3. Lists as Pairs .. 44
2.3.4. Example: Association Lists as Records.. 45

2.4. Polymorphic Procedures.. 47
2.4.1. Equivalence Predicates .. 47
2.4.2. The not and null? Predicates ... 48
2.4.3. Recognition Predicates .. 49
2.4.4. Example: Searching Association Lists ... 49

2.5. Meta-Procedures .. 51

Appendices ... 53
Appendix 2.1. Mathematics in Scheme... 53
Appendix 2.2. Sequences ... 63
Appendix 2.3. The Edit-Test-Debug Cycle .. 71

Problems ... 72

3. Evaluation Control and Recursion 78
3.1. Evaluation Control... 78

3.2. Short Circuit Evaluation .. 79

3.3. Conditional Evaluation.. 81
3.3.1. The if-structure... 81
3.3.2. The cond-structure ... 84
3.3.3. Input Validation ... 85
3.3.4. The case-structure.. 85

3.4. Recursion... 87
3.4.1. Example: Triangle Numbers .. 87
3.4.2. Tracing.. ... 89
3.4.3. More on Input Validation... 90
3.4.4. Mathematical Induction ... 91

Contents xi

3.5. Thinking Recursively... 93
3.5.1. Example: make-list... 93
3.5.2. Example: nat-expt .. 95
3.5.3. Example: evaluate.. 96

Appendices ... 97
Appendix 3.1. Sequential Evaluation ... 97
Appendix 3.2. Input and Output in Scheme.. 98
Appendix 3.3. Defensive Programming .. 104
Appendix 3.4. Debugging ... 108

Problems ... 111

4. Data Control 121
4.1. Procedure Blocks ... 121

4.1.1. The Nesting Instinct.. 122

4.2. The Environment Model of Eager Evaluation... 126
4.2.1. Bindings ... 126
4.2.2. Environments ... 127
4.2.3. Static Versus Dynamic Scope Rules ... 129

4.3. Abstract Data Types .. 132
4.3.1. Example: The CARD ADT ... 132
4.3.2. Information Hiding and Data Abstraction 135
4.3.3. Example: The POINT ADT .. 136

4.4. Overloading ... 137

4.5. Domains as Data .. 139
4.5.1. Programmer-Defined Types ... 140
4.5.2. Example: Complex Numbers .. 141

4.6. Data-Driven Programming .. 145

Appendices ... 147
. Appendix 4.1. Object-Oriented Programming ... 147

Appendix 4.2. Expression Blocks ... 156

Problems ... 159

s. Iteration 170
5.1. Modeling Systems ... 170

5.1.1. Iterative Evaluation .. 171
5.1.2. Control Loops .. 173
5.1.3. Example: A Digital Clock .. 175
5.1.4. Example: Compound Interest... 177
5.1.5. Example: A Simple Interactive System ... 178
5.1.6. Example: Guess and Test ... 180

5.2. Computations as Data .. 183
5.2.1. Predicting the Future ... 184

xii Contents

5.2.2. Measuring Computations ... 185
5.2.3. Measuring Efficiency ... 186
5.2.4. The Tyranny of Growth Rate .. 187

5.3. Finding Iterative Solutions .. 187

5.4. Tail Recursion: Are do-loops Necessary? ... 188

5.5. Finding Elementary Solutions ... 190

Appendices 191
Appendix 5.1. The Hyper-Exponential Hierarchy 191
Appendix 5.2. Undecidability .. 194
Appendix 5.3. Chaos ... 196

Problems ... 201

6. Recursive Domains 209
6.1. Recursive Domains as Hierarchies 210

6.1.1. Recursion over Hierarchies ... 211

6.2. List Recursion.. 211
6.2.1. Application: Are Lists Necessary? ... 211
6.2.2. Application: Association Lists .. 213

6.3. The Signal Processing Paradigm ... 219
6.3.1. Filters ... 220
6.3.2, Amplifiers (Map) .. 222
6.3.3. Receivers (Accumulators) .. 224
6.3.4. Transmitters (Generators) .. 226
6.3.5. Applications ... 227

6.4. Trees and Tree Recursion .. 228
6.4.1. Terminology ... 229
6.4.2. The TREE Domain ... 229
6.4.3. Tree Recursion ... 230
6.4.4. Efficiency of Tree Recursions ... 236

Appendices 236
Appendix 6.1. Promises ... 236
Appendix 6.2. Streams ... 241

Problems ... 246

7. Variables 257
7.1. Stores ... 257

7.2. Variables and References ... 259

7.3. Commands ... 261

7.4. L-Value versus R-Value ... 263

7.5. Aliasing .. 263

Contents xiii

7.6. Define Versus Assign .. 265

7.7. Imperative Programming ... 267

7.8. The Bank Account Example .. 268
7.8.1. Pass-by-Value .. 269
7.8.2. Pass-by-Reference .. 270
7.8.3. Bank Accounts Revisited .. 271

Appendices ... 273
Appendix 7.1. Implementing Heaps .. 273
Appendix 7.2. Sequential Access Stores .. 280
Appendix 7.3. Files and Ports ... 281

Problems ... 285

8. Expressions as Values 293
8.1. Macros ... 293

8.1.1. While Structures ... 294
8.1.2. Lazy Procedures ... 295
8.1.3. Implementing Streams.. 296

8.2. Semantic Prototyping ... 297

8.3. Alpha ... 298
8.3.1. Alpha Values and Phrases ... 298
8.3.2. The Alpha Control Loop ... 301
8.3.3. The Alpha Declaration Resolver .. 303
8.3.4. The Alpha Expression Evaluator .. 304

8.4. Beta .. 312
8.4.1. Beta Commands ... 312
8.4.2. The Beta Control Loop ... 312
8.4.3. The Beta Resolver .. 313
8.4.4. The Beta Evaluator .. 315

Appendices ... 321
Appendix 8.1. Lambda .. 321

Problems ... 326

References

Index

331

333

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998

2 Introduction

1.1.1. LISP Dialects

A language is stable if there is widespread agreement among its users about what fea
tures are part of the language. Stability is achieved through an official or semi-official
description of the language. Unfortunately, major differences between LISP dialects de
veloped soon after it was introduced. Eventually, programs written in one dialect
wouldn't run using an interpreter for another. Some of the most popular dialects are
shown in Figure 1.1. Arrows indicate which dialects influenced others.

LISP 1.0/1.5
McCarthy (1960/62)

Figure 1.1

In 1980 work began on a standard dialect called Common LISP. In 1984 Guy Steele de
scribed this language in his book, Common USP: The Language. Common LISP is now
widely accepted by industry, and an ANSI standard is about to appear.

1.2 Scheme

I like the Scheme programming language because it is small. It packs a large number of
ideas into a small number of features.

~uy Steele, Jr.

The dialect of LISP used in this text is called Scheme. Scheme was introduced in 1978
by Guy Steele and Gerald Sussman. Like LISP, Scheme is an interpreted, expression
oriented language. Scheme is a simple language in the sense that there are only a few
data and program constructors (about 25). Furthermore, these constructors are uniform in
the sense that there are no seemingly unnecessary restrictions on their use.

1.3. Structure of the Text 3

Normally, expressiveness is sacrificed for simplicity, but Scheme is an exception.
Scheme allows programmers to defme recursive, polymorphic, over-loaded, and higher
order procedures. All of the major programming paradigms can be expressed in Scheme.
Scheme also features macros, continuations, promises, streams, and excellent support for
number, string, symbol~ and list processing. (Don't worry, all of these things will be de
fined soon.)

As Scheme became popular, its local dialects began to diverge, and it too became un
stable. In 1984 representatives of the major Scheme user communities met and agreed on
a standard description of Scheme. Their report has undergone four revisions over the
years, popularly known as the Revised, Revised Revised (Revised2), Revised Revised Re
vised (Revised3), and Revised Revised Revised Revised (RevisetJ4) Reports on the Algo
rithmic Language Scheme. (Several attempts at a Reviset:J5 Report have been made.)
Readers should refer to this as the most authoritative description of Scheme. The Re
visetJ4 Report served as the basis for the IEEE (P1178) specification of Scheme, which
became the ANSI specification of Scheme.

In this text we refer to the version of Scheme described in the RevisetJ4 Report as
IEEFJANSI Scheme and to the features described in the report as essential features.
Waming: An implementation of Scheme should include all essential features, but this is
often not the case.

1.2.1. Scheme on the Web

There are many commercially available implementations of Scheme, but there are just as
many, if not more, free implementations of Scheme available on the Internet. In addition,
there are Scheme newsgroups, documentation, FAQs, and tools available on the Internet.
The best starting place is the Scheme home page at MIT:

http://www-swiss.ai.mit.edulscheme-home.html

1.3. Structure of the Text

Eight chapters follow. Each is divided into three sections: core, appendices, and prob
lems. It is assumed that students will read the appendices and solve most of the problems
on their own. (Nearly all of the problems require students to write short Scheme proce
dures.) More essential topics are covered in the core sections. Some skipping around is
possible; for example, list and tree recursion aren't covered until Chapter 6, but could be
covered immediately after Chapter 3.

The text introduces Scheme in four fragments:

IS = imperative Scheme
FS = functional Scheme
AS = application Scheme
NS = necessary Scheme

= IEEE/ ANSI Scheme
= IS minus variables and commands
= FS minus control and block structures
= AS minus all redundant features

4 Introduction

The first two chapters are restricted to applicative Scheme. (Necessary Scheme surfaces
from time to time in various problem sections.) The idea is to wean readers away from
command sequencing, the principle program-building tool provided by languages like
Pascal and C. Readers will be surprised (and challenged) to see how much can be ac
complished in this tiny fragment of Scheme.

Except for a few minor lapses, functional Scheme is the language of Chapters 3
through 6. As such, the book could be used as an introduction to functional program
ming. The pedagogical advantage is that students master the power of functional pro
gramming before the picture is complicated by commands and variables. Stores, vari
ables, commands, and hence imperative Scheme, are introduced in Chapter 7.

The last chapter formalizes the semantics of three languages: Alpha (FS minus some
features), Beta (IS minus some features), and Lambda (NS) in the form of three interpret
ers written in Scheme and following the style of semantic prototyping.

1.3.1. Themes

Although the primary goal of this text is to teach students to program in Scheme, several
subplots deserve special mention. First is the emphasis on programming paradigms,
starting with the functional paradigm, and then building up to the imperative paradigm
with side trips into the sig!lal-processing, data-driven, and object-oriented paradigms.

Second is the use of general concepts, models, and terminology from my program
ming language principles course. Readers should have no trouble adapting the concepts
introduced in this text to other programming languages.

Third is the notion of meta-programming. Theoretical computer science, software en
gineering, and systems programming are all based on a critical idea that separates them
from routine data processing: that programs can be treated like ordinary data, and there
fore, like ordinary data, they can be derived, analyzed, and modified algorithmically. We
appropriate the term "meta-programming" to refer to this idea.

"Meta-programming" is derived from the term "meta-language," which is used by
philosophers, linguists, and mathematicians to refer to any language used to describe or
analyze another language. In this context the language being described or analyzed is re
ferred to as the object language. For example, the meta-language used in this book is
English, while the object language is Scheme. The meta prefix ultimately traces back to
Aristotle's term, metaphysics, which meant "beyond Physics." Meta-programming can
also mean "beyond programming" in the sense that some topics in this book evolve from
or into subjects beyond programming, such as logic, cognitive science, physics, mathe
matics, and linguistics.

Why emphasize meta-programming in a Scheme text? Most programming languages
make a sharp distinction between programs and data. Data refers to passive, dumb enti
ties like numbers, lists, tables, and text; programs are active, intelligent entities that ma
nipulate data. Scheme doesn't have such prejudices, and this makes Scheme an excellent
meta-language. Writing meta-procedures that process expressions, procedures, symbols,
or other program elements is natural, easy, and fun.

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998

6 1. Expressions and Values

1.1.1. Numbers

All implementations of Scheme provide binary, octal, decimal, and hexadecimal repre
sentations of integers. Here are five ways to represent 42 in Scheme:

42 = #blOlOlO = #052 = #d42 = #x2A

Most implementations of Scheme provide truncations using decimal and scientific
notation. For example:

.0333 ... 3.33e-2

are two Scheme representations of 3.33 x 10.2• Notice that Scheme's version of scientific
notation uses e to represent 10. Don't confuse this with the natural exponent e.

Some implementations of Scheme also provide rationals and complex numbers with
real and imaginary parts that can be integers, truncations, or rationals. Here are some
samples of legal Scheme representations:

2/3 4+6i 3e-2+1.5i 1/2+2/3i etc.

All implementations of Scheme identify the domain of numbers with the domain of
complex numbers:

NUMBER ::= COMPLEX

This makes sense mathematically because all other domains of numbers are subsets of
the complex numbers. For example, if we lisk the Scheme interpreter if 3.0 is a,complex
number, it will answer "true."

Because 3.0 is equivalent to 3, the Scheme interpreter will answer "true" if we ask if
3.0 is an integer. For the same reason, if we ask if 3 is real, the Scheme interpreter will
again answer "true." This is different from languages like C and Pascal, which determine
the type of a number by its representation rather than its interpretation.

A Scheme interpreter will also answer that 3.0 is a rational number and an inexact
number. It will answer that 3 is a rational number, but when asked if 3 is inexact, it will
answer "false." This happens because 3 only represents itself, while 3.0 is used to ap
proximate any real number x such that, 2.95 :s; x < 3.05.

1.1.2. Characters

The CHAR domain consists of all keyboard characters: upper- and lowercase letters,
digits, punctuation marks, symbols, and control characters. Scheme uses the "prefix to
distinguish characters appearing as themselves and characters appearing in strings, num
bers, names, and other contexts. For example, 5 is the number 5, but #\S is the character
5. Scheme uses special names for nonprinting control characters:

#\backspace, #\escape, #\newline, #\page,
#\return, #\rubout, #\space, #\tab

1.1.3.

1.1. Values 7

Inside the computer each character is represented by an integer between 0 and 127.
This number is called the ASeD code (American Standard Code for Information Inter
change) for the character. For example:

ASCII #\A 65
ASCII #\a = 97
ASCII #\0 = 48
ASCII #\tab = 9

Booleans

Truth is the kind of error without which a certain species of life could not live.

-Friedrich Nietzsche, The Will to Power

In his influential book, Laws of Thought. the British mathematician George Boole (1815-
1864) used algebra to model logical reasoning. He viewed propositions as expressions
denoting one of two possible values: true or false. But instead of thinking of true and
false in philosophical terms, he conceived of them as arbitrary but distinct members of a
truth-value domain. and he interpreted the connectives used to combine simple proposi
tions into compound propositions-"and", "or", and "not"-as primitive algebraic op
erations on this domain.

Today any domain containing distinct members-representing true and false, combined
with primitive operations corresponding to the connectives. is called a Boolean algebra.
The circuitry used to build digital computers is based on Boolean algebra. In this context,
true and false are identified with high and low voltages. and the connectives are imple
mented as solid-state switches called logic gates. Boolean algebra is also incorporated
into every programming language (high-level and machine languages) as a foundation
for algorithmic testing and decision making.

In Scheme the BOOLE domain consists of the two truth values: #t for true and #f for
false:

BOOLE ::= #t I #f

Note the difference between the characters IN. and #\f and the Booles #t and #f. In
both cases Scheme uses a special prefix to indicate the domain.

1.1.4. Symbols

The SYMBOL domain seems out of place. In the next section we willleam that symbols
are names used in programs to denote values. For example. pi is a name denoting the
number 3.1416 and true is a name denoting the Boole #to It's clear that symbols are an
essential building block of Scheme programs, but why should symbols be included
among the value domains?

Recall Newell and Simon's Physical Symbol System Hypothesis:

8 1. Expressions and Values

A physical symbol system-i.e. any device or agent that produces an evolving collec
tion of symbols and expressions--has the necessary and sufficient means for general
intelligent action.

If we want to model human problem solving, then it appears our programs will be based
on symbol and expression manipulation, and this means symbols have to be treated like
data.

More so than other languages, Scheme liberally allows the use of punctuation marks
and operator symbols in names:

SYMBOL ::= PECULIAR \ NORMAL

Scheme recognizes three "peculiar" symbols:

PECULIAR :: = + \ - \ ...

The initial character of a normal symbol can be any letter or special initial charac~r:

SPECIAL-INIT ::=
! \$\%\&*\/\: \<\=\>\?\-\-\"

The subsequent characters of a normal symbol include the initial characters, digits,
and special subsequent characters:

SPECIAL-SUBSEQUENT ::= . \ + I -

We can (and should) use special symbols to create readable and suggestive names:

int->real, cube-root, close?, halt!, a+bi, $profit, %loss

Symbols can be any length and are case insensitive. The following symbols are
equivalent:

cat CAT cAt CaT

1.1.5. Procedures

Sometimes an algorithm becomes so practiced we come to view it as a single operation.
For example, we seldom think of starting a car as an algorithm:

1. Shift to neutral
2. Adjust the choke
3. Pump the accelerator
4. Hold the clutch down
5. Tum the ignition key
6. Repeat if necessary

Instead it becomes so automatic that we think of it as a single operation:
1. Start the car

1.1. Values 9

A procedure is an algorithm encapsulated as a single operation, an algorithm-in-a
box. Procedures provided by Scheme are called primitive procedures. It is also possible
for programmers to box their own algorithms.

Unfortunately, procedures don't have standard representations. For now, we denote
the procedure named proc by [proc]. For example, [sin], [+], [*], [<], [-] denote the sine,
addition, multiplication, less-than, and equality procedures, respectively.

Like symbols, procedures also seem out of place among the Scheme value domains. It
seems clear that procedures, like symbols, are important building blocks of Scheme pro
grams, but why do they need to also be treated as data? Remember, Scheme is a meta
programming language. This means we will be interested in writing procedures that ma
nipulate other procedures as ordinary data.

1.1.6. Strings

A string is any sequence of characters (including blanks) bracketed by double quotes.
Here are some examples:

"Hello World"
"A man, a plan, a canal, Panama!"
"42"

If a double quote appears in a string as a literal character rather than signaling the end of
the string, it must be preceded by a special escape character. The Scheme escape charac
ter is the backslash: \ . For example, inside the computer .the string:

"The phrase \"meta programming\" has many meanings."

represents the string:

The phrase "meta programming" has many meanings.

If a backslash appears in a string as a literal character rather than an escape character, it
too must be preceded by a backslash escape. For example, the DOS path name:

c:\scheme\libs\string.scm

must be written in Scheme programs as the string:

"c:\\scheme\\libs\\string.scm"

The differences between strings, characters, Booles, and symbols can get confusing. For
example, the following four values belong to different domains:

"to the string consisting of the single character t
#\t the character t
t the symbol t
#t the Boole true

10 1. Expressions and Values

1.1.7. Lists

Any sequence of values can be grouped together into a list:

LIST ::= (VALUE ...)

Here are some examples of lists:

(a e i 0 u)
(#\a #\e #\i #\0 #\U)
("a" "en "in "0" nun)

("(1 2 3)")

(3 "3" #\3)
()

(1 (1 2) (1 (1 2»)

Notice that a list is bracketed by parenthesis and that blanks, not commas, are used to
separate the members of the list. More importantly, the members of a list can belong to
different domains. A list Can" also be empty. Finally, lists can be nested inside lists. The
last example given is a list of three members: the number 1, the two-member list (1 2),
and the two-member list (1 (1 2». How many members does the fourth list: ("(1 2 3)")
have?

1.1.8. Vectors

A vector is just like a list except it is prefixed by the # symbol:

VECTOR :: = # (VALUE ...)

For example:

(a e i 0 u) I # (3 "3" #\3) I # () I # (1 # (1 2) (1 (1 2»)

are all vectors. In the last example the vector consists of three elements: the number 1,
the vector #(1 2), and the list (1 (12».

Logically, there is no difference between lists and vectors, but the vector #(1 23) and
the list (1 23) may have different representations in the computer's memory. These dif
ferences allow certain operations to be performed more efficiently on one but not the
other.

1.1.9. Pairs

Any two Scheme values can be grouped together to form a pair:

PAIR ::= (VALUE. VALUE)

Here are three examples of pairs:

(.1 . .1)
("hello world" . «) . -2-i»
(#\f . H)

1.2. Expressions 11

There doesn't seem to be much difference between a pair and a two element list. Nota
tionally, the only difference is the dot used to separate the members of the pair. Thus,
(1 .2) is the list containing 1 and .2, while (1 .. 2) is the pair containing 1 and .2. As with
vectors, the difference is in the internal representation.

Note that the following values belong to different domains:

(1 . .2)

(1 .2)

#(1 .2)

the pair consisting of 1 and .2
the list consisting of 1 and .2
the vector consisting of 1 and .2

Sequences versus Sets

How is the list (1 2 3) different from the set {1 2 3}? The main difference is that the
members of a sequence (i.e., list, vector, string, or pair) are ordered by their position in
the sequence. Therefore the list (3 2 1) is different from the list (1 2 3) while the set
{3 2 I} is the same as the set {1 2 3}. This also implies that sequences can hav~ mUltiple
occurrences of the same item, while sets cannot. Thus, the list (1 2 3 I 2 3) is different
from the list (1 23), while the set {1 2 3 1 2 3} is the same as the set {1 23}.

1.1.10. Other Value Domains

Although all implementations of Scheme must provide the domains just described, some
implementations provide additional value domains. Later we will encounter two varia
tions of procedures: continuations and promises, as well as two variations of lists: ports
and streams.

1.2. Expressions

Algorithms are represented in Scheme by expressions. The algorithm described by a
Scheme expression normally produces a value. For example, the arithmetic expression
5 * 8 + 2 represents the algorithm, "add 2 to the result of multiplying 5 and 8." The result
of performing these operations is 42. The expression 5 * 8 + 2 produces the value 42.

Like values, Scheme expressions can be divided into subdomains:

EXPRESSION
LITERAL I SYMBOL I APPLICATION I STRUCTURE

12 1. Expressions and Values

1.2.1. Literals

Almost3 any Scheme value can be turned into a Scheme expression by placing a single
quote in front of it. Such an expression is called a literal because the value it produces is
gotten by simply removing the quote. For example, '42 is the literal expression that pro
duces the value 42.4

LITERAL ::= 'VALUE

In most cases programmers can safely leave off the quote without confusing the inter
preter. This is because programmers only produce expressions, while interpreters only
produce values. Thus, if 42 is typed at the interpreter's prompt, the interpreter under
stands that the programmer is really asking for the value of '42.

There are a few types of values that require the single quote to avoid ambiguity.
These will be discussed soon.

1.2.2. Symbols and the Global Environment

We have already encountered the SYMBOL domain. These are just the names used to
denote procedures, constants, and other values. Scheme provides some predefined names,
for example, +, *, sin, and < are pre-defined names for [+], [*], [sin], and [<]. Some im
plementations of Scheme provide nil, pi, true, and false as predefined names for 0,
3.1416, #t, and #f, respectively.

An association between a name and a value is called a binding. The Scheme inter
preter stores predefined bindings in a symbol table called the Global Environment
(Figure 1.1):

NAME VALUE

pi 3.1416

nil ()

+ [+]

true #t

false #f

etc. etc.

Figure 1.1

3 Procedures don't have standard representations, hence they can't be used as literals.

4 We can also express '42 as (quote 42).

1.2. Expressions 13

1.2.3. Applications

An application or procedure call is simply a list of one or more expressions:

APPLICATION::- (EXPRESSION EXPRESSION ...)

The first expression in an application, called the operator, always denotes a procedure,
while the remaining expressions, called the operands, denote the procedure's inputs.

A procedure computes a mathematical function, which we can visualize as an abstract
input-output device (see Figure 1.2).

::::: fa output
input ~ proceWre ---I"~ ..

Figure 1.2

Data enters the "device" through input "wires," and a "circuit" (i.e. the algorithm) inside
the device computes an output, which eventually emerges tiJrough the output "wire."

For example, the value denoted by the application:

(max (+ 2 3) (abs -4) (remainder 12 5»

is 5, the output produced by the max procedure given inputs 5, 4, and 2 (see Figure 1.3).

5
max ..

Figure 1.3

The value denoted by the application:

(<= (- 5 3) (+ 2 (* 3 3» 14)

is #t, the output produced by the <- procedure given inputs 2, 11, and 14 (see Figure
1.4).

2

11

:1
#t

max .. 14

Figure 1.4

14 1. Expressions and Values

Notice that Scheme uses prefix notation instead of infix notation. In other words,
Scheme will not understand the infix expression 2 + 3. Instead, programmers must write
the + symbol in front of the operands: (+ 2 3). Although prefix notation normally doesn't
require parenthesis, prefix notation in Scheme does. Parenthesis have special meaning in
Scheme, namely, they indicate that a procedure is being called. This means Scheme pro
grammers are not free to use parenthesis to make their programs more readable. For ex
ample, the expression (+ 2 (3.1e-S» will cause an error because Scheme will assume the
subexpression (3.1e-S) is an attempt to call the nonprocedural value 3.1e-S.

Finally, notice that expressions can be nested. In other words, operands and operators
may also be applications. In both sample applications shown earlier:

(max (+ 2 3) (abs -4) (remainder 12 5»

«= (- 5 3)"(+ 2 (* 3 3»)

the operands (boldface) are themselves applications.

Translating Algebraic Expressions into Scheme

Translating algebraic expressions into equivalent Scheme expressions requires working
backwards. For example, in the expression:

sin(x + 1)

cos(x - 1)

division is performed last, so this wi1l be the first operation to appear in the correspond
ing Scheme expression:

(/ NUMERATOR DENOMINATOR)

The sin in the numerator is performed after 1 is added to x, so sin appears first in
NUMERATOR. Remember, the name sin goes inside the parenthesis with its operand:

(/ (sin SUM) DENOMINATOR)

SUM is simple; just remember that + comes first:

(+ x 1)

Following the same procedure for DENOMINATOR and substituting into the original
quotient yields:

(/ (sin (+ x 1» (cos (- x 1»)

Make sure all the parentheses are balanced.
Let's look at one more example:

.J3x +l:l=y

Unfortunately, ANSIlIEEE Scheme doesn't provide an inequality operator. We'll have to
combine Scheme's not procedure with Scheme's,. procedure:

1.2. Expressions 15

(not (= ROOT y»
We consult the list of primitive number procedures in the RevisetF Report (or Chapter 2)
and notice that sqrt is supplied by all implementations of Scheme that supply real num
bers. We can replace ROOT with a call to sqrt:

(not (= (sqrt SUM) y»
Avoid inserting unnecessary parenthesis.

SUM is simply:

(+ EXPONENT 1)

Another quick scan of the RevisetF Report reveals Scheme supplies two possible candi
dates for computing exponentials: exp and expt. Checking the RevisetF Report, we dis
cover that (exp x) computes eX, but (exptx y) computes xY. Thus, we can formalize
EXPONENT as:

(expt 3 x)

Putting these pieces back into our original expression gives:

(not (= (sqrt (+ (expt 3 x) 1) y»

Data Flow Structures

Sometimes it is helpful to think of a complicated application as a Scheme representation
of an abstract "circuit" called a data flow structure or a data flow diagram. A data flow
structure is built by connecting the input and output "wires" of function "devices." For
example, the Scheme expression:

(/ (sqrt x) (- (cos x) 1»
represents a data flow structure built from four devices: sqrt, cos, -, and t. The input to
both sqrt and cos is x. The output of cos, together with 1, are the inputs to -. The output
of sqrt and - are the inputs to t. The final diagram is shown in Figure 1.5.

Figure 1.5

No device in a data flow structure produces an output until all its inputs have arrived.
Thus, data flows through a data flow structure from left to right. The subtraction proce
dure (-) can't produce an output until the cos procedure produces its output. Similarly,
the division procedure (t) must wait for the outputs of the subtraction procedure and the
sqrt procedure before producing its output.

16 1. Expressions and Values

Let's consider another example:

(>= (length (cons (car x) (cdr y» 42)

This expression compares 42 to the length of the list obtained from the expression (cons
(car x) (cdr y» (never mind what this means for now). The corresponding data flow
structure is built from five components: >-, length, cons, car, and cdr. The inputs to cons
are the outputs of car and cdr. The output of cons is the input to length. The output of
length, together with 42, is the input to >- (see Figure 1.6).

x~ car

~ I- oons lIen:: ~ y~ ca- >- ~
Figure 1.6

1.2.4. Structures

Structures, also called special forms, allow programmers to control the flow of evalua
tion (control structures), the visibility of data (block structures), and the contents of
memory (assignment structures):

STRUCTURE :: =
CONTROL I BLOCK I QUASIQUOTE I ASSIGNMENT

Structures look like specially formatted applications of the following seventeen special
form constructors:

if cond case and or do let let* letrec lambda set! . begin beginO delay quote
quasiquote unquote

These will be explained in Chapters 3 through 5.

1.2.5. Literals Revisited

There's a problem with our practice of not quoting literals. Notice that the expression pi
could be interpreted as a literal denoting itself-the symbol pi ~r as a symbol denoting
the number 3.1416. Similarly, the expression (+ 2 3) could be interpreted as a literal de
noting a list containing a symbol and two numbers or as an application denoting the
number 5. How do we determine the correct interpretation of these expressions?

To resolve this ambiguity, Scheme requires programmers to put a single quote in
front of symbols, pairs, vectors, and lists when they are intended as literals. Thus, the ex
pression pi is always interpreted as a symbol denoting 3.1416, while the.expression 'pi is

1.3. The Scheme Interpreter 17

the literal denoting itself, the symbol pi. Similarly, the expression (+ 2 3) is always inter
preted as the application denoting the number 5, while the expression '(+ 2 3) is the literal
denoting itself, a list containing a symbol and two numbers.

It is not necessary to put quotes in front of symbols, lists, and pairs if they occur in
side a vector,list, or pair. For example:

'# (x (x . x) (x x»
, «a . #\a) (e . #\e) (i . #\i) (0 . #\0) (u . #\u»
'((a e i 0 U) .. (#\a #\e #\i #\0 #\U»

are all acceptable literals despite the fact that the pairs, symbols, and lists appearing in
side are not quoted.

1.3. The Scheme Interpreter

Defining the EXPRESSION and VALUE domains is only half the job of specifying a
programming language; the other half is describing a processor that can evaluate expres
sions to produce values. A processor can be a physical device such as the CPU of a com
puter, or it can be a virtual device such as an interpreter or compiler.

The Scheme interpreter consists of three components: the Global Environment, an
expression ev~uator, and a control loop. The evaluator actually does the work of inter

. pretiog expressions. We will describe the operation of these components in detail in sub
sequent chapters.

1.3.1. The Expression Evaluator

The evaluator, called eval, is a procedure that accepts an expression and an environ
ment-called the current environment, often this is just the Global Environment-as in
put and outputs the value denoted by the expression. The arrow between eval and the
current environment is shown going two ways in Figure 1.7, because sometimes evalu
ating an expression can produce changes in the current environment.

expression

current
environment

eval

Figure 1.7

value

If the expression input is a literal, eval returns the expression itself as a value. If the ex
pression input is a symbol, eval searches the current environment input for the corre-

18 1. Expressions and Values

sponding value. If the expression input is a structure, eval invokes a special evaluation
algorithm tailored for the particular type of structure. If the expression input is an appli
cation, eval employs an algorithm called eager evaluation, described in Chapter 2.

1.3.2. The Control Loop

If the evaluator is the engine of the Scheme interpreter, then the control loop is the driver.
The control loop, also called the read-eval-print loop, or REPL, is a procedure that per
petually waits for a Scheme expression to be typed on the computer's keyboard. When an
expression is typed, the control loop reads it, evaluates it using the eval procedure, dis
plays the result, and then waits for the next expression to be typed: (see Figure 1.8)

Figure 1.8

1.4. Definitions

All values computed by the Scheme interpreter are volatUe. They disappear from the
computer's memory the instant they appear on the screen. To save the value produced by
an expression it must be named using a definition:

DEFINITION :: =

(define SYMBOL EXPRESSION)

A definition declares an association between SYMBOL and the value produced by
EXPRESSION. We call associations between names and values bindings:

For example, the definition:

(define numl (* 7 6»

1.4. Definitions 19

declares the binding numl == 42, between the symbol numl and 42, the value produced
by the expression (* 7 6), and the definition:

(define num2 (* 13 3»

declares a binding num2 == 39, between the symbol num2 and 39, the value produced by
the expression (* 133).

Bindings declared by definitions are saved in the Global Environment for future ref
erence. After the preceding definitions the Global Environment shown in Figure 1.1 can
be pictured as in Figure 1.9.

NAME VALUE

pi 3.1416

nil 0
+ [+]

true #t

false #f

etc. etc.

numl _ 42

num2 39

Figure 1.9

The symbols numl and num2 now denote 42 and 39, respectively. Naturally, we can in
corporate numl and num2 into new Scheme phrases. For example, the expression:

(+ numl num2)

now produces 81, and the definition:

(define num3 (* numl num2»

now declares a binding between num3 and 1638.
Numl and num2 will continue to denote 42 and 39 until the session ends or until they

are redefmed. For example, the definition:

(define nurn2 (+ 9 num2»

creates a new binding of num2 to 48, which replaces the old binding in the Global Envi
ronment. (But not before 9 is added to 39, the old value of num2, to create the new
value.)

20 1. Expressions and Values

Appendices

Appendix 1.1. Defining Domains

And each law or pattern is itself a pattern of relationships among still other laws, which
are themselves just patterns of relationships again.

-Christopher Alexander, The Timeless Way o/Building

A domain is a set of objects that have similar representations and interpretations. If a is
an object and A is a domain, then "a E A" means "a is a member of A," and "a E A"
means "a is not a member of A." For example, if EVEN is the domain of all even, non
negative integers-O, 2, 4,6, etc.-then 42 E EVEN, but 43 E EVEN.

We can succinctly describe domains using domain equations. A domain equation has
the form:

DOMAIN ::= PATTERN I PATTERN I etc.

where DOMAIN is the name of the domain being dermed (domain names will always be
in uppercase), "::-" means "consists of," "I" means "or" or ''union,'' and PATTERN is a
string describing the format of some members of DOMAIN. These members are called
instances of PATTERN.

There are several types of patterns. A pattern may be an actual member of the domain
being defined. The only instance of a pattern like this is itself. For example, the equa
tions:

CREW ::= Picard I Wharf I Spack
STOOGE ::= Larry I Curly I Moe

mean:

An instance of CREW consists of an instance of Picard, Whorf, or Spock.
An instance of STOOGE consists of an instance of Larry, Curly, or Moe.

In other words, the domain CREW contains three members: Picard, Whorf, and Spock;
and the domain STOOGE contains three members: Larry, Curly, and Moe. A mathemati
cian would define these domains using set enumeration notation:

CREW = {Picard, Wharf, Spack}
STOOGE = {Larry, Curly, Moe}

A pattern may also be the name of another domain. In this case the instances are mem
bers of the domain. For example, the equation:

HERO::= CREW I STOOGE

means:

An instance of HERO consists of an instance of the CREW or STOOGE domain.

Appendices 21

A mathematician would simply express this as a union:

HERO = CREW U STOOGE

Patterns can also be fonned by concatenating (i.e., gluing together) patterns. For exam
ple, the rust pattern on the right side of the equation:

INTRODUCTION ::= CREW meet STOOGE I STOOGE meet CREW

is built by concatenating three patterns: the domain CREW, the word "meet", and the
domain STOOGE. The meaning of the equation is:

An instance of IN1RODUcnON consists of an instance of CREW followed by an in
stance of the word " meet " followed by an instance of STOOGE; or an instance of
STOOGE followed by an instance of the word " meet " followed by an instance of
CREW.

Here are some sample members of the INTRODUCTION domain:

Mae meet Picard
Wharf meet Mae
Curly meet Picard

However,

Spack meet Wharf

is not a member of the INTRODUCTION domain. (Why?)
A mathematician would probably derme the INTRODUCTION domain using unions

and set builder notation:

INTRODUCTION = INTRODUCTIONl U INTRODUCTION2

where

INTRODUCTIONl - {c meet s: c e CREW & s e STOOGE}
INTRODUCTION2 = {s meet c: s e STOOGE & c e CREW}

Surrounding a pattern with square brackets indicates instances of the pattern are optional.
For example, we can extend our definitions of CREW and STOOGE to allow more for
mality:

CREW2 :: = (Mr.] CREW
STOOGE2 ::= (Mr.] STOOGE

The members of CREW2 include the members of CREW:

Spack, Picard, Wharf

as well as:

Mr. Spack, Mr. Picard, Mr. Wharf

22 1. Expressions and Values

Alternatively, we could have defined CREW2 as a union of two domains using either a
domain equation:

CREW2 ::= CREW I Mr. CREW

Finally, we can place an ellipsis (i.e., " ... ") behind a pattern. This means the pattern can
be repeated zero or more times. The ellipsis is useful for defining domains of arbitrarily
long sequences. For example:

HEROS::= (HERO ...)

means:

An instance of HEROS consists of an instance of a left parenthesis followed by zero or
more instances of HERO followed by an instance of a right parenthesis.

Without the ellipsis the domain equation for HEROS would be infInitely long:

HEROS: :.=
() I (HERO) I (HERO HERO) I (HERO HERO HERO) I etc.

Here are some sample instances of the pattern (HERO ...) (i.e., members of the domain
HEROS):

()

(Picard Curly Spock)
(Larry)
(Moe Moe Moe Moe.Moe Moe Moe Moe Moe Moe Moe Moe Moe)

The first example shows that an inStance of zero repetitions of HERO. The last example
shows members of the HEROS domain can contain repeated instances of the HERO do
main, and therefore the HEROS domain has an infinite number of members.

Warning: Domain equations are not part of the Scheme language. Computer scientists
use domain equations to define the program domains and-less frequently-tbe data
domains of all programming languages:

DATA ::= NUMBER I STRING I etc.
PROGRAM ::= INSTRUCTION ...

Computer scientists call the format of domain equations Extended Backus-Naur Form,
or EBNF for short.5 Domain theory and formal language theory are two areas of com
puter science that study domains.

Appendix 1.2. Sessions

A Scheme session begins when the control loop is started from the operating system's
prompt. When the Scheme application:

5 In 1960, John Backus, who created FORlRAN, and Peter Naur developed this notation to de
scribe the PROGRAM domain for the Algol60 language.

Appendices 23

(exit)

is typed, the session ends and control is returned to the operating system.

Saving Transcripts

The written dialogue between programmer and interpreter is called a transcript. Unless
the transcript is saved to a file, it scrolls out of view and into oblivion. Scheme provides a
procedure for saving transcripts to files. Assume file is the name of a file:

(transcript-on "file")
an unspecified value. As a side effect, the standard
output port is connected to both the monitor and file.

(transcript-off)
an unspecified value. As a side effect the standard
output port is disconnected from file.

A file containing a Scheme session is called a transcript file.

An Example

Let's study a fragment of a Scheme session. Expressions entered by the user appear next
to the interpreter's prompt: >, followed immediately by their values. All computer gener
ated text is shown in boldface:

) 100
100
) "Hello world"
"He110 wor1dn

) pi
3.14159265358979
) (COS pi)
-1.0
) (>= 3 5)

#f
) '(+ 2 3 4)
(+ 2 3 4)
) (+ 2 3 4)
9
) +
[+J
)

This session shows literals, symbols, and applications being evaluated. Note that placing
a quote in front of the list (+ 2 3 4) turns it into a literal that simply denotes itself, a list
consisting of a symbol followed by three numbers. The control loop displays the list
without the single quote because values don't need quotes, only literal expressions. But

24 1. Expressions and Values

when the user types the list (+ 2 3 4) again without the quote, eval interprets it as a pro
cedure application, adds the operand values, and prints the resulting value, 9. Finally,
when the user types + without the surrounding parenthesis, eval interprets it as a symbol,
searches the Global Environment, and displays the corresponding value, the procedure
[+]. (Different implementations of Scheme will use different notations for [+].)

Warning: PC-Scheme identifies the Boole #f and the empty list, (). This is inconsis
tent with ANSI Scheme, which, inmost testing contexts, identifies all values with #t ex
cept#f.

Appendix 1.3. Numbers

We will encounter the function-structure duality in many forms throughout this text. In
the context of numbers, function refers to the interpretation of a number, while structure
refers to the way the number is represented.

Mathematicians interpret real numbers as points on a number line, or more precisely,
as distances from points on a number line to a fixed point called the origin. The unit of
measurement can be miles, inches, meters, light-years, Angstroms, anything. Positive re
als are the points to the right of the origin, negative reals are to the left. While there is
only one interpretation of a real number, there are many representations.

Representing Real Numbers

The decimal representation of a positive real number is an infinite sequence of digits.
For example:

x = 42.142857142857142857 ...

represents the infinite sum of distances:

4 * 101 + 2 * 10° + 1 * 10-1 + 4 * 10-2 + 2 * 10-3 + ...

We call 42 the integer part of x. The infinite sequence of digits to the right of the deCi
mal point constitutes the fraction part of x.

This representation scheme is called decimal because there are ten possible digits that
can occur in a sequence, 0 through 9. Why is ten special? Surely this is only an accident
of biology or culture. In some places people count between instead of on the tips of their
fingers. These people favor octal representations based on eight "digits": 0 through 7,
and interpret them as sums of powers of eight:

x = 52.1111 ...
= 5 * 81 + 2 * 8° + 1 * 8-1 + 1 * 8-2 + 1 * 8-3 + ...

Programmers. often prefer hexadecimal representations based on 16 "digits"-O
through 9, A (10), B (11), C (12), D (13), E (14), and F (15}-and interpret them as sums
of powers of 16:

x 2A.249249 ...
= 2 * 161 + 10 * 16° + 2 * 16-1 + 4 * 16-2 + ...

Appendices 25

Computers store, process, and communicate data as voltage levels. To avoid ambiguity
only two levels are distinguished: high and low. For this reason computers favor binary
representations using only two "digits," 0 and 1 (called bits), and interpret them as sums
of powers of two:

x = 101010.001001001 ... = 1 * 2 5 + 0 * 24 + 1 * 2 3 + 0 * 22
+ 1 * 21 + 0 * 2° + 0 * 2-1 + 0 * 2-2 + 1 * 2-3 + ...

The radix of a representation scheme is the number of allowable digits. The hexadecimal
radix is 16, the octal radix is eight, the decimal radix is ten, and the binary radix is two.

Representing Integers and Rationals

All of the representations of x given so far are infinitely long. We are forced to use an
ellipses (...) to indicate that the fraction part continues forever. Computers too have diffi
culty dealing with infinitely long representations. For this reason three subsets of the re
als are of particular interest.

If all of the digits in the fraction part are zeros, we can safely ignore them and just
represent the real by its integer part. Such reals are called integers.

Another special case occurs when the decimal part is periodic. This means the deci
mal part consists of a finite sequence of nonrepeating digits followed by an infinitely re
peating pattern of digits. It turns out that such reals result from integer divisions and
therefore can be finitely represented as a ratio of two integers. We call these numbers ra
tionals. Because the fraction part of x in the previous example is periodic (the repeating
pattern appears to be 142857, but who knows what " really means), x is rational. It re
sults from dividing 295 by 7, hence it can be represented as the ratio:

x = 295/7

Clearly, integers are rationals. For example 42 - 4211.
A truncation of a decimal representation, i.e., the result of chopping off all digits in

the fraction part beyond some arbitrary point, is also a type of rational number because it
is equivalent to the nontruncated number gotten by appending an infinite repeating pat
tern of zeros. For example:

y = 42.142857 = 42.142857000 ... = 42142857/1000000

Approximating Irrational Numbers

It seems rational to call reals that aren't rational irrational. Pi, the natural exponent e,
and square roots of prime numbers are examples of irrationals. Irrational numbers are so
ubiquitous that if we removed all of them from the number line, the length of what re
mained would be zero!

How does a computer represent an irrational number? Sadly, it doesn't. Instead, irra
tional numbers must be approximated by truncations. For this reason truncations are
sometimes called inexact numbers. For example, some computers approximate the irra
tional number pi by the truncation 3.141592654.

26 1. Expressions and Values

Scientific Notation

An alternative, more compact representation for a truncation is scientific notation. Sci
entific notation can be used to compress long strings of consecutive zeros into an integer
exponent of 10. For example, the following decimal representation:

z = 0.0000000000123

can be compressed into the scientific notation:

z = 1.23 * 10-10

Problems

Warning: Many versions of Scheme-including the TI and UG versions of PC-Scheme
-are not 100% compliant with the IEEE/ANSI specification. While it is acceptable to
use these versions for testing and experimenting, your answers must be based on
IEEEI ANSI Scheme.

Problem 1.1.

Assume the following definitions have been made:

(define x 10)
(define y 20)
(define z -5)
(define m *)

Compute the values denoted by the following Scheme expressions. Use a Scheme inter
preter to check your answers. Some expressions contain errors. Explain the nature of
these errors, and if possible, suggest corrections. If you are not sure about a procedure,
look its definition up in the Reviseffl Report.

a. {+ x y (m z z»
b. '{+ x y (m z z»
c. "(+ x y (m z z» II
d. #{+ x y (m z z»
e. (x + y + z * z)
f. '# (x y z)
g. (x y z)

Problem 1.2.

The type of a number is the lowest level in the hierarchy of number domains to which
it belongs. For example, 42 belongs to the INTEGER, RATIONAL, REAL, and

Problems 27

COMPLEX domains, hence its type is IN1EGER. Classify the types of the following
numbers. Also classify the representations as exact or inexact, and convert them into an
equivalent decimal representation:

#x2.8e3 #b111+#o32i #e#d32.0 #b.001

Problem 1.3.

Assume the following deftnitions have been made:

(define a 6)
(define b 10)
(define e 30)

#x#iFFFF

Because of the leading quote, the literal expression '(+ a b c) denotes the list (+ a b c) in
stead of the number 46. The quote tells the evaluator to interpret everything that follows
it literally.

Scheme has a structure called a quasiquote, which is denoted by a back quote: '.
Quasiquote is similar to quote. For example, the expression '(+ abc) also denotes the list
(+ a b c). The difference is that the evaluator takes everything following a quasiquote lit
erally unless it is preceded by the unquote operator (which is denoted by a comma). The
evaluator evaluates unquoted values appearing inside a quasiquote. Thus, the expression
'(+ a ,b c) denotes the list (+ a 10 c).6

Compute the values of the following Scheme expressions:

'(+ ,a ,b ,e)
'(,a a ,b b ,e e)
'(,"a" ",a" ,'a ',a)
'«a b e) (,a ,b ,e»

Problem 1.4.

Indicate to which subdomain of VALUE and EXPRESSION each of the elements listed
here belongs to. The choices for EXPRESSION subdomains are LITERAL, SYMBOL,
APPLICATION, and NONE. The choices for VALUE subdomains are BOOLE, CHAR,
SYMBOL, PROCEDURE, LIST, VECTOR, PAIR, STRING, NONE, or, in the case of
numbers, give the domain lowest in the number hierarchy to which the element belongs.

a. "f" f. #0 k. (1 .2) p. '+
b. f g. '0 1. (+ 1 .2) q. +3.0
e. #\f h. 0 In. # (+ 1 .2) r. '3.0
d. 'f i. (1 .. 2) n. '(+ 1 .2) s. 3.111
e. #f j. "(1 .. 2)" o. + t .. 2+0i

6 We can also express' (+ a ,b c) as (quasiquote (+ a (unquote b) c».

28 1. Expressions and Values

Problem 1.5.

Write Scheme expressions equivalent to the following mathematical expressions. You
may use any ANSI Scheme procedures or constants. You may also use the "and" and
"or" structures. Hint: Use Scheme's define procedure to give arbitrary definitions to x, y,
z. a, and h. Once these symbols have values. you should be able to check your Scheme
translations of the following expressions using your Scheme interpreter.

a. (sin(x + Y)/COS(x _ y»2
b. In(xy + 3)
c. 5.3 X 10-119

d. pi
e. e (i.e. the natural log)
f. tan(x)/(log'(x)/y)
9 . (x S; y) or (X2 *2)
h. «x/y)/(a/b»/(a/x)
i. -1 < eX < 1
j. arcsin(2x)

Problem 1.6.

A natural number is an unsigned integer. Write a domain equation for naturals:

NAT ::= ???

Problem 1.7.

Complete the following domain equations for number representation formats. NAT do
main is the domain of natural number formats. (A natural number is just an unsigned in
teger.) UREAL is the domain of unsigned REAL formats. You may introduce supporting
domains as you see fit.

a. FORMAT ::= REAL I COMPLEX
b. REAL ::= INT I RATIO I DECIMAL I SCIENTIFIC
c. INT ::= [-]NAT
d. NAT::=
e. DIGIT ::=
f. RATIO::=
g. DECIMAL :: =
h. SCIENTIFIC ::=
i. COMPLEX ::= REAL+UREALi I REAL-UREALi I REALi
j. UREAL::=

Problems 29

Problem 1.8.

Write the following numbers in as many formats as possible. Classify each number as
integer, rational, irrational, real, and/or complex. If a number belongs to several of these
domains, list them all. Also, classify each format as exact or inexact:

-2.16, 1/20, 100, 1/7, 3.33, 2.5e-3, -2i, -2e10, 1+0i

Problem 1.9.

Compute the values of the following Scheme expressions assuming complex and rational
numbers are fully implemented:

a. (+ 3+2i 4/3 .1)
b. (* 2/7 - i 3. 1e2)
c . (expt - 4 . 5)
d. (exp 100)
e. (/ 2-i 2+i)
f. (* 3e42 .2e-16)

Problem 1.10.

Which of the following names are not members of Scheme's SYMBOL domain (as de
fmed earlier). Explain why.

i +i ::: <.*.> /++} 3+ +3 + ++ c++ A<=->B&C=3 Hi-Ho!
-Ho! x+y+z x+(y+z) <NUM>: : =<INT> I <REAL> c A 2 [xl f'
.tax. alb Scheme c++ Modula2.1 ___ x x ... ix%
=? ??? a+bi smith@sjsu.edu smith/project/foo.scm
c: smith\project\foo. scm

Problem 1.11.

Why doesn't Scheme allow symbols to begin with., -, or +1

Problem 1.12.

Investigate what happens when the following strings are typed into your Scheme inter
preter:

a. "\cat"
b. "\\cat"
c. "\\\cat"

30 1. Expressions and Values

Problem 1.13.

Draw data flow diagrams for the following Scheme applications:

a . (+ (cos (* 3 x» (sqrt (/ 1 x»)
b. (+ (+ (+ X y) (+ Z z» (+ X z»
c. (expt (* 3 z) (max x y z»

Problem 1.14.

Assume exp is a Scheme expression. Some versions of Scheme allow programmers to
call the eval procedure directly:

(eval exp)
the value of exp in the Global Environment

Assume the following defmitions have been made:

(define vall 42)
(define val2 'vall)
(define val3 'vaI2)
(define va14 '(quotient vall 6»

Compute the values of the following Scheme expressions:

a. (eval vall)
b. (eval va12)
c. (eval val3)
d. (eval (eval va13»
e. (eval ' (eval val3))
f. (eval va14)

Problem 1.15.

Find the hexadecimal (i.e., base 16) representations of the following numbers:

124 215 248.625 1/6

2
Procedures

2.1. Defining and Applying Procedures

Although Scheme provides quite a few procedures, there are many more it does not pro
vide. This isn't a problem because programmers can define their own procedures using
lambda expressions. The format of a lambda expression is:

LAMBDA::= (lambda PARAMETERS BODY)

The first input to lambda is simply a list of symbols called parameters:

PARAMETERS ::= (SYMBOL ...)

The body of a lambda expression is a parameterized expression:

BODY ::= PARAMETERIZED-EXPRESSION

A parameterized expression is a Scheme expression that may contain parameters from
the parameter list. For example, here's a new procedure that computes Ix - yl, the dis
tance between two real numbers x and y:

(define dist (lambda (X y) (abs (- X y»»
The parameters are x and y, and the body is the parameterized expression: (abs (- x y».

Unlike ordinary expressions, a parameterized expression can't be evaluated until the
parameters are replaced with appropriate Scheme values called arguments. This happens
when the procedure appears as the operator in an application. The arguments are the val
ues of the operands.

For example, assume the following definitions have been made:

(define num1 30)
(define num2 -14)

To evaluate the application:

(dist (+ num1 8) num2)

the Scheme evaluator (1) evaluates the name, dist, (2) evaluates the operands (+ numl 8)
and num2, (3) replaces x and y in the body of dist by the operand values, the arguments

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998

32 2. Procedures

38 and -14. This produces the expression: (abs (- 38 -14». Finally, (4) since this ex
pression no longer contains parameters, it can be evaluated to produce the ultimate an
swer, 52:

> (dist (+ numl 8) num2)
52

Some people feel the format of a definition involving a lambda expression is too compli
cated. For this reason many Scheme implementations provide an alternative format called
a procedure block, which drops the lambda operator and combines the procedure name
and parameters into a single list called the header:

PROCEDURE-BLOCK ::= (define HEADER BODY)
HEADER ::= (PROCEDURE-NAME PARAMETER ...)

Here is the definition of the distance procedure using a procedure block:

(define (dist x y) (abs (- x y»)

Although we will use procedure blocks, there are places where it is still necessary to use
lambda expressions. Readers should develop the ability to translate quickly between the
two forms.

2.1.1. The Environmental Influence

Let's work through another example. Comparing t:nnicated numbers using - or Zero? can
be dangerous due to rounding errors. Assume the following defmitions have been made:

(define (square z) (* z z»

(define num (- 1 (+ (square (sin 3» (square (cos 3»»)

A fundamental trigonometric identity tells us num should be 0, but Scheme seems to be
lieve differently:

> (zero? num)
if
> (- num 0)
if

When truncated numbers are combined, rounding errors can accumulate to produce sig
nificant errors. For example, the actual value of num is a tiny but positive real number:

> num
1.11022e-16

In these situations it might be better if we had a procedure that determined if two num
bers were close in the sense that the distance between them was less than some small
constant, 11. Unfortunately, Scheme doesn't provide such a procedure, so we'll have to
defme our own.

2.1. Derming and Applying Procedures 33

A predicate is any procedure that returns a Boolean value: #t or #f. Scheme predi
cates conventionally have names ending with a question mark. For example, the name
big? suggests the procedure returns #t if its input is big and #f if it isn't. The only excep
tions to this convention are the not predicate and the primitive predicates that compare
numbers: -, <, >, <-, and >-. (Older implementations of Scheme allow -?, <?, >?, <-?,
and >-? as synonyms for these procedures.)

We want a predicate that determines if two numbers are close; following Scheme's
convention, let's name this procedure close? The definition of close? can take advantage
of the dist procedure dermed earlier:

(define (close? a b) «= (dist a b) delta»

Where delta is a constant representing our error tolerance. For now we can set its value to
10-20•

(define delta 1e-20)

If close? is the inexact analog of -, then the inexact analog of zero? should be called
small?:

(define (small? z) (close? z 0» i i.e., near zero

When it encounters the application (small? num), the Scheme evaluator replaces z by the
value of num in the parameterized body of small?

(close? 1.11022e-16 0)

Next, 1.11 022e-I6 replaces a and 0 replaces b in the parameterized body of close?:

«- (dist 1.11022e-16 0) delta)

Before the comparison can be made, 1.11022e-I6 replaces x and 0 replaces y in the body
of dist:

(abs (- 1.11022e-16 0»

Because there are no parameters in this expression, it can be fully evaluated. Its value re
places the application of dist in the body of close?:

«= 1.11022e-16 delta)

Notice that delta is not a parameter; it is a constant defined in the global environment.
Therefore, this expression can be fully evaluated to produce the final answer, It:

> (small? num)
it

If a user inadvertently defines a new constant called delta:

(define delta 100)

then small? no longer works:

34 2. Procedures

) (small? num)
if

The definitions of small?, close?, dist, and delta can be placed in a file called math.scm.
The expression:

(load "math.scm")

can be placed at the top of any file of definitions that need them.

2.1.2. The Modularity Principle and Top-Down Design

Suppose we want to define a procedure called pipe-volume that computes the volumes of
pipes closed at both ends by hemispherical caps, as in Figure 2.1.

(I I)

Figure 2.1

The inputs to the procedure will be the length and radius of the cylinder component of
the pipe. We can express the form of the definition using a stub (i.e., the header is speci
fied, but the body is undetermined):

(define (pipe-volume len rad) ???)

How should we begin? A top-down strategy is suggested by the modularity principle:

The body of a procedure should be explicit and purposeful (rather than obscure and ar
bitrary). This is achieved if we cleanly decompose the procedure into subtasks per
fonned by calls to independent and logically coherent supporting procedures.

The pipe is built out of three pieces: a cylinder and two hemispherical caps. Glued to
gether, the caps form a sphere with the same radius as the cylinder. This suggests we ca:n
naturally decompose the procedure into a sum of volumes:

i = volume of length len & radius rad capped pipe
(define (pipe-volume len rad)

(+ (cylinder-volume len rad)
(sphere-volume rad»)

Programs should not be needlessly difficult to understand. To achieve this goal, experi
enced programmers follow three basic literacy principles:

1. There are few restrictions on the names of parameters, procedures, and constants.
Therefore names should be chosen to reflect the interpretation of the values they
represent.

2. The interpretation of a name can be further elaborated with a comment, but don't
restate the obvious. Comments are also welcome inside procedures to explain

2.1. Defining and Applying Procedures 35

tricky algorithms, etc. In Scheme, a comment is placed between a semicolon and
the next end-of-line.

3. A program's physical structure should reflect its logical structure. Use indenta
tion to indicate the depths of nested expressions, and use blank lines to separate
tasks.

Returning to our procedure, we discover that the supporting procedures. cylin
der-volume and pipe-volume are not predefined. We'll have to provide our own defini
tions. We can consult a geometry book to fmd the formulas for the volumes of a cylinder
and a sphere:

V - length * area of circular base

V - 413 * 1t * radius3
Translating the first formula into Sche,me gives:

i = volume of length len & radius rad cylinder
(define (cylinder-volume len rad)

(* len (circle-area rad»)

The product of 413 and 1t is constant. It would be inefficient to compute this value each
time sphere-volume is called, therefore we define it as a global constant:

(define four-thirds-pi (* (/ 4 3) pi»

Pi is often predefmed. If not, it can be defined by:

(define pi (acos -1» i since (cos pi) = -1

Translating the second formula into Scheme gives:

i = volume of radius rad sphere
(define (sphere-volume rad)

(* four-thirds-pi (cube rad»)

The area of a radius r circle is w2. Translating this into Scheme gives:

; = area of radius rad circle
(define (circle-area rad)

(* pi (square rad»)

To finish. we only need to defme square and cube:

i = z"2
(define (square z) (* z z»

i = z"3
(define (cube z) (* z z z»

Compare these definitions with the following equivalent but inefficient, hard-to
understand. and poorly structured definition:

36 2. Procedures

(define (pipe-volume i x) (+
(* i pi x x) (* 2

(/23)xxx»)

We can make this defmition even harder to understand by decomposing it into incoherent
subtasks:

(define (pipe-volume a b) (+
(* (helper1 a b) b)

(* (helper2 b) b b»)

Where the helper! and helper2 procedures compute incoherent mathematical functions
that only have meaning in the context of the volume procedure:

(define (helper1 u v) (* u pi v»
(define (helper2 1) (* 2 (/ 2 3) 1»

2.2. Building Procedures Using Application

In applicative Scheme the only tools for building procedures are application and ab
straction (i.e." lambda expressions). Although we will learn in Chapter 8 that this is all
we need, building procedures with such simple tools is like making furniture with a
Swiss Army knife: possible, but challenging.

In this chapter we restrict ourselves to applicative Scheme. Our purpose is to wean
readers away from statement sequencing, the principle program-building tool provided
by languages like Pascal, FORTRAN, and C.I In the next chapter we will begin adding to
our tool kit.

2.2.1. Example: Coercions

A coercion is a procedure that transforms members of one domain into equivalent mem
bers of another domain, where the meaning of equivalent is subject to interpretation and
debate. By convention, the name of a Scheme coercion usually has the form:

domain->range

Where "domain" indicates the input domain, "->" means to, and "range" indicates the
output domain. Scheme provides ten basic coercions:

number->string, string->number, char->integer, integer-xhar, list->string, string->list,
symbol->string, string->symbol, vector->list, list->vector

In addition, Scheme provides four procedures for coercing real numbers into integers:

1 Applicative C would be C with all functions restricted to a single statement: return
'CVDD"Cc.'C'Tn'JI...T

2.2. Building Procedures Using Application 37

floor, ceiling, truncate, round

and procedures that coerce exact numbers into inexact numbers and back again:

exact->inexact, inexact->exact

The best way to remember these coercions is· to remember the coercion map in Figure
2.2:

Figure 2.2

Notice that all coercions are reversible, and we don't need a coercion from integers to
numbers because integers are already numbers. We can get an idea of what these coer
cions do from the following transcript:

> (string->number "532.678")
532.678
> (number->string 532.678)
"532.678"
> (number->string 26 2)
"11010"
> (string->number "lA" 16)2

26
> (string->syrnbol "cat")3

cat
> (syrnbol->string 'cat)
"cat"
> (list->string '(#\c #\a #\t»
"cat"
> (string->list "cat")
<i\c i\a i\t)

10 = default radix

2 = optional radix

16 = optional radix

2 In PC-Scheme: (string->number S1RING EXACINESS RADIX) where EXACT ::- 'e I 'i and
RADIX ::- 'b I 'd I '0 I 'x and (number->string S1RING FORMAT) where FORMAT ::- (INT) I
(FIX N) I (FLO N) I SCI N M) I (HEUR).

3 In PC-Scheme leatl is returned.

38 2. Procedures

> (list->vector '(42 #t "hello"»
#(42 #t "hello")
> (vector->list #(42 #t "hello"»
(42 #t "hello")
> (char->integer #\a)
97 97 ASCII code for #\a
> (integer->char 97)
#\a

The coercions from reals to integers are subtly different. Assume r is any real number,
then:

(floor r)
(ceiling r)
(round r)
(truncate r)

= largest integer ~ r.
= smallest integer ~ r.
= closest integer to r.4
= integer part of r.

The differences between these procedures are tricky when r is negative:

> (floor - 4.5)
-5
> (truncate -4.5)
-4
> (ceiling -4.5)
-4
> (round -4.5)
-4

largest int ~ -4.5

int part of -4.5

smallest int ~ -4.5

closest (even) int to -4.5

Here are some sample calls to the coercions between exact and inexact numbers. Unfor
tunately, these coercions don't always yield the expected result:

> (inexact->exact .5)
1/2
> (exact->inexact 1/2)
.5

We can define our own coercions by composing these coercions. For example, the fol
lowing procedures coerce character vectors into symbols and vice-versa:

; = symbol made from a vector of chars
(define (vector->symbol char-vector)

(string->symbol
(list->string (vector->list char-vector»»

; = char vector made from a symbol
(define (symbol->vector symbol)

4 Returns nearest even integer when argument is halfway between two integers.

2.2. Building Procedures Using Application 39

(list->vector
(string->list

(symbol->string symbol»)

The data flow structures of these procedures can be viewed as pipelines formed by com
posed procedures as in Figure 2.3.

~ symbol->string ~I string->list ~I list->vector l-+
Figure 2.3

Of course it makes sense to define coercions between domains other than the ones pro
vided by Scheme. For example, assume we introduce four new domains:

MILE, YARD, FOOT, INCH::= REAL

There are six basic coercions between these domains, these three:

; = # yards in m miles
(define (mile->yard m)

(* 1760 m» ; 1 mile

= # feet in y yards

1760 yards

(define (yard->foot y) (* 3 y»

; = #inches in f feet
(define (foot->inch f) (* 12 f»

together with their inverses: inch->foot, foot->yard, and yard->mile. Other coercions can
be defined by composing the basic coercions. For example:

; = # inches in m miles
(define (mile->inch m)

(foot->inch (yard->foot (mile->yard m»»

2.2.2. Example: Palindromes

Doc note, I dissent. A fast never prevents a fatness. I diet on cod!

A palindrome is any string that is the same spelled forward or backward (upper- and
lowercase letters aren't distinguished). For example, Rotator, YrekaBakery, and Race
Car are palindromes. How can we define a predicate that detects palindromes?

; = it, if string is a palindrome
(define (palindrome? string) ???)

If we had a procedure for reversing strings:

40 2. Procedures

i = reverse of string
(define (string-reverse string) ???)

we could use it to reverse palindrome?'s input string, then compare the result with the
original input string using string-ci==?:

i = it, if string is a palindrome
(define (palindrome? string)

(string-ci=? string (string-reverse string»)

Scheme does provide a procedure for reversing lists:

(reverse vals) = list formed by reversing vals

For example:

> (reverse' (a e i 0 u»
(U 0 i e a)

Unfortunately, Scheme does not provide procedures for reversing strings and vectors, but
these are easily defined using our coercions. For example:

i = reverse of string
(define (string-reverse string)

(list->string (reverse (string->list string»»

2.3. The Abstraction Principle

Structure is organization in space, while function is organization in time.

-C. Judson Herrick and George Coghill, Naturalist and Philosopher

Every organism plays a special role in its environment We think of this role as the or
ganism's purpose or function. Biologists explain an organism's function in terms of its
internal organization or structure. Of course function does not always follow structure.
Evolution, adaptation, learning, differentiation, and mutation are all examples of the en
vironment imposing new roles on an organism or species that may eventually lead to
structural changes.

The structure-function duality is also important in computer science and program
ming. For a procedure, we identify structure with body and function with purpose. The
structure-function duality also applies to data. For example, the structure of a number is
its representation: binary, octal, decimal, hexadecimal, etc. The function of a number is
its interpretation: the distance between two points on a number line. (Can environment
influence function?)

The abstraction principle simply states:

Structure and function should be independent.

2.3. The Abstraction Principle 41

This means people should be able to use a procedure or value without knowing how it is
implemented. It also means programmers can change the implementation without wor
rying about breaking user programs.

One technique for hiding the representation of data in a given domain is to present the
user with abstract procedures for manipulating domain members. This collection of pro
cedures is called an interface, an abstract data type, or an ADT. Typically, an ADT
consists of constructors for building new members of the domain, selectors for dissect
ing existing members of the domain, and predicates for recognizing domain members.

Following the abstraction principle, we will not have much to say about how pairs,
lists, vectors, and strings are represented. Instead, we present the constructors and selec
tors for each domain.

2.3.1. Constructors

A constructor is a procedure that buiids a composite value from its components. Scheme
provides six basic constructors. Assume val and vali are arbitrary Scheme values and C

and Ci are arbitrary Scheme characters:

(cons vall val2) = (vall. vaI2).

(list vall vaIn) = (vall ... vaIn).

(vector vall." vaIn) = #(yal1 ... vaIn).

(make-vector n val)
= length n vector #(val ... val)

(string c1 .,. cn) = "C1·· .on"

(make-string n C) = length n string "c ... c n

In addition, some implementations of Scheme provide constructors for complex and ra
tional numbers:

(/ n m) = n/m.

(make-rectangular x y) = x+yi.

(make-polar x y) = x*eiy

Where n and m are integers (m * 0), and x and y are reals. Here are some sample applica
tions:

) (cons 't it)
(t • it)
) (list #f "fn #\f 'f)

42 2. Procedures

(#f "f" #\f f)
> (vector #f Of" #\f 'f)
#(#f nf" #\f f)
> (make-vector 10 0)
#(0 0 0 0 0 0 0 0 0 0)
> (string #\I #\B #\M)
"IBM"
> (make-string #\? 10)
n??????????"
> (/ 4 6)
2/3
> (make-rectangular 3 -4)
3-4i -> (make-polar 3 -4)
-1.960930862590836+2.2704074859237844i

Why do we need constructors? Why can't we replace every call to a constructor by an
equivalent literal? For example, why would we write:

(define origin (list 0 0 0»

when we could write:

(define origin '(0 0 0»

Constructors are needed when components aren't known in advance. Compare the fol
lowing programmer-defined constructors for three-dimensional points represented as
lists:

(define (make-point1 x y z) '(X y z»

(define (make-point2 x y z) (list x y z»

The second constructor works well:

> (make-point2 0 0 0)
(0 0 0)
> (make-point2 1 2 3)
(1 2 3)

But the first constructor always returns the same incorrect result:

> (make-point1 0 0 0)
(X Y z)
> (make-point1 1 2 3)
(X Y z)

Why did this happen? Remember, the single quote instructs the evaluator to interpret
what follows literally. Thus, the evaluator interpreted the body of make-pointl as a list of
three symbols: x, y, and z. Each time make-point! is called, this same list is returned.

2.3. The Abstraction Principle 43

The same problem occurs with vectors, strings, and pairs. Assume the following defi
nitions have been made:

(define x #\a)
(define y #\b)
(define z #\C)

Now compare the following evaluations:

> (vector x y z)
#(#\a #\b #\c)
> #(x y z)
#(x y z)
> (string x y z)
"abc"
> "xyz"
"xyz"
> (cons x y)
(#\a • #\b)
> '(X . y)

(X • y)

2.3.2. Selectors

A selector is a procedure that returns the component of a composite value at a given po
sition. In a sense, constructors and selectors are inverse operations. Scheme provides five
basic selectors:

(car ' (VO vI)) = vo

(cdr ' (VO VI)) = VI

(list-ref ' (vO ... vn) k) = vk

(vector-ref # (vO ... vn) k) = vk

(string-ref "cO·· .cn" k) = ck

where Vi is any value, k is any unsigned integer, and Ci is any character. Notice the first

item in a list, vector, or string has position O.
In addition, some implementations of Scheme provide selectors for rational and com

plex numbers:

(numerator n/m) = n

(denominator n/m) = m

44

2.3.3.

2. Procedures

(real-part a±bi) = a

(imag-part a±bi) = ±b

(magnitude a±bi) = ~a2 +b2

(angle a±bi) = atan(±b/a)

Lists as Pairs

One violation of the abstraction principle has become a tradition among LISP and
Scheme programmers. Assume the following definition has been made:

(define vowels' (a e i 0 u»
Inside the computer vowels is identical to the pair:

(a . (e i 0 u»
Of course the list (e i 0 u) is represented as the pair (e. (i 0 u», therefore vowels is actu
ally represented as the pair:

(a . (e . (i . (0 . (u . (»»»
The point is, we can use car and cdr to extract the head and tail of vowels, and cons to
add new elements to the beginning of vowels:

> (car vowels)
a
> (cdr vowels)
(e i 0 U)

> (cons 'y vowels)
(y a e i 0 u)

Like all the procedures discussed so far, these are nondestructive. The volatile lists pro
duced by cdr and cons disappeared and vowels remained unchanged:

> vowels
(a e i 0 u)

Be sure you understand the different behavior of cdr on lists and pairs. The list (a b) is
the same as the pair (a. (b», not the pair (a . b). Therefore cdr returns (b) when applied
to (a b), and b when applied to (a . b):

> (cdr '(a b»
(b)

> (cdr J (a . b»
b

2.3. The Abstraction Principle 45

Scheme provides some popular compositions of car and cdr. Assume p is any list or pair,
then:

(cadr p) = (car (cdr p))
(cdar p) = (cdr (car p))
(caar p) = (car (car p))
(cddr p) = (cdr (cdr p»
(caadr p) = (car (cadr p»
(cdddr p) = (cdr (cddr p»
etc.

If your implementation of Scheme doesn't predefine the combination of cars and cdrs
you need, just derme it yourself:

(define (cddadr x) (cdr (cdadr x»)

Scheme provides other procedures for searching, appending, and computing lengths of
sequences. These are described in detail in Appendix 2.2: Sequences.

2.3.4. Example: Association Lists as Records

An association list (alist) is a list of pairs called associations or bindings:

ALIST ::- (ASSOCIATION ...

An association is a pair of the form:

ASSOCIATION ::- (ATTRIBUTE. VALUE)

where ATTRIBUTE is any Scheme value that identifies a type of attribute (name, height,
marital status, etc.) and VALUE is the value of the attribute (Smith. 612", single, etc.)

Association lists are useful for representing records, graphs. and tables. Tables and
graphs will be discussed later in the chapter. In this section we consider records.

A record (called a struct in C) represents the relevant properties of it person, place, or
thing. We can represent a record as a list of associations in which ATTRmUTE is a sym
bol that names the attribute. For example, a student record might contain the name, social
security number. and grade point average of a student:

«name "picard") (ssn . 998869999) (gpa . 3.75»)
«name. "Moe") (ssn . 002869999) (gpa . 1.5»
«name. nSpock") (ssn . 905869999) (gpa . 3.9»

We can view student records as a new domain of composite values:

STUDENT: :=
«name. STRING) (ssn . INTEGER) (gpa . REAL»

As such, it makes sense to define an ADT (constructors and selectors) for the new do
main. The constructor for the student domain expects a name, social security number,
and grade point average for input:

46 2. Procedures

; = record representing a student
(define (make-student name ssn gpa)

(list (cons 'name name)
(cons 'ssn ssn)
(cons 'gpa gpa»}

We can use pair and list selectors to implement student selectors:

= name of student
(define (name student)

(cdar student»

= social security number of student
(define (ssn student)

(cdadr student»

= grade point average of student
(define (gpa student)

(cdaddr student»

Because the computer must perform some bookkeeping work each time a procedure
is called, it is more efficient to define these selectors as synonyms for the single proce
dures they call:

(define name cdar)
(define ssn cdadr)
(define gpa cdaddr)

Of course, we could have used list-ref to select associations. This might have been a bet
ter choice, but it is important to gain experience combining car and cdr.

Here are some sample constructions:

(define picard (make-student nPicard n 998869999 3.75})
(define moe (make-student nMoe n 002869999 l.5)}
(define spock (make-student nSpockn 905869999 3.9»

and some sample evaluations:

> (ssn spock)
905869999
> (name moe)
"Moe"
> (gpa picard)
3.75

Here are some trivial applications of our selectors and constructor:

; = it if student's gpa < 2.0
(define (probation? student)

« (gpa student) 2.0»

2.4. Polymorphic Procedures 47

i = result of updating student's gpa to new-gpa
(define (update-gpa student new-gpa)

(make-student
(name student) (ssn student) new-gpa»

Note that updating the gpa of a student record involves constructing a new record identi
cal to the old record except for the new gpa.

2.4. Polymorphic Procedures

A procedure that expects each of its inputs to be from a specific domain is called mono
morphic. Attempting to apply a monomorphic procedure to inputs from different do
mains results in a type error. Except for the constructors, all the procedures we have
studied so far have been monomorphio.

The body of a polymorphic procedure is completely or partially type-independent.
In other words, the algorithm doesn't particularly care about the types of its inputs.
Therefore a polymorphic procedure appears to work on inputs from a variety of domains.
It's easy for programmers to defme polymorphic procedures. Here are a few examples;
make sure you understand why they are polymorphic:

(define (id val) val) ; the identity procedure
(define (always-O val) 0)
(define (first vall val2) vall)
(define (second vall val2) val2)
(define (make-pair val) (cons val val»

Scheme provides several primitive polymorphic predicates that are discussed later.

2.4.1. Equivalence Predicates

In addition to the five monomorphic equality predicates:

=, char=?, char-ci=?, string=?, string-ci=?

Scheme provides three polymorphic equality predicates:

eq?, equal?, eqv?

Comparing arbitrary values is controversial because there are two competing notions of
equivalence: physical and structural. Two values are physicaUy equivalent if they have
the same address in the computer's memory, i.e., if they are literally the same object.
Two values are structurally equivalent if they have the same mathematical structure, or,
at the risk of oversimplifying, if they look the same when printed by the Scheme inter
preter. The eq? predicate tests for physical equivalence, while the equal? predicate tests
for structural equivalence.

48 2. Procedures

Predicting when two values are physically equivalent is tricky. Two composite values
are not physically equivalent if they are created by separate calls to a constructor. For ex
ample, assume the following definitions have been made:

(define valsl (list 1 2 3»
(define vals2 (list 1 23»
(define vals3 vals2)

All three lists are structurally equivalent. In addition, vals2 is physically equivalent to
vals3, but vals2 and vals! are not physically equivalent because they were created by
separate calls to the list constructor:

> (eq? vals~ vals2)
if
> (eq? vals2 vals3)
it

Structurally equivalent literal values mayor may not be physically equivalent depending
on the Scheme implementation:

> (eq? '(1 2 3) '(1 2 3»
unspecified
> (eq? 5 5)
unspecified

The empty list, #f, and structurally equivalent symbols are the notable exceptions. These
are unique objects in all Scheme implementations:

> (eq? 'cat 'CAT) ; symbols are case insensitive
it
> (eq? if if)
it
> (eq? '() '(»
it

The eqv? predicate is a hybrid between eq? and equal? For simple values (numbers,
Booles, chars, symbols) it tests for structural equivalence, but for composite values Oists,
strings, vectors, pairs) it tests for physical equivalence.

2.4.2. The not and null? Predicates

The eq? predicate is normally used for comparing symbols. Because #f and the empty list
are unique values, Scheme provides special polymorphic procedures for recognizing
them:

(not val)
(null? val)

(eq? val if)
(eq? val .' ())

2.4. Polymorphic Procedures 49

Although #f is a unique object in Scheme, in most contexts any value other than #f can
be used instead of #to Let's call any value other than #f un/alse. We can design a simple
predicate to test for unfalse values:

(define (unfalse? val) (not (not val»)

2.4.3. Recognition Predicates

Another category of polymorphic predicates are recognizers. A recognizer usually has a
name like domain? and returns #t if its input belongs to domain, and #f otherwise. There
are fifteen primitive recognizers:

symbol? number?, Boolean?, char? pair? list? procedure? vector? string?
input-port? output-port? integer? real?, complex? rational?

Recognizing values can get tricky. Make sure you understand the following evaluations:

> (pair? I (a e i 0 u»
it
> (pair? I (»

#f
> (real? 1)
it
> (integer? 1.0)
it
> (integer? 1.1)
#f
> (procedure? 1+)

#f
> (procedure? +)
it
> (boolean? Ie»~

#f

nonempty lists are pairs!

but not the empty list!

all integers are reals

representation independence

1+ is a symbol

i = it in PC-Scheme!

2.4.4. Example: Searching Association Lists

Tables

Related data can often be organized into a table. For example, the following table repre
sents scores on some recent Star Fleet Academy math tests:

~
Picard
Moe
Spock

TEST1
92
34
99

TEST2
90
37

100

TEST3
89
36
99

50 2. Procedures

Each column in the table can be represented by an association list:

(define testl
'«"Picard". 92) ("Moe". 34) ("Spock" . 99»)

(define test2
'«"Picard" . 90) ("Moe" . 37) ("Spock" . 100)}}

(define test3
'«"Picard". 89) ("Moe". 36) ("Spock". 99»)

In this association, AITRIBUTE is the name of the student and VALUE is the associated
test score. The entire table can be represented by an association list of association lists:

(define tests
(list (cons 'testl testl)

(cons 'test2 test2)
(cons 'test3 test3»}

In this case AITRIBUTE is an identifier that names VALUE, the table of test scores.
Scheme provides three procedures for searching association lists:

assoc, assq, assv

Each expects an association list and a key as input:

(ass* key assocs)
= the left-most member a of assocs with (car a)
equivalent to key. Depending on *, equivalent means eq?,
eqv?, or equal?
= if, otherwise

Assoc uses equal? to compare keys, while assv uses eqv? and assq uses eq? Here are
some sample evaluations:

> (assoc "Moe" testl)
("Moe" • 34)
> (cdr (assoc "Moe" test2»
37
> (assv 'test2 tests)
(("Picard" . 90) ("Moe" . 37) (" Spock" . 100»
> (assv "Moe" test2)
unspecified
> (cdr (assoc "Spock" (cdr (assq 'test3 tests}»)
99

The value of (assv "Moe" test2) was unspecified because eqv? was used to compare
"Moe" with the "Moe" inside test2. In some versions of Scheme this returns 37, while in
other versions If may be returned.

2.5. Meta-Procedures 51

Graphs

The graph of a procedure proc is the set of points (x, y) in the plane such that y = (proc x).
For example, the graph of the square procedure is the parabola:

{(XI y) I y = x2}

An association list can be used to represent the graphs of procedures with only fInitely
many inputs. For example, suppose we want to implement a procedure that translates
digit names to their corresponding numeric value:

> (string->digit "one")
1
> (string->digit "three")
3

> (string->digit "nine")
9

This procedure only has ten valid inputs: "zero" to "nine." This suggests we could
represent its graph as an association list:

(define string->digit-graph
, ((" zero" . 0) (" one" . 1) (" two" . 2)

("three" . 3) ("four". 4) ("five"-. 5)
("six" . 6) ("seven" . 7) ("eight" . 8)
("nine" . 9»)

We can implement the procedure as a simple search of the graph:

i = coercion of string to corresponding digit
(define (string->digit string)

(cdr (assoc string string->digit-graph»)

Could assv have been used in this defmition instead of assoc?

2.5. Meta-Procedures

Map and apply are examples of meta-procedures because each expects an arbitrary pro
cedure and a list as input:

(apply proc vals) = result of applying proc to vals

(map proc vals)
= list formed by applying proc to each member of vals.

In the case of apply, the list is treated as arguments to the procedure parameter:

> (apply + '(2 345»
14

52 2. Procedures

> (apply lcm '(2 345»
60
> (apply cons '(X 2»
(x . 2)
> (apply append' «1 2 3) (4 5 6) (7 8 9»)
(1 2 3 4 5 6 7 8 9)

Apply is useful when we may not know the procedure or inputs in advance. For example,
to compute the average of a list of numbers we divide the sum of the list by its length.
But how can we compute the sum of a list of unknown numbers? The solution is to use
apply:

; = average of numbers in the list nums
(define (average nums)

(/ (apply + nums) (length nums»)

As another example, here's a simple predicate that determines if a list of names is sorted:

; = #t if names is sorted
(define (sorted? names) (apply string-ci<=? names»

If map's procedure argument expects two or more inputs, then two or more list argu
ments of equal length must be provided to map5 :

> (map cons '(1 2 3) '(4 5 6»
«1 • 4) (2 • 5) (3 . 6»
> (map + '(I 2 3) '(4 5 6»
(5 7 9)

Assume that test scores are recorded as association lists of the form:

TEST::= «STUDENT. SCORE) ...)
STUDENT ::= STRING
SCORE :: = REAL

We can use map with the average procedure defined earlier to compute the average of
arbitrary tests:

; = average score of test
(define (test-avg test)

(average (map cdr test»)

We can use the map procedure to define two useful predicates. Both expect a predicate
pred? and a list vals as input:

(all? pred? vals)
= #t, if (pred? v) for all v in vals
= #f, otherwise

5 Warning: This version of map doesn't work in TI PC-Scheme.

(some? pred? vals)
= it, if (pred? v) for some vals
= if, otherwise

Appendices 53

The all? predicate converts vals into a list of booleans by mapping pred? along vals. #t is
returned if #f is not a member of the mapped list:

; = it if for all v in vals (red? v) = it
(define (all? pred? vals)

(not (member? if (map pred? vals»»

The some? predicate also converts vals into a list of booleans using map, but returns #t in
case #t is a member of the mapped list:

; = it if some (pred? v) = it for some v in vals
(define (some? pred? vals)

(member? it (map pred? vals»)

The member? predicate is defined using Scheme's member procedure, which is defined
in Appendix 2.2: Sequences:

(define (member? val vals)
(unfalse? (member val vals»)

We can use the~e predicates to implement many other useful predicates. For example, not
all lists can be coerced into strings, only lists of characters. Therefore, it might be useful
to have a predicate that determines if a list consists of only characters:

; = it if all members of list vals are characters
(define (char-list? vals)

(all? char? vals»

Suppose we need a predicate that returns #t if its input is a string containing a vowel. We
can coerce the string into a list, then use some? with the vowel? predicate defmed earlier:

; = it if string contains a vowel
(define (contains-vowel? string)

(some? vowel? (string->list string»)

Appendices

Appendix 2.1. Mathematics in Scheme

Arithmetic

All numbers can be combined by addition (+), subtraction (-), multiplication (*), and di
vision (/). The addition and multiplication operators can combine arbitrarily long se
quences of numbers:

54 2. Procedures

> (+ 1 2 3 4 5 6 7 8 9 10)
55
> (* 1 2 3 4 5 6 7 8 9 10)
3628800

Even a single input or no inputs at all are allowed:

> (+ 2) implicit second input is 0
2
> (* 2) implicit second input is 1
2
> (+) implicit inputs are both 0
0
> (*) implicit inputs are both 1
1

Division and subtraction .normally combine pairs of numbers:

> (/ 5 3)
5/3
> (/ 5.6 7.9)
.7088607594936708
> (- 3 8.2)
-5.199999999999999

With one input division and subtraction compute mUltiplicative and additive inverses re
spectively (i.e., liz and -z):

> (- 5.2)
-5.2
> (/ 7)

1/7
>(/7.0)
.142857142857143

Of course, all four operations can combine numbers from any of the number domains:

> (+ 2 3/5 4.9 5+6i 3e2)
312.5+6i
> (* 2 3/5 4.9 5+6i 3e2)
8820.+10584.i
> (/ 3/5 4+2i)
3/25-3/50i
> (- 3/5 5+6i)
-22/5-6i
> (- 4-3i)
-4+3i
> (/ 4+2i)
1/5-1/10i

Appendices 55

Order and Equivalence Predicates

All numbers can be compared using Scheme's = and zero? predicates. Assume Zi and z
are numbers:

(= Zl ... zn)
it, if zl zn

= if, otherwise.

(zero? z)
= it, if Z = 0
= if, otherwise.

The following predicates are based on the usual ordering of the real numbers. Assume ri

and r are reals:

« rl ... rn)
= it, if rl < ... < rn
= if, otherwise.

«= rl ... rn)
it, if rl ~ ~ rn

= if, otherwise.

(> rl ... rn)
it, if rl > ... > rn

= if, otherwise.

(>= rl ... rn)
it, if rl ~ ~ rn

= if, otherwise.

(positive? r)
it, if r > 0

= if, otherwise.

(negative? r)
it, if r < 0
if, otherwise.

largest rio

smallest rio

(abs r) = I r I .

56 2.~edures

Order predicates are restricted to reals because the complex numbers don't have a
"usual" order.

Comparing Characters and Strings

An ordered domain is any domain that comes equipped with a natural ordering. REAL
is not Scheme's only ordered domain. STRING and CHAR also have natural orderings
derived from the ASCII codes of characters.

Assume Ci is a character, Ci <A Cj means that the ASCII code of Ci is less than the
ASCII code of Cj, and Ci -A Cj means the ASCII code of Ci is the same as the ASCII code
for ci (Note: The order of ASCII codes for letters and digits agrees with the usual alpha
betic order.) Scheme provides the following predicates for comparing characters:

(char-? C1 ... cn)

(char<? c1 ... Cn)

it, if c1 =A ... =A cn
if, otherwise.

it if c1 <A ... <A cn
if otherwise.

(char>? c1 ... Cn) = it if c1 >A ... >A cn
= if otherwise.

(char<=? c1 ... Cn) it if c1 SA ... SA cn
if otherwise.

(char>=? c1 ... Cn) = it if c1 ~A ... ~A cn
if otherwise.

(char>? c1 ... cn) = it if c1 >A ... >A cn
= If otherwise.

Scheme provides similar predicates for comparing strings. Assume that Si is a string, si <s

Sj means Si is a prefix of Sj, or if Ci is the fmt character in Si that's different from the cor

responding character Cj in Sj' then Ci <A ci If Si and Sj are identical, then we write Si-s

Sf

(string=? Sl ... Sn) it, if sl =s . .. =s sn
if, otherwise.

(string<? sl ... Sn) it if sl <s . .. <s sn
if otherwise.

(string>? sl ... Sn) it if sl >s . .. >s sn
if otherwise.

(string<=? sl .,. Sn)

(string>=? sl ... Sn)

#t if sl ~s ... ~s sn
#f otherwise.

#t if sl ~s •... ~s sn
#f otherwise.

(string>? sl ... Sn) = #t if sl >s ... >s sn
= #f otherwise.

Appendices 57

Scheme also provides case-insensitive (ci) versions of these predicates:

char-ci=?, char-ci<?, char-ci>?,
char-ci<=?, char-ci>=?
string-ci=?, string-ci<?, string-ci>?,
string-ci<=?, string-ci>=?

Here are soine sample evaluations:

> (string=? "HeLlO" "hElLO")
if
> (string-ci=? "HeLlO" "hElLO")
it
> (char-ci<? #\a #\Z)
it
> (char<? #\a #\Z)
if
> (char<? #\tab #\# #\2 #\5 #\? #\Z #\a #\rubout)
it
> (string<? "" " " "a" "aaa" "ab")
it

Divisibility

Of all the number domains, only the integers are not closed under division. For example,
1 and 2 are integers, but 112 is not. This makes the question of which integers divide a
given integer critical. Scheme provides seven basic procedures for determining various
divisibility properties. Assume n, m, n 1, ... , nk are integers:

(quotient n m) = truncation of n/m

(remainder n m)= n - m * (quotient n m)

(modulo n m) integer congruent to n modulo m

(gcd nl ... nk)
greatest cornmon divisor of nl ... nk

58 2. Procedures

= least common multiple of n1 ... nk

(odd? n) it, if n is odd
if, otherwise

(even? n) it, if n is even
if, otherwise

These procedures require further explanation. Number theory (Le., arithmetic) begins
with the long division algorithm every child learns in elementary school, but which can
be stated more pretentiously as a theorem:

Theorem (Euclid) For any two integers m and n, ifn ~ 0, then there are unique integers
q and r (called the quotient and remainder of m and n respectively) such that 0 $ Irl <
Inl, rand m have the same sign, and m = (n * q) + r.

Scheme provides the quotient and remainder procedures for computing q and r given m
and n as inputs:

> (quotient -14 3)
-4
> (remainder -14 3)
-2

We can use Scheme's odd? and even? predicates to determine whether an integer is
divisible by two, or, more generally, we can use the remainder procedure to determine if
any integer divides another:

; = #t if m divides n
(define (divides? m n)

(zero? (remainder m n»)

Congruence

If the difference of two integers m and n is divisible by an integer k, we say that m is
congruent to n modulo k, and we write:

m == n (mod k)

We could express this as a Scheme procedure:

; = it if m is congruent to n mod k
(define (congruent? m n k)

(divides? (- m n) k»

A basic theorem regarding congruence is:

Theorem Given any two integers m and k, there is a unique integer n between 0 and n
such that m == n (mod k).

For example:

14 E 2 (mod 3)
-14 E 1 (mod 3)
14 E -1 (mod -3)

m
m
m

14, k = 3 & n = 2
-14, k = 3 & n = 1
14, k = -3 & n = -1

Appendices 59

Scheme provides the modulo procedure for computing n given m and Ie:

> (modulo -14 -3)
-2
> (modulo -14 3)
1

The modulo procedure can be useful for implementing modular arithmetic, i.e., arithme
tic that "wraps around" when answers get too big:

; = m + n mod k
(define (mod+ m n k) (modulo (+ m n) k»

; = m '* n mod k
(define (mod* m n k) (modulo (* m n) k»

; = m - n mod k
(define (mod- m n k) (modulo (- m n) k))

; = mIn mod k
(define (modI m n k) (modulo (quotient m n) k»

For example, suppose we want to add the hours on a military clock (i.e., 0 S hour S 23).
We use the "modulo" implementations of +, *, and-:

; = time h hours after time t
(define (hours+ t h) (mod+ t h 24»

For another example, binary arithmetic is arithmetic restricted to the domain of binary
values, called bits:

BIT::= 0 I 1

Curiously, the bit 1 is its own additive and multiplicative inverse, i.e., 1 + 1 ... 0 and 1 * 1
- 1. We can implement bit versions of +, *, -, and I:

= binary sum of bits bl and b2
(define (bit+ bl b2) (mod+ bl b2 2»

Here are some sample evaluations:

> (hours+ 9 10)
19
> (hours+ 9 19)
4

60 2. Procedures

> (hours+ 20 20)
16
> (bit+ 1 1)
0

Obviously the modulo and remainder procedures are very similar. In fact:

I (remainder m n) I = I (modulo m n) I

where (remainder m n) takes the sign of m, while (modulo m n) takes the sign of n.

Common Multiples and Divisors

A common divisor of an integer sequence n 1, n2, ... , nk is any positive integer n that di

vides each number in the sequence, i.e., for each i:

> (divides? ni n)
#t

The greatest common divisor of n 1, n2, ... , nk is the largest of all the common divisors of

n] , n2, ... , nk. Scheme provides a procedure for computing greatest common divisors:

> (gcd 32 48 -60)
4
> (gcd 20 30 40)
10

Two integers are relatively prime if their greatest common divisor is 1. We can imple
ment this deftnition as a Scheme predicate:

; = #t if m & n are relatively prime
(define (rel-prime? m n)

(= 1 (gcd m n»)

A common multiple of an integer sequence n 1, n2, ... , nk is any positive integer n that

can be divided by each number in the sequence, i.e., for each i:

> (divides? n ni)
#t

The least common multiple of n], n2, ... , nk is the least of all the common multiples of

n], n2, ... , nk. Scheme provides a procedure for computing least common multiples:

> (lcm 32 48 -60)
480
> (lcm 20 30 40)
120

Appendices 61

Logs and Exponents

Logarithms and exponents play an important role in growth and decay problems. Scheme
provides procedures for computing logs and exponents to the base e, where e is the irra
tional number approximated bye ... 2.718281828459045.

(exp z)
(log z)

= e Z .
= In(z) .

If e isn't a predefmed constant, we can define it ourselves as follows:

(define e (exp 1» ; since e 1 = e

Some implementations of Scheme provide a procedure for computing exponents to an
arbitrary base:

(expt a b) = ab

Unfortunately, there is no corresponding procedure for computing logarithms to an arbi
trary base. Instead, we must defme our own using the formula:

10 () = 10ge(y)
gx y loge(x)

Translating this formula into Scheme is simple. We call it logt to remind us of its rela
tionship with expt:

; = log y base x
(define (logt x y) (/ (log y) (log X»)

Of course exponents and bases can be decimals, ratios, even complex numbers:

> (expt 2 3)
8
> (expt 9 1/2)
3.0000900000000004
> (expt 27 (/ 1 3»
2.9999999999999996
> (expt 2+3i l+li)
-.8636068988831277+1.0368893969147763i
> (expt 25 1/2)
4.999999999999999
> (expt 2 1000)
107150860718626732094842504906000181056140481170553360744375
038837035105112493612249319837881569585812759467291755314682
518714528569231404359845775746985748039345677748242309854210
746050623711418779541821530464749835819412673

The last example shows some implementations of Scheme use multiple-precision arith
metic.

62 2. Procedures

Scheme also provides a square root procedure:

(sqrt z) = I.j; I .
Amazingly, this procedure even works on negative numbers:

> (sqrt -1)
+i

We don't really need a square root procedure. Recall that the nth root of z is zlln. We can
use this formula to define a procedure for computing nth roots:

i = z"(l/n)
(define (nth-root z n) (expt z (/ n»)

Example

Growth and decay problems concern computing the size of a population after n cycles of
growth or decay at a given rate. The population can be organisms, radioactive carbon at
oms, dollars, or anything else. Computing compounded interest is a classical example.

We can compute the value V of an investment of P dollars invested for n years at an
annual interest rate of r compounded annually using the formula:

V = P(l + r)n

Translating this into Scheme is easy using expt:

i = value of $p investment at rate i after n periods
(define (value p r n)

(* p (expt (+ 1 r) n»)

Trigonometry

Trigonometric functions are important for modeling harmonic motion (vibration, oscilla
tion, etc.). Scheme provides the usual assortment of trigonometric procedures. All of
these procedures assume that angles are measured in radians:

(sin r)
(cos r)
(tan r)

siner)
= cos(r)
= tan(r)

The atan procedure accepts one or two inputs. Assume z is a complex number and x and y
are real numbers:

(atan z) = arctan(z)
(atan x y) = arctan(x+yi)

We can easily define csc, sec, and cot procedures:

i = csc of z radians
(define (csc z) (/ (sin z»)

i = cot of z radians
(define (cot z) ???)

i = sec of z radians
(define (sec z) ???)

Appendices 63

If pi isn't a predefined constant in the implementation of Scheme we are using, we can
define it ourselves as follows:

(define pi (acos -1» i because (COS pi) = -1

Appendix 2.2. Sequences

Scheme provides several groups of procedures for analyzing, combining, and dissecting
sequences.

Appending Sequences

Appending two sequences means concatenating them into a single sequence. Scheme
provides primitive procedures for appending lists and strings, but not vectors (this is left
as an exercise). Assume valsi is a list and stri is a string:

(append va1s1 ... valsn)
= the list formed by concatenating vall ... vain.

(string-append str1 ... strn)
= the string formed by concatenating str1 ... strn.

Here are some sample calls:

) (string-append "Is" tan" "bul")
Istanbul
> (append '(a) 1 (e) '(i) '(0 u»
(a e i 0 u)

Of course we can use cons to add an element to the beginning of a list, but Scheme pro
vides no procedure for adding an element to the end of a list. However, we can imple
ment such a procedure using append:

i = result of adding val to end of vals
(define (cons-last val vals)

(append vals (list val»)

Notice that it was necessary to coerce val into a list before applying append. Unlike cons,
append expects all of its inputs to be lists.

64 2. Procedures

Computing Lengths of Sequences

Scheme provides procedures for computing lengths of strings, vectors, and lists:

(length vals) = the number of members in vals
(vector-length vec) = the number of members in vec
(string-length str) = the number of characters in str

where vals is a list, vee is a vector, and str is a string. Here are some sample evaluations:

> (string-length "Hello")
5
> (length '«1 2 3) (4 5 6»)
2
> (vector-length #(a e i 0 u»
5

Why doesn't Scheme provide a procedure for computing lengths of pairs?

Extracting Subsequences

The tail of a sequence is the sequence less some of its initial members. For example, the
tails of the string "orange" are:

n orange n, n range n, n ange n, n nge", n ge", n e", and n n

The tails of the vector #(a e i 0 u) are:

#(a e i 0 u), #(e i 0 u), #(i 0 u), #(0 u), #(U), and #().

The tails of the list (a e i 0 u) are:

(a e i 0 u), (e i 0 u), (i 0 u), (0 u), (u), and ().

Scheme provides a wide variety of procedures for extracting list tails. We have already
seen that the procedures cdr, cddr, cdddr, etc. can be used for this purpose. Some imple
mentations of Scheme also provide a procedure called list-tail that extracts the tail of a
list beginning at a given integer position n ~ 0:

(list-tail vals n)
= the tail of vals beginning in position n

Assume the following definition has been made:

(define vowels '(a e i 0 u»

Here are some sample calls to list-tail. Remember, the first item of a list is in position 0:

> (list-tail vowels 3)
(0 u)

> (list-tail vowels 0)
(a e i 0 u)
> (list-tail vowels 100)
()

Appendices 65

Additionally, Scheme provides three procedures for extracting tails beginning at some
specific member:

member, memv, memq

These procedures all work the same way:

(mem* val vals)
= the tail of vals beginning with the left-most member
equivalent to val. (depending on *, equivalent means eq?,
eqv?, or equal?)
= if, if no match is found.

The three procedures differ in the way val is compared to members of vals. Member uses
equal?, memv uses eqv?, and memq uses eq? This can lead to some confusion as the next
example shows:

> (member "AI" '("Rolf" nAl n "Lars"»
("Al." BLars")
> (memq "AI" '("Rolf n "AI" "LarS n)}
unspecified i"AI" may not be eqv? to "AI" in
vals
> (member 'AI' (Rolf Al Lars)}
(Al. Lars) i Al is equal? to a list member
> (member "Al n '(Rolf Al Lars})
if i vals is a list of symbols, not strings
> (memq 'AI '(Rolf Al Lars»
(Al. Lars) i equal? = eqv? for symbols

People often mistake the member procedures for predicates. This isn't true, but we can
use them to defme corresponding predicates. The idea is if val is a member of vals, then
(member val vals) returns a nonempty list; otherwise it returns #f. Hence:

i = #t if val is in vals
(define (member? val vals)

(unfalse? (member val vals»}

We can use this predicate to define others. For example, assume the following defmition
is made:

(define vowels
'(#\a #\A #\e #\E #\i #\I #\0 #\0 #\u #\U»

(define punctuation '(#\. #\, #\i #\: #\! #\? #\-»

To determine if a character is a vowel or a punctuation mark, we only need to search the
appropriate list:

(define (vowel? char)
(member? char vowels»

66 2. Procedures

(define (punctuation? char)
(member? char punctuation»

Oddly, Scheme doesn't provide procedures for extracting the tails of vectors. This is not
a problem because we can coerce any vector to a list, extract the tail, then coerce the re
sult back to a vector. For example:

; = tail of vec beginning at val
(define (vector-member val vec)

(list->vector (member val (vector->list vec»»

= tail of vec beginning at position pos
(define (vector-tail vec pos)

(list->vector (list-tail (vector->list vec) pos»)

Substrings

We don't need string-tail because Scheme provides a more powerful procedure for ex
tracting substrings from strings given the start and end position of the desired substring.
Assume n and m are natural numbers:

(substring string n m) =
substring of string beginning in position n and ending in
position m - 1.

Here are some sample evaluations:

> (substring "Apple" 2 4)
"pI"
> (substring "Apple" 0 3)
"ApI"

Notice that the substring begins with the character in the position indicated by the first
position input, but ends with the character one position before the second position input.
We can use the sublist procedure to define procedures for extracting prefixes and suffixes
of strings:

; = prefix of string ending at position pos - 1
(define (prefix string pos)

(substring string 0 pos»

= suffix of string beginning at position pos
(define (suffix string pos)

(substring string pos (string-length string»)

These procedures can be used to develop predicates that test if one string is a prefix or
suffix of another:

; = #t if string2 is a prefix of string1
(define (prefix? string1 string2)

(string=?
string2
(prefix string1 (string-length string2»»

; = #t if string2 is a suffix of string1
(define (suffix? string1 string2)

(string=?

SubUsts

string2
(suffix

string1
(- (string-length string1)

(string-length string2»»)

Appendices 67

Assume vals is a list, and start and end are unsigned integers such that 0 S start Send <
(length vals). Then:

(sublist vals start end)
= the sublist beginning at position
start, and ending at position (end - 1).

Unfortunately, Scheme does not provide this procedure. How can we defme it? We could
try to combine the substring procedure with the coercions between lists and strings:

; = sublist between positions start and (end - 1)
(define (sublist vals start end)

(string->list
(substring (list->string vals) start end»)

This worles pretty well when vals is a list of characters:

> (sublist '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7) 2 5)
<*\2 *\3 *\4)

But, of course, it doesn't work at all if vals contains noncharacters:

> (sublist '(0 1 2 3 4 5 6 7) 2 5)
error: bad input to list->string

Let's start again using the top down approach. We can use list-tail to chop off the un
wanted members between position 0 and position start:

(list-tail vals start)

How can we lose the members from position end to the last position of the list? This
would be easy if we had a procedure that extracted list prefixes. First, let's be clear about

68 2. Procedures

what a list prefix is. A list prefix should be a list consisting of all but a few of the last
members of a list. For example, the prefixes of (a e i 0 u) are:

(a e i 0 u)
(a e i 0)

(a e i)
(a e)

(a)

()

The list-prefix procedure can be specified by:

(list-prefix vals pos) =
the prefix of vals from position 0 up to position pos.

We can use this to implement sublist. In this case the input to list-prefix will be the tail:
(list-tail vals start). We will want to chop off the elements of this list beginning with pos
= (end - 1) - start:

; = sublist between positions start and (end - 1)
(define (sublist vals start end)

(list-prefix (list-tail vals start)
(- (- end 1) start»)

Unfortunately, Scheme does not provide a procedure for extracting list prefixes. Let's
write a procedure to do this. The form of olir definition will be:

; = prefix of vals ending at position pos
(define (list-prefix vals pos) ???) ; stub

Our plan is to reverse the result of applying list-tail to the reversed input list:

(reverse (list-tail (reverse vals) position2»

What should position2 be? How is it related to the position parameter? Observe that an
element in position k of a length n list is in position n - (k + 1) of the reversed list. For
example, 0 is in position 3 of vowels, but in position 5 - (3 + 1) = 1 of (reverse vowels).
Therefore, if we wish to retain the first k members of an arbitrary input list vals, we will
want to retain the last n - (k + 1) members of (reverse vals), where n is (length vals):

; = prefix of vals ending at position pos
(define (list-prefix vals pos)

(reverse (list-tail (reverse vals)
(- (length vals) (+ pos 1»»)

Other Applications of list-prefix

We can use our list-prefix procedure to implement many standard list operations. For ex
ample, to remove an item in position k of a list, we merely append the prefix of the list up
to position k to the tail of the list beginning in position k + 1:

Appendices 69

i = result of removing item at position k from vals
(define (remove vals k)

(append (list-prefix vals (- k 1»
(list-tail vals (+ k 1»»

How can we insert an item into position pos of a list vals or replace the item in position
pos of vals with a new item:

i-result of inserting item at position pas in vals
(define (insert vals item pas) ???)

i = result of replacing member at
position pas by item in vals

(define (replace vals item pas) ???)

Optional Parameters

The arity of a procedure is the length of its parameter list. A O-ary procedures has arity
- O. Scheme's exit and transcript-off are examples of O-ary procedures. Unary proce
dures have arity - 1. Car, cdr, length, abs, and number? are examples of unary proce
dures. Binary procedures have arity - 2. Cons, eq?, remainder, modulo, apply, and
list-ref are examples of binary procedures. A 3-ary procedure has arity - 3. Substring
is an example of a 3-ary procedure.

Procedures with liigher arities are rare. Howev~r, there are some procedures that ac
cept any number of inputs. We call these procedures n-ary proCedures. Lcm, gcd, list,
string, vector, +, *, <, and max are examples of n-ary procedures.

Scheme provides a mechanism that allows programmers to define n-ary procedures.
The last parameter of a procedure is an options parameter if it is preceded by a period. (A
space must separate the period and the parameter.) If the number of arguments exceeds
the number of parameters, then the interpreter gathers the left-over arguments into a list
and binds this list to the options parameter. Otherwise, the options parameter is bound to
the empty list.

As an example, let's write an n-ary version of the average procedure:

i-average of all parameters
(define (avg . nums) (average nums»

The avg procedure can be called with any number of inputs:

> (avg 3 4 5)
4
> (avg 5 6 7 8 9)
7

Let's rewrite the reI-prime? predicate defmed earlier as an n-ary procedure. Recall, a list
of integers is relatively prime if their gcd - 1:

70 2. Procedures

; = it if all parameters are relatively prime
(define (rel-prime? . ints) (= 1 (apply gcd ints»)

Here are some sample calls:

> (rel-prime? 2 4 6 8 10)
#f
> (rel-prime? 3 5 7 22 13 17)
it

Although Scheme provides "and" and "or" procedures, they are control structures that
won't be introduced until the next chapter. In the meantime, we can define our own ver
sions using the some? and all? predicates defined earlier:

; = it if all parameters _ if
(define (and? . vals) (all? unfalse? vals»

; = it if some parameters _ if
(define (or? . vals) (some? unfalse? vals»)

Recall that a value is unfalse if it is different from #f:

(define (unfalse? val) (not (not val»)

For example, we can use our or? predicate to determine if a number b is between two
other numbers a and c:

; = it if b is between a and c
(define (between? a b C)

(or? «= a b c) «= c b a»)

As another example, we can combine apply, or?, and reverse to determine if a list of
strings is sorted:

; = it if parameters are sorted
(define (sorted? . strings)

(or? (apply string<? strings)
(apply string<? (reverse strings»»

Here are some sample evaluations:

> (sorted? "cat" "cow" "dog" "rat")
it
> (sorted? "ray" "fish" "bat")
it
> (sorted? "cat" "cow" "bat" "dog")
if

Appendices 71

Appendix 2.3. The Edit-Test-Debug Cycle

When a Scheme session ends, all declared bindings stored in the Global Environment
disappear. At the start of the next session the definitions that created these bindings will
have to be repeated. This process is simple if the definitions have been saved in a defini
tion file.

A definition tile (also called a program or source file) is a text file containing
Scheme definitions. The definitions in a definition file can be loaded into Scheme either
using special editor commands or Scheme's load procedure. Assume defs.scm is the
name of a definition file,6 then:

(load "defs.scm") = an unspecified value. As a side effect,
all definitions in defs.scm are realized.

Warning: Definition files and transcript files are different. Do not attempt to load a tran
script file.

The edit-test-debug cycle describes the structure of a typical Scheme session. It is
shown in Figure 2.4.

rT:;;-.. ---... defs.scm
done

Figure 2.4

During the edit phase, programmers use an editor to create and modify definitions in a
definition file. At the beginning of the test phase, the definition file is loaded into the
Scheme interpreter using the load procedure or special editor load commands. The inter
preter is used to test each definition loaded. If no problems are revealed, the session ends
with a completed definition file, or the programmer returns to the edit phase to write
more definitions. If testing reveals a bug, the debug phase is entered. Most implementa
tions of Scheme provide special programs called debuggers to help locate bugs. The
editor, interpreter, and debugger, together with a few other software tools, are collec
tively called the programming environment.

The number of times a programmer loops through the cycle depends on the size of
the program being developed. The time it takes to loop through one cycle can range from
a few seconds to a few weeks and can depend on the programming environment being
used.

6 The part after "." is called the file's extension and usually indicates the type of the file. We use
the scm extension (others simply use s) to indicate that a file is a Scheme program file.

72 2. Procedures

Many versions of Scheme allow programmers to switch between the interpreter, an
editor, and a debugger without terminating the session.

Problems

Solutions to the following problems are to be given in applicative Scheme; do not use
procedures or special forms discussed in subsequent chapters. You may use the defini
tions given in this chapter and solutions to other problems in this chapter. (You will have
to include these definitions in your definition file so that you can test your definitions.)
You may also defme any supporting procedures you need. You are not required to vali
date inputs, i.e., assume all inputs are valid. (Input validation begins in Chapter 3.) Be
sure to test all your defmitions.

Problem 2.1.

Assume the following defmitions have been made:

(define x 100)
(define y 200)
(define z 300)
(define dog "dog")
(define graph

I ((none" . 1) (" two" . 2) (" three" . 3»)

Evaluate the following expressions. If they contain errors, explain them. If their values
are unspecified in Essential Scheme, indicate this with a question mark. Use your
Scheme interpreter to check your work, but be careful; your interpreter may not be 100%
compliant with Essential Scheme.

Problem 2.1.1

a. (eq? "hello" "hello")
b. (assoc "one" graph)
c. (member "one" graph)
d . (real? ' X)

e. (eq? 'hello 'hello)
f. (assq "one" graph)
g. (real? x)
h. (eqv? 5 (+ 2 3»

Problem 2.1.2

a. (pair? ' (1 2 3 4 5»
b. (eq? dog (string #\d #\0 #\g»
c. (char-ci=? #\c 'C)
d. (+ 2 3 (display (+ 4 1»)
e. (reverse (vector->list #(2 3 4»)

Problem 2.1.3

a. (reverse (vector->list #(2 3 4»)
b . (member 'i '(a e i 0 u»
c. (member #\i '(a e i 0 u»
d . (memq 2 '(1 2 3 4 5»
e. (string=? dog 'dog)

f.
g.
h.

f. (string=? dog (string #\d #\0 #\g»

Problem 2.1.4

a. (map car ' ((a b) (C d) (e f»)
b. (apply cons ' ((1 2) (2 3»)
c. (+ (truncate -4.2)

(floor -4.2)
(gcd 4 12 22)
(lcm 3 4 6»

d. (eq? (string #\h #\e #\1 #\1 #\0)
(string #\h #\e #\1 #\1 #\0))

Problems 73

(eq? dog "dog")
(eq? 5 5)
(eq? 'dog 'dog)

e. (+ (list-ref (list x y z) 0) (list-ref ' (x y z) 1»

Problem 2.2.

If Scheme did not provide the string constructor, how could you implement it?

Problem 2.3.

Assume r is any real number. Implement the following procedure:

(sign r)
= I, if r > 0
= -I, if r < 0
= unspecified, otherwise

Hint: Use the abs procedure.

74 2.~dures

Problem 2.4.

If Scheme did not provide modulo, how could you defme it? (Hint: You may want to use
the sign procedure developed herein, and the remainder procedure.

Problem 2.5.

Write a procedure that expects the rate r of return on an investment compounded annu
ally and returns the length of time required for the investment to double. Do not use the
"Rule of 72:'

Problem 2.6.

If Scheme did not provide expt, how could you define it?

Problem 2.7.

If Scheme did not provide tan, how could you defme it?

Problem 2.8.

The sum of a geometric series of the form all + ar1 + ar2 + ... + ar" is given by the

formula S - a(1 - ,.n+ 1)/(1 - r). Implement this as a Scheme procedure.

Problem 2.9.

If n is any unsigned integer, then 1 + 2 + ... + n ... the nth triangle number - n(n + 1)/2.
Implement this as a Scheme procedure.

Problem 2.10.

As a particle moves faster, its mass increases according to the Lorenz formula:

mrest
m = I 2 2

'Vl-v /e

where v - the velocity of the particle, c .. the speed of light, and mrest - the rest mass of

the particle. Implement this as a Scheme procedure.

Problem 2.11.

Defme the following coercions by composing existing coercions:

vector->string, string->vector

Problem 2.12.

Recall the formula for transforming degrees to radians:
180 o deg = Orad --

1t

Use this formula to define the coercions:

degree->radian, radian->degree

Problem 2.13.

Problems 75

Implement versions of all the trigonometric procedures that assume angles are measured
in degrees instead of radians:

(define (degree-sin z) ???)

Problem 2.14.

Define the following coercions. Don't hesitate to compose your own coercions to form
new coercions:

a. kbyte->byte, byte->kbyte
b. byte->mbyte, mbyte->byte
c. byte->gbyte, gbyte->byte
d. byte->tbyte, tbyte->byte
e. kbyte->gbyte, gbyte->kbyte

Problem 2.15.

1 kilobyte
1 megabyte
1 gigabyte
1 terabyte

210 bytes
220 bytes
230 bytes
240 bytes

Of course the coercion char->integer does not map digits like IN? to their corresponding
numerical values. Write a Scheme procedure that does:

> (char->digit #\8)
8
> (char->digit #\0)
o

Your procedure should work on computers that encode characters using ASCII codes or
mM's EBCDIC codes.

76 2. Procedures

Problem 2.16.

There are two ways to use vectors to represent a 3 x 3 matrix like:

M = (; i, ':2J
Row major form represents M as a vector consisting of three points that represent the
first, second, and third rows of M:

#(#(3 2 4) #(1 0 12) #(7 -1 5»

Column major fo~ represents M as a vector consisting of three points that represent the
first, second, and third columns of M:

#(#(3 1 2) #(2 0 -1) #(4 12 5»

In the following exercises we will assume matrices are represented using row major
form. We will also use the notation Mij to indicate the row i column j entry of M. For

example:

M23 = 12

Assume A, B, and C are 3 x 3 matrices and P is a point, implement the following proce
dures:

(entry A i j) = Aij

(mat+ A B) C, where Cij = Aij + Bij

(mat* A P) #(al a2 a3), where ai = dot product of row i of
A with P

Problem 2.17.

Generalize mat* in the previous exercise so that it multiplies n x n matrices with n x 1
points.

Problem 2.18.

Write an n-ary procedure that appends arbitrarily many vectors:

(define (vector-append . vecs) ???) ; stub

Problems 77

Problem 2.19.

If the graph of a procedure is represented by an association list of the form:

GRAPH::= «INPUT1 . OUTPUT1) .. ,)

then its inverse is represented by the same association list, but with each pair reversed:

«OUTPUT1. INPUT1) ...)

Implement a reversing procedure that expects an arbitrary alist as input and returns the
inverse alist as a value:

> (graph-reverse '«a . 1) (b . 2) (e . 3»)
«1 • a) (2 • b) (3 . e»

Problem 2.20.

Assume Scheme did not provide truncate. How could you define it?

Problem 2.21.

Implement a procedure that extracts the last element of a list:

> (last 'ea e i 0 u»
u

Problem 2.22.

Assume Scheme didn't have a string-ref procedure. How could you implement one?

Problem 2.23.

How could you implement quotient if Scheme did not provide it?

Problem 2.24.

How could you define char<? if Scheme did not provide it?

3
Evaluation Control and Recursion

3.1. Evaluation Control

In the last chapter we described the four-step evaluation procedure used by Scheme to
evaluate procedure applications:

1. Evaluate operator.
2. Evaluate operands to produce arguments.
3. Replace parameters by arguments in the body.
4. Evaluate body.

This procedure is called Eager evaluation. The name derives from the fact that the
evaluator is so eager to know the values of the operands, it evaluates them in the second
step, even if their values are not needed when the body of the procedure is evaluated in
the fourth step.

Eager Evaluation may be compared to lazy evaluation, a procedure not normally
used by Scheme interpreters:

1. Evaluate operator.
2. Replace parameters in body by unevaluated operands.
3. Evaluate body.

The name derives from the fact that the evaluator postpones evaluation of the operands
until they are needed in step 3.1 With luck, the values may never be needed. For exam
ple, consider the following def'mition:

(define (always-O val) 0)

Let's trace the eager evaluation of (always-O (exp 100000»:

1. The name always-O is evaluated.
2. The operand (exp 100000) is evaluated. (This may take a while.)
3. The argument e100000 replaces the parameter, val, in the body of always-O.

(This is not much of a challenge considering val doesn't even appear in the body
of always-O.)

1 Lazy evaluation is covered in detail in Chapter 8.

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998

3.2. Short Circuit Evaluation 79

4. The body is evaluated. Again, not much of a challenge because the body is the
literal, O.

Using lazy evaluation the needless evaluation of (exp 100000) is avoided:

1. The name always-O is evaluated.
2. The unevaluated operand (exp 100000) replaces the parameter val in the body of

always-O. Because val doesn't appear in the body of always-O, this produces the
literal, O.

3. The literal 0 is evaluated, producing the value, O. Because the operand didn't ap-
pear in the body, (exp 100(00) was never computed.

Although Scheme uses eager evaluation to evaluate procedure applications, there are
situations where we would like to avoid eager evaluation. Fortunately, the eager evalua
tion method is not used on all expressions. Scheme evaluates certain expressions using
other methods. These expressions are called control structures because they allow pro
grammers to control the flow of evaluation.

3.2. Short Circuit Evaluation

The form of an and-structure is:

AND ::= (and EXPRESSION ...)

An or-structure has the form:

OR :: = (or EXPRESSION ...)

Superficially and-structures and or-structures seem like ordinary procedure applications,
but they are control structures. Instead of using the eager method to evaluate them,
Scheme uses a method called short circuit evaluation:

Evalpate operands from left to right until the final result is known. The remaining op
erands are left unevaluated.

More specifically, assume OPERANDO I ••• ,OPERANDn are arbitrary Scheme ex-
pressions. To evaluate the expression:

(and OPERANDo OPERANDl ... OPERANDn)

the Scheme evaluator begins evaluating the operands from left to right. The value of the
first operand equal to #f is returned (i.e., #f is returned), and the remaining operands are
left unevaluated. Otherwise, the evaluator returns the value of the last operand. If there
are no operands, #t is returned.

To evaluate the expression:

(or OPERANDo OPERANDl ... OPERANDn)

80 3. Evaluation Control and Recursion

the Scheme evaluator begins evaluating the operands from left to right. The value of the
first operand that does not evaluate to #f is returned, and the remaining operands are left
unevaluated. Otherwise, the evaluator returns #f. If there are no operands, #f is returned.

Here are some sample evaluations:

) (and 0 #\a "hello" « 3 2) (/ 0»
if
) (or (char? 3) #f « 3 2) 42 (/ 0»
42
> (+ (and 1 2 3) (or 4 5 6»
7

In the first example the first four operands were evaluated, but when the evaluator dis
covered the value of the fourth operand was #f, it immediately returned this value with
out evaluating the fifth operand. We know this is true because if the evaluator had at
tempted to evaluate the fifth operand, we would have seen a divide-by-O error message
printed on the screen.

In the second case the first four operands were evaluated, but when the evaluator dis
covered the value of the fourth operand was not If, it immediately returned this value
without evaluating the fifth operand. We know this is true because if the evaluator had
evaluated the fifth operand, again we would have seen a "divide by 0" error message
printed on the screen.

(Warning: Officially, the value #f is unique, but PC-Scheme identifies #f with the
empty list: ().)

What is the advantage of short circuit evaluation? We can use it as a method of input
validation for predicates. For example, the following polymorphic predicate determines if
b is between a and c, if a, b, and c belong to the same ordinal domain (i.e., strings, reals,
or characters); otherwise #f is returned:

; - It if ordinal b is between ordinals a and c
(define (between? a b c)

(or (and (real? a)
(real? b)
(real? c)
(or « a b c) « c b a»)

(and (char? a)
(char? b)
(char? C)

(or (char<? a b c) (char<? c b a»)
(and (string? a)

(string? b)
(string? C)

(or (string<? a b c) (string<? c b a»»)

Notice, if b is not a real, then the and-structure:

(and (real? a)
(real? b)
(real? c)
(or « abc) « c b a»)

3.3. Conditional Evaluation 81

returns #f immediately after (real? b) is evaluated, skipping the call to <, which would
have resulted in a type error.

A point can be defmed as a vector consisting of three reals:

POINT ::= #(REAL REAL REAL)

We can develop a polymorphic predicate that tests if arbitrary values are points:

(define (point? val)
(and (vector? val)

(= 3 (vector-length val»
(real? (vector-ref val 0»
(real? (vector-ref val 1»
(real? (vector-ref val 2»»

If val isn't a vector, then because of short circuit evaluation the and-structure returns #f
immediately after evaluating (vector? val), before calling vector-length would have re
sulted in a type error. If the input is a vector of length less than 3, then the and-structure
returns #f immediately after evaluating (- 3 (vector-length val», before calling vector-ref
would have resulted in an index-out-of-range error.

3.3. Conditional Evaluation

Conditional evaluation is closely related to short circuit evaluation. Certain operands in a
conditional expression are designated as conditions or guards. Depending on their values
other operands mayor may not be evaluated. Scheme provides three control structures
that use some form of conditional evaluation: the if-structure, cond-structure, and case
structure.

3.3.1. The if-structure

The form of an if-structure is simple:

IF ::= (if CONDITION CONSEQUENT [ALTERNATIVE])

where CONDmON, CONSEQUENT, and ALTERNATIVE are arbitrary Scheme ex
pressions. (Recall, [ALTERNATIVE] indicates this operand is optional.) Let's trace the
steps taken to evaluate this type of expression:

1. The evaluator evaluates CONDmON.

82 3. Evaluation Control and Recursion

2a. If the value of CONDmON is not #f, then the evaluator evaluates
CONSEQUENT, and this value is taken as the value of the entire expression. In
this case ALTERNATIVE is never evaluated.

2b. If the value of CONDmON is #f, then the evaluator evaluates ALTERNATIVE,
and this value is taken as the value of the entire expression. In this case
CONSEQUENT is never evaluated. If there is no AL TERNA TIVE, then the
value of the expression is unspecified.

The usefulness of the if-structure can best be understood in the context of an example.
Assume taxes are computed using a two-rate system. People pay 20% on the first
$50,000 earned in a year, and 30% on every dollar earned over $50,000. Assume the
following constants are declared:

; $50,000 = maximum medium income:
(define max-medium 50000)

; 30% = rate for> max-medium incomes:
(define max-rate .3)

; 20% = rate for <= max-medium incomes
(define medium-rate .2)

We want to define a tax-computing procedure that expects as input an income and returns
as output the tax owed. The form of the tax. procedure is:

; = tax owed on income dollars
(define (tax income) ???)

How will our procedure decide which rate to use? Obviously the parameter will have to
be compared to the max-medium income constant:

(> income max-medium)

If this condition is true, then the tax procedure must return:

(+ max-medium-tax (* max-rate (- income max-medium»)

where max-medium-tax is the tax paid on the maximum medium income:

; = tax paid on max-medium income
(define max-medium-tax (* max-medium medium-rate»

Otherwise it returns:

(* income medium-rate)

This is a perfect place to use an if-structure. Here's the complete declaration of our tax
procedure:

; = tax owed on income dollars
(define (tax income)

(if (> income max-medium)
(+ max-medium-tax

3.3. Conditional Evaluation 83

(* max-rate (- income max-medium»)
(* income medium-rate»)

Notice how if-structures are indented. Remember, the physical structure of a proCedure
should reflect its logical structure.

Nesting if-structures

Let's make the tax problem more complicated by introducing a four-level tax system.
People pay no tax on the first $5000 they earn, 10% on every dollar earned between
$5000 and $20,000, 20% on dollars earned between $20,000 and $50,000, and 30% on
every dollar earned over $50,000. Assume the following additional constants are defmed:

; $20,000 = maximum low income
(define max-low 20000)

; $5000 = maximum non-taxable income
(define max-min 5000)

; 10% - rate paid on max-min < $ <= max-low
(define low-rate .1)

Next, we pre-compute the tax paid on $20,000 and $50,000:

; = tax on max-low income
(define max-low-tax (* low-rate (- max-low max-min»)

; = tax on max-medium income
(define max-medium-tax

(+ max-low-tax
(* medium-rate (- max-medium max-low»»

Unfortunately, the if-structure only offers a choice between two candidates:
CONSEQUENT and ALTERNATIVE. However, because if-structures are ordinary ex
pressions, then either CONSEQUENT or ALTERNATIVE can be if.,structures. In other
words, we can have multiple alternatives by nesting if-structures:

; = tax owed on income dollars
(define (tax income)

(if (> income max-medium)
(+ max-medium-tax

(* max-rate (- income max-medium»)
(if (> income max-low)

(+ max-low-tax
(* medium-rate (- income max-low»)

(if (> income max-min)

84 3. Evaluation Control and Recursion

(* low-rate (- income max-min»
0» »

(Notice how the pattern of indentation makes it easier to read the procedure.)
The condition in the second if-structure only compares income to the low constant. It

may seem like the appropriate test should have been

(and (> income max-low) « income max-medium»

but because this is the alternative of the outer if-structure, it is only evaluated if the first
condition, (> income max-medium), has already failed. There is no reason to perform
this comparison a second time.

3.3.2. The cond-structure

The form of a cond-structure is:

COND ::= (cond CLAUSE ...)

Each CLAUSE has the form:

CLAUSE ::= (CONDITION EXPRESSION ...)

where CONDIDON is any Scheme expression or the reserved word else:

CONDITION::= EXPRESSION I else

Let's trace the steps taken by the evaluator when evaluating a cond-structure. The clauses
are evaluated from left to right:

1. If all the CLAUSEs have been tested, the value of the cond-structure is unspeci
fied. Otherwise, pick the next untested CLAUSE.

2. Evaluate the CONDITION of the selected CLAUSE.
3a. If the value of the CONDmON is not If, then each remaining EXPRESSION in

the selected CLAUSE is evaluated. The value of the cond-structure will be the
value of the last EXPRESSION in the CLAUSE. The remaining clauses will be
left unevaluated.

3b. If the value of the CONDITION is If, then consider the CLAUSE tested and re
turn to step 1.

The reserved word else is identified with #to Normally else is used as the condition of the
last clause to insure that at least one clause will be evaluated.

Here is a version of the tax-computing procedure that uses the cond-structure:

= tax owed on income dollars
(define (tax income)

(cond «> income max-medium)
(+ max-medium-tax

(* max-rate (- income max-medium»»
«> income max-low)

3.3. Conditional Evaluation 85

(+ max-low-tax
(* medium-rate (- income max-low»»

«> income min)
(* low-rate (- income max-min»)

(else 0»)

(Note the pattern of indentation conventionally used with cond-structures.)

3.3.3. Input Validation

Conditional evaluation gives us the opportunity to validate inputs. If invalid inputs are
detected, we can use the error procedure defined in Appendix 3.3: Defensive Pro
gramming to display an error message and gracefully terminate the procedure. Here's a
final version of the tax procedure with input validation:

; = tax owed on income dollars
(define (tax income)

(cond «not (real? income»
(error "bad input" tax income»

«> income max-medium)
(+ max-medium-tax

(* max-rate (- income max-medium»»
«> income max-low)

(+ max-low-tax
(* medium-rate (- income max-low»»

«> income min)
(* low-rate (- income max-min»)

«>= income 0) 0)
(else (error "negative income" tax income»»

3.3.4. The case-structure

The form of a case-structure is:

CASE ::= (case KEY CLAUSE ...)

where KEY is an arbitrary Scheme expression, and each CLAUSE has the form:

CLAUSE::= (GUARD EXPRESSION ...)

GUARD is either a list or the reserved word else:

GUARD ::= LIST I else

Let's trace the steps taken by the evaluator when evaluating a case-structure. The clauses
are evaluated from left to right:

86 3. Evaluation Control and Recursion

1. Evaluate KEY.
2. If all the CLAUSEs have been tested, then the value of the case-structure is un

specified. Otherwise, select the next untested CLAUSE.
3a. If the guard of the selected clause is else, or if it is a list containing a value equal

(in the eqv? sense) to the value of KEY,.then the remaining EXPRESSIONs in
the CLAUSE are evaluated. The value of the last one is the value of the case
strucrure. The remaining clauses are left unevaluated.

3b. Otherwise consider the CLAUSE tested and rerum to step 2.

Cond-strucrures are used when the number of siruations that select a clause is large or in
finite. Case-strucrures are useful when the number is small. For example, consider the
following domain of expressions:

EXP ::= (OPERATOR REAL .. ,)

Various operator synonyms can be used in an EXP-expression:

OPERATOR ::= + I add I sum I * I mult I I I
div I - I sub I < I less

The EXP evaluator uses a case-strucrure to determine the appropriate operation to apply
to the operands:

; = value denoted by exp
(define (evaluate exp)

(case (car exp)
«+ add sum) (apply + (cdr exp»)
«* mult) (apply * (cdr exp»)
«I div) (apply I (cdr exp»)
«- sub) (apply - (cdr exp»)
«< less) (apply < (cdr exp»)
(else (error "unrecognized operator"

evaluate
(car exp»»)

Here are some sample calls to the evaluate procedure:

) (evaluate I (add 2 3 4 5»
14
) (evaluate I (sum 2 2 2»
6
) (evaluate I (less -1 -2 -3»
if
) (evaluate '« -3 -2 -1 0»
it

Notice the input expression to evaluate must be quoted to prevent the eager evaluation
mechanisms from evaluating the expression prematurely:

> (evaluate (+ 2 3»
Error!

gripe:
source:
irritant(s):

bad input
car
5

Make sure you understand what went wrong in this example.

3.4. Recursion

3.4. Recursion 87

When we use the top-down method, we define a procedure in terms of supporting proce
dures, some of which may be undefined. Next. the undefined supporting procedures are
defined in terms of their supporting procedures. This process continues until there are no
more undefined procedures.

Sometimes beginners find it unsettling to defme a procedure in terms of supporting
procedures that haven't yet been defined. It's like borrowing money to make money. It
takes a leap of faith to believe that the supporting procedures can and will eventually be
defmed according to specification. If this makes you feel uncomfortable, then recursion
will make you nauseous. Recursion takes the top-down method one step further by al
lowing procedures to be defined in terms of themselves! A procedure defined in terms of
itself is called a recursive procedure. In other words, a recursive procedure is one of its
own supporting procedures!

Recursive procedures are appropriate for solving recursive problems. A recursive
problem is a problem that naturally decomposes into subproblems that are smaller ver
sions of the original problem. A recursive procedure that solves such a problem calls it
self to solve the smaller subproblems, then combines these results into the final result.

3.4.1. Example: Triangle Numbers

The nth triangle number is the number of blocks required to make a staircase n steps
high. For example, zero blocks are needed to construct a staircase with no steps. Only
one block is needed to build a staircase with a single step. To build a two-step staircase
requires three blocks, as in Figure 3.1.

d3
Figure 3.1

A three-step staircase requires six blocks (see Figure 3.2).

Figure 3.2

88 3. Evaluation Control and Recursion

Therefore one, three, and six are the first, second, and third triangle numbers, respec
tively. (Mathematicians call these triangle numbers because staircases are roughly
shaped like right triangles.)

How can we write a procedure which, given input n, returns the nth triangle number:

i = n-th triangle number
(define (triangle n) ???)

Here are some sample applications of triangle:

> (triangle 0)
0

> (triangle 1)
1
> (triangle· 2)

3

> (triangle 3)
6

Counting the number of blocks in an n-step staircase is a recursive problem: saw off the n
blocks in the right-most column of the staircase, this leaves a staircase with n - 1 steps.
Because this is a smaller staircase, we can use" the triangle procedure to count the number
of blocks in it. To finish, we just add to this result the n blocks we sawed off initially. We
can express this in Scheme by:

(triangle n) = (+ n (triangle (- n 1»)

Does this expression work when n .., o? In this case our Scheme expression becomes:

(triangle 0) = (+ 0 (triangle -1»

Clearly it doesn't make sense to talk about a staircase with a negative number of steps.
Anyway, we already know (triangle 0) is supposed to be 0, therefore, we will use our re
cursive expression when n > 0, and simply return 0 when n ., O. We can use an if
structure to select the desired expression:

i = n-th triangle number
(define (triangle n)

(if (zero? n)
o
(+ n (triangle (- n 1»»)

Does this really work? How can a procedure call itself without spinning off into an infi
nite loop? Oddly, this does work because conditional evaluation of the if-structure guar
antees (triangle - 1) won't be evaluated when n = O. (Why?)

3.4. Recursion 89

3.4.2. Tracing

The Scheme evaluator procedure, eval, is itself a recursive procedure. It evaluates ex
pressions by recursively evaluating smaller subexpressions, then combines these results
into a final answer. For example:

(+ (* 3 4) (- 2 5»
(+ 12 (- 2 5»

original eval input expression
eval evaluates (* 3 4)

(+ 12 -3) eval evaluates (- 2 5)
9 eval sums results

Each expression in this sequence can be viewed as a reduction or simplification of the
expression preceding it. The last expression is a value, which cannot be further reduced.
A sequence of expressions, each the result of reducing the previous, is called a computa
tion.

We can use this idea to better understand how recursive procedures work. A trace is
a computation in which only applications of interesting procedures are shown. Of course
the definition of interesting is SUbjective, and different definitions will produce different
traces. By wisely choosing interesting procedures, we can construct traces that are not too
long, yet give insight into why a procedure does or does not work.

Let's construct a trace of an application of the triangle procedure, for example,
(triangle 4). We select + and triangle as our interesting procedures. The first step in the
trace is:

(triangle 4)
(+ 4 (triangle 3»

Notice we didn't show the evaluation of (- 4 1) because - was not selected as an inter
esting procedure. Before the evaluator can complete the addition to 4, it must evaluate
(triangle 3):

(triangle 4)
(+ 4 (triangle 3»
(+ 4 (+ 3 (triangle 2»)

In fact, each recursive call must be evaluated before any addition can be performed:

(triangle 4)
(+ 4 (triangle 3»
(+ 4 (+ 3 (triangle 2»)
(+ 4 (+ 3 (+ 2 (triangle 1»»
(+ 4 (+ 3 (+ 2 (+ 1 (triangle 0»»)
(+ 4 (+ 3 (+ 2 (+ 1 0»»

Now the additions are performed from right to left:

(triangle 4)
(+ 4 (triangle 3»
(+ 4 (+ 3 (triangle 2»)

90 3. Evaluation Control and Recursion

(+ 4 (+ 3 (+ 2 (triangle 1» »
(+ 4 (+ 3 (+ 2 (+ 1 (triangle 0»»)
(+ 4 (+ 3 (+ 2 (+ 1 0»»
(+ 4 (+ 3 (+ 2 1»)
(+ 4 (+ 3 3»
(+ 4 6)
10

This is the trace of (triangle 4). It shows how the final result is computed. It also can re
veal alternate ways of computing the result. For example, notice the nth triangle number
is obtained by adding the numbers from 1 to n:

(triangle n) = (+ 1 2 ... n)

3.4.3. More on Input Validation

Notice that our triangle procedure failed to validate its input, n. We could have easily in
cluded input validation as a third alternative using either a cond-structure or nested if
structures:

(define (triangle n)
(if (natural? n)

(if (zero? n)
o
(+ n (triangle (- n 1»»

(error "bad input" triangle n»)

where natural? is a polymorphic predicate that tests for unsigned integers:

(define (natural? val)
(and (integer? val) «= 0 val»)

Let's include this predicate among our interesting procedures and retrace (triangle 4):

(triangle 4)
(natural? 4)
(+ 4 (triangle 3»
(natural? 3)
(+ 4 (+ 3 (triangle 2»)
(natural? 2)
(+ 4 (+ 3 (+ 2 (triangle 1» »
(natural? 1)
(+ 4 (+ 3 (+ 2 (+ 1 (triangle 0»»)
(natural? 0)
(+ 4 (+ 3 (+ 2 (+ 1 0» »
(+ 4 (+ 3 (+ 2 1»)
(+ 4 (+ 3 3»

(+ 4 6)
10

3.4. Recursion 91

It seems inefficient to ask if 3, 2, I, and 0 are natural numbers after we have verified that
4 is a natural. For this reason, it is often better to design a special "wrapper" procedure
that validates inputs, then calls a recursive procedure that doesn't validate inputs. Using
this technique, the triangle procedure becomes a wrapper for unsafe-triangle:

(define (triangle n)
(if (natural? n)

(unsafe-triangle n)
(error "bad input" triangle n»)

The old triangle procedure becomes the unsafe-triangle procedure:

(define (unsafe-triangle n)
(if (zero? n)

o
(+ n (unsafe-triangle (- n 1»»)

3.4.4. Mathematical Induction

That the sun will not rise tomorrow is no less intelligible a proposition, and implies no
more contradiction than the affinnation, that it will rise.

-David Hume, An Enquiry Concerning Human Understanding

A scientist verifies a theoiy by conducting experiments. Confidence in the theory grows
as the number of confmning experiments increases. For example, a chemist might verify
that gold is inert by dropping samples of gold into beakers containing various strong ac
ids, then observing that the samples aren't dissolved. The more types of acid that fail to
dissolve gold, the stronger his conviction that gold is inert. This method of gaining
knowledge is called the Principle of Induction.

In 1739 the philosopher and skeptic David Hume showed that the Principle of Induc
tion could not be justified by either reason or experience, the two branches of his famous
epistemological fork. Any proof that gold is inert would have to rely on other scientific
principles, which themselves were justified by induction. Tomorrow we could discover
an acid so strong that it dissolves even gold. Of course such a discovery would overturn
the entire atomic theory, but the history of science is littered with discarded theories.

Programmers can also get caught on Hume's fork. A procedure, proc, that operates on
natural numbers is correct if for every n, (proc n) returns the specified value. How can we
show a procedure is correct? A programmer can trace a few applications of proc. The
more successful traces performed, the greater our confidence that proc is correct. Unfor
tunately, Hume's skepticism applies here, too. Our traces are nothing more than experi
ments. Tomorrow we could find an input so virulent it sends proc spiraling down some
previously undiscovered path of error.

92 3. Evaluation Control and Recursion

Fortunately, natural numbers are governed by laws that allow us to make mathemati
cally valid inductions. We can conclude that proc is correct if we can confirm (proc 0)
returns the specified value, and if we can prove that for any n > 0, (proc n) returns the
specified value assuming (proc m) returns the specified value for all m < n. This form of
induction is called mathematical induction. More formally, if proc has a natural number
parameter, then

Assumptions:
1. (proc 0) returns the specified value.

2. If (proc m) returns the specified value for all 0::;; m < n, then (proc n) re
turns the specified value.

Conclusion:
For all n, (proc n) returns the specified value.

Assumption 1 is called the base case assumption and assumption 2 is called the succes
sor case assumption. At first glance it doesn't appear that the conclusion of mathemati
cal induction is different from the successor case assumption. But notice that the conclu
sion is an absolute statement: (proc n) returns the specified value for all n, while the
Successor Case Assumption is a conditional statement: for all n, (proc n) returns the
specified value, if (proc m) returns the specified value for all 0 ::;; m < n. It's quite a bit
easier to justify a conditi~na1 statement because we get to assume (proc m) returns the
specified value for all 0 ::;; m < n.

Our proof of Mathematical Induction is based on the fact that every nonempty set of
natural numbers has a smallest member. Assume proc is not correct. This means proc
returns some incorrect values. Let n be the smallest number for which (proc n) returns an
incorrect value. Clearly n > 0, because we are assuming (proc 0) returns the specified
value. But because n is the smallest value that causes (proc n) to return an incorrect re
sult, this means (proc m) must return a specified value for all m < n. Hence (proc n) must
return a specified value by our successor case assumption. This contradicts our assump
tion that proc is not correct.

We can use mathematical induction to prove that the triangle procedure is correct. We
only need to show the base and successor case assumptions are satisfied:

Base Case:
(triangle 0) returns 0, the number of blocks needed to build a O-step staircase.

Successor Case:
Pick an arbitrary n > 0, and assume (triangle m) returns the specified value for all 0::;;
m < n. In particular, this means (triangle (- n 1» returns the number of blocks needed
to build an (n - I)-step staircase. We can construct an n-step staircase from this n - I
step staircase by attaching a column of n blocks to it. Thus, the number of blocks in
an n step staircase is:

(+ n (triangle (- n 1»)

but this is the definition of (triangle n), hence (triangle n) returns the specified value.

3.S. Thinking Recursivefy 93

3.5. Thinking Recursively

Although mathematical induction is a tool for building correctness proofs, it can also be
used as a tool for building recursive algorithms. Assume we want to defme a procedure
called proc that expects a natural number as input (there may be other inputs, too). We
can build a recursive algorithm for proc by answering two questions:

Base Case:
What is (proc 0)1

Successor Case:
How can we use (proc m) for 0 ~ m < n to compute (proc n)?

In many situations the second question can be restricted to m - n - 1:

Successor Case: How can we use (proc (- n 1» to compute (proc n)1

Often we can answer the second question by working out a few examples: (proc 1) - 1,
(proc 2) - 1. (proc 3) - 1. and then generalizing.

Assume (proc 0) returns val. Assume (proc n) returns the value denoted by exp,
where exp is an expression involving applications of the form (proc (- n 1». The imple
mentation of proc is:

(define (proc n) (if (zero? n) val exp»

Of course. in some cases we might control proc with a cond- or case-structure.

3.5.1. Example: make-list

Scheme provides six constructors:

cons, list, vector, make-vector, string, make-string

Recall that make-vector expects a length n and a value v as input, and it returns the length
n vector #(v •.• v). Make-string works in a similar way. It's curious that Scheme does not
provide a similar procedure for making lists. Let's try to implement one:

; = length n list (val ... val)
(define (make-list n val) ???)

Of course we could implement make-list by calling make-vector and coercing the result
to a list, but recall our defmition of necessary Scheme:

necessary Scheme = Scheme - redundant features

Strings and vectors are redundant features. We have already seen that all primitive vector
and string procedures can be implemented by coercing their inputs to lists, applying the
corresponding list procedure, and then coercing the result back to a string or vector. Lists
are also redundant because they are simply nested pairs. Therefore it should be possible

94 3. Evaluation Control and Recursion

to implement all primitive list procedures in tenns of the primitive pair procedures: car,
cdr, and cons, but recursion will be required.

As an exercise in parsimony, let's search for a different solution to this problem. Be
cause n is always a natural number, we could try to find a recursive procedure. We ask
two questions:

(make-list 0 val) = ?
How can we use (make-list (- n 1) val) to compute (make-list n val)?

We can answer these question by computing some initial values, searching for a pattern,
and then generalizing:

(make-list 0 val) = ()

(make-list 1 val)
= (val)
= (cons val (make-list 0 val»

(make-list 2 val)
= (val val)
= (cons val (make-list 1 val»

(make-list 3 val)
= (val val val)
= (cons val (make-list 2 val»

A pattern seems to be emerging, for n > 0:

(make-list n val) = (cons val (make-list (- n 1) val»

We use this pattern as the basis of our implementation:

; = length n list: (val '" val)
(define (make-list n val)

(if (zero? n)
'()
(cons val (make-list (- n 1) val»»

We can understand how this procedure works by tracing through a few sample computa
tions. We take make-list and cons to be our interesting procedures:

(make-list 3 0)
(cons 0 (make-list 2 0»
(cons 0 (cons 0 (make-list 1 0»)
(cons 0 (cons 0 (cons 0 (make-list 0 0»»
(cons 0 (cons 0 (cons 0 (»»
(cons 0 (cons 0 (0»)
(cons 0 (0 0»
(0 0 0)

3.5. Thinking Recursively 95

3.5.2. Example: nat-expt

Assume Scheme provided neither the exp nor expt procedures. It's easy to implement
exp in terms of expt:

(define (exp z) (expt e z» ; = e"z

where e is approximated by:

(define e 2.71828182845905)

How could we implement expt? This depends on the type of the exponent:

; - b"z where b & Z are any numbers
(define (expt b z)

(cond «natural? z) (nat-expt b Z»
«integer? z) (int-expt b Z»
«rational? z) (rat-expt b z»
«real? z) (real-expt b z»
«complex? z) (complex-expt b Z»)

(Is the order of clauses in this definition important?) Most of the variants of expt can be
defmed in terms of the nat-expt. For example:

; = b"i where i is an integer & b is any number
(define (int-e~pt b i)

(if (>= i 0)
(nat-expt b i)
(/ (nat-expt b (- i»»)

Nat-expt can be defmed using recursion. We ask:

(nat-expt b 0) - ?

How can we use (nat-expt b (- n 1» to compute (nat-expt b n)? To answer these
questions, we work through a few initial cases and generalize:

(nat-expt b 0) = b O 1
(nat-expt b 1) = b l - b b * b O
(nat-expt b 2) b 2 b * b l
(nat-expt b 3) b 3 = b * b 2

The pattern seems clear:

(nat-expt b n) = (* b (nat-expt b (- n 1»)

The final version of our procedure is:

; = b"n where n is a natural and b is any number
(define (nat-expt b n)

(if (zero? n)
1
(* b (nat-expt b (- n 1»»

96

3.5.3.

3. Evaluation Control and Recursion

Let's trace a computation of nat-expt:

(nat-expt 2 3)
(* 2 (nat-expt 2 2»
(* 2 (* 2 (nat-expt 2 1»)
(* 2 (* 2 (* 2 (nat-expt 2 0»))
(* 2 (* 2 (* 2 1»)
(* 2 (* 2 2))
(* 2 4)
8

Example: evaluate

This example shows that a recursive procedure can call itself indirectly by passing itself
to a meta-procedure. Let's increase the complexity of the domain of expressions defined
earlier by allowing nested expressions. In other words, let's make EXP into a recursive
domain:

EXP ::= NUMBER I (OPERATOR EXP ...)

Various operator synonyms can be used in an EXP-expressbn:

OPERATOR ::= + I add I sum I * I mult I

/ I div I - I sub I < I less I etc.

The EXP evaluator uses an if-structure to determine if its EXP input is a number (i.e., a
literal) or an application. If it is a number, then there is no work to be done, just return
the number. If the EXP input is an application, a case-structure is used to determine the
appropriate operation to apply to the actual parameters. The arguments are gotten by re
cursively applying evaluate to each operand. Because we don't know the number of op
erands in advance, we will have to use the map and apply meta-procedures:

; = value denoted by exp
(define (evaluate exp)

(if (number? exp)
exp exp denotes itself!
(case (car exp)

«+ add sum)
(apply + (map evaluate (cdr exp»»

«* mult)
(apply * (map evaluate (cdr exp»))

«/ div)
(apply / (map evaluate (cdr exp»»

«- sub)
(apply - (map evaluate (cdr exp»»

«< less)
(apply < (map evaluate (cdr exp»»

(else
(error "unrecognized operator"

evaluate
(car exp»»»

Because operands can be expressions. we can nest expressions:

Appendices 97

> (evaluate '(add (sub 6 1) (mult 2 7) (add 3 6»)
28
> (evaluate '(less (sum 6 7) (+ 1.2 (div 9 2»»
if

Appendices

Appendix 3.1. Sequential Evaluation

Earlier we saw that a sequence of expressions can follow the condition or guard in the
clause of a cond- or case-structure:

CLAUSE ::= (CONDITION EXPRESSION ...)

(Recall the ellipsis " indicates zero or more repetitions of EXPRESSION.) When such
a clause is evaluated. each expression following the condition is evaluated. but the value
of the clause is the value of the last expression in the sequence; the values of the preced
ing expressions are thrown away!

There are several other contexts where Scheme allows expression sequences to ap
pear. For example. the body of a procedure block can be a sequence of expressions:

PROCEDURE-BLOCK ::=
(define (NAME PARAM ...) EXPRESSION ...)

The same evaluation rule is used here. When the procedure is called. each expression in
the body is evaluated. but the value returned by the procedure is the value of the last ex
pression in the sequence. For example. consider the following definition:

(define (always-O) 3 2 1 0)

The body of this procedure consists of the literals 3. 2. 1. O. When the procedure is
called, the Scheme evaluator evaluates each expression. but only returns the 0:

> (define result (always-O»
unspecified
> result
o
Even in contexts where expression sequences are not allowed. such as the consequent or
alternative of an if-structure, Scheme allows programmers to group sequences of expres
sions into a single expression using sequence-structures:

98 3. Evaluation Control and Recursion

SEQUENCE;;= (BEGIN EXPRESSION ...)

where BEGIN is either begin or beginO:

BEGIN; ;= begin I beginO

Sequence-structures are evaluated. by evaluating each EXPRESSION from left to right.
The value of the begin-structure is the value of its last expression, the value of a beginO
structure is the value of its first expression. All other expressions are evaluated, but the
values they produce are ignored.

> (+ (begin 2 3 4) (beginO 5 6 7» i = (+ 4 5)
9

Be careful! The value of an expression in a sequence is not passed to the next expression.
For example, assume the following definition has been made:

(define x 10)

What is the value of the expression:

> (begin (+ x 1) x)
?

It looks as though (+ x 1) increments x, and therefore the value of the last x should now
be 11. In fact, the value of (+ x 1), 11, is discarded as soon as it is computed. The value
of the last x in the sequence, hence the value of the sequence, is 10. (pascal and C pro
grammers almosfalways get this wrong!)

The values of aU but one expression in a sequence are thrown away, so what use are
they? The answer is none, unless evaluating the expression does more than produce a
value. Scheme output procedures are perfect examples of this phenomenon.

Appendix 3.2. Input and Output in Scheme

Input and Output Ports

Nonnally, Scheme procedures receive their inputs from other procedures and send their
output to other procedures (see Figure 3.3).

inputs from ~ proc L. output to another
other procedIres ~ I - procedlre

~--...
Figure 3.3

Additionally, Scheme procedures can read inputs from input ports and write outputs to
output ports. An input port is a standard interface to all types of input devices: key
boards, sensors, joysticks, mice, etc. An output port is a standard interface to all types of
output devices: monitors, printers, modems, controllers, etc. (see Figure 3.4).

Appendices 99

in ut <brice out ut <brice

proc output to
another proeeWre

Figure 3.4

Scheme provides two predeimed ports called the current-input-port and the current
output-port. We can discover what devices these ports are connected to by calling the
procedures current-input-port and current-output-port:

> (current-input-port)
#[input-port stdin]
> (current-output-port)
#[output-port stdout]

Stdin stands for "standard input device" and stdout stands for "standard output device."
The standard input device is the keyboard, and the standard output device is the monitor
(i.e., the computer screen).

Reading from the Keyboard

Scheme provides the following procedures for reading data from the current input port:

(read) = the next value typed.
(read-char) = the next character typed.

Both of these procedures cause the program to pause until a return character is typed.
Be careful, read and read-char receive their inputs directly from the standard input

port and return this value through the usual procedure output channel (see Figure 3.5).

keyboard

stdin

val r--+ read val

Figure 3.5

100 3. Evaluation Control and Recursion

Writing to the Monitor

Scheme provides the following procedures for writing data to the current output port:

(write val) =
an unspecified value. As a side effect, writes val on the
monitor.

(display val) =
an unspecified value. As a side effect, displays val on
the monitor.

(write-char char) =
an unspecified value. As a side effect, writes char on
the monitor.

(newline) = (write-char #\newline)

What's the difference between displaying and writing a value? There is no difference,
unless the value is a character or string. When a character is written, its "prefIX is also
written. When a character is displayed, the "prefix is dropped. When a string is written,
its surrounding double quotes are also written, and escape characters inside the string are
dropped. When a string is displayed, its surrounding double quotes are dropped and es
cape characters inside the string are displayed as though they were ordinary characters.

Be careful, output procedures send their.interesting values to the output port but send
a boring unspecified value through the normal procedure return channel (see Figure 3.6).

monitor

stoout

.--,.. __ --1 val

val write unspecified

Figure 3.6

For example, the following call may seem to write 42 to the monitor and assign 42 to re
sult:

> (define result (write (* 6 7»)
42
unspecified

But when we examine result we discover it contains an unspecified value instead of 42.
Make sure you understand why:

> result
unspecified

Appendices 10 I

Interactive Procedures

We can now give examples of how expression sequences can be useful. An interactive
procedure reads its inputs from the keyboard and writes or displays its output to the
monitor. Here's an interactive version of the cube procedure that uses sequences to dis
playa sequence of messages to the user:

(define (cube n)
(display n)
(display" cubed = ")
(display (* n n n»
(newline))

Here are some sample evaluations:

> (cube 3)
3 cubed .. 27
unspecified
> (cube 4)
4 cubed = 64
unspecified

Why is an unspecified value displayed after each call to cqb.e?

VenatiUty

Granted, the interactive cube procedure just defined is more user friendly than the cube
procedure defmed in Chapter 2, but only a small percentage of procedures are called by
humans. Most procedures are called by other procedures and return their values to other
procedures. Our interactive cube procedure would be useless to other procedures because
it does not return a predictable output. For example, the following procedure fails to
compute the volume of a sphere if it uses the interactive cube procedure just defmed:

(define (sphere-volume radius)
(* 4/3 pi (cube radius»)

We can see why if we try to capture the output with a defmition:

> (define result (cube 3»
3 cubed = 27
unspecified
> result
unspecified

Make sure you understand these evaluations. The first unspecified was the unspecified
value returned by the definition. The cube of 3 was correctly computed and apparently
bound to result, but when we examine the value of result we discover its value is unspeci
fied instead of 27. The reason is that the last expression in the body of cube is a call to

102 3. Evaluation Control and Recursion

newline. Because newline returns an unspecified value, cube also returns an unspecified
value. Our interactive cube procedure does not satisfy the versatility goal:

If possible, procedures should be reusable in several places within the same program
and possibly in other programs as well.

Unwanted Side Effects

We could attempt to have the best of both worlds by defining a special display procedure
that returns the value it displays:

(define (display&return val)
(display val)
(newline)
val)

We can use display&return to redefine cube as follows:

(define (cube z)
(display z)
(display" cubed = ")

(display&return (* z z z»)

Now cube displays its result on the computer screen and returns its result to any calling
procedures, as shown in Figure 3.7.

monitor

stoout

Z cube

Figure 3.7

To see why this might not be a good idea, imagine the following scenario:

Your cube procedure is part of a large CAD/CAM (computer aided design and manu
facturing) system with a GUI (graphical user interface). All interactions with the user
are through windows, menus, and icons. This sounds nice, but customers complain that
when they rotate or scale their part models in the graphics window, thousands of little
messages saying things like "3 cubed = 27" fill the screen.

Evaluating some expressions changes the state of the computer. This is called a side ef
fect or derived result. Scheme's output procedures are perfect examples. They return
unspecified values, but write values to output ports as a side effect.

Appendices 103

Unintended or unneeded side effects usually take the fonn of environmental pollu
tion: screen garbage, tainted globals, damaged files, etc. Although the definition of cube
is very versatile, in the context of a larger application, like the CAD/CAM system, its
cheery little messages become annoying screen pollution.

The for-each Meta-Procedure and writeln

As a final example, assume we want to display the values in a list without the surround
ing parenthesis. Because the display procedure includes the parenthesis, we will have to
write our own procedure for the job.

Fortunately, Scheme provides a meta-procedure we can use. Assume proc is any
unary procedure -i.e., a procedure that expects a single input -and assume vals is a list
of values. Then:

(for-each proc vals) =
an unspecified value. As a side effect, proc is applied
to each member of vals.

What happens to the values produced by the calls to proc? Unfortunately, they are dis
carded. If the values were important, then the map procedure should be used instead.
However, if proc is an output procedure, then the outputs produced by applying it to the
members of vals will be visible. For example:

-> {for-each display' (1 2 3»
123>

This is almost what we want: the values in the input list are displayed, but the surround
ing parenthesis are not. Regrettably, the values are displayed without separating spaces.
We can remedy this by using for-each with a modified version of display. Note that the
body of our procedure is a sequence:

{define (display+ val)
(display val)
(display #\space»

Here's a sample call:

> {for-each display+ '(I 2 3»
1 2 3>

We can abstract this into a procedure:

(define (display-vals vals)
(for-each display+ vals»

Here's a sample call:

> {display-vals '(I 2 3»
1 2 3>

104 3. Evaluation Control and Recursion

Because display-vals doesn't print surrounding parenthesis, it would be nice to have a
version that didn't require programmers to type the parenthesis that surround the inpuL
We can use the optional parameter feature to derme an n-ary procedure that displays any
number of inputs followed by a newline:

(define (writeln . vals)
(display-vals vals)
(newline))

Here is a sample call:

> (writeln 4 n cubed
4 cubed = 64

n (* 4 4 4»

Appendix 3.3. Defensive Programming

Until now we have assumed that users will always call our procedures with valid inputs.
This is a dangerous assumption. Procedures written by experienced programmers always
validate all inputs before computing a result.

Validating inputs can be done using a conditional:

(define (dist x ~t
(if (and (real? x) (real? y»

(abs (- x y»
???»

But what happens when a procedure discovers one or more of its inputs are invalid?
What replaces 711 in the definition of dist? There are four choices:

1. The procedure attempts to repair the error.
2. The procedure displays an error message, then terminates gracefully.
3. The procedure sets a flag somewhere and hopes the user periodically checks the

flag.
4. The procedure ignores the error.

Commercial software always chooses the first option. Nothing annoys or frightens a
customer more than seeing hours of work replaced by an obscure error message.

Software under development uses the second option. A programmer wants to know
about his errors right away. This is the technique we will use.

The third technique is familiar to assembly language programmers, who must con
stantly check overflow flags to determine if the last arithmetic operation produced the
correct result.

The fourth technique is just lazy programming. The programmer lets the interpreter,
operating system, or hardware deal with the error. At best, this produces very obscure er
ror messages. At worst, it crashes the computer.

Appendices 105

Using sequential evaluation and the printing procedures discussed earlier, we could

design a special procedure for displaying error messages and terminating gracefully 2. 3 :

(define (error gripe location . irritants)
(writeln "Error!")
(writeln #\tab "gripe:" #\tab gripe)
(writeln #\tab "location:" #\tab location)
(if (not (null? irritants»

(begin
(writeln #\tab #\space

"irritant(s):"
#\tab #\space)

(display-vals irritants»)
(newline)
(return error-token»

For now, the return procedure is merely the identity procedure, and the error-token is just
a special symbol:

(define (return val) val) for now
(define error-token 'error)

We can even predefme common gripes:

(define input-err "Illegal input(s)")
(define range-err "Input(s) out of range")

Continuations

The future is what you make it, so make it a good one.

-Doc Brown from Back to the Future. III

The escape procedure does a nice job of informing the user what went wrong, but what
about terminating gracefully? The error message is useful to the human programmer, but
what about the procedure that called dist and is now waiting for a numeric answer?

(define (dist x y)
(if (and (real? x) (real? y»

(abs (- x y»
(error input-err dist x y»)

For example, recall the dist, small?, and close? procedures defined at the beginning of the
Chapter 2:

2 Some implementations of Scheme provide an error procedure.

3 An alternative strategy that avoids 110 and sequencing is outlined in the last problem.

106 3. Evaluation Control and Recursion

(define (small? z) (close? z 0» ; i.e., near zero
(define (close? x y) «= (dist x y) delta})

Assume a user calls small? with an invalid input:

> (small? "100") ; strings are invalid here

In this case (close? "100" 0) is called, which calls (dist "100" 0), which calls (error ...),
which calls (return error-token):

(small? "100")
(close? "100" 0)
(dist "100" O)
(error input-err dist "100" O)
(return error-token)

At this point close? is waiting for an answer from dist, small? is waiting for an answer
from close?, and the user is waiting for an answer from small? Of course return merely
returns the error-token, i.e., the symbol 'error. This is returned to error, which passes it to
dist, which passes it to close? Unfortunately, there's not much close? can do with a sym
bol, unless close? checks for the error-token and passes it on to small? Of course small?
is hoping for a Boolean value from close?, so it too must check for the error-token and
pass it on to the user. A lot of work is being done just to propagate an error token (Figure
3.8).

user ~I small? t-r-I close? tzI dist ~ error ~ return I

Figure 3.8

It would be better if return could simply abandon the long chain of calling procedures,
and return control directly to the user (Figure 3.9).

user • ~I small? ~I close? ~I cist ~IL.--erro_r-,,~I return
I

Figure 3.9

Amazingly, this is possible. The Scheme evaluator builds a unary procedure representing

the future of the current computation.4 This procedure is called a continuation. For ex
ample, at the moment return is called, the continuation is:

(lambda (hole) «= (abs (- hole O}) delta)}

where the parameter, hole, represents the value that will be provided by return. The sur
prise is that programmers can capture continuations. To do this we must first write a pro
cedure that expects the current continuation as an input:

4 This might be a representation of the control stack in some languages.

Appendices 107

(define (receiver cont) ???)

To get Scheme to pass the current continuation to receiver, we place the expression:

(call-with-current-continuation receiver)

at the point where the continuation is of interest to us.
Continuations can be called like ordinary procedures, but they abandon the context in

which they are called and return control instead to the point where they were captured.
What if we capture a continuation at some point where the future looked bright and

"redefined" return to be this continuation. A procedure can be redefined using set!, a
Scheme assignment command:

; change return into a continuation
(define (receiver cont) (set! return cont»

Briefly, (set! NAME EXPRESSION) is used to redefme NAME to the value of
EXPRESSION. This isn't quite accqrate. The full story is the topic of Chapter 7. As
signment commands like set! don't belong in functional Scheme. Readers should refrain
from using assignment commands until they are properly introduced in Chapter 7.

What continuation should we redefme return to be? Let's capture the continuation
near the interpreter's prompt, just before an. informative message is printed:

> (begin
(call-with-~urrent-continuation receiver)
(writeln "returning to top level ... ")
if)

At the point of capture, the continuation is:

(lambda (hole)
(begin

hole
(writeln "returning to top level ... ")
if))

Calling small? with an invalid input will eventually call error, which will print the error
message, then call return. Because return has been redefmed to be the continuation, it
abandons the long chain of calling procedures and returns control to the point immedi
ately before the message is printed. This causes the captured continuation to resume as
though it had been frozen in suspended animation and then suddenly thawed out:

> (small? "100")
Error I

gripe:
source:
irritant(s):

Illegal input(s)
f[procedure: dist]
"100" 0

108 3. Evaluation Control and Recursion

returning to top 1eve1
fI:f
>

Appendix 3.4. Debugging

Hacking is like building a scale-model cathedral out of toothpicks, except that if one
toothpick is out of place the whole cathedral disappears. And then you have to feel
around for the invisible cathedral, trying to figure out which toothpick is wrong. De
buggers make it a little easier, but not much, because a truly screwed-up cutting-edge
program is entirely capable of screwing up the debugger as well, so that then you're
feeling around for the missing toothpick with a stroke-crippled claw-hand.

But, ah, the dark dream beauty of the hacker grind against the hidden wall that only
you can see, the wall that only you wail at, you the programmer, with the brand new·
tools that you made up as you went along, your special new toothpick lathes and jigs
and your real-time scrimshaw shaver, you alone in the dark with your wonderful tools.

-Rudy Rucker, The Hacker and the Ants

When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.

-Holmes, Spock, Data

Novice programmers often get caught up in the discipline of coding and neglect the
less glamorous aspects of programming: testing and debugging. More experienced pro
grammers know that testing and debugging are integral parts of programming and can be
as exacting and -demanding as writing code.

Debugging is an art. The idea is to systematically eliminate all potential causes of the
bug. The key to systematic debugging is to know the general types and causes of errors.
There are three categories: syntax errors, run-time errors, and logic errors.

Syntax Errors

Each time a definition is loaded from the editor into the Scheme interpreter a procedure
called a parser checks to make sure parentheses are balanced, structures have the ex
pected fonnat, and there are no misplaced definitions. If not, an error message is gener
ated and the load fails.

Syntax errors are fairly easy to fix by visual inspection. Reload definitions one at a
time. When the offending definition turns up, count parentheses, double check the for
mats of structures, and reload.

Appendices 109

Run-Time Errors

Run-time errors occur during testing, after the procedure has successfully loaded. Run
time errors are caught either by the evaluator or by error checks installed by the pro
grammer.

Run-time errors caught by the evaluator are a nightmare because sometimes the pro
gram is able to limp along a little before it crashes, creating the impression that the error
occurred beyond the point it actually occurred. In this case the error messages produced
by the evaluator are cryptic and the offending code is often hard to locate. The most
common run-time errors are scope errors, type errors, and range errors.

A scope error is caused when a symbol is referenced out of scope. The most typical
example is calling a procedure or referencing a constant you simply forgot to define.

A type error is caused when the number or types of parameters don't match the
number or types of arguments. Compiled languages like Pascal and C++ use static type
checking, which means type errors are caught before the procedure runs. Unfortunately,
Scheme uses dynamic type checking, which means type errors are only discovered
when the procedure is called. For example, the following definition is allowed to load by
the Scheme parser:

(define (test nurn) (+ nurn "42"»

But any call produces a run-time type error:

> (test 10)
error: non-numeric input to +: "42"

Imagine how frustrating it would be to see this message generated by a flight control
program seconds before your new satellite plummets into the ocean. With static type
checking this message appears and the problem is corrected when the flight control pro
gram is first compiled, months before the satellite is launched.

Another kind of type error results when the evaluator attempts to apply a nonproce
dure to a list of operands:

> ("+" 3 4)
error: procedure expected

Range errors occur when a parameter conforms to the expected type of the argument,
but is too big or too small:

(/ 42 0)
(string-ref "cat" -1)
(list-ref '(1 2 3) 100)

A fourth source of run-time errors is the operating system. These errors normally occur
when the procedure is performing file 110, for example, when a procedure attempts to
write to a nonexistent file.

Run-time errors must be located before they can be fixed. The Scheme debugger can
help locate a run-time error. PC-Scheme also provides trace and untrace procedures. As
sume proc is the name of a procedure:

110 3. Evaluation Control and Recursion

(trace proc) = unspecified value. As a side effect, adds
proc to the list of procedures to be traced

(untrace proc) = unspecified value. As a side effect,
removes proc from the list of procedures to be traced.

A low-tech but reliable method is to plant diagnostic messages in the program. This will
be discussed shortly.

Logic Errors

Logic errors don't produce error messages. The procedure runs, but the output, if any, is
simply wrong. Unfortunately, this type of error usually lies in the logic of the procedure's
algorithm.

There are a few less drastic types of logic errors. Sometimes a logic error can be the
result of a precision error, such as the example given at the beginning of Chapter 2.

Another common logic error results in the dreaded infinite loop. Infinite loops are
caused by nonterminating recursions or iterations:

(define (undefined) (undefined» ; loops forever!

Sometimes this results in a "stack overflow" message from the evaluator, but in the case
of iterations, the interpreter's prompt simply fails to reappear and the keyboard goes
dead. Try using the Break key to stop the runaway computation.

Diagnostics

We can use the fact that expression sequences are allowed in clauses and procedure bod
ies to insert diagnostic messages for the purpose of tracking run-time errors. We use the
writeln procedure to display our diagnostic messages. For example, here's another ver
sion of our tax procedure that includes diagnostics:

; = tax owed on income dollars
(define (tax income)

(writeln "entering tax ... ")
(cond «not (real? income»

(error input-err tax income»
«> income max-medium)

(writeln "income> max-medium")
(+ max-medium-tax

(* max-rate (- income max-medium»»
«> income max-low)

(writeln "income> max-low")
.(+ max-low-tax

(* medium-rate (- income max-low»»
((> income min)

(writeln "income> min")

(* low-rate (- income max-min»)
«>= income 0) 0)
(else

Problems III

(error "negative income" tax income»»

Inserting diagnostic messages allows us to automatically trace the flow of evaluation:

) (tax 8000)
entering tax •••
income) min
300

Suppose we want to insert diagnostic messages into our first tax-computing procedure,
the one based on the if-expression. We can use the begin-procedure to group the conse
quent and alternative with the appropriate diagnostic messages as follows:

; = tax on income dollars
(define (tax income)

(writeln "entering tax procedure")
(if (> income max-medium)

(begin (writeln "income> max-medium")
(+ max-medium-tax
(* max-rate (- income max-medium»»

(begin (writeln "<= max-medium")
(* income medium-rate»»

It is important to realize that reversing the order of the writeln expression and the multi
plication in either the cond clauses or the begin expressions causes the tax procedure to
return an unspecified value instead of the desired tax. (Why? What if beginO is used
instead?)

Problems

Solutions to the following problems are to be given in functional Scheme; do not use
procedures or special forms discussed in subsequent chapters. Do not use any of the I/O
procedures discussed in this chapter except to print error or diagnostic messages or unless
you are specifically directed by the problem to use them. You may use the definitions
given in this or previous chapters as well as solutions to other problems in this or previ
ous chapters. (Although you will have to include these definitions in your definition file
so you can test your definitions.) You may also defme any supporting procedures you
need. You are required to validate inputs.

Problem 3.1.

Assume the following definitions have been made:

112 3. Evaluation Control and Recursion

(define x 100)
(define y 200)
(define z 300)

Evaluate the following expressions. If they contain errors, explain them. If their val
ues are unspecified in IEEElANSI Scheme, indicate this with a question mark. Use your
Scheme interpreter to check your work, but be careful, your interpreter may not be 100%
compliant with IEEE! ANSI Scheme.

a. (* (or 3 4 5 6) (and 3 4 5 6»
b. (* (and 3 4 5 6) (beginO 3 4 5 6))
c. (* (if 0 3 5) (begin 3 4 5 6))
d. «lambda (x) (* x x» x)
e. ((lambda (f) (f x» number?)
f. «lambda (f) (f x» (lambda (x) (+ x x»)
g. (case x «X) 12) «y) 32) «z) 19) (else 0»

Problem 3.2.

The eager evaluation procedure outlined at the beginning of Chapter 2 didn't make clear
if operands were evaluated from left to right or right to left. How can you use the output
procedures described herein to figure out in which direction your Scheme interpreter
evaluates parameters?

Problem 3.3.

As a punishment for rowdy behavior, Friedrich Gauss' first grade teacher commanded
him to spend the rest of the day calculating the sum of all integers from 1 to 100. A mo
ment later' Gauss had the answer, 5050. When asked how he got the solution so fast,
Gauss pointed out that the sum could be gotten as follows:

(1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51) = 101 * 50

Use this idea to come up with an elementary (i.e., nonrecursive) implementation of the
triangle procedure.

Problem 3.4.

The nth pyramid number is the number of blocks required to build a four-sided pyramid
n blocks high. For example:

(pyramid 0) 0
(pyramid 1) 1
(pyramid 2) = 5
(pyramid 3) 14

Problems 113

Implement pyramid using a recursive algorithm. Can you fmd an elementary implemen
tation?

Problem 3.5.

Mathematicians use the notation n! to denote n factorial, the product of all integers from
1 to n. By convention, O! - 1. Implement this as a Scheme procedure:

; = (* 1 2 ... n)

(define (fact n) ???)

Problem 3.6.

Implement the following procedure twice:

(choose n m) 0, if n < m

(choose n m) = I, if m = 0 or m = n

(choose n m)
number of ways to choose m items from n items,

0, if n < m

I, if m = 0 or m = n.

The first implementation should be based on the following observation:

There are two ways to choose m items from n. Pick one item not to be chosen, then
choose m items from the remaining n - I items:

(choose (- n 1) m)

Or pick one item to be chosen, and pick m - I items from the remaining n - 1 items:

(choose (- n 1) (- m 1»

The second algorithm is based on the following formula:

n!
choose(n,m)=--~~-

m!(n- m) !

Problem 3.7.

Define a procedure called witnesses, which expects a predicate, pred, and a natural num
ber n as parameters, and which returns a list of all natural numbers m S n such that (pred
m) is true. For example:

114 3. Evaluation Control and Recursion

> (witnesses even? 10)
(10 8 6 4 2 O)
> (witnesses prime? 10)
(7 5 3 2)

Problem 3.8.

Define a procedure called divisors that expects two positive integer inputs n and m, and
returns a list of all positive integers below n that divide m. (Recall, k divides m if
(remainder m k) = 0.)

> (divisors 30 10)
(10 6 5 3 2 ·1)
> (divisors 8 10)
(8 4 2 1)

Problem 3.9.

A positive integer n is prime if 2 :s; n, and the 'only divisors of n are 1 and itself. Use the
divisors procedure in the last problem to define a prime? predicate.

Problem 3.10.

The Fibonacci sequence is:

o 1 1 2 3 5 8 13 21 34 etc.

The Fibonacci numbers are interesting because they are ubiquitous in nature. Implement
a recursive version of a procedure that calculates Fibonacci numbers:

(fib 0) = 0
(fib 1) = 1
(fib 2) = 1
(fib 3) = 2
etc.

Problem 3.11.

The harmonic series is i 1. Write a recursive Scheme procedure that computes the
k=lk

partial sums of this series, i.e.,

(harmonic-sum n) = f 1
k=lk

Problems 115

Problem 3.12.

Recall from Calculus that the fixed point of the derivative procedure is fix) = eX. The ex
act value of e is given by the series:

co 1
e= I:

k=ok!

Write a recursive Scheme procedure that approximate e to any accuracy by computing
partial sums of this· series.

Problem 3.13.

Write a recursive Scheme procedure called sum that expects an unsigned integer input n
and returns the following partial sum:

n (_l)i
sum(n) = I:--

i=l 2i

Problem 3.14.

Assume Scheme did not supply * but did supply +. Of course * is an overloaded proce
dure, but most variants can be defined in terms of nat*, which mUltiplies two natural
numbers. Find a recursive implementation of nat* that doesn't use *.

Problem 3.15.

Assume Scheme did not supply +, but did supply add! and sub!:

(addl z) = z + 1
(subl z) = z - 1

(If your version of Scheme doesn't provide add! and subl you'll have to define them
using +.) Of course + is an overloaded procedure, but most variants can be dermed in
terms of nat+, which adds two natural numbers. Find a recursive implementation of nat+
that doesn't use +.

Problem 3.16.

Assume Scheme did not provide gcd. The gcd of n and m is the gcd of m and (remainder
n m). Use this fact to implement gcd. Also implement remainder.

116 3. Evaluation Control and Recursion

Problem 3.17.

Write a meta-procedure called compose that accepts an unsigned integer n and a unary
numeric procedure f as input. The compose procedure composes f with itself n times,
then applies the resulting procedure to I:

(f (f . . . (f 1) ... » ; n times

Examples:

> (compose 4 addl)
5 (addl (addl (addl (addl 1»)
> (compose 3 square)
1 (square (square (square 1»)
> (compose 0 foo)
1 base case

Problem 3.18.

Assume m and n are natural numbers. Find a recursive implementation of:

(m-to-n m n)
= (m ... n) if m < n
= () otherwise

Problem 3.19.

Assume n is a natural number. Implement a procedure called nest, which generates a nest
of n lists:

(nest 0) = ()
(nest 1) = «»
(nest 2) = «(»)

etc.

Problem 3.20.

Assume Scheme did not provide list-ref or length. How could you implement these using
recursion?

Problem 3.21.

Assume vals is a list and n is a natural number. Find a recursive implementation of the
following procedure:

Problems 117

(rem-n-th vals n) =
vals with the item in position n removed

Problem 3.22.

Find recursive implementations of the list-tail and list-prefix procedures. (List-prefix was
defined in Chapter 2.)

Problem 3.23.

Assume vals is a list and n is a natural number. Find a recursive implementation of the
following procedure:

(put-n-th vals val n) =
vals with val inserted in position n.

Problem 3.24.

A leap year is any unsigned integer divisible by 400, or divisible by 4, but not 100. For
example, 1700, 1800, 1900, 1901, 1902, and 1903 were not leap years, but 1600 and
1904 were leap years. Without using conditionals (if, condo or case) and assuming val is
any Scheme value, implement-the following polymorphic procedure:

(leap? val)
= tt, if val is a leap year
= tf, otherwise

Problem 3.25.

A eve syllable is a length-three string consisting of a consonant followed by a vowel,
followed by a consonant. Implement a procedure that tests for CVCs.

Problem 3.26.

Pig Latin is an artificial language derived from English by the following rules:

If an English word begins with a consonant, then the equivalent Pig Latin word is ob
tained by moving the consonant to the end of the word and adding "ay." For example:

plane -> lanepay

If an English word begins with a vowel, then the corresponding Pig Latin word is ob
tained by adding an "ay" to the end of the word. For example:

118 3. Evaluation Control and Recursion

apple -> appleay

Implement a procedure that translates strings into their Pig Latin translations. Your pro
cedure should validate its input making sure it's a string consisting of upper- and lower
case letters only. Do not attempt to validate that the string is actually in the English dic
tionary.

(define (latinize stririg) ???)

Problem 3.27.

Consider the following definition:

(define (if. condition consequent alternative)
(if condition consequent alternative»

How does if. differ from if? (Apart from the fact that alternative is optional for if, but not
for if.) Give an example of a situation where replacing if by if. causes a procedure to fail.

Problem 3.28.

You download a LISP interpreter from an FI'P site. Unfortunately, there is no documen
tation and no source code. You know the ~terpreter accepts Scheme syntax, but you are
unsure if the interpreter uses eager or delayed evaluation. What experiment could you
perform io fmd out?

Problem 3.29.

You download a Scheme interpreter from an FI'P site. Unfortunately, there is no source
code or documentation. Furthermore, rumor has it that this particular version doesn't
support short circuit evaluation. How can you figure out if this is true?

Problem 3.30.

You download a LISP interpreter from an FI'P site. Unfortunately, there is no source
code or documentation. Furthermore, rumor has it that this particular version uses static
type checking. How can you figure out if this is true? .

Problem 3.31.

Using the quadratic rule, write a procedure that computes the largest real solution of a
quadratic equation:

ax2 + bx + c = 0

Your procedure will be passed the coefficients as inputs:

(define (max-root a b c) ???)

Problems 119

Warning: The largest real root isn't always the one obtained by adding the discriminant.
If the quadratic has no real roots, you should generate an error message.

Problem 3.32.

Necessary Scheme (NS) is Scheme with all redundant features removed:

NS = Scheme - redundant features

Surprisingly, most of the primitive domains, primitive procedures, and structures pro
vided by IEEEI ANSI Scheme are redundant. The following problems will show that most
structures are redundant because they can be rewritten using if-structures and lambda
structures:

Problem 3.32.1.

Rewrite the following case-structure as a cond-structure:

(case k «a b c) x) (Cd e f) y) «q h i) z) (else 0»

Problem 3.32.2.

Rewrite the following cond-structure using if-structures. You may also want to use se
quential structures (i.e., begin, heginO):

(cond
(al a2 a3) (bl b2 b3) (cl c2 c3) (else dl d2 d3»

Problem 3.32.3.

Rewrite the following expressions using if-structures:

a. (and abc d e)
b. (or abc d e)
c. (not a)
d. (and (or a b (not c» (and (not (or b c» d»

Problem 3.32.4.

Assume Scheme did not provide the control structures begin and beginO. Assume
Scheme always evaluates operands from left to right. How could you implement begin
and heginO as Scheme procedures:

(define (beginO . vals) ???)
(define (begin . vals) ???)

120 3. Evaluation Control and Recursion

Problem 3.33.

An alternative approach to error handling that avoids 110 and sequential evaluation is to
design the error procedure to create an error descriptor from its inputs, then return this
descriptor through the return procedure described in Appendix 3.3: Defensive Pr0-
gramming.

(define (error gripe source . irritants)
(return

(make-error-descriptor gripe source errors»)

An error descriptor is an association list of the form:

ERROR-DESCRIPTOR ::=
«"gripe" . GRIPE)
("source" . SOURCE)
[("irritant(s):" VALUE ...)])

Implement make-error-descriptor. Also, you'll probably want to redefme return as the
continuation formed at the point where a debugger is being called:

> (debug (call-with-current-continuation receiver»
unspecified

For now, debug could simply be the identity procedure. How could you include the con
tinuation at the point of error in the descriptor?

4
Data Control

The theme of this chapter is controlJing access to procedures and data by either hiding
them or hiding information about how they are represented. In both cases access is re
stricted to certain privileged procedures. This may sound like censorship, but inviting
procedures written by others to access one's own data and procedures invites potential
misuse and unwanted alterations. We can formalize our theme as the information hiding
principle:

Infonnation should only be made available on a need-to-know basis.

4.1. Procedure Blocks

Many implementations of Scheme allow programmers to nest deftnitions inside proce
dure blocks:

PROCEDURE-BLOCK ::=
(define HEADER DEFINITION ... EXPRESSION ...)

where

DEFINITION :: =
(define NAME EXPRESSION) I PROCEDURE-BLOCK

Nested deftnitions are also called local definitions, while non-nested deftnitions are
called global definitions. Names introduced by global deftnitions· are called g1obals.
Names introduced by local deftnitions are called locals relative to the procedure in which
they are deftned, while names used but not defmed inside a procedure are called nonlo
cals.

For example, in the following procedure block:

i = volume of a length len, radius rad cylinder
(define (cylinder-volume rad len)

(define pi (acos -1» i = 3.1416 ...
i = area of a radius r circle
(define (base-area r) (* pi (square r»)
; body of circle-volume
(* len (base-area rad»)

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998

122 4. Data Control

pi and base-area are local, while acos and * are nonlocal relative to cylinder-volume, and
rad and len are parameters. In fact, *, acos, and cylinder-volume are globals. Relative to
base-area, pi, *, and square are nonlocals, and r is a parameter.

The scope of a procedure or constant is the region of the program where it can be
used. A global has global scope. It can be used anywhere in the program. Like a pa
rameter, the scope of a local is liIitited to the procedure block that contains its definition.
This is called local scope.

4.1.1. The Nesting Instinct

Why and when to nest? A corollary of the information hiding principle is the locality
principle:

Scopes should be as small as possible.

LiIititing the scopes of procedures and data improves reliability, understandability, and
efficiency.

Improving Understandability

Sometimes the body of a procedure definition gets too complicated for humans to read
easily. For example, the max-avg procedure expects as input an association list contain
ing lists of scores on three exams:

«examl . (score ...)}
(exam2 . (score ...)}

(exam3 . (score ... »)
and returns the maximum average score:

(define (max-avg exams)
(max (/ (apply + (cdar exams»

(length (cdar exams»)
(/ (apply + (cdadr exams»

(length (cdadr exams»)
(/ (apply + (cdaddr exams»

(length (cdaddr exams»»)

We can make this procedure easier to read if we give suggestive names to the intennedi
ate results:

(define (max-avg exams)
(define examl (cdar exams»
(define exam2 (cdadr exams»
(define exam3 (cdaddr exams»
(define avgl (/ (apply + examl) (length exam!»)
(define avg2 (/ (apply + exam2) (length exam2»)

"1. Procedure Blocks 123

(define avg3 (/ (apply + exam3) (length exam3»)
(max avgl avg2 avg3»

Improving Reliability

Limiting the scopes of procedures and data improves reliability because there are fewer
opportunities for them to be redefined, altered, or misused. Recall the definition of the
close? predicate given at the beginning of Chapter 2:

; = (Ix - yl <= delta)
(define (close? x y)

«= (dist x y) delta»

The body of the close? predicate contains two parameters, x and y, and three globals: <=,
the dist procedure dermed in Chapter 2 (-Ix - yl), and the constant, delta (== 10"2].

It is appropriate to make dist a global procedure. Nesting it inside a procedure block
would make it unavailable to any other procedure that need to compute the distance be
tween two real numbers. On the other hand, it is inappropriate to make delta a global
constant. If an unwary user inadvertently redefines delta:

(define delta 100)

the close? predicate will no longer work properly. Nesting the definition of delta inside
close? means it can't be redefined inadvertently:

(define (close? x y)
(define delt. le-20)
«- (dist x y) delta»

Even if a global delta is dermed:

(define delta 100)

it will have no effect on the behavior of close? Although the occurrence of delta in the
body of close? is in the scope of both the global and local delta, we will soon see that the
eager evaluation algorithm automatically chooses locals over nonlocals, and therefore
uses the local delta.

As another example, recall the definition of the triangle procedure given in the last
chapter:

; = (+ n ... 0)
(define (triangle n)

(if (natural? n)
(unsafe-triangle n)
(error ~bad input" triangle n»)

where unsafe-triangle was a global recursive procedure that, for efficiency reasons,
didn't perfonn input validation. We hope the ''unsafe'' prefix will discourage people from

124 4. Data Control

using unsafe-triangle, but this is no guarantee. However, nesting the definition of un
safe-triangle inside the definition of triangle makes this impossible:

(define (triangle n)

; local definition
(define (unsafe-triangle n)

(if (zero? n)
o
(+ n (unsafe-triangle (- n 1»»)

; body of triangle
(if (natural? n)

(unsafe-triangle n)
(error nbad input" triangle n»)

(Don't be confused by the fact that triangle and unsafe-triangle both have a parameter
called n. The situation is no different than when unsafe-triangle was a global procedure.
Remember, there are almost no restrictions on parameter names.)

Improving Efficiency

Sometimes a lengthy computation based on a procedure's parameters can be performed
once, then defined as a local constant, where it can be referenced multiple times inside
the procedure without recomputing it. The following variance procedure is an example of
this application of definition nesting.

How do we describe the distribution of a list of test scores? The two principle features
of a distribution -center and spread -can be quantified by the mean and standard de
viation, respectively.

The mean is simply the average:

(define (mean scores)
(if (distribution? scores)

(/ (apply + scores) (length scores»
(error ~bad input" mean scores»)

where distribution? is a polymorphic predicate that returns true if its input is a nonempty
list of real numbers. We use the all? predicate defined in Chapter 2:

(define (distribution? val)
(and (list? val)

(all? real? val)
(not (null? val»»

The standard deviation is the positive square root of the variance:

(define (std-dev scores)
(if (distribution? scores)

4.1. Procedure Blocks 125

(sqrt (variance scores»
(error "bad input" std-dev scores»)

Basically, the variance of a list of scores is the average deviation, where the deviation of
a score x is its signed distance to the mean, J.C

deviation of x = x - ~

But by the definition of mean, the average deviation is always 0, therefore we modify the
definition of variance slightly, and take it to be the average squared deviation. Assume
scores - (XI x2 ••• xN), then:

N 2
. i~l(xi -~)

var~ance =
N

How do we translate this expression iRto a Scheme procedure:

; = variance of a list of scores
(define (variance scores) ???)

Assume deviations - (XI - ~X2 - ~ '" xN - ~). Given the square procedure, we can use the
map procedure to convert deviations into a list of squared deviations. The variance is
simply the mean of this list:

(mean (map square deviations» ; = variance

We could use the map procedure again to translate a list of scores into a list of deviations:

(define deviations (map deviation scores»

With only a single list argument, map's procedure argument must be unary:

; = score - mean
(define (deviation score) ???) ; 1 input only

Given the list of scores as a nonlocal, the deviation procedure could simply compute the
mean internally:

(define (deviation score)
(- score (mean scores»)

Nesting the definition of deviation inside the definition of variance insures that scores
will be available as a nonlocal:

(define (variance scores)
(define (deviation score)

(- score (mean scores»)
(define deviations (map deviation scores»
(mean (map square deviations»)

Although this works, it is terribly inefficient. Assume the length of the list of scores is N.
Inside the map procedure, the deviation procedure will be called N times. But each time

126 4. Data Control

the deviation procedure is called, it calls (mean scores), which requires N -I additions
and always produces the same result, J.L Hence, these same N - I additions will be per
formed N times, for a total of 1t - N additions.

By computing the mean once and making it a local constant relative to variance, it
can be available to deviation as a nonlocal:

(define (variance scores)
(define mu (mean scores»
(define (deviation score) (- score mu»
(define deviations (map deviation scores»
(mean (map square deviations»)

This reduces the number of sums from 1t - N to N - 1, a great improvement if N is large.
Finally, notice that we can save ourselves an additional traversal of scores (N steps)

by combining square and deviation:

(define (variance scores)
(define mu (mean scores»
(define (deviationA 2 score) (square (- score mu»)
(mean (map deviation A 2 scores»)

4.2. The Environment Model of Eager Evaluation

The eager and lazy evaluation algorithms outlined at the beginning of Chapter 3 are
called substitution models because in the third step of eager evaluation (the second step
of lazy evaluation) arguments (operands) substitute or replace the parameters in the pro
cedure's body. Now that procedures can also have local definitions, we need a more
elaborate explanation of eager evaluation 1 called the environment model.

4.2.1. Bindings

A binding is an association between a name and a value. Definitions create bindings and
store them in tables called environments. The process of creating a binding from a defi
nition is called resolution. For example, resolving the definition:

(define (cube z) (* z z z»

creates a binding between the name, cube, and the procedure (lambda (z) (* z z z» and
then stores this binding in the global environment.

The extent or lifetime of a binding is the period of time the binding exists. If a bind
ing exists until the end of a Scheme session, it has global extent, otherwise it has local
extent.

1 The environment model of lazy evaluation is presented in Chapter 8.

4.2. The Environment Model of Eager Evaluation 127

The scope of a binding is the region of the program where the binding is visible. If a
binding is visible throughout the entire program. it has global scope. otherwise it has lo
cal scope.

A global binding is a binding created by resolving a global definition. Unless a
global binding is explicitly replaced. it has global extent and scope. For example. as long
as we don't redefme cube. the binding between cube and (lambda (z) (* z Z z» will have
global scope and extent. However. if we change our minds and redefme cube:

i = a 3D box with height = width = depth = s
(define (cube s) (make-box s s s»

then a binding between cube and (lambda (s) (make-box s s s» replaces the binding be
tween cube and (lambda (z) (* z z z».

Local bindings are bindings created by local definitions. We know that the scope of a
local binding is limited to the procedure in which it is defined. In other words. local
bindings have local scope. Usually a local binding also has local extent; as soon as the
procedure terminates. the binding disappears. Later we will leam how to create bindings
with local scope but global extent.

Obviously local bindings can't be stored in the global environment; otherwise they
would have global scope. The solution is to adjust the eager evaluation algorithm so it
creates a temporary extension of the global environment. adds the bindings created by re
solving any local defmitions to the extension. then evaluates the body of the procedure
relative to this temporary environment.

In fact. instead of replacing parameters by arguments in the procedure's body as re
quired by the substitution model of eager evaluation. we can simply add bindings be
tween parameters and arguments (called parameter bindings) to the temporary envi
ronment along with the declared bindings. then evaluate the parameterized body of the
procedure relative to the temporary environment. Here's the environment model of eager
evaluation:

1. Evaluate the operator.
2. Produce arguments by evaluating the operands.
3. Resolve all local defmitions.
4. Extend the calling environment by adding declared and parameter bindings.
5. Evaluate the parameterized body of the procedure relative to the extended envi

ronment.
6. Restore the original calling environment.

4.2.2. Environments

We need to understand the structure of an environment in order to understand how it is
extended and restored. An environment can be viewed as a list of frames:

ENVIRONMENT ;;= (FRAME ...)

128 4. Data Control

A frame is a table of bindings. For example, Figure 4.1 shows a frame containing the
bindings x-I, y - 2, and z - 3.

NAME VALUE
x 1

y 2

z 3

Figure 4.1

To be more definite, we can model a binding as a pair and a frame as an association list.
Thus, we can model the (fame in Figure 4.1 as the association list «x. 1) (y. 2) (z. 3».

We will complete the formalization of eager evaluation in the last chapter. For now,
let's represent an environment using environment diagrams. For example, recall the
small? predicate defined in Chapter 2:

(define (small? z) (close? z 0» ; i.e., z near 0

Let's assume the close? predicate is the one defmed earlier, containing the local defmi
tion of delta. Assume also that a global defmition of delta has been made:

(define delta 100)

Thus, the global environment contains bindings for delta, small?, close? dist, etc. When
the application (small? 1(0) is evaluated, a new frame containing the parameter binding z
- 100 extends the current (i.e., global) environment. The body of small:

(close? z 0)

is evaluated relative to this extended environment.
This creates a new frame containing the parameter bindings x-I 00, y - 0, and the

declared binding delta - 10·3>. This frame is added to the calling environment, and the
body of close?:

«- (dist x y) delta)

is evaluated relative to this environment. This stage of evaluation can be represented with
the environment diagram shown in Figure 4.2. We can now begin to see why the global
binding delta - 100 does not effect the behavior of close? When the evaluator encoun
ters delta in the expression «- (dist x y) delta), it searches the first frame in the environ
ment before it searches the last frame, and therefore it finds the binding delta - 10·3> be
fore it fmds the binding delta - 100.

4.2. The Environment Model of Eager Evaluation 129

«- (list x y) deltal-1 L.
--.1 _e_V_al_...J1 - #f
E " C

NAME VALUE

x 100
y 0 (close? z 0) environment

delta le-20

CE ,.
NAME VALUE

100
(s

z
mall? 100) environment

CE (- Calling Environment) ,
NAME VALUE

close? (lambda ...)
small? Oambda ...)
dist (lambda ...) Global Environment

delta 100
etc. etc.

Figure 4.2

4.2.3. Static Versus Dynamic Scope Rules

When eval encounters a name inside an expression, it searches the environment for the
corresponding value. To complete our description of eager evaluation, we must give a
full account of how this search is performed.

As we saw in the last example, eval begins by searching the first frame in its envi
ronment. If the name is a parameter or a local, then eval will fmd the corresponding value
in this frame, and the search will end.

What happens if the name is nonlocal? Clearly a binding won't be found in the first
frame. It would seem reasonable for eval to next search the second frame in the environ
ment. If this search fails, the third frame could be searched, and so on until the global en
vironment is finally searched. If searching the global environment fails, an undefined
symbol error could be raised.

To get a clearer picture of this search procedure, let's replace the close? predicate in
the last example with the close? predicate defmed earlier. Recall that this procedure com-
pared (dist x y) to a global constant delta: .

130 4. Data Control

(define (close? x y)

«= (dist x y) delta»

(define delta le-20)

As long as delta isn't redefmed, close? should work properly. Figure 4.3 shows an envi
ronment diagram representing the evaluation of «- (dist x y) delta).

«- (dist x y) doIta)=:\ eva! r #f

+ CE
NAME VALUE

x 100 close? z 0) environment (

Y 0

CE ,
NAME VALUE

(
z 100

small? 1(0) environment

CE
••

NAME VALUE

close? Oambda •..)
small? (lambda ...)
dist (lambda ...)

Global Environment

delta le-20
etc. etc.

Figure 4.3

When eval encounters the nonlocal delta, the search of the first frame will fail. The
search of the second frame will also fail. Eventually, the global environment will be
searched, where the binding delta - 10.20 will be discovered.

It seems like the search strategy outlined here works well, but consider the following
scenario: Suppose close?, dist, and delta are included in a commercial library of mathe
matical procedures. Although the documentation for the library explains what the dist
and close? procedures do, descriptions of how they work are omitted to prevent someone
from duplicating the code and reselling it. For the same reason, compiled rather than
source code is shipped to customers. (Yes, Scheme can be compiled!)

A library customer decides to use the close? predicate to implement small? Because
there are no restrictions on parameter names and because she couldn't know about the
constant delta, she decides to call small?'s parameter delta. (Hey, it's a free country!)

4.2. The Environment Model of Eager Evaluation 131

(define (small? delta) (close? delta 0»

Next, she tests her new procedure:

> (small? 100)
it
> (small? 1000)
it
> (small? 10000000000000)
it

Confused, frightened, and enraged, she calls the support number and reports that the li
brary's close? procedure has a bug. What went wrong?

Neither close? nor small? has a bug. (Although it may take our software engineers
some weeks to come to this conclusion.) The problem is in our environment search strat
egy. At the point «- (dist x y) delta) is evaluated, the environment diagram looks exactly
like the diagram in Figure 4.3, except the binding delta .. 100 replaces the binding z ...
100 in the middle frame. Unfortunately, our simple search strategy will encounter this
binding before the delta .. 10-20 binding in the global environment. Thus, the body of
close? is equivalent to «- 100 1(0), which, of course, is true.

Searching the calling environment (CE) for the values of nonlocals is called the dy
namic scope rule. Because of problems like the one just described, this rule is rarely
used. It's unreasonable to expect procedures to work in any environment other than the
environment in which they were defined. An alternative search strategy would be to
search the defining environment (DE) for values of nonlocals.This is called the static
scope rule.

In the preceeding example, the defining environment for close? -i.e., the environ
ment that contains the close? procedure -is the global environment. If we search this
environment for the value of delta, we skip over the delta - 100 binding in the middle
frame and arrive at the correct delta .. 10-20 binding.

How do we remember the defIning environment of a procedure? This information
will have to be included with the procedure's parameters and body when the procedure is
defIned. A procedure, together with its defIning environment, is called a closure. We can
picture a closure as a three-compartment box floating in the computer's memory. The
fIrst compartment contains the procedure's parameter list, the second compartment con
tains the body, and the third compartment contains a pointer to the procedure's defIning
environment, as in Figure 4.4.

-NAME VALUE - I
small? -.I zl (close? z 0) I DE I I
etc. etc. closure

Global Environment

Figure 4.4

132 4. Data Control

4.3. Abstract Data Types

Case's virus had bored a window through the library's command ice. He punched him
self through and found an infinite blue space ranged with color-coded spheres strung
on a tight grid of pale blue neon. In the nonspace of the matrix, the interior of a given
data construct possessed unlimited subjective dimension; a child's toy calculator would
have presented limitless gulfs of nothingness hung with a few basic commands ... He
began to glide through the spheres as if he were on invisible tracks.

-William Gibson, Neuromancer

Unfortunately programmers can't explicitly define new domains in Scheme. Instead, new
domains must be defined implicitly through their constructors and selectors. A domain
defined this way is called an abstract data type, or ADT for short.

4.3.1. Example: The CARD ADT

Pairs are useful when two pieces of data need to be grouped together. For example, a
playing card has two attributes, suit and rank. If we represent suits and ranks using sym
bols, we can represent a card as a pair of symbols:

SUIT spade I heart I diamond I club
RANK ::= ace I two I three . .. I jack I queen I king
CARD::= (RANK . SUIT)

Here are some examples of cards:

(define cardl '(ace. heart»
(define card2 '(king. club»
(define card3 '(three. spade»

Our card constructor could merely cons together its suit and rank inputs:

(define (make-card rank suit) (cons rank suit»

We can add input validation to our constructor by first defining lists of all suits and
ranks:

(define ranks
'(ace two three four five six seven eight nine ten

jack queen king»

(define suits '(spade club diamond heart»

The improved constructor uses the member? predicate defined in Chapter 2 to determine
if its inputs belong to these lists:

4.3. Abstract Data Types 133

(define (make-card rank suit)
(if (and (member? rank ranks) (member? suit suits»

(cons rank suit)
(error "bad input(s)" make-card rank suit»)

We also define selectors for extracting rank and suit. These procedures are nothing" more
than wrappers (as in the fancy paper used to wrap a gift) for car and cdr:

(define (rank card) (car card»
(define (suit card) (cdr card»

This seems inefficient because the only purpose of rank and suit is to call car and cdr. We
can achieve the same effect by explicitly derIDing rank and suit to be pseudonyms of car
and cdr:

(define rank car)
(define suit cdr)

We can complete the disguise by defining constants representing the suits and ranks:

(define spade 'spade)
(define heart 'heart)
(define diamond 'diamond)
(define club 'club)

(define ace 'ace)
(define two 'twO)
etc.
(define queen 'queen)
(define king 'king)

Assume the following dermitions have been made:

(define cardl (make-card ace spade»
(define card2 (make-card jack diamond»

Here are some sample calls to our selectors:

) (suit cardl)
spade
) (rank card2)
jack

Because suits and ranks are symbols, we can use the efficient eq? predicate to build
predicates like the following ones:

(define (spade? card)
(eq? spade (suit card»)

(define (ace? card)
(eq? ace (rank card»)

134 4. Data Control

Here are some sample evaluations:

> (spade? cardl)
#t
> (ace? card2)
#f

Using the CARD ADT

The make-suit procedure constructs arbitrary suits of cards represented as lists:

i = list of all cards of input suit
(define (make-suit suit) ???)

Its algorithm makes use of the map procedure. The idea is to map the make-card con
structor onto the list of ranks defmed earlier:

(map make-card ranks) i this fails!

Unfortunately, make-card expects two inputs, but we are only supplying a single list of
inputs to map. What's needed is a variant of make-card that expects a single input, rank,
and makes a card of a fixed suit determined by a nonlocal:

i = (rank . suit)
(define (make-card-of-suit rank)

(make-card rank suit» i suit is nonlocal

Because the nonlocal suit is determined by the make-suit parameter, this variant of make
card will have to be defined inside the make-suit procedure:

i = list of all cards of suit input
(define (make-suit suit)

i local, hence in the scope of suit
(define (make-card-of-suit rank)

(make-card rank suit»

(map make-card-of-suit ranks»

We use this procedure as follows:

(define spades (make-suit spade»
(define hearts (make-suit heart»
(define diamonds (make-suit diamond»
(define clubs (make-suit club»

A deck of cards is gotten by appending the suits:

(define deck (append spades hearts clubs diamonds»

4.3. Abstract Data Types 135

Some implementations of Scheme provide a random number generator. Assume n is an
unsigned integer:

(random n) '"'
a pseudo random integer m such that 0 ~ m < n

We can combine this with length and list-retto write a procedure that picks a random
card from a list of cards: .

; '"' a random card selected from the list cards
(define (pick-a-card cards)

(list-ref cards (random (length cards»»

Here are some sample calls:

> (pick-a-card deck)
(three • club)
> (pick-a-card deck)
(jack • diamond)
> (pick-a-card hearts)
(eight • heart)

4.3.2. Information Hiding and Data Abstraction

Why bother introducing constructors and selectors? Wouldn't it be simpler and more ef
ficient to use cons instead of make-card, car instead of rank, and cdr instead of suit?

Imagine the following scenario: A customer develops a bridge-playing program using
version 1 of a library purchased from us containing the CARD ADT and some basic pro
cedures for manipulating cards. Knowing that cards are represented as pairs, the cus
tomer freely uses car and cdr to compute the rank and suit of cards and cons to create
cards. In version 2 of our library we decide for efficiency reasons to represent suits and
ranks as strings and cards as vectors such as: #("spade" "ace"). Unfortunately, the cus
tomer will not be able to use (i.e., buy) version 2 of our library without replacing all oc
currences of car, cdr, and cons in the bridge-playing program. Furthermore, these occur
rences may be so ubiquitous that changing them would be nearly impossible.

Perhaps now would be a good time to recall the abstraction Principle from Chapter 2:

Structure and function should be independent

In the case of the CARD ADT, structure refers to the way cards are represented as pairs
of symbols, while function refers to the interface procedures available for manipulating
cards: make-card, suit, and rank. The abstraction principle is related to the information
hiding principle, because keeping structure and function independent in effect hides the
representation from users.

If the customer in our scenario only uses the intended selectors and constructors, then
the bridge-playing program can use version 2 of the library without any changes.

136 4. Data Control

4.3.3. Example: The POINT ADT

Mathematicians use vectors to represent points in three-dimensional space:

POINT ::= #(REAL REAL REAL)

For example. the point #(2 5 3) represents the point with x-coordinate -= 2, y-coordinate =

5, and z-coordinate = 3.
We begin by introducing a polymorphic predicate to determine if values are points:

(define (point? val)
(and (vector? val)

(= (vector-length val) 3)
(and (real? (vector-ref val 0»

(real? (vector-ref vall»
(real? (vector-ref val 2»

We can use vector-ref to define procedures for extracting the x, y, and z coordinates of a
point:

(define (xc point)
(if (point? paint)

(vector-ref point 0)
(error "bad input" xc point»)

The yc and zc selectors are left as copying exercises:

(define (yc point) ???)
(define (zc point) ???)

We could define a constructor as a pseudonym for vector:

(define make-point vector)

Instead, we add some input validation:

(define (make-point xc yc zc)
(if (and (real? xc) (real? yc) (real? zc»

(vector xc yc zc)
(error "bad input(s)" make-point xc yc zc»)

Basic arithmetic procedures can be extended to points. For example, the x-coordinate of
the sum of two points PI and P2 is the sum of the x-coordinate of PI and the x-coordinate
of P2. The y- and z-coordinates of the sum of PI and P2 are defined analogously. This
leads to the following Scheme procedure:

(define (point+ pointl point2)
(if (and (point? pI) (point? p2»

(make-point
(+ (xc pointl) (xc point2»
(+ (yc pointl) (yc point2»

4.4. Overloading 137

(+ (zc point!) (zc point2»)
(error ~bad input(s)" point+ point! point2»)

The x-coordinate of the (scalar) product of point P and number n is n times the x
coordinate of P. The y- and z-coordinates of the product are defmed analogously. In
Scheme this can be fonnalized as:

(define (sca!ar* num point)
(if (and (real? num) (point? point»

(make-point
(* num (xc point»
(* num (yc point»
(* num (zc point»)

(error ~bad input(s)" scalar* num point»)

We can combine point+ and scalar* to define point subtraction:

(define (point- pOint! point2)
(point+ point! (scalar* -! point2»)

The (dot) product of two points Pl and P2 is a number gotten by adding the products of
the x-, y-, and z-coordinates of Pl and P2:

(define (point* point! point2)
(if (and (point? point!) (point? point2»

(+ (* (xc point!) (xc point2»
(* (yc point!) (yc point2»
(* (zc point!) (zc point2»)

(error ~bad input(s)" point* point! point2»)

The distance between two points Pl and P2 is the square root of the difference between

Pl andP2:

(define (point-dist point! point2)
(sqrt (point* (point- point! point2)

(point- point! point2»»

4.4. Overloading

When several algorithms share the same name, we say the name is overloaded. For ex
ample, the name + actually denotes four different addition algorithms: integer addition,
rational addition, floating-point addition, and complex addition. These algorithms are
called variants of the + procedure. Scheme determines which variant to invoke by ex
amining the types of the actual parameters:

) (+ 2 3)
5

; integer addition variant invoked

138 4. Data Control

> (+ 2/3 5/3) rational addition variant invoked
7/3
> (+ 2.3 5.2) floating point addition variant invoked
5.5
> (+ 2+3i 1+4i) complex addition variant invoked
3+7i

Of course -, I, *, -, and < are also overloaded procedures. What other primitive proce
dures are overloaded? What variant of + is invoked when Scheme adds numbers of
mixed types:

> (+ 3 1/2 3.4)
7.1

Overloading makes a procedure more versatile because it can be used in several con
texts. Designing procedures so that they accept a wide variety of inputs can be stated as
the completeness principle:

Procedures should return outputs for the largest possible number of inputs.

We can derme overloaded procedures using type recognizers and conditional structures.
For example, let's derme an overloaded version of the reverse procedure. Our procedure
will reverse lists, strings, vectors, or pairs. If the input is a scalar, we can generate an er
ror message or leave the value unchanged. We choose the latter course of action:

; = reverse of string, vector, list, or pair input
(define (val-reverse val)

(cond «list? val) (reverse val»
«string? val)

(list->string
(reverse (string->list val»»

«vector? val)
(list->vector

(reverse (vector->list val»»
«pair? val) (cons (cdr val) (car val»)
(else val»)

Do you think the order of clauses is important in this definition? Why? Why isn't input
validation necessary in this procedure? Here are some sample evaluations:

> (val-reverse
#(U 0 i e a)
> (val-reverse
"dlrow olleh"
> (val-reverse
(u 0 i e a)
> (val-reverse
(2 • 1)

#(aeiou»

"hello world")

'(a e i 0 U»

'(1 2»

> (val-reverse 'hello)
hello

4.5. Domains as Data 139

An ordinal is any member of a domain that can be naturally ordered. In Scheme reals,
characters, and strings have natural orderings:

ORDINAL ::= REAL I STRING I CHAR

We can defme an overloaded version of < as follows:

i = it if vall < val2, vall & val2 any ordinals
(define (ord<? vall val2)

(cond
«and (real? vall) (real? vaI2»

« vall vaI2»
«and (string? vall) (string? vaI2»

(string<? vall vaI2»
«and (char? vall) (char? vaI2»

(char<? vall vaI2»
(else (error ~bad input(s)" ord<? vall vaI2»»

In this case we generate an error message when we fail to recognize vall or val2 because
there seems to be no reasonable alternative. Why did we restrict vall and val2 to be reals
instead of arbitrary numbers? How could an n-ary version of ord<? be implemented?

4.5. Domains as Data

A type expression is a phrase that denotes a domain. Languages like Pascal and C pro
vide type expressions such as real, float, char, and int. Unfortunately, Scheme does not
provide type expressions. We can remedy this situation by introducing our own:

(define number-type 'number)
(define char-type 'char)
(define boole-type 'boole)
(define port-type 'port)
(define string-type 'string)
(define procedure-type 'procedure)
(define vector-type 'vector)
(define list-type 'list)
(define pair-type 'pair)
(define symbol-type 'symbol)
(define value-type 'value) i the universal type

We can use Scheme's polymorphic classification predicates to build a polymorphic pro
cedure that computes types:

140 4. Data Control

(define (get-type val)
(cond «symbol? val) symbol-type)

«number? val) number-type)
«string? val) string-type)
«procedure? val) procedure-type)
«vector? val) vector-type)
«char? val) char-type)
«boolean? val) boole-type)
«list? val) list-type)
«pair? val) pair-type)
(else value-type»)

Here's an example of our get-type procedure in action:

> (get-type '(a e i 0 u»
list
> (get-type "+")
strinq
> (get-type +)
procedure
> (get-type '+)
symbol

4.5.1. Programmer-Defined Types

The get-type procedure works because Scheme uses dynamic type checking, which im
plies that Scheme must attach type information -called a type tag -to every Scheme
value. The type tag is used by the recognizers: number?, pair?, string?, etc.

We can use the same idea. When we defme an ADT, we can defme our constructors
so they attach type tags to the values they construct. First we need to develop some ma
chinery for attaching and removing type tags. In a sense, we are introducing type tags as
an abstract data type on their own. A programmer-defmed type tag will be a pair of the
form:

TYPE-TAG ::= (type. TEXP)

where TEXP is a Scheme value representing a type expression. Here's our type tag con
structor:

(define (rnake-type-tag texp) (cons 'type texp»

Tagging type tags with the symbol 'type allows us to distinguish between ordinary pairs
and type tagged values:

; = it if val is type tagged
(define (typed? val)

(and (pair? val)

4.5. Domains as Data 141

(pair? (car val»
(eq? (eaar val) 'type»)

The following procedures allow programmers to attach and remove types from values:

i = «type. texp) . untyped-val)
(define (put-type texp untyped-val)

(if (typed? val)
(cons (make-type-tag texp)

·(rem-type untyped-val» i switch
(cons (make-type-tag texp) untyped-val»)

i = val, where typed-val = «type. texp) . val)
(define (rem-type typed-val)

(if (typed? typed-val)
(cdr typed-val)
typed-val» ; no type to remove

We can extend the get-type procedure defined earlier to extract the types of programmer
tagged values:

i = type of user or system typed val
(define (type val)

(if (typed? val)
(edar val) i = texp of «type. texp) . XXX)

(get-type val»

To implement type checking it will be important to determine when two types are
equivalent:

(define (type=? texpl texp2)
(equal? texpl texp2» i structural type equivalence

4.5.2. Example: Complex Numbers

Assume complex numbers aren't represented in Scheme. Instead, we can introduce them
as an ADT. A complex number can be pictured as a point z in the complex plane (Figure
4.5).

142 4. Data Control

imaginary
P.art

b Z

~~~~ ____ ~reru 
a part 

Figure 4.5 

We can represent Z in rectangular coordinates as a + bi, or in polar coordinates as rei9. 

Both representations can be represented as pairs: (a. b) or (r .9): 

COMPLEX::= RECTANGULAR I POLAR I REAL 
RECTANGULAR ::= (REAL-PART . IMAG-PART) 
POLAR::= (MAGNITUDE . ANGLE) 
REAL-PART, IMAG-PART, MAGNITUDE, ANGLE::= REAL 

These representations can coexist if we attach type tags. We begin by defming two new 
type expressions: 

(define rectangular-type 'rectangular) 
(define polar-type 'polar) 

Next, we redefine constructors for polar and rectangular representations of complex 
numbers: 

; = «type. rectangular) . (rp . ip» 
(define (make-rectangular rp ip) 

(if (and (real? rp) (real? ip» 
(put-type rectangular-type (cons rp ip» 
(error ~bad input(s)" make-rectangular rp ip») 

; = «type. polar) . (mag. ang» 
(define (make-polar mag ang) 

(if (and (real? mag) (real? ang» 
(put-type polar-type (cons mag ang» 
(error ~bad input(s)" make-polar mag ang») 

We can replace Scheme's classification predicates for complex numbers with our own: 

(define (polar? val) 
(type=? (type val) polar-type» 

(define (rectangular? val) 
(type=? (type val) rectangular-type» 



4.5. Domains as Data 143 

(define (complex? val) 
(or (polar? val) (rectangular? val) (real? val») 

Defining selectors can get involved because the inputs can be polar or rectangular: 

(define (real-part z) 
i Zl = untyped z 
(define z' (rem-type z» i works even if z is real! 

(cond «rectangular? z) (car Z'» 
«polar? z) (* (car Z') (cos (cdr z'»» 
( (real? z) z) 
(else (error ~bad input" real-part z»» 

We leave the remaining selectors as an exercise: 

(define (imag-part z) ???) 
{define (magnitude z) ???) 
(define (angle z) ???) 

The next step is to defme coercions between polar and rectangular representations. One 
idea is simply to switch type tags: 

{define (rectangular->polar z) 
(if (rectangular? z) 

(put-type polar-type (rem-type z» 
(error ~bad input to rectangular->polar: U z») 

Retyping a value is called casting, and a procedure that merely retypes its input is called 
a cast.2 For example, rectangular->polar casts the value «type. rectangular) . (2 . 3» to 
the value «type . polar) • (2 . 3». . 

Sometimes casts are useful, but in this situation it's not what we want because 2 + 3i 

is not equivalent in any mathematical sense to :ze3i. The right way to implement rectan
gular->poiar is: 

{define (rectangular->polar z) 
(if (rectangular? z) 

{make-polar (magnitude z) (angle z» 
(error ~bad input" rectangular->polar z») 

The reverse coercion is left as an exercise: 

(define (polar->rectangular z) ???) 

Of course we can't read and write complex numbers, but we can define special coercions 
between complex numbers and strings, which can be used to implement complex YO 
procedures: 

2 In C, coercions are called casts. 



144 4. Data Control 

; = ~a+bi", suitable for printing 
(define (complex->string z) 

(if (complex? z) 
(string-append 

(nurnber->string (real-part z» 
,,+" 
(nurnber->string (imag-part z» 
"i") 

(error "bad input" complex->string z») 

The reverse coercion is more difficult, so we leave it as an exercise: 

(define (string->complex str) ???) 

The advantage of having dual representations for complex numbers becomes apparent 
when we implement complex arithmetic. Implementing addition is easy if we assume a 
rectangular representation because: 

a+bi + c+di = e+fi where e = a + c and f = b + d 

Here's our definition: 

; = zl + z2 
(define (complex+ zl z2) 

(if (and (complex? zl) (complex? z2» 
(make-rectangular 

(+ (real-part zl) (real-part z2» 
(+ (imag-part zl) (imag-part z2») 

(error "bad input(s)" complex+ zl z2») 

Multiplying complex numbers is easier if we assume a polar representation because: 

aeia * bei~ = ceiy where c = a * band y - a + P 
Here's our definition: 

; = zl * z2 
(define (complex* zl z2) 

(if (and (complex? zl) (complex? z2» 
(make-polar 

(* (magnitude zl) (magnitude z2» 
(+ (angle zl) (angle z2») 

(error ~bad input(s)" complex* zl z2») 

What will happen if the inputs to complex+ are of mixed types? 

> (complex+ (make-rectangular 4 2) 8) 
??? 

The remaining arithmetic procedures are left as an exercise: 



(define (complex/ zl z2) ???) 
(define (complex- zl z2) ???) 
(define (complex=? zl z2) ???) 

4.6. Data-Driven Programming 

4.6. Data-Driven Programming 145 

We normally think of data as passive, dumb entities manipulated by active, intelligent 
entities called procedures. The data-driven programming paradigm reverses this view by 
regarding data as active, intelligent entities, while procedures are nothing more than mes
sages requesting data objects to perform some action. 

For example, let's reimplement the POINT ADT in the data-driven style. The basic 
idea is to represent a point as a message-dispatching procedure with a nonglobal defIDing 
environment. Information about the point, x-, y-, and z-coordinates, is stored inside the 
defining frame, accessible only to the message dispatcher: 

(define (make-point xc yc Zc) 

; define message dispatcher 
(define (self msg) 

(case msg 
«XC) xc) 
«yc) . yc) 
«Zc) zc) 
«type) 'point) 
(else (error msg-err self msg») 

(if (and (real? xc) (real? yC) (real? zc» 
self i return dispatcher! 
(error 'bad input(s)" make-point xc yc zc») 

where msg-err is a standard error message: 

(define msg-err 'unrecognized message") 

The peculiar thing about the definition of make-point is that after it defmes the message 
dispatcher (which is called "self' to maintain some similarity with c++ and Smalltalk), it 
doesn't call it; rather it returns it as a value! 

To get a better picture of how make-point works, study the environment diagram in 
Figure 4.6 after the defmition: 

(define pI (make-point 7 2 9» 

Notice that while the bindings xc ... 7, yc ... 2, and zc ... 9 are local and hence have local 
scopes (they are only available to selt), they have global extents. This is because there is 
a permanent reference from pI in the global environment, through DE, to the frame con
taining these bindings. 



146 4. Data Control 

name value 

xc 
yc 
'ZC 

self 

name 

pI 

etc. etc. 

Global Environment 

Figure 4.6 

To use points we only need to complete the ADT by defining the selectors and a point? 
predicate. The following definitions use a technique called message passing. Although in 
the header it appears that xc is the name of a procedure and point is the name of a pa
rameter, the body of xc shows these roles reversed. Now point is a procedure being ap
plied to the message 'xc: 

(define (xc point) 
(if (point? val) 

(point 'XC) 

(error "bad input" xc point») 

The remaining selectors are left as copying exercises: 

(define (yc point) ???) 
(define (zc point) ???) 

Applying xc to pI actually works: 

> (XC pI) 
7 

How? Evaluating (xc pI) reduces to evaluating (pI 'xc). Remember, pI is really a mes
sage-dispatching procedure called "self' in its defining environment. So the application 
(pI 'xc) is equivalent to the application (self 'xc). The value of the case expression inside 
the self is the parameter xc, which is bound to 7 in the defining environment of pl. 

Unfortunately, the point? predicate has a flaw. It properly returns #f if applied to any 
nonprocedural object. It also works properly if applied to any dispatch procedure that 
handles the 'type message, but in other cases an error occurs at the point val is applied to 
the symbol 'type: 



(define (point? val) 
(and (procedure? val) 

(eq? 'point (val 'type»» 

Appendices 147 

Now that our ADT is complete, we can use the vector arithmetic procedures without 
bothering to redefine them. For example, we can define p2 as the sum of pi with itself: 

(define p2 (point+ pI pI» 

The coordinates of p2 are as we would expect: 

> (xc p2) 
14 
> (zc p2) 
18 
> (yc p2) 
4 

The only suspicious thing is Scheme's inability to display p2: 

> p2 
*[procedure se1f] 

Of course we could implement our own point printer as an abstract procedure: . 

(define (display-point point) 
(writeln ~(~ (xc point) (yc point) (zc point) ~)"» 

Appendices 

Appendix 4.1. Object-Oriented Programming 

So far, our Scheme programs have been built out of procedures and data, but these are 
not the only possible building blocks. In object-oriented programming, components 
called objects are used as primitive elements. 

Object-oriented programming is popular because software engineers often build 
models of appHcation domains -the real world contexts their programs will work in -
using objects (i.e., representations of people, organizations, places, events, and things). 
Translating these models into program designs and, ultimately, programs, is much easier 
if objects are also available in the design and implementation domains. 

After a very brief introduction of the main concepts of object-oriented programming: 
encapsulation, inheritance, and polymorphism, we will construct a simple object sys
tem in Scheme called SOS (Scheme Object System). 



148 4. Data Control 

Encapsulation 

An object is a software component that encapsulates services (procedures or methods) 
and attributes (variables). The attribute values of an object, i.e., the current values of 
its attribute variables, taken together, fonn the obje.ct's state. 

The basic interaction between two objects fits a client-server model. The client object 
(or a human user) requests a service from the server object. Requesting a service is 
called service invocation, method invocation, or message passing. The server object 
may respond with a result (Figure 4.7). 

( Client 1 request 

result 
~( Server J 

Figure 4.7 

Assume smith is an employee object that encapsulates attributes such as name, salary, 
and social security number, and provides services for accessing and modifying these at
tributes. The following fragment of client code shows how these services are invoked in 
SOS using the send procedure: 

> (send smith 'get-ssn) 
111234321 
> (send smith 'get-class) 
employee 
> (send smith 'set-salary (5000) 
done 
> (send smith 'get-salary) 
45000 

Classes 

A class is a software component that constructs objects; it is an object factOry. A class 
may be a special kind of object, or it may belong to a separate domain of software com
ponents. An object constructed by a class is called an instance of that class. All instances 
of a class provide the same services, but differ in their attribute values (i.e., their states). 

For example, smith is an instance of the employee class. In SOS the employee class is 
identified with a constructor named employee and expecting the initial attribute values of 
the object to be constructed as arguments: 

i specify name and ssn, initial salary = 0 
(define smith (employee ~Ian Smith" 11123(321» 



Appendices 149 

Inheritance 

We can define a new class by extending an existing class. We call the new class the de
rived class or subclass and the existing class the base class or super class. We also say 
the derived class extends the base class. 

The attributes and services of the base class automatically become attributes and 
services of the derived class. This is called inheritance. Inheritance is a reuse mecha
nism because it allows the implementor of a derived class to reuse the code defined in the 
base class. 

A derived class often represents a subclass of the base class. For example, a secretary 
class would be a logical class to derive from our employee class. Instances of secretary 
would encapsulate attributes such as typing speed, and inherit attributes such as name, 
salary, and Social Security number. 

; specify name & ssn, current typing speed = 60 wpm 
(define jones (secretary ·Jim Jones" 11122~333 60» 

Notice that jones provides set-salary and get-salary services inherited from the employee 
base class: 

> (send jones 'set-salary 30000) 
done 
> (send jones 'get-salary) 
30000 

Association 

Inheritance is a relationship between classes. A relationship between objects is called an 
association. For example, a person may play multiple roles in an application domain. 
Smith might be an employee and a customer. Therefore, it may be unwise to encapsulate 
personal information in an employee object if this same information will also need to be 
encapsulated and maintained in a customer object. A better strategy is to encapsulate em
ployee attributes: salary, social security number, security clearance, etc. in an employee 
object and personal attributes: name, address, phone number, etc. in an associated person 
object: 

(define smith (person ~Smith" ~(408) 555-4252"» 
; emp1 is associated with smith: 
(define emp1 (employee smith 111234321» 
; associate smith with emp1: 
(send smith 'set-role emp1) 

If smith suddenly becomes a customer, we can create an associated customer object and 
quickly change Smith's role in the application domain: 

; initial purchase = $120.45, person = smith 
(define cust42 (customer 120.45 smith» 



150 4. Data Control 

i re associate smith with cust42: 
(send smith 'set-role cust42) 

This makes more sense than trying to make smith an instance of the employee and cus
tomer classes. 

Polymorphism 

In the context of object-oriented programming, polymorphism means a client object 
only needs to know the base class of a server object. This is accomplished by equipping 
base classes with virtual procedures. 

Virtual Procedures 

The following client procedure prints each employee in its input list: 

i staff = a list of employees 
(define (print-staff staff) 

(define (virtual-print employee) 
(send employee 'print» 

(map virtual-print staff» 

Assume programmer, secretary, and manager are among the classes derived from em
ployee, and the following team of employees is assembled: 

(define wong (manager ... » 
(define jones (secretary ... » 
(define morris (programmer ... » 
(define team (list wong jones morris» 

Here's the output of print-staff applied to team: 

> (print-staff team) 
Name: "Pat wong" 
SSN: 333224444 
Salary: 90000 
position: manager 
Secretary: "Jim Jones" 
Name: "Jim Jones" 
SSN: 111223333 
Salary: 30000 
position: secretary 
WPM: 60 
Name: "Robert Morris Jr. " 
SSN: 123456789 
Salary: 60000 
position: programmer 
Languages: Scheme c++ Unix 



Appendices 151 

Although map applied the same virtual-print procedure to each employee in the input list, 
the result was slightly different for each one. This is because each employee object re
sponded to the print message according to its own specialized display-method. In other 
words, the employee object, not the virtual-print procedure determined what would 
happen. 

We can think of this as a type of overloading, because the behavior of virtual-print 
depends on the type of its input. But unlike the overloaded procedures discussed earlier, 
which at least performed some sort of type dispatch, virtual-print doesn't really do any 
work other than send a message to its input. We call this type of procedure a virtual 
procedure. 

Unlike overloaded procedures, a virtual procedure never needs to be changed, even 
when new subclasses are added to the application. At any point in the future we can add 
new subclasses of employee: accountant, intern, vice-president, etc., but we never need to 
change the definition of print-staff or virtual-print. Even if we forget to include special
ized display-methods for these classes, the print message will be delegated to the em
ployee parent object, where it will be handled by the default display-method. 

In other words, the client code only needed to know the base class of the objects in 
the staff list: employee. We can think of print-staff as a logical description of how to 
print a list of employees. Once this logic is in place, it should never have to be changed, 
while the data-dependent details of how to display particular kinds of employees is en
capsulated in each employee object. The print-staff procedure is reusable, even in the 
face of future system expansions. 

SOS: A Scheme Object System 

The step from data-driven programming to object-oriented programming is small. The 
main difference is the way unrecognized messages are handled by the dispatcher. In the 
POINT example given earlier the dispatcher raises an error in the else clause of the case
expression. A better idea is to delegate the message to another dispatcher, called the par
ent, that may know how to respond to the message. The· parent is an associated object 
created by the base class constructor. 

Assume xx:t" is a subclass of yyy. In SOS, the general format of an xx:t" object con
structor is: 

(define (xxx ... ) 
(define parent (yyy ... » 
services and attributes go here 
(define (self . msg) 

(case (car msg) 

self) 

; message handling goes here 
«get-parent) parent) 
«get-class) 'XXX) 
(else (delegate parent msg»» 



152 4. Data Control 

It is similar to the POINT consbUctor, but we have made a few improvements. First, a lo
cal parent object is defined representing the associated instance of the super class, yyy. 

Second, the msg parameter of the self procedure is an optional list. This allows for 
more complex messages, although (car msg) determines which case clause is evaluated. 

Third, get-parent and get-class are included as standard messages. Because these mes
sages are common, we introduce global names for them: 

; some pre-defined messages: 
(define get-parent 'get-parent) 
(define get-class 'get-class) 

Fourth, if msg is unrecognized, it is delegated to the parent object. The delegate proce
dure is just a synonym for Scheme's apply procedure: 

(define delegate apply) 

We introduce the send procedure to hide the fact that objects are merely dispatch proce
dures: 

(define (send object . msg) 
(apply object msg» 

Finally, we provide a base object to serve as the last stop for unrecognized messages. If a 
message is delegated all the way back to this object, it really is unrecognized, and an er
ror is raised: 

(define (base-object . msg) 
(case (car msg) 

«get-parent) base-object) 
«get-class) 'base-class) 
(else 

Example 

(error ~unrecognized message" 
'base-object 
msg») » 

We are now ready to implement the employee class and some of its subclasses. 

The Employee Class 

Because the employee class is at the top of our inheritance hierarchy, all employee in
stances inherit from the base-object. An instance of the employee class encapsulates at
tributes such as an employee's name, Social Security number, and salary. 

Two employee services are provided. One displays information about the employee 
on the monitor, the other sets the employee's salary when it's time to give the employee a 
promotion or demotion. Notice that the message dispatcher invokes the display-method 
in response to several different messages: 



(define (employee name ssn) 
; attributes 
(define parent base-object) 
(define salary 0) 

; services 
(define (display-method) 

(writeln ~Name:" #\tab name) 
(writeln ~SSN:" #\tab ssn) 
(writeln ~Salary:" #\tab salary» 

(define (set-salary amt) 
(set! salary amt» 

(define (self . msg) 
(case (car msg) 

«get-salary) salary) 
«get-name) name) 
«get-ssn) ssn) 

Appendices 153 

«display print write show) (display-method» 
«set-salary) (set-salary (cadr msg») 
«(get-parent) parent) 
«get-class) 'Employee) 
(else (delegate parent msg»» 

self) 

Notice that the operand of set-salary is (cadr msg). Recall that the set-salary message is 
sent along with the new salary: 

(send smith 'set-salary 90000) 

This turns into the application: (self 'set-salary 90000), which fonns the parameter bind
ing: msg - (set-salary 90000). Observe that (cadr msg) is 90000, the new salary. 

Assignment Commands 

The set-salary service uses set!, a Scheme assignment command. (We encountered set! in 
the last chapter where it was used by the receiver procedure to "redefme" the return pro
cedure as the current continuation.) The syntax of a set! command is: 

(set! NAME EXPRESSION) 

Briefly, set! is used to "redefme" NAME to the value of EXPRESSION. This isn't quite 
accurate. The full story is the topic of Chapter 7. Assignment commands like set! don't 
belong to functional Scheme but playa useful role in object-oriented programming, 
hence they appear here. Outside of the context of object-oriented programming, readers 
should refrain from using assignment commands until they are properly introduced in 
Chapter 7. 



154 4. Data Control 

The Secretary Class 

We express the fact that secretary is a subclass of employee by defming the parent to be 
an instance of the employee super class. All unrecognized messages will be delegated to 
this object, creating the illusion that secretary objects can respond to employee messages. 

Also, notice that display-method is redefmed. When a secretary object receives a print 
message, it invokes its local display-method rather than delegating the message to its par
ent object However, in addition to other things, the secretary display-method explicitly 
sends a print message to its parent In this way the secretary display-method appears to 
extend the employee display-method: 

(define (secretary name ssn speed) 

(define parent (employee name ssn» 

(define (display-method) 
(send parent print) 
(writeln ~Position: ~ #\tab 'secretary) 
(writeln ~WPM: ~ #\tab speed» 

(define (self . msg) 
(case (car msg) 

«get-wpm) speed) 

self) 

«display print write show) (display-method» 
«get-parent) parent) 
«get-class get-position) 'secretary) 
(else (delegate parent msg}}» 

It might be useful to look at the environment diagram in Figure 4.8 after considering 
the defmition: 

(define jones (secretary ~Jim Jones" 111223333 60» 

The middle frame contains the secretary attributes and services. The name jones in the 
global environment is bound to the self procedure in this frame. The parent name in the 
secretary frame is bound to the self procedure in the employee frame at the top of the 
figure. This frame was implicitly created by the employee application inside the secretary 
constructor. It contains all of the employee attributes and services. The parent name in 
the employee frame is bound to the global base-object procedure. 



Appendices 155 

name value 

name Jim Jones 
salary 0 r=-
parent r--

<tisplay-methoc 

self ~ r--

111223333 I~ 
ssn 

+ 
name value 

speed 60 
parent -
<tisplay-method -
self --:"""'-' 

• name value 

jones 
base-object -etc etc. -

Global EnvIronment 

Figure 4.8 

The Manager Class 

Like the secretary class, manager is a subclass of employee. It, too, extends the definition 
of display-method: 

(define (manager name ssn) 

(define parent (employee name ssn» 
(define secretary base-object) ; for now 

(define (display-method) 
(define sec (send secretary 'get-name» 
(send parent print) 
(writeln ~Position: ~ #\tab 'manager) 
(writeln ~Secretary: ~ #\tab sec» 

(define (set-secretary sec) 
(set! secretary sec» 



156 4. Data Control 

(define (self . msg) 
(case (car msg) 

«get-secretary) secretary} 

self} 

«set-secretary) (set-secretary (cadr msg)}} 
«display print write) (display-method}) 
«get-parent) parent} 
«get-class get-position) 'manager} 
(else (delegate parent msg)}}} 

Notice that instances of the manager class are associated with instances of the secretary 
class. 

Appendix 4.2. Expression Blocks 

We saw that procedure blocks can be used to restrict the scopes of procedures and data, 
but we can do even better. Scheme allows scopes to be restricted to a single expression 
using expression blocks. The format of an expression block is 

BLOCK::= (LET (DECLARATION ... ) BODY} 

BODY is simply a sequence of expressions: 

BODY :: = EXPRESSION ... 

and DECLARATION is a name paired with an expression: 

DECLARATION ::= (NAME EXPRESSION) 

Resolving a declaration creates a binding between NAME and the value of 
EXPRESSION. The scope of this binding extends to the end of the body, but no further. 
The beginning of the scope depends on the LET operator. 

There are three variations of the LET operator: 

LET ::= let I let* I letrec 

Blocks formed with let are called collateral blocks. Declarations in a collateral block are 
resolved in parallel, hence the bindings they create are unavailable to each other. In other 
words, the scope of a binding created by a declaration inside a collateral block is exactly 
the body of the block (see Figure 4.9). 

Q" «x 2) (y (+ x x))) 1<+ r~) 

scope ofx =2 

Figure 4.9 



Appendices 157 

Blocks formed with let* are called sequential blocks. Declarations in a sequential block 
are resolved sequentially; hence the binding created by a declaration is available to the 
declarations that follow it. In other words, the scope of a binding created by a declaration 
inside a sequential block begins immediately after the declaration and extends to the end 
of the body (see Figure 4.10). 

scope ofx-2 

Figure 4.10 . 

Blocks formed with letrec are called recursive blocks. Procedure declarations in a recur
sive block can refer to themselves or to procedure bindings created by subsequent decla
rations (see Figure 4.11). 

(letrec «f (lambda ... » 
«g (lamba ... ») 4- scope of g - (lambda ... ) 

(+ (f x) (g x») 

Figure 4.11 

Assume the following global declaration has been made: 

(define x 100) 

We can understand the difference between let and let* by studying the following evalua
tions: 

) (let «x 2) (y (+ x X») (+ x y» 
202 
) (let* «x 2) (y (+ X x») (+ X y» 
6 

In the let expression the first declaration created the binding x - 2. Because the second 
declaration is resolved simultaneously, the x - 2 binding is unavailable at the time (+ x x) 
is evaluated; hence x is assumed to refer to the global x, which is bound to 100, and the 
binding y - 200 is created. The scope of both local bindings is the body, (+ x y). The 
value produced by this expression, 202, is the value produced by the let expression. 

\ In the let* expression the first declaration also created the binding x - 2. The second 
declaration is resolved after this binding is created; hence the x in (+ x x) is assumed to 
refer to the local x, which is bound to 2, thus the binding y - 4 is created. The scope of 
these two bindings extends over the body; hence the value of (+ x y), and therefore the 
value of the let* expression, is 6. 

Notice that sequential blocks are a redundant feature because we can accomplish the 
same effect by nesting collateral blocks: 



158 4. Data Control 

> (let « x 2» (let « y (+ x x») (+ x y») 
6 

In fact, collateral blocks are redundant because we can accomplish the same effect using 
a technique called lambda lifting. The idea is to trade declaration bindings for parameter 
bindings. For example, the expression block: 

(let « x 2) (y 3» (+ x Y 5» 

is equivalent to the application: 

( (lambda (x y) (+ x Y 5» 2 3) 

Suppose we wanted to include the definition of a recursive procedure inside an expres
sion block. For example, the factorial procedure returns the product of all integers be
tween 1 and its argument, n: 

(fact n) = (* 1 2 3 ... n) 

We cannot define fact inside a let* block: 

> (let* «fact (lambda (n) 
(if (= n 0) 

1 
(* n (fact (- n 1»»» 

(z 3» 
(fact z» 

Error, undefined symbol: fact 

The problem is that the scope of the binding fact - (lambda ... ) begins immediately after 
the declaration (fact (lambda ... ». Unfortunately, the fact procedure is used inside its own 
declaration. Technically, this use of fact is out of the scope of the fact binding. 

To remedy this situation, Scheme provides recursive expression blocks. Thus, the 
following expression can be evaluated: 

> (letrec «fact (lambda (n) 

6 

(z 3» 
(fact z» 

(if (= n 0) 

1 
(* n (fact (- n 1»»» 

Applications of Expression Blocks 

Expression blocks have several advantages over procedure blocks. First, because proce
dure blocks aren't officially part of ANSI/IEEE Scheme, they may not be available in 
some implementations. 

Second, expression blocks are ordinary expressions, hence they can be nested inside 
other expressions. Definitions are not expressions. They can only appear at the beginning 



Problems 159 

of a procedure block. For example, assume we want to add input validation to the vari
ance procedure defined earlier. The following definition illegally attempts to nest defini
tions inside of an if-structure: 

(define (variance scores) 
(if (distribution? scores) 

(begin 
(define rnu (mean scores» NO! 
(define (deviation"2 score) ; NO! 

(square (- score mu») 
(mean (map deviation"2 scores») 

(error "bad input" variance scores») 

We could rename variance unsafe-variance and nest it inside a wrapper procedure called 
variance: 

(define (variance scores) 
(define (unsafe-variance scores) ... ) 
(if (distribution? scores) 

(unsafe-variance scores) 
(error "bad input" variance scores») 

The problem with this approach is that it requires an extra procedure application, which 
we now know incurs the overhead of extending and restoring environments. An eco
nomical alternative is to use an expression block, which can. be nested inside an if
structure: 

(define (variance scores) 
(if (distribution? scores) 

(let* «mu (mean scores» 
(deviation"2 

(lambda (score) 
(square (- score rnu»») 

(mean (map deviation"2 scores») 
(error "bad input" variance scores») 

(Why was let* used instead of let?) 

Problems 

Solutions to the following problems are to be given in functional Scheme; do not use 
procedures or special forms discussed in subsequent chapters. (You may use set! inside 
object constructors.) Do not use any of the 110 procedures discussed in the last chapter 
except to print error or diagnostic messages or unless you are specifically directed by the 
problem to use them. You may use the definitions given in this or previous chapters as 
well as solutions to other problems (although you will have to include these definitions in 



160 4. Data Control 

your definition file so you can test your defmitions). You may also defme any supporting 
procedures you need. You are required to validate inputs. 

Problem 4.1. 

You acquire· a LISP interpreter from an FI'P site. Unfortunately, the documentation is 
written in Latin. You know the interpreter accepts Scheme syntax, but you don't know if 
it uses the dynamic or static scope rule. How can you fmd out? 

Problem 4.2. 

Complete the following overloaded procedures. In each case the procedure generalizes 
the corresponding list procedure. Your procedures should work for strings, lists, vectors, 
and pairs if ·appropriate. You will need to decide for yourself how to handle simple in
puts. 

a. (define (val-length val) ???) 
b. (define (val-append . vals) ???) 
c. (define (val-ref val pOS) ???) 
d. (define (val-member item val) ???) 
e. (define (val-tail val POS) ???) 

Problem 4.3. 

Modify the get-type procedure so it distinguishes between integers, reals, rationals, and 
complex numbers and distinguishes between input and output ports. Be careful of your 
clause order. Is the order of clauses in the unmodified defmition important? 

Problem 4.4. 

Is the order of clauses in get-type important? Why? 

Problem 4.5. 

We can make our type expressions more elaborate by introducing composite type expres
sions: 

TEXP ::= SIMPLE-TEXP I COMPOSITE-TEXP 

SIMPLE-TEXP :: = 
number I char I symbol I string I port I boolean I 
value 



Problems 161 

COMPOSITE-TEXP ::= 
(pair TEXP TEXP) I (list TEXP) I (vector TEXP) I (map 

TEXP ... ) 

Using these type expressions, state the types of the values denoted by following expres
sions: 

a. sin type - (map number number) 
b. #«1 2 3) (4 5 6) (7 8 9» 
c. quotient 
d. string<? 
e. floor 
f. char? 
g. '«a. 1) (b . 2) (c . 3» 
h. '(t #t #\t ~t") 

Problem 4.6. 

How could you modify get-type so it returns the pair type above? (Hint: get-type can call 
itself.) Do the other type expressions make sense in Scheme? 

Problem 4.7. 

How could you implement a value? predicate in Scheme? 

(value? val) 
= #t if val is a Scheme value 
= if, otherwise 

Do you think this would be useful? 

Problem 4.8. 

Why isn't input validation important for polymorphic procedures? 

Problem 4.9. 

There are three kinds of type errors. One results when the types of the actual parameters 
don't match the types of the corresponding formal parameters, another results when the 
operand of an application isn't a valid procedure and the third results when the number of 
actual parameters is different from the number of formal parameters. Input validation 
guards against the ftrst kind of type error. Why don't we need input validation to guard 
against the second and third kinds of type errors? 



162 4. Data Control 

Problem 4.10. 

Implement an n-ary version of ord<? (defined earlier). 

Problem 4.11. The RATIONAL ADT 

Assume Scheme did not supply rational numbers. We can represent rationals as pairs of 
integers, 

RATIONAL ::= (INTEGER. POSITIVE) 

where POSITIVE represents any positive integer. 
We interpret the pair (n . m) as the rational nlm. Implement the necessary constructor, 

predicate, and selectors: 

(define (make-rational num den) ???) 
(define (numerator rat) ???) 
(define (denominator rat) ???) 
(define (rational? rat) ???) 

Your constructor should perform reductions (use gcd) and should guarantee that the de
nominator will always be positive. For example: 

> (make-rational 4 -8) 
(-1 . 2) 
> (make-rational 4 0) 
error! 

Gripe: Zero Denominator 
Source: make-rational 

Problem 4.12. 

Given the rational ADT described earlier, implement the following procedures. Do not 
make any assumptions about how rationals are represented. 

a. (define (rational+ ratl rat2) ???) 
b. (define (rational* ratl rat2) ???) 
c. (define (rational- ratl rat2) ???) 
d. (define (rational/ ratl rat2) ???) 
e. (define (rational=? ratl rat2) ???) 
f. (define (rational<? ratl rat2) ???) 



Problems 163 

Problem 4.13. The REAL ADT 

Assume Scheme did not supply real numbers. We can represent a real number as a pair of 
the form: 

REAL ::= (INTEGER. NATURAL) 

Recall: 

NATURAL ::= 0 I 1 I 2 I 3 I etc. 
INTEGER::= [-]NATURAL 

We interpret the pair (n . m) as the real n*10-m. Define the necessary constructor and se
lectors for this ADT: 

(define (make-real b e) ???) 
(define (exponent real) ???) 
(define (base real) ???) 

Here are some sample constructions: 

(define r32.0046 (make-real 320046 4» 
(define r32.00460 (make-real 3200460 5» 
(define r.00003 (make-real 3 5» 
(define r99.0 (make-real 99 0» 

Problem 4.14. 

Implement the following procedures. Assume a, b, and c are members of the REAL do
main defined in the previous problem. Except for the predicates, these problems return 
members of the REAL domain. Do not make any assumptions about how reals are repre
sented. 

a. (define (truncate a) ???) 
b. (define (real* a b) ???) 
c. (define (real+ a b) ???) 
d. (define (real>? a b) ???) 
e. (define (real=? a b) ???) 

Problem 4.15. 

Define a coercion from the REAL domain defined earlier to Scheme's domain of real 
numbers. 

(define (real->real a) ???) 



164 4. Data Control 

Problem 4.16. The INTEGER ADT 

Assume Scheme supplied natural numbers, but not integers. An integer can be repre
sented as a pair of the form: 

INTEGER ::= (BOOLE . NATURAL) 

We interpret the pair (#t . 42) as +42 and the pair (#f • 42) as -42. Notice that 0 has two 
representations: (#t • 0) and (#f • 0). Assuming a and b are members of this INTEGER 
domain, implement the following procedures: 

a. (define (integer+ a b) ???) 
b. (define (integer* a b) ???) 
c. (define (integer<? a b) ???) 
d. (define (zero? a) ???) 

Problem 4.17. The NATURAL ADT 

Assume Scheme did not supply any numbers. We can represent the natural number n as a 
list of n It's: 

NATURAL::= (#t '" ) 

'This is called a unary representation because only a single symbol is used. Assuming 
this representation, implement the following procedures. Remember, you are pretending 
Scheme does not support numbers of any sort, so the primitive arithmetic and ordering 
procedures are unavailable: 

a. (define (natural+ a b) ???) 
b. (define (natural* a b) ???) 
c. (define (natural<? a b) ???) 
d. (define (natural=? a b) ???) 

Problem 4.18. 

For convenience, implement coercions between unary and Scheme representations of 
natural numbers: 

(define (natural->unary nat) ???) 
(define (unary->natural uny) ???) 

Problem 4.19. Readers and Writers 

Assume the domain definitions given earlier. Implement the following coercions: 



Problems 165 

a. (define (rational->string rat) ???) 
b. (define (rectangular->string z) ???) 
c. (define (integer->string int) ???) 
d. (define (real->string real) ???) 

Problem 4.20. 

Implement an ADT for rational numbers in the data-driven style. Test your implementa
tion by defming procedures for adding, multiplying, subtracting, and dividing rationals. 
These procedures should be independent of the method used to represent rational num
bers. 

Problem 4.21. Registers, Counters, and Accumulators 

A register is a small storage device capable of holding a natural number less than some 
given maximum. The primitive register operations are read and write. 

Like a register, a counter also stores a number. Besides read and write, a counter 
provides users with procedures for incrementing and decrementing the stored number. 

An accumulator is a counter that provides a procedure for adding any number to the 
stored number. 

Accumulators are specialized counters, and counters are specialized registers. Using 
the tools and methods described in this chapter, define object-oriented constructors for 
registers, counters, and accumulators. 

Only register objects should have a variable containing the integer value. Counter and 
accumulator objects will have to send read and write messages to their parent objects to 
access this data. 

Problem 4.22. 

Assume the following definitions have been made: 

(define x 100) 
(define y 200) 

Evaluate the following Scheme expressions. Your answers should be consistent with the 
IEEE! ANSI specification. If the expressions contain errors or produce unspecified val
ues, then say why. 

1. (let « x 4) (y (+ xl») (* x y» 
2. (let* «x 4) (y (+ xl») (* x y» 
3. (let «f (lambda (g) (g x»» 

(let «g (lambda (y) (+ Y y»» 
(f g») 

4. ( let « f (lambda (y) (+ x y»» 



166 4. Data Control 

Problem 4.23. 

(let «x 50» 
(f x») 

Rewrite the following sequential block as a collateral block: 

(let* «x 22) (y (+ x x» (z (* y y») (gcd x y z» 

Problem 4.24. 

Use lambda lifting to rewrite the following collateral block as an application of a lambda 
structure: 

(let « x 2) (y 3) (z 4» (lcm x y z» 
= «lambda (???) ???) ???) 

Problem 4.25. 

Rewrite the variance procedure using expression blocks instead of procedure blocks. 

Problem 4.26. Combinators 

A procedure that defmes an internal procedure but returns it as a value instead of evalu
ating it is called a combinator. Implement the following combinators: 

a. (deriv proc) 
= approximates derivative of proc 

b. (compose procl proc2) 
= proc3, where (proc3 x) (procl (proc2 x» 

Problem 4.27. Curried Procedures 

A unary procedure expects a single input. Binary procedures expect two inputs, 3-ary 
procedures expect three inputs, etc. In the 1930s the mathematician Haskell Curry de
vised a way of reducing all binary, 3-ary, 4-ary, etc. procedures to unary procedures. The 
corresponding unary procedure is said to be curried. For example, the binary procedure: 

(define (avg x y) (/ (+ x y) 2» 

can be reduced to the curried procedure: 



(define (curried-avg x) 
(define (avg-x y) (/ (+ x y) 2» 
avg-x) 

Problem"s 167 

Make sure you understand the way curried-avg is used to average two numbers. Here is a 
sample transcript: 

> (avg 2 4) 
3 
> «curried-avg 2) 4) 
3 
> (define avg-2 (avg 2» 
error: not enough inputs to avg 
> (define avg-2 (curried-avg 2» 
unspecified 
> avg-2 
avg-z: 
> (avg-2 4) 
3 

The disadvantage of curried procedures is the extra set of parenthesis needed to call 
them: «curried-avg 2) 3) instead of (avg 2 3). The advantage of Curried procedures is 
that unlike unCurried procedures, they return something sensible when given fewer than 
the expected number of inputs. For example, (curried-avg 2) returned a procedure, avg-x, 
which when applied to any number y returns the result of averaging y with 2. By contrast, 
(avg 2) produced an error message. 

Curried procedures are so useful that PC Scheme provides a syntax for defining them. 
For example, an alternative syntax for the dermition of curried-avg is: 

(define «curried-avg x) y) (/ (+ x y) 2» 

Derme a curried version of a procedure that expects the lengths of the legs of a right tri
angle as input and returns the length of the hypotenuse as output. 

Problem 4.28. The Fixed Point Combinator 

One approach to getting rid of recursive procedures is to treat them as limits of succes
sively better nonrecursive approximations. An Improver expects an approximation of a 
recursive procedure as input and returns a better approximation as output. For example: 

(define (fact-improver old-fact) 

(define (improved-fact n) 
(if (zero? n) 

1 
(* n (old-fact (subl n»») 

improved-fact) 



168 4. Data Control 

Starting with a crude approximation of the factorial procedure: 

(define (fact-O n) (if (= n 0) 1 0» 

we can build incrementally better approximations: 

(define fact-1 (fact-improver fact-O» 
(define fact-2 (fact-improver fact-1» 
(define fact-3 (fact-improver fact-2» 
(define fact-4 (fact-improver fact-3» 

Observe that: 

(fact-k n) 
= n!, if 0 S n S k 
"" 0, otherwise. 

We can think of the true factorial procedure as the limit of these approximations. We can 
represent this limit, but we need a recursive iterator procedure to do it: 

(define (iterate n improver init) 
(if (zero? n) 

init 
(improver (iterate improver (- n 1) init»» 

Using iterator we can define the factorial procedure as follows: 

(define (fact n) 
«iterate fact-improver n fact-O) n» 

We can trace a call to (fact 3) to see what's going on: 

(fact 3) 
«iterate fact-improver 3 fact-O) 3) 

«fact-improver 
(fact-improver (fact-improver fact-O») 3) 

(fact-3 3) 
6 

Observe that the fact procedure defmed earlier can't be further improved: 

(define better-fact (fact-improver fact» 

but for every n: (fact n) - (better-fact n). In other words, fact is a fixed point for fact
improver. 

Unfortunately, our last approach to getting rid of recursive procedures wasn't com
pletely successful because we needed the recursive iterator procedure. Another approacb 
is to define self-improving improvers and apply them to themselves: 

(define (self-improver old-self-improver) 



(define (better-fact n) 
«self old-self-improver) n» 

(fact-improver better-fact» 

(define fact (self self-improver» 

This deftnition relies on the self application combinator: 

(define (self f) (f f» 

Problems 169 

We can generalize self-improver by replacing fact-improver by a parameter. The result
ing procedure is known. as the fixed point combinator: 

(define (fix improver) 

(define (self-improver old-self-improver) 
(define (better n) 

«self old-self-improver) n» 
(improver better» 

(self self-improver» 

Returning to our example, we can redeftne fact as follows: 

(define fact (fix fact-improver» 

Notice that no recursion was used to defme fact, fact-improver, or ftx. We can employ 
this same strategy to replace all recursive deftnitions with nonrecursive defmitions of the 
form: 

(define foo (fix foo-improver» 

Then, using our preprocessor, we can replace all occurrences of foo by (ftx foo
improver). This eliminates the need of all deftnitions. 

Use ftx to defme the triangle procedure from Chapter 3. 



5 
Iteration 

1he systems view looks at the world in terms of relationships and integration. Systems 
are integrated wholes whose properties cannot be reduced to those of smaller units. In
stead of concentrating on basic building blocks or basic substances, the systems ap- . 
proach emphasizes basic principles of organization. 

-Frijtof Capra, The Turning Point 

The systems Capra is referring to are so ubiquitous that any definition would sound 
hopelessly vague (we'll try anyway). Electromechanical systems range from computer 
chips and vending machines to space shuttles and ocean liners, while biological systems 
range from viruses and amoebas to whales, brains, and redwoods. Some organisms form 
complex social systems such as ecosystems, beehives, ant hills, universities, corporations, 
armies, even nations. There are legal systems, economic systems, mathematical systems, 

I • 
problem-solvmg systems, solar systems, weather systems, hardware systems, and soft-
ware systems. The whole universe is a system. 

Systems are interesting to programmers and computer scientists for two reasons. 
First, computer models can be used to predict and control the behavior of a system. Many 
computer applications take this form. Computers are used to predict stock market be
havior, control satellites, and track weather systems. Second, a computer executing a 
program is an example of a system. Predicting and controlling program behavior is not 
only the goal of program testing, but also the goal of many system-level programs, in
cluding operating systems, optimizers, interpreters, and debuggers. 

5.1. Modeling Systems 

At any moment a system S is in a particular state. The state of a system can be anything: 
temperature, velocity, volume, content, position, value, mass, structure, entropy, energy, 
etc. The domain of all possible states is called the system's state space: 

STATE ::= all possible states of system S 

Starting in an initial state, the system repeatedly changes its state until it enters a final 
state. The next state usually depends on the previous state, but may depend on other pa
rameters as well. Next states are computed by an update procedure: 

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998



5.1. Modeling Systems 171 

; = next state of system S 
(define (update current-state ... ) ... ) 

Final states are recognized by a final? predicate: 

; = #t if state is a final state of system S 

(define (final? state) ... ) 

The sequence of states a system passes through, beginning with an initial state, is called 
an orbit. A convergent orbit is an orbit that terminates in a tmal state. Not all orbits 
terminate. For example, an unchecked population just keeps growing. In this case we say 
the orbit diverges. An oscillating orbit perpetually bounces between several states 
(called an attractor) without ever reaching a final state. 

The system is driven by a control-loop, which iteratively updates the state of the 
system until a final state is reached. Each iteration of update is called a cycle. The num
ber of cycles needed to reach a final state (if a final state can be reached) will depend on 
the initial state. But how can we repeat the update procedure an unknown number of 
times? 

5.1.1. Iterative Evaluation 

Scheme provides an iterative structure called a do-loop that allows programmers to re
peat the evaluation of several expressions until some condition becomes true (i.e., un
false). Scheme's do-loop is similar to Pascal's repeat-until-statement or C's for
command. The do-loop is both a control structure and a block structure. It is a control 
structure because it allows programmers to control the flow of evaluation. It is a block 
structure similar to a let-expression because it establishes temporary bindings with local 
scopes. 

The format of a do-loop is: 

DO ::= (do (DECLARATION ... ) EXIT-CLAUSE BODY) 

BODY is just a sequence of zero or more expressions: 

BODY :: = EXPRESSION .. , 

These expressions are evaluated on each repetition, although their values are discarded. 
(Normally these would be calls to output procedures like newline or display.) 

EXIT-CLAUSE has the same form as the CLAUSE appearing in a cond-expression: 

EXIT-CLAUSE::= (CONDITION EXPRESSION ... ) 

When CONDITION is no longer #f, the remaining EXPRESSIONs in EXIT-CLAUSE 
are evaluated and the do-loop terminates. The value of the last EXPRESSION in EXIT
CLAUSE is the value of the do-loop. The values of the other EXPRESSIONs are dis
carded, so these would normally be calls to output procedures also. 

DECLARATION is similar to the declaration appearing in an expression block, ex
cept two expressions are specified. The first expression, INIT, is initially bound to 



172 5. Itemtion 

NAME. The second expression, STEP, is bound to NAME after each subsequent itera
tion: 

DECLARATION::= (NAME INIT STEP) 

INIT, STEP, and CONDmON are arbitrary Scheme expressions: 

INIT, STEP, CONDITION ::= EXPRESSION 

The evaluation of a do-loop is complicated: 

1. A temporary environment is created containing bindings between each 
NAME and the value of the associated INIT expression. The evaluation 
order of the INIT expressions is unspecified. 

2. CONDmON is evaluated relative to this environment. 

3a. If· the value of CONDmON is not M, then each EXPRESSION in 
CLAUSE is evaluated. The value of the last one is the value returned by 
the do-expression. Otherwise: 

3b. If the value of CONDmON is M, then each EXPRESSION in BODY (if 
there are any) is evaluated. The values of all these expressions are dis
carded, so they are evaluated only for the side effects they produce. 

4. Each STEP expression is evaluated relative to the temporary environment 
The evaluation order of the STEP expressions is unspecified. After all the 
STEP expressions are evaluated, each NAME in rebound to the value of 
its associated STEP expression. The new bindings replace the old bindings 
in the temporary environment. 

s. Go to Step 2. 

It's easiest to understand how a do-loop works by studying an example: 

(define (count-down n) 
(do «i n (- i 1» 

«< i 0) 'blast-off!) 
(display i) 
(newline) ) ) 

declaration 
exit clause 
body 
body 

The do-loop inside count-down has a single declamtion: 

(i n (- i 1» 

When the do-loop is evaluated, a temporary frame containing a binding between i and n 
(INIT) extends the current environment The scope of this binding extends only to the 
end of the do-loop body. 



5.1. Modeling Systems 173 

At the beginning of each subsequent iteration the STEP expression, (- i 1), is evalu
ated relative to the temporary environment. The value of this expression is bound to i and 
replaces the old binding of i. Thus, each iteration of the do-loop replaces the old binding 
i - jwith a new binding i - k where k- j- 1. 

The EXIT-CLAUSE of the do-loop is: 

«< i 0) 'blast-off!) 

The CONDmON, « i 0), is evaluated on each iteration after the bindings are created. 
Eventually, i will fall below 0, « i 0) will then be #t, and the symbol blast-off! will be 
the value of the entire do-loop. 

The BODY of the do-loop is the sequence: 

(display i) 
(newline) 

These expressions are evaluated on each repetition assuming CONDmON is #f. The 
values of these expressions are discarded, but their side-effects can be seen as screen out
put. 

Here are some sample evaluations of count-down: 

> (count-down 3) 
3 
2 
1 
o 
blast-off! 

> (define x (count-down 3) 
3 
2 
1 
o 
unspecified 
> x 
blast-off! 

5.1.2. Control Loops 

= value of (define ... ) 

blast-off! returned by do & count-down 

Assume the initial state, update procedure, and fmal? predicate of a system S are given: 

(define init-state ... ) ; = initial state of system S 

; = next state of system S 
(define (update current-state) ... ) 



174 5. Iteration 

; = #t if state is a final state of system S 
(define (final? state) ... ) 

We can implement the control loop as a do-loop: 

(do «state init-state (update state») 
«final? state) state» 

This do-loop consists of a single declaration: 

(state init-state (update state» 

which initially binds state to init-state, and subsequently rebinds state to the value of 
(update state). The exit clause of this do-loop is: 

«final? state) state) 

When (final? state) is not #f, the current value of state is returned; otherwise state is re
bound to (update state) and the cycle repeats. Notice, this do-loop has no body. This 
could hardly make a difference because the values of expressions in the body are dis
carded anyway. We could formalize the control loop as a Scheme procedure: 

(define (control-loop init-state) 
(do «state init-state (update state») 

«final? state) state») 

Recall that a meta-procedure is a procedure that expects procedures as inputs or returns 
procedures as outputs. We have already seen several examples of meta-procedures: for
each, map, apply, lambda, and the object oriented constructors of the last chapter. Of 
course we are free to define our own meta-procedures. We can generalize our control 
loop procedure by treating the update procedure and fmal? predicate as ordinary pa
rameters: 

(define (control-loop init-state final? update) 
(do «state init-state (update state») 

«final? state) state») 

We could make control-loop more useful by keeping track of the cycle and printing the 
current cycle and state in the body of the do-loop if an optional trace argument is sup
plied: 

(define 
(control-loop init-state final? update . trace) 

(do «state init-state (update state» 
(cycle 0 (+ cycle 1») 

«final? state) state) 
(if (not (null? trace» 

(begin 
(writeln "cycle "cycle) 
(writeln "state = " state»») 



5.1. Modeling Systems 175 

5.1.3. Example: A Digital Clock 

A digital clock is a system with state given by a vector of the form: 

TIME 

where 

#(HOUR MIN SEC) 

HOUR::= 0 I 1 I 2 I ... I 23 
SEC, MIN ::= 0 I 1 I 2 I ... I 59 

We can treat TIME as an abstract data type (ADT) by introducing appropriate time con
structors and selectors: 

(define (make-time hour min sec) 
(vector hour min sec» 

(define (hour time) (vector-ref time 0» 
(define (minute time) (vector-ref time 1» 
(define (second time) (vector-ref time 2» 

The state of a digital clock is updated every second by the update procedure: 

; = time 1 second after input time 
(define (update-time time) 

(update-hour (update-min (update-sec time»» 

The update-sec procedure merely increments the second component of time modulo 60: 

(define (update-sec time) 
(make-time (hour time) 

(minute time) 
(mod60+ 1 (second time»» 

If (second time) is zero, then the update-min procedure increments the minute component 
modulo 60; otherwise it does nothing: 

(define (update-min time) 
(if (zero? (second time» 

(make-time (hour time) 

time) ) 

(mod60+ 1 (minute time» 
(second time» 

If both (second time) and (minute time) are zero, then update-hour increments the hour 
component modulo 24; otherwise it does nothing: 

(define (update-hour time) 
(if (and (zero? (minute time» 

(zero? (second time») 
(make-time (mod24+ 1 (hour time» 



176 5. Iteration 

time) ) 

(minute time) 
(second time» 

The m0d24+ and mod60+ procedures are simply modulo 24 and modulo 60 addition, re
spectively: 

(define (mod24+ x y) (modulo (+ x y) 24» 
(define (mod60+ x y) (modulo (+ x y) 60» 

If we imagine our digital clock has an alarm, then we can defme the final state to be the 
time at which the alarm rings. I have to set my clock for 6:30 A.M.: 

(define (alarm? time) 
(and (- (hour time) 6) 

(= (minute time) 30) 
(- (second time) 0») 

Assume the initial state of the clock is 6:29:55 

(define init-time (make-time 6 29 55» 

The control loop iterates the update-time procedure for five "seconds:" 

> (control-loop init-time alarm? update-time 'trace) 
state. *(6 29 55) 
cycle • 0 
state. *(6 29 56) 
cycle • 1 
state. *(6 29 57) 
cycle • 2 
state. *(6 29 58) 
cycle • 3 
state. *<6 29 59) 
cycle • 4 
*(6 30 0) 

Digital versus Analog Systems 

Our example raises an important distinction. If we modeled an analog clock rather than a 
digital clock we would take states to be vectors of the form: 

TIME ::= #(REAL REAL REAL) 

where the components indicate the angle from 0 to 21t radians of the hour, minute, and 
second hands, respectively. More significantly, the state of the analog clock is updated 
continuously rather than at discrete one-second intervals. Systems like analog clocks that 
update their states continuously are called continuous dynamical systems. Systems like 



5.1. Modeling Systems 177 

digital clocks that update their states at discrete intervals are called discrete dynamical 
systems. 

Like digital clocks, digital computers are discrete dynamical systems, although analog 
computers do exist. (What is the state space of a computer?) As such, they are not very 
good for modeling continuous dynamical systems. The best they can do is discretely ap
proximate continuous state change by updating the state every I:l seconds for very small 
values of 11. 

From now on we shall use the term dynamical system or just system to refer to dis
crete dynamical systems or discrete approximations of continuous dynamical systems. 

5.1.4. Example: Compound Interest 

A bank loan is repaid in monthly installments. Of course every month interest accumu
lates on the remaining debt. Eventually, if the principle is low enough, the debt is re
duced to zero. 

We can model bank loans as dynamical systems. The state space consists of all possi
ble debts: 

DEBT :: = REAL ; = dollars owed 

Assume the interest rate and monthly payments are fixed:. _ 

(define rate .01) ; monthly interest rate = 1% 
(define pmt 50) ; monthly payment = $50 

(In reality, the monthly payment is adjusted to insure the loan can be repaid in a fixed 
amount of time.) Each month the new debt is the old debt, plus the interest on the old 
debt, less the monthly payment: 

new-debt = debt + rate * debt - pmt 
= debt * (1 + rate) - pmt 

We can express this equation as a Scheme procedure. To make book-keeping simpler, the 
new debt is rounded to the nearest dollar. This procedure is the update procedure for our 
system: 

(define (new-debt debt) 
(round (- (* debt rate+1) pmt») 

where: 

(define rate+1 (+ 1 rate» 

The fmal state is reached when the debt becomes less than the monthly payment. At this 
point the bank customer repays the balance and the debt is canceled: 

(define (paid? debt) « debt pmt» 

The control loop repeatedly updates the debt until the amount owed falls below the 
monthly payment: 



178 

5.1.5. 

5. Iteration 

> (control-loop 400 paid? new-debt 'trace) 
state = 400. 
cycle = 0 
state = 354 
cycle = 1 
state = 308 
cycle = 2 
state = 261 
cycle = 3 
state = 214 
cycle = 4 
state = 166 
cycle = 5 
state = 118 
cycle = 6 
state = 69 
cycle = 7 
20 

Example: A Simple Interactive System 

A mod-n counter is a simple memory device that stores a single integer called count. The 
count is always between 0 and some maximum integer, max-int: 

o ~ count < rnax-int 

Assume max-int is a fixed constant: 

(define rnax-int 16) i rnax-int usually 2An 

We can model a counter as an interactive procedure. An interactive procedure is a pro
cedure that engages the user in a dialog. In this case the procedure prompts the user for a 
command; the user enters a command through a keyboard, mouse, or some other input 
device; the procedure executes the command, displays the result, and the cycle repeats. 
This type of dialog should be familiar to readers because it is exactly the type of interac
tion that occurs between Scheme programmers and the Scheme control loop. In particu
lar, the Scheme control loop can be regarded as a type of dynamical system. 

Returning to the counter, the state of our system is the integer count together with a 
special final state: 

COUNT ;;= NATURAL I bye 

The update procedure prompts users for a command, then executes the command. A 
counter provides commands for reading, resetting, incrementing, or decrementing the 
count. The result of executing any command, even in the case when the command is un
recognized, is always a count: 



; = new value of count 
(define (exec-cmmd count) 

; prompt user and read command 
(define cmmd (get-cmmd» 

(case cmmd 

5.1. Modeling Systenis 179 

«inc) (modulo (+ count 1) max-int» 
«dec) (modulo (- count 1) max-int» 
«get) (writeln "count "count) count) 
«set) 0) 
«q quit exit) 'bye) 
(else 

(writeln "unrecognized command: " cmmd) 
count) ) ) 

The get-cmmd procedure displays a menu of options, then reads and returns the user's 
input. Notice the use of tab characters to format the menu: 

; prompts user & returns command read 
(define (get-cmmd) 

(writeln "command menu: ") 
(writeln #\tab "inc" #\tab "increments count") 
(writeln #\tab "dec" #\tab "decrements count") 
(writeln #\tab "get" #\tab "displays count") 
(write1n #\tab "set" #\tab "resets count to 0") 
(writeln #\tab "quit" #\tab "to quit") 
(display "command-> ") 
(read) ) 

The final? predicate, called bye?, compares the state to the 'bye token: 

(define (bye? state) (eq? state 'bye» 

Here is a sample session: 
> (control-loop 5 bye? exec-cmmd) 
cODDlland menu: 

inc increments count 
dec decrements count 
get displays count 
set resets count to 0 
quit to quit 

cODDlland-> inc 
cODDlland menu: 

inc increments count 
dec decrements count 
get displays count 

; tracing disabled 



180 

5.1.6. 

5. Iteration 

set resets count to 0 
quit to quit 

command-) inc 
command menu: 

inc increments count 
dec decrements count 
get displays count 
set resets count to 0 
quit to quit 

command-) get 
count = 7 
command menu: 

inc increments count 
dec decrements count 
get displays count 
set resets count to 0 
quit to quit 

command-) addl 
error: unrecognized command: addl 
command menu: 

inc increments count 
dec decrements count 
get displays count 
set· resets count to 0 
quit to quit 

command-) q 
bye 
) 

Example: Guess and Test 

Problem solving is a good example of a dynamical system. Suppose a state space consists 
of all possible guesses at solutions to a given problem, some better than others: 

GUESS ::= all guesses at solutions to a given problem 

Unless we have some analytical way of deriving the desired solution, we will have to re
sort to searching the state space using the guess-and-test method (i.e., trial and error). 
More formally, suppose we have a method for improving guesses: 

; = a better guess than input guess 
(define (improve guess) ... ) 

and a predicate for recognizing when a guess is good enough: 



5.1. Modeling Systems 181 

i = #t if guess is close enough to the solution 
(define (good-enuf? guess) ... ) 

Beginning with an initial guess, we iterate the guess improver, testing each guess to see if 
it is "good enough," until we produce a desirable solution state: 

(control-loop init-guess good-enuf? improve) 

We cannot predict how many times the control loop will iterate the guess improver. The 
iteration continues until a guess is produced that satisfies the good-enufl test. Indeed, this 
may never happen and the control loop will go on iterating the improver forever. 

Solving Equations 

A solution of a real-valued procedure/is an input s satisfying: 

(f s) = 0 

We can use algebra to compute the solutions of some procedures, but for most we have 
to resort to guess-and-test. In this case the good-enufl test is simply: 

i = #t if guess is small, i.e., close to 0 
(define (good-enuf? guess) 

«= (abs (f guess» delta» 

where delta is a suitably small nonlocal constant: 

(define delta le-lO) 

A bigger problem is defining the guess improver. Fortunately, the framer of the laws of 
mechanics, Sir Isaac Newton (1642-1727) developed a method using a little invention of 
his called calculus. Newton observed that if/was differentiable, and guess was a point on 
the x-axis near its intersection with / 's graph, then a nearer point was the intersection of 
the x-axis and the line tangent to/,s graph at the point (guess, ((guess»: 

The point-slope form of the equation for this tangent line is: 

Y - Yo = m(x - Xo) 

where (xQ, YO) is the tangent point: 

(Xo, Yo) = (guess, (f guess» 

and m, the slope of the line, is the derivative off, df, evaluated at guess: 

m = (df guess) 

The point of intersection with the x-axis, i.e., the improved guess, is gotten by solving the 
line equation for x when y is set to 0: 

improved guess = x = guess - f(guess)/df(guess) 

We could base a Scheme procedure on this formula: 



182 5. Iteration 

i = a better guess at f'S solution than input 
(define (improve guess) 

(- guess (/ (f guess) (df guess»» 

But without knowing more about the / procedure, how can we compute its derivative? 
Again we have to dust off our calculus books. Recall the general formula for computing 
the derivative of a functionj. 

. f(x + 3) - f(x) 
df(x) = 11m ~ 

Ii~O 0 

We can't expect to compute arbitrary limits in Scheme, but we can easily approximate 
the derivative of/using small values of delta: 

(define (df x) 
(/ (- (f (+ x delta» (f x» delta» 

Computing Square Roots 

By cleverly choosing f, we can use Newton's method for finding square roots. Observe 

that .J;" is the solution of x2 - n. We can formalize this as a Scheme procedure: 

(def ine (f x) (- (* x x) n» 

To compute the square root of n we only need to call control-loop with an initial guess of 
1. 

We can encapsulate all of these definitions in a single procedure block: 

(define (sqrt n) 

(define(f x) 
(- (* x x) n» 

(define delta le-lO) 

(define (df x) 
(/ (- (f (+ X delta» (f x» delta» 

(define (good-enuf? guess) 
« (abs (f guess» delta» 

(define (improve guess) 
(- guess (/ (f guess) (df guess»» 

(control-loop 1 good-enuf? improve» 



5.2. Computations as Data 183 

Computing nth Roots 

We can use the model of our sqrt procedure to find the solution to any unary numeric 
procedure. We only need to change the definition of f inside. Unfortunately this can be 
awkward, especially if we need to solve two procedures simultaneously. 

We confronted a similar situation when we.generalized the control loop procedure by 
allowing update and final? to be parameters instead of specific predefined procedures. 
We can use the same trick here and generalize our square root procedure by treating f as 
a formal parameter: 

(define (solve f) 

(define delta le-IO) 

(define (df x) 
(/ (- (f (+ X delta» (f x» delta» 

(define (good-enuf? guess) 
« (abs (f guess» delta» 

(define (improve guess) 
(- guess (/ (f guess) (df guess»» 

(control-loop I good-enuf? improve» 

We can use this procedure to define a cube root procedure as follows: 

(define (cube-root n) 

(define (f x) 
(- (* x x x) n» 

(solve f» 

5.2. Computations as Data 

The Scheme expression evaluator is an example of a dynamic system. In this case the 
state space is the domain of all Scheme expressions, the initial state is the input expres
sion, literal expressions are the fmal states, apply is the update procedure, and an orbit is 
a computation. 

Just as we might analyze the orbits of a vibrating string or a population of Wilde
beest, we can analyze the orbits of the expression evaluator. Let's begin by fixing a ge
neric example. 



184 5. Iteration 

5.2.1. Predicting the Future 

Assume the system, S, we are interested in modeling is a population of amoebas living in 
a pond. The state of system is the size of a population. Assume initially only a single 
amoeba lives in the pond, and during a cycle every amoeba in the pond divides into two 
amoebas. (Amoebas reproduce asexually by cellular division.) 

(define init-state 1) ; = size of initial population 

; = population after one reproductive cycle 
(define (update state) (* 2 state» 

Suppose we want to predict the state of this system after n cycles: 

; = state of system S after n cycles 
(define (state n) ???) 

Because the input to the state procedure is a natural number, we might try to develop a 
recursive algorithm. We ask two questions: 

Base Case: 
What is (state O)? 

Successor Case: 
How can we use (state (- n 1» to compute (state n)? 

We answer these questions by working out a few examples. First note that (state 0), the 
state after 0 cycles, is just the initial state: 

(state 0) = init-state 

Thereafter, each state is gotten by applying the update procedure to the previous state: 

(state 1) = (update init-state) 
(update (state 0» 

(state 2) = (update (update state» 
(update (state 1» 

(state 3) = (update (update (update state) ) ) 
(update (state 2» 

Notice the general pattern in the return values when n > O. We can describe it as a 
Scheme expression: 

(state n) = (update (state (- n 1») 

This suggests the following implementation of the state procedure: 

; = state of system S after n cycles 
(define (state n) 



(if (zero? n) 
init-state 
(update (state (- n 1»») 

5.2. Computations as Data 185 

Let's declare update and state "interesting" and trace the computation generated by (state 
4): 

(state 4) 
(update (state 3» 
(update (update (state 2») 
(update (update (update (state 1»» 
(update (update (update (update (state 0»») 
(update (update (update (update 1»» 
(update (update (update 2») 
(update (update 4» 
(update 8) 
16 

5.2.2. Measuring Computations 

We can treat computations} like the one just given as ordinary data. Two important 
measurements of a computation are its length and width. Assume exp is any Scheme ex
pression, and defme: 

lexpl 
= length of the computation generated by exp 

[exp] 
= width of the computation generated by exp 

The length of a computation is the number of steps (cycles) from exp to the final result. 
Note: Oscillating and divergent computations have infinite lengths. 

The width of a computation is the size of the largest expression appearing in the com
putation. The size of an expression is the number of procedure applications appearing in 
the expression. For example, in the preceeding computation: 

I (state 4) I = 10 
[(state 4)] = 5 

If we choose interesting procedures wisely, then lexpl is proportional to the amount of 
computer time required to evaluate exp and [exp] is proportional to the amount of mem
ory needed to evaluate exp (this is because the Scheme evaluator maintains a frame for 
each pending procedure call). 

} Technically this is a trace, which is a subsequence of a computation. 



186 5. Iteration 

5.2.3. Measuring Efficiency 

How do we measure the overall efficiency of a procedure, proc? If we regard n as a pa
rameter, then l(proc n)1 and (proc n)] are both reasonable choices. 

An important property of a measurement is order, the ability to say that one is bigger 
or smaller than another. This is especially important for measurements of efficiency, be
cause two procedures might do the same thing, but one may be more efficient than the 
other. Unfortunately, I(proc n)1 and [(proc n)] are functions, not numbers. How do we 
compare functions? 

Although there is no general way of comparing two functions, we can often compare 
their growth rates. Ifland g are functions, letl- O(g) mean: 

growth rate of f S growth rate of g 

More formally ,I - O(g) means we can fix a constant c such that for all large values of n: 

fen) S c * g(n) 

Equivalently: 

lim f( n) < co or 0 < lim.21!!) 
n~" g(n) n~" fen) 

Next, we design a "measuring stick" marked by functions of known growth rates (see 
Figure 5.1). 

~-.......,n(l) - constant growth rate 

(2ft) S exponential growth rate 

S polynomial growth rate 

(n3) S cubic growth rate 

FigureS.1 

If I(proc n)1 (or [(proc n)]) is a polynomial of degree k, then its position on the ruler is 
O(nk), i.e., I(proc n)1 - 0(n1, because the lower-order terms don't have much influence 
on growth rate for large values of n. (Use L'Hopital's rule and the limit characterizations 
of 1- O(g) to prove this.) For example, I(state n)l- 2n + 2 - O(n), and [(state n)] - n + 2 
-O(n). 



5.3. Finding Iterative Solutions 187 

5.2.4. The Tyranny of Growth Rate 

To gain some appreciation for our efficiency measures, assume four procedures: proc I, 
proc2, proc3, and proc4, compute the same function, only I(procl n)1 - O(n), l(proc2 n)1 
- O(n\ l(proc3 n)1 "" O(nJ), and l(proc4 n)1 ... 0(10"). Let's assume one step in a compu
tation requires one microsecond (i.e., 10-6 seconds). If n '" 100, then (procl n) will con
sume 102 * 10-6 ... 10-4 seconds, (proc2 n) will consume 104 * 10-6 ... 10-2 seconds, (proc3 n) 
will consume 106 * 10-6 - I second, and (proc4 n) will consume 10100 * 10-6 - 10!14 sec
onds. There are on the order of 107 seconds in a year, so this works out to about 13.4 
years! 

If we increase n to 1000, then (procl n) consumes a reasonable 103 * 10-6 - IO-J sec
onds, (proc2 n) only consumes 106 * 10-6 ... 1 second, but (proc3 n) consumes 109 * 10-6_ 
IOJ seconds. That's more than 16 minutes! l(proc4 n)1 is comparable to the known age of 
the universe! 

5.3. Finding Iterative Solutions 

How can we improve the efficiency of the state procedure? We could reimplement state 
using a do-loop. We use local bindings to keep track of the state (result) and cycle 
(count). When n:S; count, the final state s is returned: 

(define (state n) 
(do «count 0 (+ count 1» 

(result init-state (update result») 
«<= n count) result») 

It should be clear that I(state n)1 = O(n) because the do-loop generates n calls to the up
date procedure. However, the sizes of the expressions appearing in the computation gen
erated by (state n) is constant, because the iterations of update are not nested. Therefore 
[(state n)] '"' 0(1), a big improvement over the recursive implementation. 

Let's develop iterative solutions to the recursive procedures we developed in Chapter 
3: nat-expt and make-list. Our make-list do-loop will use two loop control bindings. One 
will be a counter that counts from 0 to n, the other will be the list under construction. The 
list is updated on each cycle by consing val to the front of the previous list: 

; = the length n list (val ... val) 
(define (make-list n val) 

(if (not (natural? n» 
(error "bad input" make-list n) 
(do «count 0 (+ count 1}) 

(result 'e) (cons val result)}) 
«<= n count) result»» 

We use the same strategy to implement nat-expt. The only difference is the method used 
to initialize and update result: 



188 5. Iteration 

; = bAn 
(define (nat-expt b n) 

(if (not (and (number? b) (natural? n») 
(error "bad input(s)" nat-expt b n) 
(do «count 0 (+ count 1» 

(result 1 (* b result») 
«<= n count) result»» 

It should be clear that while I(nat-expt n)1 ... O(n) and I(make-list n val)1 =- O(n), the same 
as the recursive implementations, [(nat-expt n)] = 0(1) and [(make-list n val)] ... 0(1), an 
improvement over the O(n) efficiencies of the recursive implementations. 

5.4. Tail Recursion: Are do-loops Necessary? 

Are do-loops redundant? It seems likely that a procedure implemented using a do-loop 
can be reimplemented as a recursive procedure, but will the recursive implementation 
always use more memory than the iterative implementation? Not necessarily. 

Our plan is to simulate Scheme's do-loop with an ordinary recursive procedure called 
iter. Assume we want to simulate the do-loop: . 

(do «count initO (+ count 1» 
(result initl (update result» 

«<= n count) result» 

The parameters of our simulation will be the loop control variables count and result. A 
recursive call will simulate the looping action. The operands of the recursive call will be 
the S1EP expressions. The recursion terminates when CONDITION becomes true. We 
call our simulation iter: 

(define (iter count result) 
(if «= n count) 

result 
(iter (+ count 1) (update result»» 

The initial values of the loop control parameters are parameters: 

(iter initO initl) 

For example, we can rewrite control-loop using iter: 

(define (control-loop init final? update) 

(define (iter state) 
(if (final? state) 

state 
(iter (update state»» 

(iter init» 



5.4. Tail Recursion: Are do-loops Necessary? 189 

Here's an implementation of the state procedure using iter: 

(define (state n) 

(define (iter count result) 
(if (>= count n) 

result 
(iter (+ count 1) (update result»» 

(if (not (natural? n» 
(error "bad input" state n) 
(iter 0 1») 

Let's trace the computation generated by (state 4), taking state, iter, and update to be our 
interesting procedures: 

(state 4) 
(iter 0 1) 
(iter 1 (update 1» 
(iter 1 2) 
(iter 2 (update 2» 
(iter 2 4) 
(iter 3 (update 4» 
(iter 3 8) 
(iter 4 (update 8» 
(iter 4 16) 
16 

It seems pretty clear that I(state n)1 - 2n + 3 - O(n), but notice the width of the computa
tion remains constant This would be true even if the input was very large. In other 
words, for all n: [(state n)] - 2 - 0(1), the same as the iterative solution! 

This happens because the recursive call to iter was not nested inside a call to the up
date procedure, hence it was not necessary to save pending calls to the update procedure 
like the original recursive implementation of state did. (This is what made the computa
tions get fat.) 

A recursive procedure is tail-recursive if the recursive call is the last expression 
evaluated before the procedure terminates. This happens if the recursive call is not the 
input to another call (structures don't count), and if it is not part of a sequence (unless it's 
the last expression in the sequence). The Scheme interpreter is designed to reuse the 
frame created by a call to a tail-recursive procedure for all subsequent calls; therefore 
computations generated by calls to tail-recursive procedures consume a constant (i.e., 
0(1» amount of memory. 

Here is a tail-recursive implementation of make-list: 

j = the length n list (val ... val) 
(define (make-list n val) 



190 5. Iteration 

(define (iter count result) 
(if «= n count) 

result 
(iter (+ count 1) (cons val result»» 

(if (not (natural? n» 
(error "bad input" make-list n) 
( iter 0 '(»» 

The tail-recursive implementation of nat-expt is also straightforward: 

i = bAn 
(define (nat-expt b n) 

(define (iter count result) 
(if «= n count) 

result 
(iter (+ count 1) (* b result»» 

(if (not (and (number? b) (natural? n») 
(error "bad input(s)" nat-expt b n) 
(iter 0 1») 

5.5. Finding Elementary Solutions 

Sometimes we can use tracing to find elementary (Le., nonrecursive, noniterative) solu
tions. For example, assume the initial value and update procedure of a system are given 
by: 

(define init-state 1) i = initial state of system S 

i = next state of system S 
(define (update state) 

(- (* 4 state) 1» 

Assume state is defmed as before: 

i = state of system S after n cycles 
(define (state n) 

(if (zero? n) 
init-state 
(update (state (- n 1»») 

Let's trace a call to (state n), for any n > O. Notice how each step of the computation 
builds a term in a geometric series: 



(state n) 
(- (* 4 (state (- n 1») 1) 
(- (* 4 (- (* 4 (state (- n 2») 1) 1) 
(- (* 16 (state (- n 2») (+ 4 1» 
(- (* 16 (- (* 4 (state (- n 3») 1» (+ 4 1» 
(- (* 64 (state (- n 3») (+ 16 4 1» 

After the last call to state, we are left with a geometric series: 

(- (* 4n (state 0» (+ 4n - 1 ... 40» 
= (- 4 n (+ 4n - 1 ... 40» 

Recall the formula for computing the sum of a geometric series: 

~ r1 = 1 - r k +1 

L 1- r 
1=0 

Appendices 191 

Hence (+ 4n-1 ... 40) is (4n - 1)/3 = (4n - 1)/3. This suggests the following elementary 
implementation of the state procedure: 

oi = next state of system S after n cycles 
(define (state n) (/ (- (expt 4 n) 1) 3» 

The amount of space and time consumed by this implementation of state is independent 
ofn: 

I (state n)1 = 0(1) 
[(state n)] = 0(1) 

The situation is analogous with the situation in physics. An analog system is initially 
modeled by a differential equation much the same way a recursive procedure models a 
digital system. This is satisfactory for predicting future states of the system, but the 
physicist doesn't claim the system is "understood" until the differential equation can be 
solved, i.e., replaced by a closed-form equation. 

Appendices 

Appendix 5.1. The Hyper-Exponential Hierarchy 

In Figure 5.1 we began constructing a measuring stick marked by functions of known 
growth rates. We stopped at 0(2") because if I(proc n)1 or [(proc n)] is beyond this point, 
then proc would be too wildly inefficient to be useful. Despite this, it's still interesting to 
study functions beyond the 0(2") growth rate. (Sometimes "useful" and "interesting" are 
different!) 



192 5. Iteration 

Pick an implementation of 2": 

= 2"'n 
(define (exp2 n) 

(if (zero? n) 
1 
(double (exp2 (- n 1»») 

where 

(define (double n) (* 2 n» 

Notice (exp2 n) works by iterating double n times. Following this pattern, define a recur
sive procedure that iterates exp2 n times: 

(define (hyper-exp n) 
(if (zero? n) 

1 
(exp2 (hyper-exp (- n 1»») 

Let's trace (hyper-exp 4): 

(hyper-exp 4) 
(exp2 (hyper-exp 3» 
(exp2 (exp2 (hyper-exp 2») 
(exp2 (exp2 (exp2 (hyper-exp 1»» 
(exp2 (exp2 (exp2 (exp2 (hyper-exp 0»») 
(exp2 (exp2 (exp2 (exp2 1»» 
(exp2 (exp2 (exp2 2») 
(exp2 (exp2 4» 
(exp2 16) 
65536 

For n > 1, (hyper-exp n) - 2~P(·"I)), hence (hyper-exp 3) is a stack of three twos: 

(hyper - exp 4) = 222 

In fact, exp2 - O(hyper-exp), but hyper-exp :/:. O(exp2), so we can take O(hyper-exp)as 
the next point on our measuring stick. 

Next, define a recursive procedure that iterates hyper-exp: 

(define (hyper"'2-exp n) 
(if (zero? n) 

1 
(hyper-exp (hyper"'2-exp (- n 1»») 

Let's trace (hyper"2-exp 4): 

(hyper"'2-exp 4) 
(hyper-exp (hyper"'2-exp 3» 
(hyper-exp (hyper-exp (hyper"'2-exp 2») 



Appendices 193 

(hyper-exp (hyper-exp (hyper-exp (hyperA2-exp 1»» 
(hyper-exp (hyper-exp (hyper-exp 

(hyper-exp (hyper A 2-exp 0»») 
(hyper-exp (hyper-exp (hyper-exp (hyper-exp 1»» 
(hyper-exp (hyper-exp (hyper-exp 2») 
(hyper-exp (hyper-exp 4» 
(hyper-exp 65536) 
2 (hyper-exp 65535) = ? 

The result of this computation is quite a staggering number, a stack of 65,536 twos! A 
stack of five twos is already 265536. This is far larger than the number of atoms in the uni
verse. It can be proved that hyper-exp = O(hyperA2-exp), but hyperA2-exp 
=l=O(hyper-exp), so we can take hyperl\2-exp as the next marker on our measuring stick. 

Unimpressed? Let's iterate hyperl\2-exp n times: 

(define (hyper A 3-exp n) 
(if (zero? n) 

1 
(hyper A 2-exp (hyperA3-exp (- n 1»») 

The reader shouldn't be surprised to learn that hyper"2-exp ... O(hyperI\3-exp), but not 
vice-versa. 

We can continue to mark our measuring stick with hyperA4-exp, hyper"5-exp, etc. as 
shown in Figure 5.2. 

(hyper'5-exp) 

Figure 5.2 

We can combine all the procedures in the hyper-exponential hierarchy into a single pro
cedure: 

i = hyperAm-exp n) 
(define (exp* rn n) 

(cond «zero? n) 1) 
«zero? m) (exp2 n» 
(else (exp* (- m 1) (exp* m (- n 1»»» 



194 5. Iteration 

The exp* procedure is much more convenient to use than the hyper-exponentials: 

(exp* 0 n) =< (exp2 n) 
(exp* 1 n) = (hyper-exp n) 
(exp* 2 n) = (hyper"'2-exp n) 
(exp* 5 n) = (hyper"'5-exp n) 
etc. 

It boggles the mind to think of the sizes of the outputs produced by the exp* procedure, 
even for small values of m. But this didn't intimidate the German mathematician 
W. Ackermann. In 1928 he observed that diagonalizing2 exp* produced a procedure that 
eventually grows· faster than all of the hyper-exponentials: 

(define (ack n) (exp* n n» 

To see why, observe that (ack n) - (exp* n n) > (exp* m n) when n > m. In other words, 
O(ack) lies beyond O(hyper"n-exp) for all n! 

Of course we can continue beyond O(ack) by iterating ack: 

(define (hyper-ack n) 
(if (zero? n) 

1 
(ack (hyper-ack (- n 1»») 

(define (hyper"'2-ack n) ... ) 
(defiQe (hyper"'3-ack n) ... ) 
etc. 
(define (ack"'2 n) (ack* n n» 
(define (ack"'3 n) (ack"'2* n n» 
etc. 

Appendix 5.2. Undecidability 

(hyper"'n-ack n) 

I will here and now construct a Demon of the Second Kind, and you will see for your
self the wondrous perfection of that metainformationator! All you have to do is find me 
a box -any size will do, but it must be airtight. We'll put a little pinhole in it and sit 
the Demon over the opening; perched there it will let out only significant information, 
keeping in the non-sense. For whenever a group of atoms accidentally arranges itself in 
a meaningful way, the Demon will pounce on that meaning and instantly record it •... 

-Stanislaus Lem, The Cyberiad 

2 Place applications of exp* in an infinite matrix so the row m, column n entry is (exp* m n). 1be 
diagonal entries are of the form (exp* n n). 



Appendices 195 

If we set aside questions of efficiency, can we at least claim that every well-defined 
problem can be solved by a computer? Surprisingly, the answer is No; there are fairly 
straightforward problems that can never be solved by a computer. We are not saying that 
a computer solution to these problems has not yet been found, we are saying that a com
puter solution can never be found! 

A problem that can't be solved by a computer is called undecidable. One such prob
lem is called the halting problem: 

Determine if an arbitrary procedure applied to an arbitrary list of inputs eventually re
turns a value (i.e., halts or converges) or not. 

To solve this problem we would need to implement the following procedure: 

(convergent? proc val ... ) 
= it, if (apply proc (list val ... » returns a value 
= if, otherwise 

Unfortunately, this procedure can never be implemented. To see why, assume otherwise; 
assume convergent? can be implemented: 

(define (convergent? proc . vals) ???) 

Once it has been defmed, it can be called by other procedures, such as the famous 
diagonalization procedure: 

(define (diag proc) 
(if (convergent? proc proc) 

(undef) 
'done) ) 

where undef is a nasty, nonterminating tail-recursion: 

(define (undef) (undef» ; runs forever 

Basically, (diag proc) diverges if the computation generated by applying proc to itself
(proc proc)-converges, and that it converges if (proc proc) diverges. 

Applying a procedure to itself may seem a bit weird, but if proc is a meta-procedure, 
then it expects a procedure as input, and this procedure could be proc itself. For example, 
the identity procedure can handle procedure inputs: 

(define (id p) p) ; the identity procedure 

Applying the identity procedure to itself produces the identity procedure as output: 

(id id) = id 

Because this computation returns a value, we would expect (diag id) to call undef and di
verge. 

Like id, convergent?, and apply, diag is a meta-procedure. So what happens when 
diag is applied to itself? 

(diag diag) = ? 



196 5. Iteration 

This depends on the outcome of: 

(convergent? diag diag) 

If this returns #t, then the undef procedure is called, and the computation drags on for 
eternity. In other words, the computation diverges, contradicting the fact that 
(convergent? diag diag) returned #to 

To avoid this contradiction we must assume (convergent? diag diag) returns #f. But in 
this case the done token is returned and the computation halts, contradicting the assump
tion that (convergent? diag diag) returned #f. 

We seem to be caught in a paradoxical situation. If (convergent? diag diag) returns #t, 
then it should have returned #f. If it returns #f, then it should have returned #to Unfortu
nately, the only way out of the paradox is to assume that (convergent? diag diag) di
verges, contradicting the assumption that we could implement convergent?, so it always 
gave correct answers. 

Appendix 5.3. Chaos 

The philosopher-mathematician Pierre Laplace (1749-1827) viewed the universe as a 
huge dynamical system with an update procedure specified by Newton's laws. Knowing 
the state of the universe at any moment -i.e., the position, velocity, acceleration, and 
mass of every particle -we could accurately predict any future or past state. (Of course, 
knowing the state of the universe at any moment would be difficult; there are many parti
cles and each has many properties that must be taken into account.) 

In 1930 German physicist Werner Heisenberg's (1901-1976) uncertainty principle 
put a small knot in Laplace's dream. Because properties of small particles could only be 
estimated, iterating a Newtonian (or Einsteinian) update procedure would only yield es
timates of future states. In other words, if the initial state of the universe is initO, but our 
estimate of this state is initl, then after n iterations, our predicted state would be: 

stateD = (update (update ... (update initD) ... » 

while the true state would be: 

statel = (update (update ... (update initl) ... » 

Laplace might have speculated that if initO is at least close to initl, then stateO should be 
close to state 1. More formally, for each small 8, there should be a corresponding small E 

such that 

linitD - initll < 8 implies IstateD - statell < E 

Sadly, this isn't necessarily true. In 1960 the MIT meteorologist Edward Lorenz discov
ered the butterfly effect. Like the universe, Earth's atmosphere is a huge dynamical 
system, but with an update procedure specified by the laws of fluid mechanics. Given an 
estimate of the atmosphere's state at any moment -say the temperature, humidity, and 
pressure of every cubic meter- we should be able to estimate the weather at any future 



Appendices 197 

date. Why then are the predictions of modem meteorologists only marginally better than 
Willard Scott's? 

Lorenz discovered simple dynamical systems that were highly sensitive to their initial 
conditions. In these systems even if linitO - initll < 0, for large enough n, IstateO - state!1 
would be very large. Because Lorenz's systems were simplified atmospheric models, he 
concluded that small differences in the state of the atmosphere, such as a butterfly flap
ping its wings in Brazil, could produce large differences later, such as a tornado in Texas! 

Although the sensitivity of Lorenz's model seems to imply the unpredictability of 
future states, this isn't exactly true. We can predict which future states will occur, just not 
when they will occur. For example, we can safely say that at some future date the 
weather will be sunny, but we can't safely predict a specific date. In other words, the set 
of all possible future weather states is well known: it seldom snows in Cairo, hurricanes 
in Topeka are infrequent, and Arctic heat waves. are virtually unknown. Regardless of 
slight variations in the initial state, weather system orbits almost always settle into pre
dictable patterns, but the sequence of states varies unpredictably. 

We say two orbits of a system S are nearby if their initial states are close in the sys
tem's state space. If nearby orbits tend to settle into the same limit or attractor (i.e., fixed 
point, cycle, or other set of states), we say the system is not sensitive to initial conditions. 
(Fixed points and cycles can be attractors, but more complex limits can also .be attrac
tors.) If the system S has an attractor but is also sensitive to initial conditions, we call the 
attractor strange. Thus, the set of all normal weather states for a given region is a strange 
attractor. If a system S has a strange attractor, we say it exhibits chaos. 

Example: The Devil's Pitchfork 

The logistic function is a simple example of a system with a strange attractor. 

; = next state of system S 
(define (logistic state) 

(* const (- 1 state) state» 

The classical example of a system with the logisitic function as its update procedure is a 
self-limiting population. As the population, i.e., state, grows, the food supply dwindles 
and the growth rate, i.e., (* const (- 1 state», becomes smaller, even becoming negative. 
This causes the popUlation to decline, which causes the food supply to increase; hence 
the growth rate increases and the cycle repeats. Will the popUlation eventually reach 
eqUilibrium or settle into a simple growth and decay cycle? 

We can display the logistic function's attractors by displaying the last few states gen
erated after a large number of cycles. For example, we might display the states generated 
by the last 20 of 520 cycles of logistic. Hopefully the orbit will have settled into an at
tractor by then. To make our display procedure more useful, we will treat the constant 
factor appearing in the logistic procedure as a parameter: 

; = displays attractor of logistic procedure 
(define (show-log-attractor const) 



198 5. Iteration 

i the logistic function 
(define (logistic state) 

(* const (- 1 state) state» 

o <= init-state <= 1 & init-gtate <> .5 
(define init-state .2) 

i control-loop: 
(do «cycle 0 (+ cycle 1» 

(state init-state (logistic state») 
«> cycle 520) 'done) 
(if (> cycle 500) 

(show-state const state»» 

For now show-state is simply: 

(define (show-state const state) 
(display (cons const state» 
(newline) ) 

If we use show-Iog-attractor to display attractors for small values of const. say const < 3. 
we discover that the attractors are single states. This is called a fixed point: 

> (show-log-attractor 2.5) 
(2.5 •. 6) 
(2.5 •• 6) 
(2.5 •• 6) 
(2.5 •• 6) 
(2.5 .6) 
(2.5 .6) 
etc. 

As const approaches 3. the attractor is a two-cycle. The orbit perpetually oscillates be
tween two states: 

> (show-log-attractor 3) 
(3 .6561) 
(3 .6769192740696468) 
(3 .6561) 
(3 .6769) 
(3 .6561) 
(3 .6769) 
etc. 

At const - 3.5 the attractor is a four-cycle: 

> (show-log-attractor 3.5) 
(3.5 •. 5008842103072181) 



(3.5 • 
(3.5 • 
(3.5 • 
(3.5 • 
(3.5 
(3.5 • 
(3.5 • 
etc. 

.8749972636024641) 
• 38281968301732416) 
• 8269407065914386) 
• 5008842103072181) 
• 8749972636024641) 
.38281968301732416) 
• 8269407065914386) 

Finally, for 3.7 < const < 4, the attractor begins to look random: 

> (show-log-attractor 3.99) 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 
(3.99 

• .4691998052029333) 
.9937148785218463) 

• 2.4920018717372792e-2) 
9.695305542414934e-2) 
.34933711026760395) 
.9069297676933606) 
.33678857501845993) 
.8912145027144256) 

• .3868353393349597) 
.9464031007104995) 
.2023898439874461) 
.6440984982023515) 
.9146501350351492) 
.31148040940617666) 

• .8556968522097255) 
• .49268419981909) 

.9972864514801749) 
• 1.0797678845279992e-2) 

.0426175450175684) 

.16279714659823327) 

Appendices 199 

In fact, the attractors have a complex fractal structure that can only be seen if we actually 
plot the states and const values on a co-ordinate system, as in Figure 5.3. 

Figure 5.3 



200 5. Iteration 

Some implementations of Scheme provide special libraries of graphics procedures. In 
graphics mode the screen is regarded as an n-by-m grid of points called pixels (pixel -
PICture ELement). Each pixel is identified by its column and row number, these are 
called its screen coordinates. The most basic graphics procedure allows programmers to 
set the color of an individual pixel. For example, UGIPC-Scheme provides an easy-to
use, fairly standard graphics library called BGI. The color of a pixel is set by: 

(put-pixel (X • y) 'color) 
- returns an unspecified value. As a side effect, sets 
color of pixel with screen co-ordinates (x, y) to 'color. 

Here is our reimplementation of show-state: 

(define (show-state canst state) 
(put-pixel (cons canst state) 'white» 

The structure created by plotting a large number of attractors for 1 < const < 4 is called 
the devD's pitchfork, because it forks wildly as const becomes large. Also, magnifying 
the devil's pitchfork reveals that it is composed of tiny devil's pitchforks. Magnifying 
these reveals still tinier pitchforks, and so on. A self-similar structure with fractional di
mension, like the devil's pitchfork, is called a fractal. 

To be able to magnify the pitchfork we will treat the start and finish values of const as 
parameters. The number of attractors displayed will be controlled by a constant called 
slices. We begin by initializing the graphics mode and setting the top-left and bottom
right screen co-ordinates. Fortunately, BGI provides procedures for this purpose. The 
body of the procedure is a do-loop that iteratively increments const and calls show-Iog
attractor: 

(define (pitchfork start finish) 

(define slices 75) ; # of attractors shown 

(define delta (/ (- finish start) slices» 

(init-graph) ; enter graphics mode 

(do «canst start (+ canst delta») 
«< finish canst) 'done) 
(show-log-attractor canst») 

Try (pitchfork 1 4) to see the whole picture, then investigate tiny slices of the pitchfork, 
for example, (pitchfork 3.8 3.81). Type (close-graph) to return to text mode. 



Problems 201 

Problems 

Solutions to the following problems are to be given in functional Scheme; do not use 
procedures or special forms discussed in subsequent chapters. Do not use any of the I/O 
procedures discussed in this chapter except to print error or diagnostic messages or unless 
you are specifically directed by the problem to use them. You may use the definitions 
given in this or previous chapters as well as solutions to other problems in this or previ
ous chapters (although you will have to include these definitions in your definition file so 
you can test your definitions). You may also define any supporting procedures you need. 
You are required to validate inputs. 

Problem 5.1. 

Compute the values of the following expressions. If the values are unspecified, if the ex
pressions contain errors, or if the expressions result in a nonterminating evaluation, 
explain: 

a. (* 2 (do ({X = 11) (y 1 (+ Y 1» «< 50 y) x») 

b . ( do « x 1 (do « y x (* 2 y» 
(iO(+i1») 

«< 20 i) y» 
{(i 0 (+ i 1») 

{« 10 i) x» 

c. (do () (» 

Problem 5.2. 

Find iterative and tail-recursive implementations of the factorial function: 

(fact n) 
= 1, if n = 0 
= 1 * 2 * * n, otherwise 

Problem 5.3. 

Find 0 limits on I(fact n)l and [(fact n)]. 

Problem 5.4. 

Find iterative and tail-recursive implementations of triangle. 



202 5. Iteration 

Problem 5.5. 

For each implementation of triangle in the previous problem, fmd 0 limits for I(triangle 
n)1 and [(triangle n)). 

Problem 5.6. 

The Fibonacci sequence is: 

0112358 1321 34etc. 

The Fibonacci numbers are interesting because they are ubiquitous in nature. Implement 
iterative and tail-recursive versions of a procedure that calculates Fibonacci numbers. 

Problem 5.7. 

The harmonic series is f 1. Write iterative and tail-recursive Scheme procedures that 
k=l k 

compute the partial sums of this series: 

(harmonic-sum n) - f.! 
k=1k 

Problem 5.8. 

Recall from calculus that the fixed point of the derivative procedure is ftx) - eX. The ex
act value of e is given by the series: 

e- f"! 
k=ok! 

Write iterative and tail-recursive Scheme procedures that approximate e to any accuracy 
by computing partial sums of this series. 

Problem 5.9. 

Write iterative and tail-recursive Scheme procedures called sum that expect an unsigned 
integer input n and return the following partial sum: 

n <_1)1 
sUm(n) = L--:-

1=1 21. 



Problems 203 

Problem 5.10. 

Assume Scheme did not supply * but did supply +. Of course, * is an overloaded proce
dure, but most variants can be defined in terms of nat*, which multiplies two natural 
numbers. Find iterative and tail-recursive implementations of nat* that don't use *. 

Problem 5.11. 

Assume Scheme did not supply +, but did supply addl and sub1: 

(addl z) = z + 1 
(subl z) = z - 1 

(If your version of Scheme doesn't provide addl and subl you'll have to define them 
using +.) Of course + is an overloaded procedure, but most variants can be defined in 
terms of nat+, which adds two natural numbers. Find iterative and tail-recursive imple
mentations of nat+ that don't use +. 

Problem 5.12 . 

. Reimplement the hyper iterators and Ackermann's function using do-loops. 

Problem 5.13. 

Write a procedure that computes the amount in your savings account after n years 
assuming: 

(i) An initial deposit of $1000 at 8% interest compounded quarterly. 

(ii) An initial deposit of $200 at 6% interest compounded monthly. 

Problem 5.14. 

Write a procedure that computes the balance after n months of a $100,000 loan assuming 
the interest rate is 8% compounded monthly and the monthly payment is $1200. How 
long will it take to payoff this loan? 

Problem 5.15. 

When a plant or animal dies the amount of radioactive carbon-14 in its tissue begins de
caying into nonradioactive carbon. The half-life of carbon-14 is 5700 years (i.e., half de
cays after 5700 years). 



204 5. Iteration 

(i) Write a recursive procedure that determines the amount of radioactive car
bon in a tissue sample after n years assuming the initial amount was 100 
grams. 

(ii) Using the procedure given earlier, determine the age of a specimen as
suming 83% of the original carbon-14 is present. 

(iii) Replace the recursive procedure used in part i with an equivalent elemen
tary procedure. 

Problem 5.16. 

Find elementary implementations of the following procedures: 

a. (define (mysteryl n) 
(if (= n 0) 

0 
(+ 3 (mysteryl ( -

b. (define (mystery2 n) 
(if (= n 0) 

1 
(* 3 (mystery2 ( -

c. (define (mystery3 n) 
(if «= n 0) 

0 
(+ 3 (mystery3 ( -

d. (define (mystery4 n) 
(if (= n 0) 

10 

n 1»») 

n 1»») 

n 2»») 

(+ 5 (+ 3 (mystery4 (subl n»»» 

Problem 5.17. 

Write a well-designed procedure called control-loop that perpetually prompts the user for 
an unsigned integer, then displays the binary, octal, decimal, and hexadecimal represen
tations of the integer. (Use number->string for this.) Your procedure should be modeled 
after the counter control-loop discussed earlier. 



Problems 205 

Problem 5.18. 

Write a procedure that displays all Scheme characters and their numeric codes. 

> (display-chars) 
o #\? 
1 #\? 

127 #\? 

Problem 5.19. 

Modify the control-loop used in the digital clock example so that: 

a. states are updated at approximately one-second intervals. 

b. the computer's bell rings when the final state is reached. 

c. HOUR ::- 1 I 2 I ... I 12 

Problem 5.20. 

Use iteration and tail recursion combined with car, cdr, and cons to implement the fol
lowing procedures. Do not use coercions. 

Problem 5.20.1. 

Assume m and n are natural numbers. Find iterative and tail-recursive implementations 
of: 

(m-to-n m n) = (m ... n) if m < n 
() otherwise 

Problem 5.20.2. 

Assume n is a natural number. Implement: 

(nest 0) 
(nest 1) 
(nest 2) 
etc. 

= 
= 
= 

() 

«» 
«(») 



206 5. Iteration 

Problem 5.20.3. 

Assume Scheme did not provide list-ref or length. How could you implement these using 
iteration and tail recursion? 

Problem 5.20.4. 

Assume vals is a list and n is a natural number. Find iterative and tail-recursive imple
mentations of the following procedure: 

(rem-nth vals n) 
= vals with the item in position n removed 

Problem 5.20.5. 

Assume vals is a list and n is a natural number. Find iterative and tail-recursive imple
mentations of the following procedure: 

(put-nth vals val n) 
= vals with val inserted in position n. 

Problem 5.21. 

Use the solve procedure to write a procedure that computes fifth roots. In other words, 
(fifth-root n)5 - n. -

Problem 5.22. 

Use the solve procedure to write a procedure that computes nth roots. In other words, 

(nth-root m n)m - n. 

Problem 5.23. Fixed Points 

Assume f is a procedure that expects a number as an input and returns a number as a 
value. A number z is a fixed point for f if j(z) =- z. For example, 0 and 1 are fixed points 
for square. Use the solve procedure to implement: 

(fix f) 

= a fixed point for f if one exists, 
unspecified otherwise. 

Problem 5.24. 

Assume h = O(g) and g = O(j). Show h = O(j). 



Problems 207 

Problem 5.25. 

Find two different functions/and g such that O(f) = O(g). 

Problem 5.26. 

Prove: O(n) c 0(n2) c 0(2"), but 0(2") ct. 0(n2) ct. O(n). 

Problem 5.27. 

This problem shows why the hyper-exponentials form a hierarchy: 
Let hyper"n-exp denote the nth procedure in the hyper-exponential hierarchy. Show 

that if n < m, then 

hyperAn-exp = O(hyperAm-exp) 

but 

hyperAm-exp * O(hyperAn-exp) 

Show that for all n: 

hyperAn-exp = O(ack) 

but 

ack * O(hyperAn-exp) 

Problem 5.28. 

Modify the show-Iog-attractor procedure to investigate the attractors generated by the 

update procedure x2 + C for -2 < c < 0.25. 

Problem 5.29. 

Give an example of an oscillating computation with finite width. Can you find an exam
ple of a divergent computation with f'mite width? 

Problem 5.30. 

Some versions of Scheme provide a more general iteration structure called a named let. 
The syntax of a named let is similar to a let structure: 

NAMED-LET ;;= (let NAME (DEC ... ) EXP ... ) 



208 5. Iteration 

Essentially. this structure creates a procedure called NAME with formal parameters 
identical to the local variables and body identical to EXP ...• then it calls NAME with the 
values of the local variables. This means NAME can be recursively called inside EXP .... 
For example. the following expression: 

(let count-down «x 10» 
(writeln x) 
(if «= x 0) 

'done 
(count-down (- xl»» 

is equivalent to: 

(letrec 
«count-down 

(lambda (x) 
(writeln x) 
(if «= x 0) 'done (count-down (- xl»»» 

(count-down 10» 

Why is letrec necessary in this definition? Why is a named let more general than a do
loop? Reimplement the control-loop procedure defmed earlier using a named let instead 
of a do-loop. 

Problem 5.31. 

It seems like it wouldn't be hard to define convergent? What's wrong with this: 

(define (convergent? proc vals) 
(define val (apply prov vals» 
(if (or val (not val» it if» 



6 
Recursive Domains 

Like procedures, domains can have recursive definitions. For example, the VALUE and 
EXPRESSION domains defmed in Chapter One were recursive. The VALUE domain 
consisted of simple and composite values: 

VALUE ::= SIMPLE I COMPOSITE 

The COMPOSITE domain consisted of lists, vectors, strings, and pairs: 

COMPOSITE ::= LIST I VECTOR I STRING I PAIR 

But the definitions of the LIST, VECTOR, and PAIR domains recursively referred back 
to the VALUE domain: 

LIST ::= (VALUE ... ) 
VECTOR::- #(VALUE ... ) 
PAIR ::= (VALUE. VALUE) 

The EXPRESSION domain consisted of literals, symbols, applications, and structures: 

EXPRESSION :: = 
LITERAL I SYMBOL I APPLICATION I STRUCTURE 

But the definition of the APPLICATION and SmUCTURE domains recursively referred 
back to the EXPRESSION domain. For example: 

APPLICATION ::= (EXPRESSION EXPRESSION ... ) 

We can fmd more direct recursive defmitions for some domains. For example, we nor
mally defme the LIST domain as a sequence of zero or more values bracketed by paren
thesis: 

LIST::= (VALUE ... ) 

but because every nonempty list is really a pair, we can also use the following recursive 
defmition of the LIST domain: 

LIST ::= () I (VALUE. LIST) 

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998



210 6. Recursive Domains 

6.1. Recursive Domains as Hierarchies 

In the last chapter we devoted considerable energy to fmding nonrecursive implementa
tions of recursive procedures. In the name of efficiency and understandability we sought 
iterative implementations, tail-recursive implementations, even elementary (i.e., nonre
cursive, noniterative) implementations. In the same spirit we now ask: Are recursive 
definitions of domains necessary? Is there some way to redefme these domains to avoid 
the recursion? 

One technique is to "unfold" the recursive domain into a hierarchy of nonrecursive 
subdomains. For example, the LIST domain has a natural hierarchical structure, which is 
revealed by unfolding the recursive defmition given earlier: 

LISTO : := () 

LISTl : := LISTO (VALUE LISTO) 
LIST2 LISTl (VALUE LISTl) 
LIST3 : := LIST2 (VALUE LIST2) 

LISTn LISTn-l I (VALUE LISTn-l) 
etc. 

Notice that each LIST n is a nonrecursive domain. It's pretty easy to see: 

LISTn ;;= all lists of length ~ n 

We can now give a nonrecursive definition of the LIST domain as the infmite union of 
all LIST n domains: 

LIST;;= LISTO U ..• U LISTn U .,. 

Alternatively, we can think of LIST as the limit of the LIST n domains as n tends to 

infmity: 

LIST = lim LISTn 
n-+co 

We call the LISTn domain level n of the LIST hierarchy. (Of course, our definition of 

LIST is still recursive because it refers to the V ALUE domain, and the definition of the 
VALUE domain refers back to the LIST domain. To really get rid of the recursion we 
will have to apply the unfolding technique to the entire V ALUE domain; this is left as a 
problem at the end of the chapter.) 

We can also define the STRING and VECTOR domains as hierarchies of nonrecur
sive domains: 

VECTOR ::= lim VECTORn 
n-+ oo 

STRING ::= lim STRINGn 
n-+oo 

where: 



VECTORn 
STRINGn 

all vectors of length $ n 
all strings of length $ n 

6.1.1. Recursion over Hierarchies 

6.2. List Recursion 211 

We can generalize our method for writing recursive procedures that operate on natural 
numbers to recursive procedures that operate on members of any hierarchy H = lim Hn. 

n~ 

We only need to modify the basic questions: 

Base Case: 
What is (proc v) for v in Ho? 

Successor Case: 
How can we use (proc v) for some v in H,., to compute (proc w) for w in H.? 

6.2. List Recursion 

In the case of lists, the technique for writing recursive procedures can be restated as fol
lows: 

Base Case: 
What is (proc '())? 

Successor Case: 
How can we use (proc (cdr x» to compute (proc x)? 

This works because if x is nonempty, then the length of (cdr x) is less than the length of 
x. In other words, if x is in LIST. for n > 0, then (cdr x) is in LIST •. ,. (Of course. in some 
cases we may also need to apply our recursive assumption to other sublists of x.) 

6.2.1. Application: Are Lists Necessary? 

Recall the definition of Necessary Scheme: 

Necessary Scheme = IEEE/ ANSI Scheme - redundant features 

We have already seen that all string and vector procedures can be implemented in terms 
of list procedures using the appropriate coercions and the corresponding primitive list 
procedures. We have seen that every nonempty list can be represented as a pair. In the 
exercises of the previous chapter we saw that many primitive list procedures could be 
implemented in terms of the primitive pair procedures (car, cdr. and cons) using number 
recursion. The remaining list procedures can be implemented using list recursion. 



212 6. Recursive Domains 

Example: length 

As a simple example, let's implement the length procedure. We can answer the Base 
Case questions by observing: 

(length '(» = 0 

As for the Successor Case, clearly the length of a nonempty list is 1 more than the length 
of its tail: 

(length vals) = (+ 1 (length (cdr vals») 

This suggests the following implementation of length: 

(define (length vals) 
(if (null? vals) 

o 
(+ 1 (length (cdr vals»») 

If we want to include input validation, we should rename length unsafe-length and nest it 
inside an input-validating wrapper procedure: 

(define (length vals) 
(define (unsafe-length va1s) ... ) 
(if (list? vals) 

(unsafe-length vals) 
(error "bad input" length vals») 

We can get an idea of why length (i.e., unsafe-length) works by tracing a call: 

(length' (6 9 3» 
(+ 1 (length '(9 3») 
(+ 1 (+ 1 (length '(3»» 
(+ 1 (+ 1 (+ 1 (length' (»») 
(+ 1 (+ 1 (+ 1 0») 
(+ 1 (+ 1 1» 
(+ 1 2) 
3 

It's pretty simple to show that the amount of time and memory consumed by the length 
procedure is proportional to the size (i.e., length) of its input. Suppose vals is a list of 
length n. Then: 

I (length vals) I = O(n) 
[(length vals)] = O(n) 

We could seek an iterative implementation. Each iteration increments a counter and re
moves an item from the original input list. When all items have been removed, the value 
of the counter should be the length of the original list: 



(define (length vals) 
(if (not (list? vals» 

(error "bad input" length vals) 
(do «count 0 (+ 1 count» 

(tail vals (cdr tail») 
«null? tail) count»» 

6.2. List Recursion 213 

As expected. this implementation will be more frugal with memory: 

!(length vals)! = O(n) 
[(length vals)] = 0(1) 

We leave it as an exercise to the reader to find a tail-recursive solution. To obtain an 
elementary (i.e., nonrecursive, noniterative) solution we would have to include the length 
in the representation of every list and modify cons and cdr to increment and decrement 
this component. For example, the list (a e i 0 u) could be represented internally as the 
pair: «a e i 0 u) . 5). and the empty list could be represented internally as the pair: (0 . 0). 

Recognizing Lists 

PC Scheme doesn't provide a list? predicate. How can we defme one? From the recursive 
definition of LIST we know a list is either the empty list or a pair whose cdr is again a 
list: 

LIST ::- () ! (VALUE. LIST) 

This suggests the following defmition: 

(define (list? val) 
(cond «null? val) it) 

«pair? val) (list? (cdr val») 
(else #f») 

Notice that this definition is tail-recursive. If val is a length n list, then 

!(list? val)! = O(n) 
[(list? val)] = 0(1). 

6.2.2. Application: Association Lists 

Recall that an association list (alist) is a list of pairs called associations: 

ALIST ::= () ! (ASSOCIATION. ALIST) 

An association is any pair of values. We tend to think of the car of an association as an 
attribute and the cdr as the attribute value: 

ASSOCIATION ::= (ATTRIBUTE. VALUE) 

For example: 



214 6. Recursive Domains 

«eyes. blue) (age. 50) (name. "Picard"» 

Association lists are useful for representing records, tables, and graphs. Recall that 
Scheme provides three primitive procedures for searching alists: assoc, assq, and assv: 

(ass* PROP ALIST) 
= left-most ASSOCIATION in ALIST such that PROP is 
equivalent to (car ASSOCIATION) in the sense of equal?, 
eqv?, or eq? depending on *. 
= #f, otherwise 

These procedures are somewhat unsatisfactory and incomplete. A more complete set of 
procedures for operating on association lists would include methods for getting (i.e., 
searching), removing, and putting associations, as well as constructing association lists: 

(get PROP ALIST) 
= (cdr a) where a is the unique association in ALIST such 
that (equal? PROP (car a» 
= unspecified if there are multiple ASSOCIATIONs a in 
ALIST such that (equal? PROP (car a» 

fail, otherwise 

(rem PROP ALIST) 
= alist obtained by removing all associations a such that 
(equal? PROP (car a» 

(put PROP VAL ALIST) 
= alist obtained by placing (PROP . VAL) in (rem PROP 
ALIST) 

(make-alist PROPS VALS) 
= an alist. The nth association is the nth member of 
PROPS paired with the nth member of VALS. 

where fail is a special token used to distinguish a failed search from a found value of If: 

(define fail 'fail) 

Of course, we could defme equivalent procedures based on eq? and eqv?: getq, getv, 
putq, putv, remq, and rernv. 

Searching for Associations 

The get procedure is similar to the primitive assoc procedure, except get returns attribute 
values rather than associations. Thus, a quick implementation of get would be: 

(define (get prop alist) 
(let «association (assoc prop alist»} 

(and association (cdr association»» .? I , . . 



6.2. List Recursion 215 

Of course, we are trying to show that assoc is unnecessary, so we shouldn't use it in our 
implementation. Instead, we search for a recursive solution: 

(define get prop alist) 

(define (unsafe-get prop alist) ???) 

(if (alist? alist) 
(unsafe-get prop alist) 
(error "bad input" get alist») 

Observe that unsafe-get always returns fail if alist is empty: 

(unsafe-get prop 'C»~ = fail 

If the attribute we are given is the car of the fmt association: 

(equal? prop (car (car alist») 

then the value we seek is the cdr of the fIrSt association: 

(cdr (car alist» 

Otherwise, we can recursively apply unsafe-get to (cdr alist). 
Our implementation uses (caar x) and (cdar x) as abbreviations of (car (car x» and 

·(cdr (car x»: 

(define (unsafe-get prop alist) 
(cond «null? alist) fail) 

«equal? prop (caar alist» (cdar alist» 
(else (unsafe-get prop (cdr alist»») 

A short sample computation might help explain how get works: 

(get 3 '«1 
(unsafe-get 
(unsafe-get 
(unsafe-get 
c 

a) (2 . b) (3 . C») 

3 '«1 a) (2 b) (3 
3 '«2 b) (3 . c») 
3 '«3 c») 

• C») 

Notice that unsafe-get is tail-recursive. The width of the computation does not depend on 
the size of the input, hence the amount of memory consumed is constant. Of course, if 
alist contains n associations, then the length of the computation will be proportional to n: 

I (unsafe-get prop alist)I O(n) 
[(unsafe-get prop alist)] = 0(1) 

Removing Associations 

A quick method for removing an association of the form (pROP . VAL) is to install a 
new association of the form (pROP. fail) at the beginning of the alist: 



216 6. Recursive Domains 

(define (rem prop alist) 
(if (alist? alist) 

(cons (cons prop fail) alist} 
(error "bad input" rem alist)}} 

This actually works because get. searches the alist from left to right. If we search for 
PROP, the attribute fail will be returned before VAL. This is exactly the behavior we ex
pect when (pROP. VAL) has been removed from the alist. 

This implementation has two defects. First, it depends on the fact that get searches 
from left to right, but this is not part of the specification of get. Second, imagine a poor 
customer who deletes associations from a large database to free space on his hard disk. 
The more he deletes, the fuller the disk becomes! Let's look for another implementation. 

(define (rem prop alist) 

(define (unsafe-rem prop alist) ???} 

(if (alist? alist) 
(unsafe-rem prop alist) 
(error "bad input" rem alist)}} 

At first, removing an association seems similar to searching for an association. We recur
sively move through alist Searching for an association with a matching attribute, then we 
snip the association away using cdr. Here's an adaptation of the unsafe-get procedure: 

(define (unsafe-rem prop alist) 
(cond «null? alist) alist) 

«equal? prop (caar alist» (cdr alist» 
(else (unsafe-rem prop (cdr alist»») 

Unfortunately, this doesn't work. We can see why by tracing a computation: 

(rem 2 '«1 a) (2 . b) (3 . c»} 
(unsafe-rem 2 '«1 a) (2 b) (3 . c)}} 
(unsafe-rem 2 '«2 . b) (3 . c}}) 
«3 . c» 
The problem is in the recursive step. We kDow the first association did not contain a 
matching attribute, but we discarded it anyway! Instead, we must cons this association 
back onto the result of recursively applying rem to (cdr alist): 

(define (unsafe-rem prop alist) 
(cond «null? alist) alist) 

«equal? prop (caar alist)} (cdr alist)} 
(else (cons (car alist) 

(unsafe-rem prop (cdr alist)})})} 

This procedure doesn't quite work either. To see why, imagine removing an association 
from an alist with two identical associations: 



(rem 2 '«1 . a) (2 . b) (2 . b») 
(unsafe-rem 2 '( (1 . a) (2 b) (2 . b») 

6.2. List Recursion 217 

(cons '(1. a) (unsafe-rem 2 '«2. b) (2. b»» 
( cons '( 1 . a ) '( (2 . b») 
«1 . a) (2 . b» 

Just because the attribute matches (caar alist) in the third cond clause doesn't mean we 
can stop the removal process. We must continue to remove associations from (cdr alist). 
This can be accomplished by an additional recursive call: 

(define (unsafe-rem prop a1ist) 
(cond «null? alist) alist) 

«equal? prop (caar alist» 
(unsafe-rem prop (cdr alist») 

(else 
(cons (car alist) 

(unsafe-rem prop (cdr alist»»» 

Unlike unsafe-get, unsafe-rem is not tail-recursive. The recursive call to unsafe-rem in 
the else clause is nested inside a call to cons. This means we will have to build a deep 
nest of pending calls to cons: 

(rem 4 '( (1 . a ) ( 2 . b) (3 . c») 
(unsafe-rem 4 '( (1 . a) (2 b) (3 . c») 
(cons '(1 . a) (unsafe-rem 4 '( (2 . b) (3 . c»» 
( cons '( 1 . a) 

(cons' (2 . b) (unsafe-rem 4 '( (3 . C»») 
( cons '( 1 a) ( cons '( 2 . b) ( cons '( 3 . c) '(»» 
(cons '( 1 . a) (cons '( 2 . b) '( ( 3 . c»» 
(cons' (1 . a) , «2 . b) (3 . c») 
«1 . a) (2 . b) (3 . c» 

Clearly, if alist contains n associations, then 

I (unsafe-rem prop alist) I = O(n) 
[(unsafe-rem prop alist)] = O(n) 

Our iterative implementation traverses alist. Each iteration either adds (cons) a non
matching association from alist to the result or does nothing to the result if the next asso
ciation should be removed. The iteration halts when traversal of the alist is complete: 

(define (rem prop alist) 
(if (not (alist? alist» 

(error "bad input" rem alist) 
(do «tail alist (cdr tail» 

(result (if (equal? prop (caar tail» 
result 
(cons (car tail) result»» 

«null? tail) (reverse result»») 

A tail-recursive implementation of rem is left as an exercise. 



218 6. Recursive Domains 

Installing Associations 

Installing a new association is simple: Make the association, then cons it onto the result 
of removing conflicting associations from the alist: 

(define (put prop val alist) 
(define assoc (cons prop val» 
(if (alist? alist) 

(cons assoc (rem prop alist» 
(error "bad input" put alist») 

Is it necessary to remove conflicting associations? Yes! Remember, the description of get 
doesn't specify in which direction alists are searched. Our put and rem procedures must 
work with implementations of get that search from right to left or left to right 

Constructing Association Lists 

Given a list of attribute names and a corresponding list of attribute values, we would like 
to produce an alist using a single constructor instead. of repeatedly applying put starting 
with the empty list: 

(define (make-alist props vals) ???) 

For example: 

) (make-alist '(a b c) '(1 2 3» 
«a. 1) (b • 2) (C • 3» 
) (make-alist '() '(» 
() 

The make-alist procedure first validates its inputs, then it uses the map procedure with 
the binary cons to zip the attribute and value lists together: 

(define (make-alist props vals) 
(if (and (list? props) 

(list? vals) 
(= (length props) (length vals») 

(map cons props vals) 
(error "bad input(s)" make-alist props vals») 

Recognizing Association Lists 

To finish things off, we need a predicate for recognizing alists. Our predicate is similar to 
the tail-recursive list? predicate defmed earlier, except we add a check to make sure each 
element of the input list is a pair: 

(define (alist? val) 
(cond «null? val) it) 

( (pair? val) 



6.3. The Signal Processing Paradigm 219 

(and (pair? (car val» 
(alist? (cdr val»» 

(else #f») 

6.3. The Signal Processing Paradigm 1 

Computer, telephone, and television networks are all examples of communication net
works. A communication network is a network of transmitters and receivers connected 
by communication channels (e.g., wires); see Figure 6.1. 

I I channel ·1 transmitter . receiver 

Figure 6.1 

A transmitter encodes input data into a signal-a sequence of short messages, frames, 
packets, cells, etc.-that can be propagated through the channel, as in Figure 6.2. 

data I . I (msg msg ... ) 
--... ~: transmItter : • 

Figure 6.2 

The receiver reverses the process, decoding message sequences (signals) into the original 
data. 

Unfortunately, signals can get distorted as they travel through the channel, causing 
the output data produced by the receiver to differ from the input data sent by the trans
mitter. The two major causes of distortion are noise (e.g. static) and attenuation 
(decay). 

The effects of attenuation can be mitigated by inserting amplifiers into the channel. 
An amplifier restores or strengthens each message that passes through it. The effects of 
noise can be diminished by inserting filters into the channel. Filters remove messages that 
have been corrupted by static; these will have to be retransmitted. Figure 6.3 shows a 
simplified model of a communication channel with a filter and an amplifier. 

1 Also called the Pipe and Filter architecture. 



220 6. Recursive Domains 

~1--Tlamplifier~1 filter Hrereiver~' 
noise 

Figure 6.3 

This suggests a paradigm, or computational model, for list processing: View lists as lists 
of messages and list procedures as communication channels composed of procedures that 
mimic transmitters, amplifiers, filters, and receivers. 

6.3.1. Filters 

The output of a filter is the input message list with noise removed. We derme noise to be 
corrupted messages among the input messages. We rely on the user to provide as a pa
rameter a predicate for recognizing noisy messages: 

(define (noise? msg) ... ) 

The filter procedure first validates inputs, then it calls a recursive unsafe-filter internal 
procedure: 

(define (filter noise? msgs) 

(define (unsafe-filter noise? msgs) ???) 

(if (and (procedure? noise?) (list? msgs» 
(unsafe-filter noise? msgs) 
(error nbad input(s)n filter noise? msgs») 

Unfortunately, Scheme does not provide a unary-predicate? procedure. 
Here are some sample evaluations: 

> (filter odd? '(1 2 3 4 567 8 9» 
(2 4 6 8) 
> (filter prime? '(1 2 3 4 5 6 7 8 9» 
(1 4 6 8 9) 

Clearly, the result of filtering noise from the empty list is the empty list: 

(unsafe-filter noise? 'C»~ = () 
Assume (unsafe-filter noise? (cdr msgs» returns x, a list of filtered messages, and y is 
(car msgs). If (noise? y), then x is the value returned by (unsafe-filter noise? msgs); oth
erwise (cons y x) is returned: 

(define (unsafe-filter noise? msgs) 
(cond 



«null? msgs) 'C»~ 

«noise? (car msgs» 

6.3. The Signal Processing Paradigm 221 

(unsafe-filter noise? (cdr msgs») 
(else 

(cons (car msgs) 
(unsafe-filter noise? (cdr msgs»»» 

As an example, suppose we have a predicate that recognizes prime numbers: 

i = #t if n is prime 
(define (prime? n) ... ) 

(Recall that a natural number n is prime if it is bigger than 1 and its only divisors are 1 
and n.) A composite number is a number that is not prime: 

(define (composite? n) 
(and (natural? n) (not (prime? n»» 

We can use this predicate to filter all composite numbers from a list of integers: 

(define (primes ints) (filter composite? ints» 

Let's trace a sample computation: 

(primes '(13 15 17 19 21 21» 
(filter composite? '(13 15 17 19 21 21» 
(unsafe-filter composite? '(13 15 17 19 21 21» 
(cons 13 (unsafe-filter composite? '(15 17 19 21») 
(cons 13 (unsafe-filter composite? '(17 19 21») 
(cons 13 

(cons 17 (unsafe-filter composite? '(19 21»» 
(cons 13 

(cons 17 
(cons 19 (unsafe-filter composite? '(21»») 

(cons 13 
(cons 17 (cons 19 (unsafe-filter composite? 'C»~»~) 

(cons 13 (cons 17 (cons 19 'C»~»~ 

(cons 13 (cons 17 '(19») 
(cons 13 '(17 19» 
(13 17 19) 

This computation suggests that the length and width of computations generated by calls 
to filter are proportional to the length of the input list In other words, if msgs has length 
n, then 

I (filter pred? msgs) I = O(n) 
[(filter pred? msgs)] = O(n) 

We can fmd a more memory efficient iterative implementation by traversing the message 
list. Each message encountered that is determined not to be noise is added (cons) to a re-



222 6. Recursive Domains 

suIt list. When we reach the end of the message list, the result list is reversed and re
turned: 

(define (filter noise? msgs) 
(if (or (not (procedure? noise?» 

(not (list?msgs») 
(error "bad input(s)" filter noise? msgs) 
(do 

«tail msgs (cdr tail» 
(result 

'0 
(If (noise? (car tail» 

result 
(cons (car tail) result»» 

«null? tail) (reverse result»») 

A tail-recurSive implementation is left as an exercise. 

6.3.2. Amplifiers (Map) 

Recall the primitive map procedure introduced in Chapter 2: 

(map proc vals ... ) 
= the list of values obtained by applying proc to each 
member of vals. If proc requires n inputs, then n vals 
lists are specified. 

For example: 

) (map square '(2 4 6» 
(4 16 36) 
) (map cons '(a b C) '(0 0 0» 
«a. 0) (b • 0) (C • 0» 

In the signal processing paradigm, the map procedure is analogous to an amplifier. Each 
message in the output list is a "strengthened," or "amplified," version of the correspond
ing message in the input list. 

Assume Scheme did not provide a map procedure. How can we implement our own? 
Let's begin with a simplified version that expects a unary procedure of the form: 

(define (amp msg) ... ) 

and a single list of messages as input: 

(define (unary-map amp msgs) 

(define (unsafe-map amp msgs) ???) 



6.3. The Signal Processing Paradigm 223 

(if (and (procedure? amp) (list? msgs» 
(unsafe-map amp msgs) 
(error "bad input(s)" unary-map amp msgs») 

Unfortunately, Scheme does not provide a unary-procedure? predicate. 
If msgs is empty, unsafe-map returns the empty list: 

(unsafe-map amp 'e»~ = () 
Assume (unsafe-map amp (cdr msgs» returns a valid list of amplified messages. The 
only job is to apply amp to (car msgs) and cons the result to this list: 

(cons (amp (car msgs» (unsafe-map amp (cdr msgs») 

The complete definition is: 

(define (unsafe-map amp msgs) 
(if (null? msgs) 

'() 
(cons (amp (car msgs» 

(unsafe-map amp (cdr msgs»»» 

Note: We really don't need to supply amp as a parameter to unsafe-map because this is 
always the same as the amp parameter of the encapsulating unary-map procedure, which 
is therefore available to unsafe-map as a nonlocaI. 

The iterative solution traverses msgs, applying amp to each member and consing the 
value onto a list of results. When the end of msgs is reached, the result is reversed and 
returned: 

(define (unary-map amp msgs) 
(if (or (not (procedure? amp» (not (list? msgs») 

(error "bad input(s)" unary-map amp msgs) 
(do «tail msgs (cdr tail» 

(result 
'() 
(cons (amp (car tail» result») 

«null? tail) (reverse result»») 

A tail-recursive implementation is left as an exercise. 

n-aryMap 

The real version of map is an n-ary procedure that expects an m-ary amplifier procedure 
as input together with m message lists, one corresponding to each of the expected inputs 
of m-amp. This suggests the following implementation: 

(define (map m-amp . m-msgs) 

(define (unsafe-map m-msgs) ???) 



224 6. Recursive Domains 

(if (and (procedure? amp) (all? list? m-msgs» 
(unsafe-map m-amp m-msgs) 
(error "bad input(s)" map m-amp m-msgs») 

Here we are using the all? predicate developed in Chapter 2 to verify that all members of 
the m-msgs parameter are lists. Note: To be perfectly safe, we should also verify that 
these lists all have the same length. Also, we are not passing m-amp as a parameter to un
safe-map because it will be available as a nonlocal. 

The definition of unsafe-map doesn't follow our usual pattern of recursion. Instead of 
calling (unsafe-map (cdr m-msgs» in the recursive application, we use 

(unsafe-map (unary-map cdr m-msgs» 

In other words, what gets smaller is not the length of m-msgs, but the length of the lists 
contained in m-msgs. Similarly, instead of terminating the recursion by asking (null? m
msgs), we ask: 

(some? null? m-msgs) 

where some? is also defined in Chapter 2. In other words, if any of the lists in m-msgs 
becomes empty, then the recursion will terminate. (If all the lists have the same length, 
then when one becomes empty, they all become empty.) 

(It should be pointed out that the some? and all? predicates defined in Chapter 2 used 
map. To avoid a nonterminating recursion, all? and some? should be reimplemented us
ing unary-map.) 

The last piece of the puzzle is to apply m-amp to the first element of each list in m
msgs, and then cons this result onto the list returned by the recursive call. We can form a 
list of cars by again using unary-map: 

(unary-map car m-msgs) 

We can use the apply procedure to apply m-amp to this list: 

(define (unsafe-map m-msgs) 
(if (some? null? m-msgs) 

I() 

(let « first 
(apply m-amp (unary-map car m-msgs»» 

(cons first 
(unsafe-map (unary-map cdr m-msgs»»» 

An iterative implementation is left as an exercise. 

6.3.3. Receivers (Accumulators) 

Like the other signal-processing devices we have seen, the input of an accumulator is a 
list of messages. However, unlike filters and amplifiers, the output of an accumulator is 
not a list of messages, but rather an interpretation of the signal gotten by combining 



6.3. The Signal Processing Paradigm 225 

every message in the signal into a single value. In a sense, an accumulator is analogous to 
a receiver, which decodes message lists into data. 

How are the input messages to be combined? This will have to specified as a binary 
procedure parameter of the form: 

(define (combiner first rest) ... ) 

What will be the result of combining the messages in an empty list? This, too, will have 
to be specified as a parameter. We call this initial value parameter init. The form of ac
cum is: 

(define (accum combiner init vals) 

(define (unsafe-accum combiner init vals) ???) 

(if (and (procedure? combiner) (list? vals» 
(unsafe-accum combiner init vals) 
(error "bad input(s)" accum combiner vals») 

Here are some sample calls: 

> (accum + 0 ' (1 2 3 4 5» 
15 
> (accum * 1 ' (2 4 6 8» 
396 

> (accum cons '() '(a e i o u» 
(a e i 0 U) 

Let's turn to an implementation of unsafe-accum. By definition: 

(unsafe-accum combiner in it '(» = init 

For the successor case, let's try to generalize from an example. Assume: 

(define x '(1 2 345» 

We know: 

(unsafe-accum + 0 x) = 15 

We can assume accum already works on (cdr x): 

(unsafe-accum + 0 (cdr x» = 14 

To get 15 from 14 we only need to add 1, i.e., (car x), to the recursive call. In general: 

(combiner 
(car msgs) 
(unsafe-accum combiner init (cdr msgs») 

The final form of unsafe-accum is: 



226 6. Recursive Domains 

(define (unsafe-accum combiner init msgs) 
(if (null? msgs) 

init 
(combiner 

(car (msgs» 
(unsafe-accumcombiner init (cdr msgs»») 

An iterative accumulator initializes a loop variable called result to init. As the message 
list is traversed, each message is combined to result using the combiner procedure: 

(define (accum combiner in it msgs) 
(if (or (not (procedure? combiner» 

(not (list? msgs») 
(error "bad inputs to accum: " combiner msgs) 
(do «tail msgs (cdr tail» 

(result 
in it 
(combiner (car tail) result») 

«null? tail) result»» 

As a simple example of accum, we can use it .to quickly compute the average of a list of 
test scores: 

(define (avg scores) 
(/ (accum + 0 scores) (length scores») 

6.3.4. Transmitters (Generators) 

Generators, the last signal-processing component we need, are analogous to transmit
ters. A generator is the opposite of an accumulator. It takes a value as input and turns it 
into a list of messages. For now we will be content to derme a simple generator that pro
duces an arithmetic sequence from a specified length. This is accomplished by initializ
ing a counter, i, to n. Each time through the loop, (* scale z) is added (using cons) to the 
message list, then decremented by step: 

(define (m-to-n m n) 

(define step 1) 
(define scale 1) 

decrement amount 
scaling factor 

(if (not (and (real? m) (real? n») 
(error "bad input(s)" m-to-n m n) 
(do «i n (- i step» 

(msgs '() (cons (* scale i) msgs») 
«< i m) msgs»» 

Here are some sample evaluations: 



> (m-to-n -3 5) 
(-3 -2 -1 0 1 2 3 4 5) 
> (m-to-n 5 -3) 
() 

6.3.5. Applications 

6.3. The Signal Processing Paradigm 227 

Many types of list .recursions are embodied by the signal-processing procedures. In ef
fect. we can use these procedures to "hide" recursive and iterative definitions. 

To sum the odd squares between 1 and n2 we can set up a simple communication 
channel as in Figure 6.4. 

n_1 W L--I L-I accum ~ult ..., m-to-n.--. filter r- map ! . ! 

Figure 6.4 

m-to-n will generate the list (1 2 .•. n), and filter will remove the even numbers, produc
ing the list (13 ... ). The map procedure amplifies each member with square. Finally, ac
cum is used to sum the list: 

(define (sum-odd-squares n) 
(accum + 0 

(map square 
(filter even? 

(m-to-n 1 n»») 

The beauty of this definition is that it doesn't appear to be recursive. If accum, m-to-n, 
filter, and map were primitive procedures, programmers could implement many powerful 
procedures before they ever had to write a recursive definition. Indeed, the availability of 
map as a· primitive procedure allowed us to write powerful procedures like all? and 
some? in applicative Scheme (Chapter 2), before recursion was available to us. For ex
ample, the recursive and iterative length and rem procedures defmed earlier can be re
placed with nonrecursive, noniterative, stream-processing implementations: 

(define (length vals) 
(define (combiner m n) (+ n 1» ; ignores m! 
(accum combiner 0 vals» 

(define (rem prop alist) 
{define (noise? association) 

(equal? prop (car association») 
(filter noise? alist» 

Of course, the nonrecursiveness of these procedures is merely an illusion. If we count 
filter and accum as single steps in a computation, then I(length vals)1 == 0(1) and I(rem 



228 6. Recursive Domains 

prop alist)1 ., 0(1), but if we count the cons and cdr operations inside filter and accum, 
then l(length vals)1 - O(n) and I(rem prop alist)1 - O(n), where length of vals -length of 
alist = n. 

6.4. Trees and Tree Recursion 

Sometimes it is useful to picture a list as a tree-like structure. For example, the list (a e i 0 

u) can be represented as the tree shown in Figure 6.5. 

() 

/11"" a e i 0 u 

Figure 6.5 

The root node of the tree is labeled by the parenthesis surrounding the list, and the nodes 
immediately below the root node are labeled by the members of the list. 

We can represent the empty list and nonlist values as single-node trees: 

() 42 #(a e-i 0 u) "hello world" #t 

The tree representation is especially useful for picturing nested lists. For example, the 
list: 

«(1 2 3) 4) (5 6) «(7»» 

can be represented by the tree in Figure 6.6. 

() 

~ 
() () () 

~ 
() 

1 
() 

/\ 
4 5 6 

~ 
123 

I 
() 

1 
7 

Figure 6.6 



6.4. Trees and Tree Recursion 229 

6.4.1. Terminology 

Trees are useful structures for organizing hierarchical data. Directories, procedure
dependency graphs, parse trees, expressions, computations, and organizational charts are 
all examples of trees. The members of a tree are called nodes. The nodes immediately 
below a node N are called the chDdren of N .. A node with children is called a parent 
node. A node with no children is either an empty tree or a leaf node. The top-most node 
is called the root node. In all our examples, parent nodes will always be empty lists and 
leaf nodes will always be values other than nonempty lists. 

6.4.2. The TREE Domain 

We can formalize our notion of tree as a domain: 

TREE :: = () I LEAF I PARENT 

where: 

PARENT :: = (TREE ... ) 

A leaf can be just about anything other than a pair: 

LEAF ::- SIMPLE I STRING I VECTOR 

We can make trees into an ADT (abstract data type) by introducing the obvious selectors, 
predicates, and constructors. We don't need a constructor for leafs or the empty tree. The 
make-parent constructor is simply a pseudonym for the Scheme list constructor: 

(define make-parent list) 

In some situations we need to construct a tree by.grafting a new subtree under the root of 
an existing tree. Because the grafted subtree becomes a new child of the root, we call this 
adopdon. Adoption is just a pseudonym for cons: 

(define adopt cons) 

In the interests of data abstraction, let's use a standard symbol to denote the empty tree: 

(define the-empty-tree '(» 

We need predicates to distinguish between the three types of trees. A list can be anything 
other than a pair (i.e., a nonempty list): 

(define (leaf? val) (not (pair? val») 

The empty-tree? predicate is a pseudonym for null? and the parent? predicate is a pseu
donym for list?: 

(define empty-tree? nUll?) 
(define parent? list?) 



230 6. Recursive Domains 

For now, our selectors will operate on parents by selecting the left child (car) and all but 
the left child (cdr), respectively: 

(define left car) 
(define but-left cdr) 

6.4.3. Tree Recursion 

We can organize the TREE domain into a ramified hierarchy (i.e., a hierarchy of hierar
chies). First, observe that parent trees are lists, so it makes sense to talk about the length 
of a tree. For example, the length of the tree (0 (a e i 0 u» is 2 because the list contains 
two lists. Obviously the length of the empty tree is O. We can extend the notion of length 
to leafs by agreeing that all leafs have length 1. 

Second, we defme the depth of a parent tree to be the length of its longest branch. A 
branch is any path of nodes from the root to a leaf, and the length of a branch is the 
number of nodes along the path. For example, the depth of (a e i 0 u) is 2. The depth of 
the tree shown in Figure 6.6 is 5, the length of the branch from the root to 7. Let's agree 
that the empty tree and leafs have depth 1. 

We defme the hierarchy of trees by: 

TREE :: = TREEo U TREEl U ..• U TREEn U ... 

where 

TREEn: : = all depth ~ n trees 

'I'REEn is itself a hierarchy: 

TREEn :: = TREEn 0 U TREEn 1 U ... U TREEnm U ... 

where 

TREEnm ::= all depth ~ n, length ~ m trees 

According to our definitions: 

TREEO :: = empty 
TREE10 :: = () 
TREEln ::= LEAF for all n > 0 
TREEl ::= () I LEAF 
TREE2 ::= all nonempty, nonnested lists 

The TREE hierarchy gives us a method for defming recursive procedures that operate on 
trees: 

Base Case: 
How can we compute (proc tree) for leafs and the empty tree? 

Successor Case: 
How can we compute (proc tree) assuming (proc (left tree» and (proc (but-left tree» 
are available? 



6.4. Trees and Tree Recursion 231 

This works because if tree is in TREE.m, then (left tree) is in TREE .. , and (but-left tree) is 
in TREEm-'. 

Example: Tree Depth 

For our first example of a tree recursion, let's write a procedure for calculating the depth 
ofa tree: 

(define (depth tree) ??? ) 

We can take the Base Case values directly from the definition of depth: 

(depth the-empty-tree) = 1 
(depth leaf) = 1 

Next we ask: How can we compute (depth tree) assuming values of depth are available 
for (left tree) and (but-left tree)? 

If the longest branch of tree is in the but-left part of the tree, then (depth tree) .. 
(depth (but-left tree». If the longest branch goes through (left tree), then (depth tree) ... 1 
+ (depth (left tree» (we add 1 to count the root, which is not part of the left child). There
fore, (depth tree) is the maximum of: 

(+ 1 (depth (left tree») 
(depth (but-left tree» 

Our final procedure is: 

(define (depth tree) 
(cond «empty-tree? tree) 1) 

«leaf? tree) 1) 
«parent? tree) 

(max (+ 1 (depth (left tree») 
(depth (but-left tree»» 

(else (error "bad input" depth tree»» 

Note: Our current definitions of empty-tree?, leaf?, and parent? practically make depth 
polymorphic. What Scheme value is not a tree? Consequently, control will never be 
passed to the else clause. We leave it in place in case we decide in the future to limit the 
concept of tree. 

To understand how a recursive procedure works, we trace a few sample computa
tions. In the past, traces (and computations) have always been linear sequences of 
Scheme expressions. The situation is different for tree recursions. In the preceeding ex
ample, there are two recursive calls to depth in the same clause. This means the compu
tation will be a binary tree instead of a sequence. Let's draw the computation generated 
by the call (depth '«I) 2 (3))). We will only show applications of the depth procedure. 
The value returned by each call is shown next to the application. This is the max of the 
value of the right call value and 1 more than the value of the left call (see Figure 6.7). 



232 6. Recursive Domains 

(~pth «1) 2 (3))):3 

~ 
(&Pth (1»:2 (~pth (2 (3»):3 

.---....... -------(~th 1): 1 (~th 0): 1 (~pth 2): 1 (~pth «3))):3 

/~ 
~th (3~ (~pth 0): 1 

(~pth (3»: 1 (~th 0): 1 

Figure 6.7 

Notice that the value ultimately returned is 3, exactly what we would expect. 

Example: Tree Flattening 

Flattening a tree means collecting all its leafs into a list. Here's a sample call: 

) (flatten I«a b) (a e (a» a be») 
(a b a c a a b c) 

We want to complete the definition: 

(define (flatten tree) ??? 

The Base Cases are easy: 

(flatten (» = () 
(flatten leaf) = (leaf) 

We ask: How can we compute (flatten tree) assuming (flatten (left tree» and (flatten 
(but-left tree» are available? The answer is to append the recursive calls: 

(append (flatten (left tree» 
(flatten (but-left tree») 

Our final procedure is: 

(define (flatten tree) 
(eond «empty-tree? tree) Ie»~ 

«leaf? tree) (list tree» 
«parent? tree) 

(append (flatten (left tree» 
(flatten (but-left tree»» 

(else (error "bad input" flatten tree») 

Here's the computation generated by the call (flatten I«a) b (e))). Only calls to flatten are 
shown. As before, the return values are indicated next to the calls in Figure 6.8. 



(flatten «a) b (c»):(a b c) 

I 

6.4. Trees and Tree Recursion 233 

(flatten (a»:(a) (flatten (b (c»):(b c) 
1 _________ 1---------

(flatten a):(a) (flatten 0>:0 (flatten b):(b) (flatten «c»):(c) 

/~ 
(fl/~ (flatten 0>:0 

(flatten c):(c) (flatten 0>:0 

Figure 6.8 

The value ultimately returned is as we expect, the list (0 be). 

Example: Tree Substitution 

Sometimes we want to substitute all occurrences of a subtree with another tree. For 
example: 

> (tree-sub 'a 'b '«a b) (a e (a» a be» 
«bb) (be (b» bbe) 

We want to complete the definition: 

(define (tree-sub old-item new-item tree) ???) 

In this case, there are three parts to the Base Case. If tree is empty or a leaf, then there is 
no substitution to be performed, and tree is the result returned. However, if tree is old
item, then the entire tree is replaced by new-tree, which is returned as a value: 

(tree-sub a b leaf) = leaf 
(tree-sub a b (» = () 
(tree-sub a b a) = b 

How can we compute (tree-sub 0 b c) assuming (tree-sub 0 b (left c» and (tree-sub 0 b 
(but-left c» are available? After we apply the substitution to the left (i.e., car) and but-left 
(i.e., cdr), we can combine the return values using adopt (i.e., cons): 

(adopt (tree-sub old-item new-item (left tree» 
(tree-sub old-item new-item (but-left tree») 

The general case and three Base Cases suggest we should use a five-way cond
expression: 

(define (tree-sub old-item new-item tree) 
(eond 

«equal? old-item tree) new-item) 
«empty-tree? tree) tree) 



234 6. Recursive Domains 

«leaf? tree) tree) 
«parent? tree) 

(adopt 
(tree-sub old-item new-item (left tree» 
(tree-sub 

old-item new-item (but-left tree»» 
(else (error "bad input" tree-sub tree»» 

Notice the use of equal? in the first clause. This was used instead of the more specialized 
equality predicates because we have no way of telling what types of trees we will need to 
compare. 

Also, notice that the order of clauses is crucial. If the first clause is switched with the 
third clause, the call (tree-sub a b a) will return a instead of b. 

Example: Tree Removal 

The remove procedure for trees expects two inputs, an item to be removed and a tree to 
remove the item from. Here is a sample call: 

> ( rem 'a '( (a b) (a c ( a» abc» 
«b) (c (» b c) 

It's interesting to compare this with the rem-item procedure defined in Problem 6.5.: 

> (rem - item 'a '( (a b) (a c ( a» abc» 
«a b) (a c "(a» b C) 

Notice that rem-item only removes children of the root that match fa. Occurrences of fa at 
lower levels are ignored. Sometimes tree recursion is called deep recursion because it 
not only processes members of lists, but also members of members, members of mem
bers of members, and so on. 

We want to complete the definition: 

(define (tree-rem item tree) ??? ) 

Working out the Base Cases is tricky. What is left behind when we remove a tree from it
self? 

(tree-rem tree tree) = ??? 

Ideally, we would like the procedure to return nothing, but this will only be possible on 
recursive calls to tree-rem. For now, let's agree that the result of removing a tree from it
self is the empty tree. The other two Base Cases are obvious: 

(tree-rem-tree tree tree) = () 
(tree-rem-tree item (» = () 
(tree-rem-tree item leaf) = leaf 

Assume b is a parent tree. How can we compute (tree-rem a b) assuming (tree-rem a (left 
b» and (tree-rem a (but-left b» are available? We could use the tree-sub strategy: apply 



6.4. Trees and Tree Recursion 235 

tree-rem to left and but-left, then combine the results using adopt, but there is a problem 
we can see by tracing a computation generated by this algorithm: 

(tree-rem b (a b c» 
(adopt a (tree-rem b (b c») 
(adopt a (adopt (tree-rem b b) (tree-rem b (c»» 
(adopt a (adopt () (tree-rem b (C»» 
(adopt a (adopt () (adopt c (»» 
(adopt a (adopt () (c») 
(adopt a «) c» 
(a () c) 

We would like the result to have been (a c) instead of (a ( ) c). The ( ) crept into our re
sult from the recursive call: (tree-rem b b), which returns () as a value. This is the correct 
value if b is a root node. but not if it is a left node. When we encounter a parent, we need 
to peek at the left child to see if it is the same as the item being removed and to leave the 
left child completely out of the result construction if it is. This suggests the following al
gorithm: 

(tree-rem x (a b ... » 
= (adopt (tree-rem x a) (tree-rem x (b ... » if x *_a 
= (tree-rem x (b ... » otherwise. 

This can be translated into Scheme as follows: 

(if (equal? item (left tree) 
(tree-rem item (but-left tree» 
(adopt (tree-rem item (left tree» 

(tree-rem item (but-left tree»» 

The final form of our procedure is: 

(define (tree-rem item tree) 
(cond 

«equal? item tree) the-empty-tree) 
«empty-tree? tree) tree) 
«leaf? tree) tree) 
«parent? tree) 

(if (equal? item (left tree) 
(tree-rem item (but-left tree» 
(adopt (tree-rem item (left tree» 

(tree-rem item (but-left tree»») 
(else (error "bad input" tree-rem tree»» 



236 6. Recursive Domains 

6.4.4. Efficiency of Tree Recursions 

Recall the time consumed by a procedure proc was proportional to I(proc n)1. This 
doesn't quite make sense in the case of a tree recursion like depth or flatten. First, these 
procedures expect trees, not numbers, as inputs. Second, I(proc n)1 was defined as the 
length of the computation generated by (proc n). This makes sense if computations are 
sequences, but what does it mean if computations are trees? 

Assume proc is a procedure that operates on trees. We redefme I(proc tree)1 as the 
number of nodes in the computation tree generated by (proc tree). This seems logical be
cause each node corresponds to a step the evaluator must make; hence an amount of 
computer time consumed. It also agrees with our previous definition if the tree happens 
to consist of a single branch. 

Looking at the example computations, we can see: 

, (depth '( (1) 2 ( 3 ) ) )' = 16 
,(flatten '«a) b (C»), = 17 

In general, it is difficult to find I(proc t)1 when t is a parameter, but we can find a general 
o bound. First observe that if t is a binary tree, then It! = the number of nodes in t, is no 
more than 2d - 1, where d = the depth of t. 

Second, notice that the depth of a computation tree is related to the size of the input 
tree. For example, the depth of both the computation trees here is 6, which is the same as 
the number of nodes in the input trees «1) 2 (3» and «a) b (c». Rather than working out 
the details, we simply assert that if the input tree consists of n nodes, then the computa
tion tree will consist of c * n nodes for some fixed constant c. 

Combining these two observations, we conclude that if It! = n, then: 

, (depth t), = 0 ( 2D) 

I (flatten t), = o( 2D) 

Tree recursions are very inefficient. Each call to depth or flatten spawns two more calls. 
In each case frames for calls to + or append are created but can't be deallocated until all 
of the downstream recursions terminate. This suggests: 

[(depth t)] = o( 2D) 

[(flatten t)] = O(2D) 

Appendices 

Appendix 6.1. Promises 

When the sultan wanted someone to teach his pet donkey to read and write, Goha vol
unteered. He said the task would take three years, and to accomplish it he would need a 
villa with servants. The sultan agreed, and the next day Goha and the donkey moved 
into a splendid mansion. Time passed. Goha's friends came to visit him and found him 



Appendices 237 

lounging about in great comfort while the donkey roamed happily over the gardens. 
They warned him time and again that if he failed to come up with a literate donkey at 
the end of three years, he would surely lose his head. But Goha was unperturbed. 

"I shall not give up hope," he said. "After all, one of four things might happen: the 
sultan may die, 1 may die, the donkey may die or -who knows? -the donkey may 
learn to read and write." 

-Turkish Folk Tale 

We have already seen a structure that uses delayed (i.e., lazy) evaluation. Recall: 

(lambda (PARAM ... ) BODY) 

delays evaluation of BODY, freezing it inside a procedure that is the value returned by 
lambda. 

Scheme provides another structure that uses delayed evaluation called delay. Delay is 
similar to lambda except that no parameters are involved. The "frozen" expression re
turned by delay is called a promise.2 

(delay exp) = {exp} = a promise constructed from exp 

We use the notation {exp} to represent the promise constructed from the expression expo 
This notation is not standard, and will not be understood or produced by Scheme inter
preters. It is only a convenient notation we use in this text. 

Recall that an expression frozen inside a procedure was eventually "thawed" (i.e., 
evaluated) when the procedure was applied to arguments. Scheme also provides a 
mechanism for thawing (i.e., evaluating) promises: 

(force {exp}) = value of expo 

For example: 

) (define promise 
(delay (begin (writeln "hello world") 42») 

unspecified 
) promise 
promise i = {(begin (writeln "hello world") 42)} 
) (force promise) 
hello world 
42 

Notice that the side effect produced by (writeln "hello world") wasn't seen until promise 
was forced. 

Application: LazY Procedures 

Recall the deftnition of Lazy Evaluation given at the beginning of Chapter 3: 

2 Some programmers call promises thunks, said by some to be the noise made by data being 
pushed onto a stack. 



238 6. Recursive Domains 

1. Evaluate operator. 
2. Replace parameters in body by unevaluated operands. 
3. Evaluate body. 

This algorithm has two problems. First, what if the operands contain symbols that are lo
cal to the procedure? This could cause unintended interpretations of these symbols. For 
example, assume the following definition has been made: 

; = #t, if z near 0 
(define (small? z) 

(define delta 1e-20) 
«= (abs z) delta» 

Unless the programmer and user are the same person, there's a good chance the user 
doesn't know about the local variable delta. Without this knowledge, the user may create 
his or her own global variable called delta and pass it to the small? predicate: 

> (define delta 100000) 
unspecified 
> (small? delta) ; should be #f 
? 

If the lazy evaluation algorithm described earlier is used, then the unevaluated operand, 
delta, is substituted for z in the body of small?, and the body: 

«= (abs delta) delta) 

is evaluated. In the local environment both occurrences of delta are assumed to refer to 
the local delta, and contrary to the user's expectation, #t is returned. 

The second problem with our lazy evaluation algorithm has to do with efficiency. 
Suppose a parameter is needed several times inside the procedure body. Does this mean 
the corresponding operand will have to be evaluated multiple times? For example, the pa
rameter Z will be needed three times inside cube: 

(define (cube z) (* z z z» 

If our lazy evaluation algorithm is used to evaluate (cube (exp 10(0», then the unevalu
ated expression (exp 10(0) will be substituted for all three occurrences of z in the body of 
cube: 

(* (exp 1000) (exp 1000) (exp 1000» 

Evaluating this expression forces us to compute (exp 10(0) three times! 
To solve these problems, let's modify the lazy evaluation algorithm as follows: 

1. Evaluate operator. 
2. Replace parameters in body by delayed operands. 
3. Evaluate body. Force delayed operands if and when they are encountered. 

(Sometimes the first lazy evaluation algorithm is called normal order evaluation to dis
tinguish it from this algorithm.) 



Appendices 239 

Although Scheme uses eager evaluation to evaluate applications of user-defined pro
cedures, it is possible to define lazy procedures (also called nonstrid procedures) that 
use the lazy evaluation algorithm. Lazy procedures assume all their parameters are 
promises that need to be explicitly forced.3 For example, here are lazy versions of small? 
and cube: 

(define (lazy-small? promise) 
(define delta 1e-20) 
«= (abs (force promise» delta» 

(define (lazy-cube promise) 
(* (force promise) 

(force promise) 
(force promise») 

Unfortunately, these procedures pass the burden of explicitly delaying operands to the 
poor user. For example, to cube 10, the user must type: (lazy-cube (delay 10». In Chap
ter 8 we will see how to solve this problem using macros. 

How does the new lazy evaluation algorithm solve the two problems associated with 
the old algorithm? In fact, (small? delta) returns the expected result: 

) (define delta 100000) 
unspecified 
) (lazy-small? (delay delta» ; should be #f 
if 

If we trace this application, we see that the promise, {delta}, replaces the parameter in 
the body of lazy-small?: 

(lazy- smal·l? (delay delta)} 
«= (abs (force {delta})} delta) 

In some ways the promise {delta} is similar to the parameterless procedure (lambda 0 
delta). Notice that delta would be considered a nonlocal in (lambda 0 delta); hence the 
static scope rule would dictate that the value of delta be determined by the procedure's 
defining environment rather than its calling environment. The same is true for promises. 
If symbols occur inside a promise, then the delaying environment, not the forcing envi
ronment, is used to determine their values. 

In the preceding example, delta was delayed in the global environment. When the 
promise {delta} is forced in the body of lazy-small?, the delta ... 10.20 binding in the local 
environment is ignored in favor of the global binding delta ... 100,000. 

Memoization 

How is the efficiency problem associated with the first lazy evaluation algorithm solved 
by the second algorithm? If we trace the application (lazy-cube (exp 1000», we see that 

3 All procedures are lazy in functional languages like Gofer. 



240 6. Recursive Domains 

after substitution, the promise {(exp 1O(0)} is forced three times in the body of lazy
cube: 

(lazy-cube (delay (exp 1000») 
(* (force {(exp 1000)}) 

(force {(exp 1000)}) 
(force {(exp 1000)}» 

Evaluating the first operand of the multiplication (assuming operands are evaluated left 
to right) forces us to compute eI(JOO. Here is where promises differ from parameterless pro
cedures. The first time a promise is forced, it "remembers" its value by storing it in a 
hidden variable. If the promise is forced again, it merely returns the value stored in the 
hidden variable and doesn't bother evaluating its body. This technique is called memoi
zation. For example, the promise {(exp 1O(0)} can be viewed as shorthand for the value 
produced by the expression: 

{let «value 'e»~ 

(first-time it» 
{lambda () 

{if first-time 
{begin 

{set! value (exp 1000» 
(set! first-time if»~) 

value) ) 

(Recall that set! is a Scheme assignment operator used to "redefine" names. Please avoid 
using assignment commands until they are properly introduced in Chapter 7.) 

Example: switch 

Lazy procedures are useful when we want to avoid evaluating operands unless we need 
them. For example, suppose we want to create a procedure with four parameters that re
turns one of its last three parameters depending on the value of its first parameter. Be
cause this is vaguely related to the C switch command, we call this procedure lazy
switch: 

(lazy-switch key case1 case2 case3) 
case1, if key < 0 

= case2, if key is even 
= case3, if key is odd 

If we define lazy-switch as a lazy procedure, i.e., if we assume all parameters are prom
ises, then only key and one case parameter will need to be evaluated: 

{define (lazy-switch key case1 case2 case3) 
{define key-val (force key» 
(cond «< key-val 0) (force casel» 

«even? key-val) (force case2» 
(else (force case2»» 



Appendices 241 

For now, users of lazy-switch must explicitly delay its inputs. Assume a global constant x 
has been defined: 

(lazy-switch 
(delay x) 
(delay (exp 500» 
(delay (fact 40» 
(delay 100» 

e"500, yikes! 
(* 40 39 ... 1), yikes! 

Like Goha, we hope, x < 0 here, and we can avoid computing (exp 500) or (fact 40) alto
gether. 

Appendix 6.2. Streams 

Some implementations of Scheme provide a STREAM domain.4 Logically, streams and 
lists are identical. If (a e i 0 u) is a list, then we use $(a e i 0 u) to denote the equivalent 
stream. (This is analogous to using #(a e i 0 u) to denote the equivalent vector.) Of 
course, Scheme does not recognize $(a e i 0 u) as a valid literal or printable value. This 
notation is only used in this text to make the analogy between lists and streams clear. 

Internally, there is an important difference between lists and streams. Like a list, a 
nonempty stream is a pair, but the cdr of the pair is a promise made from an expression 
that produces the tail of the stream: 

STREAM::= $() I (HEAD. {TAIL}) 

Every list procedure can be turned into ali equivalent stream procedure by replacing car, 
cdr, cons, and so on with the corresponding stream procedures: 

head = stream version of car 
tail = stream version of cdr 
cons-stream = stream version of cons 
the-empty-stream = $() = stream version of () 
empty-stream? = stream version of null? 
stream? = stream version of list? 

We could literally identify some of the stream procedures with their list counterparts: 

(define head car) 
(define the-empty-stream Ie»~ 

(define empty-stream? nUll?) 

But we have to be careful with cons-stream and tail. Because the cdr of a stream is a 
promise, tail needs to force it before returning it: 

(define (tail stream) (force (cdr stream») 

Cons-stream is trickier because it must delay its second input before forming a pair: 

4 An implementation of streams is presented in the Macro section of Chapter 8. 



242 6. Recursive Domains 

(define (cons-stream head tail) 
(cons head (delay tail») 

Unfortunately, this doesn't work because eager evaluation will cause tail to be fully 
evaluated before we have a chance to freeze it. The correct implementation of cons
stream will have to wait until Chapter 8. 

The deImition of stream? is complicated by the fact that IEEEI ANSI Scheme does not 
provide a predicate for recognizing promises. (Fortunately, stream? is a primitive predi
cate in PC Scheme.) 

Example: stream-ref 

Let's implement a procedure for selecting members from a stream. This procedure will 
be analogous to list-ref, so we'll call it stream-ref: 

(define (stream-ref stream n) ???) 

We can use PC Scheme's stream? predicate and the natural? predicate developed earlier 
to validate the inputs of stream-ref: 

(define (stream-ref stream n) 

(define (unsa~~-stream-ref stream n) ???) 

(if (and (natural? n) (stream? stream» 
(unsafe-stream-ref stream n) 
(error "bad input(s)" stream-ref stream n») 

Remember, the first item in a list, vector, string, or stream is always in position O. There
fore, if n - 0, unsafe-stream-ref returns (head stream). If the input stream is empty, then 
an "n out of range" error message is produced: 

(define (unsafe-stream-ref stream n) 
(cond 

«empty-stream? stream) 
(error "out of range" stream-ref n» 

«zero? n) (head stream» 
(else (unsafe-stream-ref 

(tail stream) 
(- n 1»») 

Of course, we can seek a more efficient iterative implementation of stream-ref. To do 
this, we replace (unsafe-stream-ref stream n) in the body of stream-ref with a do-loop. 
The do-loop has two loop-control variables, an integer called count that is initially n, and 
a stream called members that is initially stream. Each time through the do-loop, count is 
decremented by one and the first element of members is removed. When count reaches 0 
or when members becomes empty, the iteration stops and the head of members or an er
ror message is returned: 



(do «count n (- count 1» 
(members stream (tail members») 

«or (zero? count) (empty-stream? members» 
(if (empty-stream? members) 

(error "out of range" stream-ref n) 
(head members»» 

Example: Creating Streams 

Appendices 243 

We can create streams starting with the-empty-stream by repeated applications of cons
stream. A faster method is to coerce a list into a stream. The list->stream and stream->list 
coercions also show the close relationship between lists and streams. The list->stream co
ercion replaces the empty list by an empty stream. Assuming list->stream already con
verts (cdr vals) into an equivalent stream, we only need to add (car vals) to the beginning 
of this stream. This is done using cons-stream: 

(define (list->stream vals) 
(if (null? vals) 

the-empty-stream 
(cons-stream 

(car vals) 
(list->stream (cdr vals»») 

Here are some sample calls: 

> (list->stream '(a e i 0 u» 
$(a e i 0 U) 

> (list->stream 'C»~ 

$() 

The inverse coercion is left as an exercise. 

Streams as Signals 

We can represent signals as streams of messages rather than lists of messages. Translat
ing map and filter into equivalent stream procedures is straightforward. For reasons that 
will be clear later, we do not define a stream version of accum. 

The recursive, unary version of unsafe-stream-map mirrors safe-map: 

(define (unsafe-stream-map amp msgs) 
(if (empty-stream? msgs) 

the-empty-stream 
(cons-stream 

(amp (head msgs» 
(unsafe-stream-map amp (tail msgs»») 

The iterative version is less obvious because we lack stream versions of reverse and 
append. 



244 6. Recursive Domains 

The recursive version of unsafe-stream-filter mirrors unsafe-filter: 

(define (unsafe-stream-filter noise? msgs) 
(cond 

«empty-stream? msgs) the-empty-stream) 
«noise? (head msgs» 

(unsafe-stream-filter noise? (tail msgs») 
(else (cons-stream 

(head msgs) 
(unsafe-stream-filter 

noise? 
(tail msgs»»» 

Infinitely Long Streams 

Given two real number btputs, the following procedure generates the stream of reals "from 
mton: 

(define (m-to-n m n) 
(if (> m n) 

the-empty-stream 
(cons-stream m (m-to-n (+ m 1) n»» 

Here are some sample calls: 

> (m-to-n -3 5) 
$(-3 -2 -1 0 1 2 3 4 5) 
> (m-to-n 5 -3) 
$() 
> (m-to-n 5.2 5.2) 
$(5.2) 

The definition of m-to-n seems odd. Normally, our successor assumption would be that 
the values of m-to-n are available for inputs smaller than m, but in this case the input to 
the recursive call is (+ m 1) instead of (- m 1). This works because the distance between 
(+ m 1) and n is smaller than the distance between m and n. Eventually, when m passes n, 
the recursion will terminate. This can be seen by tracing a call to m-to-n: 

(m-to-n 3 5) 
(cons-stream 3 (m-to-n 4 5» 
(cons-stream 3 (cons-stream 4 (m-to-n 5 5») 
(cons-stream 3 

(cons-stream 4 (cons-stream 5 (m-to-n 6 5»» 
(cons-stream 3 (cons-stream 4 (cons-stream 5 $(»» 
(cons-stream 3 (cons-stream 4 $(5») 
(cons-stream 3 $(4 5» 
$(3 4 5) 



Appendices 245 

Actually, this isn't what happens. Recall that cons-stream delays its second input. Hence, 
the real computation terminates after the third step: 

(m-to-n 3 5) 
(cons-stream 3 (m-to-n 4 5» 
(3 . {(m-to-n 4 5)}) 

Like Goha, m-to-n has lazily put off the remaining calls to m-to-n, hoping they won't be 
necessary. If a persistent user wants to see the tail of this stream, m-to-n will unfold the 
recursion one more step: 

(tail (3 . {(m-to-n 4 5)}) 
(force {(m-to-n 4 5)}) 
(m-to-n 4 5) 
(4 . {(m-to-n 55)}) 

Notice how lazy m-to-n is. It refuses to unfold any more of the recursion than is abso
lutely necessary. 

This example brings up several interesting points. First, assume a simple value occu
pies four bytes of memory, and the amount of memory occupied by a pair (x . y) is the 
sum of the bytes occupied by x and y. Because the list (1 2 3) is equivalent to the pair (1 . 
(2 . (3 . 0))), it occupies 16 bytes of memory. By the same reasoning, the list (1 2 3 ... 
100) occupies 404 bytes of memory. However, the stream $(1 23) is equivalent to a pair 
of the form (1 . {tail}), which occupies just 8 bytes of memory. Here's the interesting 
part: The stream $(1 23 ... 100) is also equivalent to a pair of the form (1 . {tail}), and so 
it too occupies only 8 bytes of memory! 

The second interesting feature of the m-to-n example is this: because m-to-n lazily re
fuses to unfold any more of the recursion than is absolutely necessary, why does the re
cursion need to terminate? Why does the recursion need a Base Case? This motivates the 
following definition: 

(define (from-m m) 
(cons-stream m (from-m (+ m 1»» 

In any other language, this definition would be a disaster: (from-m 0) calls (from-m 1) 
calls (from-m 2) calls (from-m 3), etc. In Scheme, however, (from-m 0) immediately re
turns the pair: 

(0 . {(from-m I)}) 

Like Walt Disney, the troublesome infinite recursion is safely frozen inside a promise. 
This raises the question: What stream is represented by (from-m O)? We can only imagine 
that this represents the infinite stream of all natural numbers: 

$(0123 ... ) 

This motivates the following definition: 

(define nats (from-m 0» 



246 6. Recursive Domains 

The reader can verify that this is indeed the stream of all natural numbers by using 
stream-ref to select from nats 

> (stream-ref nats 50) 
50 
> (stream-ref nats 1000) 
1000 

How can we generate other infinite streams? There are two techniques. The first is to 
imitate the method used for generating nats. For example, the infinite stream of all natu
ral numbers divisible by 9 is: 

$(0 9 18 2736 ... ) 

To generate this stream, we first modify from-m: 

(define (from-m m) 
(cons-stream m (from-m (+ m 9»» 

Finally, we defme our stream by calling (from-m 0): 

(define nines (from-m 0» 

The second technique uses stream-map and stream-fllter to modify the oats stream. For 
example, an origin is a vector of zeros: #(0 ... 0). How can we generate the infinite stream 
of all even-length origins: 

$(#() #(0 Of #(0 0 0 0) #(0 0 0 000) ... ) 

More specifically, how can we modify the nats stream to produce this stream? We can 
use stream-fllter to eliminate the odd numbers from nats: 

(define evens (stream-filter odd? nats» 

Evens represents the infinite stream of all even numbers: 

$(02468 ... ) 

How can we amplify the even number n into a length n origin? We can base our ampli
fier on Scheme's make-vector procedure: 

(define (make-origin n) (make-vector nO» 

To produce our fmal result we apply stream-map to evens using make-origin as an ampli
fier: 

(define even-origins (stream-map make-origin evens» 

Problems 

Solutions to the following problems are to be given in functional Scheme. Try to restrict 
yourself to the necessary features within functional Scheme. A void coercions, strings, 



Problems 247 

vectors, and list operations other than null?, car, cdr, and cons Unless stated otherwise. 
You may use the definitions given in this chapter as well as solutions to other problems 
in this chapter (although you will have to include these definitions in your program files 
so you can test your definitions). You may also defme any supporting procedures you 
need. Validate all inputs to monomorphic and overloaded procedures. 

Problem 6.1. 

How could you define a nonrecursive domain NATURALn so that 

NATURAL :: = NATURALO U ... U NATURALn U .. , 

(Recall, NATURAL ::- all unsigned integers.) 

Problem 6.2. 

How could you defme a nonrecursive domain V ALUEn so that 

VALUE •. = VALUEO U ... U VALUEn U ... 

Problem 6.3. 

Trace the computations generated by the following calls. assuming the definitions given 
earlier: 

a . (accum cons I () I (3 4 5» 
b. (list-ref '(a bed e) 3) 
c. (map square I (3 4 5» 

Problem 6.4. 

What function is computed by the following procedure? Reimplement it as an efficient, 
understandable, nonrecursive procedure using a do-loop. Can it be reimplemented in 
IEEElANSI Scheme without recursion or iteration? 

(define (mystery vals) 
(if (null? vals) 

'0 
(append (mystery (cdr vals» 

(list (car vals»») 



248 6. Recursive Domains 

Problem 6.5. 

Implement the following procedures: 

a. (put-nth vals item n) 
= vals with item inserted in position n 

b. (rem-nth vals n) 
= vals with item at position n removed 

c. (rem-item item vals) 
= vals with first occurrence of item removed 

d. (rem-item-all item vals) 
= vals with all occurrences of item removed 

e. (rem-items items vals) 

Problem 6.6. 

= vals with all occurrences of members of items 
list removed 

Assume vals is any list and test? is any unary predicate. Implement the following proce
dures: 

a. (all? test? vals) 
= it, if all members of vals pass test? 
= if, otherwise 

b. (some? test? vals) 

Problem 6.7. 

= it, if some members of vals pass test? 
= if, otherwise 

Assume vals is any list and n is a natural number. Implement the following procedures: 

a. (take vals n) 
= a list containing the first n items in vals 

b. (drop vals n) 
= a list containing all but the first n items in vals 



Problems 249 

Problem 6.8. 

The zip procedure interleaves its two input lists into a single output list. Here are some 
examples: 

(zip (1 2 3) (4 5 6» (1 4 2 5 3 6) 
(zip (1 2) (3 4 5 6» (1 3 2 4 5 6) 
(zip (1 2 3 4 5) (6 » (1 6 2 3 4 5) 

Implement the zip procedure without using map. 

Problem 6.9. 

Using the card ADT developed in Chapter 4, implement a procedure that expects no in
puts but produces as output a list of aU 52 playing cards. 

Using only high-level procedures (zip, take, drop, etc.), write an update procedure 
called shuffle that shuffles a card-list input once. A list of cards is shuffled by splitting 
them in half, then interleaving the cards in the first half with the cards in the second half. 

Write a procedure that allows users to iterate shuffle n times. 
What's the period of shuffle, i.e., how many applications of shuffle lead back to the 

original order? 

Problem 6.10. 

Recall the definition of e given earlier: 

GO 1 
e- 1: -. 

k=ok! 

Write a procedure that expects no inputs, but produces a stream consisting of all the par
tial sums Qf this series. Using stream-ref to sample this stream at position n yields arbi
trarily good approximations of e. 

Problem 6.11. 

In implementations of Scheme that provide eval, another possible implementation of the 
switch procedure is: 

(define (switch keycase1 case2 case3) 
(define key-val (eval key» 
(cond «< key-val 0) (eval case1» 

«even? key-val) (eval case2» 
(else (eval case3»» 

Users could call switch by first quoting the inputs: 

(switch 'i '(exp 50) '(fact 40) '10) 



250 6. Recursive Domains 

How could this produce different behavior from the earlier version? Hint What envi
ronment is used by (eval x)? What environment is used by (force x)? 

Problem 6.12. 

Assume Scheme did not provide a member procedure. Implement one. 

Problem 6.13. 

Assume Scheme did not provide an append procedure. Implement one. 

Problem 6.14. 

Implement stream versions of member, take, and drop called stream-member, stream
take, and stream-drop. What problems would you expect from stream-append, a stream 
version of append? 

Problem 6.15. 

Compare the lengths of the computations generated by the expressions: 

a. (list-ref 
(filter even? (map square (m-to-n 1 n») k) 

b. (stream-ref 
(stream-filter 

even? (stream-map square (m-to-n 1 n») 
k) 

Problem 6.16. 

Write a procedure called orbit that, given an update procedure and an initial state as in
put, generates a stream representation of the orbit generated by iterating the update infi
nitely many times starting in the given initial state: 

$(init (update init) (update (update init» ... ) 

Here's a stub for orbit: 

(define orbit init update) ???) 



Problems 251 

Problem 6.17. 

Assuming a stream representation of an orbit, write a procedure called periodic? that re
turns #t if its orbit input is periodic. 

Problem 6.18. 

Recall the convergent? procedure from Chapter 5. We said that this procedure could not 
be implemented, but it is possible to implement loop detectors. Given a procedure proc 
and a list of values, vals, as input, a loop detector traces the computation gotten by ap
plying proc to vals, storing the computation as a stream. Before each intermediate ex
pression in the computation is added to the stream, the loop detector uses the periodic? 
predicate defined in the last problem to determine if any expression has appeared twice in 
the computation. If so, then the computation is oscillating and will never halt, so the loop 
detector returns #to If the computation eventually halts, the loop detector returns #f. 

We might try to use a loop detector to implement the convergent? predicate: 

(define (convergent? proc vals) 
(if (loop-detect proc vals) if it» 

Assuming loop-detector can be implemented, and it can, criticize this definition. 

Problem 6.19. 

Assume I is a function that operates on real numbers. The graph of I is the set of all pairs 
of the form (n . (jn». We can represent the graphs of I as an infinite stream: 

$«0 . (f 0» (1 . (f 1» (2 . (f 2» ... ) 

Implement the meta-procedure: 

(graph f) 
= the stream representation of the graph of f. 

Problem 6.20. 

Assume strings is a list of strings sorted in increasing order according to string<?; assume 
string is any string. Implement: 

(insert string strings) 
= the sorted result of inserting string into strings. 

Assume strings is an unsorted list of strings. Use insert to implement the following pro
cedure: 



252 6. Recursive Domains 

(sort strings) 
= the result of sorting strings in increasing order 

using string<? 

Problem 6.21. 

If Scheme did not provide string-comparing procedures like string<? but did provide 
character-comparing procedures like char<?, how could you implement string<? (Recall 
char<? was implemented in terms of < earlier.) 

Problem 6.22. 

The level procedure extracts all leafs at a given level from a given tree. For example, as
sume tree t has the form in Figure 6.9. 

Figure 6.9 

Implement level. Here are some sample calls: 

(level 0 t) () 

(level 1 t) (1) 
(level 2 t) (5 ) 
(level 3 t) (2) 
(level 4 t) (3 4) 
(level 5 t) () 

Problem 6.23. 

The size of a tree is the number of' nodes. The empty node and leafs have size 1. Imple
ment a size procedure. 

Reimplement this procedure assuming the empty tree has size o. 



Problems 253 

Problem 6.24. 

Implement the following procedures using the signal-processing procedures: map, filter, 
accum, and m-to-n. 

Your definitions should not be recursive or iterative. There are no restrictions on the 
amplifiers, combiners, and noise? procedures. 

a. make-alist, length, zip, cars 

b. (prod-even-cubes n) 
= product of even cubes from I to n3 . 

c. (primes n) = a list of all primes between 2 and n. 

d. (fact n) = n factorial. 

Problem 6.25. 

Implement the stream->list coercion. 

Problem 6.26. 

Find a tail-recursive implementations of list? • 

Problem 6.27. 

Find iterative implementations of rem, make-alist, stream-filter, and map 

Problem 6.28. 

A geometric sequence has the form: 

(aro ar1 ar2 ... arD ) 

where a and r are both arbitrary real numbers. Implement a generator for geometric 
sequences: 

(geom-seq a r n) = (arO ... arD ) 

. Problem 6.29. 

Generate the following infmite streams: 



254 6. Recursive Domains 

a. $(0 1 1 2 3 5 8 13 21 · .. ) Fibonacci sequence 
b. $(1 1 1 1 . .. ) 
c. $(1 1/2 1/3 1/4 ... ) 
d. $(0 1 0 1 0 1 0 . .. ) 
e. $(1 -1 1 -1 1 -1 · .. ) 
f. $(-1 -2 -3 -4 -5 · .. ) 
g. $ ( .1 .01 .001 .0001 ... ) 
h. $(2 3 5 7 11 13 17 19 · .. ) ; Prime number sequence 
i. $ ( (0) (0 1) (0 1 2) (0 1 2 3) ... ) 
j. $ (" 0" "000" "00000" . .. ) 
k. $ ($ () $(0) $(0 0) $(0 0 0) ... ) 
1. $ «) ( () ) «(») · .. ) 
m. $(0 0 1 2 3 1 2 3 1 2 3 ... ) 
n. $(le-1 1e-2 1e-3 1e-4 · .. ) 

Problem 6.30. 

Draw the tree representation of the following list: 

(cons (+ x (* 2 y» (cons a "hello"» 

Problem 6.31. 

Recall the Fibonacci sequence: 

0, 1, 1, 2, 3, 5, 8, 13, 21, ... 

Also recall the recursive definition of the Fibonacci procedure that computes the nth 
number in the Fibonacci sequence: 

(define (fib n) 
(cond «<= n 0) 0) 

«=n1)1) 
(else (+ (fib (- n 1» (fib (- n 2»»» 

Although this procedure does not operate on trees, we consider it a tree recursion because 
it generates binary-tree-shaped computations. This is because each call to fib can gener
ate two more calls to fib. Draw the computation tree generated by the call (fib 5). Only 
show calls to fib. Indicate the return values using the notation used in the examples given 
earlier. 

Problem 6.32. 

Defme tree-map, an analogue of the map and stream-map procedures. For example: 



> (tree-map square '«2 3) 4 «5»» 
«4 9) 16 «25») 

Problem 6.33. 

Define tree-filter, an analogue of filter and stream-filter. For example: 

> (tree-filter even? '«2 3) 4 «5»» 
«3) «5») 

Problem 6.34. 

Defme tree-accum, an analogue of accum. For example: 

> (tree-accum + 0 '«2 3) 4 «5»» 
14 

Problem 6.35. 

Problems 255 

Recall that a rational number can be represented as an infinite repeating decimal. For 
example: 

117 - .142857142857142857142857142857 ... 
1/8 - .125000000()()()()()()()()()()()()()()()I()()(]OOO 

We can represent 117 and 1/8 as infinite digit streams: 

$(1 42857 1 4 ... ) 
$(1 2 5 0 0 0 0 0 ... ) 

Implement a procedure that expects two integers m and n as input and generates the 
stream representation of the infinite decimal expansion of mIn as output: 

(define (rational->stream m n) ???) 

Also implement the inverse procedure: 

(define stream->rational expansion n) ???) 

For example: 

(stream->rational (rational->stream 1 7) 3) = 142 

Note.: This technique could be expanded to give us a way to exactly represent certain ir
rational numbers as streams. (This is related to the way e was represented earlier as a 
stream of partial sums.) Irrationals that can be represented in this way are called recur
sive reals. Clearly, rationals (and therefore integers) are recursive reals. Sadly, if we re
move all nonrecursive reals from the number line, what remains has length o. 



256 6. Recursive Domains 

Problem 6.36. 

If vals is a length-n list, then IOength vals)1 - O(2n) because vals must be traversed once 
when (list? vals) is called, and again when (unsafe-length vals) is called. Of course, 
O(2n) - O(n), so one might argue that for large lists the difference is negligible. Still oth
ers might object to traversing a long list twice. We can incorporate input validation and 
length calculation into a single list traversal merely by verifying vals is a pair before 
computing (cdr vals): 

(define (length vals) 
(cond «null? vals) 0) 

«pair? vals) (+ 1 (length (cdr vals»» 
(else (error nbad input" length vals») 

Copy the style of this definition to modify the definitions of filter, map, accum, get, put, 
and rem to avoid traversing their input lists twice. 

Problem 6.37. 

Redefine the list? predicate without using conditionals. Use and and or instead. Do you 
think this new definition is still tail-recursive? 



7 
Variables 

7.1. Stores 

In addition to the Global Environment, the Scheme evaluator maintains another structure 
called the global store. A store is an array of data containers called cells. A value that 
can be contained in a cell is called a storable value. Not all values are storable; for now 
we will identify storable values with simple values (numbers, Booles, chars, symbols, 
etc.) and the empty list: 

STORABLE ::= () I SIMPLE 

All stores provide basic read, write, and erase proc~dures. Assume val is a storable value 
then: 

(read store xxx) 
= the value stored in cell specified by xxx 

(write! store xxx val) 
= an unspecified value. As a side effect stores val 

in the cell specified by xxx 

(erase! store XXX) 

= an unspecified value. As a side effect, erases 
contents of the cell specified by xxx 

Stores differ in how cells are specified (i.e., xxx). Cells in random access stores are 
specified by addresses. Cells are specified in associative stores by the data they can 
contain. Cells are specified implicitly in sequential stores, stacks, and queues. All of 
these types of stores offer trade-offs between complexity and speed. Often the choice of 
which type of store to use is dictated by the algorithm. 

Scheme's global store is a type of random access store called a heap. Each cell in a 
heap can be identified by a unique unsigned integer called its location or address. The 
heap shown in Figure 7.1 consists of eight cells. The cells at locations L2 and L7 contain 
the FREE token, indicating they are currently not in use. 

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998



258 7. Variables 

LOC CELL 

42 

0 
FREE 

#'8. 

24.42 

#f 

a 

FREE 

Figure 7.1 

We are now ready to tell the real story of what goes on inside the Scheme interpreter. 
When (define x 42) is resolved, what really happens is this: 

1. A cell c at location Lo is allocated from the Global Store. 
2. The content of c is updated to 42. 
3. Lo' the location of c, is bound to x. 
4. The binding x .. Lo is installed in the Global Environment. 

Figure 7.2 shows the environment-store context after the definition. 

LOC CELL 

I NAMEI VALUE I 
x La 

La 42 

LI FREE 

~ FREE 

~ FREE 
Global Environment L4 FREE 

Ls FREE 

L6 FREE 

~ FREE 

Global Store 

Figure 7.2 

When the symbol x is evaluated, the evaluator searches the global environment for the 
location bound to x, then returns the value stored at this location in the global store. 



7.2. Variables and References 259 

7.2. Variables and References 

How are composite values such as pairs, vectors, strings, and lists stored? Obviously we 
will have to use multiple cells. A group of one or more cells that hold a single value 
(simple or composite) is called a variable. A simple variable is the same as a single cell. 
A composite variable is several cells that hold the components of a composite value. 
Normally, composite variables that hold pairs, strings, or vectors are composed of con
secutive cells for fast access, while variables that hold lists may consist of non
consecutive cells. 

How do we describe the location of a variable? Obviously the location of a simple 
variable is its cell location, but what about composite variables? One solution is to de
scribe the location of a group of consecutive cells by a corresponding group of consecu
tive cell locations. For example, the location of a ·pair is given by a pair of consecutive 
locations, and the location of a vector is given by a vector of consecutive locations. A 
string will be equated with a character vector and a list will be equated with a nested pair, 
so we don't need special locations for these types of variables. A location or a sequence 
of locations is called a reference. More formally: 

LOCATION ::= LO I Ll I L2 I etc. 

REFERENCE::= LOCATION I 
(LOCATION . LOCATION) I 
#(LOCATION LOCATION ... ) 

Assume the following definitions are made: 

(define a (vector #\r #\a #\s» 
(define b (list 'c it»~ 

After these definitions the environment-store context in Figure 7.2 looks like the envi
ronment-store context shown in Figure 7 .3. 

LOC CELL 

La 42 

NAME VALUE L, tt-r 

x La k IN! 

a #(1.., k L..) L.. tN; 

b (L.. Ls) ~ c 

Ls ~. 1..,) 

Global Environment 4 #t 

I.., 0 

Global Store 

Figure 7.3 



260 7. Variables 

Unlike strings, vectors, and pairs, lists can grow and shrink. For this reason, we choose 
not to store lists in consecutive cells. Recall that the list (c #t) is equivalent to the nested 
pair (c. (#t. ( ))). We can depict (c #t) as a nested pair if we allow references to be stor
able values: 

STORABLE::= () I SIMPLE I REFERENCE 

In this example the symbol x is bound to 1.0, a reference to a simple variable containing 
the value 42. The symbol a is bound to #(LI L2 L3), a reference to a composite variable 
containing the vector #(#\r #'a tt-s), and the symbol b is bound to (L4 . LS), a reference to 
a composite variable containing the list (c #t). 

Sometimes it's easier to represent locations as arrows and references as forks. Figure 
7.4 shows Figure 7.3 redrawn using this technique. 

NAME 42 

x #\r 

a #'a 
b tt-s 

c 

#t 

0 

Figure 7.4 

Another technique is to use box and pointer diagrams to represent long lists. For exam
ple, assume the following definition is made: 

(define vowels' (a e i 0 u» 

Internally, vowels is the nested pair: 

(a . (e . (i . (0 . (u . (»»» 
Each pair corresponds to a pair of consecutive cells in the global store. The first cell of 
each pair (i.e., the car cell) contains a vowel. The second cell of each pair (i.e., the cdr 
cell) contains a reference to the next pair of cells. This will be a reference of the form 
(Ln . Ln+ I). Of course the cell pairs need not be consecutive; they can be scattered 
throughout the store. Box and pointer diagrams only depict the cell pairs involved in the 
actual list without indicating their relative position in the store. Figure 7.5 shows a box 
and pointer diagram for vowels. 



7.3. Commands 261 

Figure 7.5 

Box and pointer diagrams can get complicated. For example. the definition: 

(define animals '("cat" "bat" "rat"» 

creates a nested pair of the form: 

("cat" . ("bat" . ("rat" . (»» 

The car cell of each cell pair contains a reference to a string (i.e .• vector) variable con
taining a string. Figure 7.6 shows the corresponding box and pointer diagram. 

Figure 7.6 

7 .3. Commands 

Why are stores necessary? It seems like stores only make things more complicated. 
We need stores to explain the action of commands. A command is a procedure or 

structure that returns an unspecified value but updates a variable as a side effect By con
vention. names of Scheme commands usually end with an exclamation point Scheme 
provides seven primitive commands. Assume var denotes a reference to any variable. 
pair denotes a reference to a pair variable. and str and vee denote references to length-n 
string and vector variables. respectively. Assume val is any value. i is any natural number 
less than n. and char is any character: 

(set! var val) = 
an unspecified value. As a side effect updates var to 
val. 

(set-car! pair val) = 
an unspecified value. As a side effect updates the car 
cell of pair to val. 



262 7. Variables 

(set-cdr! pair val) = 

an unspecified value. As a side effect updates the cdr 
cell of var to val. 

(vector-set! vec ivaI) 
an unspecified value. As a side effect updates the ith 
cell of vec to val. 

(vector-fill! vec val) 
an unspecified value. As a side effect updates each cell 
of vec to val. 

(string-set! str i char) 
an unspecified value. As a side effect, updates the ith 
cell of str to char. 

(string-fill! str char) 
an unspecified value. As a side effect updates each cell 
of str to char. 

To illustrate, assume the following definitions have been made: 

(define x 0) 
(define y '(a e i 0 u» 
(define z "hello world") 

Here are some sample evaluations: 

> (set! x (* 6 7» 
unspecified 
> x 
42 
> (set-car! (cdr y) 'y) 
unspecified 
> y 
(a y i 0 u) 
> (string-set! z 0 #\*) 
unspecified 
> z 
"*ello world" 
> (string-'fill! z #\$) 
unspecified 
> z 
"$$$$$$$$$$$" 

What happens if the first input to a command is a literal? For example, how should the 
evaluator evaluate the expressions: 



(set! 4 0) 
(set-car! '(a. b) 0) 
(vector-fill! #(x y z) 'a) 

7.5. Aliasing 263 

Literals denote themselves, not references to variables; therefore all of these expressions 
should result in errors. It is illegal for the first input of a command to be a literal. (Note 
that some implementations of Scheme do not report errors for these expressions.) 

7.4. L-Value versus R-Value 

It should be clear why command semantics require us to carefully distinguish between a 
variable and its content. To make the point even clearer, think about the interpretation of 
the expression: 

( set! x (+ 1 x» 

Assume the environment-store context is as shown in Figure 7.3. We can interpret the x 
inside (+ 1 x) to denote 42, the content of cell at location Lo' and therefore (+ 1 x) denotes 
43. But it doesn't make sense to interpret the left-hand occurrence of x to denote 42. 
What would the interpretation of the set! expression be in this case, "change 42 into 43"? 

We can only make sense of this expression if we interpret the left-hand occurrence of 
x as the reference La. The interpretation of the entire expression becomes "change the 
content of the variable referenced by x to one plus its current content." 

Deciding to interpret a symbol as a variable reference or a variable content depends 
on the symbol's context. If the symbol occurs as the left operand of a primitive com
mand, then we interpret it as a variable reference. If the symbol occurs in the right oper
and of a primitive command (or in any other context), then we interpret it as a variable 
content. For this reason, we call the variable reference denoted by a symbol its L-value 
(L for left), and the corresponding variable content its R-value (R for right). 

7.5. Aliasing 

The L-value and R-value of a symbol may seem like a distinction of interest to theory
types only, but the presence of commands introduces a whole new class of problems 
called aliasing bugs. 

For example, the definitions: 

(define x (cons 1 2» 
(define y (cons 0 x» 
(define z (cons 4 x» 

cause x, (cdr y), and (cdr z) to denote the same variable. We say that (cdr y) and (cdr z) 
are aliases of x. Figure 7.7 shows the environment-store context after these definitions 
are made. (Empty cells are free.) 



264 7. Variables 

NAME VALUE 

x 1 

y 2 

z 

o 

4 

Figure 7.7 

This causes no problem unless the content of the variable is changed by a command. To 
see why, imagine x, y, and z belong to three modules: X, Y, and Z, being developed by 
three programmers: Lars, AI, and ROlf respectively. The three programmers have long 
forgotten-or perhaps never knew-that (cdr y) and (cdr z) were aliases of x. Lars be
lieves that x denotes the pair (1.2), Al thinks thaty denotes the pair (0. (1.2», and ROlf 
is certain that z denotes the pair (4 . (1 . 2». 

One night Lars changes x: 

> (set-car! x 0) 
unspecified 

The new environment-store context is shown in Figure 7.8. 

NAME VALUE 

x o 
y 2 

z 

o 

4 

Figure 7.8 



7.6. Define Versus Assign 265 

The next day Rolf and Al arrive at work and discover the code that tested bug-free the 
day before has suddenly developed problems. Mysteriously, y now seems to denote (0 . 
(0 . 2)), and z seems to be bound to (4 . (0. 2)). It may take weeks before they discover 
Lars mutated x to 1 using set-car! instead of redefining x using define. 

7.6. Defme Versus Assign 

It's important to understand the difference between changing the content of a variable 
using a command and rebinding a name to a new variable reference using a definition. 
Assume the following definitions are made: 

(define x 0) 
(define y (cons 5 0» 

The first definition allocates a simple variable c containing 0, and the second definition 
allocates a composite variable k containing the pair (5 . 0). The environment-store con
text is shown in Figure 7.9. 

NAME VALUE 

x 0 

Y 

""~ 0 

4 

Figure 7.9 

The following commands alter the content of c and k: 

> (set! x 20) 
unspecified 
> (set-car! y 0) 
unspecified 
> (set-cdr! y 4) 
? 

c 

k 

After these commands the environment-store context in Figure 7.9 changes to the one 
shown in Figure 7.10. 



266 7. Variables 

NAME VALUE 

x 

y 

"'" 
Now assume x and y are redefmed: 

> (define x 100) 
unspecified 
> (define y (cons 50 30» 
unspecified 

Figure 7.10 

20 c 

0 
k 

4 

In this case, new variables c' and k' are allocated containing 100 and (50 . 30), respec
tively. Figure 7.11 shows the new environment-store context. 

NAME 100 c' 

x 20 c 

y 

0 
k 

4 

50 
k' 

30 

Figure 7.11 

Notice the old variables c and k still exist. If no other chain of references leads from a 
global symbol to c or k, we say c and k are unreferenced or, to use a more colorful ex
pression, c and k are garbage. When the store runs low on cells the evaluator will be 
temporarily interrupted by a program called the garbage collector. The garbage collector 
recycles (i.e., applies dealloc-Ioc! to) all unreferenced cells so they can be reallocated, 
and then allows the evaluator to resume evaluating. 



7.7. Imperative Programming 267 

There are other important differences between define and set!. The set! command 
can't be used to initially define variables. The command: 

(set! xx 10) 

may cause an undefined symbol error if xx hasn't previously been introduced by a defi
nition or as a formal parameter. 

Lastly, definitions can occur at the beginning of a procedure block, but definitions 
can't be nested inside arbitrary Scheme expressions. For example, the expression: 

(if « x 0) (define x 1) (define x-I» 

is illegal, but the expression: 

(if « x 0) (set! xl) (set! x -1» 

is legal. 

7.7. Imperative Programming 

Different observers will not perceive the same physical evidence in the same way un
less their linguistic backgrounds are quite similar. 

-Benjamin Lee Whorf, Language, Thought. and Reality 

Some accepted examples of actual scientific practice ... provide models from which 
spring particular coherent traditions of scientific research. 

-Thomas S. Khun, The Structure of Scientific Revolutions 

A programming language is a toolbox filled with tools for building programs. Languages 
like C, Pascal, and FORTRAN provide similar program building tools: commands for 
updating variables; control structures for sequencing, iterating, and selecting commands; 
and constructors for grouping variables into arrays and structures. Functional Scheme
i.e., Scheme without commands-provides a very different set of program building tools: 
application for building nested expressions and lambda for turning expressions into pro
cedures. 

We shape tools to solve problems, but how we go about solving problems is often 
shaped by the available tools. This happens because tools are products of problem
solving models called paradigms, which are themselves products of cultural evolution. 

Languages that do not provide commands and variables-like Miranda, Haskell, Go
fer, and functional Scheme-impose on their users an expression-oriented problem 
solving paradigm called functional programming, while languages that do provide 
commands and variables-like C, C++, FORTRAN, Pascal, Ada, and imperative Scheme 
-impose a command-oriented problem-solving paradigm called imperative program
ming. 



268 7 . Variables 

Imperative programming is based on the concept of a mutable object. An object is 
mutable if some of its properties can be changed without changing its identity. The dy
namical systems studied in Chapter 4 are mutable objects because the state of a system 
can change without changing the identity of the system. For example, we don't think of a 
computer as a different computer just because its memory content has changed. People 
are mutable objects. Our weight, age, and height are all examples of mutable properties. 
Our name, social security number, and parents are all examples of nonmutable proper
ties. By contrast, most mathematical objects are nonmutable or stateless. For example, 
neither the numerator nor the denominator of a rational number are mutable. If we 
change the denominator of r = 112 to 4, r becomes 114, a completely different rational 
number. 

Variables are also mutable objects because the values they contain can change with
out changing the identity (i.e., location) of the variable. Variables are useful for modeling 
all types of mutable objects. 

7.8. The Bank Account Example 

A standard example of a mutable object is a bank account. The mutable property of a 
bank account is its balance because this can change without changing the identity of the 
account. One approach is to model bank accounts using simple variables: 

(define account 0) i account initially contains $0 

(define (withdraw! amt) 
(if «= amt account) 

(set! account (- account amt» 
(writeln "sorry, insufficient funds"» 

'done) 

(define (deposit! amt) 
(set! account (+ account amt» 
'done) 

Here's a sample session: 

> account 
o 
> (deposit! 50) 
done 
> (withdraw! 20) 
done 
> (withdraw! 40) 
sorry, insufficient funds 
done 
> account 
30 



7.8. The Bank Account Example 269 

To indicate deposit! and withdraw! are commands-they modify the account variable
we end their names with exclamation marks. Also, because commands work by updating 
variables rather than returning values, we adopt the convention of having commands re
turn the simple affirmation, "done," rather than risk confusing users with whatever value 
their particular implementation of Scheme returns. 

7.8.1. Pass-by-Value 

Unfortunately, our withdraw! and deposit! commands are not very useful. They can only 
be used to update a single bank account Each time we introduce a new account variable, 
we will have to introduce commands for making deposits and withdrawals from that ac
count. 

Our withdraw! and deposit! commands are linked to the account variable because 
they contain nonlocal references to it, but if we try to make account a parameter, things 
go wrong. Assume two accounts are defined; 

; two new accounts: 
(define account! 0) 
(define account2 0) 

Next we define a version of the deposit! command with an account parameter: 

; account is a.parameter 
(define (deposit! account amt) 

(set! account (+ account amt» 
done) 

Here's a sample session: 

) account! 
o 
) (deposit! account! 50) 
done 
) account! 
o 

What happened to the $50 we deposited in accountl? Recall the environment model of 
eager evaluation described in Chapter 4: 

I. Evaluate the operator. 
2. Produce arguments by evaluating the operands. 
3. Resolve all local definitions. 
4. Extend the current environment by adding declared and parameter bindings. 
5. Evaluate the parameterized body of the procedure relative to the extended envi

ronment. 
6. Restore the original current environment. 



270 7. Variables 

When the accountl parameter was fully evaluated in step 2, its value, 0, was computed. 
In step 4 a new variable containing 0 was allocated, and a reference to it was bound to 
the account parameter. In step 5 the value of the new account variable was updated to 50. 
The environment-store context at this stage is shown in Figure 7.12. Because this was not 
the same variable as accountl, account I still contained 0 when the procedure terminated. 
This style of parameter passing is called pass-by-value because the R-values of variables 
are passed rather than their L-values. 

NAME 
50 

amt 
950 

o 
NAME o 

account I 

Figure 7.12 

7.8.2. Pass-by-Reference 

We can only update simple global variables from within a procedure if these variables 
are nonlocal. The same isn't true for composite variables. Composite variables can be 
nested to create larger variables; therefore, fearing a composite variable argument may be 
large, the Scheme evaluator does not allocate a new variable in step 4. Instead, the L
value of the operand is bound to the corresponding parameter. In effect, the parameter 
becomes an alias of the argument. This style of parameter passing is called pass-by
reference. 

For example, assume the following definitions are made: 

(define a (cons 2 3» 
(define b 0) 
(define (test! x y) (set! x 4) (set-cdr! y x» 

and assume the following call is made: 

> (test! b a) 
unspecified 

Figure 7.13 shows the environment-store context just after the evaluation of test!' s body. 



7.8. The Bank Account Example 271 

NAME VALUE --x ............. 94 
Y \. 

'\. 2 

~ NAME VAL~ ~4 

a ./ 

b -- 0 

Figure 7.13 

Notice that x and b are bound to references to distinct simple variables, while y and a are 
bound to references to the same composite variable. After the call we notice that a has 
been modified but b remains the same: 

> a 
(2 . 4) 
> b 
o 

7.8.3. Bank Accounts Revisited 

We exploit pass-by-reference in the following reimplementation of bank accounts. Our 
implementations of the withdraw! and deposit! commands aren't very secure. Some un
scrupulous person could easily use them to remove money from the accounts of others. 
Let's correct this problem by representing bank accounts as variable pairs. The cdr of the 
variable will contain the balance of the account, while the car will contain a password 
known oniy to the owner of the account. 

Initially, unassigned accounts have the same password, 'pswrd, and balance, $0. 
When an account is first assigned, the new owner will customize the password using the 
set-password! command. Thereafter, the owner will modify the balance using the de
posit! and withdraw! commands: 

i some unassigned accounts: 
(define account! (cons 'pswrd 0» 
(define account2 (cons 'pswrd 0» 
(define account3 (cons 'pswrd 0» 

; selector: 
(define (balance pswrd account) 

(if (eq? pswrd (car account» 
(cdr account) 
(writeln "access denied"») 



272 7. Variables 

The commands for setting a password, withdrawing money, or depositing money all have 
an account parameter: 
(define (set-password! new-password 

old-password 
account) 

(if (eq? old-password (car account» 
(set-car! account new-password) 
(writeln "access denied"» 

'done) 

(define (withdraw! pswrd arnt account) 
(cond 

«not (eq? pswrd (car acct») 
(writeln "access denied"» 

«>= (balance account) arnt) 
(set-cdr! account (- (balance account) amt» 

(else (writeln "sorry, insufficient funds"») 
'done) 

(define (deposit! pswrd arnt account) 
(if (eq? pswrd (car account» 

(set-cdr! account (- (balance account) arnt» 
(writeln "access denied"» 

'done) 

Here's a sample session: 
> (set-password! 'pswrd 'aaa acctl) 
done 
> (set-password! 'pswrd 'bbb acct2) 
done 
(deposit! 'aaa 50 acctl) 
done 
> (deposit! 'aaa 50 acct2) 
access denied 
done 
> (deposit! 'bbb 50 acct2) 
done 
> (withdraw! 'bbb 100 acct2) 
sorry, insufficient funds 
done 
> (withdraw! 'aaa 40 acct1) 
done 
> (balance acct2) 
50 
> (balance acct1) 
10 



Appendices 273 

Appendices 

Appendix 7.1. Implementing Heaps 

The following implementation of heaps will be used in Chapter 8. 

LOCATION and REFERENCE ADTs 

A location is a natural number equipped with a type tag, loco A reference is a location, a 
location pair, or a location vector: 

LOCATION::= (lac . NATURAL) 

REFERENCE :: = 
LOCATION I (LOCATION. LOCATION) I #(LOCATION ... ) 

For convenience, we define a location constructor, a predicate that recognizes locations, 
and a selector that extracts the integer value of a location: 

(define (lac n) 
(if (natural? n) 

(cons 'lac n) 
(error "bad input" lac n») 

(define (location? val) 
(and (pair? val) (eqv? (car val) 'lac») 

(define index cdr) ; extracts int from lac 

Our reference? predicate uses the all? predicate defined in Chapter 2: 

(define (reference? val) 
(or (location? val) 

Stores 

(and (pair? val) 
(reference? (car val» 
(reference? (cdr val») 

(and (vector? val) 
(all? reference? (vector->list val»») 

A store is a vector of storable values: 

STORE ::= #(STORABLE ... ) 

A store constructor expects as input the store capacity and uses the make-vector con
structor to initialize all cells to the free token: 

(define (make-store capacity) 
(if (natural? capacity) 

(make-vector capacity free) 
(error "bad input" make-store capacity») 



274 7. Variables 

The capacity procedure is just a pseudonym for vector-length: 

(define capacity vector-length) 

Newly allocated cells will be initialized with the symbol alloc. Before a cell is allocated it 
contains the free token: 

(define free 'free) 
(define alloc 'alloc) 

We will also need predicates for recognizing stores and storable values: 

(define store? vector?) 

(define (storable? val) 
(or (null? val) 

(number? val) 
(char? val) 
(boolean? val) 
(symbol? val) 
(procedure? val) 
(reference? val») 

It is an error to read or write to a free cell. To enforce this, we need to be able to recog
nize free cells and valid locations: 

(define (free? store lac) 
(eqv? free (vector-ref store (cdr lac»» 

(define (accessible? store lac) 
(and (store? store) 

(location? lac) 
«= (index lac) (capacity store» 
(not (free? store lac»» 

Reading, Writing, and Allocating Locations 

The core procedures read, write, and allocate individual cells: 

(define (read-lac store lac) 
(if (accessible? store lac) 

(vector-ref store (cdr lac» 
(error "bad location" read-lac lac») 

(define (write-lac! store lac val) 
(if (and (accessible? store lac) (storable? val» 

(vector-set! store (cdr lac) val) 
(error "bad input(s)" write-lac! lac val») 



Appendices 275 

Allocating a cell is more involved. First, a local search procedure traverses the store 
looking for a cell containing the free token. If and when one is found, its content is 
changed to the alloc token, its position is turned into a location, and the location together 
with the store is returned as a pair. The store is returned with the location in anticipation 
of situations where mUltiple stores may be in use or functional implementations where 
the old store will be replaced by the store returned by alloc-Ioc!. 

; = a location-store pair 
(define (alloc-loc! store env) 

(define (search next store) ... ) 
(define i (search 0 store» 
(vector-set! store i alloc) 
(cons (loc i) store» 

The internal search procedure tail-recursively inspects each index, next, of its store vector 
input. If a free location is found, the corresponding index is returned and the search ter
minates. If no free cells are located, i.e., capacity ~ next, then the garbage collector, ge, is 
called to free unused memory, and the search starts anew. Note: The garbage collector 
needs the environment passed to it as a parameter; hence it is necessary to pass the envi
ronment to alloc-Ioc! as a parameter. The environment is a nonlocal available to the 
search procedure. 

(define (search next store) 
(define cap (capacity store» 
(cond 

«>= next cap) (search 0 (gc store env») 
«free? store (loc next» next) 
(else (search (+ next 1) store»» 

Reading and Writing References 

Next we defme versions of read and write that operate on references rather than loca
tions. We can learn a lot from a reference. Not only does it tell us which locations hold 
components of a particular value, it also tells us how the locations are grouped together 
and thus how the components should be grouped together. The read-ref procedure uses 
this information to call the appropriate reader: read-pair, read-vector, or read-loco 

We must remember that the value stored in a cell might be a reference; hence we 
must recursively pass the value returned by read-loc to read-ref. If this value isn't a refer
ence, then it will be returned as a value in the else clause. 

(define (read-ref store ref) 
(cond 

«location? ref) 
(read-ref store (read-loc store ref») 

«and (reference? ref) (pair? ref» 
(read-pair store ref» 



276 7. Variables 

«and (reference? ref) (vector? ref» 
(read-vector store ref» 

(else ref») 

Read-pair knows its parameter is a pair of locations and therefore its return value must be 
a pair: 

(define (read-pair store ref) 
(cons (read-ref store (car ref» 

(read-ref store (cdr ref»» 

The parameter passed to read-vector is a vector of locations. This is coerced into a list, 
which is passed to an internal procedure called read-list. Read-list gathers all the stored 
values into a list, which is then coerced back into a vector. 

(define (read-vector store ref) 
(define (read-list refs vals) ... ) 
(list->vector (read-list (vector->list ref) I (»» 

Read-list is a tail recursion that builds a list of values in its second parameter and then 
returns this parameter when the end of the location list is reached. 

(define (read-list refs vals) 
(if (null? refs) 

vals 
(let «val (read-ref store (car refs»» 

(read-list (cdr refs) 
(cons-last val vals»») 

Like read-ref, write-ref calls upon special supporting procedures to write pairs and vec
tors to the store. Like alloc-Ioc!, write-ref! updates its store parameter as a side effect and 
returns the modified store as a value. 

(define (write-ref! store ref val) 
(cond 

«location? ref) (write-Ioc! store ref val» 
«and (pair? ref) (pair? val» 

(write-pair! store ref val» 
«and (vector? ref) (vector? val» 

(write-vector! store ref val» 
(else 

(error "bad input(s)" write-ref! ref val»» 

Write-pair! creates a new store by writing (car pair) to (car ref) in the input store. The 
new store then becomes the store parameter in the second call to write-ref!. 

(define (write-pair! store ref pair) 
(define new-store 

(write-ref! store (car ref) (car pair») 
(write-ref! new-store (cdr ref) (cdr pair») 



Appendices 277 

Like read-vector, write-vector finds it more convenient to coerce its vector arguments to 
lists and then call an internal write-list procedure: 

(define (write-vector! store ref vec) 
(define (write-list! store refs vals) ... ) 
(write-list! 

store (vector->list ref) (vector->list vec») 

Write-list first creates a new store by writing (car vals) to (car refs) in its input store and 
then tail-recursively applies itself to (cdr refs) and (cdr vals) using the newly created 
store: 

(define (write-list! store refs vals) 
(if (null? vals) 

store 
(let 

( (new- store 
(write-ref! store (car refs) (car vals»» 

(write-list! 
new-store (cdr refs) (cdr vals»») 

Allocating References 

Depending on its value parameter, alloc-ref! calls alloc-Ioc!, alloc-vector!, or alloc-pair! 
In any case, alloc-ref! returns a location-stpre pair. 

(define (alloc-ref! store env val) 
(cond «pair? val) (alloc-pair! val store env» 

«vector? val) (alloc-vector! val store env» 
(else (alloc-loc! store env»» 

Alloc-pair! first allocates memory for (car pair). The result of this allocation is the loca
tion-store pair (locI. storel). Next, memory from storel is allocated for (cdr pair). This 
produces the pair (loc2 • store2). Finally, the pair «(locI .loc2) . store2) is returned. 

(define (alloc-pair! pair store env) 
(define loc1.store1 

(alloc-ref! store (car pair) env» 
(define 10c1 (car 10c1.store1» 
(define store1 (cdr 10c1.store1» 
(define 10c2.store2 

(a110c-ref! store1 (cdr pair) env» 
(define 10c2 (car 10c2.store2» 
(define store2 (cdr 10c2.store2» 
(cons (cons 10c1 10c2) store2» 

AlIoc-vec! calls an iterative internal procedure to do the hard work: 



278 7. Variables 

(define (alloc-vector! vec store env) 
(define (iter-alloc i lacs store) ... ) 
(iter-alloc 0 '() store» 

Iter-alloc tail-recursively traverses its vector input allocating memory for each entry. 
Each iteration creates a pair of the form (locI. store1); locI is saved in the location list 
parameter, locs, and storel is passed to the next recursive call. 

(define (iter-alloc i lacs store) 
(define len (vector-length vec» 
(if (>= i len) 

(cons (list->vector lacs) store) 
(let* 

«locl.storel 
(alloc-ref! store env (vector-ref vec i») 
(locl (car locl.storel» 
(storel (cdr locl.storel») 

(iter-alloc 
(+ i 1) (cons-last locI lacs) storel»» 

Garbage Collection 

Recall that the garbage collector (gc) is called by alloc-Ioc! when memory runs low. The 
garbage collector attempts to free all unused cells. A cell is determined to be unused if it 
contains the free token or if there is no chain of references leading from the current envi
ronment to the cell. Garbage collection is divided into two phases. The mark phase marks 
all cells currently in use. The sweep phase unmarks all marked cells and deal locates all 
unmarked cells. 

The garbage collector begins by forming a list of all locations appearing in the current 
environment. Because an environment is a list of frames, it is first converted into one big 
frame with (apply append env). A frame is a list of bindings (pairs), so we can form a list 
of the bound values by mapping cdr across the frame. We filter out any values that aren't 
references, and get-Iocs turns the resulting list of references into a list of locations. 

(define (gc store env) 
(define lacs 

(get-lacs 
(filter not-ref? 

(map cdr (apply append env»» 
(writeln "garbage collection commencing ... ") 
(writeln tab "mark phase commencing ... ") 
(mark! store lacs) 
(writeln tab "sweep phase commencing ... ") 
( sweep! store» 

where 

(define (not-ref? val) (not (reference? val») 



Appendices 279 

Get-Iocs turns a list of references into a list of location lists by mapping ref->locs along 
refs. Finally, the list of location lists is turned into a list of locations by applying append 

(define (get-lacs refs) 
(apply append (map ref->locs refs») 

where 

(define (ref->locs ref) 
(cond 

«location? ref) (list lac» 
«pair? ref) (list (car ref) (cdr ref») 
«vector? ref) (vector->list ref»» 

Given a list of locations that appear in the current environment, the mark phase recur
sively traverses the list, reads the corresponding value from the store, pairs the value with 
a marked tag, and then writes the marked value back to the store. If the value is itself a 
reference, then it is also coerced to a list of locations and appended to the end of the lo
cation list 

(define (mark! store lacs) 
(if (null? lacs) 

where 

store 
(let* «i (cdar lacs» 

(val (vector-ref store i») 
(vector-set! store i (mark val» 
(if (reference? val) 

(mark! store 
(append (cdr lacs) 

(reference->locs val») 
(mark! store (cdr lacs»»» 

(define (mark val) 
(if (marked? val) 

val 
(cons 'marked val») 

The sweep phase uses an internal iterative procedure to traverse the store unmarking and 
deallocating cells. 

(define (sweep! store) 
(define cap (capacity store» 
(define (iter-sweep i store success) ... ) 
(iter-sweep 0 store #f» 

Iter-sweep traverses the store. Marked values are unmarked. If an unmarked value is 
found, then it is set to the free token and success is set to true. When the end of the store 



280 7. Variables 

is reached, either the store with newly deallocated memory is returned or an out-of
memory error is thrown 

(define (iter-sweep i store success) 
(if «= cap i) 

(if success store (error "out of memory" gc» 
(let* «val (vector-ref store i» 

(new-val 
(if (marked? val) (unmark val) free» 
(suc (or success (eqv? new-val free») 

(vector-set! store i new-val) 
(iter-sweep (+ i 1) store suc»») 

where 

(define (marked? val) 
(and (pair? val) (eqv? (car val) 'marked») 

and 

(define (unmark val) 
(if (marked? val) 

(cdr val) 
val) ) 

Appendix 7.2 .. Sequential Access Stores 

A sequential access store can be represented by a pair of lists of storable values: 

SSTORE ::= (SEEN . UNSEEN) 
SEEN, UNSEEN::= (STORABLE ... ) 

Initially, the seen elements of a sequential store are empty: 

(define (make-sstore storables) 
(cons '() storables» 

We have reached the end of a sequential store when there are no more unseen elements: 

(define (end? sstore) 
(null? (cdr sstore») 

When this happens, we must reset the store using init-next!: 

(define (init-sstore! sstore) 
(define seen (car sstore» 
(define unseen (cdr sstore» 
(set-cdr! sstore (append seen unseen» 
(set-car! sstore '(» 
'done) 



Appendices 281 

Reading from a sequential store returns (car unseen). As a side effect, this element is re
moved form the unseen list and placed at the end of the seen list: 

(define (read-next! sstore) 
(define seen (car sstore» 
(define unseen (cdr sstore» 
(define val (car unseen» 
(set-cdr! sstore (cdr unseen» 
(set-car! sstore (append seen (list val») 
val) 

Writing a value into a sequential store merely adds the new element to the end of the seen 
elements: 

(define (write-next! sstore storable) 
(set-car! sstore 

(append (car sstore) (list storable») 
'done) 

The advantage of sequential stores is that we don't need a special apparatus such as keys 
or locations to access members. The disadvantage of a sequential store is the need to 
completely traverse the store to access its members. 

Appendix 7.3. Files and"Ports 

Psychologists distinguish between two classes of human memory systems. Most of our 
procedural and declarative memories are stored in long-term memory (L TM) systems, 
while short-term memory (STM) systems serve as staging areas for perception and prob
lem solving. 

In a computer system we often distinguish between volatile and continuous stores. 
Items in volatile stores are represented as voltage levels. When the power is turned off, 
the data is lost. Items in continuous stores are represented magnetically or optically; 
hence power is not necessary to maintain the data. A computer's register set, cache 
memory, and main memory are volatile stores, while the secondary memories--optical 
and magnetic disks, tapes, etc.-are continuous stores. In many ways, these secondary 
memory systems serve as long term memory systems for a computer, while the main 
memory is analogous to a short term memory system. 

Often readable data on a disk is organized into text files. A text file is a sequential 
store in which the only storable values are characters or a special end-of-file token: 

STORABLE ::= CHAR I eof 

For example, the following file consists of five characters (not including the end-of-file 
token). All of the characters are as yet unseen: 

( () . (#\4 #\2 #\space #\1 #\9 eof» 



282 7. Variables 

Creating Ports 

Text files can be attached to ports using the open-input-file and open-output-file proce
dures. Assume filel and file2 are strings containing the path names of two text files: 

(open-input-file file!) = 
an input port connected to file!. As a side effect all 
members of file! become unseen. 

(open-output-file file2)= 
an output port connected to file2. As a side effect all 
members of file2 are erased. 

Note: If file2 doesn't exist, then open-output-file creates it. It is an error to apply open
input-file to a file that does not exist. 

Reading from Ports 

Assume portl is the port returned by (open-input-file filel). The following procedures 
return printable values and characters from portl: 

(read port!) = 
the next unseen value in file!. As a side effect this 
value is moved from the front of the unseen values to the 
rear of the seen values. 

(read-char port!) = 
the next unseen character in filel. As a side effect this 
character is moved from the front of the unseen values 
to the rear of the seen values. 

After each call to read or read-char, the characters composing the item read are automati
cally moved from the front of the unseen items to the rear of the seen items. For example, 
if file I is the file: 

( () . (#\4 #\2 #\space #\1 #\9 eof» 

then (read portl) returns the number 42 and moves the characters #4 and #2 to the rear of 
the seen items: 

({#\4 #\2) (#\space #\1 #\9 eof» 

The next read operation returns 19 and moves the next three characters to the rear of the 
seen values: 

({#\4 #\2 #\space #\1 #\9) . (eof» 

The next read returns the eof token. The unseen values list is now empty: 

( (#\4 #\2 #\space #\1 #\9 eof) . (» 



Appendices 283 

Scheme provides a polymorphic predicate for testing if an arbitrary value is the eof 
token: 

(eof-object? val) 
= #t, if val is eof 
= #f, otherwise. 

Writing into Ports 

Assume port2 is the port returned by (open-output-file fiIe2). Also assume val is a print
able value and char is a character. Then: 

(write val port2) = 
an unspecified value. As a side effect val is added to 
the rear of the seen elements of file2. 

(display val port2) = 
an unspecified value. As a side effect val is added to 
the rear of the seen elements of file2. 

(write-char char port2) = 
an unspecified value. As a side effect val is added to 
the rear of the seen elements of file2. 

(newline port2)= 
an unspecified value. As a side effect #\newline is added 
to the rear of the seen elements of file2. 

Note: The write procedure writes the backslash control character, delimiting quotations, 
and the "prefix into fiIe2, while display does not. 

Deallocating Ports 

There is a limit to the number of ports that can be allocated at any time. l For this reason, 
it is sometimes necessary to deallocate old ports before new ones can be allocated. 
Scheme provides procedures for de allocating ports. Assume portl is an input port and 
port2 is an output port: 

(close-input-port portl)= 
an unspecified value. Deallocates portl. 

(close-output-port port2) = 
an unspecified value. Deallocates port2. 

1 In DOS this is detennined by the command FILES=n in the config.sys file, where 8 ~ n ~ 20. 



284 7. Variables 

Peeking into the Future 

The read procedure reads the next printable value from a file or device. If the next item 
in the file is not a proper Scheme value, an error message results. This commonly hap
pens if the next item is a comma that does not appear in the context of a quasi-quote. 
(See the exercise in Chapter 1 concerning quasi-quote and unquote.) We can deal with 
this problem using peek. Assume port is an input port: 

(peek-char [port]) = 
the next unseen char (or eof) in port. Does not add this 
character to the rear of the seen values. 

Thus peek-char allows us to view the head of the unseen characters without moving this 
character to the rear of the seen characters. We can use peek-char to implement a "safe" 
version of read that won't complain when commas are encountered outside the scope of a 
quasi-quote operator: 

(define (safe-read port) 
(if (equal? (peek-char port) #\,) 

(read-char port) 
(read port») 

Example: Files to Lists 

Recursion and iteration are useful for file-processing applications because the length of 
the file is not usually known in advance. 

The following procedure "coerces" a file into a list. The input is a file name. The pro
cedure begins by creating an input port connected to the file. The do-loop iteratively 
reads values from the file and conses the values into a list called vals. When the eof
object is read, the port is closed and the reversed list is returned: 

(define (file->list file) 
(define port (open-input-file file» 
(do «next (safe-read port) (safe-read port» 

(vals '() (cons next vals») 
«eof-object? next) 

(close-input-port port) 
(reverse vals»» 

We can use make-sstore to turn a file into the sequential store model: 

(define (file->sstore file) 
(make-sstore (file->list file») 

If an input port has already been created, then the following procedure turns it into a file: 

(define (port->stream port) 
(cons-stream (safe-read port) (port->stream port») 



Problems 285 

Example: Changing Case 

The next example copies a source file to a destination file changing every lowercase let
ter into an uppercase letter in the process. The inputs are the names of the source and 
destination files. The procedure begins by creating an input port connected to the source 
file and an output port connected to the destination file. A do-loop iteratively reads from 
the input port using read-char. Each char is written to the output port in the body of the 
do-loop using write-char. When the eof-object is detected, both ports are closed and the 
procedure terminates: 

(define (file-upcase source-file dest-file) 
(define sport (open-input-file source-file» 
(define dport (open-output-file dest-file» 
(do «next (read-char sport) (read-char sport») 

Problems 

«eof-object? next) 
(close-input-port sport) 
(close-output-port dport) 
'done) ) 

(write-char (char-upcase next) dport») 

Solutions to the following problems may be given in imperative Scheme. 

Problem 7.1. 

Imperative programs are more memory-efficient than functional programs. To demon
strate this, write a procedure that expects a string variable, Sir, as input, returns a token 
value, and as a side effect, reverses the characters in sir. For example, assume the vari
able x has been defined: 

(define x "Hello World") 

The effect of applying string-reverse to x can be seen by inspecting x after the call: 

) (string-reverse! x) 
done 
) x 
"dlroW olleR" 

It might be helpful to first defme a supporting procedure that exchanges two characters 
within a string: 

i swaps chars in str at positions m & n 
(define (swap-chars! str m n) ???) 



286 7 . Variables 

Warning: If the input to string-reverse! isn't a string variable, then the result is un
specified. 

Problem 7.2. 

In an imperative model of a dynamical system the state is maintained in a variable. The 
state variable can be encapsulated inside the control-loop, which is identified with the 
system itself: 

(define (control-loop in it update final?) 
(define state init) 
(do «cycle 0 (+ cycle 1») 

«final? state) 'done) 
(set! state (update state» 
(writeln "cycle = " cycle n state = " state») 

Build an imperative implementation of the digital clock simulation done in Chapter 5. 

Problem 7.3. Associative Stores 

An associative store allows users to store data along with a key that can be used to re
trieve the data. The basic operations on an associative store are: 

(read-assv astore key) = 
the value associated with key in astore. If no 
association is found, 'fail is returned. 

(write-assv! astore key val) = 
an unspecified value. As a side effect val is associated 
with key and stored in astore. 

(erase-assv! astore key) = 
an unspecified value. As a side effect the value 
associated with key in astore is deleted. 

Earlier, we said that a mutable object was an object with properties that could be changed 
without changing the overall identity of the object itself. We called these properties mu
table properties. Curiously, what makes an object mutable is not having mutable prop
erties, but having at least one nonmutable property we can identify with the object itself. 
This nonmutable property is the object's essence. Other properties may change, but as 
long as the object's essence remains the same, we continue to regard its identity as un
changed. 

The essence of a person has been a hot philosophical topic through the ages. A person 
can go through major changes: plastic surgery, sex change, name change, etc. but it's 



Problems 287 

hard to imagine a change so dramatic that we would regard the person as an entirely new 
individual. 

In the case of associative stores we don't need to get that philosophical. If we repre
sent associative stores as type-tagged alists: 

AS TORE :: = (' astore ASSOCIATION ... ) 

then the type tag functions as the essence of the accompanying association list. Even after 
all of the associations have been erased from an associative store, its type tag remains. 
We can express this as a Scheme predicate: 

(define (empty-astore? astore) (null? (cdr astore}}) 

Implement the read, write, and erase procedures described earlier. 

Problem 7.4. Hashing 

Our implementation of associative stores is terribly inefficient. Each operation traverses 
the list of associations comparing keys. If an associative store contains n elements, then 
all three operations require O(n) steps to perform. 

A more efficient strategy is to represent an associative store as a hash table. A hash 
table is a vector of associative stores called buckets. 

HASH::= #(BUCKET ... ) 
BUCKET ::= (bucket ASSOCIATION ... ) 

Accessing buckets in a hash table depends on a bash procedure capable of decoding 
keys into hash table indices: 

(define (hash key) ... } ; returns index of a bucket 

The basic idea is that the ith bucket will be relatively short, containing only associations 
of the form (key. storable), where (hash key) equals i. If the hash procedure evenly dis
tributes its outputs, all of the buckets will have approximately the same length. Thus, if 
there are c buckets, then each bucket will have length approximately nI c where n is the 
total number of associations stored. 

Define read, write, and erase procedures for buckets. These procedures are identical 
to the procedures dermed in the previous problem; only the names have been changed: 

(define (read-bucket bucket key) ???} 
(define (erase-bucket! bucket key) ???} 
(define (write-bucket! bucket key storable) ???} 

Next, fix a size for our hash table: 

(define capacity 64) ; = # of buckets 

Use make-vector to construct an associative store represented as a hash table: 



288 7. Variables 

(define (make-astore) 
(make-vector capacity (make-bucket») 

To read an entry from a hash table we first use the hash procedure to compute the appro
priate bucket; then we call the read-bucket procedure to search the bucket: 

(define (read-assv astore key) 
(define bucket (vector-ref astore (hash key») 
(read-bucket bucket key» 

Following this style. implement the following procedures so that their behavior matches 
the specifications given in the previous problem: 

a. (define (erase-assv! astore key) ???) 
b. (define (write-assv! astore key storable) ???) 

To finish. implement a hash procedure that converts symbols to integers below capacity. 

(define (hash symbol) ???) ; = int < capacity 

Your procedure should do a good job of evenly distributing its outputs. (Hint: Try co
ercing the symbol to a string to a list of characters. then change this list of characters into 
a list of ASCII codes. Now combine the ASCII codes in some creative way.) 

Problem 7.5. LIFO Stores 

A LIFO store (Last In First Out) is called a stack. Only the last item stored in a stack can 
be read or erased from the stack. The basic stack operations are: 

(push! stack val) = 
an unspecified value. As a side effect, val is added to 
stack. 

(top stack) = 
the last item added to the stack. The item is llQt 
removed. 

(pop! stack) = 
an unspecified value. As a side effect, the last item 
added to the stack is removed. 

(empty-stack? stack) 
it if stack is empty, 

= if, otherwise 

(make-stack) = a new empty stack. 

Implement a stack ADT with these operations. 



Problems 289 

Problem 7.6. FIFO Stores 

FIFO stores (First In First Out) are called queues. Only the item that has been in the store 
longest can be read or erased. The basic queue operations are: 

(enqueue! queue val) = 
an unspecified value. As a side effect, val is stored in 
queue. 

(dequeue! queue) = 
an unspecified value. As a side effect the item stored 
longest in queue is removed. 

(front queue) = 
the item stored longest in queue. The item is not 
removed. 

(empty-queue? queue) 
= it if queue is empty, 
= if, otherwise 

(make-queue) = a new empty queue. 

Implement a queue ADT with these operations. 
Hint: A queue can be represented as a list of storable values together with a pair of 

the form (FRONT. REAR). The car of the pair contains a pointer to the first item in the 
list, and the cdr contains a pointer to the last item in the list. 

Problem 7.7. 

Develop an object-oriented implementation of bank accounts. 

Problem 7.8. Improved Cell Allocation 

Every time a Scheme constructor (cons, list, vector, string, make-string, make-vector) is 
called, the procedure alloc-Iocs! must be called to allocate the' cells needed to hold the 
constructed sequence. For this reason it is important that alloc-Iocs! be as efficient as 
possible. Unfortunately, our implementation of alloc-Iocs! is not efficient. Each time 
cells are needed, the entire store is searched for a sufficiently large block. This may not 
seem too inefficient when the store consists of eight cells, as in our example, but a more 
realistic store might consist of thousands of cells. 

We can improve our implementation of alloc-Iocs! by maintaining a list of block de
scriptors. A block descriptor is a pair consisting of the starting location and size of a free 
block in the store. We call this the free list. A free list must be part of every store: 



290 7. Variables 

STORE::= (FREE-LIST. #(STORABLE ... » 
FREE-LIST::= (BLOCK-DESCRIPTOR ... ) 
BLOCK-DESCRIPTOR ::- (SIZE . LOCATION) 
SIZE ::= NATURAL 

Assuming this definition of STORE, reimplement the following basic store operations so 
they operate on (cdr store) instead of directly on store: 

display-store, access-lac and update-lac! 

Reimplement make-store. The initial free list should consist of a single block descriptor: 
(capacity. (loc. 0». 

Now reimplement alloc-Iocs!. Instead of searching the entire store, alloc-Iocs! 
searches the free list (i.e., (car store» until it fmds a sufficiently large block. After allo
cating the number of cells needed from the free block, alloc-Iocs! modifies the block de
scriptor so that it describes the block of remaining free cells (if there are any). For exam
ple, assume (alloc-Iocs! 50) is called, and assume (75 • (loc . 42» is the first block 
descriptor on the free list with size ~ 50. Then this block descriptor must be modified to: 
(25 . (loc . 92». 

Finally, modify gc!. The main complication is that sweep! must form a new free lisL 
Test your code on a store of 64 cells. 

P lem 7.9. Best Fit versus First Fit 

There are several variations on the alloc-Iocs! algorithm in the last exercise. The varia
tion presented is called the first fit algorithm because alloc-Iocs! searches the free list 
until it fmds the first block of cells large enough to accommodate the requested number 
of cells. Unfortunately, this algorithm quickly leads to fragmentation, a situation in 
which the free blocks become so small that subsequent requests for multiple cells fail. 
(Why?) 

The best fit algorithm searches the free list for the smallest block of cells large 
enough to accommodate the requested number of cells. This algorithm can be imple
mented by always insuring that the free list is sorted from small to large blocks. This 
means that each time a new block descriptor is created (for example, by sweep! or alloc
locs!), it must be carefully inserted into the free list to maintain the ordering property. Of 
course, this means these procedures will be less efficient than their first fit counterparts. 
(Why?) Reimplement sweep! and alloc-Iocs! to implement the best fit algorithm. 

Problem 7.10. Fragmentation 

We can correct fragmentation by compacting. Compacting involves moving all free 
blocks to the top of the store, where they form one giant free block. Of course, the vari
ables they displace must be relocated to the bottom of the store. This is difficult because 
the locations of these blocks are bound to symbols in the active environments. One way 
around this difficulty is to introduce a secondary store that holds references to the pri-



Problems 291 

mary store. Symbols in active environments are bound to locations in the reference store, 
where the actual references reside. Each time a variable is moved, we only need to 
change the reference store to reflect its new location. 

Reimplement the definition of store and all store operations to accommodate the 
compactification algorithm. Implement compactification. Compactification should be 
called each time alloc-Iocs! fails immediately after a garbage collection. 

Problem 7.11. Stores in Functional Scheme 

Our implementation of stores is given in imperative Scheme because update-locI, alloc
locI, dealloc-Ioc!, etc. use Scheme's vector-set! command to modify the store. Pedagogi
cally this is both good and bad. It is good because it gives us plenty of practice using 
commands (vector-set!) to model stores and commands. It is bad because if a person (or 
computer) truly didn't understand how stores and commands work, our model would be 
useless because it assumes an understanding of how the vector-set! command works. 

Reimplement all of the store procedures here in functional Scheme. In this imple
mentation there won't be a single global store; instead there will be many stores. In fact, 
a new store is created each time a store is modified by a command. This being the case, it 
will be inefficient to represent stores as vectors. Instead, represent stores as alists: 

STORE :: = (CELL ... ) 
CELL ::= (LOCATION . STORABLE) 

Problem 7.12. 

Assume file is a string naming a file. Implement: 

(list->file vals file) = 'done. Writes each value in vals 
on a line in file 

Problem 7.13. 

Assume file is a string naming a file. Implement: 

(vowel-count file) = 
a list of pairs of the form (a . n) where n = the number 
of upper or lower case #\a characters in file. 

Problem 7.14. Depth First Search 

A labeled tree allows each node (parent or leat) to be labeled by a nonlist. We can repre
sent labeled trees as nested list if we agree that the car of the list is the label of the root. 



292 7. Variables 

For example, the labeled tree in Figure 7.14 can be represented by the list (a (b (e f)) 
(c (g h» (d (i J)). 

a 

b/l~ 
1\ ~ 1\ 
ef gh ij 

Figure 7.14 

Often, we need to search a labeled tree for a particular label. The depth first search al
gorithm searches each branch from left to right. It works by maintaining a stack of nodes. 
When a node is visited for the first time, it is pushed on the stack. When a node is visited 
for the last time it is popped off the stack. Implement depth first search using the stack 
operations implemented earlier. 

Problem 7.15. Breadth-First Search 

Breadth first search of a labeled tree visits each level of the tree from top to bottom. It 
works by maintaining a queue of visited nodes. It begins by adding the root node to an 
empty queue. Thereafter, it removes the fro.nt item from the queue, checks it to see if its 
label is the one being searched for, then enqueues the children. Implement breadth first 
search. 



8 
Expressions as Values 

Sick of philosophical debates deteriorating into shouting matches, the philosopher
mathematician Gottfried Leibniz (1646-1716) wondered why philosophy couldn't be 
more objective, like science and mathematics. He then hit upon an idea that would in
spire thinkers for centuries to follow: What if philosophical propositions could be proved 
or refuted by procedures that manipulated them as pure symbolic data: 

If we had it we should be able to reason in metaphysics and morals in much the same 
way as geometry and analysis. If controversies were to arise, there would be no more 
need of disputation between two philosophers than between two accountants. For it 
would suffice to take their pencils in their hands, to sit down to their slates, and to say 
to each other (with a friend as witness, if they liked): Let us calculate. 

This was an early articulation of the expressions-~-data idea. It eventually led to mathe
maticallogic, stored program computers, artificial intelligence, and meta-programming. 

8.1. Macros 

We begin with a simple but useful example of meta-programming: macro expanders. A 
macro expander expects an expression as input and returns a new "expanded" expres
sion as output. The Scheme macro facility allows programmers to associate macro ex
panders with certain types of expressions. When the interpreter encounters these expres
sions, it automatically expands them using the associated expander, then evaluates the 
expanded expression instead (see Figure 8.1). 

expression 

Figure 8.1 

 J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998



294 8. Expressions as Values 

8.1.1. While Structures 

As a simple example, let's add a while structure to Scheme. The syntax of a while sttuc
ture is: 

WHILE::= (while EXPRESSION EXPRESSION ... ) 

The first expression is called the while-condition; the remaining expressions are the 
while-body. While sttuctures are iterative expressions, like the do-loops encountered- in 
Chapter 5. The while-condition is evaluated. If it isn't false, then the while-body is 
evaluated from left to right, and the process repeats. If the while-condition is false, then 
#f is returned. Presumably, the expressions appearing in the while body produce cumula
tive side effects. 

How does a while structure stop repeating? It may not. However, if the while-body 
contains a command that updates a variable the while-condition depends on, then eventu
ally the while-conditionmay be false. 

Here's an imperative-style procedure that uses a while structure to compute n facto
rial: 

; = (* n ... 1), C-style! 
(define (fact n) 

(define result 1) 
(while « 0 D) 

(set! result (* n result» 
( set! n (- n 1» 

result) 

The macro expander for while sttuctures uses the quasi quote (baclcquote) operator intro
duced in the problem section of Chapter 1. Recall that like the quote operator, the expres
sion behind a backquote is unevaluated unless unquoted by a comma. For example, as
sume the following definitions have been made: 

(define a 100) 
(define b 200) 
(define c 300) 

Study the following transcript: 

> '(a b C) 

(a b c) 
> '(a b ,c) 
(a b 300) 
> '(,a,b c) 
(100 200 c) 

Notice that in the second and third expressions unquoted components of the list were 
evaluated. 

We use the comma operator to insert the while-condition into a do-loop: 



; while-exp = (while condition body) 
(define (while-expander while-exp) 

(define condition (cadr while-exp» 
(define body (cddr while-exp» 
(append '(do () «not ,condition) #f» body» 

Here's a simple test of while-expander: 

8.1. Macros 295 

> (while-expander '(while « 0 n) (set! n (- n 1») 
(do () «not « 0 n» if) (set! n (- n 1») 

How do we associate while-expander with while structures? Scheme's define-syntax 
procedure (PC Scheme calls it macro) installs a binding between while and while
expander in a structure table that's consulted by the interpreter each time it reads an ex
pression: 

(define-syntax while while-expander) 

8.1.2. Lazy Procedures 

Lazy procedures were introduced in Appendix 6.1 as a way to avoid eagerly evaluating 
operands unless they are needed. The basic idea is to assume that all operands are prom
ises that must be explicitly forced if, when, and where they are needed. For example, the 
lazy-switch procedure only forces one of its case parameters: 

(define (lazy-switch key case1 case2 case3) 
(define key-val (force key» 
(cond «< key-val 0) (force case1» 

«even? key-val) (force case2» 
(else (force case2»» 

The problem with lazy procedures is that poor users must explicitly delay all operands 
each time they call them: 

(lazy-switch 
(delay X) 

(delay (exp 500» 
(delay (fact 40» 
(delay 100» 

Using macros, we can hide this complexity from users. First, we define an expander that 
automatically delays the operands: 

; exp = (switch key case1 case2 case3) 
(define (switch-expander exp) 

(define key (cadr exp» 
(define case1 (caddr exp» 
(define case2 (cadddr exp» 



296 8. Expressions as Values 

(define case3 (caddddr exp» 
(lazy-switch (delay ,key) 

(delay , casel) 
(delay ,case2) 
(delay ,case3») 

Next, we install switch-expander as a macro expander associated with the name switch: 

(define-syntax switch switch-expander) 

Now, when the user calls 

(switch x (exp 500) (fact 40) 100) 

this expression automatically expands into the expression: 

(lazy-switch 
(delay x) 
(delay (exp 500» 
(delay (fact 40» 
(delay 100» 

.3. Implementing Streams 

As a final example, recall the defmition of stream presented in Chapter 6. 

STREAM :: = $ () I (VALUE . {STREAM}) 

where {STREAM} represents a promise to compute the tail of the stream if and when it's 
needed. Not all implementations of Scheme provide streams, but we can easily imple
ment our own. If we interpret the empty stream as the empty list, then we can make the 
following identifications: 

(define the-empty-stream 'C»~ 

(define empty-stream? nUll?) 
(define head car) 

Unlike lists, the cdr of a stream is a promise that must be forced when the tail of the 
stream is needed: 

(define (tail stream) (force (cdr stream»} 

The only problem left is cons-stream. We could try to delay the second input and then 
use cons: 

(define (cons-stream head tail) 
(cons head (delay tail») 

Unfortunately, this doesn't work. Because cons-stream is an ordinary programmer
defined procedure, eager evaluation will completely evaluate the second input before we 
have a chance to turn it into a promise. Instead, the application: 



(cons-stream head tail) 

needs to be expanded into the expression: 

(cons head (delay tail» 

8.2. Semantic Prototyping 297 

before eager evaluation begins. This is a perfect application for macros. The macro ex
pander performs the necessary conversion: 

; exp - (cons-stream head tail) 
(define (cons-stream-expander exp) 

(define head (cadr exp» 
(define tail (caddr exp» 
'(cons ,head (delay ,tail») 

Finally, the "expander - cons-stream" binding is installed using defme-syntax: 

(define-syntax cons-stream cons-stream-expander) 

8.2. Semantic Prototyping 

We can use EBNF rules to formally specify the syntax of a programming language -i.e., 
the domain of all legal programs -but how do we specify the semantics of a program
ming language? How do we specify the behavior of a legal program? 

Until now, we have been relying on informal descriptions of evaluation algorithms, 
environments, and stores. This is fine for beginners, but as experience with a language is 
gained, subtle ambiguities arise that are unresolved by informal descriptions. For this 
reason, a formal specification of semantics is required. Often this specification takes the 
form of a machine-independent interpreter for the language. 

Philosophers, linguists, and mathematicians use the term meta-language to refer to 
any language used to describe another language. In this context, the language being de
scribed is referred to as the object language. So far, the meta-language used in this text 
has been English (with a little EBNF notation thrown in), and the object languages have 
been the various fragments of Scheme we have studied. If we are to give a formal speci
fication of Scheme, we will need a formal meta-language. 

This can lead to a sticky philosophical problem: Will we be required to give a formal 
specification of our meta-language? If so, will this entail the need for a meta-meta
language and a formal specification of it? If we aren't careful, we will be led into an infi
nite regress of formal specifications! 

Our way out of this problem is to choose a meta-language that is simple enough that 
an intuitive understanding of its semantics will be sufficient. Because we already have 
such an understanding of functional Scheme, we choose it as our meta-language. Our 
plan is to build interpreters for two object languages that resemble the fragments of 
Scheme we have been studying. We call these languages Alpha and Beta. Informally, we 
can characterize these languages as follows: 



298 8. Expressions as Values 

Alpha = functional Scheme - some redundant features 
Beta = imperative Scheme - some redundant features 

Although our interpreters will run, they won't be particularly efficient. That's okay; their 
purpose is to specify semantics, not to efficiently execute programs. Still, the ability to 
execute programs has an advantage. If we are considering a commercial interpreter for 
either of these languages, we can use our inefficient interpreters as prototypes. For this 
reason the technique of building interpreters to specify semantics is called semantic pro
totyping. 

8.3. Alpha 

The Alpha language is similar to functional Scheme without some redundant features. 

8.3.1. Alpha Values and Phrases 

The values produced by Alpha expressions are numbers, Booleans, procedures, the 
empty list, and pairs: 

VALUE: := 
NUMBER I BOOLE I PROCEDURE I () I (VALUE. VALUE) 

There are two types of phrases Alpha users can enter: defmitions and expressions: 

PHRASE ::= DEFINITION I EXPRESSION 

An Alpha definition has exactly the same format as a Scheme definition: 

DEFINITION ::= (define NAME EXPRESSION) 

We will need a predicate to determine if a phrase (or any value) is a defmition: 

(define (definition? phrase) 
(and (pair? phrase) (eqv? (car phrase) 'define») 

After a definition has been made, we will need to extract the name and expression. For 
efficiency, we dispense with input validation and introduce these selectors as synonyms 
for Scheme's cadr and caddr: 

(define def-name cadr) 
(define def-exp caddr) 

As in Scheme, value-producing algorithms are described in Alpha by one of four types of 
expressions-literals, names, applications, or structures: 

EXPRESSION 
LITERAL I NAME I STRUCTURE I APPLICATION 



8.3. Alpha 299 

As in the case of definitions, we will need a predicate to detennine if an arbitrary phrase 
is an expression: 

(define (expression? phrase) 
(or (literal? phrase) 

(name? phrase) 
(structure? phrase) 
(application? phrase») 

It makes sense to think of the domain of legal Alpha expressions as a Scheme abstract 
data type. Toward this end we introduce predicates for distinguishing the different types 
of expressions and selectors for dissecting out the components of an expression. We 
could also introduce Alpha expression constructors, but this isn't necessary because users 
will type Alpha expressions directly into the Alpha interpreter. 

Recognizers and Selectors for Names and Literals 

Any Scheme symbol is an Alpha name: 

(define name? symbol?) ; NAME::= SYMBOL 

Alpha literals include numbers, Booleans, or any printable Alpha value preceded by a 
single quote. 

LITERAL ::= NUMBER I BOOLE I 'VALUE 

(define (literal? exp) 
(or (number? exp) 

(boolean? exp) 
(quoted? exp») 

When a user enters an expression like '5, the Scheme read procedure produces the ex
pression (quote 5). We can use this fact to recognize quoted literals: 

(define (quoted? exp) 
(and (pair? exp) (eqv? (car exp) 'quote») 

We can use Scheme's cadr to extract the value from a quote: 

(define rem-quote cadr) 

Recognizers and Selectors for Structures and Applications 

We begin with a modest collection of structures: 

STRUCTURE ::= IF I LAMBDA I DELAY I AND I OR 

All structures are lists beginning with characteristic reserved words; hence we can test if 
an arbitrary expression is a structure merely by testing if it's a pair, and then determining 
if the first entry in the list belongs to a list of reserved words: 



300 8. Expressions as Values 

define (structure? exp) 
(and (pair? exp) (memv (car exp) structures»» 

where 

(define structures I (lambda if and or» 

Like its Scheme counterpart, an Alpha if-structure consists of a condition, a consequent, 
and an optional alternative expression: 

IF ::= (if EXPRESSION EXPRESSION [EXPRESSION]) 

Without input validation, we can identify the condition and consequent selectors with 
Scheme's cadr and caddr: 

(define condition cadr) 
(define consequent caddr) 

Because the alternative of an if-structure is optional, we need to first check to make sure 
it is present before applying Scheme's cadddr to extract it. If it's not present, our selector 
merely returns #f: 

(define (alternative if-exp) 
(if (null? (cdddr if-exp» 

#f 
(cadddr if-exp») 

Alpha's lambda-structure is similar to Scheme's, except that only single expressions can 
appear in the body: 

LAMBDA::= (lambda (NAME ... ) EXPRESSION) 

The parameters selector returns the list of parameters. The body selector returns the ex
pression part of the lambda-structure. Without input validation these, too, can be identi
fied with Scheme's cadr and caddr: 

(define parameters cadr) 
(define body caddr) 

Applications, and-structures, and or-structures are identical to their Scheme counterparts: 

APPLICATION::= (EXPRESSION EXPRESSION ... ) 
AND::= (and EXPRESSION ... ) 
OR ::= (or EXPRESSION ... ) 

The operator of an application or structure is the car of the expression. The operands is 
the list formed by dropping the operator. In other words, the cdr of the expression: 

(define operator car) 
(define operands cdr) 



8.3. Alpha 301 

For now we will recognize any list as an application. This is very dangerous because 
structures are lists but are not considered applications. Our plan is to call the application? 
predicate only after the structure? predicate has failed: 

(define application? list?) ; dangerous 

Reserved Words 

As a first step to prevent users from redefming reserved words, we introduce a predicate 
that determines if a name is reserved: 

(define (reserved? name) 
(memv name reserved-words») 

where 

(define reserved-words 
(append structures 

imported-names 
'(q quit quote promise define») 

8.3.2. The Alpha Control Loop 

The Alpha control loop perpetually prompts the user for an input phrase, then reads the 
next phrase typed. If the phrase is a quit command, the control loop terminates; if the 
phrase is a definition, the resolve procedure creates a binding and adds it to the global 
environment; if the phrase is an expression, its value is computed by the evaluate proce
dure, then displayed; otherwise an unrecognized-phrase error is displayed: 

(def~ne (control-loop env) 
(call-with-current-continuation receiver) 
(let «phrase (get-phrase») 

(cond «quit? phrase) 'bye) 
«definition? phrase) ... ) 
«expression? phrase) ... ) 
(else ... »» 

The control loop's parameter is the current global environment, env. In each case the el
lipsis ..... " involves displaying a value, token, or error message using writeln, then a tail
recursive call to control-loop. In the definition clause, the recursive call is passed the en
vironment with the newly created binding added. 

Notice the current continuation is captured at the top of the control loop and passed to 
receiver. Recall from Chapter 3 that receiver assigns its input to the return procedure: 

(define (return val) val) ; for now 

; reassign return to be the current continuation: 
(define (receiver cant) (set! return cant» 



302 8. Expressions as Values 

Recall that the error procedure defined in Chapter 3 prints an error message, then calls 
the return procedure: 

(define (error gripe source . irritants) 
••• i display error message 
(return error-token» 

If the return procedure has been redefined as a continuation, it abandons its caller, error, 
and resumes the computation represented by this continuation. The continuation given 
eralier, captured at the top of the control loop, represents the start of the last cycle 
through the control loop. Thus, if errors are discovered deep inside a complicated expres
sion, we can call error and return control to the point in time just before the troublesome 
expression was entered. 

The get-phrase procedure merely displays a prompt, and returns the next phrase typed 
on the keyboard: 

(define (get-phrase) 
(display alpha-prompt) 
(read) ) 

where 

(define alpha-prompt "Alpha> ") 

Here's the complete code for the Alpha control loop: 

(define (control-loop env) 

i return errors here 
(call-wlth-current-continuation receiver) 

(let «phrase (get-phrase») 
(cond «quit? phrase) 'bye) 

«definition? phrase) 
(let «new-env (resolve phrase env») 

(writeln 'done) 
(control-loop new-env») 

«expression? phrase) 

(else 

(let «val (evaluate phrase env») 
(writeln val» 
control-loop env») 

(writeln "unrecognized phrase: " phrase) 
(control-loop env»») 



The Global Environment 

To start the control loop we pass it the initial global environment: 

(define (start-alpha) 
(writeln "Type q to quit") 
(control-loop global-env» 

An environment can be represented as a list of frames: 

ENVIRONMENT :: = (FRAME ... ) 

8.3. Alpha 303 

A frame is merely an association list. In this context we call the associations bindings: 

FRAME ::= (BINDING ... ) 

A binding is a pair consisting of a name (i.e., a symbol) and an Alpha value: 

BINDING ::= (NAME. VALUE) 

The global environment is a list containing a single frame, which initially holds bindings 
of names to imported Scheme procedures. We can use the map procedure to form this 
initial frame: 

(define global-env 
(list 

(map 'cons imported-names imported-procs») 

Imported procedures (also called native procedures) are those defined in Scheme, which 
can be called as primitive procedures in Alpha. These typically include primitive Scheme 
procedures for manipulating numbers, pairs, and Booleans, but in theory they could also 
include user-defined Scheme procedures: 

(define imported-names 
'(+ * - / < <= > >= = not null? 

car cdr cons pair? eq? equal?» 

(define imported-procs 
(list + * - / < <= > >= = not null? 

car cdr cons pair? eq? equal?» 

8.3.3. The Alpha Declaration Resolver 

Recall that the format of an Alpha definition is: 

DEFINITION::= (define NAME EXPRESSION) 

After determining the name inside its definition input (def) isn't a reserved word, the Al
pha definition resolver calls evaluate (defined soon) to compute the value produced by 
the expression inside def, binds this value to its new name, and then returns the environ
ment gotten by adding this new binding to the first frame in the current environment: 



304 8. Expressions as Values 

(define (resolve def env) 
(define name (def-name def» 
(if (reserved? name) 

(error "can't redefine a reserved word" 
resolve 
name) 

(let* «exp (def-exp def» 
(val (evaluate exp env name») 

(install-binding name val env»» 

If there is one, install-binding extracts the first frame in its environment input, env, calls 
the put procedure defined in Chapter 6 to actually create the binding and place it into this 
frame, and then uses cons to replace the new frame in front of the tail of env: 

(define (install-binding symbol val env) 
(if (null? env) 

(error "empty environment" install-binding) 
(let «frame (car env») 

(cons (put symbol val frame) (cdr env»») 

8.3.4. The Alpha Expression Evaluator 

The Alpha evaluator determines the type of its expression input, then calls the appropri
ate specialized evaluator. The evaluator requires an environment input to determine the 
values of names occurring in its expression input. The optional parameter is only used by 
the definition resolver to pass the name together with the body of a definition to evaluate. 
More on this later. 

(define (evaluate exp env . options) 

; extract the optional parameter 
(define name 

(if (null? options) 
'anonymous 
(car options») 

(cond «literal? exp) (eval-lit exp env» 
«name? exp) (eval-name exp env» 
«structure? exp) 

(eval-structure exp env name» 
«application? exp) (eval-apply exp env» 
(else (error "unrecognized expression" 

evaluate 
exp»» 



8.3. Alpfla 305 

Evaluating Literals and Names 

The value of a simple literal is itself. The value of a quoted literal is gotten by simply re
moving the quote: 

(define (eval-lit exp env) 
(if (quoted? exp) 

(rem-quote exp) 
exp) 

We search the environment to detennine the values of names: 

(define (eval-name exp env) 
(search-env exp env» 

Using the get procedure defmed in Chapter 6, the search-env procedure searches each 
frame until either a value is found or until there are no more frames. In the first case the 
value is returned; in the second case an undefmed-symbol error is raised. 

(define (search-env symbol env) 
(if (null? env) 

(error "undefined symbol" search-env symbol) 
(let* «frame (car env» 

(val (get symbol frame») 
(if (eqv? val fail) 

(search-env symbol (cdr env» 
val») ) 

Evaluating Structures 

Structures are evaluated by still more specialized. evaluators called from eval-structure: 

(define (eval-structure exp env name) 

(defineproc (operator exp» 

(case proc 
«lambda) (eval-lambda exp env name» 
«if) (eval-if exp env» 
«and) (eval-and exp env» 
«or) (eval-or exp env» 
(else (error "unrecognized structure" 

eval-structure 
proc»») 

Short Circuit Evaluation 

Recall the definition of short circuit evaluation from Chapter 3: 

Evaluate operands from left to right until a return value is determined. 



306 8. Expressions as Values 

Two variants of short circuit evaluation are implemented by tail-recursive procedures in
side eval-and and eval-or. Inside eval-and we assume the value is true until we either run 
out of operands or find an operand that evaluates to #f: 

(define (eval-and exp env) 

(define (tail-eval result exps) 
(if (or (not result) (null? exps» 

result 
(tail-eval (evaluate (car exps) env) 

(cdr exps»» 

(tail-eval #t (operands exp») 

Inside eval-or we assume the value is false until we either run out of operands, or en
counter an operand that evaluates to anything but #f: 

(define (eval-or exp env) 

(define (tail-eval result exps) 
(if (or result (null? exps» 

result 
(tail-eval (evaluate (car exps) env) 

(cdr exps»» 

(tail-eval #f (operands exp») 

Conditional Evaluation 

Conditional evaluation in Alpha simply reduces to conditional evaluation in Scheme: 

(define (eval-if exp env) 
(if (evaluate (condition exp) env) 

(evaluate (consequent exp) env) 
(evaluate (alternative exp) env») 

Evaluating Lambda 

Evaluating a lambda expression produces a representation of an Alpha procedure. We 
choose to represent this Alpha procedure by a related Scheme procedure. This procedure 
is created inside eval-Iambda, where it is called meta-proc, and is returned as the value of 
eval-Iambda: 

(define (eval-larnbda ... ) 
(define (meta-proc ... ) ... ) 
meta-proc) 

The meta-proc procedure expects a list of actual values as input (these will be provided 
by eval-apply, defined soon). It forms a temporary frame consisting of the parameters 



8.3. Alpha 307 

(these can be found inside the lambda expression) and the arguments. This temporary 
frame is placed at the head of the evaluating environment to form a temporary environ
ment, then the body of the lambda expression is evaluated relative to this temporary envi
ronment: 

(define (eval-lambda lambda-exp env name) 

; extract components 
(define params (parameters lambda-exp» 
(define exp (body lambda-exp» 

(define (meta-proc . args) 
(define temp-frame (map cons params args» 
(define eval-env ???) ; see below 
(define temp-env (cons temp-frame eval-env» 
(evaluate exp temp-env» 

meta-proc) 

Implementing the Static and Dynamic Scope Rules 

Our strategy has two problems. The first is how to define the evaluating environment, 
eval-env. The best idea is simply to use env, the environment parameter passed to 
eval-Iambda: 

(define eval-env env) 

Because lambda is used to defme procedures, env represents the define-time environ
ment, hence this approach implements the static scope rule discussed in Chapter 4. 

The dynamic scope rule requires us to evaluate exp, the body of the lambda expres
sion, relative to the calling environment. Because we don't know the calling environment 
at define time, like the argument list, args, it will have to be passed to meta-proc by 
eval-apply: 

(define (meta-proc call-env . args) 
(define temp-frame (map cons params args» 
(define eval-env call-env) 
(define temp-env (cons temp-frame eval-env» 
(evaluate exp temp-env» 

We can implement both the static and dynamic scope rules and let users decide which 
rule to use by toggling a global flag: 

(define static-enabled #t) ; #t 
#f 

Here's the newest version of meta-proc: 

static scope rule 
dynamic scope rule 

(define (meta-proc call-env . args) 
(define temp-frame (map cons params args» 
(define eval-env 



308 8. Expressions as Values 

(if static-enabled env call-env» 
(define temp-env (cons temp-frame eval-env» 
(evaluate exp temp-env» 

The Environment Obsolescence Problem 

The second problem is that when the static scope rule is used, the define-time environ
ment, env, is hard-wired into meta-proc, but because environments are nonmutable ob
jects in functional Scheme (all values are), subsequent changes to the global environment 
don't show up in env. This is called the environment obsolescence problem, and it can't 
be completely solved in functional Scheme. 

For example, suppose we make the following definitions in Alpha: 

Alpha> (define x 100) 
done 
Alpha> (define add-x (lambda (y) (+ x y») 
done 
Alpha> (add-x 42) 
142 
Alpha> (define x 200) 
done 
Alpha> (add-x 42) 
142 

Notice the secon4 call to add-x produced the same result as the first call, 142. Appar
ently, add-x didn't pick up the change made to x in the global environment. 

The usual approach when faced with an anomaly like this is to claim it as a feature. 
We could almost get away with this, except the worst consequence of the Environment 
Obsolescence Problem occurs when we attempt to define recursive procedures. For ex
ample, consider what happens when we try to define the recursive factorial procedure in 
Alpha: 

(define fact 
(lambda (n) 

(if (= n 0) 

1 
(* n (fact (- n 1»»» 

The definition resolver calls evaluate to determine the value of the lambda expression. 
Evaluate calls eval-Iambda, which returns meta-proc with env hard-wired inside. Subse
quently the binding (fact. meta-proc) is created and installed in the global environment. 
Because this addition occurs after the creation of meta-proc, the new binding for fact is 
not present in the now-obsolete env. Consequently, when (fact 3) is called, meta-proc at
tempts to evaluate (fact 2) relative to env. But because fact is not bound inside env, an 
undefined-name error occurs. 

We can overcome this problem if eval-Iambda knows the name of the procedure it is 
creating. Because only the resolve procedure knows this name, it is up to resolve to pass 



8.3. Alpha 309 

the name to evaluate, which passes the name along to eval-Iambda. Meta-proc can now 
install a binding of itself to its name in the evaluating environment: 

(define (meta-proc call-env . args) 
(define temp-frame (map cons params args» 
(define eval-env 

(if static 
(install-binding name meta-proc env) 
call-env) ) 

(define temp-env (cons temp-frame eval-env» 
(evaluate exp temp-env» 

In a weird way this makes meta-proc a recursive procedure. Here's the final definition of 
eval-Iambda: 

(define (eval-lambda lambda-exp env name) 

; extract components 
(define params (parameters lambda-exp» 
(define exp (body lambda-exp» 

(define (meta-proccall-env . args) 

(define temp-frame (map cons params args» 
(define eval-env 

(if static-enabled 
(install-binding name meta-proc env) 
call-env) ) 

(define temp-env (cons temp-frame eval-env» 

(evaluate exp temp-env» 

meta-proc) 

Evaluating Applications 

Unlike the Scheme interpreter, the Alpha interpreter supports both eager and delayed 
evaluation of procedure applications. The method used is controlled by a global flag, 
which can be toggled before the Alpha interpreter is started: 

(define eager-enabled it) ; it = eager evaluation 
; if = lazy evaluation 

The application evaluator recursively evaluates the operator of app, its application input: 

(define proc (evaluate (operator app) env» 



310 8. Expressions as Values 

There are two possibilities: either proc is an imported procedure or proc is a user-defmed 
procedure. If proc is user-defmed, then it has the form of a meta-proc created inside a call 
to eval-lambda. 

If eager evaluation is enabled or if proc is an imported procedure, eval-apply eagerly 
evaluates the list of the application's operands by mapping evaluate, with its environment 
input fixed, across the operands list: 

(define inputs (operands app» 
(define (eval-in-env e) (evaluate e env» 
(define args (map eval-in-env inputs» 

In case eager evaluation is disabled and proc is not imported, eval-apply lazily converts 
its operands into promises that will be forced by proc on an as-needed basis: 

(define inputs (operands app» 
(define (delay-in-env e) (make-promise e env» 
(define args (map delay-in-env inputs» 

The make-promise procedure merely encapsulates the unevaluated expression, e, to

gether with its delaying environment, env, into a type-tagged list1: 

(define (make-promise exp env) 
(list 'promise exp env» 

If proc is imported, it is applied to args using apply: 

(apply proc args) 

If proc is user-defmed, we use almost the same strategy, but we attach the calling envi
ronment, env, to the front of the argument list in case it's needed inside proc: 

(apply proc (cons env args» 

Here's the complete code for eval-apply: 

(define (eval-apply app env) 

; extract components 
(define proc (evaluate (operator app) env» 
(define inputs (operands app» 

; amplifiers for map 
(define (eval-in-env e) (evaluate e env» 
(define (delay-in-env e) (make-promise e env» 

(define args (if (or eager-enabled (imported? proc» 
(map eval-in-env inputs) 
(map delay-in-env inputs») 

1 Warning: Alpha promises aren't memoized. 



(if (imported? proc) 
(apply proc args) 
(apply proc (cons env args»» 

Forcing Promises 

8.3. Alpha 311 

To make lazy evaluation work, we need to automatically force Alpha promises as they 
are encountered. This can be done by modifying eval-name to automatically call 
eval-promise when it encounters promises bound to parameters: 

(define (eval-name exp env) 
(define val (search-env exp env» 
(if (promise? val) 

(eval-promise val env) 
val) ) 

Recall that a promise has the form: 

PROMISE::= (promise EXPRESSION ENVIRONMENT) 

Let's create a few selectors to hide this representation: 

(define promise-exp cadr) 
(define promise-env caddr) 

We can use the type tag to identify promises: 

(define (promise? val) 
(and (pair? val) (eqv? 'promise (car val»» 

To evaluate a promise, we use promise-exp to extract its expression, and then evaluate 
this expression relative to some environment, but which environment? The environment 
parameter passed to eval-promise is the forcing environment. This is different from the 
delaying environment encapsulated inside the promise. This is the same problem we 
faced defining the evaluating environment inside meta-proc when we had to choose be
tween the static and dynamic scope rules. 

In fact, there are two flavors of lazy evaluation: call-by-name requires promises to be 
forced relative to their delaying environments, while call-by-text (very rare) uses the 
forcing environment. Again, we can give users a choice by creating a global flag: 

(define call-by-name it) 

Here's the definition of eval-promise: 

it call-by-name 
; if = call-by-text 

(define (eval-promise promise env) 
(if call-by-name 

(evaluate (promise-exp promise) 
(promise-env promise» 

(evaluate (promise-exp promise) env) 



312 8. Expressions as Values 

8.4. Beta 

The Beta language is similar to imperative Scheme without a few redundant features. 
More accurately, Beta is Alpha with variables and commands. 

8.4.1. Beta Commands 

Beta expressions are the same as Alpha expressions, but with four new structures, the 
set!, set-car!, and set-cdr! commands, and begin expressions used for sequential evalua
tion: 

CMMD ::= (SET NAME EXPRESSION) 
SET ::= set! I set-car! I set-cdr! 
BEGIN::= (begin EXPRESSION ... ) 

(define structures 
'(lambda if and or begin set! set-car! set-cdr!» 

8.4.2. The Beta Control Loop 

The differences between Alpha and Beta can be summarized by comparing their control 
loops. First, the Beta control loop has an extra patameter representing the current store. 
Second, the resolve procedure returns an environment-store pair rather than a simple en
vironment. Finally, the evaluate procedure returns a value-store pair rather than a simple 
value. 

Environment-store pairs are needed because resolving a declaration produces a new 
environment and, in the case of a variable declaration, a new store. 

Value-store pairs are needed because evaluating an expression produces a value and, 
in the case of a command, a new store. 

(define (control-loop env store) 

; return errors here 
(call-with-current-continuation receiver) 

(let «phrase (get-phrase») 
(cond 

«quit? phrase) 'bye) 

«definition? phrase) 
(let* «envl.storel 

(resolve phrase env store» 
(envl (car envl.storel» 



(store1 (cdr env1.store1») 
(writeln 'done) 
(control-loop env1 store1») 

«expression? phrase) 
(let* «val.store1 

(else 

(evaluate phrase env store» 
(val (car val.store1» 
(store1 (cdr val.store1») 

(writeln val) 
(control-loop env store1») 

8.4. Beta 313 

(writeln "unrecognized phrase: " phrase) 
(control-loop env store»») 

Starting the control loop requires an initial environment and an initial store: 

(define mem-cap 1024) ; 1 Kb memory, for now 

(define (start-beta) 
(writeln "type q to quit") 
(control-loop global-env (make-store mem-cap») 

Of course. Beta needs its own prompt: 

(define prompt "Beta> ") 

8.4.3. The Beta Resolver 

Like Alpha and Scheme. the format of a Beta definition is: 

DEFINITION::= (define NAME EXPRESSION) 

After determining the name inside its definition input (de!) isn't a reserved word. the 
Beta definition resolver calls evaluate (defined soon) to compute the value-store pair 
produced by exp, the expression inside def: 

(let* 
«val.store1 (evaluate exp env store name» ... ) 

If val is a procedure (Le., if exp was a lambda expression), no further modification of 
store 1 is needed. A constant binding between name and val is installed in env to produce 
a new environment, which is paired with store 1 and returned as the result of resolve: 

(let «new-env (install-binding name val env») 
(cons new-env store1» 



314 8. Expressions as Values 

If val isn't a procedure, then we may conclude that def is a variable declaration. In this 
case memory in store! will have to be allocated to store val. We assume the implementa
tion of stores given at the end of the last chapter: 

(let* 
( (ref. store2 (alloc -.ref I store! env val» ... ) 

Allocating memory returns a reference-store pair. We use ref to write val to memory (this 
produces a new store), then bind name to ref in a new environment. The new environ
ment is paired with the new store and returned as the result of resolve: 

(let* 
(new-store (write-ref! store2 ref val» 
(new-env (install-binding name ref env») 

(cons new-env new-store»»» 

Here's the complete defInition of resolve: 

(define (resolve def env store) 

(define name (def-name def» 
(define exp (def-exp def» 

(if (reserved? name) 
(error "can't redefine a reserved word" 

resolve 
name) 

(let* 
«val.store! (evaluate exp env store name» 
(val (car val.storel» 
(storel (cdr val.storel») 

(if (procedure? val) 
(let 

( (new-env 
(install-binding name val env») 

(cons new-env storel» 
(let* 

«ref.store2 
(alloc-ref! storel env val» 

(ref (car ref.store2» 
(store2 (cdr ref.store2» 
(new-store 

(write-ref! store2 ref val» 
(new-env 

(install-binding name ref env») 
(cons new-env new-store»»» 



8.4. Beta 315 

8.4.4. The Beta Evaluator 

The only change in the Beta evaluator is that each specialized evaluator is passed an extra 
parameter representing the current store: 

(define (evaluate exp env store . options) 

(define name 
(if (null? options) 'anonymous (car options») 

(cond «literal? exp) (eval-lit exp env store» 
«name? exp) (eval-name exp env store» 
«structure? exp) 

(eval-structure exp env store name» 
«application? exp) 

(eval-apply exp env store» 
(else (error "unrecognized expression" 

evaluate 
exp) » ) 

Evaluating Literals and Names 

Evaluating literals requires one adjustment to its Alpha counterpart; we must remember 
to return value-store pairs instead of values. 

(define (eval-lit lit env store) 
(if (quoted? lit) 

(cons (rem-quote lit) store) 
(cons lit store») 

Evaluating names also requires the return of a value-store pair. Also, references are 
automatically dereferenced. This means that when a reference is encountered, eval-name 
returns the R-value (i.e., the stored value) rather than the L-value (i.e., the reference 
bound to name): 

(define (eval-name name env store) 
(define val (search-env name env» 
(cond «promise? val) (eval-promise val env store» 

«reference? val) 
(cons (read-ref store val) store» 

(else (cons val store»» 

Evaluating Structures 

Aside from four extra cases representing the four new structures, and aside from the ad
ditional store parameters, Beta's version of eval-structure is not significantly different 
from Alpha's version: 



316 8. Expressions as Values 

(define (eval-structure exp env store name) 
(let «proc (operator exp») 

(case proc 
«lambda) (eval-lambda exp env store name» 
«if) (eval-if exp env store» 
«and) (eval-and exp env store» 
«or) (eval-or exp env store» 
«begin) (eval-begin exp env store» 
«set! set-car! set-cdr!) 

(execute exp env store» 
(else (error "unrecognized structure" 

eval-structure 
proc»») 

Executing Commands 

Like all Beta expressions, Beta commands (set!, set-car!, and set-cdr!) return value-store 
pairs. The difference is that for commands, the value component of this pair is uninter
esting: 

(define command-return-value if) ; for now 

but the store component contains an updated variable. For pure expressions (i.e., expres
sions that aren't commands), the opposite is true. The value component is new and inter
esting, but the store component is unchanged. 

Recall the format of a Beta command is: 

CMMD ::= (SET NAME EXPRESSION) 
SET ::= set! I set-car! I set-cdr! 

Execute first extracts the name and expression (exp) from its command input, then recur
sively applies evaluate to exp, producing a value-store pair: 

(define val.storel (evaluate exp env store» 

Next, the current environment is searched for the reference bound to name: 

(define ref (search-env name env» 

If ref isn't a reference (e.g. if it's a procedure), an error is thrown; otherwise val is writ
ten to store at either ref, (car ref), or (cdr ref) depending on if the operator of the input 
command is set!, set-car!, or set-cdr!. The write produces a new store. The new store is 
paired with the uninteresting command-retum-value and returned as the value of execute: 

(define (execute cmmd env store) 

(define name (cadr cmmd» 
(define exp (caddr cmmd» 



(define val.storel (evaluate exp env store» 
(define val (car val.storel» 
(define storel (cdr val.storel» 

(define ref (search-env name env}) 

(if (reference? ref) 
(let «refl (case (operator cmmd) 

«set-car!) (car ref» 
«set-cdr!) (cdr ref» 
(else ref») i = set! 

(store2 
(write-ref! storel refl val») 

(cons command-return-value store2» 
(error "L-value must be a reference" 

execute 
name» ) 

Conditional Evaluation 

8.4. Beta 317 

We only need to add value-store pairs to Alpha's conditional evaluation algorithm to 
produce the Beta version: 

(define (eval-if exp -env store) 

(define val.storel 
(evaluate (condition exp) env store» 

(define val (car val.store!» 
(define storel (cdr val.storel) 

(if val 
(evaluate (consequent exp) env store!) 
(evaluate (alternative exp) env storel}» 

Short Circuit Evaluation 

Short circuit evaluation in Beta is nearly the same as short circuit evaluation in Alpha. 
The only adjustment is coping with and returning value-store pairs. 

(define (eval-and exp env store) 

(define (tail-eval result. store exps) 
(let «store (cdr result.store}) 

(result (car result.store)}} 
(if (or (not result) (Dull? exps)} 

result. store 



318 8. Expressions as Values 

(tail-eval 
(evaluate (car exps) env store) 
(cdr exps»») 

(tail-eval (cons it store) (operands exp») 

(define (eval-or exp env store) 

(define (tail-eval result.store exps) 
(let «store (cdr result.store» 

(result (car result.store») 
(if (or result (null? exps» 

result. store 
(tail-eval 

(evaluate (car exps) env store) 
(cdr exps»») 

(tail-eval (cons if store) (operands exp») 

Notice that the internal tail-eval procedures tail-recursively call themselves with the 
value-store pair produced by evaluating the next operand in the operands list of the and
expression or or-expression. Thus, any changes to the store made by command operands 
will be propagated to future operands. 

Sequential Evaluation 

Evaluating a sequence of expressions contains an idea similar to the one just mentioned. 
We must propagate any modifications in the store to subsequent expressions. Also, only 
the last value-store pair in the sequence is returned: 

(define (eval-begin begin-exp env store) 
(define vals.storel 

(eval-seq (cdr begin-exp) env store» 
(define vals (car vals.storel» ; vals is a list 
(define storel (cdr vals.storel» 
(cons (last vals) storel» 

All of the real work is done by eval-seq. We could have defined it as an internal proce
dure, but it turns out to have applications in other parts of the Beta evaluator. Unlike 
other Beta evaluators, eval-seq returns a list-store pair rather than a value-store pair. The 
list represents the list of values of each expression in the sequence, while the store repre
sents the last store computed: 

(define (eval-seq exps env store) 

(define (tail-eval vals exps store) 
(if (null? exps) 

(cons vals store) 



8.4. Beta 319 

(let* «val.storel 
(evaluate (car exps) env store» 

(val (car val.storel» 
(storel (cdr val.storel») 

(tail-eval 
(cons-last val vals) 
(cdr exps) 
storel»» 

(tail-eval I () exps store» 

Evaluating Lambda 

Like Alpha procedures, Beta procedures are represented by special Scheme procedures 
(meta-proc). These procedures are nearly identical to their Alpha counterparts except for 
the additional parameter representing the calling store. This will be provided when the 
procedure is called. 

(define (eval-lambda lambda-exp env store name) 
(define params (parameters lambda-exp» 
(define exp (body lambda-exp» 
i for dynamic scoping also pass call-env 
(define (meta-proc call-env call-store . args) 

(define temp-frame (make-fra~e params args» 
(define base-env 

(if static-scope-enabled env call-env» 
(define temp-env 

(cons 
temp-frame 
(install-binding name meta-proc base-env») 

(evaluate exp temp-env call-store» 
(cons meta-proc store» 

Evaluating Applications 

The operands of a Beta application could involve commands that update the store. Natu
rally, as each operand is evaluated, the updated store must be propagated to the next op
erand. This is done using the eval-seq procedure defined earlier. To implement lazy 
evaluation, delay-seq is applied to the operands: 

(define (eval-apply app env store) 
(define proc.storel 

(evaluate (operator app) env store» 
(define proc (car proc.storel» 
(define storel (cdr proc.storel» 
(define args (operands app» 
(if (or (imported? proc) eager-enabled) 



320 8. Expressions as Values 

(let* 
«inputs.store2 (eval-seq args env storel» 
(inputs (car inputs.store2» 
(store2 (cdr inputs.store2») 

(if (imported? proc) 
(cons (apply proc inputs) store2) 
(apply proc 

(cons env (cons store2 inputs»») 
(let* «inputs (delay-seq args env storel») 

(apply proc 
(cons env (cons storel inputs»»» 

Delay Sequence 

Like eval-seq, delay-seq uses a tail-recursive internal procedure, tail-delay, to traverse its 
list of inputs, delaying each entry: 

(define (delay-seq exps env store) 
(define (tail-delay promises exps store) ... ) 
(tail-delay '() exps store» 

The tail-delay procedure builds a list of promises from a list of expressions. When the 
expression list is emptied, the corresponding list of promises is returned. 

(define (tail-delay promises exps store) 
(if (null? exps) 

promises 
(let* 

«promise (make-promise (car exps) env») 
(tail-delay 
(cons-last promise promises) 
(cdr exps) 
store»» 

where cons-last was defined in Chapter 2: 

(define (cons-last val vals) (append vals (list val» 

Forcing Promises 

Evaluating a Beta promise is the same as evaluating an Alpha promise except we must 
remember to pass the additional store argument to evaluate: 

(define (eval-promise promise env store) 
(if call-by-text 

(evaluate (promise-exp promise) env store) 
(evaluate (promise-exp promise) 

(promise-env promise) 
store» ) 



Appendices 

Appendix 8.1. Lambda 

We have worked in several fragments of Scheme: 

IS = imperative Scheme 
FS = functional Scheme 
AS = applicative Scheme 

= IEEEI ANSI Scheme 
= IS - commands 
= FS - structures 

Appendices 321 

The surprising expressiveness of these fragments leads us to wonder about the nature of 
Scheme without any redundant features: 

NS = necessary Scheme = IS - all redundant features 

In some of the problems at the ends of Chapters 2 through 6 we saw that many structures, 
primitive procedures, and primitive data types could be implemented in terms of a few 
basic elements: apply, lambda, #t, M, if, cons, car, cdr, null?, pair?, and O. 

In this appendix we formalize necessary Scheme as a language called Lambda: 

NS=Lambda 

Lambda is based on a language called Lambda calculus developed by Alonzo Church, 
Haskell Curry, and others in the 1930s, before electronic computers were invented. Years 
later, Lambda calculus served as a model for John McCarthy when he created LISP. 

The remarkable thing about Lambda is the absence of any sort of data other than pro
cedures: 

VALUE ::= PROCEDURE 

(This shouldn't be too surprising because at some level, the only sort of data manipulated 
by modem computers are bits.) 

Although it can be shown that definitions are redundant, we will allow them in 
Lambda along with expressions: 

PHRASE::= EXPRESSION I DEFINITION 
DEFINITION ::= (define NAME EXPRESSION) 

Names, too, are redundant, but we will allow them along with the only two essential 
features of Lambda, applications and lambda expressions: 

EXPRESSION ::= NAME I APPLICATION I LAMBDA 

We could restrict ourselves exclusively to unary procedures, but we will allow proce
dures with mUltiple parameters: 

LAMBDA::= (lambda (PARAMETER ... ) EXPRESSION) 
APPLICATION::= (EXPRESSION EXPRESSION ... ) 



322 8. Expressions as Values 

Adjustments to the Alpha Interpreter 

With a few adjustments, we can tum the Alpha interpreter into a Lambda interpreter. Ob
viously, there will be no imported procedures, so the control loop will be started with an 
empty environment: 

(define (start-lambda) 
(writeln "Type q to quit") 
(control-loop 'C»~) i empty environment! 

Of course, the prompt needs to be changed: 

(define prompt "Lambda> ") 

Lambda is the only structure recognized: 

(define structures I (lambda» 

Because we only get to keep one evaluation algorithm, it must be lazy evaluation: 

(define eager-enabled #f) 

Lambda has no literals: 

(define (literal? exp) #f) 

Because Lambda values are always procedures and because procedures are unprintable in 
Scheme, it's conv~nient to modify the control loop so that when possible, it displays the 
names of procedures rather than the procedure objects themselves: 

(define (control-loop env) 

(let ( ... ) 
(cond 

«expression? phrase) 
(let «val (evaluate phrase env») 

(writeln (val->name val env» 
(control-loop env») 

... ) ) ) 

Given a procedure value returned by evaluate, the val->name procedure inverts each 
frame in the current environment and then searches it for the name bound to this value. 

(define (val->name val env) 
(if ( null? env) 

val i give up and return the original value 
(let* «frame (car env» 

(iframe (invert frame» 
(name (get val iframe») 

(if (eqv? name undefined-symbol) 



(val->name val (cdr env» 
name»» 

The definition of invert is left as an exercise. 

Lambda Calculus Definitions 

Appendices 323 

What can be accomplished in Lambda? Obviously, we need to represent data using pro
cedures, but unlike object-oriented programming introduced in Chapter 4, which also 
represented data as procedures, the data we need to represent are basic items such as 
numbers, Booleans, and pairs. 

Booleans 

Our choice of representations for true and false may at first seem odd, but they are cru
cial to all else that follows. True is the procedure that merely returns the first of its two 
inputs, while false is the procedure that returns the second of its two inputs: 

(define true (lambda (X y) x» 
(define false (lambda (x y) y» 

Assuming the condition of an if-expression will be either true or false, we can simply ap
ply it to the consequent and alternative. If the condition is false, it returns its second in
put, the alternative; if it's true, it returns its frrst input, the consequent: 

(define if 
(lambda (x y z) (x y z») 

Remember, because we are using lazy evaluation, we don't have to worry about eager 
evaluation needlessly evaluating the alternative or consequent. Lazy evaluation also 
makes short circuit evaluation unnecessary: 

(define and 
(lambda (X y) 

(if x y false») 

(define or 
(lambda (x y) 

(if x true y») 

(define not 
(lambda (x) 

(if x false true») 

Pairs 

We can represent the pair (x . y) as a procedure that given an input z, applies it to x and y: 

(lambda (z) (z x y» i = (x . y) 



324 8. Expressions as Values 

By inputting true or false to this procedure we can extract x and y. 

(define cons 
(lambda (x y) 

(lambda (z) (z x y»» 

(define car 
(lambda (pair) (pair true») 

(define cdr 
(lambda (pair) (pair false») 

Natural Numbers 

We can use pairs to represent natural numbers. The car of a natural is interpreted as a flag 
indicating if the number is zero or not. If not, the cdr represents the number's predeces
sor: 

NATURAL ::= (true . true) I (false . NATURAL) 

The pair (true. true) represents zero: 

(define nO (cons true true» 

We use car to test for zero: 

(define zero? 
( lambda ( z ) (car z») 

Adding one to a number just involves consing false onto it: 

(define add1 
(lambda (num) 

(cons false num») 

Thus, 

one - (false. zero) - (false. (true . true» 
two - (false. one) 

- (false. (false. (true. true))) 
three - (false. two) 

- (false. (false. (false. (true. true»» 
etc. 

In essence, the cardinality of a number is the number of nested false flags. Here are defi
nitions of the first ten nonzero naturals: 

(define n1 (add1 nO}) 
(define n2 (add1 n1» 
(define n3 (add1 n2» 
(define n4 (add1 n3» 



Appendices 325 

(define n5 (add! n4» 
(define n6 (add! n5» 
(define n7 (add! n6» 
(define n8 (add! n7» 
(define n9 (add! n8» 
(define n!O (add! n9» 

Subtracting one from a number merely involves using cdr to extract its predecessor. Our 
convention is that the predecessor of zero is itself. (There are no negative natural num
bers.) 

(define sub! 
(!ambda (num) 

(if (zero? num) num (cdr num»» 

Using addl, sub!, and recursion, we can begin to defme addition, multiplication, less
than, equality, and all the other basic arithmetic procedures. Here are two examples: 

(define + 
(lambda (x y) 

(if (zero? x) y (+ (subl x) (add! y»») 

(define .. 
(lambda (x y) 

(if (and (zero? x) (zero? y» 
true 
(if (or (zero? x) (zero? y» 

false 
(- (sub! x) (sub! y»»» 

Mter loading these defmitions into the Lambda interpreter's prompt. we can conduct 
some simple tests: 

Lambda> (subl n8) 
n7 
Lambda> (cdr (cons n9 n3» 
n3 
Lambda> (+ n3 n2) 
t[procedure tx171C8E] 

Although the result of (+ n3 n2) is an unprintable procedure physically distinct from n5, 
it is mathematically equivalent to n5: 

Lambda> (= n5 (+ n3 n2» 
true 

Hints for representing integers, rationals, reals, complex numbers, lists, characters, and 
strings are given in the problem section. 



326 8. Expressions as Values 

Problems 

Problem 8.1. 

The while-structure introduced in this chapter is an example of a test-at-top iteration be
cause it evaluates its condition before it evaluates its body. Thus, if the condition is ini
tially false, the body will never be evaluated. 

Languages like C and Pascal also provide test-at-bottom structures that first evaluate 
their bodies, and then their conditions. In Pascal the iteration terminates when the condi
tion becomes true (i.e., unfalse). 

Add a test-at-bottom structure to Scheme. The syntax is: 

UNTIL;;= (until EXPRESSION EXPRESSION ... ) 

The first expression is the condition; the remaining expressions are the body. The expres
sions in the body are evaluated sequentially. Next, the condition is evaluated. If the con
dition is false, then the process repeats, otherwise #t is returned. 

Use your until-structure to define an imperative version of the triangle procedure 
specified in Chapter 3. 

Problem 8.2. 

Recall the definitions of lazy-cube and lazy-small? given in Appendix 6.1. Copying the 
technique used earlier to define switch, define macro expanders that expand calls to 
small? and cube into calls to lazy-small? and lazy-cube, respectively. Of course your 
macro expander should automatically delay operands. 

Problem 8.3. 

The definitions of cube-expander and small?-expander given earlier were quite similar. It 
should be possible to write a single procedure called lazy-expander that expands expres
sions of the form (proc ABC ... ) into expressions of the form (lazy-proc (delay A) 
(delay B) (delay C) ... ). Thus, when a programmer wants to create a lazy procedure, foo, 
he defines the corresponding procedure lazy-foo, and then types: 

(define-syntax foo lazy-expander) 

(It doesn't matter if the same expander is bound to multiple macro names.) Implement 
lazy expander and test it. 

Problem 8.4. 

Implement lazy procedures that prove: 

1. Operands aren' t evaluated if they aren't needed. 
2. Operands are only evaluated once, even if they are needed several times. 



Problems 327 

Problem 8.5. 

Assume your implementation of Scheme didn't provide force and delay. Implement your 
own versions, but call them thaw and freeze so they won't conflict with force and delay. 
Hint (freeze exp) should expand into a let-expression similar to the one involving (exp 
10(0) shown earlier. 

Problem 8.6. 

Add a load-defs command to the Lambda control loop. When a user types (load-defs 
FILE), the Lambda definitions in File are automatically resolved. 

Problem 8.7. 

A Lambda integer is a pair consisting of a sign and a natural number: 

INTEGER ::= (SIGN. NATURAL) 

We use true to represent positive and false to represent negative. 
Find Lambda implementations of int+ and int-. 

Problem 8.8. 

A Lambda real is a pair consisting of an integer base and a natural number exponent: 

REAL ::= (INTEGER. NATURAL) 

The interpretation of (a • b) is a * to·b• 

Find Lambda implementations of real+ and real*. 

Problem 8.9. 

Add let and let* structures to Beta. 

Problem 8.10. 

Beta lets users choose between using the defining environment or the calling environ
ment when evaluating applications (static-scope-enabled). What arguments would you 
raise against the idea of giving users the same choice for stores? 

Problem 8.11. 

Implement a macro facility for Alpha. In addition to the environment, the control loop 
will need a parameter representing a table of macro expanders and their names. 



328 8. Expressions as Values 

Problem 8.12. 

Add a while structure to Beta similar to the one implemented using macros earlier in the 
chapter. Of course, Beta doesn't have macros, so it will have to be a new Beta structure. 
Do not use a do-loop to implement eval-while. Instead, use tail recursion. 

Problem 8.13. 

Add a cond-structure to Beta. 

Problem 8.14. 

A file system is an association list of the form: 

«FILE. SSTORE) ... ) 

where FILE is the string name of a file and SSTORE is a sequential store (see Chapter 7). 
Add a file system parameter to the Beta control loop. The file system should allow users 
to open, close, read, and write files. 

Problem 8.15. Static Type Checking 

Enhance Alpha's resolve procedure so that it performs static type checking: 

(define (resolve def env) 

(let* «exp (def-exp def» 
(type (get-type exp env») 

(if (eqv? type 'error-type) 
(error "type error" resolve exp) 
(let «val (evaluate exp env name») 

(install-binding 
name val type env»»» 

The get-type procedure expects an Alpha expression, exp, and an environment, env, as 
input and returns a value in the TYPE domain, where 

TYPE::= SIMPLE-TYPE I COMPOSITE-TYPE 
SIMPLE-TYPE ::= error-type I number I boole I nil-type 
COMPOSITE-TYPE ::= 

(pair TYPE TYPE) I (proc TYPE ... TYPE) 

The error-type is a token that's returned if the type of exp is inconsistent, for example, (+ 
"42" 3). The nil-type is returned if exp is the literal, '( ). If A and B are types, the type 
(pair A B) is returned if exp produces a pair of the form (x . y) where x is of type A and y 

is of type B. The type (proc ABC) is returned if exp produces a procedure that expects 
two inputs of types A and B, respectively, and returns a value of type C. 



Problems 329 

You must also modify the environment and environment operations so that frames are 
lists of triples of the form: (SYMBOL VALUE TYPE). The types of imported procedures 
must be hand-computed and installed in the global environment at start-up time. 

Your implementation of get-type may not call evaluate. Instead, you must infer the 
type of exp by recursively computing the types of all subexpressions and then combining 
them based on exp's operator. 

Problem 8.16. 

Unfortunately, the preceeding type system only types monomorphic procedures. What 
happens when you try to define a polymorphic procedure? 

Problem 8.17. 

Suppose you didn't know if static scoping was enabled in Beta. How could you find out 
without looking at the flag that controls it? 

Problem 8.18. 

Suppose you didn't know if pass-by-text was enabled or disabled in Alpha. Without 
looking at the flag that controls it, how could you tell? 

Problem 8.19. Gamma 

Beta lacked one crucial feature of imperative Scheme: continuations. Gamma is similar 
to Beta with continuations, but unlike Beta, Gamma only allows unary procedures. (This 
is no problem because multiparameter procedures can be simulated by unary procedures 
by Currying.) 

A Gamma continuation expects a value-store pair as an input and returns a Gamma 
value. 

The current continuation, cont, is an additional parameter of the Gamma evaluator: 

(define (evaluate exp env store cant. name) ... ) 

The initial continuation supplied to evaluate by the control loop is the identity procedure: 

(define (init-cont x) x) 

If exp is a literal, evaluate returns (cont (cons exp store». If exp is a symbol, then evalu
ate returns (cont (cons value store», where value is the value gotten by searching the en
vironment. Evaluating an application of the form (proc arg) causes a recursive can to 
evaluate: 

(evaluate arg env store new-cant) 



330 8. Expressions as Values 

where new-cont is a new continuation formed from the current continuation, cont: 

(define (new-cant exp.store) 
(define exp (car exp.store» 
(define store (cdr exp.store» 
(cant (cons (proc exp) store» 

Finally, Gamma features call-with-current-continuation. Like its Scheme counterpart, 
when evaluate encounters expressions of the form: 

(call-with-current-continuation receiver) 

it returns (receiver cont). 
Implement Gamma. 



References 

Abelson, Harold, and Gerald J. Sussman, with Julie Sussman. 1985. Structure and Inter
pretation of Computer Programs. Cambridge, MA: MIT Press and New York, NY: 
McGraw-Hill Book Co. 

Adams, Douglas. 1979. The Hitch Hiker's Guide to the Galaxy. London, UK: Pan Books. 
Alexander, Christopher. 1979. The Timeless Way of Building. London, UK: Oxford Uni

versity Press. 
Boole, George. 1854. The Laws of ThOught. New York, NY: Dover Publications, Inc. 
Capra, Fritjof. 1982. The Turning Point: Science, Society, and the Rising Culture. New 

York, NY: Bantam Books, Inc. 
Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes. 1992. Essentials of 

Programming Languages. Cambridge, MA: MIT Press and New York, NY: 
McGraw-Hill Book Co. 

Gibson, William. 1986. Neuromancer. New York, NY: Ace Books. 
Hume, David. 1748. An Inquiry Concerning Human Understanding. New York, NY: The 

Bobbs-Merrill Co. 
Kuhn, Thomas S. 1962. The Structure of Scientific Revolutions. Chicago, ll.: The Uni-

versity of Chicago Press. 
Nietzsche, Friedrich. 1967. The Will to Power. New York, NY: Vintage Books. 
Rucker, Rudy. 1995. The Hacker and the Ants. New Yory. NY: Avon Books. 
Schmidt, David A. 1986. Denotational Semantics, A Methodology for Language Devel

opment. Dubuque, IA: Wm. C. Brown Publishers. 
Sp~ger, oGeorge, and Daniel P. Friedman. 1989. Scheme and the Art of Programming. 

Cambridge, MA: MIT Press and New York, NY: McGraw-Hill Book Co. 
Watt, David A. 1990. Programming Language Concepts and Paradigms. London, UK: 

Prentice-Hall. 
Watt, David A. 1991. Programming Language Syntax and Semantics. London, UK: 

Prentice-Hall. 



Index 

abstract data type, 41, 132, 175, 229, 
299 

abstraction, 36 
abstraction principle, 40, 41, 44, 135 
accum, 243 
accumulator, 165,224,226 
ack, 194 
Ackermann, 194 
Ada,267 
address, 257 
adopt, 229 
ADT, 41, 45, 132, 141, 146, 147, 175, 

229 
Alexander, 20 
Algol60, I 
algorithm,S, 8, 9, II 
aliases, 263 
alist, 45, 213 
all?,224 
Alpha, 298, 312,322 
Alpha controlloop, 301 
amplifaer, 219, 222, 224 
analog, 176 
analog computers, 177 
analog system, 191 
and-structure, 79, 81 
angle, 143 
ANSIIIEEE Scheme, 158 
APL,1 
append,63 
application, 13,36 
application domains, 147 
applicative Scheme, 3, 36, 72 
apply, 51 
arguments, 31 
Aristotle, 4 

arity,69 
arrows, 260 
artificial intelligence, I 
ASCll code, 7 
assignment command, 107, 153 
assignment structures, 16 
assoc, SO, 214 
association, 45,149,303 
association list, 45, 128,213,303 
associative stores, 257, 286, 287 
assq,214 
assv, 214 
attenuation, 219 
attractor, 171, 197 
attributes, 148 

Base Case assumption, 92 
base class, 149 
base object, 152 
BASIC, 1 
beginO-structure, 98 
begin-structure, 98 
best fit, 290 
Beta, 312 
binary,6 
binary procedures, 69, 166 
binding, 12, 18, 126, 156,303 
block structure, 16, 171 
Boole, 7 
box and pointer diagram, 260 
branch,230 
breadth first search, 292 
buckets, 287 
but-left, 230 
butterfly effect, 196 



334 Index 

C,6, 139,171,240,267,326 
C++, 145,267 
calculus, 181 
call-by-name, 311 
call-by-text, 311 
calling environment, 131 
call-with-current-continuation, 107 
Capra, 170 
car, 43 
CARD ADT, 132, 135 
case insensitive, 57 
case-structure, 81, 85 
cast, 143 
casting, 143 
cdr, 43 
cell, 219, 257, 259 
channel, 219 
chaos, 196, 197 
char-?,56 
characters, 6 
children, 229 
Church, 321 
class, 148, 152 
CLAUSE, 84 
client, 148 
client-server model, 148 
close-input-port, 283 
close-output-port, 283 
closure, 131 
COBOL, 1 
coerce, 36, 143, 144,243 
collateral block, 156, 157, 158, 166 
combinator, 166 
combiner, 225 
comma operator, 294 
command, 261, 263 
command-oriented, 267 
commands, 267 
common LISP, 2 
communication networks, 219 
compacting, 290 
compiled, 130 
completeness principle, 138 
complex, 6 
complex numbers, 141 

complex*,I44 
complex?, 143 
complex+,I44 
complex .. ?, 145 
complex->string,l44 
COMPOSITE, 209, 221 
composite value, 5 
composite variable, 259 
compound interest, 177 
computation, 89, 185,215,231,232, 

236 
conditional evaluation, 81, 85, 88, 306, 

317 
conditional expression, 81 
conditions, 81 
cond-structure, 81, 84, 328 
congruent, 58 
connectives, 7 
cons-stream, 241, 245, 296 
constructing alists, 218 
constructor, 41, 45, 132, 135, 151, 152, 

174,175,267 
continuation, 3, 11, 105, 106, 153,301, 

329 
continuous dynamical system, 176, 177 
continuous store, 281 
control loop, 17, 18, 173, 174,301, 

302,312 
control structure, 16,79, 171,267 
control-loop, 171, 174 
convergent orbit, 171 
convergent?, 195 
count-down,l72 
counter, 165, 178 
CPU, 17 
current-input-port, 99 
current-output-port, 99 
curried procedure, 166 
Curry, 166,321 
cycle, 171 

data, 108 
data abstraction, 135 
data driven, 4, 165 
data-driven programming, 145, 151 



data-driven programming paradigm, 
145 

data flow diagram, 15 
data flow structure, 15 
debug phase, 71 
debuggers, 71 
debugging, 108 
decay, 219 
decimal,6 
declaration, 156 
declaration bindings, 127, 158 
decoding, 219 
deep recursion, 234 
Deep Thought, 5 
defensive programming, 104 
defme, 265 
defme-syntax, 295, 296, 297 
defming environment, 131 
definition, 18 
delay, 237,239,240,241,295,327 
delayed evaluation, 118 
delaying environment, 239, 311 
delegate, 151, 152 
deposit!, 268, 269, 272 
depth,230,231 
depth first search, 292 
derived class, 149 
derived result, 102 
design domain, 147 
deviation, 125 
devil's pitchfork, 200 
diagnostics, 110 
diagonalization procedure, 195 
diagonalizing, 194 
differential equation, 191 
digital, 176 
digital clock, 175 
digital computers, 177 
digital system, 191 
discrete dynamical system, 177 
dispatch procedure, 146 
dispatcher, 151 
display, 283 
display-method, 152, 154, 155 
distortion, 219 

distribution, 124 
divergent orbit, 171 
divisibility, 57 

Index 335 

do-loop, 171, 172, 174, 187,242,294 
domain,S, 20, 139 
domain theory, 22 
DOS,9 
dot produc, 137 
dynamic scope rule, 131, 160,307 
dynamic type checking, 109, 140 
dynamical system, 177, 180, 183, 196, 

268 

eager evaluation, 18, 78, 79, 126, 127, 
128,129,296,309 

EBNF, 22, 297 
edit phase, 71 
edit-test-debug cycle, 71 
efficiency, 186, 187 
efficiency measures, 186 
Einstein, 196 
elementary,210 
elementary solutions, 190 
employee class, 152 
empty tree, 229 
empty-stream?, 241, 296 
encapsulation, 147 
encode, 219 
environment, 127, 173,303 
environment diagram, 128, 130, 145 
environment model, 126 
Environment Obsolesence Problem. 

308 
environments, 126 
environment-store context, 258, 259, 

312 
eq?, 47, 48, 214 
eq?, equal?, eqv?, 47 
equal?, 47, 234 
eqv?,48,214 
error, 302 
error descriptor, 120 
escape character, 9 
essence, 286 
essential features, 3 



336 Index 

eval,17 
eval-and, 306 
eval-apply, 306 
eval-Iambda, 306 
eval-or, 306 
eval-structure, 305 
evaluate, 304, 312, 315 
evaluator, 17,31 
exp*, 194 
exponents, 61 
expression block, 156, 158, 159 
expression sequences, 97, 101 
expression-oriented, 2, 267 
expressions, 11 
expressiveness, 3 
extent, 126 

fact procedure, 158 
fail, 214 
Fibonacci, 202, 254 
FIFO stores, 289 
file system, 328 
files, 281 
fdte~219,220,224,243 

final state, 170 
fmal? predicate, 171, 173 
fmt fit, 290 
fixed point combinator, 169 
fIXed points, 197, 198 
flatten, 232 
fluid mechanics, 196 
force, 239, 240, 241, 296, 311, 327 
forcing environment, 239, 311 
forks,260 
formal language theory, 22 
~R11t~, 1,267 
fractal, 199,200 
fragmentation, 290 
frame, 128, 129, 154, 172,219,303 
function, 40, 135 
functional paradigm, 4 
functional programming, 4, 267 
functional Scheme, 3, 4, 107,267,291, 

321 

Gamma, 329 
garbage, 266 
garbage collector, 266, 278 
gOO,60 
generators, 226 
get, 214 
get-type, 140 
global binding, 127 
global definitions, 121 
Global Environment, 12, 17, 19, 130, 

257,303 
global extent, 126 
global scope, 122, 127 
global store, 257, 260 
globals, 121 
Gofer, 239, 267 
~,236,241,245 

graphs,214 
growth rate, 186 
guards, 81 
guess-and-test, 180 

halting problem, 195 
hannonic motion, 62 
hash procedure, 287 
hash table, 287 
Haskell, 267 
head,241,296 
header,32 
heap,257 
Heisenberg, 196 
hexadecimal, 6 
hierarchy, 210 
bigher-order procedure, 3 
Holmes, 108 
Hurne, 91 
Hurne's fork, 91 
hyper-exponential, 192, 194 
hyper-exponential hierarchy, 191, 193 

lEEFJ~SI Scheme, 3 
i~sttucture,8I,82,83,84,88,97,300 

imag-part, 143 
imperative paradigm, 4 



imperative programming, 267 
imperative Scheme, 3,4,267,321 
implementation domain, 147 
imported procedures, 303 
improve, 180 
inexact numbers, 25 
inrmite stream, 244, 245 
infix notation, 14 
information hiding principle, 121, 135 
inheritance, 147, 149, 152 
inheritance hierarchy, 152 
initial state, 170, 171, 173 
input ports, 98 
input validation, 85 
installing associations, 218 
instance, 20, 148, 152 
INTEGER ADT, 164 
integers, 25 
interactive procedure, 178 
interactive system, 178 
interface, 41, 135 
Internet, 3 
interpreted, 2 
interpreters, 170 
irrational, 25, 255 
iteration, 171 
iterative, 210, 212, 223 
iterative evaluation, 171 

Lambda, 321, 322,327 
Lambda calculus, 321, 323 
lambda expressions, 31, 36, 306 
lambda lifting, 158 
lambda-structure, 300 
Laplace, 196 
lazy evaluation, 78, 126,237,238,309 
lazy procedures, 237, 239, 240, 295, 

326 
lazy-switch, 240 
lcm,6O 
left,230 
Leibniz, 293 
length, 212, 230 
let, 156, 157 
let expression, 157, 171,327 

let structure, 327 
1et*, 156, 157 
letrec, 156, 158 
L'Hopital's, 186 
lifetime, 126 
LIFO store, 288 
LISP, 1,2,321 
list, 10,210 
list? predicate, 213 
list->stream, 243 
list-ref, 43 
literacy principles, 34 
literal, 12, 16, 17, 305 
literals, 263, 299, 315 
local bindings, 127 

Index 337 

local definitions, 121 
local extent, 126, 127 
local scope, 122, 127, 171 
locality principle, 122 
locals, 121 
location, 257 
logarithms, 61 
logic errors, 108, 110 
logic gates, 7 
logistic function, 197 
Lorenz, 196, 197 
LTM,281 
L-value, 263,315 

macro,3,239,293,295,~ 

macro expander, 293, 297 
macro facility, 293 
magnitude, 143 
make-alist, 214 
make-card,133 
make-employee, 153 
make-parent, 229 
make-point, 136, 145 
make-polar, 142 
make-rectangular, 142 
make-secretary, 154 
make-time, 175 
manager, 155 
map, 51, 218, 222, 224, 2, 
map procedure, 222 



338 Index 

mark phase, 278, 279 nonnal order evaluation, 238 
mathematical induction, 91, 92, 93 nU[Dbercrunching, 1 
McCarthy, 1,321 
mean, 124, 125 0(g),186 
member, memv, memq, 65 object factory, 148 
memoization, 239, 240 object language, 4, 297 
message dispatcher, 145, 152 Objectoriented,4,174,289 
message passing, 146 object oriented programming, 147, 
messages, 219, 243 151,153 
meta language, 4, 297 objects, 147, 148 
meta procedure, 174 octal,6 
meta procedures,S 1, 174 open-input-file, 282 
meta programming, 4, 9 open-output-file, 282 
metaphysics, 4 operand, 13,31,80 
method invocation, 148 operating systems, 170 
methods, 148 operator, 13,31 
Miranda, 267 optimizcrs, 170 
MIT,3 options parameter, 69 
modularity principle, 34 orbit, 171,250,251 
monomorphic,329 order, 186 
monomorphic equality predicates, 47 ordinal, 139 
monomorphic procedure, 47 or-structure, 79 
m-to-n,244 oscillating, 251 
mutable object, 268 oscillating orbit, 171 
mutable properties, 268, 286 outputports,98 

overloading, 3, 137, 138, 151, 160 
n-ary map, 223 
n-ary procedures, 69, 104 packets, 219 
native procedures, 303 pair,tO 
nats,245 palindrome,39 
natural?,90 paradigm,3,4,220,267 
NATURAL ADT, 164 paradox, 196 
Necessary Scheme, 3, 93, 321 parameter bindings, 127, 158 
nested lists, 228 parameterized expression, 31 
Newel,1 parameters, 31 
newline, 283 parent, 152, 154, 229 
Newton, 181, 196 Pascal,6, 139, 171,267,326 
Nietzsche, 7 pass-by-reference, 270 
nodes, 229 pass-by-value, 269 
noise, 219 patterns, 21 
noise?,220 peek-c:har, 284 
non mutable, 268 periodic, 25 I 
nonlocal, 121, 129, 131,239 Physical Symbol System Hypothesil 
nonmutable property, 268, 286 1,8 
nonstrictproccdures, 239 physically equivalence, 47 



physics, 191 
Pig Latin, 118 
pipelines, 39 
pixels, 200 
point, 136, 152 
point-,137 
POINT ADT, 136,145 
point*, 137 
point?,147 
point+, 136 
point-dist, 137 
polar coordinates, 142 
polar?,142 
polar -> rectangular, 143 
polymorphic equality predicates, 47 
polymorphic predicate, 49,80,81,90, 

124 
polymorphic procedure, 3, 47, 48, 161 
polymorphism, 139, 147. 150,329 
port, 11, 98, 281 
predicate, 33, 41, 55 
prime, 221 
Principle of Induction, 91 
problem solving, 180 
procedure, 9 
procedure block, 32, 156, 158 
processor, 17 
programming environment, 71 
promise, 3, 11,237,239,240,241, 

245,295,296,311 
prototypes, 298 
pseudonym, 133, 136 
put, 214 
put procedure, 304 
put-type, 141 

quasi quote, 294 
queues, 257, 289 

radix, 25 
ramified hierarchy, 230 
random, 135 
random access stores, 257 
range errors, 109 
rank,133 

rational, 6, 25, 255 
RATIONAL ADT, 162 
read,282 
read-char, 282 
REALADT,163 
real-part, 143 
receiver, 219, 224, 225 
recognizers, 49 
recognizing alists, 218 
record, 45, 214 

Index 339 

rectangular coordinates, 142 
rectangular?, 142 
rectangular->polar, 143 
recursion, 87 
recursive domains, 209, 210 
recursive expression blocks, 157, 158 
recursive procedure, 3, 191,210 
recursive reals, 255 
reference, 259, 260, 316 
rem, 214 
remainder, 58 
removing associations, 215 
rem-type, 141 
res.erved word, 303 
reserved-words, 301 
resolution, 126 
resolve, 301,304,308,312,313,314, 

328 
resolved, 157 
resolver, 308 
resolving, 156 
reuse mechanism, 149 
Revised Report, 3 
root, 228, 229 
rounding errors, 32 
Rucker, 108 
runtime errors, 108, 109 
R-value, 263, 315 

scalar*, 137 
Scheme, 2, 3 
Scheme home page, 3 
Scheme object system, 147 
scientific notation, 6, 26 
scope, 122, 156, 157, 158, 172 



340 Index 

scope error, 109 
scope rules, 129 
search-env, 305 
searching alists, 214 
secretary, 154 
selector, 41, 43, 133, 135, 175 
self, 145, 152, 154 
self application combinator, 169 
semantic prototyping, 4, 298 
semantics, 297 
send, 148, 152 
sequence, 11 
sequence-s~bUes,97 

sequential access store, 280 
sequential block, 157 
sequential evaluation, 318 
sequential stores, 257 
server, 148 
service invocation, 148 
session, 22 
set, 11 
setl, 107, 153,261,267 
set-carl,261 
set-cdrI,262 
set-password!, 272 
short circuit evaluation, 79, 80, 81, 

118,305,317 
side effect, 102, 261 
signal, 219, 224, 243 
signal processing, 4, 253 
signal processing paradigm, 219, 222 
Simon, I 
simple variable, 259 
simplicity. 3 
Smalltalk. 145 
software component, 148 
solve, 183 
some?,224 
SOS, 147, 148 
special fonns, 16 
Spack,108 
stable, 2 
stack, 257, 288 
standard deviation, 124 
state, 148, 170, 175 

state space, 170, 177, 180 
static, 219 
static and dynamic scope rules, 311 
static scope rule, 131, 160,239,307, 

308 
static type checking, 109, 118,328 
static-scope, 327 
stdin,99 
stdout, 99 
Steele, 2 
STM,281 
storable value, 257 
store, 257, 312 
strange attractor, 197 
s~,3, 11,241,242,243.296 
stream?,241 
stream->list, 243 
stream-ref, 242 
STRING,210 
string-?,56 
string->eomplex, 144 
string-fill!, 262 
string-ref, 43 
string-sett, 262 
struct, 45 
structurally equivalence, 47 
S~bUe, 18,40, 135 
s~bUe-function duality, 40 
S~s, 16,305 
stub,34 
subclass, 149, 152, 154. 155 
substitution model, 126, 127 
successor case assumption, 92 
suit, 133 
super class, 149 
Sussman, 2 
sweep phase, 278, 279 
switch, 240, 249 
symbol,17 
symbol pushing, I 
symbols, 7, 12 
syntax, 297 
syntax errors, 108 
system, 170, 173, 175, 177 
systems view, 170 



table. 49. 214 
tail. 241 
tail recursive. 188. 189.210.213.215. 

222.301.306.318 
test phase. 7 I 
test-at-bottom iteration. 326 
test-at-top iteration. 326 
text files. 281 
the-empty-stream. 241. 296 
the-empty-tree. 229 
top-down design. 34 
top-down method. 87 
trace. 89.90 
traces, 231 
tracing. 89 
transcript. 23 
transcript file. 23, 71 
transmitters. 219. 226 
tree flattening. 232 
tree recursion, 228, 230, 254 
tree removal. 234 
tree substitution, 233 
tree-accum, 255 
tree-filter. 255 
tree-map, 254 
trees, 228 
tree-sub, 233 
trial and error, 180 
triangle number, 87 
trigonometry,62 
truncated numbers, 32 
truncation,6,25 
two-cycle, 198 
type, 139, 141 
type error, 109 
type expression, 139 
type tag, 140 
type=?, 141 

unary procedures, 69 
unary-map. 224 
uncertainty principle, 196 

undecidable, 195 
unfold,210 
unquoted, 294 
unreferenced, 266 
unsafe-variance, 159 
until-structure, 326 
update. 171.250 

Index 341 

update procedure. 170. 173, 175, 177 

VALUE,5,lI 
values, 5, 270 
value-store, 312 
variable, 259, 261, 263, 267 
variance, 124, 125. 159 
variants, 137 
vector, 10, 210 
vector-fill!, 262 
vector-ref, 43, 136 
vector-set!,262 
versatility goal, 102 
virtual procedure, 150, 151 
volatile, 18 
volatile store, 281 

Web,3 
while structure. 294, 328 
while-body. 294 
while-condition, 294 
withdraw!, 268. 272 
wrapper, 133, 159 
write, 283 
write-char, 283 
writeln, 104 

xc, 136, 146 

yc, 136, 146 

zc, 136, 146 
zero?,55 
zip. 218, 249 


