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To my parents



Preface

The current domination of computing by C and C++ is so complete that publishing a
book on Scheme almost seems subversive. My heresy goes beyond language. Informed
by the anticorporate intellectual values of my computer gurus, I have come to possess the
unpopular notion that ideas are more important than technology, that principles like ab-
straction and modularity take us further than gigabytes and megahertz. This is really a
book about those ideas disguised as a book about Scheme. Scheme was selected partly
for historical reasons, but mostly because it allows us to encounter ideas without first
mastering memory management, compilers, /O, and advanced idioms. I want to con-
gratulate my co-conspirators at Springer for their courage in joining me.

For the last five years I have successfully used drafts of this book as a text in a junior-
level declarative programming course taught at San Jose State University. The course is
modeled after Scheme-based freshman-level courses taught at other universities, hence
prerequisites are minimal. Motivated students with basic computer and mathematical lit-
eracy will be able to read this book.

By confining lectures to the core sections of each chapter and a few critical appendi-
ces, leaving the other appendices and problem sections as homework assignments, I typi-
cally manage to cover all but the last chapter in a semester. Occasionally students read
and solve problems from the last chapter as special projects. Students who finish the
course know Scheme. They have been introduced to important principles, concepts,

paradigms, and techniques, and they have a functional perspective they confidently carry
into subsequent courses.

Jon Pearce
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Introduction

Soon after the first commercial computers appeared in the early 1950s people began
seeing analogies between computers and brains, and they wondered if computers could
exhibit human-like intelligent behavior. Could computers be programmed to reason,
learn, and plan? Could computers solve problems they weren’t explicitly programmed to
solve?

Anthony Newel and Herbert Simon attempted to answer this question by studying the
techniques people use to solve problems, and then incorporated these techniques into
general problem-solving programs. They discovered humans are “symbol pushers.” Peo-
ple tend to solve problems by producing and manipulating symbolic expressions repre-
senting pieces of solutions. They formalized this finding as the Physical Symbol System
Hypothesis:

A physical symbol system (i.e., any device or agent that produces an evolving collec-
tion of symbols and expressions) has the necessary and sufficient means for general
intelligent action.

Unfortunately, computers are “number crunchers.” They solve problems by translating
them into massive arithmetic problems, and then grind them down by performing mil-
lions of blindingly fast computations. Theoretically, the difference between “number
crunching” and “symbol pushing” is more a matter of style than substance, but in prac-
tice translating a “symbol-pushing” procedure into a “number-crunching” procedure is
difficult, dirty, dull work. Even the appearance of the first high-level (i.e., machine-
independent) languages in the late 1950s and early 1960s—FORTRAN, COBOL, Al-
gol60, APL, and BASIC—didn’t help much because these languages tended to reflect
rather than disguise the “number-crunching” character of the underlying computer.

I.1  LISP

In 1960 John McCarthy introduced a high-level language called LISP. (Actually, LISP is
the second-oldest high-level language; FORTRAN predates it.) Unlike FORTRAN,
BASIC, and the other languages mentioned earlier, LISP could treat symbols and expres-
sions like ordinary data. This made LISP a natural language for expressing symbol proc-
essing, and it quickly gained a loyal following among artificial intelligence researchers.
LISP is still the language of choice for most artificial intelligence applications.

J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998
€ €
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1.2

Introduction

LISP Dialects

A language is stable if there is widespread agreement among its users about what fea-
tures are part of the language. Stability is achieved through an official or semi-official
description of the language. Unfortunately, major differences between LISP dialects de-
veloped soon after it was introduced. Eventually, programs written in one dialect
wouldn’t run using an interpreter for another. Some of the most popular dialects are
shown in Figure I.1. Arrows indicate which dialects influenced others.

LISP 1.0/1.5
McCarthy (1960/62)
InterLISP MacLISP
Xerox PARC (1975) MIT (1975)
Franz LISP ZetalLISP Scheme
Berkeley (1983) MIT MIT (1978)
Common LISP
Steele (1984)
Figure I.1

In 1980 work began on a standard dialect called Common LISP. In 1984 Guy Steele de-
scribed this language in his book, Common LISP: The Language. Common LISP is now
widely accepted by industry, and an ANSI standard is about to appear.

Scheme

I like the Scheme programming language because it is small. It packs a large number of
ideas into a small number of features.

—Gauy Steele, Jr.

The dialect of LISP used in this text is called Scheme. Scheme was introduced in 1978
by Guy Steele and Gerald Sussman. Like LISP, Scheme is an interpreted, expression-
oriented language. Scheme is a simple language in the sense that there are only a few
data and program constructors (about 25). Furthermore, these constructors are uniform in
the sense that there are no seemingly unnecessary restrictions on their use.
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L.3.

1.3. Structure of the Text 3

Normally, expressiveness is sacrificed for simplicity, but Scheme is an exception.
Scheme allows programmers to define recursive, polymorphic, over-loaded, and higher-
order procedures. All of the major programming paradigms can be expressed in Scheme.
Scheme also features macros, continuations, promises, streams, and excellent support for
number, string, symbol, and list processing. (Don’t worry, all of these things will be de-
fined soon.)

As Scheme became popular, its local dialects began to diverge, and it too became un-
stable. In 1984 representatives of the major Scheme user communities met and agreed on
a standard description of Scheme. Their report has undergone four revisions over the
years, popularly known as the Revised, Revised Revised (Revised?), Revised Revised Re-
vised (Revised3), and Revised Revised Revised Revised (Revised®) Reports on the Algo-
rithmic Language Scheme. (Several attempts at a Revised® Report have been made.)
Readers should refer to this as the most authoritative description of Scheme. The Re-
vised* Report served as the basis for the IEEE (P1178) specification of Scheme, which
became the ANSI specification of Scheme.

In this text we refer to the version of Scheme described in the Revised? Report as
IEEE/ANSI Scheme and to the features described in the report as essential features.
Warning: An implementation of Scheme should include all essential features, but this is
often not the case.

Scheme on the Web

There are many commercially available implementations of Scheme, but there are just as
many, if not more, free implementations of Scheme available on the Internet. In addition,
there are Scheme newsgroups, documentation, FAQs, and tools available on the Internet.
The best starting place is the Scheme home page at MIT:

http://www-swiss.ai.mit.edu/scheme-home.html

Structure of the Text

Eight chapters follow. Each is divided into three sections: core, appendices, and prob-
lems. It is assumed that students will read the appendices and solve most of the problems
on their own. (Nearly all of the problems require students to write short Scheme proce-
dures.) More essential topics are covered in the core sections. Some skipping around is
possible; for example, list and tree recursion aren’t covered until Chapter 6, but could be
covered immediately after Chapter 3.

The text introduces Scheme in four fragments:

IS =imperative Scheme =IEEE/ANSI Scheme

FS =functional Scheme = IS minus variables and commands
AS = application Scheme =FS minus control and block structures
NS =necessary Scheme = AS minus all redundant features
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Introduction

The first two chapters are restricted to applicative Scheme. (Necessary Scheme surfaces
from time to time in various problem sections.) The idea is to wean readers away from
command sequencing, the principle program-building tool provided by languages like
Pascal and C. Readers will be surprised (and challenged) to see how much can be ac-
complished in this tiny fragment of Scheme.

Except for a few minor lapses, functional Scheme is the language of Chapters 3
through 6. As such, the book could be used as an introduction to functional program-
ming. The pedagogical advantage is that students master the power of functional pro-
gramming before the picture is complicated by commands and variables. Stores, vari-
ables, commands, and hence imperative Scheme, are introduced in Chapter 7.

The last chapter formalizes the semantics of three languages: Alpha (FS minus some
features), Beta (IS minus some features), and Lambda (NS) in the form of three interpret-
ers written in Scheme and following the style of semantic prototyping.

Themes

Although the primary goal of this text is to teach students to program in Scheme, several
subplots deserve special mention. First is the emphasis on programming paradigms,
starting with the functional paradigm, and then building up to the imperative paradigm
with side trips into the signal-processing, data-driven, and object-oriented paradigms.

Second is the use of general concepts, models, and terminology from my program-
ming language principles course. Readers should have no trouble adapting the concepts
introduced in this text to other programming languages.

Third is the notion of meta-programming. Theoretical computer science, software en-
gineering, and systems programming are all based on a critical idea that separates them
from routine data processing: that programs can be treated like ordinary data, and there-
fore, like ordinary data, they can be derived, analyzed, and modified algorithmically. We
appropriate the term “meta-programming” to refer to this idea.

“Meta-programming” is derived from the term “meta-language,” which is used by
philosophers, linguists, and mathematicians to refer to any language used to describe or
analyze another language. In this context the language being described or analyzed is re-
ferred to as the object language. For example, the meta-language used in this book is
English, while the object language is Scheme. The meta prefix ultimately traces back to
Aristotle’s term, metaphysics, which meant “beyond Physics.” Meta-programming can
also mean “beyond programming” in the sense that some topics in this book evolve from
or into subjects beyond programming, such as logic, cognitive science, physics, mathe-
matics, and linguistics.

Why emphasize meta-programming in a Scheme text? Most programming languages
make a sharp distinction between programs and data. Data refers to passive, dumb enti-
ties like numbers, lists, tables, and text; programs are active, intelligent entities that ma-
nipulate data. Scheme doesn’t have such prejudices, and this makes Scheme an excellent
meta-language. Writing meta-procedures that process expressions, procedures, symbols,
or other program elements is natural, easy, and fun.
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Expressions and Values

1.1.

“Alright,” said Deep Thought, “The Answer to the Great Question... Of Life, the Uni-
verse, and Everything... Is... Is... Forty-two.”

—Douglas Adams, The Hitch Hiker’s Guide to the Galaxy

A Scheme interpreter is a primitive version of Deep Thought, the enigmatic supercom-
puter in Douglas Adams’ book. We type a question on a keyboard, the Scheme inter-
preter displays the answer on a screen, and then asks for another question.

Unlike Deep Thought, a Scheme interpreter won’t answer a vague question. Instead,
all Scheme questions have the form: “What answer does the following algorithm! pro-
duce ... 7” where algorithms must be stated in the precise language of Scheme expres-
sions. We define this language later in the chapter.

Like Deep Thought, the answers a Scheme interpreter provides are from a carefully
defined domain of all possible answers. We call Scheme answers values. Because it's
always better to know the answers before the questions, we begin with a description of
the domain of Scheme values.

Values

Scheme values can be divided into simple and composite values2:
VALUE ::= SIMPLE | COMPOSITE

Simple values—numbers, characters, Booleans, etc.—can’t be decomposed into
component values. A composite value is several values grouped together. Lists, vectors,
pairs, and strings are examples of such groupings:

SIMPLE ::= NUMBER | CHAR | BOOLE | SYMBOL | etc.
COMPOSITE ::= STRING | VECTOR | PAIR | LIST

1 Algorithm: Any step-by-step problem-solving procedure.

2 We use EBNF rules to describe domains. This notation is discussed in Appendix 1.1: Defining
Domains.

J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998
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1. Expressions and Values

Numbers

All implementations of Scheme provide binary, octal, decimal, and hexadecimal repre-
sentations of integers. Here are five ways to represent 42 in Scheme:

42 = #b101010 = #052 = #d42 = #x2A

Most implementations of Scheme provide truncations using decimal and scientific
notation. For example:

.0333 = 3.33e-2

are two Scheme representations of 3.33 x 10°, Notice that Scheme’s version of scientific
notation uses e to represent 10. Don’t confuse this with the natural exponent e.

Some implementations of Scheme also provide rationals and complex numbers with
real and imaginary parts that can be integers, truncations, or rationals. Here are some
samples of legal Scheme representations:

2/3 4+6i 3e-2+1.5i 1/2+2/31 etc.

All implementations of Scheme identify the domain of numbers with the domain of
complex numbers:

NUMBER ::= COMPLEX

This makes sense mathematically because all other domains of numbers are subsets of
the complex numbers. For example, if we ask the Scheme interpreter if 3.0 is a complex
number, it will answer “true.” ’

Because 3.0 is equivalent to 3, the Scheme interpreter will answer “true” if we ask if
3.0 is an integer. For the same reason, if we ask if 3 is real, the Scheme interpreter will
again answer “true.” This is different from languages like C and Pascal, which determine
the type of a number by its representation rather than its interpretation.

A Scheme interpreter will also answer that 3.0 is a rational number and an inexact
number. It will answer that 3 is a rational number, but when asked if 3 is inexact, it will
answer “false.” This happens because 3 only represents itself, while 3.0 is used to ap-
proximate any real number x such that, 2.95 < x < 3.05.

Characters

The CHAR domain consists of all keyboard characters: upper- and lowercase letters,
digits, punctuation marks, symbols, and control characters. Scheme uses the # prefix to
distinguish characters appearing as themselves and characters appearing in strings, num-
bers, names, and other contexts. For example, 5 is the number 5, but #\5 is the character
5. Scheme uses special names for nonprinting control characters:

#\backspace, #\escape, #\newline, #\page,
#\return, #\rubout, #\space, #\tab
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Inside the computer each character is represented by an integer between 0 and 127.
This number is called the ASCII code (American Standard Code for Information Inter-
change) for the character. For example:

ASCII #\A = 65
ASCII #\a 97
ASCII #\0 = 48
ASCII #\tab = 9

Booleans

Truth is the kind of error without which a certain species of life could not live.
—TFriedrich Nietzsche, The Will to Power

In his influential book, Laws of Thought, the British mathematician George Boole (1815-
1864) used algebra to model logical reasoning. He viewed propositions as expressions
denoting one of two possible values: true or false. But instead of thinking of true and
false in philosophical terms, he conceived of them as arbitrary but distinct members of a
truth-value domain, and he interpreted the connectives used to combine simple proposi-
tions into compound propositions—“and”, “or”, and “not”—as primitive algebraic op-
erations on this domain.

Today any domain containing distinct members representing. true and false, combined
with primitive operations corresponding to the connectives, is called a Boolean algebra.
The circuitry used to build digital computers is based on Boolean algebra. In this context,
true and false are identified with high and low voltages, and the connectives are imple-
mented as solid-state switches called logic gates. Boolean algebra is also incorporated
into every programming language (high-level and machine languages) as a foundation
for algorithmic testing and decision making.

In Scheme the BOOLE domain consists of the two truth values: #t for true and #f for
false:

BOOLE ::= #t | #f

Note the difference between the characters #\t and #\f and the Booles #t and #f. In
both cases Scheme uses a special prefix to indicate the domain.

Symbols

The SYMBOL domain seems out of place. In the next section we will learn that symbols
are names used in programs to denote values. For example, pi is a name denoting the
number 3.1416 and true is a name denoting the Boole #t. It’s clear that symbols are an
essential building block of Scheme programs, but why should symbols be included
among the value domains?

Recall Newell and Simon’s Physical Symbol System Hypothesis:
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A physical symbol system—i.e. any device or agent that produces an evolving collec-
tion of symbols and expressions—has the necessary and sufficient means for general
intelligent action.

If we want to model human problem solving, then it appears our programs will be based
on symbol and expression manipulation, and this means symbols have to be treated like
data.

More so than other languages,'Scheme liberally allows the use of punctuation marks
and operator symbols in names:

SYMBOL ::= PECULIAR | NORMAL
Scheme recognizes three “peculiar” symbols:
PECULIAR ::= + | - |
The initial character of a normal symbol can be any letter or special initial character:

SPECIAL-INIT ::=
tlists el /71l <t=1>1?21~1_1"

The subsequent characters of a normal symbol include the initial characters, digits,
and special subsequent characters:

SPECIAL-SUBSEQUENT ::= . | + | -
We can (and should) use special symbols to create readable and suggestive names:
int->real, cube-root, close?, halt!, a+bi, $profit, %loss

Symbols can be any length and are case insensitive. The following symbols are
equivalent:

cat CAT cAt CaT

Procedures

Sometimes an algorithm becomes so practiced we come to view it as a single operation.
For example, we seldom think of starting a car as an algorithm:

1. Shift to neutral

2. Adjust the choke

3. Pump the accelerator
4. Hold the clutch down
S. Turn the ignition key
6. Repeat if necessary

Instead it becomes so automatic that we think of it as a single operation:
1. Start the car
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A procedure is an algorithm encapsulated as a single operation, an algorithm-in-a-
box. Procedures provided by Scheme are called primitive procedures. It is also possible
for programmers to box their own algorithms.

Unfortunately, procedures don’t have standard representations. For now, we denote
the procedure named proc by [proc). For example, [sin], [+], [*], [<], [=] denote the sine,
addition, multiplication, less-than, and equality procedures, respectively.

Like symbols, procedures also seem out of place among the Scheme value domains. It
seems clear that procedures, like symbols, are important building blocks of Scheme pro-
grams, but why do they need to also be treated as data? Remember, Scheme is a meta-
programming language. This means we will be interested in writing procedures that ma-
nipulate other procedures as ordinary data.

Strings
A string is any sequence of characters (including blanks) bracketed by double quotes.
Here are some examples:

"Hello World"
"A man, a plan, a canal, Panama!"
ll42"

If a double quote appears in a string as a literal character rather than signaling the end of
the string, it must be preceded by a special escape character. The Scheme escape charac-
ter is the backslash: \ . For example, inside the computer the string:

"The phrase \"meta programming\" has many meanings."
represents the string:
The phrase "meta programming” has many meanings.

If a backslash appears in a string as a literal character rather than an escape character, it
too must be preceded by a backslash escape. For example, the DOS path name:

c:\scheme\libs\string.scm
must be written in Scheme programs as the string:
"c:\\scheme\\1libs\\string.scm"

The differences between strings, characters, Booles, and symbols can get confusing. For
example, the following four values belong to different domains:

"t" = the string consisting of the single character t
#\t = the character t
t = the symbol t

#t = the Boole true
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Lists

Any sequence of values can be grouped together into a list:
LIST ::= (VALUE ... )
Here are some examples of lists:

(a e i ou)
(#\a #\e #\1i #\o #\u)
(llall "e“ "ill Ilo" ﬂull)

("(1 2 3)")
(3 T30 #\3) .
0

(1 (1 2) (1 (1 2)))

Notice that a list is bracketed by parenthesis and that blanks, not commas, are used to
separate the members of the list. More importantly, the members of a list can belong to
different domains. A list can also be empty. Finally, lists can be nested inside lists. The
last example given is a list of three members: the number 1, the two-member list (1 2),
and the two-member list (1 (1 2)). How many members does the fourth list: (“(1 2 3)”)
have?

Vectors

A vector is just like a list except it is prefixed by the # symbol:

VECTOR ::= #(VALUE ... )

For example:

#(a e i o u), #(3 "3" #\3), #(), #(1 #(1 2) (1 (1 2)))

are all vectors. In the last example the vector consists of three elements: the number 1,
the vector #(1 2), and the list (1 (1 2)).

Logically, there is no difference between lists and vectors, but the vector #(1 2 3) and
the list (1 2 3) may have different representations in the computer’s memory. These dif-
ferences allow certain operations to be performed more efficiently on one but not the
other.

Pairs

Any two Scheme values can be grouped together to form a pair:
PAIR ::= (VALUE . VALUE)

Here are three examples of pairs:
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(.1 . .1)
("hello world" . (() . -2-1i))
(#\f . #f)

There doesn’t seem to be much difference between a pair and a two element list. Nota-
tionally, the only difference is the dot used to separate the members of the pair. Thus,
(1..2) is the list containing 1 and .2, while (1 . .2) is the pair containing 1 and .2. As with
vectors, the difference is in the internal representation.

Note that the following values belong to different domains:

(1 . .2) = the pair consisting of 1 and .2
(1 .2) the list consisting of 1 and .2
#(1 .2) the vector consisting of 1 and .2

Sequences versus Sets

How is the list (1 2 3) different from the set {1 2 3}? The main difference is that the
members of a sequence (i.e., list, vector, string, or pair) are ordered by their position in
the sequence. Therefore the list (3 2 1) is different from the list (1 2 3) while the set
{3 2 1} is the same as the set {1 2 3}. This also implies that sequences can have multiple
occurrences of the same item, while sets cannot. Thus, the list (1 231 2 3)is different
from the list (1 2 3), while the set {1 2 3 1 2 3} is the same as the set {123}.

1.1.10. Other Value Domains

1.2.

Although all implementations of Scheme must provide the domains just described, some
implementations provide additional value domains. Later we will encounter two varia-
tions of procedures: continuations and promises, as well as two variations of lists: ports
and streams.

Expressions

Algorithms are represented in Scheme by expressions. The algorithm described by a

Scheme expression normally produces a value. For example, the arithmetic expression

5 * 8 + 2 represents the algorithm, “add 2 to the result of multiplying 5 and 8.” The result

of performing these operations is 42. The expression 5 * 8 + 2 produces the value 42.
Like values, Scheme expressions can be divided into subdomains:

EXPRESSION ::=
LITERAL | SYMBOL | APPLICATION | STRUCTURE
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Literals

Almost3 any Scheme value can be turned into a Scheme expression by placing a single
quote in front of it. Such an expression is called a literal because the value it produces is
gotten by simply removing the quote. For example, '42 is the literal expression that pro-
duces the value 42.4 '

LITERAL ::= 'VALUE

In most cases programmers can safely leave off the quote without confusing the inter-
preter. This is because programmers only produce expressions, while interpreters only
produce values. Thus, if 42 is typed at the interpreter’s prompt, the interpreter under-
stands that the programmer is really asking for the value of '42.

There are a few types of values that require the single quote to avoid ambiguity.
These will be discussed soon.

Symbols and the Global Environment

We have already encountered the SYMBOL domain. These are just the names used to
denote procedures, constants, and other values. Scheme provides some predefined names,
for example, +, *, sin, and < are pre-defined names for [+], [*], [sin], and [<]. Some im-
plementations of Scheme provide nil, pi, true, and false as predefined names for (),
3.1416, #t, and #f, respectively.

An association between a name and a value is called a binding. The Scheme inter-
preter stores predefined bindings in a symbol table called the Global Environment
(Figure 1.1):

NAME VALUE
pi 3.1416
nil 0
+ [+]

true #t

false #f

etc. etc.
Figure 1.1

3 Procedures don't have standard representations, hence they can’t be used as literals.
4 We can also express '42 as (quote 42).
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1.2.3. Applications

An application or procedure call is simply a list of one or more expressions:
APPLICATION ::= (EXPRESSION EXPRESSION ... )

The first expression in an application, called the operator, always denotes a procedure,
while the remaining expressions, called the operands, denote the procedure’s inputs.

A procedure computes a mathematical function, which we can visualize as an abstract
input-output device (see Figure 1.2).

input 1

-
input 2 output
>

input g P

—>

Figure 1.2

Data enters the “device” through input “wires,” and a “circuit” (i.e. the algorithm) inside
the device computes an output, which eventually emerges through the output “wire.”
For example, the value denoted by the application:

(max (+ 2 3) (abs -4) (remainder 12 5))
is 5, the output produced by the max procedure given inputs 5, 4, and 2 (see Figure 1.3).

5
4 5
——»| max —

Figure 1.3
The value denoted by the application:

(<= (- 5 3) (+ 2 (* 3 3)) 14)

is #t, the output produced by the <= procedure given inputs 2, 11, and 14 (see Figure
1.4).

11 #

— "= —

Figure 1.4
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Notice that Scheme uses prefix notation instead of infix notation. In other words,
Scheme will not understand the infix expression 2 + 3. Instead, programmers must write
the + symbol in front of the operands: (+ 2 3). Although prefix notation normally doesn’t
require parenthesis, prefix notation in Scheme does. Parenthesis have special meaning in
Scheme, namely, they indicate that a procedure is being called. This means Scheme pro-
grammers are not free to use parenthesis to make their programs more readable. For ex-
ample, the expression (+ 2 (3.1e-5)) will cause an error because Scheme will assume the
subexpression (3.1e-5) is an attempt to call the nonprocedural value 3.1e-5.

Finally, notice that expressions can be nested. In other words, operands and operators
may also be applications. In both sample applications shown earlier:

(max (+ 2 3) (abs -4) (remainder 12 5))

(<= (-5 3)(+ 2 (*33)))

the operands (boldface) are themselves applications.

Translating Algebraic Expressions into Scheme

Translating algebraic expressions into equivalent Scheme expressions requires working
backwards. For example, in the expression:

sin(x + 1)
cos(x - 1)

division is performed last, so this will be the first operation to appear in the correspond-
ing Scheme expression:

(/ NUMERATOR DENOMINATOR)

The sin in ﬂxe numerator is performed after 1 is added to x, so sin appears first in
NUMERATOR. Remember, the name sin goes inside the parenthesis with its operand:

(/ (sin SUM) DENOMINATOR)
SUM is simple; just remember that + comes first:
(+ x 1)

Following the same procedure for DENOMINATOR and substituting into the original
quotient yields:

(/ (sin (+ x 1)) (cos (- x 1)))

Make sure all the parentheses are balanced.
Let’s look at one more example:

\/3"+1 E'

Unfortunately, ANSI/IEEE Scheme doesn’t provide an inequality operator. We’ll have to
combine Scheme’s not procedure with Scheme’s = procedure:
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(not (= ROOT y))

We consult the list of primitive number procedures in the Revised? Report (or Chapter 2)
and notice that sqrt is supplied by all implementations of Scheme that supply real num-
bers. We can replace ROOT with a call to sqrt:

(not (= (sqrt SUM) y))

Avoid inserting unnecessary parenthesis.
SUM is simply:

(+ EXPONENT 1)

Another quick scan of the Revised? Report reveals Scheme supplies two possible candi-
dates for computing exponentials: exp and expt. Checking the Revised? Report , we dis-
cover that (exp x) computes e*, but (exptxy) computes x”. Thus, we can formalize
EXPONENT as:

(expt 3 x)
Putting these pieces back into our original expression gives:

(not (= (sgrt (+ (expt 3 x) 1) y))

Data Flow Structures

Sometimes it is helpful to think of a complicated application as a Scheme representation
of an abstract “circuit” called a data flow structure or a data flow diagram. A data flow
structure is built by connecting the input and output “wires” of function “devices.” For
example, the Scheme expression:

(/ (sgrt x) (- (cos x) 1))

represents a data flow structure built from four devices: sqrt, cos, —, and /. The input to
both sqrt and cos is x. The output of cos, together with 1, are the inputs to —. The output
of sqrt and — are the inputs to /. The final diagram is shown in Figure 1.5.

sqrt
x—-[: _: sqit >
cos PP _J

1 —

Figure 1.5

No device in a data flow structure produces an output until all its inputs have arrived.
Thus, data flows through a data flow structure from left to right. The subtraction proce-
dure () can’t produce an output until the cos procedure produces its output. Similarly,
the division procedure (/) must wait for the outputs of the subtraction procedure and the
sqrt procedure before producing its output.
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Let’s consider another example:
(>= (length (cons (car x) (cdr y)) 42)

This expression compares 42 to the length of the list obtained from the expression (cons
(car x) (cdr y)) (never mind what this means for now). The corresponding data flow
structure is built from five components: >=, length, cons, car, and cdr. The inputs to cons
are the outputs of car and cdr. The output of cons is the input to length. The output of
length, together with 42, is the input to >= (see Figure 1.6).

cons #| length |
42—

X9 car |—p»
—>

y-» o Se=

Figure 1.6

Structures

Structures, also called special forms, allow programmers to control the flow of evalua-
tion (control structures), the visibility of data (block structures), and the contents of
memory (assignment structures):

STRUCTURE ::=
CONTROL | BLOCK | QUASIQUOTE | ASSIGNMENT

Structures look like specially formatted applications of the following seventeen special
form constructors:

if cond case and or do let let* letrec lambda set! begin begin0 delay quote
quasiquote unquote

These will be explained in Chapters 3 through S.

Literals Revisited

There’s a problem with our practice of not quoting literals. Notice that the expression pi
could be interpreted as a literal denoting itself—the symbol pi —or as a symbol denoting
the number 3.1416. Similarly, the expression (+ 2 3) could be interpreted as a literal de-
noting a list containing a symbol and two numbers or as an application denoting the
number 5. How do we determine the correct interpretation of these expressions?

To resolve this ambiguity, Scheme requires programmers to put a single quote in
front of symbols, pairs, vectors, and lists when they are intended as literals. Thus, the ex-
pression pi is always interpreted as a symbol denoting 3.1416, while the expression 'pi is
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the literal denoting itself, the symbol pi. Similarly, the expression (+ 2 3) is always inter-
preted as the application denoting the number 5, while the expression '(+ 2 3) is the literal
denoting itself, a list containing a symbol and two numbers.

It is not necessary to put quotes in front of symbols, lists, and pairs if they occur in-
side a vector, list, or pair. For example:

TH(x (X . X) (X X)) .
"((a . #\a) (e . #\e) (i . #\i) (o . #\o) (u . #\u))
"((a e i1 owu) . (#\a #\e #\i #\o #\u))

are all acceptable literals despite the fact that the pairs, symbols, and lists appearing in-
side are not quoted.

The Scheme Interpreter

Defining the EXPRESSION and VALUE domains is only half the job of specifying a
programming language; the other half is describing a processor that can evaluate expres-
sions to produce values. A processor can be a physical device such as the CPU of a com-
puter, or it can be a virtual device such as an interpreter ot compiler.

The Scheme interpreter consists of three components: the Global Environment, an
expression evaluator, and a control loop. The evaluator actually does the work of inter-

" preting expressions. We will describe the operation of these components in detail in sub-

sequent chapters.

The Expression Evaluator

The evaluator, called eval, is a procedure that accepts an expression and an environ-
ment—called the current environment, often this is just the Global Environment—as in-
put and outputs the value denoted by the expression. The arrow between eval and the
current environment is shown going two ways in Figure 1.7, because sometimes evalu-
ating an expression can produce changes in the current environment.

expression value
—  eval
current
environment
Figure 1.7

If the expression input is a literal, eval returns the expression itself as a value. If the ex-
pression input is a symbol, eval searches the current environment input for the corre-
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sponding value. If the expression input is a structure, eval invokes a special evaluation
algorithm tailored for the particular type of structure. If the expression input is an appli-
cation, eval employs an algorithm called eager evaluation, described in Chapter 2.

The Control Loop

If the evaluator is the engine of the Scheme interpreter, then the control loop is the driver.
The control loop, also called the read-eval-print loop, or REPL, is a procedure that per-
petually waits for a Scheme expression to be typed on the computer’s keyboard. When an
expression is typed, the control loop reads it, evaluates it using the eval procedure, dis-
plays the result, and then waits for the next expression to be typed: (see Figure 1.8)

display prompt  €—1

v

read expression

'

eval expression

!

display prompt

Figure 1.8

Definitions

All values computed by the Scheme interpreter are volatile. They disappear from the
computer’s memory the instant they appear on the screen. To save the value produced by
an expression it must be named using a definition:

DEFINITION ::=
(define SYMBOL EXPRESSION)

A definition declares an association between SYMBOL and the value produced by
EXPRESSION. We call associations between names and values bindings:
For example, the definition:

(define numl (* 7 6))
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declares the binding num1 = 42, between the symbol num1 and 42, the value produced
by the expression (* 7 6), and the definition:

(define num2 (* 13 3))

declares a binding num2 = 39, between the symbol num2 and 39, the value produced by
the expression (* 13 3). '

Bindings declared by definitions are saved in the Global Environment for future ref-
erence. After the preceding definitions the Global Environment shown in Figure 1.1 can
be pictured as in Figure 1.9.

NAME VALUE
pi 3.1416
nil : 0
+ [+]
true #t

false #f
etc. etc.

numl .42

num?2 39

Figure 1.9

The symbols num1 and num2 now denote 42 and 39, respectively. Naturally, we can in-
corporate num1 and num?2 into new Scheme phrases. For example, the expression:

(+ numl num2)
now produces 81, and the definition:
(define num3 (* numl num2))

now declares a binding between num3 and 1638.
Num1 and num2 will continue to denote 42 and 39 until the session ends or until they
are redefined. For example, the definition:

(define num2 (+ 9 num2))

creates a new binding of num2 to 48, which replaces the old binding in the Global Envi-
ronment. (But not before 9 is added to 39, the old value of num?2, to create the new
value.)
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Appendices

Appendix 1.1. Defining Domains

And each law or pattemn is itself a pattern of relationships among still other laws, which
are themselves just patterns of relationships again.

—Christopher Alexander, The Timeless Way of Building

A domain is a set of objects that have similar representations and interpretations. If a is
an object and A is a domain, then “a € A” means “a is a member of A,” and “a ¢ A”
means “a is not a member of A.” For example, if EVEN is the domain of all even, non-
negative integers—0, 2, 4, 6, etc.—then 42 € EVEN, but 43 ¢ EVEN.

We can succinctly describe domains using domain equations. A domain equation has
the form:

DOMAIN ::= PATTERN | PATTERN | etc.

where DOMALIN is the name of the domain being defined (domain names will always be
in uppercase), “::=“ means “consists of,” “I” means “or” or “union,” and PATTERN is a
string describing the format of some members of DOMAIN. These members are called
instances of PATTERN.

There are several types of patterns. A pattern may be an actual member of the domain
being defined. The only instance of a pattern like this is itself. For example, the equa-
tions:

CREW ::= Picard | Whorf | Spock
STOOGE ::= Larry | Curly | Moe
mean:

An instance of CREW consists of an instance of Picard, Whorf, or Spock.
An instance of STOOGE consists of an instance of Larry, Curly, or Moe.

In other words, the domain CREW contains three members: Picard, Whorf, and Spock;
and the domain STOOGE contains three members: Larry, Curly, and Moe. A mathemati-
cian would define these domains using set enumeration notation:

CREW = {Picard, Whorf, Spock}
STOOGE = {Larry, Curly, Moe}

A pattern may also be the name of another domain. In this case the instances are mem-
bers of the domain. For example, the equation:

HERO ::= CREW | STOOGE

means:

An instance of HERO consists of an instance of the CREW or STOOGE domain.
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A mathematician would simply express this as a union:
HERO = CREW U STOOGE

Patterns can also be formed by concatenating (i.e., gluing together) patterns. For exam-
ple, the first pattern on the right side of the equation:

INTRODUCTION ::= CREW meet STOOGE | STOOGE meet CREW

is built by concatenating three patterns: the domain CREW, the word “meet”, and the
domain STOOGE. The meaning of the equation is:

An instance of INTRODUCTION consists of an instance of CREW followed by an in-
stance of the word " meet " followed by an instance of STOOGE; or an instance of

STOOGE followed by an instance of the word " meet " followed by an instance of
CREW.

Here are some sample members of the INTRODUCTION domain:

Moe meet Picard
Whorf meet Moe
Curly meet Picard

However,
Spock meet Whorf

is not a member of the INTRODUCTION domain. (Why?) .
A mathematician would probably define the INTRODUCTION domain using unions
and set builder notation:

INTRODUCTION = INTRODUCTION1 U INTRODUCTION2
where

INTRODUCTION1 = {c meet s: c € CREW & s € STOOGE}
INTRODUCTION2 = {s meet c: s € STOOGE & c € CREW}

Surrounding a pattern with square brackets indicates instances of the pattern are optional.
For example, we can extend our definitions of CREW and STOOGE to allow more for-
mality:

CREW2 ::= [Mr.] CREW
STOOGE2 ::= [Mr.] STOOGE

The members of CREW?2 include the members of CREW:
Spock, Picard, Whorf
as well as:

Mr. Spock, Mr. Picard, Mr. Whorf
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Alternatively, we could have defined CREW?2 as a union of two domains using either a
domain equation:

CREW2 ::= CREW | Mr. CREW

Finally, we can place an ellipsis (i.e., “...”") behind a pattern. This means the pattern can
be repeated zero or more times. The ellipsis is useful for defining domains of arbitrarily
long sequences. For example:

HEROS ::= (HERO ... )
means:

An instance of HEROS consists of an instance of a left parenthesis followed by zero or
more instances of HERO followed by an instance of a right parenthesis.

Without the ellipsis the domain equation for HEROS would be infinitely long:

HEROS ::=
() | (HERO) | (HERO HERO) | (HERO HERO HERO) | etc.

Here are some sample instances of the pattern (HERO ...) (i.e., members of the domain
HEROS):

)

(Picard Curly Spock)

(Larry)

(Moe Moe Moe Moe Moe Moe Moe Moe Moe Moe Moe Moe Moe)

The first example shows that an instance of zero repetitions of HERO. The last example
shows members of the HEROS domain can contain repeated instances of the HERO do-
main, and therefore the HEROS domain has an infinite number of members.

Warning: Domain equations are not part of the Scheme language. Computer scientists
use domain equations to define the program domains and—Iess frequently—the data
domains of all programming languages:

DATA ::= NUMBER | STRING | etc.
PROGRAM ::= INSTRUCTION ...

Computer scientists call the format of domain equations Extended Backus-Naur Form,
or EBNF for short.> Domain theory and formal language theory are two areas of com-
puter science that study domains.

Appendix 1.2. Sessions

A Scheme session begins when the control loop is started from the operating system’s
prompt. When the Scheme application:

5 In 1960, John Backus, who created FORTRAN, and Peter Naur developed this notation to de-
scribe the PROGRAM domain for the Algol60 language.
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(exit)

is typed, the session ends and control is returned to the operating system.

Saving Transcripts

The written dialogue between programmer and interpreter is called a transcript. Unless
the transcript is saved to a file, it scrolls out of view and into oblivion. Scheme provides a
procedure for saving transcripts to files. Assume file is the name of a file:

(transcript-on "file") =
an unspecified value. As a side effect, the standard
output port is connected to both the monitor and file.

(transcript-off) =
an unspecified value. As a side effect the standard
output port is disconnected from file.

A file containing a Scheme session is called a transcript file.

An Example

Let’s study a fragment of a Scheme session. Expressions entered by the user appear next
to the interpreter’s prompt: >, followed immediately by their values. All computer gener-
ated text is shown in boldface:

> 100

100

> "Hello world"
"Hello worxrld"

> pi
3.14159265358979
> (cos pi)
-1.0

> (>= 3 5)
#£

> "(+ 2 3 4)
(+ 2 3 4)

> (+ 2 3 4)
9

> +

[+]

>

This session shows literals, symbols, and applications being evaluated. Note that placing
a quote in front of the list (+ 2 3 4) turns it into a literal that simply denotes itself, a list
consisting of a symbol followed by three numbers. The control loop displays the list
without the single quote because values don’t need quotes, only literal expressions. But
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when the user types the list (+ 2 3 4) again without the quote, eval interprets it as a pro-
cedure application, adds the operand values, and prints the resulting value, 9. Finally,
when the user types + without the surrounding parenthesis, eval interprets it as a symbol,
searches the Global Environment, and displays the corresponding value, the procedure
[+]. (Different implementations of Scheme will use different notations for [+].)

Warning: PC-Scheme identifies the Boole #f and the empty list, ( ). This is inconsis-
tent with ANSI Scheme, which, in most testing contexts, identifies all values with #t ex-
cept #f.

Appendix 1.3. Numbers

We will encounter the function-structure duality in many forms throughout this text. In
the context of numbers, function refers to the interpretation of a number, while structure
refers to the way the number is represented.

Mathematicians interpret real numbers as points on a number line, or more precisely,
as distances from points on a number line to a fixed point called the origin. The unit of
measurement can be miles, inches, meters, light-years, Angstroms, anything. Positive re-
als are the points to the right of the origin, negative reals are to the left. While there is
only one interpretation of a real number, there are many representations.

Representing Real Numbers

The decimal representation of a positive real number is an infinite sequence of digits.
For example:

X = 42.142857142857142857...
represents the infinite sum of distances:
4 * 10" + 2 * 10° + 1 % 100 + 4 % 1077 + 2 * 107 + .

We call 42 the integer part of x. The infinite sequence of digits to the right of the deci-
mal point constitutes the fraction part of x.

This representation scheme is called decimal because there are ten possible digits that
can occur in a sequence, 0 through 9. Why is ten special? Surely this is only an accident
of biology or culture. In some places people count between instead of on the tips of their
fingers. These people favor octal representations based on eight “digits™: O through 7,
and interpret them as sums of powers of eight:

52.1111. ..
=5 +*g  + 2 %8 +1+8'+1+8%+1+%87%+ .

X

Programmers often prefer hexadecimal representations based on 16 “digits”—0

through 9, A (10), B (11), C (12), D (13), E (14), and F (15)—and interpret them as sums
of powers of 16:

]

2A.249249. ..
=2 % 16" + 10 * 16° + 2 * 167 + 4 * 167° + ..

X
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Computers store, process, and communicate data as voltage levels. To avoid ambiguity
only two levels are distinguished: high and low. For this reason computers favor binary
representations using only two “digits,” 0 and 1 (called bits), and interpret them as sums
of powers of two:

X = 101010.001001001... = 1 * 2° + 0 * 2* + 1 * 2% 4+ o *» 22
+ 1 %2+ 0% 2° 40 %21 4 0% 22 41 %273 4

The radix of a representation scheme is the number of allowable digits. The hexadecimal
radix is 16, the octal radix is eight, the decimal radix is ten, and the binary radix is two.

Representing Integers and Rationals

All of the representations of x given so far are infinitely long. We are forced to use an
ellipses (...) to indicate that the fraction part continues forever. Computers too have diffi-
culty dealing with infinitely long representations. For this reason three subsets of the re-
als are of particular interest.

If all of the digits in the fraction part are zeros, we can safely ignore them and just
represent the real by its integer part. Such reals are called integers.

Another special case occurs when the decimal part is periodic. This means the deci-
mal part consists of a finite sequence of nonrepeating digits followed by an infinitely re-
peating pattern of digits. It turns out that such reals result from integer divisions and
therefore can be finitely represented as a ratio of two integers. We call these numbers ra-
tionals. Because the fraction part of x in the previous example is periodic (the repeating
pattern appears to be 142857, but who knows what “...” really means), x is rational. It re-
sults from dividing 295 by 7, hence it can be represented as the ratio:

X = 295/7

Clearly, integers are rationals. For example 42 = 42/1.

A truncation of a decimal representation, i.e., the result of chopping off all digits in
the fraction part beyond some arbitrary point, is also a type of rational number because it
is equivalent to the nontruncated number gotten by appending an infinite repeating pat-
tern of zeros. For example:

y = 42.142857 = 42.142857000... = 42142857/1000000

Approximating Irrational Numbers

It seems rational to call reals that aren’t rational irrational. Pi, the natural exponent e,
and square roots of prime numbers are examples of irrationals. Irrational numbers are so
ubiquitous that if we removed all of them from the number line, the length of what re-
mained would be zero!

How does a computer represent an irrational number? Sadly, it doesn’t. Instead, irra-
tional numbers must be approximated by truncations. For this reason truncations are
sometimes called inexact numbers. For example, some computers approximate the irra-
tional number pi by the truncation 3.141592654.
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Scientific Notation

An alternative, more compact representation for a truncation is scientific notation. Sci-
entific notation can be used to compress long strings of consecutive zeros into an integer
exponent of 10. For example, the following decimal representation:

z = 0.0000000000123
can be compressed into the scientific notation:

z =1.23 * 10°%°

Problems

Warning: Many versions of Scheme—including the TI and UG versions of PC-Scheme
—are not 100% compliant with the IEEE/ANSI specification. While it is acceptable to

use these versions for testing and experimenting, your answers must be based on
IEEE/ANSI Scheme.

Problem 1.1.

Assume the following definitions have been made:

(define x 10)
(define y 20)
(define z -5)
(define m *)

Compute the values denoted by the following Scheme expressions. Use a Scheme inter-
preter to check your answers. Some expressions contain errors. Explain the nature of
these errors, and if possxble suggest corrections. If you are not sure about a procedure,
look its definition up in the Revised? Report.

(+xy (mz z))
'(+ xy (m z))
"(+xy (mzz))"
#(+ xy (m z))
(x +y + 2 zZ)
'#(x y 2)
(X y z)

Q o0 o e
* N N N

Problem 1.2.

The type of a number is the lowest level in the hierarchy of number domains to which
it belongs. For example, 42 belongs to the INTEGER, RATIONAL, REAL, and
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COMPLEX domains, hence its type is INTEGER. Classify the types of the following
numbers. Also classify the representations as exact or inexact, and convert them into an
equivalent decimal representation:

#x2.8e3 #blll+#032i #e#d32.0 #b.001 #¥xX#iFFFF

Problem 1.3.

Assume the following definitions have been made:

(define a 6)
(define b 10)
(define c 30)

Because of the leading quote, the literal expression '(+ a b c) denotes the list (+ a b ¢) in-
stead of the number 46. The quote tells the evaluator to interpret everything that follows
it literally.

Scheme has a structure called a quasiquote, which is denoted by a back quote: ".
Quasiquote is similar to quote. For example, the expression “(+ a b c) also denotes the list
(+ ab ©). The difference is that the evaluator takes everything following a quasiquote lit-
erally unless it is preceded by the unquote operator (which is denoted by a comma). The
evaluator evaluates unquoted values appearing inside a quasiquote. Thus, the expression
“(+a b c) denotes the list (+ a 10 ¢).6

Compute the values of the following Scheme expressions:

\(+ a ,b ,c)

“(,aa ,bb ,cc)
‘(,"a" n/a" /la v,a)
“((abec) (,a ,b ,c))

Problem 1.4.

Indicate to which subdomain of VALUE and EXPRESSION each of the elements listed
here belongs to. The choices for EXPRESSION subdomains are LITERAL, SYMBOL,
APPLICATION, and NONE. The choices for VALUE subdomains are BOOLE, CHAR,
SYMBOL, PROCEDURE, LIST, VECTOR, PAIR, STRING, NONE, or, in the case of
numbers, give the domain lowest in the number hierarchy to which the element belongs.

a. "f" £f. #(0) k. (1 .2) p. '+

b. £ g. '() 1. (+ 1 .2) g. +3.0
c. #\f h. () m. #(+ 1 .2) r. '3.0
d. 'f i. (1. .2) n. '"(+ 1 .2) s. 3.111
e. #f j.o"((1 . .2)" o. + t. .240i

6 We can also express “(+ a b c) as (quasiquote (+ a (unquote b) c)).
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Problem 1.5.

Write Scheme expressions equivalent to the following mathematical expressions. You
may use any ANSI Scheme procedures or constants. You may also use the “and” and
“or” structures. Hint: Use Scheme’s define procedure to give arbitrary definitions to x, y,
z, a, and b. Once these symbols have values, you should be able to check your Scheme
translations of the following expressions using your Scheme interpreter.

(sin(x + y)/cos(x - y))°
In(xy + 3)

5.3 x 107"

pi

e (i.e. the natural log)
tan(x)/(1log’(x)/y)

(x £ y) or (X #2)
((x/y)/(a/b))/(a/x)

-l <e <1

arcsin(2x)

LR TAOQ RO ARAQD

Problem 1.6.

A natural number is an unsigned integer. Write a domain equation for naturals:

NAT ::= ?°?7?

Problem 1.7.

Complete the following domain equations for number representation formats. NAT do-
main is the domain of natural number formats. (A natural number is just an unsigned in-
teger.) UREAL is the domain of unsigned REAL formats. You may introduce supporting
domains as you see fit.

FORMAT ::= REAL | COMPLEX

REAL ::= INT | RATIO | DECIMAL | SCIENTIFIC
INT : [-INAT

NAT ::=
DIGIT ::
RATIO
DECIMAL ::=

SCIENTIFIC ::=

COMPLEX ::= REAL+UREALi | REAL-UREALi | REALi
. UREAL

]

]

DA O RQD e
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Problem 1.8.
Write the following numbers in as many formats as possible. Classify each number as

integer, rational, irrational, real, and/or complex. If a number belongs to several of these
domains, list them all. Also, classify each format as exact or inexact:

-2.16, 1/20, 100, 1/7, 3.33, 2.5e-3, -2i, -2el0, 1+0i

Problem 1.9,

Compute the values of the following Scheme expressions assuming complex and rational
numbers are fully implemented:

a. (+ 3+2i 4/3 .1)
b. (* 2/7 -i 3.1e2)
c. (expt -4 .5)
d. (exp 100)
e. (/ 2-i 2+i)
f. (* 3e42 .2e-16)
Problem 1.10.

Which of the following names are not members of Scheme’s SYMBOL domain (as de-
fined earlier). Explain why.

1 +i ::: <.*.> /++} 3+ +3 + ++ C++ A<==>B&C=3 Hi-Ho!
-~Ho! x+y+z x+(y+z) <NUM>::=<INT>|<REAL> c”~2 [x] f'
.tax. a/b Scheme C++ Modula2.1l X.oo. ...X ... #x%

=? ??? a+bi smith@sjsu.edu smith/project/foo.scm
c:smith\project\foo.scm

Problem 1.11.

Why doesn’t Scheme allow symbols to begin with ., —, or +?

Problem 1.12.

Investigate what happens when the following strings are typed into your Scheme inter-

preter:
a. "\cat"
b. "\\cat"

c. "\\\cat"



30 1. Expressions and Values
Problem 1.13.

Draw data flow diagrams for the following Scheme applications:

a. (+ (cos (* 3 X)) (sqrt (/ 1 x)))
b. (+ (+ (+ xy) (+ 2 2)) (+ X 2))
c. (expt (* 3 z) (max X y z))

Problem 1.14.

Assume exp is a Scheme expression. Some versions of Scheme allow programmers to
call the eval procedure directly:

(eval exp) =
the value of exp in the Global Environment

Assume the following definitions have been made:

(define vall 42)

(define val2 'vall)

(define val3 'val2)

(define val4 '(quotient vall 6))

Compute the values of the following Scheme expressions:

(eval vall)

(eval val2)

(eval val3)

(eval (eval val3))
(eval '(eval val3))
(eval val4)

O QOO

Problem 1.15.

Find the hexadecimal (i.e., base 16) representations of the followihg numbers:
124 215 248.625 1/6
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Procedures

2.1. Defining and Applying Procedures

Although Scheme provides quite a few procedures, there are many more it does not pro-
vide. This isn’t a problem because programmers can define their own procedures using
lambda expressions. The format of a lambda expression is:

LAMBDA ::= (lambda PARAMETERS BODY)

The first input to lambda is simply a list of symbols called parameters:
PARAMETERS ::= (SYMBOL ...)

The body of a lambda expression is a parameterized expression:

BODY ::= PARAMETERIZED-EXPRESSION

A parameterized expression is a Scheme expression that may contain parameters from
the parameter list. For example, here’s a new procedure that computes Ix — yl, the dis-
tance between two real numbers x and y:

(define dist (lambda (x y) (abs (- x ¥))))

The parameters are x and y, and the body is the parameterized expression: (abs (— x y)).
Unlike ordinary expressions, a parameterized expression can’t be evaluated until the
parameters are replaced with appropriate Scheme values called arguments. This happens
when the procedure appears as the operator in an application. The arguments are the val-
ues of the operands.
For example, assume the following definitions have been made:

(define numl 30)
(define num2 -14)

To evaluate the application:
(dist (+ numl 8) num2)

the Scheme evaluator (1) evaluates the name, dist, (2) evaluates the operands (+ num1 8)
and num2, (3) replaces x and y in the body of dist by the operand values, the arguments

dan e YOOV, . / . . »
J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998
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38 and —14. This produces the expression: (abs (— 38 —14)). Finally, (4) since this ex-
pression no longer contains parameters, it can be evaluated to produce the ultimate an-
swer, 52:

> (dist (+ numl 8) num2)
52

Some people feel the format of a definition involving a lambda expression is too compli-
cated. For this reason many Scheme implementations provide an alternative format called
a procedure block, which drops the lambda operator and combines the procedure name
and parameters into a single list called the header:

PROCEDURE-BLOCK ::= (define HEADER BODY)
HEADER ::= (PROCEDURE-NAME PARAMETER ...)

Here is the definition of the distance procedure using a procedure block:
(define (dist x y) (abs (- x y)))

Although we will use procedure blocks, there are places where it is still necessary to use
lambda expressions. Readers should develop the ability to translate quickly between the
two forms.

The Environmental Influence

Let’s work through another example. Comparing truncated numbers using = or zero? can
be dangerous due to rounding errors. Assume the following definitions have been made:

(define (square z) (* z 2))

(define num (- 1 (+ (square (sin 3)) (square (cos 3)))))

A fundamental trigonometric identity tells us num should be 0, but Scheme seems to be-
lieve differently:

> (zero? num)
#£

> (= num 0)
#£

When truncated numbers are combined, rounding errors can accumulate to produce sig-
nificant errors. For example, the actual value of num is a tiny but positive real number:

> num
1.11022e-16

In these situations it might be better if we had a procedure that determined if two num-
bers were close in the sense that the distance between them was less than some small
constant, A. Unfortunately, Scheme doesn’t provide such a procedure, so we’ll have to
define our own.
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A predicate is any procedure that returns a Boolean value: #t or #f. Scheme predi-
cates conventionally have names ending with a question mark. For example, the name
big? suggests the procedure returns #t if its input is big and #f if it isn’t. The only excep-
tions to this convention are the not predicate and the primitive predicates that compare
numbers: =, <, >, <=, and >=. (Older implementations of Scheme allow =?, <?, >?, <=2,
and >=? as synonyms for these procedures.)

We want a predicate that determines if two numbers are close; following Scheme’s
convention, let’s name this procedure close? The definition of close? can take advantage
of the dist procedure defined earlier:

(define (close? a b) (<= (dist a b) delta))

Where delta is a constant representing our error tolerance. For now we can set its value to
10™.

(define delta le-20)

If close? is the inexact analog of =, then the inexact analog of zero? should be called
small?:

(define (small? z) (close? z 0)) ; i.e., near zero

When it encounters the application (small? num), the Scheme evaluator replaces z by the
value of num in the parameterized body of small?

(close? 1.11022e-16 0) ‘
Next, 1.11022e-16 replaces a and 0 replaces b in the parameterized body of close?:
(<= (dist 1.11022e-16 0) delta)

Before the comparison can be made, 1.11022e-16 replaces x and O replaces y in the body
of dist:

(abs (- 1.11022e-16 0))

Because there are no parameters in this expression, it can be fully evaluated. Its value re-
places the application of dist in the body of close?:

(<= 1.11022e-16 delta)

Notice that delta is not a parameter; it is a constant defined in the global environment.
Therefore, this expression can be fully evaluated to produce the final answer, #t:

> (small? num)
#t

If a user inadvertently defines a new constant called delta;
(define delta 100)

then small? no longer works:
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> (small? num)
#£

The definitions of small?, close?, dist, and delta can be placed in a file called math.scm.
The expression:

(load "math.scm")

can be placed at the top of any file of definitions that need them.

The Modularity Principle and Top-Down Design

Suppose we want to define a procedure called pipe-volume that computes the volumes of
pipes closed at both ends by hemispherical caps, as in Figure 2.1.

c——D

Figure 2.1

The inputs to the procedure will be the length and radius of the cylinder component of
the pipe. We can express the form of the definition using a stub (i.e., the header is speci-
fied, but the body is undetermined):

(define (pipe-volume len rad) ??7?)
How should we begin? A top-down strategy is suggested by the modularity principle:

The body of a procedure should be explicit and purposeful (rather than obscure and ar-
bitrary). This is achieved if we cleanly decompose the procedure into subtasks per-
formed by calls to independent and logically coherent supporting procedures.

The pipe is built out of three pieces: a cylinder and two hemispherical caps. Glued to-
gether, the caps form a sphere with the same radius as the cylinder. This suggests we cdn
naturally decompose the procedure into a sum of volumes:

; = volume of length len & radius rad capped pipe
(define (pipe-volume len rad)
(+ (cylinder-volume len rad)
(sphere-volume rad)))

Programs should not be needlessly difficult to understand. To achieve this goal, experi-
enced programmers follow three basic literacy principles:

1. There are few restrictions on the names of parameters, procedures, and constants.
Therefore names should be chosen to reflect the interpretation of the values they
represent.

2. The interpretation of a name can be further elaborated with a comment, but don’t
restate the obvious. Comments are also welcome inside procedures to explain
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tricky algorithms, etc. In Scheme, a comment is placed between a semicolon and
the next end-of-line.

3. A program’s physical structure should reflect its logical structure. Use indenta-

tion to indicate the depths of nested expressions, and use blank lines to separate
tasks.

Returning to our procedure, we discover that the supporting procedures, cylin-
der-volume and pipe-volume are not predefined. We’ll have to provide our own defini-
tions. We can consult a geometry book to find the formulas for the volumes of a cylinder
and a sphere:

V1. = length * area of circular base

V e = 4/3 * 0 * radius’
Translating the first formula into Scheme gives:

;i = volume of length len & radius rad cylinder
(define (cylinder-volume len rad)
(* len (circle-area rad)))

The product of 4/3 and & is constant. It would be inefficient to compute this value each
time sphere-volume is called, therefore we define it as a global constant:

(define four-thirds-pi (* (/ 4 3) pi))

Pi is often predefined. If not, it can be defined by:

(define pi (acos -1)) ; since (cos pi) = -1
Translating the second formula into Scheme gives:

;i = volume of radius rad sphere
(define (sphere-volume rad)
(* four-thirds-pi (cube rad)))

The area of a radius r circle is 7r2. Translating this into Scheme gives:

; = area of radius rad circle
(define (circle-area rad)
(* pi (square rad)))

To finish, we only need to define square and cube:
;o= 272

(define (square z) (* z z))

; = z73

(define (cube z) (* z z z))

Compare these definitions with the following equivalent but inefficient, hard-to-
understand, and poorly structured definition:
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(define (pipe-volume i x) (+
(* 1 pi x x) (* 2
(/ 2 3) x xX)))

We can make this definition even harder to understand by decomposing it into incoherent
subtasks: ‘

(define (pipe-volume a b) (+
(* (helperl a b) b)
(* (helper2 b) b b)))

Where the helperl and helper2 procedures compute incoherent mathematical functions
that only have meaning in the context of the volume procedure:

(define (helperl u v) (* u pi v))
(define (helper2 1) (* 2 (/ 2 3) 1))

Building Procedures Using Application

In applicative Scheme the only tools for building procedures are application and ab-
straction (i.e.,, lambda expressions). Although we will learn in Chapter 8 that this is all
we need, building procedures with such simple tools is like making furniture with a
Swiss Army knife: possible, but challenging.

In this chapter we restrict ourselves to applicative Scheme. Our purpose is to wean
readers away from statement sequencing, the principle program-building tool provided
by languages like Pascal, FORTRAN, and C.! In the next chapter we will begin adding to
our tool kit.

Example: Coercions

A coercion is a procedure that transforms members of one domain into equivalent mem-
bers of another domain, where the meaning of equivalent is subject to interpretation and
debate. By convention, the name of a Scheme coercion usually has the form:

domain->range

Where “domain” indicates the input domain, “->” means to, and “range” indicates the
output domain. Scheme provides ten basic coercions:

number->string, string->number, char->integer, integer->char, list->string, string->list,
symbol->string, string->symbol, vector->list, list->vector

In addition, Scheme provides four procedures for coercing real numbers into integers:

I Applicative C would be C with all functions restricted to a single statement: return

DVDDECCTINNI
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floor, ceiling, truncate, round
and procedures that coerce exact numbers into inexact numbers and back again:
exact->inexact, inexact->exact

The best way to remember these coercions is to remember the coercion map in Figure
2.2: :

Figure 2.2

Notice that all coercions are reversible, and we don’t need a coercion from integers to
numbers because integers are already numbers. We can get an idea of what these coer-
cions do from the following transcript:

> (string->number "532.678")

532.678 :

> (number->string 532.678) ; 10 = default radix
"532.678"

> (number->string 26 2) ; 2 = optional radix
"11010"

> (string->number "1A" 16)2 ; 16 = optional radix
26
> (string->symbol "cat")3

cat

> (symbol->string 'cat)

"cat"

> (list->string '(#\c #\a #\t))
"cat"

> (string->list "cat")
(#\c #\a #\t)

2 In PC-Scheme: (string->number STRING EXACTNESS RADIX) where EXACT ::='e | 'i and
RADIX ::='b!'d I 'o | 'x and (number->string STRING FORMAT) where FORMAT ::= (INT) |
(FIXN) | (FLON) I SCIN M) | (HEUR).

3 In PC-Scheme Icatl is returned.
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> (list->vector '(42 #t "hello"))

#(42 #t "hello")

> (vector->1list #(42 #t "hello"))

(42 #t "hello")

> (char->integer #\a)

97 ; 97 = ASCII code for #\a
> (integer->char 97)

#\a

The coercions from reals to integers are subtly different. Assume r is any real number,
then:

(floor r) = largest integer < r.
(ceiling r) smallest integer 2 r.
(round r) closest integer to r.%
(truncate r) integer part of r.

The differences between these procedures are tricky when r is negative:
> (floor -4.5)

-5 ; = largest int £ -4.5

> (truncate -4.5) ’

-4 ; = int part of -4.5

> (ceiling -4.5)

-4 ; = smallest int 2 -4.5

> (round -4.5)

-4 ; = closest (even) int to -4.5

Here are some sample calls to the coercions between exact and inexact numbers. Unfor-
tunately, these coercions don’t always yield the expected result:

> (inexact->exact .5)
1/2
> (exact->inexact 1/2)
.5

We can define our own coercions by composing these coercions. For example, the fol-
lowing procedures coerce character vectors into symbols and vice-versa:

; = symbol made from a vector of chars
(define (vector->symbol char-vector)
(string->symbol
(list->string (vector->list char-vector))))

; = char vector made from a symbol
(define (symbol->vector symbol)

4 Returns nearest even integer when argument is halfway between two integers.
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(list->vector
(string->1list
(symbol->string symbol)))

The data flow structures of these procedures can be viewed as pipelines formed by com-
posed procedures as in Figure 2.3. :

'D[ symbol->string '—’I string->list I—’l list->vector [

Figure 2.3

Of course it makes sense to define coercions between domains other than the ones pro-
vided by Scheme. For example, assume we introduce four new domains:

MILE, YARD, FOOT, INCH ::= REAL
There are six basic coercions between these domains, these three:

; = # yards in m miles
(define (mile->yard m)
(* 1760 m)) ; 1 mile = 1760 yards

; = # feet in y yards
(define (yard->foot y) (* 3 y))

; = #inches in f feet
(define (foot->inch f) (* 12 f))

together with their inverses: inch->foot, foot->yard, and yard->mile. Other coercions can
be defined by composing the basic coercions. For example:

; = # inches in m miles
(define (mile->inch m)
(foot->inch (yard->foot (mile->yard m))))

Example: Palindromes

Doc note, I dissent. A fast never prevents a fatness. I diet on cod!

A palindrome is any string that is the same spelled forward or backward (upper- and
lowercase letters aren’t distinguished). For example, Rotator, YrekaBakery, and Race-
Car are palindromes. How can we define a predicate that detects palindromes?

; = #t, if string is a palindrome
(define (palindrome? string) ??°?)

If we had a procedure for reversing strings:
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; = reverse of string
(define (string-reverse string) ???)

we could use it to reverse palindrome?’s input string, then compare the result with the
original input string using string-ci=?:

; = #t, if string is a palindrome
(define (palindrome? string)
(string-ci=? string (string-reverse string)))

Scheme does provide a procedure for reversing lists:
(reverse vals) = list formed by reversing vals
For example:

> (reverse '(a e i o u))
(u oiea)

Unfortunately, Scheme does not provide procedures for reversing strings and vectors, but
these are easily defined using our coercions. For example:

; = reverse of string
(define (string-reverse string)
(list->string (reverse (string->list string))))

The Abstraction Principle

Structure is organization in space, while function is organization in time.
—<C. Judson Herrick and George Coghill, Naturalist and Philosopher

Every organism plays a special role in its environment. We think of this role as the or-
ganism’s purpose or function. Biologists explain an organism’s function in terms of its
internal organization or structure. Of course function does not always follow structure.
Evolution, adaptation, learning, differentiation, and mutation are all examples of the en-
vironment imposing new roles on an organism or species that may eventually lead to
structural changes.

The structure-function duality is also important in computer science and program-
ming. For a procedure, we identify structure with body and function with purpose. The
structure-function duality also applies to data. For example, the structure of a number is
its representation: binary, octal, decimal, hexadecimal, etc. The function of a number is
its interpretation: the distance between two points on a number line. (Can environment
influence function?)

The abstraction principle simply states:

Structure and function should be independent.
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This means people should be able to use a procedure or value without knowing how it is
implemented. It also means programmers can change the implementation without wor-
rying about breaking user programs.

One technique for hiding the representation of data in a given domain is to present the
user with abstract procedures for manipulating domain members. This collection of pro-
cedures is called an interface, an abstract data type, or an ADT. Typically, an ADT
consists of constructors for building new members of the domain, selectors for dissect-
ing existing members of the domain, and predicates for recognizing domain members.

Following the abstraction principle, we will not have much to say about how pairs,
lists, vectors, and strings are represented. Instead, we present the constructors and selec-
tors for each domain.

Constructors

A constructor is a procedure that builds a composite value from its components. Scheme
provides six basic constructors. Assume val and val; are arbitrary Scheme values and ¢
and c; are arbitrary Scheme characters:

(cons valjy valjy)

(valy . valjy).

(list valjy. ... valp) = (valy ... valp).
(vector valy ... valp) = #(valy ... valp).
(make-vector n val)

= length n vector #(val ... val)
(string c1 ... cp) = "cji...cp"
(make-string n c) = length n string "c ... c"

In addition, some implementations of Scheme provide constructors for complex and ra-
tional numbers:

(/ nm) = n/m.
(make-rectangular x y) = x+yi.

(make-polar x y) = x*xely

Where n and m are integers (m # 0), and x and y are reals. Here are some sample applica-
tions:

> (cons 't #t)
(t . #t)
> (list #f "f" #\f 'f)
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(#£ "f" A\f £)

> (vector #f "f" #\f 'f)
#(#£ "f" #\f £)

> (make-vector 10 0)

#(0 0 0 000 000 0)
> (string #\I #\B #\M)

"IBM"

> (make-string #\? 10)
nRP???2?22°°?2"

> (/ 4 6)

2/3

> (make-rectangular 3 -4)
3-4i

> (make-polar @3 -4)
-1.960930862590836+2.27040748592378441i

Why do we need constructors? Why can’t we replace every call to a constructor by an
equivalent literal? For example, why would we write:

(define origin (list 0 0 0))
when we could write:
(define origin '(0 0 0))

Constructors are needed when components aren’t known in advance. Compare the fol-
lowing programmer-defined constructors for three-dimensional points represented as
lists:

(define (make-pointl x y z) '(Xx ¥ 2))

(define (make-point2 x y z) (list x y 2))
The second constructor works well:

> (make-point2 0 0 0)
(0 0 0)
> (make-point2 1 2 3)
(1L 2 3)

But the first constructor always returns the same incorrect result:

> (make-pointl 0 0 0)

(xy 2)

> (make-pointl 1 2 3)

(x y 2)

Why did this happen? Remember, the single quote instructs the evaluator to interpret

what follows literally. Thus, the evaluator interpreted the body of make-pointl as a list of
three symbols: x, y, and z. Each time make-pointl is called, this same list is returned.
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The same problem occurs with vectors, strings, and pairs. Assume the following defi-

nitions have been made:

(define x #\a)
(define y #\b)
(define z #\c)

Now compare the following evaluations:

> (vector x y z)
#(#\a #\b #\c)

> #(x v 2z)

#(x y 2z)

> (string x y 2z)
"abc"

> llxyz“

“XYZ"

> (cons x y)
(#\a . #\b)

> '"(x . Y)

(x . vy)

Selectors

A selector is a procedure that returns the component of a composite value at a given po-
sition. In a sense, constructors and selectors are inverse operations. Scheme provides five

basic selectors:

(car '(vg . V1)) = vg
(cdr '(vg . V1)) =vi1
(list-ref '(vgq vn) k)
(vector-ref #(vyg . vp) k)

(string-ref "cqg...cp" k)

=Vk

Vk

Ck

where v; is any value, k is any unsigned integer, and c; is any character. Notice the first

item in a list, vector, or string has position 0.

In addition, some implementations of Scheme provide selectors for rational and com-

plex numbers:
(numerator n/m) =n
(denominator n/m) = m



2.3.3.

2. Procedures
(real-part atbi) = a
(imag-part atbi) = zb

. . 2 2
(magnitude azbi) = Vva +b
(angle atbi) = atan(zb/a)

Lists as Pairs

One violation of the abstraction principle has become a tradition among LISP and
Scheme programmers. Assume the following definition has been made:

(define vowels '(a e 1 o u))
Inside the computer vowels is identical to the pair:
(a . (e i o uw))

Of course the list (e i 0 u) is represented as the pair (e . (i 0 u)), therefore vowels is actu-
ally represented as the pair:

(a . (e . (1 . (o. (u. ()N

The point is, we can use car and cdr to extract the head and tail of vowels, and cons to
add new elements to the beginning of vowels:

> (car vowels)

a

> (cdr vowels)

(e i o u)

> (cons 'y vowels)
(yaeiou)

Like all the procedures discussed so far, these are nondestructive. The volatile lists pro-
duced by cdr and cons disappeared and vowels remained unchanged:

> vowels
(a ei ou)

Be sure you understand the different behavior of cdr on lists and pairs. The list (a b) is

the same as the pair (a . (b)), not the pair (a . b). Therefore cdr returns (b) when applied
to (a b), and b when applied to (a . b):

> (cdr '(a b))
(b)

> (cdr '(a . b))
b
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Scheme provides some popular compositions of car and cdr. Assume p is any list or pair,
then:

(cadr p) = (car (cdr p))

(cdar p) = (cdr (car p))

(caar p) = (car (car p))

(cddr p) = (cdr (cdr p))

(caadr p) = (car (cadr p))
(cdddr p) = (cdr (cddr p))
etc.

If your implementation of Scheme doesn’t predefine the combination of cars and cdrs
you need, just define it yourself: '

(define (cddadr x) (cdr (cdadr x)))

Scheme provides other procedures for searching, appending, and computing lengths of
sequences. These are described in detail in Appendix 2.2: Sequences.

Example: Association Lists as Records

An association list (alist) is a list of pairs called associations or bindings:
ALIST ::= (ASSOCIATION ... )

An association is a pair of the form:

ASSOCIATION ::= (ATTRIBUTE . VALUE)

where ATTRIBUTE is any Scheme value that identifies a type of attribute (name, height,
marital status, etc.) and VALUE is the value of the attribute (Smith, 6'2", single, etc.)

Association lists are useful for representing records, graphs, and tables. Tables and
graphs will be discussed later in the chapter. In this section we consider records.

A record (called a struct in C) represents the relevant properties of a person, place, or
thing. We can represent a record as a list of associations in which ATTRIBUTE is a sym-
bol that names the attribute. For example, a student record might contain the name, social
security number, and grade point average of a student:

((name . "Picard") (ssn . 998869999) (gpa . 3.75)))
((name . "Moe") (ssn . 002869999) (gpa . 1.5))
((name . "Spock") (ssn . 905869999) (gpa . 3.9))

We can view student records as a new domain of composite values:

STUDENT ::=
((name . STRING) (ssn . INTEGER) (gpa . REAL))

As such, it makes sense to define an ADT (constructors and selectors) for the new do-
main. The constructor for the student domain expects a name, social security number,
and grade point average for input:
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; = record representing a student
(define (make-student name ssn gpa)
(list (cons 'name name)
(cons 'ssn ssn)
(cons 'gpa gpa)))

We can use pair and list selectors to implement student selectors:

; = name of student
(define (name student)
(cdar student))

; = social security number of student
(define (ssn student)
(cdadr student))

; = grade point average of student
(define (gpa student)
(cdaddr student))

Because the computer must perform some bookkeeping work each time a procedure
is called, it is more efficient to define these selectors as synonyms for the single proce-
dures they call:

(define name cdar)
(define ssn cdadr)
(define gpa cdaddr)

Of course, we could have used list-ref to select associations. This might have been a bet-
ter choice, but it is important to gain experience combining car and cdr.
Here are some sample constructions:

(define picard (make-student "Picard" 998869999 3.75))
(define moe (make-student "Moe" 002869999 1.5))
(define spock (make-student "Spock" 905869999 3.9))

and some sample evaluations:

> (ssn spock)
905869999

> (name moe)

” Moe "

> (gpa picard)
3.75

Here are some trivial applications of our selectors and constructor:

; = #t if student's gpa < 2.0
(define (probation? student)
(< (gpa student) 2.0))
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; = result of updating student's gpa to new-gpa
(define (update-gpa student new-gpa)
(make-student
(name student) (ssn student) new-gpa))

Note that updating the gpa of a student record involves constructing a new record identi-
cal to the old record except for the new gpa.

Polymorphic Procedures

A procedure that expects each of its inputs to be from a specific domain is called mono-
morphic. Attempting to apply a monomorphic procedure to inputs from different do-
mains results in a type error. Except for the constructors, all the procedures we have
studied so far have been monomorphic.

The body of a polymorphic procedure is completely or partially type-independent.
In other words, the algorithm doesn’t particularly care about the types of its inputs.
Therefore a polymorphic procedure appears to work on inputs from a variety of domains.
It’s easy for programmers to define polymorphic procedures. Here are a few examples;
make sure you understand why they are polymorphic:

(define (id wval) val) ; the identity procedure
(define (always-0 val) 0)

(define (first vall val2) vall)

(define (second vall val2) val2)

(define (make-pair val) (cons val val))

Scheme provides several primitive polymorphic predicates that are discussed later.

Equivalence Predicates

In addition to the five monomorphic equality predicates:

=, char=?, char-ci=?, string=?, string-ci=?
Scheme provides three polymorphic equality predicates:

eq?, equal?, eqv?

Comparing arbitrary values is controversial because there are two competing notions of
equivalence: physical and structural. Two values are physically equivalent if they have
the same address in the computer’s memory, i.e., if they are literally the same object.
Two values are structurally equivalent if they have the same mathematical structure, or,
at the risk of oversimplifying, if they look the same when printed by the Scheme inter-
preter. The eq? predicate tests for physical equivalence, while the equal? predicate tests
for structural equivalence.
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Predicting when two values are physically equivalent is tricky. Two composite values
are not physically equivalent if they are created by separate calls to a constructor. For ex-
ample, assume the following definitions have been made:

(define valsl (list 1 2 3))
(define vals2 (list 1 2 3))
(define vals3 vals2)

All three lists are structurally equivalent. In addition, vals2 is physically equivalent to
vals3, but vals2 and valsl are not physically equivalent because they were created by
separate calls to the list constructor:

> (eq? valsl vals2)
#£
> (eqg? vals2 vals3)
#t

Structurally equivalent literal values may or may not be physically equivalent depending
on the Scheme implementation:

> (eg? '"(1 2 3) '"(1 2 3))
unspecified
> (eq? 5 5)
unspecified

The empty list, #f, and structurally equivalent symbols are the notable exceptions. These
are unique objects in all Scheme implementations:

> (eg? 'cat 'CAT) ; symbols are case insensitive
#t

> (eq? #f #f)

#t

> (eq? "() '())

#t

The eqv? predicate is a hybrid between eq? and equal? For simple values (numbers,
Booles, chars, symbols) it tests for structural equivalence, but for composite values (lists,
strings, vectors, pairs) it tests for physical equivalence.

The not and null? Predicates

The eq? predicate is normally used for comparing symbols. Because #f and the empty list

are unique values, Scheme provides special polymorphic procedures for recognizing
them:

(not wval) = (eg? val #f)
(null? val) (eg? val '())
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Although #f is a unique object in Scheme, in most contexts any value other than #f can
be used instead of #t. Let’s call any value other than #f unfalse. We can design a simple
predicate to test for unfalse values:

(define (unfalse? val) (not (not val)))

Recognition Predicates

Another category of polymorphic predicates are recognizers. A recognizer usually has a
name like domain? and returns #t if its input belongs to domain, and #f otherwise. There
are fifteen primitive recognizers:

symbol?, number?, Boolean?, char?, pair?, list?, procedure?, vector?, string?,
input-port?, output-port?, integer?, real?, complex?, rational?

Recognizing values can get tricky. Make sure you understand the following evaluations:

> (pair? '(a e i o u))

#t ; nonempty lists are pairs!
> (pair? '())

#£ ; but not the empty list!

> (real? 1)

#t ; all integers are reals

> (integer? 1.0)

#t ; representation independence
> (integer? 1.1)

#£

> (procedure? '+)

#£ ; '+ is a symbol

> (procedure? +)

#t

> (boolean? '())

#£ ; = #t in PC-Scheme!

Example: Searching Association Lists

Tables

Related data can often be organized into a table. For example, the following table repre-
sents scores on some recent Star Fleet Academy math tests:

NAME TEST1 TEST2 TEST3
Picard 92 90 89
Moe 34 37 36

spock 99 100 99
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Each column in the table can be represented by an association list:

(define testl
'(("Picard" . 92) ("Moe" . 34) ("Spock" . 99)))

(define test2 .
"(("Picard" . 90) ("Moe" . 37) ("Spock" . 100)))

(define test3
'(("Picard" . 89) ("Moe" . 36) ("Spock" . 99)))

In this association, ATTRIBUTE is the name of the student and VALUE is the associated
test score. The entire table can be represented by an association list of association lists:

(define tests
(list (cons 'testl testl)
(cons 'test2 test2)
(cons 'test3 test3)))

In this case ATTRIBUTE is an identifier that names VALUE, the table of test scores.
Scheme provides three procedures for searching association lists:

assoc, assqg, assv
Each expects an association list and a key as input:

(ass* key assocs)
= the left-most member a of assocs with (car a)
equivalent to key. Depending on *, equivalent means eq?,
eqv?, or equal?
= #f, otherwise

Assoc uses equal? to compare keys, while assv uses eqv? and assq uses eq? Here are
some sample evaluations:

> (assoc "Moe" testl)

("Moe" . 34)

> (cdr (assoc "Moe" test2))

37

> (assv 'test2 tests)

(("Picard" . 90) ("Moe" . 37) ("Spock" . 100))

> (assv "Moe" test2)

unspecified

> (cdr (assoc "Spock" (cdr (assq 'test3 tests))))
929

The value of (assv “Moe” test2) was unspecified because eqv? was used to compare
“Moe” with the “Moe” inside test2. In some versions of Scheme this returns 37, while in
other versions #f may be returned.
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Graphs

The graph of a procedure proc is the set of points (x, y) in the plane such that y = (proc x).
For example, the graph of the square procedure is the parabola:
(x, v) | y=x2}

An association list can be used to represent the graphs of procedures with only finitely
many inputs. For example, suppose we want to implement a procedure that translates
digit names to their corresponding numeric value:

> (string->digit "one")
1
> (string->digit "three")

(string->digit "nine")

O v Ww

This procedure only has ten valid inputs: “zero” to “nine.” This suggests we could
represent its graph as an association list:

(define string->digit-graph
"(("zero" . 0) ("one" . 1) ("two" . 2)
("three" . 3) ("four" . 4) ("five"-. 5)
("six" . 6) ("seven" . 7) ("eight" . 8)
("nine" . 9))) :

We can implement the procedure as a simple search of the graph:

i = coercion of string to corresponding digit
(define (string->digit string)
(cdr (assoc string string->digit-graph)))

Could assv have been used in this definition instead of assoc?

Meta-Procedures
Map and apply are examples of meta-procedures because each expects an arbitrary pro-
cedure and a list as input:
(apply proc vals) = result of applying proc to vals
(map proc vals)
= list formed by applying proc to each member of vals.
In the case of apply, the list is treated as arguments to the procedure parameter:

> (apply + '(2 3 4 5))
14
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> (apply lcm '(2 3 4 5))
60

> (apply cons '(x 2))

(x . 2)

> (apply append '((1 2 3) (4 5 6) (7 8 9)))
(12345678 9)

Apply is useful when we may not know the procedure or inputs in advance. For example,
to compute the average of a list of numbers we divide the sum of the list by its length.
But how can we compute the sum of a list of unknown numbers? The solution is to use
apply:
; = average of numbers in the list nums
(define (average nums)

(/ (apply + nums) (length nums)))

As another example, here’s a simple predicate that determines if a list of names is sorted:

; = #t if names is sorted
(define (sorted? names) (apply string-ci<=? names))

If map’s procedure argument expects two or more inputs, then two or more list argu-
ments of equal length must be provided to map? :

> (map cons '(1 2 3) '(4 5 6))

((L . 4) (2 .5) (3 .6))

> (map + '(1 2 3) '(4 5 6))

(5 7 9)

Assume that test scores are recorded as association lists of the form:

TEST ::= ((STUDENT . SCORE) ... )
STUDENT ::= STRING
SCORE ::= REAL

We can use map with the average procedure defined earlier to compute the average of
arbitrary tests:

; = average score of test
(define (test-avg test)
(average (map cdr test)))

We can use the map procedure to define two useful predicates. Both expect a predicate
pred? and a list vals as input:

(all? pred? vals)
= #t, if (pred? v) for all v in vals
= #f, otherwise

5 Warning: This version of map doesn't work in TI PC-Scheme.
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(some? pred? vals)
= #t, if (pred? v) for some vals
= #f, otherwise

The all? predicate converts vals into a list of booleans by mapping pred? along vals. #t is
returned if #f is not a member of the mapped list:

;i = #t if for all v in vals (red? v) = #t
(define (all? pred? vals)
(not (member? #f (map pred? vals))))

The some? predicate also converts vals into a list of booleans using map, but returns #t in
case #t is a member of the mapped list:

; = #t if some (pred? v) = #t for some v in vals
(define (some? pred? vals)
(member? #t (map pred? vals)))

The member? predicate is defined using Scheme’s member procedure, which is defined
in Appendix 2.2: Sequences:

(define (member? val vals)
(unfalse? (member val vals)))

We can use these predicates to implement many other useful predicates. For example, not
all lists can be coerced into strings, only lists of characters. Therefore, it might be useful
to have a predicate that determines if a list consists of only characters:

; = #t if all members of list vals are characters
(define (char-1list? vals)
(all? char? vals))

Suppose we need a predicate that returns #t if its input is a string containing a vowel. We
can coerce the string into a list, then use some? with the vowel? predicate defined earlier:

; = #t if string contains a vowel
(define (contains-vowel? string)
(some? vowel? (string->list string)))

Appendices

Appendix 2.1. Mathematics in Scheme

Arithmetic

All numbers can be combined by addition (+), subtraction (), multiplication (*), and di-
vision (/). The addition and multiplication operators can combine arbitrarily long se-
quences of numbers:
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>(+123456 789 10)
55

>(*1 23456789 10)
3628800

Even a single input or no inputs at all are allowed:

> (+ 2) ; implicit second input is 0
i (* 2) ; implicit second input is 1
i (+) ; implicit inputs are both 0
g (*) ; implicit inputs are both 1
1

Division and subtraction normally combine pairs of numbers:

> (/ 5 3)

5/3

>(/ 5.6 7.9)
.7088607594936708
> (- 3 8.2)
-5.199999999999999

With one input division and subtraction compute multiplicative and additive inverses re-
spectively (i.e., 1/z and -2):

> (- 5.2)

-5.2

>/ 7)

1/7

> (/ 7.0)
.142857142857143

Of course, all four operations can combine numbers from any of the number domains:

> (+ 2 3/5 4.9 5+61i 3e2)
312.5+61

> (* 2 3/5 4.9 5+6i 3e2)
8820.+10584.1

> (/ 3/5 4+21)
3/25-3/501

> (- 3/5 5+61)

-22/5-61

> (- 4-31)

-4+31

> (/ 4+2i)

1/5-1/101
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Order and Equivalence Predicates

All numbers can be compared using Scheme’s = and zero? predicates. Assume z; and z
are numbers:
(= 21 ... Zn)

= #t, if 2] = ... = Zpn

= #f, otherwise.

(zero? z)
= #t, if 2z = 0
#f, otherwise.

The following predicates are based on the usual ordering of the real numbers. Assume r;
and r are reals:
(<r1p ... TIr n)

= #t, if r1 < ... < rp
= #f, otherwise.

(<= r1 ... Ip)
= #t, if r1 < < rp
= #f, otherwise.

(> rg ... I'n)
= #t, if r7 > ... > rpy
= #f, otherwise.

(> r1 ... In)
= #t, if r1 2 2 rp

= #f, otherwise.

(positive? r)
= #t, if r > O
= #f, otherwise.

(negative? r)
= #t, if r < 0
= #f, otherwise.

(max ry1 ... rp) largest rj,

(min r1 ... rp) smallest rj .

(abs r) = |r]|.
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Order predicates are restricted to reals because the complex numbers don’t have a
*“usual” order.

Comparing Characters and Strings

An ordered domain is any domain that comes equipped with a natural ordering. REAL
is not Scheme’s only ordered domain. STRING and CHAR also have natural orderings
derived from the ASCII codes of characters.

Assume ¢; is a character, cj <A cj means that the ASCII code of ¢; is less than the
ASCII code of ¢, and cj =A cjmeans the ASCII code of ¢; is the same as the ASCII code
for cj. (Note: The order of ASCII codes for letters and digits agrees with the usual alpha-
betic order.) Scheme provides the following predicates for comparing characters:

(char=? c1 ... cp) = #t, if c1 =p ... =a Cp
= #f, otherwise.

(char<? cj ... cp) = #t if c1 <a ... <p ‘cn
= #f otherwise.

(char>? c1 ... cp) = #t if c1 >A ... >a Cn
= #f otherwise.

(char<=? c3 ... cp) = #t if c1 €p ... Sap cp
#f otherwise.

(char>=? ¢c1 ... Cp)

= #t if c1 25 ... 2p Cp
= #f otherwise.
(char>? c1 ... cp) = #t if c1 >po ... >p ¢cn

= #f otherwise.

Scheme provides similar predicates for comparing strings. Assume that s; is a string, 5; <g
sj means s; is a prefix of sj, or if c; is the first character in s; that’s different from the cor-
responding character ¢j in sj, then ¢; <A ¢j. If s5i and s; are identical, then we write s;j =g
sj:
(string=? s7 ... sp) = #t, if s1 =g ... =g sp

= #f, otherwise.

(string<? s7 ... sp) = #t if s1 <g ... <g sp
= #f otherwise.

(string>? s1 ... sp) = #t if s3 >g ... >g s
= #f otherwise.
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(string<=? 51 ... sp) = #t if s] <g ... <g sp
= #f otherwise.

(string>=? s1 ... sp) = #t if s] 25 ... 2g sp
#f otherwise.

#t if S]_‘>S ... >g Sp
#f otherwise.

(string>? s1 ... sp)

Scheme also provides case-insensitive (ci) versions of these predicates:

char-ci=?, char-ci<?, char-ci>?,
char-ci<=?, char-ci>=?

string-ci=?, string-ci<?, string-ci>?,
string-ci<=?, string-ci>=?

Here are some sample evaluations:

> (string=? "HeLlO" "hElLo")

#£

> (string-ci=? "HeLlO" "hElLo")

#t

> (char-ci<? #\a #\Z)

#t

> (char<? #\a #\2)

#£

> (char<? #\tab #\# #\2 #\5 #\? #\Z #\a #\rubout)
tt(string<? nn " n 'lall llaaa" "abll )
#t

Divisibility
Of all the number domains, only the integers are not closed under division. For example,
1 and 2 are integers, but 1/2 is not. This makes the question of which integers divide a

given integer critical. Scheme provides seven basic procedures for determining various
divisibility properties. Assume n, m, nj, ..., nj are integers:

(quotient n m) = truncation of n/m
(remainder n m)=n - m * (quotient n m)
(modulo n m) = integer congruent to n modulo m

(ged n1 ... nk)
= greatest common divisor of n1 ... ng
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(lcm n1 ... ng) = least common multiple of n3 ... ng
(odd? n) = #t, if n is odd
= #f, otherwise
(even? n) = #t, if n is even

= #f, otherwise

These procedures require further explanation. Number theory (i.e., arithmetic) begins
with the long division algorithm every child learns in elementary school, but which can
be stated more pretentiously as a theorem:

Theorem (Euclid) For any two integers m and n, if n £ 0, then there are unique integers
q and r (called the quotient and remainder of m and n respectively) such that 0 < Irl <
Inl, r and m have the same sign, and m = (n * q) + r.

Scheme provides the quotient and remainder procedures for computing g and r given m
and n as inputs:

> (quotient -14 3)
-4
> (remainder -14 3)
-2

We can use Scheme’s odd? and even? predicates to determine whether an integer is
divisible by two, or, more generally, we can use the remainder procedure to determine if
any integer divides another:

; = #t if m divides n
(define (divides? m n)
(zero? (remainder m n)))

Congruence

If the difference of two integers m and n is divisible by an integer k, we say that m is
congruent to n modulo &, and we write:

m

n (mod k)
We could express this as a Scheme procedure:

; = #t if m is congruent to n mod k
(define (congruent? m n k)
(divides? (- m n) k))

A basic theorem regarding congruence is:

Theorem Given any two integers m and X, there is a unique integer n between 0 and n
such that m = n (mod k).
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For example:

14 = 2 (mod 3) ; m= 14, k = 3 & n = 2
-14 = 1 (mod 3) ; m=-14, k=3 &n=1
14 = -1 (mod -3) ; m =14, k= -3 &n = -1

Scheme provides the modulo procedure for computing n given m and k:

> (modulo -14 -3)
-2

> (modulo -14 3)
1

The modulo procedure can be useful for implementing modular arithmetic, i.e., arithme-
tic that “wraps around” when answers get too big:

; =m+ n mod k
(define (mod+ m n k) (modulo (+ m n) Kk))

; =m * n mod k
(define (mod* m n k) (modulo (* m n) k))

; =m - n mod kK
(define (mod- m n k) (modulo (- m n) k))

; = m/n mod k
(define (mod/ m n k) (modulo (quotient m n) k))

For example, suppose we want to add the hours on a military clock (i.e., 0 < hour < 23).
We use the “modulo” implementations of +, *, and —

; = time h hours after time t
(define (hours+ t h) (mod+ t h 24))

For another example, binary arithmetic is arithmetic restricted to the domain of binary
values, called bits:

BIT ::=0 | 1

Curiously, the bit 1 is its own additive and multiplicative inverse, ie,l1+1=0and1*1
= 1. We can implement bit versions of +, *, —, and /:

= binary sum of bits bl and b2
(define (bit+ bl b2) (mod+ bl b2 2))

Here are some sample evaluations:

> (hours+ 9 10)
19

> (hours+ 9 19)
4
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> (hours+ 20 20)
16

> (bit+ 1 1)

0

Obviously the modulo and remainder procedures are very similar. In fact:
| (remainder m n)| = | (modulo m n)|

where (remainder m n) takes the sign of m, while (modulo m n) takes the sign of n.

Common Multiples and Divisors

A common divisor of an integer sequence nj, n2, ..., nf is any positive integer n that di-
vides each number in the sequence, i.e., for each i:

> (divides? nj n)

#t ‘

The greatest common divisor of nj, n2, ..., ng is the largest of all the common divisors of
nj, n2, ..., nk. Scheme provides a procedure for computing greatest common divisors:

> (gcd 32 48 -60)
4
> (gcd 20 30 40)
10

Two integers are relatively prime if their greatest common divisor is 1. We can imple-
ment this definition as a Scheme predicate:

; = #t if m & n are relatively prime
(define (rel-prime? m n)
(= 1 (gcd m n)))
A common multiple of an integer sequence nj, n2, ..., ng is any positive integer n that
can be divided by each number in the sequence, i.e., for each i:
> (divides? n nj)
#t
The least common multiple of nj, n2, ..., ng is the least of all the common multiples of
nj, n2, ..., nk. Scheme provides a procedure for computing least common multiples:

> (lcm 32 48 -60)
480
> (lcm 20 30 40)
120
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Logs and Exponents

Logarithms and exponents play an important role in growth and decay problems. Scheme
provides procedures for computing logs and exponents to the base e, where e is the irra-
tional number approximated by e = 2.718281828459045.

(exp z) eZ.
(log z) = 1ln(z).

If e isn’t a predefined constant, we can define it ourselves as follows:
(define e (exp 1)) ; since el = e

Some implementations of Scheme provide a procedure for computing exponents to an
arbitrary base:

(expt a b) = ab

Unfortunately, there is no corresponding procedure for computing logarithms to an arbi-
trary base. Instead, we must define our own using the formula:

log.(y)

log(y) = log (x)
e

Translating this formula into Scheme is simple. We call it logt to remind us of its rela-
tionship with expt:

; = log y base x
(define (logt x y) (/ (log y) (log Xx)))

Of course exponents and bases can be decimals, ratios, even complex numbers:

> (expt 2 3)

8

> (expt 9 1/2)

3.0000000000000004

> (expt 27 (/ 1 3))

2.9999999999999996

> (expt 2+3i 1+1i)

-.8636068988831277+1.03688939691477631

> (expt 25 1/2)

4.999999999999999

> (expt 2 1000)
107150860718626732094842504906000181056140481170553360744375
038837035105112493612249319837881569585812759467291755314682
518714528569231404359845775746985748039345677748242309854210
746050623711418779541821530464749835819412673

The last example shows some implementations of Scheme use multiple-precision arith-
metic.
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Scheme also provides a square root procedure:
(sqrt z) = I\/ZI.
Amazingly, this procedure even works on negative numbers:
> (sgrt -1)
+i
We don’t really need a square root procedure. Recall that the nth root of z is z1/", We can
use this formula to define a procedure for computing nth roots:
i = z7(1/mn)
(define (nth-root z n) (expt z (/ n)))

Example

Growth and decay problems concern computing the size of a population after n cycles of
growth or decay at a given rate. The population can be organisms, radioactive carbon at-
oms, dollars, or anything else. Computing compounded interest is a classical example.

We can compute the value V of an investment of P dollars invested for n years at an
annual interest rate of r compounded annually using the formula:

V =P(1 + )l
Translating this into Scheme is easy using expt:

; = value of $p investment at rate r after n periods
(define (value p r n)
(* p (expt (+ 1 r) n)))

Trigonometry

Trigonometric functions are important for modeling harmonic motion (vibration, oscilla-
tion, etc.). Scheme provides the usual assortment of trigonometric procedures. All of
these procedures assume that angles are measured in radians:

(sin r) = sin(r)
(cos r) = cos(r)
(tan r) = tan(r)

The atan procedure accepts one or two inputs. Assume z is a complex number and x and y
are real numbers:

(atan z) = arctan(z)
(atan x y) = arctan(x+yi)

We can easily define csc, sec, and cot procedures:

; = csc of z radians
(define (csc z) (/ (sin z)))
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; = cot of z radians
(define (cot z) ???)

; = sec of z radians
(define (sec z) ??7?)

If pi isn’t a predefined constant in the implementation of Scheme we are using, we can
define it ourselves as follows:

(define pi (acos -1)) ; because (cos pi) = -1

Appendix 2.2. Sequences

Scheme provides several groups of procedures for analyzing, combining, and dissecting
sequences.

Appending Sequences

Appending two sequences means concatenating them into a single sequence. Scheme
provides primitive procedures for appending lists and strings, but not vectors (this is left
as an exercise). Assume vals; is a list and str; is a string:

(append valsy ... valsp)

= the list formed by concatenating valj ... valp.
(string-append strjy ... strp)

= the string formed by concatenating strj ... strp.

Here are some sample calls:

> (string-append "Is" tan" "bul")
Istanbul

> (append '(a) '(e) '(i) '(o u))
(a ei ou)

Of course we can use cons to add an element to the beginning of a list, but Scheme pro-
vides no procedure for adding an element to the end of a list. However, we can imple-
ment such a procedure using append:

; = result of adding val to end of vals
(define (cons-last val vals)
(append vals (list val)))

Notice that it was necessary to coerce val into a list before applying append. Unlike cons,
append expects all of its inputs to be lists.
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Computing Lengths of Sequences

Scheme provides procedures for computing lengths of strings, vectors, and lists:

(length vals) = the number of members in vals
(vector-length vec) = the number of members in vec
(string-length str) = the number of characters in str

where vals is a list, vec is a vector, and stris a string. Here are some sample evaluations:
(string-length "Hello")

(length '"((1 2 3) (4 5 6)))

>
5
>
2
> (vector-length #(a e i o u))
5

Why doesn’t Scheme provide a procedure for computing lengths of pairs?

Extracting Subsequences

The tail of a sequence is the sequence less some of its initial members. For example, the
tails of the string “orange” are:

"orange", "range", "ange", "nge", "ge", "e", and "".

The tails of the vector #(a e i o u) are:

#(a e 1 ou), #(e i ou), #(i o u), #(o u), #(u), and #().
The tails of the list (a e i o u) are:

(aeiou), (¢ iou), (i ou)y, (0uw), (u)y, and ().

Scheme provides a wide variety of procedures for extracting list tails. We have already
seen that the procedures cdr, cddr, cdddr, etc. can be used for this purpose. Some imple-
mentations of Scheme also provide a procedure called list-tail that extracts the tail of a
list beginning at a given integer position n = 0:
(list-tail vals n)

= the tail of vals beginning in position n

Assume the following definition has been made:

(define vowels '(a e i o u))

Here are some sample calls to list-tail. Remember, the first item of a list is in position 0:

> (list-tail vowels 3)
(o u)

> (list-tail vowels 0)
(aeiou)

> (list-tail vowels 100)
0
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Additionally, Scheme provides three procedures for extracting tails beginning at some
specific member:

member, memv, memq
These procedures all work the same way:

(mem* val vals)
= the tail of vals beginning with the left-most member
equivalent to val. (depending on *, equivalent means eq?,
eqv?, or equal?)
= #f, if no match is found.

The three procedures differ in the way val is compared to members of vals. Member uses
equal?, memv uses eqv?, and memq uses eq? This can lead to some confusion as the next
example shows:

> (member "Al" '("Rolf" "Al" "Lars"))
("Al" "Larsu)
> (memg "Al" '("Rolf" "Al" "Lars"))

unspecified ;"Al1" may not be eqgv? to "Al" in
vals

> (member 'Al '(Rolf Al Lars))

(Al Lars) ; Al is equal? to a list member

> (member "Al" '(Rolf Al Lars))

34 ; vals is a list of symbols, not strings

> (memqg 'Al '(Rolf Al Lars))

(Al Lars) ; equal? = eqv? for symbols

People often mistake the member procedures for predicates. This isn’t true, but we can
use them to define corresponding predicates. The idea is if val is a member of vals, then
(member val vals) returns a nonempty list; otherwise it returns #f. Hence:

; = #t if val is in vals
(define (member? val vals)
(unfalse? (member val vals)))

We can use this predicate to define others. For example, assume the following definition
is made:

(define vowels
T(#\a #\A #\e #\E #\1i #\I #\o #\0 #\u #\U))
(define punctuation '(#\. #\, #\; #\: #\! #\? #\-))

To determine if a character is a vowel or a punctuation mark, we only need to search the
appropriate list:

(define (vowel? char)
(member? char vowels))
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(define (punctuation? char)
(member? char punctuation))

QOddly, Scheme doesn’t provide procedures for extracting the tails of vectors. This is not
a problem because we can coerce any vector to a list, extract the tail, then coerce the re-
sult back to a vector. For example:

; = tail of vec beginning at val
(define (vector-member val vec)
(list->vector (member val (vector->list vec))))

; = tail of vec beginning at position pos
(define (vector-tail vec pos)
(list->vector (list-tail (vector->list vec) pos)))

Substrings

We don’t need string-tail because Scheme provides a more powerful procedure for ex-
tracting substrings from strings given the start and end position of the desired substring.
Assume n and m are natural numbers:

(substring string n m) =
substring of string beginning in position n and ending in
position m - 1.

Here are some sample evaluations:

> (substring "Apple" 2 4)
llpl"
> (substring "Apple" 0 3)
llApl"

Notice that the substring begins with the character in the position indicated by the first
position input, but ends with the character one position before the second position input.
We can use the sublist procedure to define procedures for extracting prefixes and suffixes
of strings:

; = prefix of string ending at position pos - 1
(define (prefix string pos)
(substring string 0 pos))

; = suffix of string beginning at position pos
(define (suffix string pos)
(substring string pos (string-length string)))

These procedures can be used to develop predicates that test if one string is a prefix or
suffix of another:
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; = #t if string2 is a prefix of stringl
(define (prefix? stringl string2)
(string="?
string2
(prefix stringl (string-length string2))))

; = #t if string2 is a suffix of stringl
(define (suffix? stringl string2)
(string="?
string2
(suffix
stringl
(- (string-length stringl)
(string-length string2)))))

Sublists

Assume vals is a list, and start and end are unsigned integers such that 0 < start < end <
(length vals). Then:

(sublist vals start end)
= the sublist beginning at position
start, and ending at position (end - 1).

Unfortunately, Scheme does not provide this procedure. How can we define it? We could
try to combine the substring procedure with the coercions between lists and strings:

; = sublist between positions start and (end - 1)
(define (sublist vals start end)
(string->list
(substring (list->string vals) start end)))

This works pretty well when vals is a list of characters:

> (sublist '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7) 2 5)
(1\2 #\3 #\4)

But, of course, it doesn’t work at all if vals contains noncharacters:

> (sublist '(0 1 23 456 7) 25)
error: bad input to list->string

Let’s start again using the top down approach. We can use list-tail to chop off the un-
wanted members between position 0 and position start:

(list-tail vals start)

How can we lose the members from position end to the last position of the list? This
would be easy if we had a procedure that extracted list prefixes. First, let’s be clear about
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what a list prefix is. A list prefix should be a list consisting of all but a few of the last
members of a list. For example, the prefixes of (ae i o u) are:

(a e ilou)
(a e i 0)
(a e 1)

(a e)

(a)

)

The list-prefix procedure can be specified by:

(list-prefix vals pos) =
the prefix of vals from position 0 up to position pos.

We can use this to implement sublist. In this case the input to list-prefix will be the tail:
(list-tail vals start). We will want to chop off the elements of this list beginning with pos
= (end — 1) - start: '

; = sublist between positions start and (end - 1)
(define (sublist vals start end)
(list-prefix (list-tail vals start)
(- (- end 1) start)))

Unfortunately, Scheme does not provide a procedure for extracting list prefixes. Let’s
write a procedure to do this. The form of our definition will be:

;= préfix of vals ending at position pos
(define (list-prefix vals pos) ???) ; stub

Our plan is to reverse the result of applying list-tail to the reversed input list:
(reverse (list-tail (reverse vals) position2))

What should position2 be? How is it related to the position parameter? Observe that an
element in position k of a length n list is in position n — (k + 1) of the reversed list. For
example, o is in position 3 of vowels, but in position 5 — (3 + 1) = 1 of (reverse vowels).
Therefore, if we wish to retain the first X members of an arbitrary input list vals, we will
want to retain the last n — (k + 1) members of (reverse vals), where n is (length vals):

; = prefix of vals ending at position pos
(define (list-prefix vals pos)
(reverse (list-tail (reverse vals)
(- (length vals) (+ pos 1)))))

Other Applications of list-prefix

We can use our list-prefix procedure to implement many standard list operations. For ex-
ample, to remove an item in position k of a list, we merely append the prefix of the list up
to position  to the tail of the list beginning in position k + 1:
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; = result of removing item at position k from vals
(define (remove vals k)
(append (list-prefix vals (- k 1))
(list-tail vals (+ k 1))))

How can we insert an item into position pos of a list vals or replace the item in position
pos of vals with a new item:

; = result of inserting item at position pos in vals
(define (insert vals item pos) ??7?)

; = result of replacing member at
; position pos by item in vals
(define (replace vals item pos) ??7?)

Optional Parameters

The arity of a procedure is the length of its parameter list. A 0-ary procedures has arity
= (. Scheme’s exit and transcript-off are examples of O-ary procedures. Unary proce-
dures have arity = 1. Car, cdr, length, abs, and number? are examples of unary proce-
dures. Binary procedures have arity = 2. Cons, eq?, remainder, modulo, apply, and
list-ref are examples of binary procedures. A 3-ary procedure has arity = 3. Substring
is an example of a 3-ary procedure.

Procedures with higher arities are rare. However, there are some procedures that ac-
cept any number of inputs. We call these procedures n-ary procedures. Lem, ged, list,
string, vector, +, ¥, <, and max are examples of n-ary procedures.

Scheme provides a mechanism that allows programmers to define n-ary procedures.
The last parameter of a procedure is an options parameter if it is preceded by a period. (A
space must separate the period and the parameter.) If the number of arguments exceeds
the number of parameters, then the interpreter gathers the left-over arguments into a list
and binds this list to the options parameter. Otherwise, the options parameter is bound to
the empty list.

As an example, let’s write an n-ary version of the average procedure:

; = average of all parameters
(define (avg . nums) (average nums))

The avg procedure can be called with any number of inputs:

> (avg 3 4 5)

4

> (avg 5 6 7 8 9)
7

Let’s rewrite the rel-prime? predicate defined earlier as an n-ary procedure. Recall, a list
of integers is relatively prime if their ged = 1:
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; = #t if all parameters are relatively prime
(define (rel-prime? . ints) (= 1 (apply gcd ints)))

Here are some sample calls:

> (rel-prime? 2 4 6 8 10

#£ :

> (rel-prime? 3 5 7 22 13 17)
#t

Although Scheme provides “and” and “or” procedures, they are control structures that
won’t be introduced until the next chapter. In the meantime, we can define our own ver-
sions using the some? and all? predicates defined earlier:

; = #t if all parameters #f

(define (and? . vals) (all? unfalse? vals))

; = #t if some parameters #f

(define (or? . vals) (some? unfalse? vals)))
Recall that a value is unfalse if it is different from #f:
(define (unfalse? val) (not (not val)))

For example, we can use our or? predicate to determine if a number b is between two
other numbers a and c:

; = #t if b is between a and c
(define (between? a b c)
(or? (<= a b c) (<= c b a)))

As another example, we can combine apply, or?, and reverse to determine if a list of
strings is sorted:

; = #t if parameters are sorted
(define (sorted? . strings)
(or? (apply string<? strings)
(apply string<? (reverse strings))))

Here are some sample evaluations:

> (sorted? "cat" "cow" "dog" "rat")
#t

> (sorted? "ray" "fish" "bat")

#t

> (sorted? "cat" "cow" "bat" "dog")
#£
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Appendix 2.3. The Edit-Test-Debug Cycle

When a Scheme session ends, all declared bindings stored in the Global Environment
disappear. At the start of the next session the definitions that created these bindings will
have to be repeated. This process is simple if the definitions have been saved in a defini-
tion file. '

A definition file (also called a program or source file) is a text file containing
Scheme definitions. The definitions in a definition file can be loaded into Scheme either
using special editor commands or Scheme’s load procedure. Assume defs.scm is the
name of a definition file,5 then:

(load "defs.scm") = an unspecified value. As a side effect,
all definitions in defs.scm are realized.

Warning: Definition files and transcript files are different. Do not attempt to load a tran-
script file.

The edit-test-debug cycle describes the structure of a typical Scheme session. It is
shown in Figure 2.4.

defs.scm

Figure 2.4

During the edit phase, programmers use an editor to create and modify definitions in a
definition file. At the beginning of the test phase, the definition file is loaded into the
Scheme interpreter using the load procedure or special editor load commands. The inter-
preter is used to test each definition loaded. If no problems are revealed, the session ends
with a completed definition file, or the programmer returns to the edit phase to write
more definitions. If testing reveals a bug, the debug phase is entered. Most implementa-
tions of Scheme provide special programs called debuggers to help locate bugs. The
editor, interpreter, and debugger, together with a few other software tools, are collec-
tively called the programming environment.

The number of times a programmer loops through the cycle depends on the size of
the program being developed. The time it takes to loop through one cycle can range from
a few seconds to a few weeks and can depend on the programming environment being
used. '

6 The part after "." is called the file's extension and usually indicates the type of the file. We use
the scm extension (others simply use s) to indicate that a file is a Scheme program file.
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Many versions of Scheme allow programmers to switch between the interpreter, an
editor, and a debugger without terminating the session.

Problems

Solutions to the following problems are to be given in applicative Scheme; do not use
procedures or special forms discussed in subsequent chapters. You may use the defini-
tions given in this chapter and solutions to other problems in this chapter. (You will have
to include these definitions in your definition file so that you can test your definitions.)
You may also define any supporting procedures you need. You are not required to vali-
date inputs, i.e., assume all inputs are valid. (Input validation begins in Chapter 3.) Be
sure to test all your definitions.

Problem 2.1.

Assume the following definitions have been made:

(define x 100)
(define y 200)
(define z 300)
(define dog "dog")
(define graph
'(("one" . 1) ("two" . 2) ("three" . 3)))

Evaluate the following expressions. If they contain errors, explain them. If their values
are unspecified in Essential Scheme, indicate this with a question mark. Use your

Scheme interpreter to check your work, but be careful; your interpreter may not be 100%
compliant with Essential Scheme.

Problem 2.1.1

(eq? "hello" "hello")
(assoc "one" graph)
(member "one" graph)
(real? 'x)

(eq? 'hello 'hello)
(assq "one" graph)
(real? x)

(egqv? 5 (+ 2 3))

SQAQ RO QOO
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Problem 2.1.2

a. (pair? '(1 2 3 4 5)) f. (eq? dog "dog")
b. (eq? dog (string #\d #\o #\g)) g. (eq? 5 5)

c. (char-ci=? #\c 'c) h. (eg? 'dog 'dog)
d. (+ 2 3 (display (+ 4 1))) '

e. (reverse (vector->list #(2 3 4)))

Problem 2.1.3

a. (reverse (vector->list #(2 3 4)))

b. (member 'i '(a e 1 o u))

c. (member #\i '(a e i o u))

d. (memg 2 '(1 2 3 4 5))

e. (string=? dog 'dog)

f. (string=? dog (string #\d #\o #\g))

Problem 2.1.4

a. (map car '((a . b) (c . d) (e . £)))

b. (apply cons '"((1 . 2) (2 . 3)))

c. (+ (truncate -4.2)
(floor -4.2)
(gcd 4 12 22)
(lcm 3 4 6))
d. (eg? (string #\h #\e #\1 #\1 #\o)
(string #\h #\e #\1 #\1 #\o))
e. (+ (list-ref (list x y z) 0) (list-ref '(x y z) 1))

Problem 2.2.

If Scheme did not provide the string constructor, how could you implement it?

Problem 2.3.

Assume r is any real number. Implement the following procedure:
(sign r)

=1, if r > 0

=-1, if r <0
unspecified, otherwise

I

Hint: Use the abs procedure.
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Problem 2.4.

If Scheme did not provide modulo, how could you define it? (Hint: You may want to use
the sign procedure developed herein, and the remainder procedure.

Problem 2.5.

Write a procedure that expects the rate r of return on an investment compounded annu-

ally and returns the length of time required for the investment to double. Do not use the
“Rule of 72.”

Problem 2.6.

If Scheme did not provide expt, how could you define it?

Problem 2.7.

If Scheme did not provide tan, how could you define it?

Problem 2.8.

The sum of a geometric series of the form aO+arl +ar2 + .. +ais given by the
formula S = a(l - r"*l)/(l — r). Implement this as a Scheme procedure.

Problem 2.9.

If n is any unsigned integer, then 1 + 2 + ... + n = the nth triangle number = n(n + 1)/2.
Implement this as a Scheme procedure.

Problem 2.10.

As a particle moves faster, its mass increases according to the Lorenz formula:

Mrest

m=
1-v2/c2

where v = the velocity of the particle, ¢ = the speed of light, and megt = the rest mass of
the particle. Implement this as a Scheme procedure.
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Problem 2.11.

Define the following coercions by composing existing coercions:

vector->string, string->vector

Problem 2.12.
Recall the formula for transforming degrees to radians:
180
9deg = 9rad —TI:—'

Use this formula to define the coercions:

degree->radian, radian->degree

Problem 2.13.

Implement versions of all the trigonometric procedures that assume angles are measured
in degrees instead of radians:

(define (degree-sin z) ?°??)

Problem 2.14.

Define the following coercions. Don’t hesitate to compose your own coercions to form
new coercions:

a. kbyte->byte, byte->kbyte 1 kilobyte = 210 pytes
b. byte->mbyte, mbyte->byte 1 megabyte = 220 bytes
c. byte->gbyte, gbyte->byte 1 gigabyte = 230 bytes
d. byte->tbyte, tbyte->byte 1 terabyte = 240 bytes
e. kbyte->gbyte, gbyte->kbyte

Problem 2.15.

Of course the coercion char->integer does not map digits like #8 to their corresponding
numerical values. Write a Scheme procedure that does:

> (char->digit #\8)

8

> (char->digit #\0)

0

Your procedure should work on computers that encode characters using ASCII codes or

IBM’s EBCDIC codes.
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Problem 2.16.

There are two ways to use vectors to represent a 3 x 3 matrix like:

3 2 4
M=1{1 0 12
7 -1 5

Row major form represents M as a vector consisting of three points that represent the
first, second, and third rows of M:

#(#(3 2 4) #(1 0 12) #(7 -1 5))

Column major form represents M as a vector consisting of three points that represent the
first, second, and third columns of M:

#(#(3 1 2) #(2 0 -1) #(4 12 5))

In the following exercises we will assume matrices are represented using row major
form. We will also use the notation M;; to indicate the row i column j entry of M. For
example:

Mp3 = 12

Assume A, B, and C are 3 x 3 matrices and P is a point, implement the following proce-
dures:

(entry A i Jj) = Ajj
(mat+ A B) = C, where Cjj = Ajj + Bij

(mat* A P) = #(aj a a3), where aj = dot product of row i of
A with P

Problem 2.17.

Generalize mat* in the previous exercise so that it multiplies » X n matrices with n X 1
points.

Problem 2.18.

Write an n-ary procedure that appends arbitrarily many vectors:

(define (vector-append . vecs) ???) ; stub
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Problem 2.19.

If the graph of a procedure is represented by an association list of the form:
GRAPH ::= ((INPUT; . OUTPUT1) ... )
then its inverse is represented by the same association list, but with each pair reversed:

((OUTPUT] . INPUT1) ... )

Implement a reversing procedure that expects an arbitrary alist as input and returns the
inverse alist as a value:

> (graph-reverse '((a . 1) (b . 2) (c . 3)))
((1L . a) (2. Db) (3. c¢))

Problem 2.20.

Assume Scheme did not provide truncate. How could you define it?

Problem 2.21.

Implement a procedure that extracts the last element of a list:

> (last '(a e i o u))
u

Problem 2.22.

Assume Scheme didn’t have a string-ref procedure. How could you implement one?

Problem 2.23.

How could you implement quotient if Scheme did not provide it?

Problem 2.24.

How could you define char<? if Scheme did not provide it?
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Evaluation Control and Recursion

3.1. Evaluation Control

In the last chapter we described the four-step evaluation procedure used by Scheme to
evaluate procedure applications:

1. Evaluate operator.

2. Evaluate operands to produce arguments.

3. Replace parameters by arguments in the body.
4. Evaluate body.

This procedure is called Eager evaluation. The name derives from the fact that the
evaluator is so eager to know the values of the operands, it evaluates them in the second

step, even if their values are not needed when the body of the procedure is evaluated in
the fourth step.

Eager Evaluation may be compared to lazy evaluation, a procedure not normally
used by Scheme interpreters:

1. Evaluate operator.
2. Replace parameters in body by unevaluated operands.
3. Evaluate body.

The name derives from the fact that the evaluator postpones evaluation of the operands

until they are needed in step 3.! With luck, the values may never be needed. For exam-
ple, consider the following definition:

(define (always-0 val) 0)
Let’s trace the eager evaluation of (always-0 (exp 100000)):

1. The name always-0 is evaluated.
2. The operand (exp 100000) is evaluated. (This may take a while.)
3. The argument ¢ replaces the parameter, val, in the body of always-0.

(This is not much of a challenge considering val doesn’t even appear in the body
of always-0.)

1 Lazy evaluation is covered in detail in Chapter 8.

J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998
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4. The body is evaluated. Again, not much of a challenge because the body is the
literal, O.

Using lazy evaluation the needless evaluation of (exp 100000) is avoided:

1. The name always-0 is evaluated.

2. The unevaluated operand (exp 100000) replaces the parameter val in the body of
always-0. Because val doesn't appear in the body of always-0, this produces the
literal, O.

3. The literal O is evaluated, producing the value, 0. Because the operand didn't ap-
pear in the body, (exp 100000) was never computed.

Although Scheme uses eager evaluation to evaluate procedure applications, there are
situations where we would like to avoid eager evaluation. Fortunately, the eager evalua-
tion method is not used on all expressions. Scheme evaluates certain expressions using
other methods. These expressions are called control structures because they allow pro-
grammers to control the flow of evaluation.

Short Circuit Evaluation

The form of an and-structure is:

AND ::= (and EXPRESSION ... )
An or-structure has the form:

OR ::= (or EXPRESSION ... )

Superficially and-structures and or-structures seem like ordinary procedure applications,
but they are control structures. Instead of using the eager method to evaluate them,
Scheme uses a method called short circuit evaluation:

Evaluate operands from left to right until the final result is known. The remaining op-
erands are left unevaluated.

More specifically, assume OPERANDy, ... ,OPERAND, are arbitrary Scheme ex-
pressions. To evaluate the expression:

(and OPERANDy OPERAND; ... OPERANDp)

the Scheme evaluator begins evaluating the operands from left to right. The value of the
first operand equal to #f is returned (i.e., #f is returned), and the remaining operands are
left unevaluated. Otherwise, the evaluator returns the value of the last operand. If there
are no operands, #t is returned.

To evaluate the expression:

(or OPERAND); OPERAND; ... OPERANDp)
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the Scheme evaluator begins evaluating the operands from left to right. The value of the

first operand that does not evaluate to #f is returned, and the remaining operands are left

unevaluated. Otherwise, the evaluator returns #f. If there are no operands, #f is returned.
Here are some sample evaluations:

> (and 0 #\a "hello" (< 3 2) (/ 0))

#£

> (or (char? 3) #f (< 3 2) 42 (/ 0))
42

> (+ (and 1 2 3) (or 4 5 6))

7

In the first example the first four operands were evaluated, but when the evaluator dis-
covered the value of the fourth operand was #f, it immediately returned this value with-
out evaluating the fifth operand. We know this is true because if the evaluator had at-
tempted to evaluate the fifth operand, we would have seen a divide-by-0 error message
printed on the screen.

In the second case the first four operands were evaluated, but when the evaluator dis-
covered the value of the fourth operand was not #f, it immediately returned this value
without evaluating the fifth operand. We know this is true because if the evaluator had
evaluated the fifth operand, again we would have seen a “divide by 0” error message
printed on the screen.

(Warning: Officially, the value #f is unique, but PC-Scheme identifies #f with the
empty list: ().)

What is the advantage of short circuit evaluation? We can use it as a method of input
validation for predicates. For example, the following polymorphic predicate determines if
b is between a and c, if a, b, and c belong to the same ordinal domain (i.e., strings, reals,
or characters); otherwise #f is returned:

; = #t if ordinal b is between ordinals a and c
(define (between? a b c)
(or (and (real? a)
(real? b)
(real? c)
(or (< abc) (<cba)))
(and (char? a)
(char? b)
(char? c)
(or (char<? a b c) (char<? c¢ b a)))
(and (string? a)
(string? b)
(string? c)
(or (string<? a b c) (string<? c b a)))))

Notice, if b is not a real, then the and-structure:
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(and (real? a)
(real? b)
(real? c)
(or (< abec) (<cbay)

returns #f immediately after (real? b) is evaluated, skipping the call to <, which would
have resuited in a type error.
A point can be defined as a vector consisting of three reals:

POINT ::= #(REAL REAL REAL)
We can develop a polymorphic predicate that tests if arbitrary values are points:

(define (point? val)
(and (vector? val)
(= 3 (vector-length val))
(real? (vector-ref val 0))
(real? (vector-ref val 1))
(real? (vector-ref val 2))))

If val isn’t a vector, then because of short circuit evaluation the and-structure returns #f
immediately after evaluating (vector? val), before calling vector-length would have re-
sulted in a type error. If the input is a vector of length less than 3, then the and-structure
returns #f immediately after evaluating (= 3 (vector-length val)), before calling vector-ref
would have resulted in an index-out-of-range error.

Conditional Evaluation

Conditional evaluation is closely related to short circuit evaluation. Certain operands in a
conditional expression are designated as conditions or guards. Depending on their values
other operands may or may not be evaluated. Scheme provides three control structures
that use scme form of conditional evaluation: the if-structure, cond-structure, and case-
structure.

The if-structure

The form of an if-structure is simple:
IF ::= (if CONDITION CONSEQUENT [ALTERNATIVE])

where CONDITION, CONSEQUENT, and ALTERNATIVE are arbitrary Scheme ex-
pressions. (Recall, [ALTERNATIVE] indicates this operand is optional.) Let’s trace the
steps taken to evaluate this type of expression:

1. The evaluator evaluates CONDITION.
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2a. If the value of CONDITION is not #f, then the evaluator evaluates
CONSEQUENT, and this value is taken as the value of the entire expression. In
this case ALTERNATIVE is never evaluated.

2b. If the value of CONDITION is #f, then the evaluator evaluates ALTERNATIVE,
and this value is taken as the value of the entire expression. In this case
CONSEQUENT is never evaluated. If there is no ALTERNATIVE, then the
value of the expression is unspecified.

The usefulness of the if-structure can best be understood in the context of an example.
Assume taxes are computed using a two-rate system. People pay 20% on the first
$50,000 earned in a year, and 30% on every dollar earned over $50,000. Assume the
following constants are declared:

; $50,000 = maximum medium income:
(define max-medium 50000)

; 30% = rate for > max-medium incomes:
(define max-rate .3)

; 20% = rate for <= max-medium incomes
(define medium-rate .2)

We want to define a tax-computing procedure that expects as input an income and returns
as output the tax owed. The form of the tax procedure is:

; = tax owed on income dollars
(define (tax income) ?7?7? )

How will our procedure decide which rate to use? Obviously the parameter will have to
be compared to the max-medium income constant:

(> income max-medium)

If this condition is true, then the tax procedure must return:

(+ max-medium-tax (* max-rate (- income max-medium)))
where max-medium-tax is the tax paid on the maximum medium income:

; = tax paid on max-medium income
(define max-medium-tax (* max-medium medium-rate))

Otherwise it returns:
(* income medium-rate)

This is a perfect place to use an if-structure. Here’s the complete declaration of our tax
procedure:

; = tax owed on income dollars
(define (tax income)
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(if (> income max-medium)
(+ max-medium-tax
(* max-rate (- income max-medium)))
(* income medium-rate)))

Notice how if-structures are indented. Remember, the physical structure of a procedure
should reflect its logical structure.

Nesting if-structures

Let’s make the tax problem more complicated by introducing a four-level tax system.
People pay no tax on the first $5000 they earn, 10% on every dollar earned between
$5000 and $20,000, 20% on dollars earned between $20,000 and $50,000, and 30% on
every dollar earned over $50,000. Assume the following additional constants are defined:

; $20,000 = maximum low income
(define max-low 20000)

; $5000 = maximum non-taxable income
(define max-min 5000)

; 10% = rate paid on max-min < $ <= max-low
(define low-rate .1)

Next, we pre-compute the tax paid on $20,000 and $50,000:

; = tax on max-low income
(define max-low-tax (* low-rate (- max-low max-min)))

; = tax on max-medium income
(define max-medium-tax
(+ max-low-tax
(* medium-rate (- max-medium max-low))))

Unfortunately, the if-structure only offers a choice between two candidates:
CONSEQUENT and ALTERNATIVE. However, because if-structures are ordinary ex-
pressions, then either CONSEQUENT or ALTERNATIVE can be if-structures. In other
words, we can have multiple alternatives by nesting if-structures:

; = tax owed on income dollars
(define (tax income)
(if (> income max-medium)
(+ max-medium-tax
(* max-rate (- income max-medium)))
(if (> income max-low)
(+ max-low-tax
(* medium-rate (- income max-low)))
(if (> income max-min)
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(* low-rate (- income max-min))
0N

(Notice how the pattern of indentation makes it easier to read the procedure.)
The condition in the second if-structure only compares income to the low constant. It
may seem like the appropriate test should have been

(and (> income max-low) (< income max-medium))

but because this is the alternative of the outer if-structure, it is only evaluated if the first
condition, (> income max-medium), has already failed. There is no reason to perform
this comparison a second time.

The cond-structure

The form of a cond-structure is:

COND ::= (cond CLAUSE ... )
Each CLAUSE has the form:
CLAUSE ::= (CONDITION EXPRESSION ... )

where CONDITION is any Scheme expression or the reserved word else:
CONDITION ::= EXPRESSION | else

Let’s trace the steps taken by the evaluator when evéluating a cond-structure. The clauses
are evaluated from left to right:

1. If all the CLAUSEs have been tested, the value of the cond-structure is unspeci-
fied. Otherwise, pick the next untested CLAUSE.

2. Evaluate the CONDITION of the selected CLAUSE.

3a. If the value of the CONDITION is not #f, then each remaining EXPRESSION in
the selected CLAUSE is evaluated. The value of the cond-structure will be the
value of the last EXPRESSION in the CLAUSE. The remaining clauses will be
left unevaluated.

3b. If the value of the CONDITION is #f, then consider the CLAUSE tested and re-
turn to step 1.

The reserved word else is identified with #t. Normally else is used as the condition of the
last clause to insure that at least one clause will be evaluated.
Here is a version of the tax-computing procedure that uses the cond-structure:

; = tax owed on income dollars
(define (tax income)
(cond ((> income max-medium)
(+ max-medium-tax
(* max-rate (- income max-medium))))
((> income max-low)
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(+ max-low-tax

(* medium-rate (- income max-low))))
((> income min)

(* low-rate (- income max-min)))
(else 0)))

(Note the pattern of indentation conventionally used with cond-structures.)

Input Validation

Conditional evaluation gives us the opportunity to validate inputs. If invalid inputs are
detected, we can use the error procedure defined in Appendix 3.3: Defensive Pro-
gramming to display an error message and gracefully terminate the procedure. Here’s a
final version of the tax procedure with input validation:

; = tax owed on income dollars
(define (tax income)
(cond ((not (real? income))
(error "bad input" tax income))
((> income max-medium)
(+ max-medium-tax
(* max-rate (- income max-medium))))
((> income max-low)
(+ max-low-tax

(* medium-rate (- income max-low))))
((> income min)
(* low-rate (- income max-min)))
((>= income 0) 0)
(else (error "negative income" tax income))))

The case-structure

The form of a case-structure is:

CASE ::= (case KEY CLAUSE ... )

where KEY is an arbitrary Scheme expression, and each CLAUSE has the form:
CLAUSE ::= (GUARD EXPRESSION ... )

GUARD is either a list or the reserved word else:

GUARD ::= LIST | else

Let’s trace the steps taken by the evaluator when evaluating a case-structure. The clauses
are evaluated from left to right:
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1. Evaluate KEY.
If all the CLAUSES have been tested, then the value of the case-structure is un-
specified. Otherwise, select the next untested CLAUSE.

3a. If the guard of the selected clause is else, or if it is a list containing a value equal
(in the eqv? sense) to the value of KEY, then the remaining EXPRESSIONs in
the CLAUSE are evaluated. The value of the last one is the value of the case-
structure. The remaining clauses are left unevaluated.

3b. Otherwise consider the CLAUSE tested and return to step 2.

Cond-structures are used when the number of situations that select a clause is large or in-
finite. Case-structures are useful when the number is small. For example, consider the
following domain of expressions:

EXP ::= (OPERATOR REAL ... )
Various operator synonyms can be used in an EXP-expression:

OPERATOR ::= + | add | sum | * | mult | / |
div | - | sub | < | less

The EXP evaluator uses a case-structure to determine the appropriate operation to apply
to the operands:

; = value denoted by exp
(define (evaluate exp)
(case (car exp)
((+ add sum) (apply + (cdr exp)))
((* mult) (apply * (cdr exp)))
((/ div) (apply / (cdr exp)))
((- sub) (apply - (cdr exp)))
((< less) (apply < (cdr exp)))
(else (error "unrecognized operator"
evaluate
(car exp)))))

Here are some sample calls to the evaluate procedure:

> (evaluate '(add 2 3 4 5))
14

> (evaluate '(sum 2 2 2))

6

> (evaluate '(less -1 -2 -3))
#£f

> (evaluate '(< -3 -2 -1 0))
#t

Notice the input expression to evaluate must be quoted to prevent the eager evaluation
mechanisms from evaluating the expression prematurely:
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> (evaluate (+ 2 3))

Error!
gripe: bad input
source: car

irritant(s): 5

Make sure you understand what went wrong in this example.

Recursion

When we use the top-down method, we define a procedure in terms of supporting proce-
dures, some of which may be undefined. Next, the undefined supporting procedures are
defined in terms of their supporting procedures. This process continues until there are no
more undefined procedures.

Sometimes beginners find it unsettling to define a procedure in terms of supporting
procedures that haven’t yet been defined. It’s like borrowing money to make money. It
takes a leap of faith to believe that the supporting procedures can and will eventually be
defined according to specification. If this makes you feel uncomfortable, then recursion
will make you nauseous. Recursion takes the top-down method one step further by al-
lowing procedures to be defined in terms of themselves! A procedure defined in terms of
itself is called a recursive procedure. In other words, a recursive procedure is one of its
own supporting procedures! »

Recursive procedures are appropriate for solving recursive problems. A recursive
problem is a problem that naturally decomposes into subproblems that are smaller ver-
sions of the original problem. A recursive procedure that solves such a problem calls it-
self to solve the smaller subproblems, then combines these results into the final result.

Example: Triangle Numbers

The nth triangle number is the number of blocks required to make a staircase n steps
high. For example, zero blocks are needed to construct a staircase with no steps. Only
one block is needed to build a staircase with a single step. To build a two-step staircase
requires three blocks, as in Figure 3.1.

|
Figure 3.1

A three-step staircase requires six blocks (see Figure 3.2).

Figure 3.2
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Therefore one, three, and six are the first, second, and third triangle numbers, respec-
tively. (Mathematicians call these triangle numbers because staircases are roughly
shaped like right triangles.)

How can we write a procedure which, given input n, returns the nth triangle number:

; = n-th triangle number
(define (triangle n) ??°?)

Here are some sample applications of triangle:

(triangle 0)
(triangle 1)
(triangle 2)

>
0
>
1
>
3
> (triangle 3)

6

Counting the number of blocks in an n-step staircase is a recursive problem: saw off the n
blocks in the right-most column of the staircase, this leaves a staircase with n — 1 steps.
Because this is a smaller staircase, we can use the triangle procedure to count the number

of blocks in it. To finish, we just add to this result the n blocks we sawed off initially. We
can express this in Scheme by:

(triangle n) =(+ n (triangle (- n 1)))
Does this expression work when n = 07 In this case our Scheme expression becomes:
(triangle 0) =(+ 0 (triangle -1))

Clearly it doesn’t make sense to talk about a staircase with a negative number of steps.
Anyway, we already know (triangle 0) is supposed to be 0, therefore, we will use our re-
cursive expression when n > 0, and simply return 0 when n = 0. We can use an if-
structure to select the desired expression:

; = n-th triangle number
(define (triangle n)
(if (zero? n)
0
(+ n (triangle (- n 1)))))

Does this really work? How can a procedure call itself without spinning off into an infi-
nite loop? Oddly, this does work because conditional evaluation of the if-structure guar-
antees (triangle — 1) won’t be evaluated when n = 0. (Why?)
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3.4.2. Tracing

The Scheme evaluator procedure, eval, is itself a recursive procedure. It evaluates ex-
pressions by recursively evaluating smaller subexpressions, then combines these results
into a final answer. For example:

(+ (* 3 4) (- 2 5)) ; original eval input expression

(+ 12 (- 2 5)) ; eval evaluates (* 3 4)
(+ 12 -3) ; eval evaluates (- 2 5)
9 ; eval sums results

Each expression in this sequence can be viewed as a reduction or simplification of the
expression preceding it. The last expression is a value, which cannot be further reduced.
A sequence of expressions, each the result of reducing the previous, is called a computa-
tion.

We can use this idea to better understand how recursive procedures work. A trace is
a computation in which only applications of interesting procedures are shown. Of course
the definition of interesting is subjective, and different definitions will produce different
traces. By wisely choosing interesting procedures, we can construct traces that are not too
long, yet give insight into why a procedure does or does not work.

Let’s construct a trace of an application of the triangle procedure, for example,
(triangle 4). We select + and triangle as our interesting procedures. The first step in the
trace is:

(triangle 4)
(+ 4 (triangle 3))

Notice we didn’t show the evaluation of (~ 4 1) because — was not selected as an inter-
esting procedure. Before the evaluator can complete the addition to 4, it must evaluate
(triangle 3):

(triangle 4)
(+ 4 (triangle 3))
(+ 4 (+ 3 (triangle 2)))

In fact, each recursive call must be evaluated before any addition can be performed:

(triangle 4)

(+ 4 (triangle 3))

(+ 4 (+ 3 (triangle 2)))

(+ 4 (+ 3 (+ 2 (triangle 1))))

(+ 4 (+ 3 (+ 2 (+ 1 (triangle 0)))))
(+ 4 (+ 3 (+2 (+10))))

Now the additions are performed from right to left:

(triangle 4)
(+ 4 (triangle 3))
(+ 4 (+ 3 (triangle 2)))
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(+ 2 (triangle 1))))

(+ 2 (+ 1 (triangle 0)))))
(+2 (+10))))

(+ 2 1)))

3))

This is the trace of (triangle 4). It shows how the final result is computed. It also can re-
veal alternate ways of computing the result. For example, notice the nth triangle number
is obtained by adding the numbers from 1 to n:

(triangle n) =(+ 1 2 ... n)

More on Input Validation

Notice that our triangle procedure failed to validate its input, n. We could have easily in-
cluded input validation as a third alternative using either a cond-structure or nested if-
structures:

(define (triangle n)

(if (natural? n)

(if (zero? n)

0
(+ n (triangle (- n 1))))

(error "bad input" triangle n)))

where natural? is a polymorphic predicate that tests for unsigned integers:

(define (natural? wval)

(and (integer? val) (<= 0 val)))

Let’s include this predicate among our interesting procedures and retrace (triangle 4):

(triangle 4)

(natural? 4)

(+ 4 (triangle 3))
(natural?
(+ 4 (+ 3
(natural?
(+ 4 (+ 3
(natural?
(+ 4 (+ 3
(natural?
(+ 4 (+ 3
(+ 4 (+ 3
(+ 4 (+ 3

3)

(triangle 2)))

2)

(+ 2 (triangle 1))))

1)

(+ 2 (+ 1 (triangle 0)))))
0)

(+2 (+100N

(+21)))

3))
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(+ 4 6)
10

It seems inefficient to ask if 3, 2, 1, and 0 are natural numbers after we have verified that
4 is a natural. For this reason, it is often better to design a special “wrapper” procedure
that validates inputs, then calls a recursive procedure that doesn’t validate inputs. Using
this technique, the triangle procedure becomes a wrapper for unsafe-triangle:

(define (triangle n)
(if (natural? n)
(unsafe-triangle n)
(error "bad input" triangle n)))

The old triangle procedure becomes the unsafe-triangle procedure:

(define (unsafe-triangle n)
(if (zero? n)
0
(+ n (unsafe-triangle (- n 1)))))

Mathematical Induction

That the sun will not rise tomorrow is no less intelligible a proposition, and implies no
more contradiction than the affirmation, that it will rise. ; :

—David Hume, An Enquiry Concerning Human Understanding

A scientist verifies a theory by conducting experiments. Confidence in the theory grows
as the number of confirming experiments increases. For example, a chemist might verify
that gold is inert by dropping samples of gold into beakers containing various strong ac-
ids, then observing that the samples aren’t dissolved. The more types of acid that fail to
dissolve gold, the stronger his conviction that gold is inert. This method of gaining
knowledge is called the Principle of Induction.

In 1739 the philosopher and skeptic David Hume showed that the Principle of Induc-
tion could not be justified by either reason or experience, the two branches of his famous
epistemological fork. Any proof that gold is inert would have to rely on other scientific
principles, which themselves were justified by induction. Tomorrow we could discover
an acid so strong that it dissolves even gold. Of course such a discovery would overturn
the entire atomic theory, but the history of science is littered with discarded theories.

Programmers can also get caught on Hume’s fork. A procedure, proc, that operates on
natural numbers is correct if for every n, (proc n) returns the specified value. How can we
show a procedure is correct? A programmer can trace a few applications of proc. The
more successful traces performed, the greater our confidence that proc is correct. Unfor-
tunately, Hume’s skepticism applies here, too. Our traces are nothing more than experi-
ments. Tomorrow we could find an input so virulent it sends proc spiraling down some
previously undiscovered path of error.
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Fortunately, natural numbers are governed by laws that allow us to make mathemati-
cally valid inductions. We can conclude that proc is correct if we can confirm (proc 0)
returns the specified value, and if we can prove that for any n > 0, (proc n) returns the
specified value assuming (proc m) returns the specified value for all m < n. This form of
induction is called mathematical induction. More formally, if proc has a natural number
parameter, then

Assumptions:
1. (proc O) returns the specified value.

2. If (proc m) returns the specified value for all 0 < m < n, then (proc n) re-
turns the specified value.
Conclusion:
For all n, (proc n) returns the specified value.

Assumption 1 is called the base case assumption and assumption 2 is called the succes-
sor case assumption. At first glance it doesn’t appear that the conclusion of mathemati-
cal induction is different from the successor case assumption. But notice that the conclu-
sion is an absolute statement: (proc n) returns the specified value for all n, while the
Successor Case Assumption is a conditional statement: for all n, (proc n) returns the
specified value, if (proc m) returns the specified value for all 0 < m < n. It’s quite a bit
easier to justify a conditional statement because we get to assume (proc m) returns the
specified value forall 0 <m < n.

Our proof of Mathematical Induction is based on the fact that every nonempty set of
natural numbers has a smallest member. Assume proc is not correct. This means proc
returns some incorrect values. Let # be the smallest number for which (proc n) returns an
incorrect value. Clearly n > 0, because we are assuming (proc 0) returns the specified
value. But because n is the smallest value that causes (proc n) to return an incorrect re-
sult, this means (proc m) must return a specified value for all m < n. Hence (proc n) must
return a specified value by our successor case assumption. This contradicts our assump-
tion that proc is not correct.

We can use mathematical induction to prove that the triangle procedure is correct. We
only need to show the base and successor case assumptions are satisfied:

Base Case:
(triangle 0) returns 0, the number of blocks needed to build a 0-step staircase.

Successor Case:

Pick an arbitrary n > 0, and assume (triangle m) returns the specified value for all 0 <
m < n. In particular, this means (triangle (— n 1)) returns the number of blocks needed
to build an (n — 1)-step staircase. We can construct an n-step staircase from this n — 1

step staircase by attaching a column of » blocks to it. Thus, the number of blocks in
an n step staircase is:

(+ n (triangle (- n 1)))

but this is the definition of (triangle n), hence (triangle n) returns the specified value.
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Thinking Recursively

Although mathematical induction is a tool for building correctness proofs, it can also be
used as a tool for building recursive algorithms. Assume we want to define a procedure
called proc that expects a natural number as input (there may be other inputs, too). We
can build a recursive algorithm for proc by answering two questions:

Base Case:
What is (proc 0)?

Successor Case:
How can we use (proc m) for 0 < m < n to compute (proc n)?

In many situations the second question can be restricted tom =n — 1:
Successor Case: How can we use (proc (- n 1)) to compute (proc n)?

Often we can answer the second question by working out a few examples: (proc 1) = ?,
(proc 2) = ?, (proc 3) = ?, and then generalizing.

Assume (proc 0) returns val. Assume (proc n) returns the value denoted by exp,
where exp is an expression involving applications of the form (proc (— n 1)). The imple-
mentation of proc is:

(define (proc n) (if (zero? n) val exp))

Of course, in some cases we might control proc with a cond- or case-structure.

Example: make-list

Scheme provides six constructors:
cons, list, vector, make-vector, string, make-string

Recall that make-vector expects a length n and a value v as input, and it returns the length
n vector #(v ... v). Make-string works in a similar way. It’s curious that Scheme does not
provide a similar procedure for making lists. Let’s try to implement one:

; = length n list (val ... val)
(define (make-list n val) ???)

Of course we could implement make-list by calling make-vector and coercing the result
to a list, but recall our definition of necessary Scheme:

necessary Scheme = Scheme - redundant features

Strings and vectors are redundant features. We have already seen that all primitive vector
and string procedures can be implemented by coercing their inputs to lists, applying the
corresponding list procedure, and then coercing the result back to a string or vector. Lists
are also redundant because they are simply nested pairs. Therefore it should be possible
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to implement all primitive list procedures in terms of the primitive pair procedures: car,
cdr, and cons, but recursion will be required.

As an exercise in parsimony, let’s search for a different solution to this problem. Be-
cause n is always a natural number, we could try to find a recursive procedure. We ask
two questions:

(make-list O val) = ?
How can we use (make-list (—n 1) val) to compute (make-list n val)?

We can answer these question by computing some initial values, searching for a pattern,
and then generalizing:

(make-list 0 val) = ()

(make-list 1 val)
= (val)
= (cons val (make-list 0 wval))

(make-list 2 val)
= (val val)
= (cons val (make-list 1 val))

(make-list 3 val)
(val val val) .
(cons val (make-list 2 val))

A pattern seems to be emerging, for n > 0:
(make-list n val) = (cons val (make-list (- n 1) val))
We use this pattern as the basis of our implementation:

; = length n list: (val ... val)
(define (make-list n val)
(1f (zero? n)
Q)
(cons val (make-list (- n 1) val))))

We can understand how this procedure works by tracing through a few sample computa-
tions. We take make-list and cons to be our interesting procedures:

(make-1list 3 0)
(cons 0 (make-list 2 0))

(cons 0 (cons 0 (make-list 1 0)))
(cons 0 (cons 0 (cons 0 (make-list 0 0))))
(cons 0 (cons 0 (cons 0 ())))
(cons 0 (cons 0 (0)))
(cons 0 (0 0))
)
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3.5.2. Example: nat-expt

Assume Scheme provided neither the exp nor expt procedures. It’s easy to implement
exp in terms of expt:

(define (exp z) (expt e z)) ;= e’z
where e is approximated by:
(define e 2.71828182845905)

How could we implement expt? This depends on the type of the exponent:

; = bz where b & z are any numbers
(define (expt b z) '

(cond ((natural? z) (nat-expt b z))
((integer? z) (int-expt b z))
((rational? z) (rat-expt b z))
((real? z) (real-expt b z))
((complex? z) (complex-expt b z)))

(Is the order of clauses in this definition important?) Most of the variants of expt can be
defined in terms of the nat-expt. For example:
; = b”i where i is an integer & b is any number
(define (int-expt b i)
(if (>= i 0)
(nat-expt b i)
(/ (nat-expt b (- 1i)))))

Nat-expt can be defined using recursion. We ask:
(nat-expt b 0) = ?

How can we use (nat-expt b (— n 1)) to compute (nat-expt b n)? To answer these
questions, we work through a few initial cases and generalize:

(nat-expt b 0) = b0 = 1

(nat-expt b 1) = bl = b = b * b0

(nat-expt b 2) = b2 = b * bl

(nat-expt b 3) = b3 = b * b2

The pattern seems clear:

(nat-expt b n) = (* b (nat-expt b (- n 1)))

The final version of our procedure is:

; = b”n where n is a natural and b is any number
(define (nat-expt b n)
(if (zero? n)
1
(* b (nat-expt b (- n 1))))
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Let’s trace a computation of nat-expt:

(nat-expt 2 3)

(* 2 (nat-expt 2 2))

(* (* 2 (nat-expt 2 1)))

(* (* 2 (* 2 (nat-expt 2 0))))
(* (* 2 (* 2 1)))

(* (* 2 2))

(* 2 4)

8

NN DN

3.5.3. Example: evaluate

This example shows that a recursive procedure can call itself indirectly by passing itself
to a meta-procedure. Let’s increase the complexity of the domain of expressions defined
earlier by allowing nested expressions. In other words, let’'s make EXP into a recursive
domain:

EXP ::= NUMBER | (OPERATOR EXP ... )
Various operator synonyms can be used in an EXP-expression:

OPERATOR ::= + | add | sum | * | mult |
/ | div | - | sub | < | less | etc.

The EXP evaluator uses an if-structure to determine if its EXP input is a number (i.e., a
literal) or an application. If it is a number, then there is no work to be done, just return
the number. If the EXP input is an application, a case-structure is used to determine the
appropriate operation to apply to the actual parameters. The arguments are gotten by re-
cursively applying evaluate to each operand. Because we don’t know the number of op-
erands in advance, we will have to use the map and apply meta-procedures:

; = value denoted by exp
(define (evaluate exp)
(if (number? exp)
exp ; exp denotes itself!
(case (car exp)
((+ add sum)
(apply + (map evaluate (cdr exp))))

((* mult)

(apply * (map evaluate (cdr exp))))
((/ div)

(apply / (map evaluate (cdr exp))))
((- sub)

(apply - (map evaluate (cdr exp))))
((< less)

(apply < (map evaluate (cdr exp))))
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(else
(exrror "unrecognized operator"
evaluate
(car exp))))))

Because operands can be expressions, we can nest expressions:

> (evaluate '(add (sub 6 1) (mult 2 7) (add 3 6)))
28

> (evaluate '(less (sum 6 7) (+ 1.2 (div 9 2))))
#£

Appendices
Appendix 3.1. Sequential Evaluation

Earlier we saw that a sequence of expressions can follow the condition or guard in the
clause of a cond- or case-structure:

CLAUSE ::= (CONDITION EXPRESSION ... )

(Recall the ellipsis “...” indicates zero or more repetitions of EXPRESSION.) When such
a clause is evaluated, each expression following the condition is evaluated, but the value
of the clause is the value of the last expression in the sequence; the values of the preced-
ing expressions are thrown away!

There are several other contexts where Scheme allows expression sequences to ap-
pear. For example, the body of a procedure block can be a sequence of expressions:

PROCEDURE-BLOCK ::=
(define (NAME PARAM ...) EXPRESSION ... )

The same evaluation rule is used here. When the procedure is called, each expression in
the body is evaluated, but the value returned by the procedure is the value of the last ex-
pression in the sequence. For example, consider the following definition:

(define (always-0) 3 2 1 0)

The body of this procedure consists of the literals 3, 2, 1, 0. When the procedure is
called, the Scheme evaluator evaluates each expression, but only returns the 0:

> (define result (always-0))
unspecified

> result

0

Even in contexts where expression sequences are not allowed, such as the consequent or
alternative of an if-structure, Scheme allows programmers to group sequences of expres-
sions into a single expression using sequence-structures:



98

3. Evaluation Control and Recursion

SEQUENCE ::= (BEGIN EXPRESSION ... )
where BEGIN is either begin or begin0:
BEGIN ::= begin | begin0®

Sequence-structures are evaluated by evaluating each EXPRESSION from left to right.
The value of the begin-structure is the value of its last expression, the value of a begin0-
structure is the value of its first expression. All other expressions are evaluated, but the
values they produce are ignored.

> (+ (begin 2 3 4) (begin0 5 6 7)) ; = (+ 4 5)
9

Be careful! The value of an expression in a sequence is not passed to the next expression.
For example, assume the following definition has been made:

(define x 10)
‘What is the value of the expression:

> (begin (+ x 1) x)
?

It looks as though (+ x 1) increments x, and therefore the value of the last x should now
be 11. In fact, the value of (+ x 1), 11, is discarded as soon as it is computed. The value
of the last x in the sequence, hence the value of the sequence, is 10. (Pascal and C pro-
grammers almost always get this wrong!)

The values of all but one expression in a sequence are thrown away, so what use are
they? The answer is none, unless evaluating the expression does more than produce a
value. Scheme output procedures are perfect examples of this phenomenon.

Appendix 3.2. Input and Output in Scheme

Input and Output Ports

Normally, Scheme procedures receive their inputs from other procedures and send their
output to other procedures (see Figure 3.3).

inputs from ""‘r proc f—p» Output to another
other procedures — procedure
Figure 3.3

Additionally, Scheme procedures can read inputs from input ports and write outputs to
output ports. An input port is a standard interface to all types of input devices: key-
boards, sensors, joysticks, mice, etc. An output port is a standard interface to all types of
output devices: monitors, printers, modems, controllers, etc. (see Figure 3.4).
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input device output device
input port output port
inputs from other _.l proc [—#» output to
procedures — another procedure
Figure 34

Scheme provides two predefined ports called the current-input-port and the current-
output-port. We can discover what devices these ports are connected to by calling the
procedures current-input-port and current-output-port:

> (current-input-port)
#[input-port stdin]

> (current-output-port)
#[output-port stdout]

Stdin stands for “standard input device” and stdout stands for “standard output device.”
The standard input device is the keyboard, and the standard output device is the monitor
(i.e., the computer screen).

Reading from the Keyboard

Scheme provides the following procedures for reading data from the current input port:

(read) = the next value typed.
(read-char) = the next character typed.

Both of these procedures cause the program to pause until a return character is typed.
Be careful, read and read-char receive their inputs directly from the standard input
port and return this value through the usual procedure output channel (see Figure 3.5).

keyboard
stdin

read —® val

Figure 3.5



100

3. Evaluation Control and Recursion

Writing to the Monitor

Scheme provides the following procedures for writing data to the current output port:

(write val) =

an unspecified value. As a side effect, writes val on the
monitor. '

(display val) =
an unspecified value. As a side effect, displays val on
the monitor.

(write-char char) =

an unspecified value. As a side effect, writes char on
the monitor.

(newline) = (write-char #\newline)

What’s the difference between displaying and writing a value? There is no difference,
unless the value is a character or string. When a character is written, its #\ prefix is also
written. When a character is displayed, the #\ prefix is dropped. When a string is written,
its surrounding double quotes are also written, and escape characters inside the string are
dropped. When a string is displayed, its surrounding double quotes are dropped and es-
cape characters inside the string are displayed as though they were ordinary characters.
Be careful, output procedures send their interesting values to the output port but send
a boring unspecified value through the normal procedure return channel (see Figure 3.6).

monitor

stdout

‘ b

write [ unspecified

val

Figure 3.6

For example, the following call may seem to write 42 to the monitor and assign 42 to re-
sult:

> (define result (write (* 6 7)))
42
unspecified

But when we examine result we discover it contains an unspecified value instead of 42.
Make sure you understand why:

> result
unspecified
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Interactive Procedures

We can now give examples of how expression sequences can be useful. An interactive
procedure reads its inputs from the keyboard and writes or displays its output to the
monitor. Here’s an interactive version of the cube procedure that uses sequences to dis-
play a sequence of messages to the user:

(define (cube n)
(display n)
(display " cubed = ")
(display (* n n n))
(newline))

Here are some sample evaluations:

> (cube 3)
3 cubed = 27
unspecified
> (cube 4)
4 cubed = 64
unspecified

Why is an unspecified value displayed after each call to cube?

Versatility

Granted, the interactive cube procedure just defined is more user friendly than the cube
procedure defined in Chapter 2, but only a small percentage of procedures are called by
humans. Most procedures are called by other procedures and return their values to other
procedures. Our interactive cube procedure would be useless to other procedures because
it does not return a predictable output. For example, the following procedure fails to
compute the volume of a sphere if it uses the interactive cube procedure just defined:

(define (sphere-volume radius)
(* 4/3 pi (cube radius)))

We can see why if we try to capture the output with a definition:

> (define result (cube 3))
3 cubed = 27

unspecified

> result

unspecified

Make sure you understand these evaluations. The first unspecified was the unspecified
value returned by the definition. The cube of 3 was correctly computed and apparently
bound to result, but when we examine the value of result we discover its value is unspeci-
fied instead of 27. The reason is that the last expression in the body of cube is a call to
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newline. Because newline returns an unspecified value, cube also returns an unspecified
value. Our interactive cube procedure does not satisfy the versatility goal:

If possible, procedures should be reusable in several places within the same program
and possibly in other programs as well.

Unwanted Side Effects

We could attempt to have the best of both worlds by defining a special display procedure
that returns the value it displays:

(define (displays&return val)
(display val)
(newline)
val)

We can use display&return to redefine cube as follows:
(define (cube z)
(display z)
(display " cubed = ")
(displayé&return (* 2 z 2)))

Now cube displays its result on the computer screen and returns its result to any calling
procedures, as shown in Figure 3.7.

z—'.cube —p» 3

Figure 3.7

To see why this might not be a good idea, imagine the following scenario:

Your cube procedure is part of a large CAD/CAM (computer aided design and manu-
facturing) system with a GUI (graphical user interface). All interactions with the user
are through windows, menus, and icons. This sounds nice, but customers complain that
when they rotate or scale their part models in the graphics window, thousands of little
messages saying things like "3 cubed = 27" fill the screen.

Evaluating some expressions changes the state of the computer. This is called a side ef-
fect or derived result. Scheme’s output procedures are perfect examples. They return
unspecified values, but write values to output ports as a side effect.
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Unintended or unneeded side effects usually take the form of environmental pollu-
tion: screen garbage, tainted globals, damaged files, etc. Although the definition of cube
is very versatile, in the context of a larger application, like the CAD/CAM system, its
cheery little messages become annoying screen pollution.

The for-each Meta-Procedure and writeln

As a final example, assume we want to display the values in a list without the surround-
ing parenthesis. Because the display procedure includes the parenthesis, we will have to
write our own procedure for the job.

Fortunately, Scheme provides a meta-procedure we can use. Assume proc is any
unary procedure —i.e., a procedure that expects a single input —and assume vals is a list
of values. Then:

(for-each proc vals) =
an unspecified value. As a side effect, proc is applied
to each member of vals.

What happens to the values produced by the calls to proc? Unfortunately, they are dis-
carded. If the values were important, then the map procedure should be used instead.
However, if proc is an output procedure, then the outputs produced by applying it to the
members of vals will be visible. For example:

-> (for-each display '(1 2 3))
123>

This is almost what we want: the values in the input list are displayed, but the surround-
ing parenthesis are not. Regrettably, the values are displayed without separating spaces.
We can remedy this by using for-each with a modified version of display. Note that the
body of our procedure is a sequence:

(define (display+ val)
(display val)
(display #\space))

Here’s a sample call:

» (for-each display+ '(1 2 3))
12 3>

We can abstract this into a procedure:

(define (display-vals vals)
(for-each display+ vals))

Here’s a sample call:

> (display-vals '(1 2 3))
12 3>
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Because display-vals doesn’t print surrounding parenthesis, it would be nice to have a
version that didn’t require programmers to type the parenthesis that surround the input.
We can use the optional parameter feature to define an n-ary procedure that displays any
number of inputs followed by a newline:

(define (writeln . vals)
(display-vals vals)
(newline))

Here is a sample call:

> (writeln 4 " cubed = " (* 4 4 4))
4 cubed = 64

Appendix 3.3. Defensive Programming

Until now we have assumed that users will always call our procedures with valid inputs.
This is a dangerous assumption. Procedures written by experienced programmers always
validate all inputs before computing a result.

Validating inputs can be done using a conditional:

(define (dist x y)
(if (and (real? x) (real? y))
(abs (- x ¥))
?2??))

But what happens when a procedure discovers one or more of its inputs are invalid?
What replaces ?7? in the definition of dist? There are four choices:

1. The procedure attempts to repair the error.

2. The procedure displays an error message, then terminates gracefully.

3. The procedure sets a flag somewhere and hopes the user periodically checks the
flag.

4. The procedure ignores the error.

Commercial software always chooses the first option. Nothing annoys or frightens a
customer more than seeing hours of work replaced by an obscure error message.

Software under development uses the second option. A programmer wants to know
about his errors right away. This is the technique we will use.

The third technique is familiar to assembly language programmers, who must con-
stantly check overflow flags to determine if the last arithmetic operation produced the
correct result.

The fourth technique is just lazy programming. The programmer lets the interpreter,
operating system, or hardware deal with the error. At best, this produces very obscure er-
ror messages. At worst, it crashes the computer.
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Using sequential evaluation and the printing procedures discussed earlier, we could
design a special procedure for displaying error messages and terminating gracefully 2.3

(define (error gripe location . irritants)
(writeln "Error!")
(writeln #\tab "gripe:" #\tab gripe)
(writeln #\tab "location:" #\tab location)
(if (not (null? irritants))
(begin
(writeln #\tab #\space
"irritant(s):"
#\tab #\space)
(display-vals irritants)))
(newline)
(return error-token))

For now, the return procedure is merely the identity procedure, and the error-token is just
a special symbol:

(define (return val) val) ; for now
(define error-token 'error)

We can even predefine common gripes:
(define input-err "Illegal input(s)")
(define range-err "Input(s) out of range")

Continuations

The future is what you make it, so make it a good one.
—Doc Brown from Back to the Future, II1

The escape procedure does a nice job of informing the user what went wrong, but what
about terminating gracefully? The error message is useful to the human programmer, but
what about the procedure that called dist and is now waiting for a numeric answer?

(define (dist x y)
(if (and (real? x) (real? y))
(abs (- x ¥))
(error input-err dist x y)))

For example, recall the dist, small?, and close? procedures defined at the beginning of the
Chapter 2:

2 Some implementations of Scheme provide an error procedure.
3 An alternative strategy that avoids I/O and sequencing is outlined in the last problem.
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(define (small? z) (close? z 0)) ; i.e., near zero
(define (close? x y) (<= (dist x y) delta))

Assume a user calls small? with an invalid input:
> (small? "100") ; strings are invalid here

In this case (close? “100” 0) is cailed, which calls (dist “100” 0), which calls (error ...),
which calls (return error-token):

(small? "100")

(close? "100" 0)

(dist "100" 0)

(error input-err dist "100" 0)
(return error-token)

At this point close? is waiting for an answer from dist, small? is waiting for an answer
from close?, and the user is waiting for an answer from small? Of course return merely
returns the error-token, i.e., the symbol ‘error. This is returned to error, which passes it to
dist, which passes it to close?. Unfortunately, there’s not much close? can do with a sym-
bol, unless close? checks for the error-token and passes it on to small?. Of course small?
is hoping for a Boolean value from close?, so it too must check for the error-token and

pass it on to the user. A lot of work is being done just to propagate an error token (Figure
3.8). :

I user zl small? [;’—l close? l;-’—l dist r:.l error return

Figure 3.8

It would be better if return could simply abandon the long chain of calling procedures,
and return control directly to the user (Figure 3.9).

| u;er r.l small? r’l close? r’[ dist r.[ error r’rr:tlu_m_l

Figure 3.9

Amazingly, this is possible. The Scheme evaluator builds a unary procedure representing

the future of the current computation.# This procedure is called a continuation. For ex-
ample, at the moment return is called, the continuation is:

(lambda (hole) (<= (abs (- hole 0)) delta))

where the parameter, hole, represents the value that will be provided by return. The sur-
prise is that programmers can capture continuations. To do this we must first write a pro-
cedure that expects the current continuation as an input:

4 This might be a representation of the control stack in some languages.
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(define (receiver cont) ???)
To get Scheme to pass the current continuation to receiver, we place the expression:
(call-with-current-continuation receiver)

at the point where the continuation is of interest to us.
Continuations can be called like ordinary procedures, but they abandon the context in
which they are called and return control instead to the point where they were captured.
What if we capture a continuation at some point where the future looked bright and
“redefined” return to be this continuation. A procedure can be redefined using set!, a
Scheme assignment command:

; change return into a continuation
(define (receiver cont) (set! return cont))

Briefly, (set! NAME EXPRESSION) is used to redefine NAME to the value of
EXPRESSION. This isn’t quite accurate. The full story is the topic of Chapter 7. As-
signment commands like set! don’t belong in functional Scheme. Readers should refrain
from using assignment commands until they are properly introduced in Chapter 7.

What continuation should we redefine return to be? Let’s capture the continuation
near the interpreter’s prompt, just before an informative message is printed:

> (begin
(call-with-current-continuation receiver)
(writeln "returning to top level ...")
#f)

#£

At the point of capture, the continuation is:

(lambda (hole)
(begin
hole
(writeln "returning to top level ...")
#£))

Calling small? with an invalid input will eventually call error, which will print the error
message, then call return. Because return has been redefined to be the continuation, it
abandons the long chain of calling procedures and returns control to the point immedi-
ately before the message is printed. This causes the captured continuation to resume as
though it had been frozen in suspended animation and then suddenly thawed out:

> (small? "100")

Error!
gripe: Illegal input(s)
source: #[procedure: dist]

irritant(s): "i100" 0
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returning to top level ...
#£
>

Appendix 3.4. Debugging

Hacking is like building a scale-model cathedral out of toothpicks, except that if one
toothpick is out of place the whole cathedral disappears. And then you have to feel
around for the invisible cathedral, trying to figure out which toothpick is wrong. De-
buggers make it a little easier, but not much, because a truly screwed-up cutting-edge
program is entirely capable of screwing up the debugger as well, so that then you're
feeling around for the missing toothpick with a stroke-crippled claw-hand.

But, ah, the dark dream beauty of the hacker grind against the hidden wall that only
you can see, the wall that only you wail at, you the programmer, with the brand new’
tools that you made up as you went along, your special new toothpick lathes and jigs
and your real-time scrimshaw shaver, you alone in the dark with your wonderful tools.

—Rudy Rucker, The Hacker and the Ants

When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.

—Holmes, Spock, Data

Novice programmers often get caught up in the discipline of coding and neglect the
less glamorous aspects of programming: testing and debugging. More experienced pro-
grammers know that testing and debugging are integral parts of programming and can be
as exacting and demanding as writing code.

Debugging is an art. The idea is to systematically eliminate all potential causes of the
bug. The key to systematic debugging is to know the general types and causes of errors.
There are three categories: syntax errors, run-time errors, and logic errors.

Syntax Errors

Each time a definition is loaded from the editor into the Scheme interpreter a procedure
called a parser checks to make sure parentheses are balanced, structures have the ex-
pected format, and there are no misplaced definitions. If not, an error message is gener-
ated and the load fails.

Syntax errors are fairly easy to fix by visual inspection. Reload definitions one at a
time. When the offending definition turns up, count parentheses, double check the for-
mats of structures, and reload.
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Run-Time Errors

Run-time errors occur during testing, after the procedure has successfully loaded. Run-
time errors are caught either by the evaluator or by error checks installed by the pro-
grammer. .

Run-time errors caught by the evaluator are a nightmare because sometimes the pro-
gram is able to limp along a little before it crashes, creating the impression that the error
occurred beyond the point it actually occurred. In this case the error messages produced
by the evaluator are cryptic and the offending code is often hard to locate. The most
common run-time errors are scope errors, type errors, and range errors.

A scope error is caused when a symbol is referenced out of scope. The most typical
example is calling a procedure or referencing a constant you simply forgot to define.

A type error is caused when the number or types of parameters don’t match the
number or types of arguments. Compiled languages like Pascal and C++ use static type
checking, which means type errors are caught before the procedure runs. Unfortunately,
Scheme uses dynamic type checking, which means type errors are only discovered
when the procedure is called. For example, the following definition is allowed to load by
the Scheme parser:

(define (test num) (+ num "42"))
But any call produces a run-time type error:

> (test 10)
error: non-numeric input to +: "42"

Imagine how frustrating it would be to see this message generated by a flight control
program seconds before your new satellite plummets into the ocean. With static type
checking this message appears and the problem is corrected when the flight control pro-
gram is first compiled, months before the satellite is launched.

Another kind of type error results when the evaluator attempts to apply a nonproce-
dure to a list of operands:

> ("+" 3 4)
error: procedure expected

Range errors occur when a parameter conforms to the expected type of the argument,
but is too big or too small:

(/ 42 0)
(string-ref "cat" -1)
(list-ref '(1 2 3) 100)

A fourth source of run-time errors is the operating system. These errors normally occur
when the procedure is performing file I/O, for example, when a procedure attempts to
write to a nonexistent file.

Run-time errors must be located before they can be fixed. The Scheme debugger can
help locate a run-time error. PC-Scheme also provides trace and untrace procedures. As-
sume proc is the name of a procedure:
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(trace proc) = unspecified value. As a side effect, adds
proc to the list of procedures to be traced

(untrace proc) = unspecified value. As a side effect,
removes proc from the list of procedures to be traced.

A low-tech but reliable method is to plant diagnostic messages in the program. This will
be discussed shortly.

Logic Errors

Logic errors don’t produce error messages. The procedure runs, but the output, if any, is
simply wrong. Unfortunately, this type of error usually lies in the logic of the procedure’s
algorithm.
There are a few less drastic types of logic errors. Sometimes a logic error can be the
result of a precision error, such as the example given at the beginning of Chapter 2.
Another common logic error results in the dreaded infinite loop. Infinite loops are
caused by nonterminating recursions or iterations:

(define (undefined) (undefined)) ; loops forever!

Sometimes this results in a “stack overflow” message from the evaluator, but in the case
of iterations, the interpreter’s prompt simply fails to reappear and the keyboard goes
dead. Try using the Break key to stop the runaway computation.

Diagnostics

We can use the fact that expression sequences are allowed in clauses and procedure bod-
ies to insert diagnostic messages for the purpose of tracking run-time errors. We use the
writeln procedure to display our diagnostic messages. For example, here’s another ver-
sion of our tax procedure that includes diagnostics:

; = tax owed on income dollars
(define (tax income)
(writeln "entering tax ... ")
(cond ((not (real? income))
(error input-err tax income))
((> income max-medium)
(writeln "income > max-medium")
(+ max-medium-tax
(* max-rate (- income max-medium))))
((> income max-low)
(writeln "income > max-low")
(+ max-low-tax
(* medium-rate (- income max-low))))
((> income min)
(writeln "income > min")
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(* low-rate (- income max-min)))
((>= income 0) 0)
(else
(error "negative income" tax income))))

Inserting diagnostic messages allows us to automatically trace the flow of evaluation:

> (tax 8000)
entering tax...
income > min
300

Suppose we want to insert diagnostic messages into our first tax-computing procedure,
the one based on the if-expression. We can use the begin-procedure to group the conse-
quent and alternative with the appropriate diagnostic messages as follows:

; = tax on income dollars
(define (tax income)
(writeln "entering tax procedure")
(if (> income max-medium)
(begin (writeln "income > max-medium")
(+ max-medium-tax
(* max-rate (- income max-medium))))
(begin (writeln "<= max-medium")
(* income medium-rate))))

It is important to realize that reversing the order of the writeln expression and the multi-
plication in either the cond clauses or the begin expressions causes the tax procedure to

return an unspecified value instead of the desired tax. (Why? What if begin0 is used
instead?)

Problems

Solutions to the following problems are to be given in functional Scheme; do not use
procedures or special forms discussed in subsequent chapters. Do not use any of the IO
procedures discussed in this chapter except to print error or diagnostic messages or unless
you are specifically directed by the problem to use them. You may use the definitions
given in this or previous chapters as well as solutions to other problems in this or previ-
ous chapters. (Although you will have to include these definitions in your definition file
s0 you can test your definitions.) You may also define any supporting procedures you
need. You are required to validate inputs.

Problem 3.1.

Assume the following definitions have been made:
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(define x 100)
(define y 200)
(define z 300)

Evaluate the following expressions. If they contain errors, explain them. If their val-
ues are unspecified in IEEE/ANSI Scheme, indicate this with a question mark. Use your
Scheme interpreter to check your work, but be careful, your interpreter may not be 100%
compliant with IEEE/ANSI Scheme.

(* (or 3 4 56) (and 3 4 5 6))

(* (and 3 4 5 6) (begin0 3 4 5 6))

(* (1f 0 3 5) (begin 3 4 5 6))

((lambda (x) (* x X)) X)

((lambda (f) (f x)) number?)

((lambda (f) (f x)) (lambda (x) (+ X x)))
(case x ((x) 12) ((y) 32) ((z) 19) (else 0))

QHORAQDe

Problem 3.2.

The eager evaluation procedure outlined at the beginning of Chapter 2 didn’t make clear
if operands were evaluated from left to right or right to left. How can you use the output
procedures described herein to figure out in which direction your Scheme interpreter
evaluates parameters?

Problem 3.3.

As a punishment for rowdy behavior, Friedrich Gauss’ first grade teacher commanded
him to spend the rest of the day calculating the sum of all integers from 1 to 100. A mo-
ment later- Gauss had the answer, 5050. When asked how he got the solution so fast,
Gauss pointed out that the sum could be gotten as follows:

(1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51) = 101 * 50

Use this idea to come up with an elementary (i.e., nonrecursive) implementation of the
triangle procedure.

Problem 3.4.

The nth pyramid number is the number of blocks required to build a four-sided pyramid
n blocks high. For example:

(pyramid 0) = 0

(pyramid 1) = 1
(pyramid 2) = 5
(pyramid 3) = 14
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Implement pyramid using a recursive algorithm. Can you find an elementary implemen-
tation?

Problem 3.5.

Mathematicians use the notation n! to denote n factorial, the product of all integers from
1 to n. By convention, 0! = 1. Implement this as a Scheme procedure:

;o= (*1 2 ... n)
(define (fact n) ???)

Problem 3.6.

Implement the following procedure twice:

(choose n m) 0, if n<m

(choose n m) 1, if m= 0 orm=n

(choose n m) =
number of ways to choose m items from n items,

0, if n<m
=1, ifm=0o0or m= n.
The first implementation should be based on the following observation:

There are two ways to choose m items from n. Pick one item not to be chosen, then
choose m items from the remaining n - 1 items:

(choose (- n 1) m)

Or pick one item to be chosen, and pick m - 1 items from the remaining n - 1 items:

(choose (- n 1) (- m 1))

The second algorithm is based on the following formula:

n!
choose(n,m) = —————
mi(n—m)!

Problem 3.7.

Define a procedure called witnesses, which expects a predicate, pred, and a natural num-
ber n as parameters, and which returns a list of all natural numbers m < r such that (pred
m) is true. For example:
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> (witnesses even? 10)
(10 8 6 4 2 0)

> (witnesses prime? 10)
(7 5 3 2)

Problem 3.8.

Define a procedure called divisors that expects two positive integer inputs # and m, and
returns a list of all positive integers below n that divide m. (Recall, k divides m if
(remainder m k) =0.)

> (divisors 30 10)

(10 6 5 3 2-1)

> (divisors 8 10)

(8 4 2 1)

Problem 3.9.

A positive integer n is prime if 2 < n, and the only divisors of # are 1 and itself. Use the
divisors procedure in the last problem to define a prime? predicate.

Problem 3.10.

The Fibonacci sequence is:
0112358 13 21 34 etc.

The Fibonacci numbers are interesting because they are ubiquitous in nature. Implement
a recursive version of a procedure that calculates Fibonacci numbers:

(fib 0) =0

(fib 1)
(fib 2)
(fib 3)
etc.

1
1
2

Problem 3.11.

The harmonic series is § 2. Write a recursive Scheme procedure that computes the
k=lk

partial sums of this series, i.e.,

(harmonic-sum n) = i 1
k=1K
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Problem 3.12.

Recall from Calculus that the fixed point of the derivative procedure is f{x) = e*. The ex-
act value of e is given by the series:

Write a recursive Scheme procedure that approximate e to any accuracy by computing
partial sums of this series.

Problem 3.13.

Write a recursive Scheme procedure called sum that expects an unsigned integer input n
and returns the following partial sum:

_ ey
sum(n) 12-—-:1 2i

Problem 3.14.

Assume Scheme did not supply * but did supply +. Of course * is an overloaded proce-
dure, but most variants can be defined in terms of nat*, which multiplies two natural
numbers. Find a recursive implementation of nat* that doesn’t use *.

Problem 3.15.

Assume Scheme did not supply +, but did supply add1 and subl:

(addl z)
(subl z)

z + 1
z - 1

(If your version of Scheme doesn’t provide add! and subl you’ll have to define them
using +.) Of course + is an overloaded procedure, but most variants can be defined in
terms of nat+, which adds two natural numbers. Find a recursive implementation of nat+
that doesn’t use +.

Problem 3.16.

Assume Scheme did not provide ged. The ged of n and m is the ged of m and (remainder
n m). Use this fact to implement gcd. Also implement remainder.
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Problem 3.17.

Write a meta-procedure called compose that accepts an unsigned integer n and a unary

numeric procedure f as input. The compose procedure composes f with itself n times,
then applies the resulting procedure to 1:

(£ (f ... (£1) ... )) ; n times
Examples:
> (compose 4 addl)
5 ; = (addl (addl (addl (addl 1)))
> (compose 3 square)
1 ; = (square (square (square 1)))
> (compose 0 foo)
1 ; = base case

Problem 3.18.

Assume m and n are natural numbers. Find a recursive implementation of:

(m-to-n m n)
=(m ... n) ifm<n
= () otherwise

Problem 3.19.

Assume n is a natural number. Implement a procedure called nest, which generates a nest
of n lists:

(nest 0) = ()
(nest 1) SO

(nest 2) ()
etc.

Problem 3.20.

Assume Scheme did not provide list-ref or length. How could you implement these using
recursion?

Problem 3.21.

Assume vals is a list and # is a natural number. Find a recursive implementation of the
following procedure:
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(rem-n-th vals n) =

vals with the item in position n removed

Problem 3.22.

Find recursive implementations of the list-tail and list-prefix procedures. (List-prefix was
defined in Chapter 2.)

Problem 3.23.

Assume vals is a list and 7 is a natural number. Find a recursive implementation of the
following procedure:

vals with val inserted in position n.

(put-n-th vals val n) =

Problem 3.24.

A leap year is any unsigned integer divisible by 400, or divisible by 4, but not 100. For
example, 1700, 1800, 1900, 1901, 1902, and 1903 were not leap years, but 1600 and
1904 were leap years. Without using conditionals (if, cond, or case) and assuming val is
any Scheme value, implement the following polymorphic procedure:

(leap? val) '

= #t, if val is a leap year
= #f, otherwise

Problem 3.25.

A CVC syllable is a length-three string consisting of a consonant followed by a vowel,
followed by a consonant. Implement a procedure that tests for CVCs.

Problem 3.26.

Pig Latin is an artificial language derived from English by the following rules:

If an English word begins with a consonant, then the equivalent Pig Latin word is ob-
tained by moving the consonant to the end of the word and adding "ay." For example:

plane —-> lanepay

If an English word begins with a vowel, then the corresponding Pig Latin word is ob-
tained by adding an "ay" to the end of the word. For example;
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apple —> appleay

Implement a procedure that translates strings into their Pig Latin translations. Your pro-
cedure should validate its input making sure it’s a string consisting of upper- and lower-
case letters only. Do not attempt to validate that the string is actually in the English dic-
tionary.

(define (latinize string) ?°?7?)

Problem 3.27.

Consider the following definition:

(define (if. condition consequent alternative)
(if condition consequent alternative))

How does if. differ from if? (Apart from the fact that alternative is optional for if, but not
for if.) Give an example of a situation where replacing if by if. causes a procedure to fail.

Problem 3.28.

You download a LISP interpreter from an FTP site. Unfortunately, there is no documen-
tation and no source code. You know the interpreter accepts Scheme syntax, but you are
unsure if the interpreter uses eager or delayed evaluation. What experiment could you
perform to find out? ‘

Problem 3.29.

You download a Scheme interpreter from an FTP site. Unfortunately, there is no source
code or documentation. Furthermore, rumor has it that this particular version doesn’t
support short circuit evaluation. How can you figure out if this is true?

Problem 3.30.

You download a LISP interpreter from an FTP site. Unfortunately, there is no source
code or documentation. Furthermore, rumor has it that this particular version uses static
type checking. How can you figure out if this is true?

Problem 3.31.

Using the quadratic rule, write a procedure that computes the largest real solution of a
quadratic equation:

ax2 + bx + ¢ =0
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Your procedure will be passed the coefficients as inputs:
(define (max-root a b c) ???)

Warning: The largest real root isn’t always the one obtained by adding the discriminant.
If the quadratic has no real roots, you should generate an error message.

Problem 3.32.

Necessary Scheme (NS) is Scheme with all redundant features removed:
NS = Scheme - redundant features

Surprisingly, most of the primitive domains, primitive procedures, and structures pro-
vided by IEEE/ANSI Scheme are redundant. The following problems will show that most
structures are redundant because they can be rewritten using if-structures and lambda-
structures:

Problem 3.32.1.

Rewrite the following case-structure as a cond-structure:

(case k ((a bc) x) ((de f) y) ((ghi)z) (else 0))

Problem 3.32.2.

Rewrite the following cond-structure using if-structures. You may also want to use se-
quential structures (i.e., begin, begin0):

(cond
(al a2 a3) (bl b2 b3) (cl c2 c3) (else dl d2 d3))

Problem 3.32.3.

Rewrite the following expressions using if-structures:

a. (and a b c d e)

b. (or abcd e)

c. (not a)

d. (and (or a b (not c)) (and (not (or b c)) 4))
Problem 3.32 4.

Assume Scheme did not provide the control structures begin and begin0. Assume
Scheme always evaluates operands from left to right. How could you implement begin
and begin0 as Scheme procedures:

(define (begin0 . wvals) ??7?)
(define (begin . wvals) ?7??)
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Problem 3.33.

An alternative approach to error handling that avoids I/O and sequential evaluation is to
design the error procedure to create an error descriptor from its inputs, then return this

descriptor through the return procedure described in Appendix 3.3: Defensive Pro-
gramming.

(define (error gripe source . irritants)
(return

(make-error-descriptor gripe source errors)))
An error descriptor is an association list of the form:

ERROR-DESCRIPTOR ::=
(("gripe"” . GRIPE)
("source" . SOURCE)
[("irritant(s):" VALUE ...)])

Implement make-error-descriptor. Also, you’ll probably want to redefine return as the
continuation formed at the point where a debugger is being called:

> (debug (call-with-current-continuation receiver))
unspecified

For now, debug could simply be the identity procedure. How could you include the con-
tinuation at the point of error in the descriptor?
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Data Control

4.1.

The theme of this chapter is controlling access to procedures and data by either hiding
them or hiding information about how they are represented. In both cases access is re-
stricted to certain privileged procedures. This may sound like censorship, but inviting
procedures written by others to access one’s own data and procedures invites potential
misuse and unwanted alterations. We can formalize our theme as the information hiding
principle:

Information should only be made available on a need-to-know basis.

Procedure Blocks

Many implementations of Scheme allow programmers to nest definitions inside proce-
dure blocks:

PROCEDURE-BLOCK ::=
(define HEADER DEFINITION ... EXPRESSION .. <)

where

DEFINITION ::=
(define NAME EXPRESSION) | PROCEDURE-BLOCK

Nested definitions are also called local definitions, while non-nested definitions are
called global definitions. Names introduced by global definitions are called globals.
Names introduced by local definitions are called locals relative to the procedure in which
they are defined, while names used but not defined inside a procedure are called nonlo-
cals.

For example, in the following procedure block:

;i = volume of a length len, radius rad cylinder
(define (cylinder-volume rad len)

(define pi (acos -1)) i = 3.1416...

; = area of a radius r circle

(define (base-area r) (* pi (square r)))

; body of circle-volume

(* len (base-area rad)))

J. Pearce, Programming and Meta-Programming in Scheme
© Springer-Verlag New York, Inc. 1998
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4.1.1.

4. Data Control

pi and base-area are local, while acos and * are nonlocal relative to cylinder-volume, and
rad and len are parameters. In fact, *, acos, and cylinder-volume are globals. Relative to
base-area, pi, *, and square are nonlocals, and r is a parameter.

The scope of a procedure or constant is the region of the program where it can be
used. A global has global scope. It can be used anywhere in the program. Like a pa-
rameter, the scope of a local is limited to the procedure block that contains its definition.
This is called local scope.

The Nesting Instinct
Why and when to nest? A corollary of the information hiding principle is the locality
principle:

Scopes should be as small as possible.
Limiting the scopes of procedures and data improves reliability, understandability, and
efficiency.
Improving Understandability

Sometimes the body of a procedure definition gets too complicated for humans to read
easily. For example, the max-avg procedure expects as input an association list contain-
ing lists of scores on three exams:

((examl . (score ...))
(exam2 . (score ...))
(exam3 . (score ...)))

and returns the maximum average score:

(define (max-avg exams)
(max (/ (apply + (cdar exams))
(length (cdar exams)))
(/ (apply + (cdadr exams))
(length (cdadr exams)))
(/ (apply + (cdaddr exams))
(length (cdaddr exams)))))

We can make this procedure easier to read if we give suggestive names to the intermedi-
ate results:

(define (max-avg exams)
(define examl (cdar exams))
(define exam2 (cdadr exams))
(define exam3 (cdaddr exams))
(define avgl (/ (apply + examl) (length examl)))
(define avg2 (/ (apply + exam2) (length exam2)))
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(define avg3 (/ (apply + exam3) (length exam3)))
(max avgl avg2 avg3))

Improving Reliability

Limiting the scopes of procedures and data improves reliability because there are fewer
opportunities for them to be redefined, altered, or misused. Recall the definition of the
close? predicate given at the beginning of Chapter 2:

;= (1x - y| <= delta)
(define (close? x V)
(<= (dist x y) delta))

The body of the close? predicate contains two parameters, x and y, and three globals: <=,
the dist procedure defined in Chapter 2 (= lx - y!), and the constant, delta (= 10™).

It is appropriate to make dist a global procedure. Nesting it inside a procedure block
would make it unavailable to any other procedure that need to compute the distance be-
tween two real numbers. On the other hand, it is inappropriate to make delta a global
constant. If an unwary user inadvertently redefines delta:

(define delta 100)

the close? predicate will no longer work properly. Nesting the definition of delta inside
close? means it can’t be redefined inadvertently:

(define (close? x y)
(define delta l1le-20)
(<= (dist x y) delta))

Even if a global delta is defined:
(define delta 100)

it will have no effect on the behavior of close?. Although the occurrence of delta in the
body of close? is in the scope of both the global and local delta, we will soon see that the
eager evaluation algorithm automatically chooses locals over nonlocals, and therefore
uses the local delta.

As another example, recall the definition of the triangle procedure given in the last
chapter:

;= (+n ... 0)
(define (triangle n)
(if (natural? n)
(unsafe-triangle n)
(error “bad input” triangle n)))

where unsafe-triangle was a global recursive procedure that, for efficiency reasons,
didn’t perform input validation. We hope the “unsafe” prefix will discourage people from
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using unsafe-triangle, but this is no guarantee. However, nesting the definition of un-
safe-triangle inside the definition of triangle makes this impossible:

(define (triangle n)

; local definition
(define (unsafe-triangle n)
(if (zero? n)
0
(+ n (unsafe-triangle (- n 1)))))

; body of triangle
(if (natural? n)
(unsafe-triangle n)
(error “bad input” triangle n)))

(Don’t be confused by the fact that triangle and unsafe-triangle both have a parameter
called n. The situation is no different than when unsafe-triangle was a global procedure.
Remember, there are almost no restrictions on parameter names.)

Improving Efficiency

Sometimes a lengthy computation based on a procedure’s parameters can be performed
once, then defined as a local constant, where it can be referenced multiple times inside
the procedure without recomputing it. The following variance procedure is an example of
this application of definition nesting.

How do we describe the distribution of a list of test scores? The two principle features
of a distribution —center and spread —can be quantified by the mean and standard de-
viation, respectively.

The mean is simply the average:

(define (mean scores)
(if (distribution? scores)
(/ (apply + scores) (length scores))
(error “bad input” mean scores)))

where distribution? is a polymorphic predicate that returns true if its input is a nonempty
list of real numbers. We use the all? predicate defined in Chapter 2:

(define (distribution? val)
(and (list? val)
(all? real? val)
(not (null? val))))

The standard deviation is the positive square root of the variance:

(define (std-dev scores)
(if (distribution? scores)
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(sqrt (variance scores))
(error “bad input” std-dev scores)))

Basically, the variance of a list of scores is the average deviation, where the deviation of
a score x is its signed distance to the mean, j

deviation of x = x - u

But by the definition of mean, the average deviation is always 0, therefore we modify the
definition of variance slightly, and take it to be the average squared deviation. Assume
scores = (x, X, ... x), then:

N
2
15 & W

N

variance =

How do we translate this expression into a Scheme procedure:

; = variance of a list of scores
(define (variance scores) ???)

Assume deviations = (x, — L x, — i ... x, — W). Given the square procedure, we can use the
map procedure to convert deviations into a list of squared deviations. The variance is
simply the mean of this list:

(mean (map square deviations)) ; = variance

‘We could use the map procedure again to translate a list of scorés into a list of deviations:
(define deviations (map deviation scores))

With only a single list argument, map’s procedure argument must be unary:

; = score - mean

(define (deviation score) ?°??) ; 1 input only

Given the list of scores as a nonlocal, the deviation procedure could simply compute the
mean internally:

(define (deviation score)
(- score (mean scores)))

Nesting the definition of deviation inside the definition of variance insures that scores
will be available as a nonlocal:

(define (variance scores)
(define (deviation score)
(- score (mean scores)))
(define deviations (map deviation scores))
(mean (map square deviations)))

Although this works, it is terribly inefficient. Assume the length of the list of scores is N.
Inside the map procedure, the deviation procedure will be called N times. But each time
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the deviation procedure is called, it calls (mean scores), which requires N —1 additions
and always produces the same result, . Hence, these same N — 1 additions will be per-
formed N times, for a total of N — N additions.

By computing the mean once and making it a local constant relative to variance, it
can be available to deviation as a nonlocal:

(define (variance scores)
(define mu (mean scores))
(define (deviation score) (- score mu))
(define deviations (map deviation scores))
(mean (map square deviations)))

This reduces the number of sums from N° — N to N — 1, a great improvement if N is large.
Finally, notice that we can save ourselves an additional traversal of scores (N steps)
by combining square and deviation:

(define (variance scores)
(define mu (mean scores))
(define (deviation”2 score) (square (- score mu)))
(mean (map deviation”2 scores)))

The Environment Model of Eager Evaluation

The eager and lazy evaluation algorithms outlined at the beginning of Chapter 3 are
called substitution models because in the third step of eager evaluation (the second step
of lazy evaluation) arguments (operands) substitute or replace the parameters in the pro-
cedure’s body. Now that procedures can also have local definitions, we need a more
elaborate explanation of eager evaluation! called the environment model.

Bindings

A binding is an association between a name and a value. Definitions create bindings and
store them in tables called environments. The process of creating a binding from a defi-
nition is called resolution. For example, resolving the definition:

(define (cube z) (* z z z))

creates a binding between the name, cube, and the procedure (lambda (z) (* z z z)) and
then stores this binding in the global environment.
The extent or lifetime of a binding is the period of time the binding exists. If a bind-

ing exists until the end of a Scheme session, it has global extent, otherwise it has local
extent.

1 The environment model of lazy evaluation is presented in Chapter 8.
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The scope of a binding is the region of the program where the binding is visible. If a
binding is visible throughout the entire program, it has global scope, otherwise it has lo-
cal scope.

A global binding is a binding created by resolving a global definition. Unless a
global binding is explicitly replaced, it has global extent and scope. For example, as long
as we don’t redefine cube, the binding between cube and (lambda (z) (* z z z)) will have
global scope and extent. However, if we change our minds and redefine cube:

; = a 3D box with height = width = depth = s
(define (cube s) (make-box s s s))

then a binding between cube and (lambda (s) (make-box s s s)) replaces the binding be-
tween cube and (lambda (z) (* z z 2)).

Local bindings are bindings created by local definitions. We know that the scope of a
local binding is limited to the procedure in which it is defined. In other words, local
bindings have local scope. Usually a local binding also has local extent; as soon as the
procedure terminates, the binding disappears. Later we will learn how to create bindings
with local scope but global extent.

Obviously local bindings can’t be stored in the global environment; otherwise they
would have global scope. The solution is to adjust the eager evaluation algorithm so it
creates a temporary extension of the global environment, adds the bindings created by re-
solving any local definitions to the extension, then evaluates the body of the procedure
relative to this temporary environment.

In fact, instead of replacing parameters by arguments in the procedure’s body as re-
quired by the substitution model of eager evaluation, we can simply add bindings be-
tween parameters and arguments (called parameter bindings) to the temporary envi-
ronment along with the declared bindings, then evaluate the parameterized body of the
procedure relative to the temporary environment. Here’s the environment model of eager
evaluation:

1. Evaluate the operator.
2. Produce arguments by evaluating the operands.
3. Resolve all local definitions.
4. Extend the calling environment by adding declared and parameter bindings.
5. Evaluate the parameterized body of the procedure relative to the extended envi-
ronment.
6. Restore the original calling environment.
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