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Preface

Lanthanides and actinides comprise about one-quarter of the known chemical elements col-
lected in the periodic table. Because of their complex electronic structure, the significant
electron correlation effects, and the large relativistic contributions, the f-block elements are
probably the most challenging group of elements for electronic structure theory. In 1987
Pyykkö reviewed the available relativistic electronic structure calculations for f-element
molecules (Inorganica Chimica Acta 139, 243–245, 1987). Of the 59 listed studies, 53 dealt
with actinides and only 10 with lanthanides. The applied computational methods comprised
ab initio Dirac-Hartree-Fock one-center expansion and Dirac-Hartree-Fock-Slater calcula-
tions, quasirelativistic all-electron Xα-studies, and semiempirical valence-only approaches
like relativistic extended Hückel theory. None of these studies took into account static
electron correlation explicitly using a multi-configurational wavefunction or included at
an ab initio level the effects of dynamic electron correlation. No applications of modern
density functional theory to f-element molecules were reported either. The treatment of
relativity included the Dirac one-particle relativity in a few cases explicitly, but mostly in
some approximate form, whereas corrections due to the Breit two-particle interaction or
arising from quantum electrodynamics were entirely neglected. Relativistic effective core
potentials were only available for a few actinides, which certainly also hampered a routine
exploration of lanthanide and actinide chemistry with quantum chemical approaches.

Tremendous progress was made in dealing with lanthanide and actinide systems since the
1987 review of Pyykkö appeared, and the field continues to develop quickly. The current
book aims to provide the reader an overview of those state-of-the-art electronic structure
theory approaches that have been successfully used for f-element systems so far and sum-
marizes examples of their application. The 16 chapters were written by leading experts
involved in the development of these methods as well as their application to various aspects
of f-element chemistry. From the results of several studies discussed in these contributions it
becomes apparent that quantum chemists successfully conquered the field of lanthanide and
actinide chemistry and can provide very valuable contributions not merely supplementing
experimental studies, but also frequently guiding their setup and explaining their outcome.
Moreover, with largely improved theoretical methods and computational resources at hand,
it also became possible to obtain new insights with respect to the interpretation of the
electronic structure of f-element compounds.

Despite these many encouraging developments, it is appropriate to say that when it comes
to lanthanides and actinides modern electronic structure theory currently can accomplish
many things, but certainly not all. It is also clear that this book can only provide a snapshot
of the current state of affairs. A number of promising computational approaches, e.g., local
electron correlation schemes or F12-dependent wavefunctions, are currently developed and
already successfully applied to non-f-element systems. They will during the next years most
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xviii Preface

likely significantly extend the array of available methods for quantum chemical studies of
lanthanides and actinides. Thus more exciting developments can be anticipated.

Finally I would like to thank all authors of the chapters for their excellent contribu-
tions. My thanks also go to the staff at Wiley, i.e., Sarah Higginbotham, Sarah Keegan,
and Rebecca Ralf, for their guidance and support during this book project. Last but not
least, I’m grateful to Mrs. Peggy Hazelwood for copy-editing and to Mr. Yassar Arafat at
SPi for final handling of the proofs.

Michael Dolg
Cologne

May 2014
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1
Relativistic Configuration Interaction

Calculations for Lanthanide and
Actinide Anions

Donald R. Beck1,∗, Steven M. O’Malley2 and Lin Pan3

1Department of Physics, Michigan Technological University
2Atmospheric and Environmental Research

3Physics Department, Cedarville University

1.1 Introduction

Lanthanide and actinide atoms and ions are of considerable technological importance. In
condensed matter, they may be centers of lasing activity, or act as high temperature super-
conductors. Because the f -electrons remain quite localized in going from the atomic to the
condensed state, a lot of knowledge gained from atoms is transferable to the condensed
state. As atoms, they are constituents of high intensity lamps, may provide good candidates
for parity non-conservation studies, and provide possible anti-proton laser cooling using
bound-to-bound transitions in anions such as La− [1].

In this chapter we will concentrate on our anion work [2–4], which has identified 114
bound states in the lanthanides and 41 bound states in the actinides, over half of which are
new predictions. In two anions, Ce− and La−, bound opposite parity states were found,
making a total of 3 [Os− was previously known]. Bound-to-bound transitions have been
observed in Ce− [5] and may have been observed in La− [6]. We have also worked on many
properties of lanthanide and actinide atoms and positive ions. A complete list of publications
can be found elsewhere [7].

*Corresponding author. E-mail: donald@mtu.edu

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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2 Computational Methods in Lanthanide and Actinide Chemistry

1.2 Bound Rare Earth Anion States

In 1994, we began our first calculations on the electron affinities of the rare earths [8].
These are the most difficult atoms to treat, due to the open f -subshells, followed by the
transition metal atoms with their open d-subshells. At that time, some accelerator mass spec-
trometry (AMS) measurements of the lanthanides existed [9, 10] which were rough. Larger
values might be due to multiple bound states, states were uncharacterized as to dominant
configuration, etc.

Local density calculations done in the 1980s had suggested anions were formed by 4f
attachments to the incomplete 4f subshell. Pioneering computational work done by Vosko
[11] in the early 1990s on the seemingly simple Lu− and La− anions using a combination
of Dirac-Fock and local density results suggested instead that the attachment process in
forming the anions involved p, not f , electrons.

Our 1994 calculation on a possible Tm anion was consistent with this, in that it showed 4f
attachment was not a viable attachment process. Our calculations are done using a Relativis-
tic Configuration Interaction (RCI) methodology [12], which does a Dirac-Hartree-Fock
(DHF) calculation [13] for the reference function (s) (dominant configurations). The impor-
tant correlation configurations (e.g., single and pair valence excitations from the reference
configuration[s]) are then added in, using the DHF radials and relativistic screened hydro-
genic function (called virtuals), whose effective charge (Z*) is found by minimization of
the energy matrix, to which the Breit contributions may be added, if desired.

Experience gained in the mid-1990s suggested that good candidates for bound anion
states might be found by combining observed ground and excited state neutral spectra with
the computational knowledge that closing an s-subshell might lower the energy ∼1.0 eV
or adding a 6p-electron to a neutral atom state (7p in the actinides) might lower the energy
∼0.25 eV. The variety of energetically low-lying configurations in the observed spectrum
of La and Ce suggests a potential for a large number of bound anion states, which has now
been computationally confirmed.

As an example of the process, a Tm−4f 146s2 anion state might be bound if there were a
4f 146s1 state observed in the neutral atom that was less than 1 eV above the ground state.
The use of excited states with s/p attachment also has the computationally attractive feature
that it avoids, to a good level of approximation, having to compute correlation effects for d
and/or f electrons. An s attachment to an excited state can be equivalent to a d attachment
to the ground state. The angular momentum expansions for such pair excitations converge
slowly, and a lot of energy is associated with (nearly) closed d and/or f subshells. Clearly,
it is best to reduce such problems if usable experimental results exist.

It has always been our position to use no more than moderately size d wavefunction
expansions. Current limits are about 20,000 symmetry adapted wavefunctions built from
fewer than 1 million Slater determinants, and use of two virtuals per l, per shell (n). This
allows the “physics” (systematics) to be more visible and reduces the need for “large” com-
putational resources that were frequently unavailable in the “old” days. Development of
systematic “rules” is one of the main goals of our research. Some examples follow: (i) deter-
mining which correlation effects are most important for a specific property [14, 15], (ii) near
conservation of f-value sums for nearly degenerate states [15, 16], (iii) similar conserva-
tion of g-value sums [16], (iv) similar conservation of magnetic dipole hyperfine constants
[17, 18]. This approach does mean near maximal use of symmetry, creating extra auxiliary
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computer codes, and increases the necessity of automating data preparation and file manip-
ulation. Much stricter development of this automation is one of the two factors that reduced
calculation of the entire actinide row to less than the time it used to take to complete the cal-
culation for one anion (>4 months for Nd−). Use of moderately sized wavefunctions also
requires careful selection of which property-specific configurations to include and careful
optimization of the virtual radial functions.

1.3 Lanthanide and Actinide Anion Survey

In 2008 and 2009 our group presented a series of three papers [2–4] representing an
unprecedented and complete survey of the bound lanthanide and actinide anion states pre-
dicted by valence level RCI calculations. The first of these [2] was a study of all 6p
attachments to 4f n 6s2 ground and excited states of the lanthanide neutral spectra (then
and throughout the discussion here we use n as an occupancy of N-2 where N is the
total number of valence electrons in the neutral atom configuration, including the core-
like 4f/5f subshells). The second paper [3] completed the lanthanide survey with 6p
attachments to 4f m 5d 6s2 thresholds and 6s attachments to 4f m 5d2 6s thresholds (m ≡
N − 3). The final paper in the series [4] included the equivalent 7s and 7p attachments
to corresponding actinide neutral thresholds as well as additional states in Th− and Pa−

representing 7p attachments to 5f q 6d2 7s2 thresholds (q ≡ N − 4). The approach used
to handle the complexity of these calculations represented the culmination of over three
decades of group experience in developing techniques and computational tools for RCI
basis set construction. The path that led to this comprehensive lanthanide and actinide
anion survey was somewhat circuitous and developed originally through adjustments to
increasing difficulties with each step toward more complex systems. In the following sub-
sections we discuss some milestones leading up to the survey, the computational issues
and solutions, the improved analytical tools that were needed, and a summary of results of
the survey.

1.3.1 Prior Results and Motivation for the Survey

Throughout the 1990s and early 2000s our group had been steadily pushing our method-
ology towards more and more complex atomic systems. The ability to do so was partly
from techniques described in Section 1.3.2 but also largely due to ever-increasing computer
power. Mid-row transition metal studies had become fairly routine, e.g., binding energies of
Ru− [19], Os− [20], and Tc− [21]. However, the added complexity of a near-half-full f sub-
shell over that of a d had relegated us for the most part to the outer edges of the lanthanide
and actinide rows, e.g., Ce− [22, 23], Th− [24], Pr− [25], U− [26], Pa− [27], La− [28], and
Lu− [29]. During the mid- to late-1990s, we were twice enticed by the unique case of Tb to
attempt to skip to the center of the lanthanide row [30]. The Tb ground state is 4f 9 6s2, but
the low-lying first excited state (∼35 meV [31]) is of the opposite parity 4f 8 5d 6s2 configu-
ration, and the possibility of opposite parity Tb− bound anion states resulting from the same
6p attachment mechanism was a tempting prize. Unfortunately, those initial attempts at this
mid-row anion were premature and Tb− would have to wait to use basis set construction
techniques that we eventually developed in the mid-2000s.
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As we were gradually working our way inwards from the ends of the lanthanide and
actinide rows, our papers began to take on a back-and-forth dialog with the work of
the experimental atomic physics group at University of Nevada, Reno (Thompson and
co-workers) usually within our accessible range of elements, e.g., La− [32], Lu− [33],
Tm− [34], Ce− [35], Pr− [36], but occasionally outside our purview in the mid-row, e.g.,
Eu− [37] (although this case is a much more approachable problem than it may appear at first
glance since the 4f 7 electron subgroup can be effectively restricted to 8S and 6P terms [3]).
This observation coupled with a similar result in our work on Eu− auto-detachment lifetimes
in metastable states [38] helped lead to the realization that angular momentum couplings of
the 4f n subshell could be considerably restricted with little accuracy loss, with great gains
in computational efficiency (see Section 1.3.2.2). The Reno group employed the laser pho-
todetachment electron spectroscopy (LPES) technique, which relies upon identification of
peaks in the kinetic energy spectrum of detached photoelectrons, and their electron affinities
were often considerably higher than contemporary AMS values [39]. Of particular interest
to us were the many features in their published Ce− spectrum [35], and a brief overview
of the history of the electron affinity measurements and computations for Ce− will perhaps
set the stage to better illustrate the wide gap in predicted/measured values between our two
groups and the importance of their eventual reconciliation.

In the early 1990s, AMS experiments such as Garwan et al. [9] had detected Ce−, and
high yields seemed to indicate a large electron affinity (>0.6 eV) or several moderately
bound states. At the time, density functional theory computations of Vosko et al. [11] were
suggesting that Ce−’s (and other lanthanides’) bound states would be formed by 6p and
possibly 5d attachments rather than 4f as previously assumed. Our earliest Ce− calcula-
tions in 1994 studied both of these attachments to the 4f 5d 6s2 ground state configuration
and predicted a 4f 5d 6s2 6p Ce− anion ground state with electron affinity of 259 meV.
These calculations also predicted four additional bound even states and an odd 4f 5d2 6s2

state with a binding energy of 178 meV. In 1997 Berkovitz et al. used a combination of
laser excitation and AMS techniques to obtain a measured electron affinity of 700(10)
meV. In the midst of our renewed push towards the center of the lanthanide and actinide
rows, we revisited our RCI Ce− computations in 2000 [23]. A recent re-dimensioning of
our main RCI code [12] allowed us to now include extensive second-order effects. These
took the form of relaxed j restrictions on electron subgroups and configurations represent-
ing triple/quadruple replacements with respect to the configurations of interest; no direct
impact on their energies, only indirect through lowering of nearby single/double replace-
ment (first-order) configurations. These results flipped the predicted RCI ground state to
4f 5d2 6s2 with an electron affinity increased to 428 meV with an additional six odd bound
excited states and eight even 4f 5d 6s2 6p bound states with largest binding energy of 349
meV. Just when the gap between experiment and theory seemed to be improving, Davis
and Thompson (Reno group) reported their 2002 measurements [35] with an LPES elec-
tron affinity of 955(26) meV and at least two excited states at 921(25) and 819(27) meV.
By 2004, Cao and Dolg [40] had produced their own computational results using the rela-
tivistic energy-consistent small core pseudo-potential methodology that predicted the same
4f 5d2 6s2 ground state configuration with an electron affinity of 530 meV.

In 2006, we again revisited Ce− with the RCI methodology [41]. This time we were
able to include some limited core-valence correlation involving the 5s and 5p subshells
and the careful use of a high J excited neutral threshold to define the relative positions of
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the anion manifolds with respect to the neutral ground state configuration. (We will see
in Section 1.3.3 that the latter introduced its own difficulties.) The result was an increase
in the RCI electron affinity to 511 meV in good agreement with the recent Cao and Dolg
value, but this latest RCI study also resulted in an astounding 26 bound anion states for
both parities. Despite these advancements, there seemed to be no missing elements in our
bases that could possibly account for the near doubling of the two computational results to
approach the experimental values of Davis and Thompson.

Discussions with Thompson [42] suggested that the remaining difference of ∼450 meV
might be a misinterpretation of the most prominent feature of their photoelectron kinetic
energy spectrum when they used it as the anion ground state to neutral ground state tran-
sition. In fact, some crude initial photodetachment calculations suggested that one should
expect the most prominent feature to be from the 4f 5d2 6s2 ground state configuration
detaching via 6s to εp leaving the neutral atom in a 4f 5d2 6s excited state. Based on this
idea, the experimental analysis would be off by ∼350 meV, but the two sets of computations
were also still too low by >100 meV. We performed an ambitious set of cross section com-
putations for all our bound anion states to all neutral thresholds within the range of the 2.410
eV experimental incident photon energy [35] using a frozen core approximation. By using
the experimental photon energy, we were able to simulate an expected spectrum by adding
together Gaussian peaks at each transition energy scaled by the appropriate relative cross
sections and a few different effective anion temperature distributions. The Gaussian width
was arbitrarily adjusted until the scaled simulated spectrum produced a best qualitative fit
to the experimental data (i.e., subjective “by eye” comparison), and alignment of the promi-
nent peaks then produced an effective electron affinity of 660 meV. The re-analysis was
met with enthusiasm from the experimenters [43], and additional experimental results from
Walter et al. [44] using tunable laser photodetachment threshold spectroscopy with incident
photon energies in the range of 610-750 meV produced an electron affinity of ∼650 meV.
We thus regarded this Ce− case as an excellent example of theory and experiment work-
ing together toward a common goal of understanding a particularly complex atomic anion.
Section 1.4 discusses more recent work on Ce− photodetachment cross section.

Having made the case for the usefulness of simulated spectra in analysis of photodetach-
ment studies, we endeavored to take the next step in other systems, the intention being to
provide additional computational details beyond simple binding energy numbers. Our Nd−

work from early 2008 [45] was this next step. It was successful in the sense that much like
Ce−, detachment to higher excited state configurations was found to be much more likely,
provided an experimenter attempted an LPES study with the same 2.410 eV incident photon
energy that had been used by Davis and Thompson [35]. In this case 4f 4 6s2 6p anion states
were found to detach with much higher cross section via 6s to εp leaving the neutral atom
in excited 4f 4 6s 6p states rather than a 6p detachment back to the neutral 4f 4 6s2 ground
state configuration (primarily due to resonances arising from coincidence with the incident
energy and the excited threshold positions). Of course, more practically the real effect of
this result was to warn an experimenter to instead choose a lower photon energy to avoid
these 4f 4 6s 6p thresholds altogether.

In the long run, the most important products of this Nd− study were the tools that were
developed to help deal with basis set construction and jls restrictions placed on the 4f 4

electron subgroup. We had reached that limit where necessity had forced us to invent a new
approach in order to move further into the row. Having gone through the pains of developing
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a new technique to piece together multi-electron basis members (see Section 1.3.2), it wasn’t
until we began to select the next project that we realized just how powerful was the approach
that had been applied to Nd−. The analysis of 4f n,m subgroup composition could be left to
fairly straightforward, manageable computations (few configurations) on each neutral atom,
and the compositional analysis and basis selection for the remaining portion of the anion
and neutral states could be performed on a system near the end of a row and systematically
reapplied to all the elements of the row, including near the center where a full un-trimmed
basis set would be orders of magnitude larger than our 20k limit. These techniques lent
themselves particularly well to binding energy studies where analysis need only be done on
basis set composition and energy contribution, as opposed to including additional criterion
based on contributions to hyperfine structure, transition probabilities, or photodetachment
cross sections. Because the cross section computations had by far taken up the bulk of CPU
and human time in the Ce− and Nd− projects, it was not too difficult a decision to tem-
porarily forgo that avenue of inquiry in favor of returning to pure binding energy studies,
particularly now that doing so meant the opportunity to study whole rows of heavy elements
in the 6-8 months we had typically spent on one anion.

1.3.2 Techniques for Basis Set Construction and Analysis

The robustness of the RCI methodology lies primarily in the flexibility of basis set con-
struction. The process begins with the generation of 1-electron basis functions by solving
the multi-configurational Dirac-Fock (MCDF) equations using Desclaux’s program [13]. In
order to do Dirac-Fock calculations on a reference manifold for rare earths (and transition
metals), the number of Rk integrals allowed was increased to 500K, the integrals were stored
on disk, and the number of configuration state vectors (called “parents”) was increased to
1000. The structure input is produced by our RCI code [12]. To extrapolate from fractional
Z (> N+1) down to N+1, so necessary for anions, Z was converted from an integer to a real
variable. At each stage in the basis set construction we are free to select or omit individual
functions as needed while considering the delicate balance of reduction in basis size vs shift
in energy positions (typically we aim for losses of less than a few meV if possible). The
following sections describe the basis set construction and analytical tools in more detail.

1.3.2.1 Simple Omission of “Small” Basis Members

At any particular stage in the development of an RCI basis set, one is typically adding
correlation in one of several potential forms. It is important to saturate the 1-electron virtual
basis typically up to two or three virtuals of each symmetry, so one could be adding, say vp′′

when vp and vp′ are already present. One could also be extending the virtuals to higher l, e.g.,
correlation of the form 5d 6p to vf vg has been found to be significant, so the equivalent 5d 6p
to vg vh is tried. Often one includes second order effects after determining the importance of
first order correlation, e.g., 6s2 to vp2 replacements from a 5dx 6s2 configuration is typically
a large contributor to correlation, and adding the triple replacement 5d 6s2 to vp2 vd will have
no direct impact on the zeroth order configuration but may lower the double replacement and
increase its contribution. Finally, if the system is not too complex (open valence electrons
or close to full subshells), one may have room to add some core-valence effects, e.g., 5p 6s
to vp vd in a transition metal 5dx 6s2 calculation.
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Regardless of the “trial” that is being performed, one would typically perform an anal-
ysis of energy contributions using intermediate normalization [46] and RCI coefficients of
individual basis members and make decisions on how much to trim the new basis set before
moving on to the next step. For a particular J calculation this requires careful removal of
basis members with little contribution in all levels of interest. When considering more than a
few levels, the effectiveness of simple removal of basis functions can lose much of its useful-
ness as the set of functions small in all levels of interest is much smaller than the set of small
contributors for any particular level. If one is concerned about using the wavefunction to
compute some other property, impact on that calculation needs to be considered as well, e.g.,
transition probabilities to several potential initial or final states of other J-parity calculations.

Although useful, even on a simple system, this approach can only trim an RCI basis size
by a factor of ∼2–3 at most. For the lanthanide and actinide survey we are discussing here,
we needed an order of magnitude or more for the mid-row anions to make the calculations
feasible.

1.3.2.2 Applying jls Restrictions to 4f n,m Subgroups

One of the insights into our early Tb− calculations had been the realization that the
4f 9 6s2 6p calculation had negligible mixing of any basis functions that did not restrict the
4f 9 group of electrons to j= 15/2. With hindsight this is now obvious given that it was an
attachment to the 4f 9 6s2 J= 15/2 neutral ground state. In our work on Nd− we did LS
analysis of the anion vs. neutral 4f 4 composition. Although the RCI method is purely rela-
tivistic, we can approximate LS states or LS terms on subgroups by straightforward rotation
of the jj basis set based on an approximate diagonalization of L2+S2 applied to the spinors’
major components. The rotation does not affect the completeness of the basis. For Nd− we
developed an auxiliary code that allowed us to make such a rotation of the jj basis of the
MCDF portion of an RCI calculation’s wavefunction after the fact in order to obtain both
jj and ls analyses. It was then that we began to realize the strong connection between 4f 4

composition between anion and neutral states.
At the time our RCI program [12] had two optional approaches to generate basis func-

tions within the program. The first was a full-configuration option that was typically applied
to a single relativistic configuration (e.g., 4f 25/2 4f 27/2 6s2 6p23/2) but could also include all
relativistic configurations that made up a non-relativistic one (e.g., 4f 4 6s2 6p) to allow this
pseudo-rotation to an LS basis on the full configuration or ls terms within a subgroup. To
use the latter option one necessarily complicates the basis set because all basis functions
now contain mixing of all the determinants instead of just the ones from individual rela-
tivistic configurations (which is why one would want to do the LS analysis after the fact as
mentioned above).

The second approach split a non-relativistic configuration into two parts, created deter-
minant information on the two groups, and then pasted them together. This necessarily
requires a range of js for each piece, and a pasting together based on total J of the calcula-
tion and combinations using standard angular momentum vector coupling theory. For Nd−

the natural split is to separate 4f 4 from the remaining 3-electron group of each correlation
configuration.

The first option happened to be more limited in terms of the complexity of the size of
the configuration it could handle. The second could handle a ten fold larger set of basis
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functions, but it didn’t support the LS rotation option. Since our analysis was suggesting
that an overall set of jls restrictions on 4f 4 would give us the edge we needed to allow a
reasonable amount of valence correlation within our 20k limit, we extracted the method
with the LS-rotation option to an external program where it could be re-dimensioned with-
out adversely affecting other aspects of the RCI program. This auxiliary code [47] allows
output to be read seamlessly. Even with this improvement, some of the more complicated
correlation functions were running into memory limits and taking a day or more to complete.

As we began to think about next steps towards more complex anions, we realized that
this new approach needed further improvement. It made no sense to keep re-creating the
same 4f n,m ls terms for each configuration. The process could also benefit from automation
since files were being generated by hand and were vulnerable to typos. Ultimately, we ended
up creating a database of partial configuration files. Using the program just described, we
generated 4f n,m and remaining 3- and 4-electron groups for this survey separately as if they
were full configurations.

A second auxiliary code was then developed that would take a list of files for each part
and, given the range of js for each piece and desired total J, piece together complete con-
figurations with jls restrictions on the 4f n,m part and relativistic jj bases on the remaining
part. Further scripting and analysis was developed to scan an RCI program input file, rec-
ognize which external files would need to be available, and auto-generate a script to piece
them together. This hybrid approach was an order of magnitude faster in CPU time and the
human time and saved likely several months of tedious file editing.

1.3.2.3 Improvements of 1-Electron Bases in p Attachments

The MCDF calculation of our 1-electron bases includes an energy minimization of a spec-
ified level within each J-parity combination [13]. In order to generate a solution for anion
states, one typically needs to step the nuclear charge down from some fractional value
slightly greater than the actual Z of the anion, reusing the solutions from each previous
step as an initial estimate. In the case of a p1/2 attachment the singly occupied p1/2 sub-
shell of the final iteration in the process (the one with the correct integer Z), will be quite
diffuse, but not overly so compared to the other d and s valence subshells (∼1 a.u. beyond
the s). However, the p3/2 subshell generated by this optimized calculation will typically
have drifted to a much more diffuse 〈r〉 with a difference of >1 a.u. compared to ∼0.1 a.u.
typical of pairs of relativistic subshells in neutral or multiply-occupied anion subshells. The
opposite is true for an optimization to a p3/2 attachment.

This disparity of the 〈r〉 of the outer DF p subshells became problematic when we began
to add correlation involving p virtuals. If the MCDF radials were optimized to a p1/2 level,
we would see large correlation contributions from the single replacement p to vp3/2 con-
figuration in a p3/2 attachment, indicating that energy minimization of our vp orbitals was
selecting Z∗ to act as a correction to the poorly optimized DF p3/2 radial. The disparity in
DF 〈r〉 propagated through the virtual ps as the j = 1/2 radials would have much higher Z∗

than the corresponding j = 3/2 radial.
Our solution to this issue was to allow mixed 1-electron radial bases with outer DF p radi-

als each taken from a computation optimized to a corresponding attachment, avoiding either
of the diffuse orbitals that had “drifted away.” This works because as the RCI program reads
in the 1-electron radial functions it performs an additional Gram-Schmidt orthogonalization
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outwardly through all functions of each symmetry. Using these mixed radial bases allows
the virtual ps to then properly optimize important double replacement configurations rep-
resenting s p to vs vp+ vp vd. The result was useful for basis set construction because we
were then able to stop at two sets of virtuals, i.e., vp and vp′.

1.3.2.4 Notation Conventions for Analysis

In dealing with the large number of bound states reported in this survey [2–4] it was use-
ful to develop some shorthand notations when describing composition of anion levels. In
addition to the typical total LS breakdown within the dominant MCDF configurations (with
total J indicated on the leading term only for simplicity), we included composition within
an alternate jj basis selected to reveal the mixing of attachment mechanism within each
state. For p attachments we denoted a p1/2 attachment term as “(j),” where j is the value for
the neutral f n s2 or f m ds2 portion of the anion wavefunction. The p3/2 attachments were
distinguished by use of braces instead of parentheses: “{j}.” By rounding the contributions
to integer percent we were able to convey a great deal of information on level composition
within fairly concise tables. For example, the Pr− ground state was simply described by two
sets of compositions [2]: “5K5 77, 3I 21, 5I 1, 3H 1” and “(9/2) 99, [9/2] 1.”

When it came to s attachments to excited f m d2 s excited neutral thresholds, it was not
possible to split the s2 subgroup in the anion to separate out the neutral portion of the
wavefunction. Instead, we approached the s-attachment analysis by providing similar jj
composition within our neutral wavefunctions, minus the s electron, i.e., on the f m d2 sub-
group. To distinguish from the p attachments we here used angled brackets in our notation:
“〈j〉”. For example, in Gd− the two lowest 4f 7 5d2 6s levels, 11F2 and 11F3, were described
by their 4f 5 d2 composition as “〈3/2〉 88, 〈5/2〉 12” and “〈5/2〉 86, 〈7/2〉 14,” respectively.
By investigating this composition, we thus showed that the two lowest 4f 7 5d2 6s2 levels,
10F3/2 and 10F5/2, can be characterized primarily as 6s attachments to the J= 2 and J= 3
thresholds, respectively.

1.3.3 Discussion of Results

In developing our basis sets for this survey, the leap to tackling entire rows of the periodic
table at once was predicated by the profound realization that the composition of bound anion
states’ f n,m electron subgroups remained consistent with those of the corresponding low-
lying neutral thresholds to which we were attaching. In transition metals we used to treat d
attachments to dxs2 neutral ground states as s attachments to excited dx+1s levels to avoid
needing to include the large disruption of perhaps multiple eV of correlation energy in d2

pair replacements. (These should have small anion-to-neutral differences when comparing
levels with the same d occupancy of x+ 1 in this example.) This is an actual description of
the anion states. The anion “knows” it is a weakly bound attachment to a particular neutral
threshold. This consistency of f n,m composition is true not only within the MCDF manifolds
of both anion and neutral, but also for all correlation configurations that do not attempt to
change the f occupancy (within the wavefunctions of the low-lying levels of interest).

Our approach was to extract dominant lsj terms for each element on a moderately sized
neutral calculation, freeze that smaller f n,m set of terms, and use this simpler basis set
with the methodology discussed in Section 1.3.2.2 when pasting together all the correlation
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configurations for the J-parity calculation of an anion or neutral. For p attachment to f ns2

thresholds, this is very straightforward since the f n lsj composition is identical to the full
configuration LSJ due to the closed s2 subshell. For attachments to f m(d + s)3 neutral con-
figurations, it is a bit trickier since one needs to consider the ls terms within the f m group
for each j as they appear in the levels of interest in a range of total Js, but it is nonetheless a
well-defined process. Once the methodology was well automated, this initial stage was the
primary focus of the “human time” spent on each anion. Test calculations on the smaller
neutral calculations with different levels of f n,m basis trimming could be compared to the
moderately sized un-trimmed calculations to determine the trade-off between fewer retained
jls terms and energy losses (again targeting a few meV or less if possible).

The second great realization was that the remaining 2- to 4-electron piece of the anion
and neutral bases were also remarkably consistent from system to system despite changing
Z and n/m occupancy. This allowed us to tailor that piece of the bases on a simpler system
such as Nd− and apply the same replacements with j restrictions when performing the more
complex calculations such as Tb−.

Finally, we also used the fact that the mathematics of piecing two groups of electrons
together is essentially independent of the ls. That is, the file that was used for 4f m 5d3/2 vd3/2

vf 7/2 for a given total J would be identical to the same set of subshell js, such as 4f m 6p3/2

vd3/2 vg 7/2. Together with other automation mentioned in Section 1.3.2.2, we were able to
set up file naming conventions so that moving from one system to the next in the row was
simplified to making a few global search-and-replace edits to the thousands-of-lines long
RCI program input files.

Our results of the 3-paper lanthanide and actinide survey [2–4] are summarized in
Table 1.1. The wealth of bound anion states is attributed, particularly on the left sides of
each row, to the many low-lying neutral thresholds over a wide range of Js due to the den-
sity of states arising from the f n,m group (compared to, say, a transition metal with no such
group). Despite the fact that we have included few second-order effects, nor added any
core-valence correlation, and frozen the occupancy of the core-like f subshell for each cal-
culation, the results seem consistent with experiment where applicable. For example, in the
Ce− case, we re-evaluated our placement of anion vs neutral manifolds by using the actual
J=4 neutral ground state rather than a simpler high-J excited state [41]. By using central Js
we were comparing anion and neutral calculations with similar density of states (levels per
eV) so any second-order type deficiencies in the basis sets that caused improper position-
ing of higher but near by excited levels tended to wash out between anion and neutral. The
revised ab initio RCI electron affinity [3] was more consistent with the re-evaluation of
the Davis and Thompson value [35] and that of Walter et al. [44]. A new measurement of
the EA of Ce has yielded a value of 570(20) meV [48].

At the other end of the lanthanide row, our prediction of the Tm− electron affinity of 22
meV is in reasonable agreement with the Nadeau et al. measurement of 32 meV [39]. In
between, our results predict a linearly decreasing binding of p attachments moving left to
right across each row mimicking a similar linear relation long known for transition metal s
attachments to dx s thresholds [49]. This trend that arises from our ab initio computations
improves our confidence that experimenters searching for anion states in the middle of the
rows would be well recommended to begin with our predictions.

In addition to the linear relation of p binding energies, our analysis showed a trend in p
attachments that produced an anion p1/2 attachment on either side of each low-lying neutral
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Table 1.1 Binding energy (meV) relative to neutral ground state for the lowest state of each
lanthanide and actinide anion configuration. The numbers in parentheses are the number of
predicted bound states for that configuration

Anion Z n m q fn s2 p fm ds2 p fm d2 s2 fm s2 p2 f q d2 s2 p fq d3 s2

La− 57 0 434(8) 545(7)
Ce− 58 1 300(10) 660(22)
Pr− 59 3 2 177(6) 24(1)
Nd− 60 4 167(7)
Pm− 61 5 154(8)
Sm− 62 6 130(8)
Eu− 63 7 117(6)
Gd− 64 7 234(12) 70(3)
Tb− 65 9 8 85(2) 88(6)
Dy− 66 10 63(2)
Ho− 67 11 50(2)
Er− 68 12 38(2)
Tm− 69 13 22(2)
Lu− 71 14 353(3) 78(1)

Ac− 89 0 221(5)
Th− 90 0 368(6) 364(3)
Pa− 91 2 1 384(2) 134(1) 62(1) 52(1)
U− 92 3 373(2) 260(1)
Np− 93 4 313(2) 103(1)
Pu− 94 6 85(1)
Am− 95 7 76(2)
Cm− 96 7 321(5)
Bk− 97 9 31(2)
Cf− 98 10 18(2)
Es− 99 11 2(1)
Lr− 103 14 296(1) 465(2)

threshold (J±1/2) with similar relative binding. Four additional p3/2 levels were then also
present for the range surrounding the neutral J of J-3/2 to J+3/2 where allowed by the triangle
inequality, though these had significantly less relative binding than the two p1/2 attachments.
Often, many of these states ended up unbound relative to the neutral ground state, but the
analysis described in Section 1.3.2.4 was invaluable in understanding the wealth of bound
states and low-lying resonances. While the s attachments were fewer and did not seem to
follow a linear trend, their relative bindings were relatively constant for each row: ∼990
meV for lanthanides [3] and ∼860 meV for actinides [4].

Because of the linear relationship of the p attachment for lowest binding energies across
each row, a few precisely measured electron affinities should suffice to rescale our work
to create higher quality estimates for the remaining anions. The survey also may be used
to identify practical uses for these species. For example, we have suggested [1] that use
of La− opposite parity bound-to-bound transitions may provide a more efficient means of
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laser cooling of antiprotons than does Os−, which has been examined by Kellerbauer and
Walz [50].

1.4 Resonance and Photodetachment Cross Section of Anions

Like other negative ions, lanthanide and actinide anions have transient states embedded in
their continuous spectra, which extends from and beyond the ground state of the neutral
atom. These transient states are degenerate with the continuum states of the same energy.
During photodetachment, where negative ions absorb energy from photons and eject the
excess electron, these transient states may manifest themselves as resonant structure in the
photodetachment spectrum. In the following discussion, they are called resonant states.

Photodetachment spectra are an important tool in studying properties and electronic struc-
ture of negative ions. In laser photodetachment threshold (LPT) measurement, the relative
photodetachment cross section of the negative ion is measured as a function of photon
energy, using a continuously tunable laser beam. With the laser photon’s energy starting
from below the EA, the measured cross section spectrum reveals the opening of the low-
est photodetachment threshold, from which the EA can be inferred. However, the spectrum
almost always consists of other features. If the negative ion has multiple bound states, which
is true with many lanthanide and actinide anions [3, 4], the spectrum may consist of peaks
due to transitions between the bound anion states. These bound states will lead to more
photodetachment thresholds. Also, resonance structures in the form of peaks, bumps, or
windows may arise due to interaction between the resonant states and the continuum states.
Given the complexity, it can be understood that the analysis of the experimental spectrum
could be greatly facilitated by computation of the photodetachment cross section spectrum
so that the negative ion’s EA, number of bound states, and their BEs can be more accurately
determined. Next, we give a brief description of the RCI calculation of photodetachment
cross sections.

Before calculating the cross section, it’s important to conduct a survey of possible reso-
nant states lying in the continua. In the independent-particle approximation, these states are
represented by a single configuration, which can be predicted by “exciting” a valence elec-
tron in a negative ion bound state configuration into an unfilled valence subshell except for
the 4f subshell even though it is partially filled. As an illustration, for the Ce− bound states
4f 5d2 6s2 (4f 5d 6s2 6p), one possible resonance configuration is 4f 5d3 6s (4f 5d2 6s 6p).

Quite often one will find there are multiple resonant states lying in the continua under
consideration. Some of them may interfere with each other through their mutual interac-
tion with the same continua. The interference may dramatically alter the profile of the
resonance structure from what they’d look like if no interference occurred. These resonant
states are said to “overlap.” On the other hand, there is usually more than one available
channel within the range of photon energy under study. The formalism for photodetach-
ment calculations should then be able to treat the case of multiple discrete states embedded
in multiple continua. The configuration interaction in the continuum (CIC) theory is our
theory of choice.

The groundwork of using CI in the continuum was laid by Fano when studying auto-
ionization during electron scattering of He [51]. His theory requires a pre-diagonalized
subset of discrete states for resonance configurations and a pre-diagonalized subset of
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continuum states. The total continuum state is a linear combination of the discrete states
and continuum states. Complete solution was developed for three cases: one discrete state
embedded in one continuum; multiple discrete states embedded in one continuum; one
discrete state embedded in two continua. The profile formula for resonance features was
also derived, enabling analysis of experimental plots. Later, Fano and Prats reformulated
the problem [52] where the prediagonalized basis was avoided. Later, Altick and Moore
carried out the numerical work [53] for multiple discrete states lying in one continuum in
the photoionization of He. Their CI calculation gave a reliable description of the differential
oscillator strength as well as the resonant states involved. In their formalism, the assumption
of prediagonalized basis was removed.

Extension of Fano’s formalism to the general case of multiple discrete states embedded
in multiple continua was first conducted by Mies [54]. Like Fano, Mies assumed a pre-
diagonalized basis. By imposing the asymptotic condition for the continuum state from the
scattering theory, Mies derived the complete solution to the total continuum problem and
gave formulas for energies and widths of resonances.

Ramaker and Schrader [55] also extended Fano’s theory and derived the expressions
for the resonance energy, width, and total cross section. Their formalism was developed
in line with Mies’s. However, the pre-diagonalization assumption was lifted and non-
orthonormality of basis vectors was treated explicitly. This more general treatment has led
to the following: first, the solution to the linear coefficients in the total continuum state
now involves solving a set of coupled integral equations; second, integrations involving two
continuum functions occur. The formalism therefore incorporates interaction between two
continua.

A concurrent work with that of Ramaker and Schrader was done by Davis and Feld-
kamp [56]. Their work was similar to Mies’s, and pre-diagonalization was assumed. Their
approach divided the solution into two cases – when there are more discrete states than con-
tinuum states and when there are more continuum states than discrete states. For the first
case, their approach was expected to reduce computation time. Unlike Mies [54], scattering
theory was not employed in the derivation.

Although the abovementioned theories were formulated in the context of either photoion-
ization of atoms or electron scattering with atoms, they lend themselves equally well to
photodetachment of negative ions, where an essential question is again to construct the
wavefunction for the total continuum state in the presence of transient states embedded
in continua. The main results from Mies’s work [54] for calculating cross sections are
summarized below.

1.4.1 The Configuration Interaction in the Continuum Formalism

Suppose for an atomic system, some discrete statesφn are embedded in a range of continuum
states ψβE. The total continuum state ΨαE is then a linear combination of the two sets of
states:

ΨαE =
∑

n

Bαnφn +
∑
β

∫ ∞

0
dE′CαβψβE′ (1.1)

where Bαn and Cαβ are mixing coefficients.
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In solving for Bs and Cs, two matrices are introduced: The CI matrix V ,

Vnβ = 〈φn |H − E |ψβE 〉 (1.2)

and the interaction matrix F,

Fnm(E) = Enδnm + P
∫ ∞

0
dE′

∑
β

VnβVmβ

E − E′ (1.3)

where En is the position of discrete state φn before being perturbed by the continua, P stands
for the Cauchy principle integral around the singularity in the denominator.

The discrete states can be transformed so that Fnm becomes diagonal:

F = G+εG (1.4)

The transformed discrete states are

Φshift
n =

∑
m

Gnmφm (1.5)

The eigenvalues εn are the “positions” of these transformed discrete states. Accordingly, the
CI matrix V is transformed into:

vnβ(E,E′) =
∑

m

GnmVmβ (1.6)

With the introduction of a “modified resonance state,”

Φn = Φshift
n +

∑
β

P
∫ ∞

0
dE′ vnβvβE′

E − E′ (1.7)

the total wavefunction is determined as:

ΨαE =
∑
β

Zαβ(ψβE +
∑

n

vnβ

E − εn
Φn) (1.8)

where Z is the normalization matrix, obtained by finding the inverse of the matrix I + iK.
(This is Mies’s equation (25), with Ã◦ removed. The matrix Ã◦ is diagonal [55]. Since its
inclusion makes no difference to transition rate, it thus can be dropped when calculating
cross sections.) The reaction matrix K is defined in terms of the transformed CI matrix v:

Kαβ(E) =
∑

n

πvnαvnβ

E − εn
(1.9)

The total differential oscillator strength for transitions from the initial bound state Ψi into
all channels is:

df/dE = t̃−∗t− (1.10)
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where t− is the column vector:

t− =
{

t−α
}
= {〈ΨαE |T|Ψi〉} (1.11)

The following expression [57] converts df/dE into cross section:

σ = 4π2αa2
o

df
dE

= 8.067
df
dE

(Mb) (1.12)

where α is the fine-structure constant, a0 is the Bohr radius.
The application of the theory shown above to computation of photodetachment cross

sections of lanthanide negative ion Ce− is summarized below. After that, the limitations and
approximations in the calculation will be discussed. The work combined with experiment
has identified bound-to-bound transitions in Ce− for the first time [5].

1.4.2 Calculation of the Final State Wavefunctions

The wavefunctions for the initial bound state Ψi, the resonant states φn, and the neutral
thresholds are generated in separate valence RCI calculations. The valence RCI calculation
for the resonant state φn yields energy positions of unperturbed resonant states, i.e., the Ens
in equation 1.3. Since virtual orbitals are used for the correlation configurations that capture
not only the bound orbitals but also a portion of the continuum orbitals, it’s important to
avoid in φn the correlation configurations that are equivalent to the continuum state. For
example, in Ce− [5], 4f 5d 6s2 vp and 4f 5d 6s2 vf were excluded from the basis set for
resonant state 4f 5d 6s2 6p. Otherwise, the variational optimization for 4f 5d 6s2 6p may
collapse into the continuum 4f 5d 6s2 εp (f ) in which it lies.

Since the wavefunctions for the resonant states and the neutral thresholds are prepared
by separate RCI calculations, non-orthonormality (NON) must be taken into account when
evaluating the CI matrix V (equation 1.2). This is treated partially by using common DF
radials and common first set of virtual orbitals for the two states. The second set of vir-
tual orbitals, however, is optimized separately. Experience has shown the radial overlaps
between the second virtual orbital and its corresponding orbitals of the same symmetry
are very close to 1 (e.g., larger than 0.97). Orbitals of different symmetry are orthogonal.
Usually two sets of virtual orbitals suffice.

The wavefunction for the unperturbed continuum state ψβE is constructed by coupling
the wavefunction of a free electron to that of a neutral state [45]. It is assumed that angular
part of the wavefunction of a free electron takes the same form as that of a bound electron.
The radial function is energy dependent and is generated in the frozen-core Dirac-Fock
approximation, using a modified version [45] of the relativistic continuum wave solver code
of Perger et al. [58, 59]. The εl thus generated is orthogonal to all the DF radials of the same
symmetry in the neutral atom.

In addition to extensive shell scripts and codes that prepare data and manage runs,
which have greatly improved our efficiency in carrying out computations, following are
two important modifications made to continuum codes that have facilitated the accuracy of
our calculations.

The continuum wave function solver of Perger et al. [58, 59] allows only one basis func-
tion from the DF configuration for the core when generating the radial function for the
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continuum electron εlj. As a result, only the dominant basis function was used in our ear-
lier calculations [60]. This however, may impact the orthogonality of εlj to the DF radial
functions nl since εlj will be made orthogonal to only one of the relativistic DF radials due
to the use of one basis function. We have updated this code [45] to allow up to 1000 basis
functions in the core. Now the continuum radial function is properly orthogonalized to DF
radials of the same symmetry regardless of the j of εl.

The CI matrix element, Vnβ , which is needed when applying Mie’s CIC theory, is evalu-
ated by the continuum integral solver code by Perger et al. [61]. The code evaluates only RK

integrals and not the one-electron I integrals. This produced difficulty when evaluating the
matrix element for Brillouin single excitations (e.g., 4f 5d2 6s 6p vs 4f 5d2 6s εp) where the
numerical value of the matrix element approaches a non-zero constant as ε increases to large
values.We have identified the cause to be omission of I integrals and so implemented the
ability to evaluate I integrals into the code. The asymptotic behavior has then been corrected
and the matrix element approaches zero at high photon energies.

Due to the nature of the generated continuum electron εl, approximations have to be
made when evaluating Vnβ (equation 1.2). Although the angular structure of all the Rk and
I integrals can be generated by the RCI code [12], difficulty occurs when computing the
radial integrals. Since the εl radial is generated orthogonal to the DF radials nl only and
not orthogonal to the virtual orbital radials vl, the value of any radial integral that contains
both εl and vl will be erroneous. Two approximations are made to avoid radial integrals
involving both εl and vl of the same symmetry. The first is to use a truncated basis set
when calculating the angular structure. With a careful choice of the DF radials, especially
those of the same symmetry l as the continuum electron, and a choice of the first set of
virtual orbitals, correlation configurations involving vl should have trivial weights in both
φn and the neutral core. Leaving out configurations whose weight falls below a certain
threshold (e.g., 0.05%) we can exclude all such configurations from the basis set for the
neutral core and most such configurations from the basis set for φn. The summation of the
weights of the left-out configurations is less than 0.1%. The truncation therefore makes
a trivial impact on Vnβ . The same strategy was employed by Beck [62]. After the trun-
cation, there may still be configurations containing vl in the basis set for φn. Since their
summed weight is not significant (around 2% or less), they are left out from the truncated
basis set for φn when evaluating its CI matrix element with a continuum state that con-
tains εl of the same symmetry. This treatment has shown to be acceptable in our calculation
on Ce− [5].

In our calculation for Ce− [5], photodetachment cross sections of the three lowest bound
states were calculated and superimposed. To match the measured spectrum, the features in
the calculated spectrum had to be shifted. One cause to this shift is the inadequate treatment
of core correlation in the negative ion and the neutral atom. Although correlation effects
involving the closed core are similar among bound states of the negative ion, especially
those of the same configuration, difference in correlation effect between the negative ion and
the neutral atom are more significant. Thus, the failure to include this differing correlation
effect will result in an almost uniform shift in the EA and BE of the negative ion.

Another cause for the not-matching peaks might be the improper positioning of the unper-
turbed resonant states. In the basis set for φn, there are often significant configurations other
than the dominant one, which were not equally correlated. This missing correlation can
be partially and economically compensated for by shifting the diagonal elements of these
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significant configurations. In the case of resonant state Ce− 4f 5d 6s2 6p, shifting corre-
lation configuration 4f 5d2 6s 6p in the basis set lined up the computed peaks with those
in the experimental plot. Depending on the J value of the resonant state, different shifts
were needed. Specifically, shifts ranging from 0.05–0.20 eV resulted in the resonance peaks
moved by 0.014–0.039 eV. Despite the different amount of shift, the sequence of the peaks
remained the same.

The missing correlation effects mentioned above do not count for other small discrepan-
cies, however. For example, while compensating for missing correlation effect places the
peaks in better alignment with the experiment, the width and the relative amplitude of the
peaks may deviate more from the experiment. We suspect several things contribute to this
behavior. First, the orthogonality assumption between the subset of φn and the subset of
ψβE may play a role. By assuming φn and ψβE are orthogonal, E was removed from the
inner product in equation 1.2. However, any non-zero contribution from this term would
have been carried over to the CI matrix V , then the interaction matrix F, and eventually
to the position of the resonances and their widths. Secondly, the NON between φn and the
neutral core of ψβE was treated partially by using a common set of DF and first set of virtual
orbitals, at the price of a preferably optimized radial set for the resonant state. Thirdly, the
diagonalization of the unperturbed continuum states was simply assumed.

Some of the above approximations can be removed from future calculations. The full
treatment of NON can be realized numerically. Actually, in our code [63] for differential
oscillator strength, NON is fully treated following the formalism of King et al. [64, 65].
Also, the orthogonality between φn and ψαE can be checked and evaluated by modifying
the current code [61].

Another thing to take into account might be the assumption of prediagonalization
in Mies’s theory [54], which excludes interaction between two continua. Ramaker and
Schrader [55] removed this assumption from their formalism. Accordingly, the solution
to the total continuum wavefunction becomes more complicated and involves solving a set
of coupled integral equations. However, their formalism allows interaction between two
continua with the evaluation of CI matrix element between two channels. Implementing
this requires a code that evaluates the radial integral involving two relativistic continuum
electrons. A non-relativistic code for this task has been written by Belling [66]. On the
other hand, Komninos and Nicolaides have implemented inter-channel coupling in their
non-relativistic CI formalism [67] using a multichannel quantum defect approach. In their
relatively recent application [68] to the photodetachment of Be− metastable state, it was
shown that velocity form was more stable with the inclusion or omission of correlation
effect and inter-channel coupling. This is consistent with what we have observed in Ce−,
where the relativistic equivalent, Coulomb gauge, is more stable (inter-channel coupling was
absent in our calculation). They have also shown that inter-channel coupling was not signif-
icant and HF approximation without inter-channel coupling gives very reasonable results
in the velocity form, that correlation effect together with inter-channel coupling does not
change the shape of the velocity form of the spectrum, even though they do improve agree-
ment between the velocity form and the length form of total cross section. The change in the
absolute value of total cross section due to correlation, for velocity form, is larger at lower
photon energies (about 25%). These seem to indicate that computation without interaction
between the continua is still able to give a reasonable and qualitative description of features
in the experimental plot, which is exactly what we have seen in Ce−.
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The CI formalism has been shown to be an effective way of describing resonances [53].
One has the freedom to leave out correlation configurations that have trivial impact on the
property of interest, either based on experience or knowledge of the theory. This enables one
to maintain the size of the basis at a minimal level, which makes a significant difference in
computation time. As an example, the computation time for evaluating the CI matrix element
V increases dramatically with photon energies due to more oscillations in the continuum
electron’s radial function. With the truncated basis sets mentioned earlier, in Ce− [5], the
computer time was halved to 1.5 h for the largest photon energy. CI also provides a natural
way to identify resonant state configurations. Working on the bound states of the negative
ion, those eigenstates lying in the higher spectrum and above the ground state of the neutral
threshold can be identified and become candidates for resonant states. One can then isolate
them and do a separate CI calculation to examine their significance on the cross section
spectrum.
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2
Study of Actinides by Relativistic

Coupled Cluster Methods

Ephraim Eliav and Uzi Kaldor

School of Chemistry, Tel Aviv University

2.1 Introduction

This chapter will mostly address high-accuracy calculations of actinide systems. Lanthanide
systems, where the broader availability of experimental data provides more extensive checks
of computed properties, will also be discussed. Predictions for the eka-actinide atoms E121
(eka-Ac) and E122 (eka-Th) will also be presented.

Actinide elements and their compounds have become the subject of intensive research
in recent years (see the reviews [1–3]). In technology, interest is stimulated by the role of
these elements in nuclear fuel and waste products, as well as the development of the actinide-
organometallic chemical industry. In basic physics, actinide ions are prime candidates for
observing parity non-conservation effects, which may reveal possible inconsistencies of the
Standard Model [4]. It is interesting to note that actinides may have been involved in the
creation of life on our planet [5]. In spite of recent progress, many spectroscopic and other
physical properties of actinides are still unknown, or known with very low accuracy, due in
part to the relative scarcity, toxicity, and radioactivity of these elements.

Actinides (as well as their lanthanide homologues) present severe problems to theory
and computations, caused by large, non-additive relativistic and correlation effects, further
complicated by the multireference character of many electronic states, involving the 5f , 6d,
6p, and 7s orbitals. This makes the chemical bonding of actinide compounds rather com-
plex, requiring elaborate methodology and substantial computational effort. Still, theoretical
investigation provides a powerful, safe, and cheap alternative to experimental research of
actinides. Using state-of-the-art computational methods, it is possible to better understand

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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the actinide chemical and physical processes, supporting and complementing experimental
studies. Advanced methods, such as those discussed below, can provide calculated proper-
ties with accuracy comparable or even superior to experiment. High-level first-principles
approaches aimed at the actinide compounds should be based on size-extensive, size-
consistent, and balanced treatment of the dynamic and nondynamic correlation effects, and
include relativity from the outset, at a level consistent with the treatment of electron correla-
tion. Here we give an overview of a state-of-the-art ab initio approach used in computational
actinide chemistry and atomic physics: the relativistic Fock-space coupled cluster (RFSCC)
method. RFSCC is an all-order multireference correlation approach, which satisfies the cri-
teria of high-level ab initio methods enumerated above; it also has a unique potentiality to
consistently include high-order relativistic and quantum electrodynamics (QED) effects in
an “all order” fashion, similar to the treatment of correlation effects. This outstanding capa-
bility of the FSCC method is a consequence of its “valence universality,” the applicability of
the method to systems with different numbers of particles (a fundamental feature of QED
systems). A pilot variant of RFSCC, called double FSCC (DFSCC), has been proposed
recently [6, 7]. The DFSCC is derived directly from QED, using the Lagrangian formalism
and covariant evolution operator (CEO) of Lindgren [8]. This approach includes the treat-
ment of both electronic and photonic degrees of freedom on equal quantum footing. DFSCC
yields a possible avenue for covariant treatment of heavy relativistic multielectronic systems
with high precision (see [6, 7]). It is still under development, and will not be discussed here.

The standard quantum chemical description is based on approximate relativistic Hamil-
tonians, which are not covariant and use quantization procedure only for electronic
degrees of freedom, treating the electromagnetic and other interactions classically. The
most precise relativistic many-body Hamiltonian currently used in quantum chemistry is
the four-component Dirac-Coulomb-Breit (DCB) no-virtual-pairs Hamiltonian. The DCB
Hamiltonian includes leading relativistic effects up to order α2, which is currently regarded
as satisfactory with respect to chemical accuracy, but may not be sufficient for spectroscopic
(and other, mainly atomic, properties) precision. Four-component methods, complemented
by high-level treatment of correlation, provide the most accurate approach to studies of
heavy atomic and molecular systems, including actinide compounds. The combination of
infinite order many-body RFSCC with the DCB Hamiltonian yields perhaps the most pre-
cise computational method currently available in quantum chemistry. Further refinement
of this computational approach demands inclusion of QED and nuclear corrections, cur-
rently achieved by low-order perturbation theory. The DCB-RFSCC approach may serve
as a benchmark method for obtaining highly precise results and for the calibration of less
accurate and less expensive approaches, which use a more approximate relativistic Hamilto-
nian and simpler correlation methods. The RFSCC approach is computationally demanding,
limiting its scope to actinide atoms and small molecules. For recent, more general reviews
of RFSCC and its applications to other heavy and superheavy systems, refer to Eliav and
Kaldor [6, 7].

The methods used, including the relativistic equations, the FSCC scheme, and the inter-
mediate Hamiltonian approach, are described in Section 2.2. The following section lists
representative applications of the methodology to actinide atoms and molecules, demon-
strating the level of accuracy achieved where comparison with experiment is available, as
well as predictions that can be made for the properties still not experimentally available.
The final section provides a summary.
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2.2 Methodology

The methods used here have been presented earlier, in connection with the applications cited
below. Comprehensive methodological discussions appear in our 2010 reviews [6, 7]. Only
brief descriptions will be given in this section.

2.2.1 The Relativistic Hamiltonian

The Dirac-Coulomb-Breit Hamiltonian is

H =
∑

i

[
cαi · pi + c2(βi − 1) + Vnuc(i)

]
+
∑
i<j

V(i, j), (2.1)

where Vnuc is the attraction to the nucleus, modelled by a uniform or Gaussian charge
distribution, and the Coulomb-Breit 2-electron potential is

V(1, 2) =
1

r12
− 1

2r12

[
α1 ·α2 + (α1 · r12)(α2 · r12)/r2

12

]
. (2.2)

The no-virtual-pair approximation (NVPA) is invoked so that negative-energy solutions of
the SCF equations are discarded.

The DCB Hamiltonian (2.1) is correct to second order in the fine-structure constant
α but is not covariant. Properly designed four-component many-electron NVPA meth-
ods are currently the most accurate approaches for neutral and weakly-ionized atoms and
molecules [9], and are used for benchmark calculations. Most of the many-body approaches
implemented were adapted from the non-relativistic realm by using relativistically invariant
double point groups, as well as Kramers (time-reversal) symmetry when applicable. In the
atomic case, the high symmetry allows separation of radial and angular degrees of freedom.
The angular part can be solved analytically with the help of Racah algebra [10], whereas
the radial equations may be solved by finite difference methods. In molecular calculations,
one has to resort to the algebraic approximation, the use of finite basis set expansions. This
approach is also used in most atomic applications.

2.2.2 Fock-Space Coupled Cluster Approach

The coupled cluster (CC) approach is the most powerful and accurate of generally appli-
cable electron correlation methods. This has been shown in many benchmark applications
of 4-component relativistic CC methods to atoms [11–18] and molecules [19–31]. The CC
method is an all-order, size-extensive, and systematic many-body approach. Multireference
variants of relativistic 4-component CC methods capable of handling quasidegeneracies,
which are important for open-shell heavy atomic and molecular systems, have been devel-
oped in recent years [15, 17–19, 21, 31]. In particular, the multireference FSCC scheme
[32, 33] is applicable to systems with a variable number of particles, and is an ideal candidate
for merging with QED theory to create an infinite-order size-extensive covariant many-body
method applicable to systems with variable numbers of fermions and bosons [6, 7].
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The development of a general multiroot multireference scheme for treating electron cor-
relation effects usually starts from consideration of the Schrödinger equation for a number
(d) of target states,

HΨα = EαΨα, α = 1, ..., d. (2.3)

The physical Hamiltonian is divided into two parts, H = H0+V , so that V is a small pertur-
bation to the zero-order Hamiltonian H0, which has known eigenvalues and eigenvectors,
H0|μ〉 = Eμ

0 |μ〉.
The case of exact or quasi-degeneracy, occurring in many open shell heavy compound

systems, involves the equality or near equality of some energy values Eα
0 . By adopting the

NVPA approximation, a natural and straightforward extension of the nonrelativistic open-
shell CC theory emerges. The multireference valence-universal Fock-space coupled-cluster
approach is presented here briefly; a fuller description may be found in Refs. [32, 33].
FSCC defines and calculates an effective Hamiltonian in a d-dimensional model space
P =

∑
|μ〉 〈μ| , μ = 1, .., d, comprising the most strongly interacting zero order many-

electron wavefunctions. All other functions are in the complementary Q-space so that
P+Q = 1. All d eigenvalues of Heff coincide with the relevant eigenvalues of the physical
Hamiltonian,

HeffΨ
α
0 = EαΨα

0 , α = 1, ..., d. (2.4)

The functions Ψα
0 =

∑
μ ca

μ|μ〉, with α = 1, ..., d, describe the projections PΨα, which
constitute the major part of Ψα. The effective Hamiltonian has the form [11, 35]

Heff = PHΩP, Heff = H0 + Veff . (2.5)

Ω is the normal-ordered wave operator, mapping the eigenfunctions of the effective Hamil-
tonian onto the exact ones, ΩΨα

0 = Ψα, α = 1, ..., d. It satisfies intermediate normalization,
PΩP = P. The effective Hamiltonian and wave operator are connected by the generalized
Bloch equation, which for a complete model space P may be written in the compact linked
form [35]

Q[Ω,H0]P = Q(VΩ− ΩH
eff
)linkedP. (2.6)

Ω is parametrized exponentially in the coupled cluster method. A particularly compact form
is obtained with the normal ordered form Ω = {exp(S)}.

The Fock-space approach starts from a reference state (closed-shell in our applications,
but other single-determinant functions may also be used), correlates it, then adds and/or
removes electrons one at a time, recorrelating the whole system at each stage. The sec-
tor (m, n) of the Fock space includes all states obtained from the reference determinant by
removing m electrons from designated occupied orbitals, called valence holes, and adding n
electrons in designated virtual orbitals, called valence particles. The practical current limit
is m + n ≤ 2, although higher sectors have also been tried [36]. The excitation opera-
tor S, defined by the exponential parametrization of Ω, is partitioned into sector operators
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S =
∑

m≥0

∑
n≥0 S(m,n). This partitioning allows for partial decoupling of the open-shell CC

equations according to the so-called subsystem embedding condition [32]. The equations
for the (m, n) sector involve only S elements from sectors (k, l) with k ≤ m and l ≤ n
so that the very large system of coupled nonlinear equations is separated into smaller
subsystems, which are solved consecutively: first, the equations for S(0,0) are iterated to
convergence; the S(1,0) (or S(0,1)) equations are then solved using the known S(0,0), and
so on. This separation, which is exact, reduces the computational effort significantly. The
effective Hamiltonian (2.5) is also partitioned by sectors. An important advantage of the
method is the simultaneous calculation of a large number of states.

The FSCC equations for a particular (m, n) sector of the Fock space are derived by insert-
ing the normal-ordered wave operator into the Bloch equation (2.6). The final form of the
FSCC equation for a complete model space includes only connected terms [11, 35],

Q[S(m,n)
l ,H0]P = Q{(VΩ− ΩH

eff
)
(m,n)
l }connP, (2.7)

H(m,n)
eff = P(HΩ)(m,n)

connP. (2.8)

After converging the FSCC equation (2.7), the effective Hamiltonian (2.8) is diagonal-
ized, yielding directly transition energies. The effective Hamiltonian in the FSCC approach
has diagonal structure with respect to the different Fock-space sectors. From (2.8) it follows
that two Fock-space sectors belonging to a common Hilbert space, with the same net num-
ber of particles, e.g. (0,1) and (1,2), do not mix even if they have strongly interacting states.
This means that important nondynamic correlation effects are approximated. The mixed
sector CC [37] can eliminate this problem.

The FSCC equation (2.7) is solved iteratively, usually by the Jacobi algorithm. As in other
CC approaches, denominators of the form (EP

0 −EQ
0 ) appear, originating in the left-hand side

of the equation. The well-known intruder state problem, appearing when some Q states are
close to and strongly interacting with P states, may lead to divergence of the CC iterations.
The intermediate Hamiltonian method avoids this problem in many cases and allows much
larger and more flexible P spaces.

2.2.3 The Intermediate Hamiltonian CC method

The accuracy and convergence of the Fock-space coupled cluster method depend on an
appropriate partitioning of the function space into P and Q subspaces. Ideally, the P space
should include all functions important to the states considered, since the effective Hamil-
tonian is diagonalized in P, whereas Q-space contributions are included approximately. On
the other hand, convergence of the coupled cluster iterations is enhanced by maximal sep-
aration and minimal interaction between P and Q. These requirements are not always easy
to reconcile. Relatively high P functions have often strong interaction with or are energeti-
cally close to Q states, making convergence slow or impossible. The offending functions are
usually included in P because of their significant contribution to the lower P states, and we
may not be particularly interested in the correlated states generated from them by the wave
operator; however, the FSCC is an all-or-nothing method, and lack of convergence for some
states means that no states at all are obtained. The intermediate Hamiltonian coupled cluster
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method [38] addresses this problem, making possible larger and more flexible P spaces,
thereby extending the scope of the coupled cluster method and increasing its accuracy.

An additional advantage of the ability to use extended model spaces may be reducing the
need for including high excitation levels in the formalism. The need for high excitations
(triple and higher) is usually limited to a small group of virtual orbitals. If such orbitals are
brought into P, all excitations involving them are included to infinite order by diagonalizing
the effective Hamiltonian, avoiding the need for the (usually expensive) treatment of their
contribution to dynamical correlation.

The concept of the intermediate Hamiltonian has been proposed by Malrieu et al. [39] in
the framework of degenerate perturbation theory. The P space is partitioned into the main
Pm subspace, which includes all the states of interest, and the intermediate Pi subspace,
serving as a buffer between Pm and the rest of the functional space Q. The corresponding
operators satisfy the equations

Pm + Pi = P, P + Q = 1. (2.9)

The rationale for this partitioning follows: the relatively high states in P contribute signif-
icantly to the states of interest, which evolve from the lower P states, but couple strongly
with intruders from Q and spoil the convergence of the iterations; they should therefore be
treated differently from the lower states. This goal is achieved by partitioning P and allowing
more approximate treatment of Pi states. The intermediate Hamiltonian HI is constructed
in P according to the same rules as the effective Hamiltonian,

HI = PHΩP, (2.10)

but only |Ψm〉 states, with their largest part in Pm, are required to have energies Em closely
approximating those of the physical Hamiltonian,

HIP|Ψm〉 = EmP|Ψm〉. (2.11)

The other eigenvalues, which correspond to states |Ψi〉 with the largest components in Pi,
may be more or less accurate. This leads to some freedom in defining the relevant eigenfunc-
tions and eigenvalues, and, therefore, in the evaluation of problematic QSPi matrix elements.
To control this freedom and make the approach more general and flexible, we also use the
partitioning

Q = Qi + Qm. (2.12)

This additional partitioning narrows the overlap of the P and Q energies, which becomes
limited to Pi and Qi subspaces (see Figure 2.1), reducing the number of problematic
amplitudes, now QiSPi.

Partitioning the P and Q projectors of the FSCC equation (2.7) into the main and
intermediate parts by formulas (2.9, 2.12) yields four coupled CC equations,
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Figure 2.1 Model spaces in the modified intermediate Hamiltonian method

Qm[S,H0]Pm = Qm{VΩ− ΩH
eff
}connPm (2.13)

Qi[S,H0]Pm = Qi{VΩ− ΩH
eff
}connPm (2.14)

Qm[S,H0]Pi = Qm{VΩ− ΩH
eff
}connPi (2.15)

Qi[S,H0]Pi = Qi{VΩ− ΩH
eff
}connPi. (2.16)

Only the last of these can cause convergence problems. Successful replacement of this
equation by another, based on physical considerations, is the central point of the IH method.
The new equation to be used instead of equation 2.16 will be called the IH condition (IHC).
Ideally, it should satisfy the following demands:

• be free of convergence problems;
• have minimal impact on the other coupled equations (2.13–2.15).

Subject to these demands, the IHC should be as close to equation 2.16 as possible.
Several IH FSCC methods have been developed and applied recently, based on different

IH conditions. The first such approach [38], denoted IH1, uses the condition

QiΩPmHΩPi = QiHΩPi, (2.17)

which is similar to the equation proposed by Malrieu and applied up to the 3rd order of
degenerate perturbation theory [39]. Although Malrieu’s scheme could not go beyond 3rd
order, because terms with small denominators appear, the IHCC variants developed in our
group are all-order and may be used in the framework of any multireference CC formulation.

The next IH FSCC scheme (IH2) is based on the perturbation expansion of the problem-
atic QiSPi amplitudes. In the lowest order we simply take

QiSPi = 0. (2.18)

This type of IH condition has also been used for developing a new type of hybrid
multireference coupled cluster schemes, including the mixed sector CC [37].

Another IH condition leads to the most flexible and useful scheme, the extrapolated IH
(XIH) [40, 41], which can yield correct solutions both for Pm and Pi, thereby recovering
the whole effective Hamiltonian spectrum in the extended model space P. This can be



“Dolg-Driver” — 2015/1/17 — 11:18 — page 30 — #8

30 Computational Methods in Lanthanide and Actinide Chemistry

accomplished even when the standard FSCC approach using the same model space P has
intruder states leading to divergence. The IH condition for the XIH approach has the form

Qi[S,H0 + PiΔPi]Pi = Qi{βΔS + VΩ− ΩH
eff
}connPi. (2.19)

Δ is an energy shift parameter, correcting small energy denominators for the problematic
intruder states. A compensation term with the multiplicative parameter β (β ≤ 1) is added
on the right-hand side. For β = 1, the PiΔPi term on the left-hand side is fully compensated
so that equation 2.19 is equivalent to equation 2.16. Proper choice of the two parameters
makes it possible to reach convergence in equation 2.19 and thus in the non-problematic
equations (2.13–2.15). Several calculations with different values of the parameters allow
extrapolation of both Pm and Pi level energies to the limit Δ → 0 or β → 1. This extrapola-
tion was found to be robust, in most cases linear for Pm states and quadratic for states in Pi.
In the extrapolation limit the IH method transforms into the effective Hamiltonian approach.
The XIH approach is asymptotically size extensive and in many cases size consistent, even
for incomplete Pm, requiring only that the entire model space P is complete. A somewhat
similar IH FSCC scheme has been proposed by Mukhopadhyay et al. in 1992 [42], but to
the best of our knowledge has never been implemented.

The intermediate Hamiltonian approaches presented here may be applied within any mul-
tiroot multireference infinite order method. Recently [43] we implemented the XIH scheme
to another all-order relativistic multiroot multireference approach, the Hilbert space or state
universal CC, which is the main alternative to and competitor of Fock-space CC. This
approach will not be discussed here. We only mention that it allows mixing P-space sectors,
which can interact strongly, e.g., 1-particle with 2-particle 1-hole [37].

2.3 Applications to Actinides

Quantitative description of heavy systems requires high-level inclusion of both relativity
and correlation. These two effects are non-additive, as demonstrated in our early work on
the gold atom [15] and later on lanthanum [16]. The reasons are well understood: the spatial
distribution of the relativistic orbitals differs significantly from that of nonrelativistic coun-
terparts (s and p orbitals undergo contraction, whereas d and f orbitals expand), affecting the
correlation energy. Additional complications and challenges involving these systems arise
from the size of the systems, the number of electrons, and the close energetic proximity of
many electronic states.

Representative applications of the NVPA Fock-space CC method to actinide systems are
presented below. Many calculations have been carried out over the last 15 years, involv-
ing various heavy and superheavy atomic and molecular systems (not limited to actinides),
with dozens of transition energies calculated per system. Most atomic results agreed with
experiment within a few hundredths of an eV. Molecular applications of the RFSCC are
less precise, due to the symmetry limitations on molecular basis sets. Still, our calculations
of heavy molecular systems, including actinide compounds, yield state-of-art benchmark
molecular parameters. A fuller description may be found in the original publications and in
our recent reviews [6, 7].

www.ebook3000.com

http://www.ebook3000.org
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The spherical symmetry of atoms, which leads to angular decomposition of the wave
function and coupled cluster equations, is used at both the Dirac-Fock-Breit [34] and
CC [15, 44] stages of the calculation. The energy integrals and CC amplitudes, which
appear in the Goldstone-type diagrams defining the CC equations, are decomposed in terms
of vector coupling coefficients, expressed by angular momentum diagrams, and reduced
Coulomb-Breit or S matrix elements, respectively. The reduced equations for single and
double excitation amplitudes are derived using the Jucys-Levinson-Vanagas theorem [11]
and solved iteratively. This technique makes possible the use of large basis sets with high l
values, as a basis orbital gives rise to two functions at most, with j = l ± 1/2, whereas in
Cartesian coordinates the number of functions increases rapidly with l. Typically we go up
to h (l = 5) or i (l = 6) orbitals, but higher orbitals (up to l = 8) have also been used. To
account for core-polarization effects, which may be important for many systems, we cor-
relate at least the two outer shells, usually 20–50 electrons, but as many as 119 electrons
were correlated for the anion of element 118 [45]. Finally, uncontracted Gaussians are used,
since contraction leads to problems in satisfying kinetic balance and correctly representing
the small components. On the other hand, it has been found that high-energy virtual orbitals
have little effect on the transition energies we calculate, since these orbitals have nodes in
the inner regions of the atom and correlate mostly the inner-shell electrons, which we do not
correlate anyway. These virtual orbitals, with energies above 80 or 100 hartree, are therefore
eliminated from the CC calculation, constituting in effect a post-SCF contraction.

The Fock-space coupled cluster and its intermediate Hamiltonian extension have been
incorporated into the DIRAC package [46], opening the way to molecular applications. The
heavy actinide species NpO+

2 , NpO2+
2 , and PuO2+

2 were calculated, giving access to the
ground and many excited states and leading to reassignment of some of the observed spec-
troscopic peaks [23, 24]. Later applications addressed UO2, UO+

2 [25] and UO2+
2 [26], to

resolve contradictions between several high-level molecular electronic spectra calculations.
Visscher and coworkers used RFSCC and IH-RFSCC in recent benchmark calculations on
uranyl-containing molecules [28–30].

The applications presented below involve actinide atomic and molecular systems, and
show the power of the relativistic FSCC and IH approaches.

2.3.1 Actinium and Its Homologues: Interplay of Relativity and Correlation

Actinium is the first element of the actinide group. This element and its lighter homologue
La have nd3/2(n + 1)s2 2D3/2 ground states, with n = 5 in La and 6 in Ac. The heavy eka-
Ac (element 121) has been predicted [16] to have an 8s28p 2P1/2 ground state, due to the
sizable relativistic stabilization of the 8p1/2 electron. These three atoms were the subject of
an early application of our RFSCC approach [16].

Two sets of calculations were carried out for each of the elements. The first set started
from the closed-shell rare-gas configuration of M3+ (M = La, Ac, or E121). Two electrons
were added to the reference states, one at a time, to get the sequence

M3+(0, 0) → M2+(0, 1) → M+(0, 2). (2.20)

The 40 electrons in the (n−2)f 14(n−1)s2(n−1)p6(n−1)d10ns2np6 shells were correlated
in Ac3+ (n = 6) and E1213+ (n = 7); 26 electrons were correlated in La3+ (n = 5), which
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has no occupied f shells. Electrons were then added in the (n − 1)f , nd, (n + 1)s, and
(n + 1)p orbitals, to yield states of M2+ and M+ (because of convergence problems, the f
and p orbitals were omitted in the Ac calculation). The second set of calculations started
from the [RG](n + 1)s2 configuration of the M+ ions, where RG stands for the appropriate
rare gas. Forty-two electrons were correlated (28 in the case of La), and electrons were
added in the nd and (n + 1)p orbitals to give the states of the neutral atoms and the anions,
according to the scheme

M+(0, 0) → M(0, 1) → M−(0, 2). (2.21)

The basis sets used and other technical details of the calculations may be found in the
original paper [16].

The ionization potentials (IP) and excitation energies (EE) of La and its ions are shown
and compared with experiment in Table 2.1. Note that most states appearing in Tables 2.1–
2.3 are listed by their LS designations. Since L and S are not good quantum numbers in
the relativistic Hamiltonian, these designations should be taken with caution. Still, they
are useful for identification purposes, and have therefore been retained. Large relativistic
effects are observed for the states of the relatively light La, up to 2.5 eV, rivaling even
the heavier gold atom [15], which shows a local maximum in these effects [47]. There are
major changes in the level structure of the cations, including altered ground states. The
nonrelativistic ground state of La2+ is [Xe]4f , with [Xe]5d higher by 1.42 eV; relativity
reverses this order, predicting (in agreement with experiment) a 5d ground state. The net
relativistic effect on the 5d–4f spacing is 2.4–2.6 eV. A similar reversal has been observed
[48] for the isoelectronic Ba+. There, the nonrelativistic ground state was [Xe]5d, changed
relativistically to the correct [Xe]6s.

Large effects occur in La+ too, with the 5d IP increasing relativistically by 1 eV. Again,
the nonrelativistic ground state (4f 5d) is different from the relativistic (and experimental)
5d2. As may be expected, the relativistic stabilization of s orbitals reduces strongly the ener-
gies of the 5d → 6s excitations: the one-electron excitation goes from 1.1 to about 0.3 eV,
and the two-electron excitation changes from 3.1 to 0.9 eV. The Dirac-Coulomb and Dirac-
Coulomb-Breit energies are in good agreement with experiment, while the nonrelativistic
results are far off. In neutral La, the IP is reduced from 7.135 to 5.582 eV (experimental
5.577 eV).

The transition energies of Ac are collected in Table 2.2 and compared with available
experimental data [49, 50]. Nonrelativistic calculations are too far from reality to be worth-
while, and were dispensed with. Relativistic effects are even larger than in La, causing
significant modifications in level ordering and spacing. The 7s orbital is stabilized rela-
tive to 6d, changing the ground state configuration of the cations from [Xe]5d and 5d2 of
La2+ and La+ to [Rn]7s and 7s2 for the corresponding Ac species. The 7s2, 6d7s, and 6d2

manifolds in Ac+ are well separated, unlike the overlap and mixing occurring in La+. Neu-
tral La and Ac have similar ns2(n − 1)d ground states, but the lowest excitation energies
(n − 1)d → np, are much lower in the latter. The Ac anion is predicted to have a 7s27p6d
1D2 bound state with an EA of 0.35 eV, similar to the DFT result of Vosko et al. [51].

Transition energies in eka-actinium and its ions are collected in Table 2.3. The higher
nuclear charge leads to larger relativistic effects than in actinium. The most striking
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Table 2.1 Ionization potentials (IP) and excitation energies
(EE) of La and its cations (eV) by the nonrelativistic (NR),
Dirac-Coulomb (DC), and Dirac-Coulomb-Breit (DCB) FSCCSD
method

Final state NR DC DCB Expta

La2+, ground state 5d 2D3/2

IP [Xe] 1S0 19.647 19.159 19.166 19.18
EE 5d 2D5/2 0. 0.205 0.198 0.199

4f 2F5/2 −1.420 1.013 0.932 0.892
2F3/2 −1.420 1.210 1.114 1.078

6s 2S1/2 2.669 1.628 1.637 1.685
6p 2P1/2 5.997 5.177 5.191 5.209

2P3/2 5.997 5.564 5.574 5.593

La+, ground state 5d2 3F2

IP 5d 2D3/2 10.311 11.323 11.330 11.43b

11.06a

EE 5d2 3F3 0. 0.132 0.127 0.126
3F4 0. 0.254 0.246 0.244

5d2 c 1D2 0.293 0.171 0.172 0.173
5d6s 3D1 1.067 0.229 0.237 0.235

3D2 1.067 0.319 0.323 0.321
3D3 1.067 0.401 0.404 0.403

5d2 3P0 0.586 0.671 0.669 0.651
3P1 0.586 0.732 0.727 0.709
3P2 0.586 0.798 0.791 0.772

6s2 1S0 3.112 0.899 0.911 0.917
5d2 1G4 0.737 0.927 0.920 0.927
5d6s c 1D2 1.605 1.311 1.309 1.252

La, ground state 6s25d3/2
2D3/2

IPd 5d2 3F2 7.135 5.587 5.582 5.577
EE 6s25d5/2

2D5/2 0. 0.157 0.153 0.131
6s26p1/2

2P1/2 2.668 2.021 2.032 1.887
6s26p3/2

2P3/2 2.668 2.240 2.249 2.018

aMartin et al. [52]. bMoore [49]. cMixed state, 5d6s + 5d2.
dLa(6s25d) → La+(5d2), calculated as the difference of La(6s25d) → La+(6s2)
and La+(5d2) → La+(6s2).

expression of relativity is the ground state electron configuration. Both La and Ac have
ns2(n−1)d 2D3/2 ground states, as do the lighter group 3 elements Sc and Y. The excitation
energies to the ns2np 2P1/2 state are 1.31 eV in Y [49], 1.89 eV in La [52], and 0.98 eV in
Ac (present work). The reversal of the trend in Ac is due to relativity; the lowering of this
transition energy is enhanced in eka-actinium, to the extent that 8s28p 2P1/2 becomes the
ground state, lower by 0.4 eV than the lowest 8s27d energy. This is similar to what happens
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Table 2.2 Ionization potentials (IP) and excita-
tion energies (EE) of Ac and its cations (eV) by
the Dirac-Coulomb (DC) and Dirac-Coulomb-Breit
(DCB) FSCCSD method

Final state DC DCB Expta

Ac2+, ground state 7s 2S1/2

IP [Rn] 1S0 17.518 17.512
EE 6d 2D3/2 0.157 0.145 0.099

2D5/2 0.588 0.569 0.521
Ac+, ground state 7s2 1S0

IP 7s 2S1/2 11.91 11.90 12.1
EE 6d7s 3D1 0.634 0.623 0.588

3D2 0.702 0.690 0.653
3D3 0.976 0.960 0.921
1D2 1.194 1.176 1.127

Ac, ground state 7s26d3/2
2D3/2

IP 7s2 1S0 5.31 5.32 5.17b

EE 7s26d5/2
2D5/2 0.274 0.290 0.277

7s27p1/2
2P1/2 0.969 0.984

7s27p3/2
2P3/2 1.573 1.583

aMoore [49]. bMartin et al. [50].

in group 11 (the coinage metals), where the (n − 1)d2ns → (n − 1)dns2 excitation energy
goes down from Ag to Au and becomes negative for roentgenium, making 7d8s2 the ground
state of element 111 [53]. An 8s28p ground state for E121 has been predicted by previous
work, using Dirac-Fock functions plus Breit correction and semiempirical correlation [54],
Dirac-Fock-Slater [55–57], or density functional [58] methods.

Other states of E121 also show large relativistic effects. Compared with corresponding
transitions in Ac, already affected by relativity, the s → d transitions go up by 2–3 eV in the
mono- and dication. The lowest s2 → d2 excitation in E121+ is nearly 6 eV, compared with
1.7 eV for Ac+. The lowest state of the eka-actinium anion is 8s28p2, compared to 7s27p6d
for Ac−, showing again the stabilization of p relative to d orbitals.

The Breit effect is rather small (up to 0.01 eV for La, 0.02 eV for E121) for most states.
The only exceptions are levels with occupied f orbitals, where the Breit term contributes
0.06–0.1 eV; in all these cases it improves considerably the agreement with experiment.
Another important contribution to the f states comes from the i orbitals in the basis. It
changes these states by up to 0.1 eV, while the effect on other levels is much smaller.

All three atoms are predicted to have positive electron affinities, with 0.33 eV for La,
0.35 eV for Ac, and 0.57 eV for E121. Recently we started a new series of calculations of
the same elements using more advanced IH-FSCC and a substantially larger basis set than
possible in 1998. More accurate results are expected, particularly for the electron affinities,
for which the basis used may not have been sufficient. Similar improvement was achieved
for the alkali atoms [59].
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Table 2.3 Ionization potential (IP) and
excitation energies (EE) of element 121 and
its cations (eV) by the Dirac-Coulomb (DC)
and Dirac-Coulomb-Breit (DCB) FSCCSD
method

Final state DC DCB

E1212+, ground state 8s 2S1/2

IP [E118] 1S0 18.67 18.65

EE 7d 2D3/2 2.883 2.859
2D5/2 3.507 3.478

8p 2P1/2 4.186 4.196
2P3/2 6.831 6.819

6f 2F5/2 4.557 4.471
2F7/2 5.050 4.960

E121+, ground state 8s2 1S0

IP 12.67 12.66

EE 7d8s 3D1 2.764 2.744
3D2 2.850 2.829
3D3 3.209 3.185
1D0 3.800 3.775

8s8p 3P0 3.001 3.010
3P1 3.331 3.338
3P2 5.293 5.284

5f8s 3F2 5.149 5.082
3F3 5.314 5.238
3F4 5.635 5.558

E121, ground state 8s28p1/2
2P1/2

IP 8s2 1S0 4.458 4.447

EE 8s27d3/2
2D3/2 0.412 0.389

8s27d5/2
2D5/2 0.738 0.714

8s28p3/2
2P3/2 1.436 1.424

2.3.2 Thorium and Eka-thorium: Different Level Structure

The Fock-space and intermediate Hamiltonian coupled cluster methods were applied to the
ground and excited levels of the second actinide element, thorium, and its heavy homo-
logue eka-thorium (E122) [60]. Two Fock-space schemes are used. The first starts with
the M4+ ion, with a closed-shell structure corresponding to a rare gas, and adds two
electrons,

M4+[(0) sector] → M3+[(1) sector] → M2+[(2) sector]. (2.22)
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Table 2.4 Valence orbitals in Fock-space and Intermediate Hamiltonian calculations

Th E122

Scheme (2.22)
FSa 7s, 6d, 5f 8s, 7p, 7d, 6f
IH: Pm 7-8s,6-7p,6-7d,5-6f 8-9s,7-8p,7-8d,6-7f
IH: P 7-12s,6-11p,6-10d,5-9f ,5-7g, 6h, 7i 8-14s,7-12p,7-11d,6-10f ,5-7g, 6h, 7i

Scheme (2.23)
FSa 6p, 6d, 5f 7p, 7d, 6f
IH: Pm 6p, 6d, 5f 9s, 7p, 7d, 6f
IH: P 8-13s,6-10p,6-10d,5-8f ,5-6g, 6h, 7i 9-13s,7-11p,7-11d,6-9f ,5-6g, 6h

aSome determinants had to be moved from P to Q to achieve convergence of the FS calculations. These include p2, pd
and pf in scheme (2.22) for E122 and p2, f2 and pf in scheme (2.23) for both elements.

The second scheme starts with the [rare gas](ns)2 state of M2+, adding two electrons to
obtain states of the neutral and singly ionized species,

M2+[(0) sector] → M+[(1) sector] → M[(2) sector]. (2.23)

It should be noted that the experimental ground state of Th2+ is 6d2 rather than 7s2 [61];
this is also the ground state determined by scheme (2.22). The closed-shell 7s2 state is,
however, used as reference in the sequence (2.23). The calculated ground state of E1222+

is 8s2.
The structure of the model space P in the Fock-space method and of Pm and P in the

intermediate Hamiltonian approach is shown in Table 2.4. All determinants constructed
from the orbitals listed in the table constitute the relevant space. Pm is a subspace of P in
the IH-FSCC approach. Convergence difficulties of the FSCC formalism in sector (2) made
it necessary to use an incomplete model space [62, 63], moving certain determinants from
P to Q. The IH calculations employ much larger P spaces, which are always complete (i.e.,
include all combinations of relevant orbitals). Orbital selection was determined primarily
on the basis of orbital energies.

The basis for both atoms was taken from the universal basis set of Malli et al. [64]. It
consists of Gaussian-type orbitals, with exponents given by the geometric series

ζn = α× β(n−1), α = 106 111 395.371 615, β = 0.486 752 256 286. (2.24)

A 35s30p25d20f 11g9h9i7k7l basis was used, with n values of 1-35 for s, 5-34 for p, 9-33
for d, 13-32 for f , 21-31 for g, 22-30 for h and i, and 23-29 for k and l orbitals. The 62
external electrons were correlated in each atom. Virtual orbitals with energies above 100
a.u. were discarded. The atomic masses were 232.038 for Th and 306 for E122.

The ionization potentials and lower excitation energies of Th and its ions are reported in
Tables 2.5 and 2.6. Very good agreement with experiment [61] is obtained: the average error
of the 51 Fock-space energies at all ionization levels is 0.062 eV. The intermediate Hamil-
tonian approach reduces the average error to 0.051 eV. This level of accuracy is obtained
in spite of the complicated interactions between different electronic configurations, which
lead to a rather dense spectrum.
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Table 2.5 Fock-space and intermediate Hamiltonian
transition energies of thorium compared with experi-
ment [61] (eV)

Transition expt. FS IH

Th. Ground state 6d27s2 3F2

→ Th+ 6d7s2 2D3/2
a 6.537 6.497 6.521

→ 6d27s2 3P0 0.317 0.486 0.450
3F3 0.355 0.345 0.369
3P2 0.457 0.592 0.538
3P1 0.479 0.680 0.669
3F4 0.615 0.623 0.624
1D2 0.902 1.062 1.008

→ 5f6d7s2 3H4 0.966 1.048 1.062
→ 6d27s2 1G4 1.005 1.155 1.070
→ 5f6d7s2 3F2 1.021 1.079 1.087

1G4 1.290 1.361 1.371
3G3 1.304 1.464 1.462

Th+. Reference state 6d27s 2D3/2
a

→ 5f5/27s2 2F5/2 0.326 0.217 0.234
→ 6d5/27s2 2D5/2 0.512 0.510
→ 5f7/27s2 2F7/2 0.808 0.713 0.734

Th3+. Ground state 5f 2F5/2

→ Th4+ 1S0 28.752 28.759 28.734
→ 5f 2F7/2 0.536 0.536 0.537
→ 6d 2D3/2 1.140 1.167 1.151

2D5/2 1.796 1.827 1.811
→ 7s 2S1/2 2.868 2.831 2.815

average error 0.082 0.067

aThe ground state of Th+ is 6d27s 4F3/2, which cannot be reached
in the Fock-space scheme used here. The IP of Th and excitations of
Th+ are therefore shown for the 6d7s2 2D3/2 state, which lies 0.23 eV
above the ground state.

Few calculations of Th levels have been reported. Küchle et al. [65] give several LS term-
averaged transition energies for the atom and the monocation using a pseudopotential and
basis designed for molecular applications. Their results are less accurate than ours due to
the limitations of the basis.

The ionization potentials and low excitation energies calculated for E122 are shown in
Table 2.7. More values may be found in [60]. Intermediate Hamiltonian values for E122 and
its monocation were calculated by the Dirac-Coulomb and Dirac-Coulomb-Breit schemes,
to obtain the effect of the Breit interaction (2.2). The Breit term contribution is small (0.01–
0.04 eV) for transitions not involving f electrons but increases to 0.07–0.1 eV when f orbital
occupancies are affected, as observed above (Section 2.3.1). The ground state is predicted
to be 8s28p7d, in agreement with early Dirac-Fock(-Slater) calculations [55–57], and not
the 8s28p2 configuration obtained by density functional theory [58]. The separation of the
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Table 2.6 Fock-space and intermediate Hamiltonian transition energies of Th2+ compared
with experiment [61] (eV). The ground state is 6d5f 3H4

Transition expt. FS IH Transition expt. FS IH

odd levels even levels
→ Th3+ 5f 2F5/2 18.325 18.473 18.336 → 6d2 3F2 0.008 0.015 −0.019
→ 6d5f 3F2 0.063 0.075 0.053 3F3 0.503 0.515 0.478
→ 5f7s 3F3 0.313 0.345 0.291 1D2 0.580 0.585 0.536

3F2 0.394 0.427 0.373 3P0 0.631 0.630 0.621
→ 5f6d 1G4 0.395 0.398 0.390 → 6d7s 3D1 0.685 0.687 0.624

3H5 0.557 0.564 0.568 → 6d2 3F4 0.811 0.824 0.786
3F3 0.598 0.640 0.604 → 6d7s 3D2 0.890 0.901 0.844
3G3 0.627 0.759 0.707 → 6d2 3P1 0.976 0.980 0.976
1D2 0.780 0.786 0.769 → 6d7s 3D3 1.234 1.250 1.171

→ 5f7s 3F4 0.783 0.796 0.754 → 6d2 3P2 1.294 1.302 1.281
3F3 0.930 0.988 0.920 1G4 1.307 1.319 1.282

→ 5f6d 3D1 0.982 1.113 1.063 → 7s2 1S0 1.483 1.444 1.394
3G4 1.009 1.097 1.060
3H6 1.046 1.053 1.056
3F4 1.114 1.206 1.158
3D2 1.262 1.378 1.337
3D3 1.332 1.471 1.415
3P1 1.379 1.501 1.457
3P0 1.393 1.508 1.468
3G5 1.398 1.547 1.491

average error, all levels: FS – 0.050 eV, IH – 0.041 eV

levels is not large: the lowest 8p2 and 7d2 states appear just 0.16 and 0.35 eV, respectively,
above the ground state. It should be noted that the ground state of thorium is 7s26d2, and
the increased relativistic stabilization of the p orbital of E122 changes the relative energy
of the configurations. The first excited state of E122 is 8p2, whereas the corresponding Th
level is quite high. Similar phenomena occur in the ions. The ground state of Th+ is 6d27s,
while the lowest level of E122+ is predicted to be 7d8s2. Th2+ has a 6d5f ground state, with
6d2 less than 0.01 eV away; the accuracy of the current method is not sufficient to decide
between these two states. The lowest level of E1222+ is 8s2, with all low excited states up
to 4 eV having an 8snl configuration.

Quantum electrodynamic (QED) effects are not included in the present work. A recent
calculation of these effects for s electrons [66] gave estimates of about 0.04 eV for the ion-
ization potential of the Tl2+ 6s electron (self energy 0.05 eV, vacuum polarization −0.01
eV) and 0.06 eV for the E111 7s electron (self energy 0.09 eV, vacuum polarization −0.03
eV). Since the p electrons responsible for the transitions discussed in this work exhibit
much weaker penetration into the nucleus, QED effects here are expected to be considerably
smaller, at most 0.01–0.02 eV, within the error limits of the method (∼ 0.05 eV) estimated
by comparing calculated and experimental results for thorium (Tables 2.5 and 2.6).
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Table 2.7 Fock-space and intermediate Hamiltonian
transition energies of eka-thorium (element 122) (eV)

Config. J FS IH

DCB DC DCB

E122. Ground state 8s27d3/28p1/2 J = 2
→ E122+ 7d3/2 3/2 5.651 5.613 5.595
→ 8p2

1/2 0 0.185 0.157 0.162
→ 7d2

3/2 2 0.348 0.385 0.353
→ 7d3/28p1/2 1 0.662 0.651 0.636
→ 7d3/27d5/2 3 0.860 0.891 0.856
→ 7d5/28p1/2 2 0.875 0.872 0.862
→ 7d5/28p1/2 3 0.955 0.954 0.940
→ 7d3/27d5/2 4 1.012 1.028 0.988

2 1.036 1.030 0.996
1 1.154 1.144 1.113

E122+. Ground state 8s27d3/2

→ E1222+ 8s2 0 11.332 11.288 11.301
→ 8s26f5/2 5/2 0.262 0.342 0.261
→ 8s27d5/2 5/2 0.663 0.658 0.653
→ 8s28p1/2 1/2 0.696 0.644 0.681
→ 8s26f7/2 7/2 0.967 1.059 0.970

E1222+. Ground state 8s2

→ E1223+ 8s 1/2 20.483 20.379
→ 8s6f5/2 [3F2] 2 1.952 1.969

[3F3] 3 2.021 2.041
→ 8s7d3/2[

3D1] 1 2.339 2.358
[3D2] 2 2.448 2.464

E1223+. Ground state 8s
→ E1224+ 0 27.139 27.135
→ 6f5/2 5/2 0.877 0.879
→ 6f7/2 7/2 1.688 1.691
→ 7d3/2 3/2 2.325 2.326
→ 7d5/2 5/2 3.287 3.287

2.3.3 Rn-like actinide ions

An interesting case for study involves the Rn- or Fr-like actinide ions. The importance of the
spectra for at least two systems, U5+ and Th3+, was discussed recently [67]. Among other
properties, Hanni et al. [67] analyzed the difference between U5+ and Th3+ polarizabilities,
ascribing it to differences in electronic spectra, particularly of highly excited metastable
states. To check this assumption, precise measurements or calculations of excited states
of the Rn- and Fr-like ions energy levels are necessary. Knowing the electronic spectra
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of these species would provide a better understanding of important physical and chemical
properties of actinides. The few available theoretical calculations of Rn-like actinides [68–
72] are mostly limited to the ground state energy properties, and treat electron correlation
and/or relativity at low order. The experimental results are collected in the NIST Atomic
Spectra Database [73].

The relativistic IHFSCC approach was used in 2001 to calculate the spectra of neutral
Xe and Rn atoms, obtaining unprecedented and still unsurpassed accuracy, with an average
error of 0.6% for the lowest excitation energies (about 20 per atom) [74]. This accuracy
allowed predictions, e.g., for the unobserved 8s states of Rn. It was demonstrated that only
the combination of using large active spaces with all-order treatment of dynamic correlation
in the framework of a high-quality relativistic Hamiltonian can yield such high level of
accuracy.

Recently, using improved methodology, we reported the calculated spectra of the four
lightest Rn-like actinides [75]. To assess the accuracy of the results we compare the cal-
culated and experimental spectra of La3+, the lightest Xe-like lanthanide, and the only
homologue of the studied actinides with many experimentally observed excited energy lev-
els. Starting from the closed shell rare-gas ground state M, the singly excited states in the
(1, 1) sector are obtained by the Fock-space scheme

M[(0, 0) sector] → M+[(1, 0) sector]
M−[(0, 1) sector]

→ M∗[(1, 1) sector]. (2.25)

The DCB Hamiltonian is used, and correlation is included at the CCSD level. The universal
basis set of equation 2.24 is augmented until the transition energies converge satisfacto-
rily. Two basis sets were used: basis A included 35s30p25d20f 11g9h9i7k7l Gaussians, and
basis B consisted of 37s33p25d23f 14g12h11i6k Gaussians, with more diffuse functions
but omitting the l Gaussians because of computational limitations. Both were considerably
larger than the basis used in our FSCC calculations of neutral xenon and radon [74], and go
to higher angular momentum. The basis orbitals are left uncontracted. Virtual orbitals with
energies higher than 100 hartree in basis A and 120 hartree in basis B are omitted. Core elec-
trons, left uncorrelated at the CCSD stage, include the 10-electron Ne-like core for La ions
and 28 electrons (KLM shells, 1s–3d orbitals) for the actinides so that 44 electrons in La3+

and 58 electrons in the Rn-like actinides are correlated. The total number of active orbitals
was 160 in basis A and 190 in basis B. A point to note is that the lowest-energy virtual
orbitals in the Rn-like actinides (except Ac3+) are of d and f symmetry, in contrast to the
neutral Xe and Rn systems, making the inclusion of high-l virtual orbitals more important.

Our preliminary second order (PT2) calculations, as well as results of Safronova and
Safronova [76], show that at least the first 52 excited states in Rn-like Ac, Th, Pa, and
U ions are predominantly mixtures of the [Xe]4f 145d106s26p5nl and [Xe]4f 145d106s6p6nl
states. The model spaces were constructed with this in mind. The spaces for both basis sets
included 6s and 6p as valence holes, from which electrons are excited. The valence particles,
to which electrons are transferred, were in basis A 5f , 6d, 7s and 7p, with the main Pm space
including excitations from 6p to 5f and 6d; other excitations are in the intermediate space
Pi. This gives a total of 55 states. The n values are lower by one in the La ion calculations.
In the larger basis B, used here for La only, the valence particles were 6–8s, 6–8p, 4–6d,
4–6f , and 5g, yielding 912 determinants in P, which give rise to 172 J levels. Obviously,
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Table 2.8 La3+ionization potential and excitation energies in first and second
order and by XIH-FSCC method with basis sets A and B (cm−1). DCB Hamilto-
nian. The mean absolute errors (MAE) are for the 14 known excitation energies.
Experiment from the NIST Atomic Spectra Database [73]

Level (J) PT1(A) PT2(A) XIH(A) XIH(B) expt.

IP 399 746 436 985 404 161 404 107 402 900
5p3/24f5/2(1) 155 493 152 368 142 953 142 689 143 354.7
5p3/24f5/2(2) 158 439 155 243 145 630 145 332 145 949.0
5p3/24f7/2(5) 163 004 156 998 148 723 148 425
5p3/24f5/2(4) 164 350 157 972 149 368 149 142
5p3/24f7/2(3) 163 151 159 991 149 744 148 947 149 927.1
5p3/24f5/2(3) 169 304 163 586 153 365 153 140 153 339.1
5p3/24f7/2(4) 173 456 168 163 157 093 157 087
5p3/25d3/2(0) 158 941 180 675 158 122 156 816 156 100.3
5p3/25d3/2(1) 161 401 183 332 160 487 159 193 158 412.6
5p3/24f7/2(2) 178 577 170 428 160 784 160 494 160 486.4
5p3/25d5/2(2) 166 165 188 652 165 031 163 770 162 867.6
5p3/25d5/2(4) 166 072 186 901 165 564 164 503 163 693.3
5p3/25d3/2(3) 168 058 189 301 167 002 166 008 165 070.7
5p3/25d3/2(2) 172 125 194 197 169 752 168 943 167 921.7
5p1/24f5/2(3) 186 510 182 122 169 979 169 414
5p3/24f7/2(3) 189 204 186 134 172 756 172 362
5p1/24f7/2(4) 189 776 185 775 173 663 173 260
5p3/25d5/2(3) 177 664 201 793 175 687 174 805 173 335.5
5p3/24f5/2(2) 195 829 188 809 177 415 177 026 175 013.8
5p1/25d3/2(2) 189 754 213 314 186 896 185 712 184 885.7
MAE 8 615 19 159 1 420 853

the higher levels obtained are not meaningful; we report the 10 lowest even-parity and 10
lowest odd-parity states.

The La3+ levels are known experimentally and help to assess the quality of the basis sets
and model spaces. The ionization potential and 20 excitation energies are shown and com-
pared with experiment [73] in Table 2.8. In addition to the XIH values in the two basis sets
described above, we list the first-order (PT1) energies, obtained by diagonalizing the model
space P with Q excluded, and the second-order (PT2) values, obtained from the 2-body
terms in the first CC iteration. The PT1 and PT2 results are in the spirit of the CASSCF [77]
and CASPT2 [78] methods, respectively; however, orbitals were not optimized for indi-
vidual states, as done in CASSCF and CASPT2 calculations. No comparison with these
methods is therefore claimed; the first- and second-order values are presented for compar-
ison with the all-order coupled cluster method using the same orbitals. The PT1 excitation
energies have a mean absolute error larger than 1 eV. The second order does even worse,
with a mean absolute error (MAE) of 2.4 eV. The XIH values are much more accurate,
with MAEs of 0.18 eV for basis A and 0.11 eV for basis B. Note that the B calculations
involved a more extensive P space than A, which is probably responsible in large part for
the improvement relative to A. Because of technical difficulties, we could not use basis B
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Table 2.9 IP and excitation energies of Ac3+ (cm−1)

Level PT1 PT2 XIH-FSCCSD

DC DCB DC DCB DC DCB

IP 357 853 357 637 393 455 393 267 363 103 362 899
6p3/26d3/2(0) 142 666 142 399 163 618 163 388 142 659 142 527
6p3/26d3/2(1) 145 832 145 549 166 279 165 946 145 687 146 452
6p3/26d5/2(2) 151 220 150 924 170 245 171 772 150 908 150 721
6p3/26d3/2(3) 151 603 151 333 169 189 170 981 151 073 150 901
6p3/25f5/2(1) 158 925 157 980 165 450 164 448 151 300 150 537
6p3/26d5/2(4) 151 630 151 291 172 891 172 571 152 396 152 178
6p3/26d3/2(2) 156 023 155 734 178 161 177 911 154 560 154 346
6p3/25f5/2(2) 163 589 162 600 168 244 171 426 155 259 154 446
6p3/25f5/2(4) 167 849 166 904 169 562 168 863 157 664 156 880
6p3/25f7/2(5) 167 589 166 527 169 053 168 144 158 369 157 493
6p3/26d3/2(3) 161 040 160 720 184 703 184 383 160 133 159 865
6p3/25f7/2(3) 170 008 168 976 174 711 173 661 160 716 159 858
6p3/25f5/2(3) 173 427 172 470 177 011 179 416 162 167 161 318
6p3/27s1/2(2) 163 953 163 791 187 658 187 477 162 604 162 521
6p3/26d5/2(1) 165 296 165 150 187 949 187 429 163 514 163 424
6p3/25f5/2(4) 177 752 176 729 182 474 181 581 167 302 166 388
6p3/25f7/2(2) 183 697 182 717 185 642 187 438 171 655 170 760
6p1/27s1/2(1) 178 166 177 836 195 255 195 345 173 620 173 369
6p3/27p1/2(1) 197 544 197 480 223 504 223 726 198 077 198 124
6p3/25f5/2(2) 199 056 198 995 225 138 225 145 198 873 198 905

for the actinides; basis A, which gave highly satisfactory results, was used in all actinide
calculations reported here.

We chose Ac3+ to assess the contribution of the Breit term. Table 2.9 compares energies
of the DC and DCB Hamiltonians. The Breit effect is significant and varies considerably
for different states, between 100–900 cm−1. Its inclusion in calculations for these elements
is therefore essential. The inadequacy of the PT2 values, discussed above, appears again
here. These values are quite different from the all-order energies, which are closer to the
first-order results. Calculated IPs and excitation energies for the Rn-like ions Th4+, Pa5+,
and U6+ appear in Table 2.10. To our knowledge, these were the first reported excitation
energies for these species with high-level inclusion of electron correlation. Based on the
La3+ results, we believe the actinide excitation energies are correct to ∼0.2 eV.

2.3.4 Electronic Spectrum of Superheavy Elements Nobelium (Z=102) and
Lawrencium (Z=103)

As is well known, the effect of relativity increases when we go to superheavy elements.
This term is usually applied to elements with atomic numbers above 100 (trans-fermium
elements). The spectroscopic study of superheavy atoms presents a severe challenge to
the experimentalist. An important relativistic effect involves changes in the level ordering,
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Table 2.10 XIH-FSCC IPs and excitation energies
of Th4+, Pa5+, and U6+ (cm−1). DCB Hamiltonian

Level Th4+ Pa5+ U6+

IP 474 498 594 827 723 529

6p3/25f5/2(1) 134 611 114 261 89 173
6p3/25f5/2(2) 139 281 119 591 95 101
6p3/25f5/2(4) 141 711 121 712 96 872
6p3/25f7/2(5) 143 341 124 727 101 429
6p3/25f5/2(3) 145 490 126 086 101 663
6p3/25f7/2(3) 147 198 128 671 105 537
6p3/25f7/2(4) 153 249 135 153 112 217
6p3/25f7/2(2) 157 311 138 471 114 599
6p3/26d3/2(0) 162 504 181 428 200 521
6p3/26d3/2(1) 165 864 185 856 205 528
6p3/26d3/2(3) 171 749 192 127 212 124
6p3/26d3/2(2) 172 331 193 087 213 275
6p3/26d5/2(4) 174 222 196 043 217 686
6p3/26d5/2(2) 176 615 198 608 220 401
6p3/26d5/2(3) 183 289 206 231 228 781
6p3/26d5/2(1) 196 048 222 286 246 790
6p3/27s1/2(2) 199 042 237 396 277 194
6p1/27s1/2(1) 203 910 241 463 281 319
6p1/25f5/2(3) 204 656 195 456 181 752
6p3/25f7/2(3) 209 954 202 154 189 679

leading sometimes to a ground state configuration that differs from that of lighter atoms in
the same group and, consequently, to different chemistry.

Although certain chemical properties of these elements may be elucidated in single-atom
experiments [79, 80], spectra can be measured only in sizable samples. The first such study
of a superheavy atom [81] used 2.7 × 1010 atoms of 255Fm with a half life of 20.1 h, and
was accompanied and guided by MCDF predictions of spectral energies. Other superheavy
actinides have shorter lifetimes, on the order of seconds, and spectroscopic measurements
for some of them were undertaken by a collaboration based at GSI [82]. The low production
rates of the atoms and their short lifetimes necessitate reliable prediction of the position of
transition lines, to avoid the need for broad wavelength scans. High level theoretical studies
are very crucial for line identification of the superheavy elements and are still scarce.

In preparation to spectroscopic measurements for No and Lr, which have lifetimes of a
few seconds, by a collaboration based at GSI [82], we undertook calculation of the expected
spectra of these atoms [83, 84]. The accuracy of the predicted spectra for these elements was
estimated by applying the same method to ytterbium [83] and lutetium [84], their lighter
homologues, where experimental transition energies are available.

Large, converged basis sets (37s31p26d21f 16g11h6i) and P spaces (up to 8s6p6d4f 2g1h)
were used in the framework of the IH-FSCC method. Many electrons (42 for No, 43 for Lr)
were correlated so that any core polarizations effects were included. The mean absolute error
for the 20 lowest excitation energies was 0.04 eV for Yb, 0.05 eV for Lu. The calculated IP
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of No was 6.632 eV, in agreement with the semiempirically extrapolated value of 6.65(7)
eV [85].

The transition energies and amplitudes of No are shown in Table 2.11. The energies were
obtained by IH-FSCC, and their expected accuracy is ∼ 800 cm−1. The amplitudes were
calculated by relativistic CI and have lower accuracy, which is, however, sufficient for the
purpose of identifying the strongest lines. The simulated spectrum is shown in Figure 2.2.
The salient feature of the spectrum is a strong line at 30,100±800 cm−1, with an amplitude
of A = 5 × 108s−1. There are other lines, with amplitudes at least one order of magnitude
lower.

Table 2.12 shows the transition energies of lawrencium. Its ground state (7s27p 2P1/2) is
different from that of lutetium (6s25d 2D3/2), as relativity pushes the 7p orbital below the 6d.
The QED corrections to the transition energies are small, below 30 cm−1. This small con-
tribution reflects the fact that the 7s population does not change for the transitions reported.
Some excitations involving holes in the 7s shell were calculated by the RCI method; they
exhibit larger QED effects, between 200–400 cm−1. The prime region for observing tran-
sitions in the planned experiment was between 20,000 and 30,000 cm−1. Our calculations
predict several excitations with large transition amplitudes in this region. The strongest lines
in the range of the experiment will correspond to 7p → 8s at 20,100 cm−1 and 7p → 7d
at 28,100 cm−1. The 7p → 9s transition at 30,100 cm−1 is also dipole allowed, but the
very different spatial distribution of the two orbitals is expected to make it weaker than the
other two. The transition amplitudes are shown in Table 2.12. Note that some excited states,
in particular those with a single 7s electron, have large contributions from several configu-
rations. Thus, the first two states in Table 2.12 have RCI coefficients between 0.4–0.5 for
each of the 7s7p1/27p3/2, 6d3/26d5/27s, and 7s6d2

5/2 configurations, and their assignment

Table 2.11 RCI electric dipole transition amplitudes of the
strongest transitions of nobelium. τ is the lifetime of the upper
level

λ(Å) upper state τ (s) lower state A(s−1)

2 365 7s8p 1P1 2.9×10−8 7s2 1S0 3.2×107

2 457 7s8p 3P1 2.9×10−8 7s2 1S0 1.0×107

3 327 7s7p 1P1 2.0×10−9 7s2 1S0 5.0×108

4 103 7s9s 3S1 1.2×10−8 7s7p 3P1 1.8×107

4 484 7s7d 3D2 4.5×10−8 7s7p 3P1 1.4×107

5 140 7s9s 3S1 1.2×10−8 7s7p 3P2 4.2×107

5 663 7s7d 3D3 6.1×10−8 7s7p 3P2 1.7×107

6 168 7s8s 3S1 1.4×10−8 7s7p 3P0 1.1×107

6 832 7s8s 3S1 1.4×10−8 7s7p 3P1 3.3×107

7 679 7s7d 1D2 8.0×10−8 7s7p 3P1 1.2×107

8 171 7s8p 3P0 3.7×10−8 7s6d 3D1 1.6×107

10 290 7s8s 3S1 1.4×10−8 7s7p 3P2 2.8×107

15 427 7s8s 1S0 8.9×10−8 7s7p 1P1 1.1×107

18 235 7s8p 3P0 3.7×10−8 7s8s 3S1 1.1×107
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Figure 2.2 Simulated E1 spectrum of No, assuming equal population of all excited levels. The
lower panel is corrected for the total lifetime of the levels

is somewhat arbitrary. The simulated spectrum, obtained by convolution with a Gaussian
function with 20 Å full width at half maximum, is shown in Figure 2.3. The two states with
the largest RCI transition amplitudes are outside the range of the planned experiment. They
are dominated by the 6d27s and 7s7p2 configurations, which cannot at present be included
in the P space. Consequently, these states do not appear in the FSCC calculations, and their
energies may have larger errors than states obtained by FSCC. The transitions at 20,100 and
28,100 cm−1 carry the next highest amplitudes, and are the most likely to be observed.

2.3.5 The Levels of U4+ and U5+: Dynamic Correlation and Breit Interaction

Our first experience with f 2 levels involved the 4f 2 states of Pr3+ and the 5f 2 levels of
U4+ [86]. Excellent agreement with experiment was obtained, with an MAE of 222 cm−1

for the Pr3+ levels and 114 cm−1 for U4+. The error for Pr3+ was four times smaller than
that of the MCDF calculation [87], demonstrating the more comprehensive inclusion of
dynamic correlation by CC. More recently, a larger basis set was employed, extending the
analysis to include the excited states of U5+ and the 5f 2, 5f 7s, and 5f 6d states of U4+,
which are important in interpreting the electronic spectrum of the neutral UO2 molecule
[25]. Results are presented and compared with experiment [88] and other calculations in
Table 2.13. It should be noted that we use one set of canonical SCF spinors for all states in
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Table 2.12 RCI amplitudes of E1 transi-
tions to the 7s27p1/2 ground state of Lr. The
upper levels are designated by the domi-
nant electron configurations; other config-
urations may contribute substantially

λ (Å) upper level J A(s−1)

2 637.7 6d3/26d5/27s 1/2 3.6×108

2 911.3 6d2
5/27s 3/2 2.2×108

2 988.9 7s28d3/2 3/2 9.4×106

3 151.8 6d2
3/27s 3/2 8.6×106

3 319.5 7s29s 1/2 6.0×105

3 559.2 7s27d3/2 3/2 3.5×107

3 616.2 7s7p1/27p3/2 1/2 2.7×106

4 306.4 7s7p2
1/2 1/2 1.4×107

4 967.5 7s28s 1/2 2.7×107
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Figure 2.3 Simulated E1 spectrum of Lr

both IHFSCC and CASPT2 calculations, whereas the CASPT2 of Gagliardi et al. [89] uses
common spinors only for states for the same spin and symmetry so that their orbitals are
better adapted to individual states under consideration.

Comparing the different methods with the experimental data of Kaufman and Radziemski
[88], the excitation energies of the U5+ ion appear to be best described by the XIHFSCCSD
scheme (eXtrapolated Intermediate Hamiltonian Fock-Space Coupled Cluster Singles Dou-
bles excitations), which within the large UBS basis set gives an MAE relative to the
experimental data of 1,650 cm−1 without and 651 cm−1 with the Breit interaction.

Looking at the U5+ ion, we see that errors become larger for the more diffuse orbitals.
While errors for 5f excitations are 100–200 cm−1, the 6d, 7s and 7p excitations are 500–
1000 cm−1off. This occurs for the U4+ too. Comparing with the experimental data of Wyart
et al. [90], the mean absolute error of the 5f 2 states is 357 cm−1, but it goes up to MAE of
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Table 2.13 U5+ and U4+ ionization potentials and excitation energies (cm−1) [25]

state Exp. [90] DCB- DCB- DC- DC-
CASPT2 XIH CASPT2 XIH
(5f6d7s) FSCC (5f6d7s) FSCC

U5+ states
6p65f5/2(IP) 5f – – 508 183 – 507 326
2F7/2 5f 7 609 8 226 7 598 8 384 7 833
2D3/2 6d 91 000 95 309 90 562 92 989 89 564
2D5/2 6d 100 511 105 871 100 107 103 619 99 245
2S1/2 7s 141 448 144 946 140 211 142 206 139 062
2P1/2 7p 193 390 – 192 351 – 190 993
2P3/2 7p 215 886 – 215 112 – 213 698
MAE – 651 – 1 650

U4+ states
3H4(IP) 5f2 – 402 654 381 074 401 337 380 220
3F2 5f2 4 161 3 773 4 202 3 742 4 190
3H5 5f2 6 137 6 631 6 070 6 746 6 275
3F3 5f2 8 983 8 897 8 974 8 989 9 147
3F4 5f2 9 434 9 779 9 404 9 892 9 586
3H6 5f2 11 514 12 486 11 420 12 676 11 780
1D2 5f2 16 465 15 106 16 554 15 196 16 785
1G4 5f2 16 656 17 391 16 630 17 599 16 937
3P0 5f2 17 128 15 556 17 837 15 546 17 840
3P1 5f2 19 819 18 426 20 441 18 500 20 570
1I6 5f2 22 276 21 089 22 534 21 306 22 812
3P2 5f2 24 652 23 539 24 991 23 753 25 315
1S0 5f2 43 614 43 361 45 611 43 483 45 765
3H4 5f6d 59 183 65 821 57 161 63 221 56 289
3F2 5f6d 59 640 65 172 57 324 62 542 56 475
3G3 5f6d 63 053 68 182 61 331 65 353 60 510
1G4 5f6d 65 538 72 154 63 336 69 659 62 641
3F3 5f6d 67 033 71 826 64 485 69 537 64 141
3H5 5f6d 67 606 75 044 65 755 72 542 65 052
3F2 5f7s 94 070 97 573 91 410 94 548 90 411
3F3 5f7s 94 614 98 083 91 941 95 059 90 965
3F4 5f7s 101 612 105 500 98 921 102 614 98 168
1F3 5f7s 102 407 105 987 99 713 103 108 98 967
3G3 5f7p 139 141 – 138 614 – 137 582
3F2 5f7p 140 462 – 139 502 – 138 380
3G4 5f7p 146 926 – 145 150 – 143 970
3D3 5f7p 147 170 – 146 413 – 145 613
3F3 5f7p 156 493 – 156 024 – 155 028
MAE 5f2 825 357 814 514
MAE 5f6d 6 024 2 110 3 467 2 824
MAE 5f7s 3 610 2 680 657 3 548
MAE 5f7p – 898 – 1 924
MAE all – 1 191 – 1 738
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2,110 cm−1 for transitions to 5f 16d1 states, and to 2,680 cm−1 for 5f 17s1 transitions. The
overall MAE is 1,191 cm−1. The CASPT2 method gives similar errors for the U5+ ion, but
much larger differences from experiment for U4+.

Table 2.13 shows that the effect of the Breit interaction is much larger in CASPT2 than in
the all-order FSCC calculation. Similar large effects are observed in the results of the first
FSCC iteration, equivalent to a second order perturbation calculation. The MAEs of atomic
excitation energies calculated by CASPT2 increase strongly upon inclusion of the Breit
interaction, indicating that the relatively good performance of the CASPT2 method based
on the DC Hamiltonian may be due in part to cancellation of errors. We also investigated [25]
the convergence of the CASPT2 energies with the systematic enlargement of the CAS, as
they may be relevant in discussing the molecular results. It was found that inclusion of the
6d orbital in the CAS is important for the quantitatively correct description of the intrashell
excitations, while the effect of the 7p orbital is less pronounced. While the inclusion of 6d
in the CAS is desirable in molecular calculations, it may often be prohibitively expensive.

2.3.6 Relativistic Coupled Cluster Approach to Actinide Molecules

The theoretical study of molecules containing such heavy atoms as the actinides presents
serious methodological and computational difficulties. In addition to their sheer size, as
measured by the number of electrons, these molecules exhibit a dense manifold of levels,
resulting from the atomic 5s, 6d, 7s, and 7p orbitals, which are close in energy. Additional
complications arise from the strong relativistic effects, both scalar and spin-orbit, and from
the large electron correlation; as discussed above, relativity and correlation are non-additive
and must be treated simultaneously. As an example, the electron affinities of UO2+

2 , which
give the state energies of UO+

2 , are drawn in Figure 2.4. The first column shows spin-free,
correlation-free levels; spin is included in the second column, correlation in the third, and
the last column describes simultaneous inclusion of spin and correlation [25].

The treatment of actinide-containing molecules by DC-IHFSCC is described in more
detail in the contribution of Saue and Visscher to this volume, and only a few comments are
made here. The application of this approach was made possible by the incorporation of the
FSCC scheme in the DIRAC relativistic program package [21], extended more recently to
include IHFSCC. The first published application addressed the NpO+

2 , NpO2+
2 , and PuO2+

2
species [23]. Calculated excitation energies of PuO2+

2 were mostly within a few hundred
wave numbers of experiment, significantly better than values given by SD+Q+SO [91] and
CASPT2+SO [92] calculations. Extensive, detailed calculations on UO2 and its monocation
[25] helped to shed light on the complicated spectra of these species. Further discussion of
the UO2 spectrum may be found in the work of Real et al. [26].

While CC methods may be the best quantum chemistry can offer, they are also the most
expensive, limiting the size of systems treatable by them. Exploration of larger systems
became possible in recent years with the advent of schemes where only the active center of
a large compound is treated by IHFSCC, while most of the compound is handled by simpler
methods; the active center is then embedded in the potential created by its environment. This
approach was applied to the spectrum of CUO with 4 rare gas atoms, simulating the effect
of rare gas matrices on the spectra of the molecule [29] and to the spectrum of uranyl in the
Cs2UO2Cl4 crystal [30].
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Figure 2.4 UO2+
2 electron affinities, giving levels of UO+

2 [25]

2.4 Summary and Conclusion

The no-virtual-pair Dirac-Coulomb-Breit Hamiltonian, correct to second order in the
fine-structure constant α, provides the framework for four-component methods, the most
accurate approximations in electronic structure calculations for heavy atomic and molecu-
lar systems, including actinides. Electron correlation is taken into account by the powerful
coupled cluster approach. The density of states in actinide systems necessitates simulta-
neous treatment of large manifolds, best achieved by Fock-space coupled cluster; to avoid
intruder states, which destroy the convergence of the CC iterations, while still treating a
large number of states simultaneously, intermediate Hamiltonian schemes are employed.

This chapter describes the IH-FSCC method and its implementation in the framework of
the Dirac-Coulomb-Breit Hamiltonian. Applications to representative atomic and molec-
ular actinide systems, as well as some lanthanides and eka-actinides, are reviewed. Most
transition energies calculated agree with experimental data within a few hundredths of an
eV, and reliable predictions are given for other, yet unknown, energies. Calculations of
atomic excitation energies show that transitions involving f electrons display significant
effects of the Breit term (∼0.1 eV), with second order contributions much larger than the
all-order results. Inclusion of high-l functions, up to i orbitals (l=6), is also important for
these transitions.
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The main advantages of the IHFSCC method include the simultaneous economical
determination of large numbers of energy levels and the treatment of both dynamic and
nondynamic electron correlation to high order. The main shortcoming is the limitation to
states obtained from a closed shell configuration by adding and/or removing two electrons
at most. We hope to continue previous efforts [36] and extend the scope of the method
to higher sectors of the Fock space. Other work in progress includes further development
of the Hilbert-space and mixed-sector IHCC [37], as well as the double FSCC formalism
mentioned in the introduction, which will include higher QED terms and make possible
the treatment of highly ionized species. A promising recent development is the combined
wavefunction-DFT treatment, where the central component of a large system is treated by
IHFSCC, with an embedding potential describing the rest of the system. This opens the
possibility of bringing the power of relativistic coupled cluster calculations to much larger
systems than before.
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3.1 Introduction

In this chapter we will provide a critical review of the use of 2- and 4-component relativistic
Hamiltonians combined with all-electron methods and appropriate basis sets for the study of
lanthanide and actinide chemistry. These approaches provide in principle the more rigorous
treatment of the electronic structure but typically demand large computational resources due
to the large basis sets that are required for accurate energetics. A complication is furthermore
the open-shell nature of many systems of practical interest that make “black box” application
of conventional methods impossible. Especially for calculations in which electron correla-
tion is explicitly considered one needs to find a balance between the appropriate treatment
of the multi-reference nature of the wave function and the practical limitations encountered
in the choice of an active space. For density functional theory (DFT) calculations one needs
to select the appropriate density functional approximation (DFA) on basis of assessments
for lighter elements because little or no high-precision experimental information on isolated
molecules is available for the f elements. This increases the demand for reliable theoretical
(“benchmark”) data in which all possible errors due to the inevitable approximations are
carefully checked. In order to do so we need to understand how f elements differ from the
more commonly encountered main group elements and also from the d elements with which
they of course share some characteristics.

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
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Figure 3.1 Evolution of valence orbital energies (in Eh) of the uranium atom in the electronic
ground state [Rn]5f 36d17s2 calculated by the Hartree-Fock method at the non-relativistic (NR)
level, then variationally adding scalar relativistic (SR) effects and finally spin-orbit (SO) effects

It is instructive to start out by considering what we can learn about f element chemistry
from simple atomic calculations. In Figure 3.1 we demonstrate how relativistic effects influ-
ence the valence orbital energies of the neutral uranium atom in the electronic ground state
[Rn]5f 36d17s2. We make a distinction between scalar relativistic effects, associated with
the relativistic mass increase of the electron due to its high speed in the vicinity of heavy
nuclei, and spin-orbit effects, associated with the interaction of the electron spin with the
magnetic field induced by charges (e.g., nuclei and other electrons) in relative motion. The
effect of scalar relativity is seen to be quite dramatic: The binding energy of the 5f electron
is reduced from 0.634 Eh (17.3 eV) to 0.333 Eh (9.07 eV), making it much more avail-
able for chemical interaction, whereas the splitting between the 7s and 6d level is reduced
from 0.100 Eh (21893 cm−1) to -0.014 Eh (-3100 cm−1), even changing sign. When we add
spin-orbit interaction, the 5f level is split by 0.028 Eh (6088 cm−1) to the 5f5/2 and 5f7/2

components, whereas the 6d level is split by 0.010 Eh (2100 cm−1) to the 6d3/2 and 6d5/2

components. Clearly the inclusion of relativistic effects is crucial for a proper description
of the chemistry of f elements.

In Figure 3.2 and Figure 3.3 we trace energies and expectation values 〈r〉, respectively,
of the outer orbitals of 4f and 5f elements. These have been obtained from 4-component
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Figure 3.2 Orbital energies (in Eh) of (left) the 4f elements cerium through lutetium and (right)
the 5f elements thorium through lawrencium from 4-component relativistic Hartree-Fock calcu-
lations averaging over the (n−2)f i(n−1)d1ns2 (i = 1, 14) valence configuration of the neutral
atom
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Figure 3.3 Orbital radial expectation values < r > (in a0) of (left) the 4f elements cerium
through lutetium and (right) the 5f elements thorium through lawrencium from 4-component
relativistic Hartree-Fock calculations averaging over the (n−2)f i(n−1)d1ns2 (i = 1, 14) valence
configuration of the neutral atom

relativistic Hartree-Fock calculations averaging over the (n − 2)f i(n − 1)d1ns2 (i = 1, 14)
valence configuration of the neutral atom. This configuration does not correspond to the
ground electronic one for all f elements, but gives access to information about the valence
(n–2)f, (n–1)d and ns orbitals. Beginning with the orbital energies of the 4f elements we
see that the 4f orbitals are energetically well separated from the valence 5d and 6s orbitals,
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making them chemically inert and leading to a chemistry of the lanthanides dominated by
the +3 oxidation state. For the early actinides we see that the 5f orbitals may be chem-
ically active, leading to a wide range of possible oxidation states; plutonium allows, for
instance, all oxidation states between +1 and +8. For the late actinides the energetic separa-
tion between 5f and 6d/7s increases and the chemistry reverts to that of the lanthanides. This
leads to the difficulty of chemical separation of lanthanides and late actinides encountered,
for instance, in the treatment of nuclear waste. A more technical point to note is that cross-
ing of (n−1)d and ns orbital levels along both the 4f and 5f series may lead to convergence
problems in SCF calculations not exploiting full atomic symmetry, as is typically the case
for molecular codes, since numerical noise may induce artificial mixing of s and d orbitals.

Looking now at orbital radial expectation values (see Figure 3.3) we see that for both 4f
and 5f elements the ns, (n − 1)d and (n − 2)f are radially well separated, the latter orbitals
lying inside the (n−1)p and (n−1)s levels. This somewhat ambivalent core/valence status
of the f orbitals leads to f element complexes typically having an open f-shell but being very
atomic in nature. An interesting feature to note when comparing Figure 3.2 and Figure 3.3
is that the 5f orbitals of the actinides shows a much larger spin-orbit splitting than the 6d
orbitals, ranging from 3700 to 23600 cm−1, whereas the difference in radial expectation
values between the spin-orbit components is significantly larger for the 6d orbitals. The
explanation is that since the 5f orbitals are more core-like than the 6d orbitals, it takes much
more energy to deform them.

The steady decrease of 4f radial expectation values along the lanthanide series is often
associated with the lanthanide contraction. However, it is a perfectly normal trend that atoms
become smaller along a row in the periodic table. As pointed out by Lloyd [1], the relative
contraction of ionic radii of+3 cations is larger for the 3d elements (Sc3+ – Ga3+) than the 4f
ones (La3+ – Lu3+). Also, what is clearly seen in Figure 3.4 is that the size of the +3 cations
is dictated by the size of 5s and 5p orbitals rather than 4f. When the pioneer geochemist
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Figure 3.4 Orbital radial expectation values < r> (in a0) of (left) the 4f elements cerium
through lutetium and (right) the 5f elements thorium through lawrencium from 4-component
relativistic Hartree-Fock calculations averaging over the (n− 2)f i (i= 1, 14) valence configura-
tion of the +3 cations
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Victor Moritz Goldschmidt coined the term ‘lanthanide contraction’ in 1925 [2], it was with
respect to a vertical rather than a horizontal trend in the periodic table: The covalent radius
of silver is larger than that of copper, as expected when descending a column of the periodic
table, whereas the covalent radius of gold is smaller than that of silver. This broken trend
can be explained by noting that when going from copper to silver s, p and d shells are filled,
whereas when going from silver to gold an f shell, with different screening properties than
the preceeding shells, is also filled. An elegant theoretical study by Bagus et al. [3] shows
that the expected increase of atomic size down the column of noble metal is restored when
the combined effects of relativity and the lanthanide contraction are suppressed.

The one-electron picture is broken to some extent when including electron correlation.
Especially for the early actinides, but also the first true f-element, cerium, configurations
in which the (n − 1)d orbitals are occupied are energetically close or lower than the domi-
nant (n− 2)f ins2 valence configuration found in most of the lanthanides (i= 3− 7, 9− 14)
and the later actinides (i= 6− 7, 9− 14) [4]. For atoms these different configurations are
non-interacting due to the difference in parity of d and f-orbitals, however, breaking of the
inversion symmetry by complex formation induces mixing and the need to treat all valence
orbitals in a balanced fashion. As we will discuss later, this has implications both for the
choice of basis sets and for the choice of a suitable electron correlation method. We will first
start with a discussion of the available relativistic Hamiltonians that form a prerequisite for
the treatment of electronic structure of heavy elements. We employ SI-based atomic units
throughout this chapter.

3.2 Relativistic Hamiltonians

3.2.1 General Aspects

In this section we will provide a brief but self-contained overview of relativistic Hamil-
tonians for all-electron calculations. More detailed discussions can be found in [5–7] and
references therein. In the non-relativistic domain the electronic Hamiltonian has the form

Ĥ = VNN +
∑

i

ĥ(i) +
1
2

∑
i�=j

ĝ(i, j); VNN =
1
2

∑
A�=B

ZAZB

RAB
(3.1)

where VNN is the classic repulsion of fixed nuclei. The one- and two-electron operators are
taken to be

ĥ = ĥ0 + VeN ; ĝ(1, 2) =
1

r12
(3.2)

where appears the free-particle operator ĥ0 (kinetic energy), the interaction with the scalar
potential of fixed nuclei VeN = −eφnuc and the instantaneous two-electron Coulomb inter-
action. The free-particle operator has the same form as the classical free-particle energy,
and quantization is obtained by the heuristic substitution

E → i
∂

∂t
p → p̂ = −i∇

}
⇒ E =

p2

2m
→ i

∂

∂t
ψ =

p̂2

2m
ψ (3.3)
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An important observation is that the relativistic electronic Hamiltonian has exactly the
same generic form (3.1) as the non-relativistic one. This feature becomes perhaps even more
manifest when expressing the electronic Hamiltonian on second-quantized form

Ĥ =
∑
p,q

hpqp†q +
1
4

∑
p,q,r,s

〈pq || sr〉 p†q†rs (3.4)

where p† and q are creation- and annihilation operators, respectively, with respect to a
specific set of one-electron functions (orbitals). These are combined with integrals hpq

and 〈pq || sr〉 over the one- and two-electron operators, respectively, the latter being on
anti-symmetrized form

hpq = 〈p|ĥ|q〉; 〈pq‖sr〉 = 〈pq|sr〉 − 〈pq|rs〉 (3.5)

In the non-relativistic case these integrals are real, and this also holds true when scalar
relativistic effects are added. With the inclusion of spin-orbit interaction, complex algebra
becomes mandatory (except for high-symmetry cases [8]) and fewer integrals will be zero
due to symmetry. Yet the overall structure of the Hamiltonian is unchanged from the non-
relativistic to the relativistic domain, and this generic form, combined with ansatzes for
the wavefunction, suffices to generate the working formulas for the various methods of
quantum chemistry. An important consequence is that whereas the choice of method (y)
and basis set (N) combine to give a computation cost of Ny, the choice of Hamiltonian only
contributes a prefactor, independent of system size. There are, however, some technical
issues and challenges associated with the occurence of negative-energy solutions of the
relativistic one-electron Hamiltonian that will be addressed in the following.

However, before going into a detailed discussion of various relativistic Hamiltonians
we will introduce an alternative form of the electronic Hamiltonian (3.4), which is useful
for wavefunction-based correlation methods. It is obtained by switching to a particle-hole
formalism and then introducing normal ordering. In the second-quantization formalism cre-
ation and annihilation operators refer to some specific set of (orthonormal) orbitals, and
Slater determinants in Hilbert space translate into occupation-number vectors in Fock space.
The annihilation operators in equation 3.4 by definition give zero when acting on the vacuum
state

p |0〉 = 0; ∀p (3.6)

which by default is the empty occupation-number (ket) vector. The creation operators are
simply the hermitian conjugates of the annihilation operators and accordingly satisfy

〈0| p† = 0; ∀p. (3.7)

From the above mentioned relations it is easy to see that the vacuum expectation value of
the electronic Hamiltonian (3.4) is zero. The particle-hole formalism implies a redefinition
of the vacuum state. Since correlation energy is defined with respect to the Hartree-Fock
energy, we redefine the vacuum state as being the occupation-number vector corresponding
to the converged HF determinant, the Fermi vacuum. This leads to a redefinition of creation

www.ebook3000.com

http://www.ebook3000.org


“Dolg-Driver” — 2015/1/17 — 13:14 — page 61 — #7

Relativistic All-Electron Approaches 61

and annihilation operators as well. For the moment we restrict attention to closed-shell sys-
tems for which we may distinguish occupied and virtual orbitals, indexed by i, j, k, l and
a, b, c, d, respectively. Creation operators i† of occupied orbitals as well as annihilation
operators a of virtual orbitals give zero with respect to the HF vacuum and are now both
annihilation operators, whereas their conjugates i and a† are creation operators of holes and
particles, respectively. The electronic Hamiltonian can now be recast as

Ĥ = EHF + ĤN (3.8)

where the first term is the HF energy. The second term is the normal-ordered Hamiltonian

ĤN =
∑
p,q

Fpq{p†q}+ 1
4

∑
p,q,r,s

〈pq || sr〉 {p†q†rs} (3.9)

where appears matrix elements Fpq over the Fock operator. The curly brackets indicate nor-
mal ordering, that is, all creation operators with respect to the HF vacuum are moved to
the left of annihilation operators, as if they anti-commuted. The expectation value of the
normal-ordered Hamiltonian with respect to the HF vacuum is therefore manifestly zero
and so in correlated theories it gives direct access to the correlation energy.

3.2.2 Four-Component Hamiltonians

From the discussion above it becomes clear that the major difference between
non-relativistic and relativistic quantum chemistry comes from the choice of one- and
two-electron operators of the electronic Hamiltonian. To get some idea of the underlying
physics, a brief review of the basics of relativity will be necessary. The special theory of
relativity is special in that it restricts attention to transformation between inertial frames,
that is, reference frames connected by constant velocity v. The principle of relativity states
that the laws of physics have the same form in all such frames. Whereas this principle has
been known since the times of Galilei, the truly revolutionary aspect of the 1905 paper of
Einstein [9] was the second postulate, stating the invariance of the speed of light c in all iner-
tial frames. This implied that the Lorentz transformation, at that time already known from
electrodynamics, applies to all domains of physics. Let us consider two inertial frames – K
and K′ – which we for simplicity, but without loss of generality, let coincide at t = t′ = 0,
when a flash of light is emitted from the origin. The invariance of the speed of light then
implies that the interval

s =
√

c2t2 − x2 − y2 − z2 =
√

c2t′2 − x′2 − y′2 − z′2 (3.10)

connecting the space and time coordinates (x, y, z, t) ((x′, y′, z′, t′)) of the lightfront in frame
K (K′) at a later time is zero. The resulting plasticity of space and time manifests itself
through phenomena such as length contraction and time dilation, which are admittedly
remote from everyday experience.

It is convenient to gather space and time coordinates in a vector, 4-position

rμ = (r, ict) ; rμrμ = r2 − c2t2 (3.11)
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whose norm is simply related to the interval and therefore conserved in Lorentz transfor-
mations. Other 4-vectors, with the same transformation properties, can be generated from
4-position by appropriate manipulations. A useful 4-vector is the 4-gradient

∂μ =

(
∇,− i

c
∂

∂t

)
(3.12)

4-velocity is obtained as a time derivative, but since absolute time is abolished in the theory
of relativity, a Lorentz invariant proper time τ is generated from the infinitesimal interval

ds =
√

c2dt2 − dx2 − dy2 − dz2 = cγ−1dt = cdτ. (3.13)

This relation contains the Lorentz factor

γ =
1√

1 − v2/c2
(3.14)

which can be considered as a diagnostic of relativistic effects since it goes towards infinity
as the particle speed v approaches the speed of light c. When the the relative speed v/c is
small, the Lorentz factor is essentially unity, indicating a non-relativistic regime. The non-
relativistic limit is obtained by letting the speed of light c tend towards infinity. The Lorentz
factor also suggests that c is an upper speed limit for any interaction since v > c makes the
factor purely imaginary.

With the introduction of proper time and use of the chain rule 4-velocity is obtained as

vμ =
drμ
dτ

= γ
drμ
dt

= γ(v, ic); vμvμ = −c2 (3.15)

The length of this 4-vector is simply the speed of light, thus by construction Lorentz invari-
ant. Proceeding we multiply 4-vector by Lorentz invariant mass m to obtain 4-momentum

pμ = (γmv, iγmc) (3.16)

The space part of 4-moment is relativistic momentum p = γmv, which is often re-written
p = Mv, where appears relativistic mass M = γm, which increases with the speed of the
particle. The content of the time part of 4-momentum is less obvious, but quantification of
4-momentum, p̂μ = −i∂μ, suggests that it is proportional to energy so that we may write

pμ = (p,
i
c

E); pμpμ = p2 − E2

c2
= −mc2 (3.17)

The relativistic energy of a free particle can thereby be expressed as

E = ±
√

m2c4 + c2p2 ∈
〈
−∞,−mc2

]
∪
[
+mc2,+∞

〉
(3.18)

Upon taking the square root, both signs must be considered, leading to a positive- and a
negative-energy branch separated by a gap of 2mc2. In classical mechanics free particles
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of negative energy are not known, and since the energy can not change discontinuosly we
can discard the negative-energy branch. The positive energy of relativistic free particles can
then be related to that of non-relativistic ones through the expansion

E = +mc2

√
1 +

p2

m2c2
= mc2 +

p2

2m
− p4

8m3c2
+ . . . (3.19)

The second term is seen to be the non-relativistic free-particle energy. Further terms to
the right correspond to relativistic corrections and vanish when the speed of light goes to
infinity. The first term, corresponding to the rest mass, then goes to infinity as well, but can
be removed by simply resetting the origin of the energy scale.

In quantum mechanics things are not so simple since the energy can, as the name implies,
change in leaps. The negative-energy branch can therefore not be ignored. Also, quantifi-
cation of the energy expression (3.18) is far from straightforward since the direct heuristic
substitution leads to the square-root of a Laplacian. Dirac [10] achieved a factorization of
the squared energy expression (3.17) without square roots at the price of introducing a 4×4
matrix operator

(
ĥ0 − i

∂

∂t

)
ψ = 0; ĥ0 = βmc2 + c (α · p) =

[
+mc2 c (σ · p)
c (σ · p) −mc2

]
(3.20)

with corresponding 4-component vector solutions

ψ =

[
ψL

ψS

]
=

⎡
⎢⎢⎣
ψLα

ψLβ

ψSα

ψSβ

⎤
⎥⎥⎦ (3.21)

The Dirac matrices α and β are defined in terms of the 2 × 2 Pauli spin matrices as well as
identity and null matrices

α =

[
02×2 σ
σ 02×2

]
; β =

[
I2×2 02×2

02×2 −I2×2

]
(3.22)

The free-particle Dirac Hamiltonian ĥ0 has the spectrum (3.18). To prevent positive-energy
electrons from descending down into the negative-energy continuum, Dirac postulated that
all negative-energy solutions were occupied and thus not available, due to the Pauli exclu-
sion principle. This state of affairs does not hinder excitations from the negative-energy
branch if sufficient energy (∼ 2mc2) is provided. Since the negative-energy electrons are
assumed to be not directly observable, such excitations will lead to the observation of an
electron, but also the positively charged hole it leaves behind, identified as the positron, the
anti-particle of the electron. The free-particle Dirac equation does not specify charge (as it
is not needed) and therefore applies equally well to electrons and positrons.

Electric and magnetic fields are introduced in terms of their potentials through the
principle of minimal electromagnetic coupling [11]

pμ → pμ − qAμ (3.23)
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where appears the 4-potential Aμ

Aμ =

(
A,

i
c
φ

)
(3.24)

as well as particle charge q. For electrons one sets q = −e such that the substitution (3.23)
takes the form

p → π = p + eA; E → E + eφ (3.25)

For relativistic electons in the presence of the electrostatic potential φnuc of clamped nuclei
the Dirac Hamiltonian accordingly reads

ĥD = ĥ0 + VeN ; VeN = −eφnuc (3.26)

To align the zero of the relativistic energy scale with that of the non-relativistic one, the rest
mass of the electron is subtracted through the substitution

β → β
′
= β − I4×4 (3.27)

which completes the construction of the one-electron part of the relativistic electronic
Hamiltonian.

It should be emphasized that (3.26) is the form of the one-electron Hamiltonian in the
frame of clamped nuclei. In the frame of the electron an additional term would appear,
describing the magnetic field induced by the moving nuclei, which couples to electron spin,
thus representing spin-orbit coupling induced by the motion of nuclei relative to the electron.

Atomic solutions of hD take the form

ψ (r, θ, φ) =

[
RL(r)χκ,mj(θ, φ)

iRS(r)χ−κ,mj(θ, φ)

]
(3.28)

where RX (X = L, S) are real scalar radial functions andχκ,mj complex 2-component angular
functions. The angular functions are eigenfunctions of ĵ2, where ĵ is total angular momentum

ĵ = l̂ + ŝ, (3.29)

reflecting spin-orbit coupling. However, the specification of quantum numbers j and mj does
not fully specify an angular function since orbital angular momentum l and spin s = 1

2 can
generally couple to both j = l − 1

2 and j = l + 1
2 . The two possibilities are distinguished by

the quantum number κ, which are eigenvalues of the operator κ̂ = − [(σ · p) + I2×2] and
take the values

κ =

{
l; κ > 0

−(l + 1); κ < 0
(3.30)

as illustrated in Table 3.1.
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Table 3.1 Quantum numbers for relativistic atomic orbitals

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2

j 1/2 1/2 3/2 3/2 5/2 5/2 7/2
κ -1 +1 −2 +2 −3 +3 −4

No simple analytic form can be given to the fully relativistic two-electron interaction.
Since two electrons are charges in relative motion, the electrostatic (charge-charge) inter-
action is supplemented by magnetic (current-current) interactions. Moreover, since the
interactions are not instantaneous the complete history of the two moving particles is
required for the specification of their interaction. The two-electron interaction is there-
fore given as a perturbation expansion in orders of c−2. The zeroth-order term is the
Coulomb term

gCoul (i, j) =
I4×4 · I4×4

rij
(3.31)

whereas the first-order term is the Breit term which splits into the Gaunt term and a gauge-
dependent term

gBreit (i, j) = gGaunt (i, j) + ggauge (i, j) ; gGaunt (i, j) = −cαi · cαj

c2rij
(3.32)

The two-electron operator is given in the nuclear frame and not in the reference of either
electron. The spin-orbit coupling due to the relative motion of elecrons therefore splits into
two parts: The total interaction is the coupling of the spin of a selected reference electron
with the magnetic field induced by a second electron. The spin-same orbit (SSO) and spin-
other orbit (SOO) contributions arise from the motion of the reference electron and the
other electron, respectively, relative to the nuclear frame and are carried by the Coulomb and
Gaunt terms, respectively. For most molecular application it suffices to include the Coulomb
term only, thus defining the Dirac-Coulomb Hamiltonian, but for the accurate calculation
of molecular spectra the Gaunt term should be included as well.

3.2.3 Two-Component Hamiltonians

The negative-energy solutions are a troublesome aspect of the Dirac Hamiltonian and clearly
of limited interest in chemical applications. Over the years, much effort has therefore been
spent on eliminating the positronic degrees of freedom of the Dirac Hamiltonian. Most such
efforts start from the Dirac equation in the molecular field

[
VeN c (σ · p)

c (σ · p) VeN − 2mc2

] [
ψL

ψS

]
=

[
ψL

ψS

]
E (3.33)

and seek to generate a 2-component Hamiltonian h++, which reproduces the positive-
energy spectrum of the parent Hamiltonian. This can be accomplished by a unitary block
diagonalization [12]
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U†
[

hLL hLS

hSL hSS

]
U =

[
h++ 0

0 h−−

]
(3.34)

or, equivalently, by elimination of the small components followed by renormalization of the
transformed large components. The transformation can accordingly be expressed as seen in
Heully et al. [13]

U = W1W2; W1 =

[
1 −R†

R 1

]
; W2 =

[
Ω+ 0
0 Ω−

]
;

Ω+ =
(
1 + R†R

)−1/2

Ω− =
(
1 + RR†)−1/2 (3.35)

where the transformations W1 and W2 assure decoupling and renormalization, respectively.
There is an infinite number of unitary transformations that will bring the parent Hamilto-
nian on block-diagonal form. This becomes evident by taking into consideration that after
a complete diagonalization of the 4-component Hamiltonian, arbitrary unitary transforma-
tions can be carried out within the {++} and {−−} blocks separately. The above form of
the unitary transformation is dictated by the desire to maintain the resulting positive-energy
2-component functions as close to the original large component solutions as possible.

The identification of the operator R becomes clear when considering the effect of the
unitary transformation on the orbitals

U†
[
ψL

ψS

]
=

[
Ω+

(
ψL + R†ψS

)
Ω−

(
ψS − RψL

)
]

(3.36)

For positive-energy solutions we want the lower components to be zero, which implies

ψS
+ = RψL

+ (3.37)

and leads to 2-component positive-energy solutions of the form

ψ+ =
1√

1 + R†R

(
ψL + R†ψS

)
=

1√
1 + R†R

(
ψL + R†RψL

)
=
√

1 + R†RψL, (3.38)

suggesting that they can be expanded in the original large component basis. The operator
R is thereby identified as the exact coupling between the large and small component of the
positive-energy solutions of the Dirac equation (3.33), which is given by

R =
(
2mc2 − VeN + E

)−1
c (σ · p) (3.39)

These results show not only that the coupling, and thus the separation of positive- and
negative-energy solutions, depends explicitly on the external potential, but also on the
energy. The latter feature implies that the proper 2-component Hamiltonian can only be
generated after solving the parent 4-component problem and led to the development of sev-
eral approximate 2-component relativistic Hamiltonian. They may be classified according
to whether they are generated in one or several steps:
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1. One-step decoupling
(a) Pauli Hamiltonian: Using the approximate decoupling

R =
1

2mc

[
1 +

E − V
2mc2

]−1

(σ · p) ∼ 1
2mc

(σ · p) (3.40)

and retaining terms only to O(c−2) gives the Pauli Hamiltonian

ĥPauli = V + T − p4

8m3c2︸ ︷︷ ︸
mass-velocity

+
1

8m2c2

(
∇2V

)
︸ ︷︷ ︸

Darwin

+
1

4m2c2
σ · [(∇V)× p]︸ ︷︷ ︸
spin-orbit

(3.41)

It features three terms providing relativistic corrections to the non-relativistic Hamil-
tonian. The mass-velocity term can be recognized from equation 3.18 as the first-
order relativistic correction to the kinetic energy. The Darwin term is a relativistic
correction to the potential energy arising from Zitterbewegung, the highly oscillatory
motion of the relativistic electron superimposed on its mean position. One interpreta-
tion of the Zitterbewegung is that in the vicinity of an electron its field is sufficiently
strong to allow the creation of an electron-positron pair. The positron annihilates
the original electron and the new electron takes over, leading to a jumping motion
of the electron(s). In the presence of a single point nucleus the spin-orbit term takes
the more familiar form

ĥSO =
Z

2m2c2r3
s · l (3.42)

from which the name of the interaction arises. However, it should be carefully noted
that spin-orbit interaction is due to magnetic induction and that the orbital angular
momentum operator l appearing in the operator expression represents the relative
motion of electron and nucleus.

The Pauli Hamiltonian has no lower bound and is therefore not recommended
for variational calculations. It is nowadays mostly used in low-order perturbation
calculations on light atoms (Z < 40).

(b) Regular Hamiltonians: Using the approximate decoupling

R =
c

2mc2 − V

[
1 +

E
2mc2 − V

]−1

(σ · p) ∼ c
2mc2 − V

(σ · p) (3.43)

and ignoring renormalization gives the Zeroth-Order Regular Approximation
(ZORA) Hamiltonian [14–16]

ĤZORA = V +
1

2m
(σ · p)

2mc2

2mc2 − V
(σ · p) (3.44)

The second term can be thought of as an effective kinetic energy operator that goes to
the non-relativistic one when V → 0. Proper renormalization gives the Infinite Order
Regular Approximation (IORA) [17], often approximated by scaled ZORA [16],
which improves on ZORA.
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2. Multi-step decoupling
Use of the exact free-particle decoupling

R =
(
2mc2 + E

)−1
c (σ · p) (3.45)

maintains the kinetic energy operator on the relativistic square-root form (3.18) and
thereby provides regularized and variationally stable H, but no exact decoupling.
(a) Subsequent decoupling transformations in orders of the potenial defines the

Douglas-Kroll-Hess (DKH) Hamiltonian to a given order. This sequence of trans-
formations was first proposed by Douglas and Kroll [18], but the name of Bernd Hess
has later been associated with this Hamiltonian due to his introduction of an effective
momentum basis [19, 20], thus paving the way for the use of the DKH Hamiltonian
in molecular calculations.

(b) Iterating the coupling equation of the free-particle transformed Hamiltonian to obtain
the coupling correct through some odd order 2k−1 in c−1 and then perform a single
unitary transformation defines the Barysz, Sadlej and Snijders (BSS) Hamiltonian
[21] to order 2k.

The past decade has witnessed the development of eXact 2-Component (X2C) Hamilto-
nians [22–25]. This development was a result of two important realizations: i) that the cost
of solving the 4-component one-electron problem, explicitly or implicitly, is minor com-
pared to solving the molecular many-electron problem, which is usually at hand, and ii) that
the X2C Hamiltonian can be generated using matrix algebra, thus eliminating the need to
program up integrals over complicated operator expressions. The basic algorithm for the
construction of the X2C Hamiltonian is therefore to solve the parent 4-component equation
on matrix form, extract the coupling R from the solutions, then construct the transformation
U and finally hX2C. The X2C Hamiltonian reproduces exactly the positive-energy spectrum
of the parent 4-component Hamiltonian. The algorithm also has the advantage of providing
an explicit representation of the transformation U. Any property operator can therefore be
transformed on the fly, thus avoiding picture change errors (see below).

All of the above procedures provide an approximate block diagonalization of the starting
4-component one-electron Hamiltonian from which a 2-component Hamiltonian may be
extracted

H2c =
[
U†H4cU

]
++

(3.46)

but do not automatically provide two-electron or property operators to be used in conjuction
with the one-electron Hamiltonian. Property operators Ω4c must be subjected to the same
transformation as the Hamiltonian, that is

Ω2c =
[
U†Ω4cU

]
++

. (3.47)

Use of the approximate expression

Ω2c ≈
[
Ω4c

]
LL

(3.48)
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leads to picture change errors [26–29], which for properties sampling the wavefunction in
the vicinity of nuclei may be larger than the relativistic effects.

The appropriate 2-component two-electron operator should likewise be constructed as

g2c(1, 2) =
[
(U†(1)⊗ U†(2))g4c(1, 2)(U(1)⊗ U(2))

]
++

. (3.49)

However, the straightforward transformation on matrix form of the two-electron operator
in this manner will lead to calculations that are more expensive than a full 4-component
calculation [30], since one needs to generate and transform the full set of two-electron
integrals of the 4-component calculation. One approximate approach consists of combin-
ing the untransformed two-electron Coulomb operator with Atomic Mean-Field Integrals
(AMFI) [31]. The latter provide two-electron spin-orbit corrections and are generated as
mean-field representations of the 2-component two-electron spin-orbit operators, analogous
to the two-electron part of the Fock matrix, for the individual atoms of the molecule. For cor-
related calculations in the framework of X2C, another scheme, the Molecular Mean-Field
Approach [32], consists of solving the 4-component relativistic Hartree-Fock problem for
the molecule and then construct the decoupling transformation U, which block diagonal-
izes the converged Fock matrix. The resulting 2-component Fock operator on matrix form
is then used together with the untransformed two-electron Coulomb operator at the corre-
lated level, providing molecular mean-field two-electron spin-orbit corrections, as can be
seen from equation 3.9. Since typically only valence electrons are correlated the approxi-
mations to two-electron integrals affect only valence electrons, keeping an unapproximated
4-component description for core electrons.

3.2.4 Numerical Example

To illustrate the performance of the various Hamiltonians discussed in this section we
present in Table 3.2 orbital energies of the uranium atom obtained with different relativis-
tic Hamiltonians. We have carried out Hartree-Fock calculations optimizing the average
energy of the complete set of determinants generated from the [Rn]5f 36d17s2 ground state
configuration of the uranium atom. For all calculations we employed an uncontracted
33s29p20d13f4g2h Gaussian (large component) basis [33], corresponding to the cc-pVTZ
level, and the DIRAC molecular code [34].

Reference values for the various 2-component relativistic Hamiltonians are provided
by the 4-component Dirac-Coulomb Hamiltonian, but we have also included orbital ener-
gies obtained with the Dirac-Coulomb-Gaunt (DCG) Hamiltonian. As already mentioned,
the Gaunt term brings in spin-other-orbit (SOO) interaction. Since spin-orbit interaction
induced by other electrons will oppose the one induced by nuclei we see from Table 3.3 that
the spin-orbit splitting of orbital levels is overall reduced. However, one should note that
the Gaunt term also modifies s1/2 levels.

Turning now to the 2-component relativistic Hamiltonians we observe that the eXact
2-Component (X2C) Hamiltonians reproduces the DC orbital energies quite well, although
there is a difference of about 10 Eh for the 1s1/2 level. This discrepancy stems entirely
from picture change errors in the two-electron operator since the one-electron X2C Hamil-
tonian by construction reproduces exactly the positive-energy spectrum of the parent
4-component Hamiltonian. In the present calculations the one-electron X2C Hamiltonian
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Table 3.2 Orbital energies of the uranium atom obtained with different relativistic Hamiltoni-
ans and Hartree-Fock calculations averaging over the [Rn]5f 36d17s2 ground state configuration

DCG DC X2C DKH2 DKH1 ZORA scZORA

1s1/2 −4262.599 −4281.813 −4272.178 −4253.946 −4568.402 −4890.081 −4267.639
2s1/2 −804.292 −806.637 −804.996 −802.931 −840.315 −829.339 −804.400
2p1/2 −773.067 −777.035 −775.649 −774.270 −791.143 −799.722 −775.573
2p3/2 −633.274 −635.783 −635.010 −635.027 −634.978 −651.542 −634.900
3s1/2 −206.265 −206.730 −206.350 −205.894 −214.216 −208.368 −206.214
3p1/2 −192.463 −193.251 −192.949 −192.624 −196.579 −194.945 −192.940
3p3/2 −159.897 −160.378 −160.206 −160.220 −160.067 −161.622 −160.178
3d3/2 −138.721 −139.070 −138.997 −139.024 −138.568 −140.214 −138.982
3d5/2 −132.183 −132.426 −132.367 −132.393 −131.938 −133.477 −132.350
4s1/2 −54.250 −54.355 −54.259 −54.140 −56.332 −54.425 −54.223
4p1/2 −48.048 −48.232 −48.161 −48.077 −49.085 −48.334 −48.159
4p3/2 −39.454 −39.554 −39.515 −39.522 −39.437 −39.633 −39.508
4d3/2 −29.688 −29.744 −29.734 −29.743 −29.590 −29.817 −29.730
4d5/2 −28.100 −28.130 −28.123 −28.132 −27.980 −28.197 −28.119
4f5/2 −15.207 −15.202 −15.211 −15.220 −15.089 −15.247 −15.210
4f7/2 −14.802 −14.786 −14.795 −14.803 −14.676 −14.828 −14.792
5s1/2 −12.582 −12.603 −12.582 −12.553 −13.081 −12.587 −12.573
5p1/2 −10.098 −10.136 −10.122 −10.103 −10.320 −10.133 −10.122
5p3/2 −8.077 −8.095 −8.088 −8.091 −8.049 −8.094 −8.087
5d3/2 −4.347 −4.352 −4.353 −4.356 −4.305 −4.356 −4.353
5d5/2 −4.040 −4.041 −4.042 −4.045 −3.995 −4.044 −4.041
5f5/2 −0.350 −0.346 −0.349 −0.350 −0.321 −0.349 −0.349
5f7/2 −0.323 −0.318 −0.321 −0.322 −0.294 −0.321 −0.321
6s1/2 −2.135 −2.139 −2.135 −2.130 −2.234 −2.134 −2.133
6p1/2 −1.338 −1.344 −1.342 −1.339 −1.371 −1.343 −1.342
6p3/2 −0.983 −0.985 −0.984 −0.985 −0.968 −0.984 −0.984
6d3/2 −0.193 −0.193 −0.193 −0.194 −0.181 −0.193 −0.193
6d5/2 −0.183 −0.183 −0.184 −0.184 −0.173 −0.184 −0.184
7s1/2 −0.202 −0.202 −0.202 −0.202 −0.211 −0.202 −0.202

Table 3.3 Spin-orbit splitting of orbital levels of the uranium atom obtained with different rel-
ativistic Hamiltonians and Hartree-Fock calculations averaging over the [Rn]5f 36d17s2 ground
state configuration

DCG DC X2C DKH2 DKH1 ZORA scZORA

2p 139.793 141.252 140.638 139.244 156.165 148.179 140.672
3p 32.565 32.874 32.743 32.404 36.512 33.324 32.762
3d 6.538 6.644 6.630 6.631 6.631 6.737 6.632
4p 8.594 8.678 8.645 8.555 9.648 8.701 8.651
4d 1.588 1.614 1.611 1.611 1.611 1.620 1.612
4f 2.021 2.041 2.034 2.012 2.271 2.038 2.035
5p 0.307 0.312 0.311 0.311 0.310 0.312 0.312
5d 0.307 0.312 0.311 0.311 0.310 0.312 0.312
5f 0.027 0.028 0.028 0.028 0.027 0.028 0.028
6p 0.797 0.795 0.793 0.790 0.862 0.791 0.791
6d 0.009 0.010 0.010 0.010 0.008 0.010 0.010
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was supplemented by the 2-electron Coulomb term as well as an atomic spin-orbit correc-
tion provided by the AMFI package [35]. The latter employs orbitals generated from a scalar
relativistic second-order Douglas-Kroll-Hess (DKH2) atomic HF calculation for the gen-
eration of a mean-field spin-same-orbit operator at the first-order DKH1 level. The same
computational setup has been employed for the DKH1 and DKH2 Hamiltonians, whereas
2-electron spin-orbit corrections enter the ZORA Hamiltonian by the introduction of the
mean-field potential in the approximate coupling R (3.43). The DKH1 is obtained by a
free-particle decoupling transformation and is clearly an insufficient approximation, giv-
ing errors in the range of 0.25–0.70 eV for the valence uranium orbitals. DKH2 brings
about clear improvement but introduces somewhat larger errors than X2C for core orbitals.
The ZORA Hamiltonian gives errors that are even larger than DKH1 in the core region,
but in contrast to DKH1 provides an excellent description of relativistic valence orbitals,
which therefore has lead to its widespread use in relativistic molecular calculations. Finally,
we note that with the introduction of approximate renormalization with the scaled ZORA
Hamiltonian, the deficiencies in the core region are largely eliminated.

3.3 Choice of Basis Sets

A prerequisite for the application of all-electron approaches is the availability of a reliable
basis set for the particular f element and the chosen Hamiltonian. Ideally one would like
to be able to assess the size of basis set errors by being able to benchmark the results with
a basis set large enough to exclude significant errors due to truncation effects. In atomic
calculations one may do so by choosing a very large universal basis set. In this approach a
set of exponents is generated via the recurrence relation

αi = βαi−1(i = 2, n) (3.50)

in which only the first exponent α1, the scale factor β, and the number of exponents n is to be
specified. For each l-value different subsets of the generated exponents are taken, allowing
for straightforward extension with additional functions needed in correlation calculations.
While the Universal Gaussian Basis (UGB) basis set of Malli and coworkers [36] was ini-
tially designed for atomic Hartree-Fock calculations with the Dirac-Coulomb Hamiltonian,
it has been widely applied also in correlated calculations. This universal approach leads
to basis set sizes too large to be feasible in molecular calculations, and more economical
representations of the orbitals have therefore been developed.

Molecular applications are typically done with element-specific basis sets in which the
energy is minimised for each of the elements individually. As discussed above, one should
here first decide upon the Hamiltonian that is to be used because the picture-change (Section
3.2.3) associated with the transformation from the Dirac to a 2-component Hamiltonian
changes the shape of the wavefunction and the optimal set of exponents needed to describe
it. In addition, one should define the nuclear model and the radius of the nucleus [37]. The
latter provides an upper limit on the exponent values, in contrast to the conventional point
nucleus approximation, which yields a singularity at the nuclear position that is impossible
to describe with Gaussian (GTO) or Slater type (STO) basis functions. After having defined
the Hamiltonian and nuclear model, one may then find optimal exponents by minimising
the total electronic energy as a function of basis set exponents. For DFT calculations the
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procedure is relatively straightforward because the electron-electron coalescence needs not
be described explicitly, reducing the need for functions with high values of angular momen-
tum. Nevertheless, one needs to add polarisation functions to describe deformation of the
atomic orbitals upon molecule formation, something that can only be tested in molecular
calculations. For the STO choice of basis, energy-optimised sets [38] are available for the
ZORA Hamiltonian in the ADF program package [39]. For the more common choice of
GTOs, a number of energy-optimized sets are available. For the Dirac-Coulomb Hamilto-
nian sets covering the whole periodic table were provided by Faegri [40] and are described
as “better than double zeta quality.” These are dual family basis sets, that is, they are con-
structed with the constraint of having equal exponents for the s- and d-sets and for the p-
and f-functions allowing for economical use in 4-component calculations. The Faegri sets
do not contain polarisation functions, and different choices have been made by users of
these sets, making their accuracy in molecular calculations somewhat difficult to assess.
More extended sets in the spirit of the non-relativistic correlation-consistent basis sets have
been developed by Dyall [33, 41] who has optimised the exponents under the constraint
of a double (DZ), triple (TZ), or quadruple zeta (QZ) description of the valence orbitals.
Although developed for the Dirac-Coulomb Hamiltonian, these basis sets can also be used
in X2C calculations in which the small component basis set is only used to generate the
transformed Hamiltonian matrix. For the Douglas-Kroll-Hess family of methods, only the
picture-transformed upper component of the wavefunction needs to be described, which
can either be done using the large component sets of the above basis sets or by a dedi-
cated energy optimisation. Roos and coworkers [42, 43] used the Faegri sets as a starting
point for basis sets for the scalar DKH2 Hamiltonian and added polarisation and correlation
functions (up to l=6). These atomic natural orbitals (ANO) sets allow for high flexibility in
choosing an appropriate subset of contracted functions, but predefined choices of double,
triple, or quadruple zeta are available as well. A somewhat smaller and thereby more eco-
nomical alternative for this type of Hamiltonian is provided by the Sapporo group [44, 45]
who employed the third-order scalar Douglas-Kroll Hamiltonian to optimise segmented
contracted sets including valence polarisation and correlation functions. Pantazis and Neese
have reported compact basis sets for the lanthanides [46] and actinides [47] optimized for
use in scalar relativistic DFT calculations based on the DKH2 or ZORA Hamiltonians.

In all cases one should be aware of the fact that exponents and contraction coefficients are
obtained for a particular choice for electronic configuration of the atom. Due to the impor-
tance of the 6d in actinides, and the 5d in early lanthanides, the configuration of choice is
either (Faegri, Noro [40, 45]) the s2d1f n−1 configuration or an average of different configu-
rations (Dyall, Roos [33, 43]). Taking just the s2d0f n ground state configuration of the later
actinides does not allow for optimisation of the important 5d or 6d orbitals that play a role in
chemical bonding and excited states. Another issue is the fact that exponents are typically
constrained to be equal for the two components of a shell that is split by spin–orbit cou-
pling. This is most important for the 6p and 7p orbitals in which the difference between the
radial wavefunctions is appreciable, but less so for the 4f and 5f orbitals in which this differ-
ence is small (see Figure 3.3). Spin-orbit coupling is also important in defining contraction
coefficients, because it is difficult to find a balanced description if the radial functions of
both components of the spin-orbit shell need to be equal. For Hamiltonians in which spin–
orbit coupling is only considered in a second stage, contractions are based on the scalar
version of the Hamiltonian and the spin–orbit operator is calibrated to give good energies
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for the splitting. Extending the basis by adding (or decontracting) tight functions may in
such cases have an adverse effect [48] and worsen the results rather than improving them.
In 4-component Dirac calculations, in which elimination of spin-orbit coupling is more dif-
ficult, the basis set is typically left uncontracted. The same is true for the Slater functions
used in the ADF ZORA basis sets, in which uncontracted sets are used for both scalar and
spin-orbit calculations.

With the availability of different alternatives for DZ, TZ, and QZ series of basis sets and
the possibility to reach high accuracy with uncontracted universal sets, the availability of
basis sets for all-electron calculations of heavy elements starts to approach the situation
for lighter elements in which systematic studies on basis set convergence are carried out
and basis set limit extrapolation formulas have been proposed. This is, however, only true
for valence correlation because correlating the (chemically uninteresting) deep core orbitals
will give unpredictable results with any of these sets. The lack of functions specifically opti-
mised to correlate electrons in orbitals below the 4d (lanthanides) or 5d (actinides) subshell
will give rise to serious basis set superposition errors when such calculations are attempted.
This makes it hard to determine basis set limit results even for small molecules as the influ-
ence of the core-valence electron correlation can not be fully addressed with the available
sets. Also for high-accuracy valence correlation calculations, it would be desirable to be able
to use systematically optimised 5Z or 6Z sets. These issues are, however, minor compared
to the choice of an appropriate electronic structure method to carry out such calculations as
we will discuss in the next section.

3.4 Electronic Structure Methods

In this chapter we focus on methods suitable for an all-electron treatment of f elements. In
such calculations the aim is either to calculate molecular properties or to achieve benchmark
accuracy. Depending on the application, one may be able to neglect or approximate spin-
orbit coupling effects, which is nowadays possible with all Hamiltonians described above.
Regarding the calculation of molecular properties [49], we note that the application of all-
electron methods is typically required when the property operator probes the wave function
in the vicinity of the nuclei. This is the case for calculation of Nuclear Magnetic Resonance
(NMR) parameters, Electric Field Gradients (EFG), or Mössbauer shifts. For calculation
of “valence” properties such as molecular dipole moments or polarizabilities, the use of
pseudo-orbitals is less of a problem and the computationally cheaper effective core potential
methods (discussed by Cao and Weigand elsewhere in this volume) are often a reasonable
alternative [50]. For the second objective, reaching benchmark accuracy, all-electron meth-
ods have an advantage because they offer the possibility of systematic improvement of the
results by extension of basis sets and the correlation of more electrons. The latter is more
difficult with pseudopotential approaches because the core-valence correlation effects are
part of the parametrisation. One typically can choose between a “large core” and a “small
core” definition with accompanying basis sets that are developed to provide accurate results.
A fundamental problem associated with the pseudo-orbital approximation is the change
of the virtual orbital levels that are used to describe electron correlation in wavefunction-
based approaches. As explained by Dyall [51], this necessarily leads to a decrease of the
HOMO-LUMO gap and an overestimation of correlation effects. This can be remedied by
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parametrising on energy differences [52–54] rather than valence orbital shape. For DFT
approaches, we note that the effective core potentials used in computational chemistry are
typically derived by parametrising on basis of correlated atomic calculations, which may not
be fully transferable to the Kohn-Sham ansatz used in DFT. An interesting aspect, which is
rarely discussed, is the influence of smoothening out the oscillations of the electron density
in the core region on the calculated generalised gradient terms in the exchange-correlation
density functionals. This will lead to differences in the calculated exchange-correlation ener-
gies relative to all-electron approaches that should cancel out in the calculation of molecular
bond energies or other valence energy differences.

Some insight into the methodological challenges in theoretical studies of f elements can
already be gathered from looking at the uranyl double cation UO2+

2 which is a closed-shell
molecule important in the treatment of nuclear waste. In this molecule the uranium atom
has formal oxidation state +VI, but from projection analysis [55] at the HF level we find a
charge of +2.94 and configuration 5f 2.25 6d1.16 7s0.98 of the uranium atom in the molecule.
Both features indicate a considerable covalent contribution to bonding, and indeed both 5f
and 6d orbitals are found to participate in bonding with the oxygen ligands. What is per-
haps even more remarkable is that the population of the subvalence 6p orbitals is only 5.64
(and not 6.00). This is a manifestation of the so-called 6p-hole [56], due to overlap with
the oxygen ligands, and mostly located to the 6p3/2,1/2 orbitals. The lower virtual molec-
ular orbitals are atomic 5f orbitals. As one moves to the right along the actinide series,
these levels get filled in the homologous actinyl species, leading to manifolds of open-
shell states. Due to the atomic nature of the active orbitals, the lower electronic states of
a given actinyl species will have quite similar spectroscopic constants, in conformity with
the concept of superconfigurations introduced by Field in spectroscopic studies of simple
lanthanide molecules [57].

In conclusion we see that for actinides there may be a very large number of valence
orbitals (5f, 6d, 7s, and perhaps even 7p) leading very important dynamical correlation
effects preferably to be handled by a size extensive correlation method. The 6s and 6p
orbitals are highly polarisable and may have to be included in the correlation treatment as
well. Partially occupied 5f and 6d shells lead to a high density of multiconfigurational states.
These are heavy elements and require a non-perturbative relativistic treatment. In addition
much of the chemistry takes place in solution, so solvent effects should be accounted for.
The large number of valence electrons to correlate combined with the strong multicon-
figurational character of the wavefunction impose restrictions hardly met by any existing
theoretical method. For the lighter lanthanides the methodological requirements are some-
what less severe. Yet, in a 1988 review in the Handbook on the Physics and Chemistry of
Rare Earths, C. K. Jørgensen asked the rhetorical question ‘Is Quantum Chemistry feasi-
ble?’ and with special regard to these elements, he answered ‘Sorry, not today; perhaps next
century’ [58]. Fortunately the situation has improved considerably since then.

Looking at technical limitations of the available electronic structure methods, we note
that most techniques were originally developed for applications on light elements. The
large number of f orbitals and the possibility of participation of d orbitals make f elements
challenging. One is often faced with an electronic configuration in which more than 10
orbitals need to be placed in an active space to allow for variable occupation. Although
such spaces can be treated with complete active space (CAS) models used in the CASSCF
and CASPT2 approaches that are described below, the calculations do become expensive.
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For multi-reference coupled cluster approaches, such a large number of open shells is usu-
ally prohibitive because they typically assume a simple reference wavefunction from which
the states of interest can be generated by single or at most double excitations. Another con-
sequence of open-shell configurations in the high density of states within the same energy
range. A recurring theme in calculations is the determination of the precise electronic ground
state of a compound, and how the energy differences between close-lying states are mod-
ified by ligation and solvation. For such applications it is essential to be able to calculate
the energy of a multitude of states without introducing a bias for a particular state or con-
figuration. An added requirement is the ability to analyse the results in a meaningful way,
in particular for actinides the spin-orbit coupling can be so strong that decomposition of the
wavefunction in terms of spin multiplets is difficult, in particular in methods that include
the spin-orbit coupling terms already in the orbital generation step.

3.4.1 Coupled Cluster Approaches

3.4.1.1 Single-Reference Coupled Cluster Methods

A very useful concept in wavefunction-based correlation theories is the wave operator Ω̂
which, when acting on some suitable model function Ψ0, gives the correlated, exact wave
function Ψ

Ψ = Ω̂Ψ0. (3.51)

The equation for the exact wavefunction

ĤΨ = ĤΩ̂Ψ0 = EΩ̂Ψ0 (3.52)

can be simply transformed into an equation from which the exact energy E is obtained from
the model function through the action of an effective Hamiltonian

ĤeffΨ0 = EΨ0; Ĥeff = Ω̂−1ĤΩ̂, (3.53)

assuming that the inverse of the wavefunction exists. Perturbation theory can be formulated
by partitioning the Hamiltonian as Ĥ = Ĥ0 + Ĥ1, where Ψ0 is an eigenfunction of H0

and then expanding the wave operator in orders of the perturbation H1. As an example,
Møller-Plesset perturbation theory is obtained by setting H0 equal to the Fock operator.

Coupled cluster theory emerged from a deep analysis of the structure of the wave oper-
ator, taking into account in particular the constraint of size extensivity, that is, the correct
scaling of the correlation energy with system size. It was found that an exponential form
was required to assure separability of non-interacting fragments. In its simplest form, the
single-reference coupled cluster ansatz is accordingly

ΨCC = eT̂Φ0 (3.54)

where Φ0 is a single determinant, typically optimised with HF (ΦHF), and T̂ =
∑

μ tμτ̂μ
is a linear combination of excitation operators τ̂μ. An important feature of the CC ansatz
is that it is size extensive also when the excitation manifold T̂ is truncated, in contrast to
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Configuration Interaction (CI). The excitation manifold T̂ is usually restricted to single and
double excitations

T̂ = T̂1 + T̂2 =

occ.∑
i

virt.∑
a

ta
i a†i +

occ.∑
i,j

virt.∑
a,b

tab
ij a†b†ij, (3.55)

using perturbation theory to include the effect of triple excitations.
The wave equation for the CC wavefunction

ĤΦCC = ĤeT̂Φ0 = ECCeT̂Φ0 (3.56)

can be transformed into a wave equation for the model function

HΦ0 = ECCΦ0; H = e−T̂ ĤeT̂ (3.57)

where the similarity-transformed Hamiltonian H is seen to constitute an effective Hamilto-
nian. The CC energy energy is obtained from projection with the model function

ECC =
〈
Φ0

∣∣H∣∣Φ0
〉

(3.58)

whereas the CC amplitude equations are obtained by projection with excited determinants

〈
Φμ

∣∣H∣∣Φ0
〉
= 0; Φμ = τ̂μΦ0 (3.59)

The CC cluster amplitudes are coupled through these equations, but an important simplify-
ing feature is that a Baker-Campbell-Haussdorf (BCH) expansion of H truncates exactly to
quartic order

H = e−T̂ ĤeT̂ = Ĥ +
[
Ĥ, T̂

]
+

1
2!

[[
Ĥ, T̂

]
, T̂
]

+
1
3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂
]
+

1
4!

[[[[
Ĥ, T̂

]
, T̂
]
, T̂
]
, T̂
]

This follows from commutation of the excitation operators amongst each other and the fact
that every new nested commutator eliminates one of the maximally four general indices of
the electronic Hamiltonian.

As is clear from equation (3.55), the single-reference CC parametrisation assumes a dis-
tinction between occupied and virtual orbitals in the model wavefunction and is thereby
most suited for molecules that are qualitatively well described by a single determinant,
i.e., closed shell or high-spin open shell systems. This restriction prohibits application
of the standard coupled cluster approach to most lanthanide complexes, because the 4f
shell usually retains its atomic open shell character and requires a multi-determinant model
wavefunction. Studies with coupled cluster methods therefore usually concern closed shell
complexes with elements from the beginning or the end of the lanthanide series. The 8S
high-spin ground state of a 4f 7 configuration can also be studied, but only if the environment
consists of closed shell ligands. For actinides the situation is somewhat different, because
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the 5f is more extended and can get (formally) oxidised in molecular complexes. This is
the case in the most studied actinide unit, the uranyl ion [OUO]2+, in which the 5f shell
is formally unoccupied at oxidation state VI of uranium. Explicit calculation shows a large
HOMO-LUMO gap that is little affected by ligation or spin-orbit coupling, allowing coupled
cluster studies with standard methods. The bare uranyl ion has been extensively studied with
both all-electron and pseudo potential methods, and benchmark data for its bond distance
and the vibrational frequencies have been determined [59–63].

Somewhat larger systems are still within reach of all-electron coupled cluster calcula-
tions, but the steep scaling of the computational cost prohibits studies of more than 10 atoms
if both spin-obit coupling and core-valence correlation is to be explicitly included. The
overview of recent calculations with the coupled cluster and other approaches in the chapter
by Patzschke et al. in this volume gives an idea what is currently feasible. Systems that can
be easily treated with single reference coupled cluster theory also include triatomic actinides
in which only a single electron resides in the 5f shell such as [ONpO]2+ or [OUO]+. These
ions correspond, however, to less common oxidation states of, respectively, uranium and
neptunium. Study of the more common 5f 2 species [ONpO]+ is already more difficult for
the single reference coupled cluster approach [64], and the same holds true for the neutral
OUO molecule that has been subject of some debate relating to its precise ground state in
rare gas matrices [65–68]. The reason is the close spacing of states arising from the 5f 2,
5f 17s1, and 5f 1d61 configurations, which can be mixed in molecular complexes. This is
specific for early actinides as can be seen from Figure 3.5 in which the HF lower virtual
orbital energies, relative to the HOMO, for a 5f 0 configuration are plotted.

For later actinides the increased nuclear charge makes the 5f levels drop sufficiently
far below the 6d and 7s to decrease the configurational mixing. This makes the electron
correlation problem similar to that of lanthanides for which it is not so much the intercon-
figurational mixing, but rather the difficulties in describing multiplet states with a simple
reference wavefunction that prohibits single reference coupled cluster treatments. In both
cases the number of systems that can be treated reliably can be extended using multi-
reference coupled cluster techniques. In the next section we will in particular discuss the
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Figure 3.5 Orbital energies (in eV) for virtual 5f , 6d, and 7s orbitals, relative to HOMO, in iso-
electronic actinyl ions. Calculations were done with the ZORA Hamiltonian, using the Hartree-
Fock model and the TZ2P basis in ADF
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Fock-space coupled cluster (FSCC) approach that has been mostly applied to actinides. A
more extensive discussion can be found in Chapter 2 by Eliav and Kaldor.

3.4.1.2 Multiference Cluster Methods

A more typical situation in f element chemistry is that no single reference determinant pro-
vides a good starting point for correlated calculations so that the appropriate model function
is a linear combination of several determinants

Ψ0 =
∑
μ

ΦμCμ0 (3.60)

spanning a model space defined by a projection operator P. We may now distinguish inactive
(core) orbitals i, j, k, l, occupied in all determinants, and active (valence) orbitals u, v,w, x
present in some, but not all determinants. A complete active space (CAS) contains the full set
of determinants generated from distributing the active electrons in all possible ways amongst
the active orbitals, consistent with whatever symmetries are imposed on the wavefunction,
and lends itself better to size extensive approaches than incomplete spaces. We once again
invoke a wave operator on exponential form and define an effective Hamiltonian. In an
internally contracted approach, the expansion coeffients Cμ0 are kept fixed, whereas in a
relaxed approach the CC energy and the expansion coefficients CμK are found by projecting
the wave equation (3.53) with reference determinants within the model space

∑
ν

〈
Φμ

∣∣∣Ĥeff

∣∣∣Φν

〉
CνK = ECμK ; μ, ν ∈ P (3.61)

leading to an effective CI problem. The excitation amplitudes are found by projecting with
determinants from the complementary space Q = 1 − P

∑
ν

〈
Φμ

∣∣∣Ĥeff

∣∣∣Φν

〉
CνK = 0; μ ∈ Q, ν ∈ P (3.62)

However, two problems, which breaks the nice structure observed in single-reference CC,
immediately appear:

1. An excited determinant Φμ outside the model space can in principle be generated from
any of the reference determinants, yielding more amplitudes than equations and a severe
problem of linear dependence.

2. In single-reference CC the excitation operators contain only creation operators (particle
or hole) with respect to the Fermi vacuum. In MRCC there is no unique choice of Fermi
vacuum, but for any choice annihilation operators will appear in the excitation manifold
so that the BCH-expansion of the similarity-transformed Hamiltonian will not truncate
to quartic order.

Various flavours of MRCC have been formulated to tackle these problems. State-universal
MRCC (SUMRCC) employs separate wave operators for each reference determinant [69]

ΨSUMRCC
K =

∑
μ

Ω̂μΦμCμK (3.63)
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and then generates the complete set of states corresponding to the dimension of the model
space. This eliminates linear dependencies, but only partially solves the problem of non-
commuting cluster operators.

An alternative approach is obtained by noting that the Hamiltonian on second quantized
form does not refer to the number of electrons. Thus, in order to calculate some specific
open-shell state or a manifold of such states, one may find some state, possibly with a dif-
ferent number N of electrons, which can be described by a simple HF determinant that
will define the Fermi vacuum and the (0,0) hole-particle sector in the ensuing calculations.
In order to generate the leading determinants of the target state(s), one then successively
adds holes and particles. Adding an electron (particle) to the active virtual orbitals leads to
the reference determinants with N + 1 electrons of the (0,1) sector, whereas removing an
electron (adding a hole) from the active occupied orbitals leads to the reference determi-
nants with N − 1 electrons of the (1,0) sector. From both sectors one may then proceed to
the (1,1) sector providing reference determinants appropriate for the description of excited
states dominated by single excitations. The wave operator is accordingly an exponential of
an excitation manifold on the form [70]

ΨVUMRCC
K =

∑
μ

exp
(

T̂
)
ΦμCμK ; T̂ =

∑
h,p

T(h,p). (3.64)

and the model space contains all reference determinants in all sectors up to and includ-
ing the target sector. Since the active occupied and virtual orbitals are commonly denoted
valence orbitals, this approach is known as valence-universal MRCC (VUMRCC). If the
wave operator is written as a simple exponential of T̂ all amplitudes from the different sec-
tors couple and have to be solved for simultaneously. If instead the wave operator is written
as a normal-ordered exponential, Ω̂ =

{
exp

(
T̂
)}

the amplitudes can be solved in a hier-
archical manner [71, 72], but at the price of reduced orbital relaxation. For single excitation
energies one would then first carry out a single-reference CC calculation in the (0,0) sector,
then solve the (1,0) and (0,1) sectors separately starting from the converged T(0,0) ampli-
tudes and finally set up and diagonalize the effective Hamiltonian in the (1,1) sector to obtain
the target states.

A severe problem affecting both state universal and valence universal approaches is the
possible presence of intruder states [73], which are states dominated by determinants that
are not in the model space. If these states become near-degenerate with one or more target
states, the effective Hamiltonian becomes ill-conditioned so that the amplitude equations
can not be solved. A possible way out is to drop the condition that the effective Hamiltonian
should provide as many exact eigenvalues as there are states in the model space. Rather,
one may separate the model space into the ‘true’ model space Pm and then a buffer space
Pi that is described in an uncorrelated fashion. This approximation is known as the inter-
mediate Hamiltonian approach [74–76] and makes it possible to obtain converged results
for large model spaces. Interpretation of the results should be done with some care, how-
ever, as states that are primarily generated from the Pi model space will not be accurate. For
actinides, the intermediate Hamiltonian coupled cluster method [75] has made it possible
to treat molecules with two electrons outside a closed shell, using an active space that com-
prises both the 5f and the 6d orbitals. In this way one may reach very high accuracy in the
calculation of atomic spectra, as is discussed in more detail by Eliav and Kaldor in Chapter 2.



“Dolg-Driver” — 2015/1/17 — 13:14 — page 80 — #26

80 Computational Methods in Lanthanide and Actinide Chemistry

For molecular applications, the choice of Fock-space sectors is more critical because a
change of charge will affect the nature of the orbitals and ease with which the equations can
be solved. An illustrative example is the calculation of the low-lying electronic states of the
CUO molecule [77]. These are at first sight best defined as excitations from a closed shell
reference determinant, thus utilising the (1,1) sector of Fock space. Obtaining these states
does, however, also require finding the solutions of the (0,1) or electron attachment sector of
Fock space. Although these solutions can be obtained in small or medium-sized basis sets,
this becomes difficult for extended basis sets that contain sufficiently diffuse functions. The
reason is the appearance of Rydberg orbitals with energies below the localised 5f orbitals
that are needed to build the sought after localised model states. In this case it turned out to be
advantageous to define the states of the neutral molecules as double electron-attached (0,2)
states for the [CUO]2+ dication. With this definition the equations to be solved comprise the
(0,0) sector, the (0,1) sector of states of CUO+ and finally the desired (0,2) sector of CUO.
Apart from yielding smoother convergence, this choice also has the advantage or removing
a bias for the reference model wavefunction and for allowing mixing between this model
state and other states of neutral CUO, something that is not possible when utilising the
(1,1) sector. A disadvantage of this scheme is the use of orbitals that are optimised for a
different charge state than one is interested in. Because the coupled cluster approach only
yields a limited amount of orbital relaxation, this may also introduce errors in the final result.
This problem of VUMRCC methods will become more severe when technological advances
allow application of the method to larger molecules, for the current applications to atoms
and highly symmetric molecules a change in number of electrons will change the extent of
the orbitals but not their composition (as this is largely determined by symmetry). This may
make state-specific (see Ivanov et al. [78] for a recent review) approaches competitive, even
though the advantages of simultaneously obtaining many of the states of a dense manifold
is then lost.

3.4.2 Multi-Reference Perturbation Theory

A computationally less expensive alternative to coupled-cluster theory is provided by multi-
reference perturbation theory (MRPT). The currently most widely used form of MRPT in f
element chemistry is second-order Complete Active Space Perturbation Theory (CASPT2)
[79, 80], and we shall focus on this method in this section.

It will be useful to review certain features of Rayleigh-Schrödinger perturbation theory
(RSPT): We start from a partitioning of the Hamiltonian into a zeroth-order part H0 and a
first-order part H1

H = H0 + H1 (3.65)

and focus on a particular solution Ψ0, generally the ground-state solution. Expanding the
wave equation in orders of the perturbation we obtain to first and second order

(
H0 − E(0)

0

) ∣∣∣Ψ(1)
0

〉
+
(

H1 − E(1)
0

) ∣∣∣Ψ(0)
0

〉
= 0 (3.66)(

H0 − E(0)
0

) ∣∣∣Ψ(2)
0

〉
+
(

H1 − E(1)
0

) ∣∣∣Ψ(1)
0

〉
= E(2)

0

∣∣∣Ψ(0)
0

〉
(3.67)
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Projecting with the zeroth-order solution Ψ
(0)
0 we obtain

E(1)
0 =

〈
Ψ

(0)
0 |H1|Ψ(0)

0

〉
(3.68)

E(2)
0 =

〈
Ψ

(0)
0 |H1|Ψ(1)

0

〉
(3.69)

provided we use intermediate normalization

〈
Ψ0 | Ψ(0)

0

〉
= 1 (3.70)

and assume that Ψ(0)
0 is a solution of H0 with energy E(0). In conventional RSPT it is

assumed that we dispose of the complete set of solutions of the zeroth-order Hamiltonian
from which the target function Ψ0 is constructed. Starting for instance from the canonical
Hartree-Fock orbitals conventional Møller-Plesset theory is derived by choosing the Fock
operator F̂ as zeroth-order Hamiltonian. However, the situation changes if we wish to work
with a non-canonical set of HF orbitals, for instance localized orbitals. The set of Slater
determinants constructed from these orbitals are not solutions of the Fock operator. We can
make the HF determinant Φ0 a solution of H0 by expressing it as

H0 = PF̂P + QF̂Q; P = |Φ0 〉〈Φ0| , Q = 1 − P (3.71)

In order to generate the perturbation corrections toΨ(0)
0 we do not need the other solutions to

H0, just the orthogonal complement
{
Ψ

(0)
m�=0

}
, which is not required to form an orthogonal

set in itself. Expanding the first-order wave equation in this set we then obtain a linear set
of equations

∑
n

(
H0;mn − E(0)

0 Smn

)
C(1)

n = −H1:m0;
Hi;mn =

〈
Ψ

(0)
m |Hi|Ψ(0)

n

〉

Smn =
〈
Ψ

(0)
m | Ψ(0)

n

〉 (3.72)

for the first-order expansion coefficients C(1)
m .

In the CASPT2 method the zeroth-order wavefunction is taken to be a CASSCF
wavefunction. It is not required that the solution is fully optimized, allowing thus to use
solutions of a multi-root CASSCF, but it is assumed to be a solution of a CAS-CI in
the same orbital set, so that it is orthogonal to the remaining CAS-CI space. Projec-
tors P and Q are introduced as above (3.71) to make it a solution of a generalized Fock
operator. To first-order only single and double excitations out of the reference CASSCF
solution connect to the reference, but since these excitations connect to the remain-
ing space, further decompositon of the Q projector is introduced to keep matrices H0

and S0 above of managable size. The final choice for the zeroth-order Hamiltonian is
therefore

HCASPT2
0 = PFP + QKFQK + QSDFQSD + QTQFQTQ (3.73)
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where QK is a projector of the complementary CAS-CI space, QSD a projector of single
and double excitations out of the reference CASSCF solution, and QTQ a projector of the
remaining space. A pilot implementation of CASPT2 based on the 4-component DC Hamil-
tonian has been reported [81], but the bulk of relativistic CASPT2 calculations are carried
out using a scalar relativistic Hamiltonian such as DKH2. Spin-orbit corrections can then
be added in a second perturbative step [82] in which off-diagonal spin-orbit matrix ele-
ments are determined between CASSCF wavefunctions, but the more accurate CASPT2
energies are taken to specify the diagonal values of a configuration interaction (CI) matrix.
Diagonalization then provides spin-orbit coupled wavefunctions and energies. Provided
that the basis of interacting spin-free states is complete and properly assigned when build-
ing the CI matrix [83], this efficient procedure is applicable to both weakly and strongly
coupled cases.

Just as in the closed-shell case eigenvalues of the generalized Fock operator can be asso-
ciated with ionization potentials and electron affinities for inactive and virtual orbitals,
respectively. Since electrons can both enter and leave active orbitals, eigenvalues of the
generalized Fock operator for such orbitals will be an average over ionization potentials
and electron affinities, a feature of the CASPT2 zeroth-order Hamiltonian that lead to sys-
tematic errors. In a revised choice of H0 shifts have been introduced to correct for this [84].
CASPT2 is also prone to intruder states. Both shortcomings can be curbed by introduc-
ing some two-electron interaction amongst the active orbitals [85]. This has lead to the
development of n-electron valence perturbation theory (NEVPT2) [86, 87], which has nice
formal properties, but whose actual performance in theoretical f element chemistry needs
assessment.

3.4.3 (Time-Dependent) Density Functional Theory

A rather different approach compared to the ones discussed above is to the use of density
functional theory (DFT) in conjunction with an all-electron method. Because of the more
favourable computational scaling DFT is often used to describe large complexes in which
only one or a few atoms belong to the class of f elements. Because the performance of the
various classes of density functional approximations is well documented for light elements,
we will focus our attention on the electronic structure of the f element.

For favourable cases, like those discussed above in conjunction with the single refer-
ence coupled cluster approach, description in terms of a single Kohn-Sham determinant
is possible, and molecular structures and related properties can be obtained in the same
way as in non-relativistic approaches. By comparison with reference calculations (MP2 or
CC) and experiment it appears that the usual generalised gradient approximation (GGA)
and hybrid functionals also perform sufficiently well for structures and energetics, respec-
tively (see Schrechkenbach et al. [88] for some illustrative examples). Given the fact that
most applications concern molecules in the condensed phase, the challenge is to account for
environmental effects in an economical and reliable manner. The simplest approach to deal
with solvation is to use continuum models for which the parametrisation of the f element
is rather straightforward (requiring just a reasonable atomic size), but also explicit solvent
models are in use.

In many cases, just applying ground state DFT is not sufficient because one would
also like to investigate the relative energies of the excited states. This is nowadays
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usually done with time-dependent DFT (TDDFT), but the older “delta-SCF” method
in which an excited state is calculated by selecting a different orbital occupation is
also still used. In fact, the small HOMO-LUMO gaps that are characteristic for many
actinide complexes often lead to non-aufbau occupations in the KS wavefunction, even
when optimising on the lowest energy state. This indicates that none of the available
functionals are flawless, as such a situation should not occur in exact DFT. Such prob-
lems are also manifest when applying TDDFT, with excited states sometimes appear-
ing lower in energy than the reference state. This is especially true when turning to
hybrid functionals as this introduces more severe triplet instabilities than present in a
pure DFT approach. The analysis (and prevention) of such instabilities is difficult due
to the spin-orbit coupling that blurs the distinction between singlet and triplet states,
especially in actinides. Both problems indicate that more research is necessary, both on
the parametrisation of existing DFAs as well as on possibly new functional forms that
could be better suited for f elements. From a recent benchmark study (Tecmer et al.
[89]) it appears that range-separated hybrids such as CAMB3LYP yield the best agree-
ment with reference coupled cluster data already for relatively small triatomic molecules,
but more research is necessary to establish whether this also holds for a wider class of
compounds.

3.5 Conclusions and Outlook

In this chapter we have attempted to discuss the most important ingredients for an all-
electron treatment of f elements. These can be subdivided into Hamiltonians, basis sets,
and electronic structure methods, following the extended Pople-style diagram of quantum
chemistry in which relativity is added next to the basis set and method axes to define a the-
oretical model chemistry. Of these three ingredients we can say that the Hamiltonian axis
is well-described nowadays, with a clear hierarchy of Hamiltonians that approximate the
reference Dirac-Coulomb-Breit Hamiltonian. For practical calculations the X2C approach
appears to offer the best compromise between accuracy and computational efficiency. On
the basis set axis we now start to see competing hierarchies of basis sets that each cover
the full periodic table, including all f elements. These basis sets are complemented by very
large even-tempered sets that can be used to reach very high precision in atomic calcu-
lations. The axis that, as usual, demands the most attention is that of electronic structure
methods. Here the challenge remains to develop methods that can handle large active spaces
and produce many energies in an accurate and efficient manner. The CASPT2 approach is
the most generally applicable method but can be complemented by MRCC methods for
molecules with only a few open shell electrons. DFT is well suited to optimise structure
and energetics of molecules with a sufficiently large HOMO-LUMO gap, but it needs fur-
ther benchmarking and development for use in determination of excited state energies and
structures.
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4.1 Introduction

Lanthanide compounds generally have significant photoluminescent and magnetic
properties, which arise from the characteristics of the localized 4f open-shell electrons. [1]
The fluorescence of Ln3+ ions such as Tb3+ in La2O2S and Eu3+in Y2O2S is used in flat
color panels, and Nd3+ is used in the YAG laser, Y3Al5O12. The Nd present in Nd2Fe14B
provides the strongest permanent magnetic material known, because the six distinct iron and
two distinct neodymium sites are aligned in the same direction. The intensity of lumines-
cence of some lanthanides in the visible or near-infrared region is sensitive to the nature of
the metal-ion environment; for this reason these transitions are applied in bioprobes. [2–4]
Other biomedical applications are based on the high magnetic moments of lanthanides,
and paramagnetic lanthanide complexes are used as NMR shift reagents [5] or as magnetic
resonance imaging (MRI) agents. [2–5]

The behavior of the f electrons of lanthanides is not fully understood, even for the
diatomics. The oxides and fluorides are considered to have the simplest electronic structure
of the diatomics, because of the strong electronegativity of the oxygen and fluorine atoms.
We have analyzed the electronic structure of the ground state and excited states of cerium
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monoxide (CeO), cerium monofluoride (CeF), europium monofluoride (EuF), and gadolin-
ium monofluoride (GdF). The electronic structure of these molecules has previously been
studied by methods such as ligand field theory, [6–8] molecular orbital theory with/without
spin-orbit configuration interaction (SOCI), [9–13] and four-component relativistic the-
ory. [14–29] Although theory and computer programs have developed rapidly in recent
decades, the behavior of f electrons in lanthanide compounds remains a challenging subject.

In the present work we discuss the electronic structure of diatomics containing lanthanide
atoms. Section 4.2 discusses the method used in the calculations. Section 4.3 treats the
ground state of CeO and LnF (Ln = Ce, Gd), and Section 4.4 discusses the excited states of
these molecules.

4.2 Method of Calculation

4.2.1 Quaternion Symmetry

We used the DIRAC program suite. Time-reversal symmetry [30] and Abelian point groups,
including C2v, are fully exploited in the DIRAC program with the help of quaternion algebra.
[31] We briefly summarize quaternion algebra for the case of C2v.

The molecular spinors are expanded in terms of the four quaternion units (1,
∨
i ,

∨
j ,

∨
k).

Two-dimensional contour maps of the large components are created in this work for the
molecular spinors so to illustrate the nodal structure, and we review the relation between
the quaternion representation and the normal four-component complex representation. [32]
Each quaternion unit belongs to one of the boson irreducible representations (boson irreps)
of C2v provided that the small components are neglected.

quaternion 1: Lα Real-part (A1 irrep)

quaternion
∨
i : Lα Imaginary-part (A2 irrep)

quaternion
∨
j : Lβ Real-part (B1 irrep)

quaternion
∨
k: Lβ Imaginary-part (B2 irrep)

Here, ‘L’ denotes the large component. The large component can then be written as

C2v :

(
A1 + iA2

B1 + iB2

)
[32] (4.1)

In the DIRAC program, molecular spinors are expressed as a sum of regular spherical
harmonics (Rl

m). [33] As an example the p functions are expressed as follows:

R1
0 =

√
3

4π
z

R1
+1 = − 1√

2

(√
3

4π
x + i

√
3

4π
y

)

R1
−1 =

1√
2

(√
3

4π
x − i

√
3

4π
y

)
(4.2)
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We shall write these functions associated with exp(–ζr2) as p0, p+1, p−1, respectively. A
similar notation is adopted for the d and f functions.

Consider a Ω = 1/2 molecular spinor having C∞v symmetry as an example. Its large
component is expressed as a linear combination of the following atomic spinors:

s1/2,1/2 =

(
s
0

)
, p1/2,1/2 =

⎛
⎜⎜⎝
−
√

1
3

p0√
2
3

p+1

⎞
⎟⎟⎠ , p3/2,1/2 =

⎛
⎜⎜⎝

√
2
3

p0√
1
3

p+1

⎞
⎟⎟⎠ , · · · (4.3)

According to equation (4.1), p0 and p+1 above have nonzero components (A1) and (B1+iB2)

respectively; 1,
∨
i ,

∨
j and

∨
k are represented with the spherical harmonics. For the case Ω =

−3/2, the atomic spinor basis is:

p3/2,−3/2 =

(
0

p−1

)
, d3/2,−3/2 =

⎛
⎜⎜⎝

√
4
5

d−2

−
√

1
5

d−1

⎞
⎟⎟⎠ , d5/2,−3/2 =

⎛
⎜⎜⎝

√
1
5

d−2√
4
5

d−1

⎞
⎟⎟⎠ , · · ·

(4.4)

Expressions (4.3) and (4.4) conform to the symmetry of equation (4.1). In the following
sections we give the Mulliken gross atomic populations (GAOP) [34] of the respective
molecular spinors in terms of the spherical harmonics.

4.2.2 Basis Set and HFR/DC Method

We first performed Hartree-Fock-Roothaan [35, 36] calculations with a Dirac-Coulomb
Hamiltonian (HFR/DC) for CeO+ and LnF+ (Ln = Ce, Gd) as preparation for correlated
calculations, since the correlation effects are well described by the spinors generated for
the molecular cations. [18–20, 25–29] This is because the virtual spinors of the cation see
a VN−1 potential, whereas virtual spinors of a neutral system see a VN potential, which is
not appropriate for describing the electron correlation effects of the neutral system. The
basis set of the Ln atoms are primitive Gaussian-type functions (pGTF) as proposed by
Koga et al.; [37] these are slightly modified, as will be shown for particular molecules.
The pGTFs for p1/2, d3/2, f5/2 are also used for p3/2, d5/2, f7/2. The basis functions for O
and F should also be those of Koga et al. [38] The small components are generated by the
strict kinetic balance condition. [39, 40] In all molecular calculations we used the Gaussian
nuclear model. [41] We also use the no-virtual-pair approximation. [42–47] All calculations
were performed at the experimental internuclear distances of the respective molecules. The
C∞v double group is used in the framework of the four-component relativistic theory.

4.2.3 GOSCI and RASCI Methods

Using the LnL (L = O, F) molecular spinors, we performed four-component relativistic
general open-shell CI (GOSCI) calculations, [48] and restricted active space CI (RASCI)
calculations. [49, 50] These methods were implemented in the DIRAC program. [51] The
RASCI module, modified by one of the chapter authors (Yamamoto), was used. [52]
In molecular calculations of LnO or LnF, the molecular spinors very often have atomic
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character. Below we write an atomic spinor in square brackets such as [6s] and a molecular
spinor in parentheses such as (6s).

In the following CI calculations the Ln (4f ), (5d), and (6s) spinors are treated as the
valence spinors. In this book, the GOSCI spaces for CeF and CeO are generated with
the (4f ), (5d), and (6s) spinors, and for GdF are generated with a direct product of
(4f 7)⊗(5d,6s)2 so as to reduce the CI space. The RASCI spaces are generated with the
three molecular spinor sets, i.e., RAS1 (active core), RAS2 (valence), and RAS3 (virtual).
Details will be explained in the molecular calculations.

4.3 Ground State

In a study of the ionization potentials of LnF, Gotkis [53] predicted the existence of two
types of LnF, [Ln2+(4f n)F−] (6s)1 (Ln = Pr, Nd, Pm, Sm, Eu, Yb), and [Ln3+(4f n−1)F−]
(6s)2 (Ln = La, Ce, Gd, Ho, Er, Yb). Both types of LnFs have spherical F− moiety and
one/two (6s) electrons polarized away from F−; in the (6s) molecular spinor, the Ln [6s]
atomic spinor mixes with the Ln [5d∗] atomic spinors. Schofield [54] analyzed the enthalpy
and demonstrated the stable existence of MO+ ions (Metal atom), including CeO+. Sev-
eral studies have been published [9, 11, 13, 16] of LnO and LnF using the molecular orbital
method. Properties of the ground state such as bond distance (Re) and the dissociation energy
(De) were calculated [9, 11, 13] by the configuration interaction with substitution of singles
and doubles method (CISD), [9] the coupled-cluster singles and doubles including pertur-
bative treatment of triple excitations method (CCSD(T), [9, 11] and relativistic DFT. [13]
Nevertheless we are unaware of any work that considers the characteristics of the ground
state in the detail.

4.3.1 CeO Ground State

Prior to the correlated calculations we performed HFR/DC calculations for CeO+. For
Ce we constructed a (25s20p15d10f 2g) basis functions from (25s18p15d10f ) primitive
Gaussian-type functions (pGTF), proposed by Koga et al. [37], by augmenting two p-type
(2×p) GTFs of Huzinaga et al. [55] as the correlation functions. We first determined the
exponent of the correlating g-type function to be 2.45, so that the resulting mean value of
r(〈g|r|g〉) should match 〈4f |r|4f 〉, and secondly we have split this exponent 2.45 by divid-
ing/multiplying by

√
2 and have obtained two g-type GTFs. The basis function for O is

(12s8p2d). The s and p pGTFs are those of Koga et al., [38] and the 2×d are those of Huz-
inaga et al. [55] All calculations were performed at the experimental internuclear distance
(Re), [56] which is 3.44 au.

We performed HFR/DC calculations for CeO+, taking [Ce4+(1s2…….5s25p6)
O2−(1s22s22p6)]2+(valence1) as its electronic configuration. We also performed HFR/DC
calculations for CeO2+, with [Ce4+(1s2…….5s25p6)O2−(1s22s22p6)]2+. In Table 4.1 we
set out the spinor energies and GAOPs of the CeO+, the 25th – 32nd spinors, composed
mainly of Ce [5s], [5p], [5d], O [2s], [2p], and spinor energies and GAOPs of the 33rd –
48th spinors composed of the Ce [4f ], [5d], [6s], and [6p] spinors, where one electron is dis-
tributed among the latter 16 spinors and their time-reversal partners (TRP), namely among
16 Kramers pairs (KP).
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Table 4.1 GAOPs for CeO+a)

Spinor
number

Spinor
energy /au

Occ. Ω GAOPs of Ce GAOPs of O Character

[s] [p] [d] [f ] [s] [p]

25 −2.16582 1 1/2 0.97 0.00 0.00 0.00 0.02 0.01 Ce 5s
26 −1.55648 1 1/2 0.01 0.50 0.01 0.00 0.44 0.04 Ce p + O sp
27 −1.39425 1 1/2 0.00 0.91 0.00 0.00 0.07 0.01 Ce p + O sp
28 −1.31930 1 −3/2 0.00 0.99 0.00 0.00 0.00 0.01 Ce 5p
29 −1.18442 1 1/2 0.01 0.50 0.03 0.00 0.43 0.02 Ce pds + O sp
30 −0.66022 1 1/2 0.00 0.01 0.15 0.04 0.00 0.79 O p + Ce dfp
31 −0.65824 1 −3/2 0.00 0.01 0.15 0.04 0.00 0.79 O p + Ce dfp
32 −0.64907 1 1/2 0.01 0.05 0.21 0.05 0.03 0.65 O ps + Ce dfps

sum(25-32) 8 1.00 2.97 0.56 0.14 0.98 2.32
2×sum 16 2.00 5.94 1.12 0.28 1.96 4.64

33 −0.54700 1/32 1/2 0.00 0.00 0.12 0.88 0.00 0.00 Ce fd
34 −0.54582 1/32 5/2 0.00 0.00 0.00 1.00 0.00 0.00 Ce4f
… … … … … … … … … … …
39 −0.53598 1/32 5/2 0.00 0.00 0.05 0.95 0.00 0.00 Ce fd
… … … … … … … … … … …
42 −0.43523 1/32 1/2 0.85 0.06 0.07 0.01 0.00 0.02 Ce sdpf
43 −0.39618 1/32 1/2 0.00 0.17 0.62 0.09 0.00 0.12 Ce dpf + O p
… … … … … … … … … … …
48 −0.19489 1/32 1/2 0.84 0.09 0.06 0.02 0.01 −0.01 Ce spdf

sum(33-48) 1/2 1.71 2.49 4.41 6.96 0.01 0.41

a) HFR/DC total energy= −8935.81773 au

We next performed RASCI calculations for CeO2+, CeO+, and CeO, with (i) RAS1
composed of 8 active core molecular spinors and their TRPs (25th – 32nd) having char-
acteristics of the Ce[5s], [5p] and O[2s], [2p] atomic spinors, and the maximum number
of holes allowed is 2; (ii) RAS2 composed of 15 active molecular spinors and their TRPs
(33rd – 47th) having characteristics of the Ce[4f ], [5d], [6s], and [6p] atomic spinors; (iii)
RAS3 composed of 23 molecular spinors and their TRPs (48th – 70th). For the RASCI cal-
culations, the CeO2+ HFR/DC spinors are used for CeO2+, whereas the CeO+ HFR/DC
spinors are used for CeO+ and CeO. We denote this RASCI scheme by RASCI(8|15|23).

Table 4.2 sets out the electron configurations of the molecules and the atoms, the total
energies of the molecules and atoms, and the dissociation energies (De) for the respective
species. The calculated values of De (4.89 eV for CeO2+, 6.23 eV for CeO+, 5.97 eV for
CeO) and in fact the experimental values (8.83 eV for CeO+, 8.18 eV for CeO) [54] confirm
that these species are long-lived. The calculated De values are smaller than experiment, but
the order of values of De (CeO+ > CeO) is reproduced successfully by RASCI. Table 4.3
shows holes in RAS1, GAOPs in RAS2, particles in RAS3, and the most important config-
uration state functions (CSF). CeO2+ has 64 electrons in 32 closed-shell KPs. Tables 4.2
and 4.3 indicate that the ground states of CeO2+, CeO+, and CeO are well described by a
single configuration of |1,1….32,32|, |1,1….32,32,34|, and |1,1….32,32,34,42|, where n is
the number of a spinor and n is the TRP of n. The 24 KPs (1st – 24th) are treated as frozen
core in the RASCI calculations.



“Dolg-Driver” — 2015/1/17 — 13:20 — page 94 — #6

94 Computational Methods in Lanthanide and Actinide Chemistry

Table 4.2 Total energies and dissociation energies of [Ce3+O−]2+, [Ce3+O−]2+(4f 1), and
[Ce3+O−]2+(4f 16s1) obtained by RASCI (8|15|23)

Molecule Atom/Ion

Configuration TEa) /au De / eVConfiguration TEb) /au Configuration TEc)/au

[Ce3+O−]2+
0 −8935.636174 4.89 [Ce]4+(4f 2)4 −8860.584040 [O]4+(2p4)2 −74.872523

[Ce3+O−]2+

(4f 1)5/2

−8936.127910 6.23 [Ce]4+(4f 1

5d2)7/2

−8861.026467 [O]4+(2p4)2 −74.872523

[Ce3+O−]2+

(4f 16s1)2

−8936.314017 5.97 [Ce]4+(4f 1

5d16s2)4

−8861.222001 [O]4+(2p4)2 −74.872523

a) MOs for (8|15|23) of CeO2+ are closed-shell HFR/DC MOs for CeO2+. MOs for (8|15|23) of CeO+ and CeO are
HFR/DC MOs for CeO+ obtained by distributing one electron in the 4f , 5d, 6s, and 6p-like spinors (abbreviated as 1/32).
b) AOs for (4|15|20) of Ce2+ and Ce+ are HFR/DC AOs for Ce2+ obtained by distributing two electrons in the 4f , 5d, 6s,
and 6p spinors (2/32) and AOs for (4|15|20) of Ce are HFR/DC AOs of Ce obtained by distributing four electrons in the
4f , 5d, 6s, and 6p spinors (4/32).
c) AOs for (1|3|3) of O are HFR/DC AOs obtained by distributing four electrons in the 2p spinors (4/6).

Table 4.3 Holes, GAOPs, particles and dominant CSFs in RASCI (8|15|23) for CeO2+, CeO+,
and CeO

Exptl. RASCI(8|15|23)

Particle Dominant
Species Ω Conf. Ω Hole in RAS1 GAOPs in RAS2 in RAS3 CSF

Ce O [6s] [6p] [5d] [4f ] O Ce O

CeO2+ 5s26p6 0 −0.09 −0.11 0.00 0.05 0.05 0.06 0.01 0.01 0.01 88%|….|a)
CeO+ f 5/2-1 −0.08 −0.08 0.00 0.02 0.09 1.02 0.01 0.01 0.01 90%|….34|
CeO 2 fs 2-1 −0.09 −0.09 0.76 0.10 0.15 1.03 0.02 0.11 0.02 78%|….34,42|

Although we have not shown the results, the 1st – 32nd spinors of CeO2+ resemble those
of CeO+. CeO2+ has the electronic configuration [Ce2.4+(5s2.05p5.95d*1.24f *0.4)O0.4−

(2s2.02p4.4)]2+, which can be abbreviated as [Ce3+(5s25p65d*1)O−(2s22p5)]2+ or sim-
ply as [Ce3+(5d*1)O−]2+. This differs significantly from [Ce4+(5s25p6)O2−(2s22p6)]2+

which was assumed at the beginning of the study. Approximately 1.6 electrons of the six O
(2p) electrons are back-donated into Ce through the polarization functions. The asterisks in
this notation indicate that electrons have been brought into the Ce moiety through the [4f ]
and [5d] polarization functions, described as (4f *) and (5d*).

Experimentally, Ce2+ has the electronic configuration [5p64f 2] [57] and O is [2p4]. [58]
CeO2+ is formed as

Ce2+[5s25p64f 2] + O[2s22p4]→[Ce3+(5s25p65d*1)O−(2s22p5)]2+. (4.5)

The two Ce [4f ] electrons move into O so as to construct the closed-shell. A stable molecular
ion, CeO2+, is formed as a result; the 1.6 electrons of the six electrons in the O (2p) spinors
are back-donated to Ce4+ through the (4f ∗) and (5d∗) molecular spinors as stated above.
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Experimentally, Ce+/Ce has the electronic configuration [5p64f 15d2]/[5p64f 15d16s2]
[57]. Together with [4f ] and [6s] GAOPs in Table 4.3, the sums of GAOPs in the 10th
and 11th rows in Table 4.1 indicate that CeO+/CeO is formed as

Ce+[5s25p64f 15d2] + O[2s22p4]→[Ce3+(5s25p65d*1)O−(2s22p5)]2+(4f 1) (4.6)

Ce[5s25p64f 15d16s2] + O[2s22p4]→ [Ce3+(5s25p65d*1)O−(2s22p5)]2+(4f 16s1). (4.7)

In CeO+/CeO, the two valence electrons [5d2]/[5d16s1] move into O. The CeO2+

ionic core in CeO+/CeO has electronic configuration [Ce2.6+(5s2.05p5.95d*1.14f *0.3)O0.6−

(2s2.02p4.6)]2+. This configuration is similar to that of CeO2+. The dissociation energies
in Table 4.2 indicate that the characteristics of the chemical bonds of these molecules are
governed by the bondings in the ionic core, CeO2+. We also observe that the 33th – 42nd
valence spinors have almost no components of the oxygen atomic spinors. A detailed dis-
cussion now follows of the nature of the chemical bond in the CeO2+ core, using the CeO+

GAOPs. Contour maps of the 26th – 32nd spinors are set out in Figure 4.1. See color plate
section. They show that the 26th spinor is bonding and the 29th spinor is antibonding; the
26th spinor has no nodal planes between the Ce and O nuclei, whereas the 29th spinor has
one nodal plane between them; both have a nodal plane of Ce [5p0] that passes through the
Ce nucleus. Since the 28th spinor is 99% composed of Ce [5p−3/2], the 28th spinor energy
(−1.3193 au) is expected to be close to the atomic spinor energy of Ce [5p−3/2] placed in
the field of the O− ion. In fact, Moriyama et al. [29] have shown that the Ce [5p−3/2] spinor
energy in the field produced by the negative point charge of −2.29 is −1.3120 au, which is
much higher than the free gaseous Ce3+ value (−1.8653 au) and is close to the 28th spinor
energy (−1.3193 au). The facts that the 26th spinor energy is lower than the 28th by 0.237
au, and that the 29th spinor energy is higher by 0.135 au than the 28th, suggest that bonding
is predominant over antibonding. This contradicts the usual view that antibonding orbitals
are more strongly antibonding than bonding orbitals are bonding. This unusual feature of
CeO is due to the large shifts in spinor energies as a result of the effective charge of the other
atom. Overall, the O−(2s) and Ce3+(5p) electrons are responsible for the covalent bond.

We next discuss the characteristics of the 30th – 32nd spinors, formed mainly by the O
[2p] spinors. As illustrated above, the two valence Ce2+ electrons move into the O [2p]
spinors, and more than half of them are back-donated through the [5d∗] and [4f ∗] spinors.
This situation is written as [Ce2.6+(5s2.05p5.95d*1.14f *0.3)O0.6−(2s2.02p4.6)]2+, or in short
as [Ce3+(5s25p65d*1)O−(2s22p5)]2+. The GAOPs in Table 4.1 show considerable mixing
of the O [2p] and Ce [5d*] and [4f *]. Nevertheless the 30th – 32nd spinor energies have
almost constant values of −0.65 au, close to the −0.65 au value of the O−[2p] atomic spinor
energies [29] in the field generated by the positive point charge (+1.79) at Re. The Ce [5d*]
and [4f *] spinors are used for the O 2p electrons to penetrate into the Ce core and for the
electrons to move behind the Ce nucleus. The maps of the O (2p)-like spinors (30th – 32nd)
in Figure 4.1 support this assertion. As an example, the 32nd spinor shows that the O [2p1/2]
electron penetrates into the Ce region and lies on the other side of the Ce nucleus using the
[5d∗

1/2] and [4f ∗1/2] polarization functions. The GAOPs and figures show that the bulk of the
charge clouds of the spinors (30th – 32nd) is at the O moiety, and the O (2p) spinors form
the ionic bond, further stabilizing the molecule.

In CeO+/CeO, one/two valence electrons move in the field generated by [Ce3+(5s2.05p5.9

5d*1.14f *0.3)O−(2s2.02p4.6)]2+. The valence electrons in the 34th and 42nd spinors
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Figure 4.1 Contour maps of the large components of the CeO+ spinors. The quaternion units

1 and
∨
j correspond, respectively, to the Lα real part of A1 and to the Lβ real part B1. Coordinates

run from −8.0 to 8.0 au. The CeO+ nuclear distance is taken from the experimental Re value
(3.44 au) of neutral CeO. Solid and broken lines are contours of positive and negative values,
respectively. Their values are ±0.0125, ±0.025, ±0.05, ±0.1, ±0.2. See color plate section
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strengthen the binding by 1.1–1.3 eV. Figure 4.1 indicates that a considerable amount of
electron density of the 34th (4f ) and 42nd spinors (6s) lies behind the Ce3+ core (the
opposite side of O−), as Gotkis [53] suggested.

It follows that CeO is a charge-transfer molecule with strong ionic and covalent bonds in
the CeO2+ core, to which two outer electrons are attached. Dolg et al. [9] pointed out that
Ce[5d] and O[2p] form σ and π bonds, but they did not mention chemical bonds composed
of Ce [5p] and O[2s].

4.3.2 CeF Ground State

The basis set used for Ce in CeF is the same as in CeO. The set for F is (13s8p2d). The
s and p pGTFs are those of Koga et al. [38] One diffuse s-type GTF and 2×d of Huz-
inaga et al. are augmented. [55] The HFR/DC calculations for CeF+ and CeF2+ were
performed first at the experimental CeF internuclear distance (Re) of 3.87 au, [59] assum-
ing a [Ce4+(5s25p6)F−(2s22p6)]3+ (valence-spinorm: m = 1 − 2) configuration. Table 4.4
shows the spinor energies and the GAOPs of the CeF+ 25th – 32nd spinors composed mainly
of Ce [5s], [5p], [5d], F [2s], [2p], and those of the 33rd – 48th spinors composed of Ce [4f ],
[5d], [6s], and [6p] atomic spinors, where two electrons are distributed among the latter 16
spinors and their TRPs.

We then performed RASCI calculations for CeF2+, CeF+, and CeF. We adopted a slightly
different RASCI scheme from those of CeO2+, CeO+, and CeO in order to reduce the CI

Table 4.4 GAOPs for CeF+a)

Spinor
number

Spinor
energy /au

Occ. Ω GAOPs of Ce GAOPs of F Character

[s] [p] [d] [f ] [s] [p]

25 −2.14003 1 1/2 0.99 0.00 0.00 0.00 0.01 0.00 Ce 5s
26 −1.70480 1 1/2 0.01 0.07 0.01 0.00 0.90 0.01 F s + Ce dpf
27 −1.40455 1 1/2 0.00 0.97 0.00 0.00 0.02 0.01 Ce 5p
28 −1.30284 1 −3/2 0.00 1.00 0.00 0.00 0.00 0.00 Ce 5p
29 −1.28809 1 1/2 0.00 0.92 0.00 0.00 0.05 0.03 Ce p + F sp
30 −0.77412 1 1/2 0.00 0.02 0.05 0.01 0.00 0.90 F p + Ce dpf
31 −0.77323 1 1/2 0.00 0.03 0.06 0.01 0.01 0.88 F p + Ce dpf
32 −0.77169 1 −3/2 0.00 0.01 0.04 0.01 0.00 0.94 F p + Ce dpf

sum(25−32) 8 1.01 3.01 0.16 0.05 0.99 2.78
2×sum 16 2.02 6.02 0.32 0.10 1.98 5.56

33 −0.52002 2/32 5/2 0.00 0.00 0.01 0.99 0.00 0.00 Ce 4f
34 −0.51967 2/32 1/2 0.00 0.00 0.11 0.89 0.00 0.00 Ce fd
… … … … … … … … … … …
39 −0.51098 2/32 −3/2 0.00 0.00 0.11 0.89 0.00 0.00 Ce fd
… … … … … … … … … … …
42 −0.45229 2/32 1/2 0.26 0.02 0.63 0.08 0.00 0.02 Ce dsfp + F p
43 −0.44851 2/32 1/2 0.49 0.02 0.43 0.06 −0.01 0.01 Ce sdfp + F sp
… … … … … … … … … … …
48 −0.22605 2/32 1/2 0.19 0.85 0.15 0.05 −0.25 0.01 Ce psdf + F sp

sum(33–48) 1 1.19 2.99 4.97 7.03 −0.29 0.10

a) HFR/DC total energy= −8960.398957 au
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dimension: (i) RAS1 composed of 8 active core molecular spinors and their TRPs (25th –
32nd), which are the same as the CeO series; (ii) RAS2 composed of 13 active molecular
spinors and their TRPs (33rd – 45th), reduced by the two spinors compared to the CeO case
where the Ce [4f ], [5d], and [6p] atomic spinors mix; (iii) RAS3 composed of 25 active
molecular spinors and their TRPs (46th – 70th), where the 46th and 47th spinors and their
TRPs are those excluded from RAS2. For the RASCI calculations, the CeF2+ HFR/DC
spinors are used for CeF2+, and the CeF+ HFR/DC spinors are used for CeF+ and CeF. We
denote this RASCI scheme by RASCI(8|13|25).

Table 4.5 sets out the electron configurations, total energies and dissociation energies
(De). The calculated values of De for CeF2+, CeF+, and CeF are 6.22 eV, 5.60 eV,
and 5.44 eV, respectively. The experimental De value for CeF is 6.03 eV. [60] Table 4.6
shows holes in RAS1, GAOPs in RAS2, particles in RAS3, and the most important CSFs.
Table 4.6 indicates that the ground states are well described by a single configuration
for CeF2+ and CeF+, but not for CeF. The 1st – 32nd spinors of CeF2+ are similar to

Table 4.5 Total energies and dissociation energies of [Ce4+F−]3+(4f)1, [Ce4+F−]3+(5d14f 1),
and [Ce4+F−]3+(4f 15d16s1) obtained by RASCI(8|13|25)

Molecule Atom/Ion

Configuration TEa) /au De / eV Configuration TEb) /au Configuration TEc) /au

[Ce4+F−]3+

(4f1)5/2

−8960.324376 6.22 [Ce]4+(4f2)4 −8860.584040 [F]5+(2p5)2 −99.511871

[Ce4+F−]3+

(5d14f1)4/2

−8960.744062 5.60 [Ce]4+(4f1

5d2)7/2

−8861.026467 [F]5+(2p5)2 −99.511871

[Ce4+F−]3+(4f1

5d16s1)7/2

−8960.933787 5.44 [Ce]4+(4f1

5d16s2)4

−8861.222001 [F]5+(2p5)2 −99.511871

a) MOs for (8|13|25) of CeF2+ are HFR/DC MOs for CeF2+ obtained by distributing one electron in the 4f , 5d, 6s, and
6p-like spinors (abbreviated as 1/32). MOs for (8|13|25) of CeF+ and CeF are CeF+ HFR/DC MOs obtained by distributing
two electrons in the 4f , 5d, 6s, and 6p-like spinors (2/32).
b) See footnote b) in Table 4.2
c) AOs for (1|3|3) of F are HFR/DC AOs obtained by distributing five electrons in the 2p spinor (5/6).

Table 4.6 Holes, GAOPs, particles and dominant CSFs in RASCI (8|13|25) for CeF2+, CeF+,
and CeF

Exptl. RASCI(8|13|25)

Hole Particle Dominant
Species Ω Conf. Ω in RAS1 GAOPs in RAS2 in RAS3 CSF

Ce F [6s] [6p] [5d] [4f ] F Ce F

CeF2+ f 5/2-1 −0.06 −0.04 0.01 0.00 0.08 1.02 0.00 0.01 0.00 92%|….33|a)
CeF+ df 4/2-1 −0.05 −0.01 0.01 0.00 0.96 1.10 0.00 0.03 0.01 78%|….33,40|
CeF 7/2 sdf 7/2-1 −0.06 0.01 0.94 0.03 0.93 1.13 0.00 0.07 0.01 26%|….36,43,43|b)

a)’.…’≡ 1,1,………32,32
b) The second and third dominant terms are 15% |….36,42,43| and 15% |….36,42,43|.
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those of CeF+ (although we have not shown the results). In fact the electronic configura-
tion of CeF2+ is [Ce2.5+(5s2.05p6.05d*0.44f *0.14f 1.0)F0.4−(2s2.02p5.4)]2+ in terms of the
CeF2+ HFR/DC spinors, and is [Ce2.6+(5s2.05p6.05d*0.34f *0.14f 1.0)F0.6−(2s2.02p5.6)]2+

in terms of the CeF+ HFR/DC spinors. These are very close and can be abbreviated
as [Ce4+(5s25p6)F−(2s22p6)]3+(4f 1); the electron in the (4f ) spinor moves in the field
generated by Ce4+ and F−. This is quite different from [5d*] in CeO2+. The dication
CeO2+ has electronic configuration [Ce2.6+(5s2.05p5.95d*1.14f *0.3)O0.6−(2s2.02p4.6)]2+,
abbreviated as [Ce3+(5s25p65d*1)O−(2s22p5)]2+ or simply [Ce3+(5d*1)O−]2+, where the
[5d*] spinors are used to describe the molecular O (2p) spinors. We therefore cannot
exclude the electron in the [5d*] orbitals from Ce3+O− and we cannot write the CeO2+

as [Ce4+O−]3+(5d*1). CeF2+ is formed as

Ce2+[5s25p64f 2] + F[2s22p5]→[Ce4+(5s25p6)F−(2s22p6)]3+(4f 1). (4.8)

One of the two Ce [4f ] electrons moves into the F [2p] spinors and makes up the closed-
shell, giving a stable molecular ion, CeF2+; the 0.4 electrons of the six 2p electrons in F are
back-donated to Ce3+. The 33rd spinor of CeF2+ consists almost entirely of [4f ] (Ω = 5/2).
Tables 4.4, 4.5, and 4.6 indicate that CeF+/CeF is formed as

Ce+[5s25p64f 15d2] + F[2s22p5]→ [Ce4+(5s25p6)F−(2s22p6)]3+(4f 15d1) (4.9)

Ce[5s25p64f 15d16s2] + F[2s22p5]→[Ce4+(5s25p6)F−(2s22p6)]3+(4f 15d16s1). (4.10)

Consider now the difference in the chemical bonds in CeO and CeF in terms of their cation
spinors. In the CeO+ 26th spinor, Ce [5p0] mixes considerably with O [2s], while in CeF+

F [2s] mixes slightly with Ce [5p0]. See Tables 4.1 and 4.4. The contour maps of the CeF+

spinors are given in Figure 4.2. See color plate section. The contours of the CeO+ 26th
spinor in the bonding region are denser than those of the CeF+ 26th spinor, indicating a
strong covalent bond in the CeO2+ core compared to that of the CeF2+ core.

We discuss further the characteristics of the 26th – 29th molecular spinors of CeO+ and
CeF+ in terms of their spinor energies. Recall that the electron population of the CeO2+ core
in CeO+ is expressed as [Ce3+O−]2+. The atomic Ce3+ spinor energies of [5s], [5p1/2], and
the degenerate [5p3/2] spinors are respectively −2.7140 au, −1.9784 au, −1.8653 au, and
−1.8653 au. The CeO+ 28th spinor (Ω = −3/2) is accurately located at Ce, as shown in
Figure 4.1. The strength of the field generated by O− on Ce3+ is estimated by comparing
the [5p3/2] spinor energy with the CeO+ 28th spinor energy (−1.3193 au), as follows. O−

pushes up the value of Ce3+ [5p3/2] by 0.5460 au (= −1.3193+1.8653). Addition of this
value to the spinor energies of Ce3+[5s], [5p1/2], and the degenerate [5p3/2] energies, gives
values of −2.1680 au, −1.4324 au, −1.3193 au, and −1.3193 au. These can be compared to
the CeO+ 25th–28th spinor energies (−2.1658 au, −1.5565 au, −1.3943 au, −1.3193 au).
The CeO2+ 26th spinor is stabilized more than expected (−0.12 au=−1.5565 au+ 1.4324
au). This is due to the comparatively large mixing of Ce3+[5p0] with O−[2s].

In CeF+ the main component of the 26th spinor is F [2s] rather than Ce [5p0] in the CeO
26th spinor. The atomic F− spinor energies of [2s], [2p1/2], and [2p3/2] spinors are −1.0646
au, −0.1710 au, −0.1683 au, and −0.1683 au. The strength of the field generated by Ce3+

on F− is estimated by comparing the F−[2p3/2] spinor energies with that of the 32nd spinor
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Figure 4.2 Contour maps of the large components of CeF+ spinors. The CeF+ nuclear distance
is taken from the experimental Re value (3.87 au) of neutral CeF. The maps are drawn in the
same manner as in Figure 4.1. See color plate section
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of CeF+ (−0.7717 au); Ce3+ pushes down F−[2p3/2] by −0.6034 au. Addition of this value
to the spinor energies of F− [2s], [2p1/2], and the degenerate [2p3/2] energies gives −1.6680
au, −0.7745 au, −0.7717 au, and −0.7717 au, which can be compared to the values for the
26th, 30th, 31st, and 32nd spinors (−1.7048 au, −0.7741 au, −0.7732 au, −0.7717 au).
These shifted F− spinor energies are close to the real molecular spinor energies except for
the 26th, for which a slight further energy lowering (−0.04 au) is observed. This implies
weak bonding in the CeF+ 26th spinor relative to the CeO+ 26th spinor. The CeF+ 27th,
28th, and 29th spinors (spinor energies: −1.4046 au, −1.3028 au, −1.2881 au) are almost
pure Ce [5p]. The differences in the molecular spinor energy between the 27th and 28th or
between 27th and 29th spinors originate from the Ce3+[5p1/2] and [5p3/2] spinors (spinor
energy: −1.9784 au, −1.8653 au, −1.8653 au). We recall that [p1/2,1/2] is expressed as
−(1/3)1/2p0α + (2/3)1/2p+1β and [p3/2,1/2] as (2/3)1/2p0α + (1/3)1/2p+1β. See equation
(4.3). The CeF+ 27th and 29th spinors shown in Figure 4.2 hold atom-like [5p] spinors but
the CeO+ 27th and 29th do not, as shown in Figure 4.1. Overall, the contribution to the
bonding of the 26th – 29th spinors composed of the Ce [5p] spinors and F [2s] spinors in
CeF is smaller than that of the 26th – 29th spinors in CeO.

We compare briefly the characteristics of the 30th – 32nd spinors of CeO+ and CeF+,
formed mainly of the O−[2p] spinors and F−[2p] spinors. The sum of the increments of the
GAOPs (4.46/5.44) of ligand [2p] electrons in the 30th to 32nd spinors for CeO+/CeF+

compared to those (4/5) of atomic [2p] spinors is 0.46/0.44. This increased population
explains the ionic bond produced by these spinors. We recall that CeO+ back-donates 1.6
electrons from O to Ce, and CeF+ back-donates 0.4 electrons from F to Ce through the
[4f *] and [5d*] polarization functions. Moriyama et al. [29] have shown that the electric
field generated by a positive point charge gives nearly the same spinor energies for the 30th
- 32nd spinors as those of the molecular orbital calculations for CeO+. We believe that
the same is true for CeF+ (notice almost the same spinor energies of the 30th to 32nd in
Table 4.4). The O and F (2p) electrons penetrate into the Ce core, and a considerable part of
the penetrated electrons is located behind the Ce core, through the polarization functions.
There is, however, a difference between the CeO+ 30th – 32nd spinors and the CeF+ 30th
– 32nd spinors. The CeO+ spinors have somewhat bonding or antibonding characteristics,
whereas the CeF+ spinors retain atom-like features of the F [2p] spinors and the Ce [5d]
spinors. We feel that the contribution to De by the ionic bond of CeO+, which is covalent
in some degree, is greater than that of the ionic bond of CeF+.

4.3.3 Discussion of Bonding in CeO and CeF

We have discussed the stability of CeO+ and CeF+ using the CeO2+ and CeF2+ core. We
have shown that Ce [5s], [5p], and O [2s] make the covalent bond stronger than do Ce [5s],
[5p], and F [2s]. The same is true for the ionic bond composed of the O/F [2p] spinors, and
the Ce [5d*], [4f *] spinors. In fact the experimental De value of CeO is 8.18 eV and of CeF
is 6.03 eV, while the values calculated by RASCI are 5.97 eV and 5.44 eV, respectively. The
calculated De values for CeO+ (6.23 eV) and CeF+ (5.60 eV) also support the reasoning
above. The calculated values of De for CeO2+ (4.89 eV) and CeF2+ (6.22 eV) support strong
bondings in CeO2+ and CeF2+, but they fail to give the expected order of bond strengths
(CeO2+ > CeF2+). Further investigation is necessary.
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4.3.4 GdF Ground State

We closely investigated the electronic structure of the ground states of EuF and GdF, when
we prepared this chapter. We found that the electronic structure of the two molecules is very
close. In order to save the space we treat only the GdF molecule because many spectra were
observed for this molecule.

We constructed a (25s21p16d10f 2g) basis function for Gd from the (25s18p15d10f )
pGTFs of Koga et al. [37] by adding 3×p (2×p correlating functions included) [55],
1×d pGTFs to describe the 5d spinor flexibly, and 2×g pGTFs for the electron corre-
lation. The basis function for F is (12s8p2d), which is composed of (12s8p) [38] and
2×d correlating functions of Huzinaga et al. [55] The HFR/DC calculations for GdF2+

and GdF+ were first performed at the calculated internuclear distance (Re) of 3.7599 au,
[26] whereas the experimental distance is 3.71 au. [8] We initially assumed the configu-
ration [Gd10+(5s25p6)F−(2s22p6)]9+(4f 7) and [Gd10+(5s25p6)F−(2s22p6)]9+(4f 76s1) for
HFR/DC. Table 4.7 sets out the spinor energies and the GAOPs of the GdF+ 25th – 32nd
spinors, mainly composed of Gd[5s], [5p], [5d], F [2s], [2p], and the spinor energies and
GAOPs of the 33rd – 48th spinors, composed of Gd [4f ], [5d], [6s], and [6p] atomic spinors,
where seven and one electrons are distributed among the seven (4f ) spinors and a (6s) spinor
and their TRPs, respectively.

We then performed GOSCI calculations for GdF2+, GdF+, and GdF. The GOSCI space
is constructed as a direct product of the (4f )7 and (6s, 5d)n full-CI spaces. In the RASCI

Table 4.7 GAOPs for GdF+a)

Spinor Spinor GAOPs
number energy /au Occ. Ω GAOPs of Gd of F Character

[s] [p] [d] [f ] [s] [p]

25 −2.535468 1 1/2 1.00 0.00 0.00 0.00 0.00 0.00 Gd 5s
26 −1.745830 1 1/2 0.00 0.25 0.00 0.00 0.73 0.01 F sp+Gd p
27 −1.629917 1 1/2 0.00 0.83 0.00 0.00 0.16 0.00 Gd p + F s
28 −1.480499 1 −3/2 0.00 1.00 0.00 0.00 0.00 0.00 Gd 5p
29 −1.457299 1 1/2 0.00 0.89 0.00 0.00 0.10 0.01 Gd p + F sp
30 −0.801817 1 1/2 0.01 0.02 0.07 0.01 0.01 0.88 F ps + Gd dpfs
31 −0.790217 1 1/2 0.00 0.01 0.04 0.01 0.00 0.94 F p + Gd dfp
32 −0.788329 1 −3/2 0.00 0.01 0.04 0.01 0.00 0.94 F p + Gd dfp

sum(25–32) 8 1.01 3.01 0.15 0.03 1.00 2.78
2× sum 16 2.02 6.02 0.30 0.06 2.00 5.56

33 −0.475684 7/14 5/2 0.00 0.00 0.00 0.99 0.00 0.00 Gd 4f
… … … … … … … … … … …
36 −0.451103 7/14 −7/2 0.00 0.00 0.00 1.00 0.00 0.00 Gd 4f
… … … … … … … … … … …
39 −0.442355 7/14 1/2 0.00 0.00 0.00 1.00 0.00 0.00 Gd 4f
40 −0.315691 1/2 1/2 0.83 0.05 0.12 0.00 0.00 0.00 Gd sdp
… … … … … … … … … … …
48 −0.051468 0 1/2 0.13 0.71 0.17 0.00 −0.01 −0.01 Gd pds + F sp

sum(33–48) 4 0.99 3.36 4.67 6.99 −0.01 −0.04

a) HFR/DC total energy= −11373.720655 au
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notation, this GOSCI scheme is denoted by (0|(4f m)⊗(5d,6s)n|0) (m = 7, n = 0, 1, 2). We
symbolically noted this GOSCI scheme as (0|M|0) where M is the numbers of the Kramers
pairs, which construct (4f m)⊗(5d,6s)n CI space. The GdF2+ HFR/DC spinors are used for
the GdF2+GOSCI calculations, and the GdF+ HFR/DC spinors are used for GdF+/GdF
GOSCI. The GOSCI active space is composed of seven (4f ) spinors and six (6s,5d) spinors
and their TRPs.

In Table 4.8 the dominant electron configurations, total energies and dissociation ener-
gies (De) are set out. The calculated De values for GdF2+, GdF+, and GdF are respectively
3.68 eV, 4.50 eV, and 5.27 eV. The experimental De value for GdF (6.95 eV) [56] is favor-
ably compared with the present GOSCI results. Table 4.9 shows the GAOPs in RAS2 and

Table 4.8 Total energies and dissociation energies of [Gd10+F−]9+(4f 7)(6s0),
[Gd10+F−]9+(4f 7)(6s1) and [Gd10+F−]9+(4f 7)(6s2) obtained by RASCI(0|M|0) with M =
7, 7⊗6, 7⊗6 for the respective molecules

Molecule Atom/Ion

Conf. TEa) /au De /eV Conf. TEb) /au Conf. TEc) /au

[Gd10+F−]9+

(4f7)(6s0)
−11373.770996 3.678 [Gd]10+(4f7

5d16s0)2

−11274.134075 [F]5+(2p5)2 −99.501774

[Gd10+F−]9+

(4f7)(6s1)
−11374.215154 4.497 [Gd]10+(4f7

5d16s1)5/2

−11274.548125 [F]5+(2p5)2 −99.501774

[Gd10+F−]9+

(4f7)(6s2)
−11374.421964 5.265 [Gd]10+(4f7

5d16s2)2

−11274.726719 [F]5+(2p5)2 −99.501774

a) MOs for (0|7|0) of GdF2+ are HFR/DC MOs for GdF2+ obtained by distributing seven electrons in the 4f -like spinors
(abbreviated as 7/14). MOs for (0|7⊗6|0) of GdF+ and GdF are HFR/DC MOs of GdF+ obtained by distributing seven
electrons in the 4f -like spinors (7/14) and one electron in the 6s-like spinor (1/2).
b) AOs for (0|7⊗6|0) of Gd2+ are HFR/DC AOs for Gd2+ obtained by distributing seven electrons in the 4f spinors (7/7)
and one electron in the 6s spinor (1/2). AOs for (0|7⊗6|0) of Gd+ and Gd are HFR/DC AOs for Gd obtained by distributing
seven electrons in the 4f spinors (7/14) and two electrons in the 6s spinor (2/2).
c) AOs for (0|3|0) of F are HFR/DC AOs obtained by distributing five electrons in the 2p spinors (5/6).

Table 4.9 GAOPs and dominant CSFs in RASCI(0|M|0) for GdF2+, GdF+, and GdF

Exptl. RASCI(0|13|0)

Species Ω Conf. Ω GAOPs in RAS2 Dominant CSF

[6s] [6p] [5d] [4f ] F

GdF2+ (4f)7(6s)0 7/2 0.00 0.00 0.01 6.98 0.01 17%|….(f7)7/2|a)
GdF+ (4f)7(6s)1 4 0.83 0.05 0.13 6.98 0.01 17%|….(f7)7/240|b)
GdF 7/2 (4f)7(6s)2 7/2 1.47 0.18 0.35 6.98 0.01 15%|….(f7)7/240,40|c)

a) |….(f7)7/2| ≡ |….33,34,35,36,37,38,39|
b) |….(f7)7/240| ≡ |….33,34,35,36,37,38,39,40|
c) |….(f7)7/240,40| ≡ |….33,34,35,36,37,38,39,40,40|
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the most important CSFs. The weights of the important CSFs for all of the molecules are
less than 20%, indicating their multiconfigurational character. The electronic configura-
tion of GdF is written as [Gd0.6+(5s2.05p6.05d*0.34f *0.14f 7.06s2.0)F0.6−(2s2.02p5.6)]. This
can be abbreviated as [Gd+(5s25p64f 76s2)F−(2s22p6)] or [Gd10+(5s25p6)F−(2s22p6)]9+

(4f 76s2).
The contour maps of the molecular spinors for GdF+ are set out in Figure 4.3. The figure

shows the 26th – 29th spinors form the covalent bonds, and the 30th – 32nd spinor make the
ionic bond as in CeO+/CeO and CeF+/CeF. Figures 4.1–4.3 show that in the bonding region
the CeO+ 26th spinor has the densest population and the GdF 26th spinor has denser pop-
ulation than that of CeF. Figures 4.1–4.3 also show that the CeO+ spinors have somewhat
stronger bonding or antibonding characteristics than those of the GdF+ and CeF+ in which
the CeF+ spinors retain atom-like features of the F [2p] spinors or the Ce [5d] spinors. These
findings indicate that the order of De is CeO > GdF > CeF. Actually experimental Des are
8.18 eV, 6.95 eV, and 6.03 eV for CeO, GdF, and CeF, respectively, while the calculated
values are 5.97 eV, 5.23 eV, and 5.44 eV from CeO RASCI(8|15|23), GdF RASCI(013|0),
and CeF RASCI(8|13|25). If the more correlated calculation is performed for GdF, a proper
De for GdF would result. We summarize below the formation of GdF2+, GdF+, and GdF.
GdF2+ is formed as

Gd2+[5s25p64f 75d1] + F[2s22p5]→[Gd10+(5s25p6)F−(2s22p6)]9+(4f 7) (4.11)

and GdF+/GdF as

Gd+[5s25p64f 75d16s1] + F[2s22p5]→[Gd10+(5s25p6)F−(2s22p6)]9+(4f 76s1)/ (4.12)

Gd[5s25p64f 75d16s2] + F[2s22p5]→[Gd10+(5s25p6)F−(2s22p6)]9+(4f 76s2) (4.13)

4.3.5 Summary of the Chemical Bonds, of CeO, CeF, GdF

We have investigated the electronic structure of the ground states for CeO, CeF, and GdF.
The chemical bond is different between CeO and LnF as discussed above, but the bond has
a common feature of having the stable dication core (LnX2+). The ground state of CeO
is written as [Ce3+([Xe]5d*1)O−(2p5)]2+(4f 1)(6s1). The two fluorides can be written as
[Ce4+([Xe])F−(2p6)]3+(4f 1)(5d16s1), and [Gd10+([Xe])F−(2p6)]9+(4f 7)(6s2). We found
that (4f ), (5d), (6s) in LnF almost consist of Ln atomic spinors. If the (4f ) electrons in
LnF are enclosed in the ionic core, the outer two valence electrons in (5d) and (6s) move in
the field generated by the dication, LnX2+. In CeO two valence electrons in (4f ) and (6s)
move in the field generated by CeO2+. We, thus, expect the stable LnX2+ (X = O and F). We
have no experimental Des for LnX2+. The calculated Des for [Ce3+([Xe]5d*1)O−(2p5)]2+,
[Ce3+([Xe]4f 1)F−(2p6)]2+, and [Gd3+([Xe]4f 7) F−(2p6)]2+ are 4.89 eV, 6.22 eV, and
3.68 eV ( see Tables 4.2, 4.5, and 4.8), respectively, indicating the existence of the
stable LnX2+.
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Figure 4.3 Contour maps of the large components of GdF+ spinors. The GdF+ nuclear dis-
tance is the calculated Re value (3.7599 au) of neutral GdF. The maps are drawn in the same
manner as in Figure 4.1. See color plate section
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4.4 Excited States

4.4.1 CeO Excited States

In the late 1970s, molecular spectra of pure S-type stars in the range 1.513–2.752 eV were
analyzed, and with the aid of laboratory studies, the lines were attributed to CeO. [61, 62]
Many observations have since been performed. [7, 63–65] Linton et al. [64] gave an almost
complete table of spectra in the range 0–3.546 eV. Kaledin et al. [65] investigated the spectra
in the same range, using ligand field theory (LFT) as refined by Field. [6] Apart from LFT,
which includes semi-empirical parameters, only a single theoretical calculation [10] has
considered the CeO electronic excited states, looking at the lowest 16 states. This calculation
was done by Dolg et al. [10] using the SOCI method, in which the diagonal terms of the
Hamiltonian were replaced by the corresponding eigenvalues of the CISD + Q (quadratic
excitation correction). [66] Dolg et al. used the quasirelativistic pseudopotential, and refer
to their calculations as quasirelativistic pseudopotential CI (QRCI).

Analysis of the electronic structure of CeO yields significant information about lan-
thanide chemistry, because CeO is the first lanthanide oxide that contains 4f electrons. A
number of excited states having the common electronic configuration as the ground state
lies energetically near the ground state. The ground state of the Ce atom is [4f 15d16s2] 1Go

4;
we use the symbolic notation 1Go

4 for simplicity, but this state actually has a complicated
configuration. [57] The ground state of the O atom is [2s22p4] 3P2. [58] The ground state
of CeO is [Ce3+(5s25p65d*1)O−(2s22p5)]2+

0 (4f 16s1)2, where the subscripts (0, 2) denote
the electronic angular momentum projected on the molecular axis. In the present work we
discuss the excited states below 0.56 eV using the RASCI module. [49, 50]

Using the CeO+ HFR/DC molecular spinors, we performed RASCI calculations for
the lowest 16 states having excitation energies below 0.560 eV. The RASCI space is
defined in Section 4.3.1. We performed RASCI(0|15|23) in addition to RASCI(0|15|0) and
RASCI(8|15|23) calculations. RASCI(0|15|0) is equivalent to the complete active space
CI (CASCI) or GOSCI with two active electrons distributed among the 15 Kramers pairs,
and we use the term RASCI(0|15|0) instead of GOSCI. The maximum CI dimension is
9,367,744 determinants in RASCI(8|15|23) for Ω = 0.

Experimentally, all of the low-lying 16 states are considered to be (4f 16s1). [64]
RASCI(0|15|0) gives the configuration ([4f 0.5][5d0.6][6s1]) [29] for the 16th state, however,
rather than ([4f 1][6s1]). [64] We therefore have doubts about the results of RASCI(0|15|0)
and henceforth disregard the results of RASCI(0|15|0). Table 4.10 shows the lowest 16 exci-
tation energies given by experiment, RASCI(0|15|23), and RASCI(8|15|23), together with
the GAOPs.

RASCI(0|15|23) gives a fairly accurate excitation energy for the second state. All of the
16 low-lying states have (4f 16s1) configuration. Beyond the second excited state, how-
ever, RASCI(0|15|23) does not reproduce the experimental Ω values except for the 6th,
8th, and 9th states. We believe that the use of small numbers (23) of virtual spinors is the
explanation of this discrepancy. We therefore added 80 virtual spinors to RAS3 and then
performed the RASCI(0|15|103) calculation. This calculation then gives the same Ω values,
and similar excitation energies for the respective states, as RASCI(0|15|23). For example,
the excitation energies of the 2nd, 3rd, 15th, and 16th states obtained by RASCI(0|15|103)
are 0.019 eV, 0.038 eV, 0.334 eV, 0.343 eV, which are very close to the RASCI(0|15|23)
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Table 4.10 CeO excitation energies and GAOPs of the lowest sixteen excited states lying
0 – 0.560eV above the ground state

Exptl RASCI(0|15|23) RASCI(8|15|23)

No Name Ω EE /eV Conf Ω EE /eV GAOPs in RAS2 Ω EE /eV GAOPs in RAS2

[6s] [6p] [5d] [4f ] [6s] [6p] [5d] [4f ]

1 X1 2 0.000 fs 2 0.000 0.67 0.09 0.12 0.98 2 0.000 0.76 0.10 0.15 1.03
2 X2 3 0.010 fs 3 0.019 0.67 0.09 0.11 0.99 3 0.014 0.75 0.10 0.15 1.03
3 W1 1 0.101 fs 0− 0.042 0.71 0.07 0.19 0.88 1 0.061 0.76 0.10 0.21 0.96
4 W2 2 0.113 fs 1 0.051 0.71 0.07 0.19 0.89 2 0.076 0.76 0.10 0.21 0.96
5 V1 0− 0.208 fs 0+ 0.080 0.70 0.07 0.20 0.88 0− 0.092 0.77 0.10 0.25 0.91
6 V2 1 0.232 fs 1 0.084 0.69 0.08 0.16 0.92 1 0.119 0.77 0.10 0.25 0.91
7 U1 0+ 0.240 fs 2 0.088 0.69 0.08 0.15 0.93 0+ 0.136 0.76 0.10 0.25 0.91
8 X3 4 0.253 fs 4 0.239 0.67 0.09 0.11 0.99 4 0.251 0.76 0.10 0.14 1.03
9 X4 3 0.265 fs 3 0.253 0.67 0.09 0.11 0.99 3 0.266 0.75 0.10 0.15 1.03
10 W3 3 0.324 fs 0− 0.279 0.71 0.07 0.19 0.88 3 0.295 0.76 0.10 0.19 0.98
11 W4 2 0.344 fs 1 0.288 0.71 0.07 0.19 0.88 2 0.313 0.76 0.10 0.20 0.97
12 V3 2 0.429 fs 3 0.301 0.69 0.08 0.14 0.95 1 0.337 0.77 0.10 0.24 0.92
13 V4 1 0.452 fs 2 0.306 0.70 0.08 0.16 0.92 0− 0.339 0.77 0.10 0.25 0.90
14 T1 0− 0.474 fs 0+ 0.316 0.70 0.07 0.20 0.87 2 0.347 0.76 0.10 0.23 0.94
15 U2 1 0.512 fs 2 0.340 0.68 0.08 0.15 0.94 1 0.418 0.76 0.10 0.24 0.92
16 U3 0+ 0.553 fs 1 0.354 0.69 0.07 0.18 0.90 0+ 0.426 0.76 0.10 0.26 0.90

values of 0.019 eV, 0.042 eV, 0.340 eV, and 0.353 eV. The closeness of the results given by
RASCI(0|15|23) and RASCI(0|15|103) indicates that the 23 RAS3 spinors are sufficient to
describe the correlation effects of the two valence electrons; the small virtual spinor num-
ber of 23 in RAS3 is not the reason why RASCI(0|15|23) gives a poor description of the Ω
values.

Based on the preliminary calculations above, we decided to implement RASCI(8|15|23)
to take account of the electron correlation effects between the active core and the valence
electrons. RASCI(8|15|23) accurately reproduces the experimental excitation energy for
the first excited state. The calculation also gives the same Ω values as experiment except
for the 12th – 14th states, although the calculated excitation energies are somewhat smaller
than experiment. Overall, the features given by RASCI(8|15|23) are close to experiment.
Dolg et al. [10] also calculated the lowest 16 states by QRCI; their results are better than
the present ones. They used the Ce (5s) – (7s), (5p) – (7p), (5d) – (6d), (4f ), and (5f )
molecular orbitals (MOs) and the O (2s) – (4s), (2p) – (3p), and (3d) MOs in their QRCI,
whereas in the present RASCI the Ce (5s) – (7s), (5p) –(8p), (5d) –(6d), (4f ), and (5f )
spinors and the (2s), (2p), and (3p) spinors of O are used. The CI spaces spanned by the Ce
orbitals (spinors) are similar, but those spanned by the O orbitals (spinors) are not. In the
reference 29 it is shown that the correlation effects arising from O (2p) are as important as
those arising from Ce (5s) and (5p). The use of fewer O spinors in RASCI than in QRCI
probably renders the results inferior to those of Dolg et al. [10]

Higher excited states than 0.56 eV is given in this Moriyama et al. [29]
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4.4.2 CeF Excited States

Three excited states of the CeF molecule were observed by Bloch and coworkers. [59] The
highest state is a red-degraded transition at 2.181 eV with Ω = 4.5. The two lower states
observed were at 0.087 eV (Ω = 4.5) and 0.186 eV (tentatively assigned Ω = 3.5) above the
ground state. [59]

Two theoretical calculations can be found in the literature. One of these publications is
a study by Wasada et al. [21] They performed CISD from a single reference CSF using a
four-component DC Hamiltonian. In their CISD calculations, electron correlations among
17 electrons of Ce (5p6)(4f 15dm6sn; n + m = 2) and F(2s22p6) are considered. The cal-
culated excitations are 0.319 eV, 0.518 eV, and 2.197 eV for the Ω = 4.5, 3.5, 4.5 states,
respectively. The two calculated lower excitation energies are considerably larger than
the corresponding experimental values. The third calculated excitation energy is close to
experiment, but the configuration obtained ([4f 1.0][5d1.7][6p0.3]) is different from that of
experiment ([4f 1][5d1][6p1)].

The second theoretical calculation is by Tatewaki et al. [22] They used four-component
relativistic multiconfigurational quasidegenerate perturbation theory to take account of cor-
relation effects between the active core [Ce3+(4s2…5p6)F−(2s22p6)]2+ and three valence
electrons in (4f ), (5d), (6s), (6p), and intra-valence correlation effects. For the energy lev-
els of the two excited states they obtained 0.144 eV and 0.351 eV. They did not reach
conclusions about the higher excited states because of the limitations of the theory they
used. A further study of the CeF excited states using larger RASCI and the f -shell Omega
decomposition method (which is described below) is under way.

4.4.3 GdF Excited States

Kaledin et al. [8] made a detailed investigation of the GdF molecule, and characterized most
of its excited states up to about 3.0 eV above the ground state. They also performed LFT
calculations, which gave results consistent with experiment, although some uncertainties
remained.

Several computational studies of the ground state of GdF [9, 12, 13, 17, 23–27] have been
published. Studies of the excited states are less common, however. The chapter authors have
systematically studied GdF. [24–27] We developed for this purpose a method for analyzing
electronic configurations, including f electrons, called the “f shell Omega decomposition
method.”

4.4.3.1 f-Shell Omega Decomposition Method

We used the DIRAC program suite, in which the jj-coupling scheme is employed. For
molecules containing f electrons, the electronic wavefunctions consist of many CSFs
because of the near-degeneracy among the (f ) spinors. In such molecular systems, numer-
ous electronic configurations generated from the active spinors make contributions to the
physical states, and it is scarcely possible to extract useful information merely by analyz-
ing the individual CSFs. As an example, the GOSCI (0|(4f 7)⊗(5d,6s)2|0) wavefunction for
the GdF ground state (Ω = 7/2) involves 14989 CSFs, and the CI weight is 0.1473 even
at the maximum. This small CI weight indicates the multiconfigurational character of the
GdF GOSCI wavefunction in the jj-coupling scheme. An index is needed that condenses the
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contributions from the individual Slater determinants. Accordingly, we introduced an index
called the ‘f -shell Omega component weight.’ It is a series of numbers defined as

weight(Ωf ) =
∑
i∈Ωf

C2
i (4.14)

where Ci is the CI coefficient of the i-th Slater determinant, and Ωf denotes the electronic
angular momentum projected onto the molecular axis generated from the n electrons of the
(4f ) molecular spinors; in the GdF molecule, n = 7. The multiconfigurational appearance
of the f -electron system is clearly reduced by the use of the f -shell Omega component
weight. Addition of the electronic angular momentum generated from the two electrons
of (5d, 6s) to Ωf yields the total electronic angular momentum around the molecular axis.
Some examples of the f -shell Omega components, which are selected from those of all the
excitation states below 3.0 eV [27] are listed in Table 4.11, together with GOSCI GAOPs
of the respective states.

We here propose a terminology for molecular electronic states. As an example we shall
consider the ground state of GdF, which is written as 8Σ−

7/2 in the LS-coupling scheme. As
shown in Table 4.11, the first state representing the Ω = 7/2 ground state has a Ωf weight
of 1.00 at the Ωf = 7/2 column. The three states above this state are almost degenerate, and
their Ωf weights are close to 1.00, as shown in Table 4.11. Thus, the CSFs of these three
states can be derived from the CSFs of the Ω = 7/2 state. We call such a group of states a
‘family.’ The first state (Ω = 7/2) is the origin of this family. We call such a state the ‘root’
of the family.

We now set out the four steps of the naming procedure. We assume that the electronic
state is described as α[β]γ and explain how α, β, and γ are assigned.

1) Write the Ω value of the root of a family, Ωroot, as a superscript α.
2) Write the symbolized gross atomic orbital populations (GAOP) as β, such as

[(4f 7)(6s2)]; the GAOPs for the ground state are shown in Table 4.11 as [4f 7.0]
[6s1.5][5d0.4][6p0.2].

3) ‘γ’ is a subscript of the total angular momentum Ω of the corresponding family.
The four lowest-lying states form a family, and this is designated as 7/2[(4f 7)(6s2)]Ω

based on the nomenclature above. We also add the Ωf value of the maximum Ωf weight
as a subscript to the (4f 7) part, and we attach the angular momentum value (Ωsd) of
the (sd) part as its subscript. Consider now the four lowest states of GdF. These are
almost degenerate and have almost the same GAOPs. In these states the Ωf weights are
almost 1.00, indicating that the wavefunctions of the three higher states are obtained
by applying the lowering operators. These four states constitute the ground state family,
and this family is expressed as 7/2[(4f 7)Ωf (6s2)Ωsd]Ω, where the total angular momentum
of each family member decreases by one from 7/2 to 1/2. This is our rule for naming
a family. Based on the procedure described above, the first state (Ω = 7/2) is des-
ignated as 7/2[(4f 7)7/2(6s2)0/2]7/2; we use the subscript (2 ·Ωsd)/2 for the sd valence
shell instead of Ωsd because Ωf takes a half integer value in this case. The second state
(Ω = 5/2) is designated as 7/2[(4f 7)5/2(6s2)0/2]5/2 as the maximum Ωf weight appears
at Ωf = 5/2; accordingly the angular momentum of the (sd) part is 0/2, and so on. Fam-
ily members are thereby designated. We summarize the specification of the family as
Ωroot[symbolized GAOPs]Ω, where Ωroot is the highest Ω-value of the family, and the
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total angular momentum of each family member decreases by one from Ωroot down to
either 1/2 or 0.

4) We propose a rule for labeling a family in the jj-coupling scheme. A label L is placed
before Ωroot[configuration symbol]Ω, namely, LΩroot[configuration symbol]Ω. This rule
is similar to that for a state in the LS-coupling scheme. [67] The label Xdenotes the family
of the ground state. The label A denotes the family of the first excited state having the
same Ω as the ground state. Subsequent families are labeled with B, C, D, and so on. The
excited states for which Ω differs from the ground state are labeled with lowercase letters
in alphabetical order (a, b, c, ...) as the excitation energy increases. (In the LS-coupling
scheme, the state label is determined according to the spin multiplicity instead of Ω.)

The f -shell Omega decomposition method provides a systematic way to assign electronic
spectra, especially for molecules containing heavy elements such as lanthanide monoflu-
orides, in which the jj-coupling is dominant compared to the LS-coupling. In Table 4.11
we applied the f -shell Omega decomposition method to some example states of the GdF
molecule, and give a unified terminology for the electronic states represented in the jj-
coupling scheme. We give all the families and their excitation energies in Figure 4.4. See
color plate section. For families having the highest Ω value, the same as the X family, solid
lines are used; other families are connected by broken lines.

4.4.3.2 GdF Excited States Below 0.85 eV

Electronic transitions involving the low-lying excited states located below 0.85 eV will now
be discussed. Kaledin et al. [8] found 10 forbidden bands around 0.548 eV (4416 cm−1).
We searched states in the range 0.01 eV to 0.85 eV and found 10 states. These are listed
in Table 4.12 with the designations specified above and those of Kaledin et al. [8], with
serial number (SN) in the entire CI space and serial number (N) in the respective Ω space,
GAOPs, excitation energy (EE), and transition dipole moment. These 10 states are members
of the two families, a 5/2[(f 7)(s1d1)]Ω and b 13/2[(f 7)(s1d1)]Ω, concentrated in the energy
region 0.46 eV to 0.59 eV. They all have small transition probabilities with the ground
state, consistent with the fact that direct transitions from the ground state are not observed
experimentally. Upon comparing the ground state population [4f 7][6s1.5][5d0.4][6p0.2] with
the excited state populations [4f 7][6s0.8][5d1.1][6p0.1], it becomes clear that the difference
of these populations corresponds to excitations from [6s] to [5d] atomic spinors. This is why
the transition dipole moments are small. The increase in the calculated transition energies
as the Ω value varies from 5/2, 3/2, 1/2, 1/2, 3/2, 5/2, 7/2, 9/2, 11/2, to 13/2 is consistent
with the LFT calculations of Kaledin et al. [8]

4.4.3.3 GdF [15.8] and [18.3] States

Kaledin et al. [8] observed a strong band at 1.956 eV (15776.9 cm−1), and designated it
as [15.8]. They found another strong band at 2.264 eV (18261.9 cm−1) and designated it
as [18.3]. Table 4.13 sets out details of states that have a transition moment larger than
3.8 Debye. They are state designation, difference in Ω(ΔΩ) between the excited state and
the ground state, serial number (SN) in the entire CI space, and serial number (N) in the
respective Ω space, the excitation energy (EE), and the transition moment.
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Figure 4.4 Energy diagram of GdF. Vertical excitation energy of the GdF electronic state and
family label. The ordinate denotes the vertical excitation energy in eV. The abscissa denotes the
Ω value. Only positive values of Ω are treated. Solid circles and solid lines denote families having
the same Ω as the X family. Open squares and broken lines denote families with Ω differing from
the X family. See color plate section

We shall start from [18.3], which has clear spectra. [8] The spectra of [18.3] of GdF arise
from a single family, E 7/2[(f 7)(d1s1+d2)]Ω (SN=108, 109, 111, 112), and have degenerate
excitation energies (Tv) as shown in Table 4.13. The spacing (0.005 eV) of the calculated
ΔTv values of [18.3] between Ω = 7/2 (SN= 108) and Ω = 1/2 (SN= 112) is comparable
to that (0.0094 eV) of the experimental term values. [8] All transitions occur from the E
family to the X family having the same Ω (Ω = 0 transitions). These features suggest that
the [18.3] states are 8Σ−-like and that spin-orbit coupling is not dominant. This is consistent
with the assignment of Kaledin et al. [8]

Compared to the [18.3] transitions, the [15.8] transitions are complicated. The five states
(SN=79, 80, 82, 83, 84) form a family q9/2[(f 7)(d1s1 + d2)]Ω. The three states (SN= 75,
76, 78) form another family, p 5/2[(f 7)(d1s1 + d2)]Ω. Linking the q and p families and the
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Table 4.13 GdF transitions of the [15.8] and [18.3] states to the ground states

Designation State EE /eV Tr-Md)/D

Theoretical Experimental ΔΩ SN’ Ω’ N’ SN” Ω” N” Tv’a) ΔTb)
v Tc)

0

q9/2[f 7d1s1 + ..]Ω′

→
X7/2[f 7s2]Ω”

[15.8] +1 79 1/2 21 4 −1/2 1 2.049 2.048 1.956 4.226
Designation +1 80 3/2 20 4 1/2 1 2.054 2.053 4.641
is not given +1 82 5/2 16 3 3/2 1 2.061 2.060 4.746

+1 83 7/2 13 2 5/2 1 2.068 2.068 4.812
+1 84 9/2 9 1 7/2 1 2.075 2.075 4.850

p5/2[f 7d1s1 + ..]Ω′

→
X7/2[f 7s2]′′Ω

−1 75 5/2 15 1 7/2 1 2.019 2.019 4.534
−1 76 3/2 19 2 5/2 1 2.029 2.029 4.495
−1 78 1/2 20 3 3/2 1 2.036 2.035 4.148
−1 79 −1/2 21 4 1/2 1 2.049 2.048 4.226

E7/2[f 7d1s1 + ..]Ω′

→
X7/2[f 7s2]Ω”

[18.3] 0 108 7/2 17 1 7/2 1 2.499 2.499 2.264 4.537
8Σ−(?) → 0 109 5/2 22 2 5/2 1 2.502 2.501 4.503

8Σ−(4f 76s2) 0 111 3/2 26 3 3/2 1 2.504 2.503 4.476
0 112 1/2 27 4 1/2 1 2.505 2.504 3.849

a) Calculated vertical excitation energy in eV from the ground state.
b) Calculated vertical transition energy in eV.
c) Experimental excitation energy from the ground state (Ref. 8).
d) Transition dipole moment in Debye.

SN=79 state to the X family gives two spectra sequences ([15.8:ΔΩ = +1] and [15.8:ΔΩ =
−1]). Table 4.13 shows that the [15.8:ΔΩ = +1] and [15.8:ΔΩ = −1] sequences lie in
the narrow energy range 2.019 eV – 2.075 eV. This is consistent with the conclusion of
the experimentalists [8] that “it is difficult to give a definitive configurational assignment
for the [15.8] states as many Ω-components of the 8Π(4f 7[8S]5d6s) and 10Σ−(4f 7[8S]5d2)
configurational states are predicted to fall in this energy region.”

4.4.3.4 GdF Transitions Between Excited States

The selection rule gives three types of dipole transitions: ΔΩ = ±1 and 0. Kaledin et al. [8]
observed ΔΩ = +1 transitions in the near-infrared region and ΔΩ = 0 transitions in the
visible region, but they reported nothing about the ΔΩ = −1 case. Below we discuss only
the ΔΩ = +1 case. The other cases are provided by Yamamoto and Tatewaki [26, 27].

Kaledin et al. [8] identified six bands in the near-infrared region (1.673 eV – 1.732
eV) as the transitions of ΔΩ = +1 listed in the 12th column of Table 4.14. In this
energy region we searched for ΔΩ = +1 transitions having transition dipole moments
larger than 2.5 D. We found 13 transitions, where the lower states are a 5/2[(f 7)(s1d1)]Ω
or b 13/2[(f 7)(s1d1)]Ω. We classified these 13 transitions into five sequences as shown in
Table 4.14. Only the sequence from (o → b) is observed. This sequence begins from
ΔTv = 1.578 eV, and the calculated transition energies are 0.2 eV smaller than experiment.

The transitions (D → a) have large transition moments and should be observed 0.3 eV
above (o → b), but no spectra have been reported. It is possible that Kaledin et al. [8]
overlooked these transitions in the visible region.
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4.4.3.5 Summary of GdF Excited States

We have performed relativistic GOSCI calculations for the excited states of GdF. To better
compare the present computation of the electronic transitions with the experimental result
of Kaledin et al., [8] we have eliminated unimportant transitions with the aid of the cal-
culated transition moments. We have successfully clarified the characters of the low-lying
excited states of GdF. In particular, light has been shed on the characters of the [15.8] and
[18.3] states. Transitions between the excited states have been classified according to the
ΔΩ values, however, only the results for ΔΩ = 1 are shown in this article. The observed
spectra are ascribed to the transitions from higher families to the lower families of a and b,
which lie ∼0.5 eV above the ground state. Finally we add that the f -shell Omega decompo-
sition method was also applied to EuF. [28] This clarifies the spectra that were not identified
experimentally. [68]

4.5 Conclusion

The electronic structure of the CeO, CeF, and GdF molecules has been investigated using the
four-component relativistic restricted active space configuration interaction (RASCI) and
general open-shell configuration interaction (GOSCI) methods. CeO and LnF (Ln = Ce, Gd)
are charge-transfer molecules that have in common a 64-electron closed-shell core bonded
firmly by the covalent and ionic bonds composed of the Ln 5s, 5p, 5d* and 4f * and ligand 2s,
and 2p spinors (here, 5d* and 4f *are polarization functions). The outer 4f -, 5d-, and 6s-like
electrons moving around this core have weak-bonding or non-bonding characteristics. The
excited states of CeO below 0.56 eV have been investigated by RASCI calculations. The
GOSCI calculations were performed for GdF, for which transition dipole moments were
also calculated. With the help of GAOPs and the f -shell Omega decomposition method,
the GdF spectrum below 3.0 eV, determined experimentally by Kaledin et al. [8], has been
almost completely explained.
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5.1 Introduction

The electronic structure associated with elements present in the f-block of the periodic
table, namely the lanthanides (Ln) and actinides (An), is both highly interesting and highly
complex. This complexity, however, provides a significant challenge to quantum chemical
methodologies and is, in essence, due to three phenomena:

• Strong electron correlation within the An/Ln valence orbital manifold
• Weak ligands fields experienced by the An/Ln ion
• The effects of relativity

The combined effects of these phenomena result in rich chemistry, with f-element com-
pounds exhibiting novel bonding motifs absent from all other areas of the periodic table.
Both the lanthanides and actinides behave as hard Lewis acids [1], resulting in complexes
where the bonding is largely ionic in character. This ionic character is, however, more pro-
nounced amongst the lanthanides. The 4f orbitals, with no radial node, experience strong
nuclear attraction, resulting in a highly contracted, core-like character. The energetic stabil-
ity associated with this has a profound effect on Ln chemistry: typically, the fourth ionization
potential of a given lanthanide is greater than the sum of the first three [1], resulting in
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chemistry dominated by the trivalent oxidation state. Nevertheless, electrons in the 4f man-
ifold are strongly correlated and this, coupled with the fact that crystal field effects are
weak, means that appropriate quantum chemical methodologies must be used in order to
accurately model Ln complexes.

The situation is somewhat different in the actinides. The 5f shell has a single radial node
and experiences more shielding from core electrons, partly due to the relativistic contrac-
tion of core electron orbitals in these very heavy elements. The 5f shell therefore tends to
be less energetically stable and more spatially extended, allowing for a degree of covalent
character in An-ligand bonding. The relative accessibility of the 5f electrons also results in a
much greater range of oxidation states (particularly for the early actinides); the heptavalent
oxidation state has been reported for Np and Pu [2, 3], while the hexavalent oxidation state
is predominant in the aqueous chemistry of U [1]. The 5f shell is also similar in energy to
the 7s and 6d orbitals, allowing for a large variation in bonding character. Finally the effects
of relativity are more pronounced; in addition to the relativistic contraction of core orbitals,
the effects of spin-orbit coupling are strong and must be considered in any quantitative
description of An complexes.

In this chapter, the quantum chemical simulation of actinide and lanthanide complexes
will be considered. The need for a multiconfigurational description of the wavefunction is
discussed, and the complete-active-space self-consistent-field (CASSCF) approach, along
with some related methods, is introduced and discussed. This approach, originally devel-
oped by Björn Roos, allows for the strong static correlation present in these complexes due to
a combination of electron-electron interactions and weak crystal field splittings to be taken
into consideration in a systematic manner. Extensions to this approach, which also account
for dynamical correlation will also be considered. In the finally section, the application of
the CASSCF approach will be illustrated with examples from the literature.

A useful tool for considering the quality of a quantum chemical calculation is the Pople
diagram. Figure 5.1 shows a 3-dimensional version, suitable for use in the simulation of
f-element complexes. The three axes of the Pople diagram represent the quantum chemical
methodology, the chosen basis set, and the treatment of relativity, respectively. The main
aim of this diagram is to ensure that a ‘balanced’ calculation is performed, i.e., relevant

HF

Scalar

Scalar+SO

2-Component
4-Component

QED

Single-ζ

Double-ζ

Triple-ζ

Quadruple-ζ

∞

CISD CISDT FCI

Figure 5.1 Three dimensional Pople diagram. The three axes correspond to quantum chemical
methodology, basis set, and treatment of relativity
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aspects of a calculation are given approximately equal consideration. Before we embark on
the main aim of this chapter, we shall briefly consider appropriate choices of basis set and
relativistic Hamiltonian.

5.1.1 Treatment of Relativistic Effects

Whilst relativistic effects are extremely important in the accurate modelling of f-element
complexes [4], they are not the focus of this chapter. Here, we briefly consider some approx-
imate approaches to incorporating relativistic effects. Bearing in mind that such effects must
be implemented in the context of quantum chemical simulations, rendering approaches
based on quantum electrodynamics (QED) effectively intractable, the most sophisticated
approaches available are based on the replacement of the Schrödinger equation with the
Dirac equation. Such approaches require a 4-component formalism in order to describe
the particles under investigation, this being required since the formalism describes cou-
pled particle-antiparticle pairs, with the effects of spin-orbit coupling treated explicitly.
Four-component approaches are computationally intensive, and methods have been devel-
oped that effectively decouple the particle anti-particle pairs, retaining only the electronic
components. Typically, such 2-component approaches still explicitly include the effects of
spin-obit coupling and provide popular approaches to including relativistic effects. The most
common implementations of these two-component methods employ either the Douglas-
Kroll-Hess (DKH) Hamiltonian [5, 6] or the zeroth order regular approximation [7–9]
(ZORA). In both of these approaches, further approximations can be made in order to elimi-
nate spin-orbit coupling from the Hamiltonian. Such single-component approaches are said
to treat scalar relativistic effects only, with the effects due to spin-orbit coupling some-
times incorporated in a post-hoc manner. Scalar relativistic effects can also be treated by
the use of relativistic effective core potentials (RECPs), which replace core electrons with
an appropriate potential experienced by the valence electrons. Such RECPs are designed
so that, for example, the core contraction due to the relativistic mass increase is accurately
incorporated.

5.1.2 Basis Sets

There are many different types of basis sets, of which the most popular are those designed
by the Pople, Dunning, Ahlrichs, and Roos research groups. Assuming a well-defined basis
set, multiconfigurational methods such as CASSCF require a high degree of flexibility since
electron correlation is incorporated explicitly through the electronic wavefunction. As we
will see, CASSCF-style approaches depend on linear combinations of different electronic
configurations and so the chosen basis set must allow for a large number of configurations
to be constructed. For this reason, quantitatively correct simulations typically require basis
sets of at least ‘triple-ζ’ quality, meaning that each atomic valence orbital is constructed as
a linear combination of three contracted Gaussian basis functions. Using such a basis set
ensures that the configurational space is sufficiently large and flexible for correlation effects
to be accurately modelled. When considering anionic systems, where valence electrons may
be only loosely bound, the incorporation of diffuse functions is also recommended.

The use of basis sets as recommended above can result in very large number of basis
functions, and it is common practice (depending on the properties of interest) to replace core
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electrons with an effective potential, a popular choice being the family of Stuttgart-Cologne
energy-consistent pseudopotentials [10]. This approach significantly reduces the size of
the basis set whilst having little effect on the flexibility of the valence space; as discussed in
the previous section, for the case of the f-elements (as well as the heavier transition metal
and main block elements), RECPs are designed so that the relativistic contraction of the
core shells is well represented.

5.2 Identifying and Incorporating Electron Correlation

5.2.1 The Hartree Product Wavefunction

The simplest description of a many electron wavefunction is known as the Hartree product
[11]. This wavefunction is constructed as a simple product of one electron wavefunction, or
orbital. In the case of a two-electron system:

ΨHP (x1, x2) = χi (x1)χj (x2) (5.1)

Where χi (xn) is a spin-orbital occupied by electron n. The Hartree product corresponds to
an independent particle approximation, which can be seen more clearly by considering the
probability of simultaneously finding electron 1 at the point r1 and electron 2 at r2.

P(r1, r2) =

∫ ∣∣ΨHP (x1, x2)
∣∣2 ds1ds2

= |φi (r1)|2 |φj (r2)|2
(5.2)

Where we have integrated over the spin-degrees of freedom and φi (rn)is a spatial orbital.
Here, the probability of finding electron 1 at point r1 is independent of the position of elec-
tron 2, and the electronic motion is uncorrelated. Such an approach to building a many-body
wavefunction is clearly only applicable in the case of non-interacting particles. Furthermore,
the Hartree product is not antisymmetric under the exchange of space and spin coordinates
of the two particles, and is therefore inappropriate for describing fermionic wavefunctions.
This latter deficiency can be remedied by using a determinantal wavefunction.

5.2.2 Slater Determinants and Fermi Correlation

The Hartree product wavefunction described in equation 5.1 can easily be antisymmetrised:

ΨSD (x1, x2) =
1√
2
(χi (x1)χj (x2)− χj (x1)χi (x2))

=
1√
2

∣∣∣∣χi (x1) χj (x1)
χi (x2) χj (x2)

∣∣∣∣
= |χiχj|

(5.3)
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The form of the wavefunction given in equation 5.3 is known as a Slater determinant [12]
and can be generalised for an N-electron wavefunction, giving

ΨSD (x1, x2, . . . , xn) =
1√
n!

∣∣∣∣∣∣∣∣∣

χi (x1) χj (x1) · · · χk (x1)
χi (x2) χj (x2) · · · χk (x2)

...
...

. . .
...

χi (xn) χj (xn) · · · χk (xn)

∣∣∣∣∣∣∣∣∣
= |χiχj · · ·χk|

(5.4)

This form of the many-electron wavefunction, satisfying the antisymmetry principle,
exhibits correlation between electrons of like spin. To see this, we take the two-electron
wavefunction given in equation 5.3. For two electrons of unlike spin, i.e.,

χi (x1) = φi (r1)α(s1) (5.5)

χj (x2) = φj (r2)β(s2) (5.6)

the probability of simultaneously finding electron 1 at the point r1 and electron 2 at r2 is
given by

P(r1, r2) =

∫ ∣∣ΨSD (x1, x2)
∣∣2 ds1ds2

=
1
2

(
|φi (r1)|2 |φj (r2)|2 + |φj (r1)|2 |φi (r2)|2

) (5.7)

and, since electrons are indistinguishable, we again see that the electronic motion is uncor-
related (this is made more obvious by setting ϕi = ϕj). In particular, it should be noted
that P(r1, r1) �= 0, i.e., there is a non-zero probability of both electrons occupying the same
point in space.

For two electrons of like spin, the integration over spin degrees of freedom produces a
different probability distribution. Setting

χi (x1) = φi (r1)α(s1) (5.8)

χj (x2) = φj (r2)α(s2) (5.9)

gives

P(r1, r2) =

∫ ∣∣ΨSD (x1, x2)
∣∣2 ds1ds2

=
1
2
(|φi (r1)|2 |φj (r2)|2 + |φj (r1)|2 |φi (r2)|2

− φi (r1)φ
∗
j (r1)φj (r2)φ

∗
i (r2)− φj (r1)φ

∗
i (r1)φi (r2)φ

∗
j (r2))

(5.10)

Using equation 5.10, P(r1, r1) = 0, demonstrating that the motion of the like-spin elec-
trons is correlated and, for a given electron, the probability of finding another like-spin
electron in its immediate vicinity is lower the that of an unlike-spin electron. This reduction
in probability is known as a Fermi hole, and the correlation is known as Fermi or exchange
correlation.
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5.2.3 Coulomb Correlation

The determinantal form of the wavefunction discussed in Section 5.2.2 is used in the
Hartree-Fock (HF) approach to solving the many-electron Schrödinger equation. The HF
approach is considered to be an uncorrelated method, since it doesn’t include Coulomb
correlation, i.e., the correlation in electronic motion arising from the repulsive electrostatic
electron-electron interactions. The correlation energy is therefore defined as the differ-
ence between the exact energy and the energy obtained by employing the Hartree-Fock
approximation

EC = EExact − EHF (5.11)

Coulomb correlation can be approximately partitioned into two components: the first, which
has short range and is dependent on r−1

ij , is known as dynamical correlation, whilst the
second, which has long range and manifests itself due to near-degeneracy in orbital energies,
is known as static correlation. Figure 5.2(a) illustrates angular correlation, where there is an
energetic preference for electrons to be located on opposite sides of a nucleus. Figure 5.2(b)
illustrates radial or in-out correlation, in which there is an energetic preference for electrons
to be located at different distances from the nucleus. These are both forms of dynamical
correlation, whereas Figure 5.2(c) illustrates an example of left-right correlation, whereby
at large internuclear separation rAB, there is an energetic preference for different electrons to
be located near different nuclei. This is an example of static correlation, and it is extremely
important in the simulation of f-element complexes to describe this form of correlation
accurately.

r1A < r1B

r2B < r2A

r2

r1

θ

A B

(c)

(a) (b)

Figure 5.2 Examples of (a) angular correlation, (b) radial (in-out) correlation, and (c) left-right
correlation. Nuclei and electrons are represented by dark and light spheres, respectively
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5.3 Configuration Interaction and the Multiconfigurational Wavefunction

The weak crystal field experienced by f-block elements results in energetic near-degeneracy
with respect to different 4f/5f configurations. This is a manifestation of static correlation and
can be successfully modelled by replacing the monodeterminantal form of the wavefunction
given by equation 5.4 with a multiconfigurational wavefunction, i.e., one in which several
different electronic configurations can be incorporated using a linear combination of Slater
determinants [12, 13]. In this section we will consider this ‘configuration interaction’ (CI)
approach and its application to f-element complexes.

5.3.1 The Configuration Interaction Approach

Within the HF approximation, the many-electron wavefunction is described in terms of a
single Slater determinant, but doesn’t incorporate the effects of Coulomb correlation. How-
ever, during the optimisation of the HF wavefunction, a number of molecular spin-orbitals
are produced. For a closed-shell, N-electron system, the N/2 lowest energy orbitals are occu-
pied, whilst the remainder are unoccupied, or virtual, orbitals. These virtual orbitals can be
used to construct excited configurations (which should not be confused with excited states
of the system). In the complete basis set limit, we have a complete set of functions of 4N
variables (the ground and excited configurations, each described by a different Slater deter-
minant), and it can be shown [14] that any function of 4N variables can be expanded in
terms of this complete set. We can therefore, in principle, construct the exact correlated
N-electron wavefunction in terms of our HF reference configuration and a set of suitably
weighted excited configurations. The CI approach gives us a mechanism for evaluating these
weights, equal to the square of the corresponding CI coefficients. Using Dirac notation, we
can write the CI wavefunction as

∣∣ΨCI
〉
= c0 |Ψ0〉+

∑
ca

i |Ψa
i 〉+

∑
cab

ij

∣∣Ψab
ib

〉
+
∑

cabc
ijk

∣∣Ψabc
ijk

〉
+ · · · (5.12)

Where |Ψ0〉 =
∣∣ΨHF

〉
, |Ψa

i 〉 is a singly excited determinant formed by deoccupying orbital
ϕi and occupyingϕa, and the summations run over occupied (i, j, k, …) or virtual (a, b, c, …)
orbitals. Equation 5.12 makes explicit the fact that the CI wavefunction can be considered a
series of corrections to the HF, or reference, wavefunction. The second term on the RHS of
equation 5.12 corresponds to the correction made by singly excited determinants, the third
term to that made by doubly excited determinants, and so on. Figure 5.3 gives examples of
excited configurations that contribute to the CI wavefunction.

The CI coefficients, along with the total CI energy, are obtained by constructing and
diagonalising the CI Hamiltonian matrix, HCI

HCI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
Ψ0

∣∣∣Ĥ
∣∣∣Ψ0

〉 〈
Ψ0

∣∣∣Ĥ
∣∣∣ΨS

〉 〈
Ψ0

∣∣∣Ĥ
∣∣∣ΨD

〉 〈
Ψ0

∣∣∣Ĥ
∣∣∣ΨT

〉
· · ·〈

ΨS

∣∣∣Ĥ
∣∣∣Ψ0

〉 〈
ΨS

∣∣∣Ĥ
∣∣∣ΨS

〉 〈
ΨS

∣∣∣Ĥ
∣∣∣ΨD

〉 〈
ΨS

∣∣∣Ĥ
∣∣∣ΨT

〉
· · ·〈

ΨD

∣∣∣Ĥ
∣∣∣Ψ0

〉 〈
ΨD

∣∣∣Ĥ
∣∣∣ΨS

〉 〈
ΨD

∣∣∣Ĥ
∣∣∣ΨD

〉 〈
ΨD

∣∣∣Ĥ
∣∣∣ΨT

〉
· · ·〈

ΨT

∣∣∣Ĥ
∣∣∣Ψ0

〉 〈
ΨT

∣∣∣Ĥ
∣∣∣ΨS

〉 〈
ΨT

∣∣∣Ĥ
∣∣∣ΨD

〉 〈
ΨT

∣∣∣Ĥ
∣∣∣ΨT

〉
· · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)
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Figure 5.3 Examples of singly, doubly, and triply excited configurations, relative to the HF
reference for a singlet system

where, for example,
〈
ΨS

∣∣∣Ĥ
∣∣∣ΨD

〉
is the set of matrix elements between all singly and

doubly excited determinants. These matrix elements can be evaluated in a relatively straight-
forward manner, taking advantage of Brillouin’s theorem [15],

〈
Ψa

i

∣∣∣Ĥ
∣∣∣Ψ0

〉
= 0, and the

Slater-Condon rules [12, 13].
In the limit of a complete basis set, diagonalisation of HCI would give the exact energy

of both the ground and excited states of an N-electron system. However, in reality, a trun-
cated basis set is used. Expansion of the exact wavefunction in this truncated basis set is
known as full CI (FCI), and whilst full CI gives an excellent description of both dynamical
and static correlation, it is extremely expensive from a computational perspective, proving
intractable for all but the smallest of systems. For this reason, truncated CI is more com-
monly applied. In truncated CI, only determinants differing from the reference by up to a
maximum number of excitations are included. For example, including only singly and dou-
bly excited configurations results in the CISD approximation, whereas also including triply
excited determinants gives the CISDT approximation.

5.3.2 CI and the Dissociation of H2

As an example of the application of the CI approach, we consider the dissociation of molec-
ular hydrogen. Near the H2 equilibrium geometry, the exact two electron wavefunction is
well approximated by that obtained via application of the Hartree-Fock approach. Assuming
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Figure 5.4 Comparison of HF- and CISD-calculated potential energy surfaces to the exact
surface for the dissociation of H2. Inset: bonding and antibonding molecular orbitals of H2. See
color plate section

a minimal basis set of 1s orbitals on each H centre, application of the HF approach yields
two molecular orbitals (see Figure 5.4; See color plate section):

σg = Ng (1sA + 1sB) (5.14)

σu = Nu (1sA − 1sB) (5.15)

With the total wavefunction given by

|Ψ0〉 = |σgσg| (5.16)

But, as rAB → ∞ and 〈1sA | 1sB〉 → 0,

|Ψ0〉 →
1
2
(|1sAα1sBβ|+ |1sBα1sAβ|+ |1sAα1sAβ|+ |1sBα1sBβ|) . (5.17)

Whilst the first two terms on the right-hand side correspond to correct dissociation, i.e.,
H2 → H+H, the latter two correspond to incorrect ionic dissociation, i.e., H2 → H++H−.
These spurious ionic terms correspond to both electrons being found on the same nucleus
and therefore lead to a significant overestimation of the dissociation energy at the HF level.

The minimal basis description of H2 allows for the construction of three excited config-
urations: two singly excited determinants |σgσu| and |σuσg|, along with one doubly excited
determinant of the form |ΨD〉 = |σuσu|. From Brillouin’s theorem, only the doubly excited
configuration interacts directly with the reference and, in the limit rAB → ∞,

|ΨD〉 →
1
2
(− |1sAα1sBβ| − |1sBα1sAβ|+ |1sAα1sAβ|+ |1sBα1sBβ|) (5.18)
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Whilst |ΨD〉 suffers from the same incorrect long-range behaviour as |Ψ0〉, the spurious
ionic terms cancel when taking the linear combination, i.e.,

|Ψ0〉+ |ΨD〉 → |1sAα1sBβ|+ |1sBα1sAβ| . (5.19)

The equal contributions of |Ψ0〉 and |ΨD〉 to the CI wavefunction might be expected since,
as rAB → ∞, σg and σu become energetically degenerate. In general this is not the case,
and the description of the H2 electronic wavefunction can be written

|Ψ〉 = c0 |Ψ0〉+ cD |ΨD〉 (5.20)

where c0 and cD are determined variationally. |Ψ〉 therefore accounts for the static correla-
tion in H2 and, as can be seen in Figure 5.4, gives a qualitatively correct description of the
dissociation process.

5.3.3 Static Correlation and Crystal Field Splitting

In the absence of a crystal field, the seven 4f/5f orbitals of an f-element are degenerate.
Whilst crystal field effects result in a large splitting of the d-shell in transition metal com-
plexes, this is much less pronounced in f-element analogues; in particular, the lanthanides
experience extremely weak crystal fields. In an octrahedral environment, the f manifold
splits into two triply degenerate (t1u and t2u) and one non-degenerate (a2u) level [16] and
partial occupation of the 4f/5f manifold therefore results in several near degenerate elec-
tronic configurations, as can be seen schematically in Figure 5.5. In analogy with the H2

weakening CF

increasing r

00

11
(a) (b)

CD
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2

2
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Figure 5.5 CI coefficients for a) the reference and doubly excited configurations of H2, and
b) configurations incorporating different f-orbital occupation in a model f1 system experiencing
an octahedral crystal field
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example in the previous section, weak crystal field effects result in strong static correlation
and therefore multiconfigurational character in the many-electron wavefunction. For this
reason, the application of a multiconfigurational method is critical to the accurate modelling
of open-shell f-element complexes.

5.3.4 Size Inconsistency and Coupled Cluster Theory

Consider two systems, A and B. Full CI is size consistent, meaning that

EFCI(AB) = EFCI(A) + EFCI(B) (5.21)

However, size-consistency is not maintained in truncated CI methods. CI expands the exact
N-electron wavefunction in terms of Slater determinants using a linear ansatz:

|Ψ〉 = Ĉ |Ψ0〉 , (5.22)

where

Ĉ = 1 +
∑

i

Ĉi. (5.23)

The exact wavefunction can, however, also be expanded using an exponential ansatz:

|Ψ〉 = eT̂ |Ψ0〉 , (5.24)

where the cluster operator, T̂ , is defined as

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n (5.25)

and T̂i generates all determinants having i excitations from the HF reference. Expanding
the wavefunction in this manner gives the coupled cluster (CC) approach [17] and, from
equations 5.22 and 5.24, we see that full CI and full CC are equivalent. When we compare
truncated CC to the equivalent CI calculation, however, we find that additional terms are
incorporated in the former. If we consider only the double excitation operator T̂2 then the
resulting CCD approximation gives:

|ΨCCD〉 = eT̂2 |Ψ0〉

=

(
1 + T̂2 +

T̂2
2

2!
+

T̂3
2

3!
+ · · ·

)
|Ψ0〉

(5.26)

which, due to the presence of terms of the form T̂n
2 , is size consistent. The corresponding

CID approximation is given by

|ΨCID〉 =
(

1 + T̂2

)
|Ψ0〉 (5.27)
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and, since terms of the form T̂n
2 are now absent, does not exhibit size consistency. Whilst

CC approaches therefore outperform CI equivalents, they are computationally demanding.
Furthermore, at least triple excitations must be included in order to include the effects of
static correlation, resulting in the extremely expensive CCSDT approximation. Therefore,
despite the limitations of truncated CI, advantage can be taken of the relative simplicity of
constructing more advanced approaches based on the linear ansatz, and it is therefore used
as a basis for multiconfigurational self-consistent-field (MCSCF) and other multireference
techniques.

5.3.5 Computational Expense of CI and the Need for Truncation

Figure 5.6 compares the scaling of truncated CI approaches to that of the HF approxima-
tion and full CI. The latter scales factorially in the number of orbitals, rapidly becoming
computational intractable. Whilst still computationally expensive, truncated CI approaches
are tractable, however they provide only an approximate treatment of static and dynami-
cal effects. If these two forms of correlation are instead treated separately, then the former
can be treated by selecting key subsets of occupied and virtual orbitals within which full
CI is performed. This dramatically reduces the number of configurations included in the
CI expansion while ensuring that all static correlation effects are accurately described.
This approach can be further improved by incorporating orbital optimisation, as opposed
to utilising the set of canonical Hartree-Fock orbitals as a basis for the CI expansion. In
essence, this application of full CI within an orbital subspace combined with orbital opti-
misation gives the complete-active-space self-consistent-field (CASSCF) approach and its
variants.

5
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Figure 5.6 Computational scaling of post-HF methods as a function of n, the number of
orbitals. Computational cost is plotted logarithmically
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5.4 CASSCF and Related Approaches

The CASSCF approach is based on the concept that the orbital space of a system can be
partitioned into a series of subspaces. As discussed in Section 5.3.5, the computational cost
of FCI is so high that it is only practical for systems with a very small number of orbitals
and electrons. In the CASSCF approach, an active space is defined, and it is within this
space that full CI is performed. The active space typically encompasses some proportion
(ideally, all) of the valence region of the system of interest, with deeper lying orbitals (for
which the effects of static correlation have little impact with regard to chemical properties)
deemed ‘inactive.’ The active space also includes a number of virtual orbitals, allowing
for a CI expansion to be performed, with higher lying orbitals, occupied only in highly
excited configurations that would not be expected to contribute significantly to the descrip-
tion of the static correlation within the system, deemed ‘external.’ Figure 5.7 summarises
this partitioning into orbital subspaces.

5.4.1 The Natural Orbitals

A Hartree-Fock calculation produces a set of molecular orbitals, known as the canoni-
cal Hartree-Fock orbitals. These orbitals are the solution to the Hartree-Fock-Roothaan
equations and, while they may be used as the basis for a CI expansion of the exact wave-
function, they are not optimal in the sense that a different choice of orbital basis may result
in a CI expansion that converges more rapidly to the FCI limit. In 1955, Löwdin demon-
strated that the optimal one-electron basis for the CI expansion of the exact wavefunction is
the natural orbital basis [18]. In order to obtain the natural orbitals, we must first construct
the first order reduced density matrix (RDM), defined as:

γ(x1, x′1) =
∫

Ψ(x1, x2, · · · , xn)Ψ(x′1, x2, · · · , xn)dx2 · · · dxn (5.28)

Diagonalising γ gives as eigenvectors the natural spin orbitals and as eigenvalues their
corresponding occupancies. For an electronic state constructed from a monodeterminantal
wavefunction, the natural occupancies take the values of 0, 1, or 2. However, for a multi-
configurational electronic state, the natural occupancies will differ from integer values, and
these deviations can be taken as a measure of multiconfigurational character. As we shall
see, the natural orbitals can be used in the construction of the active space required in a
CASSCF calculation.

5.4.2 Optimisation of the CASSCF Wavefunction

The discussion in this section follows closely that in Roos [19]. In analogy to equation 5.12,
we define the CASSCF state as a linear combination of configurations:

|0〉 =
∑

m

cm |m〉 (5.29)
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Figure 5.7 Partitioning of the molecular orbital space into inactive, active, and external
subspaces. The number of active subspaces differs between CASSCF, RASSCF, and GASSCF
calculations

where the |m〉 only differ in occupation of the active space orbitals. In a CASSCF wave-
function, both the molecular orbital (MO) and configuration interaction (CI) coefficients
are optimised, and this optimisation can be described in terms of a unitary transformation
of the non-optimal CASSCF state. We first consider the optimisation of the CI coefficients.
We start by defining|K〉, the orthogonal complement to |0〉:

|K〉 =
∑

m

cK
m |m〉 (5.30)

The |K〉 are expanded in the same basis as |0〉 with the CI coefficients cK
m defined such that

an orthonormal set is obtained, 〈K | L〉 = δKL. A variational parameter SK0 can be assigned
to each of the |K〉 and the variation of our CASSCF state can be considered as a unitary
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transformation (or rotation) between |0〉 and |K〉, with SK0 defining the magnitude of this
rotation. In this manner we may define the anti-hermitian replacement operator Ŝ:

Ŝ =
∑

K

SK0 (|K〉 〈0| − |0〉 〈K|) (5.31)

from which we can define the unitary operator eŜ.
The optimisation of the MO coefficients is implemented differently. Using second

quantisation, a substitution operator, Ê, can be defined:

Êij = â†iαâjα + â†iβ âjβ (5.32)

Here, â† and â are creation and annihilation operators, respectively. Êij therefore has
the effect of substituting an electron in state i for one in state j. As was done for the
CI coefficients, we now define an anti-hermitian operator, T̂ in terms of the variational
parameters Tij:

T̂ =
∑

i,j

TijÊij

=
∑
i>j

Tij

(
Êij − Êji

) (5.33)

Êij − Êji can also be considered as a replacement operator, and Tij

(
Êij − Êji

)
describes an

orthogonal rotation between MOs i and j. The unitary operator eT̂ can therefore be used to
describe rotations in the MO space.

We can now use the two exponential operators defined above to express a variation in the
CI and MO coefficients of our CASSCF state |0〉:

|Ψ′〉 = eT̂eŜ |0〉 (5.34)

eT̂ and eŜ do not commute and the order defined above, while not affecting the final result,
is chosen to simplify manipulation of resulting terms. We can define the energy of our
transformed state |Ψ′〉 as:

E
(

T̂, Ŝ
)
=

〈
Ψ′

∣∣∣Ĥ
∣∣∣Ψ′

〉

=
〈

0
∣∣∣e−Ŝe−T̂ Ĥ eT̂eŜ

∣∣∣ 0
〉

=
〈

0
∣∣∣Ĥ

∣∣∣ 0
〉

+
〈

0
∣∣∣
[
Ĥ, T̂

]
+
[
Ĥ, Ŝ

]∣∣∣ 0
〉

+

〈
0

∣∣∣∣1
2

[[
Ĥ, T̂

]
, T̂

]
+

1
2

[[
Ĥ, Ŝ

]
, Ŝ
]
+
[[

Ĥ, T̂
]
, Ŝ
]∣∣∣∣ 0

〉

+ . . .

(5.35)
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The first term on the right-hand side of equation 5.35 corresponds to the zeroth order energy
of our untransformed CASSCF state. The second term gives the first derivatives of this
energy with respect to the variational parameters Tij and SK0, whilst the third term gives us
the second derivatives, from which we can construct the Hessian. Considering the individual
terms in the first derivative we have (for real wavefunctions):

〈
0
∣∣∣
[
Ĥ, T̂

]∣∣∣ 0
〉
=

∑
i>j

〈
0
∣∣∣
[
Ĥ, Êij − Êji

]∣∣∣ 0
〉

Tij

=
∑
i>j

gMO
ij Tij

(5.36)

〈
0
∣∣∣
[
Ĥ, Ŝ

]∣∣∣ 0
〉
=

∑
K

(〈
0
∣∣∣Ĥ

∣∣∣K
〉
+
〈

K
∣∣∣Ĥ

∣∣∣ 0
〉)

SK0

=
∑

K

2
〈

0
∣∣∣Ĥ

∣∣∣K
〉

SK0

=
∑
i>j

gCI
K0SK0

(5.37)

where the gMO and gCI give the gradients in the energy with respect to variations in the
MO and CI coefficients, respectively. Since these gradients vanish for an optimised wave-
function, equation 5.36 shows that all matrix elements of

[
Ĥ, Êij − Êji

]
are zero for a set

of optimised molecular orbitals, a generalisation of Brillouin’s theorem. Equation 5.37,
on the other hand, shows that an optimised CASSCF wavefunction does not interact through
the Hamiltonian with the orthogonal complement |K〉.

Given both the gradient and the Hessian, the optimised CASSCF wavefunction can, in
principle, be obtained directly via the Newton-Raphson approach. For large configuration
spaces however, such a direct approach becomes computationally intractable, and so a vari-
ety of iterative procedures have been developed in order to circumvent this problem. Another
approach, known as the super-CI method [20], instead makes use of the generalised Bril-
louin theorem discussed above. We begin by defining a set of configurations corresponding
to single excitations of our trial state |0〉:

∣∣Ψlm
〉
=

(
Êlm − Êml

)
|0〉 (5.38)

The super CI wavefunction is then defined as a linear combination of the reference state and
these single excitations:

∣∣ΨSCI
〉
= |0〉+

∑
l,m

clm

∣∣Ψlm
〉
. (5.39)

For an optimised CASSCF wavefunction, the clmvanish, satisfying the generalised Brillouin
theorem, and so the problem becomes one of incorporating the

∣∣Ψlm
〉

into the trial state∣∣ΨSCI
〉

so as to optimise the state. This can be done in an iterative manner. For example,
the first order RDM, γSCI, can be constructed and diagonalised to generate a new set of trial
orbitals, which would include contributions from the

∣∣Ψlm
〉

to second order in clm. These
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new orbitals can then be used a basis for a CI expansion, and the new super CI wavefunction
constructed in this manner (along with the corresponding CI expansion) would therefore be
expected to have smaller contributions from the singly excited configurations. This pro-
cess could be repeated until the wavefunction is optimised, at which point the clm vanish.
The super-CI approach therefore optimises the wavefunction by systematically reducing its
interaction with the singly excited configuration space.

5.4.3 Variants and Generalisations of CASSCF

CASSCF is a powerful approach to treating the effects of static correlation that commonly
manifest themselves in complexes of the f-elements. However, it still suffers from the fac-
torial scaling problem associated with full CI, resulting in severe limitations on the size of
active space that can be considered. A typical upper limit corresponds to the explicit cor-
relation of 16 electrons in an active space of 16 orbitals. We refer to such a calculation as
a CASSCF (16,16) calculation and, in general, a calculation explicitly correlating n elec-
trons in m orbitals is referred to as a CASSCF (n,m) calculation. In order to circumvent this
computational bottleneck, approaches have been developed in order to expand the size of
systems that can be considered with an MCSCF methodology.

Perhaps the best known variant of the CASSCF method is the restricted-active-space
SCF (RASSCF) approach [21]. Here, the active space is divided into three subspaces
labelled RAS1, RAS2, and RAS3 (see Figure 5.7). The RAS2 subspace is itself a com-
plete active space, i.e., full CI is performed within RAS2. However, the other subspaces
comprise orbitals, which are either doubly occupied (RAS1) or empty (RAS3) in the refer-
ence configuration. In addition to the full CI performed in the RAS2 subspace, truncated CI
is performed amongst all three subspaces. This is achieved by specifying a maximum num-
ber of allowed holes in RAS1 and electrons in RAS3. This is understood most clearly by
assuming RAS2 to be empty. Then, for example, specifying the maximum number of holes
(electrons) in RAS1 (RAS3) to be three would correspond to performing a CISDT expan-
sion within the active space. As with CASSCF, the RASSCF approach also allows for orbital
optimisation.

The generalised-active-space SCF (GASSCF) method [22] is, as the name suggests, a
generalisation of the CASSCF and RASSCF approaches. In the GASSCF approach, an arbi-
trary number of active subspaces can be defined. The total active space is then derived by
specifying the cumulative minimum and maximum electron occupations over the subspaces,
and it is straightforward to demonstrate that, using this definition, both CAS and RAS states
are special cases of GAS states [22]. A closely related method, the occupation-restricted-
multiple-active-space (ORMAS) SCF approach [23], also allows for an arbitrary number of
active subspaces but, in contrast to GASSCF, considers minimum and maximum electron
occupations for each individual subspace.

All methods discussed above achieve an increase in active space size by actually reducing
the size of the configuration space, either by truncating the CI expansion or by defining dis-
connected subspaces between which excitations are forbidden. An alternative can be defined
by taking advantage of the density matrix renormalisation group (DMRG) [24]. The DMRG-
CASSCF method [25, 26] employs the DMRG algorithm as a substitute for the explicit
diagonalisation of the extremely large Hamiltonians associated with large scale CASSCF
calculations. The compact nature of the DMRG wavefunction allows for a significant
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increase in active space size, making calculations in which up to 30 electrons are explicitly
correlated in a space of approximately 30 molecular orbitals, CASSCF (30,30), compu-
tationally tractable. This approach, however, is at its most efficient only when applied to
(pseudo-)linear molecules, and so is currently not particularly well-suited to the study of
f-element complexes.

5.5 Selection of Active Spaces

One of the most challenging aspects of a CASSCF calculation is the identification of a
suitable active space. Much has been written on this subject, and the reader is directed to a
recent contribution by Veryazov et al. [27] on the subject.

5.5.1 Chemical Intuition and Björn’s Rules

There are many factors governing the choice of active space. An important consideration
is the nature of the chemical problem that is to be addressed. For example, if a chemical
reaction is to be studied, then all orbitals involved in bond breaking/formation must be con-
sidered. If, instead, excited state properties are of interest, for example in the simulation
of absorption processes, then orbitals whose occupations differ significantly between the
ground and excited state must be included. This can be particularly important in coordi-
nation complexes, where excitation processes may involve a change in the oxidation state
of the metal ion. However, some general points with regard to the choice of active space
orbitals can be made:

• Have most active orbitals paired. Typically, this pair of natural orbitals will consist of
one strongly occupied orbital (i.e., one with occupation close to an integer value) and
one weakly occupied ‘correlating’ orbital.

• Include bonding and antibonding orbitals of a bond that may be (partially) broken (see
Section 5.3.2).

• Include conjugated and aromatic bonds in the active space.
• Leave orbitals associated with C-H bonds inactive.

Björn Roos attempted to develop rules to aid in the construction of active spaces, and some
of these rules are briefly summarised here:

• Include 2s and 2p orbitals for light atoms such as Li, B, and C. For N, O, and F, only
include 2p orbitals.

• Include two π-orbitals for each π-bond in planar molecules. If this is not possible, select
active space based on energy.

• Include the valence d-shell of transition metals. For first row transition metals, a second
d-shell may be needed in order to model changes in oxidation state.

• Where hybridisation is pronounced, include all orbitals with d-character.
• Include the 4f shell of the lanthanides, even when there is no evidence of participation in

chemical bonding. 5d and 6s orbitals may also be important, although less so for strongly
ionic complexes.
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• The 5f, 6d, and 7s orbitals of the actinides should be included (although this is often
impractical). Only 5f orbitals need be included for highly charged complexes.

5.5.2 Natural Orbital Occupations

The rules given in Section 5.5.1 serve as a useful starting point for the construction of active
spaces. However, in many f-element complexes, the size of the active space generated using
these rules is too large to be used in a CASSCF calculation. Another approach, which can
be used in conjunction with chemical intuition, is to select an active space based on the nat-
ural orbital occupations. Here, a set of natural orbitals is generated using a post-HF method
(which may be a CI or perturbational approach) and a criterion is imposed for inclusion in
the active space. A typical criterion is that those natural orbital occupations that lie in the
range 0.02–1.98 are included in the active space. The rationale behind this approach is that
only natural orbitals with occupation numbers differing significantly from integer values
contribute significantly to the static correlation of the system, since all other orbitals are
either occupied or empty in all contributing configurations. This approach does not guaran-
tee an appropriate active space, whose size may be very sensitive to variation in the selection
criterion, but can be used to identify the most important orbitals in the active space.

5.5.3 RAS Probing

RAS probing is closely related to the approach described in Section 5.5.2. It is of most use
when it is difficult to use chemical intuition in identifying the active space. In such cases,
a RASSCF calculation is performed using a large number of orbitals (up to approximately
40) but a low order of excitation, considering only singly and doubly excited configurations.
Again, natural orbital occupations are used in order to identify important orbitals and retain
them in the active space. This approach can be used in an iterative manner in order to reduce
the active space to a size to which CASSCF may be applied, although caution must be
applied to ensure that results are robust to variation in the active space.

5.6 Dynamical Correlation

Whilst CASSCF and related methods give a qualitatively accurate description of static cor-
relation, the effects of dynamic correlation are largely neglected. The inclusion of dynamical
correlation is critical for the quantitatively correct simulation of f-element complexes. This
can be recovered through the application of full CI but, as already discussed, this method is
intractable for all but very small systems. In fact, CI expansions converge on the full CI limit
very slowly. The Coulomb cusp condition specifies a relationship between the two-electron
wavefunction and its first derivative when the interelectronic separation is equal to zero:

∂Ψ

∂r

∣∣∣∣
r12=0

=
Ψ

2

∣∣∣∣
r12=0

(5.40)

As discussed in Section 5.2.3, dynamical correlation is important when r12 is small and this
is manifested in a significant difference between the exact two-electron wavefunction, which
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Figure 5.8 Comparison of exact and uncorrelated two-electron wavefunctions in the vicinity
of r12 = 0. Only the former satisfies the Coulomb cusp condition

satisfies equation 5.40, and the uncorrelated wavefunction, which does not. This difference
is shown in Figure 5.8.

Configuration interaction can only incorporate r12 dependence into the wavefunction
via terms of the form r2

12. This results in slow convergence to the exact wavefunction
and consequently, the energy associated with dynamical correlation. For this reason, other
approaches to recovering dynamical correlation have been developed. These approaches are
applied after a CASSCF or related calculation has been performed in order to recover static
correlation.

5.6.1 Multireference Configuration Interaction

Multireference configuration interaction (MRCI) [28] attempts to recover dynamical cor-
relation by considering only the most important configurations. Taking the results of an
MCSCF calculation, the leading configurations are taken as reference configurations for a
series of truncated CI expansions in the full orbital space. Due to the truncated expansion,
MRCI is significantly cheaper than full CI, but still becomes extremely expensive for all
but moderately small systems. Typically, no configurations with more than two or three
excitations from the references are considered.

5.6.2 Multireference Second Order Perturbation Theory

There are two popular approaches to recovering dynamical correlation through second order
perturbation theory. Whilst both take a CASSCF wavefunction as their starting point, their
definition of the zeroth order Hamiltonian, Ĥ0, required for the perturbational treatment,
differ.

The first approach is known as complete active space second order perturbation the-
ory [29] (CASPT2). The CASPT2 approach can be considered a multireference analogue
to Møller-Plesset perturbation theory, a monodeterminantal method used to recover the
correlation energy. In CASPT2 Ĥ0 is chosen so that it has the CASSCF state as an eigen-
function, and the effective Fock operator, F̂, is defined so that it is diagonal in the active,
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inactive, and external subspaces. Furthermore, its diagonal elements correspond to orbital
energies for inactive and external orbitals. This approach can be developed so that the second
order correction to the energy can be obtained via construction of the first order correc-
tion to the wavefunction, and reduces to the Møller-Plesset form for a monodeterminantal
wavefunction.

It can be shown that within the CASPT2 approach, the reference state directly inter-
acts only with those states that differ from it through either single or double excitation.
It is not uncommon to find that the zeroth order energy of one or more of these excited
states can be similar to, or even below, the energy of the reference. Such ‘intruder states’
cause the perturbational approach to fail, sometimes in dramatic fashion, and must be elimi-
nated through either a redefinition of the active space or via the application of level-shifting
techniques [30].

The intruder state problem can be avoided by employing second order n-electron valence
state perturbation theory [31] (NEVPT2). NEVPT2 again takes a CASSCF state as a ref-
erence function, but uses a more advanced definition of Ĥ0, a modified Dyall Hamiltonian.
This Hamiltonian behaves like the true Hamiltonian inside the CAS subspace, explicitly
including all two-electron interactions. NEVPT2 can also be considered as a generalisation
of the Møller-Plesset approach, and the improved definition of Ĥ0 eliminates the intruder
state problem.

5.7 Applications

We finish this chapter with some example applications from the literature. These serve to
illustrate the fundamental questions in f-element chemistry that can be probed with the
CASSCF method.

5.7.1 Bonding in Actinide Dimers

A series of An dimers (An=Ac-U) have been studied using the CASSCF methodology
[32, 33]. The bonding in An2 is rather complicated, in contrast to the transition metal ana-
logues Mo2 and W2, which both exhibit sextuple bonds, and arises from the aforementioned
near degeneracy of the An 5f, 6d, and 7s orbitals. In a seminal demonstration of the CASSCF
methodology, Gagliardi and Roos speculated that the electronic structure U2 could be inter-
preted as being consistent with a quintuple U-U bond [32]. This bond was composed of three
traditional two-electrons bonds, formed from uranium 7sσ and 6dπ orbitals, and four ‘one
electron bonds,’ formed from 6dσ , 6dδ , 5fπ , and 5fδ orbitals, giving a total of ten electrons
in bonding orbitals.

Table 5.1 summarises some CASSCF calculated properties of An dimers. These data
reveal an increase in bond order as one traverses the actinide series, with a concomitant
reduction in bond length and increase in binding energy up to Pa2. U2, exhibiting the same
bond order as the protactinium analogue, nevertheless shows a dramatic decrease in binding
energy. This was rationalised in terms of stronger occupation of bonding orbitals in Pa2

as well as greater contribution of the more strongly interacting 6d orbitals to the Pa-Pa
bond [33].
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Table 5.1 Selected properties of the An2 bond. Data
from Roos and van Besien [33]

System Bond order rAn−An (Å) Bond energy (eV)

Ac2 2 3.63 1.2
Th2 4 2.76 3.3
Pa2 5 2.37 4.0
U2 5 2.43 1.2

6dσg  (1.961) 6dπg  (3.920)

5fπu  (3.896)5fσu  (1.961)

Figure 5.9 Strongly occupied natural orbitals and corresponding occupation numbers of
[UO2]2+ obtained from a CASSCF (12,12) calculation. Data from Pierloot and van Besien [34].
See color plate section

5.7.2 Covalent Interactions in the U-O Bond of Uranyl

The uranyl dication [UO2]2+ is ubiquitous in the aqueous chemistry of uranium and, again
in contrast to the transition metal analogues [MoO2]2+ and [VO]2+, which exhibit O=M=O
bond angles of approximately 110◦, is linear, with D∞h symmetry. This linear motif is also
found in other synthesized actinyls, [AnO2]+/2+ (An=U-Am). These complexes are char-
acterised by short, chemically inert, covalent An-O bonds. Pierloot and van Besien have
performed CASSCF calculations on uranyl [34], confirming the description of bonding
established by previous work [35]. Figure 5.9 shows the strongly occupied natural orbitals
and corresponding occupation numbers obtained from a CASSCF (12,12) calculation. See
color plate section.

In contrast to the An2 dimers considered previously, no δ- or ϕ-type bonding interactions
are possible via O 2p donation, simplifying the bonding picture considerably. In this com-
plex the covalent bonds formed by donation from the –yl oxygen 2p orbitals into the empty
uranium 5f and 6d orbitals can be clearly seen, and the bonding characterised in terms of
a series of three-centre electron-pair bonds. In total, there are twelve electrons occupying
bonding orbitals, which can interpreted as representing two U-O triple bonds.
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Whilst the uranyl bonding orbitals have primarily oxygen 2p and uranium 5f and 6d char-
acter, other contributions can be significant: the 5fσu orbital has an antibonding admixture
of the uranium pseudocore 6p orbital, resulting in energetic destabilisation due to the push-
ing up from below mechanism [36]. The contributions from U 5f, 6p, and 6d orbitals to
the uranyl U-O bond illustrates the complexity of bonding in f-element compounds and
exemplifies the need for a carefully selected active space.

5.7.3 Covalency and Oxidation State in f-Element Metallocenes

Since the 1968 synthesis of uranocene, UCOT2, (COT = η8-C8H8) by Streitwieser and
Müller-Westerhoff [37], the f-element metallocenes have been the subject of intense interest
from the f-element community. Since each COT ligand requires two electrons in order to
attain aromatic stability, it is reasonable to assume that they may form sandwich complexes
with elements in the +4 oxidation state. The stability of actinocenes, AnCOT2, has its ori-
gins in the availability of the An 5f and 6d orbitals to participate in δ-bonding with the π2

ligand orbitals. The transition metals, with only d-orbitals able to participate in bonding,
and the lanthanides, with the chemical inertness of the 4f shell combined with a prevalent
+3 oxidation state, are significantly less likely to form analogous complexes. One exception
is cerium, which is known to form tetravalent complexes, and CeCOT2 has been success-
fully synthesized [38, 39]. The participation of the Ce 4fδ orbitals to bonding in cerocene
can be seen in Figure 5.10. See color plate section. It was suggested that CeCOT2 may
actually be a molecular analogue of a Kondo system, with an open shell trivalent cerium
centre antiferromagnetically coupled to the ligand subsystem [40]. The high (D8h) sym-
metry implies that such an electronic structure would be implicitly multiconfigurational,
and both MCSCF and CASSCF studies have demonstrated that, while there is a degree of
ambiguity in the interpretation of the ground state of this complex, there is significant mul-
ticonfigurational character, with nonnegligible contributions from both Ce(III) and Ce(IV)

Figure 5.10 Bonding and antibonding MOs of cerocene, exhibiting 4fδ contributions. See color
plate section
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configurations [41–45]. This strong multiconfigurational character has also been found in
other Ce complexes [46, 47].

CASSCF calculations, when combined with subsequent bonding analysis, can also shed
light on the origins of covalency in f-element metallocenes. Although there is a strong
similarity in the electronic structure of cerocene and the plutonium analogue PuCOT2,
topological analysis of the electron density reveals that the latter exhibits enhanced cova-
lent character [44, 48]. A related study of the actinocenes (An=Th-Cm) has demonstrated
that covalent character reaches a maximum between Pa and Pu, and that the variation in
covalency is almost entirely due to differing contributions from actinide 5fδ orbitals [49].

5.8 Concluding Remarks

The CASSCF methodology is a powerful quantum chemical approach, with character-
istics that make it ideally suited to the study of f-element complexes. As opposed to
simpler monodeterminantal methodologies, careful planning and consideration is required
in order to derive meaningful results. However, upon the identification of a suitable active
space, the quantitative evaluation of a range of chemical properties becomes possible. Cur-
rent computational and methodological restrictions limit the applicability of CASSCF to
relatively small systems containing tens of atoms, but promising related approaches are in
development. As these approaches mature, so the scope for their application will increase.
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6.1 Introduction

Computational studies of f element chemistry are still a challenge because of significant
correlation and relativistic effects due to the large number of electrons. Furthermore, the
partially occupied f, d, s, and/or p shells cause a high density of low-lying states, which
also complicate calculations. One possibility to deal with these difficulties is the effec-
tive core potential (ECP) approach, which is one of the most successful and applied
approximations in relativistic quantum chemistry for heavy elements. The idea of ECPs
is based on the chemically intuitive restriction of the explicit calculations to the chemi-
cal important valence electrons, while the essentially inert atomic cores, i.e., the nucleus
and the electrons in the inner shells, are replaced by a suitable parametrized (relatively
simple) one-electron operator acting on the remaining valence electrons, i.e., the effective
core ‘potential’ [1]. In contrast to the alternative approximate relativistic all-electron (AE)
methods as the Douglas–Kroll–Hess (DKH) [2–5] approximation, ECPs save significant
computation time and therefore often allow for calculations, which are not feasible at the
AE level, e.g., investigations of large complexes even including more than one heavy ele-
ment. Additionally, they concentrate the computational effort on the chemically relevant
valence part allowing for accurate correlation methods and large active spaces. However,
one should not forget that the restriction to valence electrons is a compromise between
the required computational effort and the accuracy of the results. Thus, it is important
to choose the ECP core carefully (see Section 6.2.3). If a small core is chosen and care

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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has been taken in the adjustment, the error produced by the ECP approximation is almost
always smaller than the error due to the ab initio electron correlation or density functional
procedure [6].

Besides the computational savings, ECPs have the advantage that they allow for the
implicit inclusion of relativistic effects, even of the Breit interaction or quantum electrody-
namic (QED) corrections, by simple parametrizations to relativistic AE data. Furthermore,
ECPs permit the usage of smaller basis sets and thus the basis set superposition error is less
significant compared to AE calculations. Even the difficulties due to open shells may be
avoided by applying ECPs, if these open shells are included in the core system as it is the
case for the 4f-in-core [7–9] and 5f-in-core [10–12] pseudopotentials (PP) for lanthanides
and actinides, respectively. However, these PPs can only be applied, if the f orbitals do not
participate significantly in chemical bonding (see Section 6.3.1).

Scalar-relativistic or spin-averaged ECPs can be applied in unchanged nonrelativistic
quantum chemistry and essentially all modern quantum chemistry electronic structure pack-
ages allow their usage, e.g., GAMESS [13], GAUSSIAN [14], MOLCAS [15], MOLPRO
[16], or TURBOMOLE [17]. Moreover, they are available in solid state codes using Gaus-
sian basis functions as CRYSTAL [18]. Spin–orbit (SO) effects can also be accounted for
using various strategies, which range from a simple perturbative treatment subsequent to
scalar-relativistic calculations to the rigorous variational inclusion already from the begin-
ning of the calculations [19]. Even the unforeseen application of ECPs developed within
a wavefunction-based framework to density functional theory (DFT) lead to reasonable
results [20].

There are two main lines of ECPs, i.e., the model potential (MP) technique, which uti-
lizes valence orbitals with a nodal structure corresponding exactly to those of the AE valence
orbitals, and the PP scheme, which uses valence orbitals exhibiting a simplified nodal struc-
ture with respect to the AE valence orbitals, i.e., the so-called pseudovalence orbitals. This
chapter will only focus on the PP approach, while the chapter from Barandiáran and Seijo
will deal with MPs.

One further distinguishes ECPs by the kind of their adjustment, i.e., energy-consistent PPs
(see Section 6.3.1) and shape-consistent PPs/MPs (see Section 6.3.2). Furthermore, ECPs
are categorized by the size of their core, e.g., one differs between f-in-valence small-core
[21, 22] and f-in-core large-core PPs (LPP) [7–12] for the f elements. Finally, the accuracy
of the underlying AE reference data determines the ECP type, e.g., for early actinides scalar-
relativistic Wood–Boring (WB) [22] or relativistic multiconfiguration Dirac–Hartree–Fock
(MCDHF) [23, 24] small-core PPs (SPP) are available.

In the following we will emphasize only those modern variants of the PP approach, which
experience a widespread use for f elements. At first, we will summarize the most important
concepts and equations of the PP method. We will then describe in detail the two different
kinds of PP adjustment, i.e., the energy- and shape-consistent technique. Next we will briefly
comment on the valence basis sets for PP calculations. Then we will show some character-
istic applications, and finally, we will give a short conclusion and outlook demonstrating
the possibilities and limitations of the PP approach.

For further reading the minireview on the PP approximation by Schwerdtfeger [6], the
rigorous recent review on relativistic PPs by Dolg and Cao [19], and the relatively complete
list of older reviews given in the latter are recommended.
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6.2 Valence-Only Model Hamiltonian

In ECP theory an effective model Hamiltonian only acting on the explicitly treated valence
electrons is searched. There are several choices for the formulation of such a valence-only
model Hamiltonian, i.e., four-, two-, or one-component approaches and explicit or implicit
relativistic treatment [20]. Nonrelativistic, scalar-relativistic, and quasirelativistic ECPs use
a formally nonrelativistic valence-only model Hamiltonian implicitly including relativistic
effects [19]

Ĥv = −1
2

nv∑
i

Δi +

nv∑
i<j

1
rij

+

N∑
I

V̂I
cv(i) +

N∑
I<J

QIQJ

RIJ
+ V̂CPP. (6.1)

The Hamiltonian as well as all following formulas are given in atomic units. The subscripts
c and v denote core and valence, respectively, and the Hamiltonian is given for a molecule
with nv valence electrons and N cores with effective core charges Q. rij and RIJ denote
interelectronic and internuclear distances, respectively. The individual terms of equation 6.1
are the kinetic energy of the valence electrons, the Coulomb interaction between the valence
electrons, the superposition of N atomic ECPs V̂I

cv, the point charge Coulomb repulsion
between cores/nuclei, and a core-polarization potential (CPP) V̂CPP, which will be further
described in Section 6.2.2. If required, additive corrections accounting for deviations from
the point charge approximation for the repulsion between cores/nuclei may be included,
e.g., corrections for mutually penetrating cores [19]. For a neutral system the number of
valence electrons corresponds to

nv = n −
N∑
I

(ZI − QI), (6.2)

where n is the total number of electrons and ZI as well as QI denote the nuclear charge and
the core charge of core I, respectively.

Neglecting V̂CPP in equation 6.1 for a moment, it is usually assumed that all relativistic
effects are described by a suitable parametrization of the ECPs V̂I

cv, i.e., it is sufficient
to apply the nonrelativistic kinetic energy operator as well as the nonrelativistic Coulomb
interaction between the valence electrons [19]. Besides the relativistic contributions, the
ECP V̂I

cv accounts for all interactions of the valence electrons with the nucleus and the
(removed) core electrons, and it is given by [19]

V̂I
cv(i) = −

nv∑
i

QI

riI
+

nv∑
i

V̂I
PP(i). (6.3)

The leading term corresponds to the Coulomb attraction between the valence electrons and
the cores, and the expression V̂I

PP of the second term is the one-electron pseudopotential
operator. This operator keeps the valence electrons out of the core and in the valence space,
i.e., it is repulsive in the short-range and attractive in the long-range [6]. The main task
for the PP development is now to find an analytical form, i.e., a suitable parametrization,
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for V̂I
PP, which is able to compensate for all errors introduced by the simplification of the

original Hamiltonian and at the same time easily applicable [19].

6.2.1 Pseudopotentials

The pseudopotential approximation was originally introduced by Hellmann already in 1935
for a semiempirical treatment of the valence electron of potassium [25]. However, it took
until 1959 for Phillips and Kleinman from the solid state community to provide a rigorous
theoretical foundation of PPs for single valence electron systems [26]. Another decade later
in 1968 Weeks and Rice extended this method to many valence electron systems [27, 28].
Although the modern PPs do not have much in common with the PPs developed in 1959
and 1968, respectively, these theories prove that one can get the same answer as from an AE
calculation by using a suitable effective valence-only model Hamiltonian and pseudovalence
orbitals with a simplified nodal structure [19].

The analytical form applied for PPs nowadays is the semilocal ansatz (local in the coor-
dinate r, but nonlocal in spherical angle coordinates θ and φ [6]), which goes back to
Abarenkov and Heine working in the field of solid states [29, 30] and was introduced a
few years later to quantum chemistry by Schwarz [31] as well as Kahn and Goddard [32].
In this ansatz besides the r-dependency of the PP also a l-dependency, i.e., a dependency on
the angular momentum quantum number l, is taken into account. In the case of nonrelativis-
tic and scalar-relativistic, i.e., one-component, PPs in equation 6.3 the following semilocal
ansatz for the PP V̂I

PP is used [32]

V̂I
PP(i) = VI

L(riI) +
lmax∑
l=0

VI
l (riI)P̂

I
l(i). (6.4)

This semilocal PP consists of a sum of local potentials VI
l (riI) acting separately on each

angular momentum symmetry 0 ≤ l ≤ lmax present in the core and a common local poten-
tial VI

L(riI), which acts on all angular momentum symmetries l > lmax not included in the
core [19]. If lmax is taken large enough, the leading local term VI

L can be avoided [6].
The second term in equation 6.4 contains the angular momentum projection operator P̂I

l

based on spherical harmonics |lm, I〉

P̂I
l(i) =

l∑
m=−l

|lm, I〉〈lm, I|. (6.5)

Since there are no core functions in equation 6.4, the pseudovalence orbitals belonging to
the lowest Hartree–Fock (HF) or Kohn–Sham solutions for each angular momentum l are
thus nodeless [6].

In the case of relativistic two-component PPs, the inclusion of SO effects requires some
modification of the analytical PP form. At the Dirac–Hartree–Fock (DHF) level, the degen-
eracy of the orbitals is reduced and depends in addition to n and l also on the total angular
momentum quantum number j implying a semilocal PP with a lj-dependency [33]
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V̂I
PP(i) = VI

LJ(riI) +
lmax∑
l=0

l+1/2∑
j=|l−1/2|

VI
lj(riI)P̂

I
lj(i). (6.6)

Here, the projection operator P̂I
lj is set up with spinor spherical harmonics |ljm, I〉

P̂I
lj(i) =

j∑
m=−j

|ljm, I〉〈ljm, I|. (6.7)

Ermler et al. showed that equation 6.6 may be rewritten as the sum of a spin-averaged (SA)
scalar-relativistic and a SO term [34]

V̂I
PP(i) = V̂I

PP,SA(i) + V̂I
PP,SO(i), (6.8)

where

V̂I
PP,SA(i) =

lmax∑
l=0

lVI
l,|l−1/2|(riI) + (l + 1)VI

l,l+1/2(riI)

2l + 1
P̂I
l(i) (6.9)

and

V̂I
PP,SO(i) =

lmax∑
l=1

VI
l,l+1/2(riI)− VI

l,|l−1/2|(riI)

2l + 1

[
lP̂I

l,l+1/2(i)− (l + 1)P̂I
l,l−1/2(i)

]
.

(6.10)

The spin-averaged PP, which can be calculated from a two-component PP by equation 6.9,
may be applied in scalar-relativistic (one-component) calculations using standard quantum
chemistry program packages as GAUSSIAN [14] or MOLPRO [16].

In order to become computationally efficient also for molecular calculations and to handle
PPs by standard quantum chemistry codes, the potentials VI

L and VI
l in the one-component

case (see equation 6.4) as well as VI
LJ and VI

lj in the two-component case (see equation 6.6)
are usually represented by linear combinations of k radial Gaussian functions multiplied by
powers of the electron–core distance riI [35]

VI
m(riI) =

∑
k

AI
kmrnkm

iI e−aIkmr2
iI with m = L, l,LJ, lj. (6.11)

The parameters AI
km, nkm, and aIkm are optimized within the PP adjustment procedure

(see Section 6.3). The powers nkm of the electron–core distance are restricted to the val-
ues −2, −1, and 0, because these values proved to accurately cover the behavior of V̂I

PP at
the origin [35].

6.2.2 Approximations

At least five approximations have to be made in order to work with a computationally
practical valence-only model Hamiltonian as in equation 6.1. To compensate for the errors
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introduced by these approximations, the valence-only Hamiltonian usually contains free
parameters, e.g., in the pseudopotentials V̂I

PP, which are adjusted to accurately reproduce
AE or experimental data [19].

The first approximation is connected with the choice of the core and valence subsystems
or the so-called core–valence separation. From a quantum mechanical point of view the
partitioning of a many-electron system into subsystems is not possible, because electrons
are indistinguishable. However, this partitioning can approximately be achieved within an
independent-particle framework, as the HF or DHF level [35–37], using an orbital-based
definition of the core and valence subsystems. Due to the core–valence separation, the core–
valence correlation and, if uncorrelated reference data are chosen (as is most often the case),
also the core–core correlation is neglected. Of course the assumption of valence-only meth-
ods is that core correlation effects can be omitted [19], but due to this neglect bond lengths
and energies as well as ionization potentials (IPs) are at least slightly affected [38]. Obtained
bond lengths and energies are too long and too low, respectively, because the electron–
electron repulsion is overestimated, and calculated IPs are too small, since core correlation
stabilizes the atom. Therefore, especially for LPPs, it may become important to include the
dynamic core-polarization, i.e., core–valence correlation, by the addition of a suitable CPP
V̂CPP [39, 40] to the valence-only Hamiltonian (see equation 6.1).

Second, the atomic cores are assumed to be transferable for the atom and molecule
regardless of the electronic state, i.e., they are inert and remain unchanged, which corre-
sponds to a freezing of the core orbitals, the so-called frozen-core (FC) approximation [36].
Therefore, care has to be taken that all low-energy configurations of the neutral atom and
its low-charged ions, which might become important in chemical processes, are consid-
ered in the PP adjustment [41]. However, only energy-consistent PPs are adjusted to more
than one reference configuration, which constitutes an advantage over shape-consistent PPs
(see Section 6.3). Clearly, the appropriate choice of the core is also for this approximation
an important factor and will be discussed in detail in Section 6.2.3. Besides the usage of
several reference configurations within the PP parametrization, CPPs [39, 40] can be used
to correct for the FC approximation, because they also account for static core-polarization,
which arises from the deformation of the atomic cores under the field of the other cores and
all valence electrons in the system at the HF level [19].

Meyer and coworkers [39, 40] proposed in the framework of AE calculations for alkali
and alkaline earth elements the use of an effective CPP of the form

V̂CPP = −1
2

∑
I

αI
�̂f 2
I (6.12)

with

�̂fI = −
∑

i

�riI
r3
iI

F
(
riI, δ

I
e

)
+
∑
J �=I

QJ

�RJI

R3
JI

F
(
RJI, δ

I
c

)
. (6.13)

Here, αI denotes the dipole polarizability of the core I and �̂fI is the electric field at this
core generated by the valence electrons (at relative positions�riI) and all other cores/nuclei
(with charges QJ at relative positions �RJI). Since the validity of the underlying multipole
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expansion breaks down for small distances from the core I, the electric field �̂fI has to be
multiplied by a cutoff factor F

(
riI, δIe

)
for electron–nuclear terms

F
(
riI, δ

I
e

)
=

(
1 − e−δIer2

iI

)ne
(6.14)

and F
(
RJI, δ

I
c

)
for nuclear–nuclear terms

F
(
RJI, δ

I
c

)
=

(
1 − e−δIcR2

IJ

)nc
. (6.15)

The exponents ne and nc for the electronic and nuclear contributions are usually one or
two, and the cutoff parameters δIe and δIc are adjusted to suitable reference data, e.g., IPs.
This ansatz for CPPs was adapted to energy-consistent LPPs by Fuentealba et al. [42] and
proved to be quite successful, e.g., in calculations using 4f-in-core [43] and 5f-in-core LPPs
[11, 44], respectively.

The third approximation is the replacement of the core electrons in an AE FC Hamil-
tonian by an ECP V̂I

cv modeling the real nonlocal HF potential [19]. The atomic effective
one-electron operators representing the ECPs are usually cast into a computationally con-
venient form with adjustable parameters allowing for an implicit treatment of relativistic
effects [19].

Fourth, the valence-only model Hamiltonian given in equation 6.1 assumes a classical
point charge Coulomb repulsion between cores/nuclei. However, for very large cores this
approximation might be too crude and mutually penetrating or overlapping cores need to be
accounted for by additional corrections [19].

Finally, in contrast to MPs the PP scheme introduces the so-called pseudovalence orbital
transformation, i.e., atomic core and virtual orbitals are mixed into the valence orbitals
in order to make these radially smooth and nodeless for the energetically lowest solu-
tion in each angular symmetry [41]. Although the pseudovalence orbitals possess in the
chemically inert core region a simplified nodal structure, their shapes in the chemically
important valence region as well as their orbital energies should be very similar to the AE
case. The advantage of the simplified radial nodal structure is that compact basis functions,
required to describe the nodal structure in the core region, are avoided, and thus consider-
able savings with respect to the one-particle basis sets are achieved using PPs [20]. However,
pseudovalence orbitals tend to give too large valence correlation energies and too large mul-
tiplet splittings [45, 46], because the exchange integrals are overestimated. In practice, the
accuracy of correlation energies from PP calculations [47, 48] are not worse than that of
MP calculations [49, 50] and especially correlation contributions to energy differences as
binding energies are well described due to the modern PP parametrization.

6.2.3 Choice of the Core

The appropriate choice of the ECP core is, besides the choice of the reference data, the
most important decision underlying the construction of an ECP. The size of the core is an
important factor for both the accuracy (small cores preferable) as well as the efficiency
(large cores preferable) of the ECP [19]. Thus, a compromise is needed, where the errors
due to the two approximations depending on the core size, i.e., the core–valence separation
and the FC approximation, are still acceptable.
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Table 6.1 Range of the FCEs (in eV) for configurations with fixed 4f occupations for 4, 12, and
30 valence electron systems of Ce

4 Valence electrons 12 Valence electrons 30 Valence electrons

valence space 4f15d16s2 4f15s25p65d16s2 4s24p64d104f15s25p65d16s2

FC 1s–4d, 5s, 5p 1s–4d 1s–3d
FCEs for 4f1 0.007–0.416 0.000–0.001 0.000
FCEs for 4f0 0.845–5.037 0.364–0.466 0.002
FCEs for 4f2 0.824–1.238 0.180–0.223 0.001–0.002

The FCEs correspond to relative DHF energies based on the DC Hamiltonian of the 2J+1-weighted average of all J levels
belonging to a nonrelativistic configuration [51] with respect to the value for the Ce [Xe]4f15d16s2 ground state config-
uration and were taken from Dolg and Cao [41]. Considered are 9, 12, and 6 configurations of the neutral atom and its
cations for the fixed 4f1, 4f0, and 4f2 occupations, respectively.

In the case of heavy elements, more than one choice of the core is possible and the related
accuracy has to be further investigated. For this purpose AE FC HF and DHF calculations
provide a good impression of the FC errors (FCE), which result for a specific core size [19].
However, one should not forget that additional FCEs arise at the correlated level.

The most complex systems to model by ECPs are lanthanides and actinides, since their
valence shells have three different main quantum numbers n, i.e., (n− 2)f, (n− 1)d, and ns,
and thus three radial density maxima at different distances from the nucleus [19]. In order to
demonstrate the possibilities and difficulties in choosing the ECP core for f elements, three
different core definitions for Ce will be discussed. Table 6.1 lists FCEs for configurations
with fixed 4f occupations for 4, 12, and 30 valence electron systems of Ce taken from Dolg
and Cao [41]. The FCEs correspond to relative energies from AE DHF calculations based
on the Dirac–Coulomb (DC) Hamiltonian using the finite difference program GRASP [51]
between several configurations with respect to the value for the Ce [Xe]4f15d16s2 ground
state configuration. Considered are 9, 12, and 6 configurations of the neutral atom and its
cations for the fixed 4f1, 4f0, and 4f2 occupations, respectively, including excitations and
ionization from the 5d and 6s shell.

From a chemical point of view, the valence electron system of Ce consists of four elec-
trons (4f15d16s2), which corresponds to a core–valence separation according to orbital
energies. However, FCEs of up to 5.037 eV arise using this core definition. Especially, if the
4f occupation number (with respect to the ground state) changes, the FCEs become signifi-
cantly large. This is due to the fact that the 5s and 5p semicore orbitals are more diffuse than
the compact 4f shell, and thus they experience a significant change of the effective nuclear
charge, if the 4f occupation changes [41]. The associated relaxation of the 5s and 5p orbitals
is not possible, if they are included in the ECP core, and this leads to large FCEs. Further-
more, a weak dependence on the 5d occupation is observed, because this shell still has a
noticeable radial overlap with the 5s and 5p semicore orbitals [41]. Therefore, a much better
choice is to include the 5s and 5p shells in the valence space leading to ECPs with 12 valence
electrons. In this case the dependence of the FCEs on the 5d occupation is negligible (at most
0.001 eV), whereas a noticeable, however, systematic dependence on the 4f occupation is
still present. These findings can be explained by the radial overlap between the 4f valence
and the 4s, 4p, and 4d core shells [41]. The best choice with respect to the FCEs (at most
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0.002 eV) is a small Ce30+ core, which treats all shells with n ≥ 4 explicitly. It is therefore
strongly advocated to separate the ECP core using spatial rather than energetic criteria.

Table 6.1 also shows that the range of the FCEs for a fixed 4f occupation, i.e., the FCEs
for configurations with the same 4f occupation, are relatively small (4f0: 0.102 eV, 4f2:
0.043 eV), if a 12 valence electron system is considered. This was the motivation to derive
PPs for f elements including the open f shell with a fixed occupation number into the core.
Thus, for each valency, corresponding to a fixed f occupation, a f-in-core LPP was adjusted
(see Section 6.3.1).

6.3 Pseudopotential Adjustment

Among the PPs one distinguishes energy- and shape-consistent PPs. Although the for-
mer are simultaneously adjusted to total AE valence energies of all chemical important
configurations of the neutral atom and its low-charged ions, the latter rely on quantities
defined within an effective one-electron picture, i.e., orbital shapes in the spatial valence
region and orbital energies, of one specific reference state [19]. Thus, the energy-consistent
PPs better account for the transferability of the core orbitals, i.e., the FC approximation
(see Section 6.2.2). Both methods will be described in the following two sections.

6.3.1 Energy-Consistent Pseudopotentials

The method of energy-consistent PPs was developed during the last three decades from the
semiempirical PP approach, where the free parameters were optimized to fit the experi-
mental atomic spectrum analogous to the original work of Hellmann [25]. However, such
a semiempirical adjustment is restricted to single valence electron systems, where valence
correlation is absent and the Schrödinger equation can be solved almost exactly using finite
difference methods or very large basis sets [19]. The problem for many-electron systems is
that the occurring valence correlation cannot be described sufficiently accurate within the
PP parametrization [19]. Since especially for f elements it is important to choose a medium
or small core due to the FC approximation (see Section 6.2.3), the semiempirical adjust-
ment is not appropriate to produce accurate and transferable PPs for these elements [19].
Furthermore, for f elements, especially actinides, the required accurate experimental atomic
reference data as excitation energies and IPs are often missing or incomplete. However, the
idea to fit PPs to such quantum mechanical observables, instead of relying on quantities
defined in an approximate one-particle picture as orbital shapes and energies, was adopted
in the ab initio framework of fitting energy-consistent PPs [52]. In contrast to semiem-
pirical energy-adjusted PPs in the case of ab initio PPs, the term energy-consistent was
introduced [19].

The energy adjustment consists of three steps. First, the reference configurations, LS
states, or J levels I of the neutral atom and its low-charged ions are chosen and their
total energies EAE

I are determined using an AE method. Next the AE total valence ener-
gies EAE,V

I are calculated by subtracting the AE core energy from the total energies EAE
I .

Finally, the free parameters of the PP, i.e., the coefficients and exponents of the Gaus-
sians in equation 6.11, are adjusted by a least-squares fit to the total valence energies of
the reference [52, 53]
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∑
I

ωI

(
EPP
I − EAE,V

I

)2
:= min. (6.16)

Here, EPP
I denotes the total valence energy for the Ith configuration/LS state/J level from the

PP calculation using the same coupling scheme and correlation treatment as for the calcula-
tion of the AE total valence energy EAE,V

I . The weight factors ωI are typically chosen to be
equal for all nonrelativistic configurations independent from the number of the underlying
LS states or J levels [19].

The available energy-consistent PPs and corresponding valence basis sets (see Section 6.4)
for lanthanides and actinides are listed in Table 6.2 and are also compiled on the Cologne
PP website [54] and partially on the Environmental Molecular Sciences Laboratory (EMSL)

Table 6.2 Energy-consistent relativistic PPs and valence basis sets for lanthanides and actinides

Elements Method Core nc nv Basis sets Ref.

La–Lu WB 1s–3d 28 29–43 (14s13p10d8f6g)/[6s6p5d4f3g], gen., ANO [21, 58]
p-VQZ reducible to p-VTZ and p-VDZ

(14s13p10d8f6g)/[10s8p5d4f3g], seg., ANO [59]
WB 1s–4fn 46–60 11 (7s6p5d)/[5s4p3d], seg. [7, 8]

(8s7p6d)/[6s5p5d,5s4p4d], [60]
(7s6p5d)/[6s5p4d,5s4p4d], seg.; sol.

3f2g [44]

La–Yb WB 1s–4fn+1 47–60 10 (7s6p5d)/[5s4p3d], seg. [7, 8]

Ce–Nd WB 1s–4fn−1 46–48 12 (6s5p4d,7s6p5d)/p-VXZ, [9]
X = D, T, Q, seg.; +2f1g; sol.

Ac–Lr WB 1s–4f 60 29–43 (12s11p10d8f)/[8s7p6d4f], seg. [22]
(14s13p10d8f6g)/[6s6p5d4f3g], gen., ANO [61]

p-VQZ reducible to p-VTZ and p-VDZ
(14s13p10d8f6g)/[10s9p5d4f3g], seg., ANO [62]

Ac–Lr WB 1s–5fn 78–92 11 (6s5p4d,7s6p5d,8s7p6d)/p-VXZ, [10]
X = D, T, Q, seg.; +2f1g; sol.

Pu–No WB 1s–5fn+1 84–92 10 (6s5p4d,7s6p5d)/p-VXZ, [11]
X = D, T, Q, seg.; +2f1g; sol.

Th–Cf WB 1s–5fn−1 78–86 12 (6s5p4d,7s6p5d)/p-VXZ, [11]
X = D, T, Q, seg.; +2f1g; sol.

Pa–Am WB 1s–5fn−2 78–82 13 (6s5p4d,7s6p5d)/p-VXZ, [12]
X = D, T, Q, seg.; +2f1g; sol.

U–Am WB 1s–5fn−3 78–81 14 (6s5p4d,7s6p5d)/p-VXZ, [12]
X = D, T, Q, seg.; +2f1g; sol.

Ac–U DHF/ 1s–4f 60 29–43 (14s13p10d8f6g)/[6s6p5d4f3g], gen., ANO [23, 24]
DC+B p-VQZ reducible to p-VTZ and p-VDZ

Listed are the elements, for which the PPs are available, the method used to calculate the AE reference data, the chosen
core, the number of core electrons nc, the number of valence electrons nv, the available basis sets, and the references
for both PPs and basis sets. In the case of the basis set description, the following abbreviations are used: generalized
contracted (gen.), atomic natural orbital (ANO), polarized valence double-, triple-, and quadruple-zeta quality (p-VXZ
with X = D, T, Q), segmented contracted (seg.), and subsets of the basis sets are applicable to solid state calculations
(sol.).
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database [55]. Although the scalar-relativistic PPs relying on AE WB reference data have
been derived using equation 6.16, for the recently optimized relativistic PPs using AE
MCDHF reference data based on the DC Hamiltonian perturbatively including the Breit
interaction (DC+B) an additional adjustable parameter ΔEshift was used

∑
I

ωI

(
EPP
I − EAE,V

I +ΔEshift

)2
:= min. (6.17)

The global valence energy shift ΔEshift was originally introduced in the case of the PP
adjustment for 3d transition metals [56]. Typically this shift amounts to less than 1% of the
ground state total valence energy, but it can improve the accuracy of the parametrization
by one or two orders of magnitude. Whereas the restriction to ΔEshift = 0 in the origi-
nal method (see equation 6.16) implied that, e.g., the ground state valence energy equals
the sum of all IPs leading from the neutral atom to the core system, this is not the case
for the new fitting procedure. Here only the sum of all IPs leading from the neutral atom to
the most highly ionized system included in the reference data is reproduced correctly. The
shift can also be viewed as a shift of the AE core energy. Since the bare core position rel-
ative to the valence states is not expected to be overly relevant for chemical processes, this
shift changing the reference energies can be justified [57]. Moreover, it is obvious that the
quantities of interest as the electron affinity, IPs, and excitation energies, i.e., all possible
energy differences between configurations included as references, remain unchanged [1].
Furthermore, thanks to this energy shift the adjustment to higher ionized states even with
holes in core and semicore orbitals becomes possible.

In the case of the scalar-relativistic WB PPs, one distinguishes between f-in-valence
SPPs [21, 22] and f-in-core LPPs [7–12]. The LPPs include the open f shell in the PP
core and thus avoid its difficult correlation treatment. Since the occupation of the f shell
depends on the oxidation state of the lanthanide/actinide, f-in-core LPPs are adjusted for
fixed f occupations, i.e., they are available for di- (nv = 10), tri- (nv = 11), and tetrava-
lent (nv = 12) lanthanides as well as di- (nv = 10), tri- (nv = 11), tetra- (nv = 12),
penta- (nv = 13), and hexavalent (nv = 14) actinides (see Table 6.2). Certainly, the large
size of the core is a crude approximation connected with a loss of accuracy, but the lan-
thanide LPPs were quite successfully applied during the last 24 years [41, 63–65]. The
actinide LPPs have been developed nearly 20 years later due to the well-known occasional
stronger involvement of the 5f orbitals in chemical bonding. However, they also yield sat-
isfactory results if they are applied to molecules, where the 5f orbitals do not significantly
contribute to chemical bonding. If this assumption is valid, it should be explicitly tested,
e.g., in single-point HF calculations with an explicit treatment of the 5f shell using the
corresponding SPP. If the LPP and SPP 5f occupations obtained from Mulliken population
analyses differ by less than 0.5 electrons, the application of the LPP should yield reasonable
results. In the case of actinide fluorides, the 5f occupations differ by at most 0.1 electrons
for AnF2/AnF3/AnF4 (except for ThF3/PaF3, where the trivalent oxidation state is not pre-
ferred/unstable), 0.3 electrons for AnF5, and 0.9 electrons for AnF6 [12], which explains the
good results using the di-, tri-, and tetravalent, the acceptable results using the pentavalent,
and the bad results using the hexavalent LPPs. Thus, the 5f-in-core approximation reaches
its limit for the hexavalent oxidation state and therefore these LPPs should only be used
to preoptimize structures. The larger deviations in the 5f occupations of AnF5 and AnF6
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compared to those of AnF2/AnF3/AnF4 are due to the fact that the higher the assumed oxi-
dation state, the less probable it is, since ionization energies increase with increasing positive
charge [12].

The originally adjusted 4f-in-core LPPs for di- and trivalent lanthanides [7] did not allow
for any 4f orbital occupation. This leads to some systematic errors, especially at the begin-
ning of the lanthanide series, where the 4f orbitals are still diffuse and their participation
in chemical bonding is not completely negligible. Therefore, in 1993 the f part of these
LPPs was modified to allow for 4f orbital contribution in chemical bonding [8], i.e., the
coefficients and exponents of the f potentials were readjusted to reference configurations,
where the 4f occupation (in the valence space) amounts to one. These improved f parts bet-
ter describe partial 4f occupations due to some mixing of the 4f shell into the molecular
orbitals, i.e., the 4f occupation number q modeled with the LPPs might be m ≤ q < m + 1,
where m corresponds to the fixed 4f occupation of the PP core. In the case of the 5f-in-core
LPPs for actinides, the f part was modified once again [10]. Here, the f potentials Vf consist
of two types of potentials V1 and V2, which are linear combined as follows

Vf =
(

1 − m
14

)
V1 +

m
14

V2. (6.18)

Here, m is the number of electrons in the 5f orbitals and V1 and V2 model 5f shells, which
can and respectively cannot accommodate an additional electron. In the case of the trivalent
LPPs, V1 is the exact potential for Ac (5f0, m = 0) and was adjusted to the four reference
configurations An10+ 5fm+1, 5fm6f1, 5fm7f1, and 5fm8f1, whereas V2 is exact for Lr (5f14,
m = 14) and was only adjusted to the last three of these reference configurations. Thus, the
new f potentials allow for a decreasing participation of the 5f orbitals in chemical bonding
along the actinide series, i.e., the 5f shell can completely, partially, and not at all contribute
to chemical bonding for Ac, Th–No, and Lr, respectively.

In contrast to the LPPs for the more rigorous SPPs also SO operators [58, 61] are avail-
able. However, it has to be noted that these SO operators are effective valence SO operators,
i.e., they have to be applied in SO–CI calculations for the valence electrons (Ln: 4f/5d/6p;
An: 5f/6d/7p), where the semicore shells (Ln: 4p/4d/5p; An: 5p/5d/6p) are frozen in their
scalar-relativistic form, or a corresponding perturbative treatment. If the SO contributions
of the semicore shells cannot be neglected, the recently developed MCDHF/DC+B SPPs
[23, 24] suitable for a variational two-component treatment or SO–CI calculations includ-
ing excitations from semicore shells should be applied. However, these SPPs are still under
construction and only available for Ac–U so far.

6.3.2 Shape-Consistent Pseudopotentials

Shape-consistent PPs are adjusted to AE valence orbitals ϕv and orbital energies εv [66, 67],
i.e., the pseudovalence orbitalϕp is required to retain the correct radial distribution of charge
given by the ϕv in the valence region outside a critical radius rc and the corresponding PP
pseudovalence orbital energy εp is set equal to the εv. For a given lj one requires that

ϕp,lj(r) =

{
ϕv,lj(r) for r ≥ rc

flj(r) for r < rc
and εp,lj = εv,lj. (6.19)
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The auxiliary function flj is required to be radially nodeless and smooth in the core region
(r < rc). Except for the normalization and continuity conditions for the ϕp,lj(r), the choice
of rc as well as the choice of flj is within certain limits arbitrary and a matter of experience.

With a given ϕp,lj and εv,lj, the pseudopotential VPP
lj (r) can be determined by the radial

Fock equation

[
−1

2
d2

dr2
+

l(l + 1)
2r2

+ VPP
lj (r) + Ŵp,lj({ϕp′,l′j′})

]
|ϕp,lj(r)〉 = εv,lj|ϕp,lj(r)〉. (6.20)

The first two terms in the parentheses are the radial kinetic energy operator and the term
Ŵp,lj stands for an effective valence Coulomb and exchange potential for ϕp,lj. Relativis-
tic effects are implicitly included in VPP

lj , since the AE reference calculation explicitly
describes these effects. Repeating this procedure for each lj-set, the resulting potentials VPP

lj

are tabulated on a grid and are usually fitted by means of a least-squares criterion to a linear
combination of Gaussian functions according to

ˆ̃V
PP

(�ri) = −Q
r
+
∑

lj

(∑
k

Alj,krnlj,k−2e−αlj,kr2
)

P̂lj. (6.21)

The separation into scalar-relativistic and SO potentials, V̂PP,SA and V̂PP,SO, is the same
as for energy-consistent PPs (see equation 6.8).

Concerning the auxiliary function fl in equation 6.19, one choice used for a very popular
set of PPs for main group and transition elements published by Hay and Wadt [68, 69] is

fl(r) = rb
(
a0 + a1r + a2r2 + a3r3 + a4r4

)
(6.22)

with b = l + 3 in the nonrelativistic and b = λ+ 2 in the relativistic case, where

λ+ 1 =
1
2
(1 − δ0,l) +

√
l(l + 1) +

1
4
(1 + δl,0)2 + (αZ)2 (6.23)

and α is the fine structure constant. For relativistic s orbitals the choices of b = λ+3 and f0
as sixth degree polynomial have been found to lead to smoother s pseudovalence orbitals.
The five coefficients ai are determined by requiring that

1. ϕp(r) remains normalized.
2. fl(r) and its first three derivatives match ϕv and its first three derivatives at rc.

For subsequent usage in molecular valence-only calculations compact valence basis sets
were generated, i.e., the pseudovalence orbitals were fitted by using a nonlinear least-
squares procedure, similar to the one for fitting the potentials, to a linear combination of
Gaussian functions

ϕp,l =
∑

i

Cir
le−αir

2

. (6.24)

A closer look at equation 6.20 will tell us about the singularity problem in the PP for a radial
node of the pseudovalence orbital ϕp. Most shape-consistent PPs are therefore derived for
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Table 6.3 Shape-consistent relativistic PPs and valence basis sets for lanthanides and actinides

Elements Method Core nc nv Basis set Ref.

La DHF/DC 1s–4d, 5s25p6 54 3 (3s3p4d) [70, 71]
DHF/DC 1s–4d 46 11 (9sp5d)/[3sp3d] [72]

CG 1s–4d, 5s25p6 54 3 (3s3p3d) [68]
CG 1s–4d 46 11 (5s5p3d) [69]

Ce–Lu DHF/DC 1s–4d, 5s25p6 54 4–17 (6s6p6d6f ) [73]
DHF/DC 1s–4d 46 12–25 (6sp3d7f )/[4sp2d2f] [74]

Ac–Pu DHF/DC 1s–5d 78 11–16 (5s5p4d4f ) [75]
Am–Lr DHF/DC 1s–5d 78 17–25 (6s7p6d5f ) [76, 77]
U–Pu CG 1s–5d 78 14–16 [78, 79]

Listed are the elements for which the PPs are available, the method used to calculate the AE reference data, the chosen
core, the number of core electrons nc, the number of valence electrons nv, the basis set, and the references for both PPs
and basis sets. The abbreviation CG stands for the Cowan–Griffin method.

positive ions, which are chosen in such a way that this problem does not occur. For lanthanides
and actinides one or more pseudovalence orbitals may have a radial node when small cores
are used. Therefore, only large-core shape-consistent PPs are available for lanthanides and
actinides (see Table 6.3).

On the other hand a small core has to be used in case of lanthanides and actinides for
accurate calculations. A possible solution to the singularity problem for the small-core
shape-consistent PPs is attempted in the so-called generalized relativistic effective core
potential (GRECP) approach of Titov, Mosyagin, and coworkers [80–83], where the PP is
interpolated in a vicinity of the pseudospinor node [81]. If more than one pseudospinor per
lj is available, more than one radial PP for this lj combination can be derived. The GRECP
approach therefore employs the idea of separating the orbital space of a heavy atom into
three regions: inner core, outer core, and valence, which are treated differently. The idea to
partition into these three regions appeared already in 1985 in the work of Andzelm et al. [84]
on the MPs of Huzinaga type, however the approach is currently not further pursued.

The GRECP operator to be used in atomic calculations is written in the form [81]

ΔVGRECP = Vnv,LJ(r) +
L∑

l=0

l+1/2∑
j=|l−1/2|

{[
Vnv,lj(r)− Vnv,LJ(r)

]
P̂lj

+
∑
noc

[
Vnoc,lj(r)− Vnv,lj(r)

]
ˆ̃Pnoc,lj

+ ˆ̃Pnoc,lj

∑
noc

[
Vnoc,lj(r)− Vnv,lj(r)

]

−
∑

noc,n′oc

ˆ̃Pnoc,lj

[
Vnoc,lj + Vn′

oc,lj

2
− Vnv,lj(r)

]
ˆ̃Pn′

oc,lj

}

(6.25)

Here, nv and noc are the principle quantum numbers for valence and outer core orbitals,
respectively. The maximum L and J quantum numbers are related by J = L + 1/2. P̂lj is
the projector on the spinor spherical harmonics |ljm〉
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P̂lj =

m=j∑
m=−j

|ljm 〉〈 ljm|, (6.26)

whereas ˆ̃Pnoc,lj is the projector on the outer core pseudospinors

ˆ̃Pnoc,lj =

m=j∑
m=−j

|˜noc, ljm 〉〈 ˜noc, ljm|. (6.27)

Obviously, besides the standard semilocal form of the PPs, additional nonlocal terms are
used in GRECPs to take into account the difference between the effective potentials acting
on the outer core and valence electrons with the same l and j quantum numbers.

The GRECP operator is often rewritten as a sum over spin-free (averaged) and spin-
dependent parts [81] for application in molecular calculations. The parametrized form of
the GRECPs contains a relatively large number of parameters, which easily can exceed 100
for heavier elements. Parametrizations are available on the website of the Titov group [85]
for 18 atoms including one lanthanide and four actinide atoms, i.e., Yb, Th, U, Pu, and
Am. Since the GRECP ansatz is at present not supported by most of the standard quantum
chemistry codes, applications of GRECPs are still scarce and were performed mainly by the
authors of the method [86–91].

6.4 Valence Basis Sets for Pseudopotentials

For the accuracy of PP calculations the applied valence basis sets are as important as the
PPs themselves. Therefore, these basis sets should be optimized very carefully. Furthermore,
only a valence basis set corresponding to the PP under consideration will provide a reliable
description of the pseudovalence orbitals, which exhibit different radial shapes in the spatial
core region for different PPs [19]. Thus, even valence basis sets corresponding to PPs for
the same element and with the same core size are not transferable. If one needs a more
extended basis set than provided, the original basis set can just be augmented by adding
diffuse functions.

Tables 6.2 and 6.3 list all valence basis sets corresponding to the available energy- and
shape-consistent PPs, respectively. For the energy-consistent PPs often more than one basis
set is available, since these PPs have been supplemented by several high quality valence
basis sets in addition to the basis sets published together with the PP. For example in
the case of the actinide SPPs, in additional to the original (12s11p10d8f)/[8s7p6d4f] basis
sets [22], in 2003 (14s13p10d8f6g)/[6s6p5d4f3g] atomic natural orbital (ANO) basis sets
were adjusted [61], because the former basis sets were not completely satisfactory, e.g.,
they were only adjusted to one configuration, therefore they are not flexible enough to
describe states with different 5f occupations. Moreover, in the case of the lanthanide LPPs
for trivalent oxidation states, in 2005 several valence basis sets applicable to solid state cal-
culations were adjusted [60], i.e., in these basis sets the most diffuse exponents for each
angular symmetry were fixed to 0.15 in order to avoid linear dependencies in solid state
calculations.
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6.5 Selected Applications

Due to the singularity problem of shape-consistent SPPs (see Section 6.3.2) only
shape-consistent LPPs are available for f elements, leading to the limited usage of
shape-consistent PPs. Compared to this the energy-consistent PPs, where both large-core
and small-core options are available for lanthanides and actinides, have been widely used
in quantum chemistry calculations.

In case of the energy-consistent f-in-valence SPPs [21, 22] the most widely used sets
are adjusted to AE WB reference data [92]. The recently developed highly accurate
MCDHF/DC+B adjusted SPPs for Ac, Th, Pa, and U [23, 24] have only been applied in
a few test calculations so far. For example, multireference averaged coupled-pair functional
(MRACPF) calculations of the first to fourth IPs agree very well with corresponding AE cal-
culations using the second-order Douglas–Kroll–Hess Hamiltonian and the Breit–Pauli SO
operator in first-order perturbation theory (DKH2+BP) [2–5], i.e., the mean absolute devi-
ations (m.a.d.) are all below 0.05 eV (see Tables 6.4 and 6.5). Compared to the available
experimental data [95–102] the mean absolute errors (m.a.e.) of the PP MRACPF results
amount to 0.07, 0.24, and 0.58 eV for IP1–IP3, respectively. For IP4 of U the calculated
results (PP MRACPF: 32.62 eV; AE DKH2+BP MRACPF: 32.61 eV) are much lower than
the experimental value (36.70±0.99 eV). Therefore, for IP4 the m.a.e. of the calculated
results are up to 2.23 eV. However, the very large deviations of the PP and AE calculated
values most likely cannot be completely attributed to the deficiencies of the calculations,
but rather suggest that the experimental value [100] might be somewhat too high. More
rigorous SPP Fock-space coupled-cluster (FSCC) calculations are in excellent agreement
with AE FSCC results [93, 94], i.e., the m.a.d. amount at most to 0.03 eV, and compared to
the experimental data the disagreements are less than 0.15 eV. Moreover, some applications
by using the MCDHF/DC+B adjusted PPs to UH [23], U4+/U5+ [103], and UO2+

2 halide
complexes [104] have been published.

Table 6.4 Calculated IP1 and IP2 of Ac, Th, Pa, and U (in eV)

IP1 IP2

PP AE PP AE

An ACPF FSCC DKH2 FSCC exp. ACPF FSCC DKH2 FSCC exp.

Ac 5.38 5.30 5.44 5.32 5.38 11.59 11.87 11.59 11.90 11.75
±0.03

Th 6.29 6.27 6.31 12.41 12.46
Pa 6.12 6.10 5.89 11.63 11.64

±0.12
U 6.17 6.17 6.19 11.89 11.94 11.59

±0.37
m.a.e. 0.07 0.08 0.24 0.26
m.a.d. 0.03 0.03

Energy-consistent MCDHF/DC+B adjusted PP MRACPF and FSCC calculations [24] in comparison to AE results [24, 93]
and experimental data [95–100]. Basis sets: PP MRACPF and AE DKH2+BP MRACPF extrapolated basis sets, PP FSCC
(16s15p12d10f8g7h7i), AE FSCC (35s26p21d16f10g6h5i). m.a.e. and m.a.d. refer to experimental and AE DKH2+BP
MRACPF values, respectively.
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Table 6.5 Calculated IP3 and IP4 of Ac, Th, Pa, and U (in eV)

IP3 IP4

PP AE PP AE

An ACPF FSCC DKH2 FSCC exp. ACPF FSCC DKH2 FSCC exp.

Ac 17.29 17.51 17.28 17.51 44.52 44.98 42.64 44.99
Th 18.11 18.18 18.33 28.27 28.66 28.28 28.65 28.65

±0.05 ±0.02
Pa 18.64 18.70 30.59 30.57
U 18.86 18.88 19.80 32.62 32.61 36.70

±0.25 ±0.99
m.a.e. 0.58 0.54 2.23 2.23
m.a.d. 0.04 0.01

Analogous to Table 6.4. AE FSCC basis sets (35s26p21d16f10g6h5i) for Ac IP3 [93] and (35s30p25d20f11g9h9i7k7l) for
IP4 of Ac and Th [94]. Experimental data taken from [100–102]. The m.a.d. for IP4 excludes Ac, where the application of
the BP Hamiltonian leads to much too large SO contributions.

In the case of energy-consistent LPPs, calibration studies have been published for lan-
thanide tri- and tetrafluorides [9, 44] and actinide di-, tri-, tetra-, penta-, and hexafluorides
[10–12, 44], respectively. For trifluorides comparing to SPP state-averaged multiconfigura-
tion self-consistent field (MCSCF) bond lengths, bond angles, and ionic binding energies
LPP+CPP HF results deviate only by 0.005/0.01 Å (0.2/0.5%), 0.2/2.1◦ (0.2/1.9%), and
0.14/0.24 eV (0.3/0.5%) for lanthanides/actinides, respectively. Furthermore, the compari-
son of LPP+CPP coupled cluster calculations with single and double excitation operators
and a perturbative estimate of triple excitations [CCSD(T)] to AE or SPP data using various
correlation methods show an excellent agreement [44].

6.5.1 DFT Calculated M–X (M = Ln, An; X = O, S, I) Bond Lengths

Although the ab initio PPs were adjusted to wavefunction-based AE HF or DHF reference
data, they also perform quite well when combined with various DFT methods. By apply-
ing different density functionals together with PPs to actinoids Averkiev et al. [105] have
found that MPW3LYP, B3LYP, M06, and M05 produced as accurate or even more accu-
rate bond energies and IPs than AE complete active space second-order perturbation theory
(CASPT2), CCSD, and CCSD(T) methods. Kovács et al. [106] evaluated trends in the bond
distances and dissociation enthalpies of AnO and AnO2 (An = Th–Lr) at the DFT level and
demonstrated the very good performance of the B3LYP exchange–correlation functional
in conjunction with SPPs. Pereira et al. [107] published SPP DFT studies on neutral and
monocationic AnS (An = Ac–Cm), where it was found that both B3LYP and MPW1PW91
produced ionization energies in good agreement with the experimental values, i.e., the mean
difference amounts to 22 kJ/mol with the larger deviations occurring for Np (65 kJ/mol)
and Cm (35 kJ/mol). For ThS and CmS, DFT yields binding energies, which are within
15 kJ/mol of the SPP CCSD(T) values.

However, special care should be taken for the calculated molecular geometries at the
DFT level. It is well known that the crystal and ionic radii of EuIII (1.09, 0.95 Å) and AmIII
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Figure 6.1 Averaged M–X (M = EuIII, AmIII; X = S, O) bond length differences obtained by
using SPPs [109]

(1.12, 0.98 Å) for sixfold coordination [108] are about 0.03 Å larger for AmIII than for EuIII.
A very similar finding with a 0.02 Å difference holds for eightfold coordination [108]. It
might thus be expected that ionic compounds of AmIII exhibit slightly longer metal–ligand
distances than corresponding EuIII systems. A deviation from this pattern, i.e., shorter bonds
in AmIII than in EuIII complexes, might be interpreted to be related to a higher covalency
in the former systems. Figure 6.1 shows the averaged M–S and M–O (M = EuIII, AmIII)
bond length differences for selected complexes, where M is sixfold coordinated, obtained
by using SPPs combined with DFT/BP, unrestricted Hartree–Fock (UHF), and second-order
Møller–Plesset perturbation theory (MP2) methods, respectively [109]. In contrast to the ab
initio data as well as the data for M–O bond distances, the DFT/BP calculated AmIII–S bonds
are shorter than the EuIII–S bonds. The shorter AmIII–S bonds at the DFT level are also
reported by Manna and Ghanty [110] for trivalent lanthanides with 1,10-phenanthroline-2,9-
dicarboxylic acid based ligands. Dolg et al. found that the Eu f population is significantly
higher at the DFT/BP level than at the UHF or MP2 level, which leads to the longer EuIII–
S bonds [109]. Moreover, they compared bond distances of EuI3 and AmI3 obtained with
SPPs as well as LPPs at the DFT/BP level to those from UHF, MP2, CCSD(T), and mul-
tireference configuration interaction (MRCI) calculations (see Table 6.6). Obviously the
EuIII–I bond distance evaluated at the SPP DFT/BP level is by more than 0.1 Å longer than
the recommended experimental value [111, 112] and the correlated ab initio results. As a
consequence the order of the bond lengths is different at the DFT and ab initio level when
SPPs are applied, i.e., at the SPP DFT level EuIII–I bonds are longer than AmIII–I bonds.
It should be noted that this finding is not due to a PP defect, i.e., very similar results are
obtained in relativistic AE calculations using DKH2 Hamiltonian [113]. Therefore, Dolg
et al. concluded that the shorter AmIII–S (or I) compared to the EuIII–S (or I) bonds should
not be interpreted as a higher covalency in the former systems, but rather as a consequence
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Table 6.6 Averaged M–I (M = EuIII, AmIII) bond distances (in Å) [109]

DFT/BP MRCI CCSD(T) MP2 UHF

EuI3 2.968/2.880 2.861/2.891 2.841/2.854 2.822/2.885(2.847a) 2.915/2.926
AmI3 2.929/2.931 2.910/2.948 2.883/2.909 2.862/2.937(2.904a) 2.961/2.983
Δ −0.039/0.051 0.049/0.057 0.042/0.055 0.040/0.052(0.057a) 0.046/0.057

The first and second values refer to SPPs and LPPs, respectively. The recommended experimental value for EuI3 is
2.831 ± 0.022 Å [111, 112]. aExtended basis sets with up to g functions were used for Eu, Am, and I.
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Figure 6.2 IP3 for lanthanides calculated at the AE/DKH2 DFT/B3LYP [119] and the SPP ACPF
[115] level in comparison to experimental results [116]

of the so-called delocalization error of many commonly used density functionals [114] as
well as the underestimation of the repulsive interaction of electrons with equal spins within
the f shell (no DFT functional adjusted to f elements) [109].

The too-strong binding of the electrons in the f shell of Eu compared to that of Am at
the DFT level is also obvious from results for the atomic third IPs, i.e., the energy dif-
ference between M2+ f7 8S1/2 and M3+ f6 7F (M = Eu, Am). Using f-in-valence SPPs,
the DFT/BP calculated IP3 for Eu (26.00 eV) is 1.42 and 1.08 eV larger than the basis set
extrapolated result of complete active space self-consistent field (CASSCF) with subsequent
ACPF calculations (24.58 eV) [115] and the experimental value (24.92 eV) [116], respec-
tively. For Am the DFT/BP calculated IP3 (22.03 eV) is 0.31 eV lower than the ACPF result
(22.34 eV) [115]. A substantial improvement of the DFT result for Eu was obtained when
a self-interaction correction was included [117, 118]. Moreover, Pantazis et al. [119] pub-
lished IP3 values for lanthanides at the AE DFT/B3LYP level using the DKH2 Hamiltonian.
The obtained results are significantly larger than the experimental data [116] except for La
and Gd, where the f occupation is not changed when one electron is removed from La2+

and Gd2+ (see Figure 6.2). A very similar overestimation is observed when compared to
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using different density functionals [109]

SPP ACPF results [115]. It is worthwhile to mention that the longer EuIII–I compared to
the AmIII–I bond distance caused by DFT is avoided by using f-in-core LPPs (see Table 6.6
and Figure 6.3). It can be seen from Figure 6.3 that when the SPP is applied, except for
BHLYP with its 50% admixture of HF exchange, all selected commonly used density func-
tionals, i.e., SVWN for the local density approximation (LDA), BP, BLYP, and PBE for the
generalized gradient approximation (GGA), BHLYP, B3LYP, and PBE0 for hybrid function-
als as well as TPSS and TPSSH for meta-GGA and hybrid-meta-GGA functionals, failed
to reproduce the correct order of the EuIII–I and AmIII–I bond distances. In contrast to the
SPP values all LPP values show the same order of the EuIII–I and AmIII–I bond distances
in agreement with the ab initio HF results. It is noteworthy that the HF results for the LPP
and SPP treatment are very close to each other.

Figure 6.4 shows the obtained M–O (M = Ln, An) bond distances for lanthanide [120]
and actinide [106] monoxides at the SPP DFT/B3LYP level. It was found that due to the
different singly occupied orbitals for Eu and Am, i.e., seven Eu 4f orbitals [121] and six Am
5f orbitals as well as the Am 7s orbital [122], the Eu–O bond is significantly longer than
the Am–O bond.

6.5.2 Lanthanide(III) and Actinide(III) Hydration

The lanthanide(III) hydration was studied at the DFT and MP2 level combined with LPPs by
Ciupka and coworkers [123] as well as at the SPP DFT level by Kuta and Clark [124]. It was
found that both SPP and LPP produced very similar Ln–ligand distances in good agreement
with experimental evidence [125] (see Table 6.7). Moreover, the DFT calculated LnIII–O
bond lengths are systematically longer than the results obtained from the LPP MP2 calcu-
lations and extended X-ray absorption fine structure (EXAFS), i.e., comparing to EXAFS
results the m.a.d. for SPP DFT/B3LYP, LPP DFT/B3LYP, and LPP DFT/BP86 is 0.040,
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Figure 6.4 Calculated bond distances for LnO (Ln = La–Lu) [120] and AnO (An = Ac–Lr) [106]

Table 6.7 Mean LnIII–O distances (in Å) for [LnIII(H2O)CN]
3+

LnIII CN aSPP B3LYP bLPP B3LYP bLPP BP86 bLPP MP2 cEXAFS

La 9 2.62 2.626 2.618 2.591 2.600
Ce 9 2.59 2.606 2.598 2.571 2.570
Pr 9 2.57 2.587 2.581 2.551 2.550
Nd 9 2.55 2.570 2.564 2.535 2.525
Pm 9 2.54 2.554 2.549 2.518
Sm 9 2.52 2.539 2.535 2.503 2.490
Eu 8 2.47 2.484 2.477 2.455

9 2.51 2.523 2.521 2.488 2.470
Gd 8 2.45 2.471 2.463 2.441

9 2.50 2.510 2.508 2.475 2.455
Tb 8 2.45 2.456 2.449 2.427

9 2.50 2.496 2.495 2.462 2.440
Dy 8 2.43 2.443 2.436 2.414

9 2.483 2.484 2.449 2.425
Ho 8 2.41 2.430 2.423 2.401

9 2.470 2.472 2.436 2.405 (8.9)
Er 8 2.40 2.418 2.411 2.389

9 2.45 2.458 2.461 2.424 2.390 (8.9)
Tm 8 2.39 2.406 2.400 2.378

9 2.44 2.447 2.451 2.413 2.375 (8.8)
Yb 8 2.38 2.395 2.388 2.366

9 2.43 2.435 2.441 2.402 2.360 (8.7)
Lu 8 2.37 2.387 2.381 2.359 2.345 (8.2)

9 2.42 2.427 2.435 2.395
m.a.d. 0.040 0.053 0.051 0.020

Experimentally determined coordination numbers are given in parentheses in the last column. aData taken
from [124]; bdata taken from [123]; cdata taken from [125].
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Table 6.8 Gibbs free energies of hydration −ΔG0
H (in kJ/mol) for [LnIII(H2O)CN]

3+

LnIII CN aSPP B3LYP bLPP B3LYP bLPP BP86 bLPP MP2 cExp. dExp.

La 9 3205 3105 3088 3136 3061 3145
Ce 9 3253 3135 3117 3165 3112 3200
Pr 9 3321 3167 3147 3196 3156 3245
Nd 9 3340 3196 3176 3225 3183 3280
Pm 9 3378 3225 3203 3253 3210 3250
Sm 9 3376 3252 3230 3281 3228 3325
Eu 8 3365 3291 3273 3307

9 3385 3281 3258 3309 3279 3360
Gd 8 3446 3315 3296 3331

9 3454 3302 3280 3331 3292 3375
Tb 8 3423 3342 3322 3356

9 3441 3327 3303 3355 3331 3400
Dy 8 3456 3367 3346 3382

9 3350 3326 3379 3337 3425
Ho 8 3511 3392 3371 3407

9 3373 3349 3403 3382 3470
Er 8 3498 3417 3395 3432

9 3522 3397 3373 3426 3404 3495
Tm 8 3542 3441 3418 3457

9 3556 3418 3394 3448 3431 3515
Yb 8 3569 3466 3443 3482

9 3566 3442 3417 3471 3473 3570
Lu 8 3588 3489 3465 3502 3488 3515

9 3592 3463 3438 3490
m.a.d. 92 34 56 15

aData taken from [124]; bdata taken from [123]; cdata taken from [126]; ddata taken from [127]. The m.a.d. are
calculated according to the averaged values of both experimental results. For Dy and Ho the ΔG0

H for CN = 8
are used to determine the m.a.d. for SPP DFT/B3LYP. For all others the ΔG0

H with respect to the CN determined
by EXAFS are used (see Table 6.7).

0.053, and 0.051 Å, respectively. The m.a.d. is reduced to 0.020 Å when the MP2 method
is applied.

Table 6.8 lists the calculated Gibbs free energies of hydration ΔG0
H for lanthanide(III)

ions. The LPP MP2 calculated results agree very well with the experimental data [126, 127],
i.e., the m.a.d. is only 15 kJ/mol. Among all applied DFT methods the B3LYP functional
combined with LPPs produced the best results compared to the experimental data, i.e.,
the m.a.d. are 92, 34, and 56 kJ/mol for SPP DFT/B3LYP, LPP DFT/B3LYP, and LPP
DFT/BP86, respectively. A closer look at the results calculated at the LPP MP2 level shows
that the coordination numbers (CN) of water to LnIII affect the ΔG0

H slightly for Eu, Gd,
Tb, Dy, Ho, and Er, i.e., the differences of obtained ΔG0

H for CN = 8, 9 are at most 6 kJ/mol.
For Tm, Yb, and Lu the differences are increased up to 12 kJ/mol.

Compared to lanthanides(III) the actinide(III) hydration has not received enough atten-
tion of both experimentalists and theoreticians. The calculated AnIII–O (An = Ac–Lr) bond
lengths for [AnIII(H2O)CN]3+ (CN = 8, 9) [128, 129] as well as available experimental
data [130–136] are shown in Table 6.9. In analogy with the LnIII–O the calculated AnIII–
O bond distances are found to decrease almost linearly with respect to the nuclear charge,
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Table 6.9 Mean AnIII–O distances (in Å) for [AnIII(H2O)CN]
3+

AnIII CN aSPP B3LYP bLPP BP86 LPP MP2 Exp.

Ac 9 2.699
Th 9 2.682
Pa 9 2.656
U 9 2.636 c2.52 (9.1)
Np 9 2.617 c2.50 (9),c2.52 (10)
Pu 9 2.599 c2.49 (10),d2.51 (9)
Am 9 2.582 2.557 d2.48 (10)
Cm 9 2.537 2.566 2.542 c2.45 (10),e2.47 (9)

f 2.48 (8.5)
Bk 9 2.551 g2.43 (9)
Cf 8 2.495

9 2.537 h2.42 (8.5)
Es 8 2.482

9 2.524
Fm 8 2.469

9 2.513
Md 8 2.455

9 2.502
No 8 2.443

9 2.490
Lr 8 2.431

9 2.478

Experimentally determined coordination numbers are given in parentheses in the last column.
aData taken from [128]; bdata taken from [129]; cdata taken from [130]; ddata taken from [131];
edata taken from [132]; f data taken from [133]; gdata taken from [134]; hdata taken from [135]
and [136].

e.g., the slope/correlation coefficients obtained from the linear fitting of LPP DFT/BP86
data are −0.013/0.9941 and −0.016/0.9927 for lanthanides and actinides, respectively. By
applying linear fitting to the ionic radii of LnIII and AnIII reported by Shannon [108], a
very similar fitting quality for MIII–O (M = Ln, An) bonds has been obtained, i.e., the
slope/correlation coefficients are −0.012/0.9956 and −0.017/0.956 for LnIII and AnIII,
respectively. Therefore, a similar accuracy of the LPP DFT/BP86 calculated LnIII–O and
AnIII–O bond lengths has been expected. However, compared to the available experimental
data for U, Np, Pu, Am, Cm, Bk, and Cf, the theoretical AnIII–O bond lengths are about
0.1 Å longer, i.e., the deviations are about 0.05 Å larger than the m.a.d. for the LnIII–O bond
lengths (see Tables 6.7 and 6.9).

Using DFT and MP2 combined with LPPs, the Gibbs free energies of hydration for
actinide(III) ions have been calculated by Wiebke and coworkers [129] (see Table 6.10).
It can be seen that the single-point corrected LPP MP2 results are about 152 kJ/mol lower
than the LPP DFT/BP86 results. There are only two experimental values available, i.e.,
−3205 kJ/mol for U and −3235 kJ/mol for Pu [137]. Compared to LPP MP2 results, the
experimental data are by 41 and 6 kJ/mol lower for U and Pu, respectively. The differences
between the ΔG0

H obtained from a model by David and Vokhmin [138] and the DFT calcu-
lated results are very significant, i.e., the deviations amount up to 338 (Lr) and 238 kJ/mol
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Table 6.10 Gibbs free energies of hydration −ΔG0
H (in kJ/mol) for [AnIII(H2O)CN]

3+

AnIII CN aModel bLPP BP86 bLPP MP2 cLPP MP2 dExp.

Ac 9 2806 2897 3044
Th 9 2885 2938 3088
Pa 9 2921 2971 3124
U 9 3045 3008 3164 3205
Np 9 3073 3043 3202
Pu 9 3134 3072 3229 3235
Am 9 3159 3100 3252 3207
Cm 9 3225 3133 3284 3235
Bk 9 3340 3159 3310
Cf 8 3218 3334

9 3444 3187 3338
Es 8 3243 3360

9 3498 3212 3363
Fm 8 3267 3384

9 3546 3234 3386
Md 8 3294 3411

9 3585 3256 3408
No 8 3318 3436

9 3623 3279 3431
Lr 8 3343 3461

9 3644 3306 3459

aData taken from [138]; bdata taken from [129], corrections of −106 kJ/mol for DFT/BP86 and −179.9 kJ/mol for
MP2 from cluster cycle [123] added; cgeometries taken from the fifth column of Table 6.9, single-point energies
corrected by using aug-cc-pVQZ basis sets for O and H; ddata taken from [137].

(Ac) for LPP DFT/BP86 and LPP MP2, respectively. We notice that the accuracy of the
model of David and Vokhmin depends on the experimental data, e.g., ionic radii and AnIII–O
distances.

6.5.3 Lanthanide(III) and Actinide(III) Separation

The chemical separation of lanthanides and actinides is a very difficult and long-standing
problem, e.g., for the work-up of spent nuclear fuel and nuclear waste [139]. More than 15
years ago it was experimentally found by Zhu et al. [140] that purified Cyanex301 (sulfur-
donor ligand), which contains as a main component bis(2,4,4-trimethylpentyl)dithiophos-
phinic acid (HBTMPDTP), exhibits a very high separation factor (≈5900) between AmIII

and EuIII for the liquid–liquid extraction from a slightly acidic aqueous solution (pH ≈ 3–4)
to kerosene as organic phase. Besides sulfur-donor ligands there are nitrogen- and oxygen-
donor ligands used in lanthanide and actinide extraction processes. The extraction efficiency
and AmIII selectivity are ordered as sulfur- > nitrogen- > oxygen-donor ligands. Due to the
large size of the extraction complexes, the theoretical investigations have used exclusively
DFT so far [141, 142] and have been in addition sometimes restricted to truncated model
systems [143].

In 2010 one of the present authors published a LPP DFT/BP86 study on the separation of
AmIII/CmIII from EuIII with Cyanex301 containing mainly HBTMPDTP (denoted as HL)
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[141]. It was shown that the neutral complexes ML3, where L acts as a bidentate ligand and
the metal cation is coordinated by six sulfur atoms, are most likely the most stable extraction
complexes. For explaining the high selectivity of Cyanex301 for AmIII/CmIII over EuIII the
change of the Gibbs free energy ΔGe of the following extraction equation was calculated

M3+
aq + 3HLorg

ΔGe−→ ML3,org + 3H+
aq. (6.28)

In equation 6.28 the initial state supposes an aqueous ion with the HL residing in the organic
phase, while in the final state the ion is complexed by three L− anions in the organic phase
after release of three protons. The obtained ΔGe of the extraction reactions agree with the
thermodynamical priority for Am3+ and Cm3+ [141]. It was found that the Gibbs free ener-
gies of hydration for M3+ play an important role for the high selectivity of Cyanex301 for
AmIII/CmIII over EuIII, i.e., in the gas phase the calculated values of ΔGg showed a ther-
modynamical priority for Eu3+, whereas this priority is reverted for the aqueous solution.
By using Gibbs free energies of hydration for Eu3+ and Am3+ calculated at the MP2 level
(see Tables 6.8 and 6.10) ΔGe of 68.1 and 46.5 kJ/mol were obtained for Eu3+ and Am3+,
respectively, in good agreement with the experimental findings [140] (Eu: 63.3 kJ/mol;
Am: 44.1 kJ/mol). Using SPP DFT Keith and Batista [142] performed a detailed thermody-
namic examination of the selective extraction of Am3+ from Eu3+ by two CF−

3 substituted
diaryldithiophosphinic acids. They found that in order to obtain reasonable values of ΔGe,
it is crucial to accurately describe the Gibbs free energies of hydration for M3+. The extrac-
tion factor is primarily due to the binding free energies of the ligands to the metals and is
not dependent on side reactions or complicated solvent effects.

Using DFT combined with SPPs, Lan and coworkers [144] studied the complexation of
AmIII and EuIII with tetradentate nitrogen-donor ligands, i.e., 6,6’-bis(5,6-dialkyl-1,2,4-
triazin-3-yl)-2,2’-bipyridines (BTBPs). The structures and stabilities of the inner-sphere
BTBPs complexes were explored in the presence of various counterions such as NO−

3 ,
Cl−, and ClO−

4 . They found that the changes of Gibbs free energies play an important role
for AmIII/EuIII separation. Moreover, the reactions M(NO3)3(H2O)4 → ML(NO3)3 and
[M(NO3)(H2O)7]2+ → [ML2(NO3)]2+ are found to be probably the dominant ones in the
AmIII/EuIII separation process [145]. Roy et al. [146] studied the structures and stabilities
of the aqueous phase complexes [MIII(DTPA)-H2O]2− (M = Nd, Am) as well as the changes
in the Gibbs free energy for complexation in the gas phase and aqueous solution through
SPP DFT calculations, where DTPA denotes diethylenetriamine-N,N,N’,N”,N”-pentaacetic
acid. The calculated changes of the Gibbs free energy favor the formation of [AmIII(DTPA)-
H2O]2− over [NdIII(DTPA)-H2O]2−. Furthermore, all bonding analyses show the important
role of the electrostatic and covalent interactions of the oxygen atoms with the nitrogen
chelates providing an additional, yet small, covalent interaction.

Manna and Ghanty [50] investigated the complexation behavior of preorganized 1,10-
phenanthroline-2,9-dicarboxylic acid (PDA)-based ligands, monothiodicarboxylic acids
(TCA/TCA1), and dithiodicarboxylic acid (THIO) with lanthanide(III) and actinide(III)
ions using DFT combined with SPPs. It was shown that the complexation energy in terms
of selectivity for actinides over lanthanides is at most with TCA1, where the metal is
complexed by the oxygen atoms. Within the framework of the Pearson’s Hard-Soft-Acid-
Base (HSAB) principle it was proven that the presence of softer nitrogen atoms in the
phenanthroline moiety, which also act as donors to the metal ion, has a profound influence
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in changing the soft nature of the actinide ions, which in turn bind with the hard oxygen
atoms in a stronger way as the valence isoelectronic lanthanide ions.

6.6 Conclusions and Outlook

Modern relativistic pseudopotentials are invaluable tools for accurate quantum chemical cal-
culations of f element systems, i.e., by far more than 1,000 investigations were performed
using pseudopotentials of each of the most popular sets [19]. However, the pseudopotential
approximation should not be applied to investigate properties, where the polarized core-
density, the nodal structure of the valence orbitals, core–valence correlation, or core-overlap
effects become important [6]. If the pseudopotential core is chosen appropriately small
to minimize the frozen-core and other errors, both shape-consistent and energy-consistent
pseudopotentials are able to compete in accuracy with all-electron approaches for structural
and electronic valence properties and save at the same time computational effort. There-
fore, the pseudopotential method is essential except for atoms and diatomic molecules,
where highly accurate all-electron correlation techniques can achieve spectroscopic accu-
racy. The main field of future applications will be large molecules containing several heavy
atoms, e.g., clusters or infinite systems as surfaces or the solid state. However, even if
pseudopotentials are applied, quantum chemical investigations of large systems such as the
extraction complexes used for the lanthanide and actinide separation often have to be car-
ried out by means of density functional theory or the calculations have to be restricted to
truncated model systems. Thus, also the construction of large-core pseudopotentials with
corresponding core-polarization potentials is an important goal.

Today the main emphasis seems to be the adjustment of highly accurate small-core
pseudopotentials with rigorous all-electron calculations as reference data, e.g., Dirac–
Hartree–Fock calculations based on the Dirac–Coulomb(–Breit) Hamiltonian or Hartree–
Fock calculations using the Douglas–Kroll–Hess Hamiltonian. Sometimes even quantum
electrodynamic effects and the finite nucleus are taken into account, which cannot routinely
be included using all-electron methods. Since the inclusion of spin–orbit contributions at
the self-consistent field level will become more and more standard, reliable two-component
instead of scalar-relativistic one-component pseudopotentials are now primarily developed.
For example, in the energy-consistent approach, new small-core two-component pseudopo-
tentials are adjusted to multiconfiguration Dirac–Hartree–Fock finite nucleus reference data
based on the Dirac–Coulomb–Breit Hamiltonian. Although such two-component pseudopo-
tentials are already available for all main group, transition metal, and even superheavy
elements, they have only been parametrized for Ac, Th, Pa, and U in the case of the f
elements so far. Thus, one future project is to complete this kind of pseudopotentials for
lanthanides and actinides.
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7.1 Introduction

Application of quantum chemical methods to molecules of chemical interest requires expan-
sion of (one-particle) wavefunctions by basis functions. In this way, tasks are reduced mainly
to integral evaluations and matrix operations and thus tailored to the abilities of contempo-
rary computer architectures, which allows for calculations of systems consisting of several
hundred atoms. But then, results obtained depend not only on the quality of the method,
for instance (post-) Hartree-Fock (HF) or density functional theory (DFT) methods, and the
terms included in the Hamiltonian, like scalar relativity or spin-orbit coupling, but also on
the quality of the basis set expansion. This chapter is dedicated to the last issue. Clearly,
higher accuracy in the basis set expansion leads to higher computational costs. Unfortu-
nately this is not true the other way round; so far best results at given costs basis sets have to
be designed and optimized carefully. This is particularly true for the heavier elements with
large numbers of electronic shells.

Concerning economy, a proven way is the employment of ‘contracted’ Gaussian func-
tions, combinations of primitive Gaussian functions with fixed expansion coefficients, as
integral evaluation is much easier for Gaussian than for Slater functions, albeit the latter
may be physically more reasonable. Usually one contracted function is used for each core
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shell and X functions for each valence shell, resulting in ‘X-tuple-zeta valence’ bases. For
many computer programs in quantum chemistry, it is economically advantageous to use
so-called segmented contracted sets, for which atomic shells are not fitted as a whole, but
by segments. This scheme, which allows but also requires certain flexibility in the choice of
the number of contracted functions, is explained in detail in Section 7.2. The valence basis
sets have to be extended by functions of higher angular quantum numbers for description
of polarization and/or electron correlation, or, to be more specific, for the description of
the so-called ‘correlation cusp.’ [1] For the description of correlation there are well known
schemes for the consistent extension, [2] derived from the contributions of functions to the
total correlation energy in post-HF methods. Often those functions are also used for orbital
polarization. This effect results from the presence of the neighbor atoms in molecules and
has to be covered by the basis also for HF and DFT treatments. For simple cases, e.g., the 2p
elements, employing just the same functions for polarization and correlation works well, but
not in general; sometimes more, less, or other functions are needed to obtain similar errors
for compounds all across the periodic table (‘error balancing’). The basic considerations for
this error-balancing are discussed in Section 7.3. Complexity of development of this kind
of bases increases for heavier elements, a particular case being lanthanides. In Section 7.4
we discuss the special aspects arising for lanthanides from the ‘missing’ inner electrons
when using effective core potentials, from the presence of the partly occupied f shell, the
flexibility of the 6s/5d/4f occupation, and the comparably close energetic distance of the
6p shell.

7.2 Core and Valence Shells: General and Segmented Contraction Scheme

Using Gaussian-type functions (GTF) for atomic basis sets requires contraction of primi-
tive functions (PGTF) to contracted ones (CGTF). The smaller number of basis functions
N resulting from the contraction leads to lower memory requirements (Fock and density
matrices scale like N2) and to shorter computation times, in particular for diagonalizing
the Fock matrix, which scales like N3. Further, convergence of the SCF procedure is sig-
nificantly better for contracted sets. One distinguishes between two types of contraction
schemes, general and segmented. The general scheme is conceptually simpler and briefly
sketched first.

One starts with a set of PGTFs, e.g., a series of Gaussians with even-tempered or well-
tempered exponents. [3] For obtaining the contraction coefficients, in the simplest case an
atomic HF calculation is carried out. The CGTFs are identical to the resulting orbitals,
that is, the contraction coefficients are the expansion coefficients obtained in this atomic
calculation. In this way, one would obtain N CGTFs from N PGTFs. Using such a basis
of course would not reduce the effort in molecular treatments; the number of CGTFs
has to be reduced. The minimum needed are the CGTFs representing occupied orbitals,
e.g., two s and one p CGTF for the 2p elements. This would yield the correct result for
the atoms, but the flexibility is by far too low to account for changes resulting from the
neighbor atoms in molecules. Thus, the CGTFs representing the valence shell have to be
modified by releasing the one/two/…/X-1 of the most diffuse functions (those with the
smallest exponents, ζ) from the contraction. In this way the valence shell is described
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by two/three/…X GTFs, and the resulting bases are termed “double/triple/ …/X-tuple zeta
valence bases.” The core shells are described by one CGTF (see above). The diffuse X
functions are removed from them, because they are still present as PGTFs for the valence
shell and further do only weakly contribute to the inner shells. So, for a triple zeta valence
basis for phosphorous, for example, altogether five s-type CGTFS and four p-type CGTFs
are needed, for which in case of the widely used bases by Dunning [4] 15 different s-type
and 9 different p-type PGTFs are required, which is summarized in the contraction scheme
(15s9p)/[5s4p]{13,13,13,1,1/7,7,1,1}. Note that the first number, 15s, is the number of dif-
ferent s-type PGTFs, of which 13 occur in three different CGTFs. Thus, if the identity of
exponents is not exploited in integral calculations, as it is the case for many quantum chem-
ical program systems, integrals over of 3·13+2·1=41 s-type PGTFs and 16 p-type PGTFs
have to be calculated.

It has to be noted that the choice of PGTFs to be used for an X-tuple zeta valence basis
requires some care: atomic shells with cardinal quantum number n show n-1 radial nodes.
Most relevant for chemical bonds is the part beyond the last radial node, and here the flex-
ibility is needed. Thus, the PGTFs have to be chosen in a way so that the X most diffuse
PGTFs describe exactly this part of the valence shell. This means that their expansion coef-
ficients in the atomic calculation have the same sign, while the exponent of the (X+1)st

PGTF (in the sequence of increasing exponents), which represents the region just before
the last radial node, has to be chosen in a way that the respective expansion coefficient is of
opposite sign. In this way, X determines (roughly) the ratio of exponents (smaller for larger
X, larger for smaller X) and thus the total number of PGTFs.

Within the general contraction scheme, each PGTF except of the X most diffuse con-
tributes to each CGTF of the same angular quantum number, which is shown in Figure 7.1
for the s-type CGTFs of phosphorous for the cc-pVTZ basis set. [4] In the segmented con-
traction scheme in contrast, one exploits the similarity of radial shape of atomic orbitals of
different cardinal quantum numbers, which opens the possibility for significant savings. For
instance, the radial shape of the 1s orbital is nearly the same as that of the regions between
the core and the first radial node of the higher s orbitals, the radial shape of the outer part of
the 2s orbital is very similar to that of the region between the first and the second radial node
of the higher s orbitals, and so on. See Figure 7.1. The same is true for the other angular
quantum numbers. In this way, orbitals are described by CGTFs representing ‘segments’ for
the regions between the nodes, as shown in Figure 7.1. It is obvious, that for a given segment
only, CGTFs of exponents within a certain range of values are needed, for instance, only
those with large exponents for the most inner segment. This dramatically reduces the num-
bers of PGTFs contributing to CGTFs, the so-called ‘contraction lengths.’ The number of
CGTFs is the same for segmented and generally contracted bases, at least for the example
in Figure 7.1: five s-type CGTFs are needed (one for the 1s and the inner parts of the 2s
and 3s shell, one for the outer part of the 2s and the middle part of the 3s, and three for the
outer part of the 3s shell), and similarly for the p shells four p-type CGTFs (one for the 2p
shell and the inner part of the 3p shell, three for the outer part of the 3p shell). A reasonable
contraction scheme for a segmented contracted triple zeta valence basis [5] for P turned
out to be (14s9p)/[5s4p]{7,3,2,1,1/6,1,1,1}. The much smaller total number of PGTFs of
segmented bases compared to general contracted bases (e.g., for the s-space 14 versus 41)
dramatically reduces the computational effort in the integral evaluation for most programs
(e.g., ORCA [6] or TURBOMOLE [7]), as it formally scales with the fourth power of the
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Figure 7.1 Amplitudes of atomic s orbitals of P and respective PGTFs and CGTFs for triple
zeta valence bases according to the generalized contraction scheme (cc-pVTZ, filled circles)
and the segmented scheme (def2-TZVP, open circles). Each PGTF is represented by a circle, the
r-position is given by half of the full with at half maximum (FWHM/2) of the respective Gaus-
sian. CGTFs consisting of more than one PGTF are represented by solid/dashed/ dotted lines
connecting the respective PGTFs. In the generalized scheme the same PGTFs (with different
coefficients) are used to fit the 1s orbital (solid), the 2s orbital (dashed), and the 3s orbital (dot-
ted), the latter together with two PGTFs. In the segmented scheme the first CGTF (7 PGTFs)
describes the 1s orbital and the inner segment of both the 2s and the 3s orbital, the second
CGTF (3 PGTFs) the outer segment of the 2s and the middle segment of the 3s including cor-
rections in the region of the first radial node and the third CGTF together with two PGTFs the
outer part of the 3s orbital, including corrections in the region of the second radial node

number of PGTFs. Exceptions are program systems that exploit the identity of PGTFs in
case of the generally contracted bases (e.g., Molpro [8]).

The ‘multi-use’ of segments requires a simultaneous optimization of exponents (or their
logarithms) and contraction coefficients, e.g., by repeatedly forming gradients of the (HF-)
energy with respect to all basis set parameters followed by a relaxation step, until an energy
minimum is reached. It remains the task to find start values for the optimization, i.e., the
number of PGTFs per CGTF and reasonable initial values for the exponents and coeffi-
cients. Here, it is best to start with an uncontracted, well-tempered basis and determine the
segments by the change of the sign in the expansion coefficients of the valance shell in
an atomic calculation. Next, for the first segment (the CGTF representing the 1s shell and
the most inner parts of the other s shells), one takes the expansion coefficients of the 1s
orbital as contraction coefficients. The coefficients for the second segment are taken from
the expansion coefficients of the 2s orbital (those between the first and the second change
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of the sign). This is continued for the further s shells and in the same way for the shells with
higher angular quantum number. As is evident from Figure 7.1, a problem occurs for the
description of the regions around the radial nodes. Here, the outer part of the ns orbital and
the respective part of the (n+1)s orbital differ greatly. The amplitude of the further approx-
imates zero like exp(-r), or, if modeled by Gaussians like exp(-r2), the latter crosses the
r-axis. For the accurate description in these regions, the CGTFs usually have to be extended
by a steep PGTF (which has a contraction coefficient of opposite sign), at least if one is
interested in accurate total energies. For heavier elements or higher accuracy, it is some-
times necessary to extend the strict scheme and to even add further CGTFs, as positions of
radial nodes also are only similar but not identical for shells of different cardinal quantum
numbers. The bases obtained this way finally are optimized by minimizing the energy with
respect to all parameters.

This procedure is much less strict than that for generally contracted sets, and for the same
accuracy concerning total energies, more PGTFs with different exponents (but much less
PGTFs in total) are required. Nevertheless, if properly done, the increase is moderate. For
instance, for P the (core and valence) part of the generally contracted basis cc-pVQZ [4]
has the contraction scheme (16s11p)[6s5p]{13,13,13,1,1,1/8,8,1,1,1} (16 different s-type
CGTFs, overall 42 s-type PGTFs, and 19 p-type PGTFs, see above) and shows an error in
the atomic HF energy of 0.44 mEH; the segmented contracted basis QZVP [9] is of scheme
(20s14p)/[9s6p]{10,3,1,1,1,1,1,1,1/8,2,1,1,1,1}. The error is even somewhat smaller;
0.26 mEH .

7.3 Polarization Functions and Error Balancing

So far, we have only discussed the construction of basis sets for the core and the valence
shells. For the use in quantum chemistry functions with higher angular quantum number
are also needed, which describe polarization effects due to the neighboring atoms and are
also needed for post-HF correlation treatments in order to describe the correlation cusp.
For the latter a strict scheme for the consistent extension of valence bases with polarization
functions exists, which is based on the energy contribution of functions with higher angular
quantum number to the correlation energy. [2] If one considers this quantity for the valence
shell of, for example, a p element, it turns out that the largest additional contribution arises
from a d function with an exponent similar to that of the maximum of the valence-p shell.
Adding this function to the DZV set yields a reasonable balance between the flexibility of
the valence shell and the description of the correlation. The next two contributions, which
are of similar size, are obtained by either adding an f function (of similar exponent as the
d function) or by splitting the d function in two d functions that are larger/smaller than the
original one by a factor of ca.

√
3. This 2d1f set added to a triple zeta valence basis yields a

reasonable balance in the above sense as does similarly adding a 3d2f1g set to a quadruple
zeta valence basis.

Despite not being designed for this purpose, the same sets often are used for the descrip-
tion of polarization effects. For many cases this works well, as polarization also requires
functions of higher angular quantum numbers with exponents similar to that of the shell to be
polarized. Also the numbers of functions to be added to the X-tuple zeta valence bases added
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for consistent description of correlation turned out to be reasonable also for polarization, at
least for the main group elements. Nevertheless, there are many examples, where polariza-
tion requires more or less or different functions than correlation. Such cases are most easily
found when testing bases ‘in situ’ during their development for the purpose they are intended
to be used for further. This is the idea behind so-called ‘def2-XVP’ bases [10], X=DZ (or
S, for historical reasons), TZ, QZ, developed in Karlsruhe some years ago. A very large
part of quantum-chemical applications focuses on structure optimizations and bond energy
calculations at HF, DFT, and economic correlated treatments like HF+MP2 (Hartree-Fock
plus second-order Møller-Plesset perturbation theory) for compounds all across the periodic
table. Thus the partly already existing [5], [11] basis sets constructed following the concepts
discussed above were tested at levels HF, DFT (with the functional BP86 [12]), and MP2 in
calculations of bond energies, dipole moments, and structure parameters for a set of more
than 300 molecules, which represents nearly each element in its common oxidation states.
The main goal was to obtain similar errors (within a method and a basis set type X) all across
the periodic table. This is a helpful property in praxis, and, as for segmented contracted sets
a strict construction principle does not apply anyway, it appears most reasonable to rather
focus on the property of consistent errors. The size of typical errors was oriented at that for
first row main group compounds treated with basis sets like cc-pVXZ or XVP, that is for
bond energies per atom at HF or DFT level ca. 20/5/1 kJ/mol for X=DZ(S)/TZ/QZ and ca.
50/20/5 kJ/mol at MP2 level, which serves also as orientation for higher correlated levels.
It turned out (once more) that at MP2 level even for the comparable low accuracy require-
ments, more effort is needed concerning polarization functions than for DFT in several
cases. Therefore providing two sets, a larger for HF+MP2 and a smaller for DFT, appeared
to be reasonable. Errors in total energies were of lower interest for TZV and DZV sets, the
typical amount to several ten mEH for TZV bases and a few hundred mEH for DZV bases
per atom. QZV bases in contrast show errors of below 1 mEH (up to Kr), which is less than
for the generally contracted sets. [4] The prefix ‘def2’ was chosen to distinguish the error-
balanced sets from their predecessors, the ‘def-SVP’ and ‘def-TZVP’ bases. Here the prefix
‘def’ means ‘default,’ as these bases were taken by the TURBOMOLE input generator, if
nothing else is specified. The main corrections/extensions needed to reach error balance are
briefly summarized now.

For the s elements a comparably large number of polarization functions is needed, even
for HF and DFT at DZV or TZV level, if one wants to stay within the above error limits.
The subsequent p orbitals are energetically in reach and thus often partly occupied, for
the heavier s elements this holds also for the d orbitals and for the 6s and 7s elements
additionally for the f orbitals. The respective functions are determined best in restricted
open-shell HF calculations with the respective occupations, e.g., s1p1 for the optimization
of p functions of Mg. Thus, for error-consistency in the case of s elements, comparably
large basis sets are needed, for instance for the triple zeta basis for Mg two diffuse p and
two diffuse d sets and additionally one steep d set for the polarization of the 2p shell. For Ba
apart from a diffuse p and a {4,1}d set, a {4}f set had to be added even to the double zeta
basis. These functions are partly occupied, for instance in case of BaO by ca. 0.1 electrons.
Neglecting the f set changes the equilibrium distance for BaO (at DFT level) by ca. 9 pm
and the bond energy by ca. 50 kJ/mol, which is not tolerable at all.

For the 3p elements, restriction to the polarization of the valence shell leads to non-
tolerable errors; the polarization of the 2p shell with a steep d set is essential, otherwise
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bond energies, already at HF or DFT level, are off by ca. 3 kJ/mol, which is too high for
quadruple zeta bases and may be critical already for triple zeta bases. Note that no extension
of the description of the valence shell (by more valence and polarization functions) will be
able to correct this error. Thus, if solely the valence shell description is stepwise improved,
convergence to an energetic limit will be observed, of course, but one must be aware that
this is not the basis set limit, for total as well as for bond energies. For the heavier p ele-
ments, this problem does not occur, because suited d functions are already present as they
are needed for the description of the occupied d shell. The transition metals, on the other
hand, require less effort concerning polarization of the d shell than main group elements
for the p shell, in particular for DFT. At double zeta level accuracy matching that of s and
p elements is achieved without any polarization of the d orbitals. At triple zeta level one
f function is sufficient.

7.4 Considerations for Lanthanides

For heavy elements relativistic effects are important and have to be incorporated into basis
set development. In case of all-electron treatments, scalar relativistic effects and also spin-
orbit coupling are treated by decoupling the four-component Dirac equation in the way
suggested by Douglas, Kroll, and Hess (DKH) [13], or more recent with the exact decou-
pling method, X2C [14] (‘exact’ refers only to the one-electron part), or alternatively with
the ‘zeroth order regular approximation’, ZORA. [15] Achieving accurate total energies
with segmented sets for the lanthanides with those elements is not easy; errors of several
EH in the total energy and thus also considerable errors for the inner shells seem to be
tolerable for some developers. [16] Of course, for energy differences most of these errors
cancel, but nevertheless, there is still some space for improvement, in particular, as a main
reason for using all-electron methods (and not effective core potentials, see below) as the
accessibility of inner orbitals, which then of course should be accurately described. This
space (partly) was bridged by Dolg, [17] whose bases show errors in total energies of sev-
eral hundred mEH, which is in the range of def2-SVP bases (for the lighter elements, for
which they are currently available). The inner orbitals are described with reasonable accu-
racy by these bases, as evident from very small errors in the higher ionization potentials.
The bases are tested for the trihalides LnX3 (Ln=La-Lu, X=F, Cl, Br, I) thus representing at
least the most typical oxidation state. The errors in bond energies (listed only with respect
to the experiment, but not to the basis set limit) are reasonably small, but it has to be noted
that the diversity of the test set is much smaller than for the error-balanced basis sets [10]
discussed above. Both, these bases as well as the predecessors, [16] are not obtained by the
rather elaborate way described above, that is, not by simultaneously optimizing exponents
and coefficients in this way fitting segments as well a possible, but by contracting a fixed set
of exponents with the coefficients of the atomic orbitals. As evident from the above consid-
erations, in this way only a few PGTFs can be contracted, as already around the first radial
node the first segment of the higher shells of a given angular quantum number is slightly
different from the first shell of this angular quantum number. Consequently, those bases
are loosely contracted with only one contraction per angular quantum number covering the
steepest four to six PGTFs. Here most probably will still be some space for improvements
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towards more compact segmented contracted bases following the above mentioned ideas,
but currently for all-electron calculations with segmented contracted sets of Gaussians, the
bases by Dolg [17] or, if one is not that much interested in inner orbitals, also those of similar
size by Neese [16] are a reasonable choice.

A pragmatic, economic, and proven alternative to all-electron calculations is the employ-
ment of effective core potentials (ECPs) for heavier elements. The description of inner
electrons by an effective core potential leads to significant computational savings, but even
more important is the possibility of very economically model relativistic effects, scalar
effects as well as spin-orbit coupling. The def2-series discussed above (segmented con-
tracted, error-balanced, for levels DZ, TZ, QZ with two sets of polarization functions for
DFT and MP2) also included basis sets for the use in connection with ECPs for the elements
beyond Kr, namely scalar-relativistic Wood-Boring ECPs [18] for the s and d elements and
Dirac-Fock ECPs [19] for the p elements. Meanwhile also for the s and d elements beyond Kr
bases for the use with Dirac-Fock ECPs [20] following the above ideas are available, termed
‘dhf-XVP’, [21] for consistency also the def2-bases for the heavier p elements received the
label ‘dhf’ (dhf = Dirac-Hartree-Fock). For all dhf-bases, patches for self-consistent calcu-
lations of the spin-orbit coupling are available, [21] which are needed for the splitting of the
p shells into the spatially more extent p3/2 and the more compact p1/2 shell, and similarly
for the d shells.

For the lanthanides currently available scalar relativistic ECPs are of Wood-Boring type,
on one hand small-core ECPs covering the inner 28 electrons, thus leaving the shells 4s, 5s,
6s, 4p, 5p, 4d, and 4f for the explicit treatment, [22] on the other hand large-core ECPs that
also cover the 4s4p4d shells and the (open) 4f shell. [23] The latter exists in different variants
for most elements for the cases f n, f n+1, and f n−1 (n= 1 for Ce, etc.). These ECPs allow
for comparably unproblematic convergence of SCF procedures, but the f occupation is fixed
by the ECP. The small-core ECPs have the full flexibility in the occupation of the valence
shell, but this is sometimes paid with convergence problems. Nevertheless, when extending
our series of error-balanced segmented contracted bases, we assigned priorities to the higher
flexibility and focused on basis sets for the small-core ECPs. For these ECPs, reasonable
bases of around triple zeta quality were already available from Cao and Dolg [24] (CD),
which served as a valuable starting point for our developments of error-balanced lanthanide
bases of DZV, TZV, and QZV quality. [25]

For the development of basis sets, in particular segmented contracted basis sets, ECPs
are a certain challenge, as the inner orbitals, which are used for the description of the inner
part of outer orbitals, now are missing, but the inner part of the outer orbitals is not zero,
moreover its structure is non-physical, as shown in Figure 7.2. Nevertheless, the segmented
scheme still can be used at least partly. The shape of the respective segments is also similar
for the different orbitals. As evident from Figure 7.2 for the triple zeta valence basis of Eu,
the s orbitals (obtained from simultaneous optimization of exponents and coefficients) are
rather loosely contracted; only the steepest five PGTFs form a CGTF, and the remaining
nine are left as PGTFs. An attempt was made to describe the second segment with a CGTF
(like for P, see Figure 7.1), but this came along with a significant increase of PGTFs with
exponents overlapping in the two CGTFs, which turned out to lead to higher computational
costs in the end. Similar is true for the other angular quantum numbers and for the double and
quadruple zeta basis sets. Details are given below and are also provided by Gulde et al. [25].
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Figure 7.2 Amplitudes of atomic 4s, 5s, and 6s orbitals of Eu obtained with a Wood-Boring-ECP
covering the inner 28 electrons and respective PGTFs and CGTFs for a segmented contracted
triple zeta valence basis. See also Figure 7.1

Following the ideas sketched above, a representative test set and reference bases are
needed for determining the number and kind of further functions for balanced errors. For
the test set the following molecules were chosen: CeF, CeH2, CeO, CeF3, PrCl, PrH2, PrF3,
NdCl, NdH2, NdO, NdF3, PmF, PmO, PmH2, SmF, SmH2, SmCl3, Eu2, EuCl, EuF2, EuH2,
Gd2, GdF, GdF2, GdH2, GdF3, TbF, DyF, DyF2, DyCl3, HoO, HoF3, ErCl2, ErF3, TmCl,
TmF2, Yb2, YbCl, YbH2, Lu2, LuF, Lu2O, Lu2N, LuF2, LuH3, LuF3, LuCl3, LuBr3, LuI3.
The reference bases are of even-tempered type, typically (31s25p18d16f6g2h1i). The fac-
tor between subsequent exponents was set to 10−1/4, which is very close to the complete
basis but still numerically stable. For the non-lanthanide atoms in the molecules of the test
set, QZVPP bases were taken as reference. With these bases and the respective ECPs, [22]
HF, DFT(BP86), and MP2 calculations were carried out for the test set with fixed structure
parameters, yielding reference bond energies and dipole moments. Differences of results
obtained with the def2-XVP bases to the results obtained with those reference bases are
termed ‘errors’ in the following, usually mean value and standard deviation obtained for the
test set are given.

It turned out that for the CD bases, errors in bond energies are in the same range as
those obtained with def2-TZVP bases (MP2: def2-TZVPP) for the rest of the periodic table.
Further it became evident that the comparably large g set of the CD bases be reduced for
most cases, as shown below. For dipole moments in contrast, errors of CD bases were very
large, e.g., for HF 0.561±0.533, which is below double zeta quality. The reason for this
turned out to be a missing diffuse p function.
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Thus, the TZVP and TZVPP sets were derived from the CD bases by adding diffuse p sets,
by slightly changing the contraction pattern of the p set from {61111111} to {6311111} for
Ce-Dy and to {63111111} for Er-Lu, and by reducing the polarizing g set from {411} to {1}
for TZVP and to {21} for TZVPP. Exponents and contraction coefficients were re-optimized
at unrestricted HF level for the respective HF ground state (usually s2d1f n−1, except for Nd,
Sm, Eu, Yb). The resulting sets are of very similar quality as CD concerning bond energies
and in the typical TZVP/PP range for dipole moments. The double zeta valence sets SVP
and SV(P) were derived from the triple zeta valence bases by removing one CGTF from the
p/d/f set of TZVP, keeping the contraction pattern of the s set unchanged and re-optimizing
the entire basis. For the SVP basis, the same 1g set as for the TZVP was used; for the lower
polarized SV(P) set, it was omitted.

For QZVP/PP sets, not only energy differences but also total (HF) energies are desired to
be close to the limit. Errors for first and second row elements are much smaller than 1 mEH.
For heavier elements errors about 1-2 mEH are achieved. It was decided to slightly ease
criteria for lanthanides due to the higher number of electrons and the increased complexity
due to the occupied f shell and allow for errors of ca. 3-4 mEH . In order to fulfill these
requirements the number of PGTFs had to be increased compared to TZVP by 2/4/1/2 for
s/p/d/f sets. The number of CGTFs was regularly increased by one for each angular quantum
number. Polarization sets of QZVP are identical to that of TZVPP. For QZVPP the original
set from CD was taken plus one 1h set, which was roughly optimized by maximization of
the MP2 correlation energy, as the higher polarized sets are intended mainly for the use in
correlated treatments. The resulting contraction patterns are listed in Table 7.1.

The most important results, the basis set errors in bond energies per atom at levels
DFT(BP86) and MP2, are shown in Figure 7.3. As intended, one observes a reduction of
typical errors when switching from a smaller to a larger basis. The only exception is the

Table 7.1 Contraction patterns for the basis sets def2-SV(P) to def2-QZVPP, the reference
bases, and the bases by Cao and Dolg, CD [24]. N denotes the number of basis, functions
in the basis of spherical harmonics (AO) or Cartesian functions (CAO)

basis spdf ghi N(AO/CAO)

P PP P PP

SV(P)/P (14s12p9d7f)/[10s6p4d3f] – (1g)/[1g] 69/82 78/97
{5111111111/531111/
6111/511}

{1}

TZVP/PP (14s14p10d8f)/[10s7p5d4f] (1g)/[1g] (3g)/[2g] 93/116 101/131
{5111111111/6311111/
61111/5111}

{1} {21}

QZVP/PP (16s18p11d10f)/[11s8p6d5f] (3g)/[2g] (6g1h)/[3g1h] 118/151 138/187
{61111111111/93111111/
611111/61111}

{21} {411/1}

CD (14s13p10d8f)/[10s8p5d4f] (6g)/[3g] 114/149
{5111111111/61111111/
61111/5111}

{411}

reference (31s25p18d16f)/[31s25p18d16f] (6g2h1i)/[6g2h1i] 397/534
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change from SV(P) (without polarizing g) to SVP (with one polarizing g) at DFT level,
which does not improve results. Further, the typical errors obtained with the def2-bases for
the lanthanides match well to those obtained previously for other elements with def2-bases.
Errors (absolute of the mean value plus the standard deviation) of the SV(P) basis amount to
10-20 kJ/mol at DFT (and HF) level and thus are smaller than typical errors of the method;
for MP2 this is reached at triple zeta valence quality. With triple zeta valence bases (HF,
DFT) and quadruple zeta valence bases (MP2) 2–5 kJ/mol are reached, which is sufficient
for most practical applications. Further, at DFT level the larger polarization set does not
provide significant advantage over the smaller set, but at MP2 level the larger set is recom-
mendable. For DFT increasing the basis mainly reduces the standard deviation, as already
at double zeta valence level mean errors are small; for MP2 in contrast, also mean errors
systematically become smaller for larger bases.

An important advantage of small-core ECPs compared to large-core ECPs is the possibil-
ity to cover different occupations of the f shells, as mentioned above. This of course requires
a certain flexibility of the basis set, otherwise the description becomes biased towards the
cases with occupations same as for the atoms. A detailed look at bond energies of PrCl,
ErCl2 PmF, TmCl, and TmF2, which have one additional f electron compared to the atoms,
showed that for DFT (and HF) these compounds behave well. All errors are as small as
requested above, but MP2 results reveal a different picture: errors for PmF and PrCl with
SVP/TZVPP/QZVPP bases amount to ca. 3/10/40 kJ/(mol·atom) and thus are still toler-
able, but for TmCl we get 9.4/23/84 kJ/(mol·atom), which in particular for the QZVPP
basis is more than desired. These problems, which only occur at MP2 level for the heav-
ier lanthanides, can be solved by partial decontraction of f/g shells to 511111/2211. The
errors at MP2 level for these modified QZVPP sets amount to 3.6/2.5/3.1 kJ/(mol·atom)
for ErCl2/TmCl/TmF2. We thus maintained the contraction scheme for consistency and
costs; nevertheless, in case of changing f occupations in heavy lanthanides the partial
decontraction is advisable.

Also errors of dipole moments and equilibrium distances are in the same range as for the
other elements. Quadruple and also triple zeta valence bases yield very small typical errors
of below 0.08 (QZVP) (0.15, TZVP) Debye for both HF and DFT. For HF also at double zeta
valence level errors are very reasonable, ca. 0.3 Debye. This error almost completely arises
from standard deviation, thus, nearly no systematic errors occur. At DFT level in contrast,
a systematic underestimation by ca. 0.4 Debye is observed, which together with a standard
deviation of 0.3 Debye (similar to that of HF), amounts to comparably large typical errors of
ca. 0.7 Debye. The reason for this is rather found in the SVP basis set for the non-lanthanide
atoms, which are too rigid to describe the change (compared to the atom) of orbitals at the
bond partners, which usually are of higher electronegativity and thus show a negative partial
charge leading to spatial extension of orbitals.

Structure parameters were investigated for those diatomic systems that turned out to be
worst cases for bond energies; these are CeF, Gd2, Lu2, NdO, PmF, PmO, SmF, and TmCl.
Among these, worst cases for errors in distances are the dimers, with errors of −11 to +7
pm for double zeta valence bases, −2 to +2 pm for triple zeta valence bases and less than 1
pm for quadruple zeta valence bases. Compared to ‘usual’ compounds, for metal dimers the
minima of the potential curves are rather shallow, so small inaccuracies in the description
of the potential curve cause large changes in distances. Therefore, omitting the two dimers
from the statistics may lead to a characterization of higher practical relevance showing errors
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Figure 7.3 Mean values and standard deviation of errors in bond energies for SV(P), SVP,
TZVP, TZVPP, QZVP, and QZVPP basis sets (from left to right, characterized by their number of
spherical harmonic basis functions) for the molecules of the test set at levels DFT(BP86), upper
part and MP2, lower part
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typically amounting to 2-3 pm for double zeta, 0.5-0.8 pm for triple zeta and ca. 0.2-0.3 pm
for quadruple zeta valence bases. This probably still is a conservative estimation, as here
only the worst cases were considered. Notably, in contrast to bond energies, MP2 is not
significantly more critical than HF or DFT in case of bond lengths.

For more detailed statistics and data for single compounds we refer to the publica-
tions about the def2-bases for the lanthanides, [25] and for the other elements, [10] as
well as to that about the dhf-bases. [21] All def2-bases are available from the internet at
http://www.cosmologic.de/basis-sets/basissets.php.
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8.1 Introduction

Molecules containing f-block elements, particularly the actinides, are currently of very
strong interest due to their role in the nuclear fuel cycle and waste remediation efforts.
In particular, those containing actinide elements demonstrate a rich chemistry due to the
existence of numerous stable oxidation states of the metal together with partially filled 6d
and 5f shells, especially amongst the early members of the block. For experimental spec-
troscopic studies this can lead to complicated, congested spectra due to the high density of
states, while the theoretical work is very challenging due to the large number of electrons,
strong relativistic effects, and often multireference character due to nearly degenerate 5f, 6d,
7s, and 7p orbitals. In contrast to the actinides, lanthanides are generally found in just their
+3 oxidation states, but they can still exhibit some of the same challenges as the actinides
due to partially filled 4f shells. Fundamental studies on small molecular systems involving
f-block elements have been an active area for both experiment and theory, since the results
and insights arising from these studies can often be used for understanding the chemistry of
f-block elements in complex molecular environments.

In carrying out ab initio quantum chemistry calculations it is now well known that the
choice of basis set can be nearly as important as the electronic structure method that is

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
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used. For the main group elements, families of accurate Gaussian basis sets have been
available for some time, which in many cases can be used to estimate the complete basis
set (CBS) limit for density functional and wavefunction-based approaches. Basis sets for
the transition metals have also received considerable attention, and families of accurate
Gaussian basis sets suitable for extrapolation are available for these elements as well. The
lanthanides and actinides have received less attention, partly because the challenges of
developing basis sets are greater than for the transition metals. This chapter aims to outline
the challenges of the f block for the development of basis sets and present considerations and
strategies for developing well-balanced, accurate basis sets. The existing basis sets for the
lanthanide and actinide elements are enumerated and evaluated, and some results presented
for illustration.

8.2 Basis Set Design

8.2.1 General Considerations

The design of a basis set depends on many factors: which Hamiltonian is to be used, which
orbitals need to be represented, how correlation is to be treated (wavefunction or DFT),
which properties need to be represented, whether contraction is used and by what contrac-
tion method, what accuracy level is required, what nuclear model is used. The process of
developing a basis set starts with generating a suitable set of primitive functions. This pro-
cess usually involves generating a primitive set that represents the atomic occupied orbitals
and perhaps the most important low-lying virtual orbitals; adding primitives for polariza-
tion of the atom in the molecular environment, which is necessary for both DFT and wave
function correlation methods; adding primitives for correlation of various orbitals or shells;
and adding primitives for properties.

Of crucial importance in designing a basis set is the issue of linear dependence, because
this affects the numerical stability of the atomic or molecular calculations that use the basis
sets. Linear dependence in the primitive set can be controlled by the use of even-tempered or
well-tempered basis sets, which minimize the linear dependence by construction. However,
such basis sets tend to be larger than energy-optimized basis sets, where linear dependence
problems can become significant as the basis set size increases.

Contraction of the basis set can alleviate or remove entirely any problems with linear
dependence. Of course this depends on how the contraction is done and how the basis set is
to be used. If a general contraction is used for all basis functions, as is common for ANO
sets, there are no linear dependence problems, and even the addition of a few primitives
for extra flexibility does not usually cause problems. Segmented contractions in which the
inner core is contracted and the rest of the basis is largely left uncontracted could suffer
from linear dependence if the primitive basis has linear dependence, whereas segmented
contractions in which all or most shells are represented by a contraction are less likely to
suffer from linear dependence.

When primitives for correlation are added on top of an SCF contraction, as in the
correlation-consistent style of basis set, the correlating set usually includes higher angu-
lar momentum functions that are not represented in the SCF set, and functions of lower
angular momentum that may already be represented in the SCF set. Care must be taken
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with the latter, to ensure that the functions added for correlation or valence flexibility do
not create a set that is linearly dependent on the SCF occupied functions, particularly if
multiple shells are correlated.

A further issue is the relation between the correlating functions and the SCF func-
tions, particularly when primitives are used for correlation. For efficiency in sets like the
correlation-consistent sets, the primitive functions added to an SCF orbital set for cor-
relation in the occupied symmetries are normally taken from the SCF set, because this
requires less work in the integral code. However, it is usually the case that the optimal
exponents for the correlating functions do not match very well with those of the SCF prim-
itive functions: the ratio between the correlating exponents is often larger than that in the
SCF basis set, except perhaps for the outer few SCF primitives, which tend to be more
widely spaced. Some compromise must usually be made: for example, to choose the SCF
set to match the optimal correlating functions, as has been done for the correlation con-
sistent sets, or to choose the correlating functions from the SCF set that maximize the
correlation contribution, as done in the Dyall basis sets. A third possibility, also used in
the Dyall basis sets where the valence correlating functions overlap with the outer core
orbitals is to replace the linearly dependent SCF functions with the valence correlating
functions, and then reoptimize the SCF set with the correlating functions frozen. Such
a strategy is useful if the basis is to be used uncontracted, because the tail of the outer
core functions is not as important as the correlation of the valence shell. Other approaches
include optimizing the SCF and the correlating exponents together, or replacing them with
an even-tempered set.

8.2.2 Basis Sets for the f Block

When applying the principles of basis set design, the characteristics of the elements for
which the basis sets are developed must be taken into account. The f series start out like
the d-block transition metals, with the 6d orbital occupied for several of the early actinides,
and the 5d occupied for La and Ce. These early elements even have some low-lying states
in which the d orbital is multiply occupied. Further along the series, the f orbital is the
dominant occupied open-shell orbital and the d is unoccupied, except in the middle of the
block. The outer s orbital is doubly occupied in all of these elements. The chemistry of
the lanthanides is largely (but by no means solely) that of the +3 oxidation state, whereas
higher oxidation states are of importance in the early part of the actinide series, and the +3
oxidation state becomes dominant later in the series.

For the development of basis sets, the radial behavior of the orbitals is important, because
it determines the range of exponents of the Gaussian functions that are used, and to what
extent the exponent sets for different shells overlap, particularly those for electron corre-
lation. Because the f shell is fairly compact, any basis set must cover a radial range that
extends from that of the f shell to that of the outer valence s and d shells. The radial behavior
is elaborated below.

Relativistic effects are also critical, particularly for the actinides, where both direct and
indirect effects significantly change the radial behavior of the orbitals compared to that
of the lanthanides. The relativistic effects are not negligible in the lanthanides, though,
because they contribute a good fraction of the lanthanide contraction. The spin-orbit



“Dolg-Driver” — 2015/1/17 — 12:01 — page 198 — #4

198 Computational Methods in Lanthanide and Actinide Chemistry

splitting is important for the 6p of the actinides and for the core shells of the same principal
quantum number as the f shell.

The accessibility of the orbitals (or spinors) for bonding, and hence whether they are
considered part of the valence, the outer core or the inner core, must be assessed on the
basis of both the energetics and the radial extent of the orbitals. How the orbitals are par-
titioned is also relevant to the development of basis sets, which must describe not only the
atomic behavior but the bonding behavior as well. For the energy, the eigenvalue is usu-
ally sufficient, because it gives an approximate measure of the ionization potential. For the
radial extent, mean properties, although useful, are insufficient to portray the entire radial
behavior, because the behavior at large distances depends on the angular momentum due
the power of r in the radial functions (rl). Thus, two orbitals of different angular momentum
with the same mean radius or radial maximum will have different radial extents: the higher
angular momentum function will extend further than the lower. Here we use three measures
of the radial extent: the root-mean-square radius, r(rms), the position of the radial maxi-
mum, r(max), and the radius that contains 95% of the density, r(95%). The last of these is a
measure of how far out the charge distribution extends. Together with the spinor eigenval-
ues, these quantities are plotted for the lanthanides and actinides in Figures 8.1–8.4, based
on Dirac-Hartree-Fock (DHF) calculations on the (degeneracy-weighted) average energy of
the fn−1d1s2 configuration.

For the lanthanides, the rms radii and the 95% density radius are in shell order, i.e., 4d
< 4f << 5s < 5p < 5d <<6s. The radial maximum of the 4f is inside that of the 4d, but
otherwise the shell order is observed. What is perhaps not obvious from these plots is that
the radial maximum of the 6s is outside the 95% density radius of the 5p shell, whereas
the radial maximum of the 5d is inside the 95% density radius of the 5p shell. If the radial
maximum is taken as some measure of where the midpoint of a bond would be, this indicates
that bonding with the 6s does not incur much repulsion of the ligand orbitals by the outer
core (5s and 5p) of the lanthanide, whereas there would be somewhat more repulsion from
bonding with the 5d. In any case, the 5d is substantially inside the 6s on all measures of
radial extent.

The tail of the 4f (measured by the 95% density radius) extends almost as far as the tail
of the 5s at the beginning of the block but pulls in further as Z increases. The tail of the
5p is always further out than the 4f. The 4f is consequently not very radially accessible
for bonding, lying inside the outer core 5s and 5p shells, although energetically it is much
higher than the 5s and 5p.

The actinides display similar behavior to the lanthanides for the rms radius, although the
5f is much closer to the 6s at the beginning. The tail of the 5f extends further out relative
to the outer core than the tail of the 4f in the lanthanides – as far as the tail of the 6p at the
beginning of the block, it pulls in as Z increases, though it remains in a similar range to
the 6s tail. The somewhat larger extent of the 5f relative to the 4f probably contributes to
its involvement in bonding in the early actinides, in the actinyl unit for example. It is also
energetically more accessible than the 4f in the lanthanides.

The 6s and 6p spinors of the actinides have very similar radial behavior to the 5s and
5p of the lanthanides. The difference in the outer core shells is in the p+ spinors: the 6p+
of the actinides is more extended than the 5p+ of the lanthanides, due to the much larger
spin-orbit splitting of the p shell.
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Figure 8.1 Calculated DHF spinor eigenvalues for the lanthanide and actinide atoms

The radial maximum of the 7s falls at about the same distance as the 95% density radius
of the 6p+, and only a little outside that of the 6p− and the 6s. As for the 5d in the lanthanides,
the radial maximum of the 6d spinors in the actinides is inside the 95% density radius of the
outer core spinors, but these spinors extend out almost as far as the 7s spinors at the 95%
density radius. Bonding that involves any of the valence spinors is likely to involve a fair
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Figure 8.2 Calculated radial maxima of the DHF spinors for the lanthanides and actinides

amount of overlap with the 6p spinors as evidenced by the not insubstantial 6p+ hole in
species like the actinyls.

Given the overlap of the f shell with the outer core shells and even the valence shell,
as well as the rest of the shell of the same principal quantum number, basis sets for the
lanthanides and actinides must cover the correlation of three shells: the shell that includes
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Figure 8.3 Calculated RMS radii of the DHF spinors for the lanthanides and actinides

the f orbital, the next shell up, which is the outer core shell, and the next shell up again,
which is the valence shell. The changes in behavior along the block means that the basis set
size could vary, as the overlap between correlating sets for the various shells changes.

The SCF basis set should cover the low-lying orbitals that are usually unoccupied in the
ground state, which usually means the (n+1)d and the (n+2)p orbitals (where n=4 or 5, the
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principal quantum number of the f shell). The latter is unoccupied in all of these elements
but Lr, whose ground state is 7s27p1, rather than 7s26d1; the former is occupied for four of
the lanthanides (La, Ce, Gd, and Lu) and six of the actinides (Ac, Th, Pa, U, Np, and Cm).
The main reason for including the (n+2)p is for polarization of the (n+2)s valence orbital,
filling in the function space between the s and d sets in the outer valence region.
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Correlating sets must provide for correlation of the nf orbital, which may be regarded as
an inner valence orbital, the (n+1)s and p outer core orbitals, and the outer valence (n+1)d
and (n+2)s orbitals. As there is considerable radial overlap of the nf with both the nd and
the (n+1)s and p orbitals, there may be linear dependence between the optimal correlating
functions in these sets. There is also some radial overlap between the outer valence orbitals
and the outer core orbitals, and to a lesser extent with the f orbital, which could result in
linear dependence issues.

As an example, the optimal g sets from the Dyall quadruple zeta basis sets for the actinides
[1] are plotted in Figure 8.5, on a logarithmic scale for the exponents. The exponent sets
for each group of spinors were optimized independently on the energy. The two g functions
for correlation of the 5d (from a 3f2g1h set) have almost the same values as the inner two
g functions for 5f correlation (3g2h1i set), so the former can be omitted. The g function
for 6s6p correlation (from a 3d2f1g set) starts out reasonably different from the outer g
function for 5f correlation at the beginning of the block but by the end of the block is very
similar. A decision must be made about when to include this function and when to leave
it out. The outer g function for 5f correlation overlaps with the inner g function for 7s6d
correlation (from a 3f2g1h set). The rather erratic behavior of these g functions is due to
a fairly flat potential energy surface in the exponent space so that a fairly large change in
exponent results in a fairly small change in the energy. However, at the beginning of the
block, a choice between the g functions must be made. As the g function for 5f correlation
is more important energetically than the g function for 7s6d correlation, it is the former that
is used in the early actinides.
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Figure 8.5 Optimal g-type basis functions from the Dyall quadruple zeta basis sets for actinides
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Independent optimization and collation of different sets of exponents is not the only
option, of course. Reoptimization of some of the exponents in one set with exponents taken
from another and held fixed can be done, or collective optimization of all sets of exponents,
or optimization of an even-tempered set that covers the range and number of exponents
required are some other options. All of them represent some sort of compromise. As the
basis sets get larger along a series of systematically designed sets, the overlap between the
optimal sets of correlating functions also increases, but to compensate, the energy loss from
a compromise decreases, as does the energy gain from locating the lowest energy for each
set. The use of an even-tempered set might well be more effective and incur less linear
dependence in very large basis sets.

8.3 Overview of Existing Basis Sets for Lanthanides and Actinide Elements

8.3.1 All-Electron Treatments

Currently, there is a variety of all-electron basis sets available for the lanthanides and
actinides, of different classes and qualities.

In the first class are basis sets developed at the SCF level only. These sets cover a sub-
stantial part of the entire periodic table, and for our purposes cover both the lanthanides
and the actinides (except where noted). Most of them are at least of triple zeta quality
(again, except where noted). These sets include the universal basis sets of Malli et al. [2, 3]
and Jorge et al., [4], which are even-tempered basis sets; the well-tempered basis set of
Huzinaga and Klobukowski [5], which was developed with the nonrelativistic Hamiltonian
and covers the lanthanides; the two energy-optimized dual family sets of Fægri [6, 7], devel-
oped at the DHF level with a finite nucleus, and which are of better than double-zeta and
better than triple-zeta quality; the nonrelativistic and relativistic (DHF) energy-optimized
sets of Koga et al. [8, 9]; and the energy-optimized third-order Douglas-Kroll-Hess (DKH3)
sets of Nakajima and Hirao [10, 11], developed with both point and finite nuclear models.
These sets are primitive sets only; they do not include contraction coefficients, although
they have been used to develop contracted basis sets. They also do not include functions
for polarization or correlation, with the exception of the larger Fægri set [7], which has
recommendations for extension to higher angular momentum.

In the second class are segmented basis sets. Some of these have been developed for
use with density functional theory. As such, functions for correlation are not important,
only functions for polarization of the density in a molecular environment. Among these
are the sets of Pantazis and Neese for the lanthanides [12] and the actinides [13], which
employ even-tempered primitive sets with g polarization functions, and include a segmented
contraction in the core; and the set of Dolg for the lanthanides [14], which are based
on energy-optimized primitives but have no functions with angular momenta higher than
f-type. These contractions are made explicitly for the DKH2 and the ZORA Hamiltoni-
ans. Sekiya et al. have developed segmented contractions of correlating functions for the f
shell and the valence s and d shells, using the DKH3 Hamiltonian. These are available both
for the lanthanides [15] and the actinides [16] and can be added to SCF sets. They have
also developed DKH3 segmented basis sets that include both SCF and correlating functions
for the lanthanides [17] as part of the Sapporo basis set library. These basis sets include
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functions for correlating all shells from n = 4 up, and are systematically expanded in angular
momentum from double-zeta through quadruple-zeta.

In the third class are generally-contracted basis sets. Roos et al. developed DKH2 ANO
basis sets for the lanthanides [18] and the actinides [19] of double-zeta, triple-zeta, and
quadruple-zeta quality, based on an extension of the Fægri primitive set to include up to
h functions. These basis sets correlate the f shell, the outer core s and p shells, and the
valence s and d shells. Although they do not have functions that explicitly correlate the 4s,
4p, and 4d orbitals of the lanthanides and the 5s, 5p, and 5d orbitals of the actinides, the
functions for correlating the f shells are probably adequate for this purpose. Gomes et al. and
Dyall developed Dirac-Hartree-Fock basis sets of double-zeta, triple-zeta, and quadruple-
zeta quality for the lanthanides [20] and the actinides [1], with averaged SCF contractions for
the occupied spinors and the valence d and p. Correlating functions are added as primitives,
following the style of the correlation consistent sets to systematically expand the angular
momentum range.

8.3.2 Effective Core Potential Treatments

There have been a number of basis sets for lanthanide and actinide elements previously
reported in the literature that are based on relativistic effective core (ECP) potentials, or
pseudopotentials (PP). These can be most easily categorized by the type of underlying ECP
used: (a) shape consistent pseudopotentials, (b) energy consistent pseudopotentials, and (c)
model potentials.

The shape consistent category includes the so-called CRENL and SBKJC PPs. The
CRENL PPs of Ross et al. [21] for the lanthanide elements have 54-electron [Xe] cores,
which leaves just the 6s, 5d, and 4f electrons in the valence. They are accompanied by a set
of (6s6p6d6f) basis functions, but without any contractions. For the actinide atoms [22–24],
the CRENL PPs are defined by a 78-electron core, leaving the 6s-7s, 6p, 6d, and 5f electrons
in the valence. The sets for Ac-Pu consist of (5s5p4d4f) and are a little smaller than those for
Am-Lr, (6s7p6d5f). For most of the angular momenta in the latter case, the exponents are
shared and they were reportedly optimized for the atomic ground states, although two dif-
fuse p functions were optimized for the lowest 5f n−17p1 states. Cartesian functions seem to
be used throughout the CRENL sets. The second set of shape consistent PPs, in the SBKJC
family, were reported for the lanthanide atoms by Cundari and Stevens [25]. These consist
of a smaller (compared to CRENL) 46-electron core, which leaves the 5s-6s, 5p, 5d, and 4f
electrons in the valence space. This is analogous to the 78-electron actinide CRENL PPs.
The Cundari and Stevens PPs are accompanied by a [4s4p2d2f] basis set that was contracted
from a (6s6p3d7f) primitive set. The s, p, and f functions were optimized for the 4fn−1 state
of Ln+3 with the d’s optimized for the 4fn−15d1 state of Ln+2. The 4fn−16s1state of Ln+2

was also used to obtain an s function to describe the 6s orbital. The s and p exponents of these
basis sets are shared. (Note that the occupation index n for the ions has been standardized
to be consistent with that of the neutral atoms.)

Model potentials using the Cowan-Griffin Hamiltonian have been reported for the lan-
thanide elements, first by Sakai et al. [26] and then by Seijo et al. [27]. The latter group also
included the actinides in their study. Both model potentials for the lanthanides consist of
a 46-electron core, while the actinide potentials utilized a 78-electron core. Primitive basis
sets supplied with these potentials were larger in the Seijo et al. cases compared to Sakai
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et al., i.e., (14s10p9d8f) vs. (10s7p7d6f). The work of Sakai et al. [26] optimized their s, p, f
functions for the 4fn6s2 states while the d functions were optimized for 4fn−16s25d1. They
also added up to 2 g-type functions. The model potentials of Seijo et al. [27] included spin-
orbit coupling at the Wood-Boring level and their basis set contraction coefficients, obtained
as general contractions, were modified to reproduce the spin-orbit corrected valence orbitals.

Energy-consistent PPs for the lanthanide and actinide atoms have been developed by the
Stuttgart/Köln groups. They have the smallest core definition of any PP mentioned to this
point, 28 electrons for Ln and 60 electrons for An, where the valence includes all orbitals
with n ≥ 4 for Ln and n ≥ 5 for An. The original PPs of this type [28, 29] were based on
the quasi-relativistic Wood-Boring Hamiltonian. The An PPs were accompanied by con-
tracted spdf basis sets [29], but both the Ln and An PPs are generally used with the more
extensive basis sets subsequently reported by Cao and Dolg [30–33]. For both lanthanides
and actinides these latter sets are based on (14s13p10d8f6g) primitives and are available in
both general and segmented contracted forms. Most of the primitives were optimized for the
fns2 atomic states with diffuse d and p functions optimized for fn−1d1s2 and fn−1s2p1 states,
respectively. The sets were contracted based on ANOs from primarily CASSCF calculations
(a few elements utilized MRCI) and are designed for electron correlation with an (n-2)spd
frozen core. Recently Gulde et al. [34] have reported new basis sets for the lanthanide atoms
in the family of “def2” basis sets [35] that are based on the PPs of Dolg et al. [28], SV(P)/P,
TZVP/PP, and QZVP/PP. Their development was based loosely on the previously mentioned
sets of Cao and Dolg [32, 33], but with exponents and (segmented) contraction coefficients
optimized at the UHF level for the atomic ground states. Several “f-in-core” PPs based on
the Wood-Boring Hamiltonian have also been reported by Dolg and co-workers [36–39] for
both the lanthanide and actinide elements. These PPs have also been accompanied by basis
sets in segmented contraction schemes [40, 41]. These sets have been designed for solid
state calculations, but with additional functions specified for use in molecules.

Recently, new energy-consistent, small-core (60 electron) PPs for the f-block elements
adjusted to extensive multiconfigurational Dirac-Hartree-Fock reference data (with contri-
butions from the Breit interaction) have been reported for Ac–U [42, 43]. In these cases the
PPs were tested on both atomic and molecular calculations using large ANO basis sets. As
in previous work the primitive sets were optimized primarily for the fns2 states with diffuse
d and p functions added. The ANO contractions were based on either CASSCF or MRCI
averaged density matrices.

8.4 Systematically Convergent Basis Sets for the f Block

Given the complexities of elucidating the electronic structure of atoms and molecules
involving f-block elements, it is not surprising that the development of extensive basis sets
for this block has lagged behind that of the rest of the periodic table. The availability of
basis sets that exhibit systematic convergence towards the CBS limit is, however, extremely
important for accurate and reliable studies in ab initio thermochemistry and spectroscopy.
Since the errors due to basis set and the electronic structure method can be strongly cou-
pled, it is only in the CBS limit that the inherent accuracy of the latter is apparent. This
ability to systematically eliminate sources of error in a given calculation is the cornerstone
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of composite methods, e.g. FPD [44], HEAT [45], Wn [46] that have been applied with
so much success in accurate thermochemistry and spectroscopy. As discussed below, there
have recently been efforts to develop sequences of basis sets for the lanthanide and actinide
elements that could be used to accurately estimate CBS limits in molecular calculations.

8.4.1 All-Electron

There are a few candidates for systematically convergent all-electron basis sets for the f
block. The ANO basis sets of Roos [18, 19] are available as double, triple, and quadruple
zeta sets. For the purpose of extrapolation, these sets lack i functions at the QZ level. The
Sapporo segmented basis sets for the lanthanides [17] have a systematic increase in the angu-
lar momentum with basis set cardinal number as is done in the correlation consistent basis
sets, with 9s7p6d4f1g for DZ, 11s9p7d5f3g1h for TZ, and 13s11p9d7f5g3h1i for QZ. These
sets may be suitable for extrapolation, as the number of primitives for each angular momen-
tum increases with the set size, and so the coverage of the correlating space is increasing.
Use of the uncontracted Fægri sets [6, 7] is another possibility, though the number of prim-
itives needed in each angular space to gain a systematic expansion in the correlating space
would be large. ANO contractions of this basis, as Roos et al. have done [18, 19] with the
earlier Fægri basis sets, would reduce the size of the basis and allow a systematic expansion.
Ultimately, though, any extrapolation with these basis sets would fall a little short because
the density of coverage in exponent space is not increasing with the basis set size, due to the
fact that the basis sets are extended from the existing sets by adding higher angular momen-
tum but keeping the same exponent ratios. The final candidate is the Dyall basis sets [1, 20],
which were designed along similar lines to the correlation consistent basis sets. These basis
sets are described in more detail next.

The SCF basis sets were developed to include a representation of the (n+2)p
and the (n+1)d orbitals for all elements. The d exponents were optimized for the
nfn−1(n+1)d1(n+2)s2 configuration, which is the ground configuration for several of the
elements in each block. The rest of the exponents for the occupied orbitals were optimized
on the ground configuration, which may be either nfn−1(n+1)d1(n+2)s2 or nfn(n+2)s2. The
exception here is Th, for which the ground configuration is 6d27s2. In this case the ground
configuration was used for all but the f functions, for which the 5f16d17s2 configuration was
used.

The additional functions for the (n+2)p were optimized on the configuration in which the
two (n+2)s electrons were replaced by two (n+2)p electrons. In addition to optimizing the
exponents for this orbital, the exponents for the outermost antinode of the (n+1)p were reop-
timized, which allows some inward relaxation of the exponents for this antinode. The result
is that the outermost maximum of the (n+2)s and p and the (n+1)s and p are represented by
N functions for an NZ basis set; that is, in a QZ basis set there are four functions whose
coefficients are of comparable magnitude and of the same sign representing the outermost
maximum of these shells.

Correlating functions for the nd, nf, (n+1)s and p, (n+1)d, and (n+2)s shells were opti-
mized in MR-SDCI calculations. The ground state was used for the reference configuration
for the nd, nf, (n+1)s and p shells; for the (n+1)d and (n+2)s shells, the nfn−1(n+1)d1(n+2)s2

configuration was used for the reference. The correlating sets were chosen so that the dou-
ble zeta basis sets had one function with one unit higher angular momentum than the shell
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correlated: a g function for the f shell, a d function for the (n+1)s and p shells, an f function
for the (n+1)d shell. Functions from the occupied space were used for lower angular momen-
tum where the exponents were close to the SCF exponents. Going to triple and quadruple
zeta, one more unit of angular momentum was added for each basis set, with one extra
function in each angular momentum compared to the next lowest basis set. Thus, for the
f shell, the correlating set was 1g for the double-zeta basis, 2g1h for the triple-zeta basis,
and 3g2h1i for the quadruple-zeta basis.

In order to avoid linear dependence, some decisions must be made about which exponents
to include, because there is some overlap of the exponent sets for the triple and quadruple
zeta sets. For example, one g function is needed for (n+1)sp correlation, three for nf cor-
relation, and two for (n+1)d correlation in the quadruple-zeta basis set. The behavior is
illustrated in Figure 8.1. In the actinides, the g function for 6s6p correlation lies between
the outermost two g functions for 5f correlation for about half the block, but then comes
close to the middle g function. The outermost g function for 5f correlation is very similar
to the innermost g function for 6d7s correlation for the first half of the block, but becomes
tighter as Z increases. In the lanthanides, the g function for 5s5p correlation is similar to
the outermost g function for 4f correlation, whereas the g functions for 5d6s correlation
do not overlap the 4f correlating g set at all. The composition of the correlating set must
therefore change across the block. For both lanthanides and actinides, the g functions for
nd correlation overlapped fairly well with the g functions for nf correlation, so it is not
necessary to include these separately. The final contracted lanthanide basis set sizes for
the elements where the 4f is occupied are 8s7p5d4f1g for DZ, 10s9p7d5f3g1h for TZ, and
12s11p8d7f5g3h1i for QZ without 4s4p4d correlation; for these shells an extra 1s1p1d1f
for DZ, 2s2p2d for TZ and 3s3p3d2f for QZ are added to the basis sets. For the actinides,
the final contracted basis sets sizes are 9s8p6d5f1g for DZ, 11s10p7d6f3g1h for TZ, and
13s12p9d7f5g3h1i for QZ for Pa, Np, Pu, Cf-Lr, with an extra g for U, Am, Cm, and Bk.
With the addition of 5d correlation, additional primitives are included: 1s1p1d1f for DZ,
2s2p2d for TZ, 3s3p1d2f for QZ for all elements and an extra h function for Pa-Bk. The
lack of extra f functions for 4d and 5d correlation in the TZ basis stems from the fact that
the primitives added for 4f and 5f correlation are already sufficient.

Functions for the dipole polarization (polarizability) of the nf shell and of the (n+1) d shell
were also optimized. For the double-zeta basis sets, a single function was optimized on the
polarizability of the atom. The ratio of the polarizing exponent to the correlating exponent
was then transferred to the higher basis sets to generate diffuse functions of high angular
momentum. It was not felt necessary to add diffuse functions of lower angular momentum,
because the outer s, p, and d shells are already fairly diffuse, and for the most part the
chemistry of these elements involves the positive ions.

8.4.2 Pseudopotential-Based

With the possible exception of the new def2-style basis sets of Weigend and co-workers
[34] for the lanthanide atoms as discussed above, there have not been any standard
PP-based basis sets reported in the literature for the f -block elements that are amenable
to reliable extrapolation to the complete basis set limit, e.g., correlation consistent basis
sets. This is currently being mitigated by work in one of the authors’ groups whereby the
cc-pVnZ-PP basis set family (n=D, T, Q, etc.), which have been previously developed for
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both transition metals and post-d, main group elements (see [47] and [48] and references
therein), is being extended to the f -block [49]. As in these previous works, the sets are opti-
mized in conjunction with the newest available small-core, energy consistent PPs that were
adjusted to atomic energy differences computed at the multiconfigurational Dirac-Hartree-
Fock level of theory together with perturbational estimates of the Breit interaction. Such a PP
has been previously reported for the uranium atom in 2009 by Dolg and Cao [42], and those
for the remaining early actinide elements (Ac, Th, Pa) have recently been completed [43]. In
particular, unlike the older Stuttgart PPs for the f -block [28, 29] the accompanying spin-orbit
potentials in these new PPs have been constructed in a manner that makes them suitable for
use in 2-component DHF, DFT, or CCSD(T) calculations. The actinide PPs subsume the
60 electrons that occupy atomic orbitals with principal quantum numbers ≤ 4. The new
cc-pVnZ-PP basis sets for U range in size from DZ through QZ and include sets for valence
electron correlation (here defined as the 6s6p5f6d7s electrons), as well as those appropriate
for correlation of the 5s5p5d electrons (cc-pwCVnZ-PP). Optimization of analogous sets
for Ac–Pa are in progress.

As with all correlation consistent basis sets, both all-electron (non-relativistic and rela-
tivistic) and PP-based, regular convergence to both the HF limit and the CBS limit of the
correlation energy are the primary goals. In the case of U, the underlying HF primitive
sets range in quality: (14s13p9d8f) for DZ, (17s16p11d10f) for TZ, and (20s17p12d11f)
for QZ. In each case the Gaussian exponents were fully optimized with only the constraint
that the ratio of two exponents in the same angular momentum must be greater than 1.6
to avoid coalescence and linear dependency problems. Either numerical derivatives in a
conjugate gradient approach or downhill Simplex was used in the optimizations within the
molpro suite of ab initio programs [50]. In previous basis set work on the transition metal
atoms [47, 51, 52] care was taken to avoid biasing the sets towards any one of the many
low-lying electronic states by optimizing exponents for average HF energies of states with
varying d-orbital occupations. The strategy was similar for the U atom, although not sur-
prisingly a bit more complicated: the (ns) sets were optimized for the 5f47s2 state, the (np)
sets for the average of the 5f37s27p1 and 5f47s17p1 states, the (nd) sets for the average of the
5f36d17s2 and 5f36d27s1 states, and finally the (nf) sets to the 5f47s2 and 5f36d17s17p1 states.
The energetically lowest-lying electronic state for each configuration was used through-
out and were fully symmetry equivalenced, which generally required several determinants
in each symmetry type. In each case the resulting primitive sets were first contracted to
[3s2p1d1f] using atomic orbital (AO) coefficients from state-averaged calculations involv-
ing the 5f47s2 and 5f36d17s2 states, and then an additional d contraction from the 6d AO
of the 5f36d17s2 state and a p contracted function from a 7p AO obtained by averaging the
5f47s17p1 and 5f37s27p1 states were added to yield a contracted [3s3p2d1f] basis set.

As discussed above, the optimization of correlating/polarization functions can be chal-
lenging for the f -block elements due to both the comparable radial extents of the valence
and inner-valence orbitals and the large range of occupied orbital angular momenta (s, p, d,
and f). The correlating functions for occupied angular momenta were represented as ANO
contractions using averaged natural orbitals obtained from MRCI calculations on the 5f47s2

and 5f36d17s2 states – [1s1p1d1f] for DZ, [2s2p2d2f] for TZ, and [3s3p3d3f] for QZ with
the most diffuse exponent also uncontracted in each angular momentum. All 14 electrons
down through the 6s orbital were correlated in all cases. The g-type and higher angular
momentum functions were optimized separately for correlation of the 6s6p5f and 6d7s
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electrons using the 5f47s2 and 5f36d17s2 states, respectively. In order to reduce the over-
lap of exponents, however, all of these correlating functions were optimized together at the
MRCI level (iterating until consistent) with the same constraint on the exponents as men-
tioned above for the HF primitives. Somewhat typical shells of correlating functions were
chosen: (a) 1g for 6s6p5f correlation for DZ, (b) 2g1h for 6s6p5f correlation and 1g for 6d7s
correlation for TZ, and (c) 3g2h1i for 6s6p5f and 2g1h for 6d7s correlation for QZ. The final
contracted set sizes corresponded to [5s5p4d3f1g], [6s6p5d4f3g1h], and [7s7p6d5f5g3h1i]
for DZ, TZ, and QZ, respectively. Finally additional functions for correlating the inner
5s5p5d electrons – 1s1p1d1f for wCVDZ, 2s2p2d2f1g for wCVTZ, and 2s2p2d3f2g1h for
wCVQZ – were optimized in the usual weighted core-valence scheme [53] for the 5f47s2

state and added to the previously described valence sets to produce cc-pwCVnZ-PP basis
sets. In the wCVQZ case there was significant overlap between the tightest g function in the
valence set, so all the valence g’s were reoptimized (for valence correlation) along with the
5s5p5d correlating g’s. This approach is consistent with the construction of the valence sets,
but of course different from that used in the Dyall sets [1, 20] where one of the functions
would have been dropped due to linear dependency.

8.5 Basis Set Convergence in Molecular Calculations

In order to compare the basis set convergence characteristics of the U atom in comparison
to the well-known behavior of lighter systems, a number of molecular HF and CCSD(T)
calculations were carried out with the new cc-pVnZ-PP and cc-pwCVnZ-PP basis sets
for U.

Figure 8.6 displays the basis set convergence characteristics, for both the HF energy and
the frozen-core CCSD(T) correlation energy, of the UF6, SF6, and WF6 molecules. In these
calculations the aug-cc-pVnZ sequence of sets was used for F [54, 55], cc-pV(n + d)Z for
S [56], and cc-pVnZ-PP for both W and U [47, 49]. The n=Q CCSD(T) equilibrium geome-
tries were used throughout. In each case the basis set incompleteness error (BSIE), estimated
using CBS limits obtained using the HF extrapolation formula of Karton and Martin [57]
and a relation for the CCSD(T) correlation energy [58, 59], is plotted as a function of the
basis set. The HF basis set convergence is observed to be very similar between all three
species, with the BSIE at the DZ level slightly smaller for UF6, but all three are nearly iden-
tical at the TZ and QZ levels. For the valence correlation energy (6s6p5f6d7s for U, 2s2p
for F, 3s3p for S, 5d6s for W), even with the larger number of electrons correlated in the
UF6 case, the convergence rate is very similar to that of SF6 and WF6, with UF6 being only
slightly slower towards the CBS limit.

Figure 8.7 shows the convergence of the core-valence correlation contributions using
cc-pwCVnZ-PP (heavy atoms) and aug-cc-pwCVnZ (light atoms) basis sets [53]. In this
case results for UF6 are compared to those of SeF6 since the core in both cases corresponds to
a set of 18 spd electrons. The convergence of the core-valence correlation effect [difference
of core correlated and valence correlated CCSD(T) calculations] with basis set is shown
for 5d/3d correlation and also for 5s5p5d/3s3p3d correlation (U/Se). The 1s electrons of F
are not correlated in all cases. In each case the convergence is smooth, with the UF6 results
approaching the estimated CBS limit slightly faster. The key, however, is that the UF6 results
exhibit a very similar systematic convergence as the SeF6 case, which is encouraging for the
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application of standard composite techniques to actinide thermochemistry and spectroscopy
at least as far as the basis set approach is concerned.

For additional investigations of the basis set convergence, CCSD(T) calculations were
also carried out on the well-studied UO+2

2 molecule, but also on NUO+, which is isoelec-
tronic and linear, but lacks the inversion symmetry of the uranyl cation. The two panels of
Figure 8.8 show the basis set convergence of the equilibrium bond lengths as well as all three
harmonic vibrational frequencies (ω1 and ω3 are the symmetric and antisymmetric stretches
in UO+2

2 , ω1 is primarily a UN stretch in NUO+, ω3 is a UO stretch, and ω2 is the bend in
both cases) relative to the estimated CBS limit. The latter was taken to be a CCSD(T) cal-
culation with a cc-pVQZ-PP basis set on U with 3 i-type functions instead of 1 (exponents
equal to the h-type functions) with the aug-cc-pV5Z basis set on N and O. Both the bond
lengths and stretching frequencies show smooth, rapid convergence towards their respective
CBS limits. At the DZ level the BSIE in the two stretching frequencies are relatively large
at around 20–35 cm−1, but this decreases to less than 10 cm−1 at the TZ level. The bond
lengths are converged to under 0.005 Å with a TZ basis set. The bending frequency exhibits
what is presumably a relatively large basis set superposition error (BSSE) at the DZ level,
but both TZ and QZ exhibit BSIE values of just a few cm−1. An attempt was also made
to estimate the importance of each angular momentum to these properties by repeating the
calculations with the U cc-pVQZ-PP basis set truncated at f-only, g-only, and h-only levels.
Figure 8.9 shows these results at the HF level of theory using a full aug-cc-pVQZ basis set
on the light atoms. Except for the bending frequency, very similar results were obtained
using the aug-cc-pVTZ on N and O. At the HF level both UO+2

2 and NUO+ show relatively
minor contributions due to h and i functions. This is particularly true for NUO+ where even
g functions are relatively unimportant for the stretching vibrational frequencies at the HF
level. For UO+2

2 , however, g functions are obviously more important than the higher angular
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used on O and N. The largest set replaced the single i-type function in cc-pVQZ-PP with 3

momentum functions for all three vibrational frequencies. Even so, overall these HF con-
tributions are small and do not increase appreciably when the smaller aug-cc-pVTZ basis
set is used on N and O. The situation is much more ambiguous, however, at the CCSD(T)
level. Presumably due to BSSE, many of these same results were qualitatively different
depending on which light atom basis set was used. Regardless of the light atom basis set,
however, the bending frequency was strongly affected by the inclusion of g functions in the
UO+2

2 case. Inclusion of g functions raised ω2 by 25.0 and 11.2 cm−1 when aug-cc-pVTZ
or aug-cc-pVQZ was used on O, respectively, at the CCSD(T) level of theory.

8.6 Conclusions

The f block presents considerable challenges for the development of basis sets, particularly
if systematic convergence to the basis set limit is desired. These challenges arise from the
necessity to correlate three shells, and from the changing behavior of the f shell in particular
across the blocks. Accordingly, though there are quite a few basis sets available, both at the
PP and the AE level, there are few that are suitable for systematic convergence studies. This
deficiency, particularly for PPs, is being filled in by the development of new basis sets, for
which sample calculations on U show the same convergence characteristics as calculations
on main-group or transition-metal compounds with correlation consistent basis sets.
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9.1 Introduction

The basic element of a large number of solid-state optical devices of technological interest
is an imperfect crystal that incorporates a lanthanide ion as a substitutional impurity.
Lanthanide-activated solid-state lasers, scintillators, and lamps reflect the ability of the lan-
thanide ions to absorb, transfer, exchange, and emit light under the influence of the host
crystal, which deforms and multiplies the lanthanide’s atomic electronic states in various
ways and extents, until local electronic states arise in the imperfect crystal, which are rooted
in the lanthanide and capable of administering a variety of energy-related processes.

Probably as a result of the considerable ionic nature that the lanthanide keeps while
establishing bonds with nearest neighbors and interacting with the reminder of the host,
the lanthanide free ion parentage becomes very visible as the local electronic states of the
defect are studied. They can be associated with open-shell electronic structures where the
atomic 4f , 5d, and 6s shells dominate the molecular orbital mixing as much as atomic-like
4f N , 4f N−15d, and 4f N−16s open-shell configurations lead the multiconfigurational expan-
sions. These characteristics are far from formal. Rather, they are basic characteristics that
must be taken into account to favor efficient and increasing understanding of the materials.
They are widely recognized by expert experimentalists and theoreticians alike because they
are extremely useful to refer to groups of states associated to which significantly different
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structural and optical behaviors can be ascribed. These discussions will become more clear
throughout this chapter.

Doped lanthanides in solids are most stable as trivalent ions (Ln3+). Some elements can
be stabilized, in certain hosts, as divalent ions (Ln2+) as well, but other oxidation states are
rare [1–3]. The ground configuration is [Xe]4f N in the trivalent lanthanide series (4f N from
now on) and the 4f -shell occupancy uniformly grows from Ce3+ (N = 1) to Lu3+ (N =
14), leading to a number of electronic states, which is maximal in the middle of the series,
varying from 14 Ce3+(Yb3+) to 91 Pr3+(Tm3+), 364 Nd3+(Er3+), 1001 Pm3+(Ho3+), 2002
Sm3+(Dy3+), 3003 Eu3+(Tb3+), and 3432 Gd3+, as shown by Dieke and Carnall [1, 2]. This
is also the ground configuration in the Ln2+ isoelectronic series, with some exceptions for
the lighter lanthanides.

The impurity 4f shell can be described as a very internal open-shell whose electrons
are hidden from the crystal environment behind the 5s and 5p shells, which are, to some
extent, valence shells. This explains their secondary role in determining the bond lengths of
ground and excited 4f N states, as well as the little dependence of the 4f → 4f spectra on the
host, which results in a very close correspondence between the 4f → 4f spectra in crystals
and in gas phase, which is the basis of the success of the well-known parametric Crystal
Field Theory [2, 4]. In contrast, the energy levels of the tight and internal 4f N shell are very
sensitive to electron-electron repulsion, electron correlation, and relativistic effects, which
provoke the appearance of energy gaps between members of the 4f N manifold, which are
large enough to prevent non-radiative decay, making it possible for the existence of sev-
eral metastable exited states, which can either luminesce, further absorb new photons prior
to higher energy emissions, or originate a cascade of shorter energy emissions upon high
energy absorption, leading, respectively, to proven f -f multiple luminescence, upconversion
luminescence, or quantum cutting, as well as to other optical phenomena that contribute to
their applied interest. Note that f is a common shorthand notation used to refer to 4f or to
4f N ; disambiguation relies on the context. The same is true for d relative to 5d or 4f N−15d.
These terms will be used throughout this chapter.

In addition to the wealth of the 4f N manifold and its intraconfigurational f -f transitions
and processes, very different excited states and energy-related mechanisms appear as one
electron is excited to the higher 5d shell leading to the 4f N−15d manifolds. Only at the
edges of the series, where the number of 4f N states and their energy range is small the
4f N−15d excited states lie clearly above in energy; otherwise, the two manifolds overlap to
some extent. The 4f N and 4f N−15d states have different parity and this has a strong impact
on transition selection rules and, hence, transition intensities, when the impurity occupies
centrosymmetric sites; it still affects the spectra when it is lost by low site symmetry. But,
parity is not the only important difference between these two configurations. Other new
characteristics accompany the 4f N−15d manifolds, which also become available to tune the
material’s optical behavior and response.

It is useful to see the 4f N−15d manifold as the result of the coupling of the 4f N−1 subshell
with the 5d electron because each part conveys its own electronic structure characteristics.
So, the 4f N−1 subshell carries its typical energy gaps due to f -f repulsions and spin-orbit
coupling, commented above, whereas the 5d part imprints some transition metal character
to the lanthanide through the typical, well-known sensitivity of the d shells to chemical
environment, to the crystal environment here, which extends and splits further the complex
4f N−1 energy level structure upon 4f N−1 ⊗ 5d coupling. Yet, another point of view is also
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needed: The two parts together, the 4f N−15d manifolds, resulting, basically, from single
4f → 5d excitations from the 4f N ground manifold, strongly modify the electron correlation
balance in the latter. On the one hand, tight f -f electron pairs are broken and substituted by
more distant f -d pairs, which has increasing importance across the series, particularly in its
second half, where the so-called heavy lanthanides (N > 7) are reached. On the other hand,
correlation with electrons of the valence shells of the impurity first neighbors, the ligands,
becomes more important for the chemically more active 5d shell than for the shielded 4f
shell, hence for the 4f N−15d manifolds. All of this affects the theoretical models applicable
as much as models the materials local structure and optical properties, as will be discussed
in this chapter.

The fast and intense emissions that may occur from some members of the 4f N−15d man-
ifold, together with the possibility of tuning their wavelength and band shape by changing
the chemical environment (changing the host, co-doping other impurities, modifying the
site symmetry by doping a non-stoichiometric host, etc.) have widened the fields of appli-
cations of lanthanide ions in solids to areas of enormous societal interest among which,
solid-state lighting and medical imaging can be singled out, and have provoked an increase
in the number of studies focused on the 4f N−15d optical properties. Yet, their investigation
and applicability face difficulties and/or limitations of various origins, which challenge the
experimental research as much as the theoretical models, which can no longer be based on
parametric crystal field theory nor disregard strong correlation and relativistic effects.

Mimicking the variation observed for Ln3+ in gas phase, the energy onset of the 4f N−15d
spectrum in crystals increases sharply towards half/full occupation of the 4f N−1 subshell:
Roughly, it grows from Ce3+ (4f 15d) to Gd3+ (4f 65d), and, again, from Tb3+ (4f 75d)
to Lu3+ (4f 135d) (being the onset of Tb3+ higher than that of Ce3+, in general). Hence,
often the 4f → 5d transitions are very high in energy, lying in the ultra-violet (UV) or vac-
uum UV, or simply higher than the strong host absorption, so that they cannot be observed
except for a few Ln3+ ions doped in hosts that preferably create strong crystal fields and
have large transparency windows or band gaps (insulators). Consistent with this, the num-
ber of works on Ln2+ has experienced an increase, since their 4f N−15d states lie much
lower in energy than those of isoelectronic Ln3+; however, Ln2+ ions are more unstable
against oxidation than Ln3+, which poses more challenges to the syntheses of the mate-
rials. In any case, the occurrence or the efficiency of the 4f N−15d luminescence can be
also compromised by non-radiative decay due to different, not well-understood, quench-
ing mechanisms. Their strong coupling with the host vibrations, particularly with the local
ones, favors non-radiative decay. It is also favored when the energy gap between the poten-
tially emitting 4f N−15d state and the 4f N state lying next and lower to it in energy is not
large enough to prevent multiphonon relaxation, a circumstance that may vary from one
host to another, since the variation in chemical environment can shift the 4f N−15d states
while the 4f N levels remain basically unaffected. The 4f N−15d luminescence of phosphors
and scintillators can also be quenched (and, eventually, favored) due to interaction with
impurity-trapped excitons. This is the case of the so-called “anomalous” emissions charac-
terized by extremely wide bands (resembling host bands) that peak at much lower energies
than expected from the pumped 4f N−15d states. Impurity-trapped excitons are also believed
to play a role in the host-to-activator energy transfer mechanisms that either favor or reduce
the emission of scintillation photons from the 4f N−15d states of the active center upon
ionizing radiation.
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Excitons trapped at impurity centers in highly ionic crystals were first described by
McClure and Pédrini [5] as excited states consisting of a bound electron-hole pair with
the hole localized on the impurity and the electron on the nearby lattice sites, and a very
short impurity–ligand bond length. The study of the electronic structure of some actinide
and lanthanide impurities in crystals using methods of solid state quantum chemistry has
revealed the existence of electronic states whose characteristics match this description.
Analyses of their wavefunctions, their potential energy surfaces, and their local geometry
reveal a significant charge leak outside the first coordination shell, which favors a signifi-
cant impurity-ligand bond shrinkage, towards values associated with the oxidized impurity.
Also apparent are the numerous crossings and avoided crossings that occur when impurity-
trapped excitons coincide in energy with impurity states, particularly of the 4f N−15d and
4f N−16s manifolds. Their microscopic description is probably close to the limits of what can
be studied using embedded-cluster approximations, hence, it requires considerable exten-
sions of their framework. As a matter of fact, they are still a challenge for theoretical
methods, which, so far, have not been able to produce an accurate description of the anoma-
lous emissions observed experimentally, even though routes for progress from accumulated
knowledge are foreseen.

Altogether, impurity states and impurity-trapped excitons define the realm of lanthanide
activated solid-state materials. This is a realm where experiment and theory should meet
but where the research work conducted is overwhelmingly experimental. Their structure
and optical properties are complex and rich. They are a genuine challenge for quantum
chemists. What is needed is not massive production of theoretical results, which follow
experiments (which, in any case, would probably be very difficult to attain, given the pace
of experimental work and sophistication of the theoretical methods applicable). What is
needed is to answer basic questions that cannot be answered by experimental techniques
alone so that their electronic structures are mastered beyond simple model and beyond
empirical model descriptions, to the point where the intensive and constant search for
new materials could count on the ability to predict, which is characteristic of ab initio
quantum chemical methods when it is found how to stretch them to the limits of their
capabilities.

9.2 Methods

The methods of choice must be adequate for manifolds of electronic states that are localized
around a lanthanide ion in a solid host. The combination of a solid environment, a heavy
element, and 4f , 5d, and other open-shells, demands the consideration of the effects of the
solid host, the use of relativistic Hamiltonians up to spin-orbit coupling, the correct treat-
ment of static and dynamic correlation, and handling large manifolds of quasi-degenerate
excited states. We decided to use embedded-cluster wavefunction theory-based (EC-WFT)
methods, with a two-component relativistic Hamiltonian to be used in two-steps, a multi-
configurational variational treatment of static correlation, and a multireference second-order
perturbation theory treatment of dynamic correlation.

As an alternative, density functional theory methods with periodic boundary conditions
(PBC-DFT) mean a better description of the solid host effects, and they may provide bet-
ter ground state structures. Besides, they can be used in more extended solid defects that
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involve a larger number of atoms. They are not so adequate, however, to provide excited state
structures and high quality absorption and emission transition energies. In consequence with
this, we reserve the use of PBC-DFT methods to the study of the ground state structures of
materials involving complex defects, like those resulting when a material doped with an
optically active lanthanide ion is co-doped with other impurities in an attempt to control the
luminescent properties of the active centers.

9.2.1 Embedded-Cluster Methods

Since the pioneering cluster calculation on the KNiF3 solid of Shulman and Sugano [6]
there has been a wide variety of proposals of procedures to handle relatively localized elec-
tronic states of a solid with a molecule-like Hamiltonian that includes the relevant solid host
effects, depending on the type of solids and on methodological flavors (Green’s functions,
wavefunctions, density functional, etc.). A recent summary of practical methods can be
found in Huang and Carter [7]. Here we describe our choice of embedded-cluster method,
particularly useful in ionic materials.

9.2.1.1 Embedded-Cluster Hamiltonian

The embedded-cluster Hamiltonian we use is based on the group function theory for two
or more groups of electrons without mutual correlation, as developed by McWeeny and
Huzinaga [8–10]. If we assume this is the case for the interactions between a group of
electrons localized on a particular region of the solid close to a number of atoms (which
we call cluster) and other groups of electrons that are distributed over the rest of the solid
(which we call embedding host), then, the ground state and excited state wavefunctions of
the set of NC

e cluster electrons under the effects of the embedding host can be approximately
computed as the eigenfunctions of an embedded-cluster Hamiltonian ĤEC that is the sum
of the Hamiltonian of the otherwise isolated cluster ĤIC and a host embedding Hamiltonian
Ĥemb. The latter is a sum over the NC

e cluster electrons of one-electron embedding operators
V̂emb(i). V̂emb is known as the embedding potential.

ĤEC = ĤIC + Ĥemb = ĤIC +

NC
e∑
i

V̂emb(i). (9.1)

The isolated cluster Hamiltonian ĤIC can be either the non-relativistic many-electron
Hamiltonian or a suitable relativistic choice, both in their all-electron versions or in any
effective core potential version. We will discuss ĤIC later. The embedding potential acting
on the cluster electrons reads:

V̂emb(i) = −
NH

n∑
ξ

Zξ

rξi
+

NH
oo∑
μ

[
fμ

∫
ϕ∗
μ(j)[2 − P̂ij]ϕμ(j)

rij
dτj + Bμ|ϕμ〉〈ϕμ|

]
. (9.2)

It includes the following interactions experienced by one cluster electron: First, the elec-
trostatic interaction with the NH

n nuclei ξ of the embedding host, and second, the Coulomb
and exchange interactions with the embedding host electrons, whose charge density is repre-
sented by means of the NH

oo occupied orbitals ϕμ (with respective fractional occupancies fμ),
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and finally, the Pauli repulsion with the embedding host electrons. This term is positive for
non-converged cluster orbitals (all constants Bμ are positive), and it prevents their collapse
onto the host orbitals (and the over occupancy of the latter, so called orbital collapse); it is
zero for fully converged cluster orbitals in a complete basis set.

Embedding AIMPs. The set of embedding host orbitals ϕμ in equation 9.2 can be any
unitary transformation of the occupied host orbitals so that both delocalized and localized
orbitals can be used. In an ionic crystal, host localized orbitals can often be found that only
contain small mixing between orbitals of the individual ions, φξ

k ; in these cases, substi-
tuting the ϕμ set by the φξ

k set can be a reasonable approximation. The AIMP embedded
potential results from adopting such an approximation and substituting the Coulomb and
exchange operators of the individual ions of the host by model potential representations of
them [11, 12],

V̂emb(i) =
NH

n∑
ξ

V̂AIMP
ξ (i).

Here, the embedding AIMP of the host ion ξ is:

V̂AIMP
ξ (i) = −Qξ

rξi
+

1
rξi

∑
p

Cξ
p exp(−αξ

pr2
ξi) +

∑
p

∑
q

|χξ
p〉Aξ

pq〈χξ
q |

+
∑

k

Bξ
k |φ

ξ
k 〉〈φ

ξ
k |. (9.3)

Here, Qξ is the ionic charge, Qξ = Zξ − Nelec
ξ . The second term is such that

1
rξi

∑
p

Cξ
p exp(−αξ

pr2
ξi) ≈ −

Nelec
ξ

rξi
+ 2

∑
k

fk

∫
φξ∗

k (j)φξ
k (j)

rij
dτj, (9.4)

with the Cξ
p and αξ

p chosen to minimize the deviations; in this way, the second term corrects
the point charge potential with the electrostatic contributions from the ionic electron den-
sity and Qξ −

∑
p Cξ

p exp(−αξ
pr2

ξi) is the effective ionic charge. Finally, the coefficients in
the last terms are

Aξ
pq = −

∑
r

∑
s

S−1
pr

∑
k

fk

∫
χξ∗

r (i)φξ∗
k (j)φξ

k (i)χ
ξ
s (j)

rij
dτjdτiS

−1
sq , (9.5)

with the S matrix defined as

Spq = 〈χξ
p |χξ

q〉, (9.6)

so that the third term is the exchange interaction between the embedding electrons and the
i-th cluster electron, in the form of a spectral representation (resolution of the identity).
In equations 9.3, 9.5, and 9.6, the χξ

p are a set of auxiliar functions; usually, these are the
primitive Gaussians used to expand the ion orbitals φξ

k .
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Self-Consistent Embedded Ions. The calculation of the AIMP embedding potential
(equation 9.3) demands the knowledge of the ionic orbitals φξ

k . We compute them in an
iterative self-consistent embedded ions calculation SCEI [13]. Let us take the Lu3Ga5O12

garnet as an example. Here we identify four types of ions: Lu3+, Ga3+
oct, Ga3+

tet, and O2−.
Starting with an initial representation of the Lu3Ga5O12 embedding potential (e.g., that
corresponding to a point charge representation of all the ions), we perform Hartree-Fock
(HF) calculations on the individual embedded ions. With the orbitals and orbital energies
of these ions, new embedding AIMPs are made for them after adopting Bξ

k = −2εξk , and
they are used to update the AIMP embedding potential representation of Lu3Ga5O12. Then,
new HF calculations on the embedded ions are made. This SCEI cycle is stopped when the
embedded-ion total and orbital energies of two consecutive iterations converge within given
thresholds (e.g., 10−8 au). The embedding AIMPs of the ions are located at experimental
sites of the respective garnets, within a cube made of 3 × 3 × 3 unit cells (160 atoms per
unit cell) surrounding the reference ion. The AIMP embedding potential of the garnet is
completed with a set of ∼105 additional point charges situated at lattice sites, generated
by the zero-multipole method of Gellé and Lepetit [14], in order to closely reproduce the
Ewald potential [15] within the cluster. The Evjen method [16] of fractional charges has
been used for this purpose in our group in many occasions, but we found in a number of
crystal lattices that the Evjen charges reproduce the Ewald potential within the cluster and
its surroundings with a constant added. Although this is not a problem for a majority of
structural and spectroscopic calculations, the effect of such a constant has to be corrected
to calculate ionization. The method of Gellé and Lepetit [14] overcomes this problem in
an elegant manner. An extension of the embedding AIMP method for multiatomic ions has
been recently implemented [17].

Isolated Cluster Hamiltonian. Lanthanides are heavy elements and their ions have par-
tially filled 4f shells in which spin-orbit coupling plays a key role. In consequence, the
isolated cluster Hamiltonian ĤIC of equation 9.1 must be a relativistic Hamiltonian that
includes spin-orbit coupling. We found the CGWB-AIMP Hamiltonian [18, 19] to be a
reasonable choice. This Hamiltonian is the frozen-core ab initio model potential ver-
sion [20] of the spin-orbit coupling extension of Wood and Boring [21] of the Cowan
and Griffin Hamiltonian [22]. See Seijo and Barandiaran [23] for a detailed description.
A good alternative is the all-electron second order (or higher order) Douglas-Kroll-Hess
Hamiltonian [24, 25] with the atomic mean-field approximation AMFI for the spin-orbit
coupling operator [26], or a frozen-core AIMP version of it [27].

9.2.1.2 Embedded-Cluster Wavefunctions

The embedded-cluster approximation is a natural way to focus the methodological effort
on the local defect electronic structure, studying it using methods designed for the cal-
culation of the ground and excited states of molecules containing heavy elements in gas
phase. The size of the defect cluster to be singled out and the type of wavefunctions
associated with it are basic decisions that must be guided by the chemical composi-
tion of the point defect and by the intrinsic open-shell, highly correlated nature of the
electronic states of the substitutional impurity. The experience gathered on these lines is
summarized next.



“Dolg-Driver” — 2015/1/17 — 12:03 — page 224 — #8

224 Computational Methods in Lanthanide and Actinide Chemistry

Cluster Size and Basis Set. When a quantum-mechanical embedding technique like that
described above is used and the defect is local, the cluster can be quite small. In many appli-
cations it includes only the lanthanide impurity and its first neighbors: the ligands. Yet, even
when the small impurity+ligands cluster is a reasonable choice, basis functions must be used
at the neighboring atoms to respond to the strong orthogonality conditions [28] that must be
fulfilled between the cluster wavefunctions and the frozen ion wavefunctions of the embed-
ding, represented by the AIMP embedding potentials (last term in equation 9.3). For this
reason, the outermost atomic orbitals of the (next) frozen embedding ions are customar-
ily used in the cluster basis set, which avoids artificial cluster bond length shrinkage [12].
Alternatively, in cases where the ligands are tightly bound to surrounding ions, like in
granates, or when impurity-trapped excitons are calculated, second neighbor cations should
also be included in the cluster and contribute to the cluster molecular basis set. In addition
to this, empty orbitals of the next neighbor cations and functions at interstices have been
found to be necessary for a balanced representation of impurity states and impurity-trapped
excitons [29–31].

In all cases, each contributing atomic basis set should be flexible enough so that sophis-
ticated electron correlation methods like the ones described below can be used without
contaminating basis set errors. Hence, at least quadruple-zeta plus polarization should
be used.

Electron Correlation. Given the open-shell nature of the ground and excited states of lan-
thanide impurity ions in crystals, electron correlation is extremely important. Currently,
electronic structure methods based on the use of multireference wavefunctions appear to
be the fittest to respond to the requirements. Furthermore, their current evolution towards
allowing more and more flexible definitions of the active space makes them even more ade-
quate. Even though the methods used in the applications contained in this chapter are well
known and their performance has been proven and documented in many highly correlated
systems, we summarize here how to adapt them to the impurity lanthanide ion electronic
structure demands.

The Multireference Space. The calculations of the embedded-cluster wavefunctions
have a first step where multiconfigurational self-consistent field wavefunctions and ener-
gies are calculated using complete and/or restricted active spaces (CASSCF [32–34] and/or
RASSCF [35, 36]). The lanthanide 4f , 5d, and 6s shells must be included in the active
space for the calculation of the 4f N , 4f N−15d, and 4f N−16s manifolds, N being the num-
ber of active electrons [37]. Impurity-trapped excitons may also occur and can be labeled
as 4f N−1φ, where φ stands for significantly more delocalized orbitals whose electron den-
sity spreads beyond first neighbors; these orbitals also have to be included in the active
space. If the active space is complete, the previous choice may generate very large multi-
configurational expansions, which are still affordable in some common impurity ions. An
active 5f shell is also necessary for the heavy lanthanides (N > 7) to account for large
radial correlation effects in the 4f shell for interconfigurational transitions, as we comment
below. In these cases, the use of restricted instead of complete active spaces is necessary
given the size of the multireference space that might be generated [31]. The orbitals used
in the multiconfigurational expansions are optimized for the average of all states with main
4f N , 4f 135d1, and 4f 136s1 configurational character of a given total spin and point sym-
metry irreducible representation. Although approximate, this practice is appropriate for the
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calculation of the local structure and spectroscopy of lanthanide ions doped in crystals.
Very often the calculations are done using a subgroup of the actual site symmetry group
(e.g., D2h when the site symmetry is Oh). In these cases it is very important to restrict the
orbital rotations to enforce actual site symmetry. Important a posteriori assignments of the
wavefunctions to irreducible representations rest upon fulfillment of this restriction. Low
symmetry sites or sites with no symmetry at all are simpler in these respects but are naturally
far more demanding computationally. It is known that CASSCF wavefunctions converge
far more readily than RASSCF ones. For the latter, the restriction to use only pure super-
CI iterations ensures smooth convergence even though the number of iterations is usually
very large.

Multi-State Second Order Perturbation Method. The state-average CAS/RASSCF
states of lanthanide ions in gas phase and in solids are known to interact at second
order perturbation level. Therefore, dynamic correlation must be computed using the
multi-state multiconfigurational second order perturbation theory (MS-CASPT2 [38–41]
or MS-RASPT2 [42], respectively). N + 8 electrons of the lanthanide (which includes the
5s and 5p closed shells) and the valence electrons of the ligands should be correlated at this
level. The use of imaginary shifts prevents the appearance of intruder states [43]. The stan-
dard IPEA value (0.25 au) can also be used; this parameter has been introduced by Ghigo
et al. [44] as a simple way to correct for systematic underestimations of CASPT2 transi-
tion energies from closed-shell ground states to open-shell excited states, although it is also
recommended as a default option in other cases.

Radial Correlation in the 4f Shell. The effects of radial correlation on the ionization
potential and 4f N → 4f N−15d transitions at the end of the lanthanide series were investi-
gated recently by means of RASSCF + MS-RASPT2 studies of Yb2+ (N = 14) in gas phase
and in the SrCl2 solid [31]. The study shows the limitations of the second order perturba-
tion treatment to account for the large contribution of differential radial correlation in the
4f shell when the number of f electron changes in the transition. The sample case chosen
poses most stringent methodological requirements in the lanthanide series since the number
of f electron pairs that are broken in the excitation is maximal.

In effect, it has been shown that the large energy gap of 25000 cm−1 (∼29500 cm−1

without spin-orbit coupling) experimentally observed between the 4f 14 ground state and
the first excited state of the SrCl2:Yb2+ material is mostly due to electron correlation [31].
A minimal multiconfigurational restricted active space (RASSCF) calculation that includes
only the 4f 14 ground and 4f 135d open-shell excited configurations gives a very small gap
(5400 cm−1), which is increased by some 35600 cm−1 when electron correlation is included
by means of second order perturbation theory. This correction is too large to be accurate at
second order perturbation level. In effect, when a second f -shell is also included in the
active space and single and double excitations to the 5d, 6s, and 5f shells are treated vari-
ationally, the (extended) RASSCF energy gap above the ground state and the electronic
transitions increase by 22038±120 cm−1 and the RASPT2 correlation energy corrections
become small (–721±571 cm−1), as it is desirable for a second order perturbation. If both
RASPT2 results are compared it is possible to conclude that the minimal RASPT2 calcu-
lation overestimates the interconfigurational transition energies by 14223±80 cm−1, most
of which (12700 cm−1) are due to the lack of the second f -shell in the active space, which
indicates an inaccurate calculation of the differential radial correlation between the 4f 14 and
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4f 135d configurations by second order perturbation theory. In order to establish practical and
accurate procedures for the calculation of 4f → 5d and other interconfigurational transitions
at the end of the lanthanide series, the above mentioned and other RASSCF+RASPT2 cal-
culations on the ionization potential of Yb2+ in gas phase and in SrCl2 were benchmarked
against coupled cluster (CCSD and CCSD-T) calculations and experiment. The results sup-
port that variational calculation of single and double 4f → 5f excitations at the RASSCF
stage prior to MS-RASPT2 can be a realistic, accurate, and feasible choice to model radial
correlation effects in the heavy lanthanides (N > 7).

9.2.1.3 Spin-orbit coupling

Our choices of relativistic isolated cluster Hamiltonian allow us to write the embedded-
cluster Hamiltonian of equation 9.1 as a sum of spin-free and spin-orbit coupling
Hamiltonians,

ĤEC = ĤEC
SF + ĤEC

SO . (9.7)

Since the dynamic electron correlations are associated with the two-electron interactions
in ĤEC

SF and their treatment is much more cumbersome for a spin-dependent Hamiltonian
like ĤEC

SO , it is very convenient to split the full calculation in two-steps, a first step with
ĤEC

SF in which all correlations are calculated (e.g., at RASSCF+RASPT2 level), and a sec-
ond step with ĤEC where the spin-orbit couplings between eigenfunctions of the spin-free
Hamiltonian are considered. Besides, since the spin-orbit coupling operator is a one-electron
effective operator [26], the calculation of the latter couplings does not demand the use of
dynamically correlated wavefunctions, but, instead, statically correlated wavefunctions like
RASSCF are sufficient. A convenient way of using spin-orbit couplings calculated between
statically correlated wavefunctions ΦS

i , together with dynamically correlated energies of the
spin-free Hamiltonian ED

i , instead of the poorer statically correlated ones ES
i , is the use of

spin-free-state-shifting operators [45]:

ĤEC
sfss = ĤEC +

∑
i

|ΦS
i 〉(ED

i − ES
i )〈ΦS

i |. (9.8)

The application of this two-step procedure for RASSCF statically correlated wavefunctions
and RASPT2 dynamically correlated energies is shown by Malmqvist et al. [46]. Basically,
it consists of computing the matrix of the spin-orbit coupling operator ĤEC

SO in the basis
of RASSCF wavefunctions, adding the RASPT2 energies to the diagonal elements, and
diagonalizing it. In Paulovic et al. [47], the option of doing the same in the basis of the
first-order wavefunctions of the MS-CASPT2 method—the modified RASSCF functions
that diagonalize the MS-CASPT2 effective Hamiltonian—was followed. This is equivalent
to supplementing the spin-orbit operator matrix with the full MS-CASPT2 effective Hamil-
tonian matrix (in the original RASSCF basis) prior to diagonalization, which prevents the
anomalous results near avoided crossing points between states with equal spins and sym-
metries but different electronic natures (e.g., an impurity 4f N−15d state and an excitonic
4f N−1φ state) that can be found with the first approach [48].
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9.2.2 Combined Use of Periodic Boundary Condition Methods and Embedded
Cluster Methods

The strength of embedded-cluster methods as the ones described in Section 9.2.1 resides in
their ability to produce accurate energies and properties of large manifolds of local excited
states. Their weakness is in their limitations to handle structures of defects that involve many
atoms. As an intermediate alternative for complex defects, periodic boundary conditions
DFT methods can be used for ground state structural studies, and the resulting structures
can be later used in embedded-cluster WFT methods for excited states. This has been proven
to be extremely useful, e.g., to study effects of co-dopants on the local states of lanthanide
ions [49, 50] and to help in determining the optically active defects among the list of poten-
tial defects present in a given lanthanide based phosphor [49–51]. The weaker point of
this alternative appears when the structures of defects must be known in their excited states,
e.g., in Stokes shifts calculations and in studies of excited state energy transfer mechanisms,
non-radiative decays, etc.

9.2.3 Absorption and Emission Spectra

Using the computed bond lengths, breathing mode vibrational frequencies, energies of the
adiabatic transitions, and absorption/emission electric dipole transition moments, it is pos-
sible to simulate absorption and emission spectra profiles. A good choice for it is the
semiclassical time-dependent approach of Heller [52, 53], which follows the propagation
of a vibrational wave packet of the original electronic state in the potential energy surface
of the final electronic state. According to it, the intensity profile of an individual electronic
absorption or emission (one electronic origin) reads

I(ω) = C ωn
∫ ∞

−∞
exp(iωt) 〈φ | φ(t)〉 dt, (9.9)

where ω is the frequency of the absorbed or emitted radiation, n = 1 in absorption and
n = 3 in emission, φ is the initial wave packet or vibrational wavefunction on the ground
state, and φ(t) is its propagation in the final electronic state energy surface, which results
from the vibrational time dependent Schrödinger equation

i�
∂φ(t)
∂t

= Hφ(t) (φ(0) ≡ φ). (9.10)

Since temperature, disorder, and other factors widen the experimental absorption and emis-
sion spectral lines, it is common and convenient to include an arbitrary widening factor Γ
in the overlap between the initial and the propagated vibrational functions 〈φ | φ(t)〉. For
instance, if only one breathing mode is taken into account, a common value of its vibrational
frequency ωk is used for the initial and final electronic states, and a harmonic approximation
is assumed, the 〈φ | φ(t)〉 reduces to [54]

〈φ | φ(t)〉 = exp{−Δ2
k

2

(
1 − e−iωkt

)
− iωkt

2
− iE0t − Γ2t2}, (9.11)

where Δk is the dimensionless displacement along the vibrational mode k, Δk =
(μkωk/�)

1/2ΔQk (e.g., in a ML6 octahedral moiety, the effective mass is μk = μa1g = mL
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and the breathing mode distortion of the ML6 moiety is given byΔQk =ΔQa1g =
√

6ΔdM−L),
E0 is the difference between the minima of the upper and lower energy surfaces, and Γ is
the mentioned arbitrary damping factor whose value determines the width of the vibrational
lines. Values of Γ ranging between 10 cm−1 and 200 cm−1 are common. The full absorption
or emission intensity profile is calculated as the superposition of the profiles of the individ-
ual electronic origins, with weight factors having the same ratios as the oscillator strengths
of the individual absorptions.

9.3 Applications

The results of some applications of the methods to the study of structural and optical prop-
erties of lanthanide ions in crystals are summarized here. They are organized to show their
ability for giving insight and building a model of their electronic structure and interac-
tions. We also focus on showing their capacity to predict optical properties, a very valuable
characteristic on the line of search for new materials.

9.3.1 Bond Lengths

In addition to the expected lanthanide contraction of the 4f N ground state bond length across
the Ln2+ and Ln3+ series [55], an interesting result, which is most easily visible in highly
symmetric crystals, is the configuration dependence of the bond length between the lan-
thanide impurity and the first neighbors of the crystal, the ligands. The dependence is so
manifest that it contributes to the classification of large numbers of states into manifolds
that share a common leading configuration and show parallel potential energy curves with
common bond length values, with deviations as small as 10−3 Å. This can be observed
in Figure 9.1, where the energy curves of the electronic states of Yb2+-doped CsCaBr3,
calculated including electron correlation and excluding spin-orbit coupling, are plotted
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against the Yb–Br distance of the octahedral YbBr4−
6 embedded cluster. Furthermore, the

bond length dependence of the leading electronic configuration is so systematic that the
following relative values for octahedral sites:

Re[4f N−1d(t2g)] < Re[4f N ] < Re[4f N−1d(eg)] < Re[4f N−16s],

and for cubic sites:

Re[4f N−1d(eg)] < Re[4f N ] < Re[4f N−1d(t2g)] < Re[4f N−16s],

which are also illustrated in Figure 9.1, have been systematically obtained in Oh substitu-
tional defects of Ln2+ [30, 56–58], Ln3+ [59–62], and actinide ions [23, 29, 37, 63, 64].

Predictions of the local geometry are important because local distortions affect the optical
properties and direct measurements of them are very difficult. In effect, very little quanti-
tative information is available on the local geometry of the defects around the lanthanide
impurities and very often the undistorted local geometry of the perfect host is assumed when
geometry dependent models are used. In principle, EXAFS experiments could give coor-
dination numbers and bond distances between the impurity and its closest neighbors in the
4f N ground state of the defect, however, the local geometry of excited states is even more
difficult since it would require EXAFS measurements on a pumped excited state, a type of
experiment which has not been done so far. Yet, it is possible to infer from experiments that
the 4f N and 4f N−15d1 manifolds have different nuclear equilibrium configurations and to
estimate the absolute value of their shift out of the analysis of the absorption and emission
band shapes. In this respect, it has been widely assumed that the bond distances between the
lanthanide ion and the ligands are larger in the lowest 4f N−15d1 than in the 4f N states. (See
configuration coordinate diagrams in Figures 7, 2, 3, and 7 of these references [65–68],
respectively, among many examples of this extended assumption.) This idea is probably
based on the fact that Ln 5d orbitals have much larger radial extent than Ln 4f orbitals.
Only exceptionally, it has been pointed out the possibility of an opposite shift like the one
mentioned above [69].

Even though the calculated offsets between f N and f N−1d(t2g) states were validated by
the good agreement found between the theoretical and experimental f ←→ d(t2g) band pro-
files corresponding to the totally symmetric a1g vibrational progression built on a single
electronic origin [64, 70, 71] and on multiple electronic origins [37, 72] it was necessary
to give an explanation to the unexpected trend. Hence, quantum chemical analyses of the
bond lengths in f N and f N−1d states of Ce3+, Pr3+, Pa4+, and U4+ defects in chloride hosts
were conducted by Barandiaran et al. [61] using the Constrained Space Orbital Variation
method [73, 74]. The analyses showed the origin of the bond length shrinkage upon 4f → 5d
excitation: The inner 4f N open-shell electrons are shielded from the ligands by the outer 5p6

closed-shell, whose interaction with the ligands determines the bond distance in states of
the 4f N configuration. When one electron is excited to lead to the 4f N−15d configuration,
it crosses the 5p6 barrier and is exposed to covalent interactions with the ligands, which
strengthen the bonds. At the same time, a 4f whole is left behind, which promotes charge
transfer from the ligands, this contributing further to the bond length shrinkage. Finally, a
large 5d(t2g)− 5d(eg) ligand field splitting, which is enhanced by covalency, decreases the
4f N−15d(t2g) bond lengths clearly below the 4f N ones, and increases the 4f N−15d(eg) ones
clearly above, which leads to the final trends. Note that in cubic, rather than octahedral, Oh

coordination the t2g and eg behaviors are opposite.
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The study of the bond length shifts were also extended from the doped crystals to octa-
hedral complexes of f element ions in liquid solutions and gas phase, which showed the
generality of the bond length shortening upon f N → f N−1d(t2g) excitation [61]. Since no
experimental proof of the actual sign of the bond length change upon excitation had been
given, a quantum chemical simulation of spectroscopic experiments under high hydrostatic
pressure followed that showed a continuous redshift of the lowest f N → f N−1d band of
Cs2NaYCl6:Ce3+ with pressure in the range 1 bar to 26 kbar [75]. The pressure-induced red-
shift was shown to be a direct consequence of the bond length shrinkage upon the f → d(t2g)
excitation, and the prediction called for the experimental detection of the pressure induced
redshift as a way to proof (or reject) the bond length shortening. Shortly after, Valiente et al.
found the predicted red shift in Ce3+-doped Cs2NaLuCl6 [76].

The long bond lengths found for the 4f N−16s states are associated with their large radial
extent, strong electron–electron repulsion within the cluster, and confinement by the host
embedding, which shifts their energies to very high values, compared with the free ions, at
the same time that their bond lengths are maximal, as discussed by Sanchez-Sanz et al. [58].

It should be noted that the trend, of bond lengths we have just described is obtained at
the lowest methodological level where the energy curves are calculated at the CASSCF
or RASSCF levels. Embedded-Cluster valence electron correlation adds a quite constant
shrinkage of all bonds without altering the trend, and spin-orbit does not affect, in general,
the local structure. Exceptions to this are the cases where manifolds with different dominant
electron configuration interact due to either dynamic electron correlation or spin-orbit cou-
pling. In these cases, configurational mixing leads to distortions of the energy curves, which
may result in a range of bond length values comprising those of the interacting configura-
tional manifolds and anharmonic curves associated with avoided crossings. An example of
this can be seen in Figure 9.2 where the manifolds of spin-orbit free states presented in
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Figure 9.1 appear to be split in two submanifolds by spin-orbit coupling. Each submanifold
corresponds, basically, to the J = 7/2 and J = 5/2 components of the 4f 13 subshell. Given
that the spin-orbit free 4f 135d(t2g) and 4f 136s manifolds are close in energy (see Figure 9.1),
their corresponding 5/2 and 7/2 subsets appear to be mixed and distorted, as can be observed
in Figure 9.2 [56, 57].

9.3.2 Energy Gaps

The existence of energy gaps between excited states is characteristic of the lanthanide ions.
This grants them very interesting optical properties such as multiple luminescence, upcon-
version, quantum cutting, which require the existence of several metastable excited states.
The stability of a particular excited state of a lanthanide in a crystal depends primarily on
the magnitude of the energy gap separating it from the next state of lower energy, relative
to the value of the higher energy phonon of the material, since an important mechanism of
non-radiative decay is multiphonon relaxation. Hence, it is interesting to study the origin of
the energy gaps between excited states, and it is valuable to predict their occurrence.

Given that the 4f N shell is very efficiently shielded from the crystalline environment,
the energy gaps shown by the lanthanide ions in gas phase may be observed in the solids,
where several excited states are metastable and capable to luminesce or absorb to higher
excited states. However, the occurrence of metastable excited states of the 4f N−15d config-
uration is not so frequent. As a matter of fact, in many cases, the 4f N−15d levels coincide in
energy with the numerous 4f N states and decay through them. Yet, the 4f N−15d manifolds of
heavy lanthanides may contain a number of metastable excited states, as deduced from the
facts that multiple spontaneous emissions originating in different 4f N−15d states have been
detected [77–79] and upconversion luminescence has been proven and interpreted in terms
of energy transfer mechanisms where more than one 4f N−15d states are involved [80, 81].

Using the embedded-cluster methods described above multiple spontaneous emission has
been predicted for Yb2+-doped CsCaBr3 crystals and the origin of the energy gaps exist-
ing below the potentially emitting electronic states has been analyzed by Sanchez-Sanz
et al. [57]. Five large energy gaps are found that result from the following interactions: The
interactions of the Yb2+ impurity with the ligands and with the embedding host are respon-
sible for the splitting of the 4f 135d levels into the 4f 135d(eg) and 4f 135d(t2g) manifolds,
separated by 19000 – 20000 cm−1 (Figure 9.1). Differential correlation between 4f –4f and
4f –5d pairs is responsible for shifting the whole 4f 135d spectrum above the ground state
by 25000 – 27000 cm−1 (Figure 9.1). Spin-orbit coupling within the 4f 13 sub shell (which
is found to amount about 10500 cm−1), further splits the excited manifolds as observed
in Figure 9.2. Correspondingly, the computed absorption spectrum profile, which is shown
in Figure 9.3, shows four groups of separate bands, three of which could lie below the host
absorption and are the bases for the prediction of multiple spontaneous 4f 135d →4f 14 emis-
sions in this material. The predicted emissions at 23900, 26600, 34600, and 43900 cm−1

should be experimentally observable at low temperatures. The first, third, and fourth bands
are slow, electric dipole forbidden emissions and can be described as spin-forbidden. The
second band, with 400 ns emission lifetime, is an electric dipole allowed emission that can-
not be described as spin-allowed, but, rather, as spin-enabled. The energy gaps below the
states responsible for the slow bands—23900, 4600, 4000 cm−1, respectively—are large
compared to the maximum local phonon energies calculated: 185 cm−1, which supports
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line broadening parameter. The most intense electronic origins are indicated. Electric dipole
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the stability of the three states against multiphonon relaxation. A smaller gap (2600 cm−1)
separates the states leading to the fast emission, the second emission band, which could
result in a temperature-dependent competition between radiative and non-radiative decay,
which could affect the relative intensities of the second and first emission bands, in line with
experimental observations in similar systems. To the best of our knowledge the predicted
multiple luminescence has not yet been investigated experimentally.

Similar energy gaps due to crystalline environment, electron correlation, and spin-orbit
effects occur in other systems. The outcome in terms of stability of 4f N−15d excited states
depends strongly on the particular impurity + host combination and demands comparable
studies where all the methodological effects are included at once.

9.3.3 Impurity-Trapped Excitons

The combination of methods described above is flexible enough to allow for the appearance
of unexpected excited states. This is what happened along a study of the electronic states of
U4+ in the strong field hexafluoride environment of the Cs2GeF6 host. Whereas calculations
had been set up to obtain the 5f 2, 5f 6d, and 5f 7s manifolds, the characteristics of the latter,
namely, very short U–F bond lengths and unnormal, delocalized 7s shell, pointed at their
impurity-trapped exciton nature as described in the Introduction by Ordejon et al. [29].

Figure 9.4(a) shows the energy curves obtained in the embedded cluster calculations
including host effects, 68 valence electron correlation, and relativistic effects up to spin-
orbit coupling [29]. Above the dense 5f 2 and 5f 6d(t2g) manifolds, and below the 5f 6d(eg)
states, a set of levels appear from 62000 to 76000 cm−1 that can be identified with what
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Figure 9.4 Impurity-trapped excitons (ITE) of Cs2GeF6:U4+ (a), and SrCl2:Yb2+ (b)

McClure and Pédrini called impurity-trapped excitons [5]. Their wavefunctions are more
delocalized than those of the impurity states, extending beyond the UF6 moiety, and their
bond lengths are very short. A significant U 7s – Cs 6s orbital mixing is observed, which
strongly stabilizes the energy of these states. As a result of this charge delocalization, the
bond lengths and a1g vibrational frequencies become closer to the ones of U(V) defects than
to U(IV) defects. The results suggested a model where the electron excited to the very diffuse
U 7s orbital experiences such large electron repulsion in the small hexafluoride cage that sig-
nificant charge spill occurs towards the second neighbor Cs sites, withdrawing charge from
the cluster interior and allowing for the bond length shrinkage, all of which leads to the for-
mation of impurity-trapped exciton states. This explains why in crystals like Cs2ZrCl6:U4+,
with larger hexachloride cage, localized 5f 7s excited states appear at high energies with long
bond lengths [63], following the bond lengths trend described above.

Impurity-trapped excitons with similar characteristics were also found in the fluorite-type
SrCl2 crystal doped with Yb2+, in cubic chloride coordination [30]. They appear above the
highest d manifold, 4f 5d(t2g), at the short Yb–Cl distance side of double well energy curves.
Splitting of all manifolds in two sets corresponding to the 4f 13 7/2 and 5/2 components
(analogously to the CsCaBr3:Yb2+ case above, shown in Figure 9.2), spread their interac-
tion with impurity states as can be seen in Figure 9.4(b), which affected the high energy
part of the absorption spectrum. The double-well energy curves result from avoided cross-
ings between Yb-trapped exciton states (more stable at short Yb–Cl distances) and 4f 136s
impurity states (more stable at long Yb–Cl distances); the former are found to be delocal-
ized states in which the impurity holds the excited electron in close lying interstices of the
fluorite-type structure, located outside but next to the YbCl8 moiety.

Impurity-trapped excitons are thought to be responsible for anomalous emissions in some
Eu2+ and Yb2+ containing crystals [82]. They are also thought to participate in energy
transfer and decay processes in scintillators. The widespread description of their electronic
structure corresponds very well with the characteristics of the high-energy excitons we have
found and described above, where the excited electron delocalizes symmetrically towards
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second neighbors or next interstices. However, work in progress on the electronic states of
Yb2+-doped CaF2 and SrF2 cubic defects show no trace of the low-lying, emitting impurity-
trapped excitons, which have been experimentally observed and reported [5, 83–85], even
though extensions to the cluster definition and basis sets are used. Further work in non-cubic
defects is in progress and might shed light into the peculiar characteristics of their anomalous
emissions. What makes them different from higher lying impurity-trapped excitons remains
to be found.

9.3.4 Solid-State-Lighting Phosphors

The rich manifolds of excited states of the lanthanide ions in solids makes them suitable
for a large variety of technological applications ranging from lasers and color displays to
solar-cells and scintillators [86]. Among them, their use as phosphors in solid-state based
energy efficient white illumination devices, or solid-state-lighting (SSL), has the potential
of an especially large social impact due to the enormous energy savings that are expected
from SSL [87]. The expected contributions from first-principles calculations have been
recognized as key contributions to the Grand Challenges in SSL research: “moving from
serendipitous discovery towards rational design” and “understand and control the micro-
scopic pathways through which losses occur as electrons produce light” [87]. Here we
will give an example of the potential of ab initio embedded-cluster wavefunction theory
calculations to help such understandings and rational designs.

The most popular phosphor in commercial white light SSL devices nowadays is Ce3+-
doped YAG (Yttrium Aluminum Garnet, Y3Al5O12). It converts the blue light emitted by
a very efficient InGaN based light-emitting-diode (LED) [88] into yellow, which is mixed
with the LED blue light to produce white light useful in illumination. The conversion is
made by means of the local states associated with the 4f and 5d configurations of the Ce3+

impurity [89, 90]. The use of this phosphor produces a relatively bluish white light that pre-
vented it from a wider use in general illumination, so that the search for phosphor materials
with an emission red shifted (shifted to longer wavelengths) with respect to YAG:Ce3+,
which could be used in warm light illumination devices, was and still is an issue. As a mat-
ter of fact, controlling the color is considered to be one of the key issues governing the
success of SSL technologies [91], as important as achieving high energy efficiencies. It is
not strange, then, that a great deal of research in the field has been devoted to tailoring the
phosphors color rendering indexes [89, 90, 92–95]. Co-doping YAG:Ce3+ was one of the
lines of approach to this problem, and an initial success was achieved when it was found
that co-doping Gd3+ and La3+ in YAG:Ce3+ red-shifted the yellow luminescence of Ce3+

whereas co-doping Ga3+ blue-shifted it [89, 92, 93]. However, an understanding of the rea-
sons behind these red and blue shifts that could lead the search for new color-controlled
phosphors was not achieved. In effect, both types of co-dopings increased the lattice con-
stants, and the associated atomistic expansions could only explain the blue shift of Ga3+

co-doping: they lower the crystal-field splitting of the 5d shell of Ce3+ and rise the energy
of the first 5d level with respect to the ground state of the 4f configuration. The same argu-
ment as applied to La3+ co-doping would also predict a blue shift rather than the detected
red shift. Although many hypotheses were explored in order to explain these contradictory
results, like assuming local atomistic contractions around Ce3+ upon La3+ co-doping in
spite of the general lattice expansion [96], the issue remained an unsolved question for a
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long while, and ab initio embedded-cluster calculations provided convincing answers and
its basic understanding. Here we summarize them.

SA-CASSCF/MS-CASPT2/sfss-SOCI ab initio embedded-cluster calculations with the
spin-orbit Wood-Boring AIMP Hamiltonian on YAG:Ce3+ using D2 local symmetry [97]
identified the first three 4f → 5d (blue) absorptions as transitions from the ground state to
Γ5 states of almost pure character of 22A, 32B3, and 32A, respectively, and overestimated
them 2300 and 3300 cm−1 with respect to experiment. The remaining two absorptions were
predicted at 52500 and 54200 cm−1 and identified as Γ5 states of dominant character 32B2

and 32B1; their energies make them to be hidden in the experiments by the absorptions
of the pure host. The lowest 5d → 4f emission takes place from the Γ5 (22A) state and is
made of two overlapping bands, each of them built on three electronic origins. The emission
energies show overestimations of around 4000 cm−1, which result in smaller Stokes shifts
than the experimental ones. The calculations support the assignment of a wide emission
band with two maxima observed just under 30000 cm−1 as 5d → 4f transitions from higher
5d levels made by Blasse and Bril [89]: it is interpreted as an emission from the second 5d
level, which is Γ5 (32B3). The shapes and relative intensities of the calculated absorption
and emission band profiles agreed with the experiments and the assignments of the upper
bands, which contradicted older interpretations, were later supported by further analysis of
the experiments [98]. Such calculations of the absorption and emission spectra demanded
previous structural optimizations in the ground 4f state (absorption) and in excited 5d states
(emission), which were done at the MS-CASPT2 spin-orbit free level. Later, an optimization
of the ground state structure, in PBC-DFT PBE calculations [99] lead to similar results (e.g.,
the two Ce-O distances of the D2 CeO8 moiety were 2.37 and 2.44 Å in MS-CASPT2 and
2.37 and 2.47 Å in DFT PBE) and EXAFS measurements of the ground state local structure
gave 2.38 and 2.52 Å [100]. Neither the DFT calculations nor the EXAFS measurements
could provide excited state structures, and EXAFS provided first neighbor coordination
numbers and distances, but not detailed structural data with bond and torsion angles.

Combined PBC-DFT ground state structural studies and WFT SA-CASSCF/MS-
CASPT2 excited state energy calculations were used to study the effects of Ga3+

co-doping [49] and La3+ co-doping [50] of YAG:Ce3+. The structures and energetics of
the large list of defects that result from such double dopings of the YAG 160 atom unit-cell
gave structural expansions in all cases, in agreement with experiments. Besides, an impor-
tant structural difference was found between both types of co-dopings: the Ga3+ co-dopants
that substitute for Al3+ ions in four fold and six fold oxygen coordinated sites do not show a
clearly preferable location with respect to the Ce3+ position, the La3+ co-dopants that sub-
stitute for Y3+ ions in eight fold oxygen coordinated sites do. Their most stable site is one
with the shortest Ce3+-La3+ distance. This structural difference will be responsible for the
opposite shifts of Ga3+ and La3+ co-dopings. In effect, the WFT spectral calculations done
with the most stable DFT structures lead to an increase of the energy difference between
the lowest states of the 5d and 4f configurations after Ga3+ co-doping and to its decrease
after La3+ co-doping, in agreement with the experimental observations, which explained
the result but not the reason for it. The results were further analyzed in terms of energy
differences between the 5d and the 4f energy centroids (averages of the energies of the
individual states) and the ligand-field stabilizations; (of the lowest 5d and 4f states with
respect to their respective energy centroids). The result was that the blue shift due to Ga3+

is determined by the 5d ligand field stabilization; it is smaller after co-doping because of
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the expansions it causes. This is in agreement with the original interpretations. However,
the red shift of La3+ is determined by a 5d centroid energy stabilization, which is a bond-
ing controlled factor not easily predictable and is stronger than the blue shift induced by
the ligand-field effects associated with the atomistic expansions. These studies solved the
long standing puzzle of the co-doping induced blue and red shifts of the yellow emission
of YAG:Ce3+ solid-state-lighting phosphor. They also showed that ab initio calculations of
this kind, which may be very demanding in terms of computational resources and time and
on the theoretical background of the researchers, have a high potential for complementing
the experiments in this complicated field, where simple models and empirical theories are
bound to be very limited at some point.

Besides helping to understand experimental facts in the area of solid-state-lighting
phosphors, ab initio calculations can be very helpful in the search for new color con-
trolled phosphors, like the search for phosphors with an emission red-shifted with
respect to YAG:Ce3+. As an example, a series of SA-CASSCF/MS-CASPT2/RASSI-SO
calculations with the DKH spin-orbit coupling Hamiltonian on the (CeO8)13− cluster
embedded in a cubic oxide lattice [101] and embedded in a set of 21 A3B′

2B′′
3 O12

garnets [102] (with some of the combinations of B′′=Si,Al,Ga, B′=Al,Ga,Fe,Sc, and
A=Mg,Ca,Fe,Mn,Y,Lu,Yb,Er,Gd,Ho,Dy,Tb,Sm,Nd) pinpointed the first-neighbor effects
and the host effects on the energies of the 12 local states of main character Ce-4f and
Ce-5d. They showed that only two out of the six degrees of freedom of the effective D2

field (resulting from bonding and embedding effects) can provide a red shift of the lowest
5d → 4f emission. These are the cubic, breathing mode, a1g symmetric bond stretching, and
the tetragonal, eg(θ) symmetric bond bending (see Figure 1 in Seijo and Barandiaran [102]).
This result largely reduces the field of search for red phosphors based on Ce3+-doped gar-
nets. Furthermore, it was found that the unrelaxed host effect, i.e., the interactions between
Ce3+ and the unrelaxed host (second and further distant neighbors), is largely responsible
for the red shift of the first 4f → 5d transition with respect to a purely cubic reference
and plays a very important role in the differentiation of the values of the transition in dif-
ferent garnet families (Si, Al, and Ga based garnets). Interestingly, it is the large red shift
created by the unrelaxed host effect that makes of Ce3+-doped Lu2CaMg2Si3O12 an orange
phosphor [94] with a larger wave length emission than YAG:Ce3+.
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[72] Karbowiak M, Simoni E, Drożdżyński JD, Hubert S. Acta Phys Pol A. 1996;90:367.
[73] Bagus PS, Hermann K, Bauschlicher CW. A new analysis of charge transfer and polar-

ization for ligand-metal bonding: Model studies of Al4CO and Al4NH3. J Chem Phys.
1984;80:4378.

[74] Bauschlicher CW, Bagus PS. The metal-carbonyl bond in Ni(CO)4 and Fe(CO)5: A clear-cut
analysis. J Chem Phys. 1984;81:5889.

[75] Ruipérez F, Seijo L, Barandiarán Z. Prediction of pressure-induced redshift of f1 → d(t2g)1

excitations in Cs2NaYCl6:Ce3+ and its connection with bond-length shortening. J Chem Phys.
2005;122:234507.

[76] R Valiente, F Rodríguez, J González, H U Güdel”, R Martín-Rodríguez, L Nataf, M N
Sanz-Ortiz, Krämer K. High pressure optical spectroscopy of Ce3+-doped Cs2NaLuCl6. Chem
Phys Lett. 2009;481:149.

[77] Witzke H, McClure DS, Mitchell B. The photoluminescence spectra of single crystals of
SrCl2:Yb2+. In: Williams FE, editor. Luminescence of Crystals, Molecules, and Solutions. New
York: Plenum Press; 1973. p. 598.

[78] Grimm J, Güdel HU. Five different types of spontaneous emission simultaneously observed in
Tm2+ doped CsCaBr3. Chem Phys Lett. 2005;404:40.

[79] Pan Z, Duan C, Tanner PA. Electronic spectra and crystal field analysis of Yb2+ in SrCl2. Phys
Rev B. 2008;77:085114.

[80] E Beurer, J Grimm, P Gerner, Güdel HU. New type of near-infrared to visible photon
upconversion in Tm2+-doped CsCaI3. J Amer Chem Soc. 2006;128:3110.



“Dolg-Driver” — 2015/1/17 — 12:03 — page 240 — #24

240 Computational Methods in Lanthanide and Actinide Chemistry

[81] J Grimm, E Beurer, P Gerner, Güdel HU. Upconversion between 4f-5d excited states in Tm2+-
doped CsCaCl3, CsCaBr3, and CsCaI3. Chem Eur J. 2007;13:1152.

[82] Dorenbos P. J Phys: Condens Matter. 2003;15:2645.
[83] B Moine, C Pédrini, D S McClure, Bill H. Fluorescence and photoionization processes of

divalent Yb ions in SrF2. J Lumin. 1988;40&41:299.
[84] B Moine, B Courtois, Pédrini C. Luminescence and photoionization processes of Yb2+ in CaF2,

SrF2 and BaF2. J Phys France. 1989;50:2105.
[85] MF Reid, PS Senanayake, J-P R Wells, G Berden, A Meijerink, AJ Salkeld, C-K Duan, RJ

Reeves. Transient photoluminescence enhancement as a probe of the structure of impurity-
trapped excitons in CaF2:Yb2+. Phys Rev B. 2011;84:113110.

[86] Weber MJ. Inorganic scintillators: today and tomorrow. J Lumin. 2002;100:35.
[87] Phillips JM, Burrows PE, Davis RF, Simmons JA, Malliaras GG, So F, et al. Basic

Research Needs for Solid-State Lighting. Department of Energy, Office of Science; 2006.
Http://science.energy.gov/bes/news-and-resources/reports/.

[88] Nakamura S, Fasol G. The blue laser diode: GaN based light emitters and lasers. Berlin:
Springer; 1997.

[89] Blasse G, Bril A. Investigation of some Ce3+-activated phosphors. J Chem Phys. 1967;47:5139.
[90] Jüstel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting

and displays. Angew Chem, Int Ed. 1998;37:3085.
[91] Brodrick J. Next-generation lighting initiative at the US Department of Energy: Catalyzing

science into the marketplace. J Disp Technol. 2007;3:91.
[92] Tien TY, Gibbons EF, DeLosh RG, Zacmanidis PJ, Smith DE, Stadler HL. Ce3+ activated

Y3Al5O12 and some of its solid-solutions. J Electrochem Soc. 1973;120:278.
[93] Robertson JM, van Tol MW, Smits WH, Heynen JPH. Color shift of the Ce3+ emission in

mono-crystalline epitaxially grown garnet layers. Philips J Res. 1981;36:15.
[94] Setlur AA, Heward WJ, Gao Y, Srivastava AM, Chandran RG, Shankar MV. Crystal chemistry

and luminescence of Ce3+-doped (LuCaMg2)Ca2(Si,Ge)3O12 and its use in LED based lighting.
Chem Mater. 2006;18:3314.

[95] Shimomura Y, Honma T, Shigeiwa M, Akai T, Okamoto K, Kijima N. Photoluminescence
and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+ phosphor for white light emitting
diodes. J Electrochem Soc. 2007;154:J35.

[96] Pan YX, Wang W, Liu GK, Skanthakumar S, Rosenberg RA, Guo XZ, et al. Correla-
tion between structure variation and luminescence red shift in YAG:Ce. J Alloys Compd.
2009;488:638.

[97] Gracia J, Seijo L, Barandiarán Z, Curulla D, Niemansverdriet H, van Gennip W. Ab initio
calculations on the local structure and the 4f-5d absorption and emission spectra of Ce3+-doped
YAG. J Lumin. 2008;128:1248.

[98] Tanner PA, Fu L, Ning L, Cheng BM, Brik MG. Soft synthesis and vacuum ultraviolet spectra
of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels. J Phys: Condens Matter.
2007;19:216213.

[99] Muñoz-García AB, Seijo L. Ce and La Single- and Double-Substitutional Defects in Yttrium
Aluminum Garnet: First-Principles Study. J Phys Chem A. 2011;115:815.

[100] Ghigna P, Pin S, Ronda C, Speghini A, Piccinelli F, Bettinelli M. Local structure of the Ce3+

ion in the yellow emitting phosphor YAG:Ce. Opt Mater. 2011;34:19.
[101] Seijo L, Barandiarán Z. 4f and 5d levels of Ce3+ in D2 8-fold oxygen coordination. Opt Mater.

2013;35:1932.
[102] Seijo L, Barandiarán Z. Host effects on the optically active 4f and 5d levels of Ce3+ in garnets.

Phys Chem Chem Phys. 2013;15:19221.



“Dolg-Driver” — 2015/1/17 — 12:06 — page 241 — #1

10
Judd-Ofelt Theory — The Golden

(and the Only One) Theoretical Tool
of f-Electron Spectroscopy∗

Lidia Smentek

Department of Chemistry, Vanderbilt University

10.1 Introduction

The year 2012 marked the golden anniversary of the Judd-Ofelt (J-O) theory as a tool used
widely for the theoretical description of the spectroscopic properties of the lanthanide mate-
rials; in fact it is the only tool, as pointed out in the title of this chapter, that is used in ab
initio type calculations. It is indeed a unique tool applicable for all of these investigations
whose main aim is not to reproduce the measurements by a fitting procedure but rather to
understand the physical mechanisms responsible for a plethora of properties observed for
lanthanide systems. The golden anniversary of the J-O theory was celebrated by a special
scientific session followed by a birthday ceremony organized at the Conference ICfE-8 in
Udine, Italy. Its festive atmosphere was enhanced by the presence of the authors of the
theory [1, 2].

Two separate papers authored by Brian Judd and George Ofelt, of which over the years
have become the origin of the J-O Theory, were published independently on the same day,
August 1, 1962, in two different journals, Physical Review and Journal of Chemical Physics
[3, 4]. The research was not only performed independently on two distant shores of the
country, but the scientists never met personally while working—at Berkeley, Brian Judd,
and at Johns Hopkins, George Ofelt. To celebrate the fortieth anniversary of these world

*This presentation is dedicated to the memory of George S. Ofelt who passed away on June 5, 2014.

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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famous publications, their authors met for the first time at the conference in La̧dek Zdrój,
Poland in 2003 [5].

In a 2001 paper devoted to the general aspects of the J-O theory (of which I was one of
the authors), it was written [6]:

“It is a common opinion that the task of reproduction of spectra of rare earth doped mate-
rials is reduced to the problem of adjusting at most three intensity parameters in accordance
with the following expression

Sf←−i =
∑

λ=2,4,6

Ωλ|〈Ψf ‖U(λ)‖Ψi〉|2 (10.1)

For the vast majority of researchers that are involved in the spectroscopy of rare earth ions
this technical point of view very often defines the well-known Judd-Ofelt theory [1, 2]; for
some of them however, the Judd-Ofelt theory has a broader interpretation.

Without the definition of the physical model that characterizes the Judd-Ofelt theory,
expression (10.1) is an algebraic scheme of the parametrization of the spectrum. From such
a point of view, there is no reason to limit the terms in the summation to just those with
even ranks. Actually, treating the expression in (10.1) in a formal way, it is possible to
introduce in an ad hoc way completely new terms for λ odd without giving them any physical
explanation. However it should be realized that such a technical improvement of the fitting
procedure (more degrees of freedom, better adjustment) loses its identity as an extension of
the original Judd-Ofelt theory as introduced by its authors in 1962.

When the parametersΩλ in (10.1) are determined in a semiempirical way, and the intensi-
ties are reproduced, one may conclude that the one particle parametrization scheme applied
for the spectrum works well; and this is the success of the Judd-Ofelt theory.

The aim of this presentation is to answer the question about the physical mechanisms that
contribute to the intensity parameters which are determined from (10.1) in a semiempirical
way. The present discussion demonstrates the generality and universality of the Judd-Ofelt
theory which, in fact, goes far beyond the initial limitations of its original derivation.”

The parametrization of the f-spectra is the subject of the last part of this chapter. However,
after more than ten years since this opinion quoted above was written, it is still valid. In fact
it is even more important now when the properties of the lanthanide materials are really revo-
lutionizing modern science, technology, and everyday life. In addition to technical problems
of various applications of these materials there are so many effects monitored experimen-
tally that are still not fully understood or theoretically described. Therefore, they are not
further used for designing new equipment of desired properties, especially those crucial
for modern applications. The best example is the correlation between the structure, includ-
ing the geometry and morphology of a sample, and the observed spectroscopic patterns of
lanthanide materials of ultra-small nano size. In fact not only from a theoretical point of
view this is a novel and rather pioneering research. Although the ultra-small nano-samples
of the lanthanide materials are synthesized in some laboratories, and their spectroscopic
patterns are experimentally monitored, their physical origin is not verified precisely enough
to establish a reliable theoretical model of their description. In comparison to the features
of the lanthanide materials in bulk, the changes of spectra of nano samples caused by their
size is a new phenomenon. To describe these observations a correlation between the spectro-
scopic activity of the lanthanide ion and its environment has to be established via (ab initio)
calculations. The J-O Theory is a powerful tool that connects these two aspects of research,
and it is used to monitor modifications of the sample when its size reaches the nano scale.
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Another very important research method that requires deeper knowledge and understand-
ing of the electronic structure of the lanthanides is addressed directly to their medical
applications. There is a demand for theoretical investigations useful for predicting a proper
architecture of organic chelates caging very toxic lanthanide ions. Such compounds are
potentially the diagnostic and therapeutic tools to detect and cure the cancerous changes in
various tissues [7–10].

The role of the J-O Theory cannot be overestimated not only in these two examples of
research. Indeed, the f ←→ f electric dipole transitions, described by this theory, that are
characteristic for the lanthanide materials, are the best probes used in many investigations,
and consequently in various applications. In order to demonstrate the validity of the latter
statement, prior to analyzing the details of the physical background and resulting theoretical
model of Judd and Ofelt, it is illustrative to inspect the graphs below that present the rapid
development of the lanthanide field of macroscopic and microscopic scales.

The first graph, Figure 10.1, presents the number of citations of the J-O Theory based
on the statistics that started in 1990. (For almost 30 years between 1962 and 1990 the bars
on the graph would be only slightly visible if preserving the same scale of the present graph.)
The last bar on this illustration shows only citations from the first half of 2012 when the
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publications; the last bar shows the result for the first half of 2012
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results were presented at the golden anniversary celebration. Thus, this graph presents the
importance of the J-O Theory expressed in numbers.

The importance of the field of the lanthanides is presented in Figure 10.2 where the num-
bers of citations of the publications that cited the J-O Theory are collected for the same
period of time (again the last bar reflects the situation during the first half of 2012). It is
seen that indeed the dynamics of this field of research is exponential and has the symptoms
of a revolutionary development.

These are the numbers that evidently show the role of the J-O Theory in the field with
undefined limits due to the broad applications of its achievements. In order to understand
why this theory is so important, its physical background must be presented. It is possible
to conclude briefly that the J-O Theory is a simple application of the outstanding beauty of
tri-positive lanthanide ions, and in particular their unusual electronic structure. Its features
are defined in the language of Racah algebra applied for the concept of effective tensor
operators. The simplicity and clarity of this approach, including the well-known Judd-Ofelt
parametrization scheme of the f -spectra based on (10.1), when successfully applied to very
complex systems makes one wonder how is it possible that this tool works so well; in fact
this query is its power.
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In summary, the advantages and limitations of the Judd-Ofelt theory when applied in ab
initio and also semi-empirical calculations are discussed. The model is presented in a stan-
dard version as introduced in 1962 by its authors, Brian Judd and George Ofelt, together
with its extensions and modifications by the third-order contributions to the amplitude of the
electric dipole f-f transitions. In addition to the standard non-relativistic approach, the rela-
tivistic version is also presented to enable a theoretical description of those transitions that
are observed in various experiments but forbidden within the original Judd-Ofelt parame-
terization scheme of f-spectra. The presentation is concluded by practical remarks on the
application of this theoretical tool, including the solution of the problem of the completeness
of the radial basis sets of one-electron functions when the direct calculations are performed.
In the case of semi-empirical calculations the meaning of the intensity parameters is clari-
fied. Finally, an extensive list of important literature is provided to help the potential reader
to understand the challenges of the theoretical description of the lanthanide ions, and most
of all, to facilitate the application of existing theoretical models.

10.2 Non-relativistic Approach

It sounds like a slogan to state that the electronic structure of tri-positive lanthanide ions is
special. Indeed, almost all publications on this subject start in this way. To follow this pattern
it should be repeated again that the optically active electrons that occupy one-electron energy
states of 4f symmetry are shielded from the perturbing environment by the closed shells of
the 5s and 5p symmetry. At the same time, in the energy scale, they are the outermost,
the so-called valence electrons, and therefore responsible for the spectroscopic properties.
As a consequence of this property it is possible to assume that the tri-positive lanthanide
ion embedded in any structure keeps its free-ionic identity, represented by the unperturbed
Hamiltonian H0, and its properties are only slightly modified by the environment that might
be treated as a perturbation V . This is why the properties of systems with the lanthanide
ions are theoretically described by perturbation theory (in practise the Rayleigh-Schrödinger
approach) applied for the Hamiltonian [11],

H = H0 + λV. (10.2)

The unperturbed Hamiltonian, H0, contains a part defined within the central field approx-
imation (in practice the Hartree-Fock model), h0, and also all such operators that are
necessary for a proper description of the free ion, like the noncentral part of Coulomb inter-
action that is responsible for electron correlation effects, for example (since h0 is defined
within the single configuration approximation). V represents in general all physical mecha-
nisms that are important for the description of an ion in a system but still are weak enough
to be treated as a perturbation.

As mentioned, the most attractive properties of these systems used in their applications
originate from the electric dipole f ←→ f transitions. They might be direct and observed as
absorption or emission, or play a role as initial and final steps of sensitized luminescence, for
example. In all of these cases the amplitude of the electric dipole transition is determined by
the certain order of the time-dependent perturbation theory applied for the description of the
interaction between matter and the radiation field. Each order of the perturbing expansion
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describes a process with a certain number of photons absorbed or emitted. In general, the
transition rate is defined by matrix elements of the interaction Hamiltonian HI between
both subsystems that connects one- electron states involved in the process [12],

1
τ
=

2π
�

2

∑
f

| 〈f | HI | i〉+ 1
�

∑
�

〈f | HI | �〉〈� | HI | i〉
ωi − ω�

+ · · ·+

1
�

n−1

∑
�1

∑
�2

· · ·
∑
�n−1

〈f | HI | �1〉〈�1 | HI | �2〉 · · · 〈�n−1 | HI | i〉
(ωi − ω�1)(ωi − ω�2) · · · (ωi − ω�n−1)

| 2

× δ(ωi − ωf ) (10.3)

In (10.3) |i〉 and 〈f | denote the initial and final states of the radiative process while �, �1, . . .
are the so-called virtual intermediate states that are not physical states that take part in the
process.This is indicated by the Dirac delta function that reflects the energy-conservation
law, and it covers the energies of the initial and final states between which the physical
transition occurs.

The J-O Theory describes one photon f ←→ f transitions, thus the first-order term from
the above expansion is the starting point for further analysis.

In the electric dipole approximation, HI reduces to the electric dipole radiation oper-
ator, D(1)

� in a tensorial form, a pair of photon creation and annihilation operators (their
order depends on the type of the radiative process), and a pair of creation and annihilation
operators that change one electron initial state of a matter into the final state due absorp-
tion/annihilation of a photon. The atomic part of the first-order term, when the free ionic
system approximation and the electric dipole approximation are adopted, is defined by the
matrix element,

〈4f NΨ0
f | D(1) | 4f NΨ0

i 〉 (10.4)

where 〈4f NΨ0
f | and | 4f NΨ0

i 〉 are the solutions of the eigenvalue problem of H0 from (10.2).
This is the transition amplitude between the final and initial states of the electron config-

uration 4f N of a tri-positive lanthanide ion. Due to the parity requirements, this amplitude
vanishes while a direct electric dipole transition between these energy states for many sys-
tems containing the lanthanide ions are observed. This means that in reality the parity of
the states of 4f N configuration is not well defined. Therefore, the theoretical model of
the description of these traditions has to include components of opposite parities. This
is realized by the higher-order corrections to the wavefunctions as defined within the
time-independent perturbation approach. This is why in equation (10.2) the perturbing
mechanism V is introduced to complement the total hamiltonian of the system. Thus, the
Rayleigh-Schrödinger perturbation theory is applied and the crystal field potential is cho-
sen as a perturbation to lower the spherical symmetry of a free ion represented by h0. This
perturbation allows the admixing to the functions of the zeroth order new components
of an opposite parity. This is the main concept of the J-O Theory, which is based on the
perturbation theory applied for the Hamiltonian,

H = H0 + λ(PVcrystQ + QVcrystP) (10.5)
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with the tensorial definition of the crystal field potential Vcryst as follows,

Vcryst =
all∑
k,q

Bk
q

N∑
i

rk
i C(k)

q (ϑi, φi) (10.6)

where Bk
q is the crystal field parameters (structural parameters), rk is the radial part of the

potential, and C(k)
q is the spherical tensor.

The partitioning of the Hamiltonian leads to the separation of the subspace P, spanned
by the wavefunctions of the unperturbed Hamiltonian Ψ0, from its orthogonal complement
Q. Since H0 describes the system within the single configuration approximation, then P
projects onto the space spanned by the states of the 4f N configuration. Q contains the pro-
jection operators built of the states of various excited configurations, among which those
of the opposite parity to the parity of the states of the ground configuration are of main
interest. Due to this construction, the perturbing operator in equation (10.6) represents the
inter-shell interactions via crystal field potential. In this case Vcryst couples the states of
the ground and excited configurations, and that is the origin of the standard J-O Theory.
The remaining part of the perturbation that represents the intra-shell interactions, PVcrystP,
may be included within H0, if the free ionic system approximation is not applied, and the
so-called j − j mixing is introduced. It should be mentioned that this formal partitioning of
the space into two separate subspaces prevents possible count of various interactions twice.

Taking into account the perturbing influence of the crystal field potential upon the elec-
tronic structure of the lanthanide ion, the wavefunction defined up to the first order in
perturbation Vcryst has the following form:

Ψi = Ψ0
i + λ

∑
k �=i

〈Ψ0
k | QVcrystP | Ψ0

i 〉
E0

i − E0
k

Ψ0
k . (10.7)

For a non-vanishing matrix element in equation (10.7) it is evident that Ψ0
k has to belong

to Q and Ψ0
i to P. Since PQ = 0, the summation in equation (10.7) is over the states of

excited configurations, and therefore the energy denominators are always non-zero.
The first non-vanishing terms contributing to the transition amplitude are the terms of

second order. These are the terms with one energy denominator in time-independent per-
turbation expansion, and they define the original version of the J-O Theory as introduced
in 1962,

Γ2 = λ
{
〈Ψ0

f | D(1)
ρ | Ψ1

i 〉+ 〈Ψ1
f | D(1)

ρ | Ψ0
i 〉
}
+ θ(λm), m ≥ 2 (10.8)

with the electric dipole transition represented by a tensor operator,

D(1)
ρ =

N∑
i

riC
(1)
ρ (ϑi, φi). (10.9)

The parity requirements for the non-vanishing matrix elements limit the set of excited
configurations to those of the parity opposite to the parity of 4f N . This means that the set of
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excited configurations contains the following singly excited configurations (due to the one
particle nature of dipole radiation and crystal field potential operators),

X ≡ 4f N−1n′�′, for �′ = even (≡ d, g, ...). (10.10)

Finally, the transition amplitude is determined by two second-order terms that differ from
each other by the order of appropriate operators and energy denominators,

Γ2 =
∑

Xx

{
〈Ψ0

f | D(1)
ρ | Xx〉〈Xx | QVcrystP | Ψ0

i 〉/(E0
i − E0

Xx)

+ 〈Ψ0
f | PVcrystQ | Xx〉〈Xx | D(1)

ρ | Ψ0
i 〉/(E0

f − E0
Xx)

}
, (10.11)

and x denotes the energy states of the excited configurations X that are of opposite parity to
the parity of Ψ0

f and Ψ0
i (thus the matrix elements of D(1)

� do not vanish). This is the physical
background of the J-O Theory.

The form of the transition amplitude defined in equation (10.11) is not suitable for a
practical application. The form of the products of matrix elements in each contributing term
may suggest the so-called closure procedure over the complete basis sets of x, for each
X, however the presence of the energy denominators prevents this simplification. This is
why special steps have to be undertaken to finally perform the partial closure to derive the
expression applicable for numerical calculations.

10.2.1 Standard Judd-Ofelt Theory and Its Original Formulation of 1962

The whole theoretical procedure applied to derive the famous expression of the J-O The-
ory is becoming clearer when the inter-shell unit tensor operators are introduced. They are
defined by the reduced matrix elements in the following way:

〈n� || u(k)(n1�1, n2�2) || n′�′〉 = δ(n�, n1�1)δ(n2�2, n′�′). (10.12)

It is easily seen from this definition that such an operator is interpreted as coupled prod-
ucts of annihilation and creation operators of one-electron states. Therefore, due to the
orthogonality of one electron states, the reduced matrix element is equal to 1 when to the
right (and to this left) the same one electron state is created and annihilated.

In the terms of unit tensor operators, Vcryst has the following form:

QVcrystP ≡
∑
t,p

Bt
p

∑
j

〈n′�′ | rt
j | 4f 〉〈�′ || C(t) || f 〉u(t)

j,p(n
′�′, 4f ) (10.13)

The electric dipole transition operator is expressed as follows:

D(1)
ρ → PD(1)

ρ Q ≡
∑

i

〈4f | ri | n′�′〉〈 f || C(1) || �′〉u(1)
i,ρ (4f , n′�′). (10.14)



“Dolg-Driver” — 2015/1/17 — 12:06 — page 249 — #9

Judd-Ofelt Theory 249

The tensorial form of each product of the unit tensor operators in the terms contributing
to the transition amplitude (10.11) can be simplified by coupling the objects to a tensorial
product following the relation,

u(1)
i,ρ (4f , n′�′)u(t)

j,p(n
′�′, 4f ) =

∑
k,q

(−1)1−t−q[k]1/2

(
1 t k
ρ p −q

)

[u(1)
i (4f , n′�′)× u(t)

j (n′�′, 4f )](k)
q , (10.15)

where [k] = 2k + 1, and k is the rank of the tensorial product of two tensor operators.
When taking into account the orthogonality of one electron functions, it is evident that the

matrix element of the operator at the right-hand side of equation (10.15) is not vanishing only
if both tensor operators in the product act on the same coordinate. This is the condition that
allows replacement the tensorial product by a single tensor operator that acts within the 4f N

shell and thus represents the effective interactions. In order to perform this derivation, the so-
called commutator of the tensor operators is used (contraction of creation and annihilation
operators), and consequently each tensorial product is reduced to a single effective operator;
that is, it is effective in the sense that it represents the inter-shell interactions but formally
acts only within the 4f N shell,

[
u(1)

i (4f , n′�′)× u(t)
i (n′�′, 4f )

]
(k)
q

= (−1)k[k]1/2

{
t k 1
f �′ f

}
u(k)

i,q (4f , 4f ). (10.16)

This is in fact the main point of the derivation of the expression for the transition ampli-
tude of the standard Judd-Ofelt formulation. The procedure described here is applied to
both terms in equation (10.11). As mentioned above, in general these two terms differ by
the order of operators in the matrix elements and energy denominators. However they both
are expressed by the same effective tensor operator, yet each is associated with a different
energy denominator. This is the reason that the following approximations/assumptions are
introduced in order to make the final expression even simpler:

1. The distance in an energy scale between the ground configuration 4f N and all excited
configurations 4f N−1n′�′ is large.

2. This energy difference is so large that it can be assumed that when “looking” from the
ground configuration up the energy scale, the excited configurations are “seen” as degen-
erate and vice versa; the consequence is such that E0

4f N ,i−E0
Xx 
 E0

4f N −E0
X , and the same

relation for the final state Ψf of 4f N , where E0
4f N and E0

X are the average energies of
configurations.

3. In light of the above, it is possible to assume that

E0
4f N ,i − E0

Xx 
 E0
4f N ,f − E0

X = E0
4f N − E0

X.

These assumptions about the energy denominators are treated in some publications as a
weak point of the J-O Theory. This is especially the case when they are erroneously inter-
preted as the assumption that the energy levels of the ground configurations are degenerate!



“Dolg-Driver” — 2015/1/17 — 12:06 — page 250 — #10

250 Computational Methods in Lanthanide and Actinide Chemistry

This interpretation is obviously wrong, and it must be wrong, since this theoretical model is
established to describe the transitions between distinct energy levels of 4f N . It is important
to point out that the assumptions about the energy denominators of the J-O Theory have to
be understood as presented above. They are in fact introduced as approximations that are
necessary to make ab initio calculations possible in practice. It should also be remembered
that the role of such investigations is not to reproduce the measurements but to understand
the mechanisms and establish their hierarchy of importance in order to improve a theoretical
model via comparison of the magnitude of various contributions to the transition amplitude.
At the same time, when the semiempirical realization of the J-O Theory is applied, all errors
possibly introduced by the assumptions on the energy denominators are compensated for
by the values of freely adjusted parameters.

Using the tools of Racah algebra, it is rather straightforward to derive the final expression
for the amplitude of one photon electric dipole f ←→ f transitions. This is the original
version that was defined by Judd and Ofelt in the papers from 1962:

ΓJ−O = 2
odd∑
t,p

Bt
p

even∑
λ,q

even∑
�′

(−1)q[λ]1/2

(
t 1 λ
p ρ −q

)
Aλ

t (�
′)Rt

JO(�
′)

〈4f NΨ0
f | U(λ)

q | 4f NΨ0
i 〉 (10.17)

where U(λ)
q is N−electron unit tensor operator, and the factor of 2 results from two terms

in the perturbing expression of equation (10.15) that differ only by (−1)λ (if accepting the
assumptions about the energy denominators). This condition requires the contributions to
ΓJ−O to be limited to the effective operators with ranks λ = even.

The angular term is defined as

Aλ
t (�

′) = [k]1/2

{
t λ 1
f �′ f

}
〈 f‖C(1)‖�′〉〈�′‖C(t)‖f 〉. (10.18)

The symmetry properties of the 6j− symbol limit the even values of rank λ to 2, 4, 6. In
addition, due to the triangular conditions for the non-vanishing 3j− symbols that determine
the reduced matrix elements of spherical tensors in equation (10.18), the rank t of the crystal
field potential operator has to be odd. Indeed, since �′ is even, and f = 3 for 4f electrons,
the odd parts of the crystal field potential contribute to the transition amplitude, while the
terms with even values of t contribute to the energy.

All the terms that depend on the principal quantum number n′ of one electron excited
states are collected in the radial term that consists of the product of two radial integrals and
the appropriate energy denominator

Rt
JO(�

′) =
exc.∑
n′

〈4f | r | n′�′〉〈n′�′ | rt | 4f 〉
Δ(4f , n′�′)

(10.19)

Here r is the radial part of D(1)
� (10.9) and rt is the radial dependence of Vcryst (10.6). The

summation in equation (10.19) is overall n′ of the �′ states of a given excited configura-
tion 4f N−1n′�′. The form of the energy denominator in this radial term, as the difference
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of the orbital energies, indicates that the virtual one electron excited states are gener-
ated for an average energy of a configuration and with the core orbitals frozen (only the
excited orbital n′�′ is adjusted within the Hartree-Fock model for the frozen core orbitals of
4f N). The validity of such approximations is demonstrated in Chapter 21 of Wybourne and
Smentek [13].

Thus, introducing the intensity as a square of the transition amplitude defined within the
J-O theory we have, as presented in equation (10.1)

Sf←−i =

2,4,6∑
λ

Ωλ|〈Ψf ||U(λ)||Ψi〉|2

where Ωλ, for λ = 2, 4, 6 are the so-called Judd-Ofelt parameters, the famous intensity
parameters. These parameters contain (as seen from the above derivation) the angular terms,
radial integrals, coefficients of coupling, and re-coupling of the angular momenta. The
genealogy of the energy states, between which the transition is observed, is included within
the reduced matrix element of the unit tensor operator. However, when Ωλ’s are adjusted by
the fitting procedure they represent more physical mechanisms than the presented derivation
may indicate, which is discussed below).

10.2.2 Challenges of ab initio Calculations

When analyzing the final expression for the transition amplitude defined in equation (10.17),
the task of its evaluation seems to be straightforward. Indeed, for a particular case of the
f ←→ f transitions there are only a few terms that have to be taken into account, namely
those with the following values of various ranks: λ = 2, 4, 6; t = 1, 3, 5, 7 (at the most, since
the ranks depend on the symmetry of the crystal field). In addition, one electron excited
states have the following symmetry: �′ = 2(≡ d),= 4(≡ g). In equation (10.17) also there
are summations over the components of certain tensor operators: q is the component of the
unit tensor operator (the effective operator), and its values are determined by the triangle
conditions with the components of the atomic levels (via the matrix element) between which
the transition is occurring; p as a component of the crystal field potential depends on the
symmetry of the system, and only such terms from all of 2t+1 projections contribute, which
denote the invariants of the symmetry operations of a given point group; and � describes the
polarization and has the values of −1, 0, and 1.

What are the problems then with the direct calculations of the transition amplitude?
This question has its origin in the fact that the numerical procedures performed to inter-
pret the experimental f -spectra always are based on the semi-empirical approach applied
for equation (10.1). However, the choice of the semi-empirical procedure is made due to
neither the preference nor simpler form of equation (10.1) when compared to the terms
in equation (10.17). Indeed, there are objective, or rather technical reasons, why it is still
impossible to perform ab initio calculations that would provide reliable results.

In equation (10.17), in addition to the angular term, radial integral and matrix element of
the unit tensor operator there is the crystal field parameter Bt

p. This is the structural factor
from the multipole expansion of the crystal field potential; the radial part from equation
(10.6) is included in the radial term, as shown in equation (10.19). The limitation of the
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summation over t shows that these parameters are of odd rank. This fact is the source of a
problem that is addressed separately below.

Another possible problem with a direct calculations based on equation (10.17) arises from
the definition of the radial integral of the J-O model. The summation over the principal
quantum number of one electron excited state to which the 4f electron is promoted covers
the whole spectrum that consists of all function of �′ symmetry, discrete part and continuum.
It is common practice to limit this summation and include only the excitations to the first
one-electron state of d symmetry, 5d, ignoring the rest of the spectrum. In the case of more
advanced calculations, also the excitation to the 5g one-electron state is explicitly taken into
account. It is possible to find such publications where the closure procedure is performed in
(10.19) over the complete set of g one electron functions using the argument that g orbitals
are not occupied in the ground configuration of the lanthanide ion. In such a procedure the
energy denominators are assumed to be common for all members of the complete set of g−
symmetry, and therefore are treated as a common factor independent of n′. In all such cases
however the evaluated values of the radial terms are quite far from being reliable. This aspect
of numerical calculations is verified when the complete radial basis sets are used for their
evaluation. In Table 21-7 of Wybourne and Smentek [13] the effect of the incompleteness
of the radial basis set is easily seen in the case of the J-O standard radial term R3

JO(n
′d), as

an example. The main conclusions derived from the detailed analysis of the radial integrals
and their sensitivity to the completeness of the radial basis sets demonstrate almost an equal
importance of d− and g− excitations when included for all members of each spectrum. In
order to avoid an unnecessary source of error, it is very important to address this result when
ab initio calculations are performed.

10.2.2.1 Crystal Field Parameters

In general, the crystal field potential is represented by one-particle effective operators of
even and odd ranks depending on the coordinates of the electrons of the central ion. The
surrounding ligands are placed in fixed positions (within the so-called static approximation),
and they define the symmetry of the environment described by the crystal field parameters.
When the perturbing influence of the crystal field potential upon the energy of 4f N con-
figuration is evaluated within the single configuration approximation, only the terms with
the even ranks give non-zero contributions. In addition, due to the triangular conditions for
non-vanishing reduced matrix elements of spherical tensors, in the case of the energy the
rank has only three values of 2, 4, and 6. Thus, in order to evaluate the energy of a system,
the values of the crystal field parameters must be known.

It is common practice to determine the values of these crystal field parameters from the
fitting procedure used for the reproduction of the measured values of energy levels. In most
cases this procedure is stable, and it gives the values that are needed for the evaluation of
the energy of such levels that are not obtainable from experiment.

The standard fitting procedure is based on the one-particle parametrization scheme. The
discrepancy between the observed and calculated crystal field energy levels quite often
requires extension of the set of standard parameters by, for example, spin-correlated and
orbitally correlated parameters introduced by Newman and collaborators [14–17].

It should be pointed out however that the semi-empirical way of the determination of the
crystal field parameters is the only reliable method. Indeed, a very extensive study on the
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character of the interactions between the central ion and the surrounding ligands, even when
including the higher-order multipoles in the expansions used by Faucher and collaborators
[18–22] did not lead to a reliable method of their direct evaluation. However, the authors of
molecular dynamics simulation used for determining the actual positions of ligands (beyond
the static approximation) claim that even the calculations in which only the point charges
are taken into account give satisfactory results [23, 24]. In any case it should be realized
that any comparison of the values of the structural parameters evaluated directly with those
obtained from a fitting procedure is possible only for even ranks. This is the case because the
parameters with t odd do not contribute to the energy, and therefore it is impossible to adjust
their values. This is why it is impossible to evaluate directly the transition amplitude defined
in (10.17). The lack of a reliable model for the evaluation of crystal field parameters is also
the reason that very often, in order to derive the conclusions on the importance of various
physical mechanisms affecting the transition amplitude, the relative intensities evaluated
directly are discussed rather than the absolute values evaluated with poorly approximated
crystal field parameters. This was the practice used in a series of publications devoted to the
nature of the f ←→ f transitions analyzed in the language of the standard Judd-Ofelt model,
its extensions by various third-order contributions, and also in the case of the relativistic
versions of description of f -spectra (see Chapters 17 and 18 of Wybourne and Smentek [13],
and references therein).

10.2.2.2 Radial Integrals

The angular parts of the effective operators of the transition amplitude defined in equation
(10.17) have the same values for all of the lanthanide ions. The radial integrals, as carriers
of specific features of the electronic structure of each ion, have to be evaluated individually.
In order to find their values, the one electron functions have to be known. This task is easily
solved by applying the H-F model and performing the calculations for the average energy
of the configurations and with frozen core orbitals when generating the excited states. At
the same time, the summation present in the definition of the radial integral (10.19) cannot
be performed in a direct way as covering the discrete and continuum parts of the spectrum
for a given symmetry of one electron state. This problem is solved by applying the so-called
perturbed function approach originally introduced by I. Lindgren in the Many Body Pertur-
bation Theory [25] and applied to the lanthanides by J. Morrison [26, 27]. The perturbed
functions are used here to evaluate the radial integrals in an exact way, and for a complete
radial basis sets of one electron excited functions. This means that in such a way the perturb-
ing influence of all excited configurations of appropriate parity is taken into account via the
inter-shell interactions that are represented by the perturbing operators of various physical
mechanisms affecting the lanthanide ion [28] (see also Chapters 17 and 21 of Wybourne
and Smentek [13]).

The original definition of the radial integral of the J-O Theory is of the form

Rt
JO(�

′) =
exc.∑
n′

〈4f | r | n′�′〉〈n′�′ | rt | 4f 〉
Δ(4f , n′�′)

.
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It is rewritten in a explicit form to group all those terms that depend on the principal quantum
number n′, namely

Rt
JO(�

′) =

∫ { exc.∑
n′

〈4f | rt | n′�′〉
(ε4f − εn′�′)

Pn′�′(r
′)

}
r′P4f (r

′)dr′. (10.20)

It is seen that the term within the curly brackets is a linear combination of one-electron
functions describing the excited orbitals, Pn′�′ . This particular part of the radial integral,
including the summation, defines a new function, the so-called perturbed function,

�t(4f −→ �′; r) =
exc.∑
n′

〈4f | rt | n′�′〉
(ε4f − εn′�′)

Pn′�′(r). (10.21)

Thus, each perturbed function contains all the first-order corrections that are due to singly
excited configurations 4f N−1n′�′, for all n′, and which are taken into account via the odd-
rank part of the crystal field potential.

With the definition (10.21), the radial terms of the Judd-Ofelt approach are expressed
now by single integrals that involve the perturbed functions, namely

Rt
JO(�

′) = 〈�t(4f −→ �′) | r | 4f 〉. (10.22)

The problem of performing the summation over the complete radial basis sets of functions
of a given symmetry �′ is replaced by the task of finding the newly defined perturbed func-
tions. They satisfy the following equation (for explicit derivation see Jankowski et al. [28]
or Chapter 17 of Wybourne and Smentek [13]).

(ε4f − h�
′

0 )�
t(4f −→ �′; r) = rtP4f −

occ∑
n′

Pn′�′(r)〈n′�′ | rt | 4f 〉 (10.23)

with the operator defined as follows

h�
′

0 = −1
2

d2

dr2
− Z

r
+ U(r) +

�′(�′ + 1)
2r2

. (10.24)

Note that the summation in equation (10.23) is performed over the occupied one-electron
states of a given symmetry. This means that in the case of excitations to d- orbitals only 3d
and 4d one-electron functions have to be known. For g excitations the second term at the
right hand side of equation (10.23) does not contribute, since there are no occupied orbitals
of g symmetry in the case of the ground configuration of the trivalent lanthanide ions.

At the end of Chapter 21 of Wybourne and Smentek [13] the numerical results are
presented and the radial integrals of standard J-O theory and also its extensions by the third-
order contributions of various physical origins are presented for all of the lanthanide ions.
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10.2.3 Problems with the Interpretation of the f -Spectra

There are two kinds of problems when an attempt is made to interpret the f-electron spectra
using the J-O theory. One of them is conceptual. The standard realization of the Judd-Ofelt
model is based on the assumption that only the central ion is perturbed by the environment,
while in fact there is a mutual interaction between two subsystems, the central ion and the
surrounding ligands. As a consequence the dynamic model has been introduced [29–32]. In
this model the lanthanide ion plays a static role. The dipoles on the ligands, which result
from the presence of the lanthanide ion, induce in turn the multi-poles on the central ion.
This interaction between the multi-poles on the central ion and the dipoles on the ligands
is the origin of additional contributions to the transition amplitude, and consequently to the
intensity parameters Ωλ,

Ωλ : Tdyn = AL
λ+1αλ(L)〈4f | rλ | 4f 〉〈 f || C(λ) || f 〉Uλ

q , (10.25)

where AL
λ+1 is a structural parameter, and αλ(L) is related to the frequency dependent

polarizability of the ligand

αλ(L) = (k + 1)(2k + 3)1/2
α′

L.

Here the isotropic polarizability is included while the corrections due to anisotropy were
introduced by Mason [33, 34] and applied by Reid et al. [35]

It is interesting to note that the dynamic part of the transition amplitude is independent
of any excited configuration and its evaluation is rather straightforward. Since the static
and dynamic models contribute to the intensity parameters simultaneously it is possible to
verify their relative magnitude, or at least their signs. The results of such an analysis [36]
demonstrated that the radial terms of the second-order static (standard Judd-Ofelt) effective
operators are negative for all the lanthanide ions, and the dynamic radial parts are positive;
the angular parts are the same for all members of the lanthanide family.

The results of calculations presented in the literature indicate that the dynamic second-
order contributions enhance the f ←→ f transition probabilities defined within the Judd-
Ofelt approach [35]. There are a considerable number of examples for which the dynamic
coupling model is even the dominant one [33, 34, 36–41]. It should be mentioned, however,
that in spite of such an importance of the dynamic coupling model, the results of ab initio
calculations performed at the second order still do not provide satisfactory agreement with
experiment. In this sense the second-order model is not complete.

Here another source of a conceptual problem of the second order-approach appears. The
standard formulation of the J-O theory, even if extended by the dynamic coupling model, is
based on the single configuration approximation. This means that in such a description all
the electron correlation effects are neglected and it is well known that the transition ampli-
tude strongly depends on them. At this point also the spin-orbit interactions should be taken
into consideration as possibly important in the description of the spectroscopic patterns of
the lanthanides. In the case of all of these possibly important physical mechanisms there is
a demand for an extension of the standard Judd-Ofelt formulation. The transition amplitude
in equation (10.17) has to be modified by the third-order contributions that originate from
various perturbing operators introduced in addition to the crystal field potential that plays a
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forcing role for the electric dipole one photon f ←→ f transitions. This extension possibly
improves the description of the transitions when the direct calculations are performed. It
should be mentioned that if the semi-empirical approach is applied, all of these additional
contributions are included within the values of the adjusted intensity parameters Ωλ, unless
they are not represented by one particle effective operators.

Although the Judd-Ofelt theory is successful as a parametrization scheme used in the
fitting procedure, it fails when used in the ab initio-type calculations. This means that its
physical model is not rich enough to reproduce the subtleties of the electronic structure of
f -electron systems.

The other nature of problems with the interpretation of f -spectra is rather technical, or
numerical, and it originates from the formal limitations of the Judd-Ofelt model. This is the
case of all such transitions that violate the selection rules of one particle parametrization
scheme of f -spectra introduced by the J-O model.

When the intermediate coupling scheme is used for identification of the energy levels of
the lanthanide ion, the matrix element of unit tensor operator U(λ) in the expression for the
transition amplitude (10.17) (or the line strength) exists only if the triangular condition is
satisfied, namely

Δ(JλJ′) ⇒ |J − J′| ≤ λ ≤ J + J′ and λ = 0.

In particular, the one-photon electric dipole transitions [7F]0 ←→ [5D]0 and [7F]0 ←→
[5D]1 observed in Eu3+ in various hosts are not described by the standard Judd-Ofelt theory.
In the first case the triangle condition would give λ = 0, and due to the orthogonality of
the wavefunctions the contribution to the transition amplitude would vanish. In the second
example, λ = 1, which is beyond the limitation of the ranks to even values. This is an
unfortunate situation, not only because of a purely theoretical nature of problems with their
description (see Smentek and Hess [42], and references therein), but rather because of their
roles in many investigations based on experimentally observed spectroscopic patterns. For
example, the electric dipole transition [5D]0 −→ [7F]0 is used as a benchmark providing
a detailed insight into the structure, symmetry, and geometry of various compounds doped
by Eu3+. This interest arises from the fact that such a line is observed but yet not predicted
by the J-O Theory. It is even more intriguing to observe several components attributed to
this particular transition. Such a pattern is not theoretically expected, since initial and the
final energy states involved in the process are not degenerate. At the same time it means
that in such a case the crystal field potential is too weak to directly force the electric dipole
transitions (in the sense of the Judd-Ofelt model), but yet different morphologies and local
symmetries affect the optical centers in different ways resulting in more than one component
of the emission line. This argument was used for identification of two diastereomeric forms
of the Eu : DOTA, a tissue selective organic chelate for which two 0 −→ 0 lines were
observed; this conclusion was confirmed by the results of DFT calculations [7, 8]. This
possibility to connect the macroscopic observations with the properties at a micro-world
level is of special importance. The chelates like DOTA are the precursors for the majority of
modern therapeutic agents used for early detection of cancerous cells and the agents applied
in radio-immunotherapy as local centers of radiation when the lanthanide ion is replaced by
its radioactive isotope.
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The same transition, [7F]0 ←→ [5D]0 of Eu3+, is a useful tool also for finding the
correlation between the structural properties and the spectroscopic patterns of ultra small
nano-samples in order to design the compound and adjust its architecture to obtain a material
with the desired properties. This is the subject of novel research devoted to the utra-small
nanosamples of Eu2O3 [43].

Such examples of applications of the tool of the lanthanide spectroscopy as mentioned
here add impetus to the search for an extended J-O model, which would be applicable for
interpretation of entire lanthanide spectra in various compounds of macro and micro scales.

10.3 Third-Order Contributions

The Judd-Ofelt model of the f ←→ f transitions extended by the third-order contributions to
the transition amplitude is based on the double perturbation theory applied for the following
Hamiltonian,

H = H0 + λ(PVcrystQ + QVcrystP + QVcrystQ)

+ μ(PVQ + QVP + QVQ) (10.26)

where Vcryst still plays the forcing role of these transitions, and V denotes an additional
physical mechanism that possibly modifies the transition amplitude (for details see Chapter
17 of Wybourne and Smentek [13]). In order to break the limitations of a single configuration
approximation of the standard J-O Theory, in the present approach V represents the non-
central part of Coulomb interaction, which is responsible for electron correlation effects,

Vcorr =
∑
i<j

1
rij

− uHF (10.27)

In this perturbing operator, uHF is the centro-symmetric Hartree-Fock (H-F) potential. Sim-
ilarly as in the case of the crystal field potential included as a perturbation, also here the
inter-shell interactions via the Vcorr are taken into account, thus the same partitioning of
space in equation (10.26). However, for a certain order of three operators, D(1)

� , Vcryst, and
Vcorr in the final third-order contributions, it is also possible to take into account the inter-
actions via the perturbing operator within the Q-space. This is why additional operators,
QVcrystQ and QVQ, are included in the Hamiltonian of equation (10.26).

Following the standard procedure of double perturbation theory, the transition amplitude
is now determined by the following contributions,

Γ = λ
{
〈Ψ0

f | D(1)
ρ | Ψ10

i 〉+ 〈Ψ10
f | D(1)

ρ | Ψ0
i 〉
}

+ μ
{
〈Ψ0

f | D(1)
ρ | Ψ01

i 〉+ 〈Ψ01
f | D(1)

ρ | Ψ0
i 〉
}

+ λμ
{
〈Ψ10

f | D(1)
ρ | Ψ01

i 〉+ 〈Ψ01
f | D(1)

ρ | Ψ10
i 〉

}
+ λ2

{
. . .

}
+ μ2

{
. . .

}
. (10.28)

The terms associated with λ define the second-order contributions, and they lead to
the Judd-Ofelt theory; this part is known as presented in the previous section. The terms
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proportional to the perturbing parameter μ vanish due to the parity requirements. Indeed,
Ψ01

i and Ψ01
f are the first-order corrections due to the even parity operator Vcorr. The most

interesting terms are those proportional to λμ as completely new. They represent the inter-
play between both perturbing mechanisms, Vcryst and Vcorr. The remaining third-order terms,
proportional to λ2, as a result of the crystal field perturbation used twice, do not provide any
new aspect to the approach, and finally, the terms proportional to μ2 vanish due to the parity
requirements.

In general the third-order contributions to the transition amplitude that originate from the
inter-shell interactions have the usual perturbing form, now with two energy denominators,

3Γcorr(inter)

=
∑

Xx

∑
Bb

{ 〈Ψ0
f | PVcorrQ | Bb〉〈Bb | D(1)

ρ | Xx〉〈Xx | QVcrystP | Ψ0
i 〉

(E0
i − E0

Xx)(E
0
f − E0

Bb)

+
〈Ψ0

f | PVcrystQ | Xx〉〈Xx | D(1)
ρ | Bb〉〈Bb | QVcorrP | Ψ0

i 〉
(E0

f − E0
Xx)(E

0
i − E0

Bb)

}
, (10.29)

where |Bb〉 and |Xx〉 are the states of excited configurations of the same and opposite parities
to the parity of 4f N configuration, respectively. Due to the two particle character of Coulomb
interaction in Vcorr, the set of excited configurations taken into account in the Judd-Ofelt
theory is extended at the third order by all doubly excited configurations of the same parity
as the parity of 4f N (included within |Bb〉).

The impact due to the interactions via Vcorr and Vcryst within the Q space of excited
configurations are represented by the third-order contributions of the form,

3Γcorr(intra)

=
∑

Xx

∑
Yy

{ 〈4f NΨ0
f |D(1)|Yy〉〈Yy|QVcorrQ|Xx〉〈Xx|Vcryst|4f NΨ0

i 〉
(E0

i − E0
Yy)(E

0
i − E0

Xx)

+
〈4f NΨ0

f |Vcryst|Xx〉〈Xx|QVcorrQ|Yy〉〈Yy|D(1)|4f NΨ0
i 〉

(E0
f − E0

Yy)(E
0
f − E0

Xx)

}

+
∑
Bb

∑
Yy

{ 〈4f NΨ0
f |D(1)|Yy〉〈Yy|QVcrystQ|Bb〉〈Bb|Vcorr|4f NΨ0

i 〉
(E0

i − E0
Yy)(E

0
i − E0

Bb)

+
〈4f NΨ0

f |Vcorr|Bb〉〈Bb|QVcrystQ|Yy〉〈Yy|D(1)|4f NΨ0
i 〉

(E0
f − E0

Yy)(E
0
f − E0

Bb)

}
(10.30)

where |Xx〉 and |Yy〉 are of the same parity, which is opposite to the parity of 4f N .
In summary, the perturbing influence of the following excited configurations is taken into

account at the third-order analysis: 4f N−1n′�′ with �′ = even, 4f N−1n′′�′′ with �′′ = odd,
and 4f N−2n′�′n′′�′′ with �′ + �′′ = even.
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10.3.1 Third-Order Electron Correlation Effective Operators

The form of the effective operators depends on the intermediate configurations and on the
order of operators in the triple products of matrix elements. To derive the tensorial form
of the third-order terms, the J-O Theory assumptions about the energy denominators are
adopted. These conditions mean that also now the radial basis sets of one electron func-
tions are generated for the average energy of configuration and with frozen core orbitals in
the case of the excited states. As a consequence, the energy denominators, determined by
appropriate orbital energies, are included within the newly defined perturbed functions.

The two-particle nature of Coulomb interaction in equation (10.27) is the reason that
among the third-order contributions to the transition amplitude, in addition to one particle
effective operators (as in the standard J-O approach), two particle objects are also present.
However, the numerical analysis based on ab initio calculations performed for all lanthanide
ions, applying the radial integrals evaluated for complete radial basis sets (due to perturbed
function approach), demonstrated that the contributions due to two-particle effective oper-
ators are relatively negligible [11, 44–58]. This is why here they are not presented in an
explicit tensorial form (see for example Chapter 17 in [13]). At the same time it should be
pointed out that two-particle effective operators, as the only non-vanishing terms, play an
important role in determining the amplitude of transitions that are forbidden by the selec-
tion rules of second- and the third-order approaches. This is the only possibility, at least
within the non-relativistic model, to describe the so-called special transitions like, 0 ←→ 0
in Eu3+, for example, as discussed above.

The results of this extensive numerical analysis showed also that for almost all lanthanide
ions the third-order electron correlation contributions to the transition amplitude are larger
than the standard second- order terms. This relative magnitude of the third versus second-
order terms is not in contradiction with the requirement that the perturbation expansion has
to be convergent, since this condition is valid for the energy. The demanded convergency of
the expansion of energy reflects that the applied Hamiltonian has been properly partitioned.
Here, when the transition amplitude is evaluated with the functions of good quality in respect
to the energy, the contributions of a certain order, rather than the corrections, are determined.
This means that there is no a priori expectation that the higher-order terms contributing to
the transition amplitude have to be smaller than those of a lower order.

Finally, the one particle effective operators that are defined up to the third order have the
following form (based on the static model, as the original J-O Theory),

3D(1) =
even∑
λ

1Tλt
statU

(λ)(4f , 4f ) (10.31)

where

1Tλt
stat =

even∑
�′

[Rt
JO(�

′)− Rt
HF(�

′, f ) +
(N − 1)

2
R0

t (�
′, f )]Aλ

t (�
′) (10.32)

and the angular term Aλ
t (�

′) is the same as in the J-O and is defined by equation (10.18). The
radial terms in (10.32), defined in the terms of the perturbed functions, have the following
interpretation:



“Dolg-Driver” — 2015/1/17 — 12:06 — page 260 — #20

260 Computational Methods in Lanthanide and Actinide Chemistry

Rt
JO(�

′) represents the standard Judd-Ofelt theory (see 10.22), and the third-order radial
terms:

Rt
HF(�

′, f ) =< �1(4f → �′)|rt|�HF(4f → f ) > + < �t(4f → �′)|r1|�HF(4f → f ) >,
arising from the H-F potential,

R0
t (�

′, f ) =< �0(4f → f )|r1|�t(4f → �′) > + < �0(4f → f )|rt|�1(4f → �′) >, caused by
the Coulomb operator.

It is seen from equation (10.32) that in order to include the third-order electron correlation
contributions it is enough to evaluate the radial integrals and modify the values of the J-O
radial term. This is a very strong conclusion, since it indicates that when the intensity param-
eters of the one-particle parametrization scheme of f -spectra are evaluated via the fitting
procedure, they also contain the major part of electron correlation effects. In this sense, the
J-O theory, in its semi-empirical version, is more general than its original derivation might
suggest. In fact, it should be mentioned that other physical mechanisms are also included
when the intensity parameters Ωλ are fitted, and this aspect is presented as a discussion of
the parametrization scheme of the f -spectra at the end of this chapter.

Finally it should be concluded that one-particle parametrization scheme of the standard
J-O Theory is preserved at the third order. The limitations caused by the original derivation
based on the single configuration approximation are compensated in a perturbative way by
the third-order electron correlation contributions analyzed here.

Since the inclusion of the higher-order terms caused by electron correlation effects does
not change the original selection rules for the non-vanishing transition amplitude (although
they modify the values in a tremendous way), it is worthwhile to generalize the description
of the f ←→ f transitions by introducing a relativistic approach.

10.4 Relativistic Approach

In order to derive a relativistic version of the electric-dipole f ←→ f transitions the con-
cept of Sandras and Beck [59] is applied to include new effects in an effective way. This
means that every unit tensor operator u(x) analyzed in the non-relativistic approach has to be
replaced prior to the partial closure by a double unit tensor operator w(κ,k)x that acts within
the spin (κ) - orbital (k) space. The transformation is as follows,

rx〈�||C(x)||�′〉u(x)
� (�, �′) ⇒ ARxw(κ1k1)x

� (s�, s�′), (10.33)

where the double tensor operator is defied by its reduced matrix element,

〈s�′′||wκ1k1(s�, s�′)||s�′′′〉 = δ(�′′, �)δ(�′, �′′′) (10.34)

and A denotes a coefficient that is responsible for such replacement [60].
In this way the relativistic effects are taken into account in an effective way. At the

same time the S − L coupling, natural for the non-relativistic Schrödinger equation and
the standard theory of tri-positive lanthanide ions, is preserved, instead of the j − j basis
of a relativistic Dirac equation. As a result of such replacements of all the operators, new
angular terms appear and the radial integrals Rx in (10.33) are defined by the small and large
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components, the solutions of the Dirac equation, but they depend on both, � and j quantum
numbers [60–64].

From a physical point of view this relativistic model is also based on the perturbation
approach, and at the second order, similarly as in the case of the standard J-O Theory, the
crystal field potential plays the role of a mechanism that forces the electric dipole f ←→ f
transitions. The only difference is that now the transition amplitude is in effectively rela-
tivistic form, as determined by the double tensor operator, but still of one particle nature.
Furthermore, the same partitioning of space as in non-relativistic approach is valid here.
The same requirements about the parity of the excited configurations are expected to be
satisfied. As a final step of derivation of the effective operators, the coupling of double
inter-shell tensor operators has to be performed. This procedure is based on the same rules
of Racah algebra as presented in the case of the standard J-O theory. However, the coupling
of the inter-shell double tensor operators consists of two steps, for spin and orbital parts sep-
arately. Thus, the rules presented in equations (10.15) and (10.16) have to be applied twice
for orbital and spin momenta couplings, resulting in two 3j− and two 6j− coefficients.

Taking into account two second-order contributions that differ by the order of the oper-
ators [as in (10.11)] the final expression for the second-order transition amplitude, in fact
the relativistic analog of the Judd-Ofelt theory, has the following form:

2ΓR =
√

3
odd∑
tp

Bt
p[t]

1/2
∑

κ1=0,1

κ1+1∑
k1≤|κ1−1|

∑
κ2=0,1

κ2+t∑
k2≤|κ2−t|

even∑
�′

Aκ1κ2
k1k2

(t�′)
∑

κ3=0,1

t+1∑
k3≤|t−1|

a
κ3+k3∑

λ≤|κ3−k3|

[λ]1/2
∑

q

(−1)κ3+k3+t−q
[
κ3, k3

]

(
1 t λ
� p −q

)⎧⎨
⎩
κ2 κ3 κ1

1
2

1
2

1
2

⎫⎬
⎭

{
k2 k3 k1

� �′ �

}

⎧⎨
⎩
κ1 k1 1
κ2 k2 t
κ3 k3 λ

⎫⎬
⎭W(κ3k3)λ

q (4f , 4f ) (10.35)

where Aκ1κ2
k1k2

(t�′) is defined by the angular and radial terms (for details see Chapter 18 in
Wybourne and Smentek [13]). The factor a ≡ a(κ1κ2k1k2;κ3k3) in (10.35) is equal 2 when
the parity of appropriate ranks of operators is the same, p(κ1 + k1 +κ2 + k2) = p(κ3 + k3);
otherwise it vanishes.

The effective operators defined in (10.35) extend the standard Judd-Ofelt effective oper-
ators by the interactions via the crystal field potential within the spin part of the space. The
reduction to the non-relativistic case is easily seen when all of the ranks of operators acting
within the spin space are equal to zero. Indeed, setting κ1 = κ2 = κ3 = 0 results in k1 = 1
k2 = t and k3 = k. In such a situation, the rank of effective unit tensor operator is even, the
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spin-dependent 6 − j symbol in equation (10.35) is a number, 9 − j is reduced to a number,
and the remaining 6 − j has the form

{
t k 1
� �′ �

}

which, together with the 3 − j symbol, gives exactly the angular part of standard the J-
O effective operators (10.17). The contributions that are represented by the terms with
κ1, κ2, κ3 = 1 describe the effects that are new in the spectroscopy of rare earth ions in
crystals. The model of f ←→ f transitions presented here gives the opportunity to establish,
already at the second order, the importance of relativistic effects in relation to the standard
Judd-Ofelt terms. At the same time, the presence of double tensor operators changes the
selection rules for the non-vanishing contributions to the transition amplitude.

The extension of the relativistic model by the third-order contributions is rather straight-
forward. However, the expressions for such new terms are more complex than those of
the non-relativistic approach, since the closure procedure has to be performed twice, for
the spin and orbital parts of three inter-shell double tensor operators. When the electron
correlation effects are taken into account, again at the third-order two particle effective
operators are expected as originating from the Coulomb interaction. The third-order rela-
tivistic model of the Judd-Ofelt theory is discussed in detail in Chapter 18 of Wybourne and
Smentek [13].

10.5 Parameterizations of the f -Spectra

The amplitude of the electric dipole f ←→ f transition defined within the standard J-O
Theory is determined by one particle effective operators as defined in equation (10.17).
It is seen from (10.31) and (10.32) that in order to include the third-order electron cor-
relation contributions to the transition amplitude, only the J-O radial integrals have to be
modified by the appropriate radial terms that result from the Coulomb interaction and
the uHF potential. The angular terms remain the same as at the second order, thus the
Judd-Ofelt one-particle parametrization of the spectra is not changed (remembering that
the two-particle effective operators are relatively negligible). This means that when apply-
ing the semi-empirical approach, the line strengths of all electric dipole transitions for a
given system are determined by at the most three intensity parameters Ωλ, for λ = 2, 4, 6.
These parameters are modulated by the reduced matrix elements of unit tensor operators
with the functions describing the final and the initial states of each transition, namely

Sf←−i =
∑

λ=2,4,6

Ωλ | 〈Ψf || U(λ) || Ψi〉 | 2.

It should be pointed out that the one particle nature of this expression is the only common
feature of the semi-empirical version of the J-O Theory and its originally derived, which
is the standard ab initio version introduced by Judd and Ofelt in their original papers of
1962 [3, 4]. This is why the expression for the Sf←−i defines the Judd-Ofelt parametrization
scheme of the f -spectra rather than the Judd-Ofelt theory, as it is erroneously used in the
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literature. Indeed, the expression for the line strengths should be read only as a possibility of
determining the line strengths of various transitions by three parameters limited to the even
values of the unit tensor operators, and without assigning to the parameters any specific
physical interpretation or origin. In fact, when analyzing different physical mechanisms
and their impact upon the transition amplitude via the ab initio calculations, it has been
demonstrated that the intensity parameters Ωλ represent not only the crystal field perturbing
influence taken into account at the second order, as the original derivation of the J-O theory
might suggests. The values of Ωλ when determined via the fitting procedure contain the
impact of the following physical mechanisms [65]:

1. crystal field potential and its influence taken into account at the second order of the static
model; the standard J-O Theory and its original derivation; and in addition:

2. crystal field potential and its influence taken into account at the second order via the
dynamic model;

3. electron correlation effects at the third order based on the static and dynamic models;
4. spin-orbit interaction at the third order;
5. mass polarization shift at the third order;
6. hyperfine interactions at second and third orders; and finally
7. the relativistic effects.

It is possible to identify all of these different contributions to the intensity parameters when
deriving their tensorial form explicitly at the second, third, or even higher orders of perturba-
tion approach. It is impossible however to go backwards and select parts of fitted parameters
and assign to them a particular physical meaning or interpretation. In general, the parameters
Ωλ represent the overall picture of possibly important mechanisms that affect the f ←→ f
transition amplitudes, without any specification about the order of perturbation, since this
particular formalism does not play any role at the point of numerical analysis of their fitted
values.

As a consequence, when looking at the expression for Sf←−i above as a formal introduc-
tion of the intensity parameters of one particle scheme there is neither a methodological
nor physical objection to increase their number by including those terms that are associated
with the unit tensor operators with the odd ranks. Just the opposite! The presence of the odd
rank intensity parameters would compensate for an error possibly introduced by assump-
tions about the energy denominators of the Judd-Ofelt derivation, which limit the rank λ to
even values. From a physical point of view it means that these odd-rank terms would also
compensate for the errors made when the direct calculations are performed for the aver-
age energy of configuration, and with the frozen core orbitals in the case of the excited
one electron radial basis sets. The latter approximations, as presented here, are essential for
performing the partial closure to derive the effective operators determining the transition
amplitude. This is crucial also for application of the perturbed function approach to avoid
the problems with the evaluation of the radial terms for the complete basis sets.

Thus, the line strength defined within the one-parametrization Judd-Ofelt scheme has a
more general form, namely [66, 67],

Sf←−i =

all∑
λ

Ωλ | 〈Ψf || W(0λ)λ || Ψi〉 | 2. (10.36)



“Dolg-Driver” — 2015/1/17 — 12:06 — page 264 — #24

264 Computational Methods in Lanthanide and Actinide Chemistry

The unit tensor operators U(λ) of a standard presentation are formally replaced in equation
(10.36) by double tensor operators W(0λ)λ with the zero rank for the spin part of the space.
The ranks of these operators λ now have even and also odd values. In this way the selections
rules for the allowed electric dipole transitions are changed and expression (10.36), when
applied for the fitting procedure, includes in the data set also the 0 ←→ 1 and 0 ←→ 3
transitions observed in the case of the Eu3+ ion in various hosts, for example. The latter
transitions, forbidden within the standard J-O parametrization scheme of f -spectra, now are
allowed and can be theoretically described.

The results of the discussion presented in the previous section indicate however that the
semi-empirical approach based on equation (10.36) would neglect the purely relativistic
effects represented by the unit tensor operators W(1k)λ. In order to include these effects in
the fitting procedure and to describe the subtle features of f -spectra, the expression from
equation (10.36) should be extended by the following term:

∑
λ

∑
k

Ω1k
λ | 〈Ψf || W(1k)λ || Ψi〉 | 2. (10.37)

In the particular case of k = 1 in equation (10.37) the effective operator represents the
influence of the spin-orbit interaction [68]. It is seen that this very effect is responsible
for the unusual transition 0 ←→ 0 observed in Eu+3. Indeed, when λ = 0, the triangular
condition for the non-vanishing reduced matrix element indicates that k = 1 and there is
a non-zero contribution to the transition amplitude due to the effective operator associated
with W(11)0.

Combining together the non-relativistic and relativistic parts of the line strength it is
possible to write the general expression as follows:

∑
λ

∑
κk

Ωκk
λ | 〈Ψf || W(κk)λ || Ψi〉 | 2, (10.38)

where for κ = 0 =⇒ δ(k, λ) and with λ = even =⇒ Ω0λ
λ ≡ Ωλ of the standard Judd-

Ofelt parametrization scheme, when λ = odd =⇒ extension by the odd terms. For κ = 1
there are new intensity parameters. The number of these relativistic parameters is limited
by the requirement of hermiticity of the operators that is satisfied if κ+ k + λ is even. This
means that for κ = 1 the parity of k is opposite to the parity of λ. For example, the standard
Judd-Ofelt parameter Ω2(≡ Ω02

2 ) now is accompanied in the fitting procedure by Ω11
2 and

Ω13
2 . This is especially beneficial for the description of the hypersensitive transition 0←→ 2

in Eu3+, which requires more sensitive tools for its description. It should be mentioned at
this point that in this way not only the number of parameters is increased in comparison
to the standard J-O scheme, that might suggest better fitting, although this is not always
in practice the case. The most important consequence of this generalized scheme is the
possibility to include the impact of all of these physical mechanisms that occur within the
spin-orbital space (the spin-orbit interaction, for example).

The possibility for the hypersensitive transition 0 ←→ 2 in Eu3+ to be represented in the
generalized Judd-Ofelt scheme by more than one intensity parameter provoke an additional
conclusion. Namely, the introduction of the intensity parameters presented and understood
here does not preclude their negative (fitted) values; very often this is the case of Ω2 that
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determines the intensity of the hypersensitive transition 0 ←→ 2 in Eu3+. This very cri-
terion, the negative values of the fitted intensity parameters, is used in the literature to
disregard the set of parameters as though they would be directly determined from ab ini-
tio calculations (when they are evaluated as squared real numbers). This is not the case
of semi-empirical calculations, especially when the line strength is determined not by just
one but more intensity parameters. This particular interpretation of the intensity parameters
of the Judd-Ofelt parametrization scheme of the f -spectra was one of the points discussed
with (and approved by) the late Professor Brian Wybourne, one of the founders of the spec-
troscopy of the lanthanides. And only recently Professor Brian Judd, during the celebration
of the Golden Anniversary of the Judd-Ofelt theory in 2012 in Udine gave his support to
this very important conclusion, as based on a correct understanding of the Judd-Ofelt theory,
separately from the Judd-Ofelt parametrization scheme of f -spectra.
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11.1 Introduction

The theoretical modeling of lanthanide and actinide complexes in condensed media (in solu-
tion or in the solid state) is challenging for theoretical chemistry, due in part to the intrinsic
general challenge of devising a reliable model of the species in such environments and the
necessity of ‘chemical’ accuracy (errors of about a kilocalorie per mol). These challenges
are exacerbated with lanthanide and actinide elements for two reasons. The first aspect is
that in oxidation states II, III, and IV, the lanthanide and actinide elements are present as
atomic cations while in higher oxidation states V and VI, which only exist for actinides, the
mono-oxo cation PaO2+ and trans-dioxo cations AnO

+/2+
2 are found. Their high charge

induces strong polarization effects on the environment, together with ion-pairing interac-
tions with neighboring counter-ions and neutral ligands, thus making it crucial to design
on the one side a proper chemical molecular model to describe their complexes in con-
densed phase and on the other side a computational protocol to include the environment.
The theoretical description of spent nuclear fuel partitioning is an area of application where
a balanced treatment of such effects for both lanthanides and actinides is mandatory. The
second challenging aspect is the accurate treatment of the electronic structure of the heavy
element complex itself, because it has a direct bearing on the accuracy of the properties one
is interested in.

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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In this chapter we aim to discuss the requirements, challenges, and pitfalls associated
with attempting to theoretically model molecular properties for such systems that can be
directly compared to experimental data, such as valence excitation spectra, core-excitation
spectra, thermodynamics of chemical reactions, and redox properties.

A number of methods are available for probing the electronic structure of molecular
systems containing heavy elements [1, 2], so before discussing their use for the different
properties outlined above we shall briefly outline the most widely used ones at present.
These approaches differ essentially in the way they address relativistic effects (of which the
perhaps most relevant aspect is the presence of spin-orbit coupling and its consequences to
molecular properties) and electron correlation. Although these effects are not simple addi-
tive (e.g., spin-orbit coupling can bring different electronic states closer than they would
otherwise be, thus affecting electron correlation), there is a substantial body of work that
highlights the fact that the description of electron correlation for the different electronic
states is the key factor governing the accuracy one may achieve, even though spin-orbit
coupling is crucial to get a realistic picture of the electronic spectrum. Because of that, we
shall outline the approaches employed to describe both separately in the following subsec-
tion, first focusing on (spin-free) correlation methods, followed by a discussion of spin-orbit
coupling in Section 11.1.2.

11.1.1 Relativistic Correlated Methods for Ground and Excited States

A thorough review of electronic structure methods is outside the scope of this chapter, and
we therefore refer the reader to a non-exhaustive list of recent review papers [3–9] for further
reading.

Starting first with methods applicable to single-reference ground states, we have the time-
dependent (TD) generalization of density functional theory (DFT), TDDFT [10, 11] where
the excitation energies are obtained as the poles of a propagator or, in the language of time-
dependent perturbation theory, the poles of the linear response function [12]. A well-known
drawback of TDDFT for molecular application is that, within the commonly used adia-
batic approximation only single excitations can be described. Different proposals to include
higher-order excitations by going beyond the adiabatic approximation by building in the
frequency dependence of the exchange-correlation kernel have been put forth in recent
years [13–15], but one has yet to see their use in real-life applications. Irrespective of these
issues, it is also well-known that the choice of the density functional approximation (DFA)
in actual calculations is crucial to achieve a good accuracy [7, 16, 17], provided that a given
DFA may be quite accurate for certain properties and not for others.

At the wavefunction level methods based on coupled cluster (CC) theory are among the
most reliable ones. For ground-state energetics the CCSD(T) approach is the ‘gold stan-
dard’ of chemistry, whereas for excited states one can use the equation-of-motion (EOM)
CC (EOM-CC) method or CC linear response theory (CC-LRT) [4] approaches. Note that
the CC-LRT is size-extensive for both energies and properties such as intensities, however
for EOM-CC this is true only for energies (unless one uses the closely related similarity
transformed (ST)EOM-CC method [18]). As the computational cost of fully iterative (e.g.,
CCSD, CCSDT, etc.) methods can quickly become prohibitive, perturbative methods [4]
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(CC2, CC3, etc.) can be devised offering a good balance between cost and accuracy. Other
simple (second-order) perturbative approaches that are comparable to CC2 can be found in
the ADC(2) [19] or CIS(D) [20] methods. As is the case for TDDFT, these linear response
or propagator formulations are not only interesting from a formal perspective (by allowing
one to obtain information from the excited states based on ground-state quantities) but also
because of their ‘black box’ nature, that is, one does not need to construct a complicated,
multi-reference wavefunction via the definition of orbital active spaces. However, as we
shall see, the restriction to closed-shell references somewhat limits their applicability to the
actinides.

General CI methods [9] including higher-order excitations were developed during the
1970s and 1980s, such as (internally or externally) contracted multi-reference single and
double excitation methods and can tackle cases where the ground-state wavefunction has
an explicit multi-reference character. All excited states can in principle be obtained from
MR-CISD. The disadvantage is that the method is computationally cumbersome and the
resulting wavefunction is not size consistent. The energies can anyway be corrected by ad
hoc size-extensivity corrections, such as Davidson or Pople methods.

As an alternative to diagonalizing large CI matrices, one can apply perturbation the-
ory, as an extension of MP2 perturbation approach to a multi-reference wavefunction.
Any number of roots, up to the total number of states in the reference, can be cal-
culated (CASPT2, NEVPT2). The advantage of this method is that it is reasonably
fast and reasonably accurate. A disadvantage is that the method only includes double
excitations in the perturbative step, and that it to some extent is parameter dependent.
Moreover the reference state must be carefully chosen so that the orbitals included in
the CASSCF step generate the desired excitation, and that, for high symmetry cases, the
proper degenerate partner orbitals (like ex and ey) are included. The density Matrix Renor-
malization Group method (DMRG) offers an alternative, computationally more tractable
route to handle large active spaces that are insurmountable to the conventional CASSCF
approaches.

For open-shell ground states, the choice of electronic structure methods depends on the
character of the electronic ground state. If it is well described by a single-slater determi-
nant, excitation energies can be obtained with TDDFT, CC-LRT, EOM-CCSD, but very few
test applications have been reported so far [21]. Instead, multi-reference methods treating
ground and excited states in a unified framework are more routine, such as with multi-
reference CC calculations with Fock-Space (FSCC) methods, or MRCI calculations, and
CASPT2. Because of the computational cost of the first two, CASPT2 is normally the only
method that can be readily applied.

At present, implementations of each of these electronic structure methods exist in effi-
cient parallel schemes and approximate tensor factorizations, the most well-known being
density fitting (DF) or the resolution of the identity (RI), have become increasingly com-
mon in electronic structure theory programs as a means to both accelerate computations and
eliminate the storage or generation of the four-index electron repulsion integral (ERI) ten-
sor. Current efforts are devoted to local correlation techniques, which uses localized orbitals
to scale down the number of interacting orbitals in wavefunction theory (WFT) correlated
methods with the aim of making them routinely applicable to much larger systems (hundreds
of atoms) than today.
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11.1.2 Spin-Orbit Effects on Heavy Elements

Spin-orbit effects are in general important to account for in excited-states calculations and
in chemical reactions involving trans-uranium actinides and in many cases also uranium
complexes. In fact, the only uranium state in which spin-orbit effects are unimportant are
complexes where only the ground states of U(VI) is involved, the most known of which is
the uranyl ion, UO2+

2 .
The most rigorous framework to include spin-orbit interaction is to treat it a priori

in a four- or two-component relativistic framework. For a detailed description of such
approaches, we refer the reader to Chapter 3. On the other hand, if one starts from a
scalar relativistic framework, in which the wavefunction is expanded on relativistic orbitals,
instead of spinors, one can add spin-orbit coupling a posteriori by coupling all relevant spin-
orbit free states. This was the method of choice, before the opportunity of using two- and
four-component methods became possible in the late 1980s. Using this approach, spin-
orbit calculations were done already in the 1960s, when for example Walker and Richards
calculated spin-orbit coupling constants in some diatomic molecules [22]. During the fol-
lowing decades the theory was developed, and in the early 1990s calculations on systems
of chemical interest appeared. See for example the chapters by Hess et al. [23, 24].

Spin-orbit calculations were at the time hampered by the calculation of the spin-orbit
integrals over the three spin operators, Sx, Sy, and Sz, although a number of applications were
done during the 1990s, including studies by Wahlgren et al. [25] and Rakowitz et al. [26]
on the spin-orbit splitting in the 6p-shell of thallium and by Teichteil et al. on iodine [27].

At the time both LS-based methods (one component calculations followed by a sepa-
rate calculation of the spin-orbit contributions), two- and four-component methods were
developed. Despite the increase in computer power the high computational cost of four-
component methods restricts their applicability to relatively small molecular systems.
However, different flavors of two-component Hamiltonian have matured in the past years
and are now approaching the computational efficiency of one-component methods (ZORA,
X2C, etc.). (See for instance references [1, 28–35]). As a result, for chemical reactions or
spectroscopic studies, one-component approaches treating spin-orbit coupling a posteriori
are preferred.

In these approaches, the spin-orbit part can be done either at the variation-perturbation
level where only a few spin-free states are included in the spin-orbit Hamiltonian, or in
a spin-orbit CI, typically including all single excitations from the reference states as in the
spin-orbit CI method EPCISO [36]. Fromager et al. [37] has shown that the two methods are
essentially equivalent provided that the orbitals are relaxed separately in all of the spin-free
reference configurations.

For heavy elements the problem with the cumbersome integrals calculations was resolved
by realizing that the spin-orbit integrals, which depend on 1

r3 are quite local, which allows
a one-center approximation and since most of the spin-orbit contributions occur at short
distances from the nucleus, a mean-field approximation for a given atom. This method,
referred to as the Atomic Mean-Field Integrals (AMFI) method [38, 39], was developed
by Schimmelpfennig et al. in the later 1990s [40]. The AMFI approximation, which has
been included in several quantum chemistry codes including MOLCAS, DALTON, DIRAC,
ResPect has been shown to perform well [41–45].
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Of course, other approaches to the spin-orbit problem have also been developed. This
includes the spin-orbit CI suggested by Yabushita et al. [46], and ECPs describing the spin-
orbit interaction explicitly, like Dolg et al. [47], and Seijo and Barandiarán [48] using the
AIMP approach.

11.2 Valence Spectroscopy and Excited States

The UV-Vis spectroscopy of lanthanide and actinide elements directly reflects the electronic
structure of the species involved. In oxidation states (III) and (IV), the ground-state elec-
tronic configuration is f n, thus the low-lying spectrum is dominated by f -f transitions that
are strictly parity forbidden, and can also be spin-forbidden although spin-orbit coupling
attenuates the selection rules. Nevertheless, both restrictions have important consequences,
namely that these f -f bands have very low absorption intensities, and the radiative life-
times of f -f states are often rather large (10−3 s) and sensitive to the environment. This
is routinely used in Time-Resolved-Laser-Fluoresence-Spectroscopy (TRLFS) of Eu(III)
and Cm(III) at approximately 17000 cm−1 [49–51]. Metal-centered f -d transitions occur
at energies, which are much higher than those of f -f transitions; they generally give rise
to intense absorption bands in the UV region. Depending on the relative redox properties
of the metal and coordinated ligands, charge-transfer transitions either from the metal to
the ligand (MLCT), leading to an oxidation of the metal, or from the ligand to the metal
(LMCT), leading to a reduction of the metal can happen. In oxidation states (V) and (VI),
actinides formed so-called actinyl ions AnO

+/2+
2 , in which the actinide is triply bonded to

the yl-oxygens by overlapping its 5f and 6d orbitals with the oxygen 2p to form bonding and
anti-bonding σ and π orbitals, and some non-bonding orbitals of symmetry ϕu(5f ), δu(5f ),
and δg(6d). A special feature of the actinyl ions is the participation of the 6pσ orbital in the
bond, which leads to the 6p-hole, which is related to the Electric Field Gradient (EFG) as
discussed by Larsson and Pyykkö [52]. In uranyl (VI) ground-state, the six bonding orbitals
are doubly occupied, and excited states between about 30000 and 50000 cm−1 correspond
to bonding to non-bonding excitations. In a lower oxidation state [uranyl(V)] and in trans-
uranium ‘yl’ species, the non-bonding orbitals become occupied in the ground-state, thus
excitations may either occur within the non-bonding orbital manifold or involve the bond-
ing or anti-bonding orbitals. Actinide valence spectra are thus dense, and when a project
involving excited states like calculating spectra or investigating a photochemical process is
planned, it is important to anticipate that a large number of states have to be computed, and
that the challenge for electronic structure method is to accurately account for differential
correlation effects across states of very different electronic character.

11.2.1 Accuracy of Electron Correlation Methods for Actinide Excited States: WFT
and DFT Methods

Before initiating a computational study of electronic spectra it is important to decide on the
accuracy needed and to choose methods accordingly. As nearly no gas-phase spectra are
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available for actinide complexes, only comparisons between currently available methods
can be used to estimate the expected precision. In this section we will address these issues.

A number of investigations have been done on the accuracy of different methods for calcu-
lating spectra of actinide complexes with WFT and DFT methods, focusing on the accuracy
of TDDFT because it is the method of choice for larger molecular systems. Réal et al.
compared calculated spectra of isolated uranyl up to 50000 cm−1 in two studies [53, 54]
in 2007 and 2009, later complemented by extensive investigations by Bast et al. [55]
and Tecmer et al. [17]. The spectrum of UO2+

2 was calculated using LR-CCSD, AQCC,
Davidson-corrected MRCI, CASPT2 both all-electron and ECP, TDDFT with the function-
als SAOP, BLYP, B3LYP, BHLYP, PBE0, M06, M06-L, M06-2X, CAMB3LYP, and the
hybrid DFT-MRCI method.

In the pure WFT framework it was shown that the LR-CCSD, AQCC, and DC-MRCI
agree within 1500 cm−1, while CASPT2 systematically underestimate the excitation
energies with up to 5000 cm−1 for the highest ones. However, in a later investigation
Réal et al. [54] concluded that all of these methods still lack higher-order corrections to reach
FSCC accuracy, but the description of the spectrum is overall similar in term of attribution
and spacing among excited states. In an attempt to quantify the effect higher-order excita-
tions, Tecmer et al. [21] have applied the active space variant of completely renormalized
EOM-CC with singles, doubles, and non-iterative triples [CR-EOM-CCSD(t)]. Although
this method yields very good results for detachment energies, this method tends to overshoot
all transitions in the bare uranyl ion by up to 0.9 eV with respect to EOM-CCSD. However,
EOM-CCSDT reduces the difference down to 0.3 eV. This suggests that triple excitations
have indeed a sizable contribution to the transition energies, but that the CR-EOM-CCSD(T)
significantly overestimates them.

This illustrates explicitly that the correlation functional plays a key role in the accuracy
of the transition energies. This is enhanced by the spectra obtained by TDDFT calculations
first for the bared uranyl and second for uranyl coordinated with four chlorides in the equa-
torial plane. Combining the theoretical spectra obtained at the spin-free and the spin-orbit
corrected levels in the energy region 20000–30000 cm−1 of the studies of Pierloot [56, 57],
Tecmer et al. [58], and Gomes et al. [59], it appears clearly that a critical factor is the
degree of non-locality introduced through the inclusion of HF exchange in hybrids or meta-
hybrids. Thus generally hybrid functionals outperform their pure GGA counterparts. Even
the ALDA approximation, estimating the frequency-dependent exchange-correlation kernel
appeared not satisfactory and shows that it is necessary to go beyond this approximation. In
addition, non-local effects should be included to the exchange-correlation kernel, as is done
for all (meta)hybrids and CAM-B3LYP or CAM-PBE, if one wishes to approach the accu-
racy of WFT methods. Tecmer et al. [58] compared several properties of the uranyl ion as
well as uranyl coordinated with four chlorides as a function of DFT choices in an extended
study, and they found a quite reasonable agreement for different versions of CAM-B3LYP,
in particular in the lower energy region with high-precision WFT method. However, high
precision spectroscopy cannot be reached with TDDFT so far in terms of energy level as
well as state ordering.

Turning now to open-shell systems, a number of open-shell triatomic molecules have
been studied with multi-reference relativistic methods, using CASSCF/CASPT2 theory
and a posteriori treatment of spin-orbit effects. (See for instance the works by Kovács
et al. [60–65] and Bolvin et al. [66]). For uranium open-shell cations (U5+,U4+) and actinyl
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systems, comparisons with four- and two-component FSCC calculations have been con-
ducted to test not only whether the treatment of spin-orbit coupling either a priori (in 4C or
2C approaches) or a posteriori has an effect on the electronic spectrum, but also how sensitive
the treatment of electron correlation might be. The widest comparison of correlation methods
was carried out for U4+, for which both coupled-cluster methods of the type of FSCC, but
also variational CI and perturbative CASPT2 methods have been tested. CASPT2 method
tends to systematically underestimate MR-SDCI transition energies [67–70], but if the virtual
6d orbitals are included in the active space, discrepancies diminish, because angular corre-
lations of the 5f orbitals through the 6d orbitals improves correlation treatments within the
5f 2 manifold. This has been tested for the U4+ (5f 2) atom, for which experimental data are
available. For this atomic spectrum, both all-electron and relativistic pseudopotential treat-
ments yield as accurate transition energies. Although the treatment of electron correlation
was pushed to high limits, using a combination of extended basis sets and large correlation
spaces, the transition to the highest J = 0 (1S) state of the 5f 2 manifold is overestimated
by 1500–2000 cm−1, pointing to either the need of higher-order correlation contributions
or to an error in the experimental estimate of that transition energy.

11.2.2 Valence Spectra of Larger Molecular Systems

There are fewer computational studies of spectra of larger molecular actinide complexes,
which can either be justified from the computational difficulties encountered with WFT-
based methods, and the caution to be taken in the choice of the appropriate TDDFT scheme.
However, there are few studies of molecular systems involving uranyl in oxidation state (VI)
or (V) with a larger first-coordination shell than the elementary 4 halides.

In an attempt to shed light on the origin of the remarkable experimental intensity increase
in the lower part of the uranyl-chloride-acetone absorption spectra, upon addition of chlo-
ride to uranyl acetone complex, Van Besien and Pierloot [71] applied the CASPT2 method
with RASSI spin-orbit coupling to explore the lowest part of the spectra of [UO2Cl2ac4],
[UO2Cl2ac3], [UO2Cl3ac2]

−, and [UO2Cl3ac]
− (ac = acetone) complexes. The active

space (uranyl bonding, anti-bonding, and non-bonding orbitals) is identical to that of cal-
culations on the bare uranyl unit or uranyl tetrachloride. If the computed transitions closely
correspond to the experimental one, the computed oscillator strengths do not reveal any
desired intensity increase. One might infer that the active space needs to be enlarged to
include ligand orbitals because the intensity shift may arise from LMCT transitions. This
is so far beyond current CASSCF size limits, but one might think of reducing the size of
the CAS space following the concepts of restricted active spaces (RASPT2). Alternatively,
other complex stoichiometries have to be investigated such as binuclear complexes, con-
sisting of two uranyl units bridged by chloride or acetone ligands, but this again might be
beyond the current methods’ capabilities.

Wiebke et al. [72, 73] have illustrated the strong dependency of the results with respect to
the chosen functional by comparing TDDFT excitation spectra of complexes of uranyl(VI)
with (bis)salicylhydroxamate, (bis)benzohydroxamate, and benzoate. GGA functionals
such as BP86 and PW91 yield very different absorption wavelengths while the hybrid
functionals B3LYP and PBE0 give a consistent picture, but transitions are significantly
underestimated. This was revealed by calculations with the CIS(D) method (doubles cor-
rection to the excitation energy from configuration interaction with single substitution, and
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tested for the first time on actinide complexes), which match fairly well the experimental
spectrum. However, we have to note that this comparison is biased by the lack of spin-
orbit interaction. Su et al. [74] have applied SO-TDDFT with the SAOP model potential
to the calculations of the luminescence spectrum of uranyl with glycine by systematically
optimizing the geometries in its luminescent state as done by Tsushima et al. [75, 76] and
Réal et al. [77] in their studies of the photo-reactivity of uranyl. Knowing that the SO-
TDDFT (SAOP) transitions tend to be too high compared to the SO-CCSD or SO-CASPT2,
the computed transitions were shifted to the experimental origin band, and decorated by the
uranyl vibronic lines computed from the Franck-Condon formula. The outcome perfectly
matches experiment reflecting the high accuracy of computed vibrational frequencies. The
only WFT-based calculation of a relatively large uranyl complex is provided by Tecmer [21]
who computed low-lying excited states uranyl(V/VI) saldien complex using, not only
TDDFT with the CAM-B3LYP functional, but also the CR-EOM-CCSD(T) method dis-
cussed before. (See Section 11.2.1.) Both methods agree within 0.2 eV, a difference that is
smaller than that observed for the bare complex. (See Section 11.2.1.) So far, these exam-
ples rank heavy-element TDDFT calculations among semi-empirical method and ask for
further developments and investigations.

11.2.3 Effects of the Condensed-Phase Environment

The discussion above concerns calculations of isolated species. Most situations of experi-
mental interest, however, involve species in a solid or liquid environment, or at interfaces.
In these situations, even though there are developments to enable the use of correlated
wavefunctions for very large systems, the approaches discussed so far cannot be employed
directly in their current form, and embedding approaches are employed.

In the case of solids, to go beyond the gas-phase approximation, i.e., describe the spec-
troscopy of actinides in their condensed phase such as in a pure crystal of Cs2NpO2Cl4 or
Cs2UO2Cl4 or doped by Np element, one has to include explicitly the interaction with
the surrounding beyond the first sphere of coordination. Benchmarks comparing high-
resolution absorption spectroscopy recorded by Denning [78, 79] to ab initio calculations
combining different approaches are listed in the following discussion. The first attempt was
performed by Matsika and Pitzer [80] in which the environment effect on the AnO2Cl4 (U,
Np) molecule is included in the Hamiltonian by the use of the six nearest-neighbor cesium
atoms depicted as model potential and the rest of the crystal by explicit point charges. In
the case of UO2+

2 in Cs2UO2Cl4 and NpO2+
2 in Cs2NpO2Cl4, the authors clearly showed

the importance of the environment to predict transitions in the vicinity of the experimental
data. While in the case of UO2+

2 the excitation energy deviations are about a few cm−1

up to 4000 cm−1. (See Table 7 of Matsika and Pitzer [80].) The predicted adiabatic transi-
tions are for the most part of the spectrum about a 5000 cm−1 overestimated for NpO2+

2 in
Cs2NpO2Cl4. (See Table 14 of Matsika and Pitzer [80]). More recently, these systems have
also been investigated with FSCC and use the frozen density embedding method (FDE) to
describe the equatorial ligands bound to the actinyls as well as a relatively large portion
of the surrounding cesium and uranyl chloride species [59, 81]. By describing a maximum
of subsystems by their density in interaction with the central subsystem, FDE reached a
good accuracy in terms of state ordering and spacing. Even so a constant IR shift of the
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total spectrum is observed and calls for further investigations; the overall precision of the
approach is an open door for spectroscopy interpretation of more complex systems. They
have also concluded that studying the central system in the gas-phase with an explicit inclu-
sion of the ligands is sufficient to capture most of the observables and to make a prediction
or an interpretation of spectroscopy experiments.

Let us now turn our attention to species in solution. While approaches such as FDE are
promising ways to enable the use of correlated electronic structure methods in the study
of solvatochromic shifts [82], the fact remains that solvation effects on electronic absorp-
tion have to date been introduced with self-consistent reaction field models, which compute
the reaction field, that is the electrostatic field exerted on the solute by the polarization of
the solvent due to the presence of the solute, such as polarizable continuum models [83].
Proper use of this model to electronic excitation requires one to take into account properly
the time-scales of the various processes involved. Indeed the solute and solvent respond
to each other and to the exciting photon much faster than the nuclear motion can respond,
making the nuclear motions almost static on the excitation time scale. The static charac-
ter of the nuclear motion is called the Franck-Condon principle, which is associated to the
slowly responding contribution of the reaction field. But in the course of a photochemi-
cal process, the solvent and excited-state solute may typically have time to equilibrate not
only their electronic distribution, but also their nuclear geometry. Solvent effects on elec-
tronic transitions of the isoelectronic U4+, NpO+

2 , PuO2+
2 species have been estimated by

building a chemical model that includes water molecules in their first hydration sphere and
outer-sphere solvent effects through the continuum reaction field [69]. In order to compute
the absorption spectra the slow and fast components were equilibrated to the ground-state
electronic densities. On these systems where the interesting transitions are within atomic-
centered 5f manifolds, solvent effects are moderate in magnitude. The addition of the first
hydration sphere lifts bare complex degeneracies, thus increasing the number of transitions.
Most transitions are up-shifted by a few thousands wave numbers, except the highest U4+

f 2 state (J=0), which is more spatially diffuse and thus pushed up by exchange-repulsion
effects. The resulting computed transitions are in good agreement with experiment and made
it possible to identify the observed transitions.

A step towards more realistic modeling of properties of solvated actinide complexes,
requires an exploration of the configurational space of the system at experimental con-
ditions (temperature, pressure). This can be done either by Monte-Carlo sampling or by
following molecular dynamics trajectories. Both methods rely on an accurate description
of interatomic forces. One can either use ab initio-based MD of the Born-Oppenheimer
or Car-Parinello type, which, for computational costs reasons, is so far restricted to using
Density Functional Theory [84, 85]. However current functionals have been shown not
to overestimate lanthanide/actinide-ligand interactions thus questioning the reliability of
such dynamics. Alternatively, interatomic interactions can be described with classical force
fields. Over the last years the efforts of several groups in developing appropriate force-field
models are progressing but facing difficulties in the complexity of handling many-body
effects in these systems. (See for instance the following references [86–90]). Ultimately, rep-
resentative snapshots can be generated and used to compute a series of quantum calculations
on the solvated systems. Because the size of the system is too large for full quantum calcu-
lations, embedding methods such as the FDE approach presented in the condensed phase
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Section 11.2.3 are promising. No application to heavy element solvated species have been
reported, but the experience gathered on lighter molecular systems (acetone [81], uracil [91]
in water) can be directly translated to heavier counterparts.

11.2.4 Current Challenges for Electronic Structure Calculations
of Heavy Elements

Our discussion of lanthanide and actinide complexes has made it clear that most of the time
one has to deal with multi-reference wavefunctions for ground states, excited states, but
this is even more true for heavy-element based magnets, mixed-valence systems, etc. Cur-
rent multi-reference methods reach their limits when the number of unpaired electrons and
active orbitals increase. It is thus important to search for efficient approaches to increase
their applicability. We have already mentioned the concept of cutting down the size of
the active space in terms of exceptions with restricted active spaces methods, in which
one can limit excitation levels. Another alternative is the Density Matrix Renormalization
Group (DMRG) [92], which can handle active spaces of up to 30 active orbitals, and even
larger for longer molecules where locality can be used to optimize the computational cost.
DMRG calculations on the CUO molecule surrounded by four rare gas atoms have been
recently reported by Tecmer et al. [93]. The definition of a large active space was necessary
to improve the treatment of electron correlation of the two close-lying states in CUO, the
1Σ and 3Φ states, the latter being more stabilized than the former by interactions with the
rare-gas matrix. We must note, however, that these DMRG calculations may not capture
all dynamical correlation effects, and this problem is currently being investigated via cou-
pling of DMRG to other approaches such as perturbation theory, configuration interaction,
or cluster operators [92]. Another great step towards the reduction of the computational cost
in the calculation of correlation energy is a result of the use of localized orbitals. Since elec-
tron correlation is a local phenomenon, by using local orbitals one can neglect long-range
interactions so that all orbitals involved in an elementary operation must be in the same
region of space to product a nonvanishing effect. In this way, an N-scaling behavior may be
obtained. N-scaling multi-reference scaling codes were proposed [94–96] and successfully
applied to spectroscopy, magnetism of large molecular systems, suggesting that they will
be methods of choice for realistic numerical experiment.

11.3 Core Spectroscopies

Although electronic excitations in the UV-visible or near-IR ranges involving valence
electrons have arguably been the main focus of theoretical modeling for actinides and lan-
thanides, it nevertheless remains the case that processes involving inner electrons can be
of particular interest, because they allow for obtaining information on the immediate sur-
roundings of a given atom in a molecular system; while the core level energies tend to be
rather characteristic for each atom, these will be shifted from a given reference value (e.g.,
in a calibration standard or for the species in vacuum) by changes in the atom’s oxidation
state or its surroundings, be it changes in covalent interactions with nearest neighbors or
simply changes in the electrostatic potential due to near neighbors and other species (e.g.,
in a solution or crystal environment).
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11.3.1 X-ray Photoelectron Spectroscopy (XPS)

As its name implies, XPS is a technique that relies on the ionization of the species of interest
and that is particularly useful to investigate surface properties, and as such has been widely
used to investigate actinide oxides, in particular those of uranium (given its predominant
role in nuclear fuels) in different forms such as solids or thin films. There, the core levels
associated with the 4f electrons are particularly interesting, first due to their distinctive
positions and the magnitude of the splitting of the 4f5/2 and 4f7/2 due to spin-orbit coupling
(about 10 eV in the UO2 crystal [97]).

The position of these peaks can be obtained, in a first approximation, by considering
the orbital energies (−εk). Here one should note the difference in the meaning of these
for Hartree-Fock and DFT approaches (see Bagus et al. [98] and references therein) in
order to properly correlate them to the underlying physical processes; thus, while the for-
mer approach provides a measure of the binding energy of electron in k in the absence
of any relaxation effects on the electron density that accompany the ionization, the latter
would provide an approximation to the binding energies with some relaxation. In the case
of DFT, however, one should carefully consider the functional to use, since deficiencies
such as the self-interaction error (SIE) can strongly affect the core orbitals’ energies and
effectively reduce the electrons’ binding energy (see for example [17, 59] for a compari-
son of some of the first binding energies with different functionals for actinide-containing
species). Whatever the case, one can further ameliorate the binding energies obtained from
orbital energies by considering the energy difference for the original (N) and ionized (N-1)
systems in a ΔSCF procedure, with the caveat that the latter must be optimized under the
constraint that the hole is assigned to particular spinors, by employing so-called maximum
overlap schemes (see [99] for example).

A second and perhaps more interesting feature of XPS is that it provides information on
the oxidation state of a species; in the case of actinides, such information comes from the
satellite structure of the two 4f peaks [100], which is greatly affected by the occupation of
the species’ 5f shells, due to the coupling of angular momenta for hole created in the 4f
shell and those of any 5f electrons present [101–104]. In order to properly account for such
couplings, a rather simple approach such as ΔSCF is in general not sufficient, and one must
resort to multi-reference approaches, for which CI-based ones have had a prominent role so
far [98]. In those approaches, in order to take the relaxation of the core hole into account, one
usually performs calculations on systems containing N and N-1 electrons, something that
introduces a certain degree of complexity in the calculation of the peak intensities, since
the wavefunctions for neutral and ionized species will not be orthogonal and a cofactor
expansion must be used.

There, it is interesting to note that approaches based on more approximate two-component
relativistic Hamiltonians, in which spin-orbit coupling is introduced in a mean-field fash-
ion [105], can reproduce quite well the results of more computationally expensive four-
component calculations for the 4f spectra in U5+, thus opening the perspective of treating
systems of relatively larger size.

Due to the solid environments and the importance of long-range electrostatic effects on
the states’ energies, embedded cluster models [5] are chosen. While the point-charge embed-
ding has been widely used (see Bagus et al. [98] and references therein) due to its simplicity,
it is not without drawbacks (such as a tendency to spuriously stabilize delocalized states, in
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particular when large basis sets are used) and more sophisticated approaches (such as, but
not restricted to, ab initio model potentials or frozen density embedding) are viable alter-
natives to it that may be particularly useful in cases where the environment is made up of
molecular species (e.g., molecular ions or simply molecular crystals).

11.3.2 X-ray Absorption Spectroscopies

X-ray absorption spectroscopy (XAS) is proving to be a powerful tool for probing actinide
speciation in solution [106, 107]. Technically the recorded XAS spectra are very often split
in two regions, which are analyzed separately: i) the edge/pre-edge region, also referred to as
X-ray absorption near-edge structure (XANES), which correspond to electronic excitations
from core to bound states (e.g., low-lying or Rydberg states); and ii) the post-edge region,
also referred to as extended X-ray absorption fine structure (EXAFS), corresponding to
excitations from core to continuum states.

Unlike XPS, these methods are usually applied to species in solution, which requires that
in their computational modeling effects due to species’ concentration, temperature, etc.,
should be taken into account in order to approach the experimental conditions. To that end,
the most important factor is arguably the geometrical structure of the species of interest,
which can be obtained by using implicit solvent models (such as PCM) or by considering
the solvent structure explicitly (e.g., by employing a statistically significant set of snapshots
from molecular dynamics simulations), which can be advantageous if specific interactions
such as hydrogen bonding are important. From those data, the spectra can be simulated in
a subsequent step as described below.

11.3.2.1 XANES

The spectra near the absorbing edge is ideal for determining oxidation states and probing
the electronic structure, since the position of the edge and its shape will vary according to
changes in these, much like in XPS.

From a methodological perspective, the task of calculating (pre-)edge spectra resem-
bles somewhat that of valence spectra, insofar as one is looking for bound states. Because
of that there have been a number of efforts to enable the use of the conventional machinery
(e.g., TDDFT [108, 109], EOM-CC [110], CIS(D) [111]) for calculating electronic spectra
in this domain, notably employing the so-called restricted channel approximation, where
excitations are only allowed from one or a few core orbitals of interest. This approximation
is motivated by the need to reduce the number of excited states to be calculated, since con-
ventional eigenvalue solvers are devised to obtain a given number of lowest excited states,
a great number of which lie below the core excited levels.

To date most applications to actinides have been performed with restricted-channel
TDDFT and focused on the K-edge lines of the species bound to the actinide, such as the
carbons in actinocenes [112], oxygens in uranyl [113], chlorine in metallocenes [114], metal
halides [115], or analogues or uranyl chlorides [116] (sulfur K-edge of ligands employed in
actinide extraction have also received attention recently [117]). In these investigations one
of the main interests was to obtain information on the participation of the 6d and 5f orbitals
in the bonding, by inspecting the intensity and composition of excitations from the chlo-
rine to the 6d, 5f as well as how these vary along a series of compounds. The only attempt
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to use another approach than TDDFT is the study of Armbruster et al. [118] who used the
ADC(2) method to investigate metal-ion complexation effects on the C 1s-NEXAFS spectra
of carboxylic acids describing the metals with a relativistic effective core potential.

A perhaps fortunate aspect of modeling the K-shell spectra is that, unlike the L-shells or
higher, there is no splitting of core levels due to spin-orbit coupling, merely a shift to higher
energies due to scalar relativistic effects. This means that it becomes possible to greatly
simplify the calculations and perform non-relativistic or scalar relativistic calculations with
pseudopotentials used for the actinide center(s), and correct the calculated origins with an
a posteriori global shift, in particular since the trends identified from several studies indi-
cate that the relative positions of states and intensities are well-represented by TDDFT (see
Atkins et al., for example [119] and references therein).

If, on the other hand, one is interested in investigating L-edges or higher, such simplifica-
tions would no longer be satisfactory, and spin-orbit coupling should be taken into account,
even if only in a perturbative manner (see Roemelt et al., for example [120] and references
therein for a discussion of different approaches to transition metals). In addition to that, one
should keep in mind that when calculating the intensities at edges at much higher energies
than those for first- and second-row elements, for instance the uranium L1,3 edges [79], it
will become necessary to go beyond the dipole approximation and consider higher-order
contributions to the transition moments in a consistent manner [121] in order to avoid a
spurious origin dependence on the results.

A second important aspect is that, as was the case for XPS, the standard approaches
do not take into account the relaxation of the core hole. A rather pragmatic way of intro-
ducing orbital relaxation due to the core hole, which is lacking in the approaches above,
is found in the static exchange (STEX) method [122], a Hartree-Fock-based approach in
which the orbitals for the system containing N-1 electrons (where an electron having been
removed from a core orbital of interest) are used to determine core-excited states ener-
gies and wavefunctions via a CI singles (CIS) calculation, and subsequently the transition
moments between these core-excited states and the ground-state (calculated with N elec-
trons). Since the two types of wavefunctions will not be orthogonal, a cofactor expansion is
employed as well.

Although a generalization to relativistic Hamiltonians is available [123] and has been
applied to determine the K- and L-edges of chemisorbed on a gold surface [124, 125], to
our knowledge it has not yet been used to obtain the spectra of actinide-containing species.
These applications have nevertheless shown the importance of considering both channels
(p1/2 and p3/2) for the L-edges of the light elements, even if this is done in a approxi-
mate fashion, e.g., by employing orbitals from average-of-configuration calculations over
the {p1/2, p3/2}5 spinors), for both peak separation and intensities [123].

An alternative to both standard approaches employing restricted-channel approximation
and STEX is the use of the complex polarization propagator (CPP) approach [126, 127],
where one directly calculates absorption cross sections for the molecule at different frequen-
cies from the imaginary part of the molecular polarizability, expressed as a sum-over-states
with an imaginary damping term modeling the finite lifetime of the excited state(s). In
contrast to conventional formulations, where the electronic Hessian is constructed and diag-
onalized thus requiring the use of the restricted channel approximation, in the CPP approach
all channels are implicitly taken into account and, if the underlying electronic structure
approach used can effectively describe electron correlation (and relativistic effects), core
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hole (and relativistic) relaxation effects are also taken into account. A practical downside
of this approach is the need to perform several calculations to cover a broad range of
excitations. Even though, to the best of our knowledge, the CPP approach has not yet
been explored for actinide species, it is available for both relativistic [128] and non-
relativistic [126, 127, 129] Hamiltonians for mean-field theories (e.g., DFT) as well as for
correlated wavefunctions in the non-relativistic domain [130, 131]. In the latter case, a recent
benchmark study on the K-edge spectra of carbon [132] has shown that the CAM-B3LYP
functional can yield results of comparable quality to CCSD for relatively modest basis.

A relative weakness of all of the approaches above in the case of actinides, however,
is that they are applicable to closed-shell species or relatively simple open-shell cases in
the presence of spin-orbit coupling interactions, something that would exclude most chemi-
cally interesting species other than uranium (VI) ones. Thus, the development of approaches
capable of treating species with strong multi-reference character on their ground and excited
states, for instance along the lines of recently described multi-reference coupled-cluster
approaches [133], would be a necessary step towards their general applicability.

Beyond the pre-edge, one can also use electronic structure to investigate only the
ground state and use this information to aid the interpretation of the experimental spec-
tra [134], or by using it as input for XANES calculations performed with the scattering
codes (FFEF [135, 136] and FDMNES [137]), which need as inputs the atomic positions
and the electronic configuration (or information such as atomic charges) of the system.
Using the latter approach, Fillaux et al. [113, 138, 139] have shown that employing charges
derived from DFT calculations one improves the agreement between the computed spectra
and experiment for the actinide M5 edge, which is found to be rather sensitive to changes in
the electronic structure, in contrast to the L3-edge.

11.3.2.2 EXAFS

Further from the edge, the extended X-ray absorption fine structure (EXAFS) (see these
references, for example [89, 106, 140], for reviews focusing on heavy elements) pro-
vides information about the number, identity, and distance of coordinating ligands about
the absorbing ion. Experimentally this is generally done from the more energetic L or
higher edges of the metal center, which are in general well-separated from signals due to
other element’s edges; unlike XANES, ligand K-edge EXAFS spectra are often near the
strongly absorbing M,N XANES edges of the metal center, and therefore their experimental
determination is rather difficult [141].

Because EXAFS spectra are usually recorded in solution they reflect an average structural
picture of a system resulting from a thermodynamic averaging across fluctuating metal-
ligand configurations. Moreover, these spectra correspond to excitations from core orbitals
to the continuum, the inability of the finite basis sets employed in electronic structure cal-
culations to properly describe the continuum wavefunctions leads to a spurious basis set
dependences on the calculated spectra unless techniques such as Stieltjes imaging [142, 143]
are employed. Such methods are currently available to a number of electronic structure
approaches in a non-relativistic framework (e.g., [144–147], but not yet for relativistic ones).

Because of the shortcomings of standard electronic structure methods, the scattering
approaches mentioned above are widely used to simulate EXAFS spectra, even if one should
keep in mind that certain approximations [148] made in scattering codes might not be very
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good for a given system; for instance, the muffin-tin potentials used are known to be very
poor for hydrogen atoms [149] and, therefore, it is common practice to remove these from
the structures prior to the scattering calculations.

As was the case for XANES, here electronic structure calculations including solvent
effects are used to draw conclusions on the most probable coordination isomer and from
that structure the interatomic bond distances can be directly compared to the computed
EXAFS spectra [150–152]. As EXAFS spectroscopy probes the structure of a statisti-
cally averaged system, the most appropriate way of comparing theoretical EXAFS data
to experimental ones is to use molecular dynamics trajectories to sample the configuration
space, select snapshots and finally compute a statistically average spectrum [89, 153] with
a direct estimate of the mean square relative disorder (MSRD, also called σ2 or the EXAFS
Debye-Waller term). However, as discussed in Section 11.2.3, the relevance of MD simu-
lations hinges on how accurate intermolecular interactions are, given that these are usually
obtained at DFT level (in Car-Parinello MD simulations) or with force-fields (in classical
MD simulations).

Significant changes on the computed EXAFS spectra and on the agreement with exper-
imental data have been observed by Atta-Fynn et al. [153] when studying the curium(III)
aqua ion, and by Spezia et al. on the thorium(IV) aqua ion [154]. This supports the key fact
that the interaction potential plays a crucial role in the description of the solvated ion. Never-
theless, when comparing simulated EXAFS spectra to experimental data, one must keep in
mind that simulations conditions may differ from experimental conditions, in terms of total
concentrations and of relative concentrations of the studied cations and counterions. Coun-
terions can indeed induce significant changes in the coordination of heavy element species
in solutions as observed experimentally by Wilson et al. for instance [155], and theoreti-
cally by Spezia et al. [154] and Bühl et al. [156]. The challenge for theoretical modeling is to
improve current models to capture all effects present at the nanoscale, to match experimental
conditions and ultimately to make simulated spectra resemble the experimental ones.

11.4 Complex Formation and Ligand-Exchange Reactions

Complex formation reactions in aqueous solution are described by the equilibria of the type:

M(aq) + nL(aq) −⇀↽− ML(aq). (11.1)

where the charges have been omitted for simplicity. In order to use quantum chemical meth-
ods to compute the energy of this reaction 11.1, it is necessary to determine the composition
of the first (and sometimes the second) coordination sphere, such as

M(H2O)x + L(H2O)y−⇀↽−ML(H2O)z + (x + y − z)H2O. (11.2)

Note that QM calculations refer to zero ionic strength conditions, and in the first step only
the reaction energy is obtained; the contribution to get the Gibbs free energy are calculated
a posteriori. The level of details in the QM model can vary, but the first coordination sphere
of the reacting metal ion and the ligand complex, must always be specified, but it is rarely
possible to complete a second coordination sphere in such calculations. Thus the long-range
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solvation are most frequently described using a continuum solvent model. Since the size and
the charge of the reactants and products may vary in the model described by equation (11.2),
we may expect errors in the estimated solvation energy to have significant influence on the
reaction energies. As an alternative, the complex formation reaction can be rewritten as a
two-step process, the first one being the formation of an outer-sphere complex between the
metal ion and the ligand, and then an exchange between the ligand and water in the first
coordination sphere as follows:

M(H2O)x + L−⇀↽−[M(H2O)x],L (11.3)

[M(H2O)x],L−⇀↽−[ML(H2O)z], (H2O)x−z (11.4)

One can estimate the equilibrium constant for reaction (11.4) using the Fuoss equation [157],
while the Gibbs free energy of the second intramolecular reaction is estimated using QM. In
the latter, the reactant and product are very similar as they have the same charge and compa-
rable size, thus we might expect that errors in the solvent model cancel to a large extent. To
verify whether this statement holds, and to illustrate the level of theory required for such cal-
culations, we discuss the simplest ligand exchange reaction in hydrated uranyl(VI), that is
the water-exchange process between first- and second-sphere water molecules. The reactant
being the five-coordinated uranyl aqua ion, the reaction can proceed either via a dissociative
pathway forming a dissociative intermediate (D-int) [UO2(H2O)4]

2+, (H2O)2:

[UO2(H2O)5]
2+, (H2O)−⇀↽−[UO2(H2O)4]

2+, (H2O)2 (11.5)

or via an associative mechanism to form an associative intermediate (A-int) [UO2(H2O)6]
2+

[UO2(H2O)5]
2+, (H2O)−⇀↽−[UO2(H2O)6]

2+ (11.6)

To obtain reliable optimized structures, density functional theory using, for instance, the
B3LYP functional can be used, as structural parameters are usually in good agreement
with CCSD(T) values [158, 159]. However, for energetics, currently available exchange-
correlation functionals are not accurate enough to describe metal-ligand binding energies,
yielding either too low or too large values depending on the functional and the amount of
Hartree-Fock exchange, as compared to MP2 or coupled-cluster results, the latter two being
in excellent agreement with each other [160–162]. Our discussion will thus be based on ener-
gies computed at the MP2 level, using a relativistic effective core potential for uranium with
quadruple-zeta quality basis set and triple-zeta quality sets for oxygen and hydrogen atoms.
The objective here is to illustrate the sensitivity of the continuum solvation model to the
choice of the cavity shape; the cavity is built from interlocking spheres that are either cen-
tered around each atom (individual sphere, IS) or around pseudoatoms referring to an atom
and its covalently attached hydrogens (called a united atom model, UA). Both approaches
were tested on reactions (11.5) and (11.6) and on reactions (11.7) and (11.8) corresponding
to a chemical model with a total number of ten water molecules, five of which partially
saturating the second coordination sphere,

[UO2(H2O)5]
2+, (H2O)5−⇀↽−[UO2(H2O)4]

2+, (H2O)6 (11.7)
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or via an associative mechanism

[UO2(H2O)5]
2+, (H2O)5−⇀↽−[UO2(H2O)6]

2+, (H2O)4. (11.8)

The UA and IS models give rather scattered results for differential solvation contribu-
tions. This is true not only for the smallest chemical model but also for the model with 10
water molecules. This indicates that the shape of the cavity around the water molecules has
a strong impact on the absolute solvation energies and that these effects do not cancel out
when taking solvation energy differences. Klamt et al. [83] and Cramer et al. [165–167]
have recently concluded that IS cavities are superior to UA cavities for solvation free
energy calculations of neutral and ionic species. However, this conclusion can be questioned
from the scattered results obtained by Wåhlin et al. [163, 164], see Table 11.1. Looking at
the computed ΔH, all models tend to place the A-intermediate lower in energy that the
D-intermediate, except for the case of the IS results for the six water model where the two
energies are just 3 kJ ·mol−1 apart from each other. This demonstrates that the large uncer-
tainties arising from cavities in solvation models may hamper any definitive conclusions
with respect to a reaction mechanism, unless the final energies are well separated. This was
the case of more complex ligand-exchange reactions, with fluoride, oxalate, carbonates,
where we could satisfactorily draw conclusions on the preferred mechanism [168].

One particular and rather complicated exchange reaction, which has been studied theo-
retically [76, 77, 169] and experimentally [170] is the oxygen exchange between the water
solvent and the uranyl ion.

U17/18O2+
2 (aq) + H16

2 O −⇀↽− U16O2+
2 (aq) + H

17/18
2 O (11.9)

This reaction is normally very slow in the ground state. Several mechanisms have been
explored using quantum chemical methods. At low pH, the reaction pathway involves a
binuclear (UO2)2(μ−OH)2+2 complex [76], as proposed by Szabó and Grenthe [170]. At

Table 11.1 Differential Gibbs free solvation energies ΔΔGsolv, and
reaction enthalpyΔH in kJ · mol−1 computed at the MP2 level with the
UA and IS models at the MP2 level for the water exchange reaction for
uranyl(VI) in the electronic ground state, using the six- and ten-water
models (See [163,164])

Cavity [UO2(H2O)5]
2+, (H2O) [UO2(H2O)5]

2+, (H2O)5

A-int D-int A-int D-int

ΔΔGsolv
UA −19 27 −24 −8
IS −3 2 −5 23

ΔH
gas-phase 37 35 36 39
UA 17 63 12 31
IS 34 37 31 62
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higher pH, Shamov et al. [169] assumed the transfer to be mediated by chains of water
molecules, using DFT-based methods, followed by Bühl [171], using Car-Parinello simula-
tions. Interestingly the yl-exchange reaction (11.9) is strongly enhanced by UV radiation.
Réal et al. [77] followed the reaction path for a number of excited states of the uranyl aqua
ion using a TDDFT approach. Although the TDDFT approach is not very accurate in terms
of excitation energy values, as discussed in Section 11.2, but it provided a good picture of
the excited states involved in the process, and this reaction can now be considered to be
understood.

11.5 Calculations of Standard Reduction Potential and Studies of Redox
Chemical Processes

Upon reduction a metal complex gains one electron to convert into its reduced form.

[MLn]
m+(aq) + e− −⇀↽− [MLn]

(m−1)+(aq) (11.10)

The total change in the Gibbs free energy of reaction (11.10) in solution, ΔG◦,redox
aq , is

related to the standard potential E◦ according to equation (11.11)

E◦ =
−ΔG◦,redox

aq

nF
(11.11)

The standard potential with respect to the standard hydrogen electrode (E◦(SHE)) is

E◦(SHE) =
−(ΔG◦,redox

aq −ΔG◦(SHE))

nF
(11.12)

where n is the number of electron transferred (n=1 in this case) and F is the Faraday
constant (96.485 kJ ·mol−1V−1). To calculate ΔG◦,redox

aq , we have to use the following
thermodynamic cycle (Born-Haber) shown in Figure 11.1,

which results in

ΔG◦,redox
aq = ΔG◦,redox

gas +ΔG◦
solv(Red)−ΔG◦

solv(Ox) (11.13)

Red(g)

Red(aq)

Ox (g) + e– (g)

+ e– (aq)Ox (aq)

ΔGsolv (Ox)𝗈 ΔGsolv (Red)𝗈

ΔGaq
𝗈,redox

ΔGgas
𝗈,redox

Figure 11.1 Born-Haber cycle
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where ΔG◦,redox
gas is the change of standard Gibbs free energy of reaction (11.10) in the gas-

phase and ΔG◦
solv(Red) and ΔG◦

solv(Ox) are the standard solvation energies of the reduced
and oxidized forms. ΔG◦,redox

gas can be calculated using the adiabatic ionization energy of the
reduced form IE, adding the thermal contributions Gevr for the oxidized, reduced forms, and
the free energy of the electron (G(e−) = −3.63 kJ ·mol−1) at 298 K, adding the

ΔG◦,redox
gas = −IE + Gevr(red)− Gevr(ox)− G(e−) (11.14)

Note that ΔG◦,redox
aq has a liquid-phase standard state of 1 mol/L, and we can use a gas-phase

standard state of either 1 atm or 1 mol/L, as long as we use the same convention for the oxi-
dized and reduced forms. Often the 1 mol/L standard state is used. There are several sources
of uncertainties in the calculations of reduction potentials, and we will comment on them
by scanning the published literature on actinide elements, for which the most studied redox
systems are actinyl aqua ions, with the exception of one study on Pu(VII)/Pu(VIII) [172].

The first comment is that redox potentials are defined with respect to the standard
hydrogen electrode corresponding to the following half-equation

H3O
+ + e−−⇀↽−1

2
H2 +H2O (11.15)

In several studies [173–175], the authors computed this reduction potential at the same
level of theory as that used for the actinide complexes, with values ranging from −4.92 eV
(B3LYP) [173, 174] to −5.20 V (PBE) [174] (the value computed at the CASPT2 level in
Tsushima et al. [175] is not explicitly given in the paper). Other studies prefer to use the
IUPAC recommended value −4.44 V, although Truhlar et al. [176] recently revised this
value down to −4.28 eV, using a different value of the hydration energy of a proton. The
choice of this value will impact the absolute value of the computed reduction potential,
however, this error will cancel out when comparing trends.

The second critical ingredient is the estimation of solvation free energies, which, in all
studies, have been computed with continuum solvent models. Like in the case of chemical
reactions (see Section 11.4), it has been demonstrated for non-actinide systems (such as
ruthenium [167] and ferrocene [177]) that the shape of the cavities enclosing the solute
seem noticeably influences not only the absolute free energy of solvation but also, and this
is more critical, the difference in free energy of solvation between the reduced and oxidized
forms (as shown in the paper by Jaque et al. [167] on ruthenium complexes) of the order
of 100 kJ ·mol−1, which might yield to uncertainties of about 1 eV in the final computed
reduction potential. Thus caution must be taken when using continuum solvent models and
when comparing results. Among the published data, all use individual spheres, except for
the study by Tsushima et al. [172, 175], which most likely used the default united atom
model set as default in Gaussian 03.

The third critical point is the choice of the appropriate electronic structure method to treat
the species in gas phase. The change of electronic configuration from the oxidized to the
reduced species implies that electronic correlation effects are different and that spin-orbit
coupling is likely to contribute differently for the two species. Most studies rely on DFT using
either the PBE functional, a hybrid functional, or more recently a meta-functional of the Min-
nesota M06 family. Changing the functional can yield changes of the gas-phase ionization
potential up to an eV. Unfortunately, we cannot compare these DFT values to the most reliable
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Table 11.2 Reduction potentials in eV for the AnO2(H2O)
2+/+
5 (An = U, Np, and Pu) com-

puted with various correlation methods,continuum solvent models, and spin-orbit correction.
MUSE (mean unsigned error) values are calculated with respect to standard potential (V)

B3LYP PBE M06 M06L BP86 PBE CASPT2∗ std potential

U −0.024 0.052 0.136 0.136 −0.54 −0.51 0.00 0.088
Np 1.177 1.056 0.989 1.227 1.33 0.87 1.53 1.159
Pu 1.232 1.379 1.374 0.946 0.49 0.43 0.73 0.936
MUSE 0.13 0.19 0.22 0.04 0.42 0.46 0.22

Np vs U 1.201 1.004 0.853 1.091 1.87 1.38 1.53 1.071
Pu vs U 1.256 1.327 1.238 0.81 1.03 0.94 0.73 0.848

∗SO coupling computed with the SO-RASSI-AMFI approach, while other calculations use Hay SO-multiplet correction;
Continuum calculations with united atom model.

calculations performed so far using the CASPT2 multi-reference method, since the gas-phase
energies are not reported in Tsushima et al. study [175]. Concerning spin-orbit, in the latter
study it was computed with the SO-RASSI method yielding to spin-orbit lowering values
very close to that computed by Hay et al. [173] using a minimal spin-orbit CI using an effec-
tive spin-orbit operator with effective spin-orbit coupling constants. There is one exception,
the case of plutonyl(V) where Tsushima’s value (−51.1 kJ ·mol−1) is significantly lower
(−89.7 kJ ·mol−1), the difference being due to a change of the dominating configuration
in the spin-orbit ground state, from that of the spin-free one. Horowitz and Martson [178]
proposed an alternative treatment of strong correlations and multi-configurational effects in
building an Anderson impurity model over the frontier orbitals and defining the parameters
from matrix elements of the KS Hamiltonian, and treating spin-orbit coupling in an effec-
tive one-electron operator. The outcome of this model yields somewhat scattered agreement
with experiment, but it provides some insights into the physics of the 5f electrons in actinide
complexes.

Table 11.2 reports all computed values gathered by Steele et al. [179]. In absolute terms
and even relative values with respect to the mean unsigned error (MUSE), the M06-L
functional agrees best with experiment, although it is not clear how well it captures multi-
configurational effects. The CASPT2 results are in fair agreement with experiment, but there
the uncertainty lies in the treatment of solvent effects. We can note that in an earlier study
by Vallet et al. [180] on the step-wise reduction of uranyl(VI) to uranium(IV), no estimate
of absolute solvation energies was made, but relative redox potentials were predicted with
a fair accuracy using the U system for calibration.

11.6 General Conclusions

Our review of published studies on computational investigations of actinides complexes
clearly indicates that the most studied systems are uranium, neptunium, and plutonium. Yet
even for these there are still many unanswered questions and debates persist on topics such
as the character of the electronic ground state, magnetism, and the character of bonding.

From the experimental point of view, other species such as americium and curium are
of importance for closing the fuel cycle by adapting some Partitioning and Transmutation
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scheme, and one driving force may arise from subtle differences in the bonding of actinides
and lanthanides to the separating ligands. The factors that determine the separation efficien-
cies are currently poorly understood, partly because of experimental difficulties in obtaining
these species (They are produced in rather small amounts.) and later in their manipulation
(which requires highly specialized facilities and trained experts for handling due to their
short half-life and high activity) and partly because, as they are taken to behave largely as
heavy lanthanides, there is not much motivation to overcome the aforementioned exper-
imental difficulties to improve upon our rudimentary understanding of them and, as a
consequence, there hasn’t been much interest in their theoretical study, either.

Thus, the actinide series as a whole is modestly understood, with the level of compre-
hension decreasing with atomic number, calling for further joint experimental-theoretical
studies to unravel the properties of actinides across the series.

While current computational modeling can offer a great deal of insight, a description of
thermodynamics, spectroscopy, and properties with a sufficiently high accuracy requires the
use of sophisticated correlated methods as well as more realistic models of the condensed
phase, and there are still rather important shortcomings that need to be addressed, particu-
larly for the former. Current developments of new theoretical and computational approaches
are promising in this regard, especially for ongoing implementation of a wide range of
wavefunction-based methods successful in the one-component domain to the two- and four-
component scheme, particularly combined with state-of-the-art resolution-of-the-identity
techniques and large-scale parallelization.

Indeed some systems that have an open-shell or multi-configurational ground-state wave-
function in a scalar relativistic framework might turn out to be closed-shell in a relativistic
framework (e.g., the molecular astatine monoxide cation AtO+ [181]) thus making it
easy to apply single-reference two- and four-component methods. However, significant
efforts on multi-configurational methods applicable to real-size complexes have to be
undertaken to tackle more complex electronic configurations. Continued reductions in the
cost/performance of computing and improvements in algorithmic details should continue to
yield shorter time to solution for increasingly larger systems.

Similarly, improvement can be expected in treatment of the condensed phase environ-
ment. Optimization of the accuracy of continuum solvation methods is far from a solved
problem. Furthermore, new embedding methods, and QM/MM approaches can be made
more accurate, robust, cost-effective, and easy to use. Lastly, sampling algorithms in the
condensed phase are crucial for many large-scale applications, and significant advances
can be expected as more complex problems are currently being addressed.

Altogether advances in theory and software, and their corresponding applications to sys-
tems of increasing size, taken in parallel to advances in experimental techniques will enable
explanatory and predictive models to be constructed for the fascinating elements standing
at the foot of the periodic table.
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12.1 Introduction

In this chapter we focus on methodological and computational aspects that are key to accu-
rately modeling the spectroscopic and thermodynamic properties of molecular systems
containing actinides within the density functional theory (DFT) framework. Our focus is
on properties that require either an accurate relativistic all-electron description or an accu-
rate description of the dynamical behavior of actinide species in an environment at finite
temperature, or both. The implementation of the methods and the calculations discussed
in this chapter were carried out with the NWChem software suite [1]. In the first two
sections we discuss two methods that account for relativistic effects, the ZORA and the
X2C Hamiltonian. Section 12.2.1 discusses the implementation of the approximate rela-
tivistic ZORA Hamiltonian and its extension to magnetic properties. Section 12.3 focuses
on the exact X2C Hamiltonian and the application of this methodology to obtain accurate
molecular properties. In Section 12.4 we examine the role of a dynamical environment at
finite temperature as well as the presence of other ions on the thermodynamics of hydrolysis
and exchange reaction mechanisms. Finally, Section 12.5 discusses the modeling of XAS
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(EXAFS, XANES) properties in realistic environments accounting for both the dynamics
of the system and relativistic effects.

12.2 ZORA Hamiltonian and Magnetic Property Calculations

It is well established that scalar and spin-orbit relativistic effects have to be taken into
account for accurate electronic structure calculations of actinides and other heavy elements.
Relativistic effects are best described in electronic-structure calculations by solving the
Dirac equation, whose solutions are made up of four-component spinor wavefunctions.
However, four-component methods are not only fraught with problems such as variational
collapse [2], they have in the past been an order of magnitude more expensive. The extra
cost stems from the need to properly describe the small component wavefunction. In prin-
ciple, the cost of the Dirac equation can be reduced by transforming it from a regular
four-component eigenvalue equation into a non-regular two-component eigenvalue equation
by decoupling the large and small components of the wavefunction. However, this non-
regular two-component eigenvalue equation turns out to be difficult to solve, because it has
a non-trivial normalization condition and the eigenvalue depends non-linearly upon itself.
Over the years, many approximations have been developed to circumvent these difficul-
ties such as the Breit-Pauli Hamiltonian, direct perturbation theory, Dyall’s modified Dirac
method, and the Douglas-Kroll-Hess (DKH) Hamiltonian [3]. Another approximation, the
ZORA method, has become one of the more popular of these approximations. In the fol-
lowing sections we will discuss the ZORA Hamiltonian and the theory and implementation
of magnetic properties within the ZORA framework.

12.2.1 ZORA Hamiltonian

The zeroth-order regular approximation (ZORA) was originally developed by Chang,
Pelissier, and Durand [4]. This method was rediscovered and developed much further by
Baerends, van Lenthe and coworkers [5]. ZORA is a two-component spinor approach for
approximately solving the Dirac equation based upon regularizing the wave equation by
ignoring the energy dependence of the effective mass of the electron. It has been shown that
the solutions of the ZORA equation are reasonable two-component approximations to the
fully relativistic Dirac solution for hydrogen-like systems. Since this is a two-component
method, calculations can be performed using only the large component.

The ZORA approximation and other regularized two-component methods can be used to
treat all of the electrons (core + valence) in the system. However, all-electron calculations
are not always necessary, since the most significant relativistic effects on valence shells of
heavy elements can be encapsulated using effective core potentials. These approaches yield
accurate structures, frequencies, and other properties that depend primarily on the valence
electronic structure. However, for properties like XAS, XPS, NMR, EPR, etc., all-electron
relativistic approaches are needed.

Atomic units with � = 1,me = 1, 4πε0 = 1, c = α−1 = 137.035999074(44) are used
in this section. The two-component ZORA equation is given by

[
1
2
(σ · p̂)K(σ · p̂) + V

]
ψn = εZ

nψn (12.1)
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with

K =
2c2

2c2 − V
(12.2)

Here, V can be Vext, the external potential generated by the nucleus-electron interaction,
or a model potential Vmp, similar to the potentials used for the X2C transformation in
Section 12.3. The nonrelativistic limit is formally obtained by letting K → 1.

Expanding equation (12.1),

[
1
2

p̂K · p̂ +
i
2
σ · (p̂K × p̂) + V

]
ψn = εZ

nψn (12.3)

As can be seen, the spin-orbit contribution (term 2) in equation (12.3) is present even at
this lowest order of the expansion. Equation (12.3) shows the separation of the ZORA oper-
ator into a scalar (spin-free) part and the SO operator (the electron spin-dependent term
with σ). With K ≈ 1+Vnuc/(2c2), the ZORA SO operator becomes equivalent to the Breit-
Pauli one-electron counterpart in order c−2. However, the scalar part of ZORA misses some
contributions in order c−2. The ZORA equation can also be written as,

[
1
2

p̂2 +
1
2

p̂ (K − 1) · p̂ +
i
2
σ · (p̂K × p̂) + V

]
ψn = εZ

nψn (12.4)

where the non-relativistic kinetic energy contribution has been isolated. The advantage of
this decomposition is that the ZORA contribution can be treated as a correction that can be
added to the kinetic-energy matrix elements in any standard implementation. The spin-free
or scalar-relativistic equation can be obtained by eliminating the spin-orbit term, resulting
in the following equation:

[
1
2

p̂2 +
1
2

p̂ (K − 1) · p̂ + V

]
ψn = εZ

nψn (12.5)

It has been shown [188, 189] that the one-electron energies of the ZORA equation, εZ
i can be

improved by scaling the ZORA energy. Basically, this scaling captures the effects of sum-
ming certain higher-order contributions to infinite order. The scaled one-electron energies
are given by

εScaled
i =

εZ
i

1 +
〈
φi

∣∣∣σ · p̂K2

4c2 σ · p̂
∣∣∣φi

〉 (12.6)

Within the DFT framework, the total scaled ZORA energy can be written as

EScaled =
N∑

i=1

[〈
φi

∣∣∣∣σ · p̂
K
2
σ · p̂

∣∣∣∣φi

〉
− εScaled

i

〈
φi

∣∣∣∣σ · p̂
K2

4c2
σ · p̂

∣∣∣∣φi

〉]

+ Ene + EH + Exc + Enn (12.7)
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where the summation runs over the occupied orbitals. The above equation is identical to
the non-relativistic total energy functional except for the kinetic energy contribution, which
includes the ZORA correction.

In our Gaussian basis set implementation [6], the molecular spinors are expanded in terms
of real basis functions as follows:

φi =
∑
μ

{
cαμi

(
χμ

0

)
+ cβμi

(
0
χμ

)}
=

(
φα

i

φβ
i

)
(12.8)

where χμ are Gaussian basis functions and cαμi, cβμi are expansion coefficients, which are,
in general, complex. Within the basis set approximation and using the decomposition from
equation (12.4), the corrected kinetic energy elements of the Fock matrix can be written as

TZ
μν =

〈
χμ

∣∣∣∣ (σ · p̂)(σ · p̂)
2

∣∣∣∣χν

〉
+

〈
χμσ · p̂

∣∣∣∣K − 1
2

∣∣∣∣σ · p̂χν

〉
(12.9)

The non-relativistic part of the kinetic energy (first term in the above equation) is evaluated
analytically, while the ZORA correction (second term) is calculated numerically on atom-
centered grids. Since the ZORA correction depends on the potential, it is not gauge invariant.
There have been a number of attempts to address this issue [7–9]. In our implementation,
we address this by using the atomic approximation of van Lenthe and coworkers [10, 11].
Strictly speaking none of these approaches are truly gauge invariant in the general sense,
but they help minimize the problem. Within this approximation, the ZORA corrections to
the kinetic energy matrix elements are calculated using the superposition of densities of
the atoms in the system. As a result only intra-atomic contributions are involved, and no
gradient or second derivatives of these corrections need to be calculated. In addition, the
corrections only have to be calculated once at the start of the calculation and stored. With
this, we can re-express equation (12.9) as

TZ
μν =

〈
χμ

∣∣∣∣ (σ · p̂)(σ · p̂)
2

∣∣∣∣χν

〉
+

〈
χμσ · p̂

∣∣∣∣∣
K̃ − 1

2

∣∣∣∣∣σ · p̂χν

〉
(12.10)

where K̃ = 2c2

2c2−Ṽ
and Ṽ ≈ Vne

atom + VH
atom, the sum of the atomic nuclear-electron, Hartree

potentials, respectively. The atomic densities are calculated for the neutral atoms at the
Hartree-Fock (HF) level and then the ZORA potential corrections are calculated using this
density. Note that we ignore the exchange-correlation contribution in the evaluation of the
ZORA atomic corrections in the same way as van Lenthe and co-workers [10–12]. This
approximation works well, as shown by our results. Our implementation differs from theirs
in that they use a resolution of identity (RI) approach with auxiliary basis sets to represent
the inverse of the potential to calculate the ZORA corrections, while we use an all-electron
grid representation. Several applications using this approach will be discussed in subsequent
paragraphs.
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12.2.2 Magnetic properties

Over the past 4 years, a set of capabilities has been implemented for relativistic cal-
culations of EFGs [13, 14] (needed to model nuclear quadrupole effects in solid-state
NMR and quadrupole line broadening for solution NMR), NMR chemical shifts [15]
(in a scalar relativistic version for the time being), as well as electron paramagnetic
resonance (EPR) g-factors [15, 16] (or g-shifts = deviations from the free-electron
g-value) and electron-nucleus hyperfine coupling (hfc, a) [17, 18]. These developments
mostly utilized the approximate two-component relativistic zeroth-order regular approx-
imation (ZORA) [19] framework (Section 12.2.1) due to its proven ability to model
the aforementioned properties efficiently and accurately. In the near future, the mag-
netic property modules will also be interfaced with the X2C functionality discussed
in Section 12.3. One advantage of the ZORA approach is that the operators needed
for magnetic perturbations are straightforwardly derived at the operator level, and cal-
culations of their AO matrices are easily implemented with the help of numerical
integration or a combination of analytic and numerical techniques. We first outline
the derivation of perturbation operators for external magnetic fields and nuclear spin
magnetic moments, and discuss selected computational studies for actinide compounds
subsequently.

The presence of a magnetic field-external, or from a nuclear spin-can be incorporated by
minimal substitution for the electron momentum operator,

p̂ → p̂ + A (12.11)

with the vector potentials for an external field B0 or a collection of nuclear point magnetic
moments mN , respectively, being given as

A0 =
1
2

B0 × r (12.12a)

AN =
μ0

4π

nuclei∑
N

mN × rN

r3
N

(12.12b)

In Hartree atomic units, the conversion of μ0/(4π) from SI gives a factor of 1/c2 that is
used below in the hyperfine operators. In equations (12.12a, 12.12b), rN is an electron-
nucleus distance, and r is the distance of an electron to an arbitrarily chosen gauge origin
for the external-field vector potential (usually, but not necessarily, coinciding with the lab-
oratory coordinate origin). An unphysical dependence of the results on the chosen gauge
origin for the external field vector potential is eliminated by adopting ‘gauge-including
atomic orbitals’ (GIAO) [15, 16, 20]. The vector potentials (12.12a) and (12.12b) satisfy
the Coulomb gauge,

∇ · A = 0 (12.13)

As it has been shown previously [21], at the ZORA level the magnetic perturbation operators
are the same no matter if the minimal substitution is made in the Dirac Hamiltonian before
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transformation to two-component form or afterwards. Minimal substitution (12.11) gives a
set of additional magnetic terms in the ZORA operator:

ĥZ(B,mN) = ĥZ + ĥZ
mag (12.14)

with

ĥZ
mag =

1
2

(
[p̂ · KA +KA · p̂] + iσ · [p̂ × (KA) + (KA)× p̂]

)
+

1
2
KA · A (12.14a)

There are electron spin-independent and spin-dependent paramagnetic terms (linear in the
vector potential), and a diamagnetic spin-independent term that (quadratic in the vector
potential). By substituting (12.12a) or (12.12b) in the spin-free linear terms, one obtains the
ZORA form of the Orbital Zeeman (OZ) operator

ĥOZ =
1
4
[KB0 · (r × p̂) + (r × p̂) · KB0] (12.14b)

and the ZORA form of the Paramagnetic Orbital (OP) operator

ĥOP =
1

2c2

∑
N

[(
rN

r3
N

× p̂
)
· KmN +KmN ·

(
rN

r3
N

× p̂
)]

(12.14c)

A bi-linear perturbation (double perturbation) [22] of the electronic energy by these two
operators gives the ZORA analog of the paramagnetic component to the NMR shielding
tensor. A bi-linear substitution of (12.12a) and (12.12b) in the KA ·A term in (12.14a) gives
the corresponding operator for the Diamagnetic Shielding,

ĥDS =
1

2c2

K
2

∑
N

[
(mN · B0)

(
rN

r3
N

· r
)
− (mN · r)

(
B0 ·

rN

r3
N

)]
(12.14d)

which is calculated from (12.14d) as an expectation value with the two-component ZORA
electron density.

By substituting (12.12a) or (12.12b) in the spin-dependent linear terms in equation
(12.14a), one obtains after some manipulations the ZORA version of the Spin Zeeman (SZ)
operator

ĥSZ =
1
4
σ · {B0(∇ · Kr)− (B0 ·∇)Kr} (12.14e)

and the sum of the Fermi-contact and Spin-Dipole (FC+SD) hyperfine terms

ĥFC + ĥSD =
1

2c2

∑
N

σ ·
{

mN

(
∇ · KrN

r3
N

)
− (mN ·∇)

KrN

r3
N

}
(12.14f)

In the last two equations, curly braces {· · · } indicate that derivatives are only taken in the
operator, not of a function to its right. For completeness, we also give the ZORA expressions
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for the diamagnetic operators for bi-linear perturbations either by a pair of nuclear spins
(diamagnetic orbital term [OD] of nuclear spin-spin coupling) or by an external magnetic
field (diamagnetic magnetizability [DM]):

ĥOD =
1

2c4
K

∑
M �=N

(mN · mM)(rN · rM)− (mN · rM)(mM · rM)

r3
Nr3

M

(12.14g)

ĥDM =
1
2
K
4
(r × B0) · (r × B0) (12.14h)

It is noted that the well-known nonrelativistic versions of the operators are obtained by
formally letting K → 1 in equations (12.14b) to (12.14h). Afterwards, the derivatives of
rN/r3

N can be taken in equation (12.14f), which among other terms gives the Fermi contact
operator in its usual form written in terms of δ(rN) distributions. In the ZORA form, the
‘contact’ term is actually suppressed, which may be considered as a drastic form of picture
change (PC) [21, 23].

EFGs and other electric-field-related properties are dealt with in a somewhat different
manner. The EFG and multipole moments are calculated as expectation values with the rel-
evant operators and the electron charge density. To avoid PC errors, if the operators are the
four-component versions this charge density has to be the four-component (Dirac) density.
The latter differs from the two-component density [24, 25] already in order c−2, which is the
same leading order as the relativistic effects on the properties. In the so-called ZORA-4 (Z4)
framework, the relevant operators are kept in their four-component form, and an approx-
imate four-component electron charge density is reconstructed from the two-component
ZORA density. As was shown by van Lenthe and Baerends [26], the Z4 method eliminates
most of the PC errors in order c−2, with relatively small residual errors. In a Kohn-Sham
(KS) DFT framework with two-component molecular orbitals ϕi with occupations ni, the
ZORA two-component density is

ρZ =
∑

i

niϕ
†
i ϕi (12.15)

An approximate small-component density per orbital can be constructed as

ρS
i (r) = (σ · p̂ϕi)

† K2

4c2
(σ · p̂ϕi) ; Si =

∫
ρS

i dV (12.16)

The Z4 electron density is then obtained by adding the ZORA and the small-component
densities per orbital and renormalizing,

ρZ4(r) =
∑

i

ni
ϕ†

i ϕi + ρS
i (r)

1 + Si
(12.17)

The Z4 method can alternatively be justified from a ‘scaled ZORA’ ansatz, as discussed by
van Lenthe and Baerends [26] and Aquino et al. [13], leading to the same working equations.
The relation with scaled ZORA is seen by the appearance of the term K2/(4c2) both of
these equations: (12.16) and (12.6). A scalar relativistic variant is obtained by replacing
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(σ · p̂)K2/(4c2)(σ · p̂) with p̂K2/(4c2) · p̂ in the equations. The two-component form (with
SO coupling) as well as a scalar relativistic version have been implemented in NWChem
[13] for the purpose of EFG calculations. Applications to uranyl EFGs, for the systems
discussed in Section 12.3, produced comparable results as the X2C approach. PC effects
were not explicitly calculated for uranyl, but for test sets of hydrogen halides (HX, X = F,
Cl, Br, I) the PC corrections from Z4 were comparable to those obtained by lower-order
DKH [27].

A scalar ZORA module for NMR shielding for DFT calculations was developed subse-
quently [15]. The contributing operators are the derivatives of equations (12.14b), (12.14c),
and (12.14d) with respect to components of the nuclear spin and the external field. The
same module framework was also used to set up DFT calculations of EPR g-factors in a
linear response (LR) fashion [15]. LR refers here to the treatment of SO coupling as a per-
turbation, rather than including it variationally in the ground state calculation. The NMR
shielding and g-factor calculations both rest on a ground state calculation with the scalar
part of the ZORA operator in equation (12.4). The LR g-factor calculations then use a ‘spin
derivative’ [20] of the ZORA SO operator in (12.4), the external magnetic field derivative of
the OZ operator (12.14c), and a bi-linear derivative of the SZ operator (12.14e) with respect
to ‘spin’ and the external field. The main difference to the NMR shielding module is that
the g-factor starts with a spin-unrestricted open-shell scalar ZORA calculation and works
with spin density matrices rather than the total density matrices used in the NMR code.
Results from representative calculations are provided below. Related modules were later set
up for LR calculations of hfc tensors and paramagnetic NMR chemical shifts [17]. As in
the LR g-factor calculations, SO coupling was treated as a linear perturbation. The other
operators relevant for hfc are the nuclear spin magnetic moment derivative of the OP term
(12.14c), which in conjunction with the SO operator ‘spin derivative’ gives a spin-orbit
OP-SO LR term in the hfc. Finally, an expectation value of the derivative of the FC+SD
operator (12.14f) with respect to ‘spin’ and the nuclear spin magnetic moment gives the
FC+SD hfc contribution. The latter is usually the most important one (a notable exception
is discussed below), and it is the only term that has a non-vanishing nonrelativistic limit for
spin-multiplets. In this limit, the operator probes the electronic spin density at a nucleus of
interest [28].

Subsequent developments [16, 18] have focused on g-factor and hfc calculations from
two-component DFT with SO coupling included variationally. In this case, it is not neces-
sary to solve LR equations. Instead, the EPR parameters are calculated in an expectation-
value fashion with the magnetic-field derivatives of OZ and SZ [as seen in equations
(12.14b), (12.14e)] for g-factors, and the nuclear magnetic moment derivatives of OP and
FC+SD [see equations (12.14c), (12.14f)] for hfc, respectively. Two forms of SO DFT EPR
calculations were developed. One approach allows for spin-polarization and was dubbed the
‘magnetic anisotropy’ (MA) route, inspired by DFT studies of magnetic anisotropy in van
Wüllen [29] and Schmitt et al. [30]. Related HF and DFT methods have been put forward by
Hrobarik et al. [31], Jayatilaka [32], and Malkin et al. [33, 34]. The other approach follows
works by van Lenthe, Wormer, and van der Avoird (LWA) [35, 36] which does not treat spin
polarization but has some advantages due to its simplicity and computational efficiency and
tends to perform well for g-factors.

The MA approach [16, 18] rests on a set of generalized-collinear SO calculations in which
a spin-quantization direction v is chosen along one of the coordinate axes. In a KS DFT setup
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with two-spinor KS MOs determined for a given v, components of the EPR g-‘tensor’ and
the hfc ‘tensor’ a for nucleus N are then calculated via

guv = 1/(βeS)
∑

i

ni
∂

∂Bu
〈ϕv

i (B)|F̂(B)|ϕv
i (B)〉 (with GIAO basis) (12.18a)

auv = gNβN/S
∑

i

ni
∂

∂mN,u
〈ϕv

i |F̂(mN)|ϕv
i 〉 (12.18b)

Here, S is the pseudo-spin of the system, and F̂ is the KS Fock operator up to first order in
the external field or the nuclear spin magnetic perturbation. LWA is suitable for Kramers
doublets. Assuming no spatial degeneracy, a pair of degenerate Kramers orbitals is initially
calculated from SO DFT by assigning equal occupations of 0.5 to two frontier orbitals. One
then chooses one of them, ϕ, and constructs from its real and imaginary parts of the spin α
and β components the Kramers pair Φ1,Φ2 as

Φ1 =

(
ϕR
α

ϕR
β

)
+ i

(
ϕI
α

ϕI
β

)
(12.19a)

Φ2 =

(
−ϕR

β

ϕR
α

)
+ i

(
ϕI
β

−ϕI
α

)
(12.19b)

The EPR tensors are then calculated via

gux or aux = k
∂

∂K
Re〈Φ1|F̂|Φ2〉

guy or auy = k
∂

∂K
Im〈Φ2|F̂|Φ1〉 (12.20)

guz or auz = k
∂

∂K
〈Φ1|F̂|Φ1〉 = − ∂

∂K
〈Φ2|F̂|Φ2〉

where k = 1/(βeS),K = Bu for g-factors, and k = gNβN/S,K = mN,u for hfc. The Fock
operators are assumed to contain terms up to first order in the derivative parameter, and in the
case of g-factor calculations the orbital pair is B-field dependent because of the GIAO basis
set. A set of equations with similar appearance as (12.20) can be used with wavefunctions
in place of the orbital pair to calculate EPR tensors, as it was done by Bolvin based on
spin-orbit coupled complete active space (CAS) wavefunctions [37].

The NWChem code supports ground state SCF calculations with a spherical Gaussian
nuclear model [38, 39] in order to model finite nuclear volume effects. The hyperfine per-
turbation operators depending on the nuclear spin magnetic moment, in particular, need to
be modified accordingly in relativistic calculations of molecular properties such as hfc and
NMR J-coupling [40, 187]. A nuclear Gaussian exponent ξN is obtained as ξN = 3/(2R2

N)

where RN = (0.863M1/3
N + 0.571) fm is the RMS nuclear radius and MN the mass num-

ber of the nucleus [39]. The effects from the finite nuclear volume can then be considered
in the relevant ZORA hyperfine operators by substituting r−3

N rN with P(3/2, ξNr2
N)r

−3
N rN .

Here, P(q, r) = 1/Γ(q)
∫ r

0 tq−1e−tdt is the lower incomplete gamma function ratio. For
a derivation and further details see Autschbach [40], Aquino et al. [17], and articles cited
therein. The hyperfine coupling capability incorporates the Gaussian nuclear model fully.
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In the examples discussed below, finite nucleus effects are small. However, for hfc of 199Hg,
for instance, such effects may exceed −10% of the result calculated with a point nucleus in
magnitude. Other molecular properties, such as Mössbauer isomer shifts, may exhibit even
stronger finite nucleus effects [41].

In the following paragraphs a selection of f -element studies that were performed with
the methodology described in this section is discussed. We begin with NMR chemical
shifts. The trends and magnitudes of the 19F NMR shielding in the series of complexes
UFnCl6-n (n = 1 − 6) have long been an unsolved problem. Non-hybrid DFT calculations
by Schreckenbach [42] with the Amsterdam Density Functional program gave relatively
poor agreement with experiment, and SO effects were shown to be a minor influence on the
fluorine shifts. Straka and Kaupp later [43] obtained one of the important trends in the series
correctly with the BHLYP 50% global hybrid functional, namely that fluorines trans to other
fluorine atoms have more shielded (less deshielded) nuclei than fluorine atoms that are trans
to a chlorine. The data set is graphically displayed in Figure 12.1. See color plate section.
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Figure 12.1 Performance of different functionals in the calculation of 19F shielding for the
series of diamagnetic UVI complexes UFnCl6-n (n = 1 − 6). BP-ref, B3LYP-ref, and BHLYP-ref
are DFT results employing a scalar relativistic effective core potential for U, from Straka and
Kaupp [43]. The other data are from all-electron scalar ZORA calculations with NWChem by
Aquino et al. [15]. CAM and LC indicates hybrid functionals with range-separated exchange.
The straight black line indicates where calc = expt. Absolute shielding constants converted
from experimental shifts taken from Straka and Kaupp [43]. Figure reprinted with permission
from Aquino et al. [15]. © 2011 American Chemical Society. See color plate section
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The trends among different compounds for one type of fluorine atom (F-trans-F versus
F-trans-Cl) is better reproduced with a non-hybrid functional such as BP, but this class of
functionals incorrectly gives an overall larger shielding for F trans to Cl rather than F trans
to F. We re-investigated this series recently, and also included several hybrid functionals
with range-separated exchange (RSE) in the study (indicated by CAM - Coulomb atten-
uated method, or LR = long-range corrected). As the plots in Figure 12.1 show, none of
the functionals performs well. The RSE functional results are overall not very different
from the BHLYP global hybrid data. Two parametrizations of CAM-B3LYP, A with 65%
and B with 100% exact exchange in the long range part, are seen to transition, roughly,
between B3LYP and BHLYP. A LR variant of PBE produces data in the range between
the two CAM-B3LYP versions. In order to arrive at a similar performance as BHLYP it
is likely that a larger fraction of exact exchange would be needed in the short-range part
of the RSE. The precise reasons for the poor performance of DFT for the set are currently
unknown.

Next, consider EPR magnetic data for actinide systems. Table 12.1 collects calculated
and, where available, experimental g-factors and hfc constants for selected AnX6 complexes
with 5f 1 electron configurations. The free-electron g-value is approximately ge = 2.0023.
Large deviations from ge for a molecule are caused by an orbital angular momentum. In
the case of the AnX6 systems, the ground states are orbitally non-degenerate and the enor-
mous g-shifts (Δg = g − ge) are caused by the strong SO coupling in the An 5f shell. The
DFT calculations capture the trend and reproduce most of the g-shift magnitudes. We have
previously shown that LR calculations for NpF6 are also able to produce g-shifts of similar
magnitude [15]. This may be surprising as the actinide 5f shell SO coupling is evidently
very strong. Figure 12.2 shows the dependence of the g-factors of NpF6 from ZORA/MA
calculations where the SO integrals in the ground state DFT calculation have been scaled
by a factor λ. See the color plate section. At the non-hybrid DFT level, the behavior is
almost linear, indicating why a LR calculation can perform reasonably well for this system.
However, LR calculations for UF–

6 and UCl–6 from Autschbach and Pritchard [20] showed a
gross overestimation of g for these systems due to near-degeneracy of frontier orbitals and
a concomitant breakdown of the LR approach, indicating the limitations of the approach for

Table 12.1 AnX6 EPR data calculated with DFT,
LC-PBE0 functional, ZORA MA approach with finite
nucleus model. Experimental dataa in parentheses. Cal-
culated data from Verma and Autschbach [16] and
Verma and Autschbach [18]. Isotopes: 19F, 35Cl, 235U,
237Np

g ametal aligand

NpF6 −0.3 (−0.6) −2200 (−1994) −51 (−72)
UF–

6 −0.4 (−0.8) 168 −46
UCl–6 −1.0 (−1.1) 192 −7

a Experimental data from Butler and Hutchison [44], Clyde A. Hutchison
and Weinstock [45], Rigny and Plurien [46], Selbin et al. [47]
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Figure 12.2 Computed g-factors of NpF6 using HF theory and a non-hybrid density functional
(PBE). ZORA/MA, with SO integrals scaled by a factor λ. Expt. approx. g = −0.6. Data to
prepare the figure were taken from Verma and Autschbach [16]. See color plate section

studies of f -element compounds. In comparison, the MA data of Table 12.1 and correspond-
ing LWA data from the same study [16] (not shown) agree much better with experiment.
Figure 12.2 indicates a pronounced dependence of the MA results on the presence of absence
of exact exchange, with the non-hybrid functional PBE and Hartree-Fock theory being at
extreme ends of the spectrum, and a different impact of non-linear SO effects depending
on the electronic structure model. For a plot similar to Figure 12.2 but for the Np hfc, reaf-
firming the functional dependence and different impact of higher order SO effects [18].
The RSE functional LR-PBE0 performed reasonably well overall in MA calculations in
the study [16] (Table 12.1), for a set of compounds with elements ranging from light to
very heavy. This functional was also among the better performers in a related study of
hfc [18].

The g-factors of the AnX6 series can be rationalized with a crystal-field (CF) model. The
high symmetry permits a treatment with a single semi-empirical CF parameter Δ and an SO
coupling constant ζ, both of which can be extracted from first-principles calculations [48].
In this case, the model includes both electrostatic (pure CF) effects as well as effects from
covalent bonding (ligand-field effects). Figure 12.3 displays the predicted g-factor from
such a model in dependence of the ratio ξ = Δ/ζ. See the color plate section. The free-ion
5f 1 limit is at ξ = 0 (vanishing CF) while the free-electron value of ge of approximately
+2 is approached for vanishing SO coupling. In the latter case, the unpaired orbital is the
5fxyz shown in the inset of Figure 12.3, and the orbital angular momentum is completely
quenched. The experimental g-factor for NpF6, at approximately -0.6, is the furthest from
the free ion limit among the AnX6 series [48].

Calculated hfc data for NpF6 collected in Table 12.2 show a sizable hfc for the 19F ligands,
which is reasonably well reproduced by the MA calculations. Verma and Autschbach [18]
found a strong dependence on the functional. Moreover, corresponding non spin-polarized
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Figure 12.3 g-factor of NpF6 as a function of SO splitting ζ and CF splitting Δ for a Oh crystal
field. Symbolic computation using software written by one of the authors (JA). For a description
of the CF model see Notter and Bolvin [48]. The inset shows the unpaired Np orbital 5fxyz from
a scalar ZORA DFT calculation. See color plate section

Table 12.2 NpF6: LMO analysisa of a237Np and a19F (MHz).
ZORA LR data from Aquino et al. [17], PBE0 functional, point
nuclei. SOMO = unpaired (‘singly occupied’) 5f Np orbital

LMO type F Np

Metal core −12 −545
F core −5 0.3
σ(Np-F) −326 251
F LPσ 282
Metal SOMO −1 −1937∑

all LP −137
total calc. −62 −2368

a LP = lone pair. For the F hyperfine coupling, the F core and Np–F bond contri-
bution is for the same atom for which the hfc was calculated. Contributions from
the other F cores and Np–F bonds were very small in this case. For the Np hfc,
the contributions from all fluorines and Np–F bonds were added.

LWA calculations significantly underestimated the fluorine hfc. The importance of spin-
polarization indicates that the Np–F interactions are not purely ionic. SO coupling enables
covalent Np – ligand interactions that would not be possible if the unpaired electron were
described by a pure spin-free Np 5fxyz orbital as shown in the inset of Figure 12.3, as was
already pointed out by Case [49].

In order to investigate the nature of the electron-nucleus magnetic interactions for
NpF6 [17] a quantitative breakdown of the calculated isotropic hfc constants was obtained
terms of localized molecular orbitals (LMO) representing bonds, lone-pairs (LP), and non-
bonding core orbitals. The analysis data are collected in Table 12.2, based on ZORA LR
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calculations (facilitating the analysis). The comparison with the MA data shows that the
LR calculations for NpF6 somewhat overestimate the magnitude of both the Np and F hfc,
but in relative terms the LR results are reasonably close to the calculations that include
SO coupling variationally. It has been shown that finite nucleas effects can be neglected
for the Np hfc [17]. This initially unexpected result is a consequence of the nature of
the Np hfc. Only about −200 MHz are attributed to the FC+SD mechanism, which is
sensitive to finite-nucleus effects, while over 90% of the calculated value comes from
the OP-SO spin-orbit cross term in the LR calculation. OP-SO is a pure spin-orbit effect
that, in the case of NpF6, involves orbitals other than s1/2 and p1/2. Consequently, the
orbitals implicated in the Np hfc hardly contribute to the electron spin density at the Np
nucleus, and therefore finite-nucleus effects are very small. The analysis data in Table 12.2
attribute most of the Np hfc directly to the unpaired 5f orbital (the ‘SOMO’), with addi-
tional contributions from metal outer core orbitals. The positive contributions from the
Np–F bonds reduce the magnitude of the Np hfc. The sign is therefore attributed to partial
sharing of the unpaired electron with the ligand atoms via covalent interactions. A break-
down of the F hfc showed that about one-third of the total can be attributed to the OP-SO
spin-orbit term, while two-thirds of the total coupling is a result of spin-density being
transferred from the metal to the ligands via covalent interactions and spin polarization.
The analysis data in Table 12.2 show a clear signature of the spin polarization mech-
anism in the large, opposing, contributions from the Np–F bond and one of the F LP
orbitals.

12.3 X2C Hamiltonian and Molecular Properties from X2C Calculations

There has been much excitement in the relativistic quantum chemistry community regarding
the possibility of constructing a formally exact two-component Hamiltonian for molecular
calculations [50–56], as outlined in several review articles recently [56–59]. To be specific,
an exact Hamiltonian can be constructed relatively straightforwardly at the one-electron
level. Many-electron effects can be built into the approach in a pragmatic way with the
help of model potentials [60–62]. For perspectives on a systematic incorporation of electron
correlation into relativistic quantum chemical methods with many-electron wavefunctions,
see Kutzelnigg [58]; Liu [59]; Saue [56]; Saue and Visscher [63]. For a perspective on DFT,
see van Wüllen [64].

X2C (‘eXact 2-Component’) is an umbrella acronym [56] for a variety of methods that
arrive at an exactly decoupled two-component Hamiltonian, with X2C referring to one-step
approaches [65]. Related methods to arrive at formally exact two-component relativis-
tic operators are, for example, infinite-order methods by Barysz and coworkers (BSS =
Barysz Sadlej Snijders, IOTC = infinite-order two-component) [66–69] and normalized
elimination of the small component (NESC) methods [70–77]. We discuss here an X2C
approach as it has been implemented in a full two-component form with spin-orbit (SO)
coupling and transformation of electric property operators to account for ‘picture-change’
(PC) corrections [14].

The two-component operators are constructed directly in matrix form in a basis set repre-
sentation, assuming that the underlying four-component relativistic equation is expressed in
a ‘restricted kinetic balance’ (RKB) basis set [78, 79]. The RKB small-component basis set



“Dolg-Driver” — 2015/1/17 — 13:29 — page 313 — #15

Computational Tools for Predictive Modeling 313

is comprised of the set of functions {(σ·p̂)χr}with {χr} being the large component basis. In
the following paragraphs the reader can find a simplified description that has been adapted
from Autschbach et al. [14] and Autschbach [80]; the formalism sketched herein was pre-
sented in detail by Liu and Peng [55]. A symbol formatted as M indicates an AO matrix in the
basis of a set {χr} of spin-free basis functions (‘atomic orbitals’ = AOs). M indicates a 2×2
super-matrix in the space of two-component spinors. Whenever possible, four-component
operators are represented in a split notation for the two-spinor components. In places where
this is not convenient we use M to indicate a 4 × 4 super-matrix representation of a four-
component operator or transformation matrix. A one-electron system is considered in the
following unless noted otherwise. Atomic units with � = 1,me = 1, 4πε0 = 1, c = α−1 =
137.035999074(44) are used.

The eigenvalue equation for the four-component Dirac operator represented in a basis set
reads

H

D
C

D = SC

Dε (12.21)

The eigenvectors are collected in a coefficient matrix C

D, containing the large and small
wavefunction components, and ε is a diagonal matrix with the eigenvalues. The overlap
matrix of the combined large and small basis is S. The four-component Dirac operator cou-
ples the ‘large’ (L) and ‘small’ (S) components of the wavefunction (in other works we
have used ‘upper’ and ’lower’ component indices for the wavefunction in place of ‘large’
and ‘small’), and it has the structure

H

D =

[
HD

LL HD
SL

HD
SL HD

SS

]
(12.22)

(using the aforementioned split notation on the right-hand side). The idea underlying the
two-component relativistic paradigm is that it ought to be able to de-couple the wavefunction
components by block-diagonalizing the Hamiltonian,

U

†
H

D
U =

[
H+ 0
0 H−

]
(12.23)

and solving an electrons-only equation with the upper-left diagonal block of the Hamiltonian
in the large-component basis set (the small-component basis is reflected in the operator
matrices). Dropping the superscript ‘+’, the two-component equation reads

HC = SCε (12.24)

The decoupling transformation in equation (12.23) has the block structure

U =

[
ULL ULS

USL USS

]
(12.25)

To construct an electrons-only Hamiltonian only the blocks ULL and USL need to be known.
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Practical approaches to construct the decoupling transformation start from the ‘modified
Dirac equation’ [81–84]

[
V T
T ( 1

4c2 W − T)

] [
CL

CS

]
=

[
S 0
0 1

2c2 T

] [
CL

CS

]
ε, (12.26)

which is equivalent to the original four-component equation in the case of a RKB basis
[55]. Here, CL and CS are separate coefficient matrices for the positive energy solutions for
the large and small component two-spinors represented in their respective basis sets. The
matrices

S =

(
S 0
0 S

)
, T =

(
T 0
0 T

)
, V =

(
V 0
0 V

)
(12.27)

are constructed from the overlap (S), nonrelativistic kinetic energy (T), and one-electron
external potential energy (V) AO matrices in the large-component basis. In addition, one
needs the potential energy matrix in the small-component RKB basis,

W =

(
W0 + iWz Wy + iWx

−Wy + iWx W0 − iWz

)
(12.28)

The matrix elements read

W0
rs = 〈r|p̂xVp̂x + p̂yVp̂y + p̂zVp̂z|s〉, (12.29a)

Wx
rs = 〈r|p̂yVp̂z − p̂zVp̂y|s〉, (12.29b)

Wy
rs = 〈r|p̂zVp̂x − p̂xVp̂z|s〉, (12.29c)

Wz
rs = 〈r|p̂xVp̂y − p̂yVp̂x|s〉. (12.29d)

where p̂u =−i∂/∂ru is an element of the linear momentum operator, and χr, χs are
basis functions used for the large component. First, the one-electron matrix eigenvalue
equation (12.26) is solved. From the positive-energy solutions, one can then construct X,
which relates the coefficients of the small wavefunction components to those of the large
components,

XCL = CS (12.30)

After solving for X, the desired components of U are then obtained as follows [14, 55]:

ULL = S−1/2(S−1/2S̃S−1/2)−1/2S1/2; USL = XULL (12.31)

with

S̃ = S +
1

2c2
X†TX (12.32)
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The X2C two-component Hamiltonian matrix of equation (12.24) is then obtained via

H = U†
LLVULL + U†

LLTUSL + U†
SLTULL + U†

SL

(
1

4c2
W − T

)
USL (12.33)

This is the version of X2C as it has been implemented in NWChem [14]. Due to the
RKB condition, for simplicity the code currently requires a fully uncontracted basis set.
It has been demonstrated that local decoupling schemes are suitable whereby an atomic and
nearest-neighbor partitioning is employed in order to render the construction of the X2C
Hamiltonian matrix less CPU and memory intensive [53, 85, 86].

One of the advantages of X2C and related methods is that the decoupling transforma-
tion matrices are available explicitly. They can therefore be re-used in order to transform
matrix representations of other operators. Among those are the important spin-free oper-
ators for electric-field related properties such as dipole and higher multipole moments,
and electric-field gradients (EFG) at atomic nuclei. PC errors arise when properties such
as EFGs are calculated from a two-component framework but the operators are not, or
not correctly, transformed to the two-component framework [24, 25, 27, 87, 88]. Using P̂
to indicate a spin-free one-electron operator representing, for instance, a component of the
electronic EFG or a dipole operator component, the operator matrix in the large and the
small component (RKB) basis sets read

PLL
rs = 〈r|P̂|s〉 (12.34a)

PSS
rs = 〈r|(σ · p̂)P̂(σ · p̂)|s〉 (12.34b)

One then constructs

PLL =

(
PLL 0
0 PLL

)
, PSS =

(
PSS,0 + iPSS,z PSS,y + iPSS,x

−PSS,y + iPSS,x PSS,0 − iPSS,z

)
(12.35)

The matrix elements PSS,{0,x,y,z}
rs have the same structure as those of W in equation (12.29),

but with the potential replaced by P̂. The PC-transformed operator matrix for use in X2C
calculations is then

P = U†
LLPLLULL +

1
4c2

U†
SLPSSUSL (12.36)

See Cheng and Gauss [89] for further discussion as to whether an electric field depen-
dence of U also needs to be considered in first-order properties; numerical contributions at
a scalar X2C level were essentially negligible in benchmark calculations. Contraction of P
with a density matrix from a matching X2C calculation gives the PC-transformed property,
whereas contraction of PLL with the density matrix gives the property without PC correc-
tion. Examples are provided below. For a general (spin dependent) four-component operator
with non-vanishing SL,LS blocks one needs to calculate in addition 〈χr|P̂(σ · p̂)|χs〉,
〈χr|(σ · p̂)P̂|χs〉, i.e., the operator in the mixed large/small component basis. An example
would be the operators representing a perturbation from an external magnetic field or the
magnetic field from a nuclear spin magnetic moment to calculate NMR parameters. Because
these are second-order properties, the X2C decoupling to first order in the magnetic field is
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definitely required. An implementation in NWChem is under way. For details regarding the
formalism see Sun et al. [90].

Table 12.3 lists orbital energies for the Hg atom that were obtained with different four-
component and X2C implementations, including the one in the NWChem code. Table 12.4
lists the corresponding SO splittings of the orbital energies. In addition to using the (exter-
nal) electron-nucleus potential Vext in the de-coupling transformation, a variant using a
model potential [60–62] Vmp was also implemented. In this case, the transformation to two-
component form takes into account, in an approximate sense, the many-electron nature of a
system. In NWChem, the model potential is the external potential plus the Hartree potential
of the initial nonrelativistic atomic fragment guess used in the computations. This model
potential is the same that is used in conjunction with ZORA and ZORA-based molec-
ular property calculations [6, 13] (Section 12.2.1). Improvements are forthcoming. With
Vext for the X2C transformation, the results in Tables 12.3 and 12.4 obtained with the
X2C implementations in NWChem and in the Dirac code [186] are identical, validating
the code. It is noted that a ZORA calculation from Saue [56] gave a 1s orbital energy of

Table 12.3 Orbital energies for the Hg atom (point nucleus) from four-
component and X2C Hartree-Fock calculations

Hg Diraca Diraca NWChemb Diracb NWChemb

−εi/au DC X2C+AMFI X2C Vmp X2C Vext X2C Vext

1s1/2 3074.239 3069.951 3076.319 3071.660 3071.660
2s1/2 550.250 549.615 550.559 549.866 549.866
2p1/2 526.846 526.451 527.412 528.109 528.109
2p3/2 455.153 454.824 455.185 454.174 454.174
3s1/2 133.110 132.974 133.182 133.030 133.030
3p1/2 122.634 122.557 122.760 122.942 122.942
3p3/2 106.541 106.477 106.551 106.320 106.320
3d3/2 89.432 89.418 89.509 89.737 89.737
3d5/2 86.016 85.989 86.033 85.781 85.781
4s1/2 30.644 30.613 30.661 30.627 30.627
4p1/2 26.119 26.104 26.149 26.203 26.203
4p3/2 22.184 22.172 22.185 22.131 22.131
4d3/2 14.792 14.792 14.808 14.866 14.866
4d5/2 14.048 14.045 14.049 13.997 13.997
4f5/2 4.469 4.472 4.474 4.524 4.524
4f7/2 4.307 4.310 4.305 4.272 4.272
5s1/2 5.099 5.094 5.102 5.097 5.097
5p1/2 3.533 3.532 3.538 3.551 3.551
5p3/2 2.838 2.837 2.837 2.829 2.829
5d3/2 0.646 0.647 0.647 0.656 0.656
5d5/2 0.571 0.572 0.571 0.566 0.566
6s1/2 0.326 0.326 0.326 0.326 0.326

a Results obtained with the Dirac program, taken from Saue [56]. Uncontracted 24s19p12d9f large-
component Gaussian-type basis. DC = Dirac-Coulomb. AMFI = two-electron SO atomic mean-field
integrals. b NWChem and Dirac results with the same basis set as used to generate the data of
Saue [56]. Vmp = model potential (see text). Vext = ‘external’ electron-nucleus potential only.
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Table 12.4 Orbital energy SO splittings (ΔSO) for the Hg atom (point
nucleus) from four-component and X2C Hartree-Fock calculations

Hg Diraca Diraca NWChemb Diracb NWChemb

ΔSO / au DC X2C+AMFI X2C Vmp X2C Vext X2C Vext

2p 71.693 71.627 72.227 73.935 73.935
3p 16.093 16.080 16.209 16.622 16.622
3d 3.416 3.429 3.476 3.956 3.956
4p 3.935 3.932 3.964 4.072 4.072
4d 0.744 0.747 0.759 0.869 0.869
4f 0.162 0.162 0.169 0.252 0.252
5p 0.695 0.695 0.701 0.722 0.722
5d 0.075 0.075 0.076 0.090 0.090

a Results obtained with the Dirac program, taken from Saue [56]. Uncontracted 24s19p12d9f large-
component Gaussian-type basis. DC = Dirac-Coulomb. AMFI = two-electron SO atomic mean-field
integrals. b NWChem and Dirac results with the same basis set as used to generate the data of
Saue [56]. Vmp = model potential (see text). Vext = ‘external’ electron-nucleus potential only.

about −3380 au, more than 300 au off, but a ‘scaled ZORA’ [91] calculation performed
better than second-order DKH.

It is well known that two-electron contributions in the potential significantly improve SO
splittings. The results of including the model potential in the X2C calculations (Table 12.4)
reduces the SO splittings and brings the results close to four-component theory and an X2C
calculation with AMFI two-electron SO integrals [92]. Percentage-wise, the improvement
is particularly pronounced for the 4f and 5d shells. It is expected that by using a library of
four-component atomic potentials, as proposed by van Wüllen and Michauk [62], the results
will be improved further. The AMFI route has the advantage that spin-other-orbit integrals
are included explicitly.

As an example for molecular property calculations with the X2C code, and an application
to f -element chemistry, consider the EFG at the uranium nucleus in UO2+

2 and related com-
plexes such as uranyl-carbonate and -nitrate complexes. It has previously been shown that
complexation of uranyl by carbonate or nitrate ligands in the equatorial changes the sign of
the EFG at the uranium nucleus [13, 93, 94]. Experimental estimates for uranyl coordinated
by three nitrate ligands, derived from Mössbauer data, place the uranium EFG in equatori-
ally coordinated UO2+

2 complexes at about +8 au [95]. Table 12.5 collects selected results
from Autschbach et al. [14], showing that there is indeed a sign change of the EFG. An EFG
of +8.3 au after PC corrections was obtained for the carbonate complex with a Coulomb-
attenuated hybrid functional, which agrees slightly better with the experimental estimate
than B3LYP.

Graphical representations of the EFG tensors are provided in Figure 12.4 (See color plate
section.); the sign of the EFG represents the sign of its largest-magnitude component, V33.
Both for free UO2+

2 and the carbonate system, the corresponding principal axis is in the
direction of the U–Oyl axis, but the EFGs have opposite signs. The positive sign is a signature
of a ‘6p hole’ [96, 97], i.e., a lack of electron density in the U 6pσ orbital in UO2+

2 due to its
involvement in bonding with the axial oxygens. However, the effect is overall more subtle
as the 6p hole signature is not evident in free uranyl, only in the equatorially coordinated
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Table 12.5 Electric field gradienta (V33, in au) at uranium, in
uranyl and a uranyl-tris-hydrogen-carbonate complex used as a
model for the U environment in (NH4)4UO2(CO3)3

UO2+
2 before pcc after pcc

SO Vmp −5.98 −9.27
SO Vnuc −5.73 −9.12
SC Vnuc −4.65 −8.33

[UO2(HCO3)3]– before pcc after pcc

SO Vmp 12.8 6.54
SO Vnuc 13.2 6.80
SC Vnuc 14.1 6.71

a Data taken from Autschbach et al. [14]. B3LYP functional. pcc = picture-
change corrections. SO = spin-orbit X2C calculation. SC = scalar (spin-free) X2C
calculation.

UO2
2+ [UO2 (HCO3)3]–

Figure 12.4 EFG tensors for uranyl and a uranyl-carbonate complex. Polar plots of the field
gradient in the direction of the field, scaled to 40 au / pm. Blue (dark shading) = positive,
orange (light shading) = negative field gradient (SO X2C, Vmp, B3LYP). See color plate section
for blue and orange distinctions. Reprinted with permission from Autschbach et al. [14]. © 2012
American Chemical Society. See color plate section

forms. A detailed analysis of the effects from the equatorial carbonate ligands on the U
EFG has been provided in [13] using a two-component ZORA implementation for EFGs
that pre-dated the X2C development (see Section 12.2.2).

The data in Table 12.5 show that the PC corrections are of similar magnitude as the
final EFG values. Clearly, the use of untransformed operators would be woefully inad-
equate. With PC effects being relativistic in origin, the differences are less drastic for
EFGs of lighter atoms, and smaller overall, compared to EFGs, for valence-shell properties
such as dipole and higher multipole moments. However, in the X2C framework where the
transformation matrices to two-component form are already available there is little added
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computational overhead for obtaining PC-corrected electric properties such as EFGs and
multipole moments, apart from the need for the AO matrix elements in equation (12.34b),
and therefore the correct representation should be used by default to avoid unphysical
results. It is noted that numerical integration can be a convenient strategy to obtain such
matrix elements in the absence of an analytic integral code, in particular when parallel
processing can be used to distribute the numerical grid.

12.4 Role of Dynamics on Thermodynamic Properties

In this section we focus on the thermodynamics of two fundamental reaction mechanisms
that determine the ability of metal cations to form complex species: cation hydrolysis and
solvent exchange. The thermodynamic modeling strategy is first discussed, followed by the
hydrolysis of the U(IV), U(V), and U(VI) aqua ions. Finally, the solvent exchange ther-
modynamics of Cm(III) in dilute, perchlorate (ClO–

4), chloride (Cl–), and bromide (Br–)
solution will be discussed in which the effect counter anions on changes in the Cm(III)
primary hydration number.

12.4.1 Sampling Free Energy Space with Metadynamics

The thermodynamic modeling strategy used to probe the free energies and activation barriers
associated with solvent reaction and mechanisms was metadynamics with ab initio molec-
ular dynamics (AIMD). The AIMD simulations highlighted here were performed using
pseudopotential plane-wave DFT [98] with NVT [99, 100] Car-Parrinello simulations [101].
Details about these type of free energy simulations can be found in the recent work of Atta-
Fynn et al. [102–104]. Metadynamics is a non-equilibrium molecular dynamics method that
accelerates the sampling of the multidimensional free energy surfaces of chemical reactions
by adding an external time-dependent bias potential, which is a function of a few collective
variables to the Hamiltonian of the system [105–107]. The collective variable S is defined
as a continuous and differentiable function of the system coordinates, RN (e.g., bond dis-
tance, bond angle, etc.) that is capable of describing the chemical reaction or mechanism
of interest. Essentially, metadynamics fills the minima of the free energy surface (FES) by
periodically depositing repulsive Gaussian kernels centered on the current location of S(t)
so that the system is forced to explore other regions of the FES. In its most general form,
the bias potential, V , at an arbitrary point, s, along the trajectory at time t is given by

V(s, t) =
∑

t′=0,τ,2τ,...
t′<t

H exp

(
−V (S(t′))

γkBT

)
exp

(
− (s − S(t′))2

2ω2

)
(12.37)

where τ is the time interval between the deposition of successive Gaussians, H and ω are
respectively the height and width, T is the simulation temperature, kB is the Boltzmann
constant, and γ is a positive dimensionless tempering (or tuning) parameter. γ is interpreted
as follows: γ = ∞ corresponds to standard metadynamics, while a positive finite value of γ
corresponds to well-tempered metadynamics [105]. After a sufficiently large t, V(s, t) will
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nearly flatten the FES, F(s), along the collective variable space, and an unbiased estimator
of F(s) is given by

F(s) ≈ − lim
t→∞

(
1 +

1
γ

)
V((s), t) + constant (12.38)

The coordination number collective variable is a good choice for modeling solvent thermo-
dynamics of ions in solution. The coordination number of species A with respect to species
B is defined using a Fermi-Dirac function as

nA−B =
∑

B

1
1 + exp (κ (rAB − rcut))

(12.39)

where rAB is the distance between A and B, rcut is the cut-off distance, and κ > 0 is the
smearing parameter (with dimensions of inverse length). The term under the summation
decays rapidly to zero when the bond distance rAB is much larger than the cut-off radius
rcut, and approaches unity when rAB is much smaller than rcut.

12.4.2 Hydrolysis constants for U(IV), U(V), and U(VI)

Metadynamics was used to probe thermodynamics of hydrolysis by calculating the first
acidity constant, pKa, for all three oxidation states of aqueous uranium (U4+(aq), UO+

2(aq),
and UO2+

2 (aq)). The collective variable employed to describe the deprotonation reactions
is the coordination number of an arbitrary first-shell water oxygen atom with respect to all
protons, nO−H . The coordination number parameters were chosen to be κ =10Å−1, and rcut

= 1.38Å. Starting with well-equilibrated NVT AIMD simulations, standard metadynamics
simulations were carried out at 300 K with H = 0.063 kcal/mol and ω= 0.1√

2
. The time between

the addition of Gaussians was τ = 100δt for U4+(aq) and τ = 20δt for UO+
2(aq) and UO2+

2 (aq),
where δt is the simulation time step. Once the free energy difference, ΔF, for the reaction
was known, the first acid dissociation constant, pKa, was computed as

pKa =
ΔF

kBT ln 10
(12.40)

For a metal cation in aqueous solution, hydrolysis occurs when the first-shell water
molecule is sufficiently polarized to promote a proton transfer to a second-shell water
molecule. The deprotonated species often forms a mixture of new aqua species and pre-
cipitates, depending on the pH and other thermodynamic conditions. Therefore, knowledge
of the hydrolysis of actinide ions in aqueous solution enhances our ability to accurately pre-
dict the chemistry and thermodynamics of nuclear waste remediation. Hydrolysis occurs
easily for highly charged actinide ions in solution, since the highly charged ion weakens the
O-H bond in the first-shell water molecule, leading to the release of H+(aq).
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The first hydrolysis reactions of U(IV), U(V), and U(VI), which include the first-shell
water molecules, are written as

U(H2O)4+
8 ⇐⇒ U(H2O)3+

7 + H3O+ (12.41)

UO2(H2O)+5 ⇐⇒ UO2(H2O)4 + H3O+ (12.42)

UO2(H2O)2+
5 ⇐⇒ UO2(H2O)+4 + H3O+ (12.43)

U4+(aq), because of its high charge, is expected to be a much stronger acid in aqueous
solution than UO+

2(aq) and UO2+
2 (aq). The measured acid dissociation constants, pKa, of

U4+(aq) is 0.54 ± 0.06 [108], while two different measurements of UO2+
2 (aq) are 5.24 ±

0.25 [108] and 5.58 ± 0.24 [109].
In Figure 12.5, the metadynamics free energy profiles are shown, where the reactant-

free energy is taken as the zero reference point. From the figure, the free-energy difference
between the reactant state and the product state can be estimated by taking the difference
in the minima of curve at nO−H ≈ 1 and nO−H ≈ 2. The computed free energy differ-
ence for U4+(aq) (black curve in Figure 12.5) is 2.52 kcal/mol. However, this free energy
needs to be adjusted, since any of the 8 independent first-shell water molecules could have
been used for the deprotonation reaction and an entropic energy correction −TS, where the
entropy (given by S = kB log 8) must be added to the computed free-energy difference.
At T = 300 K, this correction amounts to -1.24 kcal/mol, yielding the final estimate of the
free-energy difference of 1.28 kcal/mol, and subsequently a pKa value of 0.93. The simu-
lated pKa value is slightly greater than the experimental value by 0.4 pH units (experimental
pKa = 0.54±0.06 [108]). The free-energy profiles for UO+

2(aq) and UO2+
2 (aq) in Figure 12.5

(red and blue curves) yielded values of 12.64 kcal/mol and 7.75 kcal/mol, respectively.
Accounting for the entropic correction of kBT log 5 for each system results in the cor-
rected first-hydrolysis free energies of 11.68 kcal/mol (pKa = 8.51) and 6.79 kcal/mol
(pKa = 4.95). The simulated pKa value for UO2+

2 (aq) deviates from one experimental value
of 5.24 ± 0.26 [108] by 0.3 pH units and another value of 5.58 ± 0.24 by 0.6 pH units.
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Figure 12.5 Free energy profiles of the deprotonation of U4+ (aq), UO+
2 (aq), and UO2+

2 (aq)
as a function of nO−H



“Dolg-Driver” — 2015/1/17 — 13:29 — page 322 — #24

322 Computational Methods in Lanthanide and Actinide Chemistry

However, we note that if we consider the fact that the experimental value corresponds to
the infinite dilution limit, then the simulated values for U4+(aq) and UO2+

2 (aq) agree well
with the experimental values. The pK − a values of UO2+

2 (aq) from previous theoretical
studies follow: 6.98 (AIMD simulation) [110], 9.61 [111], and -0.21 [112] (both were gas-
phase simulations with continuum treatment of solvent effects). Based on the generally good
agreement with experiment for the metadynamics pKa values for U4+(aq) and UO2+

2 (aq), we
conservatively estimate the error in the free energy of UO+

2(aq) to be 1 kcal/mol; this trans-
lates to a pKa error of 0.7 pH units. The pKa value of 8.5 suggests that UO+

2(aq) is a weak
acid in solution, and in effect says that UO+

2(aq) may be an important species up to pH 8.5
(excluding the presence of strongly interacting ligands).

12.4.3 Effects of Counter Ions on the Coordination of Cm(III) in Aqueous Solution

The majority of hydrated actinide cation simulations that have been studied to date have been
carried out as a single ion immersed in bulk water with electrostatic neutrality achieved by
a uniformly distributed background charge of opposite sign; this is the so-called infinite
dilution approximation. Alternatively, the charge on the metal center can be explicitly neu-
tralized with counter ions. Because counter ions have spatial gradients, their presence in
solution can influence the dynamical processes of nearby solvent molecules [113]. One
could infer that several interesting phenomena could occur in simulations with counter
ions versus simulations based on the infinite dilution model. Here we focus on the curium
[Cm3+(aq)] cation as an example to probe counter ion effects on metal ion hydration because
a considerable amount of work has been devoted to understanding the hydration structure of
Cm3+(aq). However, despite these efforts its hydration structure and speciation is not fully
understood.

Various experimental probes on the hydration-shell structure of Cm3+(aq) reported in
literature have yielded a wide range of coordination numbers. To mention a few, EXAFS
experiments measured primary hydration numbers of 9 or 7 (based on the truncation of the
EXAFS fitting data) in 1 M HClO4 acid [114] and 10 in 0.25 M HCl acid [115]. High energy
X-ray scattering (HEXS) experiments yielded a hydration number of 8.8 [114]. Time-
resolved laser fluorescence spectroscopy (TRLFS) found coordination numbers between
8 and 9 in glycolic acid [116] and 8.9 in 0.1 M perchloric acid [117].

Theoretical studies also face a somewhat similar conundrum. Classical, ab initio, and
QM/MM simulations with no counter ions have predicted coordination numbers of 8 or
9 [118–120]. However the EXAFS of the eightfold and ninefold coordinated structures were
nearly indistinguishable [118]. Although this is an inherent limitation of EXAFS in the
structural characterization of hydrated ions, it is, nevertheless, of fundamental interest to
know the relative stability of the different coordination states. In dynamical simulations of
hydrated ions, it is possible (and in fact, this is almost always the case because of exchange
barriers) for the system to get locked into a single primary hydration state in dynamical
simulations, and in cases where the sampling time is not long enough, which is particularly a
problem for ab initio molecular dynamics, the nearby low energy coordination states cannot
be accessed.

Given that these are highly concentrated solutions containing a large number of counte-
rions, the coordination number may also be sensitive to the type of counterions. To better
understand this effect, metadynamics free energy simulation was used to study the effect that
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highly concentrated counter ions have on the primary coordination number of Cm3+(aq).
These simulations were used to compute the free energy of changes in primary hydration of
Cm3+(aq) in the presence and absence of these counter ions. The counter ions were chosen
based on their relative sizes and stability (average ligand lifetime) of their respective pri-
mary hydration shells. The sizes of the counter ions in descending order are ClO–

4 >Br–>Cl–,
while their hydration stabilities in descending order are Cl–>Br–>ClO–

4 [114]. Each simu-
lated system comprised a Cm3+(aq) in a periodic cubic cell containing 64 water molecules
(representing a density of water ≈1 g/cm3). The charge on the metal center was neutralized
by 3 counter anions; this corresponds to a counter anion concentration of 2.6 M. A uni-
form background charge was used for the counter anion free simulations. It is important to
note that the conventional approach to modeling coordination number changes involves a
single solvent molecule associated to or dissociated from the first coordination shell. Meta-
dynamics has a significant advantage over the conventional approach, because the different
coordination states are sampled multiple times in a single simulation. The metadynamics
simulation is carried out for up to a tenth of a nanosecond to ensure multiple sampling of
different coordination states and transition regions, and also to achieve convergence. Meta-
dynamics convergence is particularly important if the reaction energy scales is less than
10 kcal/mol.

The free energy profiles of each system is given in Figure 12.6. See color plate section.
Clearly energy profile for the counter anion-free solution (solid black curve) in the 9-
and 10-fold coordination regions indicates that the tenfold state was never reached dur-
ing the metadynamics simulations and that the barrier between 9- and 10-fold coordination
is at least 17 kcal/mol. On the other hand, the tenfold state was accessed, albeit with a
short coordination shell lifetime, in the counter anion solutions. Thus the analyses will be
focused on the sevenfold, eightfold, and ninefold coordination states. In Table 12.6, the
equilibrium first-shell coordination number neq, activation barriers and free energies dif-
ferences between the equilibrium coordination state and neighboring coordination states
are reported. Also reported in Table 12.6 are the relative first-shell solvent concentrations
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Figure 12.6 Free energy profiles of Cm coordination with respect to O in Cm3+ (aq),
Cm3++3ClO−

4 (aq), Cm3++3Cl− (aq), and Cm3++3Br− (aq). Reprinted with permission from
Atta-Fynn et al. [118]. © 2013 American Chemical Society. See color plate section
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Table 12.6 Equilibrium coordination numbers (neq), free energy differences (ΔA), reaction
barrier (A†) for each system, and estimates of the solvent population from the free energies

ΔA (kcal/mol) A† (kcal/mol) Coordination state (%)

neq 8 → 9 8 → 7 8 → 9 8 → 7 [7] [8] [9]
Cm3+ (aq) 8 2.8 2.9 5.1 7.0 0.76 98.34 0.90
Cm3++3ClO4− (aq) 9 −0.8 4.3 4.6 5.7 0.01 19.67 80.31
Cm3++3Cl− (aq) 8 4.4 5.4 6.8 7.6 0.01 99.93 0.06
Cm3++3Br− (aq) 8 3.5 3.0 6.0 5.5 0.68 99.03 0.29

of the sevenfold, eightfold, and ninefold coordination states. The concentrations were esti-
mated using the chemical equilibrium equations exp(−ΔA7→8

kBT ) = [8]
[7] , exp(−ΔA8→9

kBT ) = [9]
[8]

and [7] + [8] + [9] = 1. The predicted [9] : [8] population ratio of 80% : 20% seen in the
ClO–

4 simulation, resulting in a weighted coordination number of 8.8, is in excellent agree-
ment with high energy x-ray scattering (HEXS) data for 0.523 M Cm3+ in 1.0 M perchloric
acid [114]. Our results are also in reasonable agreement with the 90% : 10% measured
in time-resolved laser fluorescence spectroscopy (TRLFS) experiment at much lower con-
centrations of 0.0005 M Cm3+(aq) in 0.1 M perchloric acid,18 showing the subtle effects of
perchlorate in the 0.1–1.0 M concentration range. In counter ion-free, Cl–, and Br–solutions,
the analyses show that the eightfold population is dominant by least 98%.

Solvent exchange around a metal ion, that is, changes in the ion first-shell coordination
number, involves the breakage and subsequent reformation of the hydrogen bonds (HB)
by the solvent molecules visiting or departing from the shell. The rate at which the HBs
are broken and formed is directly related to the characteristic lifetimes of the bonds. The
HB lifetimes can be probed from the hydrogen dynamics via HB survival time correla-
tion function S(t) [103, 121–128]. For each fully equilibrated system, we computed S(t)
for the HBs formed between (i) the first-shell solvent molecules (those water molecules
coordinated with Cm) and all other molecules, (ii) the counter anion molecules and all sol-
vent molecules, and (iii) all molecules (solvent-solvent and anion-solvent) in the system.
Figure 12.7 depicts the plots for the HBs formed between the first-shell water molecules
to the other molecules in the system and the counter anion molecules to all the solvent
molecules. See color plate section. In the top figure, Cm3+ + 3ClO−

4 shows the fastest decay
followed by Cm3+, with the Cm3+ + 3Br− and Cm3+ + 3Cl− decays being the slowest and
nearly degenerate. Thus, relative to the Cm3+ (aq) solution with no counter anions, the
Cl– and Br– counter anions enhances the average HB lifetimes, while ClO–

4 reduces the HB
lifetimes. This trend correlates well with the trends in the free energy differences and reac-
tion barriers. In the bottom figure, the associated HB lifetimes show that the lifetime around
Cl–(1.5 ps) is twice as large as the lifetime around Br– (0.76 ps) and an order of magnitude
larger than that of ClO–

4 (0.16 ps). The longer HB lifetime around Cl− and Br− is not surpris-
ing, since experimental measurements indicate that the mean water residence times around
Cl–and Br–are much longer compared with neat liquid water, and that the hydration shells
of these ions are sufficiently rigid [129]. ClO–

4 on the other hand, has been characterized in
EXAFS experiments as a large, sluggish, weakly coordinating ion in solution [114]. This,
again, confirms the trends in the free energy differences and the reaction barriers suggesting



“Dolg-Driver” — 2015/1/17 — 13:29 — page 325 — #27

Computational Tools for Predictive Modeling 325

0 0.2 0.4 0.6 0.8 1
t (ps)

0

Cm3+

Cm(CIO4)3
CmCl3
CmBr3

Anions--all solvent molecules

-1

–0.5

00

0 0.2 0.4 0.6 0.8 1

–5

–4

–3

–2

–1

0

In
(S

(t
))

In
(S

(t
))

t (ps)

First-shell solvents--all other molecules

Figure 12.7 HB survival autocorrelation function of Cm3+ (aq), Cm3++3ClO−
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with permission from Atta-Fynn et al. [118]. © 2013 American Chemical Society. See color plate
section

that large reaction barriers imply that solvent exchange rate is slower and hence the mean
HB lifetime is relatively longer.

Overall, ab initio molecular dynamics studies of aqueous Cm(III) in the absence and
presence of counter anions has revealed that the Cl– and Br– solutions makes the first coor-
dination shell more stable relative to the counter ion-free solution, and consequently, the
eightfold coordination state is the preferred primary hydration number with a 98% prob-
ability. The ClO–

4 counter ion, on the other hand, makes the first coordination shell less
stable relative to the counter ion-free solution, with the ninefold and eightfold states exist-
ing in an 80% to 20% ratio. The stability of the coordination shells were rationalized by the
dynamics of the mean hydrogen bond lifetimes. We found that the more stable coordina-
tion shells (i.e., Cl– and Br– solutions) have relatively long mean hydrogen bond lifetimes,
while less stable coordination shells imply otherwise. In essence, our work indicates that
the stability of the coordination shell of Cm(III) in different solution environments can be
characterized through free energy landscape of the ion coordination. This approach is useful
for differentiating between the effects of different ligands on hydration properties of other
metal ions.

12.5 Modeling of XAS (EXAFS, XANES) Properties

Many import chemical and separation processes in actinide systems are dictated by the
solute-solvent structure and dynamics in water and other fluids that are under extremely non-
ideal conditions such as high concentrations, and high temperatures and pressures. However,
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many of these processes are difficult to interpret because the structure and dynamics of
solute species in solution are difficult to observe.

One of the few experimental techniques that can determine the local water structure sur-
rounding actinide ions in aqueous solution is Extended X-Ray Absorption Fine Structure
spectra or EXAFS spectra. EXAFS is the part of the X-ray Absorption Spectrum (XAS)
that is approximately in the 50–1000 eV region above the absorption edge of an atom. Since
EXAFS involves backscattering from nearby atoms, the physics is essentially captured by
the phase shifts and scattering amplitudes from which the spectrum can be calculated using a
damped spherical photoelectron wavefunction approximation. Nowadays these are routinely
computed using Green’s function-based approaches [130, 131]. It is a particularly useful
technique because it is able to provide information about an atom’s local environment. It is
most recognized as a technique for analyzing the structure of amorphous crystalline solids;
however, in recent years it has been extended to the analysis of aqueous species and other
non-crystalline materials. A key advance in these analyses has been the use of molecular
dynamics (MD-EXAFS) [132] and first-principles-based molecular dynamics simulations
(AIMD-EXAFS) in the interpretation of EXAFS [134]. Even though MD-EXAFS has been
around for over a decade, it has never been exceptionally accurate. The origin of the errors
has always been suspected to be from the imprecision of classical molecular dynamics
potentials used. This proposition has recently been shown to be most likely correct. Recent
studies by Fulton et al. have shown that highly accurate EXAFS experiments on a number
of strongly interacting aqueous divalent and trivalent metal ions can be reliably interpreted
when highly accurate first principles molecular simulations are used in the MD-EXAFS
analysis, aka AIMD-EXAFS [133, 134].

Another closely related technique that can be used for obtaining local structure in complex
condensed phases is X-ray absorption near edge spectroscopy or XANES. XANES focuses
on the XAS absorptions ≈50 eV from the rising edge and involves excitations from the
relevant core state to increasingly high-energy virtual states. These excitations give insight
into the chemical state of the atom (for example, coordination, bonding, oxidation state).
The analysis of XANES is considerably more difficult than EXAFS, because it requires a
full electronic structure treatment of the absorbing center and neighboring atoms constitut-
ing the chemical environment. Over the years various approaches have been pioneered like
the static exchange approximation (STEX) and static approaches [135–137]. All of these
approaches incorporate the relaxation of the core hole and valence orbitals indirectly by
manual preparation of the core hole state and/or use of modified core potentials that mimic
the core relaxation when a core electron is excited. The absorption spectra are computed
by calculating the transition dipole elements of the initial and final states of interest. In a
nutshell, these methods are very sensitive to the choice of initial and final states. Recently,
linear-response time-dependent density functional theory (LR-TDDFT) has been extended
to treat core level excitations [138–142]. The advantage of this approach is that no man-
ual preparation of the core hole state is needed and peak separations and trends are properly
captured. However, the quality of the results is dependent on the exchange-correlation func-
tional choice [143]. This approach has been applied successfully to several studies over the
last few years. Other approaches have also been reported [144–146]. Since this is not a com-
plete overview of all theoretical approaches that have been used to simulate XANES, we
refer the reader to comprehensive reviews [130, 131, 147–149] on the subject.
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We also highlight recent use of MD-XAFS with ab initio molecular dynamics (AIMD)
simulations of U(IV) and U(V) actinide ions. This type of analysis has also been done by
us for Cm(III) [118] and U(VI) [150]. The goals of the simulations were to shed light on
the solvent-shell geometries and electronic structure of these ions and test the reliability of
the aforementioned simulation schemes by comparing our data to available experimental
data.

Finally we conclude this section by discussing a recent application of our LR-TDDFT
approach for core excitations, which has been developed in the NWChem program [1, 140]
to study the Cl K-edge spectra of the closed-shell [UOCl5]– complex and the open-shell
tetravalent actinide hexahalides series [UCl6]2–, [NpCl6]2–, and [PuCl6]2– containing two,
three, and four 5f-electrons, respectively. Cl K-edge spectroscopy has been used to study the
electronic structure of actinide complexes, and to probe the role of 5f and 6d orbitals in the
formation of covalent bonds [151, 152]. Across the actinides series the 5f-orbitals become
more contracted, and their role in bonding changes, which can be captured by the Cl K-edge
spectra. We also probe the role of the environment of the host crystal and dynamical effects
due to atomic motion on the shape of the spectra.

12.5.1 EXAFS of U(IV) and U(V) Species

It is well established experimentally that the coordination shell structure of U(VI), which
exists in solution as the uranium di-cation, UO2+

2 (aq), is characterized by two oxygens cova-
lently bound axially to U and five solvent molecules in an equatorial plane [158, 163–165].
We must mention however that recent high energy x-ray scattering studies have revealed
the possibility of a fourfold coordinated UO2+

2 (aq) [165]. U(V), which exists in solution as
the UO+

2(aq), is generally thought to be short-lived in aqueous solution and rapidly dis-
proportionates into UO2+

2 (aq) and U4+(aq). However, U(V) can be stabilized by various
organic ligands or in concentrated aqueous carbonate solutions and nonaqueous solu-
tions [166–169]. Unfortunately, experiments have not searched for, nor identified, U(V)
under environmentally relevant conditions, since the disproportionation reaction is assumed
to render U(V) insignificant.

Table 12.7 lists the structural properties of the hydration shell of UO+
2(aq) and UO2+

2 (aq).
For the purposes of comparison, past experimental and theoretical data for the first shell of
AnO+

2 (An = U, Np, Pu) are also reported in Table 12.7. The hydration shell structure of
UO2+

2 (aq) has been described in detail elsewhere [150] so we will focus on the shell struc-
ture of UO+

2(aq). As shown in Figure 12.8, the AIMD simulations indicate that the first shell
of UO+

2(aq) has five water molecules in the equatorial plane, in contrast to the QM/MM pre-
diction of 4.51. The predicted U(V)=Oax distance is very close to previous measurements of
other actinyl(V) ions (Np(V) and Pu(V)) and are greater than the previous predicted value by
0.07Å. Also, our average first-shell U-Oeq bond distance is slightly longer than the previous
simulated value, which is expected since the first shell of the AIMD simulations contains
more water ligands. Previous gas-phase structures exhibit slightly longer UOeq bonds as
expected. Relative to UO2+

2 (aq), UO+
2(aq) shows a lengthening of 0.08Å and 0.1Å for the

U=Oax and UOeq bonds, respectively, because of reduced electrostatic attraction. Other first-
shell properties of UO+

2(aq) and UO2+
2 (aq), such as the intramolecular water geometry and

tilt angles, compare closely.
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Table 12.7 Average first hydration shell parameters of AnO+
2 (An = U, Np, Pu)

System N(H2O) R(An=Oax)b R(An-Oeq)c ψd
tilt

UO+
2 (aq) 5 1.85 2.54 34.9

UO+
2 (aq) (QM/MM)e 4 1.78 2.51

UO2(H2O)+5 (gas-phase)f 5 1.81–1.83 2.56–2.62
UO2(H2O)+5 (H2O) (gas-phase)g 5 1.78 2.62
NpO+

2 (aq) (EXAFS)h 5 1.78 2.62
PuO+

2 (aq) (XANES)i 4 1.84 2.45
UO2+

2 (aq) 5 1.77 2.44 32.9

U4+ (aq) 8.7 2.45 24.6
U4+ (aq) (QM/MM)j 9 2.45
U4+ (aq) (EXAFS) 9–11k, 9–10l 2.42, 2.40

aNumber of water molecules in the first coordination shell. bAn=Oax bond distance in Å, where Oax denotes
an axial O atom bonded to An. cAn-O bond distance in Å, O belongs to a first-shell water. dAverage water
tilt angle. e [153], f [154–156]. g [157]. h [158]. i [159]. j [160]. k [161]. l [162].
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Figure 12.8 Simulated EXAFS spectra of UO+
2 (aq). The upper panel shows a k3χ(k) EXAFS

spectrum; the lower panel shows the magnitude of the Fourier transform, |χ̄(R)|, of k3χ(k).
Reprinted with permission from Atta-Fynn et al. [104]. © 2012 American Chemical Society
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To the best of our knowledge, there is no experimental EXAFS data for UO+
2(aq); there-

fore, the simulated EXAFS is a prediction that could be of some use in probing the hydration
shell structure in experimental measurements. It has been shown, using the MD-EXAFS
method, that the spectra of UO2+

2 from AIMD agrees well with experimental data. In
Figure 12.8, the k3χ(k) of UO+

2 (top panel), and the magnitude of Fourier transform of
k3χ(k), |χ̄(R)| (bottom panel) are depicted (phase-shift corrections were not included in
the radial distances). The axial and equatorial oxygen locations in the spectrum are shown.
There is a strong similarity between the simulated UO+

2 EXAFS and the reported theoretical
and experimental spectra for /usix. This is obviously due to the similarities in coordination
shell geometries and radial distance distributions.

Looking at the U4+(aq) data in Table 12.7, it is evident that the average primary hydra-
tion number of 8.7 (mixture of eightfold and ninefold coordinated geometries) agrees with
previous simulations and the lower limit of EXAFS measurements. We note that the under-
estimation of the first-shell coordination number of actinide ions appears to be a generic
problem with DFT-GGA. The analyses of the first-shell geometry indicated that the dom-
inant eightfold geometry, U4+(aq), was square antiprismatic (SAP), while the dominant
eightfold geometry, [U(H2O)9]4+, was tricapped trigonal prism (TTP).

In Figure 12.9, plots of the simulated k3χ(k) EXAFS (top panel) and |χ̄(R)| (bottom
panel) are depicted and compared with recent experimental data by Ikeda-Ohno et al. [162]
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Figure 12.9 Comparison of the simulated and experimental EXAFS spectra of U+
4 (aq). The

upper panel shows the k3χ(k) EXAFS spectra; the lower panel shows the magnitude of the
Fourier transform, |χ̄(R)|, of k3χ(k). Reprinted with permission from Atta-Fynn et al. [104]. ©
2012 American Chemical Society
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for 0.05 M U4+ in a 1 M HClO4 solution. As can be seen in the top panel, the simulated spec-
trum almost matches the frequency and amplitude oscillations of the experimental curve.
The agreement can also be seen in the Fourier-transformed data in the bottom panel. The
central peak mismatch in the bottom panel is due to the fact that the simulated average UO
distance is longer than the corresponding experimental value.

12.5.2 XANES Spectra of Actinide Complexes

In our Gaussian basis set-based molecular calculations, the actinide atoms (U, Np, Pu)
were represented with small core Stuttgart relativistic ECPs which replace 60 core elec-
trons and corresponding basis sets containing g-functions [170], while the ligand atoms
(Cl and O) were represented with the aug-cc-pvtz basis [171]. The actinide basis sets
are of triple zeta quality. In general and as expected, the absolute positions of the
core spectra are dependent on the choice of exchange-correlation functional as well
as the basis set [143]. We have tested the B3LYP (20% HF) [172–175] PBE0 (25%
HF) [176] and Becke Half-and-Half (50% HF) [172] functionals, respectively. The PBE0
functional gave the best agreement with experiment for all of the actinide complexes
considered in this study [151]. The spectra were shifted by ≈58.4 eV to match experi-
ment and uniformly Lorentzian broadened (1.0 eV). Unlike valence and charge-transfer
(CT) excitations where range-separated exchange-correlation functionals offer significant
improvement, they offer little or no improvement for the strongly localized core spec-
tra. For the molecular calculations with the environment, the actinide complex in each
case was placed in a set of point charges (determined using a Mulliken analysis) rep-
resenting the host crystalline solid. The actinide hexahalides [XCl6]2–(X= U, Np, Pu)
were performed with unrestricted DFT (triplet, quartet, and quintet), and the calculated
ground state 〈S2〉 values were 2.0116 (exact: 2.0), 3.7725 (exact: 3.75), and 6.0833
(exact: 6.0), respectively. The [UOCl5]–system was calculated with restricted DFT. The
observed small spin-contamination could be an indication of the presence of higher spin
state character. In addition, the spin-orbit coupling for [UCl6]2–and [NpCl6]2–is ≈0.20–
0.25 eV [177, 178] and will also result in a number of closely spaced excited states that
may not be experimentally resolvable [151] as the natural width of Cl K-edge transi-
tions is ≈0.64 eV [179]. We cannot assess the importance of these contributions because
our implementation does not include spin-orbital and multiple excited-state electronic
configuration effects [148]. However, the key features and the overall shape of the spec-
tra are in qualitative agreement with experiment as we will discuss in the subsequent
paragraphs.

To capture the role of dynamical motions of the atoms, planewave-based Car-Parrinello
AIMD simulations discussed earlier were performed with the PBE exchange-correlation
functional [179]. Norm-conserving Troullier-Martins pseudopotentials [180] with relativis-
tic corrections were used for the actinides, and Hamann pseudopotentials [181] were used
for the other atoms in the system. Other calculation parameters include an energy cutoff
of 100 Ry, density cutoff of 200 Ry, a simulation time step of 0.121 fs, and a fictitious
electron mass of 600 au, respectively. The unit cell dimensions, symmetry, and the atomic
coordinates were taken from experimental data [182, 183]. Replacing all hydrogen atoms
with deuterium allows for larger integration time steps. The simulation temperature was
set at 300 K and controlled using a Nose-Hoover thermostat [184]. Approximately 10 ps
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of dynamics were collected for each of the structures. In our sampling, the first 3 ps were
considered the equilibration phase and ignored.

Cl K-edge core absorption spectra calculations were performed on all of the complexes
using 1) experimental molecular geometries without the environment, 2) experimental
molecular geometries with the environment, and 3) 100 molecular geometry snapshots
extracted from periodic AIMD runs, which were averaged to form the final spectra. A total
of 300 excited states from the Cl 1s states were calculated for each system. The geome-
tries for all of the complexes including the crystal structures were taken from experimental
data [182, 183]. The optimized geometries do not change the overall shape and nature of
the spectrum.

The ground state of [UCl6]2–is an open-shell triplet (5f2) where the HOMO/LUMO char-
acter of the alpha electrons are dominated by Cl 3p (HOMO-2), U 5f (HOMO-1), U 5f
(HOMO), U 5f (LUMO), U 5f (LUMO+(1-4)), while orbitals containing U 6d are found at
higher energy. For the beta electrons we observe the Cl 3p (HOMO-2), Cl 3p (HOMO-1),
Cl 3p (HOMO), U 5f + Cl 3s (LUMO), and U 5f and U 5f + Cl 3s/3p (LUMO +(1-4)),
respectively. All of the higher states are a mixture of U and Cl states. The shape of the
spectrum (Figure 12.10) remains largely unaffected with and without the environment. The
shoulder between 2821.75 eV and 2823 eV, which consists of two close peaks separated by
≈0.75 eV and composed of excitations from the Cl 1s → U 5f states, is mostly smoothened
out when the averaged spectrum is calculated using AIMD snapshots. The prominent peak
at ≈2824 eV arises from excitations from the Cl 1s → U 6d + Cl 3s/3p states. On the
whole, our calculated spectrum is in better agreement with experiment, in terms of the peak
intensities and locations, compared with published gas phase computational results [151].

The ground state of [NpCl6]2– is an open-shell quartet (5f3) where the HOMO/LUMO
character of the alpha electrons are dominated by Cl 3p (HOMO-3), Np 5f (HOMO-2), Np
5f + Cl 3p (HOMO-1), Np 5f + Cl 3p (HOMO), Np 5f (LUMO), Np 5f (LUMO+(1-3)).
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Figure 12.10 Comparative Cl K-edge spectra of [UCl6]2–, [NpCl6]2–, [PuCl6]2– in the presence of
the host environment and averaged over 100 configurations extracted from AIMD simulations.
The spectra have been normalized relative to each other so that the peaks ≈2826 have the
same intensity. Reprinted with permission from Govind and de Jong [185]. © 2014 Springer
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Although the 5f orbitals in uranium were found to be atomic-like, a much larger mixing of
5f with the Cl 3p is found for Np. For the beta electrons we observe the Cl 3p (HOMO-3),
Cl 3p (HOMO-2), Cl 3p (HOMO-1), Cl 3p (HOMO), and Np 5f (LUMO), and Np 5f and
Np 5f + Cl 3s/3p (LUMO+(1-3)), respectively. The Np 6d orbitals are found above the Np
5f orbitals, and all of the higher states are a mixture of Np and Cl orbitals. The shoulder
(Figure 12.10), which is composed of two closely spaced features in [UCl6]2–, are clearly
separated by ≈1.5 eV and red-shifted in [NpCl6]2–. The first feature ≈ 2821 eV arises from
transitions from Cl 1s → Np 5f states, while the second peak ≈2822.5 eV is dominated by
transitions from Cl 1s → Np 5f + Cl 3s/3p states, respectively. The third peak ≈2824 eV is
composed of excitations from Cl 1s → Np 6d + Cl 3s/3p states. Although there are differ-
ences with and without the environment and including dynamics, the overall shape and the
number of features are preserved.

The ground state of [PuCl6]2– is an open-shell quintet (5f4) where the HOMO/LUMO
character of the alpha electrons are dominated by Cl 3p (HOMO-3), Pu 5f + Cl 3p
(HOMO-2), Pu 5f + Cl 3p (HOMO-1), Pu 5f + Cl 3p (HOMO), Pu 5f (LUMO), and Pu
5f (LUMO + (1–2)). A further increase in mixing of the 5f with the Cl 3p is observed for
Pu compared to both U and Np. For the beta electrons we observe the Cl 3p (HOMO-3),
Cl 3p (HOMO-2), Cl 3p (HOMO-1), Cl 3p (HOMO), Pu 5f + Cl 3s/3p (LUMO), and Pu 5f
and Pu 5f + Cl 3s/3p (LUMO+(1–2)). The Pu 6d orbitals are found above the Pu 5f orbitals,
and higher states are a mixture of Pu and Cl orbitals. There are two clear early features
(Figure 12.10) separated by ≈2.0 eV and further red-shifted compared with [NpCl6]2–. The
first feature ≈2820 eV arises from transitions from Cl 1s → Pu 5f states, while the second
peak ≈2822 eV is dominated by transitions from Cl 1s → Pu 5f + Cl 3s/3p states, respec-
tively. The third peak 2824 eV is composed of excitations from Cl 1s → Pu 6d + Cl 3s/3p
states. As in the [NpCl6]2–spectra, there are differences in the spectra, however, the over-
all nature of the spectrum remains largely unaffected as in [PuCl6]2–even with inclusion of
dynamics.

Figure 12.10 also shows a clear trend. The first and second features are a direct conse-
quence of the behavior of the 5f electrons in the U, Np, Pu series. In addition to not being
shielded by the filled 6s and 6p shells, the 5f electrons also shield each other poorly from
the nucleus resulting in a lowering of their orbital energies with increasing atomic number.
This is reflected in the increased spacing and red-shifting of the first and second features
as one goes from [UCl6]2–to [PuCl6]2–. The second peak, as discussed above, is a result of
the mixing of the actinide 5f orbitals with the Cl 3s/3p states, which increases as one moves
from U → Pu. The prominent feature at ≈2824 eV is mostly unaffected in the three spectra,
reflecting the much smaller shift in orbital energies compared to the 5f in the U, Np, Pu
series.

The ground state of [UOCl5]– has a closed-shell configuration (5f0) where
HOMO/LUMO character is dominated by Cl 3p states (HOMO-2, HOMO-1, HOMO),
while the unoccupied states are dominated by U 5f orbitals (LUMO, LUMO+1, LUMO+2,
LUMO+3). Higher states are a mixture of U, Cl, and O orbitals. The computed Cl K-edge
spectra in Figure 12.11 shows two prominent features ≈2821 eV (Cl 1s → U 5f) and 2822.5
eV (Cl 1s → U 5f + Cl 3s + O 2p) that are distinct from the [UCl6]2–complex. The Cl 1s → U
6d + Cl 3s/3p transitions are split into two peaks: one at ≈2824 eV and a second (shoulder)
at ≈2826 eV. These are similar in nature to the analogs in the actinide hexahalide com-
plexes and are also located in the same position in the spectrum. On the whole, the spectra
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Figure 12.11 Cl K-edge spectra of [UOCl5]–in the gas phase, in the presence of the host crys-
tal and including dynamical effects using AIMD simulations. Reprinted with permission from
Govind and de Jong [185]. © 2014 Springer

with and without the host environment and including dynamical effects are very similar.
The agreement with experiment is reasonable. However, we do not observe the shoulder at
≈2820.5 eV that is clearly visible in the experimental data [151] by either introducing the
crystal field via the host environment or dynamics. We analyzed this further by analyzing
the structural changes needed to reproduce the experimental spectrum and specifically the
shoulder feature.

Experimentally, the axial U-O and U-Cl bonds are 1.78 Å and 2.43 Å, and the equatorial
U-Cl bonds are all 2.54 Å, respectively. If the axial U-Cl bond is elongated by ≈0.25 Å and
two of the equatorial U-Cl bonds (opposite to each other) are elongated by ≈0.25 Å, all
the experimental features are reasonably captured including the shoulder. However, these
bond length elongations (≈10%) are unphysical and cannot be accounted for by a weak host
crystal field, dynamics and different oxidation states (which only accounts for ≈0.08 Å per
charge of charge). This feature may be related to spin-flip effects, which cannot be assessed
because our implementation does not include these effects.
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13.1 Introduction

Despite the fact that calculations on divalent lanthanides are still rather scarce in the liter-
ature, the peculiar properties of these atoms have been experimentally known for several
decades. For instance, traces of organolanthanide complexes begin with the early report of
Wilkinson in 1954 of a series of Cp3Ln complexes (where Cp is cyclopentadienyl) synthe-
sized from rare earth halides and sodium cyclopentadienyl in THF. [1] In a related paper
published two years later, some of the physical properties including magnetic susceptibility
were reported. [2] Wilkinson described the Cp rare earth complexes as ionic complexes, as
shown by their easy exchange with iron chloride, and attributed the magnetic moment to the
only presence of the lanthanide atom. The reported magnetic moment of Cp3Yb appeared
however low compared to that observed for other molecular complexes of Yb(III). Instead of
the expected value of 4.3–4.5 μB, Wilkinson measured a magnetic moment of 4.0 μB. Since
this collection of Cp3Ln complexes, the synthesis of the first reactive divalent organolan-
thanides Cp2Ln (Ln = Eu and Yb) appeared. [3] At about the same time, the first discussions
came in about the degree of “covalency” in them, [4] which is a rather strange conjecture
since f-orbitals are known to be buried in the core of the atom and therefore do not allow
overlap with ligand-based orbitals in any great extent.

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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A decade later, Andersen reported the synthesis of another divalent complex of ytter-
bium, Cp∗2 YbOEt2 (where Cp* is pentamethylcyclopentadienyl), and became interested in
looking at the monoelectronic transfer from the metal center to N-aromatic heterocycles as
bipyridine for example. This new type of reactivity, named single electron transfer (SET)
reactivity, started to play an important role in organolanthanide chemistry [5] since many
interesting reactions were reported [6] but, still, did not address the intriguing question of
the bonding. Witnesses of the paradigm that occupy the organolanthanides compounds are
the very simple molecules Cp∗

2 Yb(bipy), Cp3Yb, and Cp3Eu.
At the beginning of the 1990s, Amberger embarked in a systematic parametric crystal

field analysis of organolanthanides of high symmetry. [7] Among other, Cp3Eu has intrigued
and notably the measurement of its Mössbauer spectrum opened more questions than it
answered. [8] Indeed, if isomeric shift in Mössbauer spectroscopy is associated with oxi-
dation state, the reported one of Cp3Eu is neither in agreement with a +II oxidation nor a
+III oxidation state. This observation was to relate with nephelauxetic effects observed in
optical spectra in europium complexes and again here associated by the authors with some
“covalency” in molecules of this nature. [9] Cp3Yb falls in the same hole than its europium
congener: its photoelectron spectrum and magnetic susceptibility (3.5 μB at room tempera-
ture, i.e., even lower that the one measured by Wilkinson in 1956) are again neither typical
for Yb(II) nor for Yb(III). [10] Denning and Green gathered their later results on Cp3Yb
and calculations in a recent paper to conclude that “there is Cp → Yb3+ charge-transfer
configuration in the ground state wave function” and this may happen because of possible
hybridization of the 5d shell with ligand orbitals. [11] From the two precedent examples,
the charge transfer is occurring from the ligand to the metal but it may come from the metal
center to the ligand. In this light, Cp*2Yb(bipy) was synthesized in the late 1970s [12] but
was not published until 2002.[6c] The reason for this rather long period of time finds its
answer in the odd magnetic behavior of these molecules that makes its electronic structure
not obvious. Two limit structures are possible: a neutral bipyridine and a Yb(II) (f14 con-
figuration) or a bipyridine radical anion and an ytterbium (III) (f13 configuration). Again,
both configurations cannot be explained by the observed magnetic data (reduced mag-
netic moment at room temperature). Moreover, the ytterbium LIII-edge X-ray absorption
near-edge (XANES) spectra show the presence of f13 and f14 features that are indepen-
dent of temperature from 30 K to 400 K, with the f13 configuration dominant. A physical
model derived from CASSCF calculations, consistent with all experimental observations,
is that the ground state is an open-shell singlet consisting of f13(π*)1 and f14(π*)0 config-
urations that are lower in energy than the triplet configuration. [13] Again, the question
of energetic match between the ligand-based orbitals and the 4f-shell is crucial. [14] As
it appears, organolanthanide molecules have the ability to form unusual electronic strfuc-
tures, and ligands are to play a significant role in it due to their redox “non-innocence.”
If, from a fundamental perspective, those concepts remain fascinating, they may also be
extremely useful in reactivity. As organolanthanides are known to provide multiple different
reactivities [15], that may be enhanced by the precise knowledge of what triggers form-
ing and breaking chemical bonds. Important issues include the understanding of magnetic
[16] and optical properties [17] in the objective of development of new molecular-based
materials. [18]

From an experimental point of view, there have been impressive improvements on the
synthesis procedure and more importantly on the chemical stabilization of the synthesized
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complexes. Indeed, for a long time, the synthesis of divalent organolanthanides has been
limited to the Yb, Eu, and Sm metal as they are the easiest to reduce, [19] and it was
the common belief that they would be the only ones accessible in a laboratory. It is there-
fore not surprising if those are the most studied divalent metal complexes. The groups of
Evans and Andersen in California have shown over the last three decades an enormous
amount of reactivity associated with them, namely reductive chemistry or electron transfer
reactivity.[15b] Among them, the most popular one was the reductive coplanar coordina-
tion of N2 in sandwich fashion between two Cp*2Sm fragments. [20] But as it is related
by Evans in a fairly recent review,[15b] “the assumption that this was the limit of reductive
chemistry was completely wrong.” Nowadays, most of the lanthanides have been obtained
in their divalent form, although some questions remain on their electronic structure. [21]
In typical procedures, the classical divalent lanthanides halides Yb and Eu may be syn-
thesized from the metal and NH4I in liquid ammonia. This very straightforward reaction
needs special care but allows the synthesis of such complexes in high purity and in good
yield. [22] The Kagan’s synthesis of SmI2 [23] remains a typical synthesis that works well
and yields pure material. Tm, Dy, and Nd halides are a little more complicated to pre-
pare in their pure form because they are extremely sensitive toward oxidation. Tm, Nd,
and Dy solution chemistry in their divalent state failed until 1997 when Evans proposed
a reaction of finely powdered Tm in a DME solution of iodide to yield the first source
of divalent Tm, TmI2(DME)3. [24] Since then convenient methods of synthesis of NdI2,
DyI2, and TmI2 were reported by the same investigator by simply reacting metal powder
and iodine at high temperature in a quartz Schlenk. [25] Little reactivity is reported directly
with the halides of Tm, Nd, and Dy because of their low stability in THF solutions, and
the need of ancillary ligands appeared quickly as a solution to this problem. [26] It is how-
ever worth noting that it is found that TmI2 is reacting with pyridine in THF to form the
[(C5H5N)4TmI2]2(μ-C10H10N2), that contains the 1,1’-dihydro-4,4’-bipyridyl bridging lig-
and. [27] After this observation, Evans started to work on molecular complexes of Tm, Dy,
and Nd. In the attempt to obtain Cp*2Tm in THF, he observed the doubly reduction of N2to
form [Cp*2Tm]2(N2) [28], whereas in Et2O under Argon atmosphere, to avoid N2 reduc-
tion, only a product of Et2O cleavage was obtained. [28] By increasing the steric hindrance
of the cyclopentadienyl ligand using Me3Si2C5H3 instead of Me5C5 for example, the first
molecular complex of Tm was synthesized. [29] Therefore, it seemed that by increasing the
ligand’s steric congestion was indeed a way to obtain stable molecular complexes of those
non-classical lanthanides. Nief and his collaborators have worked out using several diverse
ways to obtain stable molecular complexes of divalent Tm, Dy, and Nd using different bulky
versions of the Cp ligands, or phospholes, or even of Tp type one (Figure 13.1). [26] As pre-
dicted, the molecular complexes of those metals are highly reactive and resulting in different
types of reactivity.

As aforementioned, the magnetism of divalent lanthanide complexes can be tricky to
interpret. In a typical description of the lanthanides magnetic behavior, it is assumed that
the good quantum number is J since the spin orbit coupling constant is big compared to
the crystal field splitting. Therefore, a Russell-Saunders coupling scheme may be used to
determine the spectroscopic ground state. [30] Then, the crystal field (although usually a
minor perturbation) splits the spin-orbit states along with the symmetry of the molecule in
several crystals field states (mJstates also called ligand field or Stark states) that may be
rather close in energy (within several hundred of wavenumbers). This means that at room
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Figure 13.1 Bulky ligands used for the stabilization of divalent organolanthanides [26]

temperature most crystal field states are populated and the expected theoretical magnetic
moment is the Russell-Saunders one. For example, the magnetism of an ytterbium complex
in its +III oxidation state is reported to be between 4.3–4.5μB at room temperature that is
very close to the theoretical one (4.54 μB). However at lower temperatures, the observed
magnetic moment is slightly decreases, being around 4.0 μB at 5K for instance. This is
due to higher crystal field states that are depopulated at this temperature, and therefore
their contribution in the global magnetism is vanished. [31] This is even more pronounced
when the lanthanides complexes are non-Kramers systems and may have a non-magnetic
single crystal field ground state. [32] From a magnetic perspective, it is then possible to
have insight into the oxidation state as well as the crystal field energy (mJseparation and
distribution). [33] Of course, the electron transfer complicates the situation because one
unpaired spin is transferred on the ligand side and accounts for the new electronic structure.
Recent articles have shown that the exchange coupling (2J) between radical and lanthanides
ions may be relatively important in the case of the {[(Me3Si)2N]2Ln}2(μ − ηy:ηy-N2)
(−54 cm−1for Gd and −102 cm−1 for Dy case) [16] and may be even more pronounced in
multiconfigurational systems such as the Cp*2Yb(bipy) complex (−920 cm−1). [14]

As magnetic measurement on its own is hard to be fully interpreted and is insufficient
at the same time to provide a clear description of the low-lying crystal field (mJ), optical
spectroscopy and in particular luminescence can shed complementary information. Thanks
to the unique photophysical properties of f-block elements (sharp line-like emission bands,
long lifetime etc.) and with the help of the phenomenological Judd-Ofelt theory, which
is well established for the case of inorganic solids and coordination complexes, the fine
splitting of the f-f emission spectra can serve as a signature of the local symmetry of the
metal, [34] a property widely used in biological sensing. [35] In particular, the number of
Stark sublevels directly depends on the molecular symmetry, and a well resolved spectrum
allows determining the energy level of each of the mJ states but not their identification. In
this respect, very recently some experimental groups have illustrated the complementarity
between magnetic and luminescence information in the determination of mJstates for vari-
ous Yb and Dy complexes. [36] It is worth noting that contrarily to ground state magnetic
measurements, luminescence comes from the first excited state and the mJ state popula-
tion is not subjected to a temperature-dependent Boltzmann distribution. Consequently, it
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is possible to observe mJstates even at low temperatures. Interestingly, whereas lumines-
cence of coordination complexes or inorganic solids containing f-block elements have been
extensively studied, the emission properties of organometallic lanthanide complexes is a
quasi-open field of research. One can mention the pioneer works of Ellis and co-workers in
the mid 1980s on Cp*3Yb and related divalent Cp*2Ln(OEt2) complexes (Ln = Eu, Yb). [37]
In the latter case, Eu(II) presents the classical broad emission centered in the blue region
(around 450 nm) as already observed in many phosphors. [38] and assigned to an inter-
configurational 4f65d→4f7 transition. On the other hand, Cp*2Yb(OEt2) presents a very
uncommon broad band emission centered at 900 nm that remains to date unexplained. Nev-
ertheless, the huge difference between divalent and trivalent lanthanide emission gives a
unique opportunity to investigate electron transfer processes via luminescence spectroscopy.

It is nowadays well established that quantum chemistry calculations on f-element com-
pounds must take into account relativity to obtain a reliable description of the electronic
structure. Pyykkö presented in a very popular review the decisive role of relativistic effects
in the predictions of chemical, structural, and spectroscopic properties of heavy element
systems. [39] Furthermore, the presence of open shells, due to the partial occupancy of the
d and f orbitals of the metal, may require the use of accurate theoretical methods but that are
expensive in terms of computer time. Among all possible theoretical treatments, the most
“accurate” framework consists in the use of a full four-component Dirac-Coulomb Hamil-
tonian, but it is limited to the study of small systems of very few atoms. In order to be able to
carry out calculations on bigger systems, approximations have to be applied. One of them is
the quasi-relativistic two-component framework that includes the spin-orbit coupling using,
for example, the zeroth-order regular approximation (ZORA) Hamiltonian. Nevertheless,
the most affordable method is the one-component approach based on relativistic effective
core potentials (RECP) to replace the inner core electrons. In the case of lanthanides, the
use of RECP is defined by the size of the core region: if 4f orbitals are defined in the core,
the RECP is called “large-core,” while if the 4f orbitals are in the valence region, the RECP
is then considered to be “small-core.” The choice of the RECP for the lanthanide atom is
then based on its oxidation state, with the most popular RECPs used in the literature being
the one developed by Dolg and his collaborators. [40]

Many theoretical groups attempted to constitute proof of a possible existence of a par-
tial covalency in the bonding of various lanthanide complexes. However, this issue still
continues to be debated between theoreticians, as well as between theoreticians and exper-
imentalists. [41] For instance, the geometry of trihalogenated lanthanide complexes, LnX3,
was the “apple of discord” of a long debate between theoreticians and experimentalists. [42]
The fact that some of such complexes prefer to adopt a pyramidal geometry is difficult to
interpret using a model of a pure ionic Ln-X bond. DFT and ab initio studies concluded
that the 5d orbitals are responsible of the pyramidalization but without a participation of
the 4f shell. [43, 44] In this regard, a recent study by Denning et al. describes clearly for
the first time the complementarities between DFT calculations and spectroscopic measure-
ments. These have been interpreted as a 4f-shell perturbation due to the presence of the
ligand, suggesting their participation in the metal-ligand bonding. [45]

Similarly to divalent lanthanides, low-valent actinides, mainly in the oxidation state +III,
have attracted much interest experimentally. Unlike the divalent lanthanide, the “covalency”
in early actinide complexes is well established and thus more experimental work is devoted
to understanding their reactivity. Indeed, theoretical insights into the bonding situation of
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some uranyl compounds reveal that 5f orbitals can hybridize with 6d and 7s in order to be
available for participating in the bonding. [46] Using post Hartree-Fock calculations, that
rigorously include the relativistic effects and the electronic correlations, it was shown the
participation of actinides 5f orbitals in chemical bonding, especially for the actinide set
Pa, U, Np, Pu. [46] Unlike in the case of lanthanides for the 4f orbitals, it is difficult to
include 5f orbitals in the effective core potential (ECP). Quite unexpectedly, in the litera-
ture, DFT calculations lead to outstanding results regarding the geometrical features and the
vibrational frequencies, even for systems with a high multireference character. [47] Since
DFT approach is found to describe correctly the actinide-ligand interactions, it may apply in
tackling reactivity problems involving actinide complexes. Among others, the activation of
small molecules has been of great interest for many decades and is still an important chem-
ical target, particularly in the context of environmentally friendly “green” chemistry. [48]
Current research projects mainly focus on the transformation of the greenhouse gas CO2

into useful chemicals, [49] the C-H activation of alkanes, [50] the conversion of N2 into
nitrogen-containing organic products, [51] the degradation of chlorofluorocarbons via C-F
activations, [52] and the use of renewable feedstock like CO and CH4 for the production of
carbon-based molecules [53] (Figure 13.2).

This kind of activation can be readily achieved by electron-rich metal complexes. Since
1985 and the pioneering work of Andersen, [54] uranium (III) complexes have increasingly
attracted much attention for their impressive ability to reduce or activate (through binding)
small inert molecules. Indeed the oxidation state +IV of uranium is known to be more ther-
modynamically stable than the oxidation state +III, being the driving force for complexes
of uranium (III) to be oxidized by substrates in order to form very often bimetallic uranium
(IV) complexes. The substrate is usually doubly reduced and ends up sandwiched between
two U(IV) centers (see Figure 13.2). This consecutive double reduction can lead to a domino
of unexpected chemical reactivity. Andersen’s contributions in that direction included the
activation of heteroallenes by tris-cyclopentadienyl U(III) complexes. [54] The group of
Cloke in Sussex has been interested in the rich reactivity offered by a variety of mixed-
sandwiched U(III) complexes, which are composed of a cyclopentadienyl (Cp) ligand and an
eight-membered carbocycle cyclooctatetraene (COT). [55] These complexes readily react
with CO, CO2, NO, and N2. In the first case, cyclic aromatic oxocarbons of the generic
structure [CnOn]2− are formed via consecutive couplings of CO molecules, which is an
unprecedented kind of chemistry.[55d] The group of Meyer in Erlangen works mainly on the
reactivity of bulky tris-aryloxide complexes with heteroallenes of the type CE2 (E = O, S,
Se), since the seminal work of isolation of [((AdArO)3tacn)UIV (CO2)] in 2004. [56] Arnold
has recently worked on tris-aryloxide and tris-amide U(III) complexes and their reactivities
towards CO, CO2, and N2. [57] Finally, Mazzanti and colleagues are interested in the use of
siloxide ligands in U(III) complexes, for the facile reduction of small molecules. [58] Some
of the most studied U(III) complexes in that context are presented in Figure 13.3.

Alongside such an abundant amount of experimental studies, theoretical chemistry can
be of great help to understand the mechanisms of the observed reactions. Density functional

2[UIII] + S [UIV]–(S2–)–[UIV] Further reactivity

Figure 13.2 Typical reaction between a [UIII] complex and a substrate S
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Figure 13.3 Examples of U(III) complexes able to reduce and activate substrates like CO2

theory in particular is an important tool for the prediction of electronic structures, plausible
mechanisms, and spectroscopic data involving complexes of d-transition, lanthanide, and
actinide metals. In this regard, the innovative research of Eisenstein and co-workers on the
reactivity of organolanthanide complexes by using DFT methodology, has paved the way
for the modeling of organoactinide reactivity as well. [59]

13.2 Divalent Lanthanides

13.2.1 Computing the Nature of the Ground State

The concept of a ligand in a metal compound acting as a single-electron acceptor is a
topic of much recent interest [e.g., see “Forum” in volume 50 (issue 20) of Inorganic
Chemistry]. [60] The accessibility of an empty orbital on a ligand in a coordination com-
plex was originally referred to as a “non-innocent” ligand, but this terminology does not
clearly distinguish between a metal-to-ligand charge transfer (MLCT) process, in which a
pair of electrons is transferred to an empty orbital and a single electron is transferred to
an empty ligand orbital that is referred to as a “redox non-innocent” or “redox active lig-
and.” The latter process generates an electron-transfer complex in which an electron resides
in the ligand’s LUMO with an electron hole remaining on a metal-based molecular orbital.
The ground state electronic structure is then determined by how the biradical correlates the
two electrons, either forming a triplet state (MS = 1) or an open-shell singlet state (MS = 0).
Complexes of d-transition metals with redox active ligands have been extensively and inten-
sively studied. [60] In contrast, complexes of the f-block elements, although they are known,
are not as well studied, with most work only appearing recently. [61]

As mentioned in the introduction, the 2,2’-bipyridine adducts of Cp*2Yb are of interest
because its synthesis and magnetic properties were reported in the 1970s, but an interpre-
tation was only provided more than thirty years after. These complexes has been shown,
both experimentally and computationally, to have multiconfigurational open-shell singlet
electronic ground states in which ytterbium is “intermediate” valent.[61c,61d] In this context,
Scarborough and Wieghardt [62] systematized and classified the often confusing and/or
contradictory literature of the 2,2’-bipyridine and related adducts with d-transition metals
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using a DFT broken-symmetry methodology. A comparison between the electronic ground
state of Cp2Ti(bipy) [63] and Cp*2Yb(bipy) was enlightening. Both adducts have open-
shell singlet ground state[61d,63] (S) but the triplet state (T) in Cp2Ti(bipy) lies close enough
to the ground state (−2J = 600 cm−1) that the molecule is a spin equilibrium molecule,
S(MS = 0) ΔT(MS = 1), whereas for Cp*2Yb(bipy) the triplet lies 0.28 eV (calculated) or
−2J = 0.11 eV (920 cm−1, experimental)[61k] above the open-shell singlet state, with the
triplet state being not significantly populated at 300 K. These properties show that strong
exchange coupling does indeed occur in these ytterbium complexes.

Studies of the 2,2’-Me2bipyridine adducts of Cp*2Yb have shown that the electronic
ground state is multiconfigurational, that is, the ground state wavefunction Ψ = c1|Yb(III,
f13)(bipy−) > + c2|Yb(II, f14)(bipy)0 > is an admixture of two configurations, where c1 and
c2 are their respective coefficients.[61d] The f13(bipy−) configuration is an open-shell singlet
and f14(bipy)0is a close-shell singlet and configuration interaction is possible since they
have the same symmetry. The outcome of the configuration interaction is that the valence
of the ytterbium in Cp*2Yb(bipy) is neither +II, where c1 = 0, nor +III, where c2 = 0, but it
is in between these two extreme values and therefore intermediate valent. Experimentally,
the valence of the ytterbium obtained from the LIII-edge XANES and expressed as nf , the
number of f-holes, that is, the value of c2

1 and is independent of temperature. For example, in
Cp*2Yb(bipy) is c2

1= 0.83(2) and the f13(bipy−) is the dominant configuration. The concept
that the ground state is multiconfigurational was developed from CASSCF calculations,
initially using the model Cp2Yb(bipy),[61d] then extended to Cp*2Yb(bipy) and including
four empty bipy orbitals, π∗1, π∗2, π∗3, and π∗4, in the active space. The calculated value
of nf was 0.86, in agreement with experiment.[61c]

When the 2,2’-bipyridine ligand in Cp*2Yb(bipy) was replaced by methyl substituted
2,2’-bipyridine ligands, symbolized as x-Mebipy or x,x’-Me2bipy (where x indicates the
position of the methyl group[s] in the 2-pyridyl rings), the ytterbium atoms are intermediate
valent, but the value of nf depends on temperature.[61c] For example when x is 5, the value
of nf in Cp*2Yb(5-Mebipy) changes from 0.42 to 0.75 at 300 K and 30 K, respectively. The
temperature dependence is not due to a closed shell singlet–open-shell triplet equilibrium,
a valence tautomerism, but an equilibrium between two open-shell singlet states in which
the thermodynamic constants, ΔH and ΔS, are obtained using the Boltzmann equation.
The computational model showed that two open-shell singlet states, SS1 and SS2, lie below
the triplet by 0.58 eV and 0.11 eV, respectively, in agreement with the experimental find-
ings. The evolving model of the electronic structure of the bipyridine adducts of Cp*2Yb
follows: (i) the ground state is an open-shell singlet, (ii) the configurations of both frag-
ments, Cp*2Yb and the bipyridines, are multiconfigurational, (iii) the number and position
of the methyl groups on the bipyridine ligand, and (iv) the nf values qualitatively track the
reduction potential of the free bipyridine ligand, at least for those bipyridines that are in the
literature. The latter also provides a strategy for manipulating the value of nf and therefore
the magnetic properties of the adducts.

The reduction potential of a ligand is a measure of the HOMO-LUMO energy gap, which
can be affected by substituents that are electron-donors or electron-acceptors, as well as
by the torsion angle between the 2-pyridyl rings, usually reported as the NCCN angle
obtained from solid-state crystal structures. Electron-donating groups, such as a methyl
group, increase the reduction potential relative to hydrogen (Table 13.1), while a phenyl
group decreases it. Increasing the torsion angle should raise the reduction potential, since
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Table 13.1 CASSCF calculation results

S-T gap (eV) nf (calc) nf (exp)

Cp2Yb(bipy) −0.6 0.32 0.30
Cp*2Yb(bipy) −0.06 0.86 0.831

Cp*2Yb(3,3’-Me2bipy) −0.28 0.27 0.17
Cp*2Yb(4,4’-(MeO)2bipy) −0.007 0.11 0.13

twisting the 2-pyridyl groups out of coplanarity will move the energy of π*1 closer to the
energy of π*2 and π*3 antibonding orbitals. Although no experimental reduction potentials
are reported for bipyridine ligands with large torsion angles, the energy of the empty orbital
should behave much like those in twisted ethylene. [63] The CASSCF methodology gives
the calculated singlet-triplet energy separations, with the corresponding nf values listed in
Table 13.1.

The calculational results are consistent with those obtained on related bipy adducts in
that the ground state are singlet states that are multiconfigurational. Only one singlet is
found below the triplet. The singlet state is composed of two configurations f13(π1*)1 and
f14(π1*)0. The calculated values of nf agree with the experimental values very well for
Cp2Yb(bipy) and Cp*2Yb(4,4’-(OMe)2bipy), but the agreement is in less agreement for
the 3,3’-Me2 bipyadduct. In each case, the dominant configuration is f14, in contrast to the
results for Cp*2 Yb(bipy).

Although bipyridine and related ligands, such as diazadienes, attached to d- and f-block
metallocenes have attracted the most attention, adducts with 1,10-phenanthroline have been
largely ignored. It is shown that the ground state of Cp*2Yb(phen) is a triplet, in con-
trast to the open-shell singlet ground state of Cp*2Yb(bipy). One chemical ramification
of the triplet electronic configuration is that the phenanthroline ligands in the individual
monomers units are coupled by a C-C bond at 4,4’-positions resulting in a dimer. The
related adduct, Cp*2Yb(3,8-Me2-phen) exists in solution in a dimer Δ monomer equilibria,
with variable temperature 1H NMR spectra giving ΔH = −8 kcal ·mol−1 and ΔS = −30
cal ·mol−1·K−1. The CASSCF methodology is extented to the monomeric phenanthroline
adducts, Cp*2Yb(phen) (1), Cp*2Yb(3,8-Me2phen) (3) and Cp*2Yb(5,6-Me2phen) (7). The
ground state of Cp*2Yb(phen) is calculated to be comprised of two nearly degenerate triplet
states, T1 and T2, which are 2.12 eV lower in energy than an open-shell singlet state. The
state configuration for the f-orbitals are therefore pure (100 %) f13, and the T1 and T2 con-
figuration for the π*-orbitals are 0.72 π*1 + 0.28 π*2 and 0.28 π*1 + 0.72 π*2, respectively.
The calculated charge-transfer ground state is in accordance with the observation of two
LMCT bands in the Vis-NIR spectrum in toluene solution near 500 cm−1.[61e] The calcu-
lated ground states for the 3,8-Me2phen and 5,6-Me2phen adducts are similar to each other
but somewhat different than that of the unsubstituted phenanthroline adduct. Thus, the cal-
culated ground states are spin triplets (pure f13) and the open-shell singlet states are only
0.08 eV and 0.09 eV higher in energy, respectively. The excited-state open-shell singlets
are multiconfigurational, in which the dominant configuration is f13; in 3,8-Me2phen, the
f13:f14 contributions are 0.75:0.25 and the π*1 is the only configuration that contributes to
the ligand. In 5,6-Me2phen adduct, the f13:f14 contributions in the excited open-shell singlet
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state are 0.85:0.15 and the π*1 and π*2contributions are 0.95 and 0.05, respetcively. The
calculated spin triplet ground states in these three phenanthroline adducts are in contrast
to the open-shell singlet ground states obtained in all of the bipyridine adducts of Cp*Yb.
The triplet ground states in these phenantholine adducts mean that the exchange coupling
is weak and is the origin of the different physical and chemical properties displayed by
the phenantholine and bipyridine adducts. Interestingly, experimentally, the phentantroline
complex of ytterbium is found to be dimerized in solution. The dimerization reaction was
studied using DFT methods as the two complexes were Yb(III). A transition state was calcu-
lated 15.4 kcal ·mol−1 (in Gibbs energy) above the monomeric form of the phenanthroline
adduct and the dimerization reaction is exothermic by 3.1 kcal ·mol−1 (Figure 13.1), in
good agreement with the rather low enthalpy obtained from experimetal data in solution.
The calculated distance of the C-C bond formed in 4,4’-positions (1.596 Å) is in good agree-
ment with the elongated C-C bond found in the solid state structure (1.619 Å). The transition
state also involves two molecules of Cp*2Yb(phen) with similar bond distances as the final
dimer but in which the C-C bond in the in 4,4’-positions is 1.800 Å.

Theoretical approaches have been extensively used to predict the nature of the ground
state of several Yb(II) complexes, using the multireference CASSCF method. However, this
computational approach is hardly tractable for bimetallic complexes and reactivity studies
involving divalent lanthanide complexes. There was thus a need for a simplified approach
but without, if possible, too much loss of precision.

13.2.2 Single Electron Transfer Energy Determination in Divalent
Lanthanide Chemistry

13.2.2.1 Indirect Method

A first attempt in order to estimate theoretically the single electron transfer from the metal
to the substrate in lanthanide(II) chemistry has been recently proposed. [64] In this study,
among others, two model experimental systems were considered: the reductive dimer-
izations of pyridine promoted by (Cp*)2TmII model complex, and the reduction of CO2

mediated by (Cp*)2SmII . The choice of these model complexes was based on their differ-
ent f -orbital occupations that results also in different spin multiplicities. For instance, the
electronic configuration (EC) of the Tm(II)-pyridine complex is 4f13, S =1/2, while after
one-electron promotion to pyridine its EC is 4f12 S = 3/2. The two different spin multi-
plicities observed when passing from TmII to TmIII , have easily allowed the estimation of
the energetic cost of the redox step by directly computing the energies of the corresponding
species by using small-core RECPs at B3PW91 level (Figure 13.4). In particular, the energy
that is required for this monoelectronic transfer was estimated to be 19.9 kcal ·mol−1, in
terms of Gibbs free energy. In addition, the validity of this direct measurement of the energy
of the SET step was further assessed by the use of CASSCF calculations. In these calcula-
tions the active space, for both spin states, consisted of 13 electrons in eight active orbitals,
with the seven 4f orbitals of Tm and the π* of the pyridine. The outcome of the latter further
supports the single determinant nature of the corresponding reduced complex of thulium
(CI of 0.92), verifying the validity of the computational protocol that has been used further
(B3PW91/SC-SDDALL(Tm)/6-31+G*(others)).
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Figure 13.4 Energy profile for the dimerization reaction observed with phenanthroline
adducts. The calculations were performed with Cp instead of Cp* ligands

Nevertheless, dealing with the single electron transfer in samarium(II), reactivity is both
computationally complicated and challenging at the same time. This is due to its less than
half filled f subshell. In fact, the (Cp*)2SmII-CO2 adduct has an EC in the ground state
4f 6, S =3, which after the redox step becomes 4f 5, S =3, implying no change in the overall
spin multiplicity. However, the case of the reduction of CO2 is peculiar. Indeed, by populat-
ing with one electron the lowest unoccupied molecular orbital of the linear CO2 molecule
results in a first-order Jahn-Teller effect, leading to the bending of the molecule. The lat-
ter geometrical change allows the direct estimation of the energetics of the SET process. It
should be noted, that the energy estimation of a consecutive second electron transfer from a
newly introduced fragment Sm(Cp*)2 to an already monoreduced CO2 adduct was studied.
The latter process has been found to correspond to a barrierless one, and the formation of
the final binuclear species corresponds to an exothermic process.

But what about the direct estimation of the SET when precursors with a high spin multi-
plicity in their ground state as Sm(II) react with unsaturated substrates as pyridines, alkynes,
alkenes, ketones, etc. [65], in which a geometrical change is not as clearly marked as in the
case of CO2? Someone can think that the use of the large core ECPs adapted in a fixed
oxidation states II and III of the samarium can help in this way. However, the straight com-
parison of the corresponding total energies is not possible, due to the different construction
of each basis set. To address this issue an indirect estimation of the thermodynamics of the
redox step was considered by using a hypothetical redox thermodynamic cycle involving
CO2 for the oxidation step followed by an isodesmic substrate exchange from the oxidized
species, as is shown in Figure 13.4. This strategy was applied to the indirect estimation of
the pyridine promoted by (Cp*)2TmII complex and proved to give almost identical results
compared to the direct estimation (19.5 vs. 19.9 kcal ·mol−1).
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13.2.2.2 Other Indirect Method

In a recent contribution, the estimation of the energetics of the redox step of the reduc-
tion of benzophenone (Ph2C=O) by SmI2 in neat THF was studied. [66] This step was
experimentally estimated to be slightly exoergic. However, based on the available experi-
mental measured redox potentials, the single electron transfer from SmI2 to benzophenone
is slightly endoergic. This discrepancy was attributed by the experimentalists to the bind-
ing energy of Sm(III) to the bound Ph2C=O with radical anion character. Hence, the latter
computational scheme, referring to the indirect method using CO2, was applied in order
to reproduce the experimental value for this reductive process. Nevertheless, using this
methodology, it was not feasible to obtain any value due to the failure of locating a “hypo-
thetical” CO2 adduct of SmI2(THF)4. From the other side, as was expected, the direct
calculation of the balance [SmI2(THF)5] + Ph2CO = [SmI2(THF)4(OCPh2)] + THF was
also found to be unsuccessful, because it was described previously. In particular, careful
inspection of the geometry of the SmI2(THF)4(OCPh2) in the septet spin state, reveals that
the O=CPh2 bond is not reduced as its C=O bond distance remains unchanged with respect
to the free molecule of the benzophenone. Yet, by imposing a quintet spin state multiplicity
on adduct’s geometry, someone can enforce the reduction of the ketone to be realized, by
populating the π* orbital of the C=O bond, but in an anti-parallel spin fashion. The com-
parison of the geometries of the small core calculation in quintet and the large core in fixed
oxidation state gave identical geometries. In this case, the reduction of the OCPh2 that leads
to a possible formation of the reduced complex, in which the samarium is in the quintet
spin state, was not able to reproduce the experimental results. A possible reason for that
is probably a result of the energy that is needed for the spin-flip process. The failure of
the above described methods to reproduce the energetics that underlie the redox step, led
us to examine the possibility of using different thermodynamic cycle. The newly modified
cycle includes three steps (Figure 13.5), with the first referring to the complete disruption
of SmI2(THF)4 into Sm2+, free iodide and THF, ΔrH(1). A second, in which the Sm2+ is
oxidized to Sm3+ and benzophenone is reduced to Ph·2C–O, ΔrH(2), and a third, by which,
the formation of [SmI2(THF)4]+ from separated fragments is taking place ΔrH(3).

It should be noted that since the energy difference between the free Sm2+ and Sm3+cations
was required to be computed, the spin-orbit coupling contribution was taken into account
by using the Landé coupling scheme. The computed enthalpy for the redox step was found
to be in good agreement with the experimental value, ΔrHredox. [67] However, the ΔrHactiv,
which is the sum of the reduction energy of the substrate and the binding energy, was found
to be higher than the experimentally estimated. The latter inconsistency further highlights
the totally different behavior of the SmI2 systems with respect to other lanthanide congeners,

[Ln(II)] + CO2

[Ln(II)] + py [Ln(III)](py )]

[Ln(III)](CO2)]

–CO2

+CO2

+py

–py

ΔG1

ΔG4

ΔG2

ΔG3

Figure 13.5 A Hess cycle to determine the SET energy using DFT methods
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and makes more imperative than ever the need for finding a general method or strategy that
will be simple and effective.

13.2.2.3 The SOMO-LUMO Gap

Finally, a quantitative way to estimate the SET energy in various of lanthanide(II) com-
plexes having alkynes (phenylacetylene, hex-1-yne) or hetero-aromatic compounds was
found by calculating the SOMO-LUMO gap energy of the orbitals of these complexes. [68]
In particular, multi-configurational (CASSCF) calculations were performed on the DFT
geometry of (Cp*)2SmII(HCCPh) adduct, septet spin state, by distributing six electrons in
eight orbitals (the seven f ’s and the π* of the substrate) in order to determine the SET
energy. It worth noting that the aforementioned system corresponds to an experimental
one, from which reactivity can be accessed via two consecutive SET steps to give as final
products the trienediyl complexes with a simultaneous release of H2. The CASSCF have
shown that the lowest root corresponds to a f 5-π*1 occupation, and in a smaller extent, to
a f 6 one. The decryption of these interesting results reveals that the substrate in the septet
spin state is already reduced upon coordination, and the SET energy was estimated to be
−78.6 kcal ·mol−1. From the other side, by applying the indirect method by using the Born-
Haber thermodynamic cycle, the energy was found to be endergonic by 7.0 kcal ·mol−1.
Thus, the sign of the determined SET energy is found to be very different as well as the
magnitude of the energy. However, carefully inspecting the restricted open-shell Hartree-
Fock orbitals that have been used as a guess function for the multi-reference calculation
revealed that the π* of the substrate was already occupied, and that the LUMO orbital is
corresponding to a pure f one, in line with the picture of the orbitals of a reduced substrate.
The same however was true by checking the DFT(B3PW91) calculated molecular orbitals.
More interestingly, it was observed that the energy of the “SOMO-LUMO gap” in CASSCF
is −88.7 kcal ·mol−1 being very close to the estimated SET energy at the same level of the-
ory. Another interesting outcome was derived by the CASSCF calculation of the quintet spin
state. The calculated energy for this electronic configuration was found to be higher than the
corresponding in septet, stating hence that the quintet state is a high energy excited state.
This coordination induced SET was further verified by checking the SOMO and LUMO
orbitals of different samarium complexes with substrates as bipyridine or terpyridine and
found to be reminiscent to the phenylacetylene case. The same also holds true, for the case
of the SmI2(THF)4(Ph2CO) system, that all of the previous methodologies failed to give
coherent results. It is also worth noting that the SOMO-LUMO gap energy is computed
and was found to be in very close agreement with that coming from the electrochemical
results, and having as well the same sign. Finally, we extended to other lanthanide systems,
as europium and ytterbium cyclopentadienyls having different alkynes as substrates, but
leading to different reactivity. In the case of the europium it was found that europium keeps
the same oxidation state (II) throughout the reaction with phenylacetylene. This different
behavior serves as a perfect candidate to verify further the validity of our method. In partic-
ular, in the europium adduct (octet spin state multiplicity) inspection of the MO spectra has
revealed that the SOMO corresponds to an f orbital, when the LUMO is the π* orbital of
the alkyne bond, assessing hence further the validity of this approach. From the other side,
ytterbocene(II) complexes can react with dimethylacetylene to afford the adduct in which
the Yb oxidation state remains unchanged. Like in the case of europium the corresponding
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SOMO and LUMO orbitals are corresponding to an f and π*, respectively, pointing out
again the validity of this approach. Hence, by using this very simple method someone can
define very quickly if the SET step corresponds to an endoergic or to exothermic. In the
first case, the use of computationally heavy methods as multi-reference one is essential,
as it influences the whole reaction process as much as the subsequent bimetallic reactiv-
ity. For the second case, where the SET step is just favorable (coordination induced SET
and exothermic SET) so that it is the subsequent bimetallic reactivity that is crucial there is
no need for extra theoretical investigation. Finally, this method, which is simple to handle,
appears to be powerful to predict the reduction ability of lanthanide(II) complexes allowing
someone to proceed safely on the reactivity computational studies.

13.3 Low-Valent Actinides

13.3.1 Actinide(III) Reactivity

13.3.1.1 Methodology for the Modeling of the Redox Reactivity of U(III) Compounds

In modern computational methods, it is common to model organolanthanide complexes by
using large core effective core potentials (ECP) including the 4f electrons since 4f orbitals
are buried and do not participate in their reactivity. We have additionally shown that 5f
electrons show no substantial activity in the organometallic chemistry of actinides by com-
paring energy profiles calculated with both small core and 5f-in-core ECPs. [69] Energetic
values corresponding to the ortho C–H activation of pyridine N-oxide and other derivatives
by Cp2UIV (CH3)2 are reported in Table 13.2 and demonstrate this clearly. It is noteworthy
that the energies of the adducts and products of the reaction are nearly equivalent with a
small core and a 5f-in-core ECP. On the other hand, the calculated activation barriers are
slightly larger when a 5f-in-core ECP is used. This is due to a lack of core-valence corre-
lation, which can be fixed by the addition of a core polarization potential, and not because
of the implicit treatment of the 5f electrons. Globally, the overestimation of the transition
state energies lies around 3-5 kcal ·mol−1.

Table 13.2 Energies of the adducts, the transition states and the products
with respect to the reactants for the reaction Cp2UIV(CH3)2 + C5H5 NO →
Cp2UIV(CH3)(C5H4NO) + CH4 (in kcal ·mol−1)

Adduct TS Products

Small core ECP
Pyridine N-oxide (ortho C–H) +4.5 +15.2 −31.6
2-Picoline N-oxide (ortho C–H) +3.0 +15.2 −31.7
2-Picoline N-oxide (methyl C–H) +3.2 +21.1 −27.7
2,6-Lutidine N-oxide (methyl C–H) +10.4 +21.6 −27.1
5f-in-core ECP
Pyridine N-oxide (ortho C–H) +6.3 +18.4 −31.0
2-Picoline N-oxide (ortho C–H) +6.4 +18.6 −30.5
2-Picoline N-oxide (methyl C–H) +5.7 +26.2 −25.2
2,6-Lutidine N-oxide (methyl C–H) +9.3 +26.9 −24.5
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These results show that it is often safe to use a 5f-in-core ECP adapted to the oxidation
state +IV to model the reactivity of U(IV) complexes. This is particularly interesting for the
redox chemistry of U(III) complexes because a large part of the reactivity involves bimetal-
lic U(IV) complexes (Figure 13.1). These species are usually quite large (e.g., with the bulky
ligands used by the group of Meyer) and modeling the uranium centers with a small core
ECPs becomes too expensive computationally, suffering as well by convergence problems
of their wavefunction. On the other side, the main problem that arises from the use of 5f-in-
core ECPs is that they are adapted to only one oxidation state. Thus, computing the redox
step for systems that an oxidation change is involving, like for instance for U(III)/U(IV),
this becomes problematic, and a method to achieve it has been explained above. [64] How-
ever, let us give a more analytic description of that. The proposal is to separate the equation
of formation of the bimetallic complex into two equations (see Figure 13.6). Equation (2)
in Figure 13.7 can be computed with a small core ECP since it only involves monometallic
complexes whilst Equation (3) in Figure 13.7 can be computed with the 5f-in-core ECP as
it only involves the oxidation state +IV of uranium. Concomitantly, the energy of equation
(1) in Figure 13.7 is simply the sum of the energies of equations (2) and (3). Such a process
is easily achieved with, for example, S = CO2 as [UIV ]-(CO−

2 ) has a very specific geome-
try. When CO2 is reduced, the O-C-O angle is no longer linear and computed bond lengths
increase. By forcing a bent CO2 geometry in interaction with uranium, structural optimiza-
tion leads directly to the oxidized form of the uranium complex in interaction with (CO−

2 ).
Despite success with CO2, extension of this methodology to CO is more challenging as
optimizations with a small core ECP lead more readily to a neutral CO molecule interacting
with a U(III) center. A method to avoid that problem is described in Figure 13.7; the oxida-
tive binding of CO2 can be computed with the small core ECP, while the ligand exchange

+ ++

[SmIII I2(THF)4(Ph2CO)]

Ph2CO –Ph2CO [SmIII I2(THF)4]SmII I2(THF)4

Sm2+ + 2 I– + 4THF + Ph2CO Sm3+ + 2 I– + 4THF + Ph2CO –

LC–ECP

SC–ECP

LC–ECP

LC–ECPΔrHactive
ΔrHbind

ΔrHredox

ΔrH (2)

ΔrH (1) ΔrH (3)

Figure 13.6 A schematic representation of the SET energy determination using DFT

2[UIII] + S [UIV]–(S2–)–[UIV] (1)

(2) Small core ECP
(3) 5f-in-core ECP[UIV]–(S2–)–[UIV] + S

2[UIV]–(S–)2[UIII] + 2S 
2[UIV]–(S–)

Figure 13.7 Separation of the global equation of the double reduction of S into two other
equations. (1) = (2) + (3)
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from CO2 to CO does not require any change in the oxidation state at U and can therefore
be computed with the 5f-in-core ECP.

13.3.1.2 Reactivity of U(III) Complexes with CO2

Several theoretical investigations regarding the reactivity of U(III) complexes with CO2

have been carried out so far. [58, 70] These studies showed that three different mechanisms
are in competition. In all schemes, the bimetallic species [UIV ]-(CO2−

2 )-[UIV ] is initially
formed. This complex can then become bereft of CO to form the μ-oxo complex [UIV ]-
(O2−)-[UIV ], which may further react with another CO2 molecule to yield the μ-carbonate
product [UIV ]-(CO2−

3 )-[UIV ]. The carbonate complex can also be formed by an alterna-
tive mechanism where the attack of CO2 and release of CO occur in concerted manner.
The third mechanism is a direct C-C coupling between free CO2 and the CO2−

2 moiety of
[UIV ]-(CO2−

2 )-[UIV ] to yield the μ-oxalate product [UIV ]-(C2O2−
4 )-[UIV ]. Regardless of the

U(III) complex studied, the μ-oxalate is always found as the most stable product. However,
the steric bulk from the ligands of the U(III) reactant have a marked effect on the height
of the activation barriers of the different pathways. In the case of [((MeArO)3mes)UIII],
the transition state of C-C coupling is 10 kcal ·mol−1 higher than the transition state of
release of CO, which is in agreement with experimental evidence since the μ-carbonate
product is observed. To illustrate the effect of the steric bulk, three different pathways
are shown in Figure 13.2. The low-lying pathway corresponds to the reaction between
[((MeArO)3mes)UIII] and CO2 to yield the μ-carbonate product via the formation of the
μ-oxo intermediate. It is an accessible reaction since the ligands of this complex are
quite flexible. The high-lying profile is the same reaction with the bulkier [UIII(C8H6(1,4-
SiiPr3)2)(Cp*)] complex. Steric hindrance dramatically increases the height of the barriers
as well as the energy of the oxo intermediate. For this second system, the only way to
form the carbonate product is to keep a long U-U distance maintained throughout the path-
way. This is the last profile reported in Figure 13.2 – a concerted mechanism where the
electrophilic attack of CO2 and the release of CO are concomitant.

13.3.1.3 Reactivity of U(III) Complexes with CO

An additional theoretical study of importance concerning U(III) redox reactivity is the
reaction of [UIII(C8H6{SiiPr3-1,4}2)(Cp*)] with CO. [71] Experimentally, the reaction
leads to the formation of the deltate product [UIV (C8H6{SiiPr3-1,4}2)(Cp*)]2-(C3O2−

3 ). If
the stoichiometry is carefully controlled, the linear ynediolate-bridged [UIV (C8H6{SiiPr3-
1,4}2)(Cp*)]2-(C2O2−

2 ) is obtained. McKay et al. reported two different mechanisms
leading to the respective formations of both products. [71] The ynediolate-bridged complex
is found to result from a very facile C-C coupling (+2.0 kcal ·mol−1) of two monometal-
lic adducts [UIV (C8H6{SiiPr3-1,4}2)(Cp*)(CO−)], where CO is coordinated to U by the
carbon atom. The coupling leads to a bimetallic complex where a zig-zag C2O2−

2 unit is
sandwiched between both UIV centers. By a succession of kinetically accessible isomeri-
sation steps (the highest activation barrier being +6.9 kcal ·mol−1), the zig-zag structure
becomes linear to yield the experimental complex, thanks to a strong thermodynamic
driving force.
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Figure 13.8 Indirect method to calculate the oxidation step [UIII] + CO → [UIV ]−(CO)

The formation of the deltate complex has also been investigated. The key intermediate of
this reaction is found to be a bimetallic ketene complex where C2O2−

2 lies between both UIV

centers. This intermediate is obtained via a C-C coupling between a side-on bimetallic CO
complex and a free CO molecule. The side-on complex has never been identified experi-
mentally, despite being isoelectronic with known dinitrogen-bridged diuranium complexes.
A summary of the two pathways is reported in Figure 13.8.

It is noteworthy that the experimental linear ynediolate complex does not react with CO to
form the deltate complex. Theoretical studies show that this complex has to isomerize into
the ketene intermediate of the second pathway before being able to react with CO, which is
kinetically inaccessible.

13.3.1.4 Other Substrates or Complexes

It was experimentally observed that a dinuclear homoleptic siloxide complex of uranium(III)
can react with CS2 to afford the corresponding two electron reduced bimetallic product,
while reaction with CO2 is leading to the carbonate dinuclear product upon release of one
CO molecule. [58] Based on these experimental observations, DFT calculations were per-
formed to elucidate the mechanism that underlies behind this remarkable reactivity. In this
respect, we have shown that in the case of CS2, subsequent one electron oxidation of two
uranium(III) centers to uranium(IV) is induced by the coordination of CS2, resulting in the
formation of a highly stable bimetallic (CS2)

−2 bridged complex, the so-called “key inter-
mediate.” Further reactivity from these bimetallic species was considered in order to gain a
deeper insight in the inactiveness of this complex. All of the possible reactions with an addi-
tional CS2 molecule to yield a possible sulfide, trithiocarbonate, or tetrathiooxalate products
were found to be kinetically or thermodynamically unfavoured, in line with the experimen-
tal results. In contrast with CS2, carbon dioxide showed a reductive disproportionation type
of reactivity. To address this diverse behavior we have proposed two possible mechanisms;
one that is passing from a classical oxo intermediate and the other from a concerted one-
electron reduction of two CO2 molecules transient intermediate. It should be noted that the
latter mechanism was proposed for the first time in the uranium chemistry, and found as the
operating one (Figure 13.3).
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Figure 13.9 Gibbs free energy profiles of the reactions of U(III) complexes and CO2. The
profile on the bottom concerns [((MeArO)3mes)UIII] while both other pathways concern
[UIII(C8H6(1,4-SiiPr3)2)(Cp*)]. Both complexes are simplified as [U]. See color plate section

Although the reactivity has concerned more the allene-like reduction chemistry, the
concept was extended to the reaction mechanism of the formation of the first bis-vinyl
bridged dinuclear complexes of uranium(IV) by addition of terminal mono- or bis-alkynes to
NUIII(DME) complexes (N stands for N-anchored tris-aryloxides ligands. [72] DFT calcula-
tions revealed that the most thermodynamically favored and kinetically accessed mechanism
for the C-C coupling of terminal alkynes consists of two steps: first, oxidation and sub-
sequent formation of the activated binuclear alkynyl complex, followed by C-C coupling
after the addition of a second terminal alkyne, to afford the corresponding vinyl bridged
binuclear uranium complex (IV) (Figure 13.4). The same mechanism was found to operate
for terminal bis-alkynes, resulting in the cyclo-products through C-C coupling cyclization
step. A possible C-C coupling between two terminal alkynes in the monomer was exam-
ined as well. The latter was found to be kinetically not easily accessible and it was ruled
out. The results derived from calculations highlighted the generality of this particular mech-
anism as well as the importance of the formation of the thermodynamically very stable “key
intermediate,” which corresponds to the binuclear alkynyl complex.
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Figure 13.11 Gibbs free energy profiles of the reactions between [UIII(OSi(OtBu)3)3]
and CO2. See color plate section

13.3.2 Other Oxidation State (Uranyl…)

As already shown, DFT methods can be used to describe and explain the reactivity of
actinide complexes, even when SET is involved. Interestingly, it is worth noting that DFT
allowed theoretical treatment of the experimental systems. In particular, the geometry and
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Figure 13.13 Cyclopentadienyl complex Cp2An(IV)R2

the electronic structure of cyclopentadienyl complex (Figure 13.5) which are very important
in organoactinide chemistry [73] are correctly reproduced.

In these cases, interaction between actinides and the ligands were analyzed [74] and
confirmed the participation of actinides 5f orbitals for chemical bonding, leading to new
modes of actinide-ligand interactions. DFT was also used in order to study the reactivity
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of organoactinides compounds. For example, Kiplinger [75] reported experimentally a dif-
ference of reactivity between actinides (Th, U) and transition metals (Zr) in the case of
the reaction between biscyclopendienyl-bismethyl (Cp2[M]Me2) complexes and pyridine
N-oxide (Figure 13.6).

Experimentally, Kiplinger et al. reported ortho C-H activation (Figure 13.6, channel A)
rather than oxygen transfer (Figure 13.6, channel B) in the case of actinides, and no reac-
tion with transition metals analogs. Calculations were performed [76] in order to study these
reactions and revealed an excellent agreement with the experimental observations, giving
some explanations for this difference in reactivity. For instance, the putative oxygen trans-
fer reaction is the thermodynamically most favorable reaction; kinetically is forbidden. The
lack of reactivity of the zirconium complex reported experimentally was also proved theo-
retically. By comparing the results for Zr, Th, and U, it was shown that despite its electronic
configuration, the thorium atom behaves more as an actinide than as a transition metal. The
ionic nature of the M-Me bonds, the use of the 5f orbitals at the transition state, and the ener-
getic data obtained for both the energy profiles led us to the conclusion that thorium clearly
behaves as an actinide. They also reveal that it is possible to explain why the reaction should
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occur for the actinide atoms rather than for Zr. The latter is related to the energetic position
of the d orbitals involved in the donation/back-donation process at the transition state, which
makes the bond breaking easy or difficult. The orbitals are closer to the occupied ones for
Zr but much higher for the actinide under study.

As already mentioned earlier, the chemistry of high-valent uranium is dominated by the
dioxo or uranyl dication, [UO2]2+, which is found both in aqueous solutions and in the solid
state. It is chemically robust and shows little propensity to participate in the myriad reactions
that are characteristic of its Group 6 transition metal analogues, [MO2]2+. Furthermore,
this stability coupled with its mobility in the aqueous phase means that it is a problem-
atic environmental contaminant. There is in the literature a long range of experimental and
theoretical study on actinyl, and particularly uranyl. [46, 77] All of these theoretical and
computational studies are focused on structure and electronic properties of actinyl using
DFT and post Hartree-Fock calculations methods. But often, the theoretical studied sys-
tems are not corresponding to the real experimental one. With the increase of computational
power, it is now possible to treat full experimental systems, and even more to study the
reactivity of these species at the DFT level adequately.

Experimental work by the group of Arnold proves that it is possible to functionalize the
oxo group of uranyl in a macrocyclic environment with a silane SiMe4 or make a C-H activa-
tion of dihydroanthracene (DHA), even though it is well known that the interaction between
uranium and oxygen is very strong and leads to a chemically inert oxo group (Figure 13.7).

A theoretical investigation of the reductive oxo-group silylation reaction of the uranyl
dication held in a Pacman macrocylic environment has been carried out by us. [78] The
effect of the modeling of the Pacman ligand on the reaction profiles is found to be important,
with the dipotassiation of a single oxo group identified as a key component in promoting
the reaction between the Si X and uranium-oxo bonds. This reductive silylation reaction
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is also proposed to occur in an aqueous environment but was found not to operate on bare
ions; in this latter case, substitution of a ligand in the equatorial plane was the most likely
reaction. These results demonstrate the importance of the presence but not the identity of
the equatorial ligands upon the silylation of the uranyl U-O bond. The sequential addition
of a lithium metal base to the uranyl ion constrained in a ‘Pacman’ environment results in
lithium coordination to the U=O bonds and single-electron reduction. This reaction depends
on the nature and stoichiometry of the lithium reagent and suggests that competing reduction
and C-H bond activation reactions are occurring at DHA. Calculations demonstrate that the
reactions are kinetically and thermodynamically favorable only for DHA compared to a set
of compounds that are kinetically and/or thermodynamically disfavored.

13.4 Conclusions

Current computational tools allow a good treatment of a range of divalent lanthanide and
actinides species in different oxidation state. They lead to an excellent agreement with
the experimental observations as structure, spectroscopy, electronic properties, and even
more on reactivity aspects. Although multireference calculations are mandatory to prop-
erly account for magnetism of divalent lanthanide complexes, DFT-based computational
strategies have proven their ability to explain the structure and reactivity of both divalent
lanthanide and actinide complexes. In the case of the reactivity of divalent lanthanides, DFT
methods allow to reproduce well the SET energy that appears to be the crucial step in the
reactivity. For the subsequent reactivity, that does not involve any change in oxidation state,
f-in-core RECPs together with DFT allow to describe the mechanisms that involve even
bimetallic complexes. Challenging projects, such as the rich reactivity offered by SmI2

reagents, remain almost untouched theoretically but with the improvement of computers
this might not be true in the next decade.

Uranium (III) redox reactivity with small molecules always consists in the preliminary
double reduction of the latter by two U(III) complexes. Thus, the reactivity concerns only
U(IV) bimetallic complexes. DFT calculations can be used for this problem thanks to the
recent development of 5f-in-core ECPs by Moritz et al. and a methodology to compute the
preliminary redox step via the combination of small core and 5f-in-core calculations. Recent
theoretical studies have mainly concerned the reduction of CO2 and CO, but attention has
also to be paid to the reduction of CS2, COS, PhNCO, and PhN3, the C-C coupling of ter-
minal bis-alkynes to form U(IV) vinyl complexes and the reduction of arenes. However, in
order to have more elements to discuss about actinide properties, one must perform calcula-
tions at a multireference post Hartree-Fock level to take into account the important effect of
electronic correlation in these systems; however, there is the obstacle of the computational
power to perform calculations of real systems at this level that stands still.
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Computational Studies of Bonding

and Reactivity in Actinide
Molecular Complexes

Enrique R. Batista,1 Richard L. Martin1 and Ping Yang2
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2Environmental Molecular Sciences Laboratory, Pacific Northwest National

Laboratory (PNNL)

14.1 Introduction

One of the biggest achievements of theoretical chemistry in the last 50 years is the
development of effective computational methodologies for studying the electronic struc-
ture of molecules and solids. Even though the exact solution of the Schrödinger equation
for a molecular system still eludes us, approximations have been developed that are capable
of sufficient accuracy to complement the interpretation of experimental data and sometimes
to lead experiment into new insights. These advances in methods, coupled with the equally
impressive growth in the speed and power of available computers, have made computational
electronic structure a very fertile field.

The challenges associated with theoretical studies of heavy elements are twofold: the need
to include relativistic effects, and the electron correlation problem. In many senses the for-
mer can now be considered largely under control, although the routine inclusion of the
spin-orbit interaction is still uncommon and deserves more attention. The correlation prob-
lem is an issue for the lighter elements as well but is particularly exacerbated in molecules
and solids of the lanthanides and actinides. This book is testimony to the development

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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of computational methodologies to address these two challenges, with chapters dedicated
to relativistic treatments using the full Dirac equation or via the effective core potential
approach, and to the inclusion of correlation energy using sophisticated wavefunction meth-
ods for small molecules, or via density functional theory (DFT) for larger systems. The
combination of these tools allows us to study problems ranging from detailed analysis of
the optical spectra of small molecules and/or cluster models of solids to the nature of the
high energy excited states involved in x-ray absorption by the core electrons of the molecule;
from the dissociation energy of UF6 to the chemistry of UO2+

2 ions in solution; from stud-
ies of the properties and diffusion of defects in nuclear fuels to the strong correlations and
magnetic properties of many actinide and lanthanide solids.

In this chapter we concentrate on computational studies that relate directly to the funda-
mental issue in chemistry: making and breaking chemical bonds. We emphasize that this
contribution is not meant to be a review of such studies in f-element complexes. For that
we refer the reader to recent review articles. [1–4] Rather, we simply touch on some impor-
tant considerations particularly important for lanthanides and actinides. Specifically, we are
interested in using DFT to characterize reaction pathways. Section 14.2 begins with a defini-
tion of some terms and a discussion of some of the issues associated with relativity and how
they are typically treated within a DFT framework. It also includes an overview of the den-
sity functional approximations available for use and describes strengths, weaknesses, and
typical errors expected from DFT computations of thermochemistries. Section 14.3 focuses
on the study of actinide-ligand bonds and the competition between the 6d and 5f orbitals in
the bonding. In Section 14.4, we describe in some detail two examples of reaction mecha-
nism studies: sp2 vs. sp3 CH bond activation in 2-picoline by Cp*2U(IV) and Cp*2Th(IV)
complexes, and exchange reactions in bis(imido) uranium complexes.

14.2 Basic Considerations

14.2.1 Bond Energies

In order to define a bond energy one has to first define the chemical bond between two
atoms. There is a vast amount of literature discussing this, the most fundamental concept in
chemistry. [5–10] In this chapter we will avoid discussing what a bond is and concentrate
instead on the fundamental property of a bond, which is to produce a combined system
that is more stable than the fragments, that is, two fragments are bonded if the enthalpy
of the fragments in their thermodynamic stable state, separated an infinite distance, is higher
than the enthalpy of the complex formed by bringing the two fragments together. With that
concept in mind, the bond dissociation energy (BDE) for a ligand bound by a single bond
can be defined as the difference between the enthalpy of the fragments minus the enthalpy
of the complex. Hence, for a complex AB, the bond dissociation energy can be defined as

BDEAB = [H(A) + H(B)]−H(AB) (14.1)

where H is the total electronic energy plus the zero-point energy of the fragments, plus the
vibrational, rotational and translational energies.

H = E0 + ZPE + Evib + Erot + Etrans +RT (14.2)
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This definition correlates with the heat measured in a calorimeter upon the reaction of reac-
tants A and B to form complex AB. If the fragments are not connected by a single bond,
defining a bond energy is much more difficult and open to arbitrariness. It is in this case
perhaps even impossible because one needs to determine the actual electronic behavior that
leads to the formation of a given bond, i.e., the stabilization energy, and proceed to sub-
tract it from the complex. The reason a definition of this type of bond energy can be very
arbitrary relates to the quantum nature of the electrons and the non-local interactions that
rule their behavior. Perhaps one intuitive definition of this type of energy is found in the
fragmentation analysis developed by Ziegler and Rauk, although even those definitions are
based on ad hoc arguments needed to recover the macroscopic picture. [11]

In the rest of this section we review the corrections due to relativistic effects in the elec-
tronic structure. We go into some detail because these effects are usually of negligible size
in studies of main-row elements, which are the most commonly found in the literature. We
finish with examples of application of several computational methods to calculations of
bond dissociation energies in actinide-containing molecules.

14.2.2 Scalar Relativistic Corrections

In the case of atoms with small atomic number Z, the kinetic energy of the electrons does
not approach the relativistic limit, allowing for the dismissal of corrections that come, for
example, from the dependence of the mass of the electrons on their velocity. In those cases,
to a good approximation one can use the rest mass of the electron. For heavier elements
this is not the case. The large charge of the nucleus tightly binds the inner shell electrons
and causes the kinetic energy term to grow to relativistic scales, i.e., to the point where p2

ec2

is of similar magnitude as m2c4, pe being the momentum of the electron, m the rest mass,
and c the speed of light. A simple correction for the mass-velocity correction [12] takes
the form:

Wmv =
p4

8mec2
(14.3)

To illustrate the magnitude of this term, recall that for a hydrogen-like model this correction
is of order (Zα)2. Hence, in the heavy elements, where Z is comparable to the inverse of
the fine structure constant, 1/α = 137, this term cannot be ignored. Because this term in
the Hamiltonian is an operator on the spatial wavefunction of the electron, it is referred as
a scalar relativistic effect, to distinguish it from the vector terms that depend on more than
one component of the spin states, as we discuss below.

The second relativistic contribution of scalar nature is the one-electron Darwin term,
WD. This term derives from the non-relativistic expansion of Dirac’s equation, in powers
of (v/c), and results in a non-local interaction between the electron and the nucleus. The
interaction extends over a region in space of size roughly that of the Compton wavelength of
the electron. The order of magnitude of this term in the Hamiltonian is also (Zα)2 making
it non-negligible for heavy elements. [12] These scalar relativistic terms have significant
effects on the radial extent of the inner core orbitals.

We should point out that these magnitudes are estimated for the most extreme relativistic
situations, those associated with the 1s orbital. For higher shells the magnitude of these
terms are much smaller. After all, the valence electrons are bound by energies of the order



“Dolg-Driver” — 2015/1/17 — 13:40 — page 378 — #4

378 Computational Methods in Lanthanide and Actinide Chemistry

5f

6d

7s

7p

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4

P
(R

)

Radius (Å)

Relativistic
Nonrelativistic

Pu3+

Figure 14.1 Relativistic effect on the radial distribution function of Pu3+. P. Jeffrey Hay Los
Alamos Science No. 26, vol II, p. 371. See color plate section

of eV, not the keV associated with deep core states. However, there are significant relativistic
effects in the spatial extent of the outer orbitals that stem from rather complicated indirect
effects associated with requirements of orthogonality to the lower core orbitals and from
mixing with orbitals of higher energy. [13] As an example, Figure 14.1 shows the effect of
relativity on the radial wavefunctions for the outer-shells of Pu3+. See color plate section.
The charge distribution is significantly affected leading to orbital expansions for the 5f and
6d orbitals and contractions for the 7s and 7p orbitals.

14.2.3 Spin-Orbit Corrections

From the reference frame of the electron, the spin-orbit term is generated by the interaction
between its intrinsic magnetic moment (spin) and the magnetic field produced by the current
loop generated as the nucleus revolves about it. The general form of this term is

HSO =
1
2

(
Ze2

4πε0

)(
gs

2m2
ec2

)
L ∗ S

r3
(14.4)

and its order of magnitude, for inner shells, is also (Zα)2, increasing in prominence as the
mass of the nucleus becomes comparable to 137.

The most important effect of the spin-orbit interaction is a splitting of the electronic states
that is manifest as an increase in spectroscopic complexity in molecules or band broaden-
ing in solid-state materials. The effect on bond dissociation energies, at least in the early
actinides, is usually minor, compared to the BDE accuracy provided by DFT. In rough terms,
this contribution can be on the order of 1 to 2 kcal/mol. When energies of that order are being
considered, for example in studies of molecular reorganization energies, this term cannot
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be ignored. It is also important to note that we are not saying that the spin-orbit correc-
tion to the total energy is small; it is simply that it often cancels out in the computation of
the thermochemistry and BDE. As mentioned earlier, in studies of reactivity this term is
often ignored, but as improved methods for computing it in a DFT context emerge it should
become more routine.

One example in which the spin-orbit interaction can play an important role involves
cases where the spin state and formal f-orbital occupancy of the fragments differs from
that of the complex. In those cases the spin-orbit contributions to the complex and fragment
energies will not tend to cancel. The dissociation of UF6 provides an example where the
complex state is 5f0 and the fragment 5f1 and is discussed in some detail below. More crit-
ically, however, are situations where the spin-orbit splitting in the outer shells is so large
that one approaches the jj coupling limit. Clearly the strongest effect will show up in the
heaviest atoms. Studies in the hypothetical dihalogenide molecules involving elements 116
and 117, (116)(117)2, [14] show that the large spin-orbit splitting in the 7p manifold, leads
to bonding orbitals that involve only the 7p3/2 atomic orbitals of each element, while the
7p1/2, being much higher in energy, remain empty. The 7p electrons are in the 7p3/2 shell
that is severely stabilized due to the spin-orbit splitting. Note once again that while the
qualitative description of the bonding is dramatically changed in this limit, if the num-
ber of electrons occupying the 7p3/2 manifold differs little between the complex and the
fragments, the influence of the spin-orbit coupling on the BDE may be smaller than one
might think.

14.2.4 Relativistic Effective Core Potentials (RECPs)

Although early implementations of RECPs were motivated in large part by the reduction
of computational time associated with removing the chemically inert core electrons from
the problem, their major attraction now is to provide a relatively simple way to include
the effects of scalar relativity on the valence orbitals without requiring an explicit treat-
ment of relativistic wavefunctions. One method for developing these functional forms is by
computing the all-electron wavefunction for the atomic species in question and then solv-
ing the inverse problem for the valence electrons, i.e., find a potential that yields the same
orbitals (outside a chosen “core radius”) as the full solution. A more comprehensive descrip-
tion of the development of effective core potentials can be found in Chapter 3. This is the
approach taken by Wadt and Hay, Christiansen, Ermler and Pitzer, and other pioneers in
this area. [15–18] Note that if this is done using a relativistic atomic wavefunction, the one-
electron relativistic effects are implicitly incorporated into this effective potential. Standard
non-relativistic quantum chemistry techniques can then be used to treat the valence elec-
tron problem, which is the effects of the relativistic core being propagated to the valence
region via the RECPs. Another important technique for determining RECPs is to fit matrix
elements of the valence Hamiltonian, the approach taken by the Stuttgart group. These effec-
tive potentials, which implicitly contain the mass-velocity and one-electron Darwin terms,
are referred to as scalar relativistic potentials. The caveats mentioned above about the spin-
orbit term still hold and that term may still need to be included explicitly depending on
the type of study of interest. Both approaches can and have been used to generate effective
spin-orbit potentials. [19]
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An important consideration in designing a calculation for actinide containing species
relates to the size of the valence space, or alternatively, the size of the core excluded from
the calculations. The actinide elements have a core consisting of closed shells for n= 1−4,
plus a set of shallow core orbitals associated with the filled 5s, 5p, and 5d subshells. At
first glance, electrons in these shallow core orbitals are not expected to have a significant
effect on the chemistry and could be folded into the core of the RECPs, leading to a core
containing 78 electrons for the actinides. In fact, many of the early RECPs for actinides
utilized these “large-core” potentials. [15, 20, 21] However, it was quickly realized that it
is imperative that the n= 5 shell be included explicitly in the valence space, leading to
RECPs with 60 electrons in the core, exemplified for example by the “small-core” SDD
potentials. [22–24] The origin of the problem with the 78 electron “large-core” potentials
is similar in spirit to that associated with the LANL1(small-core) and LANL2(small-core)
RECPs for the main-group and transition metal systems. It is ultimately associated with the
fact that although the shallow core orbitals are not involved directly in the interaction, they
are necessary in order to enforce the proper nodal behavior of the pseudo-orbitals in the
valence region. In the case of the actinide series, the shallow core 5d orbital must be treated
explicitly in order to enforce a radial node in the 6d orbital, which is node-less when using
a large-core potential. This is critical because the “real” 6d orbital happens to have a node
in the region of space where the 5f orbital is large. If this node is not accounted for properly
the density in this region is significantly in error. One dramatic example is provided by
calculations on the uranyl ion, UO2+

2 . This unit is ubiquitous in actinide chemistry, aligning
in a linear fashion with a heat of formation rivaling that of CO2. It is predicted by a wide
variety of approximations to be bent when using large-core RECPs. The inclusion of the
shallow core in the small-core RECPs restores linearity, provides reliable bond distances,
vibrational frequencies, and dissociation energies.

14.2.5 Basis Sets

All quantum chemistry calculations rely on an appropriate choice of finite basis set. Many
codes are based on expansions using Gaussian-type functions centered at each atomic cen-
ter. Others rely on a basis of Slater-type orbitals to expand the wavefunction/density. It is
our experience that for simulations based on DFT, basis sets for the metal at the double-zeta
level of accuracy can yield good predictions at moderate cost. Indeed, for heavy elements
Gaussian basis functions with exponents smaller than 0.05 a.u. can sometimes lead to diffi-
culties with self-consistent-field convergence. We therefore often omit these functions with
small exponent (large radial extent) from the basis sets provided for use in wavefunction
calculations For ligand atoms there is a huge family of basis sets [25] for different levels
of expansion. As a rule of thumb we have found the Pople basis sets, such as 6–31g*, [26]
to give a good representation of the density and to be appropriate for most geometry opti-
mizations, vibrational frequencies, and bonding interactions. The ‘*’ is used to represent
the polarization sets, which includes basis functions of one angular momentum higher than
the shell being represented. These extra functions are found to be important due to the high
oxidation states and strong electric fields in these molecules.

Finally we would like to point out that, whereas for wavefunction methodologies one
should use larger expansions than the ones mentioned. DFT is a functional of the den-
sity, not the wavefunction, and it is the square of the wavefunction that must be well
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represented by the basis. The reader is made aware that the comments above represent
rules of thumb based on our experience in this area. The reader is referred to Chapter 7
by F. Weigend, and Chapter 8 by K.A. Peterson and K.G. Dyall, for a thorough discussion
on basis sets.

14.2.6 Density Functional Approximations for Use with f-Element Complexes

The development of Density Functional Theory (DFT) has been one of the most impactful
achievements in electronic structure computations. Indeed, this development was recog-
nized with the 1998 Nobel Prize in Chemistry awarded to Walter Kohn. [27] In our
experience, DFT provides an excellent compromise among accuracy, computational cost,
and ease of interpretation. Full descriptions of DFT have been extensively published in
other sources in the 50 years since the first publication of the theory and it does not need
to be revisited here. [28–30] In the context of lanthanide and actinide chemistry, there are
still problems to be worked out associated with the reliance of DFT on a single-determinant
description, particularly with the description of spin and angular momentum multiplets gen-
erated by open-shell molecules, but for many of the cases of interest to us the ground states
are high-spin and described adequately by a single determinant.

The original formulation of DFT proves the existence of a functional of the density
for the Hamiltonian, but it does not provide the actual form of this functional. The stan-
dard approach for developing the Hamiltonian functional has been to include a kinetic
energy term and a Columbic term, leaving the additional interactions due to the quan-
tum nature of the electrons for the “exchange-correlation” term. The exchange-correlation
functional then distinguishes among the flavors of DFT: the local density approximation
(LDA), [31] where the electron density is assumed to be uniform; the generalized gra-
dient approximation (GGA), [32] where first order corrections due to inhomogeneity of
the density are included; and the meta-GGA, [33, 34] which includes a term involving the
Laplacian of the density. The last approximation actually corrects the kinetic energy den-
sity and should be a reminder that the proper “exchange-correlation” functional actually
contains corrections to the kinetic energy as well as exchange and correlation. A family of
“hybrid” functionals, where the exact form of the exchange interaction is included in the
functional has lead to hybrid DFT, a mixture of density functional and wavefunction for-
mulations. [35–38] In all, hundreds of functionals have been developed (for example, the
Gaussian 09 code includes over 800 functionals) with different ranges of success. (This
number is a ballpark estimation based on the possible combinations that the user can
make of exchange functional and correlation functionals, plus the possibility of adding a
fraction of exact exchange to the mix and optimize it. Other possible functionals include
long-range corrections and empirical corrections to dispersion interaction.) Our experi-
ence is that within a given class of functionals (LDA, GGA, meta-GGA) the differences
are rather subtle. The results of two GGA calculations, one using the PBE functional
and the other PW91, should not lead to qualitatively different results. There are more
important and well-known differences among the classes, however. Our working rule of
thumb, based on past experience, is that the hybrid functionals give a better representa-
tion of actinide complexes than the local or semi-local approximations, yielding typical
errors in interatomic distance errors of about 1% and bond energies to the level of a few
(<∼5) kcal/mol.
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14.2.7 Example of application: Performance in Sample Situation
(UF6 → UF5 + F) [39, 40]

To illustrate the various effects described above we discuss here the calculation of the bond
dissociation energy to detach a fluorine atom from the UF6 molecule. This very simple
case exemplifies many of the more general features found in calculations in organoactinide
chemistry. UF6 is a closed-shell molecule; the U site is formally U(VI), 5f0. One of the
fragments, UF5, formally contains U(V), 5f1, a spin doublet with unpaired spin density on
the metal. Note that this is an example in which the formal charge on the metal site changes
during the reaction and therefore the formal f-electron count; as such it qualifies as a case
where we should be aware that the inclusion of spin-orbit coupling may be a particular
concern in computing accurate energies.

Table 14.1 gives a comparative analysis of the performance of various levels of theory,
from simple Hartree-Fock theory, two classes of DFT (LDA and GGA), and two variants
of hybrid DFT. Besides comparing the different functionals, this table also compares the
effect of using large and small core RECPs. Comparing with the experimental data for
BDE in this system one finds that the small core RECPs in combination with the hybrid
DFT functionals performs satisfactorily. Introducing zero-point energy corrections (ZPE)
the computed enthalpies are within a few kcal/mol of the experimental numbers. Also note
that the hybrid DFT bond energies appear to be slightly higher than experiment. The spin-
orbit interaction will stabilize the 5f5/2 subshell and destabilize the 5f7/2. UF5 contains an
electron in this 5f5/2 subshell, which is unoccupied in UF6, consequently stabilizing UF5

and reducing the computed BDE. The calculated effect of including the spin-orbit term
in the BDE is on the order of 3.5kcal/mol improving the agreement with experimental
numbers. [39, 40]

Table 14.1 Fluorine-uranium bond dissociation energy for the reaction UF6 → UF5 + F. The
table illustrates the critical effect of including the closed shells 5d, 5p, and 5s in the valence
space of the DFT calculation. Reprinted with permission from Batista et al. [39] Copyright 2004,
American Institute of Physics.

ΔE ZPE ΔE+ZPE

RECP Core RECP Core RECP Core
Method 78e− 60e− 78e− 60e− 78e− 60e−

HF −28.11 −5.70 −2.02 −2.05 −30.15 −7.72
LSDA 86.68 124.41 −1.59 −1.39 85.29 122.82
PBE (GGA) 48.45 98.56 −1.59 −0.99 47.46 96.97
PBE0 32.06 73.79 −1.73 −1.93 30.13 72.05
B3LYP 19.07 75.01 −1.69 −1.46 17.61 73.32
Expt [41] 70 ± 2
Expt [42] 69 ± 5
Expt [43] 73
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Figure 14.2 Radial distribution function [r2R2
nl] of the atomic pseudo-orbitals of uranium for

the 60e− RECP. Note the node in the radial distribution for the 6d orbital (lower panel) in the
region where the 5f has its maximum. The node is determined by the requirement that the 6d
orbital be orthogonal to the 5d orbital, and effect present in all-electron approaches, but missing
in the large-core RECPs, which fold the 5d orbital into the core. Reprinted with permission from
Batista et al. [39] Copyright 2004, American Institute of Physics

Another striking conclusion from Table 14.1 is that, when using the small core RECPs,
DFT improves in accuracy as one progresses from LDA to GGA to hybrid. However, this
trend is not seen when the large-core RECP is employed. As mentioned earlier, this dra-
matic improvement with the small-core potential is due to the enforcement of a node in the
6d orbital imposed by inclusion of the 5d in the valence space. Figure 14.2 presents the
radial pseudo-orbitals using the 60e− small core RECPs. Note in the top panel that 5s, 5p,
and 5d pseudo-orbitals have negligible amplitude in the region where bonding interactions
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might occur. Only the 5f orbital has appreciable amplitude at distances of the order of an
Angstrom. The lower panel compares the radial distribution of the 5f with the virtual 6d and
7s orbitals. Most importantly, note that the 6d orbital has a radial node around 0.6Å, which
coincides almost exactly with the maximum in the 5f orbital. The node also redistributes the
6d orbital amplitude, although it is not apparent in Figure 14.2. Because this node is miss-
ing in the large-core potential, the density in this region is described incorrectly, resulting
in an incorrect description of the energy associated with the interplay between the 5f and
6d orbitals contributions to the bonding.

At the same time, both large and small core RECPs were found to give good predictions
of molecular structures, both within 1% of the experimental bond distance, and reasonable
agreement with vibrational spectroscopy. [39] As generally observed, there is a tendency
for Hartree-Fock theory to underestimate bond lengths leading to an overestimate of the
vibrational frequencies. In the DFT family the LDA functional is typically found to predict
bond distances in reasonable agreement with experiment, or slightly longer. However, upon
inclusion of the gradient corrections, the error in bond distances does not correct itself and
the GGA family overestimates bond lengths and underestimates vibrational frequencies. For
that reason many researchers tend to use the LDA functional to estimate molecular struc-
ture but other levels of theory for electronic properties. The hybrid functionals are found to
predict structures in good agreement with experiment and good agreement in frequencies
as well. The reason some researchers continue to use the LDA functional to predict struc-
tures is that, in some codes, it is faster to compute as the non-local Hartree-Fock exchange
calculation is not needed.

14.2.8 Molecular Systems with Unpaired Electrons

We touch finally on a problem inherent to DFT but particularly exacerbated in lanthanide
and actinide complexes. In systems with many unpaired electrons occupying essentially
degenerate orbitals, such as the open-shell configurations that characterize fn manifolds,
there are often a large number of determinants needed to span the Hilbert space neces-
sary to describe spin and orbital angular momentum multiplets. For example, an f3 atomic
configuration can give rise to a quartet and two independent doublet spin states. An unre-
stricted single determinant method can account for the quartet, but only one doublet state,
an average of the two independent doublet eigenstates. Similarly, a single determinant can
span the space associated with the highest angular momentum multiplet, but not those of
lower L. In general, most of the situations we have encountered in actinide complexes are
governed by high-spin f-orbital couplings, as suggested by Hund’s first rule, but the accu-
racy of DFT becomes more suspect as the number of unpaired electrons in the f-orbitals
becomes larger. Figure 14.3 shows the calculation of the BDE for UFn and UCln as function
of the number of halide ligands. [44] The hybrid functionals that were shown to perform
well in the BDE calculation for n= 6 above are used here for the whole series. Although the
agreement with experimental data is not too bad, the error grows as the number of ligands
decreases and the number of unpaired electrons increases. BDE predictions begin to extend
outside of the experimental error bars beginning with n= 4, corresponding to an f2 ground
state dissociating to an f3 fragment. More sophisticated wavefunction-based computational
methodologies are highly recommended for accurate calculations of the energies in these
types of situations.



“Dolg-Driver” — 2015/1/17 — 13:40 — page 385 — #11

Computational Studies of Bonding and Reactivity 385

180

160

140

120

100

40

60

80

1 2 3 4 5 6
n

UCIn

UFn

B3LYP

PBEO

B
D

E
 [k

ca
l/m

ol
]

Figure 14.3 Bond dissociation energy for UFn and UCln as function of the number of fluo-
rine and chlorine ligands. The experimental data points (with error bars) are compared to two
hybrid functionals. Reprinted with permission from Batista et al. [44] Copyright 2004, American
Institute of Physics

14.3 Nature of Bonding Interactions

The studies of BDE demonstrate the importance of careful consideration of scalar and spin-
orbit relativistic effects, suitable basis sets, and the choice of effective-core potentials and
density functional. The appropriate inclusion of these factors allows not only for the eval-
uation of strength of the chemical bonds, but also provides understanding of the nature
of actinide-ligand bonding interactions, such as the nature of the orbitals participating in
bonding and the relative importance of f- and d-orbital involvement. In this section we will
demonstrate how can we picture the bonding interactions and how the theoretical studies
of bonding can be connected to spectroscopic measurements that can be used to validate
the theoretical predictions. Understanding the nature of bonding interactions can lead to a
better comprehension of bond formation and breakage, thus chemical reactivity.

The electronic structure resulting from a calculation allows us to visualize both bond-
ing orbitals and their corresponding unoccupied antibonding orbitals. Optical spectroscopy
techniques provide information about bonding interactions by promoting electrons from
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occupied orbitals to unoccupied orbitals. The resulting spectra (signature transition peaks
and spectra profiles) are sensitive to the bonding nature and can be used to work back-
wards to understand the bonding orbitals. Therefore, coupling spectroscopic techniques with
theoretical studies is a powerful tool to obtain a full picture of the bonding orbitals.

The spatial extent of the 5f and 6d orbitals in the valence space (see Figure 14.1 and
Figure 14.2) are similar, and at first glance either might be important in the actinide-ligand
bond. The relative role of 5f and 6d orbitals in actinide bonding has long been a subject
of interest. The classic and simplest example is the linear uranyl (UO2+

2 ) unit, which has
been known for over a century. The U≡O bond is now well understood to be described
by a bond order of three. [1, 45] The actinide 5f and 6d orbitals form six bonds, two σ,
and four π bonds to oxygen atoms, σg, σu, two πg, and two πu, as displayed in the left
column in Figure 14.4. See color plate section. The populations of the atomic orbitals in
each molecular orbital were obtained by Mulliken population analysis, which for this mod-
est basis set gives a good representation of the relative participation of each atom in the
bonds. After many years of effort in the actinide community, the family of isoelectronic
imido ligand (NR2−) analogs of uranyl was synthesized recently by Boncella and Hayton
[U(NR)2+

2 ]. [46] The computed bonding orbitals of fragment U(NMe)2+
2 are depicted to the

right side in Figure 14.4. Much as in uranyl, the bonding consists of six orbitals, two σ, and
four π bonds from the interaction of the nitrogen 2p with the uranium the 5fπ, 6dπ, 5fσ, and
6dσ. Overall, the U≡N bonding follows a similar pattern to that of the UO2+

2 unit, although
with minor changes in the participation of the uranium atomic orbitals. [46] The main dif-
ference is that in the bis-imido unit the π orbitals are pushed up in energy in U(NMe)2+

2 ,

fσ
(67%)

fσ
(63%)

dσ
(28%)

dσ
(22%)

fπ
(35%)

fπ
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dπ
(23%)

dπ
(21%)

UO2
2+ U(NMe)2

2+

Figure 14.4 Bonding orbitals of UO2+
2 and U(NMe)2+

2 . The column on the sides shows the
type of uranium atomic orbital participating in each MO, along with its percentage contribution
to the total MO. See color plate section
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while the σ bonds are stabilized through the interactions with the N-C bonds. This change
makes the imido ligand more reactive than the oxo one, and in spite of the two being iso-
electronic, that opens the door to new reactivity and a new area in synthetic chemistry (see
Section 14.4.2).

In order to explore potentially different chemistries of the isoelectronic units U(NR)2+
2 and

UO2+
2 , a comparison of the ion [UO2Cl4]2+ to [U(NR)2Cl4]2+ was carried out, focusing on

the effect of the different axial ligands on the interaction between the equatorial chlorine and
the metal center. [47–49] Experimentally, chlorine K-edge x-ray absorption spectroscopy
bring in a powerful approach for probing the nature of the actinide-chlorine bond. [4] The Cl
3p symmetry-adapted linear combinations form U-Clσ-bonding andπ-bonding interactions
with a nonbonding set of chlorine lone pairs, reflected in the measured spectra, and DFT
calculations identifies these signatures as hybridization of the Cl 3p with the uranium 5f
orbitals. [50] The uranium participation in these orbitals is about 7%, indicating a mostly
ionic interaction for both axial ligands, oxo and imido. The agreement between experimental
spectra and the computationally predicted excited states mutually validate both approaches
to probe-bonding interactions and reinforces the conclusions resulting from them.

14.4 Chemistry Application: Reactivity

As evidenced in the earlier sections, DFT methods have been employed to explore actinide-
ligand interactions in a variety of complexes. With appropriate treatment of relativistic
effects and electron correlation, the geometrical structures, thermochemistry, vibrational,
and optical spectroscopic properties are in good agreement with the experimental structural
and spectroscopic results. By comparison, rather little mechanistic information is available
for organoactinide reactions, even though such studies are central to homogeneous cataly-
sis. The complexity of actinide systems, especially in reactions where one expects unpaired
f-electrons, makes identification of the saddle points and reaction pathway a significant
theoretical challenge.

Here we will discuss the first few studies of reactivity of actinide-containing complexes
for early actinides elements, such as bis(pentamethylcyclopentadienyl) uranium(IV) and
thorium(IV) complexes [5, 7], and bis(imido) uranium complexes. [47] Related studies were
later published in the literature, [51–53] and the reader can refer to them for further illus-
tration. These studies further demonstrated that density functional theory is a useful tool to
probe the electronic structures and reactivity of actinide complexes.

Conceptually, there are three fundamental steps to investigate reactivity: a) bringing reac-
tant into the proximity of actinide center; b) cleavage of bond in reactant; c) thermodynamic
stability of the newly formed An-L bond. In this section, we will illustrate the capability of
characterizing these three aspects for two distinctive reaction mechanisms using hybrid den-
sity functional theory: a) σ-bond metathesis C–H activation by actinide complexes and b)
[2+2] cycloaddition of imido reactivity.

14.4.1 First Example: C–H Bond Activation Reaction

The bis(pentamethylcyclopentadienyl thorium(IV) and uranium(IV) alkyl complexes
Cp*2AnR2 (where Cp*= η-C5Me5, An=Th, U; R=CH3, CH2Ph, Ph) have proven to be
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Scheme 14.1 Reaction of Cp2AnMe2 with 2-picoline. The thorium alkyl complex
Cp*2Th(CH3)2 and 2-picoline react to give preferential sp3 C–H bond activation in the presence
of a reactive sp2C–H bond, while the analogous uranium Cp*2U(CH3)2 readily reacts with only
the ortho 2-picoline sp2 C–H bond. Reprinted with permission from Yang et al. [5] Copyright
2008, American Chemical Society

versatile starting materials for the synthesis of a diverse array of actinide organometal-
lic systems containing An-N bonds such as imido, hydrazonato, and ketimido complexes
It has been observed that complexes of lanthanide, actinide, and transition metals acti-
vate hydrocarbon substrates by different mechanisms. Recently, Kiplinger and co-workers
reported that these actinide alkyl complexes undergo interesting C–H and C–N bond cleavage
chemistry with N-heterocycles. [54, 55] For example, the Th(IV) complexes Cp*2Th(CH3)2

and Cp*2Th(CH2Ph)2 readily react with the sp2 C–H bonds in pyridine N-oxide and the
sp3 C–H bonds in 2,6-lutidine N-oxide, whereas the corresponding U(IV) complexes acti-
vate only the sp2 C–H bonds in pyridine N-oxide. [54] Later studies were carried out on
2-picoline (2-methylpyridine), which possesses both sp2 and sp3 hybridized C–H bonds.
Deuterium labeling studies demonstrated that the thorium and uranium Cp*2An(CH3)2

complexes react with 2-picoline by different mechanistic reaction pathways. [55] The
thorium alkyl complex Cp*2Th(CH3)2 selectively activates a sp3 C–H bond on the
2-picoline methyl group to give the kinetic R-picolyl product, Cp*2Th(CH3)[η2-(N,C)-
2-CH2-NC5H3], which reacts with additional 2-picoline to afford the thermodynamic
η2-pyridyl product, Cp*2Th(CH3) [η2-(N,C)-6-CH3-NC5H3]. This is in marked contrast
with the uranium system that only reacts with a sp2 C–H bond on the 2-picoline aromatic
ring to give theη2-pyridyl product Cp*2U(CH3)[η2-(N,C)-6-CH3-NC5H3], see Scheme 14.1.

We performed a computational study of the competitive sp2 versus sp3 C–H bond acti-
vation chemistry with 2-picoline and Cp*2An(CH3)2 for An=Th and U. [5] The energy
profiles for reaction precursors, adducts, transition sates, and products are identified.

Hybrid B3LYP functional was employed with the relativistic small-core ECP. [23, 24]
and the all-electron basis set 6–31G* for the light elements. Harmonic vibrational analyses
were performed to confirm that structures were minima or saddle points and to obtain the
thermochemical corrections at the standard state (298.15 K and 1atm) to the energy, entropy,
and Gibbs free energy. Solvation effects were included using polarizable continuum models
(PCM). [56, 57] in the solvent toluene. Inclusion of these effects results in changes of ∼1
kcal/mol in reaction energies and does not alter the relative ordering. The intrinsic reaction
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in parentheses are the energy difference relative to the most stable configuration (all values in
kcal/mol). Reprinted with permission from Yang et al. [5] Copyright 2008, American Chemical
Society

coordinate (IRC) method was used to follow the reaction path in both directions from the
transition state.

The structures and thermochemistry of reactants and products arising from sp2 and
sp3 C–H bond activation are examined for both Cp* and simplified model Cp ligand
(cyclopentadienyl, Cp = η-C5H5 ). The model Cp complexes reproduce well the experimen-
tal geometric parameters and accurately reflect the relative thermochemical relationships.
Therefore, the model Cp systems will be employed to search for transition states and reac-
tion pathways. Th(IV) complexes possess a closed shell electronic ground state (5f), while
U(IV) systems represent a high-spin (5f2) state with two unpaired electrons in f-orbitals.

14.4.1.1 Formation of Adducts

Although the existence of stable adducts is not required along reaction paths leading to C–H
bond activation, the C–H bond needs to be brought to the proximity to the metal center. As
illustrated in Figure 14.5, the 2-picoline ligand can approach the metal center in one of the
three ways, leading to possible adduct structures: 1) from the front between two methyl
groups; 2) from a side of the metallocene, where the methyl group can either point toward
or away from the actinide methyl groups; 3) from the back forming a linear metallocene
complexes with two Cp rings parallel. These are all local minima. For both thorium and
uranium systems, the most stable adducts are 5A and 6A, which are the only exothermically
stable adducts with energy of −1.80 and −0.16 kcal/mol, respectively, causing the least
conformational change of Cp2AnMe2 thus the most likely approach to happen.

14.4.1.2 Transition Sates

The essential aspect of the σ-bond metathesis mechanism is the concerted exchange of a
metal-ligand σ-bond with one of an incoming substrate where the reaction proceeds via a
[2σ+2σ] cycloaddition, as illustrated in the transitions state in Figure 14.6. The key concept
is that σ-bond metathesis is a one-step reaction with two σ-bonds breaking (M–C and C’–H)
and two σ-bonds forming (M–C’ and C–H). Therefore, there is no change involved in the
oxidation state of the metal center. This reaction mechanism has been proposed for the d0

and d0fn metal compounds, and has been recently reviewed for transition metals. [58, 59]
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As the deuterium labeling studies suggested that the 2-picoline C–H activation chemistry
proceeded by σ-bond metathesis for both the thorium and uranium Cp*2AnMe2 complexes,
we examined the role of the actinide metal center in hydrogen atom migration. We identified
the transition states for the sp2 and sp3C–H bond activation pathways if the proposed σ-bond
metathesis mechanism was operative.

Figure 14.6 illustrates the numbering and labeling scheme employed for the following
discussions regarding adducts, transition state, and product structures. The summarized
geometric parameters of optimized stable adduct, transition states, and products for tho-
rium and uranium systems are tabulated in Table 14.2 and Table 14.3, respectively. TS
stands for transition state and the subscript refers to the reactant and product. For example,
TS5A−1Arepresents the transition state that occurs along the sp2 C–H bond activation path-
way starting from adduct 5A and giving product 1A. Figure 14.7 shows the transition state
structure for the sp2 and sp3C–H bond of 2-picoline for thorium. See color plate section.
The analogous uranium system presents high similarity with the thorium systems, as shown
in Table 14.2 and Table 14.3.

The transition state confirms that it is a one-step concerted reaction mechanism. How-
ever, the most important and distinct characteristic for these transition states with respect
to the conventional σ-bond metathesis is that the agostic structures involved the actinide
center directly mediates the migration of the activated H atom. For the thorium sp2 and sp3

C–H activation chemistry, the distance between thorium and the activated hydrogen atom
is 2.328 and 2.532 Å, respectively. The activated hydrogen atom is bound to the 2-picoline
and methyl group simultaneously as the activated C–H bond distances are of in the range
of 1.34 to1.51 Å, as shown in Figure 14.7. The Th-C(Me) bond are significantly activated
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Table 14.2 Geometric data for adduct, transition states, and products for the C–H bond acti-
vation chemistry between Cp2Th(CH3)2 and 2-Picoline. Reprinted with permission from Yang
et al. [5] Copyright 2008, American Chemical Society

sp2 C–H activation sp3 C–H activation

Adduct Transition state Product Expt Transition state Product Expt
5A TS5A-1A 1A TS5A-2A 2A

R(Th1-C2) 2.538 2.516 2.507 2.530 2.459 2.508 2.902
R(Th1-N3) 2.842 2.264 2.497 2.444 2.654 2.599 2.574
R(Th1-C4) 2.719 2.498 2.471 2.880 2.660 2.642
R(Th1-C5) 2.538 2.796 2.776
R(Th1-H(sp2)) 3.736 2.328
R(Th1-H(sp3)) 3.299 2.352

Table 14.3 Geometric data for adduct, transition states, and products for the C–H bond acti-
vation chemistry between Cp2U(CH3)2 and 2-Picoline. Reprinted with permission from Yang
et al. [5] Copyright 2008, American Chemical Society

sp2 C–H activation sp3 C–H activation

Adduct Transition state Product Expt Transition state Product
6A TS6A-3A 3A TS6A-4A 4A

R(U1-C2) 2.476 2.459 2.439 2.467 2.456 2.508
R(U1-N3) 2.778 2.553 2.428 2.394 2.678 2.599
R(U1-C4) 2.636 2.423 2.396 2.792 2.660
R(U1-C5) 2.476 2.774 2.706
R(U1-H(sp2)) 3.455 2.247
R(U1-H(sp3)) 3.401 2.258

with the Th–C distance greater than 2.77 Å. Intrinsic reaction coordinate calculations ver-
ified both directions from these transition states leading to the anticipated protectants and
reactants. The agostic Th· · ·H bond can be compared with the thorium hydride distance of
2.116 determined for the model complex Cp2Th(H)(Me). This indicates there is a signifi-
cant bonding interaction that exists between the thorium metal center and the migrating H
atom when the H atom is transferring from one carbon atom to another.

High structural similarity is observed for the uranium system. The lowest transition
states for both sp2 and sp3 C–H bond activation of 2-picoline are the five-member agostic
σ-bond metathesis structure. The agostic U· · ·H distances are 2.247 and 2.258 Å, respec-
tively in the sp2 and sp3 transition states, which are longer than the uranium hydride bond
in Cp2U(H)(Me). As a result of highly activated U-C(Me) bond, the leaving methyl group
binds weakly with a long coordination distance greater than 2.71 Å.

For such a synergistic nonadditive H-migration process, we refer to this reaction mech-
anism as agostic interactions assisted σ-bond metathesis. Given its concerted nature, this
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reaction mechanism is very stereospecific. A similar reaction mechanism has been recently
reported for cyclometalation of palladium and iridium. [60, 61] These data suggest that the
operative mechanism for the C–H activation in Th(IV) and U(IV) centers involving addi-
tional agostic interactions between the metal center and the activated H atom. This differs
from the conventional σ-bond metathesis where the activated H atom does not coordinate
with its diagonal metal center. It has been hypothesized for more than 30 years that agos-
tic structures play an important role in transition metal complexes and catalytic reaction
pathways. [59, 62–64] Now the early actinides are added to the list.

14.4.1.3 Reaction Pathways

The reaction diagram for the sp2 and sp3 C–H activation pathways starting from the most
stable adduct 5A and 6A for thorium and uranium complex is shown in Figure 14.8 and
Figure 14.9, respectively. For the thorium system, the sp3 insertion pathway leads to the for-
mation of the transition state TS5A−2A with activation energy of 21.46 kcal/mol and 2A as a
kinetic product. Along the sp2 pathway the transition state TS5A−1A surmounts at higher acti-
vation energy of 22.00 kcal/mol forming the thermodynamic product 1A. These results are
consistent with experimental observation that the C–H bond activation of 2-picoline occurs
to give mixture of 1A and 2A. The product ratio is dependent on temperature, time, and
concentration of 2-picoline; greater concentrations of 2-picoline, longer reaction times, or
higher temperatures afforded greater yields of the sp2 C–H bond activation product 1A. [55]
Therefore the small energy difference between the transition state of sp2 and sp3 C–H bond
activation (0.56 kcal/mol) allows the formation of kinetic product 2A and the conversion to
the thermodynamic product 1A.

In marked contrast to the thorium reaction, the sp3 C–H bond activation (TS6A−4A) of ura-
nium system is associated with higher activation energy than the sp2 activation (TS6A−3A)
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by 1.24 kcal/mol. As a result, the thermodynamically favored product is also kinetically
favored for the uranium complex, leading to the only observed product through sp2 acti-
vation. [55] The overall results regarding the trends in sp2 versus sp3 activation pathways
are encouraging in that they delineate the experimental observations to date, despite the
small energy differences. Note that these activation energies are calculated for the model Cp
systems. Larger differences usually are anticipated for Cp* systems when the five methyl
groups on the Cp are fully included. Indeed, we observed larger energy differences between
product isomers using Cp* as ligand instead of the model Cp ligand. However, in order to
correctly identify the transition states, a reduced degree of freedom is usually very helpful.
The chemical nature reviewed using the Cp model system will be transferable to the Cp*
systems.

A natural question to ask is the cause of the reactivity difference between the thorium and
uranium complexes. We will examine the electronic properties of the reactants, products,
and transitions in order to understand the similarities and differences. The natural popula-
tions of 6d and 5f for all species are depicted in Figure 14.10; the 5f population at the metal
center roughly keeps consistent along the reaction pathways. See color plate section. The
higher 5f populations for U reflect the extra two unpaired electrons at the uranium center,
which does not participate in the reaction directly. Thus, there is no oxidation state of the
metal center consistent with the proposedσ-bond metathesis and experimental observations.
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The influence of solvation effects on the reaction mechanism was also evaluated using
the polarizable continuum models (PCM). Because the solvent used in the experiments is
toluene with a small dielectric constant of 2.38, one does not anticipate large changes in
reaction energies. Indeed, the solvation effects are of the same degree because the com-
plexes along the reaction pathway have similar dipole moments. The solvent-induced dipole
moment are about 15% uniformly larger for reactants, adducts, transitions states, and prod-
ucts for both Th and U systems. Overall the role of solvent effects is negligible giving
the same results as those gas-phase conclusions regarding the thermodynamic and kinetic
pathways for the C–H activation.

In summary, theoretical study provides mechanistic insights into the aspects of C–H
activation chemistry involving actinide metal center. The results of density functional theo-
retical exploration are consistent with the experimental outcome. A weakly bound adduct is
formed to bring the C–H to the proximity to the metal center. This is followed by the acti-
vation of adjacent C–H bonds through an agostic interactions-assisted σ-bond metathesis
mechanism. The origin of the regioselectivity rests in the highly ordered nature of the con-
certed transition states. Despite many common features found between thorium and uranium
systems, including similar geometries of the products, adducts, and agostic interactions in
the transitions state, the relative activation energies between sp2 and sp3 activation switch
the order with small energy difference. These results are in good agreement with the exper-
imental observation that the sp2 insertion product is the thermodynamic product in both
cases, but the sp3 insertion product is the kinetic product for thorium complex. The dif-
ferences in the competition between sp2 and sp3 pathways for the two actinide centers are
subtle. Electronic property analyses conform that 5f electrons are not involved in the C–H
activation. A non-conventional σ-bond metathesis mechanism involved in agostic interac-
tions is proposed for the cyclometalation mechanism of C–H activation of N-heterocycles
by actinocene complexes.

14.4.2 Study of Imido-Exchange Reaction Mechanism

In the second example we present a study where theoretical helped unravel an unexpected
result in the laboratory: a reaction expected to lead to the thermodynamically most stable
species (uranium oxo), instead generated a uranium imido species. As mentioned earlier,
the uranyl ion possesses U-O bonds with high thermodynamic stability and extreme kinetic
inertness. As a result, the majority of uranyl ion reaction chemistry involves substitution of
equatorially coordinated ligands while leaving the U-O bond unaffected. Its isoelectronic
bis(imido) [U(NR)2]2+ analog, while possessing many of the bonding features found in
UO2+

2 [46] exhibits reactivity quite distinct from UO2+
2 .

Organic isocyanates have often been used in transition metal chemistry to effect tran-
formations of M=N imido functional groups. [65] The reaction of R*NCO with M=NR
imido comounds have been reported to produce either (1) carbodiimides (R*NCNR) and
metal oxo complexes or (2) a new isocyanate (RNCO) and M=NR* metal imido com-
pound. It is suggested that the reaction proceeds by the formal [2 + 2] cycloaddition of
either the C=O or C=N bond of the isocyanate across the M=N imido functional group.
Given the high strength of U=O bond, it was anticipated that the reaction of bis(imido)
complex U(NtBu)2- (I)2(OPPh3)2 (7) with aryl isocyanates would yield the oxo-imido
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complex 8 (Scheme 14.2). See color plate section. Instead, a mixed bis(imido) complex
U(NPh)(Nt- Bu)(I)2(OPPh3)2 (9) was isolated. [47]

Density functional theory (DFT) calculations were performed to elucidate the relative
energies of the intermediates and products of this reaction. There are two reaction path-
ways that could generate the bis(imido) product 9 and the oxo-imido species 8 from
U(NtBu)2(I)2(OPPh3)2 (Paths 1 and 2, Scheme 14.3). See color plate section. The first
pathway involves the [2 + 2] cycloaddition of the C=N bond of the aryl isocyanate to form
an NN-bound ureato intermediate (13), which can isomerize to form species 14 with the -
NPh group trans to the tert-butyl imido moiety. Compound 14 can then eliminate tBuNCO
to generate the unsymmetrical bis(imido) complex 9 (top line in Scheme 14.2). Alterna-
tively, NO-bound carbamate intermediates 15 and 16 could form that result from the [2
+ 2] cycloaddition of the C=O bond of the aryl isocyanate across the U=N imido bond.
Elimination of a substituted carbodiimide would generate the oxo-imido complex 8 (bottom
line in Scheme 14.2).

The computational results suggest the lowest energy pathway involves the [2 + 2]
cycloaddition of the C=N bond of phenyl isocyanate to form the NN-bound ureato inter-
mediate 13 (Path 1, Scheme 14.3). In the calculations performed, it is assumed that OPPh3
dissociation occurs in order to generate intermediates 13 and 14. Experimentally, the reac-
tions between 7 and PhNCO proceed much more slowly in the presence of excess OPPh3
as is consistent with this assumption. Overall the transformation of U(NtBu)2(I)2(OPPh3)2
(7) to U(NPh)(NtBu)(I)2(OPPh3)2 (9) is exergonic, with the free energy of the bis(tert-
butyl)imido uranium complex (7) + PhNCO higher than the mixed imido species 9 +
tBuNCO by 6.2 kcal ·mol−1.

In contrast to this mechanism, the calculated [2 + 2] C=O cycloaddition bond pathway
(Path 2) involves the formation of the higher energy NO-bound ureato intermediates 15
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Scheme 14.3 Relative free energies of the products and intermediates in the potential path-
ways for the formation of 8 and 9. The energies are provided in parentheses in kcal/mol.
Reprinted with permission from Spencer et al. [47] Copyright 2008, American Chemical Society.
See color plate section

(19.8 kcal ·mol−1) and 16 (28.7 kcal ·mol−1). Complex 15 can then eliminate the mixed
carbodiimide tBuN=C=NPh and form the oxo-imido species 8. As was anticipated, the
relative energy of 8 is substantially lower in energy than the unsymmetrical imido species 9
(15.2 kcal ·mol−1). This energy difference between U=O and U=N bond formation has
also been observed in cyclopentadienyl-substituted UIV complexes. [7]

Given the evidence from DFT calculations and the results from [15]N-labeling studies, it
appears the mechanism for the formation of 9 involves the [2 + 2] cycloaddition of the aryl
isocyanate C=N bond across the U=N imido moiety. These results are quite surprising
given the thermodynamic and kinetic stability of U=O bonds. The further reaction at ele-
vated temperature gives a mixed oxo-imido complex 8 which is consistent with the relative
energies determined by DFT calculations.

14.5 Final Remarks

In this chapter we tried to point out certain general observations and our personal prefer-
ences for choosing computational tools that represent a good compromise between accuracy
and computational cost. When dealing with the heavy elements, relativistic corrections are
imperative and, to a good approximation one can include them via small-core relativis-
tic effective core potentials. All electron calculations with relativistic Hamiltonians are
becoming more “doable” for large molecular systems, but with the exception of certain
problems they do not necessarily afford an increase in accuracy worth the extra cost. Density
functional theory has been proven to be a useful tool to probe the electronic structures and
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reactivity of actinide complexes. Given the experimental difficulties accessing transition
states and reaction pathways, even a semi-quantitative theoretical investigation provides
value. While these DFT approaches are not yet capable of chemical accuracy, computa-
tional chemistry working in partnership with judicious experiments shows great promise to
unravel reaction mechanisms and shed light on the chemistry of the fascinating molecules.

Acknowledgment

ERB and RLM gratefully acknowledge their funding for this work from the Heavy Element
Chemistry Program of the Basic Energy Sciences Division of the US Department of Energy,
at Los Alamos National Laboratory.

References

[1] Pepper, M. & Bursten, B. E. The electronic structure of actinide-containing molecules: A chal-
lenge to applied quantum chemistry. Chem. Rev. 91, 719–741 (1991).

[2] Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the
Actinide and Transactinide elements 3, (Springer).

[3] Dognon, J.-P. Theoretical insights into the chemcal bonding in actinide complexes. Coordination
Chemistry Reviews 266–267, 110–122 (2014).

[4] Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coordination
Chemistry Reviews 257, 394–406 (2013).

[5] Yang, P., Warnke, I., Martin, R. L. & Hay, P. J. Theoretical Studies of the sp2 versus sp3

C–H Bond Activation Chemistry of 2-Picoline by (C5Me5)2An(CH3)2 Complexes (An=Th,
U). Organometallics 27, 1384–1392 (2008).

[6] Lewis, G. N. Valence and Tautomerism. J Am. Chem. Soc. 35, 1448–1455 (1913).
[7] Barros, N. et al. Single but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by

Cp2UO and Cp2UNR. Organometallics 26, 5059–5065 (2007).
[8] Heitler, W. & London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der

Quantenmechanik. Zeitschrift für Physik A Hadrons and Nuclei 44, 455–472 (1927).
[9] Pauling, L. Nature of the Chemical Bond. (Cornell University Press, 1960).

[10] Perkins, P. G. Elementary Molecular Bonding Theory. (Chapman and Hall, 1972).
[11] Ziegler, T. & Rauk, A. Calculation of Bonding Energies by Hartree-Fock Slater Method. 1.

Transition-state method. Theoretica chimica acta 46, 1–10 (1977).
[12] Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics, Vol. 2. 2, (Wiley-VCH, 1991).
[13] Baerends, E. J., Schwarz, W. H. E., Schwerdtfeger, P. & Snijders, J. G. Relativistic atomic orbital

contractions and expansions: magnitudes and explanations. J. Phys. B: At. Mol. Opt. Phys. 23,
3225–3240 (1990).

[14] van Wüllen, C. & Langermann, N. Gradients for two-component quasirelativistic methods.
Application to dihalogenides of element 116. J Chem. Phys. 126, 114106 (2007).

[15] Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials
for K to Au including the outermost core orbitals. J Chem. Phys. 82, 299 (1985).

[16] Fernandez Pacios, L. & Christiansen, P. A. Ab initio relativistic effective potentials with spin-
orbit operators. I. Li through Ar. J Chem. Phys. 82, 2664 (1985).

[17] Ermler, W. C., Lee, Y. S., Christiansen, P. A. & Pitzer, K. S. AB initio effective core potentials
including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular
wavefunctions. Chem. Phys. Lett. 81, 70–74 (1981).

[18] Kahn, L. R. Ab initio effective core potentials: Reduction of all-electron molecular structure
calculations to calculations involving only valence electrons. J Chem. Phys. 65, 3826–3853
(1976).



“Dolg-Driver” — 2015/1/17 — 13:40 — page 399 — #25

Computational Studies of Bonding and Reactivity 399

[19] Dolg, M. & Cao, X. Relativistic Pseudopotentials: Their Development and Scope of Applica-
tions. Chem. Rev. 112, 403–480 (2012).

[20] Wadt, W. R. & Hay, P. J. Abinitio Effective Core Potentials for Molecular Calculations —
Potentials for Main Group Elements Na to Bi. J Chem. Phys. 82, 284–298 (1985).

[21] Hay, P. J. & Martin, R. L. Theoretical studies of the structures and vibrational frequencies of
actinide compounds using relativistic effective core potentials with Hartree–Fock and density
functional methods: UF6, NpF6, and PuF6. J Chem. Phys. 109, 3875 (1998).

[22] Dolg, M., Stoll, H., Savin, A. & Preuss, H. Energy-adjusted pseudopotentials for the rare earth
elements. Theoretica chimica acta 75, 173–194 (1989).

[23] Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides.
Parameter sets and test calculations for thorium and thorium monoxide. J Chem. Phys. 100,
7535–7542 (1994).

[24] Cao, X., Dolg, M. & Stoll, H. Valence basis sets for relativistic energy-consistent small-core
actinide pseudopotentials. J Chem. Phys. 118, 487–496 (2003).

[25] Basis Set Exchange. (David Feller) at <http://bse.pnl.gov/>.
[26] Hehre, W. J., Ditchfield, R. & Pople, J. A. Self—Consistent Molecular Orbital Methods. XII.

Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of
Organic Molecules. J Chem. Phys. 56, 2257–2261 (1972).

[27] Kohn, W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals.
Rev. Mod. Phys. 71, 1253–1266 (1999).

[28] Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 136, 864–871 (1964).
[29] Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects.

Phys. Rev. 140, 1133–1138 (1965).
[30] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization

techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.
Rev. Mod. Phys. 64, 1045–1097 (1992).

[31] Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation ener-
gies for local spin density calculations: a critical analysis. Canadian Journal of Physics 58,
1200–1211 (1980).

[32] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple.
Phys. Rev. Lett. 77, 3865–3868 (1996).

[33] Perdew, J. P., Tao, J., Staroverov, V. N. & Scuseria, G. E. Meta-generalized gradient approxima-
tion: Explanation of a realistic nonempirical density functional. J Chem. Phys. 120, 6898–6911
(2004).

[34] Tao, J., Perdew, J., Staroverov, V. & Scuseria, G. Climbing the Density Functional Ladder:
Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids.
Phys. Rev. Lett. 91, 146401 (2003).

[35] Becke, A. D. Density-Functional Thermochemistry . 3. The Role of Exact Exchange. J Chem.
Phys. 98, 5648–5652 (1993).

[36] Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-
correlation functional. J Chem. Phys. 110, 5029 (1999).

[37] Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable
parameters: The PBE0 model. J Chem. Phys. 110, 6158–6170 (1999).

[38] Staroverov, V. N., Scuseria, G. E., Tao, J. & Perdew, J. P. Comparative assessment of a new
nonempirical density functional: Molecules and hydrogen-bonded complexes. J Chem. Phys.
119, 12129–12137 (2003).

[39] Batista, E. R., Martin, R. L., Hay, P. J., Peralta, J. E. & Scuseria, G. E. Density functional inves-
tigations of the properties and thermochemistry of UF6 and UF5 using valence-electron and
all-electron approaches. J Chem. Phys. 121, 2144–2150 (2004).

[40] Peralta, J. E., Batista, E. R., Scuseria, G. E. & Martin, R. L. All-electron hybrid density functional
calculations on UFn and UCln (n= 1 − 6). J Chem Theory Comput 1, 612–616 (2005).

[41] Hildenbrand, D. L. & Lau, K. H. Redetermination of the thermochemistry of gaseous UF5, UF2,
and UF. J Chem. Phys. 94, 1420–1425 (1991).

[42] Compton, R. N. On the formation of positive and negative ions in gaseous UF6. J Chem. Phys.
66, 4478 (1977).



“Dolg-Driver” — 2015/1/17 — 13:40 — page 400 — #26

400 Computational Methods in Lanthanide and Actinide Chemistry

[43] McDowell, R., Asprey, L. B. & Paine, R. T. Vibrational-Spectrum and Force-Field of Uranium
Hexafluoride. J Chem. Phys. 61, 3571–3580 (1974).

[44] Batista, E. R., Martin, R. L. & Hay, P. J. Density functional investigations of the properties and
thermochemistry of UFn and UCln (n= 1, . . . , 6). J Chem. Phys. 121, 11104–11111 (2004).

[45] Denning, R. G. Electronic Structure and Bonding in Actinyl Ions and their Analogs. J Phys.
Chem. A 111, 4125–4143 (2007).

[46] Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).
[47] Spencer, L. P., Yang, P., Scott, B. L., Batista, E. R. & Boncella, J. M. Imido exchange in bis

(imido) uranium (vi) complexes with aryl isocyanates. J Am. Chem. Soc. 130, 2930–2931 (2008).
[48] Spencer, L. P., Yang, P., Scott, B. L., Batista, E. R. & Boncella, J. M. Uranium(VI) bis(imido)

chalcogenate complexes: synthesis and density functional theory analysis. Inorg. Chem. 48,
2693–2700 (2009).

[49] Spencer, L. P. et al. Cation-cation interactions, magnetic communication, and reactivity of the
pentavalent uranium ion [U(NtBu)2]. Angew. Chem. Int. Ed. Engl. 48, 3795–3798 (2009).

[50] Spencer, L. P. et al. Tetrahalide Complexes of the [U (NR)2]2+ Ion: Synthesis, Theory, and
Chlorine K-Edge X-ray Absorption Spectroscopy. J Am. Chem. Soc. 135, 2279 (2013).

[51] Sharma, M., Andrea, T., Brookes, N. J., Yates, B. F. & Eisen, M. S. Organoactinides Promote the
Dimerization of Aldehydes: Scope, Kinetics, Thermodynamics, and Calculation Studies. J Am.
Chem. Soc. 133, 1341–1356 (2011).

[52] Yahia, A. & Maron, L. Is Thorium a d Transition Metal or an Actinide? An Answer from a DFT
Study of the Reaction between Pyridine N-Oxide and Cp2M(CH3)2with M = Zr, Th, and U.
Organometallics 28, 672–679 (2009).

[53] Castro, L., Yahia, A. & Maron, L. A DFT study of the reactivity of actinidocenes (U, Np and Pu)
with pyridine and pyridine N-oxide derivatives. Dalton Transactions 39, 6682–6692 (2010).

[54] Pool, J. A., Scott, B. L. & Kiplinger, J. L. A New Mode of Reactivity for Pyridine N-Oxide: C–H
Activation with Uranium(IV) and Thorium(IV) Bis(alkyl) Complexes. J Am. Chem. Soc. 127,
1338–1339 (2005).

[55] Kiplinger, J. L., Scott, B. L., Schelter, E. J. & Pool-Davis-Tournear, J. A. sp3 versus sp2 C–H
bond activation chemistry of 2-picoline by Th(IV) and U(IV) metallocene complexes. Journal
of Alloys and Compounds 444–445, 477–482 (2007).

[56] Miertuš, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum. A
direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem.
Phys. 55, 117–129 (1981).

[57] Cammi, R., Mennucci, B. & Tomasi, J. Fast Evaluation of Geometries and Proper-
ties of Excited Molecules in Solution: A Tamm-Dancoff Model with Application to
4-Dimethylaminobenzonitrile. J Phys. Chem. A 104, 5631–5637 (2000).

[58] Waterman, R. σ-Bond Metathesis: A 30-Year Retrospective. Organometallics 32, 7249–7263
(2013).

[59] Balcells, D., Clot, E. & Eisenstein, O. C–H Bond Activation in Transition Metal Species from a
Computational Perspective. Chem. Rev. 110, 749–823 (2010).

[60] Davies, D. L., Donald, S. M. A. & Macgregor, S. A. Computational Study of the Mechanism of
Cyclometalation by Palladium Acetate. J Am. Chem. Soc. 127, 13754–13755 (2005).

[61] Davies, D. L. et al. N-H versus C–H Activation of a Pyrrole Imine at {Cp∗Ir}: A Computational
and Experimental Study. Organometallics 25, 5976–5978 (2006).

[62] Grubbs, R. H. & Coates, G. W. α-Agostic Interactions and Olefin Insertion in Metallocene
Polymerization Catalysts. Accounts of Chemical Research 29, 85–93 (1996).

[63] Brookhart, M., Green, M. L. H. & Parkin, G. Agostic interactions in transition metal compounds.
P Natl Acad Sci Usa 104, 6908–6914 (2007).

[64] Omae, I. Agostic bonds in cyclometalation. Journal of Organometallic Chemistry 696,
1128–1145 (2011).

[65] Hazari, N. & Mountford, P. Reactions and Applications of Titanium Imido Complexes. Accounts
of Chemical Research 38, 839–849 (2005).



“Dolg-Driver” — 2015/1/17 — 16:07 — page 401 — #1

15
The 32-Electron Principle: A New

Magic Number

Pekka Pyykkö,1 Carine Clavaguéra2 and Jean-Pierre Dognon3

1Department of Chemistry, University of Helsinki
2Laboratoire de chimie moléculaire, Département de chimie, École Polytechnique, CNRS

3CEA/Saclay, UMR 3299 CEA/CNRS SIS2M, Laboratoire de chimie moléculaire et de
catalyse pour l’énergie

15.1 Introduction

15.1.1 Mononuclear, MLn systems

The Lewis octets and the 18-electron principle are well-known, and are thought to corre-
spond to filling the (s,p)-like and (s,p,d)-like shells, respectively, for an MLn complex. For
the heavier main-group elements the s-like shell can form a (‘stereochemically active’ or
‘stereochemically inactive’) lone pair, but the level order and electron count remain the
same, s < p. The 18-electron (18e) principle was first suggested by Langmuir [1]. Its inter-
pretation was recently discussed by Pyykkö [2] (and references therein). The point was that
the s- and d-like orbitals indeed have considerable central-atom character while the p-like
population on M may be small. Nevertheless, the latter molecular orbital lies energetically
in between, imposed by its intermediate number of angular nodes and, consequently, by the
intermediate angular kinetic energy. Therefore, the p-like level must be filled, even when it
is a ‘free passenger.’ The level order presumed here, s < p < d < f, is valid for a screened
Coulomb potential with a single dominant centre.

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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15.1.1.1 Beyond 18e with a central actinide atom

As a precursor to the present topic we mention the closed-shell Th(COT)2 [2] and the
linear triatomic LThL’ [3], where formal electron counts of 20 and 24 were predicted
at Th, respectively. At the time, the step to 32-electron (32e) in an MLn system seemed
insurmountable.

15.1.1.2 ‘Thin-shell molecules’

Approximating the ligand shell by a sphere at radius R [2], the kinetic energies of the states
with an orbital angular momentum l become

El =
l(l + 1)

2R2
(15.1)

in atomic units.
A similar order of symmetries seems to occur in molecules consisting of a single shell of

the Ln on the surface. Examples are the hypothetical 32e system Au32 of symmetry Ih [4],
or the equally hypothetical 72e system Au72 of the chiral symmetry I [5]. A list of these
single-shell magic numbers is given in Table 15.1. Note the absence of radial nodes in this
case.

15.1.2 Metal Clusters as ‘Superatoms’

A richer zoo of magic numbers can be obtained by filling the sphere. Then the qualitative
types (a)–(d) in Figure 15.1 can be imagined. Case (a) is that of the thin attractive shell
or particle on a sphere. Case (b) is a ‘wine bottle’ potential, with a repulsive excess at the
centre. Case (c) is the classic problem of a particle in a sphere. Case (d) is a parabolic one,
possibly flattened at the bottom.

An example on a radial potential is the ‘jellium’ one, see for example the review by de
Heer [6]. The radial potential of the jellium model rather is of the ‘wine-bottle’ type. The
level order of the particle in a sphere is qualitatively similar to the jellium one. See Figure 2
of de Heer [6]. It gives the level order

1S < 1P < 1D ≤ 2S < 1F < 2P < 1G . . . (15.2)

Table 15.1 The magic
numbers, N, for occu-
pied shells l = 0 − Lmax

Lmax Shells filled N

0 S 2
1 SP 8
2 SPD 18
3 SPDF 32
4 SPDFG 50
5 SPDFGH 72
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(a)

qx

(b)

(c) (d)

x

x x

V(x)V(x)

V(x) V(x)

Figure 15.1 Some types of potential wells for quasispherical systems. Case (a) corresponds to
a thin attractive shell, case (b) is the ‘wine bottle’ potential, case (c) is the particle in a box, and
case (d) is a spherical harmonic oscillator potential

Concerning the notation, S,P,D, . . . have their usual meaning. Concerning the principal
quantum number, n, it starts from 1 to every L. The corresponding magic numbers are 2, 8,
18, 20, 34, 40, 58, . . . for sodium clusters, as seen from Figure 1 in Knight et al. [7].

In an atomic nucleus, the order of proton levels or neutron levels is qualitatively of the
same type. Spin-orbit splitting is so far neglected.

An example on introducing heteroatoms is the magic number N = 20 occurring in
Si@Au16 (see Walter and Häkkinen [8]). A wide application of such magic numbers was
found for the compact inner part of clad gold clusters (see Häkkinen [9]). Some occurring
magic numbers for the inner gold cluster are 8, 18, 20, 34, and 58. He also discusses the
magic numbers for planar, quantum-dot models.

A further example on a filled 18e system is the predicted [10] and experimentally prepared
[11] icosahedral WAu12. Isoelectronic species with M = Mo, V−, Nb−, and Ta− were both
predicted and prepared. Incidentally, uranium as the central atom was not found to work.

A sufficient amount of wine-bottle character will raise 2S above 1F, and give a magic
number of 32e, instead of 34e. For the spherical harmonic oscillator one obtains the
equidistant energy levels [12]:

1S < 1P < 2S + 1D < 2P + 1F < 3S + 2D + 1G < 3P + 2F + 1H < . . . (15.3)

Filling all levels with independent electrons would give the magic numbers 2, 8, 20, 40,
70, 112, . . .
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15.1.3 The Present Review: An@Ln-Type Systems

Our purpose here is to cover the recently discussed 32e systems:

(a) Pu@Pb12 [13] with Pu@Sn12 and further thermochemical data discussed later by
Dognon et al. [14],

(b) The case of An@C28 was already experimentally known, but not previously identified
as a 32e system until Dognon et al. [15],

(c) The anionic [U@Si20]6− predicted by Dognon et al. [16].

Other recent cases are also mentioned.

15.2 Cases So Far Studied

15.2.1 The Early Years: Pb2−
12 and Sn2−

12 Clusters

The starting point for this case as described in (a) was the work of Cui et al. [17, 18] when
a new class of Zintl ions, plumbaspherene, Pb2−

12 , and stannaspherene, Sn2−
12 , were charac-

terized by photoelectron spectroscopy as hosts for building up a new type of endohedral
clusters. Gas-phase experiments and theoretical investigations predicted a remarkable sta-
bility for the icosahedral plumbaspherene Pb2−

12 and the stannaspherene Sn2−
12 cluster anions

of Ih point symmetry. These empty polyanions have not yet been synthesized in crystalline
form.

The filled icosahedral M@Pbx
12 (x= +1,0,−1,−2 and M=Al, Pt, Ni, Pd, Co...) were

studied both experimentally using mass spectrometry, 207Pb NMR, and X-ray analysis by
Esenturk et al. [19, 20], Neukermans et al. [21], Zhang et al. [22], and theoretically using
density functional theory (DFT) calculations by Chen et al. [23, 24] and Neukermans et al.
[21]. In all of these studies, the clusters were found to be very stable, opening a branch of
novel, chemically inert cluster species. The Pb2−

12 and Sn2−
12 clusters are 12-vertex polyhedra

(see Figure 15.2) with highly regular icosahedral structure.
The cage electronic structure is characterized by the remarkable availability of “free” 26

electrons at the top of the occupied 6p or 5p bands of Pb2−
12 and Sn2−

12 , respectively. This is

Figure 15.2 Pb2−
12 (Ih) optimized geometry. From DFT/B3LYP (see Dognon et al. [13] for

details)
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allowed by the large energy separation between the 6s and 6p (5s and 5p) shells as observed
in the total density of state (DOS) (Figure 15.3). This separation is a consequence of the
stabilization of the 6s-based MOs due to the “inert pair effect” arising from the relativis-
tic effects [25]. This is clearly demonstrated from the comparison of the scalar relativistic
and non-relativistic Pb2−

12 DOS (Figure 15.3). Because of this large energy separation, the
6s2(5s2) electron pairs of Pb2−

12 (Sn2−
12 ) are localized on Pb or Sn atoms leaving the two 6p

(5p) electrons per atom to participate in the bonding inside the cage. Among the 13 scalar-
relativistic valence MOs of Pb2−

12 shown in Figure 15.4 and Figure 15.5, there are four radial
π orbitals (ag and t1u) and nine in-sphere σ MOs (gu and hg) as previously calculated by Cui
et al. [17]. See color plate section. The bonding pattern in the stannaspherene Sn2−

12 is very
similar. Filling the cage in icosahedral symmetry, the s orbitals transform as ag, p orbitals
as t1u, and d orbitals as hg, while f orbitals are split into the gu and t2u irreps, and similarly
g orbitals into hg and gg irreps. Thus, the s, p, and f orbitals of a central atom can only mix
with cage s, or p or f orbitals. The d orbitals of a central metal, however, are not only allowed
to interact with cage d orbitals, but also with the hg set of the cage g orbitals.

These considerations were at the origin of our first predicted 32-electron system:
Pu@Pb12 and related systems [13]. Our specific idea was, that with 6e more, on top of
the 26e plumbaspherene ion 6p band ag⊕gu⊕hg⊕t1u (HOMO), we could obtain a perfect
ag⊕gu⊕hg⊕t1u⊕t2u 32e configuration. The t2u from the actinide 5f levels is then added to
the count. Indeed, if any f-contributions are desired, an actinide is required, the 4f shells of
the lanthanides being far too compact. We also have to note that the 5f shell of the heavier
actinides might not be chemically accessible.

In order to establish the “proof of concept,” the closed-shell Yb@Pb12, Th@Pb4−
12 ,

U@Pb2−
12 , Pu@Pb12, Am@Pb+12, Cm@Pb2+

12 endohedral clusters were explored using DFT,
including relativistic effects. The M@Pbn

12 have different structures for the most stable

Non relativistic
Scalar relativistic

D
O

S

–12 –10 –8 –6 –4 –2 0
Energy (eV)

2 4 6 8 10

6p Band

6s
6s

Figure 15.3 Pb2−
12 (Ih) total density of state. From DFT/B3LYP (see Dognon et al. [13,14] for

details). The Fermi level is shown by a vertical gray line (scalar-relativistic)
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HOMO

1ag 1gu

1hg

1t1u

1t2u

Pb12
2–

Pb12
2–

Pb12
2–

Pu@Pb12

Pu@Pb12

Pu@Pb12

Pu@Pb12

Figure 15.4 Scalar relativistic valence molecular orbitals of Pu@Pb2−
12 (Ih) and Pb2−

12 (Ih).
Adapted from Dognon et al. [13]. See color plate section

isomer as M changes. Doping the Pb2−
12 cage with the 5f elements, Pu, Am, Cm, and with

the 4f element Yb, maintain the Ih symmetry with a slight radial expansion of the initial
cage (with a maximum of 0.23 Å for the M-Pb distance). In contrast, the Th, U, Np have C5,
D5h, and D5h point groups, respectively. The HOMO-LUMO gap is more than 1 eV with
binding energies, with respect to the [Pb12]2− and Mx fragments, larger than -15 eV (see
Table 15.2). This makes the An@Pb2−

12 endohedral clusters very stable species.
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Figure 15.5 Scalar relativistic energy levels of Pu@Pb2−
12 (Ih) and Pb2−

12 (Ih). The latter have
been shifted to make the HOMOs equal. Adapted from Dognon et al. [13]

For comparison, binding energies in the range of -2.47/-5.60 eV were reported for neutral
M@Pb12 (M = B, Al, Ga, In and Tl) endohedral clusters by Chen et al. [23, 24].

The electronic structure is usually described by inspecting shape and occupation of the
orbitals or by calculating charges or bond orders. These traditional quantum-chemistry mea-
sures can lead to counterintuitive results when applied to bonding across the 5f series (see
Prodan et al. [26]) and are insufficient for an in-depth interpretation of the bonding. The
joint and complementary charge, orbital, quantum chemical topology, and energy decom-
position analyses (EDA) are a more powerful approach for a detailed electronic structure
analysis [27]. Intuitively, the compounds seem to be similar to endohedral clusters like
[Pt@Pb12]2−, which was earlier synthesized by Esenturk and coworkers [20]. The bond-
ing in the latter species is characterized by strong peripheral interactions among the lead
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Table 15.2 HOMO-LUMO gap, binding energy (BE) analysis with respect to the
[Pb12]2− and Mx fragments (in eV). From scalar relativistic DFT/PBE (see Dognon
et al. [13] for details)

Pb2−
12 [U@Pb12]

2− Pu@Pb12 [Am@Pb12]
+ [Cm@Pb12]

2+

Symmetry Ih D5h Ih Ih Ih
HOMO-LUMO 3.08 1.26 1.93 2.45 0.85

BE −17.59 −22.17 −39.18 −69.33
Pauli repulsion 15.52 16.39 15.91 15.27

Electrostatic −12.11 −21.54 −21.11 −33.25
Orbital −20.93 −17.02 −27.98 −51.36

The BE is the sum of Pauli, electrostatic, and orbital contributions. Negative values are binding.

atoms forming a Pb2−
12 cage, whereas the contribution of the interactions between the cen-

tral Pt atom and the Pb12 cage to the overall stability of the compound is much smaller. Each
Pb atom donates two electrons to cluster bonding and the Pt atom does not donate electrons
(it is qualified as a zerovalent Pt atom by Cui et al. [17]). The insertion of the Pt atom into
the cage only further stabilizes the cage by filling the empty center. In contrast, the insertion
of a lanthanide or actinide atom highly stabilizes the cage because of a strong Pb-An inter-
action that originates in an attractive electrostatic effect and in a large orbital interaction.
The Pauli repulsion remains nearly the same from U to Cm. The orbital term contributes
∼45% to the total attractive interactions and is determined by the 6d orbital energy for the
Pu and Am clusters and by the 5f orbital energy for the Cm cluster [13]. Further analysis
from the valence molecular orbital (MO) diagram (Figure 15.4) revealed the formation of
16 MOs between the cage and the central atom (ag, gu, hg, t1u, and t2u). The Pu 7s, 7p, 6d,
and 5f orbitals are involved in the hybridization with the Pb2−

12 cage orbitals. In Yb@Pb12,
[Cm@Pb12]

2+, the 4f and 5f levels do not strongly mix with the cage because they are
already too deep in energy. The electronic structure was also analyzed using the electron
localizability indicator (ELI-D). The electron localizability indicator (ELI) is a functional
introduced by Kohout [28, 29] that describes the correlation of electronic motion. In fact ELI
designates a family of indicators. Among them, one of the most pertinent for the study of
the bonding is the ELI-D that can be seen as being proportional to the charge that is needed
to form an electron pair. In the [An@Pb12]n clusters, the ELI-D map exhibits localization
domains between the central atom and the cage as shown in diagram (a) in Figure 15.6: See
color plate section. They result from the interaction between Pb and Pu for example, and are
a consequence of the formation of the ag, gu, hg, t1u, and t2u orbitals. For example, diagram
(b) in Figure 15.6 depicts the pELI-D contributions of the 1hg orbitals in the real space.
This accounts for the existence of a strong interaction between the central atom and the
cage. The combination charge, orbital, quantum chemical topology and energy decomposi-
tion analyses provides an unambiguous picture of the bonding in the [An@Pb12]n clusters
with notable covalency between the central actinide atom and the surrounding cages. These
results have enabled us to conclude that Pu@Pb12 and [Am@Pb12]

+ compounds are the
first examples of centered 32e systems.

As a matter of fact, the formation of a covalent bond between the constituent monomers
is required to achieve the present endohedral clusters in the gas phase (none of them have
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(a) (b)

Figure 15.6 ELI-D isosurfaces of the [Pu@Pb12] (Ih) : magenta domains (a) visualize the inter-
action between the Pb cage and the Pu atom. Blue domains (b) are pELI-D isosurfaces (0.25)
of summation over 5 MOs (1hg) visualizing the 6p(Pb)-6d(Pu) orbital mixing. From scalar
relativistic all-electron DFT/PBE. See color plate section

yet been prepared). The reaction of encapsulation of the plutonium ion in the plumba-
spherene and stannaspherene cage is exothermic. For example, the Pu2+ + Pb2−12 →
Pu@Pb12 reaction Gibbs free energy was calculated at −2100 kJ/mol (T = 298.15 K, P =
1 atm.) from DFT/B3LYP harmonic vibrational frequencies and standard statistical ther-
modynamics (assuming ideal gas). In order to locate thermodynamically the Pu@Sn12 and
Pu@Pb12 gas-phase clusters with respect to the solid phase, we have used the experimen-
tal standard enthalpy of formation and entropy at 298.15 K from Morss et al. [30] and Cox
et al. [31] (see Dognon et al. [14] for details). Pu@Sn12 and Pu@Pb12 are evaluated at about
1950 kJ/mol and 650 kJ/mol for the enthalpy and at about 1550 kJ/mol and 250 kJ/mol for
the Gibbs free energy above Pu(s) + 12 Sn(s) or Pu(s) + 12 Pb(s), respectively. The existence
of the present cluster compounds is made more likely by the experimental observation of
the mixed metallic phases Pu3Pb, Pu5Pb3, Pu5Pb4, Pu4Pb5, PuPb2, PuPb3, in the bulk [30].

The covalent bonding between the cage and the central atom is likely to affect the optical
properties (UV/Visible/IR) of these clusters. Due to Ih symmetry, only the T1u modes are
IR-active and only the T1u symmetry electronic transitions are electric-dipole-allowed. The
DFT/B3LYP calculated infrared spectra show that the cage has vibration frequencies at
90 cm−1 and 126 cm−1 for Pb2−

12 and Sn2−
12 , respectively. Due to the rigidity of the cage,

the inclusion of the actinide ion does not change significantly the cage deformation modes
(e.g., an increase of 17 cm−1 for Pu@Pb12). The intra-sphere motion of the actinide atom
can be viewed as a particle-in-a box translation with a very small vibrational frequency (e.g.,
30 cm−1 for Pu@Pb12).

For the Pb2−
12 and Sn2−

12 cages, the calculated electronic absorption spectra at the adia-
batic time-dependent density functional theory (TDDFT) level are similar. The absorptions
are mainly in the ultraviolet with a strong absorption at about 220–230 nm and a weak
absorption between 290–480 nm. The modifications in the absorption spectra induced by
the encapsulation of Pu2+ ion are mainly the introduction of an absorption in the red (700–
750 nm) with a blueshift from Sn12 to Pb12. The major MOs involved in this excitation are
t1u [6p(Pu)/5p(Sn) or 6p(Pb)] to hg [(6d(Pu)/5p(Sn) or 6p(Pb)].
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15.2.2 The Validation: An@C28 (An = Th, Pa+, U2+, Pu4+) Series

The C20 molecule with a dodecahedral cage structure is the smallest theoretically possible
member of the fullerene family. The highly strained fullerene C20 consists only of pentagons
and cannot be experimentally produced by carbon condensation or cluster annealing pro-
cesses. Prinzbach et al. [32] claimed a gas-phase detection of a very short-lived C20 species.
Therefore, the smallest fullerene to form in carbon vapor is expected to be in the C24-C30

cluster region with a C28 cluster being particularly abundant. From empirical rules, which
relates the stability of carbon cages mainly to the existence and location of pentagonal rings,
Kroto [33] showed that the Td C28 had a particular stability compared to other clusters of
approximately the same size with an expected open-shell electronic structure. Further evi-
dence in support of the C28 fullerene in the gas phase was provided by Guo et al. [34]
who suggested that C28 may be remarkably stabilized by uranium encapsulation. This was
the starting point for several theoretical papers on the electronic structure of C28 cage and
U@C28 endohedral cluster. From ab initio HF calculations, the empty C28 fullerene is found
by Guo et al. [35] to have a 5A2 open-shell ground state and behaves as a hollow superatom
with an effective valence of 4, both toward the outside and inside of the carbon cage. It
was noted that the ground state is not subject to Jahn-Teller distortion and that C28 cage is
just about the right size to accommodate a U atom. Their calculations show that the bind-
ing energy of the M@C28 species (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn) is a good
indicator of the success in experimentally trapping the metal atoms (M) inside the fullerene
cage.

As pointed out by Rösch et al. [36] in a study of Ce@C28, the C28 molecule can be
viewed as a spherical shell on which a single π orbital per carbon atom can delocalize
to form molecular orbitals that can be filled by a central atom. Furthermore, they found
that there is a significant Ce(4f) covalency identifiable in photoelectron spectra. The first
insights on the stability of the U@C28 complex were provided by Jackson et al. [37] from
DFT/LDA calculations. They suggest that its origin can be found in the 5f(U) and 6d (U)
and 2p(C) orbital mixing including a 7s(U) state that produces very strong bonding between
U and the C28 cage. In addition, their analysis points to the following elements as likely
candidates for producing stable M@C28 complexes: Mo, W, Ru, Os, Ce, Th, and Pu (+4
oxidation state). Electronic structure calculations, including relativistic core potentials and
the spin-orbit interaction, have been carried out on the C28, Pa@C28, and U@C28 species by
Zhao and Pitzer [38]. They conclude that the U@C28 complex has a (π∗)1(5f )1 diamagnetic
ground state as opposed to (π∗)2 or (5f )2, the latter being common in uranium organometal-
lic complexes. The lowest (5f )2 state is found to be 0.553 eV higher. As with Pa@C28, the
C28 π MOs mix with the metal orbitals, suggesting large binding, consistent with the exper-
imentally observed high yields. All of these works mention the An-cage covalent bonding
but did not analyze it in detail. As previously stated, the joint and complementary charge,
orbital, quantum chemical topology, and energy decomposition analyses are mandatory to
go further in the understanding of chemical bonding.

Stabilization of C28 by an endohedral species is a fascinating topic especially as the C28

cage provides itself 28 electrons, and has the ability to accept four electrons in the LUMO
allowing a route to a 32 electrons closed-shell M@C28 system. Because of the quasi mono-
reference (94.3%) nature of the ground state of C28 [38] one can expect that the DFT is
an appropriate theoretical framework for the study of the An@C28 closed-shell complexes.
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Our theoretical study of the M@C28 (M=Ce, Th, Pa+, U2+, Pu4+ confirms the remarkable
chemical stabilization caused by the large HOMO-LUMO gap and the high bonding energy
between −11 and −38 eV (Table 15.3).

Figure 15.7 shows the geometry of the Pu4+@C28. Encapsulation of the central M atom
preserves the Td symmetry and does not result in a significant distortion of the cage since a
small radial expansion of up to 11pm in the initial empty C28 radius is noticed.

Following the energy decomposition analysis with respect to the C28 and Mx fragments
(Table 15.3), the cluster is stabilized by an attractive electrostatic interaction (Pu4+@C28

excepted) and a large orbital interaction. The latter contributes 68–100% of the total attrac-
tive energy reporting bonds that involve both cage and central atom orbitals. The overlap
between the actinide atomic orbitals and the C28 cage orbitals in the 6a1, 10t2, 5t1, 9t2,
8t2, 4e, 5a1 valence molecular orbitals leads to a 32-electron system, i.e., 4 electrons pro-
vided from the An atom and 28 electrons from the 2pπ(C). As an illustration, the valence
molecular orbitals of Pu4+@C28 are given in Figure 15.8. See color plate section.

This is a 60-electron diagram with the 32-electron system (6a1, 10t2, 5t1, 9t2, 8t2, 4e, 5a1)
plus the ‘pure cage’ orbitals (5e, 4t1, 1a2, 7t2, 3e, 6t2) that do not interact with the metal cen-
ter. The 7s,7p, 6d, and 5f orbitals of the actinide mix with the C28 cage orbitals. The 6a1,
10t2, and 5t1 MOs mix the 2p(C) with the 5f(An), the 9t2, 8t2 MOs mix the 2p(C) with the
6d(An) and 7p(An), and the 4e and 5a1 MOs mix the 2p(C) with the 6d(An) and 7s(An).
From Th to Pu, the participation of the 5f orbital in the 6a1, 10t2, 5t1 MOs increases from 9
to 46% (symmetrized fragment orbital analysis, see te Velde et al. [39]). In the lanthanide

Table 15.3 HOMO-LUMO gap and binding energy (BE) analysis with respect
to the C28 and Mx fragments (in eV)

Ce@C28 Th@C28 Pa+@C28 U2+@C28 Pu4+@C28

HOMO-LUMO 3.5 3.5 3.7 4.0 3.9
BE −15.13 −11.03 −14.66 −34.59 −38.13

Pauli repulsion 141.10 171.68 103.49 121.50 30.38
Electrostatic −47.99 −54.58 −37.22 −29.29 4.06

Orbital −108.25 −128.13 −80.93 −126.80 −72.56

From scalar relativistic DFT/B3LYP (see Dognon et al. [15] for details).

Figure 15.7 Pu4+@C28 (Td) optimized geometry. From scalar relativistic DFT/PBE (see
Dognon et al. [15] for details)
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Figure 15.8 Scalar-relativistic valence molecular orbitals of Pu4+@C28 (Td). Adapted from
Dognon et al. [15]. The ‘pure cage’ orbitals (5e, 4t1, 1a2, 7t2, 3e, 6t2) are given in parentheses.
See color plate section

case, a slight hybridization of the 4f(Ce) orbitals (∼6–8%) was found, but this system can-
not be qualified as a 32-electron species. As might be expected, this ‘covalence’ is also
shown by a significant charge transfer (1.4 electrons from a Voronoi deformation density
analysis) from the cage to the U2+ and Pu4+ orbitals. For the other clusters of our series,
the value ranges from 0 to 0.3 electrons. This is clearly reflected by a larger binding energy
and orbital interaction term, for the U2+ and Pu4+ cases (see Table 15.3). The C-An inter-
action was also probed using topological approaches (see Dognon et al. [15]) that support
the existence of a strong bonding interaction. Finally, from the DFT harmonic vibrational
frequencies and standard statistical thermodynamics (assuming ideal gas), an estimation of
the thermodynamic stabilities of M@C28 can be done (see Table 15.4). The encapsulation is
exothermic and the calculated Gibbs free energies account for a great stability of the clusters
and particularly for the U2+@C28 and Pu4+@C28 compounds.
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Table 15.4 Reaction enthalpies and Gibbs
free energies (kJ/mol) for an actinide encap-
sulation in a C28 cage (T=298.15 K, P=1 atm.)

Reaction ΔrH ΔrG

Ce + C28 → Ce@C28 −1181 −1123
Th + C28 → Th@C28 −1440 −1385

Pa+ + C28 → Pa+@C28 −1431 −1373
U2+ + C28 → U2+@C28 −3636 −3577

Pu4+ + C28 → Pu4+@C28 −3641 −3582

From scalar relativistic DFT/PBE (see Dognon et al. [15] for
details).

The UV/Visible/IR optical properties are sensitive to the C-M interaction and accord-
ingly, to the nature of the central atom. In the Td point group symmetry, only the T2 modes
are IR-active and T2 symmetry electronic transitions are electric-dipole-allowed. Calcu-
lated harmonic vibrational frequencies reflect the ion cage-bonding. For the Pu4+@C28

(U2+@C28) clusters, the IR absorption spectra are characterized by a strong (weak) band
with a maximum near 345 cm−1 (326 cm−1). The corresponding vibrational mode can be
assigned to the coupled motions of the cage and of the central atom in the cage. From Th
to Pu4+ the displacement of the band related to this mode is consistent with the increase
in binding energy. UV/Visible absorption spectra of Ann+@C28 were computed at the adi-
abatic TDDFT level and compared with that of the C28 cage. A strong absorption in the
ultraviolet at ∼355 nm is calculated for the C28 cage. Without spin-orbit coupling, as a
result of the encapsulation of the central atom, the absorption band is shifted toward the
visible (380 nm). The introduction of spin-orbit coupling will be discussed in Section 15.3.

Th@C28, Pa+@C28, U2+@C28, and Pu4+@C28 qualify as new examples of 32-electron
species, in addition to our previous An@Pb12 clusters (quoted by Kemsley [40]). This raises
an isolated curiosity to a principle. Moreover, the experimentally already known, the neutral
U@C28 is shown to have a similar 32e bonding system.

15.2.3 The Confirmation: [U@Si20]6−-like Isoelectronic Series

Silicon is an important material in semiconductor and microelectronic industries. There-
fore silicon clusters attracted wide attention these last years, e.g., as building blocks for
nanomaterials. Although fullerene-shaped carbon cages exhibit unusual stability due to sp2

hybridization of the carbon atoms and surface conjugation, a hollow Si cage is unstable
because sp2 hybridization is unfavorable in silicon where sp3 bonding is preferred. Doping
silicon cages with a metal can stabilize these clusters with the possibility to fine-tune the
chemical, electronic, optical, or magnetic properties. Extensive theoretical and experimen-
tal studies have been carried out on metal-doped Si clusters to understand their structures
and properties [41]. A large number of polyhedral cages M@Sin of different sizes have
been stabilized by endohedral doping of a metal atom. Among them, a prominent structure
of high symmetry (tetrahedral) is Ti@Si16 with a Frank-Kasper polyhedron structure (e.g.,
Figure 15.9) [42]. The largest Si cage that can be stabilized by metal encapsulation has been
predicted (from projected augmented plane wave method within DFT/GGA) to be Th@Si20
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TiSi16
+ VSi16

+ CrSi16
+

Figure 15.9 Ground state Frank-Kasper geometries of Si16 endohedral clusters. Reprinted with
permission from D. Palagin, M. Gramzow, and K. Reuter., J. Chem. Phys. 134, 244705 (2011).
Copyright 2011, AIP Publishing LLC

by Singh et al. [43] with a dodecahedral structure of Si20 and icosahedral cluster symme-
try similar to that of C20. Thorium was found to be the only element in the periodic table
that stabilizes Si20 with icosahedral symmetry in the neutral state. With a similar theoretical
approach, Singh et al. [43] explored doping with Ce, Pr, Tb in the lanthanide series and
Pa, U, and Pu atoms in the actinide series (+4 oxidation states), but, in each case, the cage
distorts or lowers its symmetry. Kumar et al. [44] reported stabilization of the Si20 cage by
encapsulation of a variety of lanthanide and actinide atoms forming neutral M@Si20 (M =
Ce, Pa, Sm, Pu, and Tm) endohedral clusters with Th symmetry.

Following Singh et al. [43], under Ih symmetry, the Si20 dodecahedral cage has 80 valence
electrons (VE) and 30 Si-Si bonds. These sigma-bonds take 60 VE, leaving 20 lone π-
electrons. The stability of the icosahedral Th@Si20 structure can be understood starting
from a spherical potential model according to which the highest occupied level of the Si
cage has d-character with four holes. Adding four electrons from the metal, these occupy
the following global orbitals of the Th@Si20 cluster:

σ: 1S(ag)2 + 1P(t1u)6 + 1D(hg)10 + 1F(gu + t2u)14 + 1G(gg +hg)18 + 1H(hu)10, Σ = 60 (1)

π: 2S(ag)2 + 2P(t1u)6 + 2D(hg)10 + 2F(t2u only)6(HOMO), Σ = 24 (2)
(15.4)

Here ‘σ’ and ‘π’ refer to the surface of the cage. The lowest empty orbital (LUMO)
then is the gu component of the 2F shell. A reasonable HOMO-LUMO gap was found, but
the gap from LUMO to LUMO+1 was even larger. Moreover, the LUMO had rather more
Th 5f character than the occupied orbitals. This suggests to us that by giving the system
eight further electrons, filling the previous 2F(gu) LUMO, we would have a fair chance of
obtaining a new 32-electron system. Both 6d and 5f orbitals may contribute to the bonding
of the early actinides. For a single, neutral atom the d-f crossing has been placed at Pa [4]
(see Figure 1 in [44]). For finding further 32-electron compounds, the choice of a later
actinide than thorium would both give some of the required electrons, and more appropriate
5f orbitals, until the 5f electrons strongly localize at Am, or so. We first demonstrated that
the idea in principle works for the model system [U@Si20]

6−, and we then considered the
actinide series [An@Si20]

n− (An=Np, Pu, Am, Cm). With reference to [U@Si20]
6−, adding

the 20 π-electrons of the Si20 cage, 6 electrons from the actinide and 6 electrons from the
charge we could obtain a 32e configuration.
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Starting from an initial icosahedral structure, the symmetry is reduced for An=Np, Pu,
Am to Td (Figure 15.10a) while it is preserved for U and Cm (see Figure 15.10b). All endo-
hedral [An@Si20]

n− clusters are very stable species with a large HOMO-LUMO gap (Table
15.5). The energetics of the encapsulation of the actinide in the cage can be gauged by the
evaluation of the binding energies starting with Sin−20 and An fragments that mimic:

[Si20]
n−

+ An → [An@Si20]
n− (15.5)

Along the series, all of the reactions are exoenergetic, with large BE values (Table 15.5),
reflecting energy stabilization during encapsulation of the metal. The variations in the BE,
Pauli repulsion, electrostatic, and orbital terms are small along the Np, Pu, Am, Cm series,
even if the values are slightly lower for Cm. Nevertheless, uranium is a special case. The
[U@Si20]

6− is strongly stabilized by electrostatic and orbital interactions with respect to
the other actinides. Once more, the origin of the stabilization is in the creation of covalent
bonds between the cage and the central atom. In the Ih symmetry, the 2F energy levels of
the cage split into a threefold degenerate HOMO (t2u) that accommodates two electrons
and an empty fourfold degenerate gu level (LUMO). After U encapsulation, the 12 valence
electrons (6 from the U atom and 6 from charging of the cage) fill the t2u and gu orbitals.
The fourfold-degenerate LUMO of the Si20 cage mixes strongly with the 5f states of U
due to their energetic proximity. The central atom orbitals participate in the ag, t1u, hg, t2u,

(a) (b)

Figure 15.10 [Am@Si20]
3− Td (a) and [U@Si20]

6− Ih (b) optimized geometries. From
DFT/B3LYP (see Dognon et al. [16] for details)

Table 15.5 HOMO-LUMO gap and binding energy (BE) analysis with respect to the Sin−20 and
An fragments (in eV)

[U@Si20]
6− [Np@Si20]

5− [Pu@Si20]
4− [Am@Si20]

3− [Cm@Si20]
2−

Symmetry Ih Th Th Th Ih

HOMO-LUMO 2.01 1.62 1.53 1.55 1.54
BE −42.03 −15.46 −14.61 −14.08 −14.83
Pauli repulsion 36.44 34.69 34.96 35.04 29.34
Electrostatic −31.35 −21.24 −21.58 −21.47 −18.54
Orbital −47.12 −28.9 −27.99 −27.65 −25.63

From scalar relativistic DFT/OPBE (see Dognon et al. [16] for details).
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and gu valence MOs. The 7s, 7p, 6d, and 5f atomic orbitals are involved in hybridization
with the Si20 cage (Figure 15.11). See color plate section. In Figure 15.11, the other MOs
are pure Si20 cage orbitals that do not interact with the metal center. In the [U@Si20]

6−

cluster, the HOMO (gu) and HOMO-1 (t2u) mix the 5f(U) and 3p(Si) orbitals. The hg, t1u,
and ag MOs correspond to 6d(U), 7p(U), and 7s(U), respectively, each one mixing with the
cage. The density of states of the endohedral clusters are plotted in Figure 15.12. A band
structure is observed for the cage corresponding to the pure 3s(Si) band, and a 32-electron
band involving the hybridized cage and actinide orbitals. The width of the 32-electron band
reflects the stability of the clusters. From U to Cm, the DOS is shifted deeper in energy due
to the 5f(An)/3p(Si) mixing according to our previous work on the Pu@Pb12 and related
systems. The nature of the interaction is confirmed with an ELI-D topological analysis. For
example, one can see U-Si basins in Figure 15.13 reflecting a significant electron sharing
between actinide and silicon atoms. See color plate section.

hg

t1u

hu

hg

t2u

gu

ag

Figure 15.11 Scalar relativistic valence molecular orbitals for [U@Si20]
6− (Ih). Adapted from

Dognon et al. [16]. See color plate section
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Figure 15.12 Densities of states for [U@Si20]
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3− as
a function of the orbital energy. The Fermi levels are shown by vertical black lines. From scalar
relativistic DFT/OPBE (see Dognon et al. [16] for details)

Figure 15.13 [U@Si20]6− (Ih) ELI-D isosurface (0.75). A cutting plane is used to show the U-Si
basins (in magenta). U atom in blue. See color plate section

This analysis is valid along the proposed actinide series. Accordingly, combining the 20
electrons from the Si20 cage, the 7s, 7p, 6d, and 5f electrons from the actinide plus the charge
of the cluster, give the required electrons to form the 16 MOs of a centered 32-electron
system (quoted by Pichon [46]).

In order to check the possibility to build neutral systems, we use lanthanide atoms to form
neutral molecular compounds such as La2[U@Si20] (Figure 15.14). A lanthanide atom is
placed on a pentagonal face of the Si20 cage at two opposite sites. Each lanthanide transfers
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Figure 15.14 La2[U@Si20] (C5v) optimized geometry. From DFT/B3LYP (see Dognon et al. [16]
for details)

three electrons to the silicon cage. The geometry is then stabilized in a C5v symmetry. The
addition of La atoms outside the cage does not lead to a significant modification in the
neighboring Si-Si bond lengths for the corresponding pentagon. The La-Si bond length is
2.96 Å. The HOMO-LUMO gap is reduced but still large with the corresponding value
of 1.42 eV. The binding energy with respect to the atomic dissociation limit is large with a
value of −124 eV. By adding outside electron donor ligands, the stabilization of the endohe-
dral cluster is higher than for the [An@Si20]

n− (An=Np, Pu, Am, Cm) series. These results
point out the possibility to build new very stable silicon-based neutral compounds by an
appropriate mixing of lanthanide, actinide, and silicon atoms in the Lnn[An@Si20] compo-
sition. Concerning the electronic structure (see Dognon et al. [16] for details), with respect
to the different symmetries, similar molecular orbital arrangements were found with a sim-
ilar mixing scheme between the actinide and the cage orbitals leading to a fully 32-electron
system.

15.3 Influence of Relativity

The previous results and discussions were based on the zero-order regular approximation
(ZORA) to the Dirac equation in the scalar relativistic (SR) framework, i.e., in which spin-
orbit (SO) interaction was neglected. Of course, due to the nature of the elements involved,
one can expect that spin-orbit coupling affects some properties although relatively small
effects may be anticipated in these closed shell molecules compared to open shell com-
pounds, for example. As the SO effects scale as Z2, the relativistic effects will be significant
for Pb or Sn cages, but the effect due to the presence of the heavy central atom alone can
significantly alter the properties of the endohedral cluster. Among the 32e compounds, the
An@C28 doped fullerenes case is interesting as no direct relativistic effects are expected
on the electronic properties localized on the cage. We considered the ZORA implementa-
tion in the ADF program package [39, 47]. The spin-orbit operator, in regularized form, is
already present in this zero-order Hamiltonian. When the spin-orbit coupling is included,
double group symmetry adapted functions have to be used. In Pu4+@C28, the spin-orbit
effect on the Pu-C distance never exceeds an expansion of ∼3 pm, and a decrease on the
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HOMO-LUMO gap stays less than 7% with respect to the SR values. In Figure 15.15, scalar
relativistic and first-order spin-orbit split valence molecular orbitals levels are shown.

The spin-orbit effect is small, and the most significant splittings are obtained for the 9t2
and 8t2 MOs with values of 0.3 and 0.5 eV, respectively. They correspond to a mixing of the
6d and 7p orbitals with the 2p(C) of the cage. The binding energy is increased by 2.9 eV.
The spin-orbit coupling effects are ‘diluted’ by the presence of the fullerene cage, and these
effects do not invalidate the previous conclusions about the 32-electron principle.

As already stated, due to the nature of the involved chemical elements, a relativistic quan-
tum chemistry approach is required. Indeed, these effects play the main role for orbital
energy positioning leading to the observed orbital mixing in the clusters. The relativistic
effects induce a contraction and an energy stabilization of the s and p shells and an expan-
sion and destabilization of d and f shells. As a consequence, in a non-relativistic framework,
e.g., the 5f(Pu), 6d(Pu) orbitals, are too low in energy, and the 7s(Pu) orbital is too high
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Figure 15.15 Scalar relativistic (left-hand side) and first-order spin-orbit split (right-hand side)
valence molecular orbital levels for Pu4+@C28 (Td)
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Figure 15.16 TDDFT UV-visible spectra for Pu4+@C28 without (dashed line) and with spin-
orbit coupling (solid line, right y axis) compared with the C28 cage spectrum (dotted line).
The band shapes are approximated by Gaussian functions with a full width at half-maximum
of 15 nm

in energy. They are not able to mix with the 2p(C) orbitals of the cage. Accordingly, the
32-electron system is broken in the non-relativistic case.

Obviously, the spin-orbit coupling can affect the optical properties of these clusters and
more strongly the UV/Visible absorption spectra as observed on the TDDFT absorption
spectra. The introduction of spin-orbit coupling in the calculation gives an absorption in
the blue (470–475 nm) and green (525 nm) region of the visible spectrum with an oscillator
strength strongly lowered (Figure 15.16, right y axis). For the Pu4+@C28 clusters, the major
MOs involved in the excitations are 5f(Pu)/2p(C) hybrids without and with spin-orbit cou-
pling. So, due to the large role of the spin-orbit coupling on the electronic spectra, further
extended theoretical work including spin-orbit coupling will be necessary for a quantitative
comparison with future experimental data.

15.4 A Survey of the Current Literature on Lanthanide- and
Actinide-Centered Clusters

After our paper, Dognon et al. [15] appeared, there have been later studies on An@Cn.
The case n = 28 was considered both experimentally and theoretically by Dunk et al. [48]
and Ryzhkov et al. [49]. Other theoretically considered n values include 20 [50], 24 [51],
26 [52], 36 [53], and 40 [54].

The results of Dunk et al. [48] provide experimental insight into how endohedral
fullerenes are formed in carbon vapor and allow for a complete description of fullerene
formation to be developed. Larger U@C2n endohedral metallofullerenes U@C36 and
U@C44 are shown to form with a small probability based on U@C28 as their precursor.
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Uranium appears to be very efficient in catalyzing initial fullerene formation. In addition,
if an encapsulating species is small enough to form M@C28, it must also stabilize C28 by
charge transfer sufficiently to be observed, or all of the species may grow to larger fullerenes
after initial formation in carbon vapor. It begins to be possible to decipher why certain ele-
ments more efficiently form endohedral fullerenes than those that are not able to form, or
at least not readily form [48].

Following our ideas and computational methodologies, Manna et al. [50–53] investigated
the structures, bonding, stability, and spectroscopic properties of the endohedral metallo-
fullerenes, M@C20, Pu@C24, M@C26 (M = Pr−, Pa−, Nd, U, Pm+, Np+, Sm2+, Pu2+,
Eu3+, Am3+, Gd4+, and Cm4+), and U@C36. Among them, only the closed-shell M@C26

(D3h) fulfills the 32e principle with 26 electrons provided by the C26 cage and 6 electrons
by the metal central atom/ion. Note that the 32e systems are not explicitly identified in the
series. For example, some lanthanides or actinides cannot be 32e systems due to too deep 4f
or 5f shells. The M@C20 (Ih) series are found to be highly stable clusters as compared to the
empty C20 cage with a large HOMO-LUMO gap. The orbital mixing between the cage and
the central atom/ion provides a 26e system. The M@C26 endohedral cluster is calculated as
a metastable system with respect to U@C28 system. The U@C36 is stabilized in C6v sym-
metry with a closed-shell electronic structure. The large HOMO-LUMO gap and binding
energy confirm its stability and the experimental observation of Dunk et al. [48].

Ryzhkov et al. [49] carried out a study of the electronic structure of neutral endohedral
An@C28 (An = Th-Md) confirming our results from fully relativistic discrete variational
method. The 6d and 5f contributions to the bonding were found to be comparable for the
earlier actinides. In addition, the actinides (Th-Md) series stabilize a C40 cage with a notice-
able overlap between the 5f, 6d, 7s, 7p orbitals of the central actinide atom and the 2p(C)
of the cage [54]. The most stable complex was found to be Pa@C40.

More recently, a novel, potential 32e system [Th(BH4)6]2− was synthesized by Girolami
et al. (as quoted by Ritter [55]). It has 16 hydrogens around the central thorium.

15.5 Concluding Remarks

We have presented a handful of examples on putative 32-electron systems, one or two of
which already are experimentally made. These form an interesting possible extension of the
previously discussed 8- or 18-electron magic numbers. In particular, we have demonstrated
that there are contributions from the (s, p, d, f) shells of the central actinide atom. In other
words, this 32e magic number is not a coincidence for electrons in a particular quasispher-
ical potential well. The experiments by Cui et al. [56, 57] indicate that all transition metal
or f-block atoms can be trapped inside stannaspherene (see for example Gd@Sn−

12). Conse-
quently, 32e compounds theoretically predicted as very stable species should be accessible
experimentally. The future will show how many 32e systems will turn up.
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16.1 Introduction

Lanthanides (Ln: 57La - 71Lu) and actinides (An: 89Ac - 103Lr), as shown in Table 16.1,
comprise about one-fourth of the known elements collected in the periodic table, however,
despite many interesting chemical and technical applications, they are so far certainly to a
much smaller fraction represented in quantum chemical studies [1]. The underlying reasons
are manifold and mostly quite obvious, i.e., the complexity of their electronic structure as
well as large electron correlation and relativistic effects.

Lanthanide and actinide atoms possess a large number of electrons in shells with angular
quantum numbers l up to 3, which already requires for the electronic ground states the usage
of quite large and thus also costly basis sets for an accurate description at the independent-
particle level. Especially the ground and low-lying excited configurations of the elements
in the middle of the two series are typically characterized by many unpaired electrons in
the valence f shell, resulting in a much higher number of possible electronic states than
it is the case for open d shells of transition metals or open p shells of main group ele-
ments. Figure16.1 reveals that the possible number of LS states, J levels, and determinants

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
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Table 16.1 Electronic ground state J levels, assigned LS terms and (leading)
configurations of the lanthanides and actinides

La Ce Pr Nd Pm Sm Eu
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for an open shell increases by roughly one order of magnitude when going from p to d,
respectively, from d to f elements. Often the open shells in lanthanides and actinides are
of different main quantum number, e.g., 4f (5f), 5d (6d), and possibly 6s (7s) for Ln (An).
They are thus spatially somehow separated and as a consequence relatively weakly coupled,
which together with the larger number of possible states leads to a high density of electronic
states. Figure 16.2 compares the spread of the J level energies as well as the mean energy
gap between adjacent J levels for the elements in the middle of the 3d (Cr), 4d (Mo), and 5d
(W) transition metal series with those in the middle of the 4f (Gd) and 5f (Cm) series [2].
The chosen configurations, i.e., d5s1 for the d elements and f7d1s2 for the f elements, corre-
spond to the configurations assigned for the experimental ground state of Cr, Mo and Gd,
Cm, respectively, but to the low-lying first excited configuration for W. It is obvious that,
despite the larger energy range over which the levels are spread, the average energy dif-
ference between adjacent J levels is for Gd (≈80 cm−1) and Cm (≈62 cm−1) much lower
than for the transition metals. Fortunately, near the ground J level the separations between
adjacent levels are typically larger than the average values.

However, the situation might become even more complex, since often other low-lying
excited configurations are present, e.g., for Gd one finds besides the 4f75d16s2 (term
energies of arising J levels ≥ 0 cm−1) atomic ground state configuration also 4f75d26s1

(≥6378 cm−1), 4f86s2 (≥10947 cm−1), 4f76s26p1 (≥13434 cm−1), and 4f75d16s16p1

(≥14036 cm−1) [3], which are all low enough in energy to play a role for the formation
of molecules. If more than one element with an open f shell is present, very high spin multi-
plicities may arise, e.g., a 19Σ−

g ground state was postulated for Gd2 [4–6] in agreement with
an assignment to 19Σ from later ESR experiments [7]. The high number of unpaired elec-
trons results from nearly atomic-like 4f7 8S high-spin substates on each Ce center, leading to
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Figure 16.2 Spread of energies of J levels and average energy gap between adjacent J levels
for the Cr, Mo, W d5s1 (74 J levels) and Gd, Cm f7d1s2 (3106 J levels) configurations from
MCDHF/DC calculations [2]. Except for W the chosen configurations are the ones assigned for
the experimental ground state
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a σ2
g σ1

u σ1
g π2

u
5Σ−

u molecular substate arising from the 5d and 6s valence orbitals, which
are coupled to form the 19Σ−

g ground state with the possibly highest spin-multiplicity in a
diatomic molecule.

Dynamic electron correlation contributions are non-negligible for accurate calculations,
especially when cases are investigated where a change of the f occupation number on Ln
(An) is important. Due to the slow convergence of the dynamic correlation energy with the
highest angular quantum number present in the basis set, it is unavoidable to include basis
functions of very high angular momentum, e.g., up to at least h or i functions, for accurate
work. Usually the correlation treatment cannot be restricted to the valence orbitals, i.e., Ln
(An) 4f (5f), 5d (6d), and 6s (7s), but has to include also semicore shells, i.e., at least Ln (An)
5s (6s), 5p (6p), which are energetically much lower in energy than the valence orbitals,
but are spatially more diffuse than Ln (An) 4f (5f). In addition core-valence correlation
contributions resulting from the Ln (An) 4d (5d) shells, which radially overlap significantly
with the 4f (5f) shells, are often non-negligible. Finally, it is usually also necessary for
quantitative work to account for near-degeneracy effects such as Ln 6s2 → 6p2, 5d2 (An
7s2 → 7p2, 6d2) [8].

The large nuclear charges of the f elements make a relativistic quantum chemical descrip-
tion, including spin-orbit contributions for quantitative work, indispensable for lanthanide
and actinide systems. As will be described below it is not only the leading Dirac one-particle
relativity that makes important contributions, but also corrections due to the two-particle
Breit interaction as well as to a lesser extent even corrections arising from quantum electro-
dynamics and finite nucleus effects may play a role. As a result of the frequently encountered
energetic proximity of levels with the same J value, arising in easy to handle cases from dif-
ferent LS terms due to the same electronic configuration, but in more difficult ones from LS
terms due to different electronic configurations, a multi-configurational treatment, i.e., an
intermediate coupling scheme, is often necessary even for a correct qualitative description.
Thus, molecules containing lanthanides and/or actinides with open f shells pose very high
challenges to quantum chemistry.

Relativistic quantum chemistry underwent a spectacular development since the early pio-
neering work of Pyykkö and Desclaux [9], Pitzer [10], and others dating back more than
three decades. The development of new relativistic methods as well as the concomitant
increased understanding of the origins and consequences of relativistic effects [11–13] was
also especially beneficial for the field of quantum chemistry for lanthanide and actinide
systems. The rapid development in this field of research becomes obvious from a number
of review articles focusing mainly on f elements published during the last three decades
by Pyykkö [1], Pepper and Bursten [14], Balasubramanian [15], Dolg and Stoll [16],
Kaltsoyannis [17], Cao and Dolg [18–20], Schreckenbach and Shamov [21], as well as
the contributions collected in the present book. The spectrum of computational methods
described in these articles also reflects the ongoing change from initially semiempirical
approaches as well as uncorrelated Hartree-Fock (HF) or Dirac-Hartree-Fock (DHF) calcu-
lations towards correlated ab initio studies using multi-reference (MR) self-consistent field
(SCF) methods with a subsequent multi-reference configuration interaction (CI) treatment
and related approaches, or at least first-principles calculations in the framework of mod-
ern density functional theory (DFT). Despite the tremendous progress made in relativistic
quantum chemistry, when it comes to lanthanides or actinides only a small fraction of the
problems one would like to address can currently be successfully dealt with, especially



“Dolg-Driver” — 2015/1/17 — 15:12 — page 429 — #5

Shell Structure, Relativistic and Electron Correlation Effects in f Elements 429

when quantitative answers are sought from ab initio approaches, i.e., without resorting to
approximate computational schemes based on empirical parameters.

This chapter intends to remind the reader briefly of some important aspects of the shell
structure, relativistic effects, and electron correlation effects for lanthanide and actinide
atoms and molecules, mainly using the example of Ce and Th. It then turns to a discussion
of the electronic structure of cerium-bis(η8-cyclooctatetraene), cerocene, which fascinated
this author for more than two decades, as well as a related cerium(III)-based molecular
Kondo system, i.e., bis(η8-pentalene)cerium. These systems feature many problems of an
accurate relativistic correlated description of their electronic structure and moreover leave
plenty of room for alternative interpretations of their electronic ground state as well as the
involvement of 4f orbitals in chemical bonding.

16.2 Shell Structure, Relativistic and Electron Correlation Effects

In order to describe accurately the electronic structure of many-electron systems, highly
correlated approximate solutions of the Schrödinger equation built from the best possible
relativistic Hamiltonian are needed. Relativistic and electron correlation effects, respec-
tively, arise from the wish to know how much of the problem could still be understood with
a nonrelativistic and uncorrelated approach. Relativity changes the nonrelativistic electron
density, e.g., by contractions and expansions of individual shells due to dominating direct
and in direct relativistic effects, respectively. Changes in the electron density of course
lead to changes in the total energy, including changes in the electron correlation energy,
because it is obvious from the local density approximation of density functional theory
applied to the electron correlation energy. Thus, it is expected and also well known that rel-
ativistic and electron correlation contributions to results of quantum chemical calculations
are not simply additive for heavier elements, e.g., as demonstrated by Visscher and Dyall
for halogen dimers [22]. They are also somewhat dependent on the details of their evalua-
tion [23]. An example for the non-additivity of relativistic and correlation contributions is
given in Figure 16.3, i.e., the fourth ionization potential IP4 of Ce and Th. The non-additive
contributions of relativitiy and correlation are of the order 0.10–0.15 eV [24].

CCSD(T)

HF

nrel. DKH2

28.53

26.57

Th
nrel. DKH2

40.39 36.63

Ce

+1.64 +1.77 +1.96

38.75 34.86 32.98

IP4

34.79

+1.81

–3.76

–6.41

 –6.26

–3.89

Figure 16.3 Fourth ionization potentials IP4 of Ce and Th (eV) as well as corresponding rel-
ativistic and electron correlation contributions (eV) from basis set extrapolated all-electron HF
and CCSD(T) calculations without and with the DKH2 Hamiltonian [24]. Arrows from left to
right denote relativistic, those from top to bottom correlation contributions. Spin-orbit coupling
contributions (as shown in Figure 16.4) were not considered
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Shell structure effects are more dubious and less well defined than relativistic and elec-
tron correlation effects. They are related to the specific filling of the one-particle levels with
electrons, and thus can only be discussed at the nonrelativistic and/or relativistic uncor-
related level. Hypothetical questions such as how the chemistry of the heavier elements
would look like, if, e.g., a filled 3d shell or filled 4f shell would not be present in the core
and for compensation the nuclear charge would be reduced by 10 or 14 units, respectively,
are related to shell structure effects. It is established that such shell structure effects and
relativistic effects are also not really independent from each other [25–27]. Clearly, since
electron correlation goes beyond the independent-particle model, it makes no sense to ask
for couplings between shell structure and electron correlation effects.

In order to keep the picture simple shell structure, relativistic and electron correlation
contributions will be discussed separately in the following sections. The emphasis hereby
is put on Ce and its heavier homologue Th, which will be considered as representatives of
the lanthanide and actinide series, respectively.

16.2.1 Shell Structure

Shell structure effects arise from the filling of the atomic shells with electrons according
to the Aufbau principle and Hund’s rules. Since the one-particle energies of the shells as
well as their spatial extent might be modified in heavy atoms due to relativistic effects, as
shown in Figure 16.4 for the one-particle energies, it is obvious that shell structure and
relativistic effects are coupled. Interesting features in the shell structure of lanthanides and
actinides arise from the fact that the ordering of the shells based on energetic and spatial
criteria is partially different. For the Ce 4f1 5d1 6s2 configuration at the AE DHF/DC level,
the ordering of the outermost shells based on their < r > expectation values is 4f < 5s <
5p < 5d < 6s, whereas for the one-particle energies ε the order 5s < 5p < 4f < 5d < 6s
is obtained [2]. In case of the Th 5f1 6d1 7s2 configuration, the ordering according to the
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Figure 16.4 Orbital energies of Ce and Th from nonrelativistic (HF) and relativistic (DHF/DC)
calculations for the f1 d1 s2 configuration [2]
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one-particle energies ε is analogous, i.e., 6s < 6p < 5f < 6d < 7s, however, partly due to
the strong indirect relativistic effects 5f is less compact, so that an order 6s < 5f < 6p < 6d
< 7s is obtained for the < r > expectation values [2].

Due to their lower main quantum number compared to the other valence shells, i.e., 4f
vs. 5d and 6s for Ln and 5f vs. 6d and 7s for An, the 4f shells of lanthanides and the 5f
shells of (heavier) actinides are spatially quite compact and exhibit a core-like character.
This is apparent from the Ce and Th radial functions plotted in Figure 16.5. Note that due
to the incomplete shielding of the nuclear charge, the Ln 4f and An 5f shells become more
core-like for the heavier members of the series, i.e., the one-particle energies decrease and
the radial function become more compact with increasing atomic number, thus becoming
also less accessible for chemical bonding.

The especially core-like nature of the lanthanide 4f shell is also related to the missing
orthogonality constraints to inner shells bearing the same angular momentum quantum
number. A similar situation was observed for the 3d and 4d shells of first- and second-row
transition metals by Pyykkö, who coined the expression missing primogenic repulsion for
the absent orthogonality constraints [28]. Figure 16.5 illustrates the situation for the radial
densities of the 4f, 5d, and 6s shells of Ce as well as those of the 5f, 6d, and 7s shells of
Th. As a reference the radial densities of the 2s and 2p orbitals of a C atom located at the
experimental metal-carbon distance in the sandwich complexes cerocene and thorocene are
superimposed. It can be expected that the Th-ring interaction has significantly larger Th 5f
contributions (besides 6d contributions) than the Ce-ring interaction has Ce 4f contributions
(besides 5d contributions).

Most lanthanides and actinides possess in their atomic ground state a partially occupied
f shell, in some cases also an additional singly occupied d shell, as shown in Table 16.1.
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upper axis) from relativistic DHF/DC calculations [2]. The distances between the origins of the
r-axes for Ce (left, bottom) and C (top) as well as Th (right, bottom) and the C (top) correspond
to the experimental Ce-C and Th-C distances in cerocene and thorocene, respectively
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This usually gives rise to a large number of energetically low-lying electronic states, as
demonstrated already for single open shells in Figure 16.1. The energy gaps between adja-
cent states in f elements are for single configurations already significantly smaller than for d
transition metals or even main group elements, as shown in Figure 16.2. In some cases more
than a single configuration gives rise to low-lying electronic states. In a molecular environ-
ment the atomic energy levels are further split due to the lower symmetry. Since the f shells
of the lanthanides and heavier actinides are well shielded by more diffuse filled semi-core
shells, e.g., Ln 5s, 5p, and An 6s, 6p, from the spatial valence region, the resulting split-
tings are often relatively small. As a result one often encounters even for simple diatomic
molecules containing a lanthanide or an actinide element a very high density of low-lying
electronic states and very complex electronic spectra [29].

A real challenge for ab initio quantum chemistry is the description of such systems with
open f shells. In relatively easy cases where only a single fn subshell is present, e.g., for the
trifold positive atomic ions or their hydration complexes, the application of LSJ-coupling
is usually sufficient. However, there are numerous examples where only an intermediate
coupling scheme adequately describes the electronic structure. Note for example, that the
Ce 4f1 5d1 6s2 J=4 atomic ground state is decomposed to 55% of 1G and 29% of 3H. The
lowest excited J levels J=2,3 and 4 arise to 66%, 85%, and 34%, respectively, from a leading
3F term, and further do not only have contributions of other LS terms stemming from the
4f1 5d1 6s2 configuration, but also from LS terms resulting from 4f1 5d2 6s1 [3].

The core-like character of the Ln 4f shells was exploited by Field in a simple electronic
structure model for lanthanide diatomics, which turned out to be extremely useful to ratio-
nalize the complex electronic spectra of these systems [29]. According to Field the Ln 4fn

subconfiguration retains an atomic character also in molecules and does not participate
directly in bonding, whereas the other valence orbitals such as 5d, 6s, and 6p are involved
in (polar) covalent bonding in a MO-LCAO-type fashion and are coupled to form a valence
substate. All electronic states that can be constructed from a specific 4fn subconfiguration
and a valence substate exhibit very similar spectroscopic constants and are thus assigned
to belong to a so-called superconfiguration. Field proposed that the ground states of the
lanthanide monoxides arise for LaO to SmO, TbO to TmO and LuO from the supercon-
figuration [Ln 4fn] σ2

O2pπ
4
O2pσ

1
Ln6s,6p. For EuO and YbO a half-filled respectively filled 4f

subshell can be achieved by promoting one electron from the σLn6s,6p orbital to the 4f shell,
and the ground states should arise from the [Ln 4fn+1]σ2

O2pπ
4
O2p superconfiguration. The

superconfiguration model was later translated to 4f-in-core pseudopotentials, which model
lanthanide elements with a fixed 4fn subconfiguration corresponding to a fixed valency in
molecules [30, 31], as described in the contribution of Cao and Weigand in the present book.

The success of the simple superconfiguration concept is illustrated by the results col-
lected for CeO in Tables 16.2 and 16.3 for the ΛS and Ω states, respectively [32–35]. All 8
ΛS states of the Ce2+ 4f1 6s1 O2− charge distribution calculated with a small-core Ce pseu-
dopotential treating the 4f shell explicitly in the valence (PPv) [36] exhibit very similar bond
distances and vibrational constants. Their average (PPv avg.) agrees very well with results
obtained for the 4f1σ1 superconfiguration with a large-core Ce pseudopotential attributing
the 4f1 subshell into the core (PPc a). Both results are in reasonable agreement with the
reference data obtained by averaging over the experimentally observed Ω levels (exp. avg.).
In order to obtain these with the f-in-core pseudopotential approach, a ligand field treatment
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Table 16.2 Spectroscopic constants for the ΛS states of the 4f 1σ2π4σ1 superconfiguration of
CeO and corresponding averaged values for the superconfiguration

Method 2S+1Λ Re De Te ωe Method SC Re De ωe

PPv 3Φ 1.827 7.28 0.00 838

exp. 3Φ 1.820 8.22 0.00 824

PPv 1Φ 1.827 0.04 837
PPv 3Δ 1.819 0.10 840
PPv 1Δ 1.818 0.15 836
PPv 3Π 1.819 0.17 833
PPv 1Π 1.826 0.21 829
PPv 3Σ 1.816 0.18 835
PPv 1Σ 1.817 0.31 834 PPv avg. 1.821 7.16 836

PPc a 4f1σ1 1.819 7.25 834
PPc b 4f1σ1 1.926 6.34 822

exp. avg. 1.811 7.94 823

Results from scalar-relativistic 4f-in-valence (PPv) and 4f1-in-core (PPc) pseudopotential configuration interaction (CISD)
calculations [32, 33] in comparison to experimental data [34, 35]. Bond lengths (Re) in Å, binding energies (De) and term
energies (Te) in eV, vibrational constants (ωe) in cm−1. PPv: Ce PP with 30 valence electrons, (12s11p9d8f)/[9s8p6d5f];
PPc: Ce PP with 11 valence electrons, a: 4f occupation number n(4f) ≥ 1, b: 4f occupation number n(4f) = 1,
(7s6p5d4f)/[5s4p3d4f]; O (9s6p1d)/[4s3p1d]. avg. denotes an average over results for individual ΛS states, whereas 4f1σ1

denotes a calculation for the superconfiguration.

has been added. Recently a similar 5f-in-core pseudopotential approach was also set up for
the actinides, which is also outlined in the Chapter 6 by Cao and Weigand.

Calculations for CeO with f-in-core pseudopotentials allowing (PPc a) and not allowing
(PPc b) charge transfer from the ligand to the Ce 4f shell allow to estimate roughly the
bonding contributions of the the 4f shell to be about 1 eV of the total binding energy of 8.18
eV and about −0.1 Å of the bond distance of 1.80 Å, as shown in Table 16.2. In the heavier
homologue ThO, which has formally a [Th 5f0] σ2

O2pπ
4
O2pσ

2
Th7s,7p ground state configuration,

the not explicitly occupied 5f shell still contributes with about 1.7 eV to the total binding
energy of 8.87±0.15 eV and reduces the bond distance by about 0.15 Å [37].

16.2.2 Relativistic Effects

Relativistic effects can be defined as the difference between results of relativistic and non-
relativistic quantum chemical calculations, i.e., calculations with the speed of light at its
correct value (c≈137.036 a.u.) and the nonrelativistic limit (c → ∞), respectively. Since
there are various choices of Hamiltonians, which may be applied in various quantum chem-
ical approaches for the approximate solution of the Schrödinger equation, the magnitude of
relativistic contributions somehow depends on the way they are evaluated [23].

There is a wealth of information in the form of review articles [11–13, 38], edited books
[39–43], monographs [44–46] as well as a database in printed [47–49] and electronic
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Table 16.3 Spectroscopic constants for the Ω states of the 4f 1σ2π4σ1 superconfiguration of
CeO

Ω T0 Te ΔG1/2 ωe B0 Be

exp. PPv PPc exp. PPv PPc exp. PPv PPc

2 0 0 0 824 837 828 3545 3519 3496
3 82 119 101 824 836 828 3570 3520 3496
1 813 913 923 838 823 3573 3546 3543

3568
2 912 1045 968 823 838 832 3622 3548 3539
0− 1679 1396 1589 831 819 3579 3549 3614
1 1875 1476 1679 828 838 3183 3542 3620

3614
0+ 1925 1715 1769 835 820 4003 3546 3607
4 2042 2139 2302 822 838 828 3533 3518 3492
3 2143 2286 2487 824 837 829 3566 3519 3495
3 2618 2872 3086 828 841 833 3577 3550 3532
2 2771 3039 3165 823 839 833 3602 3551 3532
2 3462 3386 3771 821 836 834 3538 3554 3562
1 3635 3391 3766 820 828 834 3656 3552 3596

3421
0− 3819 3476 4120 836 843 3815 3559 3597
1 4134 3605 4249 843 847 3524 3541 3566

3621
0+ 4458 4234 4314 837 843 3677 3558 3595

Results from 4f-in-valence (PPv) and 4f1-in-core (PPc) pseudopotential calculations [32, 33] in comparison to experi-
mental data [34, 35]. Term energies (T0,e) and vibrational constants (ΔG1/2, ωe) in cm−1, rotational constants (B0,e)
in 10−4 cm−1.

[50, 51] form available for relativistic electronic structure theory and only a few aspects
will be summarized here.

For hydrogen and hydrogen-like ions, the nonrelativistic energy increases with the nuclear
charge Z to the second power (Z2), whereas the leading relativistic energy contributions
increase with the nuclear charge Z to the fourth power (Z4/c2, with c denoting the velocity
of light in vacuum). It is thus obvious that relativity cannot be neglected in calculations
for heavy atoms such as lanthanides and actinides. For accurate calculations of many-
electron systems it is necessary to go beyond the Dirac one-particle relativity terms in the
Hamiltonian and to include also relativistic two-particle terms such as the Breit interaction.
Aside from this it seems that also a finite nuclear model has noticeable effects, at least on
the atomic and possibly also on the molecular spectra.

For the shells of many-electron atoms one can observe the following major relativistic
effects. Replacing the nonrelativistic Hamiltonian by a relativistic one leads for all shells
to an energy lowering, i.e., a stabilization, and a concomitant contraction. The magnitude
of the direct effects decreases with increasing angular quantum number l, i.e., in the order
s > p > d > f. It also decreases with increasing main quantum number n, i.e., the outer
valence shells are less affected than the inner core shells. In addition to the scalar (spin-orbit
averaged) relativistic effects, one also observes a spin-orbit splitting of shells with angular
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quantum number l > 0 into two subshells with total angular quantum numbers j = l − 1/2
and j = l + 1/2, at lower and higher energies, respectively.

Since the inner, mainly s and p shells of a heavy atom are contracted by direct relativistic
effects, they shield the nuclear charge more efficiently for the outer shells. Thus the outer,
mainly d and f shells experience an indirect destabilization due to a reduced effective nuclear
charge and undergo a concomitant expansion. The magnitude of the indirect effects usually
increases with increasing angular quantum number, i.e., in the order f > d > p > s. It
also increases with increasing main quantum number. Destabilized and expanded shells on
the other hand less efficiently shield the nuclear charge and thus lead to a higher effective
nuclear charge for outer shells, resulting in an indirect stabilization and contraction.

Both direct and indirect effects act on all shells of an atom, however to a different extent.
For the valence shells of a many-electron atom one typically observes a contraction and
stabilization of the s and p shells and an expansion and destabilization of the d and f
shells. The consequences for the ground state configurations of the lanthanide and actinide
atoms are depicted in Figure 16.6. Note for example, that at the nonrelativistic Hartree-Fock
(HF) level of theory the ground state configurations of Ce and Th are 4f2 6s2 and 5f2 7s2,

Nonrelativistic

0

5

10

15

20

R
el

at
iv

e 
en

er
gy

 (
eV

)

4fn+1 6s2

4fn+1 6s2

4fn+1 6s2

4fn+1 6s2

4fn 5d1 6s2

4fn–1 5d1 6s2

4fn–1 5d1 6s2

4fn–1 5d1 6s2

4fn–1 5d1 6s2

4fn 5d1 6s2

4fn 5d1 6s2

4fn 5d1 6s2

Nonrelativistic

0

10

20

30

La Gd Lu

Relativistic

0

2

4

6

8

R
el

at
iv

e 
en

er
gy

 (
eV

)

Ac Cm Lr

Relativistic

0

5

10

15

Figure 16.6 Relative energies of low-lying configurations of lanthanides and actinides from
nonrelativistic Hartree-Fock and relativistic Dirac-Hartree-Fock all-electron calculations [2]. The
energy of the lowest configuration is set to zero. Note that the data depicted here corresponds
to average energies of all J levels belonging to the configurations and that electron correlation
effects are not included
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respectively, whereas at the relativistic Dirac-Hartree-Fock level they are 4f1 5d1 6s2 and 6d2

7s2, respectively, in agreement with the interpretation of the experimental spectra [3, 52].
Taking IP4 of Ce (Ce3+ 4f1 2F5/2 → Ce4+ 1S0) and Th (Th3+ 5f1 2F5/2 → Th4+ 1S0) as an

example, various contributions arising from relativity, as well as from electron correlation
and the nuclear model are summarized in Table 16.4. Accounting accurately for these con-
tributions is important for calculations of systems where Ce might be tri- and/or tetravalent,
e.g., the cerium complexes discussed at the end of this contribution. It is seen that the major
relativistic contributions to IP4 arise from substituting the non-relativistic kinetic energy
operator by the relativistic one, i.e., at the Dirac-Coulomb (DC) Hamiltonian level. The
reductions at the scalar-relativistic level by 4.06 and 6.53 eV correspond to about 10 and
20% of the nonrelativistic IP4 values for Ce and Th, respectively, and are due to the domi-
nating strong indirect relativistic destabilization of the f shells of Ce3+ and Th3+. An order
of magnitude smaller and non-negligible contributions arise at the DC Hamiltonian level
from spin-orbit coupling (0.16 and 0.28 eV), as well as at the Dirac-Coulomb-Breit (DCB)
Hamiltonian level from supplementing the non-relativistic Coulomb interaction between the
electrons with an approximate relativistic term, i.e., the Breit interaction (0.10 and 0.08 eV).
An other order of magnitude smaller, but still noticeable are corrections from quantum elec-
trodynamics (QED) (0.02 and 0.03 eV), as well as due to a finite nuclear model (<0.01
and 0.01 eV). Much larger and more difficult to account for accurately are differential

Table 16.4 Fourth ionization potentials of Ce and Th, as well as contributions of
relativity, quantum electrodynamics, finite nuclear model and electron correlation,
as derived from finite-difference all-electron calculations [2] and experimental data
[3,52]

Ce Th

IP4 ΔIP4 IP4 ΔIP4

AE HF p.n. 38.9059 32.9620
AE DHF/DC p.n. avg. 34.8419 26.4282
scalar relativity (DC) −4.0640 −6.5338
AE DHF/DC p.n. 35.0048 26.7076
spin-orbit (DC) 0.1629 0.2794
relativity (DC) −3.9011 −6.2544
AE DHF/DC+B p.n. 35.1087 26.7912
Breit 0.1039 0.0836
relativity (DC+B) −3.7972 −6.1708
AE DHF/DC+B+QED p.n. 35.1285 26.8185
QED 0.0198 0.0273
relativity (DC+B+QED) −3.7774 −6.1435
AE DHF/DC+B+QED f.n. 35.1296 26.8282
finite nucleus (DC+B+QED) 0.0011 0.0097

exp. 36.906(9) 28.648(25)
correlation 1.776 1.820

AE: all-electron; HF: Hartree-Fock; DHF: Dirac-Hartree-Fock; DC: Dirac-Coulomb-Hamiltonian; +B: Breit
interaction in quasi-degenerate perturbation theory; +QED: quantum electrodynamic corrections (vac-
uum polarisation, self-energy); p.n.: point nucleus; f.n.: finite (Fermi) nucleus; exp.: experimental data.
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electron correlation effects (1.78 and 1.82 eV), which were here evaluated as the differ-
ence between results of the best uncorrelated calculations (AE MCDHF with DC+B+QED
f.n. Hamiltonian [2]) and experimental data [3, 52] and are further discussed in the next
section.

16.2.3 Electron Correlation Effects

Electron correlation effects can be defined as the difference between results obtained from
the exact solution of a Schrödinger equation with a specific Hamiltonian, and the results
obtained at the uncorrelated level, e.g., at the Hartree-Fock or Dirac-Hartree-Fock level.
Since for all but the simplest problems the exact solution of the Schrödinger equation is
not accessible and usually approximate correlated wavefunctions are used instead. Some-
times experimental values are used rather than the results for the exact solution, which is
reasonable as long as the Hamiltonian used for the uncorrelated solution includes all impor-
tant terms, e.g., with regard to relativistic contributions, influence of the environment of the
studied system, etc. As for relativistic effects, the magnitude of electron correlation effects
depends to some extent on the details of their evaluation [23].

Static electron correlation plays an important role, e.g., in atomic configurations, where
a Ln (An) 6s2 (7s2) occupation is present. It is usually necessary for quantitative work to
account for the near-degeneracy effects such as Ln 6s2 → 6p2, 5d2 (An 7s2 → 7p2, 6d2), e.g.,
for the evaluation of the first ionization potentials of Ac to U including An 7s2 → 7p2 and
7s2 → 6d2 excitations in the complete active space self-consistent field (CASSCF) reference
wavefunction of scalar-relativistic all-electron averaged coupled-pair functional (ACPF)
calculations increases the values by about 0.10–0.15 and 0.04–0.06 eV, respectively [8].
Dynamic electron correlation effects become especially big, e.g., for energy differences
between atomic configurations with different Ln 4f (An 5f) occupation. Often these dif-
ferential electron correlation effects act in opposite direction to the differential relativistic
effects, e.g., whereas electron correlation favors configurations with high f occupation, rela-
tivity favors those with low f occupation. Figure 16.7 compares, as a simple example where
only dynamical correlation matters, differential relativistic and electron correlation effects
in the fourth ionization potentials of Ce (Ce3+ 4f1 2F → Ce4+ 1S) and Th (Th3+ 5f1 2F
→ Th4+ 1S). The results were obtained from scalar-relativistic calculations without and
with the second-order Douglas-Kroll-Hess (DKH2) Hamiltonian at the Hartree-Fock (HF)
and (basis set extrapolated) coupled cluster level with single and double substitutions and
perturbative triple substitutions [CCSD(T)]. Whereas the strong indirect relativistic effects
lower the ionization potentials by disfavoring the occupation of the f shells, the differen-
tial correlation effects tend to increase them by favoring the occupation of the f shells. The
relativistic contributions amount to about −10 and −20% of the experimental ionization
potential of Ce and Th, respectively, and the correlation contributions are about +5 to +6%
in both cases. As mentioned before the Ce 4f and Th 5f shells have a quite large radial over-
lap with the core orbitals of the same main quantum number, i.e., 4s, 4p, and 4d for Ce and
5s, 5p and 5d for Th. Correlation of these orbitals in addition to the outer semi-core (Ce
5s, 5p; Th 5s, 5p) and valence orbitals (Ce 4f; Th 5f) amounts to 38.0 and 24.7% of the
total differential correlation contributions to IP4 of Ce and Th, respectively, at the basis set
extrapolated DKH2 level, as shown in Figure 16.3. The larger percentage in case of Ce can
be explained by the more compact character of the Ce 4f shell compared to the Th 5f shell.
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Figure 16.7 a) Relativistic (r) and electron correlation (c) contributions to IP4 of Ce and
Th (eV). b) as a) but in % of IP4. c) deviations from the complete basis set limit for IP4 when
basis functions with angular quantum number up to lmax are included in the basis set at the
DKH2 CCSD(T) level. d) correlation contributions to IP4 of Ce and Th for basis functions with
angular quantum numbers lmax ≤ 3, lmax = 4, 5, and 6, as well as lmax > 6. All results were
obtained with MOLPRO [24]

Relativity can nowadays quite easily and accurately be accounted for by a proper choice
of the Hamiltonian, e.g., the DKH2 Hamiltonian in the current example, whereas it turns
out to be by far more difficult to include properly electron correlation. It is seen that at the
CCSD(T) level the correlation corrections behave linearly when plotted vs. 1/l3max, where
lmax denotes the highest angular quantum number included in a radially nearly saturated
basis set. The fact that higher angular momenta than lmax = 6 (i functions) still con-
tribute with about 10% to the correlation corrections, corresponding to about 0.2 eV, leaves
only little hope to establish accurately by means of similar quantum chemical calculations
energy differences between, e.g., molecular CeIII and CeIV systems. Contributions of basis
functions beyond i functions are thus of similar magnitude as spin-orbit corrections and
contributions of the Breit term, as shown in Table 16.4. Since all have the same sign, there
is no possibility for an error compensation when neglecting these contributions.

Intermediate Hamiltonian Fock-space coupled cluster (IHFSCC) calculations using the
DCB Hamiltonian, a finite nuclear model and a (35s30p25d20f11g9h9i7k7l) basis set
obtained for IP4 of Th a value of 28.65 eV [53], in excellent agreement with the experimental
result of 28.65±0.03 eV [52]. A similar result of 28.66 eV was obtained at the IHFSCC level
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with a MCDHF/DC+B-adjusted pseudopotential and a (16s15p12d10f8g7h7i) basis set [8],
however, when using a (14s13p10d8f6g)/[6s6p5d4f3g] standard basis set, which is also suit-
able for molecular calculations, the IHFSCC result of 28.36 eV already deviates by 0.3 eV
from the experimental value. Even worse results of 28.02 and 27.92 eV are obtained with
standard basis sets for the more common methods CCSD(T) and MRACPF, both includ-
ing spin-orbit corrections [8]. It still has to be seen if and how r12-dependent wavefunction
approaches can be of any help here. An accurate and balanced description of both rela-
tivistic effects and electron correlation effects, if possible at a moderate computational cost
allowing also molecular applications, is thus a valid goal of the development of quantum
chemical methods suitable for lanthanide and actinide systems.

16.3 Molecular Kondo-type Systems

Cerium is the lightest element in the periodic table that has an occupied 4f orbital in its
atomic ground state configuration (Ce 4f1 5d1 6s2 1G4). In the most frequently encoun-
tered trivalent oxidation state in the chemistry of cerium, the energetically low-lying 4f
shell keeps a single electron (e.g., Ce3+ 4f1 2F5/2), whereas in the tetravalent state a closed-
shell core remains (e.g., Ce4+ 1S0). The interplay between the tri- and tetravalent states
plays a role, e.g., in the CeO2/Ce2O3 cycle for hydrogen production or in cerimetry used in
chemical analysis. As pointed out above, an exact ab initio determination of energy differ-
ences between CeIII and CeIV compounds is a substantial challenge for quantum chemical
approaches.

In the solid phase Ce keeps a trivalent state characterized by a singly occupied 4f shell
on each center, however, when subjected to high pressure a change to a tetravalent state
with an empty 4f shell occurs. The so-called Kondo effect well-known in solid state physics
denotes an unusual scattering mechanism of conduction electrons in a metal due to local
magnetic impurities, i.e., centers with unpaired electrons in atomic-like d or f shells, causing
a minimum in the resistivity-temperature curve of dilute magnetic alloys at low temperatures
[54]. Figure 16.8 provides a schematic representation of the corresponding wavefunction

Ce(4+) metal

+ Σ

ε

Ce(3+) metal
kl

α(kl)
kl

|ΨS=0 >= A(1 + 
kl

α(kl)f1
† ck)|Ψ0 >

Є4f Єconduction band

Σ
Figure 16.8 Schematic representation of a Kondo-type wavefunction for a metal with a cerium
impurity. The part given after the sum in parentheses stands for a corresponding (antisymmetric)
determinant. In case of a molecular analogue the conduction band of the metal has to be
replaced by ligand orbitals
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Figure 16.9 Structures of Ce(C8H8)2 and Ce(C8H6)2

for a Ce impurity in a metal, which is a mixture of a configuration with a Ce4+ ion and the
metal valence electrons in the conduction band, and configurations where a single electron
is localized on a Ce3+ center and coupled in a singlet fashion to the left unpaired electron
in the conduction band. In a molecular analogue to a Kondo system one has to replace the
conduction band of the metal by one or more suitable valence orbitals of the ligand(s). In the
following section two such systems will be discussed, i.e., bis(η8-cyclooctatetraenyl)cerium
also known as cerocene Ce(C8H8)2, and bis(η8-pentalene)cerium Ce(C8H6)2, as shown in
Figure 16.9. The former molecule was the first for which a molecular cerium(III)-based
Kondo ground state was postulated and later also experimentally confirmed, whereas the
latter, due to its lower symmetry (D2h or D2d instead of D8h), can already be understood
with a simple two-electron-two-orbital model.

16.3.1 Bis(η8-cyclooctatetraenyl)cerium

Uranocene U(C8H8)2, probably the most famous organouranium compound, was discov-
ered by Streitwieser and Müller-Westerhoff in 1968 [55]. The compound has D8h symmetry
in crystalline form and in an ionic limit can be considered to be composed of a U4+ ion
with a 5f2 subconfiguration, leading to an angular quantum number of 3 for the ground
state, and two aromatic C8H2−

8 rings containing each 10 π electrons [56, 57]. The com-
pound thus can be described as bis(η8-cyclooctatetraenyl)uranium(IV). Experimental and
quantum chemical studies agree that metal-ring bonding results mainly from the interaction
of the uranium 6d orbitals, and to a somewhat lesser extent the uranium 5f orbitals, with the
rings π orbitals [58, 59]. The direct contribution of the U 5f orbitals in covalent metal-ring
bonding is both due to shell structure effects (e.g., orthogonality constraint of the 5f shell
with respect to the core-like 4f shell) and a dominating indirect relativistic destabilization
and expansion.

In 1976 cerocene Ce(C8H8)2 was synthesized by Greco et al. as a lanthanide ana-
logue to uranocene [60]. In their 1983 quasirelativistic self-consistent field-scattered
wave study, Rösch and Streitwieser found an unexpected similarity of the elec-
tronic structure of cerocene to the one of the heavier homologue thorocene, bis(η8-
cyclooctatetraenyl)thorium(IV), as well as to uranocene, i.e., an unprecedented involvement
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of the Ce 4f orbitals in metal-ring bonding and a f electron count as high as 1.62 [59].
However, the photoelectron spectra (PES) of cerocene and thorocene both do not exhibit
a peak at a lower energy than those arising from the highest ligand π orbitals in e2u (Ce:
≈6.75 eV, Th: ≈6.75 eV) and e2g (Ce: ≈7.68 eV Th: ≈7.85 eV) symmetry, whereas ura-
nocene has such a low-energy PES peak (≈6.15 eV) arising from the partially occupied 5f
shell below those of the πe2u (≈6.80 eV) and πe2g (≈7.75 eV) ligand orbitals [61]. Cerocene
was therefore assigned as bis(η8-cyclooctatetraenyl)cerium(IV), although Streitwieser and
coworkers also noted that already the existence of cerocene should be considered to be
remarkable, since in the complex a strong oxidizing agent Ce4+ coexists with two strong
reducing agents C8H2−

8 [62]. When comparing the orbital energies and the radial spatial
extent of the Ce 4f and Th 5f shells, as shown in Figures 16.4 and 16.5, it is also some-
what surprising that the Ce 4f shell should be involved similar to the Th 5f shell in covalent
metal-ring bonding in bis(η8-cyclooctatetraenyl) complexes. It is also noteworthy that Ce
keeps a singly occupied 4f orbital in its atomic 4f1 5d1 6s2 1G4 ground state, whereas for
Th the corresponding 5f1 6d1 7s2 3H4 state lies 7795 cm−1 above the 6d2 7s2 3F2 ground
state [3, 52]. A similar difference in the f occupation is observed, as discussed above, for
the ground states of CeO and ThO.

A quite different view of the electronic structure of the cerocene ground state was
presented by Neumann and Fulde in 1989 [63]. The authors proposed that cerocene
might be a molecular analogue of a cerium(III)-based Kondo lattice system. In particu-
lar it was speculated that a Ce3+ ion is complexed by two C8H1.5−

8 rings and that the
unpaired electrons in the metal 4f and the ligand π orbitals are coupled to yield an open-
shell singlet ground state. Based on semiempirical estimates a very small singlet-triplet
splitting of 0.006 eV and a related temperature-dependent magnetic moment was pre-
dicted. Large-scale multi-configuration self-consistent field (MCSCF) calculations by Dolg
et al. using a relativisic pseudopotential for Ce confirmed an open-shell 1A1g ground
state, with contributions of 82.8% 4f1

e2uπ
3
e2u and 17.2% 4f0

e2uπ
4
e2u, however, the singlet-

triplet splitting turned out to be about two orders of magnitude larger than previously
estimated [64]. Subsequent MCSCF, multi-reference configuration interaction (MRCI),
and multireference averaged coupled-pair functional (MRACPF) calculations of the same
group, including also corrections for spin-orbit effects, yielded ab initio results for the
electronic spectrum, the metal-ring distance and the symmetric metal-ring vibration of
cerocene and thorocene [65]. All results were in agreement with leading configurations
of 4f1 π3

e2u and 5f0 π4
e2u for the electronic ground states of cerocene and thorocene,

respectively. In particular an f electron count of 1.08 was calculated for the cerocene
ground state using a Mulliken population analysis, however, it was argued that due to
the core-like character of the Ce 4f shell, a corresponding peak in the photoelectron
spectrum of cerocene should occur at clearly higher energies than those for the ligand
πe2u and πe2g orbitals, whereas due to the strong indirect relativistic destabilization of
the U 5f shell the corresponding peak occurs at lower energies (see also Figure 16.4).
Thus, the absence of a low-energy f peak in the photoelectron spectrum supports the
assignment of thorocene to be a bis(η8-cyclooctatetraenyl)thorium(IV) complex, but it
does not contradict an assignment of cerocene as a bis(η8-cyclooctatetraenyl)cerium(III)
compound [65].

Since orbitals and electron configurations built from them are just objects used for the
quantum chemical modelling of the electronic structure, rather than quantum mechanical
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observables, and both suggestions for the cerocene electronic structure lead to the same
1A1g ground state, it is experimentally difficult, if not impossible, to decide which of the
two pictures is more appropriate. Evidence supporting the suggestion of Neumann and
Fulde of a bis(η8-cyclooctatetraenyl)cerium(III) compound was presented in 1996 Edel-
stein and coworkers by X-ray absorption near-edge structure (XANES) studies, using the Ce
L- and K-edges to determine the Ce oxidation state [66]. Two substituted cerocene systems
exhibited spectra closer to typical CeIII compounds than to reference CeIV compounds. In
addition, low-temperature absorption and luminiscence spectra as well as magnetic circular
dicroism (MCD) measurements lead Amberger and coworkers to conclude that cerocene is
more likely a cerium(III) compound [67]. Booth et al. presented magnetic measurements
and XANES studies, leading to a f electron count of 0.89±0.03 and providing further evi-
dence for a molecular cerium(III)-based Kondo system [68]. Recently Walter et al. described
new synthetic procedures for the preparation of cerocene together with extensive experi-
mental studies such as magnetic measurements, extended X-ray absorption fine structure
(EXAFS) and XANES spectroscopy, confirming a configurational mixture of 4f1

e2uπ
3
e2u and

4f0
e2uπ

4
e2u, where the first configuration is most likely dominating [69].

On the other hand additional evidence was also collected in favor of the originally
assumed bis(η8-cyclooctatetraenyl)cerium(IV) complex. Streitwieser et al. found in exten-
sive chemical studies published in 2004 that cerocene behaves remarkably like bis(η8-
cyclooctatetraenyl)actinide(IV) compounds [70]. Kaltsoyannis and coworkers performed
all-electron (AE) complete active space second-order perturbation theory (CASPT2) calcu-
lations taking scalar-relativistic contributions into account with the second-order Douglas-
Kroll-Hess Hamiltonian (DKH2) [71]. They found an f electron count of 0.90±0.04, which
only weakly depends on the details of the calculation. A two-state (ground and first excited
state) averaged calculation yielded 58.1% of the ground state to have 4f0 character, whereas
only 23.4% 4f1 and 8.7% 4f2 character were observed. The authors conclude that their ana-
lysis is in agreement with the experimental findings of Streitwieser et al. and that cerocene
is best described as a CeIV system. A transfer of electron density from the ligands to the
metal leads to an effective oxidation state lower than the formal value of +4, which might
in certain cases even be closer to +3. A recent article of Kerridge reports the analysis of
the complete active space self-consistent field (CASSCF) wavefunction and arrives at the
same conclusion [72]. The authors point out that the concept of a formal oxidation state is
not well defined for a multiconfigurational ground state as the one of cerocene. They rather
recommend the analysis of the wavefunction in terms of natural orbital occupation num-
bers. They further argue that a CeIII compound is characterized by a metal-localized singly
occupied f orbital, whereas this is absent for a CeIV system. Despite the significant f density,
cerocene is found to fit better into the latter category.

In the most recent work Mooßen and Dolg analyzed the cerocene CASSCF ground state
wavefunction with respect to mixings of Ce 4f and ligand π orbitals in the e2u irreducible
representation of D8h symmetry as well as of the configurations that can be built from the
resulting mixed orbitals to yield a 1A1g ground state [73]. It was concluded that cerocene
can be described similarly well in two ways. The molecule may be viewed as a bis(η8-
cyclooctatetraenyl)cerium(IV) complex with a significant metal-ring covalency involving
besides the Ce 5d and ligand π orbitals also the Ce 4f orbitals. In this case the fourfold
occupied ligand π in the e2u irredicible representation of D8h symmetry have about 25% Ce
4f character, explaining roughly the 4f electron count close to one. Alternatively, it can be
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thought of as a Kondo-type open-shell singlet bis(η8-cyclooctatetraenyl)cerium(III) system,
characterized by an atomic-like singly occupied Ce 4f shell. In the opinion of the authors
the latter description is preferable, since it is based on nearly pure Ce 4f and ring π orbitals
and results in a more compact wavefunction with only two significantly contributing con-
figurations, i.e., about 70% 4f1π3 and 30% 4f0π4. The MCSCF approach applied in the
early studies of cerocene [64, 65] was restricted to these two configurations and resulted in
almost pure Ce 4f and ligand π orbitals, leading quite straightforwardly to the interpretation
as a predominantly Ce(III) system, whereas the natural orbitals of a CASSCF wavefunction
show a strong mixing of these orbitals making the analysis more difficult.

16.3.2 Bis(η8-pentalene)cerium

Bis(η8-pentalene)cerium is closely related to cerocene, as shown in Figure 16.9. Consider-
ing only the ligands π electron systems and the Ce center both compounds are isoelectronic.
Its lower symmetry compared to cerocene permits to simplify the wavefunction to fit into an
effective two-electron-two-orbital model, which still allows to discuss the role of the Ce 4f
orbital(s) in metal-ring bonding. In 2007 two combined experimental and quantum chemi-
cal investigations came to different conclusions concerning its electronic ground state, i.e.,
the formal oxidation state of the central atom in Ce(C8H4(Si-iPr3-1,4)2)2 was assigned to
be CeIV [74], whereas the one of Ce(C8Me6)2 was proposed to be CeIII [75]. From LIII-
edge XANES measurements, an f electron count of 0.87±0.05 was derived for the latter
compound, very similar to the value of 0.89±0.03 obtained for cerocene [68].

Geometry optimizations at the complete active space multiconfiguration self-consistent
field (CASSCF) level followed by contracted second-order Rayleigh-Schrödinger pertur-
bation theory (RS2C) using the DKH2 Hamiltonian yielded for the unsubstituted bis(η8-
pentalene)cerium system the staggered (D2d) and the eclipsed (D2h) configuration to be
very close in energy, with the former being slightly lower. The mixing of Ce 4f and ligand
π orbitals is largest for orbitals that have a shape corresponding to a δ-type symmetry when
viewed along the principal axis of rotation. These are located in the irreducible representa-
tions a1 and a2 of D2d and b1u and au of D2h. The leading configurations of the CASSCF
wavefunctions of both cases look very similar, when the irreducible representations a1 and
b1u as well as a2 and au of D2d and D2h, respectively, are related to each other. However,
D2h can be fully exploited at the correlated level by quantum chemistry codes such as MOL-
PRO [24], whereas due to the presence of a doubly degenerate irreducible representation,
the D2d case has to be treated in one of its subgroups, e.g., in C2v, leading to higher com-
putational costs. Therefore, in the following only the D2h structure will be discussed, for
which the most important active orbitals in the CASSCF wavefunction are the 5th and 6th

orbital in the au irreducible representation, and to a slightly lesser extent the 14th and 15th

orbital in the b1u irreducible representation. Using the simplest possible CASSCF wave-
function for the 1A1g ground state with two electrons in two orbitals, i.e., the Ce 4f and
ring π orbitals in the au irreducible representation, an analysis similar to the one published
recently for cerocene [73] can be carried out. For this we consider the orbitals a and b, which
stand for every possible orthonormalized pair of orbitals composed of the Ce 4f and ligand
π orbitals in the au irreducible representation of D2h. The main results are summarized in
Figure16.10 on the right side. The natural orbitals (rotation angle Φ = 0o) are essentially
50%:50% mixtures of the Ce 4f and ring π orbitals. The wavefunction for these orbitals has
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Figure 16.10 Active orbital composition (upper half) and corresponding configuration con-
tributions (lower half) for the simplest possible complete active space wavefunctions (two
electrons in two orbitals) describing the H2 molecule at an intermediate distance of 2 Å (left
half) and the Ce(C8H6)2 complex at equilibrium geometry (right half). A value of the rotation
angle Φ of 0o corresponds to the natural orbitals, whereas one of 45o corresponds to pure H
1s as well as almost pure Ce 4f and ligand π orbitals

only contributions of the two closed shell configurations a2 (75%) and (with opposite sign
of the expansion coefficient) b2 (25%). Rotation of these orbitals by about Φ = 45o leads to
orbitals with maximum Ce f and ring π character (denoted by the vertical line in the figure).
For these localized orbitals the leading configuration has both orbitals singly occupied, i.e.,
4f1 π1 (a1b1), with an admixture of the closed shell configurations π2 (a2) and 4f2 (b2) of
less than 5%. Thus, in contrast to cerocene, the description as an open shell-singlet is here
clearly superior to the one of two admixed closed-shell configurations.

It is interesting to compare the Ce(C8H6)2 ground state wavefunction with a correspond-
ing one of H2 in its 1Σ+

g ground state at a stretched bond distance of 2 Å (2.7 Re), as shown
in Figure16.10 on the left side. Here the two electrons are treated in an active space built by
the σg and σu linear combinations of the 1s orbitals on each of the two atoms. The orbitals
a and b now represent any orthonormalized pair of orbitals built from these 1s orbitals. The
natural orbitals (rotation angle Φ = 0o) correspond to the σg and σu orbitals, delocalized
between the two atoms. A rotation by Φ = 45o leads to the 1s orbitals localized on the two
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atoms. In the first case the wavefunction is composed of the closed-shell configurations σ2
g

(a2, 77%) and (again with opposite sign of the expansion coefficient) σ2
u (b2, 23%), whereas

in the second case it is dominated by the covalent configuration with both orbitals singly
occupied 1s1

a 1s1
b (a1b1), and only small admixtures of the ionic configurations 1s2

a (a2) and
1s2

b (b2). It is well known that near the equilibrium distance the dominating configuration
is σ2

g with only small contributions of σ2
u , whereas for the separated atoms at infinite dis-

tance both configurations contribute equally, but with opposite sign of the coefficients, in
order to quench the ionic terms in the wavefunction leaving only 1s1

a 1s1
b. In this case the

figure for the configuration contributions becomes symmetric to the line at Φ = 45o and
the dashed and dotted lines for the contributions of the a2 and b2 configurations coincide.
The first wavefunction describes a typical covalent bond, whereas the second results for the
separated neutral atoms. This comparison leads to the conclusion that the interaction of the
Ce 4f orbital and the ring π orbital in Ce(C8H6)2 is similar to a significantly stretched (and
thus quite weak) covalent bond.

When using localized orbitals covalent interactions can be analyzed by orbital occupation
number fluctuations and the local spin, calculated with respect to one or more orbitals local-
ized on a specific atom [77, 78]. The orbital occupation number fluctuations are defined as√
〈N̂a

2 − 〈N̂a〉2〉, where N̂a is the occupation number operator and a denotes a localized
orbital or a group of localized orbitals associated to the same atom. For an ideal covalent
single bond the orbital occupation number fluctuation is

√
2/2, whereas for separated atoms

it is 0. Values near zero are thus obtained for spatially well separated and non-interacting
atoms but also for van der Waals molecules like He2, which virtually do not have covalent
bonding contributions. The local spin defined as 〈Ŝa

2〉 is 0.375 for an ideal covalent bond,
0.75 for a dissociated single covalent bond, and 0 for van der Waals interactions. Occupation
number fluctuations and local spin thus can be used to detect covalent bonding contributions
in interatomic interactions and also possibly to estimate their strength.

Figure 16.11 compares the orbital occupation number fluctuations and local spin of cova-
lently bonded system such as H2 and Au2, a van der Waals bonded system such as He2 and
formally van der Waals bonded systems that exhibit significant covalent bonding contribu-
tions such as Hg2 and Be2 to the values obtained for the 4f-π interaction in Ce(C8H6)2. It is
obvious also from these results that the latter case corresponds to a stretched covalent bond,
i.e., values similar to H2 at a bond distance of 2 Å are observed. The bonding is entirely dif-
ferent from covalent contributions arising in the interaction between closed-shell bonding
partners in unpolar systems such as Hg2 or Be2, as well as polar/ionic systems such as LiF.

The results of the simple analysis presented here still hold when Ce 4f and ligand π
orbitals in other irreducible representations are included in the active space, however, the
situation becomes more complex, since now more than one orbital rotation angle has to
be considered to obtain the wavefunction build from possibly pure Ce 4f and ligand π
orbitals [76]. It is also noteworthy to point out that neglected contributions tend to favor a
4f1 occupation of cerium, e.g., spin-orbit coupling (which is largely quenched in the singlet
ground state) and dynamic correlation effects, as shown in Table 16.4.

Summing up, similar to cerocene the most compact description of the ground state elec-
tronic structure of Ce(C8H6)2 is by the leading 4f1 π1 configuration, built from nearly pure
Ce 4f and ring π orbitals. Thus, the assignment to bis(η8-pentalene)cerium(III) seems to be
the most appropriate.
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Figure 16.11 Occupation number fluctuations
√

〈N̂a
2 − 〈N̂a〉2〉 and local spin 〈Ŝa

2〉 on one
hydrogen atom of H2 depending on the internuclear distance R from CASSCF calculations with
two electrons in an active space of two orbitals (filled dots at Re=0.74Å, and Ri = (1 + i ×
0.25)Å). The limiting values for an ideal covalent single bond as well as a dissociated covalent
single bond are indicated by empty circles. The result for the polar covalently bonded LiF at
the equilibrium distance was derived for comparison also for the two electrons in two orbitals
active space (filled square). The 4f-π interaction in Ce(C8H6)2 at the equilibrium geometry
(star) evaluated also at the two electrons in two orbitals active space CASSCF level corresponds
to a stretched covalent bond. Corresponding CASSCF results using an active space built from
the s and p valence orbitals are given for comparison for the van der Waals bonded He2, the
covalently bonded Au2, and the intermediate cases Hg2 and Be2 exhibiting significant covalent
contributions at their equilibrium distances (filled squares) [78]

16.4 Conclusions

Shell structure, relativistic and electron correlation effects play an important role for the
electronic structure of lanthanide and actinide systems. The importance and the magnitude
of these effects have been examplified for the atoms Ce and Th, and the contributions of the
Ce 4f and Th 5f shell to chemical bonding have been reviewed for the monoxides CeO and
ThO, respectively. Currently quantitatively correct results for lanthanides and actinides can
only be obtained from ab initio calculations for the easiest cases, e.g., small systems (atoms,
diatomics containing one f element) with a possibly small number of unpaired f electrons
and/or problems related only to configurations with the same f occupation number. In other
cases ab initio quantum chemistry can at least help to interprete experimental findings. As
an example organometallic cerium sandwich complexes such as cerocene were discussed,
which may be considered to be molecular analogues of cerium(III)-based Kondo lattice
systems.



“Dolg-Driver” — 2015/1/17 — 15:12 — page 447 — #23

Shell Structure, Relativistic and Electron Correlation Effects in f Elements 447

References

[1] P. Pyykkö, Recent developments in the theory of f-element molecules, Inorg. Chim. Acta, 139,
243–245 (1987).

[2] K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, E. P. Plummer, GRASP—a general-purpose
relativistic atomic-structure program. Comput. Phys. Commun., 55, 425–456 (1989).

[3] http://physics.nist.gov/PhysRefData/ASD/levels_form.html (accessed February 19, 2014).
[4] M. Dolg, H. Stoll, H. Preuss, Homonuclear diatomic lanthanoid compounds: a pseudopoten-

tial configuration interaction and correlation energy density functional study, J. Molec. Struct.
(THEOCHEM), 277, 239–249 (1992).

[5] M. Dolg, W. Liu, S. Kalvoda, Performance of relativistic density functional and ab initio pseu-
dopotential approaches for systems with high-spin multiplicities: Gadolinium diatomics GdX
(X = H, N, O, F, P, S, Cl, Gd), Int. J. Quant. Chem., 76, 359–370 (2000).

[6] X. Cao, M. Dolg, Electronic structure of lanthanide dimers, Mol. Phys., 101, 1967–1976 (2003).
[7] R. J. van Zee, S. Li, W. Weltner, Gd2 — the highest spin diatomic molecule?, J. Chem. Phys.,

100, 4010–4012 (1994).
[8] A. Weigand, X. Cao. T. Hangele, M. Dolg, Relativistic small-core pseudopotentials for actinium,

thorium and protactinium, J. Phys. Chem. A, 118, 2519–2530 (2014).
[9] P. Pyykkö, J. P. Desclaux, Relativity and the periodic system of elements, Acc. Chem. Res., 12,

276–281 (1979).
[10] K. S. Pitzer, Relativistic effects in chemical properties, Acc. Chem. Res., 12, 272–276 (1979).
[11] P. Pyykkö, Relativistic quantum chemistry, Adv. Quant. Chem., 11, 353–409 (1978).
[12] P. Pyykkö, Relativistic effects in structural chemistry, Chem. Rev., 88, 563–594 (1988).
[13] W. H. E. Schwarz, An introduction to relativistic quantum chemistry, in M. Barysz, Y. Ishikawa

(Eds), Relativistic Methods for Chemists. Challenges and Advances in Computational Physics,
Springer, London, vol. 10, pp. 1–63 (2010).

[14] M. Pepper, B. Bursten, The electronic structure of actinide-containing molecules — a challenge
to applied quantum chemistry, Chem. Rev., 91, 719–741 (1991).

[15] K. Balasubramanian, Relativistic effects and electronic structure of lanthanide and actinide
molecules, in K. A. Gschneidner Jr., L. Eyring, G. R. Choppin, G. H. Lander (Eds), Handbook
on the physics and chemistry of rare earths, vol. 18, Elsevier, Amsterdam, pp. 29–158 (1993).

[16] M. Dolg, H. Stoll, Electronic structure calculations for molecules containing lanthanide atoms,
in K. A. Gschneidner Jr. and L. Eyring (Eds), Handbook on the physics and chemistry of rare
earths, vol. 22, Elsevier, Amsterdam, pp. 607–729 (1996).

[17] N. Kaltsoyannis, Recent developments in computational actinide chemistry, Chem. Soc. Rev.,
32, 9–16, (2003).

[18] M. Dolg, X. Cao, The relativistic energy-consistent ab initio pseudopotential approach and
its application to lanthanide and actinide compounds, in K. Hirao, Y. Ishikawa (Eds), Recent
Advances in Computational Chemistry, World Scientific, New Jersey, pp. 1–35 (2004).

[19] X. Cao and M. Dolg, Relativistic energy-consistent ab initio pseudopotentials as tools for
quantum chemical investigations of actinide systems, Coord. Chem. Rev., 250, 900–912, (2006).

[20] M. Dolg, X. Cao, Computational methods: lanthanides and actinides, in E. I. Solomon, R.
A. Scott, and R. B. King (Eds), Computational inorganic and bioinorganic chemistry, Wiley,
Chichester, pp. 503–515 (2009).

[21] G. Schreckenbach, G. A. Shamov, Theoretical actinide molecular science, Acc. Chem. Res., 43,
19–29 (2010).

[22] L. Visscher, K. G. Dyall, Relativistic and electron correlation effects on molecular properties. I.
The dihalogens F2, Cl2, Br2, I2, and At2, J. Chem. Phys., 104, 9040–9046 (1996).

[23] M. Dolg, X. Cao, Relativistic pseudopotentials: their development and scope of applications,
Chem. Rev., 112, 403–480 (2012).

[24] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, MOLPRO: a general-purpose
quantum chemistry program package, WIREs Comput. Mol. Sci., 2, 242–253 (2012).

[25] P. S. Bagus, Y. S. Lee, K. S. Pitzer, Effects of relativity and lanthanide contraction on atoms
from hafnium to bismuth, Chem. Phys. Lett., 33, 408–411 (1975).



“Dolg-Driver” — 2015/1/17 — 15:12 — page 448 — #24

448 Computational Methods in Lanthanide and Actinide Chemistry

[26] P. Pyykkö, Interpretation of the secondary periodicity in the periodic system, J. Chem. Res., 11,
380–381 (1979).

[27] M. Seth, M. Dolg, P. Fulde, P. Schwerdtfeger, Lanthanide and actinide contractions: relativistic
and shell structure effects, J. Am. Chem. Soc., 117, 6597–6598 (1995).

[28] P. Pyykkö, Dirac-Fock one-centre calculations, part 8. The 1Σ states of ScH, YH, LaH, AcH,
TmH, LuH and LrH, Phys. Scr., 20, 647–651 (1979).

[29] R. W. Field, Diatomic molecule electronic structure beyond simple molecular constants, Ber.
Bunsenges. Phys. Chem., 86, 771–779 (1982).

[30] M. Dolg, H. Stoll, A. Savin, H. Preuß, Energy-adjusted pseudopotentials for the rare earth
elements, Theor. Chim. Acta, 75, 173–194 (1989).

[31] M. Dolg, H. Stoll, H. Preuß, A combination of quasirelativistic pseudopotential and ligand field
calculations for lanthanoid compounds, Theor. Chim. Acta, 85, 441–450 (1993).

[32] M. Dolg, H. Stoll, H. Preuss, The low-lying electronic states of cerium monoxide CeO: ab ini-
tio calculations using energy-adjusted pseudopotentials and spin-orbit operators, J. Mol. Struct.
(Theochem), 231, 243–255 (1991).

[33] M. Dolg, H. Stoll, H. Preuss, A combination of quasirelativistic pseudopotential and ligand field
calculations for lanthanoid compounds, Theor. Chim. Acta, 85, 441–450 (1993).

[34] C. Linton, M. Dulick, R. W. Field, P. Carette, P. C. Leyland, R. F. Barrow, Electronic states of the
CeO molecule: absorption, emission and laser spectroscopy, J. Mol. Spectrosc., 102, 441–497
(1983).

[35] L. A. Kaledin, J. E. McCord, M. C. Heaven, Laser spectroscopy of CeO: characterization and
assignment of states in the 0-3 eV range, J. Mol. Spectrosc., 158, 40–61 (1993).

[36] M. Dolg, H. Stoll, H. Preuß, Energy-adjusted ab initio pseudopotentials for the rare earth
elements, J. Chem. Phys., 90, 1730–1734 (1989).

[37] W. Küchle, M. Dolg, H. Stoll, H. Preuss, Energy-adjusted pseudopotentials for the actinides.
Parameter sets and test calculations for thorium and thorium monoxide, J. Chem. Phys., 100,
7535–7542 (1994).

[38] P. Pyykkö, The physics behind chemistry and the periodic table, Chem. Rev., 112, 371–384
(2011).

[39] B. A. Hess (Ed.), Relativistic effects in heavy-element chemistry and physics. Wiley series in
theoretical chemistry; Wiley, Chichester, vol. 12 (2002).

[40] P. Schwerdtfeger (Ed.), Relativistic electronic structure theory. Part 1, Fundamentals. Theoret-
ical and computational chemistry; Elsevier, Amsterdam, vol. 11 (2002).

[41] P. Schwerdtfeger (Ed.), Relativistic electronic structure theory. Part 2, Applications. Theoretical
and computational chemistry, Elsevier, Amsterdam, vol. 14 (2004).

[42] K. Hirao, Y. Ishikawa (Eds), Recent advances in relativistic molecular theory. Recent advances
in computational chemistry, World Scientific, London, vol. 6 (2004).

[43] M. Barysz, Y. Ishikawa (Eds), Relativistic methods for chemists. Challenges and advances in
computational physics, Springer, London, vol. 10, (2010).

[44] K. G. Dyall, K. Faegri Jr., Introduction to relativistic quantum chemistry, Oxford University
Press, Oxford (2007).

[45] I. P. Grant, Relativistic quantum theory of atoms and molecules. Theory and computations,
Springer, New York (2007).

[46] M. Reiher, A. Wolf, Relativistic quantum chemistry: the fundamental theory of molecular
science, Wiley-VCH, Weinheim (2009).

[47] Pyykkö, P. In Lecture Notes in Chemistry, vol. 41, Spinger, Berlin, (1986).
[48] Pyykkö, P. In Lecture Notes in Chemistry, vol. 60, Spinger, Berlin, (1993).
[49] Pyykkö, P. In Lecture Notes in Chemistry, vol. 76, Spinger, Berlin, (2000).
[50] P. Pyykkö, Relativistic Quantum theory of atoms and molecules database, http://rtam.csc.fi/,

(accessed February 19, 2014).
[51] P. Pyykkö, The RTAM electronic bibliography, Version 17.0, on relativistic theory of atoms and

molecules, J. Comp. Chem., 34, 2667 (2013).
[52] http://web2.lac.u-psud.fr/lac/Database/Contents.html (accessed February 19, 2014).



“Dolg-Driver” — 2015/1/17 — 15:12 — page 449 — #25

Shell Structure, Relativistic and Electron Correlation Effects in f Elements 449

[53] E. Eliav, U. Kaldor, Transition energies of Rn- and Fr-like actinide ions by relativistic
intermediate Hamiltonian Fock-space coupled-cluster methods, Chem. Phys., 392, 78–82
(2012).

[54] J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., 32, 37–39 (1964).
[55] A. Streitwieser, U. Müller-Westerhoff, Bis(cyclooctatetraenyl)uranium (uranocene). A new class

of sandwich complexes that utilize atomic f orbitals, J. Am. Chem. Soc., 90, 7364 (1968).
[56] A. H. H. Chang, R. M. Pitzer, Electronic structure and spectra of uranocene, J. Am. Chem. Soc.,

111, 2500–2507 (1989).
[57] W. Liu, M. Dolg, P. Fulde, Low-lying electronic states of lanthanocenes and actinocenes

M(C8H8)2 (M = Nd, Tb, Yb, U), J. Chem. Phys., 107, 3584–3591 (1997).
[58] J. P. Clark, J. C. Green, An investigation of the electronic structure of bis(eta-cyclo-octatetraene)-

actinoids by helium-(I) and -(II) photoelectron spectroscopy, J. Chem. Soc. Dalton Trans., 505–
508 (1977).

[59] N. Rösch, A. Streitwieser, Quasirelativistic SCF-Xα scattered-wave study of uranocene,
thorocene, and cerocene, J. Am. Chem. Soc., 105, 7237–7240 (1983).

[60] A. Greco, S. Cesca, G. Bertolini, New π-cyclooctatetraeny and π-cyclopentadienyl complexes
of cerium, J. Org. Chem., 113, 321–330 (1976).

[61] I. Fragala, G. Condorelli, P. Zanella, E. Tondello, Photoelectron spectroscopy of actinide
organometallic compounds I. Bis(cyclooctatetraene)actinide(IV) complexes, J. Organomet.
Chem., 122, 357–363 (1976).

[62] A. Streitwieser, S. A. Kinsley, J. T. Rigsbee, I. L. Fragala, E. Ciliberto, Photoelectron spectra
and bonding in cerocene, bis-(π-[8]annulene) cerium(IV), J. Am. Chem. Soc., 107, 7786–7788
(1985).

[63] C.-S. Neumann, P. Fulde, Is there a molecular analogue of a Kondo singlet state? Z. Phys. B:
Cond. Mat., 74, 277–278 (1989).

[64] M. Dolg, P. Fulde, W. Küchle, C.-S. Neumann, H. Stoll, Ground state calculations of di-π-
cyclooctatetraene cerium, J. Chem. Phys., 94, 3011–3017 (1991).

[65] M. Dolg, P. Fulde, H. Stoll, H. Preuss, A. Chang, R. M. Pitzer, Formally tetravalent cerium and
thorium compounds: A configuration interaction study of cerocene Ce(C8H8)2 and thorocene
Th(C8H8)2 using energy-adjusted quasirelativistic ab initio pseudopotentials, Chem. Phys., 195,
71–82 (1995).

[66] N. Edelstein, P. G. Allen, J. J. Bucher, D. K. Shuh, C. D. Sofield, N. Kaltsoyannis, G. H. Maunder,
M. R. Russo, A. Sella, The oxidation state of Ce in the sandwich molecule cerocene, J. Am.
Chem. Soc., 118, 13115–13116 (1996).

[67] H.-D. Amberger, H. Reddmann, F. T. Edelmann, Welche Oxidationszahl hat Cer im tiefvioletten
1,1’,4,4’-Tetrakis(trimethylsilyl)cerocen? J. Org. Chem., 690, 2238–2242 (2005).

[68] C. H. Booth, M. D. Walter, M. Daniel, W. W. Lukens, R. A. Andersen, Self-Contained Kondo
effect in single molecules, Phys. Rev. Lett., 95, 267202, (2006).

[69] M. D. Walter, C. H. Booth, W. W. Lukens, R. A. Anderson, Cerocene revisited: The elec-
tronic structure of and interconversion between Ce2(C8H8)3 and Ce(C8H8)2, Organomet., 28,
698–707 (2009).

[70] A. Streitwieser, S. A. Kinsley, C. H. Jenson, J. T. Rigsbee, Synthesis and properties of di-π-
[8]annulenecerium(IV), cerocene, Organomet., 23, 5169–5175 (2004).

[71] A. Kerridge, R. Coates, N. Kaltsoyannis, Is cerocene really a Ce(III) compound? All-electron
spin-orbit coupled CASPT2 calculations on M(η8-C8H8)2 (M = Th, Pa, Ce), J. Phys. Chem. A,
113, 2896–2905 (2009).

[72] A. Kerridge, Oxidation state and covalency in f-element metallocenes (M = Ce, Th, Pu): a
combined CASSCF and topological study, Dalton Trans., 42, 16428–16436 (2013).

[73] O. Mooßen, M. Dolg, Two interpretations of the cerocene electronic ground state. Chem. Phys.
Lett., 594, 47–50 (2014).

[74] G. Balazs, G. O. Cloke, J. C. Green, R. M. Harker, A. Harrison, P. B. Hitchcock, C. N. Jar-
dine, R. Walton, Cerium(III) and cerium(IV) bis(η8-pentalene) sandwich complexes: synthetic,
structural, spectroscopic, and theoretical studies, Organomet., 26, 3111–3119 (2007).



“Dolg-Driver” — 2015/1/17 — 15:12 — page 450 — #26

450 Computational Methods in Lanthanide and Actinide Chemistry

[75] A. Ashley, G. Balazs, A. Cowley, J. Green, C. H. Booth, D. O’Hare,
Bis(permethylpentalene)cerium — another ambiguity in lanthanide oxidation state, Chem.
Commun., 1515–1517 (2007).

[76] M. Dolg, unpublished results.
[77] M. Mödl, M. Dolg, P. Fulde, H. Stoll, Analysis of large-scale multi-configuration self-consistent

field wavefunctions by expectation values of local operators, J. Chem. Phys., 105, 2353–2363
(1996).

[78] M. Yu, M. Dolg, Covalent contributions to bonding in group 12 dimers M2 (M = Zn, Cd, Hg),
Chem. Phys. Lett., 273, 329–336 (1997).



“Dolg-Driver” — 2015/1/17 — 12:27 — page 451 — #1

Index

Note: Page numbers in italics refer to Figures; those in bold to Tables

accuracy
chemical, 24, 269
benchmark, 74
electron correlation methods, 273–5
high-accuracy calculations, 23, 73

actinide (An)
anionic bound states, 11
basis sets, 195–206
bond distances, 167
electron affinity (EA), 11
low-valent, 356–65

activation
C–H bond, 387–95, 388–90, 391, 392–4

active space selection, 138–9
all-electron (AE)

basis sets, 204–5, 207–8
relativistic approaches, 55–87

Amsterdam density functional program system
(ADF), 72–3, 77, 418

An@C28(An=Th, Pa+, U2+, Pu4+), 410–413,
411, 411–12, 413

An@Sin−20 (An=U, Np, Pu, Am, Cm for n=6–2),
413–18, 415, 415–18

anion, atomic, 1–22
atomic mean field integrals (AMFI), 69, 223,

272
atomic units, 59, 149, 300, 303, 313

Baker-Campbell-Hausdorf (BCH) expansion,
76, 79

Barysz-Sadlej-Snijders (BSS) Hamiltonian, 68,
312

basis set
complete (CBS), limit, 210, 211
construction, 6–8

convergence, 210–13, 211–13
correlation-consistent, 72, 196–7, 205, 207–9,

211
dual family, 72, 204
error-balanced, 185–6
Gaussian, 71, 123, 181–216, 302, 330,

380–381
generalized contraction, 182–4
impurities in crystals, 224
incompleteness error (BSIE), 210
primitive, 91–2, 182, 196–7, 204–10, 222
segmented contraction, 182–5
Slater, 71, 181, 380
superposition error (BSSE), 212–3
systematically convergent, 206–10
types of, 123–4
universal (Gaussian) (UGBS), 36, 40, 71,

73, 204
valence (Ln, An), 156, 160, 161

binding energy
electronic, 3, 6, 10–11, 11, 56, 279, 406
molecular, 141, 152, 163, 408, 410, 415, 415,

418–19, 433
bis(η8-cyclooctatetraenyl)cerium, 143, 143,

440–443, 440
bis(η8-pentalene)cerium, 443–6, 440, 444, 446
Bloch equation, 26–7
bond

dissociation energy (UFn, UCln), 382–4,
382, 385

distance (LnO, AnO), 167
energy, 74, 142, 163, 186–91, 192, 193,

376–7, 381
energy, errors, 192

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



“Dolg-Driver” — 2015/1/17 — 12:27 — page 452 — #2

452 Index

EuI3, AmI3, 165, 166
length contraction/expansion, 61, 418

bonding, 375–400
CeF, CeO, 101
nature of interactions, 385–7

Boson irrep, 90
bound-bound transitions, 1
Breit term, 34, 37, 42, 49, 65, 438
Brillouin theorem, 136

Car-Parinello molecular dynamics (CPMD),
277, 283, 286, 319, 330

Ce−, 4–5
Ce@C28, 410, 411, 413
Ce(C8H6)2, 443–6, 440, 444, 446
Ce(C8H8)2, cerocene, 143, 143, 440–443, 440
CeFn+ (n=0–2)

excited states (CeF), 108
ground states, 97–101
spinors (CeF+), 97, 100
total/dissoziation energies, configurations, 98

CeO
spectroscopic constants, 433, 434

CeOn+ (n=0–2)
excited states (CeO), 106–7, 107
ground states, 92–7
spinors, CeO+, 93, 96
total/dissoziation energies, configurations, 94

complete active space (CAS)
second-order perturbation theory (CASPT2),

41, 46–8, 74, 80–82, 140–141, 163, 225–6,
235–6, 271, 274–6, 287–8, 288, 442

self-consistent field (CASSCF), 41, 74, 81–2,
121–46, 165, 206, 224–5, 230, 235–6,
271, 274–5, 344, 350–352, 351, 355, 437,
442–3, 446

complex formation, 283–6
2-component

approach, 122
Hamiltonian, 65–9, 71, 272, 315

4-component
approach/formalism, 25, 55–6, 57–8, 122, 123
Hamiltonian, 61–6, 68–9, 82

computational chemistry
chemistry, actinides, 269–98, 343–400
chemistry, lanthanides, 343–74
efficiency, 7–8, 10

configuration
contributions, 444
general open-shell (GOSCI), 91–2

relative energies (Ln, An) 435
super-, 432

configuration interaction (CI)
approach, 127–32
complete active space (CAS-CI), 81–2
continuum formalism, 13–15
full (FCI), 122, 128, 131, 132, 133
multi-reference (MRCI), 140, 164, 206,

209–10, 271, 274, 428, 441
relativistic, 1–22, 89–119
restricted active space (RASCI), 91–2

continuum model, polarizable (PCM), 83, 277,
280, 388, 395

contraction
actinide, 58–9, 197, 228
lanthanide, 58–9
length, 61
orbital/shell, 30, 122–4, 378, 419, 429, 434–5
pattern/scheme (basis set), 72, 182–5, 184,

190–191, 190, 196–7, 204–10
problems (basis set), 31

core
Ce, 154, 206, 251, 253, 259, 263
charge, 149
choice of, 153–5, 154
correlation, 16, 152
frozen (FC), 5, 152
polarization effects, 43
polarization potential (CPP), 152–3, 356
spectroscopy, 278–83

correlation see electron correlation
Coulomb

correlation, 126–7
cusp/hole, 139–40, 140
gauge, 17, 303
term, 65, 71

coupled-cluster (CC), 23–32, 75–80, 82–3, 91,
131, 163, 226, 270, 284, 437–8

Fock space (FSCC), 24–7, 30–31, 35–6, 46, 78,
80, 162, 271, 275, 438

multi-reference (MRCC), 78–80, 83, 282
operator, 131
relativistic, 23–32
single-reference, 75–8, 131–2
state-universal (SUMRCC), 79
valence-universal (VUMRCC), 79

Cowan-Griffin (CG), 160, 205, 223
crystal field

effects, 122
Hamiltonian, 246–7
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octahedral, 130
parameters, 247, 251–3
perturbation, 258, 263
potential, 247–8, 250–251, 255, 261, 263
splitting, 122, 130–131, 345
states, 345–6
strong, 219
theory, 219
wavefunction, 247
weak, 127, 130–131, 333

CRYSTAL program system, 148
CsCaBr3:Yb3+, 228–32, 228, 230, 232
Cs2GeF6:U4+, 232–3, 233
CUOn+ (n=0–2), 48, 80, 278
Cyanex 301, 170–172

DALTON program system, 272
Darwin term, 67, 377, 379
density functional theory (DFT), 82–3

approximations, 381
time-dependent (TDDFT), 82–3, 270–271,

274–6, 280–281, 326–7, 409, 413, 420
density matrix

first-order reduced (RDM), 133
renormalization group (DMRG), 137, 278

destabilization, 419, 435–6, 440–441
diamagnetic

ground state (U@C28), 410
shielding, 304
term/operator, 304–5
UIV complexes (19F shielding), 308

diatomics
lanthanide, 89–120

dimer
actinide, 141–2, 142

dipole
allowed transition, 44, 231, 409, 413
approximation, electric, 246, 281
dipoles, 255
forbidden, 231, 232
moment, 73, 186, 189–91, 255, 315, 318, 395
polarizability/polarization, 73, 152, 208
transition, 114, 243, 245–8, 256, 260–264,

326
transition amplitude, 44
transition moment, 111, 113, 114, 114, 227

Dirac
equation, 63, 65–6, 123, 187, 260–261, 300,

314, 376, 418
density, 305

Hamiltonian/operator, 63–4, 71, 302, 313
matrices, 63

Dirac-Coulomb (DC)
energies/results, 32, 33–5, 37, 316–17, 436
Hamiltonian/method, 65, 69, 71–2, 91, 154,

172, 347, 436
Dirac-Coulomb-Breit (DCB)

energies/results, 32, 33–5, 37, 436
Hamiltonian/method, 24–5, 49, 83, 172, 436

Dirac-Coulomb-Gaunt (DCG) Hamiltonian, 69
Dirac-Fock-Slater (DFS), 34, 37
Dirac–(Hartree–)Fock (DHF), 2, 6, 15, 31, 34,

37, 150, 172, 188, 198, 205–6, 209, 435,
436–7, 436

DIRAC program system, 31, 48, 69, 90–91, 108,
272, 316

Douglas-Kroll-Hess (DKH)
energies/results, 70, 162–3, 165, 429, 438
Hamiltonian/method, 68, 71–2, 82, 86, 123,

147, 162, 164–5, 187, 204–5, 236, 300,
306, 317, 437–8, 442–3

effective core potential (ECP) see also
pseudopotentials

basis sets for, 188–93, 205–6, 208–10
generalized relativistic (GRECP), 160–161

effects
correlation, 437–9, 429, 438
relativistic, 123, 433–7, 429, 438
shell structure, 430–433
spin-orbit, 272–3, 378–9

electric field, 63, 152–3, 380
electric field gradient (EFG), 73, 273, 318
electron affinity (EA), 4–5, 10, 11, 157, 287
electron correlation

core, 16, 152
core-valence, 4, 73, 77, 152, 172, 210, 211
Coulomb, 126
dynamical, 139–40
effects/contributions, 433–7, 429, 438
energy (definition), 126
Fermi, 124–5
impurities in crystals, 224–6
radial, 225
static, 130–132
valence, 8, 73, 155, 210

18-electron principle, 401
32-electron principle, 401–24
embedded-cluster method, 221–6
exact 2-component (X2C)
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energies/results, 70, 316, 317, 318
Hamiltonian/method, 68–72, 187, 272, 299,

301, 303, 306, 312–19
exciton states, 217–39
expansion

bond length, 418
orbital/shell, 30, 378, 429, 435, 440

Fermi
contact hyperfine term, 304
correlation, 124–5
vacuum, 60, 78–9

fine-structure
constant (α), 15, 25, 49, 159, 377
extended X-ray absorption (EXAFS), 166,

280, 282, 326, 442
Fock space

coupled cluster (FSCC), 24–7, 30–31, 35–6,
46, 78, 80, 162, 271, 438

energies/results, 33–5, 37–9, 41–3, 47, 49,
162–3

orbitals/sector, 26–7, 29–30, 35–6, 36, 40,
79–80

f-shell Ω decomposition method, 108–11

GAMESS program system, 148
Gaunt interaction/term, 65, 69
Gaussian basis sets, 181–216
Gaussian nuclear model, 91, 307
GAUSSIAN program system, 148, 151, 287,

381
Gaussian-type function (GTF)

contracted (CGTF), 182–5, 184
primitive (PGTF), 182–5, 184

GdFn+ (n=0–2)
excited states (GdF), 108–16, 110, 112, 113
ground states, 102–4
spinors (GdF+), 102, 105
total/dissoziation energies, configurations,

103
transitions (GdF), 114, 115

4-gradient, 62
GRASP computer code, 154
ground states

lanthanides, actinides, 426

Hamiltonian
Barysz-Sadlej-Snijders (BSS), 68, 312
Breit-Pauli (BP), 300
Chang-Pelissier-Durand (CPD), 300

2-component, 65–9, 71, 272, 315
4-component, 61–6, 69
Dirac, 63–4, 71, 303, 313
Dirac-Coulomb (DC), 65, 69, 71–2, 91, 154,

172, 347, 436
Dirac-Coulomb-Breit (DCB), 24–5, 49, 83,

172, 436
Dirac-Coulomb-Gaunt (DCG), 69
Douglas-Kroll-Hess (DKH), 68, 71–2, 82, 86,

123, 147, 162, 164–5, 187, 204–5, 236,
300, 306, 317, 437–8, 442–3

effective, 26–30, 75–6, 78–9, 149–150, 226
embedded-cluster, 221–3
exact 2-component (X2C), 68–72, 187, 272,

299, 301, 303, 306, 312–19
infinite-order regular approximation

(IORA), 67
intermediate, 27–30, 35, 36–9, 80, 438
isolated cluster, 223
Pauli, 67
regular, 67–9
relativistic, 24–5, 32, 40, 59–71, 70, 82, 123,

204, 220, 223, 279, 281, 397, 429
second-quantized form, 60
zeroth-order regular approximation (ZORA),

67, 71–3, 123, 187, 204, 272, 299–309,
311–12, 316–18, 347, 418

Hartree-Fock-Roothaan, 91, 133
Hartree product, 124
H2, dissociation, 128–130, 129, 444, 446
Hilbert space, 27, 30, 50, 60, 384
hydration

actinide(III), lanthanide(III), 166–70
Cm(III), effect of counter ions, 322–5
Ln(III)/An(III)-O distances (Ln/An(H2O)3+

n ),
167, 169

Gibbs energies (Ln/An(H2O)3+
n ), 168, 170

hydrolysis constant (U(IV-VI)), 320–322
hyperfine

coupling, 303, 307, 311
interactions, 263
operators/terms, 303–4, 307
structure, 6

impurity, 217–40
inertial frame, 61
intermediate

coupling, 428
normalization, 7, 26, 81

internal contraction, 78, 271
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intruder states, 27–30, 79, 82, 141, 225
ionization potential,

first, second (Ac, Th, Pa, U), 162
fourth (Ce, Th), 436, 438
third, fourth (Ac, Th, Pa, U), 163
third (Ln), 165

jj coupling, 108, 111, 379
J levels, 426, 426, 427
Judd-Ofelt theory, 241–68

Kondo
system, molecular, 143, 425–50
wavefunction, 439

Kramers
non-Kramers system, 346
pair, 92, 307
symmetry, 25

lanthanide (Ln)
anionic bound states, 11
basis set, 195–216
contraction, 58, 197, 228
divalent, 349–56
electron affinity, 11
monoxides, bond distances, 167

laser cooling, anions, 1, 11
ligand

exchange reaction, 283–6
field theory (LFT), 90, 106

light, speed/velocity, 61–3, 377, 433–4
Lorentz

factor, 62
transformation, 61–2

LS (Russell-Saunders) coupling, 109, 111, 260,
345, 432

LSJ term symbols
Lanthanides, actinides, 426

LS states, 426, 426

magic number, 401–24
magnetic field, 63–5, 305, 315, 378
mass polarization, 263
mass-velocity term, 67, 377, 379
metadynamics, 319–23
metal cluster, 402–3
metallocene, 143–4, 280, 351, 389
minimal electromagnetic coupling, 63
model potential

ab initio (AIMP), 222–3, 273
MOLCAS program system, 148, 272

molecular dynamics, 253, 280
ab initio (AIMD), 319, 322, 325–7
Born-Oppenheimer (BOMD), 277
Car-Parinello (CPMD), 277
trajectories, 283

molecular mean field approach, 69
Møller-Plesset (MP) perturbation theory, 75, 81,

140–141, 164, 186
MOLPRO program system, 148, 151, 184, 209
4-momentum, 62
Mössbauer isomer shift, 73, 308, 317, 344
Mulliken population

gross atomic (CeOn+, CeFn+, GdFn+,
n=0–2), 93, 94, 97, 98, 102, 103, 107, 110,
113

multi-configuration (MC)
self-consistent field (MCSCF), 132, 137, 140,

143, 163, 441, 443
multi-reference (MR)

configuration interaction (MRCI), 140, 164,
206, 209–10, 271, 274, 428, 441

coupled-cluster (MRCC), 75, 79–80, 83, 282
perturbation theory (MRPT), 80–82
self-consistent field (MRSCF), 428
space, 224–5
wavefunction, 55, 271, 278

multipole
expansion, 152, 251, 253
moment, 255, 305, 315, 318, 319

negative energy continuum/solutions, 25, 60,
62–3

normal order, 26–7, 60–61, 79
nucleus/nuclear

finite, 172, 204, 307–8, 309, 312, 428, 436,
436, 438

Gaussian charge distribution, 25, 91, 307
magnetic resonance (NMR), 73, 89, 300,

303–4, 306–8, 315, 351, 404
model, 71, 91, 196, 204, 307, 436, 438
point nucleus, 67, 71, 308, 311, 316–17, 436
radius, 71
uniform charge distribution, 25
waste, 58, 74, 170, 320

NWCHEM program system, 299, 307, 315–16,
327

occupation number
fluctuations, 445, 446

operator
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annihilation, 60–1, 135, 248–9
cluster, 131
creation, 60–1, 78, 135, 248
excitation, 131
replacement, 135
substitution, 135
wave, 26–7, 75, 78–9

orbital
bonding (UO2+

2 , U(NMe)2+
2 ), 386

canonical, 133
composition, 444
contraction, 30, 122–3, 378, 378, 419, 429,

434–5
destabilization, 419, 435–6, 440–441
energies, 56, 57, 199, 430
expansion, 30, 378, 378, 406, 411, 429, 435,

440
natural, 133
population (actinide center), 394
pseudo-valence, 189
radial densities/distribution function, 378,

383, 431
radial expectation values, 57, 58
spaces (inactive, active, external), 134
stabilization, 31–2, 34, 38, 405, 419, 434–5
Zeeman operator (OZ), 304

ORCA computer code, 183–4

paramagnetic
electron paramagnetic resonance (EPR) shifts,

303
lanthanide complexes, 89
nuclear magnetic resonance (NMR) shifts,

306
terms/operator, 304

parity
forbidden, 273
non-conservation, 1, 23
of operator, 258, 261
orbital, 59
state (odd, even, opposite), 1, 3, 11, 41, 218,

246–8, 258
particle-hole formalism, 60
Pauli

Hamiltonian, 67
(spin) matrices, 63

Pb2−
12 , 404–9, 404–7, 408

periodic boundary condition method, 227
perturbation theory

complete active space second-order
(CASPT2), 80–82, 140–141

Møller-Plesset (MP), 75, 81, 140–141, 164,
186

multi-reference (MRPT), 80–82, 140–141
multi-state (MS-PT), 225
n-electron valence second-order (NEVPT2),

82, 141, 271
Rayleigh-Schrödinger (RSPT), 80–81, 245–6,

443
photodetachment cross-sections

formalism, 12–14
methodology, 15–18

picture change errors/corrections, 68–9, 71, 312,
318

polarization
functions, 72, 185–6
potential, core, 152–3, 356

4-position, 61–2
positron, 63, 65, 67
4-potential, 64
primogenic repulsion, 431
proper time, 62
properties

magnetic, 303–12
modeling of, 299–342
thermodynamic, 319–25

pseudopotentials (PPs)
basis sets for, 188–93, 205–6, 208–10
energy-consistent, 155–8, 156
relativistic, 147–79
shape-consistent, 158–61, 160

Pu4+@C28, 411, 411–12, 413, 418–20, 419–20

quantum electrodynamics (QED), 24–5, 38, 44,
122, 123

quantum electrodynamics effects/contributions,
44, 148, 172, 436–7, 436

quantum numbers, relativistic atomic orbital, 65
quaternion, 90

Rayleigh-Schrödinger perturbation theory
(RSPT), 80–81, 245–6, 443

reaction
energy diagram, C-H activation, 393–4
imido-exchange, 395–7
reaction pathway, imido exchange, 396–7

reactivity, 375–400
reduction potential, 286–8, 288
relativistic
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all-electron approaches, 55–88
configuration interaction (RCI), 1–22, 89–120
coupled-cluster (RCC), 23–32
effective core potentials (RECPs), 379–80
effects/contributions/corrections, 69, 123,

147–9, 153, 159–160, 187–8, 195, 197,
205, 218–9, 232, 260, 262–4, 270, 281,
284, 299–300, 305, 308, 347–8, 375,
377–9, 378, 385, 387, 405, 418–9, 425,
428–431, 433–7, 436, 438, 439, 442

mass increase, 56, 123
pseudopotentials (PPs), 147–79

RESPECT computer code, 272

scalar-relativistic/spin-free
approach/calculation, 72, 270, 272, 281, 289,

305–6, 418
correction/contribution/effect, 48, 56, 60, 123,

187, 281, 377–8, 442
density of states (Pb2−

12 ), 405
effective core potential/ pseudopotential,

148–51, 157, 172, 188, 308
energies/results, 56, 408, 411, 413, 417, 419,

436
equation/Hamiltonian, 82, 226, 301
function, 64
potential, 59, 159, 161, 379
valence orbitals (Pu@Pb2−

12 , Pu4+@C28,
U@Si6−

20 ), 406, 412, 416
scaled ZORA, 67, 71, 301, 305, 317
scaling

computational cost/expense, 77, 82, 132, 132
correlation energy, 75
spin-orbit integrals, 310

selection rule, 114, 218, 262, 273
self-consistent embedded ions, 223
self-consistent field (SCF)

complete active space (CASSCF), 74, 121–46,
442–3

generalized active space (GASSCF), 137
occupation-restricted multiple active space

(ORMAS-SCF), 137
separation

lanthanide(III), actinide(III), 170–172
size consistency/inconsistency, 131–2
size-consistent, 24, 30, 131, 271
size-extensive, 24–5, 30, 75, 78, 270
size extensivity, 271
Slater determinant, 109, 124–5, 127, 131, 271
Sn2−

12 , 405–9

solid, 217–40, 276–8
solid-state lighting (SSL), 234–6
solvation, 75, 83, 277, 284–5, 285, 287–9, 388,

395
solvent

effects, 74, 171, 277, 283, 288, 322, 395
exchange, 319, 324–5
model, 83, 280, 284, 287, 288
thermodynamics, 320

spectroscopy
extended X-ray absorption fine structure

(EXAFS), 282–3, 327–30
X-ray absorption (XAS), 280–283, 325–33
X-ray absorption near-edge structure

(XANES), 280–282, 330–333
X-ray photoelectron (XPS), 279–80

spectrum
absorption/emission, 227–8
absorption (CsCaBr3:Yb3+), 232
f-, interpretation, 255–7
f-, parametrization, 262–5
valence, 275–6

spherical harmonics
number of, 190, 192
regular, 90–91, 150–151
spinor, 160

spin
forbidden, 231, 273
local, 445, 446
Zeeman operator (SZ), 304

spin-averaged, 148
spin-dipole (SD) hyperfine term, 304
spinor

atomic, 91–8
contour map, (CeO+, CeF+, GdF+), 96, 100,

105
energies, atoms (Ln, An), 199
energies, molecules (CeO+, CeF+, GdF+),

93, 97, 102
molecular, 90–111, 302
radial maxima (Ln, An), 200
root mean square radii (Ln, An), 201

spin-orbit
components, 58, 72
configuration interaction (SOCI), 90, 272–3,

288
coupling/interaction, 60, 64–5, 67, 69, 71, 73,

75, 77, 83, 112, 122–3, 181, 187–8, 218,
220, 223, 225–6, 228, 228, 230–231, 230,
236, 255, 263–4, 270, 272–3, 275, 279,
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281–2, 287–8, 307, 330, 347, 354, 375,
378–9, 382, 410, 413, 418–20, 429, 436,
445

corrections/contributions/effects, 56, 56, 69,
71, 82, 232, 272–4, 288, 300–301, 312,
378–9, 419, 428, 438–9, 441

energies/splittings, 58, 69, 70, 197–8, 379,
403, 419, 434

integrals, 272
operator/term, 67, 69, 226, 288, 301, 306,

312, 378, 382, 418
potential, 209, 379
states, 345
spin-other orbit (SOO), 69, 317
spin-same orbit (SSO), 65, 71

SrCl2:Yb2+, 233, 233
stabilization

chemical, 344–5, 346, 411
ligand field, 235
orbital/shell, 31–2, 34, 38, 405, 419, 434–5

states
electronic, doped crystals, 228, 230
excited, 89–119, 273–8
family of, 109–114, 110, 112
impurity-trapped exciton (ITE), 217–40, 233

superconfiguration, 74, 432, 432, 434
symmetry

time-reversal, 25, 90
quaternion, 90

time dilation, 61
time-reversal symmetry, 90
transition

dipole moment, 111
energy diagram (GdF), 112

TURBOMOLE program system, 148, 183–4,
186

U@Si6−
20 , 413–18, 415–18, 415

UOn+
2 (n=0–2), 31, 45, 48, 49, 74, 77, 77,

142–3, 142, 162, 272, 274, 276, 279,
284–5, 285, 317, 318, 320–1, 327–9, 328,
364, 376, 380, 386–7, 390

valence
basis set, 148, 156, 156, 159, 160, 161
(-only) Hamiltonian, 152, 379
spectroscopy, 273–8

4-vector, 61
4-velocity, 62

wavefunction
embedded-cluster, 223–6
exact, 75, 128, 131, 133, 140

wave operator, 26–7, 75, 79
Wood-Boring (WB), 148, 188, 189, 206, 223,

235

X-ray
absorption (XAS) spectroscopy, 280–283,

325–33
absorption near-edge structure (XANES)

spectroscopy, 280–282, 330–333
photoelectron spectroscopy (XPS), 279–80

Y3Al5O12:Ce3+ (YAG:Ce3+), 234–6

zero-multipole method, 223
zeroth-order regular approximation (ZORA)

energies/results, 70, 77, 308, 309, 310–311,
311

Hamiltonian/method, 67, 71–3, 123, 187, 204,
272, 299–309, 311–12, 316–18, 347, 418

Zitterbewegung, 67
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Figure 4.1 Contour maps of the large components of the CeO+ spinors. The quaternion units

1 and
∨
j correspond, respectively, to the Lα real part of A1 and to the Lβ real part B1. Coordinates

run from −8.0 to 8.0 au. The CeO+ nuclear distance is taken from the experimental Re value
(3.44 au) of neutral CeO. Solid and broken lines are contours of positive and negative values,
respectively. Their values are ±0.0125, ±0.025, ±0.05, ±0.1, ±0.2

Computational Methods in Lanthanide and Actinide Chemistry, First Edition. Edited by Michael Dolg.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



“Color_Plates” — 2015/1/17 — 12:30 — page 2 — #2

26–30 spinors 31, 32, 34, 42, 43 spinors

Unit 1 Unit 1Unit j Unit j
CeF.26–1

x

z

5

0

–5

5

5

0

0

–5

–5–5 0 5

CeF.27–1
x

z

5

0

–5

–5 0 5

CeF.27– j
x

z

5

0

–5

–5 0 5
CeF.28– j

x

z

5

0

–5

–5 0 5

CeF.29– 1
x

z

5

0

–5

–5 0 5

CeF.29– j
x

z

5

0

–5

CeF.30– 1
x

z

5

0

–5

–5 0 5

CeF.30– j
x

z

5

0

–5

–5 0 5

CeF.43– 1
x

z

5

0

–5

–5 0 5

CeF.43– j
x

z

5

0

–5

–5 0 5

–5 0 5

CeF.42– 1
x

z

5

0

–5

–5 0 5

CeF.34– 1
x

z

5

0

–5

–5 0 5

–5 0 5

CeF.31–1
x

CeF.31– j
x

z

5

0z

–5

–5 0 5

CeF.32– j
x

z

5

0

–5

–5 0 5

CeF.34– j
x

CeF.42– j
x

z

z

5

0

–5

5

0

–5

–5 0 5

Figure 4.2 Contour maps of the large components of CeF+ spinors. The CeF+ nuclear distance
is taken from the experimental Re value (3.87 au) of neutral CeF. The maps are drawn in the
same manner as in Figure 4.1
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Figure 4.3 Contour maps of the large components of GdF+ spinors. The GdF+ nuclear dis-
tance is the calculated Re value (3.7599 au) of neutral GdF. The maps are drawn in the same
manner as in Figure 4.1
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Figure 5.9 Strongly occupied natural orbitals and corresponding occupation numbers of
[UO2]2+ obtained from a CASSCF (12,12) calculation. Data from Pierloot and van Besien [34]
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Figure 5.10 Bonding and antibonding MOs of cerocene, exhibiting 4fδ contributions
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Figure 12.4 EFG tensors for uranyl and a uranyl-carbonate complex. Polar plots of the field
gradient in the direction of the field, scaled to 40 au / pm. Blue (dark shading) = positive, orange
(light shading) = negative field gradient (SO X2C, Vmp, B3LYP). Reprinted with permission from
Autschbach et al. [14]. © 2012 American Chemical Society
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