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Preface

Picture this: sitting in a cottage by a peat fire in a small farm village just outside
of Limerick City in Ireland, with a pint of Guinness, a copy of Booch's software
components in Ada book, and a laptop computer. That picture describes how I
spent part of my sabbatical during the 1989-1990 academic year, after spending
the summer of 1989 working with an Ada programming group at the Naval
Surface Warfare Center in Dahlgren, Virginia. This was preceded by many years
of looking at ways of improving the Data Structures and Algorithms course as
more and more material filtered out of that course and into the CS 2 course. That
year in Limerick provided the opportunity to think through the variety of issues
that led to this book.
The Data Structures and Algorithms course is commonly referred to as the

ACM CS 7 course. During the past decade, a large amount of material has
moved from the CS 7 course to the CS 2 course. I viewed this relationship
between the CS 2 and CS 7 courses as an opportunity to enhance the CS 2 course
and modernize the CS 7 course. Two elements that played key roles in this
process are software reuse and object-oriented programming.
My experiences at Dahlgren, during the summer of 1989, convinced me of

Ada's value as an educational tool. I found Ada's features to be great tools for
enhancing and presenting software development concepts. Of particular
importance, I found Ada's encapsulation features and the ability to present
specifications without even a hint of implementational details an extremely
important software abstraction feature.
While I was on my sabbatical, my colleagues back at the University of

Scranton made the decision to select Ada as the core programming language for
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the CS 2 and CS 7 courses. We had been using Modula-2 since 1980. Dr.
Dennis Martin played a lead role in making the case for the transition to Ada.
In fact, the year I was away was a significant year for our department, as we
moved to new quarters with new laboratories and a fully networked environment.
I'd like to recognize the key role Rich Plishka played in putting it all together.
Between 1990 and 1992 we received two Software Engineering and Ada

grants for the development of support resources for the CS 2 and CS 7 courses.
This provided us with an opportunity to build upon the resources that were
constructed during my sabbatical. In 1992 we started refocusing our materials
toward the coming transition to Ada 9X, today we know as Ada 95. I must
acknowledge the direct and indirect roles Bob McCloskey played in the
development of the data structure suites that I use to support both courses.
This transition to an Ada 95-based resource lead, in the fall of 1994-to

experimentation with packages that employed type extension in lieu of generic
instantiation as the method of interfacing reusable software components to the
needs of clients-eventuallY led to the construction of a second suite of data
structure components that has a very distinct object-oriented flavor.

The Course

The course implied by this book requires substantial software support. I spent my
1989-1990 sabbatical constructing an outline for the course and course support
materials, including a component suite, based upon the Booch components,
intended to meet educational needs, but with industrial-strength features. I wanted
these components to provide good object-oriented support and software reuse
experience for students in the CS 2 and CS 7 courses.

It is assumed that the reader of this book is familiar with the topics normally
covered in a strong CS 2 course. We expect the CS 2 course to be a broad-based
introduction to the discipline with a strong emphasis on analysis, design,
abstraction, and the basics of formal specifications, and with a software
engineering flavor. In the CS 2 course the students gain a fundamental
understanding of the essential concepts of the basic logical data structures, like
stacks, queues, lists, and trees. This book moves forward from that foundation
with an in-depth presentation of representation, encapsulation, and measurement
issues.
There are four recurring themes in this book: abstraction, implementation,

encapsulation, and measurement. One significant difference you may find
between this book and others is that this book addresses a great variety of
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encapsulation issues and separates representational issues from encapsulation
issues.
There is more than enough material in this book to support a CS 7 course.

My preference is to cover the first six chapters in the first half of the semester.
My experience has been that the first two chapters must be addressed carefully.
Students never seem to fully grasp the implications of static representations, the
fundamental reasons behind the need for both private and limited private
types, and the subtleties of tagged and controlled types. While covering Chapters
3 through 6, I emphasize encapsulation and the variety of implementation and
measurement issues.
During the second half of the semester, I cover about 80 percent of the

material in the remaining chapters, leaving the uncovered material as the basis for
individual and team projects. For example, in Chapter 7 I may cover the AVL
tree restructuring in depth, then give a cursory presentation of B-trees, leaving the
construction of B-tree algorithms as an assignment. Another year I will switch
and do B-trees in depth and give various AVL-based assignments.

Support

This book describes, and is supported by, two approaches to encapsulation, the
traditional encapsulation of reusable Ada resources in generic packages and a
polymorphic approach that makes use of Ada 95's object-oriented features. Both
suites may be obtained across the World Wide Web from

http://academic.uofs.edu/faculty/beidler/

by following the Ada link. The packages may also be obtained through an
anonymous ftp from

ftp.cs.uofs.edu

in the pub/Ada directory. For those without network access, the data structure
component suites may also be obtained by contacting the author at (717) 941­
7774.

Gratia llbl Ago ...

So many people contributed in so many ways to this manuscript. Of particular
note are the many students who suffered through many variations of course notes
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in Cmps 240 from 1991 to 1996. They were the biggest contributors. They
pushed, and questioned, and made being an educator a real treat.
I'd like to thank my departmental colleagues. I could not forget our

departmental support staff of Mary Alice Lynott and Bill Gunshannon. Without
Mary Alice's assistance at critical times, and Bill's work in keeping our "ancient"
UNIX systems alive, I wonder if this book would ever have been completed. If
it was not for our department's unofficial open-door policy, I could not have tried
out many ideas on Rich, Bob, Paul, Bi, Dennis, and Dick. I would also like to
thank Chip for allowing me to try to improve his racquetball game.
My sabbatical in Ireland played an important role in getting this book started.

If Mary Engel, the associate dean of the College of Arts and Sciences, had not
met with Barra O'Cinneadie of the University of Limerick, my sabbatical would
not have come to be. The year at Limerick was made both a pleasure and an
academic success by such good folks as Wally Ryder, Tony Cahill, Norah
Powers, and Mike Coughlin. Nor can I forget the invaluable contribution of
Fionbarr McLaughlin and Liam O'Brien in teaching me to play squash.
In the last few years, numerous discussions with three good "Ada" friends

helped this project along. They are John McCormack, Mike Feldman, and Nick
DeLillo. Nick and I, along with our wives, share a full appreciation of the other
CIA, The Culinary Institute of America. Now if only he could learn to make a
good cappuccino.
Of course, what makes this venture so worthwhile is the support and love of

my family. They may be added to the dedication, if you figured it out, by
replacing the word "one" with the word "ones" when you sing the song. Now
that this book is completed, you may find it difficult getting in touch with me.
I'm busy playing with my grandchildren.

Jack Beidler
Summer 1996
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1

Preliminaries

This book presents data structure techniques in the context of object-oriented
software development with the eventual implementation of algorithms in Ada 95.
Object-oriented software development is a contemporary approach to the design
of reliable and robust software. The complexity of the implementation of
software systems is a combination of the complexity of the representations of
information and the complexity of the algorithms that manipulate the
representations. Data structures is the study of methods of representing objects,
the design of algorithms to manipulate the representations, the proper
encapsulation of objects in a reusable form, and the evaluation of the cost of the
implementation, including the measurement of the complexity of the time and
space requirements.
Programming languages play an important role in representing the solutions

to problems in an efficient, reliable, and maintainable manner. Many modem
programming languages support the layered representation of information and
algorithms, frequently referred to as abstraction. Abstraction is the separation,
or layering, of software to distinguish between what a data structure represents,
or what an algorithm accomplishes, from the implementational details of how
things are actually carried out. Abstraction is very important because frequently
there are several competing methods for representing a structure. Usually, there
are tradeoffs among competing representations and their algorithms. These

J. Beidler, Data Structures and Algorithms
© Springer-Verlag New York, Inc. 1997



2 1 Preliminaries

tradeoffs must be measured in light of the goals of the system under development,
or the problem being solved.
Important software design features that derive from good abstraction and

algorithm design are loose coupling, strong cohesion, and provably correct
software. Loose coupling is the clear indication of the flow of infonnation in a
software system. Coupling has to do with how infonnation is passed among
modules in a software system. Loose coupling is usually achieved by reducing
access to global variables and restricting the passing of infonnation between
modules through the use of procedure parameters and other obvious methods of
passing infonnation.

Strong cohesion is achieved by placing within a software module only the
code that helps the module achieve its task. Any code that is not related to the
task of the module is not in the module. Good use of loose coupling and strong
cohesion assists in making it easy to follow how a system achieves its goals,
hence assisting in verifying the correctness of the software.
Proving the correctness of a system is far beyond the scope of this book.

However, correctness issues should always be addressed. Correctness issues are
addressed here with carefully stated assertions using a Z-like (pronounced zed­
like) notation. The notation addresses the issues of values in variables before and
after the execution of a statement sequence. For example, the statement sequence

Sum:= 0;
for i in 1 .. n loop
Sum: = Sum + i;

end for;

could be written with assertions as

Sum:= 0;
-- Precondition: Sum = 0
for i in 1 .. n loop
Sum: = Sum + i;
-- Invariant: Sum' = 1+2+ ... +i = Sum + i

end for;
-- Postcondition: Sum' = 1 + ... + n

where a variable followed by a prime mark indicates the value in the variable,
Sum I, after the statement, or statement sequence, associated with the assertion.
For example, the loop invariant in the above code refers to the change in Sum
during execution of the statements within the loop. The postcondition of the loop
refers to the value of Sum when the loop tenninates. Assertions appear
throughout this book to describe subprogram preconditions and postconditions and
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other assertions. Assertions can also be used to analyze code within the bodies
of subprograms.
A good programming language supports an assortment of features that aid in

the formation of efficient, reliable, and maintainable software systems. Also,
contemporary programming languages support various means of encapsulating
representation in various ways, allowing clients who use these abstractions to
select the encapsulation that best meets their needs. As a result, software
developers may use these features to represent relationships between the original
problem and the solution being represented by the software. One programming
language that does this quite well is Ada 95.

1.1 Object-Oriented Software Development

Over the past decade, significant advances have been made in describing how a
software system represents the solution to a problem. The object-oriented
approach to software development plays an important role in improving the
software development process. From the data structures point of view, the object­
oriented approach provides a balance between objects and actions. This balance
yields important insight into the design and implementation of software systems,
resulting in efficient, reliable, robust, and maintainable software systems built
from reusable encapsulations of object classes.
This book supports the object-oriented philosophy of software development.

The book is not committed to anyone object-oriented approach, or to the issues
concerning the multiplicity of methods used by various object-oriented
programming languages. It is more concerned with using the object-oriented
philosophy as a means of presenting and carry out good software development
practices.

1.1.1 The Object-Oriented Concept

Object-oriented software development is an approach to software development
that has the potential to produce reliable, efficient, and maintainable software
systems, object-oriented software development is a topic whose scope is beyond
this text; however, some understanding of the terminology and philosophy of the
object-oriented approach is essential. This section touches on the terminology and
concepts as they relate to data structures.
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1.1.2 Objects and Their Attributes

Some traditional approaches to software design emphasize actions first and view
variables as a means of reporting on the results of actions. Informally, one may
view the object-oriented approach as being more balanced, placing an appropriate
emphasis on objects and actions as information, or messages, are passed among
objects.
Object-oriented software design begins with an analysis of the problem that

classifies the families, or classes, of objects that describe the problem's
environment. Each family of objects is classified by the attributes that combine
to form the states, or values, of objects in the family. Object-oriented design
classifies the actions and operations surrounding each object type. Additional
object types may be formed to assist in the design of a solution. Each time a new
object type is developed, its attributes, values, and operations are catalogued.
Abstraction, the hiding of details, plays a fundamental r9le in the object­

oriented approach. In data abstraction, complex object types are constructed from
simpler object types. Similarly, procedural abstraction distinguishes between
what an operation does from the details of how the subprogram is carried out.
This leads to the natural building of complex algorithms from simpler ones.
Since layering, or stratification, is natural in the object-oriented approach, it

lends itself to a natural progression from the specification of a problem to the
implementation of a solution through the careful control of the visibility and
interaction between objects.
Frequently, those who are unfamiliar with the object-oriented approach to

software development confuse the notions of object classes and objects with the
programming language notions of types and variables. Variables in a
programming language should not be viewed as being equivalent to objects. One
or more variables are brought together to describe the attributes of objects. In
many procedure-oriented programming languages, like Ada, the representation of
the value of an object is constructed from a collection of variables. Type
declarations assist in describing the attributes common to all objects in a class of
objects. In tum, a class of objects is completely described by the attributes of
objects, the relations between the attributes of objects in the class, and the
collection of constructors and observers that may act upon objects in the class.
To illustrate these notions, let us consider the description of figures in a

Cartesian coordinate system. All objects in the class of figures in a Cartesian
coordinate system have the attribute of position. Objects in the class of figures
may be acted upon by constructors that position figures on the plane, move them,
and remove them from the Cartesian system. The class of figures also has
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observers that return location, size, and other information. The location, or
anchor, attribute is a Cartesian coordinate. Cartesian coordinates themselves are
a class of objects. The attribute of each object in that class is described by a pair
of real numbers, called the x-coordinate and the y-coordinate. In tum, the x- and
y-coordinates are described by the class of objects called real numbers.
The object class of Cartesian coordinates is described by the typical attributes

of Cartesian coordinates and the usual operations and relationships between
coordinates, such as position and distance between coordinates.
Sometimes a class of objects might not be rich enough to describe the objects

in a problem. The extension of a class of objects to include additional attributes
and operations is called a polymorphism. For example, the terms rectangle,
circle, and square describe classes of objects that are polymorphisms of the class
figures. Each class has a set of attributes that describe the values of objects in
that class, and a collection of constructors and selectors that operate on objects
in the class. The derived class may also inherit from the original class attributes
and operations that were defined for the original class. For example, each object
in the class rectangle may be described with four attributes, the three new
attributes, width, height, and orientation, along with the inherited attribute,
position. Each object in the class circle is described with two attributes, the new
attribute, radius, and the inherited attribute, position. Each object in the class
square is described with two new attributes, length of a side and orientation,
along with the inherited attribute, position.
Frequently, simpler classes of objects are used to describe the attributes of

more complex classes. For example, the attributes width, height, radius, and side
are values from the class of objects known as the real number system, or class.
The attribute orientation comes from the class of objects called angles that
describes the relationship between a specified straight line and the horizontal axis.
The attribute position is a value in the class of objects called Cartesian
coordinates, which are composed of ordered pairs of values from the class of
real numbers.
An attribute is compound if it can be decomposed into two or more values

from one or more object classes. An attribute that cannot be decomposed is
called primitive. A class is said to be primitive if objects in the class are
described with a single, nondecomposable attribute. The class of real numbers
is an example of a primitive class of objects. This class, along with its set of
constructors and selectors, is very rich. The class Cartesian coordinates is not
primitive, because it is composed by combining a pair of real numbers.
The attributes that describe the values of objects in a class may be composed

of other objects from simpler classes, possibly primitive objects. For example,



6 1 Preliminaries

the relationship between a compound class, like rectangles, and a more primitive
class, like real numbers, is frequently exploited in the construction of algorithms
that manipulate objects in the more complex classes.

1.1.3 Operations

There are two categories of operations on object classes, constructors and
observers. A constructor is an operation that may change the value of an object.
An observer is an operation that does not change the value of an object, it simply
reports on the object's value. Some books refer to observers as reports or
selectors.
To illustrate, consider the Cartesian coordinate problem presented in Section

1.1.2. Typical constructors for the class rectangle might include Initialize,
Display, Undisplay, Move, Reorient, Change_Width, and Change_Height. Typical
observers for the class might include Is_Initialized, Is_Displayed, Orientation_Of,
and Area_Of. The observer Area_Of uses the multiply operation for real
numbers to report the object's area.

1.2 Problem Analysis

The object-oriented approach to software development complements the well­
known mathematician George Polya's four-step problem-solving process.
Table 1.1 illustrates an elaboration of Polya's four-step problem-solving process
that includes an object-oriented approach and expands upon the design phase.
The elaboration of the design phase into problem-oriented (high-level) and
solution-oriented (low-level) phases corresponds in a natural way to recursively
applied stepwise design during the software development process.
The software development process involves the formation of a solution to a

problem and the mating of the solution with the capabilities and limitations of the
target computer system. The fundamental problem of software development is
the smooth transition from the problem through the design to the representation
of the solution. A danger in the software development process is placing too
early and too much emphasis on the software system and its capabilities. The
object-oriented approach helps overcome this danger by providing a regular
progression through the various phases of the problem-solving process.
A simple analogy between software development and basic physics may help

in understanding the role of the object-oriented paradigm in the software
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Table 1.1. The Software Development Phases

PHASE ACTIONS
What are the objects? Attributes?
Operations. Constructors. Observers.

Analysis Iterators. Messages.
what relations exist between
object classes/Objects?

o what is to be accomplished?
Partitioning of events. Order.

E - High Level Object types, attributes, operations,
assertions (Preconditions,

S postconditions)

I Representation of objects
stepwise refinement of representations

G - Low Level and algorithms.
Coupling. Cohesion.

N How is it done?

Code, debug, test (various cases),
verify, and validate assertions

Implementation Integrate
Optimize
Error handling

Monday morning quarterbacking
Evaluation Evaluation, collate documentation,
Maintenance locate potential weaknesses,

improvements, enhancements.
Maintenance, locate errors
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development process. In basic physics, there are two primitives, force and mass.
Force acts on mass and mass is changed by the force. In software development,
the analogy to mass is objects and the analogy to force is operations, or
algorithms.
The term "object-oriented" means various things to different groups of

software developers. To some it may imply the use of a particular object-oriented
programming language, like Smalltalk, Actor, or C++. To others it could mean
the step before system implementation, or coding, in the software development
process, an object-oriented approach to design. Object-oriented purists may view
this book as one on object-based programming, using object-oriented analysis and
design with implementation in Ada 95. In any case, whether we call it object­
oriented or object-based, the approach transcends the specifics in any particular
programming language.
During the analysis phase, solution details are not important; the overriding

concern is understanding the problem. An object-based approach to analysis
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concentrates on understanding the object types, along with their attributes and
operations, and how the problem creates and manipulates the values of objects.
Relationships between objects are observed and the operations on objects are
defined and classified.
Informally, object-based analysis helps us lay the pieces of the jigsaw puzzle

face up on the table. In so doing, patterns begin to emerge, providing clues to
possible solutions, which prepare the software developers for the next step, high­
level design. For example, consider the example, described in Section 1.1.2, of
displaying regular figures on a Cartesian plane. An object-oriented analysis of
this problem would begin with a complete description of each object class,
including the constructors and observers for each object class, and the
decomposition of the attributes down to the primitive object classes, upon which
the others are built. This analysis would lead to other questions regarding the
interactions between objects, like what should be done with the display when two
figures overlap? Simply stated, if object-oriented analysis is aggressively pursued,
the results of that analysis produce much information and many clues about how
to address issues that arise in later stages of the software development process.

1.3 Solution Design

One method of solution design is called top-down design. Top-down design is
a solution development technique that starts with the big picture. Sometimes the
terms "strategic planning", "tactical planning", and "operational planning" are used
to indicate levels of planning. Top-down design is the software equivalent of
emphasizing strategic planning first. Like the analysis phase, the design should
not be overly influenced by a particular software environment or programming
language. This is not to say that software constructs are not described or implied,
but rather the initial guiding force behind a solution design is how the system
being designed solves the problem - without a concern for the particulars of the
programming language or operating system that will be used.
Five keys to the production of well-designed software are

1. Logical partitioning and modularization - Breaking the solution into
manageable pieces, each piece being somewhat logically self-contained.
Each piece solves a subproblem of the bigger problem that is under
consideration. Loose coupling and strong cohesion assist in this process.

2. Abstraction - Both data and procedural abstraction, are important. The
name of a procedure tells us what the procedure does; the code inside
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tells us how the procedure arrives at its result. A type declaration
describes what class is formed by objects of this type. The details of the
declaration describe how values of objects of this type are defined. The
more complex a procedure, the greater the possibility that the procedure
might call other procedures, hence hiding implementational details. The
more complex the description of the attribute of objects in an object class,
the more chance that the object class is constructed from other object
classes that, in tum, hide more implementational details.

3. Correctness - Formally proving the correctness of algorithms or the
correctness of linkages between pieces of the problem. It begins by
simply using the preconditions and postconditions on subprograms to
determine that subprograms are called in the correct order to solve the
problem. Correctness may be applied to layers of detail that can
eventually involve assertion surrounding every control structure and the
use of loop invariants.

4. Loose coupling - Reducing, or controlling, the interaction between
subprograms or modules. Make each procedure as self-contained as
possible with clearly defined and minimized interactions with other
procedures. Avoid global access - in particular, modification - of the
values in objects. Encourage the standardized passing of information
between subprograms or modules, usually through parameters, with
clearly defined indications of where the values of objects are modified.

5. Strong cohesion - Keeping together all code that supports a particular
goal. A simple rule might be "One procedure equals one goal." Any part
of an algorithm that supports that goal, and no other goal, stays in that
procedure. Any part of an algorithm that does not help achieve the
subprogram or module's goal should not be in the subprogram or module.

There are many interactions between these keys to good software
construction. In many respects, the design is driven by the need to sequence the
actions applied to objects, leading to a correct and efficient solution to the
problem. The term "partition" is used here in a strict mathematical sense. A
partition is a collection of subdivisions with two unique characteristics:

I. The total collection of algorithms covers everything that must be done to
solve the problem.

2. Everything that is to be done is done in one and only one subdivision;
nothing is duplicated.
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It is to the advantage of the software developer to make the partitioning of the
problem logical, in the sense that things that logically belong together are placed
in the same subdivision. This helps address the issues of loose coupling and
strong cohesion, which make the resulting system easier to understand and
maintain.
The danger during the design phase is the early consideration of coding

details. This danger may be avoided by concentrating properly on the IIwhat II
side of the solution abstraction. That is, top-down design starts by emphasizing
what is to be accomplished or represented, not how it is to be carried out or
represented. Just as abstraction produces layers of information hiding, the layers
of abstraction may be used to nest several layers of design. One may consider
that high-level design loosely associates to the "what" level of abstraction and
low-level design associates to "how" level of abstraction. By associating design
layers to abstraction, the low-level design at one layer equates to the high-level
design of the next nested layer. With a firm and clear analysis of the problem in
hand, the software developer has laid the proper foundation for top-down design.
The complementary component in top-down design is stepwise refinement, the
application of the analysis and design methodology to each of the components in
the design, leading, through further refinement, toward implementational details.
An important consideration is proving the correctness of the solution.

Minimally, the descriptions of all operations, and groups of operations, should
include clear statements of their preconditions and postconditions. The
correctness statements should associate to the design levels. As the design takes
shape, a concern for program correctness should lead to assertions. Assertions
are provable statements that can be placed at specific points in a program. As the
design is nested, the statements of preconditions and postconditions for each
design level should provide clues regarding the correct ordering and associations
between design modules and lead directly to the assertions that guide the
construction of the eventual implementation. The preconditions of one statement
sequence are made true by the postconditions of the statements and statement
sequences that precede it.

1.4 Design to Implementation

Stepwise refinement may be viewed as the reapplication, or recursive use, of top­
down design to further refine the descriptions of the various components in the
problem's solution. Specifically, the partitioning, or modularization, that occurs
during the previous level of design starts with the original problem and forms a
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solution that is described in terms of several smaller problems, each of which
must now be solved.
The assumption is that it is usually easier to solve several smaller problems

than one larger one. Further, as each smaller problem is viewed, the
preconditions and postconditions for that component of the solution state the
assumptions and results for that part of the solution. The assertions for the
smaller problems should demonstrate how the preconditions of the larger problem
lead to the larger problem's postconditions. Most of the objects, their attributes,
and their operations are also defined. However, in solving each of these smaller
problems, it may be necessary to define additional object types that help solve the
smaller problem.
Also, the separation that abstraction provides in the object-oriented approach

between what is accomplished and how it is accomplished leads in a stepwise
fashion to the eventual detailing of the objects and the algorithms in an
appropriate programming language. But it is not just the language - it is the
environment that surrounds the language - that helps produce reliable, efficient,
and effective software. It is the combination of language features and
environmental considerations that makes Ada a good choice for the development
of large, complex software systems.

1.5 Software Maintenance

Unfortunately, many software developers look at the delivery of the software as
the end of the software development process. In many respects it is only the
beginning, in the sense that good software may have a long life expectancy
relative to the time it took to analyze, design, and implement the system.
Software maintenance is not just long-term debugging. Granted, a large software
system might contain flaws that remain undetected until the system is heavily
used. However, there is another aspect, the evolution of the system. An equally,
if not more, important aspect of software maintenance is the following:

In solving a problem, a software system modifies the
environment for which it was created. That modification and the
new information brought forth by the software system, along with
external factors, change the environment. Those changing
circumstances bring forth new problems and hint at new
information and solutions.
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Frequently it is the solution of these new problems that makes the real difference
in the long-term value of the software system.
The ability to evolve, or create, a new system based upon an existing one is

assisted, or hampered, by the quality of analysis, design, implementation, and
documentation of the existing system. There is no question that good
documentation is essential regardless of the software development methodology.
Without good documentation, any good application of a methodology is lost in
the process. Unfortunately, software maintenance issues are beyond the scope of
this text.

1.6 Data Structures and Algorithms

As stated in Section 1.1, data structures is the study of methods of representing
objects, the safe, reliable encapsulation of structures, the development of
algorithms that use these representations, and the measurement of both the time
and space complexity of the resulting systems. The object-oriented approach
emphasizes the role of objects, along with their attributes and operations, that
form the nucleus of the solution. The attributes and operations provide clues to
the functionality of the components that must be brought together to create a
solution. A knowledge of data structures provides a software developer with an
understanding of the tradeoffs that must be considered as the solution proceeds
from the analysis phase, through the design phase, to the solution.
From the point of view of deciding which data structure should represent the

attributes of objects in a specific class, the emphasis that the object-oriented
approach places on abstraction is very important to the software development
process. Abstraction means hiding unnecessary details. Procedural abstraction,
or algorithmic abstraction, is the hiding of algorithmic details, which allows the
algorithm to be seen, or described, at various levels of detail. Building
subprograms so that the names of the subprograms describe what the
subprograms do and the code inside subprograms shows how the processes are
accomplished is an illustration of abstraction in action.
Similarly, data abstraction is the hiding of representational details. An

obvious example of this is the building of data types by combining together other
data types, each of which describes a piece, or attribute, of a more complex object
type.
An object-based approach to data structures brings together both data

abstraction and procedural abstraction through the packaging of the
representations of classes of objects. The package specification encapsulates the
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types that describe the attributes of objects in the class being encapsulated as well
as the fundamental algorithms that manipulate and report on object values.
Once an appropriate abstraction is selected, there may be several choices for

representing the data structure. In many cases there is at least one static
representation and at least one dynamic representation. The typical tradeoff
between static and dynamic representations is between a bounded or unbounded
representation versus the added storage and time requirements associated with
some unbounded representations.
After an abstraction and representation are chosen, there are competing

methods to encapsulate data structures. The choice of an encapsulation is
another tradeoff, between how the structure is made available to the user and how
the user's instantiating objects may be manipulated by the package. The
encapsulations have an effect on the integrity of the representation, and time and
space requirements associated with the encapsulation.
Once specified, one or more competing methods of representation may be

carried out, and the structure, its representations, and its encapsulation may be
evaluated relative to the problem being solved. The time and space requirements
of each method must be measured against system requirements and constraints.
This book contains a collection of classical methods for representing various

object types frequently encountered in the solution of problems. In most cases
a variety of competing representations are described. Each method should be
carefully studied to attain a thorough understanding of the strengths and
weaknesses of each approach. Therefore, it is as important to know the various
methods of representation as it is to understand the timing characteristics of the
algorithms that correspond to each method.
The hidden danger for a software developer is becoming enthralled with a

particular data structuring method. A method of representation cannot stand on
its own. It must always be measured against how well it meets the needs of a
specific system under development. The evaluation of a specific representation
for a particular problem is usually not easy. It is a matter of measuring the time
and space requirements of competing approaches, evaluating the limitations
imposed by each approach, and weighing the tradeoffs between approaches and
other factors that may affect system performance. Frequently, this does not lead
to a simple choice among competing approaches.
There are very few absolutes in programming. However, certain universal

observations may be made. In general, the more directly and naturally the
software represents the problem being solved, the more reliable the software is.
The efficiency of the software is dominated by two items, the efficiency of the
algorithm and the extent to which the algorithm efficiently utilizes a system's
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resources. A good programming language plays a fundamental role in software
reliability. It does this by providing direct and efficient means for representing
and maintaining high-level design information while supporting efficient
implementation of algorithms.

1.7 Ada 95

There are many reasons for selecting Ada 95 for software implementation,
including standards and environments. The history of the development of Ada
is chronicled elsewhere. It was an exhaustive process involving many interested
parties. The definitions of Ada, both Ada 83 and Ada 95, represent important
milestones in the development of programming languages. There has been much
criticism of Ada. There were dire predictions about the computing resources
necessary to support an Ada compiler. However, compiler developers have been
up to the task and have developed efficient Ada compilers for a large variety of
computing systems.
Fortunately for Ada, those individuals with the narrow concerns for compiler

efficiency did not dominate the design of the language. Software engineering
factors were given fair consideration in the language's design. The design of any
software system includes a collection of compromises and tradeoffs. The design
of a programming language is no exception. When it comes to evaluating those
tradeoffs relative to safe, efficient, reliable, and maintainable software, Ada
measures up quite well as a programming language. As one will see in reading
this book, the features in Ada come together time and again to provide the
software developer with direct and efficient representations of algorithms. Ada
tends to be a programming language that you design with, not design around.
Other factors besides a programming language contribute to the successful

development of software. An environment that supports the design of software
has a major impact; it influences the efficiency, reliability, and maintainability of
the software. An important component in. any quality software development
environment surrounding a programming. language is a library, a means of
supporting software reusability. When looking at Ada, or any programming
language for that matter, one should not look just at the language, but at the
program support environment surrounding the language. For Ada, this is called
an APSE, an Ada Program Support Environment. Programming support
environments can range dramatically and have a major impact on the software
development process. Access to a good programming support environment
enhances your ability to expand upon the material presented in this book.
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The transition from the initial version of Ada, called Ada 83, to the current
version has been relatively smooth, but slow. Ada 95 does two important things.
First, it corrects several flaws found in Ada 83. Second, it incorporates into the
language additional features that address important software design issues and
new software development methodologies, especially object-oriented
programming.

1.8 Simple Static Types

Like most modem programming languages, Ada supports a variety of features for
representing object types. Figure 1.1 illustrates one possible organization of
classes of data types. The first dichotomy is between static and dynamic
representations. The representation of an object is static if the size of memory
required to represent the object is known when the object is defined. The
representation of an object is dynamic if the amount of memory required to
represent the value of the object may vary during program execution time. Both
static and dynamic representations may be subdivided further into the categories
of structured and simple. The simple types are further subdivided into ordinal
and nonordinal types.
The ordinal types are characterized by the ability to place the values of the

type into a one-to-one correspondence with a subset of the integers. The
countability of the values of an ordinal type is the foundation of a number of
attributes shared by ordinal types, including correspondences between the possible
values of an ordinal type and the representations of these values. On the other
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hand, the representations of nonordinal types, like the nonordinal real arithmetic
values with which they are typically associated, do not have a one-to-one
correspondence to integers. Hence the nonordinal types are characterized by the
inexact (i.e. approximate) representations of values.
There are three classifications of structured types - records, arrays, and

compound types. Records and arrays are fundamental building blocks.
Compounds types are created by combining records, arrays, and the simple types.
A solid understanding of the static representations of objects using structured data
types is essential before studying dynamic representations.
The building of objects whose representations are dynamic and the

applications and measurement of dynamic representations are major objectives of
this book. The fundamental tools for building dynamic data structures are few,
but powerful. Section 1.8.2 presents these basics. The key to dynamic data types
is address variables, called access types in Ada. The power of access types also
represents a potential danger. Access types have been referred to as the potential
go tos of data structures. The reference to go tos is an analogy to the potential
danger programmers face when they build ad hoc control structures using go to
statements in some programming languages instead of the looping and conditional
execution (if, case) in any programming language. Access types form the logical
links between data in various parts of a computer's memory. If those addresses
are not carefully created and employed, the result is incorrect access to various
parts of the computer's memory.
The potential danger with go to statements in some programming languages

is the difficulty in following the flow of control within a program. Similarly, the
misuse of access types leads to a comparable difficulty in comprehending how the
dynamically allocated memory represents the value of an object. Just as control
structures hide go tos, data abstraction and the correct encapsulation of object
types must hide access variables. Restricting the visibility of access variables
helps guarantee the reliability of dynamic representations of values.
Ada attributes provide access to a variety of information about an object's

representation. These attributes appear in Table 1.2. For any object A,
A' address is the system. address of the object and A' Access is an access
type that "points" to the object. Throughout this chapter several tables delineate
the attributes available for a specific object type or class of object types. Some
attributes, like 'address and 'Access, provide information for practically all
objects or object types. The attribute' Access may be made compatible with an
access type in the sense that a value defined as 'Access may be placed in
appropriately defined access type variables.
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v'address
T'size
T'storage_size

The system. address of V
The number of bits required to hold an object of type T
The number of memory storage units (bytes) required to
hold an object of type T

In the above descriptions, T is a type, V a variable of type T.

1.8.1 Ordinal Objects

A one-to-one correspondence with a subset of the natural numbers characterizes
all ordinal types. Through this correspondence, the ordinal types inherit certain
attributes and operations, including

1. The well ordering relation - The inheritance of the less than «)
relationship and its derivatives, equality (=), inequality (/=), less than or
equal to «=), greater than (», and greater than or equal to (>=), are
frequently used relationships of all ordinal types.

2. Predecessor and successor attributes (pred and succ) - An immediate
result of well ordering are the predecessor and successor attributes.
Except for the boundary values, all other values have both predecessors
and successors. The lower bound has no predecessor, but it does have a
successor, while the upper bound has no successor but does have a
predecessor.

3. for and case control structures -- Subranges of ordinal variables, and
only ordinal objects, may control both the for and case structures.

4. Ranging - New types, subtypes, may be derived from all ordinal types
by limiting the range of values to a constrained subrange of the type.

There are seven predefined ordinal types: boolean, integer, character,
wide_character, enumerations, modular, and address types. Readers should
be familiar with the boolean, integer, character, and enumeration types.
Ada supports all the typical ordinal types. Besides supporting the boolean and
character types and user-defined enumerations, Ada supports three integer
types, integer, natural, and positive. The natural and positive types
are predefined subtypes of integer and may be thought of as being defined as
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subtype natural is integer range 0 .. integer' last;
subtype positive is natural range 1 .. natural' last;

Modular types define an arithmetic type where the arithmetic operations are
defined using modular arithmetic. For example, the type declaration

type Hexadecimal is mod 16;

defines a type whose set of values is the integers in the range 0..15, inclusive.
The ordinal types share several common traits. In particular, variables of any

ordinal data type may control for and case structures. In addition, the ordinal
data types share the Ada attributes listed in Table 1.3.
Subtypes may be derived from ordinal types by applying Range constraints.

The format for range constraints is

subtype New_Type is Ordinal_Type range Low .. High;

where Low and High are values in the Ordinal_Type that define the bounds of
the new subtype New_Type. There are two main reasons for constraining ordinal
types in this fashion. First, object types, or attributes of an object type, evolving
from a problem might be described by constraining a type limiting the range of

Table 1.3. Ordinal attributes

Attribute

v'address
T'base

T'digits

T'first
T'image
T'last
T'pos

V'pred
T'size
V'succ
T'val

T'value

Result

The system. address of V
The base type for type T. It cannot stand alone. Typically
used in accessing another attribute. For example,
T'base'first returns the first value in the base type from
which the type T is derived.

The number of digits of accuracy in the representation of
values in type T

The first value of type T.
T'image(V) is a string representation of the variable V.
The last value of type T.
Returns the ordinal position of the value in V, T'pOs(V). If

T is noninteger, ordinal positions start with 0,
T'pos(T'first) = O. T'pos(i) = i for integer value i.

Returns the value that precedes the current value of V.
The number of bits required to hold an object of type T.
Returns the value following the current value of V.
Inverse of T'pos. For integer i, T'val(i) returns the value
of V that corresponds to i. T'val(V'pos)~v.

If the string S contains a representation of a value in T,
then T'value(S) returns that value

In the above descriptions, T is a type, V a variable of type T.
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values to those that represent the object or attribute values. Second, constrained
ordinal types frequently form the ranges for arrays. The use of ranges in defining
arrays is discussed in Section 1.9.1.
The ordinal types share a large collection of Ada attributes. The attributes

appearing in Table 1.3 provide access to low-level information and basic
manipulations of values in that ordinal type. Included are the ' succ and ' pred
attributes for sequencing through the values in an object type and ' first and
, last attributes for determining the values that bound the range of values in an
ordinal type.
Access types are the key to representing dynamic data types. Section 1.8.2

discusses the basics of building object representations with access types.

1.8.2 Access Types

The space allocation for static data structures remains fixed during the execution
of a software system. For example, static arrays are fixed-size, sequential,
homogeneous data structures with no access limits. Static records are fixed-size,
sequential, heterogeneous data structures with no access limits. In both cases the
terms "fixed-size" and "no access limits" are fundamental to arrays and records.
Fixed-size means the size of the structure is determined when the structure is
created. No access limits, also called the random access property, means that
any object within these structures may be accessed at any time, regardless of
either where it is located within the structure or whatever object had been
previously accessed within the structure.
The solution to some software development problems requires the unbounded

representation of object values. As the software system executes, the space
required to represent the object is determined dynamically. However, with many
of these structures, there are acceptable tradeoffs between the representation of the
structure and the time required to access the values of objects within the structure.
Figure 1.1 illustrates one way of viewing dynamic data types from the

viewpoint of view of the method of representation. It lays out the low-level
features upon which dynamic structures are built. There is another point of view,
that of high-level design considerations. High-level design hides the
implementational details through data abstraction. This is the view presented in
the subsequent chapters. Included in those chapters are the details of binding the
high-level logical structure requirements with the low-level representation details.
In Ada, the key to dynamic storage allocation is address variables, called

access variables in Ada. Pointers, or pointer variables, also refers to address
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variables. The tenn "pointer" refers to the fact that these variables do not contain
data themselves, but indicate, or point to, the location where the information is
located.
Access types provide access to dynamically allocated structures. Dynamic

structures not only expand, but they contract as well. If a structure shrinks in
size, something should be done with the space that the structure no longer uses.
If access to that memory is lost, by losing or ignoring the access to that space, it
is possible that a system might unnecessarily run out of memory. That is,
although there is memory that is not being used, the access to that memory has
been lost or is no longer available and nonnal requests for access to new space
raise an exception because no memory is available to satisfy the space request.
The basic element of dynamic data types are address variables, called access

types in Ada. One way to view the difference between dynamic and static data
types is binding time. Static data types are bound to memory location before the
procedure or package in which they are defined begins execution. For example,
as a procedure is called, its static variables are allocated and then the procedure
begins execution.
Dynamic data types are allocated as they are needed while a program

executes. At least one static access type must be defined to provide access to a
dynamic structure. Access types are created through a typical type declaration,
as in

type Access_Type is access Dynamic_Object_Type;

Access_Type variables may then be declared,

Able, Baker: Access_Type;

and during program execution the address of a dynamicalJy allocated object is
placed in the access type with an assignment statement of the form

Able:= new Dynamic_Object_Type;

There are no limits to the number of objects that may be dynamicalJy alJocated.
However, in most cases, the dynamically alJocated object must contain at least
one access component so that an arbitrary number of objects can be linked
together. Typically, the Dynamic_Obj ect_Type is a record, which contains one
or more components for holding infonnation and one or more components for
additional access variables for extending the structure. It is through these
additional access components that variable-size structures may be built during
program execution.
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Listing 1.1. Example dynamic allocation declarations

type Linked_Object;
type Record_ptr is access Linked_Object;

type Linked_Object is
record
Value integer;
Next_Link: Record_Ptr;

end record;
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Since dynamic objects are typically represented by linking together other
objects, the Ada notation for accessing dynamic objects is the same dotted
notation that is used to access records. To illustrate, consider the declarations that
appear in Listing 1.1. These declarations define two data types. Objects of the
access type, called Record_Ptr, contain the addresses of a record type called
Linked_Object. All records of type Linked_Object contain two components,
an integer value and an access type to another Linked_Object record. These
declarations are all that is necessary to form a dynamically allocated linked
collection of records.
Figure 1.2 illustrates one way of viewing a dynamic structure. Lines with

arrows indicate the roles of access types that point to other data spaces. Assume
the type declaration

Start: Record_ptr;

The single static access variable Start provides access to a dynamic structure.
There is no predetermined limit to the number of objects in the structure. Start
addresses, or points to, the first object in the structure, and the access component
in each record addresses, or points to, the next record in the structure. The
address component in the last object is null, to indicate that there are no more
records in the structure. The reserved value null indicates that the access variable
does not contain a memory address.
The linked collection of numbers illustrates the fundamental tradeoffs between

static and dynamic allocation. Any component in a static record is directly
accessed by referencing the name of the component. Any object in a static array
may be directly accessed by referencing the array with the appropriate index.

Figure 1.2. Dynamic linked structure.
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However, when a structure is allocated dynamically, a series of addresses must
be followed from one record in the structure to the next until the dynamic record
containing the desired item is found. Therefore, the tradeoff, or price paid, for
dynamically allocated structures is the additional computer time required to follow
access variables and locate the desired item.

It is worthwhile to take a few minutes and become comfortable with the
dotted notation that is used for dynamic allocation. Given the declarations in
Listing 1.1, consider the references Start, Start. all, Start. Value,
Start. Next_link,Start. Next_Link. all,andstart.Next_Link. Value.
Start is an access type; it accesses a Linked_Obj ect. If Start. all is not
null, then Start. all is the Linked_Object accessed by Start.
Start. Value is the integer component in the Linked_Obj ect accessed by
Start, and Start. Next_Link is the access type in that same record.
Start. Next_Link. all is the record accessed by the access type in the record
accessed by Start, and Start. Next_Link. Value is the integer value in that
component. In Figure 1.3, the number 14 is Start. Value and 26 is
Start. Next_Link. Value. Start. all is the record that contains the Value
component 14 and the access type that points to the record containing 26.
Dynamic allocation also costs additional space. As a dynamic structure is

allocated, space must be provided for the access components within each record
that link together the dynamically allocated pieces of the structure. The access
variables require additional space not required for static data types.
To illustrate the use of access types, the declarations that appear in Listing 1.1

may be used to create a dynamic structure of numbers with the structure linked
so that the numbers appear in the structure in ascending order. Assume Start
is a Record_ptr:

Start: Record_Ptr:= null;

Start is initially null to indicate that initially there are no objects in the structure.
A sorting process uses a procedure

procedure Linked_Sort (Start : in out Record_ptr;
Number: in integer);

26 7 (L 62

~
Figure 1.3. Dynamic sort illustration.
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NeW_Object;
Here;
New_Ptr;

to place the numbers, one at a time, into their proper positions in the structure so
that the records in the structure are logically ordered, through the access types,
from the record containing the smallest number to the record containing the
largest number.
Figure 1.3 illustrates the result of the Linked_Sort procedure assuming the

particular set of numbers that appear in Figure 1.2 have already been linked into
the structure and a new value, 55, must be placed into the structure. The result
is achieved by changing the values of access components in the record to
logically place a record between the two records containing the number just
smaller than and just greater than or equal to 55.
Listing 1.2 contains the source for Linked_Sort. This procedure recursively

visits the records in the dynamically allocated structure one at a time, until the
correct location within the linked structure for New_Obj ect is found. The three­
way selection structure tests for the two possible terminating situations. First, the
procedure checks to see if The_Link is null. That would indicate that the
procedure is at the end of the structure, in which case Insert_Obj ect is called
to place a record with the new number at that end of the linked structure. Next,
the procedure compares the value of New_abject to the value in the record
currently being pointed to, Pointer. Value,

elsif New_Object <= The_Link.Value then.

If the comparison is successful, New_Obj ect is inserted into the structure before
the record containing The_Link. Value. If neither test is successful, the

Listing 1.2. Linked sort procedure

procedure Linked_Sort (The_Link : in out Record_ptr;
NeW_Object: in integer) is

procedure Insert_Object (Here: in out Record_ptr) is
New_ptr: Record_Ptr:= new Linked_Object;
begin -- Insert_Object
New_Ptr.Value
New_ptr. Next_Link: =
Here

end Insert_Object;

begin -- Linked_Sort
if The_Link = null then
Insert_Object (The_Link);
elsif NeW_Object <= The_Link.Value then
Insert_Object (The_Link);
else
Linked_Sort (The_Link. Next_Link, NeW_Object);

end if;
end Linked_Sort;
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New_Object must be placed further along in the structure. This leads to the
recursive call

which continues the search by proceeding to the next record in the structure.
The structure of the algorithms is typical of recursive subprograms that access

dynamically allocated structures. The recursive call in the procedure
Linked_Sort is typical of the recursive algorithms that access dynamic
structures. It contains a multiple selection structure with two or more alternatives.
At least one of these alternatives leads to a recursive call. The passing of a
parameter in that recursive call, The_Link. Next_Link, provides access to the
next object in the structure.
The procedure demonstrates a typical linking process. The declaration

obtains access to a new dynamic record. The record is initialized,

then linked into place. The relinking process is an example of what is frequently
called parallel assignment. Parallel assignment is when it is desirable to reassign
the values of two or more variables simultaneously. However, computers are
sequential devices, and if the sequence of actions is not properly ordered, the
original value in one variable might be lost before it is placed in another variable.
An example of parallel assignment occurs in the procedure Insert_Object

in Listing 1.2. In this procedure it would be desirable simultaneously to place
both the value in the parameter Here into New_Ptr . Next_Link and the value
New_Ptr in Here. Care must be taken in carrying out the parallel assignment
with the correct sequence of actual assignments. If the assignments are listed
using the zed-like prime mark to indicate the results after the parallel assignment,

The original value of Here is placed elsewhere and a new value is placed in
Here. Thus, the old value must be copied to the new location before a new
value is placed in Here. Hence,

New_Ptr.Next_Link:= Here;
Here New_Ptr;

is the correct sequence for achieving the parallel assignment.
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In some cases of parallel assignment, temporary variables must be introduced.
This occurs in cases where all variables involved in the parallel assignment have
their old values placed elsewhere and have new values assigned to them, as in

A <- B & B <- C & C <- A.

In this case, a temporary variable must be created to hold the old value of one of
the variables in order to save the old value while making the variable available
for reassignment:

Temp:=
A .=
B
C

A;
B;
C;
Temp;

Note the way each variable appears on the right side of an assignment statement
before it appears on the left side of the next assignment statement. Look for this
pattern when manipulating the values of access types. It is a good double-check
on the correct order of assignment statements.
The Linked_Print procedure copies the access type passed in the parameter

into the variable Current. This access type controls the while loop that iterates
through the structure. The Value in the record pointed to by Current is printed;
Current_Column is incremented to keep track of the number of columns
displayed on the current line; the if selection determines whether the current line
should be terminated; and then Current is reset

Current:= Current.NexcLink;

to point to the next record in the linked sequence (see Listing 1.3). The loop
iterates until Current becomes null, which indicates that there are no more
records in the sequence.
Although the discussion in this section centers around the assumption that all

access types point to records, the fact is that access types may be defined for any
type of object:

type integer_Ptr_Type is access integer;

When a variable of this type is defined,

and the access type is initialized,
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Listing 1.3. Linked print procedure

procedure Linked_Print ( The_Link: in

Current
width
No_Of_Columns
Current_Column:

Record_ptr
constant positive:~
constant positive:=
natural

The_Link;
7 ;
10;
0;

begin
while Current /= null loop
I_IO.Put (Current.Value, Width);
Current_Column:= Current_Column + 1;
if Current_Column = No_Of_Columns then

Current_Column:~ 0;
Text_IO.New_Line;

end if;
Current:= Current. Next_Link;

end loop;
end Linked_Print;

Int_Ptr:= new integer;

the integer object pointed to by Int_Ptr is accessed and manipulated as
Int_ptr. all, as in the assignment statement

Int_Ptr.all:= -572;

The qualifier .all may be used with all access types to refer to the entire object
being addressed by the access type.

1.8.3 Nonordinal Objects

Nonordinal objects are simple objects whose possible values are uncountable.
Many computer systems support more than one representation of real numbers,
a nonordinal type. Real numbers have one attribute that distinguish them from
integers, specifically, uncountability. A consequence of this is the lack of finite
representations of all reals. Finite representations are essential in computers.
Therefore, a compromise must be made to represent real values in computers.
The compromise is that real values are approximated. The method of
approximation is a scientific notation-like representation of real values.
Some direct results of the fact that reals cannot be represented exactly are the

following:
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1. The addition of approximate values is not associative:

«A + B) + C);t (A + (B + C))
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2. During the course of computation, if the values in two real variables are
suppose to be equal, A = B, it is possible that the expression (A = B)

might be false.

The specific details of the representation of reals is beyond the scope of this
book. An awareness of the problem is essential for software developers. The
problem may be summarized with the statement that all real objects should be
handled as if the representations of the values of real objects is, at best, an
approximation of the actual value of the object.
The problem of working with reals is complex. In fact, there are several

methods, studied in the area of mathematics called numerical analysis, for
overcoming some of the problems of working with approximate values. One of
the basic tools is a device for testing "equality" between approximate values.
For many problems, two approximations of real values are considered equal

if they agree for a certain number of digits. The test for this is the relative
difference calculation,

abs «A-B)/A).

Since the calculation requires a division, if A is close to zero, there is the potential
for arithmetic overflow. Therefore, the calculation must be preceded by a test of
the divisor. If the divisor is close to zero, then the calculation

abs (A-B)

tests for "equality."
Listing 1.4 contains a boolean function, Almost_Equal. The function

returns a value of true if the parameters A and B pass the test for equality. The
function is instantiated with a value for Near_Zero. The value Near_Zero
cannot be less than the real value accuracy for the computer system at hand.
When Almost_Equal is instantiated, select Near_Zero so that at least a digit
or two is left between the value of Near_Zero and the smallest possible positive
real that may be formed, float f epsilon.

Ada supports two types that approximate the values of objects float types and
fixed-point types. Float directly uses the floating point hardware on a system and
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should be viewed in terms of scientific notation-like representations. Fixed-point
types are defined as

type Fixed_Type is delta Precision range Low .. High;

where Precision is the precision desired by the user and Low and High bound
the range of admissible values. Precision is the minimum difference the user
will accept between the values in the representation. Normally, the system does
not provide the exact accuracy requested, but provides an accuracy that is
machine dependent and slightly smaller than requested. The floating-point and
fixed-point types share a large collection of attributes that give access to machine­
and implementation-dependent information about the type. Table 1.4 lists the
fixed and float attributes.

1.9 Structured Data Types

Frequently, the requirements for representing data objects in an abstract data type
are beyond the capabilities of simple data types. Most programming languages
include capabilities for creating new data types by combining data types and
creating representations for more complex data objects. Ada supports two
structured data types:

1. Arrays - Arrays are physically sequential, fixed-size collections of
homogeneous objects. Further, objects within the structure have the
random access property. Arrays are physically sequential in that the

Listing 1.4. Almost_Equal function

generic

Near_Zero: in float:= 0.0001;

function Almost_Equal First, Second: in

function Almost_Equal First, Second: in

float) return boolean;

float) return boolean is

begin
if abs (First) <= Near_Zero then
return (abs (First-Second) <= Near_Zero);
else
return (abs «First-Second)/First) <= Near_Zero);

end if;
end Almost_Equal;
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Table 1.4. Float attributes

Result
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V'aft

T'delta

T'digits

T'emax
T'epsilon

T'first
V' fore

T'image

T'large

T'last
T'machine_emax

T'machine_emin

T'machine_mantissa

T'machine_overflow

T'machine_radix

T'machine_rounds

T'mantissa
T'safe_emax
T'safe_large

T'size

T'small

T'value

T'width

The number of digits after the decimal point required
to represent values without an exponent and without
trailing zeros given the delta declared for T.

The smallest increment between representations of
values in the fixed-point type T.

The number of digits of accuracy in the representation
of values in type T.

Returns the maximum exponent for the real type T.
Returns the smallest positive value that may be formed
in the real type T.

The first value of type T.
The number of digits before the decimal point required
to represent values without an exponent for the
declared delta.

T'image(V) is a string representation of the variable
V.

Returns the largest value that may be formed in this
universal real type.

The last value of type T.
The largest exponent the machine may form for the real
type T.

The smallest exponent the machine may form for the real
type T.

The number of digits in the machine in the mantissa for
the real type T.

Returns true if the machine checks for overflow on the
type T.

The radix, or base, for arithmetic in the real type T;
typically, 2, 8, or 16.

Returns true if the machine rounds calculations
performed in type T.

Returns the size of the mantissa for the real type T.
Returns the safe exponent maximum value for real types.
The largest value that may be safely formed in this
universal real type.

The smallest value greater than zero that may be safely
formed in this universal real type.

The number of bits required to hold an object of type
T.

The smallest value greater than zero that may be formed
in this universal real type.

If the string S contains a representation of a value in
T, then T'value(S) returns that value.

The width of the largest field required to hold
character representations of the values in T.

In the above descriptions, T is a type, V a variable of type T.
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random access property. Arrays are physically sequential in that the
data objects are stored in consecutive memory locations. Arrays are
homogeneous in that the array is made up of objects that are all the same
type.

2. Records - Records are physically sequential, fixed-size collections of
heterogeneous objects. Further, objects within the structure have the
random access property. Records are heterogeneous in that the objects
that make up the components in a record may be of different types.

The random access property means that the time it takes to access one object in
the structure does not depend on what object in the structure had been accessed
previously. For example, the time required to access the eighth object in an array
does not depend on which other object in the array has been accessed before the
eighth object. This may seem to be a trivial issue now, but as we build various
types of logical structures, there will be a time dependence on the access to
objects in a dynamic structure.
Records and arrays are the fundamental building blocks for the representations

of structured object types, objects whose attributes are not simple. The attribute
of an object is simple if it can be represented with a simple data type. Analysis
and design considerations dictate that structured types be used to represent the
attributes of many objects. It is important to recognize the keys that indicate
when the attributes of an object type are represented with an array or a record.
Usually, there is one of two fundamental keys:

1. When the fundamental units that combine to describe the value of an
object are of different types, the object is probably best described with a
record type.

2. When the objects that come together to describe the object type are all
the same type of object and the fundamental objects themselves may be
distinguished with a subrange of ordinals, the object is probably best
described with an array.

Although we mention these two keys, it is easy to build situations where the key
to the data representation either is not obvious or might also depend on solution
design considerations.
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1.9.1 Arrays

1.9.1.1 Constrained Arrays
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An array type is appropriate for representing an abstract data type when the
following three conditions are satisfied:

1. The data objects in the abstract data type are composed of homogeneous
objects, objects that are all the same type, regardless of the values of the
objects.

2. The solution requires the representation of a fixed, predetermined number
of objects.

3. There is an ordering that can be placed on the objects in the abstract data
type, a first object, a second object, and so forth. The ordering may be
explicit, implied, or even irrelevant as far as the solution to the problem
is concerned. The declaration of an array requires two steps of equal
importance:

a. Determine the exact specification of the data objects that appear in
the array.

b. Determine the sequential relationship between the data objects and
form a suitable subrange of the appropriate ordinal data type to
represent the sequential relationship.

Once the objects are determined in step a and the subrange is determined
in step b, the array declaration may be created by first, if necessary,
building the appropriate type or subtype to represent the Object_Type
that appears in the array, and then building the subrange

subtype Array_Range is Some_ordinal_Type range Low .. High;

and the array type

type Array_Type is array (Array_Range) of Object_Type;

Once the representation is determined, the operations for that type may
be implemented.

Table 1.5 lists the attribute for array types.
To illustrate the steps leading from an abstract data type to its implementation

as a data structure, consider the problem of finding all the prime numbers less
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A'first (n)

A'first
A'last (n)

A'last
A'length (n)

A'length
A'range
A'range (n)

1 Preliminaries

Table 1.5. Array attributes

Result

Returns the first index value in the nth index range of
the constrained array A

Equivalent to A'first(l)
Returns the last index value in the nth index range of the
constrained array

Equivalent to A'last(l)
Returns the number of index values in the nth index range
of A

Equivalent to A'length (1)
Equivalent to A'range (1)
Returns the nth index range in the array A

In the above descriptions, A is an array.

than a given number N. A prime number is an integer greater than one that is
divisible only by itself, one, and their negatives.
A classical method of locating prime numbers is called the sieve of

Eratosthenes method, which is attributed to the Greek
mathematician-philosopher Eratosthenes. The method is described in the
following algorithm:

1. List the numbers in order, starting with 2 and ending with the last
number, N, to be tested.

2. Starting with the smallest number and proceeding to largest number,
perform step 3. After processing the last number, go to step 4.

3. If the number is unmarked, it is prime, so circle the numbers and cross
off all multiples of the number and continue with step 2.

4. List the circled numbers.

Figure 1.4 illustrates the sieve method in finding the prime numbers less than
or equal to 21. Figure 1.4i demonstrates step 1, listing the numbers from 2 to 21.
The first time through steps 2 and 3, as illustrated in Figure l.4ii; 2 is circled and
the multiples of two are crossed off. The next time through steps 2 and 3, in
Figure l.4iii, 3 is circled and the multiples of 3 are crossed off. Figure 1.4iv
illustrates the final result.
The algorithm implies an abstract data type, a collection of objects with

values, relationships between the objects, and operations on the objects. During
problem analysis and the processing of the algorithm, a natural data abstraction



1.9 Structured Data Types 33

evolves from the sieve method. An important attribute of a good system
developer is not to force the natural data abstraction that evolves from a problem
into the developer's preconceived notions of representations using particular data
types, especially the predefined data types with their richness of operations.
Figure 104 hints at an abstract data type. Figure lAi clearly presents a fixed­

size sequential relationship, the set of integers 2 through 21, inclusive, a range
of natural numbers. In Figure lA, parts ii through iv, the markings placed on the
numbers indicate a set of three markings, unmarked, circled, and
crossed-off. Figure 1.4v-vi illustrates a method of representing the structure
implied from the sieve method. Actually, unmarked and circled are
redundant; they simply keep track of the prime numbers before and after,
respectively, the prime number had been processed by the algorithm. Since the
looping structure in the algorithm keeps track of the current prime being
processed, the values unmarked and circled are redundant. Hence, only two
values are needed to keep track of whether or not a number has been
crossed_off. The declarations leading to the implementation of the sieve
method's data representation appear in the type declarations in Listing 1.5.
The implementation of an abstract data type to find primes using the sieve

method is completed by observing that there are three operations performed on

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
(i)

0 3 \ 5 ¥ 7 ~ 9 lQ 11 ~ 13 N. 15 lQ 17 ~ 19 ~ 21
(ii)

00\ 5 X 7 ~ IlQ 11 'X 13 N. ;5lQ 17 ~ 19 ~ f1
(iii)

OO\0XG~/lQ@'X@N.;5lQ@~@~f1
(iv)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(vi)

Figure 1.4. Sieve illustration.
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Listing 1.5. Sieve algorithm for finding primes

procedure Sieve is
-- 2*Last_Spot + 3 is last number checked
Last_Spot: constant integer:= 1000;
subtype Text_Range is integer range a .. Last_Spot;
type Marking_Array is array (Text_Range) of boolean;

Unmarked
No_Of_Primes:
Prime
X_Off

Marking_Array: =
natural
natural:
natural:

(others => true):
0:

procedure Print (Image in string:
This_Count: in natural is

Width constant natural:= 7:
Columns: constant natural:~ 11:
begin
for Index in image'last+l Width loop
Text_IO.Put (' '):

end loop:
Text_IO.Put (Image):
if (This_count mod Columns) a then

Text_IO.New_Line:
end if;

end Print;

begin
for Index in Unmarked'range loop
if Unmarked (Index) then

No_Of_Primes:~ No_Of_primes + li
Prime:= 2*Index + 3;
Print (integer'image(Prime) , No_Of_Primes):
X_Off:= Index:
While (X_Off + Prime) <= Last_Spot loop
X_Off:= X_Off + Prime:
Unmarked (X_Off):= false:

end loop:
end if:

end loop:
Text_IO.New_Line:
end Sieve:

this structure, the initialization of the structure, the sieve method algorithm, and
the listing of the primes from the structure.
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1.9.1.2 Unconstrained (Generic) Arrays
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Frequently, when building array types, it is desirable to have a class of array
types where all arrays in the class contain the same object type and the ranges of
all arrays in the class are over the same ordinal type but over different subranges.
Ada provides an ability to define an array type whose range is not specified when
the type is declared. In Ada, such a class of array types may be defined with an
unconstrained array declaration. Instances of this declaration may be used to
define each array type with these characteristics.
Suppose the solution to a problem requires the representations of several

object types represented with arrays that are identical in structure, except for the
sizes of the various ranges over which the arrays are defined. Ada addresses this
issue through unconstrained array types. For example, the solution to a problem
requires arrays of floating-point representation of reals over various subranges of
the positive integers. These object types are all described with unconstrained
array declarations,

type Float_Array is array (integer range <» of float;

Arrays of this type are constrained when they are defined by stating the type with
a range constraint, as in

Able: Float_Array (5 .. 50);
Baker: Float_Array (-50 .. 25);

Unconstrained arrays are very useful in generalizing software. For example, if
the solution to a problem calls for several arrays, all containing the same
elementary data type but having different range constraints, a single generic type
can be defined as an unconstrained array. When specific arrays of that type are
defined, each may be defined with its appropriate range constraints. If these
arrays must be processed by some algorithm, that algorithm may be written as
one procedure,

procedure sort (A: in out Float_Array);

then the procedure uses the attributes Float_Array' first and
Float_Array' last to properly access the specific array index bounds.
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1.9.2 Records

1 Preliminaries

1.9.2.1 Simple Record Structure

To determine whether a record is the appropriate means for representing an
object, the following conditions should be addressed:

1. Is there a fixed, predetermined number of components that come together
to form the structure?

2. Are the data objects, called the components, that come together to form
the object heterogeneous, all different types, or possibly the same type
but unrelated or independent?

The declaration of a record requires two steps of equal importance:

a. Determine the exact specification of the data types that come together to
form the record structure.

b. Determine names for each component so that each name indicates the role
the component plays in determining the record's value.

Once the objects are determined in step a and the component names are
determined in step b, the record declaration can be created as

type Record_Type is
record
component_name: component_type;

end record;

and the system developer may proceed with the implementation of the operations
on that type.
To illustrate, suppose the solution to a problem requires the representation of

fractions. A fraction is a pair of integers, the numerator and the denominator of
the fraction. Although fractions could be represented with arrays, because they
are homogeneous, fractions lend themselves to a record representation:

type Fraction_Type is
record
Numerator integer;
Denominator: integer;

end record;
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When a variable is a record, the components in the record are accessed using the
name of the record qualified by the name of the component to be accessed. For
example, if

P, Q: Fraction_Type;

then the expression forming the sum of these two fractions is formed by forming
the numerator,

P.Numerator * Q.Denominator + Q.Numerator * P.Denominator

and the denominator

P.Denominator * Q.Denominator

then reducing both values, dividing them by their greatest common divisor. The
complete formation of a package to support fractions is a good exercise in
encapsulating an object type.

1.9.2.2 Record Discriminants

Discriminants play a role with records similar to that played by parameters with
subprograms and packages. The declarations of discriminants has the same
syntax as the declarations of formal parameters for subprograms and packages,
including the declaration of default values. The list of discriminants appears in
parentheses immediately following the record type's name:

type «record_name» ( «discriminant list» is
record

end record;

Discriminants declare variable components within a record. There are three-ways
in which discriminants are typically used to vary the structure of records and their
components:

1. A component in a record could be an unconstrained array that must be
constrained to form a specific instance of the record type.

2. A component in a record may be another record type which has
discriminants and these discriminants must be given values to form
instances of the component.
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3. The record has a variant structure, it requires a value to determine which
variant is used in a particular instance of the record. A record may have
variants that may be determined without the use of a discriminant.
Variant records are described in Section 1.9.2.3.

The first two instances of the use of discriminants are discussed in this section.
The use of discriminants with record variants appears in the following section.
To illustrate discriminants, consider the representation of polynomials in a

record. A polynomial is an equation of the form

A polynomial is completely determined by the degree, n, of the polynomial and
the n + 1 coefficients, ai• The coefficients may be stored in an array,

type coef_array is array (0 .. max_degree) of float;

if such a declaration was possible. Within the context of records with
discriminants, this may be accomplished with the declarations

type coef_array is array (natural range <» of float;
type polynomial_rec (Max_degree: natural:= 25) is
record
degree: natural range O..Max_degree:= 0;
coef : coef_array (0 .. Max_degree);

end record;

In this example, the discriminant Max_degree constrains both the range of the
degree component and the upper range of the array caef. A user may declare
variables of type polynomial_rec either with a discriminant,

P, Q, R: polynomial_rec (15);

or without a discriminant,

Alpha, Beta: polynomial_rec;

In the first example, P, Q, and R may represent polynomials up to and including
degree 15. In the second example, both variables may contain polynomials up to
degree 25, the discriminant's default.
Discriminants are considered part of the record. Therefore, when records with

discriminants are passed to subprograms, the subprograms may determine the
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value of the discriminant by accessing it in the same way any other record
component is accessed:

... polynomial_rec.Max_degree.

Another result of this is that when aggregates are used to initialize the value
of a record with discriminants, the discriminant values must be included in the
aggregate. For example, if the polynomial

y =500K - 7.0x + 12.0

is placed in the record p, defined above, it could be done with the discriminant:

P: = (15, 3, (1200, -700, 000, 5.0, others => 0.0»;

1.9.2.3 Variant Records

Variant records are records where a part of the record has an alternate structure.
When records have variants, the variant part must be the last part of the record.
The variant part of a record is defined using a case structure. The case
structure is similar to a case statement but with the collection of record
components that associate to each variant:

type Example_Record is
record

-- non variant part

case «variant_selector» is
[when «constant_list» =>

«variant_components»;]

end case;
end record;

The «variant_selector» may be either a reference to a record discriminant,
a component that appears above in the record,

record

Hourly_Employee: boolean;

case Hourly_Employee is .
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or it may define the record component as well as its use in the case structure:

case Hourly_Employee: boolean is ...

The «constant_list» follows the same rules of formation as the list of
constant selectors for this instance in the case statement, including the use of the
separator' I ' and the default selector others. The «variant_components»
describes the components for the variant of the record. If a
«variant_component» is empty, it is replaced with null. The braces
indicate that the case structure may have an arbitrary number of variant
components. To demonstrate a record with a variant component, consider an
employee record for a company that pays some of its employees an hourly pay
rate and others a fixed amount each pay period. The employee_record might
have the following structure:

type Employee_Record is
record
... -- non-variant part
case Hourly_Employee: boolean is
when true =>
Hourly_Rate: float;
no_of_hours: float;
-- other hourly related components;

when false =>
weekly_pay: float;
-- other weekly related components;

end case;
end record;

An alternative would be to define the record using a discriminant to select the
record variant:

type Employee_Record (Hourly_Employee: boolean) is
record
... -- non-variant part
case Hourly_Employee is
when true =>
Hourly_Rate: float;
No_Of_Hours: float;
-- other hourly related components;

when false =>
weekly_pay: float;
-- other weekly related components;

end case;
end record;
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The wide range of possibilities of defining record structures goes far beyond this
brief presentation. A good general reference to Ada 95 is Cohen's Ada as a
Second Language. It contains a complete description of Ada 95's record
structures, including the use of record structures to describe hardware specific
details.

1.9.2.4 Protected Types

The primary purpose of protected types involves tasking, a program executing
multiple threads of control. With tasking it is possible that two or more threads
of control may attempt simultaneously to access the same data. As a result, the
threads of control could interfere with each other. The role of protected types
is to avoid this complication by guaranteeing that the data being protected are
accessed by only one control thread at a time. A protected type is defined along
with the operations that may access it:

protected type <class_name> is
<visible declarations>

private
<protected declarations>

end;

The <visible declarations> contains the procedures, functions, and entries
that are available for this type. The <protected declarations> contains the
specifications of the variables and actions protected by the type. For example, the
declarations of a bound protected stack type of integers appears in Listing 1.6.
An entry is a procedure with a barrier condition. In the case of a stack, a

stack may not be popped when it is empty. If the stack is limited in size, the
Push operation cannot place a new object on a full stack. The body of a
protected type contains the bodies of the type's procedures, functions, and entries.
The body for Protected_lnt_Stack in Listing 1.6 appears in Listing 1.7.

Listing 1.6. Example of a protected type

protected type Protected_Int_Stack is
entry Pop (Value: out integer);
entry Push (Value: in integer);
function Is_Empty return boolean;
function Is_Full return boolean;

private
Top: natural:= 0;
Stk: array (1 .. N) of integer;

end Protected_lnt_Stack;
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Listing 1.7. Example of a protected body

protected body Protected_Int_Stack is

entry Pop (Value: out integer) when Top> 0 is
begin
Value:= Stk (Top);
Top Top - 1;

end Pop;

entry Push (Value: in integer) when Top # N is
begin
Top Top + 1;
Stk (Top):= Value;

end Push;

function Is_Empty return boolean is
begin
return Top = 0;

end Is_Empty;

function Is Full return boolean is
begin
return Top ~ N;

end Is_Empty;

end Protected_Int_Stack;

In a tasking environment, only one thread of control at a time may be
performing an operation on a protected type. As a result, threads of control
cannot interfere with each other's access to the protected type. As each thread
of control attempts to access a protected type, the requests are queued up by the
operating system and normally service on a first-come-first-served basis. As
Listing 1.7 shows, entries may have barrier conditions. For example, the Pop
operation may perform only when Top > o. If a thread of control requests the
Pop operation and Top = 0 I it remains queued until the barrier condition is
satisfied. Meanwhile, other threads of control continue to perform.
Protected types may be used even when tasks are not being used. Protected

types are access using the dotted notation. For example, if stacks are declared
using the specifications in Listing 1.6,

access to the stack used dotted notation, as in

if not My_stack. Is_Full then
My_Stack.Push (Number);

end if;
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if not My_Stack. Is_Empty then
My_Stack.Pop (Its_Top);

end if;
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In a nontasking environment, a user must be careful about using entries without
testing the barrier condition. In such an environment, if a call is made to an entry
whose barrier condition is not satisfied, the program halts or freezes the system.

It should be noted that a type cannot be both tagged and protected. However,
a protected type may contain tagged components, and vice versa.

1.9.3 Compound Structures

Since the declarations that create arrays and records have no limits on the types
of objects that appear in these structures, it is possible to create a great variety of
structures to represent data types that naturally evolve from the analysis and
design phases. The key to creating compound structures is to allow the structures
to naturally evolve during the analysis and high-level design of a problem. To
illustrate, consider the problem of building a software system that translates the
Hindu-Arabic representation of numbers to Roman numeral representations.
One approach to solving Arabic-to-Roman translation problem, without using

a computer, uses a translation table, as illustrated in Table 1.6. The table is
straightforward. Given the representation of a number, like 1987, translate the
number to Roman numerals by looking up the translation of each numeral in the
appropriate column of the table and replacing the numeral by its equivalent
Roman numeral string at that location of the table. The '1' in the thousands
positions is replaced by "M"; the' 9' is in the hundreds position and is replaced
by the string" eM"; the '8' is replaced by "LXXX"; and the '7' by "VI I".

Table 1.6. ArabicJRoman Translation Table

Thousands Hundreds Tens Units

1 M C X I
2 MM CC XX II
3 MMM CCC XXX III
4 CD XL IV
5 D L V
6 DC LX VI
7 DCC LXX VII
8 DCCC LXXX VIII
9 CM XC IX
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A software system may be written to perform the Hindu-Arabic-to-Roman
translation by directly representing and using the table. The structure of the table
is formed from three components; the indices that form the table's rows, the
column indices, and the strings of Roman numerals at each location in the table.
The sequential relation of the rows and columns is obvious. Hence the table
structure naturally hints at a representation with a two-dimensional array. One
possible pair of declarations for the two index ranges is

type Column_Type is (Units, Tens, Hundreds, Thousands);
subtype Row_Type is character range '0' .. '9';

However, in an array, all elements must be the same type. The objects at each
position in the table are strings of at most four characters.
The objects within the conversion table may be represented with the strings

type Roman_String is array ( 1 .. 4 ) of character;

However, the strings range in size from one to four characters. Therefore, the
size of the particular string also needs to be declared. This leads to the record
declaration

type Roman_Record is
record
Size : natural;
Roman: Roman_String;

end record;

With the declarations defining the array ranges and the objects in the array, the
array itself may be declared as

type Conversion_Table_Type is
array (Row_Type, Column_Type) of Roman_Record;

If a table of this type is declared,

Table: Conversion_Table_Type;

and the Hindu-Arabic number is read as a string of characters,

type HindU_String is array (1 .. 4) of characters;

the algorithm in the program in Listing 1.8 prints the Roman numeral
representation of the number.
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Listing 1.8. Arabic-Roman numeral conversion
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type Column_Type
subtype Row_Type

is (Units, Tens, Hundreds, Thousands);
is character range '0' .. '9';

type Roman_Record is
record
Size: natural:= 0;
Roman: string (1 .. 4);
end record;

type Conversion_Table_Type is
array (ROw_Type, Column_Type) of Roman_Record;

type Hindu_String is array ( 1 .. 4) of character;

Table: Conversion_Table_Type;

procedure Write_Roman ( Hindu: in

H_Index: positive:= 1;

Hindu_String ) is

begin
for Index in reverse Column_Type loop
if Hindu (H_Index) in '1' .. '9' then
Text_IO.Put (Table(Hindu(H_Index),Index).Roman

(1 .. Table (Hindu( H_Index) ,Index) . Size) );
end if;
H_Index:= H_Index + 1;
end loop;
end Write_Roman;

1.10 Explorations

1. Static Polynomials: Consider the issues of representing polynomials
discussed in Section 1.9.2.2:
a. Find applications that are appropriate for the static representation.
b. Find applications for which a static representation is not appropriate.
c. Build polynomial addition and subtraction functions.
d. Create specifications for multiplication and division subprograms. For
each of the operations:
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i. Write a paper discussing the appropriateness of implementing the
operation as a procedure or as a function. This should not depend on
the implementation, only on the abstraction.

II. Write a paper focusing on the primary difficulty in implementing
the operation.

lll. Write a paper describing various exceptions that might be raised in
implementing the operation.

2. Dynamic Polynomials: Polynomials may be represented dynamically as a
linked structure of record,

type Poly_Rec;
type Poly_Access is access to Poly_Rec;
type Poly_Rec is record

Degree: natural;
Next Poly_Access;
Coef float;

end;

where a static pointer of type Poly_Access points to a linked collection of
records that represents the polynomial, as illustrated in Figure 1.5. Note that
the tenns of the polynomial are maintained in the linked structure in
descending order of degrees.
a. Write, test, and verify addition and subtraction subprograms.
b. Create specifications for multiplication and division subprograms. For
each of the operations:

i. Write a paper discussing the appropriateness of implementing the
operation as a procedure or as a function. This should not depend on
the implementation, only on the abstraction.

ii. Write a paper focusing on the primary difficulty in implementing
the operation.

Iii. Write a paper describing various exceptions that might be raised in
implementing the operation.

Polynomial
,------,,----,--,

y = 3.1 x6 + 2.2 x 3 + 7.0 X + 14.0

Figure 1.5. A dynamic representation of a polynomial.
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type Mixed_Rec;
type Mixed_ptr is access Mixed_Rec;
type Mixed_Rec is record

Back_ptr: Mixed_ptr;
First integer;
Second string (1 .. 3);
Third integer;
Fwrd_ptr: Mixed_ptr;

end record;
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and the linked structure appearing in Figure 1.6, whose construction is based
on these declarations, determine the value of each of the following. Explain
your answers.

a. Starter

b. Starter.Second
c. Starter. all

d. Starter.Fwrd_Ptr.First
e. Starter. Fwrd_ptr. Fwrd_ptr. Fwrd_ptr. Back Ptr. First

f. Starter. Fwrd_ptr. Fwrd_Ptr. Second
g. Starter.Second(Starter.Fwrd_Ptr.Third)
h. Starter.Fwrd_ptr.Fwrd_ptr.Fwrd_ptr.Second
i. Starter.Fwrd_ptr.Fwrd_ptr.Back ptr.Back_ptr.Back_ptr

Figure 1.6. Linked example.
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Encapsulation

2.1 Concept

An important key to software productivity is software reuse. With respect to data
structures, an important key to software reuse is the encapsulation of classes of
data structures in ways that encourage their reuse. The most fundamental way to
encourage the reuse of data structure components is to encapsulate the
representations of data structures using Ada's object-oriented programming and
software packaging capabilities. Regardless of the packaging method, a client
will have to construct an interface between the data structure's encapsulation and
the client's application. For example, when a structure is encapsulated using
Ada's object-oriented capabilities, the client constructs an interface using object­
oriented type extension. A type extension example appears in Section 2.5. When
a data structure is encapsulated in a generic package, a client instantiates the
generic package to construct the interface between the package's data structure
and the client's software. A generic instantiation example appears in Section 2.3.
Both methods provide safe, reliable, efficient, and robust encapsulation.
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2.2 Packaging Fundamentals

2.2.1 Initialize/Finalize

Many objects must be initialized before the representation may be used by the
operations made available in the encapsulation. Some representations need no
initialization at all. Some might require that certain values be placed in certain
parts of the representation. Still others might require more complex
initializations, including dynamic allocation.
For consistency, each encapsulation of a data structure type should include the

procedures Initialize and Finalize. In some cases, these procedures might
simply be null procedures. Regardless of each structure's complexity, users are
encouraged to initialize each structure before they are used and to finalize each
structure when it is no longer needed.
Finalization could be critical if the structure is dynamically allocated, to return

the dynamically allocated records to the dynamic allocation manager when the
records are no longer in use. This could be critical if a system's space
requirements are close to the system's actual space availability.
A typical software development error is the failure to initialize or finalize a

data structure. These processes are automated in Ada 95 with controlled or
limited controlled types, which are made visible through the Ada
. Finalization package. Ada. Finalization is discussed in detail in
Section 2.4.6.

2.2.2 Private Types and Safe Client/Package Interface

How does the software developer keep the data structure from being misused by
the client? How does the client know whether or not the reusable software will
correctlymanipulate the client's objects as they are placed into and removed from
the data structure? In Ada, the answer lies in the correct use of those features
that describe the visibility between the client and the package. Ada's private
types play an important role in safely interfacing between the client and the
package. Understanding the roles of Ada's private and limited private
types is fundamental to understanding the special needs of objects whose values
are represented dynamically, or through indirection, versus those objects whose
values are represented statically.
Private types describe the level of visibility between a client and a package.

These declarations appear in two locations, in the instantiation parameters of
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generic packages and in the specifications of the package's object types. Private
declarations, regular or limited, within a generic package's instantiation
parameters indicate the level of visibility the package has of the client's objects.
Private declarations, regular or limited, within a package's specifications indicate
the client's level of visibility of the package's object types. Unfortunately,
because of the restrictions On limited private types, software developers
frequently use private types when limited private types would be safer,
and hence more appropriate. These perceived restrictions and problems when
using limited pr ivate types may be overcome if the package developer
constructs the interface so that the client is required to pass along the appropriate
resources along with the limited private type.
When an object type along with its attributes and operations are encapsulated

within an Ada package, the object type may be made visible in the package's
specification as either a private or a limited private type. The
instantiation parameter of a generic package may be pr ivate or limited
pr ivateo In both cases, the details of the type's representation are not visible
to the other party. Private and limited private types are characterized as
follows:

1. The predefined operations of assignment (": =") and equality ("=") are
allowed for private types, but not for limited private types.
However, "=" may be defined for a limited private type within the
package that encapsulates the type.

2. The only other operations that may be applied to private and limited
private types are those specified in the package defining the type and
operations a user might construct, directly or indirectly, from the
subprograms defined within the package.

It is important to understand where these restrictions apply. An object type is
private or limited private to the client or the package but completely
visible to the other party. For example, if a package has an instantiation
parameter called Able_Type and makes visible a type Baker_Type, and both are
private,

generic
Able_Type is private;

package Example_Pack is

Baker_Type is private;
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then when the client instantiates the package as

package My_Pack is new Example_Pack (character);

the client is fully aware of the attributes of the character type but can only
define variables of type Baker_Type, use these variables in assignment
statements, test for equality, and pass Baker_Type variables as parameters to the
procedures specified in the package, Example_Pack. Similarly, within the
package, the package has complete knowledge of variables of type Baker_Type
but can only assign and test for equality variables of Able_Type, because the
package has nO knowledge of the details of the instantiating parameters.
Ada private types are similar to Modula-2's hidden types in that the

implementation details for the type are concealed from the user. Although
Modula-2's hidden types are (unnecessarily) restricted to pointers, Ada has no
such restriction on private and limited private types. A closer analogy to
Ada private types are the hidden types available in IPI's Modula-2 compiler.
Similar capabilities are also available On Pascal systems that have UCSD Pascal­
like units, and c++.
There are several issues surrounding the appropriate use of private and

limited private types. Private and limited private types keep users
from directly manipulating the representation of the values of objects. An
obvious question, from an object-based software development and software
reliability point of view, is: What should be the criterion for choosing to
represent of an object type as either private or limited private?
Since both assignment and equality are available to private types and not

available to limited private types, software developers should use private
types only when the results of these operations are consistent with user
expectations. Specifically, users equate the assignment operation with copying.
The problem is that assignment copies only the value in a variable. Users, on the
other hand, frequently think in terms of objects. The representation of the value
of an object might extend beyond COntents of the variable associated to the object.
This is particularly true when access types are employed. The answers to the
following questions help determine when a private type or a limited
private type should be used as a package interface.

1. For each object of the type under consideration, is the representation of
the values of objects always entirely self-contained within the variable
associated with the object? If the representation of the object's value is
always contained within the variable associated to the object, the
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representation of objects of this type is said to be bounded. Otherwise
the representation is unbounded.

2. If the representation of the value of an object type is bounded, are two
representations considered equal if and only if the bit patterns
representing the object are identical?

Clearly, in (1), if a representation is unbounded, then the values of objects are
represented through indirection. That is, the variable contains a reference,
possibly an access type, that references all or part of the value of the object as­
sociated with that variable. Part of the representation of the value is outside of
the variable. Also, the equality operator looks only at the bit pattern of the
contents of variables. Therefore, the entire representation of the value is not
available to the operator. As a result, the equality operator does not perfonn as
a user would expect. However, the problem with 11 = 11 may be overcome with the
construction of an 11 = 11 function that perfonns the correct test for equality between
objects.
When variables associated with objects whose representations are unbounded

are manipulated with the assignment operator

A:= B;

the assignment simply duplicates the value of the variable. The result of this
duplication may produce undesirable side effects. For example, if A and B are
access types, as illustrated in Figure 2.1, the result of the assignment A: = B is
that A and B share the linked structure, which may represent the values of the

After B := A

Before B := A

~
variable ~l

.L va ue
B" ~

A

Actua~
variable

i

Desired

~ --

variable ~lue
B" 4,

Figure 2.1. Why": =" may be hazardous.
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objects associated with A and B. As a result, any change in the value of the
object associated with the variable B causes an immediate change in the value of
the object associated with A. This implies that assignment is a dangerous
operation for unbounded object types. Therefore, it follows that unbounded
object types should be made visible with limited private types.

integer;
integer;

2.2.2.1 Private Types and Equality

Historically, the assignment and equality operators were thought of as
manipulating variables, not objects. When the representations of the values for
an object type are bounded, then assignment produces a result that is consistent
with user expectations. This problem focuses on an issue associated with the
decoupling of the equality and assignment operators. Boundedness guarantees
that the assignment operator produces no side effects. However, boundedness
does not guarantee that the equality operator produces the desired result
anticipated by users. To illustrate, consider the representation of fractions:

type Fraction_Type is
record
Numerator
Denominator:

end record;

If A and B are Fraction_Types and A: = (1,2) and B: = (2,4), they are
considered logically equivalent, but the equality operator

A = B

returns false. In this case, assignment correctly duplicates the variable, but
equality, which requires identical matching of bit patterns, does not produce the
expected result.
Although this decoupling can be achieved within Ada's current framework,

package developers may handle this problem by overloading the n = n operator for
the object:

function n=n ( A, B: private_type) return boolean;
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2.2.2.2 Issues Surrounding Limited Private Types
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From an object-oriented point of view, objects take on values, and in
programming languages variables are associated to objects. Unfortunately, in
many programming languages, including C, Fortran, COBOL, Pascal, Modula-2,
and Ada, the value of an object doesn't always fit inside the variable that
corresponds to the object. Specifically, when the values of objects are represented
through indirection, including the use of pointers and dynamic storage allocation,
the assignment operator" : =" does not produce the same result that is produced
when the value of the object fits inside the variable associated to the object.
For an object type whose values fit in the variable associated with the objects,

the assignment B : = A means copy the value of A to B. However, when the value
of the object is maintained through indirection, as illustrated in Figure 2.1, the
assignment B: = A results in all or part of the values of the objects associated
with A and B being shared, which may produce undesirable side effects.
A role of Ada's limited private type is to safely represent objects whose

values are represented through indirection. When a type is declared to be
limited private:

1. Assignment may not be used with limited private types. This forces
all attempts to create and manipulate limited private values to be
performed through the subprograms made available with the encapsulated
type.

2. Equality is defined for a limited private type only if it is defined in
the package defining the type.

3. If a type contains a component that is limited private, then the new
type must also be limited private. In particular, a limited
private type may be used to instantiate a generic parameter only if the
corresponding generic parameter is limited private.

At first, the inability to use assignment with limited private types
appears to be too restrictive. The lack of access to the assignment operation is
easily overcome by following a simple rule when creating packages that define
limited private types. The rule is: When a limited private type is
created, several subprograms should be provided to support the type. These
subprograms may include
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a. procedure Copy Source: in L_P_Type;
Target: in out L_P_Type );

This procedure properly duplicates the object value in Source and
assigns the duplicate to Target.

b. procedure Move_And_Reset ( Source: in out L_P_Type;
Target: in out L_P_Type );

or

procedure Swap (A, B: in out L_P_Type);

Sometimes duplication may be unnecessary and costly, because of either
the time or space required to duplicate the representation.
Move_And_Reset moves the value in Source to Target, then the value
of Source is set to the L_p_Type's known initialization value. In Swap,
the values of the variables, and hence the objects that correspond to those
variables, are swapped. Either procedure is usually easy to implement,
requiring just a few assignment statements to move or swap the dynamic
structure. It can be proven that the capabilities of one of these two
procedures may be derived from the other, hence they are logically
equivalent.

c. function" =" ( Left, Right: L_P_Type) return boolean;

Define equality for the limited private type. If equality is
inappropriate for the type, then for the sake of consistency define it
anyway, but have the function raise an appropriate exception.

Naturally, other basic operations appropriate for the 1imited pr ivate types are
provided through the package. These include Initialize and Finalize,
which may be critical for safe and efficient dynamic storage allocation.
With copy and swap, along with equality, if appropriate, a client has all the

necessary support to manipulate limited private objects as if they were
private type. The only change is that where an assignment statement would be
used with a private type,

Able:= Baker;

it is replaced by the copy procedure,

Copy ( Source => Baker, Target => Able );
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Copy (Baker, Able);
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When generics contain limited pr ivate instantiation parameters, the three
procedures described above should also be required as instantiation parameters,
as in

generic
type Object_Type is limited private;
with procedure Initialize

(Source: in out Object_Type);
with procedure Finalize (Source: in out Object_Type);
with procedure Copy (Source: in Object_Type;

Target: in out Object_Type);
with procedure Swap (A, B: in out Object_Type);
package Data_Structure_Lpt_Lpt is

type Structure_Type is limited private;

The Swap procedure is used to move limited private objects into and out
of the structure being defined:

procedure Object_Insertion
(Element in out Object_Type;
Structure: in out Structure_Type );

or

procedure Object_Removal
(structure: in out Structure_Type;
Element : in out Object_Type );

Both would use Swap to transfer the value of the Element to and from the
structure. However,

function Observe_Item
(Structure: Structure_Type) return Object_Type;

would use Copy to make a duplicate of the element being observed. To
guarantee that the package properly uses the client-supplied Copy and Swap, the
package also requires access to Initialize and Finalize. For example, when
Swap is used to place an object into a data structure, the object being swapped
out must be initialized. When Swap is used to remove an object, the object
swapped in must be Finalized.
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When a limited private type is a parameter to a procedure, it may only
be an in parameter or an in out parameter. Limited pr ivate types may not
be out parameters. There is an important reason for this. Assume out
parameters were admissible:

procedure Bad_Example (Source: in
Target:

L_P_Type;
out L_P_Type) ;

Let L_P_ptr be an access associated to an object that uses dynamic storage to
represent values of the object. x and Y are variables of this type,

When Bad_Example is called,

Bad_Example (Source => X, Target => Y);

since Y is an out actual parameter, whatever value had been represented through
Y before the call, the dynamic structure associated to Y before the call would be
lost - it could not be recycled. However, if the parameter was in out,

procedure Good_Example (Source: in L_P_Type;
Target: in out L_P_Type);

then in the call

Good_Example (Source => X, Target => y);

since Y is in out, the procedure Good_Example has access to the value
represented by the structure pointed to by Y before the call, and the dynamically
allocated structure may be recycled before Y is assigned a new structure,
representing a new value.
The fact that out parameters are not allowed for limited private types, forcing

the use of in out parameters, does not guarantee the recycling of dynamic
structures. It only provides the opportunity for recycling, which mayor may not
be carried out by the designers of the procedures.

2.3 Using Generic Packages

Once a client determines that a particular generic package contains the required
resources, using a generic package is a two-step process. First the client
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Listing 2.1. Stack_pt_Pt specifications.

generic
type Object_Type is private;

package Stack_pt_Pt is

Type stack_Type (Max_Size: positive) is private;

Stack_Underflow, Stack_Overflow: exception;

procedure Initialize (Stack: in out Stack_Type);

procedure Finalize (Stack: in out Stack_Type);

function Empty (Stack: in Stack_Type) return boolean;

function Top_Of (Stack: Stack_Type) return Object_Type;

procedure Pop (Stack : in out Stack_Type;
Object: out Object_Type);

procedure Pop (Stack: in out Stack_Type);

procedure Push (Object: in Object_Type;
Stack: in out Stack_Type );

private
type Stack_Array_Type is array (positive range <» of Object_Type;

type Stack_Type (Max_Size: positive) is
record
Top : integer:= 0;
Actual: Stack_Array_Type (1 .. Max_Size);

end record;
end Stack_pt_Pt;
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constructs an interface package that instantiates the generic package. Then the
client uses the support that is now available through the instantiation.
To illustrate, assume a client wishes to use the stack package specifications

to develop a software system that uses a stack to determine if a string of
parentheses, brackets, and script brackets is properly matched (i.e., the string
[ [ [ ( ) ] ( }]] is acceptable and [[]} is not). Assume the generic package
Stack_pt_Pt in Listing 2.1 satisfies the client's requirements. To use this
package, the client must first instantiate the generic package. This instantiation
is placed in a package that acts as an interface between the client's software and
the generic package. An example of this interface appears in Listing 2.2.
The client's software system now references the package constructed by the

client, Paren_Pak, and uses this instance of the generic package, Stack_pt_Pt,
in the construction of the client's software, as illustrated in Listing 2.3. In this
example, the client references the package containing the instances, Paren_Pak,
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Listing 2.2. Example instantiation a generic package.

package paren_pak is
package stk is new Stack_pt_Pt (character);

which contains an instance of the generic package. In this example, a use
statement,

simplifies access to the instantiation in Paren_Pak. All references to stack
resources are made to the instantiation, stk.

2.4 Object-Oriented Support

2.4.1 Tagged Types

Tagged types support two features that are fundamental to object-oriented
programming: type extension, also called polymorphism, and dynamic
dispatch. Type extension allows a software developer to derive a new type from
an existing type by extending the declaration of an existing type. For a type to
be extended, the type must first be declared as a tagged type. Tagged
declarations are of the form

type identifier is [abstract] tagged
{[limited] privatelrecord declaration};

where abstract is described in Section 2.4.2, private and limited private
have their normal implications, and the record declaration may be either a
normal record declaration,

record end record

or a shorthand declaration for a null record, null.
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Listing 2.3. Software using client instantiation.
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with paren_pak, text_io;
use paren_pak;
procedure parens is
package tio renames text_io;

Symbol, Item: character;
str string (1 .. 200);
S_Size natural;
Stack Stk.Stack_Type (200);
OK boolean := true;
begin parens
stk.Initialize (Stack);
tio.Put ("Enter any string - checks for proper parenthesis matching");
tio.New_Line;
tio.Put (" ([«()})«aa»)]l would be accepted, but «») would not");
tio.New_Line(2);
tio.Put ("Enter Paren string: ");
iio.Get_Line (Str, S_Size);
tio.Put (" "); Item:= '(';
for i in 1 .. S_Size loop
case Str(i) is
when '(' I '(' I '[' => Item : ~ Str (i) ;

stk.Push (Item, Stack); tio.Put(' ');
when 'I' => if stk.Top_Of(Stack) = '(' then

stk . Pop (Stack); tio . put (' ');
else
tio.Put ("A mismatch"); OK false; exit;

end if;
when ']' ~> if stk.Top_Of(Stack) = '[' then

stk.Pop (Stack); tio.put (' 'I;
else
tio.Put ("A mismatch"); OK false; exit;

end if;
when '}' => if stk.Top_Of(Stack) = '(' then

stk.Pcp (Stack); tic.put (' 'I;
else
tio. Put (" A mismatch");
OK :~ false; exit;

end if;
when others ~> tio.Put (' 'I;

end case;
end loop;
if OK then
if stk.Empty (Stack) then
tio.Put ("ACCEPTED"); tio.New_Line;
else
tio.Put("! unmatched parens"); tio.New_Line;

end if;
end if;
stk.Finalize (Stack);

exception
when stk.Stack_Underflow => tio.Put("A Empty Stack"); tio.New_Line;

stk.Finalize (Stack);
end parens;
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A tagged type declaration may be extended with type declarations of the form

type extended_type is new
tagged_type with record declaration;

where tagged_type either is directly defined as a tagged type or has been
derived from a tagged type. Listing 2.4 illustrates a tagged type declaration and
extensions of a tagged type. The type Figure is declared as both tagged and
abstract. Abstract types are discussed in Section 2.4.2. The implication of
being a tagged type is that other types may be derived from a tagged type.
Listing 2.4 illustrates three types derived from the Figure type. A derived type
has all the features of the tagged type from which it was derived and the new
attributes that may be added through the declaration of the new type. In the case
of type Figure, the only attribute of Figure is a Point, a coordinate that
locates, or anchors, a Figure in a Cartesian coordinate system. The three
derived types each have additional attributes that extend the Figure type to
include specific attributes that are needed to describe individual instances of the
three derived types, Circle, Rectangle, and Triangle.
Each type, along with the subprograms that form the constructors and

selectors for objects of that type, defines an object class. This is true for tagged
types. Each tagged type, along with its subprograms, defines an object class, and
each type extension defines a new collection of objects. Listing 2.4 defines four
object types, Figure, Circle, Rectangle, and Triangle. The collection of
a type and all the types derived from it is called the base type's 'Class, which
is discussed in Section 2.4.4.
Note that the type Circle is derived from Figure by adding a Radius to

its attributes. The type Triangle adds two coordinates, P2 and P3, to the
original point in Figure. The three points define the three vertices of a triangle.
The type Rectangle extends the type Figure by adding Width and Height
attributes. Listing 2.5 contains the body for the package described in Listing 2.4.
Additional types may be derived from any of these types. A derived type

need not add attributes. For example, one may wish to define

type Square is new Rectangle;

directly using the attributes of Rectangle and using other means to guarantee
that the Width and Height of objects of type Square are equal. This is
discussed in more detail in Section 2.4.5.
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Listing 2.4. Figures package specifications.

package figures is

type Coordinate is
record
x, Y: float;

end record;

type Figure is abstract tagged
record
Point: Coordinate;

end record;
function Area (F: Figure) return float is abstract;
function Perimeter (F:Figure) return float is abstract;
procedure Get (F: in out Figure) is abstract;
procedure Put (F: Figure) is abstract;

type Circle is new Figure with
record
Radius: Float;

end record;
function Area (C: Circle) return float;
function Perimeter (C: Circle) return float;
procedure Get (C: in out Circle);
procedure Put (C: Circle);

type Rectangle is new Figure with
record
width: Float;
Height: Float;

end record;
function Area (R: Rectangle) return float;
function Perimeter (R: Rectangle) return float;
procedure Get (R: in out Rectangle);
procedure Put (R: Rectangle);

type Triangle is new Figure with
record
P2, P3: Coordinate;

end record;
function Area (T: Triangle) return float;
function Perimeter (T: Triangle) return float;
procedure Get (T: in out Triangle);
procedure Put (T: Triangle);

end Figures;

2.4.2 Abstract Types
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Sometime when tagged types are declared, the only purpose of the type is to be
the base type from which other types are derived. If no variables of the type
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Listing 2.5. Figures package body.

with Text_io, Ada.Numerics.Generic_Elementary_Functions;
package body figures is
package fio is new text_io.float_io(float);
package tio renames text_io;
package math is new Ada.Numerics.Generic_Elementary_Functions (float);
use math, Ada.Numerics;

function Almost (A, B: float; Epsilon: float:= 0.0001) return boolean is
begin -- Almost
if abs (A) < Epsilon then
if abs (A-B) < Epsilon then
return true;
else
return false;

end if;
elsif abs «A-B)/A) < Epsilon then
return true;
else
return false;

end if;
end Almost;

procedure Get (C: in out Coordinate) is
begin -- Get
fio.Get (C.X); fio.Get(C.Y);

end Get;

procedure Put (C: Coordinate) is
begin -- Put
tic.Put ('('); fio.Put(c.X); tio.put(", h);
fio.Put (C.Y); tio.Put (')');

end Put;

function Area (C: Circle) return float is
begin -- Area (Circle)
return C.radius*c.radius;

end Area;

function Perimeter (C: Circle) return float is
begin -- Perimeter (Circle)
return 2.0*pi*C.Radius;

end Perimeter;

procedure Get (C: in out Circle) is
begin -- Get
tio.Put (hEnter, x y r: h); Get (C.Point); fio.Get (C.Radius);

end Get;

procedure Put (C: Circle) is
begin -- Put
Put (C.Point); tio.Put(h r=h); fio.Put (C.Radius); tio.Put (" h);

end Put;
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Listing 2.5. (cont.)

function Area (R: Rectangle) return float is
begin -- Area
return R.Width*R.Height;

end Area;

function Perimeter (R: Rectangle) return float is
begin -- Perimeter
return 2.0*(R.Width + R.Height);

end Perimeter;

procedure Get (R: in out Rectangle) is
begin -- Get
tio.Put ("Enter, x, y, w, h: ");
Get (R. Point);
fio.Get (R.Width); fio.Get (R.Height);
end Get;

procedure Put (R: Rectangle) is
begin -- Put
Put (R.point); tio.Put(" W="); fio.Put (R.Width);
tio.Put(" H="); fio.Put (R.Height); tio.Put (" ");
end Put;

65

function Area (T: Triangle) return float is
slope, Xb, Yb, Base, Height : float;
begin -- Area
if Almost (T.point.x, T.P2.x) then

Xb := T.Point.x; Yb := T.P3.y;
elsif Almost (T.Point.y, T.P2.y) then
Yb := T.Point.y; Xb := T.P3.x;
else
slope := (T.Point.y - T.P2.y) / (T.Point.x - T.P2.x);
Xb :~ (T.P3.x + slope*slope*T.point.x - slope*(T.P3.y-T.Point.y»)

/ (slope*slope + 1.0);
Yb := slope*(Xb - T.point.x) + T.Point.y;

end if;
Base := sqrt( (T.Point.x-T.P2.x)*(T.Point.x-T.P2.x)

+ (T.point.y-T.P2.y)*(T.Point.y-T.P2.y) );
Height := sqrt( (Xb-T.P3.x)*(Xb-T.P3.x) + (Yb-T.P3.y)*(Yb-T.P3.y) );
return 0.5*Base*Height;

end Area;

function Perimeter (T: Triangle) return float is
DXl, DX2, DX3, DYl, DY2, DY3: float;
begin -- Perimeter
DXl (T.Point.x-T.P2.x);
DX2 (T.P2.X - T.P3.X);
DX3 (T.P3.X - T.Point.X);
DYI (T.Point.Y-T.P2.Y);
DY2 (T.P2.Y - T.P3.Y);
DY3 (T.P3.Y - T.Point.Y);
return sqrt (DXl*Dxl + DYl*DYl) + sqrt (DX2*DX2 + DY2*DY2)

+ sqrt (DX3*DX3 + DY3*DY3);
end Perimeter;
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Listing 2.5. (cont.)

procedure Get (T: in out Triangle) is
begin -- Get
tio.Put ("Enter, xl y1 x2 y2 x3 y3:");
Get (T.Point); Get (T.P2); Get (T.P3);
end Get;

procedure Put (T: Triangle) is
begin -- Put
Put (T.Point); Put (T.P2); Put (T.P3);
tio. Put (" " ) ;
end Put;

end Figures;

would serve a useful purpose, the developer of the type may restrict clients from
declaring variables of the type by declaring the type to be abstract. For
example, the type Figure, in Listing 2.4, is restricted in this fashion. With this
declaration for Figure, statements like

Any : Figure;

would be flagged by the compiler as illegal. Simply stated, when a type is
declared abstract, no variables of that type may be declared.

2.4.3 Abstract SUbprograms

Sometimes a developer might create a type knowing that certain subprogram
names might be dynamically dispatched, (as described in Section 2.4.5), for types
derived from a particular type, but that such subprograms have no real meaning
for the type itself. In this case, the software developer may declare the
subprograms to be abstract. This is illustrated in Listing 2.4, where the
notions of Area and Perimeter are not appropriate for the type Figure.

It should be noted that a type may be abstract and have a nonabstract
subprogram. Although variables of that type may not exist, a type derived from
an abstract type might dynamically dispatch the abstract type's subprogram
because it may not have its own version of the subprogram and thus uses the
version supplied for the abstract type.
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For a tagged type, or types derived from tagged types, the' Class of the type is
a new type that includes the type and all types derived, implicitly or explicitly,
from it. Since type' Class is a type, it may be utilized wherever a type may be
used - to declare variables of that type, to declare formal parameters in
subprograms, and so forth. In declaring formal parameters, as in,

procedure Analyze (F: in out Figure'Class;
) ;

any variable in Figure' Class may be passed to Analyze, a Circle, a
Rectangle, or a Triangle. If the type Square is derived from type
Rectangle, then the type Rectangle' Class encompasses both the types
Rectangle and Square.
One may also declare access types to type' Class,

type Fig_Ptr_Type is access Figure'Class;

in which case the access type may point to any object in the extended class.
Variables of the extended type may be declared; however, one should

consider the extended type as if it was a generic declaration. As such, additional
information must be supplied to determine the particular type of object within the
class when it is initialized. This is achieved by supplying an initialization in the
declaration. For example, for Figure' Class, given the declarations

when a new dynamic Figure' Class is created, it must be given an initial value
that determines the specific type within the class that is being created,

Fig_Ptr:= new Figure'Class' (sample);

where sample is a variable of any type within Figure' Class. Variables of
type Figure' Class may be declared, but the declaration must indicate the
specific type within the class that is being created. If a Figure' Class variable
is declared in a procedure, it may be initialized using one of the procedure's
parameters. For example, in the procedure

procedure Illustrate (Able in out Fig_Ptr_Type) is
Local_Var: Figure'Class'(Able.all);
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begin -- Illustrate

end Illustrate;

Local_Var becomes a variable of the same type being accessed by Able.

2.4.5 Dynamic Dispatch

Given all the types in Figure /Class, circles, rectangles, and triangles, each
type requires unique operations to obtain the value of an object, Get, display the
object's value, Put, and calculate correct values for their perimeters and areas.
Suppose an access variable

type Fig_Ptr_Type is access Figure/Class;

points to a variable and its area must be computed. It would be nice if the area
computation was defined and the correct instance of the method Area is used
when the computation is requested:

X:= Area(Fig_Ptr.all);

The run-time selection of the correct procedure, depending on the type of variable
being passed, is referred to as dynamic dispatch.
Dynamic dispatch is achieved in Ada 95 in the following way: Recall that

the specification for each object type is in two parts, the declaration of the type
used to maintain attributes for objects of that type, followed immediately by the
specification for all of the subprograms that may be dynamically dispatched for
the type. Listing 2.4 illustrates the object declarations for Figure, Circle,
Rectangle, and Triangle, which includes the specifications for the Get, Put,
Area / and Perimeter subprograms.
As each of the types derived from Figure is defined, the type declaration

must be followed by the specifications of the subprograms that may be
dynamically dispatched with this type, as illustrated in Listing 2.4. Other derived
types and their dynamically dispatched subprograms are specified similarly.
These specifications may be encapsulated in separate packages or together in a
single package.
Once the types are packaged along with their dynamically dispatchable

subprograms, a procedure may employ these packages and call upon the dynamic
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dispatch of the subprograms. Listing 2.6 illustrates dynamic dispatch. Note that
each time through the loop, the calls to Get, Put, Area, and Perimeter are all
dynamically dispatched, depending on the type of object accessed by Point.

It should be noted that there is no requirement that each type has its own
version of every dynamically dispatchable subprogram. If the run time system
is to dispatch a subprogram for an object whose type does not have its own
version of the subprogram, the run-time system then looks for a version of the
subprogram for the type from which the given type was derived. If the run-time
system finds a version of the subprogram for that type, it uses that version.
Otherwise it continues searching toward the root tagged type for a usable
subprogram. If none is found, a run-time exception is raised.
For example, the declaration of the object type Square might be

type Square is new Rectangle;
procedure Get (S: in out Square);

where

procedure Get (S: in out Square) is
begin -- Get
tio.Put ("Enter, x, y, s: ");
Get (S. Point);
fio.Get (S.Width);
S.Height:= S.Width;

end Get;

Get for squares would obtain the anchor point and the length of a side, then place
the length in both the Width and Height components. As a result, the Put,
Area, and Perimeter subprograms for Rectangle would be dynamically
dispatched, and produce correct results when an object of type Square is
dispatched for them.
Then, if

S: Square

and

Point:= new Figure'Class'(S);

are used, then

Get (Point. all) ;
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Listing 2.6. Example use of Figures package.

with text_io, figures, unchecked_deallocation;
use figures;
procedure uses_figures is

package fio is new text_io.float_io(float);
package iio is new text_io.integer_io(integer);

type f_Ptr_Type is access figure'class;
procedure free is new unchecked_deal location (figure'class, f_ptr_Type);

Choice: positive;
C: Circle; R: Rectangle; T:Triangle;
Point: F_Ptr_Type;

begin -- uses_figures
text_io.Put ("Select Object type (I=Circle, 2=Rectangle, 3=Triangle): ");
iio.Get (Choice); text_io.Skip_line;
while Choice < 4 loop
Case Choice is
when I => Point:= new figure'class' (C);
when 2 => Point:= new figure'class'(R);
when 3 => Point:= new figure'class'(T);
when others => raise constraint_error;

End Case;
Get (Point.all); -- Dyn Dispatched
text_io.Skip_Line;
Put (Point.all); -- Dyn Dispatched
text_io.New_Line;
Text_io.Put ("Perimeter _OJ; fio.Put (Perimeter(Point.all»;

AAAAAAAAA Dyn Dispatched
Text_io.Put (", Area ="); fio.Put (Area(Point.all»;

Dyn Dispatched
Text_IO.New Line (2);
text_io. Put ( "Select Object type (I=Circle, 2~Rectangle, 3~Triangle,

Quit>3): ");
iio.Get (Choice); text_io.Skip_line;

end loop;
end uses_figures;

would dispatch Get for Squares, while calls to Put, Area, and Perimeter
would dispatch the versions of these subprograms for Rectangle objects.

2.4.6 Controlled Types

The Ada. Finalization package supports the automatic initialization and
finalization of objects, like those whose values are represented through the use of
indirection. The package, whose specifications appear in Listing 2.7, supports
two new types, controlled and limited controlled. These types are
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Listing 2.7. Ada. Finalization specifications.

with System. Finalization_Implementation
use System
package Ada.Finalization is
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type controlled is abstract new Finalization_Implementation. Root_Controlled
with null record;

procedure Initialize (Object: in out Controlled);
procedure Adjust (Object: in out Controlled) is abstract;
procedure Finalize (Object: in out Controlled) is abstract;

Root_Part: Finalization_Implementation.Root_Controlled
renames Finalization_implementation. Root_Part;

type Limited_Controlled is abstract new
Finalization_Implementation. Root_Limited_Controlled
with null record;

procedure Initialize (Object: in out Limited_Controlled);
procedure Finalize (Object: in out Limited_Controlled) is abstract;

end Ada.Finalization;

special tagged types. Software developers may create polymorphisms of these
tagged types. Further, the procedures Initialize and Finalize are
dynamically dispatched for extensions of these types. Also, the procedure
Adj list is dynamically dispatched for extensions of Controlled type.
The procedures Initialize and Finalize are automatically invoked by the

system. When Ada begins execution of a procedure in which an object is an
extension of a controlled type, limited or otherwise, the Initialize procedure
is dynamically dispatched, if declared, for that object. Use of this feature
guarantees that each object is initialized and finalized.
When a procedure terminates and the procedure contains objects that are

controlled types, the Finalize procedure is dynamically dispatched for each
controlled object for which Finalize was defined. Finalize is critical to
controlling the loss, or leakage, of dynamically allocated space. Just as
Initialize provides an opportunity for a software developer to place an initial
value in an object, when the initial value requires the creation of a dynamically
allocated structure, Finalize provides the software developer with the
opportunity to reclaim that space. With the system's automatic invocations of
these two procedures, the software developer is guaranteed correct initialization
of objects with initial values and an opportunity to reclaim dynamically allocated
space when an object is no longer in use.
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The assignment statement may be used with controlled types. Section
2.2.2.2 describes the problem surrounding the use of assignment with objects
whose values are represented through indirection. The role of the procedure
Adj ust is to overcome that problem. Given an assignment statement involving
controlled types,

A:= ...

the system calls Adj ust in the process of perlorming the assignment. An
assignment is perlormed with the following five-step process:

1. The right-hand side is calculated.
2. The left-hand side is finalized.
3. The left-hand side is initialized.
4. The right-hand side result is passed to Adj ust.
5. The result after adjusting is placed in the left-hand side.

Why is the finalization package so important? Simply stated, when using
Ada 83, many software developers frequently used private types in an unsafe
manner. For one reason or other, many software developers avoided using
limited private types. Limited private types are not difficult to use as
long as their needs are addressed. With Ada 95, if developers take the time to
properly use the Ada. Finalization package by using controlled with
private declarations, the private type will safely interact with assignment
statements and be free from storage leakage and undesirable side effects.
By deriving a new controlled type from an existing controlled type and

building Initialize, Adj ust, and Finalize procedures, a client is guaranteed
that the objects are correctly initialized and safely manipulated with assignment
statements and that the structure is finalized without the loss of dynamically
allocated storage. Finalize is called when a controlled object's value must
be terminated. Initialize is automatically called when a procedure containing
a controlled object is initialized. Adjust is called when a controlled variable
is assigned to another variable. Adj ust provides an opportunity for the software
developer to adjust the variable before its value is assigned to the left-hand side.
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As in the case of generic packaging, after detennining the type of structure
required to assist in solving a problem, the client uses a two-step process to
interface an object-oriented, or polymorphic, package to the software under
construction. First, the client constructs a package that contains the type
extensions, or polymorphisms, of the tagged or controlled types supported by the
base package. Next, the client uses the items provided through the base package
along with the type extensions, and other support, constructed in the client's
interface support package.
Consider the example polymorphic package in Listing 2.8. It is typical of the

polymorphic package method used throughout this text. Note that all
polymorphisms in this package are based on controlled types. This takes
advantage of automatic initialization, finalization, and adjustment during
assignment. Also, observe that two controlled types are made visible with this
package: the data structure, stack_Type, and the Place_Holder type that the
client will extend in order to place objects into the stack.
Consider the situation described in Section 2.3, where the client needs a stack.

The client creates a package to serve as the interface between the polymorphic
package and the client's software. This interface package is illustrated in
Listing 2.9. In this example, the client renames the polymorphic package,

package STK renames Stack_Polymorphic_Cntl;

to simplify references, as well as a type extension of Placeholder type, called
Paren_Type, to assist in managing the client's objects in stacks.
The client then uses the resources available in the polymorphic package

through the client's interface, as illustrated in Listing 2.10. Note the generic
instantiation of the Top_Value function made visible as stk, Stack_
Polymorphic_Controlled, in Listing 2.10. When utilizing type extensions,
the client must be aware of the relationship between any type extension and the
I Class type of the base type. An object of the extended type is a valid object
of the base type's I Class. However, an object in the base type's I Class is not
a valid object in the extended type. In the software in Listing 2.10, Item is of
Paren_Type, a type extension of Placeholder and hence a valid object in
Placeholder I Class. Consequently, Item may be passed to Push as a
parameter of Placeholder I Class type. However, once passed, the object is
a Placeholder I Class type object. To get the object back into a Paren_Type,
the client must perfonn an explicit type conversion to move the object value from
a Placeholder I Class object back to a Paren_Type. The instantiation,
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Listing 2.8. Example of a polymorphic package.

with Ada.Finalization; Use Ada.Finalization;
package Stack_polymorphic_Cntl is

type Place_Holder is abstract new controlled with private;
procedure Initialize (Source: in out Place_Holder);
procedure Finalize (Source: in out Place_Holder);
procedure Adjust (Source: in out Place_Holder);

type Holder_Class_Ptr is access Place_Holder'Class;
procedure Recycle (Point: in out Holder_Class_Ptr);

type Stack_Type is new controlled with private;
procedure Initialize (Stack: in out Stack_Type);
procedure Finalize (Stack: in out Stack_Type);
procedure Adjust (Stack: in out Stack_Type);

Stack_Underflow: exception;
Stack_Overflow : exception;

function Empty (Stack: Stack_Type) return boolean;

function Empty_Stack return Stack_Type;

generic
type Extended_Type is new Place_Holder with private;

function Top_Value (Stack: Stack_Type) return Extended_Type;

procedure Pop (Stack : in out Stack_Type;
Object: in out Holder_Class_Ptr);

generic
type Extended_Type is new

procedure Ex_Pop (Stack : in
Object:

procedure Pop (Stack: in out

Place_Holder with private;
out Stack_Type;
out Extended_Type);
Stack_Type) ;

procedure Push (Object: in Place_Holder' Class;
Stack: in out stack_Type);

procedure Swap (Source: in out Stack_Type;
Target: in out Stack_Type);

private
type Place Holder is abstract new controlled with
record
Next: Holder_Class_Ptr:= null;

end record;
type Stack_Type is new controlled with
record
Top : Holder_Class_Ptr:~ null;
Size: natural:= 0;

end record;
end Stack_Polymorphic_Cntl;
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Listing 2.9. Sample object-oriented client interface package.

package stk renames Stack_polymorphic_Cntl;

type paren_Type is new stk.Place_Holder with
record
Sym: character;

end record;
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Paren_Top, of the generic function Top_Value provides the client with a
convenient function that performs the required type conversion.
The client has a second choice for retrieving objects back from the structure,

which is essential when the client is placing objects of more than one type
extension into a structure. This second approach uses the type
Holder_Class_Ptr. Instead of receiving the object back as a client's extended
type, the client employs the access type Holder_Class_Ptr, which points to the
returning object. The client may now perform a type conversion, or dynamic
dispatch, to handle the returning object. This approach might change the example
in Listing 2.10 as follows: First, the client would declare an access type:

This access type would be used to obtain the value at the top of the stack:

Point:= Top_Of (Stack);

This approach would replace the statement

if Paren_Top(Stack).Sym = '[' then

with

if Paren_Type(Top_Of(Stack» .Sym = '[' then

requiring the client to explicitly perform the type conversion as well as the
dereference.
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Listing 2.10. Example use of object-oriented packaging.

with OO_paren_pak, text_io;
use OO_paren_pak;
procedure OO_parens is
package tio renames text_io;
function Paren_Top is new stk.Top_value (Paren_Type);

Symbol,
Str
S_Size
Stack
OK

Item: Paren_Type;
string (1 .. 200);
natural;
Stk.Stack_Type;
boolean:= true;

begin parens
tio.Put ("Enter any string - checks for proper parenthesis matching");
tio.New_Line;
tio.Put (" ([({()))«aa»}) would be accepted, but «») would not");
tio.New_Line(2);
tio.Put ("Enter Paren string: ");
tio.Get_Line (Str, S_Size);
tio.Put (" ");
Item.Sym:= '(';
for i in 1 .. S_Size loop
case Str(i) is
when '(' I '{' I '[' => Item. Sym: = Str (i) ;

stk.Push (Item, Stack); tio.Put(' 'I;
when 'I' => if Paren_Top(Stack).Sym = '(' then

stk.pop (Stack); tio.put (' 'I;
else
tio.Put ("A mismatch"); OK:- false; exit;

end if;
when 'j' => if Paren_Top(Stack).Sym - '[' then

stk.Pop (Stack); tio.put (' 'I;
else
tio.Put ("A mismatch"); OK:= false; exit;

end if;
when '}' => if Paren_Top(Stack).Sym - '{' then

stk. Pop (Stack); tio. put (' ');
else
tio.Put ("A mismatch"); OK:= false; exit;

end if;
when others => tio.Put (' ');

end case;
end loop;
if OK then
if stk.Empty (Stack) then
tio.Put ("ACCEPTED"); tio.New_Line;
else
tio.Put("! unmatched parens"); tio.New_Line;

end if;
end if:

exception
when stk.Stack Underflow => tio.Put("A Empty Stack"); tio.New_Line;

end OO_parens:



2.6 A Taxonomy of Client/Package Visibility

2.5.1 Polymorphic Versus Generic Packaging
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Generics and polymorphism are two important software development tools.
Polymorphism was not available in Ada 83, hence programmers with substantial
Ada 83 experience tend to feel very comfortable with generics. On the other
hand, polymorphism, and in particular Ada's controlled types, offers the attractive
alternative of automatic initialization and finalization, as well as the use of
Adj list during assignments. There is not a simple choice of one versus the
other. Note that the polymorphic package in Listing 2.8 contains two generic
functions.
Many software development decisions involve the choice between tradeoffs;

so does this one. While generic packaging is easy to use, it typically requires the
software developer to make available a number of generic packagings of a
particular data structure in order to safely and efficiently handle the variety of
representations of client objects and data structures. A key to understanding this
is comprehending the choice that must be made between private and limited
private visibility. To some extent, the use of controlled types in
polymorphic packaging simplifies this choices. The automatic initialization and
finalization address a number of software development concerns. Also, Adj list

provides a safe and efficient alternative to the private versus limited
private visibility issue.

2.6 A Taxonomy of Client/Package Visibility

When building a package to encapsulate a component, a software developer may
wish to build many encapsulations to supply various combinations of the visibility
of the client's instantiating object type with the visibility of the package's data
structure type. If clients expect a certain access level of their objects by the
package, then the clients should expect that their objects are manipulated in a
safe, efficient manner. On the other hand, when the package makes a data
structure visible in a particular way, clients should expect the structure to be safe
when properly used.
There are many possible combinations of relationships between the visibility

of the user's instantiating object type and the visibility of the package's object
type to the user. The naming convention, PackageObject_
InstantiatingType_Packagevisibility is used in this text to generically
indicate the object types a client may use to instantiate a package,
InstantiatingType, and the method the package uses when it makes data
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structures available, PackageVisibili ty. For example, the package named
Stack_Pt_Lpt will be a stack package where the user's instantiating object type
is private, Pt, and the package makes stacks available as limited private types,
Lpt. The other user-package visibilities are bound, tagged, controlled, and
encapsulated, which will be indicated in the package's name with the notations
Bnd, Tag, Cntl, and En, respectively. Throughout subsequent chapters, some the
versions of packages are presented as examples, while others are left for
exploration.

2.6.1 Safe Handling of User Objects

When a user is about to select a package, what should the user look for in order
to guarantee that the package safely manages the user's objects? Users should
be aware of the complexity of their objects and what is necessary to manipulate
the objects safely. This section discusses the possible complexity of the user's
object type and its correspondence for a particular package instantiation.

2.6.1.1 Private

The simplest situation for a user is when the user's instantiating object type
completely contains the values of the objects represented by the type. In these
cases, the user may safely use a package where the instantiating object type is
private:

generic
type Object_Type is private;

package Structure_Type_Private_Structure_Visibility

Basically, as long as the representations of the values of the user's instantiating
type are completely contained within variables of that type, they may be passed
as a private type. As long as the representation of values is bound and does
not include the use of any indirection or dynamic allocation, private
instantiation is safe.
A user may wish to declare the instantiating Obj ect_Type that is used to

instantiate the package with initializing attributes:
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type Client_abject_Type is
record

... := [initial value];
end record;
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In this way, the client ensures that when the data structure creates dynamic
records that contain the object, these records will contain objects with the known
initialized value.

2.6.1.2 Limited Private

When a client wishes to place unbound nonpolymorphic objects into a data
structure, instantiating the package with a limited pr ivate object type is the
safest method. But if an object type is limited private, the package requires
that the client provide the means for the package to safely manipulate the objects,
as discussed in Section 2.2.2.2. Therefore, packages that are instantiated with
limited pr ivate types must include sufficient support for safe and efficient
manipulation of objects of that type, as in

generic
type Object_Type is limited private;
with procedure Initialize

(Source: in out Object_Type);
with procedure Finalize (Source: in out Object_Type);
with procedure Copy (Source: in Object_Type;

Target: in out Object_Type);
with procedure Swap (A, B: in out Object_Type);
package Data_Structure_Lpt_Lpt is

When it is not obvious from the actions of the package's subprograms, the
specifications of the package's subprograms should indicate whether copy or swap
is used to perform the action. For efficiency, the client should assume that the
Swap procedure is used to move the client's object in and out of the structure.
Objects swapped out of the package when an object value is swapped in should
be Initialized. Also, the client should assume that the package properly
Finalizes values of objects in records as the records are removed from the
structure.
Clients should be prepared for the extra effort required when instantiating an

object with a limited private type. This requires the client to prepare the
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four procedures that replace the generic subprograms Initialize, Finalize,
Copy, and Swap:

package Client Pak is new Data_Structure_Lpt_???
(Object_Type => My_Type,
Initialize => My_Init,
Finalize => My_Final,
Copy => My_Copy,
Swap => My_Swap);

However, these four procedures should be part of the normal repertoire of
subprograms provided with any limited private type. For example, the
discussions of limited pri vate encapsulation of data structures in
Section 2.6.2.2 encourages that all subprograms that make a package reusable
should be made available for clients. The discussion of composability of data
structures in Section 2.7 states that the procedures Initialize, Finalize,
Copy, and Swap must be made available when a data structure is made visible as
a limited pr ivate in order to make the structure composable.

2.6.1.3 Tagged

When a tagged type is used to instantiate a package,

generic
type Object_Type is Tagged private;

package Data_Structure_Tag_??? is

the package must be prepared to assist the user in handling
Obj ect_Type' Class. To assist in handling polymorphisms, the package should
provide an access type

type Object_Ptr is access Object_Type'Class

and appropriate subprograms for inserting and removing objects. Specifically,
procedures for inserting objects into the structure should handle Obj ect_
Type' Class:

procedure Insert_Object
(Object : in Object_Type' Class;
Structure: in out Structure_Type);

To assist the client in removing objects from the structure, it may be appropriate
to provide two subprograms for each method of removing objects, one for use
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when the client knows the precise object type in Object_Type' Class that will
be removed,

procedure Remove_Object
(Structure: in out structure_Type;
Object out Object_Type'Class);

and one for use when the client is not sure of the specific type of the object
within Obj ect_Type' Class that is about to be removed,

procedure Remove_Object
(Structure: in out Structure_Type;
Point out Object_Ptr);

This approach encourages reuse by providing the client a choice, which makes it
easier to use the package instead of building a new package.

2.6.1.4 Controlled

Since controlled types allow users to perform safe assignment on objects
whose values are implemented through indirection, many users do not appreciate
that although assignment is safe with controlled types, assignment might not
be the most efficient way of carrying out the many manipulations of objects. For
this reason, packages that may be instantiated with controlled types

with Ada.Finalization; use Ada.Finalization;
generic
type Object_Type is controlled with private;
with procedure Swap

(Source, Target: in out Object_Type);
package Data_Structure_Cntl ??? is

should require the user to supply a Swap procedure. This provides the user with
an opportunity to furnish the package with an efficient means of moving objects.
Note that the user's controlled type is accepted as a private type.
A package that would be instantiated with a limited controlled type

would have generic parameters of the form

generic
type Object_Type is limited private;
with procedure Copy (Source: in Object_Type;

Target: in out Object_Type);
with procedure Swap

(Source, Target: in out Object_Type);
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2.6.2 Safe Encapsulation of Data Structures

2.6.2.1 Private

Since the assignment operation is available for unlimited private types, when
pr ivate types present a package's data structure type, there is a tacit assumption
that assignment may be freely used by the client. The only way a package may
safely provide a data structure as an unlimited private type is when the
structure is bound and does not use indirection. Simply stated, that implies that
the value of the stack is entirely encapsulated within the variable made available
to represent the structure.
There are many data structure applications where the client is aware of the

maximum size of the data structure required for the system being built. In these
cases, there are substantial time and space efficiencies associated with the
selection of a bound representation. Bound representations usually imply that the
data structure is represented with some combination of static arrays and records.
Besides the obvious time advantage associated with access to static structures over
access to dynamically allocated structures, the space requirements associated with
dynamic storage allocation could be costly relative to the cost of static
representations.
When a data structure is made available as a private type,

generic
type ,

package data_structure_??? Pt is

type structure_Type (MaX_Size: positive) is private;

the structure may be made with a discriminant that allows the client to state the
sizes of the structure as each object is defined:

Small: Structure (5);
Medium: Structure (40);
Large: Structure (1000);
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2.6.2.2 Limited Private
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If a software developer cannot predetermine bounds on the sizes for a data
structure type needed to solve a problem, then dynamic storage allocation must
be used. When dynamic storage allocation is used, it should be encapsulated as
a limited private type:

generic
type ,

package data_structure_???_Lpt is

type Structure_Type is limited private;

If the package makes a Structure_Type available as a limited pr ivate
type, it should include sufficient resources to allow package clients to manipulate
the structure. The package specifications should include copy and Swap, as
suggested in Section 2.1.3.2, and initialization and finalization procedures, as
suggested in Section 2.2.1:

generic
type ... ;

package data_structure_???_Lpt is

type Structure_Type is limited private;

procedure Initialize
(Structure: in out Structure_Type) ;

procedure Finalize
(Structure: in out Structure_Type) ;

procedure Copy (Source: in Structure_Type;
Target: in out Structure_Type) ;

procedure Swap (Source: in out Structure_Type;
Target: in out Structure_Type) ;

These procedures allow a client to initialize, finalize, duplicate, and swap data
structure objects in a safe and efficient manner. They also play an important role
in safe composability of structures, as discussed in Section 2.7.
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2.6.2.3 controlled

2 Encapsulation

Most clients find that having a data structure available as a controlled type is
usually the most convenient form of the structure. Recall that controlled types
provide for automatic initialization and finalization of objects and may be safely
used with assignment statements. When a package makes a controlled type
available, the package should also contain a Swap procedure so that the data
structure might be composable, as described in Section 2.7. Also, since it is
assumed that controlled types are automatically initialized and finalized, and
may be safely assigned, the package should contain Initialize, Finalize, and
Adj ust procedures. However, these three procedures are not meant to be directly
used by clients and hence should appear in the private part of the package:

with Ada.Finalization; Use Ada.Finalization;
generic
type

package Data Structure_???_Cntl is

type Structure_Type is controlled with private;

procedure Swap
(Source, Target: in out Structure_Type);

private
procedure Initialize

(Structure: in out Structure_Type);
procedure Finalize

(Structure: in out Structure_Type);
procedure Adjust (Structure: in out Structure_Type);

One might be tempted always to use this approach. In general, when in doubt,
clients should use the safest approach available, and controlled types are safe.
However, controlled types have a system overhead that may be inappropriate
in certain situations, especially those with extremely limited time and space
constraints.
In general, we recommend that the controlled type, along with the

encapsulated structures described in Section 2.6.2.4, be the preferred encapsulation
choice by clients when using a data structure. As clients become more aware of
their problem's use of a data structure, then they should consider other
encapsulations that may safely serve their problem's requirements.
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2.6.2.4 Encapsulated
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Perhaps the simplest, and safest, way to package a data structure is to completely
hide the structure within the package. In this approach each structure is hidden
within a package, one structure per package instantiation. Simply stated, if the
client can't even see a structure, there is less chance that a client may
inadvertently misuse it. There are several very recognizable features when a
package totally encapsulates a data structure:

generic
type

package Data_Structure_???_En is

procedure Insertion (Object: in Object_Type) ;

procedure Removal (Object: in out Object_Type);

First, the package does not make any data structure type declaration visible to the
client. Second, none of the subprograms that manipulate the package's structure
makes any reference to that structure. Finally, when a client uses a totally
encapsulated structure, the client may consider the instantiations to be the
structure:

The client accesses the structure using the dotted reference notation, as in

My_Str.Insertion (abc);

There are two very real advantages for clients when they use totally encapsulated
structures. First, since the structure is completely hidden, the mechanisms for
using the structure are simplified. Second, encapsulated structures encourage
clients to use dotted notation to manipulate the structure.
Totally encapsulated structures have several serious limitations. If the client

needs access to more than one data structure object, then totally encapsulated
structures may be inappropriate. Since the structure is completely hidden within
the package instantiation, the structure cannot be placed into other structures.
Also, total encapsulation cannot hold structures that are represented recursively,
as will be discussed in Chapter 5. However, despite these limitations, total
encapsulation hides data structure details and hence can be very useful in many
circumstances.
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2.7 Composability

2 Encapsulation

From a reusability point of view, composability is an important issue. Simply
stated, just as clients may use any structure they create to instantiate an
appropriate client/structure visibility package of a data structure, instantiated data
structures may be used to instantiate other data structures. The naming scheme
used in this book makes it easy to address composability, the construction of a
new data structure by placing one data structure within another, for example, a
binary tree of lists, or a priority queue of trees. Simply stated, given two data
structures, Alpha_xxx_yyy and Beta-yyy_zzz, any instantiation of the
structure Alpha may be used to instantiate Beta_yyy_zzz because Alpha is
made visible in the form indicated by yyy and Beta_yyy_z z z is instantiated by
structure types of the form yyy. Polymorphic data structures may be composed
in a similar manner.
To many clients this might seem to be a minor issue, but as clients tackle

more complex problems, solutions will involve circumstances where clients create
new object classes through the composition of other object classes. Several
examples of this scenario are described in this book.

2.8 Child Units

When software developers package objects, they are frequently faced with the
dilemma of balancing the number of subprograms in a package with the perceived
readability and reusability of the package. For example, in presenting the data
structures in this text, the decision was made that each package would present a
pure and usable version of each data structure. Additional features that clients
may find helpful appear in child packages.
The process of constructing and using child units is straightforward.

However, the package developer, of both the parent unit and the child unit, must
be cautious when constructing packages because of the child unit's access to the
private declarations in the parent unit, as illustrated in Listing 2.11. The part of
the package specification that precedes the private declarations are visible to all;
the part of a package in the body of a package is visible to no one; but the private
declarations are visible to a package and all its child units. In a sense, because
of child units, the private declarations are no longer completely private. This
means that great care must be taken when constructing parent and child units, to
make sure that the child unit does not perform any actions on information made
available to the child unit through the private declarations that may jeopardize the
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Listing 2.11. Visibility of parent package part.

package Parent is

-- PUBLIC Everyone see this

private

-- SEMI-PRIVATE The Parent and its children see this

end Parent;

package body Parent is

-- VERY PRIVATE Really private stuff

end Parent;
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integrity of the package or other child units.
With data structures, parent units are appropriate for encapsulating the

fundamental resources for a data structure. Child units are an appropriate means
for encapsulating additional features and resources that clients may find useful but
are not typically thought of as part of the fundamental support for the structure.
The encapsulation of features that go beyond the basic features of a package are
best placed in child units. Generally, the basic format of the parent unit dictates
the form of the child unit. A child unit's name is parent_name.Child_name. For
example, the Advanced child unit for Stack_Pt_Lpt has the name Stack_pt_

Lpt . Advanced.

It is possible to have child units of a child unit, in which case the name
would be parent.child.grandJhild. When producing a child unit, the software
developer may assume that the child unit has access to the parent unit's
specifications. For example, while writing the body for a parent or child unit, the
developer may use the resources made visible in any package, including the
package's parent or the package's child, as long as the resources do not depend
on the resource being constructed, causing an unresolvable interdependence.
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When clients use both a child unit and its parent, there need only be a with
statement for the child unit

to provide access to the child package and its ancestors.
There are a variety of advantages to child units. For example, from the

viewpoint of developing and maintaining large systems, it is easier to maintain
several smaller interrelated packages than to maintain one big package. When a
child unit is modified, only those packages that depend on that unit must be
recompiled. This can produce an enormous savings both in computer time and
in the work effort for developers.

2.8.1 Generic Child Units

Child units of a generic unit are generic. The parent unit's instantiation
parameters, as in

generic
type Object_Type is private;

package Stack_Pt_Lpt is

are not repeated in the child unit, as in

generic
-- [Additional generic parameters here]

package Stack_Pt_Lpt is

However, it is possible that a generic unit may have additional generic
parameters, which would be declared as indicated above.
A generic child unit must be instantiated like any other generic unit. The

generic parent unit must be instantiated first:

package Parent_Inst is new Gen_Pak ( ... );
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The instantiated package includes infonnation about the children of the original
generic package. Instances of the generic children may now be created by
referencing a generic child unit relative to the newly instantiated parent:

package Child_Inst is new Parent_Inst.Generic_Child
(additional child instantiation parameters here);

For example, if support for a stack of characters is instantiated from
Stack_Pt_Lpt and the Advanced child unit is required, then

package Ch_Stk is new Stack_Pt_Lpt (Character);

instantiated the parent package and

package Adv_Support is new Ch_Stk.Advanced;

creates an instance of the Advanced child, Adv_Support, that may be used with
Ch_Stk.
It is possible for the generic child unit to have additional instantiation

parameters. In this case, only the additional instantiation parameters are indicated
in the child unit's specifications

generic
Child_Pak_instantiation_parms;

package Generic_Child is

end Generic_Child;

and the replacements for the child unit's additional generic instantiation
parameters must appear with the instantiation of the child unit:

package Child_Inst is new
Parent_Inst.Generic_Child (replacements);

2.9 Explorations

1. Elaborate on bounded representation issues.

2. Elaborate on bounded objects whose representations use discriminants.

3. Construct a Polynomial package with polynomials represented with
controlled types.
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Stacks

3.1 Linear Structures

This and the following two chapters describe three important logically linear
structures: stacks, queues, and lists. Each structure is linear in that a linear
ordering is maintained among objects within the structure. The linear relationship
is logical in that, unlike arrays, no assumption may be made regarding any
relationship between the linear ordering of the objects and their actual locations
in memory. These structures are distinguished from each other by the restrictions
on the ways objects are accessed with respect to each structure.
These data structures have the linear access property in that there is a linear

time dependence on the access to objects within the structure. The time required
to access the ith object in any of these structures is T =O(i). For example, with
a stack, the key access position is the top, which may be considered the first
object in the stack. Access to the object in the ith position from the top requires
time of order i, D(i). This time dependence it not necessarily bad. Each structure
provides a particular method of organizing data. When an application requires
the organization provided by a particular structure, the structure's time-dependent
access should be an acceptable cost of applying the structure safely.
There are four basic variations of dynamic linearly linked representations.

The four variations are achieved through two choices associated with dynamic
linearly linked structures. One choice is associated with how the last access type
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Figure 3.1. Linear linking variations.

in the last record of the linearly linked structure is handled. There are two typical
possibilities: Either make the access type null, or make it point to the first record
in the structure. If the access type in the last record is null, the structure is said
to be grounded and indicated with the electronic ground symbol. If the access
type in the last record points to the first record in the structure, then the structure
is said to be circular.
A second choice is to decide whether to have one or two access types per

record, one pointing to the next record in the linear structure and one pointing to
the previous record in the linear structure. A linearly linked structure with only
one access type per record is called a one-way linearly linked structure. A
linear structure with two access types per record is called a two-way linearly
linked structure. Combining the ground or circular variation with the one-way
and two-way variations produces the four possible variations of linearly linked
structures described in Figure 3.1. The four variations are illustrated in
Figure 3.2.
The most widely used variation of linearly linked structures is one-way

grounded linearly linked structure. This chapter describes its use to represent
stacks dynamically. It is also extremely useful as a means of representing lists
that are processed with recursive algorithms, as described in Chapter 5.
Chapter 4 describes the use of one-way circular linearly linked structures to

represent queues. Two-way linearly linked structures are used in Chapter 5 to
represent lists that are processed using the positional paradigm. In general, the
one-way ground variation of linearly linked structures handles the vast majority
of programming needs for a linearly linked structure.
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Two way circularTwo way groundOne way ground One way circular

Figure 3.2. Linked list variations.

3.2 Elementary Stacks

3.2.1 Abstraction

A stack, also called a pushdown stack, is a sequential, homogeneous, variable­
sized, possibly empty, collection of objects whose attributes and operations satisfy
the following:

1. A stack is empty if it contains no objects.
2. All stack operations access one end of the stack, called the top. The
other end of the stack is called the bottom.

3. Only the object at the top of the stack is accessible.
4. The pop operation removes the object currently at the top of the stack.
The object immediately following the top object, if any, becomes the new
top of the stack. If there are no other objects in the stack, the stack
becomes empty.

5. The push operation places a new object on top of the stack. If the stack
was not empty, the stack maintains the sequential relationship between
the objects in the stack. Each object in the stack before the push
operation moves one position down the stack, away from the top.
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...... Bottom

Figure 3.3. A stack.

Figure 3.3 illustrates a stack. All stack operations modify the stack by
replacing the item at the top of the stack. The push operation places a new
object on the top of the stack. The pop operation removes the top object. As the
push operation places objects into the stack, the stack expands. As the pop
operation removes objects, the stack shrinks. The order of the objects in the
stack, from top to bottom, is the reverse of the order in which the objects are
pushed into the stack. The term LIFO, last-in-first-out, is frequently used to
describe the order of processing of the objects in a stack.
The description of a stack implies two constructors, Push and Pop. Examples

of Push and pop operations on a stack of integers appear in Figure 3.4, which
illustrates the dynamic nature of a stack. In the example in Figure 3.4, as a new
integer, 44, is pushed into the stack, the stack expands and the new object
becomes the new top of the stack. As additional objects are pushed, 12, then 84,
the stack expands each time and the newly placed object becomes the new top
object. Each Pop operation removes the top object. The stack shrinks as a result
of each pop operation, and the object next to the top becomes the new top object.
The next Push operation places a 55 on top of the stack.

If the sequential nature of a stack may be expressed as an n-tuple. A stack
containing n objects is represented by an n-tuple, (ai' ~, ... ,a.,). The top of the
stack is 0/ and an empty stack is represented by ( ), O-tuple. If S is a stack,
(ai' az, ... , a.,), and obj is the object being pushed into the stack, then the
postcondition of the push operation is

Sf = (obj, ai' a2, ••• , a) = (obj, 5),
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i. Initialize(Stack) L-I ii. Push(44,Stack) ~

iii. Push(l2, Stack) ~ ~
4

iv. Push(84, Stack) 12
44

v. Pop(Stack)~ vi. Pop(Stack) I.1iJ vii. Push(55, Stack)~
Figure 3.4. Sample stack operations.

where S is a shorthand for (aI' a2, ••• , <in), or equivalently,

(a; = obi) 1\ ('It iE[1..n), a:. I = a).

If S is a nonempty stack, then the postcondition of the pop operation is

or equivalently,

Since the pop operation must be performed on a nonempty stack, an observer,
Is_Empty, is provided. Is_Empty returns true when the stack is empty;
otherwise the function returns false.

Stack = ( ).

Listing 3.1 illustrates the preconditions and postconditions for the basic
operations on a stack. The operations imply two additional operations,
Initialize and Finalize. These operations mayor may not be necessary,
depending on how the structure is encapsulated. These operations are discussed
in detail in the Chapter 2.
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Listing 3.1. Stack specifications.

Assuming Stack is being manipulated by the operation and Object is the
object being manipulated.

procedure Initialize (Stack: in out Stack_Type);

Pre eond: None
-- Post eond : Stack = ()
-- Exceptions: None

procedure Finalize (Stack: in out Stack_Type);

Pre eond : Initialized (Stack)
-- Post eond : Stack' = ()
-- Exceptions: None

function Top (Stack: Stack_Type) return Object_Type;

procedure Pop (Stack : in out Stack_Type)
Object: out Object_Type);

Pre eond Initialized (Stack) and Stack /= ()
Post eond : If Obj' is the object removed by the Pop

operations, then Stack = (Obj', Stack')
Exceptions: Stack_Is_Empty

Procedure Pop (Stack: in out Stack_Type);

procedure Push (Object: in Object_Type;
Stack: in out Stack_Type);

Pre eond : Initialized (Stack)
-- Post eond : Stack' = (Object, Stack)
-- Exceptions: Stack_Overflow

function Is_Empty (Stack: in out Stack_Type) return boolean;

Pre eond : Initialized (Stack)
-- Post eond : Return (Stack = (»
-- Exceptions: None

3.2.2 Representation

3.2.2.1 Static

One static representation of stacks is obvious. The representation uses a record
that contains an array and a natural number, which keeps track of the current
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Listing 3.2. Static stack declarations.

type Stack_Array_Type is array (positive range <» of Object_Type;

type stack_Type (Max_Size: positive) is
record
Top : natural:= 0;
Actual: Stack_Array_Type (1 .. Max_Size);

end record;
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location in the array that holds the top of the stack. Listing 3.2 illustrates the
declarations for a static representation of stacks. Stack_Type represents each
stack in a record. The array component, Actual, holds the objects in the stack.
The natural type Top counts the number of objects in the stack and,
simultaneously, the range 1 .. Top of locations in the array Actual that currently
holds the objects in the stack. When Top is zero, the stack is empty. The user
controls the initial size of the array with the generic array instantiation parameter,
Stack_Size.
As stated previously, a stack is a linear structure. Note that the array indices

indirectly indicate the linear relation. The objects in the stack are in array
locations 1 .. Top, with the object at Actual (Top) being the first object in the
stack, the top object. The ith object in the stack is at array location Top ­
Position + 1.
The stack constructor algorithms, Push and Pop, are obvious. The Push and

Pop algorithms for static stacks use the component Top to access the array. The
Pop algorithm in Listing 3.3 first tests Top to see if the stack is empty. If the
stack is empty, the algorithm raises the Stack_Underflow exception.
Otherwise, the algorithm removes the top object and decrements TOp. Observe
that Pop is written as a procedure, not a function. This is because the Pop
parameter, Stack, is modified by the procedure and hence must be passed as an
in out parameter and therefore cannot be a parameter to a function.

Listing 3.3. Static Pop algorithm.

function Pop (Object: in Object_Type;
Stack in out Stack_Type ) is

begin
If Stack.Top 0 then
raise Stack_Underflow;
else
Object Stack.Actual (Stack.Top);
Stack.Top:= Stack.Top - 1;

end if;
end Pop;
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Listing 3.4. Static Push algorithm.

procedure Push (Object: in Object_Type;
Stack : in out Stack_Type) is

begin
if Stack.Top = Stack_Size then
raise Stack_Overflow;
else
Stack.Top:= Stack.Top + 1;
Stack.Actual (Stack.Top):= Object;

end if;
end Push;

The static Push algorithm in Listing 3.4 begins by comparing Top to the size
of the array. If they are equal, the algorithm raises the Stack_Overflow
exception. Otherwise, the algorithm increments Top and then places the new top
object into the array at Stack. Actual (Stack. Top).
The code for the stack observer algorithm Is_Empty is straightforward. The

Is_Empty function's value is

return The_Stack.Top 0;

3.2.2.2 Dynamic

Figure 3.5 contains a visualization of a dynamic stack structure. In the dynamic
representation of a stack, each object in the stack is contained in a record. The
records are linked and the position of the record in the linked structure indicates
the position of the object in the stack. Each record contains two components, one

stack_TypeD ~ Obj ect Next

De::: l!j-/ I --J~

~--~
~~-~

c::= e.. ~I---

Figure 3.5. Dynamic stack representation.
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contains the object and the second contains an access type. The access type links
the record to the record containing the next object in the stack. Access to the
stack is through a descriptor record, which contains a pointer to the linked
collection of records, and a component, which contains the count of the number
of objects in the stack. The first record in the linked collection contains the top
object in the stack and the remaining objects appear in the linked structure in
order from the top of the stack to the bottom. If the linked structure is null, the
stack is empty.
Listing 3.5 contains the private declarations for the dynamic representation of

stacks. The declarations Placeholder type and Stack_Type are made visible
by a polymorphic stack package. The advanced stack package's child unit,
described in Section 2.2.2, has access to the private declarations.
The Push and Pop algorithms add or remove, respectively, a dynamically

allocated record from the linked structure and updates the Top component in the
Stack_Type record. Listing 3.6 contains the Pop algorithm for dynamically
allocated stacks, and Listing 3.7 contains the Push algorithm. There are two Pop
procedures. The non-generic version of the Pop algorithm begins by testing for
an empty stack. If the stack is empty, the algorithm raises the Stack_Is_Empty
exception. Otherwise, the algorithm frees any Placeholder I Class object that
may be accessed by the access type Obj ect. Then the algorithm pops the object
at the top of the stack by relinking the stack access component, Stack. Top, to
the next object in the linear structure and decrements the stack's Size. The
generic version of Pop calls the nongeneric Pop procedure, places the returned
object in the client's Extended_type, and then frees the dynamic record.
The Push algorithm in Listing 3.7 obtains a dynamic record and places the

new top object into that record. The algorithm connects the record to the
beginning of the linked structure by placing the current Top pointer into the Next
pointer in the new record and then resets the Top pointer to point to the new
record. The stack's Size is incremented.

Listing 3.5. Private declarations for Stack_Polymorphic_Cntl.

private

type Place_Holder is abstract new controlled with
record
Next: Holder_Class_Ptr:= null;

end record;

type stack_Type is new controlled with
record
Top : Holder_Class_Ptr:~ null;
Size: natural:= 0;

end record;
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Listing 3.6. Dynamic Pop algorithm.

procedure Pop (Stack : in out Stack_Type;
Object: in out Holder_Class_Ptr) is

begin
if Empty (Stack) then
raise Stack_Underflow;
else
Free (Object);
Object Stack.Top;
Stack.Top := Stack.Top.Next;
Stack.Size:= Stack.Size-l;

end if;
end Pop;

generic
type Extended_Type is new Place_Holder with private;

procedure Ex_Pop (Stack : in out Stack_Type;
Object: out Extended_Type) is

Obj: Holder_Class_Ptr;
begin -- Pop
Pop (Stack, Obj);
Object:= Extended_Type(Obj.all);
Free (Obj);

end Ex_Pop;

The selection algorithm, Is_Empty, for dynamically allocated stacks is not
complex. The Is_Empty function simply returns

return Stack. Size = 0;

or

return Stack.Top null;

Stack.Top;
NeW_One;
Stack.Size+l;

Place_Holder'Class;
stack_Type) is
new Place_Holder' Class , (Object);

Listing 3.7. Dynamic Push algorithm.

procedure Push (Object: in
Stack : in out

New_One: Holder_Class_Ptr:=
begin
New_One.Next:=
Stack.Top
Stack.Size

exception
when storage_error => raise Stack_overflow;

end Push;
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The static representation of stacks represents the generic encapsulation of stacks
that are safely instantiated with a bounded private type and makes stacks
available as a safely assignable private representation. This encapsulation is very
useful because many applications require stacks and satisfy two criteria:

1. The maximum size of the stack is determined before the stack is used.
2. The object type placed into the stack may be safely passed as a private
type.

When these two criteria are met, the Stack_pt_Pt is an appropriate choice.
When a bounded representation may be used, a static representation generally has
better time and memory requirements than a dynamic representation.

3.2.3.2 Dynamic Representations

The dynamic representation of stacks may be encapsulated either generically or
polymorphically. For simplicity, polymorphic packaging is discussed in this
section, and the specifications of the polymorphic stack package appears in
Listing 3.8. This package extends Ada. Finalization's controlled type for
both the Stack_Type and the Placeholder type.
A controlled representation is very safe, because of its automatic

initialization, finalization, and support for assignment. Along with those features
comes additional run-time overhead. Limited pri vate representations are safe
but require the client to perform initialization and finalization, hence having less
run-time overhead. For many time- and space-critical applications, clients
wishing to use a representation that meets their needs, without a large overhead,
may select a limited private representation over a controlled
representation. In summary, under normal software development considerations,
a client will tend to use controlled representations, or limited private
representations, and not some combination of both.
Listing 3.9 contains the body of the Stack_Polyrnorphic_Cntl package.

The details of the Pop and Push procedures were discussed in Section 3.2.2.2.
One should note the details of the Initialize, Finalize, and Adj ust
procedures. In particular, the Finalize procedure assists in stopping storage
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Listing 3.8. Stack_Polymorphic_Cntl specifications.

with Ada.Finalization; Use Ada.Finalization;
package Stack_Polymorphic_Cntl is

type Place_Holder is abstract new controlled with private;
procedure Initialize (Source: in out Place_Holder);
procedure Finalize (Source: in out Place_Holder);
procedure Adjust (Source: in out Place_Holder);

type Holder_Class_Ptr is access Place_Holder'Class;
procedure Recycle (Point: in out Holder_Class_Ptr);

type Stack_Type is new controlled with private;
procedure Initialize (Stack: in out Stack_Type);
procedure Finalize (Stack: in out stack_Type);
procedure Adjust (Stack: in out Stack_Type);

Stack_Underflow: exception;
Stack_Overflow : exception;

function Empty (Stack: Stack_Type) return boolean;

function Empty_Stack return Stack_Type;

generic
type Extended_Type is new Place_Holder with private;

function Top_value (stack: Stack_Type) return Extended_Type;

procedure Pop (Stack : in out Stack_Type;
Object: in out Holder_Class_Ptr);

generic
type Extended_Type is new Place_Holder with private;

procedure Ex_Pop (Stack : in out Stack_Type;
Object: out Extended_Type);

procedure Pop (Stack: in out Stack_Type);

procedure Push (Object: in Place_Holder' Class;
Stack : in out Stack_Type) ;

procedure Swap (Source: in out Stack_Type;
Target: in out Stack_Type) ;

private
type Place_Holder is abstract new controlled with
record
Next: Holder_Class_Ptr:= null;

end record;
type Stack_Type is new controlled with
record
Top: Holder_Class_Ptr:= null;
Size: natural:= 0;

end record;
end stack_Polymorphic_Cntl;
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Listing 3.9. Stack_Polymorphic_Cntl package body.

with UnChecked_Deallocation;
package body Stack_Polymorphic_Cntl is
procedure Free is new

Unchecked_Deallocation (Place_Holder'Class, Holder_Class_Ptr),
procedure Recycle (Point: in out Holder_Class_Ptr) renames Free;

procedure Initialize (Source: in out Place_Holder) is
begin -- Initialize
null;

end Initialize,

procedure Finalize (Source: in out Place_Holder) is
begin -- Finalize
null;

end Finalize,

procedure Adjust (Source: in out Place_Holder) is
begin -- Adjust
null,

end Adjust,

procedure Initialize (Stack: in out Stack_Type) is
begin -- Initialize
Stack.Top := null,
Stack.Size:= 0;

end Initialize,

procedure Finalize (Stack: in out Stack_Type) is
begin -- Finalize
while not Empty (Stack) loop
Pop (Stack),

end loop,
end Finalize;

function Empty (Stack: Stack_Type) return boolean is
begin
return Stack.Size ~ 0,

end Empty;

function Empty_Stack return Stack_Type is
Answer: Stack_Type,
begin -- Empty_Stack
return Answer,

end Empty_Stack,

function Top_Value (Stack: Stack_Type) return Extended_Type is
begin
if Empty (Stack) then
raise Stack_Underflow,
else
return Extended_Type(Stack.Top.all) ,

end if;
end Top_Value,
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Listing 3.9. (cont.)

Stack.Top;
New_One;
Stack.Size+l;

function Top_Of (stack: Stack_Type) return Holder_Class_Ptr is
begin
if Empty (Stack) then
raise Stack_Underflow;
else
declare
Answer:Holder_Class_Ptr:=new Place_Holder'Class'(Stack.Top.all);
begin
return Answer;

end;
end if;

end Top_Of;

procedure Pop (Stack : in out Stack_Type;
Object: in out Holder_Class_Ptr) is

begin
if Empty (Stack) then
raise Stack_Underflow;
else
Free (Object);
Object:= Stack.Top;
Stack,Top := Stack.Top.Next;
Stack.Size:= Stack.Size-l;

end if;
end Pop;

procedure Ex_Pop (Stack : in out Stack_Type;
Object: out Extended_Type) is

Obj: Holder_Class_Ptr;
begin -- Pop
Pop (Stack, Obj);
Object := Extended_Type(Obj.all);
Free (Obj);

end Ex_Pop;

procedure Pop (Stack : in out Stack_Type) is
Obj: Holder_Class_Ptr;
begin -- Pop
Pop (Stack, Obj);
Free (Obj);

end Pop;

procedure Push (Object: in Place_Holder'Class;
Stack : in out Stack_Type) is

New_One: Holder_Class_Ptr := new Place_Holder'Class'(Object);
begin
New_One.Next:=
Stack.Top
Stack.Size

exception
when storage_error => raise Stack_Overflow;

end Push;
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Listing 3.9. (cont.)

procedure Adjust (Stack: in out Stack_Type) is
Dup: Holder_Class_Ptr := Stack.Top;
procedure Rec_Copy (Source: in out Holder_Class_Ptr) is
begin -- Rec_Copy
if Source /= null then
Rec_Copy (Source.Next);
Push (Source.all, Stack);

end if;
end Rec_Copy;

begin -- Adjust
Stack. Top := null;
Stack.Size:= 0;
Rec_Copy (Dup);

end Adjust;

procedure Swap (Source: in out Stack_Type;
Target: in out Stack_Type) is

Temp: Holder_Class_Ptr:= Target. Top;
Extra: natural := Target.Size;
begin
Target.Top := Source.Top;
Target.Size:= Source. Size;
Source.Top := Temp;
Source.Size:~ Extra;

end Swap;
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leakage by returning the dynamically allocated records that remained in the stack
back to the storage heap. Adj ust duplicates the stack.
Recall that Adjust is used by the system as part of safely handling

assignment of objects when the value of an object is unbound. Adj ust places
a copy of the pointer, Stack. Top, in Dup and calls the recursive copying
procedure, Rec_Copy. Rec_Copy then recursively traverses to the end of the
linear structure and pushes the objects into Stack as it comes out of the
recursion.
The package makes Stack_Type visible as a controlled type that contains the

package's stack type. Note that Initialize, Finalize, and Adjust are all
private, and hence not available to clients. Also, to assist clients with efficient
application of the stack type, a Swap procedure is made visible for client use.
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3.2.4 Measurement

3 Stacks

A first measurement observation should be that the Push and Pop operations for
both the static and dynamic representations all execute in a constant amount of
time. None of the basic operations contains any loops. Hence, there is no
significant timing differences between the static and dynamic representations,
except perhaps a slight speed advantage in favor of the static representation, array
access versus dynamic allocation.
The major cost for unbound representation is the cost of access types per

record that link the dynamically allocated records together. This can be
significant. In a typical computer, the space requirements of an access type is
usually four or more bytes. If a stack of characters is being maintained, each
character is represented in one byte. Hence the actual data - characters ­
represent on the order of only 20 percent of the space allocated for the stack.

3.3 Advanced Features

3.3.1 Abstraction

As one works with stacks, it may become desirable to have additional support for
manipulating stacks. Occasionally, a software developer requires support for a
structure that usually performs like a stack but the strict interpretation of stacks
is overridden. This support that overrides the standard support for stacks may be
safely provided through a child package like Stack_Polymorphic_
Cntl. Advanced, whose specifications appear in Listing 3.10. The features
supported by this package are

1. Size Of: A function that returns the size of stacks.
2. Peek: A function to view objects within the stack.
3. Poke: A procedure to change the value of an object at any location
within the stack.

4. Insert: Insert a new object at position i in the stack, which moves all
objects from the ith object to the bottom down one.

5. Remove: Remove the ith object from the stack.

The availability of some of these features, like Size_Of, might simplify
certain stack applications. The others override the stack's structure. Peek and
Poke are very useful in two circumstances: (1) They may be useful debugging



3.3 Advanced Features

Listing 3.10. Stack_Polymorphic_Cntl. Advanced specification.

package Stack_Polymorphic_Cntl.Advanced is

function Size_Of (Stack: Stack_Type) return natural;

function Peek (Stack Stack_Type;
Position: positive) return Holder_Class_Ptr;

procedure Poke (Stack in out Stack_Type;
Position: in positive;
Object in Place_Holder'Class);
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procedure Insert (Object
position:
Stack

in Place_Holder'Class;
in positive;
in out Stack_Type);

procedure Remove (Stack in out Stack_Type;
position: in positive;
Object in out Holder_Class_Ptr);

end Stack_Polymorphic_Cntl.Advanced;

aides; (2) they can be useful if the structure that is needed has stack-like storage
characteristics and only requires an occasional override of the stack structure to
see or replace an object.
The procedures Insert and Remove also prove useful when the basic

structure being represented is stacklike but requires occasional support that
overrides the stack structure.

3.3.2 Representation

3.3.2.1 Static

The implementation of the five advanced child unit subprograms (see
Listing 3.11) for a static representation is fairly simple. The Size_Of function
is one line that returns Stack. Top.
Both the Peek and Poke procedures, after testing to make sure that the

Position parameter is within the stack's range, use the mapping relationship
Stack. Top Position + 1 to look at, or remove, the specific object.
Besides using the mapping relationship between stack objects and array locations,
the Insert and Remove procedures must move the objects in the array as an
object is inserted or removed. When a new object is inserted, all the objects from
the top down to the location where the new object is inserted, or an object is
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Listing 3.11. Stack_pt_pt.Advanced package body.

package body Stack_pt_pt.Advanced is

function Size_Of (Stack: in Stack_Type) return natural is
begin
return Stack.Top;

end Size_Of;

function Peek (Stack : in Stack_Type;
Position: in positive) return Object_Type is

My_Stack : Stack_Type:= Stack;
Temp_Element: Object_Type;
begin
if (Position> Stack.Top) then
raise Invalid_Position;
else
return Stack.Actual (Stack.Top - Position + 1);

end if;
end Peek;

procedure Poke (Stack in out ~tack_Type;

Position: in positive;
Object in Object_Type) is

begin
if Position> Stack.Top then
raise Invalid_Position;
else
Stack.Actual (Stack.Top - Position + 1):= Object;

end if;
end Poke;

procedure Insert (Object in Object_Type;
Position: in positive;
Stack in out Stack_Type) is

Low natural;
beg n -- Insert

f position> Stack.Top+1 then
raise Invalid_Position;
elsif Position> Stack.Max_Size then
raise Stack_Overflow;
else
Stack.Top:= Stack.Top + 1;
if position = Stack.Top then

Low: = 1;
else
Low:= Stack.Top-Position+1;

end if;
for i in reverse Low .. Stack.Top-1 loop
Stack.Actual(i+1):= Stack.Actual(i);

end loop;
Stack.Actual(Stack.Top-Position+1):= Object;

end if;
end Insert;
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in positive;
out Object_Type) is

3.3 Advanced Features

Listing 3.11. (cont.)

procedure Remove (Stack
position:
Object

begin -- Remove
if Position> Stack.Top then
raise Invalid_Position;
else
Object := Stack.Actual(Stack.Top-Position+l);
for i in Stack.Top-Position+l .. Stack.Top-l loop
Stack.Actual(i) := Stack.Actual(i+l);

end loop;
Stack.Top := Stack.Top - 1;

end if;
end Remove;
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removed, must be shuttled one position. When an object is removed, the
algorithm shuttles the objects between the top and the indicated position down
one and then resets the Stack. Top.
If a stack contains n objects, then an insert may occur in n + I locations; the

new object may become the new ith object for any i in I ..n; or it may become the
new bottom object, which will be the (i+l)st object in the stack. The Insert
procedure tests for potential exceptions and then determines the low index for the
array shuffle. Recall that if the object becomes the new bottom object, then
Stack. Top- Posi tion+1 becomes 0, which would raise a constraint_error
if used as an index into the Actual array. Note the use of reverse in the for
loop to move one object from an array location before another object is moved.

3.3.2.2 Dynamic

The implementation of the five advanced child unit subprograms for a dynamic
representation is straightforward. The Size_Of, Peek, and Poke subprograms
appear in Listing 3.12. The procedure Size_Of simply returns the value of the
Stack. Size component. Peek uses a for loop to traverse down the structure
to the desired object and returns an access type that points to a copy of the
desired record, new Place_Holder' Class' (Iterate. all). To display
another search strategy, the Poke procedure uses a recursive subprogram to
traverse down to the desired position in the linear structure and then relinks a new
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Listing 3.12. Size_Of, Peek, and Poke for dynamic stacks.

with UnChecked_Deallocation;

package body Stack_Polymorphic_Cntl.Advanced is

procedure Free is new
Unchecked_Deallocation (Place_Holder' Class , Holder_Class_Ptr);

function Size_Of (Stack: Stack_Type) return natural is
begin
return stack. Size;

end Size_Of;

function Peek (Stack : Stack_Type;
Position: positive) return Holder_Class ptr is

Iterate: Holder_Class_Ptr:= Stack.Top;
begin
if position> Size_Of (Stack) then
raise constraint_error;
else
for I in 2 .. Position loop
Iterate:= Iterate. Next;

end loop;
end if;
return new Place_Holder'Class'(Iterate.all);

end Peek;

in out Holder_Class_Ptr;
in natural) is

out Stack_Type;
positive;
Place_Holder'Class) is

procedure Poke (Stack in
position: in
Object : in

New_One: Holder_Class_Ptr;
procedure Rec_Poke (Anchor:

Count:
begin -- Rec_poke
if Count ~ 0 then

New_One new Place_Holder'Class'(Object);
New_One.Next:~ Anchor.Next;
Free (Anchor);
Anchor:= New_One;
else
Rec_Poke (Anchor.Next, Count-l);

end if;
end Rec_poke;

begin
if Position> Size_Of (Stack) then
raise constraint_error;
else
Rec_Poke (Stack.Top, Position-l);

end if;
end Poke;
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record into the structure at that position. Note that Poke frees the old record in
the process in order to avoid storage leakage.
The remaining procedures, Insert and Remove, appear in Listing 3.13. The

procedure Insert recursively descends until the access parameter, Point, is the
one that must be relinked to insert the new record. The new record is inserted at
that position and the size of the stack is updated. The procedure Remove also
uses a recursive algorithm to descend down the structure until the parameter
Point. It then frees any object pointed to by Obj ect, makes Obj ect point to
the record being removed, and relinks the structure around the removed record.

3.3.3 Encapsulation

The advanced stack capabilities are encapsulated in .Advanced child units, which
are illustrated in Listing 3.14. The bodies of these subprograms appear in
Listings 3.12 and 3.13. Recall that these subprograms all have access to the
private declarations in the parent unit, Stack_Po1ymorphic_Cntl.
On the other hand, both the parent unit, Stack_Pt_pt, and the child unit,

Stack_pt_Pt . Advanced, are generic units. The parent unit must be instantiated
first, then the child unit is instantiated, creating a child unit of the instantiation,
as illustrated in Listing 3.18.

3.3.4 Measurement

The timing for the subprograms in the advanced child unit vary. The Size_Of
subprogram executes in constant time. The dynamic versions of the remaining
operations are all bound by the size of the stack, °(Size_Of (Stack) ), since all
of them require linear processing of at least part of the stack.
Similar observations may be made for the timing of subprograms for the static

representations, except for the static versions of Peek and Poke, which can use
the Position variable to directly access the stack location that contains the
object being processed:

return Stack.Actual (Stack.Top - Position + 1); -- in peek

and

Stack.Actual (Stack.Top - Position + 1);= Object;

Both perform in constant time.
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Listing 3.13. Insert and Remove algorithms for polymorphic stacks.

Place_Holder'Class;
positive;

out Stack_Type) is

Stack_Type;
positive;
Ho1der_Class_Ptr) is
out Holder_Class_ptr;
positive) is

procedure Insert (Object in
position: in
Stack in

New_One: Holder_Class_Ptr;
procedure Rec_Insert (Point: in out Holder_Class_Ptr;

Count: in natural) is
begin -- Rec_Insert
if Count = Position then

New_One:= new Place_Holder'Class' (Object);
if Point = null then

New_One.Next:= null;
else
New_One.Next:= Point.Next;

end if;
Point:= New_One;
Stack.Size:= Stack.Size + 1;
else
Rec_Insert(Point.Next, Count+1);

end if;
end Rec_Insert;

begin -- Insert
if Position> Stack.Size+1 then
raise constraint_error;
else
Rec_Insert (Stack.Top, 1);

end if;
end Insert;

procedure Remove (Stack in out
Position: in
Object : in out

procedure Rec_Remove (Point: in
Count: in

begin -- Rec_Remove
if Count = Position then
Free (Object); Object:= Point;
Point:= Point.Next; Stack.Size:= Stack.Size-1;
else
Rec_Remove (Point.Next, Count+1);

end if;
end Rec_Remove;

begin -- Remove
if position> stack.Size then
raise constraint_error;
else
Rec Remove (Stack.Top, 1);

end if;
end Remove;

end Stack_Polymorphic_Cntl.Advanced;



3.3 Advanced Features 113

Listing 3.14. Stack_Pt_Cntl.Advanced body.

package body Stack_pt_Cntl.Advanced is

function Size_Of (Stack: Stack_Type) return natural is
begin
return adv_PPS.Size_Of (Stack.Stack);

end Size_Of;

function Equal (Stack_I, Stack_2: Stack_Type;
EQ : EQ_Type) return boolean is

begin
return adv_PPS.Equal (Stack_l.Stack, Stack_2.Stack, EQ);

end Equal;

function Peek (Stack : Stack_Type;
Position: positive) return Object_Type is

begin
return adv_PPS.Peek(Stack.Stack, Position);

end Peek;

Position, Obj);

out Stack_Type;
positive;
Object_Type) is

procedure Poke (stack in
position: in
Object : in

Obj: Object_Type:= Object;
begin
adv_PPS.Poke (Stack.Stack,

end Poke;

Object_Type;
positive;

out Stack_Type) is

procedure Insert (Object in
Position: in
Stack : in

Obj: Object_Type:= Object;
begin -- Insert
adv_PPS.Insert (Obj, Position,

end Insert;
Stack.Stack);

in out Stack_Type;
in positive;
out Object_Type) is

procedure Remove (Stack
Position:
Object

Obj: Object_Type;
begin -- Remove
adv_PPS.Remove (Stack.Stack, Position, Obj);
Object:= Obj;

end Remove;
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3.4 Iterators

3 Stacks

An incomplete algorithm, or partial algorithm, is an algorithmic template that
becomes a complete algorithm when subprograms are added to the template at
specified locations. An iterator is a partial algorithm that visits each object in
a homogeneous data structure in a predetermined order one or more times in such
a way that one or more subprograms must be added to the iterator to make it a
complete algorithm.
There are three obvious iterators for stacks:

1. Top_Down: Visits each object in the stack starting with the object at the
top and traversing down the stack to the object at the bottom, performing
the same subprogram at each object.

2. Bottom_Up: Visits each object in the stack starting with the object at the
bottom and traversing up the stack to the object at the top, performing the
same subprogram at each object.

3. Round_Trip: Visits each object in the stack twice by first performing
Top_Down, executing a subprogram at each object, then performing
Bottom_Up with a second subprogram at each node.

Since Round_Trip is a combination of Top_Down and Bottom_Up, only
Top_Down and Bottom_Up are discussed in this section.

3.4.1 Abstraction

The iterators may be viewed as incomplete algorithms that are completed with
other procedures. This may be accomplished in two-ways in Ada 95: as generic
procedures that are instantiated with the procedure that is performed at each node,
as illustrated in Listing 3.15; or as a procedure that accepts another procedure as
a parameter, as illustrated in Listing 3.16. Note the use of a boolean parameter,
Continue. The role of this parameter is to allow the user to terminate the
iteration by setting the parameter to false. In this text, iterators are constructed

Listing 3.15. Stack iterator as a generic procedure.

generic
with procedure Process (Object : in out Object_Type;

Continue: in out boolean);
procedure Top_Down (Stack: in out Stack_Type);
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Listing 3.16. Stack iterator specifications.

package Stack_Polymorphic_Cntl.Iterators is

type Process_Type is access
procedure (Object : in out Place_Holder'Class;

Continue: in out boolean ) ;.

procedure Top_Down (Stack : in out Stack_Type;
Process: Process_Type);

procedure Bottom_Up (Stack : in out Stack_Type;
Process: Process_Type);

end Stack_Polymorphic_Cntl.Iterators;
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by passing the completing algorithm, or algorithms as procedure parameters, as
in Listing 3.16.
To illustrate one use of an iterator, consider building a system that recognizes

strings of the form xcxr
, where x is any string of symbols that does not contain

the symbol 'c', and xr is the reversal of that string. Recognizing strings of this
form can be done with a stack by pushing symbols into the stack until the 'c' is
encountered. Then as each symbol after the 'c' is read, it is matched against a
symbol popped from the top of the stack. The string is recognized, or accepted,
only if all matches are successful and when the end of the string occurs, just as
the stack becomes empty. As the system processes the string, we would like to
demonstrate how the contents of the stack change.
Listing 3.17 contains both the specifications and the body of a client's

interface package that sits between the Stack_pt_Pt. Iterator package and
the client's program, as illustrated in Listing 3.18. The iterator is used to display
the contents of the stack when the first 'c' is encountered in the input string.
Observe how both the stack package and the iterator are instantiated:

package stk is new stack_pt_pt (character);
package stk_it is new stk.iterators;

The iterator is applied in the procedure Show_Stack. ShOW_Stack displays an
image of the top of the stack, then applies the iterator, which uses Print_Obj
to display each object in the stack, and then displays the bottom of the stack. For
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Listing 3.17. xcx' support package.

with text_io, Stack_pt_pt.lterators;
package xcx_Pak is
package stk is new stack_pt_pt (character);
package stk_it is new stk.iterators;

procedure Print_Obj (Obj in out character;
Continue: in out boolean );

«Body»

package body xcx_Pak is
procedure Print_Obj (Obj in out character;

Continue: in out boolean) is
begin -- Print_Obj
Text_IO.Put (' I' & Obj & 'I'); Text_IO.new_line;

end Print_Obj;

example, if the string was 0010cOl00, upon reading the 'c', Show_Stack would
print

101
III
101
101
+-+

3.4.2 Representation

3.4.2.1 Static

Listing 3.19 illustrates the Top_Down and Bottom_up stack iterators. Since the
stack objects are in an array, each iterator sequentially processes the array in the
indicated order, top-down or bottom-up, until the entire stack is processed, or the
user procedure sets Continue to false.
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Listing 3.18. xcxr program with stack display.

with text_io, xcx_Pak;
use xcx_Pak;
procedure xcxrev is
package tio renames text_io;
Buffer: string (1 .. 255);
B_Size: natural;

tio.new_line;
(Stack, Print_Obj'Access);
tio.new_line; tio.Skip_Line;

procedure Show_Stack (Stack:
begin -- Show_Stack
tio. Put ( "I I");
stk_it.Top_Down
tio.Put("+-+");

end Show_Stack;

in out stk.Stack_Type) is

stk.Pop(Stack, Popped);

then

and then (Input(Index) /~ 'C') loop
tio.new_line;
Index:= Index + 1;

procedure Acceptor (Input:in out string) is
Symbol, Popped: character;
Stack: stk.Stack_Type (100);
Index: natural:= Input'First;
OK_String: boolean:= true;
begin -- Acceptor
stk.Initialize (Stack);
while (Index /= Input'Last)
tio.Put(Input(Index»;
stk.Push (Input(Index), Stack);

end loop;
tio.Put(Input(Index»; tio.new_line; Show_Stack (stack);
if Input(Index} /= 'c' then

tio.New_Line; tio.Put ("Not Accepted"); tio.New_Line;
else
Index:= Index + 1;
while OK_String and then (not stk.Empty (Stack»

and then (Index <= Input'Last) loop
tio.Put(Input(Index)}; tio.new_line;
if popped /- Input(Index) then

OK_String:= false;
else
Index:= Index + 1;

end if;
end loop;
if OK_String and stk.Empty (Stack) and (Index> Input'Last)

tio.New_Line; tio.Put ("Accepted"); tio.New_Line;
else
tio.New_Line; tio.Put ("Not Accepted"); tio.New_Line;

end if;
end if;
stk.Finalize (Stack);

end Acceptor;

tio.Put ("Enter your string");
tio.Get_Line (Buffer, B_Size);

begin -- xcxrev
tio.Put ("Enter your string"); tio.New_Line;
tio.Get_Line (Buffer, B_Size);
while B_Size > a loop
Acceptor (Buffer(l .. B_Size»;
tio.New_Line;

end loop;
end xcxrev;
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Listing 3.19. Static stack iterators.

in out Stack_Type:
Process_Type) is

procedure Top_Down (Stack
Process:

Continue: boolean:= true:
begin
for i in reverse 1 .. Stack.Top loop
Process (Stack.Actual(i), Continue):
exit when not Continue;

end loop:
end Top_Down:

in out Stack_Type;
Process_Type) is

procedure Bottom_up (stack
Process:

Continue: boolean:= true:
begin
for i in 1 .. Stack.Top loop
Process (Stack.Actual(i) ,
exit when not Continue;

end loop;
end Bottom_Up;

Continue);

3.4.2.2 Dynamic

Stack iterators for the dynamic representation present an interesting challenge
when compared to the static stack iterators described in Section 2.3.2.1. Both
iterators in Listing 3.20 recursively process the list. The recursive Top_Down
iterator makes an initial call to a recursive procedure, Rec_Top_Down, that calls
Process, and then recursively calls itself with a pointer to the record containing
the next object as long as Continue is true.

In a sense, there are two sides to recursion, the recursive descent and the
recursive ascent. The recursive Top_Down iterator uses recursive descent to
process the objects in the stack from the top object down to the bottom object.
The Bottom_up iterator for the dynamic representation recursively calls itself to
get to the bottom of the stack Then on the recursive ascent it calls Process,
starting with the bottom object and working its way back up to the top object
until either it processes the top object, or Process sets Continue to false.



in out Stack_Type;
Process_Type) is

in out Stack_Type;
Process_Type) is

3.4 Iterators

Listing 3.20. Dynamic stack iterators.

procedure Top_Down (Stack
Process:

Continue: boolean:= true;
Procedure Rec_Top_Down (Current in Stack_ptr;

Continue: in out boolean) is
begin -- Rec_Top_Down
if Current /= null then
Process (Current.Object, Continue);
if Continue then

Rec_Top_Down (Current.Next, Continue);
end if;

end if;
end Rec_Top_Down;

begin
Rec_Top_Down (Stack.Top, Continue);

end Top_Down;

procedure Bottom_Up (Stack
Process:

Continue: boolean:= true;
Procedure Rec_Bottom_Up (Current in Stack_ptr;

Continue: in out boolean) is
begin -- Rec_Bottom_Up
if Current /= null then

Rec_Bottom_Up (Current.Next, Continue);
if Continue then
Process (Current.Object, Continue);

end if;
end if;

end Rec_Bottom_Up;

begin
Rec_Bottom_up (Stack.Top, Continue);

end Bottom_Up;

3.4.3 Encapsulation
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Both the bounded and polymorphic encapsulations of the iterator child units are
perfonned in a manner similar to the advanced child units. Both implementations
use procedure parameters to pass the client's completion of the iterator.

3.4.4 Measurement

The timing for all iterators, both static and dynamic, is bound by
°(Size_Of (Stack) ). However, if a program has real-time speed
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considerations, or limited space requirements, then every attempt should be made
to use a static representation instead of a dynamic representation. When it comes
to time requirements, although both the static and dynamic iterators have timings
that are bound linearly to the size of the stack, the actual timing for the static
implementation will be faster.

3.5 Explorations

1. Rewrite the Peek function in Stack_Polymorphic_Cntl .Advanced using
a recursive subprogram instead of the for loop.

2. Rewrite the Insert and Remove subprograms in Stack_pt_Pt . Advanced
using a recursive algorithm instead of the for loop.

3. Rewrite the Top_Down iterator in Stack_Polymorphic_Cntl. Iterator
as a while loop instead of the recursive subprogram.

4. Rewrite the Top_Down and Bottom_up iterators in Stack_pt_Pt
. Iterator with recursive subprograms replacing the for loops.

5. Assume the stack objects do not contain a .Size component. Write the
Size_Of function in Stack_Polymorphic_Cntl, which determines the size
by counting the number of records:

a. Do it with a loop.
b. Do it recursively.
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Queues

4.1 Elementary Queues

4.1.1 Abstraction

A queue is a sequential, homogeneous, variable-sized, possibly empty collection
of objects whose attributes and operations satisfy the following:

1. A queue is said to be empty when it contains no objects.
2. A queue has two ends, called the front and the rear.
3. The only object in a queue that is visible is the object at the front of the
queue.

4. The Dequeue operation removes the object currently at the front of the
queue. All remaining objects in the queue, if any, move one position
forward toward the front of the queue. The object immediately following
the front object becomes the new front of the queue. If there are no other
objects in the queue, the queue becomes empty.

5. The Enqueue operation inserts new objects at the rear of the queue. If
the queue was empty, the enqueued object becomes the front object in the
queue. At any time, new objects may be enqueued. When an object is
enqueued, it becomes the rear object in the queue.
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Figure 4.1. The queue concept.

Figure 4.1 illustrates a queue. The queue constructors modify the queue
either by removing the object at the front of the queue or by adding new objects
to the rear of the queue. The Enqueue operation places a new object at the rear
of the queue. The Dequeue operation removes the front object. As the Enqueue
operation places an object into the queue, the queue expands. As the Dequeue
operation removes objects, the queue shrinks. The order of the objects in the
queue, from front to rear, is the order in which the objects were Enqueued. The
term FIFO, first-in-first-out, describes the order of processing of the objects in
a queue.
The description of a queue implies two constructors, Enqueue and Dequeue.

Examples of Enqueue and Dequeue operations on a queue of integers appear in
Figure 4.2, which illustrates the dynamic nature of a queue. As integers 14, 12,
and 84 are Enqueued, the queue expands and each object lines up behind the
object that immediately precedes it in the queue. Each Dequeue operation
removes the front object, first 14, then 12, and so forth. The queue shrinks in
size, as a result of each dequeue operation, and the object next to the front
becomes the new front object. Subsequent dequeue operations place additional
objects at the rear of the queue.
The sequential nature of a queue may be represented with an n-tuple. A

queue that contains n objects is represented by an n-tuple, (a p a2, ••• , a).
The front of the queue is aJ and an empty queue is represented by ( ), an empty

<empty> <J=I Enqueue(14, Q)~ Enqueue(12, Q)~

Enqueue ( 84, Q)~ Dequeue (Q) ~ 12 ! 84§ Dequeue (Q) <J§ 84 ~

Enqueue(54 , Q)~ Enqueue(76, Q)~

Figure 4.2. Sample queue operations.
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n-tuple. If Q is a queue, (a p a2, ••• , an> and obj is the object being enqueued
onto the queue, then the postcondition of the enqueue operation is

Q/ = (aI' a2, ••• , an' obj) = (Q, ob}) ,

where Q is a shorthand for (aI' a2, ••• , an>, or equivalently,

(a~'l = obj) 1\ ("i7' iE[l..n], a: = a).

If Q is a nonempty stack, then the postcondition of the Dequeue operation is

or equivalently,

Since the Dequeue operation must be performed on a nonempty queue, an
observer, Is_Empty, is helpful. Is_Empty returns true when the queue is empty,
otherwise the function returns false. Similarly, the Front_Of function provides
visibility to the only object visible in a queue, the object at the front. Note that
two versions of Dequeue are provided, one that simply dequeues the front object,
and a second version that dequeues the front object and returns it. Some clients
find it more convenient to use Front_Of and the version of Dequeue that does
not return the front object. Others may find it more convenient to use only the
version of Dequeue that dequeues and returns the front object:

Queue = ( ).

Listing 4.1 illustrates the preconditions and postconditions for the basic
operations on a queue. The operations imply two additional operations,
Initialize and Finalize. These operations mayor may not be necessary,
depending on how the structure is encapsulated.
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Listing 4.1. Basic queue specifications.

package Queue_??_?? is
type Queue_Type is . . . ;

Queue_Underflow: exception;
Queue_Overflow : exception;

procedure Initialize (Queue: in out Queue_Type);

procedure Finalize (Queue: in out Queue_Type);

function Is_Empty (Queue: Queue_Type) return boolean;

function Front_Of (Queue: Queue_Type) return Object_Type;

procedure Dequeue (Queue : in out Queue_Type;
Object: in out Object_Type);

procedure Dequeue (Queue: in out Queue_Type);

procedure Enqueue (Object: in out Object_Type;
Queue: in out Queue_Type);

end Queue_??_??;

4.1.2 Representation

4.1.2.1 Static: First Thoughts

A first attempt at a static representation for queues might be made by deriving
one from the static representation for stacks. This would suggest that the objects
in the queue are kept in an array with either the front or rear of the queue at the
flrst location of the array and that a variable is used as an index to keep track of
the index to the other end of the queue in the array. Listing 4.2 contains the
declarations for a representation with the front of the queue kept at the first
location of the array. However, this is a poor choice for the representation. To
see this, consider the implementation of the Dequeue operation. Every time an
object is dequeued, all of the remaining objects must be moved one position
forward. As a result, the timing of the Dequeue operation could be problematic
because the time to dequeue an object depends on the current size of the queue,
which might be large. It is desirable to keep the timings of the basic operations
as small as possible, preferably a constant amount of time, and certainly not
dependent on the size of the structure.

It is always important that software be time and memory efficient. It is even
more important that a reusable package be efficient. If a package is not efficient,
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Listing 4.2. Poor choice for static queue representation.

private
subtype Array_Range is natural range 1 .. Max_Queue_Size;
type Object_Array is array (Array_Range) of Object_Type;
type Queue_Type is
record
Rear : natural:~ 0;
Object: Object_Array;

end record;
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the lack of efficiency is frequently magnified in the software that uses the
package. For this reason, it is desirable that the constructors and observers
exported by every package be as efficient as possible. Therefore, it is desirable
that both the Enqueue and Dequeue operations not contain unnecessary looping
processes.

4.1.2.2 Static: Wraparound

A potential inefficiency in the queue constructor algorithms based on the
algorithm in Section 4.1.2.1 is the need to move objects from one location in the
array to another to maintain the queue representation. Figure 4.3 suggests a
method that avoids the need to move objects once they are placed in the array.
The contents of the queue are not moved as objects are enqueued and dequeued.
Instead, two indices are used, one to keep track of the location of the front of the

Front

t
(2)

Rear Front

=,~==...~=.m-t t
~.",~:-:~

(4)

Figure 4.3. Array wraparound.
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queue and one to locate the rear of the queue. As objects are inserted, the index
to the rear of the queue is incremented. As objects are removed, the index to the
front is incremented. As either index is about to exceed the size of the array, the
index is reset to the front of the array. It is a relatively simple task to build a
function to support the "wraparound" incrementation using modular arithmetic.
This approach, called array wraparound, logically maintains the sequential

structure of the array. Listing 4.3 contains declarations for the wraparound
representation of queues. Initially, the two indices are set to the same value,
which indicates that the queue is empty. As objects are enqueued, the Rear
index is incremented and used to place new objects. When objects are removed,
the Front index is incremented and then the object is removed. With this
approach, the Front index actually points to the position just before the first
object. The private declarations also contain two procedures, Iner and Deer,
that assist in manipulating the .Front and .Rear indices and maintaining array
wraparound.
Each queue corresponds to a record. Besides the array that contains the

objects in the queue, the record also contains two components, Front and Rear,
that keep track of the location of the queue in the array. Note that a Length
component is unnecessary because the length of the queue may be determined
from the values of Front and Rear:

if Front <=Rear then
Length:= Rear - Front;
else
Length:= Max_Size-Front+Rear-l;

end if;

Listing 4.4 illustrates the Enqueue algorithm for the static implementation of
queues. The algorithm first checks to see if the array is full. If it is, the
algorithm raises the Queue_Overflow exception. Otherwise, the Rear index is
incremented using modular arithmetic,

Listing 4.3. Static queue representation.

private
function Incr (Index, Max: natural) return natural;
function Decr (Index, Max: natural) return natural;
type Queue_Array_Type is array (natural range <» of Object_Type;
type Queue_Type (MaX_Size: positive:= 32) is
record
Front: natural:= 0;
Rear : natural:= 0;
Actual: Queue_Array_Type (0 .. MaX_Size);

end record;
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Listing 4.4. Static Enqueue and Dequeue.

procedure Enqueue (Queue in out Queue_Type;
Element: in Object_Type) is

begin -- Enqueue
if Incr (Queue.Rear, Queue.Max_Size) = Queue.Front then
raise Queue_Overflow;
else
Queue.Rear:= Incr (Queue.Rear, Queue.Max_Size);
Queue.Actual (Queue.Rear):~ Element;

end if;
end Enqueue;

procedure Dequeue (Element: out Object_Type;
Queue : in out Queue_Type) is

begin -- Dequeue
If Queue.Rear = Queue.Front then
raise Queue_Underflow;
else
Element Queue.Actual (Queue.Front);
Queue.Front:~ Incr (Queue. Front, Queue.Max_Size);

end if;
end Dequeue;
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The_Queue.Rear:= (The_Queue.Rear + 1) mod Max_Queue_Size;

to handle wraparound, the object is inserted into the array, and the queue length
is updated.
Listing 4.4 contains the Dequeue algorithm for static queues. The algorithm

first tests to see if the queue is empty. If it is, the algorithm raises the
Queue_Underf low exception. Otherwise, the Front index is incremented, using
modular arithmetic, the length is updated, and the object that was at the front of
the queue is returned as the Obj ect parameter.

4.1.2.3 Dynamic: Two-Pointer Queues

After seeing the dynamic representation of a stack, it is natural to consider a
linked structure to maintain the order of objects in the queue. However, the
representation of a queue needs access to both ends of the queue. Because of the
linear nature of a queue, it is natural to consider representing a queue as a linearly
linked structure, but with two access variables, one pointing to the front and one
pointing to the rear. Figure 4.4 illustrates a visualization of a queue maintained
with two pointers.
Listing 4.5 contains declarations for a two-pointer queue representation. The

access component Front points to the record containing the first object in the
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Figure 4.4. Two pointer queue.

linked structure. As in the case of the dynamic stack structures, each record
contains an access component that links each record to the record containing the
next object in the queue. The pointer in the record that contains the rear object
is null, indicating that there are no additional objects in the queue. Access to the
rear of the queue is required to make the Enqueue operation efficient. If the
component Rear was not included, the timing for the Enqueue operation would
depend on the length of the queue.
Listing 4.6 illustrates the enqueuing and algorithm for a dynamic queue that

uses two pointers, one pointing to the front and one pointing to the rear of the

Listing 4.5. Two pointer queue specifications.

private
type Object_Holder;
type Queue_Ptr is access Object_Holder;
type Object_Holder is
record
Object: Object_Type; -- Generic data type
Next : Queue_ptr;

end record;
type Queue_Type is
record
Front: Queue_Ptr;
Rear : Queue_Ptr;
Size : natural;

end record;
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Listing 4.6. Enqueue algorithm for a two-pointer queue.

procedure Enqueue (Object: in out Object_Holder'Class;
Queue : in out Queue_Type) is

New_One: Queue_Ptr := new Get_Holder;
begin
New_One.Object:= new Object_Holder'Class'(Object);
If Queue.Size = 0 then
Queue.Front:= New_One;
else
Queue.Rear.Next:= New_One;

end if;
Queue.Rear:= New_One;
Queue.Size:= Queue.Size+l;

exception
when storage_error => raise Queue_Overflow;

end Enqueue;
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linked sequence of objects. When called, the algorithm obtains a new holder for
the object being placed into the queue. The object is placed into the holder. If
the queue had been empty, the Front pointer is resent; otherwise, it is linked into
the existing sequence of records by having the access component Next point to
the new record. The Rear pointer and queue length are then updated. Note that
the exception storage_error might be raised if the system runs out of space.
This exception is handled by raising the Queue_Overflow exception.
Listing 4.7 illustrates the Dequeue algorithm for queues kept with two

pointers. If the queue was empty, the Queue_Underflow exception is raised.
Otherwise, the object is copied from the record at the front of the queue and is

Listing 4.7. Dequeue algorithm for a two-pointer queue.

procedure Dequeue (Queue : in out QueueType;
Object: in out Holder_Class_Ptr) is

begin
if Queue.Size = 0 then
raise Queue_Is_Empty;
else
Free (Obj ect) ;
Object:= Queue. Rear. Next;
Queue.Rear.Next:= Object. Next;
If Old_One = Queue.Rear then
Queue.Front:= null;
Queue.Rear := null;
else
Queue.Front:= Object. Next;

end if;
Queue:- (Queue.Rear, Queue.Size-l);

end if;
end Dequeue;
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returned in the Object parameter. The record is removed from the linked
structure if the length of the queue had been greater than one. If the length of the
queue had been one, both the Front and Rear pointers are set to null, indicating
that the queue is now empty. Finally, the length of the queue is updated and the
record removed from the linked structure is recycled.

4.1.2.4 Dynamic: One-Pointer Queues

At first glance it might appear as if the two pointers Front and Rear are
necessary for the dynamic representation of a queue. Compare the illustration in
Figure 4.4 with that in Figure 4.5. The Next link in the record containing the
rear object in Figure 4.4 is null, while the Next link in the record containing the
rear object in Figure 4.5 points to the record containing the front object. By
making this link, the Rear pointer now has constant time access to both the front
and rear objects.
Listing 4.8 contains the private declarations for a queue representation that

requires only one access type to access the structure. This listing also illustrates
the structure of the declarations for a polymorphic representation. The
specifications for a dynamic queue representation that requires only a single
access type is similar to the declarations in Listing 4.7 but with the Front access

Queue_Type

Rear

Length

(front)

~~
7

~(reQTJ

Figure 4.5. One pointer representation.
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Listing 4.8. One-pointer queue specifications.

private
type Place_Holder is abstract new controlled with
record
Next: Holder_Class_Ptr:~ null;

end record;
type Queue_Type is new controlled with
record
Rear: Holder_Class_Ptr:= null;
Size: natural:~ 0;

end record;
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component removed. This approach maintains the queue representation as a
circular linked structure by having the Next component in the record containing
the rear object point to the record containing the front object. The . Rear
component in Queue_Type directly accesses the rear of the queue and the .Next

component in the first record provides access to the front.
Listing 4.9 contains the enqueing algorithm for the specifications in

Listing 4.8. Compare the algorithm with the Enqueue algorithm in Listing 4.6.
They are essentially the same except for the need in Listing 4.6 to maintain the
link from the record containing the rear object to the record containing the front
object. To see how this link is maintained, note how the Next component is
manipulated. If the queue had been empty, then the Next component is set to
point to itself,

Listing 4.9. One-pointer Enqueue algorithm.

procedure Enqueue (Object: in Place_Holder'Class;
Queue : in out Queue_Type) is

New_One: Holder_Class_ptr:= new Place_Holder'Class'(Object);
begin
If Queue.Size ~ 0 then

New_One.Next:~ NeW_One;
else
New_One. Next Queue.Rear.Next;
Queue.Rear.Next:= NeW_One;

end if;
Queue.Rear:~ NeW_One;
Queue.Size:~ Queue.Size+l;

exception
when storage_error => raise Queue_Overflow;

end Enqueue;
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Listing 4.10. One-pointer Dequeue algorithm.

procedure Dequeue (Queue : in out Queue_Type:
Object: in out Holder_Class_Ptr) is

begin
if Queue.Size = 0 then
raise Queue_Underflow:
else
Free (Object):
Object:= Queue. Rear. Next;
If Object = Queue.Rear then

Queue.Rear:= null:
else
Queue.Rear.Next:= Object. Next;

end if;
Queue.Size:= Queue.Size-l;

end if;
end Dequeue:

procedure Dequeue (Queue: in out Queue_Type) is
Obj: Holder_Class_ptr;
begin -- Dequeue
Dequeue (Queue, Obj):
Free (Obj):

end Dequeue:

--generic
type Extended_Type is new Placeholder with private;

procedure Dequeue (Queue : in out Queue_Type;
Object: in out Extended_Type) is

Obj: Holder_Class_Ptr;
begin -- Dequeue
Dequeue (Queue, Obj);
Object:= Extended_Type(Obj.all):
Free (Obj);

end Dequeue;

since there are no other objects in the queue. Otherwise, the pointer in the rear
component is copied to it,

New_One.Next:= Queue.Rear.Next;

so that it points to the front object in the queue. Then the pointer in what had
been the rear object is set to point to the new rear, with the statement

Queue.Rear:= New_One;
Queue.Size:= Queue.Size+l:

In either case, the Rear pointer is set to point to the new object, and Rear. Next
in the rear record points to the front object.
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The algorithm in Listing 4.10 illustrates the dequeing algorithm for the queue
specifications in Listing 4.8. For Queue_Polymorphic_Cntl, there are three
implementations of the dequeing procedures, including a generic procedure that
may be instantiated with the client's type extensions of Placeholder. The
algorithm raises the Queue_Underflow exception if the queue was empty.
Otherwise, the object at the front is accessed, by using the Next pointer in the
record containing the rear object:

Queue.Rear.Next;

Once the object at the front is obtained, if the queue had contained only one
object, then the Rear pointer is set to null. Otherwise, the record containing the
front object is removed, but the Next pointer in that record locates the new front
object:

Queue.Rear.Next:= Queue.Rear.Next.Next; -- = Object.Next

Algorithms for the queue observers with a one-pointer representation, a rear
pointer, are very similar to those for queues represented with two pointers, a
Front and a Rear pointer.

4.1.3 Encapsulation

The static representation of the queue is encapsulated in a generic package,
Queue_pt_pt, which handles queues in a bounded representation and may be
safely instantiated by clients with bounded object types. The dynamic
representation uses a circularly linked structure to represents queues and may be
safely encapsulated using controlled types in Queue_polymorphic_Cntl.
Listing 4.11 contains the Initialize, Finalize, and Adj ust procedures

for the controlled dynamic queue representation. Note how the Adjust
procedure copies the size and pointer to the circular structure into two variables
and then traverses the structure and forms a duplicate using the Enqueue
procedure.
The Front_Value and Front_Of functions, in Listing 4.12, provide access

to the object at the front of the queue. Front_Value is a generic function that
may be instantiated by the client to return the value of the client's extended type
in Placeholder' Class. The Empty function simply returns true when the
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Listing 4.11. Finalization procedures for Queue_Polymorphic_Cntl.

procedure Initialize (Queue: in out Queue_Type) is
begin -- Initialize
Queue.Rear:= null;
Queue.Size:= 0;

end Initialize;

procedure Finalize (Queue: in out Queue_Type) is
begin
While Queue.Size /~ 0 loop
Dequeue (Queue);

end loop;
end Finalize;

procedure Adjust (Queue: in out Queue_Type) is
Dup : Holder_Class_Ptr:= Queue.Rear;
count: natural Queue.Size;
begin -- Adjust
Queue.Rear:= null;
Queue.Size:= 0;
for I in 1 .. Count loop
Enqueue (Dup.all, Queue);
DUp:= Dup.Next;

end loop;
end Adjust;

queue is empty. The Empty_Queue function is provided as a simple method for
clients to empty a queue using assignment

Finally, there is a Swap procedure. This procedure may provide an efficient
alternative to the use of assignment. Swap simply moves the values of the access
types that point to the lined structures. The statements

Temp
Other
Original:=
Temp

Other;
Original;
Temp;
Empty_Queue;

are obviously more time-consuming than

Swap (Other, Original);
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Listing 4.12. Other dynamic queue subprograms.

generic
type Extended_Type is new controlled with private;

function Front_Value (Queue: Queue_Type) return Extended_Type is
begin -- Front_Value
if Empty (Queue) then
raise Queue_Underflow;
else
return Extended_Type(Queue.Rear.Next.all);

end if;
end Front_value;

function Front_Of (Queue: Queue_Type) return Holder_Class_Ptr is
begin -- Front_Of
if Empty (Queue) then
raise Queue_Underflow;
else
declare
Answer: Holder_Class Ptr:~

new Place_Holder'Class'(Queue.Rear.Next.all);
begin
return Answer;

end;
end if;

end Front_Of;

function Empty (Queue: Queue_Type) return boolean is
begin
return Queue.Size ~ 0;

end Empty;

function Empty_Queue return Queue_Type is
Answer: Queue_Type;
begin -- Empty_Queue
return Answer;

end Empty_Queue;
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(Source: in out Queue_Type;
Target: in out Queue_Type) is
Holder_Class Ptr:~ Target. Rear;
natural Target.Size;

procedure Swap

Temp
Temp_Size:
begin
Target.Rear:=
Target.Size:~

Source.Rear:=
Source.Size:=

end Swap;

Source.Rear;
Source.Size;
Temp;
Temp_Size;
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4.2 Advanced Features

4.2.1 Abstraction

4 Queues

The features that are desirable for advanced queue support parallel the features
described for advanced stack support. For example, rather than dequeing from
the front of the queue, one might wish simply to view the front. The desirable
advanced support features are as follows:

1. Size_Of: A function that returns the size of queues.
2. Peek: A function to view objects within the queue.
3. Poke: A procedure to change the value of an object at any location
within the queue.

4. Insert: A procedure to insert a new object at position i in the queue,
which moves all objects from the ith object to the bottom object down
one.

5. Remove: A procedure to remove the ith object from the queue.

Listing 4.13 contains the specifications of these features. These features
override the pure definition of a queue, but some clients might require these
procedures because their application needs a structure that is similar to a queue,
but not purely like a queue.

Listing 4.13. Specifications for advanced features.

package Queue_Polymorphic_Cntl.Advanced is

function Size (Queue: Queue_Type) return natural;

procedure Insert (Object in Place_Holder'Class;
Position: in positive;
Queue in out Queue_Type);

procedure Remove (Queue in out Queue_Type;
Position: in positive;
Object in out Holder_Class_Ptr);

function Peek (Queue : in
Position: in

Queue_Type;
positive) return Holder_Class_Ptr;

procedure Poke (Queue in out Queue_Type;
Position: in positive;
Object : in Place_Holder'Class);

end Queue_Polymorphic_Cntl.Advanced;
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The five operations provided in the advanced queue package are direct
analogies to the five operations discussed for stacks. Listing 4.13 illustrates the
specifications for the Stack_Polymorphic_Cntl package. The same
procedures would be declared for any other possible encapsulation of stacks,
including Stack_pt_Pt.

4.2.2 Representation

Although two static and two dynamic representations were discussed in
Section 4.1.2, only the static wraparound and one-pointer dynamic representations
are pursued here.

4.2.2.1 Static Wraparound

The implementation of the five advanced child unit subprograms for a static
wraparound representation is fairly simple. Listing 4.14 contains the algorithms
for the Size, Insert, and Remove subprograms and Listing 4.15 illustrates Peek
and Poke.
The Size procedure simply reports the value of Queue. Size. The Insert

and Remove procedures use the wraparound calculation to locate where the
insertion or removal is to take place. Then the procedure must adjust the
locations of the rest of the objects in the queue because of the insertion or
removal.

4.2.2.2 Dynamic: One-Pointer Queues

The algorithms in the advanced package in Listing 4.15 for a dynamically
allocated queue are analogous to the corresponding algorithms for a dynamically
allocated stack that appear in the previous chapter. The fundamental difference
is that where the access type in Stack_Type pointed directly to the first object,
Stack. Top, the access type in Queue_Type points to the rear; hence
Queue. Rear. Next points to the front. Other than that, the procedures in
Queue_Polymorphic_ Cntl. Advanced are practically a direct rewrite of the
corresponding procedures in Stack_Polymorphic_Cntl. Advanced.
The Size function returns the value of the Queue. Size component. The

Insert and Remove procedures both use recursive subprograms to locate the
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Listing 4.14. Queue_pt_pt.Advanced body.

in out Queue_Type;
in positive;
in out Object_Type) is

package body queue_pt_pt.Advanced is
function Size_Of (Queue: in Queue_Type) return natural is
begin
if Queue.Rear > Queue.Front then
return Queue.Rear - Queue. Front,
else
return Queue.Max_Size - Queue.Front + Queue.Rear + 1,

end if;
end Size_Of;

procedure Insert (Object in out Object_Type;
position: in positive,
Queue in out Queue_Type) is

Low: natural;
From_Ix, To_Ix: natural;
begin -- Insert
if position> (Size_Of(Queue)+l) then
raise constraint_error,
elsif Incr(Queue.Rear,Queue.Max_Size) Queue.Front then
raise Queue_Overflow;
else
Queue.Rear:= Incr (Queue.Rear, Queue.Max_Size),
Low (Queue.Front + Position) mod (Queue.Max_Size+l);
To_Ix Queue.Rear,
From_Ix Decr(To_Ix, Queue.Max_Size);
While From_Ix /= Low loop
Queue.Actual(To_Ix):= Queue.Actual(From_Ix);
To_Ix:~ From_Ix; From_Ix:= Decr(From_Ix, Queue.Max_Size);

end loop;
Queue.Actual(Low):= Object,

end if;
end Insert;

procedure Remove (Queue
Position:
Object

Pas, Pos_Next: natural;
begin -- Remove
if Position> Size_Of(Queue) then
raise constraint_error,
else
Pos (Queue. Front+Position) mod (Queue.Max_Size+l);
Object Queue.Actual(Pos);
Pos_Next:= Incr(POs, Queue.Max_Size);
while Pos /= Queue.Rear loop
Queue.Actual(Pos):= Queue.Actual(Pos_Next);
Pos Pos_Next;
Pas_Next Incr(Pos_Next, Queue.Max_Size),

end loop;
Queue.Rear:= Decr(Queue.Rear, Queue.Max_Size);

end if;
end Remove;
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Listing 4.14. (cont.)

function Peek (Queue Queue_Type,
Position: positive) return Object_Type is

Real_Index: natural,
begin
if (Position> Size_Of(Queue» then
raise constraint_error,
else
return
Queue.Actual«(Queue.Front+Position)mod(Queue.Max_Size+1»,

end if,
end Peek;

in out Queue_Type;
in positive,
in out Object_Type) is

(Queue
Position:
Object
natural,Real_Index:

begin
if position> Size_Of (Queue) then
raise constraint_error,
else
Queue.Actual «Queue.Front+Position)mod(Queue.Max_Size+l»

:= Object,
end if,

end Poke,

procedure Poke

end queue_pt_pt.Advanced,

posItIOn of the insertion or removal. Note how each procedure handles the
special case when the adjustment involves changing the object at the front or rear
of the queue. The Insert procedure handles this by simply calling the enqueing
procedure. The removal procedure handles this by directly changing the pointer
to the rear, Queue. Rear.

4.3 Iterators

4.3.1 Abstraction

The collection of possible iterators for queues parallels the stack iterators. The
three obvious queue iterators are

1. Front_To_Rear: Visits each object in the queue starting with the object at
the front and traversing through to the object at the rear, performing the same
subprogram at each object.
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Listing 4.15. Queue_Polymorphic_Cntl.Advanced body.

Place_Holder' Class;
positive;

out Queue_Type) is

Queue_Type;
positive) return Holder_Class_Ptr is

Holder_Class_Ptr;
natural) return Holder_Class_Ptr is

with Unchecked_Deallocation;
package body Queue_Polymorphic_Cntl.Advanced is
procedure Free is new Unchecked_Deal location

(Place_Holder'Class, Holder_Class_Ptr);
function Size (Queue: Queue_Type) return natural is
begin
return Queue.Size;

end Size;

procedure Insert (Object in
position: in
Queue : in

New_One: Holder_Class_Ptr;
procedure Rec_Insert (Point: in out Holder_Class_Ptr;

Count: in natural) is
begin -- Rec_Insert
if Count = Position then

New_One:~ new Place_Holder'Class'(Object);
New_One.Next:= Point.Next; Point:~ New_One;
else
Rec_Insert (Point.Next, Count+l);

end if;
end Rec_Insert;

begin -- Insert
if position = (Queue.Size + 1) then

Enqueue (Object, Queue);
elsif position> (Queue. Size + 1) then

raise constraint_error;
else
Rec_Insert (Queue.Rear.Next, 1);
Queue.Size:~ Queue.Size + 1;

end if;
end Insert;

function Peek (Queue : in
Position: in

function Rec_Peek (Point:
Count:

begin -- Rec_Peek
if Count ~ Position then
return new Place_Holder'Class'(Point.all);
else
return Rec_Peek (point.Next, Count+l);

end if;
end Rec_Peek;

begin
if position> Size (Queue) then raise constraint_error;
else return Rec_Peek (Queue. Rear. Next, 1);

end if;
end Peek;
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Queue_Type;
positive;
Holder_Class_Ptr) is
out Holder_Class_Ptr;
natural) is

out Queue_Type;
positive;
Place_Holder'Class) is

4.3 Iterators

Listing 4.15. (cont.)

procedure Remove (Queue in out
position: in
Object : in out

procedure Rec_Remove (Point: in
Count: in

begin -- Rec_Remove
if Count = Position then
Free (Object);
Object:= Point;
Point := Point. Next;
else
if Position = (Count+l)
and then position = Queue.Size
Queue.Rear:= Point;

end if;
Rec_Remove (Point.Next, Count+l);

end if;
end Rec_Remove;

begin -- Remove
if Position = 1 then

Dequeue (Queue, Object);
elsif position> Queue.Size then
raise constraint_error;
else
Rec_Remove (Queue. Rear. Next, 1);

end if;
end Remove;

procedure Poke (Queue in
Position: in
Object in

New_One: Holder_Class_Ptr;
procedure Rec_Poke (Point: in out Holder_Class_Ptr;

Count: in natural) is
begin -- Rec_Poke
if Count = Position then

New_One :- new Place_Holder'Class'(Object);
New_One.Next:~ Point.Next;
Free(Point) ;
Point :~New_One;

else
Rec_Poke (Point.Next, Count+1);

end if;
end Rec_Poke;

begin
if Position> Size (Queue) then raise constraint_error;
else Rec_Poke (Queue.Rear.Next, 1);

end if;
end Poke;

end Queue Polymorphic Cntl.Advanced;
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2. Rear_To_Front: Visits each object in the queue starting with the object at
the rear and traversing to the object at the front, performing the same
subprogram at each object.

3. Round_Trip: Visits each object in the queue twice by first performing
Front_To_Rear, executing a subprogram at each object, and then
performing Rear_To_Frontwith a second subprogram at each node.

Since Round_Trip is a combination of Front_To_Rear and Rear_To_Front,
only Front_To_Rear and Rear_To_Front are provided in the iterator package.
The specifications for Queue_pt_pt. Iterators appear in Listing 4.16.

Listing 4.16. Queue_pt_pt. Iterators specifications.

generic
package Queue_pt_pt.lterators is

type Process_Type is access
procedure (Object in out Object_Type;

Continue: in out boolean);

procedure Front_To_Rear (Queue
Process:

procedure Rear_To_Front (Queue
Process:

end Queue_Pt_Pt.lterators;

4.3.2 Representation

4.3.2.1 Static

in out Queue_Type;
Process_Type) ;

in out Queue_Type;
Process_Type) ;

Listing 4.17 illustrates iterators over the static wraparound representation of
queues. The queue traversals are handled by starting at the indicated end of the
queue and using either the Incr or Decr function in the parent unit to handle
array wraparound correctly. Note that the procedure Front_To_Rear initializes
Index,

Index:= Incr(Queue.Front, Queue.Max_Size);

to point directly to the front object in the queue. After calling the client
procedure, Process, each iterator checks to see if the client wishes to terminate
the iteration by setting the Continue parameter to false.
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Listing 4.17. Queue iterators, static implementation.

package body queue_pt_pt.Iterators is

procedure Front_To_Rear (Queue in out Queue_Type;
Process: Process_Type) is

Index: natural;
Continue: boolean:= true;
begin -- Front_To_Rear
If Queue.Front /~ Queue.Rear then

Index:~ Incr(Queue.Front, Queue.Max_Size);
loop
Process (Queue.Actual(Index) , Continue);
exit when (not Continue) or (Index = Queue.Rear);
Index:~ Incr(Index, Queue.Max_Size);

end loop;
end if;

end Front_To_Rear;

procedure Rear_To_Front (Queue in out Queue_Type;
Process: Process_Type) is

Index: natural;
Continue: boolean:= true;
begin -- Rear_To_Front
if Queue.Front /= Queue.Rear then
Index:= Queue.Rear;
loop
Process (Queue.Actual(Index) , continue);
Index:~ Decr(Index, Queue.Max_Size);
exit when (not Continue) or (Index = Queue.Front);

end loop;
end if;

end Rear_To_Front;

end queue_pt_pt.Iterators;

4.3.2.2 Dynamic
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Both iterators could be implemented recursively, as illustrated in Listing 4.18.
However, the Front_To_Rear iterator may be implemented as a looping process
that traverses down the linked structure, passing the objects to Process.

4.3.3 Measurement

All version of iterators have the same timing characteristic, 0 ( It (Queue) ) *
o (Process), regardless of whether the representation is static or dynamic or of
whether the algorithms are recursive or nonrecursive.
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Listing 4.18. Queue_Polymorphic_Cntl. Iterator body.

package body Queue_Polymorphic_cntl.Iterators is

procedure Front_To_Rear (Queue : in out Queue_Type;
Process: process_Type) is

continue: boolean:= true;
procedure rec_F_R (Point: in out Holder_Class_Ptr) is
begin -- Rec_F_R
Process (Point, Continue);
if Continue and (Point /= Queue.Rear.Next) then

Rec_F_R (Point.Next);
end if;

end Rec_F_R;

begin
if Queue.Rear /= null then

Rec_F_R (Queue.Rear.Next);
end if;

end Front_To_Rear;

Continue:
Iterate :
procedure

boolean
Holder_Class_Ptr:=
Rev_Rec (Point

Continue:
begin -- Rev_Rec
if Point. Next /= Queue.Rear.Next then

Rev_Rec (Point.Next, Continue);
end if;
if Continue then
Process (Point, Continue);

end if;
end Rev_Rec;

procedure Rear_To_Front (Queue : in out Queue_Type;
Process: Process_Type) is

true;
Queue.Rear;
in out Holder_Class_Ptr;
in out boolean) is

begin
if Queue.Rear /~ null then

Rev_Rec (Queue.Rear.Next, Continue);
end if;

end Rear_To_Front;

end Queue_polymorphic_Cntl.Iterators;

4.4 Explorations

2. Implement the Round_Trip iterator for Queue_Polymorphic_Cntl.
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Lists

Queues and stacks are sequential abstract data types with their specified access
limits. All stack access is limited to one end of the stack, the top. With queues,
objects enter the structure from one end, called the rear, and leave from the other
end, called the front. Access to an arbitrary object in a structure is said to be
independent, immediate, or random if the time required to access the object
does not depend on either the location of the object within the structure or which
object within the structure had been previously accessed. A structure has
independent access if every object in the structure may be accessed within a
constant period of time. Independent access is frequently referred to as random
access. Arrays are the classical example of structures with independent, or
random, access. Access to any object in an array does not depend on access to
any other object in the array.
Lists are logical structures with the sequential, or linear, access limit.

Recall that for a structure to be sequential, there is a one-on-one mapping between
the natural numbers and the order of the objects within the structure, 0" 02' ...

, On' This chapter presents two paradigms for list structures. The first, and the
more elegant, is the recursive paradigm. In this paradigm, lists may be viewed
either as being empty or as an ordered pair (head, tail), where head is an object
and tail is a list. This paradigm leads to many refined recursive algorithms for
processing lists.
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A Ii t i either

(Empty) Object Sublist
Figure 5.1. Recursive paradigm view.

A second paradigm is the positional paradigm. In this paradigm, lists may

be viewed as an (n+l)-tuple, (k,aI'a2, ••• ,an), where k, kE [O..n], is called the
viewing position. The tuple, (0), indicates an empty list. The positional
paradigm is discussed in Section 5.2.

5.1 Recursive Paradigm

Figure 5.1 illustrates the recursive list paradigm. In the recursive paradigm, a list
is either empty or a pair of objects (head. tail), an object called the head of the
list and a sublist called the tail of the list. As the name implies, the recursive
paradigm encourages the design of recursive processes to manipulate lists.
Specifically, a list is processed recursively by writing algorithms so that they
observe that the current list is empty, or perform the desired process on the head
of the current list, or recursively reapply the process to the tail of the list.
Listing 5.1 describes the specifications for the List_Polyrnorphic_Cntl
package, whose implementation is discussed in Section 5.1.2.2.

5.1.1 Abstraction

The specifications in Listing 5.1 contain the procedures Initialize, Finalize,
Adjust, and Swap. Recall that Initialize and Finalize are usually
necessary to prepare an object for use and to terminate its use. Adj ust supports
assignment of controlled types, and Swap in many cases is an efficient
alternative to multiple uses of assignment statements. For purposes of discussing
the various list operations in Listing 5.1, assume List = (head, tail), where head
is an object and tail is a list.
All operations on a list may be viewed as an operation that maps a list onto

a list. For example, the operation Insert (Obj ect, List) has as its
postcondition List' = (head, tail), that is, the new list is composed of the Obj ect
as head and the old list as its tail. As a complement of this, if List' = (head, tail)
is a precondition of Remove_Head, then the postcondition of Remove_Head is
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Listing 5.1. Recursive list specifications.

with Ada.Finalization; Use Ada.Finalization;
package List_Polymorphic_Cntl is

type Place_Holder is abstract new controlled with private;
procedure Initialize (Object: in out Place_Holder);
procedure Finalize (Object: in out Place_HOlder);
procedure Adjust (Object: in out Place_Holder);

type Holder_Class_Ptr is access Place_Holder' Class;
procedure Recycle (Point: in out Holder_Class_Ptr);

type List_Type is new controlled with private;
procedure Initialize (List: in out List_Type);
procedure Finalize (List: in out List_Type);
procedure Adjust (List: in out List_Type);

List_Underflow: exception;
List_Overflow : exception;

function Tail_Of (List: List_Type) return List_Type;

generic
type Extended_Type is new Place_Holder with private;

function Head_Value (List: List_Type) return Extended_Type;
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function Empty (List: in List_Type) return boolean;

function Empty_List return List_Type;

procedure New_Head (Object: in
List : in

Place_Holder' Class;
List_Type) ;

generic
type Ext_Type is new Place_Holder with private;

procedure Remove_Ext_Head (List in List_Type;
Object: in out Ext_Type);

procedure Remove_Head (List in List_Type;
Object: in out Place_Holder'Class);

procedure Remove_Head (List in List_Type;
Object: in out Holder_Class_Ptr);

procedure Swap_Tail (Source: in List_Type;
Target: in List_Type);

procedure Append (List in List_Type;
New_Tail: in out List_Type);

procedure Append (List in List_Type;
New_Tail: in Place_Holder'Class);

procedure Update_Head (List
Object:

procedure Swap (Source: in out
Target: in out

private

in List_Type;
in Place_Holder'Class);
List_Type;
List_Type) ;
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List' = tail. If List = (head, tail), then the functions Head_Of (List) and
Tail_Of (List) return the head and tail, respectively.
If Source = (shead, stail) and Target = (thead, trail) are preconditions of

Swap_Tail, then the postcondition is

Source' = (shead, trail) A Target' = (thead, stail).

However, if either Source or Target is empty, then its corresponding tail is empty
and the postcondition for the corresponding list, Source' or Target', would be trail
or stail, respectively, Source' = trail or Target' = stail.
The two append operations append the second operand to the first. In the

case of the operation that appends a list to a list, Append (List, Sublist),
only is the value of the sublist appended to the list, the postcondition of the
operation for the sublist is that it is empty. Process_Head and Update_Head
either perform a process on the head of a list, which might modify the value of
the head, or update the value of the head.
The abstraction for lists, described in Listing 5.1, might best be appreciated

through a simple application. Consider using a list to sort an unbound collection
of numbers. The client's interface package, which appears in Listing 5.2,
connects the List_Polymorphic_Cntl package with the client's program that
appears in Listing 5.3. The client's software sorts an unbound collection of
numbers. First, note that since the list is implemented as a controlled type the
initialization and finalization are performed automatically by the system. Both
the sort, Sort_In, and listing, Print, algorithms are recursive. Observe the use
of just a few resources, NeW_Head, Head, and Tail_Of, from List_
Polymorphic_Cntl, to accomplish the task. This is because of the elegant
match between the abstraction, the encapsulation, and the representation of lists
as a recursively dermed and dynamically allocated structure.

Listing 5.2. Clientts List_Sort interface.

package List_Sort_Pak is
package tio renames Text_IO;
package iio is new Text_IO.integer_io(integer);
package 1st renames List_Polymorphic_Cntl;

type Int_Obj is new Place_Holder with
record
Data: integer;

end record;



Int_Obj;
1st. List_Type) is

5.1 Recursive Paradigm

Listing 5.3. List_Sort program.

with List_Sort_Pak; use List_Sort_Pak;
procedure List_Sort is
function Head is new lst.Head_Value (Int_Obj);

List: 1st. List_Type;
Item: integer;

procedure Print (List: in lst.List_Type) is
begin -- Print
if not 1st. Empty (List) then
iio.Put (Head(List).Data, 8);
Print (lst.Tail_Of(List»;

end if;
end Print;

procedure Get_And_Sort (List: in out 1st. List_Type;
str : in string) is

In_File: tio.File_Type;
Number: Int_Obj;
procedure Sort_In (Number: in

List in
begin -- Sort_In
if lst.Empty (List) then

lst.New_Head (Number, List);
elsif Number.Data < Head(List).Data then
lst.New_Head (Number, List);
else
Sort_In (Number, lst.Tail_Of (List»;

end if;
end Sort_In;
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begin -- Get_And_Sort
tio.Open (In_File, tio.in_file, str);
while not tio.End_Of_File (In_File) loop
iio.Get (In_File, Number.Data); tio.Skip_Line (In_File);
Sort_In (Number, List);

end loop;
tio.Close (In_File);

end Get_And_Sort;

begin -- List_Sort
Get_And_Sort (List, "random.dat");
Print (List); tio.New_Line;

end List_Sort;

tio.New_Line;

A careful study of the Sort_In reveals the classical structure of recursive
algorithms. Recursive algorithms are typically if-else or case structures that
contain one or more alternatives that terminate the recursion and one or more
alternatives that make a direct or indirect recursive call. In the case of Sort_In,
there are two terminating alternatives, when the list is empty, and when the value
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Listing 5.4. Private declarations for a static List_Type.

private
type List_Rec is
record
Object: Object_Type;
Index : natural;

end record;
type Array_Type is array (natural range <» of List_Rec;

natural;
natural;
(1 .. Max_Size) ;

type List_Type (Max_Size:
record
Start
Available:
Item

end record;

positive) is

of the number that is being inserted is less than the value of the object at the head
of the list. Otherwise, the procedure recursively calls itself and passes the tail of
the current list to the recursive call. By passing the tail to the recursive call, the
original list is processed one object at a time until the proper location for the new
object is found.
Note the simplicity of the Print procedure; it too is written recursively. The

head of the list is printed and the tail of the list is passed on to the recursive call
to print the rest of the list. Typical of most recursive procedures, there is a
surprisingly small amount of code, when compared to most nonrecursive
procedures that perform the same process.

5.1.2 Representation

5.1.2.1 Static

A frequently overlooked representation of lists is a static representation. A list
may be stored as an array of records, each record containing an Object_Type
and an index. The index indicates the array location that contains the next record
in the linear structure. Listing 5.4 illustrates one possible set of declarations
leading to List_Type.
The static representation encapsulates many of the challenges that must be

addressed with dynamic representations, including memory management. For
example, the Initialize procedure sets Start to zero, to indicate the list is
empty, and uses Available to create a linked structure of records. This is
accomplished with the loop in Listing 5.5, along with making List. Available
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Listing 5.5. Static Initialize.

procedure Initialize (List: in out List_Type) is
begin -- Initialize
List.Start := 0;
List.Available:= 1;
for i in 1 .. Max_Size-l loop
List.Item(i).Index:= i+l;

end loop;
List.Item (Max_Size).Index:= 0;

end Initialize;
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point to the first available record and placing a zero in List. Item(Max_Size),
to indicate that no record follows this one.
Now, as records are inserted and removed from the list, not only must the

record be added to the list structure, which is pointed to by List. start, but a
record must be removed from the linked collection of available records, pointed
to by List. Available. For example, consider Insert, illustrated in
Listing 5.6. This procedure must remove array records from the linked structure
indicated by List. Available and place it on the list.

Listing 5.6. Static Insert.

procedure Insert (Object: in Object_Type;
List : in out List_Type) is

begin -- Insert
if List.Available = 0 then
raise List_Overflow;
else
Hold:- List.Item(List.Available) .Next;
List.Item(List.Available).Next:= List.Start;
List.start:= List.Available;
List.Available:= Hold;
List.Item(List.start).Object:= Object;

end if;
end Insert;

5.1.2.2 Dynamic

Perhaps the most important dynamic representation of a homogeneous structure
is the dynamic representation of lists. Not only does it form the basis of the
representation of many linear structures, but the basic recursive algorithmic
structure described here becomes the foundation for the algorithmic structures for
the most important nonlinear structure, trees. The structure may be built upon the
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private declarations that appear in Listing 5.7. A visualization of that structure
appears in Figure 5.2.

1341~1571~

/~
anchor points

Figure 5.2. Recursive list representation.

An important key to the simplicity of the implementation is the use of
aliasing. An aliased declaration means that the aliased object may be accessed
with an alias, another name. Aliasing may be dangerous because a statement
could change the value of an aliased variable without referencing the variable's,
or component's, original name. However, here aliased declarations only appear
in the private declarations, where they are not accessible by package clients. The
combination of the aliased component within each record with the access
all declaration of List_ptr provides the features needed to support clean
recursive processing of recursively defined structures. Having the access types
within each record aliased supports the formation of the address of the

Listing 5.7. Private declarations for List_Polymorphic_Cntl.

private

type Place_Holder is abstract new controlled with
record
Next: aliased Holder_Class_Ptr:= null;

end record;

type List_Type is new controlled with
record
Actual: List_Anchor:= null;
Base : boolean true;

end record;
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component through the 'Access attribute. The access all clause in the
List_Anchor declaration permits an aliased access to be placed in a
List_Anchor. Aliased components permit lists to be processed recursively in
an efficient manner with direct access to each record's access component, which
simplifies the code and passing the address of the sublist anchor point, which is
the Next component in the record containing the head of the list.
Listing 5.8 contains the body for List_Polymorphic_ Cntl and contains

Initialize and Finalize, which are automatically dispatched by the system
each time a new List_Type is created and terminated. Initialize prepares
a List_Type for use by allocating a List_Anchor and setting it to null. The
role of Finalize is to recycle all dynamically allocated space that has been
allocated to the list. This is accomplished by using Cur_ptr and Nxt_ptr to
deallocate the linear structure.
Head_Of returns a copy of the front object, List. all. Obj ect. Tail_Of

returns a new List_Type that contains access to the tail of the current list,
list. all. next' Access, which is itself a list. Since Tail_Of is a function,
and during recursive processing this value is passed as a parameter, it must be
passed as an in-only parameter. This is why the List_Type parameters in most
of the subprograms in this package are in-only parameters. Note that Tail_Of
sets Answer. Base to false. This is used by the Finalize procedure to
distinguish between the List_Type that points to the anchor point of the entire
list, and other List_Type objects that point only to the anchor points of sublists.
Hence, the part of the list they anchor should not be finalized.
Since List_Types are passed as in-only parameters, how can lists be

modified? The answer requires a careful look at Figure 5.2. Note that the
List_Anchor in List_Type points to an access type. The List_Anchor is not
modified, but the contents of the location it accesses may be modified.
Listing 5.8 contains the bodies of the procedures Swap_Tail, NeW_Head, and

Remove_Head. The procedure New_Head takes a list and adds a new head to the
list. The old head becomes part of the tail of the list. This is accomplished by
allocating a new record, linking the pointer to the original head into the Next
component, placing the new head object into that record, and then resetting the
list pointer to point to the new record.
There are two head removal procedures, Remove_Head, which returns a

pointer to the removed object at the head of the list, and the generic procedure
Remove_Ext_Head, which may be instantiated to directly receive the client's
object that is being removed from the list. Remove_Head complements
NeW_Head, in that it removes the head of a list and replaces the head by the first
object in the tail, the head of the tail sublist. The list head is removed by
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Listing 5.8. List_Polymorphic_Cntl body.

with Unchecked_Deallocation;
package body List_Polymorphic_Cntl is
procedure Free is new
Unchecked_Deal location (Place_Holder'Class, Holder_Class_Ptr);

procedure Free is new
Unchecked_Deallocation (Holder_Class_Ptr, List_Anchor);

procedure Recycle (Point: in out Holder_Class_Ptr) renames Free;

procedure Initialize (Object: in out Place_Holder) is
begin -- Initialize
null;

end Initialize;

procedure Finalize (Object: in out Place_Holder) is
begin -- Finalize
null;

end Finalize;

procedure Adjust (Object: in out Place_HOlder) is
begin -- Adjust
null;

end Adjust;

procedure Initialize (List: in out List_Type) is
begin -- Initialize
List.Actual:= new Holder_Class_Ptr;
List.Base := true;

end Initialize;

function Tail_Of (List: List_Type) return List_Type is
Answer: List_Type;
begin - - Tail_Of
if List.Actual = null then
raise List_Underflow;
else
Answer.Actual:= list.Actual.all.next'Access;
Answer.Base false;
return Answer;

end if;
end Tail_Of;

procedure Finalize (List: in out List_Type) is
Cur_ptr: Holder_Class_Ptr;
begin -- Finalize
if List.Base then
while List.Actual.all /= null loop
Remove_Head (List, Cur_ptr);

end loop;
Finalize (Cur_Ptr.all);
Free (Cur_Ptr);
Free (List.Actual);

end if;
end Finalize;
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Listing 5.8. (cont.)

function Head_Value (List: List_Type) return Extended_Type is
begin -- Head_Value
if List.Actual.all = null then
raise List_Underflow;
else
declare
Ans_ptr: Holder_Class_Ptr := Head_Of(List);
Answer: Extended_Type Extended_Type(Ans_Ptr.all);

begin
Free (Ans_Ptr);
return Answer;

end;
end if;

end Head_Value;

function Head_Of (List: List_Type) return Holder_Class ptr is
begin -- Head_Of
if List.Actual.all = null then
raise List_Underflow;
else
declare
Answer: Holder_Class_Ptr

:= new Place_Holder'Class'(List.Actual.all.all);
begin
Answer.Next :~ null;
return Answer;

end;
end if;

end Head_Of;

function Empty (List: List_Type) return boolean is
begin -- Empty
return List.Actual.all = null;

end Empty;

procedure New_Head (Object: in
List : in

New_Elem: Holder_Class_Ptr;
begin -- New_Head

New_Elem:~ new Place_Holder'Class'(Object);
New_Elem.Next List.Actual.all;
List.Actual.all:= New_Elem;

end New_Head;

procedure Remove_Ext_Head (List in List_Type;
Object: in out Ext_Type) is

Old_One: Holder_Class_Ptr;
begin -- Remove_Ext_Head
Remove_Head (List, Old_One);
Object := Ext_Type(Old_one.all);
Free (Old_One);

end Remove_Ext_Head;
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Listing 5.8. (cont.)

function Empty_List return List_Type is
Answer: List_Type;
begin -- Empty_List
return Answer;

end Empty_List;

List.Actual.all;
Object. Next;
null;

procedure Remove_Head (List in
Object: in out

begin -- Remove_Head
if List.Actual.all = null then
raise List_Underflow;
else
if Object /= null then
Finalize (Object.all);

end if;
Object
List.Actual.all:=
Object. Next

end if;
end Remove_Head;

List_Type;
Holder_Class_Ptr) is

Free (Object);

List_Type;
Place_Holder'Class) is

procedure Append (List : in List_Type;
New_Tail: in out List_Type) is

procedure Rec_app (Point: in out Holder_Class_Ptr) is
begin -- Rec_app
if Point = null then
Point:= New_Tail.Actual.all;
New_Tail.Actual.all:= null;
else
Rec_App (Point.Next);

end if;
end Rec_app;

begin -- Append
if New_Tail.Actual.all = List.Actual.all then
raise constraint_error;
elsif New_Tail.Actual.all /= null then
Rec_App (List.Actual.all);

end if;
end Append;

procedure Update_Head (List : in
Object: in

Holder_Ptr: Holder_Class_Ptr;
begin -- Update_Head
if List.Actual.all /= null then

Remove_Head (List, Holder_Ptr);
New_Head (Object, List);
else
raise List_Underflow;

end if;
end Update_Head;
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Listing 5.8. (cont.)
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procedure Append (List in
New_Tail: in

Temp: List_Type;
begin -- Append
New_Head (New_Tail, Temp);

end Append;

List_Type;
Place_Holder'Class) is

Append (List, Temp);

procedure Adjust (List: in out List_Type) is
Original: Holder_Class_Ptr;
procedure Clone (Source, Target: in out Holder_Class_Ptr) is
begin -- Clone
if Source /= null then
Target new Place_Holder'Class'(Source.all);
Target.all := Source.all; Target.Next:= null;
Clone (Source.Next, Target.Next);

end if;
end Clone;

begin
Original:= List.Actual.all; List.Actual.all:= null;
Clone (Original, List.Actual.all);

end Adjust;

procedure Swap (Source: in out List_Type;
Target: in out List_Type) is

Temp: Holder_Class_Ptr;
begin -- Swap
Temp := Target.Actual.all; Target.Actual.all:= Source.Actual.all;
Source.Actual.all:~Temp;

end Swap;

procedure swap_Tail (Source: in List_Type;
Target: in List_Type) is

Tail_S, Tail_T: Holder_Class_Ptr;
begin -- Swap_Tail
if Source.Actual.all = Target.Actual.all then raise constraint_error;
else
if Target.Actual.all = null then Tail_T:= null;
else
Tail_T:=Target.Actual.all.Next; Target.Actual.all.Next:=null;

end if;
if Source.Actual.all = null then
Tail_S := null; Source.Actual.all:= Tail_T;
else
Tail_S:=Source.Actual.all.Next;Source.Actual.all.Next:=Tail_T;

end if;
if Target.Actual.all = null then Target.Actual.all:= Tail_S;
else Target.Actual.all.Next:~Tail_S;

end if;
end if;

end Swap_Tail;
end List_Polymorphic_Cntl;
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replacing the contents of the list's anchor point with access to the dynamic record
immediately following the original head.
Swap_Tail is one of the more complex algorithms in this package because

it must consider the possibility that one, or both, of the Source and Target lists
are empty. As a result, it must go through a series of if -else structures to
handle these possibilities. The first if -else structure finds the tail of Target,
or a null pointer to indicate an empty tail. The second if-else structure does
the same for Source, but as it finds the tail of Source, it properly attaches
Tail_T as either the tail of Source, or the entire value of Source, if it had been
empty. Finally, in the third if -else structure, Source's original tail is properly
attached to Target.
Listing 5.8 contains a variety of useful subprograms, Process_Head,

Update_Head, and two versions of Append. The procedure Update_Head
simply changes the value of the head of the list. Process_Head allows a client
to perform a procedure on the head of a list without the need to copy the object
from the list, perform the process, and then update the head with the value
returned by the process. This is accomplished by passing the procedure as a
parameter to Process_Head, which in tum performs that process on the head of
the list.
Two versions of Append are provided, one that appends an object to a list,

and a second that appends a list to the tail of a list. The version of Append that
concatenates one list onto the end of another uses a recursive subprogram to
recursively process down to the end of the list. When it finds the end of the list,
the New_Tail is attached and set to null, to indicate that it is now empty.
The version of Append that attaches a single object makes use of the version

that appends a list, by creating a new list, Temp, initializes it, inserts the object
into the new list, calls the other version of Append, and then finalizes the
temporary list.
Finally, Listing 5.8 contains Adjust and Swap. Adjust is dispatched by the

system during assignment of List_Types to duplicate the list structure:

A:= B;

Swap is made available as an alternative to using assignment if the values of
objects need only be swapped. Recall that when unbounded object types are
copied,

temp:= A;
A B;
B temp;

time dependent on object size
time dependent on object size
time dependent on object size
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the time required to perform this depends on the sizes of objects. However,
swapping may frequently be achieved by simply exchanging pointers to structures.
Swap is essential if List_Type becomes the base object type upon which other
objects are constructed. For many data structures to be safely and efficiently
manipulated, safe assignment and swap are both essential. Duplication can be
expensive, in terms of both timing and memory. Sometimes the data structure
package need only swap object values in lieu of duplicating data structures.
Swapping is both time and memory efficient.
The Adj ust procedure contains a recursive subprocedure, Clone, that

recursively traverses both the list to be copied and the copy being made to
duplicate the original list. On the other hand, Swap is a very quick procedure that
uses a temporary variable to assist in swapping the values of the two lists.

5.1.3 Encapsulation

The list representation was described along with its encapsulation in the
List_Polymorphic_Cntl package. This is only one of many potential
encapsulations of list structures.

5.1.4 Advanced Support

Listing 5.9 contains the specification for the List_Polymorphic_Cntl.
Advanced child unit. It contains the usual assortment of advanced support
procedures for linear structures, Size_Of, Peek, Poke, Insert, and Remove
subprograms. The bodies of some of these procedures take maximum advantage
of the recursive nature of the list.
For example, the Size function, which appears in Listing 5.10, uses recursion

to traverse down the list and counts the number of objects in the list. Recursion
is not always the most efficient way to solve a problem. The Size function
could have been written iteratively to traverse the loop. This is left as an exercise
for the reader.
Peek and Poke, in Listing 5.10, are written recursively. Peek traverses the

list recursively until it locates the head of the list containing the desired object
and then produces the result:

return Head_Of(Sublist);
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Listing 5.9. List_Polymorphic_Cntl. Advanced specifications.

package List_Polymorphic_Cntl.Advanced is

function Size (List: List_Type) return integer;

procedure Insert (Object in
Position: in
List in

Place_Holder'Class;
positive;
List_Type) ;

procedure Remove (List in List_Type;
Position: in positive;
Object in out Holder_Class_Ptr);

function Peek (List : List_Type;
Index: positive) return Holder_Class_Ptr;

procedure Poke (List in
Index in
Object: in

List_Type;
positive;
Place_Holder'Class);

end List_Polymorphic_Cntl.Advanced;

Similarly, Poke uses recursion to traverse to the sublist whose head is to be
replaced, and performs

Update_Head (Sublist, Object);

Finally, the procedures Insert and Remove, which appear in Listing 5.10,
algorithmically are somewhat like the Poke procedure in that they recursively
traverse to the head of the sublist where the insertion or removal is to take place.
Once the position is found, the Insert procedures performs

New_Head (Object, Sublist);

to insert the new object, and Remove performs

Remove_Head (Sublist, Object);

to remove the object.

5.1.5 Iterators

The child unit List_Polymorphic_Cntl. Iterators contains three list
iterators, as indicated by its specifications in Listing 5.11. Two of the iterators
traverse the list in the directions indicated by their names, passing the objects in
the list, one at a time, to the user-supplied Process. Note also the type
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Listing 5.10. List_Polymorphic_Cntl.Advanced body.

package body List_Polymorphic_Cntl.Advanced is

function Size (List: List_Type) return integer is
function Rec_Size (Point: Holder_Class_Ptr) return integer is
begin -- Rec_Size
if Point = null then return 0;
else return l+Rec_Size (Point.Next);

end if;
end Rec_Size;

begin -- Size
return Rec_Size (List.Actual.all);

end Size;

procedure Poke (List in List_Type;
Index : in positive;
Object: in Place_Holder' Class) is

procedure Rec_Poke (Sublist: in List_Type; Count: in natural) is
begin -- Rec_Poke
if Count = Index then Update_Head (Sublist, Object);
else Rec_Poke (Tail_Of(Sublist), Count+l);

end if;
end Rec_Poke;

begin -- Poke
if Empty(List) then
raise List_Underflow;
elsif Index> Size (List) then
raise constraint_error;
else
Rec_Poke (List, 1);

end if;
end Poke;

return Holder_Class_Ptr is
List_Type;
natural) return Holder_Class ptr is

List_Type;
: positive)
(Sublist: in
Count in

begin -- Rec_Peek
if Count = Index then
return Head_Of(Sublist);
else
return Rec_Peek (Tail_Of(Sublist), Count+1);

end if;
end Rec_Peek;

function Peek (List:
Index

function Rec_peek

begin -- Peek
if Empty(List) then
raise List_Underflow;
elsif Index> Size (List) then raise constraint_error;
else return ReC_Peek(List, 1);

end if;
end Peek;
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Listing 5.10. (cont.)

Place_Holder'Class;
positive;
List_Type) is
in List_Type;
in natural) is

procedure Insert (Object in
Position: in
List in

procedure Rec_Insert (Sublist:
Count

begin -- Rec_Insert
if Count = Position then New_Head (Object,
else Rec_Insert (Tail_Of(Sublist),

end if;
end Rec_Insert;

Sublist) ;
Count+l);

begin -- Insert
if Position> (Size (List)+l) then raise List_Underflow;
elsif Position = (Size (List)+l) then Append (List, Object);
else Rec_Insert (List, 1);

end if;
end Insert;

procedure Remove (List : in List_Type;
Position: in positive;
Object : in out Holder_Class_Ptr) is

procedure Rec_Remove (Sublist: in List_Type;
Count : in natural) is

begin -- Rec_Remove
if Count = Position then Remove_Head (Sublist, Object);
else Rec_Remove (Tail_Of(Sublist), Count+l);

end if;
end Rec_Remove;

begin -- Remove
if Position> Size(List) then raise constraint_error;
else Rec_Remove (List, 1);

end if;
end Remove;

end List_polymorphic_Cntl.Advanced;

declaration for the specifications of the procedure type that is passed to the
iterators. As with other iterators, procedures passed to this iterator have an
additional parameter that may be used to terminate the iteration. The third
iterator makes a round trip, first processing down the list calling one procedure,
then processing up the list calling a second procedure.
Listing 5.12 contains the bodies of the three recursive list iterators. Each

procedure contains a recursive subprocedure. The Front_To_Rear iterator calls
the Round_Trip iterator with the client's process as Down_Proc.
Rear_To_Front calls Round_Trip with the client's process as the Up_Proc.
As a result, there is only one algorithm, Round_Trip, that recursively traverses
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Listing 5.11. List_Polymorphic_Cntl.lterators specifications.

package List_Polymorphic_Cntl.Iterators is

type Process_Type is access
procedure (Object in out Holder_Class_Ptr;

Continue: in out Boolean);
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procedure Front_To_Rear (List in
Process:

procedure Rear_To_Front (List in
Process:

procedure Round_Trip (List in
Down_Proc,
Up_Proc

end List_Polymorphic_Cntl.Iterators;

List_Type;
Process_Type) ;

List_Type;
Process_Type) ;

Process_Type) ;

down the list calling Down_Proc and then recursively ascends calling Up_Proc.

5.1.6 Measurement

The time requirements that correspond to the various procedures in the parent unit
List_Polymorphic_Cntl are all bound by a constant or linear time. The
Peek, Poke, Insert, and Remove procedures in List_Polymorphic_
Cntl. Advanced all contain loops. In each case, the number of loops is bound
by the number of objects in the list, which is not an unreasonable bound. If a
procedure is recursive, it has a space requirement, Sen), that is a linear function
of the number of recursive calls n, Sen) = O(n).

The two iterators in List_Polymorphic_Cntl. Iterators use recursion
to process the list. Obviously, the time for each of these procedures is bound by
the sum of the timings of each call to the user-defined process. If P is the upper
bound on the time of one call to the user-defined process, then the time required

to perform an iterator that uses the process is bound by T::; nP. Since the
iterators are recursive, the space requirements for each iterator are bound by O(n),

where n is the number of objects in the list being processed.
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Listing 5.12. List_Polymorphic_Cntl. Iterators body.

package body List_Polymorphic_Cntl.lterators is

procedure Null_Proc (Object
Continue:

begin -- Null_Proc
null;

end Null_Proc;

in out Holder_Class_Ptr;
in out boolean) is

List_Type;
Process_Type) is

procedure Front_To_Rear (List : in
Process:

begin -- Front_To_Rear
Round_Trip (List, Process, Null_Proc'Access);

end Front_To_Rear;

List_Type;
Process_Type) is

inprocedure Rear_To_Front (List
Process:

begin -- Rear_To_Front
Round_Trip (List, Null_Proc'Access, Process);

end Rear_To_Front;

procedure Round_Trip (List in List_Type;
Down_Proc,
Up_Proc Process_Type) is

Continue: boolean:= true;
procedure Rec_Iter (Point: in out Holder_Class_Ptr) is
begin -- Rec_Iter
if Point /= null then

Down_Proc (Point, Continue);
if Continue then
Rec_Iter (point.Next);
if Continue then

Up_Proc (Point, Continue);
end if;

end if;
end if;

end Rec_Iter;

begin -- Round_Trip
Rec_Iter (List.Actual.all);

end Round_Trip;

end List_Polymorphic_Cntl.lterators;

5.2 Positional Paradigm

Another view of lists is with the positional paradigm, which is illustrated in
Figure 5.3. This paradigm views the contents of a list by navigating a current
position indicator across the list in a linear way from object to object. In the
positional paradigm, the current viewing position is moved an object at a time
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«current»

Figure 5.3. Positional paradigm view.
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from the current viewing position to either the object that precedes it, the object
that follows it, or two special positions, the beginning of the list or the end of the
list.

5.2.1 Abstraction

The positional paradigm requires more support than the recursive paradigm.
Where the recursive paradigm has one navigation procedure, Tail_Of, the
positional paradigm has four, Move_To_Front, Move_To_Rear, Move_
Towards_Front, and Move_Towards_Rear. The recursive paradigm has one
insertion procedure, Insert_Head; the positional paradigm has two,
Insert_Before and Insert_After. Listing 5.13 contains the specifications
for the positional paradigm.
The positional paradigm may be viewed formally as an (n+ I)-tuple,

L=(i, a l , ••• , an),whereiisanaturalnumber, iE[O .. n],andnisthenumber
of objects in the list. An empty list is represented in this formalism with the 1­

tuple, (0). The (n+1) tuple, L=(O, aI' a2, ... , an), indicates a list where the
current viewing position is undefined. This formalism provides an easy way to
describe the preconditions and postconditions of the subprograms in the package's

specifications. For example, if the list L is specified as L = (i, ai' a2, ... , an)'

then the postconditions of the navigation procedures may be specified as

C=(i-l, al' a2, ... ,an) if ie;{O,l)
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Listing 5.13. List_Pos_Polymorphic_Cntl specifications.

with Ada. Finalization; use Ada.Finalization;
package List_Pos_Polymorphic_Cntl is
type Place_Holder is abstract new controlled with private;
procedure Initialize (Object: in out Place_Holder);
procedure Finalize (Object: in out Place_Holder);
procedure Adjust (Object: in out Place_Holder);

type Holder_Class_Ptr is access Place_Holder'Class;
procedure Recycle (Point: in out Holder_Class_Ptr);

type List_Type is new controlled with private;
procedure Initialize (List: in out List_Type);
procedure Finalize (List: in out List_Type);
procedure Adjust (List: in out List_Type);

List_Underflow, List_Overflow, Undefined_position: exception;
Invalid_Remove, Invalid_Share: exception;

procedure Move_To_Front (List: in out List_Type);
procedure Move_To_Rear (List: in out List_Type);
procedure Move_Towards_Front (List: in out List_Type);
procedure Move_Towards_Rear (List: in out List_Type);

function Current_Object (List: List_Type) return Holder_Class_Ptr;
function Current_Defined (List: List_Type) return boolean;
function Empty (List: List_Type) return boolean;
function At_Rear (List : List_Type) return boolean;
function At_Front (List: List_Type) return boolean;
procedure Append (List in out List_Type;

New_Tail: in out List_Type);
procedure Append (List in out List_Type;

New_Tail: in out Place_Holder'Class);
procedure Insert_Before (Object: in out Place_Holder'Class;

List : in out List_Type);
procedure Insert_Before (Objects: in out List_Type;

List : in out List_Type);
procedure Insert_After (Object: in out Place_Holder'Class;

List : in out List_Type );
procedure Insert_After (Objects: in out List_Type;

List : in out List_Type);
type In_Place_Process_Type is access
procedure (Object: in out Holder_Class_Ptr);

procedure Process_Current (List : in out List_Type;
Process: In_Place_Process_Type);

procedure Remove_Current (List in out List_Type;
Object: in out Holder_Class_Ptr);

procedure Update_Current (List : in out List_Type;
Object: in out Place_Holder'Class);

procedure Slice_Tail (Source: in out List_Type;
Target: in out List_Type);

procedure Swap (Source: in out List_Type;
Target: in out List_Type);

private
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Insert_Before inserts an object into the list before the currently viewed

object. If L=(i, ai' a2, ••• , an), then

is the postcondition for Insert_Before. Note that the object ai is in the (i+1)­
st position. The postcondition for Insert_After is

Given a list, L=(i, a" a2, ••• , an)' if i:t;n, the postcondition for the

procedure Remove_Current is L'=(i, a l ,···, ai_I' ai.,,···, an),whereai+,
is in the ith position in the list. When i =n, the postcondition is

5.2.2 Representation

Figure 5.4 illustrates one implementation of the positional paradigm. This
representation includes structures that are required to handle additional features
that will be presented in the. Advanced package. The Current component in
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List_Type points to the record that contains the currently viewed objects. The
Actual component points to the list descriptor record, List_Descriptor type,
which contains the pointers, First and Last, that point to the two ends of the
linked structure. The reason for the existence of both List_Type and
List_Desc is to assist in the implementation of list sharing, where lists may
share a part of their representations.
The dynamic representation contains two subprograms, Size and

Insert_First, that are used by other subprograms. The bodies of these
procedures appear in Listing 5.14. Size establishes a List_Ptr, Temp, that is
set to the first object in the list and counts the number of objects in the list until
Temp becomes null.
Insert_First is used by both Insert_Before and Insert_After to

place the first object in the linked structure when they detect that the structure is
empty. Insert_First allocates a new List_Descriptor, as well as an
Object_Holder, points the First and Last components to the newly allocated

Object_Holder

..~\.
\\

\'-., ..~~.._"

\\

\
\
\IObjectl Previous~ \

Actual [i1 (-;"_'--~4-'
Current [~J\ """. ;

/' .~ \"
LI~_Desjc '-.
. .../
Fl.rst
Last •
Size

Shared 1

Figure 5.4. Two way positional list representation.
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Listing 5.14. List_Pos_Polymorphic_Cntl body.
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with Unchecked_Deallocation;
package body List_Pos_Polymorphic_Cntl is
procedure Free is new

Unchecked_Deal location (Place_Holder'Class, Holder_Class_Ptr);
procedure Free is new Unchecked_Deal location (List_Descriptor, Desc_Ptr);
procedure Recycle (Point: in out Holder_Class_Ptr) renames Free;

procedure Initialize (Object: in out Place_HOlder) is
begin -- Initialize
null;

end Initialize;

procedure Finalize (Object: in out Place_Holder) is
begin -- Finalize
null;

end Finalize;

procedure Adjust (Object: in out Place_Holder) is
begin -- Adjust
null;

end Adjust;

procedure Initialize (List: in out List_Type) is
begin -- Initialize
List.Current:= null;
List.Actual := null;
end Initialize;

procedure Finalize (List: in out List_Type) is
Ignore: Holder_Class_Ptr;
begin
if List.Actual.Shared > I then
List.Actual.Shared:= List.Actual.Shared - 1;
List.Current:- null;
List.Actual := null;
else -- if List.Actual /= null then
Move_To_Front (List);
while List.Current /= null loop
Remove_Current (List, Ignore);
Finalize (Ignore.all);
Free (Ignore);

end loop;
end if;

end Finalize;

function Empty (List: List_Type) return boolean is
begin
if List.Actual = null then
return true;
else
return false;

end if;
end Empty;
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Listing 5.14. (cont.)

procedure Adjust (List: in out List_Type) is
Old_Actual: Desc_Ptr:= List.Actual;
Old_Current: Holder_Class_Ptr:= List.Current;
procedure Rec_Clone (Source: in Holder_Class_Ptr;

Target: in out Holder_Class_Ptr) is
begin -- Rec_Clone
if Source 1= null then
Target := new Place_Holder'Class'(Source.all);
if Source = Old_Current then List.Current:= Target;
end if;
if Source = Old_Actual.Last then List.Actual.Last Target;
end if;
Rec_Clone (Source. Next, Target.Next);
if Target.Next 1= null then Target.Next.Previous Target;
end if;

end if;
end Rec_Clone;

begin -- Adjust
if Old_Actual 1= null then
List.Actual := new List_Descriptor;
Rec_Clone (Old_Actual. First, List.Actual.First);
List.Actual.Size Old_Actual.Size;

end if;
end Adjust;

function Size (List: List_Type) return natural is
Answer: natural := 0; Temp: Holder_Class_Ptr;
begin -- Size
if List.Actual 1= null then

Temp := List.Actual.First;
while Temp 1= null loop
Answer Answer + 1; Temp Temp. Next;

end loop;
end if;

return Answer;
end Size;

New_Elem;
1;
null;

raise Undefined_Position;

then
new List_Descriptor;
New_Elem; List.Actual.Last
1; List.Actual.Shared:=
null; New_Elem.Previous
New_Elem;

List.Actual = null
List.Actual
List.Actual.First
List.Actual.Size
New_Elem.Next
List.Current
else
Free (New_Elem);

end if;
end Insert_First;

procedure Insert_First (Object: in out Place_Holder'Class;
List : in out List_Type ) is

New_Elem: Holder_Class_Ptr:= new Place_Holder'Class'(Object);
begin
if
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Listing 5.14. (cont.)

function Current_Defined (List: List_Type) return boolean is
begin -- Current_Defined
return not (List.Current ~ null);

end Current_Defined;

function At_Rear (List: List_Type) return boolean is
begin
if List.Actual = null or List.Current = null then
return false;
elsif List.Current = List.Actual.Last then
return true;
else
return false;

end if;
end At_Rear;

function At_Front (List: List_Type) return boolean is
begin
if List.Actual = null or List.Current ~ null then
return false;
elsif List.Current = List.Actual.First then
return true;
else
return false;

end if;
end At_Front;

procedure Move_To_Front (List: in out List_Type) is
begin
if List.Actual = null then
raise List_Underflow;
else
List.Current:= List.Actual.First;

end if;
end Move_To_Front;

procedure Move_To_Rear (List: in out List_Type) is
begin
if List.Actual = null then
raise List_Underflow;
else
List.Current:= List.Actual.Last;

end if;
end Move_To_Rear;

procedure Move_Towards_Front (List: in out List_Type) is
begin
if List.Actual = null then
raise List_Underflow;
elsif List.Current ~ null then
raise Undefined_Position;
else
List.Current:= List.Current.Previous;

end if;
end Move_Towards_Front;

171
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Listing 5.14. (cont.)

raise List_Underflow;
then raise Undefined_Position;
List.Current:= List.Current.Next;

procedure Move_Towards_Rear (List: in out List_Type) is
begin
if List.Actual = null then
elsif List.Current = null
else

end if;
end Move_Towards_Rear;

procedure Insert_Before (Object: in out Place_Holder'Class;
List : in out List_Type) is

New_Elem: Holder_Class_Ptr:= new Place_Holder' Class , (Object);
begin
if List.Actual ~ null then
Insert_First (Object, List);
elsif List.Current null then
Free (New_Elem); raise Undefined_Position;
else The list is not empty
New_Elem.Previous List.Current.Previous;
List.Current.Previous New_Elem;
New_Elem.Next List.Current;
if New_Elem.Previous = null then -- front
List.Actual.First := New_Elem;
else
New_Elem.Previous.Next :~ New_Elem;

end if;
List.Actual.Size List.Actual.size + 1;

end if;
end Insert_Before;

procedure Insert_Before (Objects: in out List_Type;
List : in out List_Type) is

begin
if Objects.Actual ~ null then null;
elsif Objects.Actual = List.Actual then
raise Undefined_Position;
elsif List.Actual = null then
List := Objects;
Objects.current := null; Objects.Actual := null;
elsif List.Current ~ null then raise Undefined_Position;
else
Objects.Actual.First.Previous List.Current.Previous;
List.Current.Previous Objects.Actual.Last;
Objects.Actual.Last.Next List.Current;
if Objects.Actual.First.Previous = null then -- new front
List.Actual.First := Objects.Actual.First;
else
Objects.Actual.First.Previous.Next:= Objects.Actual.First;

end if;
List.Actual.Size:~List.Actual.Size + Objects.Actual.Size;
Free (Objects.Actual); Objects.Current:= null;

end if;
end Insert_Before;
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Listing 5.14. (cont.)

procedure Append (List in out List_Type;
New_Tail: in out List_Type) is
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begin
if New Tail.Actual = List.Actual then raise Undefined_Position;
elsif New_Tail.Actual.Shared > 1 then raise Invalid_Share;
elsif not Empty (New_Tail) then
If Empty (List) then
List := New_Tail;
New_Tail.Current := null; New_Tail.Actual null;
else
List.Actual.Last.Next := New_Tail.Actual.First;
New_Tail.Actual.First.Previous := List.Actual.Last;
List.Actual.Last := New_Tail.Actual.Last;
List.Actual.Size := List.Actual.Size + New_Tail.Actual.Size;
Free (New_Tail.Actual);
New_Tail.Current:~ null;

end if;
end if;

end Append;

procedure Append (List in out List_Type;
New_Tail: in out Place_Holder'Class) is

Clone: List_Type:= List;
begin -- Append
If Empty (List) then raise List_Underflow;
else
Move_To_Rear (List); Insert_After (New_Tail, List);
if Clone.Current /= null then List.Current Clone.Current;
end if;

end if;
end Append;

procedure Insert_After (Object: in out Place_Holder'Class;
List : in out List_Type ) is

New_Elem: Holder_Class_Ptr:= new Place_Holder'Class'(Object);
begin
if List.Actual = null then
Insert_First (Object, List);
elsif List.Current null then
Free (New_Elem); raise Undefined_Position;
else The list is not empty
New_Elem.Next List.Current.Next;
New_Elem.Previous := List.Current;
New_Elem.Previous.Next:= New_Elem;
if New_Elem.Next = null then
List.Actual.Last:= New_Elem;
else
New_Elem.Next.previous:= New_Elem;

end if;
List.Actual.Size:~ List.Actual.Size + 1;

end if;
end Insert_After;
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Listing 5.14. (Cont.)

procedure Insert_After (Objects: in out List_Type;
List : in out List_Type) is

begin
if Objects.Actual = List.Actual then
raise Undefined_Position;
elsif List.Actual = null then
List := Objects;
Objects.Current := null;
Free (Objects.Actual);
elsif List.Current = null then
raise Undefined_Position;
else
Objects.Actual.First.Previous := List.Current;
Objects.Actual.Last.Next := List.Current.Next;
List. Current. Next Objects.Actual.First;
if Objects.Actual.Last.Next = null then
List.Actual.Last:= Objects.Actual.Last;
else
Objects.Actual.Last.Next.Previous:= Objects.Actual.Last;

end if;
List.Actual.Size:= List.Actual.Size + Objects.Actual.Size;
Free (Objects.Actual);

end if;
end Insert_After;

function Current_Object (List: List_Type) return Holder_Class ptr is
Answer: Holder_Class_Ptr;
begin
if List.Current /= null then

--copy (List.Current.Object, Answer);
Answer :~ new Place_Holder' Class , (List.Current.all);
return Answer;
else raise Undefined_Position;

end if;
end Current_Object;

procedure Process_Current (List in out List_Type;
Process: In_Place_Process_Type) is

begin
if List.Current /= null then
Process (List.Current);
else
raise Undefined_Position;

end if;
end Process_Current;

procedure Swap (Source: in out List_Type;
Target: in out List_Type) is

Temp: List_Type := Target;
begin -- Swap
Target:= Source; Source:= Temp;

end Swap;
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Listing 5.14. (cont.)

/= null then
List.Current.Previous;
New_One;

List.Current /= null then
if List.Current.Previous

New_One. Previous
New_One.Previous.Next:=

end if;
if List.current.Next /= null then

New_One. Next List.Current.Next;
New_One.Next.Previous:= New_One;

end if;
free (List.Current);
List.Current := New_One;
else
free (New_One);
raise Undefined_Position;

end if;
end Update_Current;

procedure Update_Current (List : in out List_Type;
Object: in out Place_Holder'Class) is

New_One: Holder_Class ptr := new Place_Holder'Class'(Object);
begin

if

procedure Remove_Current (List : in out List_Type;
Object: in out Holder_Class_Ptr) is

Posit: Holder_Class ptr := List.Current;
begin
if List.Actual.Shared > 1 then
raise Invalid_Remove;
elsif List.Current = null then
raise Undefined_Position;
else
if List.Actual.Size = 1 then
Free (List.Actual);
List.Current:= null;
else
if Posit. Previous ~ null then -- front removed
List.Actual.First := Posit. Next;
else
posit.Previous.Next := Posit.Next;

end if;
if Posit. Next = null then -- rear removed
List.Actual.Last:= Posit. Previous;
List.Current := List.Actual.Last;
else
Posit. Next. Previous := Posit.Previous;
List.Current:= Posit.Next;

end if;
List.Actual.Size:= List.Actual.Size - 1;

end if;
Free (Object);
Object:- Posit;

end if;
end Remove_Current;



176 5 Lists

Listing 5.14. (cont.)

procedure Slice_Tail (Source: in out List_Type;
Target: in out List_Type) is

begin -- Slice_Tail
if Source.Actual = Target.Actual then
raise Undefined_Position;
elsif (Source.Actual = nUll) or (Target.Actual = nUll) then
raise Undefined_Position;
elsif (Target.Actual.Shared > 1) or (Source.Actual.Shared > 1) then
raise Invalid_Share;
elsif Source. Current /= null then
Finalize (Target);
Initialize (Target);
If Source.Current /= Source.Actual.Last then
Target.actual new List_Descriptor;
Target.actua1.a11 Source. actual. all;
Target.Actual.First:= Source.Current.Next;
Source.Actual.Last := Source.Current;
Target.Current := Source.Current.Next;
Target.Actua1.Size:= Size (Target);
Source.Actua1.Size:= Size (Source);
Source.Actual. Last. Next null;
Target.Actual.First.Previous:= null;

end if;
end if;

end Slice_Tail;

Object_Holder, places the Object in the holder, and places null values in the
Previous and Next components in the Object_Holder.
There are two versions of the Insert_Before and Insert_After

procedures. The versions that attach a single object appear in Listing 5.13. Note
that both procedures call the procedure Insert_First if the list is empty. If the
list is not empty, both procedures raise an exception if the current position is
undefined. The current position may become undefined through illegal
navigation, moving forward off the front of the list, or moving backwards off the
rear. Since the structure has bidirectional linking, four links must be made to
place the new record between the current record and the record immediately in
front of it, in the case of Insert_Before, or immediately after it, in the case of
Insert_After. In the process of linking the new record into the proper
position, Insert_Before checks to see if the current position had been at the
front of the list, which would require the procedure to reset the pointer to the
front. Similarly, Insert_After must address the possibility of resetting the
pointer to the rear of the list when the new object is placed at the rear.
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The other versions of Insert_Before and Insert_After attach a complete
list either before or after the current viewing position. Listing 5.14 illustrates the
Insert_Before procedure inserting a sublist into a list. Observe the parallels
between the two versions of Insert_Before in Listing 5.13 and Listing 5.14.
Where the version in Listing 5.13 calls a special procedure, Insert_First, to
insert the first object into the list, the version in Listing 5.14 simply replaces the
List with the new structure of Obj ects, which is a list, and resets Obj ects to
the representation of an empty list. Otherwise, the sublist, Obj ects, is linked in
before the current position and addresses the possibility of having to reset the
pointer to the front of the List. The sublist linking a Insert_After functions
in an analogous fashion.
Navigating a list using the recursive paradigm requires only two support

subprograms, Empty and Tail_Of. The positional paradigm has seven support
subprograms, the four navigational procedures and three subprograms for
obtaining information about the current viewing position. The four navigation
procedures appear in Listing 5.14.
Move_To_Front and Move_To_Rear first test the list to make sure that it

is not empty and then use the List. Actual. First and List. Actual. Last,
respectively, to reset the current viewing position to the front or rear of the list.
Note that these two procedures, Move_To_Front and Move_To_Rear, reset the
current viewing position, even if the position had been previously undefined. The
other two navigation procedures, Move_Towards_Front and Move_Towards_
Rear, require that the current viewing position be defined.
Move_Towards_Front and Move_Towards_Rear support linear access as

they move from object to object along the linearly linked structure. Both
functions test to verify that the list is not empty and then move the current
viewing position in the indicated direction. Move_Towards_Front resets the
Current component to List. Current. Previous to effect the move of the
viewing position. Move_Towards_Rear resets the Current component to
List.Current.Next.
The bodies of the three positional paradigm query functions, At_Front,

At_Rear, and Current_Defined, appear in Listing 5.14. The three query
functions provide a means of testing for three circumstances that surround the
current viewing position: If it is at the front of the list, List. Current =

List. Actual. First; if it is at the rear, List.Current = List.ActuaI.Last; and if
it is defined, List. Current /= null.
Although there are four navigational procedures and three positional testing

procedures, traversing the list normally requires the combined use of three of
these subprograms. This usually requires statement sequences like
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Move_To_Front (List);
while Current_Defined (List) loop
... -- processing at the current node
Move_Towards_Rear (List);

end loop;

or

Move_To_Front (List);
loop
... -- processing at the current node
exit when At_Rear (List);
Move_Towards_Rear (List);

end loop;

to process the structure from front to rear, or similar looping constructs when
processing a list from rear to front.

5.3 Explorations

1. Construct the List_Pos_Polymorphic_Cntl. Advanced child package
specifications.

2. Construct the List_Pos_Polymorphic_Cntl. Advanced child package
body.

3. Construct the List_Pos_Polymorphic_Cntl. Iterators child package
specifications. Include in the specifications iterators that traverse from the
current position to the front of the list and from the current position to the
rear of the list.

4. Construct the List_Pos_polymorphic_Cntl. Iterators child package
body.

5. Construct a Bounded_Generic_List package. This package would
represent a list in an array with

type List_Rec is
record
Previous, Next: natural;
Object: Object_Type;

end record;
type List_Array is array (natural range <» of List_Rec;
type Bounded_List(Max_Size: positive) is
record
Front, Rear, Avail: natural;
Space: List_Array (1 .. Max_Size);

end record;
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whose specifications are based on the positional paradigm. The package
specifications should be based on the positional paradigm. Included in the
construction of this package is the need to construct subprograms to manage
the array as objects are inserted and removed from the list structure. The role
of the record component, Avail, is to act as an index to the first available
record, which, in tum, will contain the index to the next available record, and
so forth. An index of zero is used to play the analogous role of a null
pointer. In a sense, the array contains two lists, the client's list and the list
of available records.

6. Investigate the possibilities of constructing a bound list based on the recursive
paradigm.
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Trees

6.1 Nonlinear Structures

When dynamically linked structures contain only one access type per record, they
must be linearly linked. With two or more access types per record, the links
between records may logically form nonlinear structures. The next four chapters
describe various tree structures, tree applications, graphs, directed graphs, and
sets.
Trees are a fundamental nonlinear data structure. They playa central role in

information organization and access. Formally, trees are a special type of
digraph. A complete discussion of digraphs and graphs appears in Chapter 8.
The fundamental definitions and terminology of digraphs appear in this chapter
to facilitate the discussion of trees.
A directed graph, also called a digraph, is an ordered pair of sets, (N, A),

called the set of nodes, N, and the set of arcs, A. Each arc in A is itself an
ordered pair, (na, nb), of nodes, na, nb in N. An example digraph appears in
Figure 6.1. The set

{A, B, C, D, E, F}

is the set of nodes for this digraph. The arrows connecting the nodes represent
the arcs in the graph. Each arc implies a direction. The arc (A, B), read as the
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Figure 6.1. A digraph.

arc from node A to node B, connects node A to node B. The arc (A, B) is said
to leave A and enter B. The arrow on the arc indicates the direction of the arc,
which points to the second node in the ordered pair. Labels have been placed on
the arcs for reference.
A sequence of arcs,

is called a path between two nodes, No and Nk, if there exists nodes N/, N2, •••

Nk, Nk _/, and for each i,

The sequence of arcs, b, g, and fin Figure 6.1 forms a path from node B to node
A, b = (B, C), C = (C, F), andf= (F, A) form an example of a path. There may
be more than one path between two nodes. This is not the only path from B to
A.
The length of a path is the number of arcs in the path. For a path with k

arcs, a j = (Nj ./, NJ for i in [l ..k), the path traverses the nodes, Nj , for i in [O..k).
A path is simple if no node appears twice in the path. A path is a cycle if
Ao = Ak•

A tree is a digraph with the following properties:

I. There is a special node, called the root. No arcs enter the root.
2. For each node in the tree, there is one and only one path from the root
to the node.
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J

Figure 6.2. Example of a tree.
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The level of a node in a tree is the length of the path from the root to the node.
For each node, the path from the root to the node is unique. An example of a
tree appears in Figure 6.2. Because of the unique relationship between the root
and the other nodes in the tree, trees are normally drawn with the root at the top
of the figure and the other nodes appearing below. Nodes at the same level
appear at the same horizontal level in the figure, if possible. Figure 6.3 illustrates
the tree from Figure 6.2 drawn in the preferred fashion.
For every node in a tree, the nodes that are reached with a path of length one

are called its children nodes, and the node is referred to as the parent node of
its children nodes. Two nodes are siblings if they have the same parent. Nodes
with no children are called leaf nodes, or terminal nodes. In Figure 6.3, J and
K are siblings, the children of node E, and, in tum, E is the parent of J and K.
Nodes B, G, H, I, J, K, L, and M are leaf nodes.
Observe that trees may be constructed from directed graphs in the following

manner. Build a tree by first selecting a node. This node becomes the root of
the tree formed as follows: Add to the tree a node and arc if the node is not
already in the tree and the arc attaches this node to a node already in the tree.

root

Figure 6.3. Tree, normal representation.
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Continue this process until no additional nodes may be added. If the original
digraph was connected, all nodes will be included in the tree. The resulting tree
is called a spanning tree of the digraph.
Each node in a tree may be viewed as the root of a tree containing that node

and all nodes that may be reached from that node. Such a tree is called a subtree
of the original tree. Using the notion of subtrees, one may define trees
recursively as follows: Either a tree is empty, or it contains a node, called its
root. If a tree contains a root, the root may have an arbitrary number, including
zero, of subtrees. Consider the tree in Figure 6.3. The tree whose root is A has
five subtrees, whose roots are B, C, D, E, and F. The tree whose root is B has
no subtrees, while the tree whose root is D has one subtree. The subtrees with
roots C, E, and F all have two subtrees.
For many applications there is a limit on the maximum number of child nodes

per node. A binary tree is a tree where each node has at most two children. An
n-ary tree is a tree that has at most n children per node. It will be demonstrated
later in this chapter that binary trees are sufficient for all tree applications. For
that reason, we concentrate on the specifications and representation of binary
trees.
Access to the nodes in a tree is limited. The root of a tree may always be

immediately accessed. Access to other nodes is restricted in that a node may be
accessed only after its parent or one of its child nodes is accessed. Tree
specifications are based on one of two paradigms that describe these access limits.
The two paradigms are analogous to the two list paradigms and are referred to by
the same names, the positional paradigm and the recursive paradigm.
The recursive paradigm for binary trees is illustrated in Figure 6.4. In the

recursive paradigm, either the binary tree is empty or it contains an object, called
the root of the tree, and two subtrees, called the left subtree and the right
subtree. Although the two paradigms appear radically different, they are
logically equivalent. Both paradigms address the access limits associated to trees,
but they address them in different ways. These differences show up in the ways
the paradigms affect the design of algorithms. It should be noted that recursive
algorithms may be constructed using the positional paradigm. That is not to say

Atreeiseithe6..'.'~A' ..'..,' .. ' or 010h
,'" ': ,. . . 1st . rst

(empty) (1st, Root, rst)

Figure 6.4. Binary tree, recursive paradigm.



6.2 Binary Trees, Positional Paradigm 185

that recursive algorithms may be defined using the positional paradigm.
However, when recursive algorithms are designed using the positional paradigm,
the programmer must address the navigation of the current viewing position. The
recursive paradigm handles navigation in conjunction with recursive processing.
The positional paradigm is illustrated in Figure 6.5. In the illustration,

«current» indicates the node currently being viewed. The next node that
may be viewed is the parent, or one of the children, of the «current» node,
or the current viewing position may be reset to the root.

Figure 6.5. Binary tree, positional paradigm.

6.2 Binary Trees, Positional Paradigm

6.2.1 Abstraction

A binary tree may be viewed abstractly as an ordered pair (i, S) where i is a

natural number and S is an infinite sequence 5 I' 52' ••• , 5k' • • • of objects,
representing the nodes in the tree, where only a finite number of objects in the

sequence are not empty. The object 51 represents the root of the tree. For each

object 5 i , its left child is the object 5 2i and its right child is the object 5 2i • l , as

illustrated in Figure 6.6. Correspondingly, for each object 5
i

, except the root, its

parent is 5(i/2J' where [i12] is the quotient of the integer division of i by 2.
Further, if 5 j is empty, then 5 2*i and 5 2' i+ 1 are also empty. Frequently, a tree (i, S)
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Figure 6.6. Complete tree.

is written as (i, sl' S2' ••• , Sk)' where Sk is the last tenn in the sequence that
represents a nonempty node in the tree. The I-tuple (i) represents an empty tree.
The node Sj is a descendent of Sj if and only if i =[j/r] for some m > J. A

node Sj and its descendents fonn a subtree with Sj as its root. Given the trees

represented with the fonnalism S = (i, S) and T = (j, T), if Sj is empty, then T

may be grafted onto S at location i, written as Sf = S U T
j

, means that Sj = t) and
the other objects in T are placed into S so as to maintain their descendency
relationships, t2 into S2'j, t3 into S2'j+J, and so forth. Given a tree S = (i, S),
pruning the subtree whose root is Sj, S\T , removes the node Sj and all its

s,

descendents from S, S = (i, S\Ts)'

This fonnalism helps describe the preconditions and postconditions of the
subprograms that support the positional paradigm. For example, given the tree
S = (i, S), the results of the various positional navigation procedures are

described as S' =(1, S) for the Move_To_Root, S' = (fi/2], S) for Move_To_

Parent, S' = (2*i, S) for Move_To_Left_Child, and S' = (2*i+J, S) for
Move_To_Right_Child. The various reporter functions may be fonnalized
with simple tests. For example, a tree is empty if and only if SJ = O. The
current position, i, is null if and only if Sj =O.
The binary search tree is a classical application of binary trees. Objects

placed in a binary search tree must satisfy a linear ordering. Nodes are attached
to a binary search tree using the following algorithm: If the root of the tree is
empty, attach the value in the root; otherwise, compare the new item to the value
at the root. If the new object is less than the root, recursively execute this
process on the left subtree; otherwise, recursively execute this process on the right
subtree (see Figure 6.7).
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Listing 6.1. Binary tree, positional specifications.

with Ada.Finalization; use Ada.Finalization;
package Tree_Binary_Pos_Polymorphic_Cntl is

type Place_Holder is abstract new controlled with private;
procedure Initialize (Object: in out Place_Holder);
procedure Finalize (Object: in out Place_Holder);
procedure Adjust (Object: in out Place_Holder);

type Holder_Class_Ptr is access Place_Holder'Class;
procedure Recycle (Point: in out Holder_Class_Ptr);

type Tree_Type is new controlled with private;
procedure Initialize (Tree: in out Tree_Type);
procedure Finalize (Tree: in out Tree_Type);
procedure Adjust (Tree: in out Tree_Type);

Invalid_Position, Empty_Tree, Invalid_Graft,
Tree_Overflow, No_Parent_Of_Root, Root_Exists,
Invalid_Prune, Invalid_Share, Recursive_Only: exception;

procedure Graft (Object: in out Place_Holder'Class;
Tree : in out Tree_Type );

procedure Graft (Subtree: in out Tree_Type;
Tree in out Tree_Type);

procedure Prune (Tree in out Tree_Type;
Subtree: in out Tree_Type);

procedure Move_To_Root (Tree: in out Tree_Type);
procedure Move_To_Parent (Tree: in out Tree_Type);
procedure Move_To_Left_child (Tree: in out Tree_Type);
procedure Move_To_Right_Child (Tree: in out Tree_Type);

procedure Swap (Source: in out Tree_Type;
Target: in out Tree_Type);

type In_Place_Process_Type is access
procedure (Object: in out Place_Holder'Class);

procedure Process_Current (Tree : in Tree_Type;
Process: In_Place_Process_Type);

procedure Update_Current (Tree : in Tree_Type;
Object: in Place_Holder'Class);

function Empty (Tree: Tree_Type) return boolean;
function Current_Null (Tree: Tree_Type) return boolean;

function At_Root (Tree: Tree_Type) return boolean;
function Level (Tree: Tree_Type) return integer;

function current_Object (Tree: Tree_Type) return Holder_Class_Ptr;
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Listing 6.2 contains the interface a client might use when constructing a
binary search tree based on the positional paradigm illustrated in Listing 6.1. A
binary tree search procedure that uses the interface appears in Listing 6.3. The
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Figure 6.7. Binary search tree example.

procedure begins by moving the current position to the root of the binary tree,
which may be empty. It performs the looping process until the current position
is null. Within the loop a comparison is made between the number being placed
into the tree and the Current_Object in the tree. If the number is less than the
current object, the current position navigates to the left child of the current node;
otherwise, the current object navigates to right child of the current node. Looping
continues in this fashion until the current node is null. At that point the looping
process is terminated and the number is grafted to that null position in the tree.

Listing 6.2. Client binary search tree interface.

package BS_Pos_Tree_Pak is
package tre renames Tree_Binary_Pos_Polymorphic_Cntl;

type Number_Type is new tre.Place_Holder with
record
Value: integer;

end record;
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Listing 6.3. Binary search tree procedure using the positional paradigm.

procedure BS_Insert (No : in out Number_Type;
Tree: in out tre.Tree_Type) is

begin -- BS_Insert
tre.Move_To_Root (Tree);
while not tre.Current_Null(Tree) loop
if NO.Value < Node_value (Tree) then

tre.Move_To_Left_Child (Tree);
else
tre.Move_To_Right_Child (Tree);

end if;
end loop;
tre.Graft (No, Tree);
tre.Move_To_Root (Tree);

end BS_Insert;

6.2.2 Representation
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A direct representation of the abstraction illustrated in Figure 6.6 implies the use
of an array. However, a binary tree does not normally have every possible node
at every level. Hence, an array implementation might waste much space. Instead,
the nodes of the tree are dynamically allocated and linked. Besides containing
the value at the node, each record also contains the anchor points for the left and
right subtrees of the node, and the address of the anchor of the parent node of the
given node. The prIvate declarations appear in Listing 6.4. Note that the
Left_Node and Right_Node components are aliased, to assist in navigating and
manipulating the subtrees. Specifically, these locations are aliased to allow
these anchor points to be conveniently accessed for the grafting and pruning
operations.
The Tree_Descriptor separates the variable Tree_Type from the tree

representation in anticipation of the implementation of sharing in the Advanced
child unit of the package. The Tree_Descriptor supports the safe sharing of
tree representations among Tree_Types while allowing each Tree_Type to have
a separate current position indicator. A Tree_Type contains three components:
Actual points to the Tree_Descriptor record that anchors the tree
representation; Current contains the address of the anchor point of the current
position in the tree; and Nul_Parent contains the address of the anchor point of
the parent node of the current position when the current position is null.
Nul_Parent is necessary to assist in implementing the Move_To_Parent
navigation when the current node position is empty. Hence, it does not have a
Node_Record, and an alternate means of returning to the parent node must be
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Listing 6.4. Positional paradigm binary tree, private declarations.

Ptr_Addr:= null;
aliased Holder_Class_Ptr:= null;
aliased Holder_Class_Ptr:= null;

Desc_Ptr:= null;
Ptr_Addr;
Ptr_Addr;

private
type Ptr_Addr is access all Holder_Class_Ptr;
type Place_Holder is new controlled with
record
Parent_Node:
Left_Node
Right_Node :

end record;

type Tree_Descriptor is
record
Root : aliased Holder_Class_Ptr:= null;
Shared: positive 1;

end record;
type Desc_ptr is access Tree_Descriptor;

type Tree_Type is new controlled with
record
Actual
Current
Nul_Parent:

end record;

provided. Note that the Parent_Node component points to the anchor point of
the parent node. Figure 6.8 illustrates this representation.
Listing 6.5 contains the beginning of the Tree_Binary_Pos_Polymorphic_

Cntl package body. The tree navigation procedures appear in Listing 6.6. The
navigational procedures place the address of the appropriate anchor point into
Tree. Current. In the case of Move_To_Root, the address of the anchor point
for the entire tree, Tree. Current: = Tree. Actual. Root' Access, is placed
in the Current component. Move_To_Root also places a null value in the
Nul_Parent component in case the tree is empty.
All of the remaining navigation procedures must address the possibility of

raising an exception when an inappropriate navigation is requested. In addition,
the Move_To_Parent procedure must address navigating to the parent node of
a null, or empty, tree node. Since the node is empty, its anchor point contains a
null address; hence, there is no corresponding Node_Record. When the current
position is empty, the address of the parent anchor is obtained from Nul_Parent;
otherwise, the address of the parent anchor is in the Parent_Node component,
Tree.Current:= Tree.Current.all. Parent_Node.
The Move_To_Left_Child and Move_To_Right_Child procedures are

similar. Both procedures perform tests to avoid improper navigation of an empty
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Figure 6.8. Positional paradigm tree representation.

Listing 6.5. Tree_Binary_Pos_Polymorphic_Cntl Place_Holder support.

with Unchecked_Deallocation;
package body Tree_Binary_Pos_Polymorphic_Cntl is
procedure Free is new

Unchecked_Deal location (Place_Holder'Class, Holder_Class_Ptr);
procedure Free is new Unchecked_Deallocation (Tree_Descriptor, Desc_Ptr);
procedure Recycle (Point: in out Holder_Class_Ptr) renames Free;

procedure Initialize (Object: in out Place_Holder) is
begin -- Initialize
null;

end Initialize;

procedure Finalize (Object: in out Place_Holder) is
begin -- Finalize
null;

end Finalize;

procedure Adjust (Object: in out Place_Holder) is
begin -- Adjust
null;

end Adjust;
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Listing 6.6. Binary tree, positional paradigm tree navigation.

procedure Move_To_Root (Tree: in out Tree_Type) is
begin -- Move_To
Tree. Current Tree.Actual.Root'Access;
Tree.Nul_Parent:= null;

end Move_To_Root;

procedure Move_To_Parent (Tree: in out Tree_Type) is
begin -- Move_To
if Empty (Tree) then -- empty tree
raise Empty_Tree;
elsif At_Root(Tree) then -- current undefined
raise No_Parent_Of_Root;
elsif Current_Null (Tree) then
Tree.Current:= Tree. Nul_Parent;
else
Tree.Current:= Tree.Current.all.Parent_Node;

end if;
end Move_To_Parent;

procedure Move_To_Left_Child (Tree: in out Tree_Type) is
begin -- Move_To
if Empty (Tree) then
raise Empty_Tree;
elsif Current_Null (Tree) then
raise Invalid_Position;
else

Tree.Nul_Parent:~ Tree. Current;
Tree.Current Tree.Current.all.Left_Node'Access;

end if;
end Move_To_Left_Child;

procedure Move_To_Right_Child (Tree: in out Tree_Type) is
begin -- Move_To
if Empty (Tree) then
raise Empty_Tree;
elsif Current_Null (Tree) then
raise Invalid_Position;
else
Tree. Nul_Parent: = Tree.Current;
Tree.Current Tree.Current.all.Right_Node'Access;

end if;
end Move_To_Right_Child;

tree or a null location. If a location in the tree is null, it cannot have child nodes.
Before navigating the current position to the appropriate anchor, the Nul_Parent
component is set to the current anchor,

Tree.Nul_Parent:= Tree.Current;
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then the current position is set to

Tree.Current:= Tree.Current.all.Left_Node'Access;

for navigating to the left child node, or to

Tree.Current:= Tree.Current.all.Right_Node'Access;
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for navigating to the right child node.
There are two tree grafting procedures, one to graft a single object to the tree,

and a second to graft another tree onto the current position of the tree. They
appear in Listing 6.7. Grafting may occur only at a null position in a tree. If
the current location is not empty, the Invalid_Graft exception is raised. The
procedure that grafts a single object to the tree at the current location uses the

Listing 6.7. Binary tree positional paradigm grafting procedures.

procedure Graft (Object: in out Place_Holder'Class;
Tree : in out Tree_Type) is

begin -- Graft
if Current_Null (Tree) then
Tree.Current.all:= new Place_Holder'Class' (Object);
Tree.Current.all.Parent_Node:= Tree.Nul_Parent;
else
raise Invalid_Graft;

end if;
end Graft;

procedure Graft (Subtree: in out Tree_Type;
Tree : in out Tree_Type) is

begin -- Graft
if Subtree.Actual.Shared > 1 then
raise Invalid_Graft;
elsif Empty (Tree) then
if not Empty (Subtree) then
Tree:= Subtree;
Subtree.Actual := null;
Subtree.Current:= null;

end if;
elsif Current_Null (Tree) then
if not Empty (Subtree) then
Tree.Current.all:= Subtree.Actual.Root;
Tree.Current.all.Parent_Node:= Tree.Nul_Parent;
Subtree.Actual.Root:= null;
Subtree.Current:= Subtree.Actual.Root'Access;

end if;
else
raise Invalid_Graft;

end if;
end Graft;
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current anchor to attach a new Node_Record, place the object in the record, and
place the address of its parent's anchor in the record:

Tree.Current.all:= new Node_Record;
Tree.Current.all.The_Node:= Object;
Tree.Current.all.Parent_Node:= Tree. Nul_Parent;

The procedure that grafts a subtree to a position in a tree first checks to see
if the tree is empty, in which case the subtree becomes the entire tree as long as
the subtree itself is not empty. If the tree is not empty, the subtree is attached at
the current location's anchor, the Parent_Node anchor is set using the
Nul_Parent component in the tree, and the subtree is detached from the current
tree:

Tree.Current.all:= Subtree.Actual.Root;
Tree.Current.all.Parent_Node:= Tree. Nul_Parent;
Subtree.Actual.Root:= null;
Subtree.Current.all:= Subtree.Actual.Root'Access;

The positional paradigm pruning procedure appears in Listing 6.8. The
procedure finalizes and then reinitializes the Subtree parameter and then places
the subtree whose root is the current node in the Tree into Subtree. The
Tree. Current component is reset to null, and Tree. Nul_Parent is set to
the value of Subtree. Current. all. Parent_Node before Subtree.
Current. all. Parent_Node is set to null.

Listing 6.8. Binary tree positional paradigm pruning procedure.

end
end if;

end if;
end Prune;

procedure Prune (Tree : in out Tree_Type;
Subtree: in out Tree_Type) is

begin -- Prune
if Tree.Actual.Shared > 1 then
raise Invalid_prune;
else
Finalize (Subtree);
Initialize (Subtree);
if not Empty (Tree) then
if not Current_Null (Tree) then
Subtree.Actual new Tree_Descriptor;
Subtree.Current Subtree.Actual.Root'Access;
Subtree.Actual.Root Tree.Current.all;
Tree.Current.all null;
Tree. Nul_Parent Subtree.Actual.Root.Parent_Node;
Subtree.Actual.Root.Parent_Node:= null;
if;
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Listing 6.9. Tree_Type positional paradigm controlled support.

procedure Initialize (Tree: in out Tree_Type) is
begin -- Initialize
Tree.Actual :~ new Tree_Descriptor;
Tree.Current:= Tree.Actual.Root'Access; Tree.Nul_Parent:~ null;
end Initialize;

procedure Finalize (Tree: in out Tree_Type) is
procedure Erase_subtree (Tree_Ptr: in out Holder_Class_Ptr) is
begin -- ERASE_SUBTREE
if Tree_ptr /= null then
Erase_Subtree (Tree_Ptr.Left_NOde);
Erase_Subtree (Tree_Ptr.Right_Node);
Finalize (Tree_Ptr.all); Free (Tree_Ptr);

end if;
end Erase_Subtree;

begin -- Finalize
if Tree.Actual.Shared > 1 then
Tree.Actual.Shared:= Tree.Actual.Shared - 1;
Tree.Actual := null;
Tree.Current:~ null; Tree.Nul Parent:= null;
elsif not Empty (Tree) then
Erase_Subtree (Tree.Actual.Root);
Tree.Current:~ null; Free (Tree.Actual);

end if;
end Finalize;
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procedure Adjust (Tree: in out Tree_Type) is
Orig: Desc_Ptr:- Tree.Actual;
procedure Rec_Clone (Srce, Trgt: in ptr_Addr) is
begin -- Rec_Clone
Trgt.all:= new Place_Holder' Class , (Srce.all.all);
if Tree.Current ~ Srce then
Tree.Current:= Trgt;

end if;
if Tree.Nul_Parent = Srce then
Tree.Nul Parent:= Srce;

end if;
if srce.all.Left_Node /~ null then

Rec_Clone
(Srce.all.Left_Node'Access, Trgt.all.Left_Node'Access);

Trgt.all.Left_Node.parent_Node:= Trgt;
end if;
if Srce.all.Right_Node /= null then

Rec_Clone
(Srce.all.Right_Node'Access, Trgt.all.Right_Node'ACcesS);

Trgt.all.Right_Node.Parent_Node:~Trgt;
end if;

end Rec_Clone;

begin -- Adjust
Tree.Actual:= new Tree_Descriptor;
Rec_Clone (Orig.Root'Access, Tree.Actual.Root'Access);

end Adjust;
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The Initialize, Finalize, and Adjust procedures appear in Listing 6.9.
The Initialize procedure prepares the Tree parameter by establishing it as an
empty tree. The Finalize procedure is more complex because it was written
with representation sharing in mind. If a tree representation is shared, Finalize
simply detaches Tree from the representation and decrements the sharing count.
Otherwise, Finalize must restore the nodes of the tree to the dynamic space
allocation manager. This is done recursively by calling the recursive procedure
Erase_Subtree, which recursively erases the left and right subtrees of non-null
nodes before returning Free (Tree_Ptr), the node record to the dynamic space
manager. Free is an instantiation of unchecked_deallocation:

procedure Free is new
Unchecked_Deallocation (Node_Record, Node_Ptr).

The Adjust procedure duplicates the tree by performing a recursive traversal of
the tree while creating a duplicate with the second parameter. The tree traversal
method is a variation of a depth-first tree search algorithm, which is discussed in
Section 6.4.1.

6.3 Binary Trees, Recursive Paradigm

6.3.1 Abstraction

In Section 6.2.1, a binary tree is viewed as an ordered pair (i, S) where i is a

natural number and S is an infinite sequence s" S2' ••• , sk' •.. of objects
representing the nodes in the tree, where only a finite number of objects in the
sequence are not empty. The nonlinear nature of a tree was achieved by the way
the objects in the sequence are traversed, 2*i and 2*i+1. The recursive paradigm
views a tree as either empty or containing three items - an object called the root,
and two subtrees, referred to as the left subtree and the right subtree. This leads
quite naturally to viewing a binary tree as a triple, T = (L. r, R), where Land R
are possibly empty binary trees, and r, called the root, is the object at the root of
the tree. An empty tree is indicated by the triple (0, 0, 0), with three empty
coordinates.
While the positional paradigm navigates from one position in the tree to

another, the recursive paradigm navigates from tree to subtree. In navigating
from tree to subtree, the paradigm views only the object at the root of a tree.
Processing usually involves recursive calls and passing either the left subtree or
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Listing 6.10. Tree_Binary_Polymorphic_cntl specifications.

with Ada.Finalization; use Ada.Finalization;
package Tree_Binary_Polymorphic_Cntl is

type Place_Holder is abstract new controlled with private;
procedure Initialize (Object: in out Place_Holder);
procedure Finalize (Object: in out Place_Holder);
procedure Adjust (Object: in out Place_Holder);

type Holder_Class_Ptr is access Place_Holder'Class;
procedure Recycle (Point: in out Holder_Class_Ptr);

type Tree_Type is new controlled with private;
procedure Initialize (Tree: in out Tree_Type);
procedure Finalize (Tree: in out Tree_Type);
procedure Adjust (Tree: in out Tree_Type);

Tree_Underflow, Tree_Overflow, Root_Exists: exception;

function Empty (Tree: Tree_Type) return boolean;
function Empty_Tree return Tree_Type;

generic
type Extended_Type is new Place_Holder with private;

function Root_Value (Tree: Tree_Type) return Extended_Type;
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procedure Graft (Object: in
Tree : in

procedure Graft (Subtree: in
Tree in

Place_Holder' Class;
Tree_Type );
Tree_Type;
Tree_Type) ;

procedure Prune (Tree in Tree_Type;
Subtree: in out Tree_Type);

function Left_Subtree (Tree: Tree_Type) return Tree_Type;
function Right_Subtree (Tree: Tree_Type) return Tree_Type;

procedure Update_Root (Tree in
Object: in

Tree_Type;
Place_Holder'Class);

procedure Swap (Source: in out Tree_Type;
Target: in out Tree_Type);

right subtree to the recursive process. The specifications of a package that
supports the recursive paradigm appear in Listing 6.10.

Given the tree T = (L, r, R), the function Left_Subtree returns L, and the
function Right_Subtree returns R. A precondition to grafting an object or a

tree to a given tree, T, is that T is empty, T =({), 0, (}). If an object, 0, is

grafted, the result of the graft operation is T' =({), 0, 0). If the object is a tree,
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Listing 6.11. Recursive paradigm binary search tree interface package.

with Tree_Binary_Polymorphic_Cntl;
package PTS_Pak is
package tre renames Tree_Binary_Polymorphic_Cntl;

type Number_Type is new tre.Place_Holder with
record
Value: integer;

end record;

0, then T' =O.
If a tree T is pruned and the result is placed in a tree S, then the post­

condition of the pruning operation is that T' = (0, D, OJ and S' = T. For a tree
T, T = (L, r, R), the reporter function Root_Of returns a copy of r, the tree's
root, and Empty returns the result of the test T = (0, D, DJ.
To illustrate the use of the recursive paradigm for binary trees, consider the

binary search tree example in Section 6.2.1. Listing 6.11 illustrates a client
interface between a recursive polymorphic tree package and a recursive solution
to the binary search tree insert procedure. A procedure that illustrates the
positional paradigm implementation of the algorithm appears in Listing 6.2.
Compare this to the procedure in Listing 6.12. With the recursive paradigm, the
algorithm recursively descends from subtree to subtree. At each tree, the
algorithm checks to see if the root is empty. If it is, the object is inserted at the
root; otherwise, a comparison is made between the object to be inserted and the
object at the root. If the new object is less than the object at the root, the
procedure recursively descends to the left subtree; otherwise, the procedure
recursively descends to the right subtree.

Listing 6.12. Binary search tree Insert for the recursive paradigm.

procedure BS_Insert (NO : in out Number_Type;
Tree: in tre.Tree_Type) is

begin -- BS_Insert
if tre.Empty (Tree) then
tre.Graft (No, Tree);
elsif No.Value < Root(Tree).Value then
BS_Insert (No, tre.Left_Subtree(Tree»;
else
BS_Insert (No, tre.Right_Subtree(Tree»);

end if;
end as_Insert;
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With the positional paradigm, the current position in the tree has to be moved
before and after recursive calls. The recursive tree paradigm lends itself to
recursive processing in that the recursive paradigm moves from tree to tree,
always viewing the root of a tree. Hence, the recursive tree representation
directly supports the construction of the algorithm.

6.3.2 Representation

The private declarations that appear in Listing 6.13 support the recursive
paradigm. This representation uses the "access all" and "Aliased" features
to recursively access the anchor points to subtrees. Recall that the aliased
feature allows the access components of the records to be addressed indirectly.
Defining Tree_Type with an access all declaration allows the 'Access
attribute to create values that are accepted as Tree_Types.
Listing 6.14 contains the controlled representation for recursive

Tree_Type. Initializing a tree is simply a matter of creating a space for the
address of the root and making the address of the root null. However, finalizing
is a more complex task. Before a node in the tree may be finalized, the left and
right subtrees of the node must be finalized. This is accomplished with a
recursive procedure, Erase_Subtree, which performs a recursive depth-first tree
traversal. Tree traversals are discussed in Section 6.4. Before freeing the root
record, the finalize procedure calls Erase_Subtree. When Erase_Subtree is
not passed a null pointer, it recursively calls Erase_Subtree twice - to erase
the left and right subtrees - before freeing the Node_Record.

Listing 6.13. Private declarations for Tree_Binary_Polyrnorphic_Cntl.

private
type Place_Holder is abstract new controlled with
record
Left_Node: aliased Holder_Class_Ptr:= null;
Right_Node: aliased Holder_Class_Ptr:= null;

end record;

type Tree_Type is new controlled with
record
Anchor: Tree_Anchor;
Base : boolean:= true;

end record;
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Listing 6.14. Tree_Binary_Polymorphic_Cntl body.

with Unchecked_Deallocation;
package body Tree_Binary_Polymorphic_Cntl is
procedure Free is new

Unchecked Deallocation (Place_Holder'Class,
Holder_Class_Ptr);
procedure Free is new Unchecked_Deallocation (Holder_Class_Ptr,

Tree_Anchor) ;
procedure Recycle (Point: in out Holder_Class_Ptr) renames Free;

procedure Initialize (Object: in out Place_Holder) is
begin -- Initialize
null;

end Initialize;

procedure Finalize (Object: in out Place_Holder) is
begin -- Finalize
null;

end Finalize;

procedure Adjust (Object: in out Place_Holder) is
begin -- Adjust
null;

end Adjust;

new Holder_Class_Ptr;
null;
true;

procedure Initialize (Tree:
begin -- Initialize
Tree. Anchor
Tree.Anchor.all:=
Tree.Base

end Initialize;

in out Tree_Type) is

procedure Erase_Subtree (Tree_ptr: in out Holder_Class_Ptr) is
begin -- Erase_Subtree
if Tree_ptr /= null then
Erase_Subtree (Tree_Ptr.Left_Node);
Erase_Subtree (Tree_Ptr.Right_Node);
-- Finalize (Tree_Ptr.Node);
Free (Tree_Ptr);

end if;
end Erase_Subtree;

procedure Finalize (Tree: in out Tree_Type) is
begin -- Finalize
if Tree.Base then
Erase_Subtree (Tree.Anchor.all);
Free (Tree.Anchor);

end if;
end Finalize;
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Listing 6.14. (cont.)

procedure Adjust (Tree: in out Tree_Type) is
Original: Holder_Class_Ptr:= Tree.Anchor.all;
procedure Clone (Srce, Trgt: in out Holder_Class_Ptr) is
begin -- Clone
if Srce /= null then
Trgt:= new Place_Holder'Class'(Srce.all);
Clone (Srce.Left_Node, Trgt.Left_Node);
Clone (Srce.Right_Node, Trgt.Right_Node);

end if;
end Clone;

begin -- Adjust
Tree.Anchor.all:= null;
Clone (Original, Tree.Anchor.all);

end Adjust;

function Empty_Tree return Tree_Type is
Answer: Tree_Type;
begin -- Empty_Tree
return Answer;

end Empty_Tree;

function Empty (Tree: Tree_Type) return boolean is
begin
return Tree.Anchor.all = null;

end Empty;
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Place_Holder' Class;
Tree_Type ) is

procedure Graft (Object: in
Tree in

begin -- Graft
if not Empty (Tree) then
raise Root_Exists;
else
declare
New_Node: Holder_Class_Ptr:= new

Place_Holder'Class' (Object);
begin
New_Node.Left Node := null;
New_Node. Right_Node: = null;
Tree.Anchor.all:= New_Node;

end;
end if;

exception
when storage_error => raise Tree_Overflow;

end Graft;
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Listing 6.14. (cont.)

function Root_Value (Tree: Tree_Type) return Extended_Type is
begin -- Root_Value
if Tree.Anchor.all = null then
raise Tree_Underflow;
else
return Extended_Type(Tree.Anchor.all.all);

end if;
end Root_Value;

function Root_Of (Tree: Tree_Type) return Holder_Class_Ptr is
begin -- Root_Of
if Tree.Anchor.all = null then
raise Tree_Underflow;
else
return new Place_Holder'Class'(tree.Anchor.all.all);

end if;
end Root_Of;

procedure Swap (Source: in
Target: in

Temp: Holder_Class_Ptr;
begin
Temp
Target.Anchor.all:=
Source.Anchor.all:=

end Swap;

out Tree_Type;
out Tree_Type) is

Target.Anchor.all;
Source.Anchor.all;
Temp;

function Left_Subtree (Tree: Tree_Type) return Tree_Type is
Answer: Tree_Type;
begin -- Left_Subtree
if Tree.Anchor.all ~ null then
raise Tree_Underflow;
else
Answer.Anchor:= Tree.Anchor.all.Left_Node'Access;
Answer.Base false;
return Answer;

end if;
end Left_Subtree;

function Right_Subtree (Tree: Tree_Type) return Tree_Type is
Answer: Tree_Type;
begin -- Right_Subtree
if Tree.Anchor.all = null then
raise Tree_Underflow;
else
Answer.Anchor:= Tree.Anchor.all.Right_Node'Access;
Answer. Base false;
return Answer;

end if;
end Right_Subtree;
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Listing 6.14. (cont.)

procedure Update_Root (Tree : in Tree_Type;
Object: in Place_Holder'Class) is

begin -- Process_Root
if Tree.Anchor.all = null then
raise Tree_Underflow;
else
declare
New_One: Holder_Class_Ptr;

begin
New_One:= new Place_Holder'Class' (Object);
New_One.Left_Node := Tree.Anchor.all.Left_Node;
New_One. Right_Node: = Tree.Anchor.all.Right_Node;
Free (Tree.Anchor.all);
Tree.Anchor.all:~ New_One;

end;
end if;

end Update_Root;
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The bodies of the grafting procedures appear in Listing 6.14. Recall that a
precondition of grafting is that the tree must be empty. The procedure for
grafting a single object first checks to make sure the tree is empty. If it is not,
an exception is raised; otherwise, the node for holding the root is prepared and
attached to the tree.
The procedure that grafts an entire tree to an empty tree first checks to make

sure the two tree parameters are not pointing to the same tree. Once it is
determined that Tree is empty, the grafting process is accomplished by moving
the address of the root from Subtree to Tree and then making Subtree an
empty tree.
The pruning process, which appears in Listing 6.14, first finalizes the

Subtree where the result is to be placed and then reinitializes. After that, the
address of the root of Tree is placed in Subtree and then Tree is made empty.
Fundamental to the recursive processing are the Left_Subtree and

Right_Subtree navigation procedures. The algorithms in these procedures first
check for an empty tree, raise an exception if the tree is empty and then form
Tree_Type, which contains the address to the anchor position for the root of the
left or right subtree.
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6.4 Tree Traversals

6 Trees

Tree traversal algorithms are concerned with visiting the nodes of a tree in
various specified orders. Each traversal algorithm visits each node in the tree a
predetermined number of times and in a particular order. The Depth-first family
of tree traversals describes an important collection of traversal algorithms that
occur frequently in the solution of many classic problems. The other major
family of tree traversals is the family of Breadth First tree traversals. There are
15 traversals in the depth-first family and 2 in the breadth-first family.
This section discusses the construction of iterators for binary trees. Building

iterators for n-ary trees is left as exercises. Building a user-controllable iterator
for lists was simplified by the linear structure of lists. The linear structure limits
the number of alternatives that must be considered while traversing the list. In
a binary tree, the iteration process faces two alternatives at each node, proceeding
either to the left child or right child. In either case, there must be a back-up
mechanism, which allows the iteration process to return to the untried branch and
continue in that direction.
There are three categories of binary tree iterators: two categories follow

predetermined patterns for visiting the nodes; the third category contains problem­
specific iterators, whose tree traversal patterns depend on the contents that have
been observed in the nodes. These categories are classified as follows:

1. Depth-first iterators: These iterators, also called natural order iterators,
traverse down the tree to leaf nodes. either down the left side, as indicated in
Figure 6.9, or down the right side of the binary tree.

2. Breadth-first iterators: These iterators. also called level-by-Ievel iterators.
visit all nodes at level 0, then all nodes at levell, and so forth, until all nodes
have been visited.

3. Other schema: These are other methods of traversing trees.

6.4.1 Depth-first

Observe in Figure 6.9 that as the arrows are followed around the tree, each node
is visited three times. The first time the node is entered from its parent. The
second time is on the return from its left child. The third time is on the return
from its right child. The process performed the first time the node is visited is
called a pre-order process. A process performed after visiting the left child, but
before visiting the right child, is called an in-order process. A process performed
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Start

Figure 6.9. Depth-first sequence.
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after visiting both children is called a post-order process. A depth-first tree
search that applies only one of these processes is referred to as a pre-order
traversal, an in-order traversal, or a post-order traversal, as appropriate.
Figure 6.10 illustrates the relative order of the calls to the three processes.
Depth-first tree iterators may be constructed using either the recursive

paradigm or the positional paradigm. Listing 6.15 illustrates the depth-first tree
traversal using the positional paradigm; the recursive tree paradigm version
appears in Listing 6.16. In both representations, a test is performed to make sure
that the current node in the tree is not empty. If it is not, the code to perform the

Figure 6.10. Depth-first node processes.
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Listing 6.15. Depth-first tree traversal, positional paradigm.

procedure Pos_DFTT (Tree: in out Tree_Type) is
procedure DFTT (Tree: in out Tree_Type) is
begin -- DFTT
if not Current_Null (Tree) then

pre-order code here

Move_To_Left_Child (Tree);
Rec_DFTT (Tree);
Move_To_Parent (Tree);

in-order code here

Move_To_Right_Child (Tree);
Rec_DFTT (Tree);
Move_To_Parent (Tree);

post-order code here

end if;
end DFTT;

begin -- Pos_DFTT
Move_To_Root (Tree);
Rec_DFTT (Tree);

end Pos_DFTT;

pre-order code is performed. After the code is performed, the traversal precedes
to the left subtree. For the positional paradigm, this requires three lines of code,
to set the current position down to the subchild, make the recursive call, and then
return back to the parent node. The recursive paradigm carries out this process
in one statement, by making the recursive call and passing the appropriate subtree
as a parameter to the recursive call.
One should note the simplicity of the depth-first algorithm in Listing 6.16

compared to the algorithm in Listing 6.15. This is due to the way that the
recursive tree representation lends itself to recursive processing. This natural
relation is worth exploiting and should encourage programmers to consider using
the recursive paradigm instead of the positional paradigm as much as possible.
One should not lose sight of the relationship between recursion and stacks,

which is such that every recursive algorithm may be rewritten as a nonrecursive
algorithm that uses a loop and a stack. A depth-first tree traversal can be
accomplished with a stack as follows: The stack would contain records, and each
record would contain the address of an object in the tree and a number (one
through three). The number is used to indicate the first through third time the
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Listing 6.16. Depth-first tree traversal, recursive paradigm.

procedure Rec_DFTT (Tree: in out Tree_Type) is
begin -- Rec_DFTT
if not Empty (Tree) then

pre-order code here

Rec_DFTT (Left_Subtree (Tree»;

in-order code here

Rec_DFTT (Right_Subtree (Tree);

post-order code here

end if;
end Rec_DFTT;
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node is visited. Using the notation (Address, NO) to indicate the record, the
following pseudocode describes a depth-first tree traversal:

Push (Root address, 1) into the stack;
while the stack is not empty loop
Pop (Address, NO);
if Address not null then
case No of
when 1 =>
perform pre-order code:
Push (Address, 3):
Push (Right Child Address, 1):
Push (Address, 2);
Push (Left Child Address, 1);

when 2 =>
perform in-order code:

when 3 =>
perform post-order code:

end case:
end if;

end loop;

6.4.2 Breadth-first

A second type of tree traversal is a breadth-first tree traversal. The nodes in
Figure 6.11 are numbered in the order in which they would be visited in a
breadth-first tree search if the nodes at each level are traversed in a left-to-right
fashion. A breadth-first tree traversal is performed using a queue as an
intermediate structure for maintaining information about the nodes that need to
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J

Figure 6.11. Breadth-first tree traversal.

be traversed. The breadth-first algorithm and its use of a queue closely parallel
the depth-fIrst algorithm and its use of a stack.
The structure of a level-by-Ievel tree traversal is described in pseudocode as

follows:

enqueue (pointer to the root);
while (the queue is not empty)
and (problem dependent condition) do
dequeue (pointer) -- to access a node
if the node is not empty then
[[possible problem specific codell
enqueue (left child pointer)
enqueue (right child pointer)

end if;
end while;

The implementation of a breadth-first iterator is left as an exercise.

6.4.3 Other Schema

Other traversal schema may be developed using various structures to hold
intermediate information. One common traversal is based on a priority queue.
A priority queue is like a queue in that there are a front and a rear and the
dequeue procedure for priority queues is like that for queues. However, the
enqueue procedure for priority queues uses an additional value, called the object's
priority, to position the object in the queue so that all objects with lower priority
are closer to the rear and all objects with higher priority are positioned closer to
the front of the queue. Priority queue-based search algorithms are frequently used
to search trees that represent the tree of all possible moves in a game.
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Frequently, objects are stored in trees that satisfy a problem-specific relationship
between each node and its children. Many of these applications locate objects by
starting at the root of the tree and traversing down the arcs using the application­
specific relationship to locate the desired object. Naturally, the time required to
reach the desired object depends on the length of the path from the root to the
object. That, in tum, is bound by the length of the longest path from the root to
any node. As a result, 0 (the length of longest path) bounds the timing of many
tree processes.
The shortest possible length of the longest path in a binary tree with n nodes

is log n. A full tree is a tree with n nodes whose longest path from the root is
of length log n. A complete tree is a tree with n nodes such that if the nodes are
numbered in the order in which they would be traversed in a left-to-right breadth­
first tree search, then for each node i, i > 1, the parent of node i is node i/2.
Simply stated, a complete tree is a tree that is full on each level, except possibly
the lowest level. If the lowest level is not full, all the nodes in that level appear
on the left side of the level with no vacant positions to the left of any node on the
last level.
Although complete trees appear to be very restrictive, they have many

applications. One advantage to them is that if the maximum number of nodes for
a complete tree may be predetermined, there is an efficient static implementation
for complete trees.
A bound, complete tree package is constructed using an array and based on

the breadth-first numbering of the nodes. Specifically, a complete tree of n nodes
may be represented in an array of n locations with the following node-to-array
index correspondence: The root corresponds to index 1. For a node with index
i, if the node has one child, a left child, the index to the child's array location is
2*i. If the node has a second child, a right child, that child's index is 2*i+1.
Equivalently, for a node with index i, i > 1, its parent has index i/2.
Consequently, in an array representation of a complete tree, simple arithmetic
calculations implement the arc traversals.
The relationship between the nodes in a complete tree and the array

representation of a complete tree appears in Figure 6.12. Because of the
simplicity of this relationship, a package to directly support complete trees is
normally not developed. Instead, packages are usually developed to support
structures based on complete trees, like heaps, which appear in the next chapter.
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Figure 6.12. Complete tree, array representation.
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6.6 N-ary Trees

If each node in a tree may have n or less children per node, the tree is called an
n-ary tree. An n-ary tree has no limit on the number of children per node.
Figure 6.13 illustrates an example of an n-ary tree. Only a few subprograms in
the specification of the binary tree package in Listing 6.1 depend on the two
children-per-node limit. Certainly, the functionality of the constructors and
observers is sufficient for n-ary trees. However, it should be obvious that the
binary tree navigation and constructors must be replaced by navigation and
constructors appropriate for n-ary trees.
Binary trees are sufficient for all tree applications. Although sufficient, they

may not be convenient. However, it is surprisingly convenient to use the
relationship when building an n-ary tree package. Figure 6.14 illustrates the

1

Figure 6.13. Example of an n-ary tree.
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representation of the unbound tree in Figure 6.13 as a binary tree. The
representation associates the left child navigation in a binary tree to navigation to
the first child of a node in an n-ary tree. The right child navigation in a binary
tree corresponds to navigating to a sibling of the current node. For a given n-ary
tree node, access to the children of an n-ary tree's node is down the left child of
the binary tree representation of the n-ary tree. Access down the right child in
the binary tree corresponds to traversing to a sibling of the node. Access to the
parent of an n-ary tree's node in the binary tree representation might be indirect.
In the binary tree representation, a parent of a node is found by traversing up the
tree toward the root until a left child arc is traversed. When a left child arc is
traversed, the parent of the starting node is found.
In the binary representation, there are no siblings of the root. The first child

of a node is accessed by traversing down the left branch. The other children are
accessed by traversing the right branch from the first child and subsequent
children nodes. The relationships between n-ary tree traversals and their
representations in a binary tree appear in Table 6.1.
The relationship between binary trees and unbound trees suggests a method

for building the body of an n-ary tree package that makes direct use of a binary
tree package to represent an n-ary tree. In fact, building that package is obvious,

1 root

13

2

21

22

Figure 6.14. The n-ary tree in Figure 9-8 as a binary tree.
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Table 6.1. Binary Tree and n-ary Tree reposition relations.

Left_Subtree
Right_Subtree

Tree_Binary
Positional

Move_To_Root
Move_Left_Child
Move_Right_Child
Move_To_Parent

Move_To_Root
Move_First_Child
Move_Next_Sibling
Move_To_Parent
Move_previous_Sibling

Recursive
Child_Subtree
Sibling_Subtree

once the binary representation of an n-ary tree is completely understood.
However, building an n-ary tree package based on a binary tree package is more
an academic exercise than a practical one. For this reason, it is left as an
exercise.
Listing 6.17 contains a child unit for a binary tree package that supports n-ary

trees, Tree_Binary_Polymorphic_Cntl. Nary. This child unit provides
support that assists clients in viewing a binary tree as an n-ary tree. The
fundamental differences between an n-ary tree package and a binary tree package
are due to the arbitrary number of children per node. The recursive paradigm
requires subtle changes in the graft and pruning procedures and a renaming of the
navigation functions to reflect the n-ary tree view.
The n-ary tree recursive paradigm is supported through a pair of functions,

Child_subtree and Siblings_Subtree. These two functions are sufficient
to provide navigation under the recursive paradigm. The characteristics of the
root of an n-ary tree are identical to those of a binary tree. Specifically, the root
in an n-ary tree has no parent and no siblings. Hence, attempts to move to a
parent or sibling of the root raise an exception. Also, siblings cannot be grafted
to the root. However, a subtree may have siblings.
Although the analogy between the two structures is useful, there are several

places where the analogy fails. The most obvious places are in the grafting and
pruning procedures. Recall that grafting can occur in a binary tree only when the
tree is empty. Also, after pruning from a binary tree, the tree is empty. In n-ary
trees, grafting can occur anywhere in the tree. When a subtree is grafted at a
specified location, the object at that location becomes the next sibling of the
object being grafted. Correspondingly, when a subtree is pruned, the next sibling
of the subtree moves into the place of the subtree being grafted.
The pair of grafting procedures for n-ary trees are analogous to the grafting

procedures for binary trees. The grafting procedures provide a means for grafting
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Listing 6.17. Tree_Binary_Polymorphic_Cntl. Nary specifications.

procedure Nary_Graft (Object: in out Place_Holder'Class;
Tree : in Tree_Type );
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procedure Nary_Graft (Subtree: in
Tree in

Tree_Type;
Tree_Type) ;

procedure Nary_Prune (Tree in Tree_Type;
Subtree: in out Tree_Type);

function Child_Subtree (Tree: Tree_Type) return Tree_Type;

function Sibling_Subtree (Tree: Tree_Type) return Tree_Type;

a single node or an entire tree. The procedure that grafts a single object attaches
any record at the root as a sibling of the record being grafted before being
attached to the tree. When a subtree is grafted, the process of attaching the
current root correctly as a sibling is more complicated because the item being
grafted may already have siblings. As a result, a recursive procedure,
Rec_Attach, searches through the siblings and attaches the current root at the
end of the sibling list of the subtree being attached.
As was the case for the binary procedures for grafting single objects into a

tree, the n-ary tree procedures build a tree with a single node and pass the tree to
the corresponding overloaded grafting procedure for subtrees. This is illustrated
for the Graft_Child in Listing 6.18. After testing for possible exceptions, it
calls a procedure that prepares a tree with the object and calls the Graft_Child
procedure for subtrees. Note how the procedure captures and reraises exceptions
after recycling the newly recreated subtree space.
When a subtree is pruned from an n-ary tree, a sibling subtree must be

attached at the anchor. If a first child had been pruned, then the next sibling of
that child node must be attached at the first child anchor. Recall that in a binary
tree, pruning always produces a null anchor point. This is not necessarily the
case in an n-ary tree.

6.7 Measurement

Trees present an opportunity for good timings for algorithms that must manipulate
large amounts of data. From a timing viewpoint the reasons for looking at trees
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Listing 6.18. Tree_Binary_Polymorphic_Cntl. Nary body.

in Tree_Type;
in Tree_Type) is
That: in out Holder_Class_Ptr) is

Tree.Anchor.all;
Tree.Anchor.all.Right_Node;
null;

package body Tree_Binary_polymorphic_Cntl.Nary is
procedure Nary_Graft (Object: in out Place_Holder'Class;

Tree : in Tree_Type ) is
New_Node: Holder_Class_Ptr:= new Place_Holder'Class'(Object);
begin -- Nary_Graft
New_Node. Left_Node: = null; New_Node. Right_Node: = Tree.Anchor.all;
Tree.Anchor.all :~ New_Node;

exception
when storage_error => raise Tree_Overflow;

end Nary_Graft;

procedure Nary_Graft (Subtree:
Tree

procedure Rec_Attach (This,
begin -- Rec_Attach
If That = null then
That:= This;
else
Rec_Attach (This, That.Right_Node);

end if;
end Rec_Attach;

begin -- Nary_Graft
if not empty (SubTree) then

Rec_Attach (Tree.Anchor.all, Subtree.Anchor.all.Right_Node);
Tree.Anchor.all Subtree.Anchor.all;
Subtree.Anchor.all:= null;

end if;
end Nary_Graft;

procedure Nary_Prune (Tree in Tree_Type;
Subtree: in out Tree_Type) is

begin -- Nary_Prune
Subtree:= Empty_Tree;
if not Empty (Tree) then
SubTree.Anchor.all
Tree.Anchor.all
Subtree.Anchor.all.Right_Node:=

end if;
end Nary_Prune;

function Child_Subtree (Tree: Tree_Type) return Tree_Type is
Answer: Tree_Type;
begin -- Child_Subtree
return Left_Subtree (Tree);

end Child_Subtree;

function Sibling_Subtree (Tree: Tree_Type) return Tree_Type is
Answer: Tree_Type;
begin -- Sibling_subtree
return Right_Subtree (Tree);

end Sibling_Subtree;

end Tree Binary polymorphic Cntl.Nary;
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may be summarized with the following example: Assume that n data objects
have been organized into a tree structure in such a way that all possible node
positions are filled starting at the root and proceeding down each level of the tree
until all n objects have been placed. Further, objects may be found by starting
at the root node and looking at each node as the tree is traversed down to the
desired node. In this scenario, the timing for an algorithm is of the same order
of magnitude as the length of the path from the root to the desired object. If the
n objects are placed in the tree in the fashion described, then the algorithm search
time is bound by O(log n).
This translates into desirable results such as the following: In a well-organized

tree with a billion nodes, an object may be found in time 0(1,000,000,000),
which is about 30. The next chapter investigates the basic method of organizing
trees and attempting to maintain O(log n) timing for trees with n nodes.

6.8 Explorations

1. Some people may be confused about an n-ary tree being made available as
a child package of a binary tree package.

a. Construct the specifications of a Tree_Nary_Polymorphic_Cntl
package.

b. Construct the body for Tree_Nary_Polymorphic_Cntl by taking full
advantage of the Tree_Binary_Polymorphic_Cntl and its . Nary
child unit.

2. Construct the specifications and body for a Tree_Binary_Pos_
Polymorphic_Cntl. Nary, a positional paradigm n-ary tree support child
package based on the positional paradigm binary tree support package.
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Tree Applications

7.1 Tree Restructuring

7.1.1 Binary Search Trees Revisited

Binary search trees were introduced in Chapter 6. This chapter looks into
variations of binary search trees. One possible set of specifications for a binary
search tree appears in Listing 7.1. These specifications totally encapsulate the
tree; no Tree_Type is made available. The package is instantiated with the
client's Obj ect_Type and a linear ordering function, "<", for Obj ect_Type.
The package defines two objects A and B to be equivalent when

(A < BI = (B < AI.

Equivalent objects are not allowed in binary search trees. Two exceptions are
made visible by the package. No_Match is raised when seeking a particular
object in the Delete procedure, the Copy_Object procedure, and the Exists
functions. The Equivalent_Exists exception is raised when there is an
attempt to Insert an object that is equivalent to an object that already exists in
the tree.
The Exists function returns true if there is an object in the tree that is

equivalent to the function's parameter. The Delete procedure either deletes an
object in the tree that is equivalent to the parameter passed to it or raises the
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Listing 7.1. Binary search tree specifications.

generic
type Object_Type is private;
with function "<" (Left, Right: Object_Type) return boolean;

package Tree_Binary_Search_Pt_En is

Equivalent_Exists: Exception;
No_Match : Exception;

procedure Insert (Object: in

procedure Delete (Object: in

Object_Type) ;

Object_Type) ;

function Copy_Object (The_Match: Object_Type return Object_Type;

function Exists (Object: Object_Type) return boolean;

type Process_Type is access
procedure (Object : in Object_Type;

continue: in out boolean );

procedure Iterate (Process: Process_Type );

No_Match exception. Copy_Object works in a similar fashion. The iterator
passes the objects in the tree one at a time in the order defined by the
instantiating "<" function.
The Insert procedure and the beginning of the body for the binary search

tree package appear in Listing 7.2. The binary search tree package instantiates
a binary tree package, Tree_Binary_Pt_Lpt, with the client's Object_Type.
The_Tree is the Tree_Type used to represent the binary search tree. Note the
function Equivalent that builds a test for equivalence using the instantiating
procedure "<". Equivalence is used throughout the body of the package in
several of the procedures and functions.
The Insert procedure appearing in Listing 7.2 is based on the recursive

binary search tree procedure, Rec_At tach, from the previous chapter. If the tree
is empty, Insert grafts the object to the root. Otherwise, it calls the
Rec_Insert procedure to recursively traverse the tree until an equivalent object
is encountered or until the node is placed. If an equivalent object is encountered,
an exception is raised.
From the viewpoint of abstraction, there is no real difference between the

ordered list package discussed in Chapter 5 and the binary search tree described
here. Both abstractions provide the same services. The decision to choose one
package over the other should be based on the efficiency of the package.
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Listing 7.2. Binary search tree Insert.

package body Tree_Binary_Search_Pt_En is
package My_Tree is new Tree_Binary_Pt_Lpt (Object_Type);
use My_Tree;

function Equivalent (Left, Right: Object_Type) return boolean is
begin -- Equivalent
return ((Left < Right) = (Right < Left»;
end Equivalent;

procedure Insert (Tree: in out Tree_Type;
Data: in integer) is

Continue: boolean:= true;
Arc: Path_Info_Type:= none;
procedure Rec_Insert (Tree: in tree_type;

arc: in out Path_Info_Type) is
begin -- Rec_Insert
if Empty(Tree) then

Graft ((Data, Equal_Balance), Tree);
arc:= none;

elsif Data < Root_Of(Tree).Object then
Rec_Insert (Left_Subtree (Tree) , arc);
- - AVL Code

else
Rec_Insert (Right_Subtree (Tree) , arc);
-- AVL code

end if;
end Rec_Insert;

begin -- Insert
Rec_Insert (Tree, Arc);

end Insert;
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Obviously, a binary tree package uses more space, because of the additional
access type per node. However, the ordered list package has unfavorable timing
characteristics when compared to the potential timing characteristics of a binary
search tree. Specifically, if an ordered list contains n objects, the time to insert
an object is bound by the order of the size of the list, is O(n). However, if the
binary search tree is a full tree with n objects, the time required to access any
object is bound by O(log n). Since there are many applications based on
maintaining objects in a linear ordering, an efficient implementation is desirable.
Inserting or retrieving an object in a binary search tree in O(log n) time is

based on the assumption that the tree is full. A more honest appraisal would be
that the time to insert or seek an object in a binary search tree is bound by

O(Length of longest path in the tree).
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Unfortunately, the Insert procedure does not restructure the tree as new objects
are inserted to keep the length of the longest path in the tree in the range of
O(log n). For example, assume the objects stored in a binary search tree are
integers and they are passed to the Insert procedure in the following order: 45,
57, 53, 70, 94, 87, and 90. The binary search tree that is constructed by the
Insert procedure appears in Figure 7.1. However, if the same values were
entered in a different order, the result might be the tree that appears in Figure 7.2.
The tree in Figure 7.2 is much more desirable than the tree in Figure 7.1. In
general, it is possible to build a tree with n objects and have the longest path in
the tree be O(log n). The length of the longest path bounds the maximum time
required to insert or access an object in the tree.

It is not desirable for the order in which the objects are placed in the structure
to have a serious impact on the timing results of the various procedures in the
package. It would be desirable if the tree could be restructured as nodes are
added so that the timing of all operations would be bound by O(log n) and that
the restructuring procedures themselves do not have serious timing problems. The
restructuring itself must be time-efficient. This result is achieved by modifying
the Insert and Delete procedures for a binary search tree so that when
necessary, the tree is restructured to maintain the length of the longest path close
to O(log n).
A procedure to Delete an object from a binary search tree is left as an

exercise. An object is deleted by promoting its left or right child to the parent's
position in the tree and recursively continuing this process until a node with no
children may be removed from the tree.

45

57

53 70

87

94

90

Figure 7.1. Node placement without restructuring.
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Figure 7.2. Balance tree example.

There are two classical tree restructuring methods, AVL trees and B-trees.
AVL tree restructuring is described in Section 7.1.2, and B-trees are discussed in
Section 7.1.3.

7.1.2 AVL Trees

As stated earlier, the timing for many tree procedures is bound by the length of
the longest path in the tree. Therefore, it is desirable to maintain a tree with n
nodes so that the length of the longest path in the tree is bound by log n,
O(log n). Recall that the longest path from the root to a node in a full tree with
n nodes is O(log n+1). If a binary search tree is almost full, then any node in the
tree may be accessed within O(log n) arc traversals. A desirable situation would
be an automatic tree restructuring system that bounds the length of the longest
path in a tree of n nodes to O(iog n). A tree with this characteristic is called a
height-balanced tree.
There is an efficient height-balancing algorithm called the AVL tree

rebalancing. The AVL algorithm is named after two Russian mathematicians
who discovered the algorithms, G. M. Adelson-Velskii and E. M. Landis. The
AVL algorithm is quite elegant in that it requires the maintenance of a minimum
of additional information with each node and performs each tree restructuring in
a constant amount of time.
Each node in the tree is assigned a height-balancing value equal to the length

of the longest path down its left subtree minus the length of the longest path
down its right subtree. The tree is maintained to keep the height-balance value
in the range -1 .. +1. Therefore, each node is assigned a height-balance value of
+1, 0, or -1, which we indicate with the symbols' +', '=', and '-'. As nodes
are placed into the tree, only the nodes in the path from the root to the newly
placed node need rebalancing. The rebalancing process starts with the newly
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placed node being assigned a balance value of I = I. Other nodes are rebalanced
by traversing up the path from the new node to the root as follows:

1. When the rebalancing algorithm traverses back toward the root along the
left arc of a node, the rebalancing algorithm performs the following
process on the node, depending on its current balance:

'+':

'=':

I _ I.

Restructure the tree as described in the AVL restructuring
algorithm (described ahead) and terminate the rebalancing
process, since no additional nodes need be rebalanced.
Rebalance the node as I + I and traverse to the parent and
continue rebalancing.
Rebalance the node as I = I and terminate the rebalancing
procedure, since no additional nodes need rebalancing.

2. When the rebalancing algorithm traverses back toward the root along the
right arc of a node, the rebalancing algorithm performs the following
process on the node, depending on its current balance:

'+':

'=':

I _ I.

Rebalance the node as I = I and terminate the rebalancing, since
no additional nodes need be rebalanced.
Rebalance the node as I - I and continue the algorithm after
traversing up to the parent.
Restructure the tree as described in the AVL restructuring
algorithm and terminate the rebalancing, since no additional
nodes need be rebalanced.

There are four AVL restructuring cases, which may be viewed as two pairs
of mirror images. They appear in Figure 7.3 and are referred to as the R-R case
(back up a right branch to a node, then a right branch again to the node that
became unbalanced), the L-L case, the R-L case, and the L-R case. The R-R and
L-L cases are mirror images, as are the L-R and R-L cases. This section
discusses the L-L and L-R cases in detail. The R-R and R-L cases are left as
exercises. Note that the four cases refer to the relative position of the newly
attached node with respect to the node that became unbalanced.
There are two advantages to the AVL tree balancing algorithms. First, the

algorithms are fast, as they contain no loops. Second, the effects of rebalancing
are localized. When restructuring occurs, the effects of rebalancing are within the
subtree being rebalanced and no further rebalancing is necessary between the
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Figure 7.3. AVL cases.

location where the rebalancing occurs and the root of the tree.
The L-L rebalancing case appears in Figure 7.4. For an L-L restructuring to

occur, a node is attached to the tree and all the nodes that are in the path back to
the root are rebalanced following the rules described above, until a node with a
, +' balance is encountered. From the viewpoint of the node that became
unbalanced, the newly attached node was down a left subtree, then another left
subtree, as indicated in Figure 7.4. If X is the node that went out of balance and
Y is the left child of X, the nodes are rotated, as indicated in Figure 7.4. Node
Y becomes the new root of the subtree. The repositioning makes X the right child
of Y and the right subtree of Y becomes the left subtree of X.
In the L-L case, both the X and Y nodes become balanced. The rebalancing

is obtained by observing that before the new node was attached, if n is the length
of the longest path in T1, then the longest path in T2 and T) are also n. Note that
the new node might have been attached as the left child of Y, which implies that
n = O. The R-R case is a mirror of this case.
The L-R restructuring case appears in Figure 7.5. In this case, a node with

a "+" balance is about to become unbalanced because the path from X to the
newly attached node traverses down a left branch, then a right branch. This
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Figure 7.4. L-L rebalancing.

rebalancing algorithm focuses on three nodes, labeled X, Y, and Z. Y is the left
child of X, and Z is the right child of Y. The node Z moves up to become the
parent of both X and Y, with Y as its left child and X as its right child.
There are three possible final rebalancings that may be assigned to the nodes

X, Y, and Z. The three cases depend on where the new node had been attached
to the tree, either to Tz, or to T3, or if Z itself was the newly attached node. If n
was the length of the longest path in trees Tz and T3, then the lengths of the
longest paths in T1 and T4 would be n+1. If the new node was attached to Tz then
the new balance for Y is "=". The balance for Z is ' - , , and the balance for X
is '='. The case when the new node is attached to T3 produces balances of '+ I

for Y, '=' for X, and '=' for Z.
The third rebalancing in the L-R case is when Z is the newly attached node.

In this case, trees Tz and T3 are empty. As a result of the restructuring, all three
nodes, X, Y, and Z, have balance '='.

re truclUred

Figure 7.5. L-R case.
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Figure 7.6 illustrates the result of AVL tree balancing on the sequence of data
leading to the tree in Figure 7.1. Figure 7.6 [i] and [ii] show the balancing after
the second and third nodes are attached. In Figure 7.6 [ii], the node whose value
is 45 goes out of balance and leads to an R-L rebalancing. Figure 7.6 [ii]
illustrates the tree after rebalancing. Next, nodes with values 70 and 94 are
attached. As a result, the node with value 57 becomes unbalanced,
Figure 7.6 [iv]. This requires an R-R restructuring, which leads to the
rebalancing in Figure 7.6 [iv]. When the node with the value 87 is attached, the
root, with value 53, becomes unbalanced. An R-R restructuring produces a root
with value 70. When 87 is attached, a restructuring occurs at 53, which places
70 at the root. Finally, as the node with value 90 is attached, the node with value
94 becomes unbalanced, leading to an L-R rebalancing. Figure 7.6 [v] illustrates
the final structure of the tree after all the nodes have been attached and the tree
has been restructured.
The AVL tree Delete procedure must address the issues of node balancing

as it removes a node from the tree. If the deleted node was a terminal node, the
delete process must work its way back up the path to the root rebalancing nodes
in a fashion similar to when nodes are attached.

•
o

~\?~~[1] [ii]-

57
•

53
•

•
57 94
• •

4
•

~
3 ~

~. [iii]

57 45 57 45
• •+

[v]

45

70
•

Figure 7.6. AVL examples.
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If the node is not a terminal node, then the node is replaced by either its left
subtree's rightmost child or its right subtree's leftmost child. The replacement is
given the balance of the deleted node. This process continues until a terminal
node is removed. After that, a rebalancing, as mentioned in the previous
paragraph, is applied starting with the parent of the terminal node. Details of the
design of the algorithm are left as an exercise.
Height-balanced restructuring is a feature that should be included in a binary

search tree package. Using height-balanced restructuring, like AVL tree
balancing, is an implementational detail, hidden from users. This may be
accomplished by storing with each node the necessary balance information. For
example, if the ordered tree package employs the Tree_Search_pt_En package,
the body of the package would include the following declarations to support a
height-balanced tree:

private
type Balance_Type is ('+', '=' '-');
type Tree_Node is
record
Object : Object_Type;
Balance: Balance_Type:= Balanced;

end record;

type Tree_Type is
record
Tree: B_T.Tree_Type;

end record;

The implementation of a binary search tree with AVL tree restructuring is left as
an exercise for the reader. Fundamentally, this is accomplished by first building
four procedures to perform the four restructurings. The next step is modifying
the binary search Insert procedure to perform height-balancing. When the
Insert procedure observes that a node is becoming unbalanced, it calls the
appropriate AVL restructuring algorithm. An additional parameter should be
added to the Rec_Insert procedure to advise the algorithm which restructuring
should occur. This information determines the restructuring algorithm that is to
be used.
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The time required to seek an object in a tree depends on the length of the path
from the root to the object being sought. The AVL tree restructuring guarantees
that the longest path from the node to any leaf is of order O(log n), where n is
the number of nodes in the tree. This directly affects the maximum time required
to access a node. The length of the longest path from the root to all terminal
nodes may be reduced by placing more than one object at each node and allowing
more than two children per node. In particular, if a node contains k objects, the
k objects may be use to distinguish between k+1 children, as indicated in
Figure 7.7.
A tree structure that places more than one object in each node and with

desirable timing characteristics for its algorithms is a B-tree. For each B-tree,
there is a number b that has the following properties:

1. The root contains between I and 2b objects.
2. Every other node contains between b and 2b objects.
3. The number of children of a node is 0 or k+1 where k is the number of
objects in the node.

It should be noted that there are many variations of B-trees, called B· and B+
trees. The description here contains elements of some of these variations.
The restructuring algorithms for B-trees are substantially different than the

AVL restructuring algorithms. As new objects are placed in the tree, the
algorithm shuffles objects between nodes in order to fill a node and its siblings
before attempting to create new nodes. The process of creating new nodes is
called node splitting. When a object cannot be placed in a node because the
node and its siblings are filled, the 2b objects in the node and the new object are
placed in order. The node is split and replaced by two nodes containing b objects
each, with the median object of the 2b+ I objects acting as the parent of the two

~
I 1 1 1 1,,1 1 1r-I-'1-'-1-'1-'1-'-,,'-1-'1'I i1-'---1-'1-'-1-'1-·,-,'--1-'--'11 I I I 1 1·,·1 I 11 I I 1 I, ,I

k+l
Figure 7.7. K objects per node with k+l children.
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new nodes. An attempt is then made to place the median object and its two
children into the tree.
There are three basic node insertions cases:

I.. If there is room in the node or in one of its siblings, the object is inserted
without any node splitting. If the available space is not in the node, but
in one of its siblings, objects are shuffled, as indicated in Figure 7.8, to
make room for the insertion.

Iz. If an object is to be inserted in a node other than the root and the node
is full, the node is split, as illustrated in Figure 7.9. This may cause
additional node splitting further up the tree.

13, If a object is to be inserted in the root node and the node is full, the node
is split, as illustrated in Figure 7.9, and the median object becomes the
only value in the new root of the tree.

Before a node is split, all of its siblings must be filled. This increases the
utilization of space. Consider the scenario illustrated in Figure 7.8. The number
77 should be placed in the third child node, but no space is available in that node.
The only space is in the third node. As a result, values are shuffled across the
children and to and from the parent node to maintain the tree's order and to
provide space for placing the new value, 77, which is then inserted.
Consider a B-tree with b = 2. Figure 7.9 illustrates a node split that occurs

in the root of the B-tree. Since the object with value 18 cannot fit into the node,
that object, along with the four other objects, are ordered according to their
values. When the five objects are placed in order, the object with value 26 is the

Figure 7.8. Shuffling nodes in a B·tree.
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18 -..
~ becomes

r-=-,-----,----,---,

Figure 7.9. Simple node splitting example.

middle object. It becomes the lone object in the node, and the node is given two
child nodes. The left node contains the two objects with values smaller than 26
and the right child node contains the two objects with values greater than 26.
Figure 7.10 illustrates node splitting when it does not occur at the root. In

this case, the object with value 60 must be inserted in the second child of the
root. That node is full; therefore, it is split. When the split occurs, the object
with value 53 is promoted to the root.
Sometimes, when an object is promoted to its parent node, that node may

become full. In this case, the process of node splitting is repeated, and the
repetition continues up the tree as necessary to maintain the tree as a B-tree.
Figure 7.11 illustrates a ripple effect of node splitting. When an object with

value 37 is added to the node, the node is split. 37 is the value of the median
object that is promoted to its parent. But the parent node must be split, and the
object with value 53 is the median value, which is promoted. However, there is
no parent; hence 53 become the lone value in the new root of the B-tree.
Just as there are three possible cases for inserting values into a B-tree, there

are three cases that must be considered for deleting nodes from a B-tree. These
three cases mirror the three insertion cases. Elaborating these cases is left as an
exercise for the reader.

2653

~--~:;/;> "'"
7 18 20 2 31 4- '-:6:::"o-=-n=---
-~ -------

60~ -26-:----;---,

/'"[jj812o 2s1 31 455377

Figure 7.10. Node split with promotion example.
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Figure 7.11. Value promotion ripple effect.

Figure 7.12 illustrates a deletion case. The node with value 45 is to be
removed. The node containing this value has a sibling with more than b = 2

rerno lie

available

53

Figure 7.12. B-tree node deletion, case D2.i.
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values. The node whose value is 20 is promoted to replace the node with value
26 in its parent node. The node with value 26 is demoted so that the node with
value 31 may be promoted. Finally, the node with value 37 is demoted to satisfy
the requirement that the node contain b objects.
Figure 7.13 illustrates another B-tree deletion that requires several actions in

order to maintain the B-tree. If the object with value 86 is to be deleted, since
its node and all of its siblings have exactly b values, the node is combined with
one of its siblings and the corresponding intermediate value from the parent node.
As a result, the parent node must now be processed to maintain the B-tree node
requirements. Since the lone sibling of this node has b values, a further reduction
of the tree occurs. As a result, three nodes are combined into one, forming a new
root.
Developing a B-tree package is left as an exercise for the reader. The

specifications for a B-tree package are basically the same as those for a binary

0"'''­
~--r.:~:'T"'""""''L-<..''-(:'

Figure 7.13. B-tree complex node deletion.
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search tree but with the additional parameter, B, that controls the number of
objects per node:

generic
type Object_Type is private;
with function n<n (Left, Right: Object_Type)

return boolean;
B: integer:= 4;

package B_Tree_Pt_En is

Listing 7.3 illustrates part of the body of the B-tree based on using the
Tree_Nary_Pt_Lpt package. The package defines a B_Node as a record with
two components, the count of the number of objects actually in the node and an
array that may contain up to 2*B objects.

If a node contains k objects, the package must maintain the tree in a way that
the node must have k+1 child nodes. The objects in the node appear in the order
defined by the instantiating ordering function. The objects in the ith child of a
node are all less than the ith object in a node, which, in tum, is less than all the
objects in the i+1st child node. A B-tree package includes an iterator that
traverses the values in a B-tree in order according to the linear ordering of the
objects in the nodes. The heart of this algorithm is a depth-first tree search that
passes the objects in each node to the client's process. There should also be a
second iterator that traverses down the tree to a specified object until either it
reaches the left or right end of the tree or the instantiating process tells it to stop.

Listing 7.3. B-tree package specifications.

subtype B_Array_Range
type B_Array_Type
type B_Node
record
Actual_Number:
Object

end record;

is positive range 1 .. 2*B;
is array (B_Array_Range) of Object_Type;
is

natural: = 0;
B_Array_Type;

package My_Tree is new Tree_Nary_Pt_Lpt (B_Node);
use My_Tree;
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Listing 7.4. B-Tree declarations based on access types.

type B_Node;
type B_Node_ptr is access B_Node;

0;

is positive range 1 .. 2*B;
is positive range 0 .. 2*B;
is array (B_Array_Range) of Object_Type;
is array (X_B_Array_Range) of B_Node_Ptr;
is

natural
B_Array_Type;
B_Ptr_Array_Type:= (others ~> null);

subtype B_Array_Range
subtype X_B_Array_Range
type B_Array_Type
type B_Ptr_Array_Type
type B_Node
record
Actual_Number:
Object
Child

end record;

Listing 7.4 contains a second set of declarations for building a B-tree
package. This set is based on the direct use of access types. In this specification,
each node contains three components, the actual count of the number of objects,
an array of objects, and an array of access types to the children of the node.
Basing the body on the declarations in Listing 7.3 or 7.4 is more a matter of
preference. However, there are some efficiencies to be achieved by directly using
access types, as described in Listing 7.4. Building packages, based on each set
of declarations, and a comparative analysis of these packages is left as an exercise
for the reader.

7.2 Heaps

Binary search trees, AVL trees, and B-trees are all based on an ordering
relationship, "<", between nodes such that, given a node, its left child, and its
right child,

Left_Child < Parent

and

Parent < Right_Child



234 7 Tree Applications

Another important ordering relationship between a node and its children is the
linear ordering relationship

Parent >= all children

This parent-child relationship helps maintain a structure called a heap. A heap
is a complete tree satisfying the parent-child order relationship, II >= II ,

Parent >= Child

for all children.
Figure 7.14 illustrates a heap of integers with the parent-child relationship,

II>= ". The subscript on each node indicates the position of the nodes in the array
that would contain the heap.
There are two fundamental operations on a heap, removing the root and

inserting a new node. When a new node is inserted, it must be placed in such a
way as to maintain the parent-child order relationship. When the root is
removed, the other nodes must be reset in the tree to maintain the parent/child
order relationship. If a heap contains n objects, each operation may be performed
in time O(log n).
The algorithm for inserting a new node into a heap is called the sift-up

algorithm. The algorithm for removing the root of a heap and reorganizing the
remaining nodes is called the sift-down algorithm. To illustrate the sift-up
process, consider the heap in Figure 7.15. The heap is based on the parent-child
relationship, II >= ". A new node, 87, is attached to the heap at the first available
location. The newly attached node does not satisfy the heap ordering relationship.
This node is sifted up the tree until the parent-child relationship is satisfied.
When a new node does not satisfy the parent-child relationship, it is swapped

1

91

2 3
80 75

6 7

12 53

Figure 7.14. A sample heap.
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53

91

(i)

91

6

Figure 7.15. Heap sift-up process.
with its parent, sifting up the node in question. This process continues until the
parent-child relationship is satisfied.
The sift-down process is illustrated in Figure 7.16. The root has been

removed from the heap. To replace the root, the last node is removed from its
location and viewed as a potential candidate for the root. However, if the root
is attached, the heap relationship is not satisfied. The sift-down process deter­
mines whether the candidate, 24 in this example, or one of the children of the
root should be promoted. If a child is promoted, the promotion opens up a vacant
location and an attempt is made to place the candidate in the vacated position,
This comparison and promotion of the "larger" child continues until the candidate
is positioned in the tree at a location where the heap condition is satisfied.
The specifications for a package that supports heaps appear in Listing 7.5.

The heap is instantiated with the Obj ect_Type and the ">=" relationship. Note
that heaps are made visible as a private type with a discriminant. A user
determines the maximum size of a heap with the discriminant when a heap is
declared:

Figure 7.16. Heap sift-down example.
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Listing 7.5. Heap_Pt_Pt specifications.

generic
type Object_Type is private;
with function ">=" ( Parent, Child: Object_Type) return boolean;

package Heap_pt_pt is

type Heap_Type (Max_Size: positive) is private;

Empty_Heap, Heap_Overflow: exception;

procedure Insert (The_Heap : in out Heap_Type;
The_Object: in Object_Type);

-- Pre Cond : Size_Of (The_Heap) < The_Heap.Max_Heap_Size
-- Post Condo The_Object is sifted into The_Heap
-- Exception: Heap_Overflow

procedure Remove_Root (The_Heap : in out Heap_Type;
The_Object: out Object_Type );

-- Pre Cond : The_Heap is not empty
-- Exception: Empty_Heap.

function Is_Empty ( The_Heap: Heap_Type) return boolean;

function No_Of_Objects ( The_Heap: Heap_Type) return natural;

function Are_Equal (Heap_I, Heap_2: Heap_Type) return boolean;

private
type Heap_array is array (positive range <» of Object_Type;
type Heap_Type (Max_Size: positive:- 50) is
record
Size: natural:= 0;
Data: Heap_Array (1 " Max_Size);

end record;

The fundamental procedures in the package are the Insert procedure, which
places a new node in the heap, and the Remove_Root procedure, which removes
the root of the heap and reorganizes the heap using the sift-down process. The
Insert procedure uses the sift-up process to insert a new value in the heap.
Since a static data structure represents a heap, the heap is represented as a

record containing two components. The first component maintains the count of
the actual number of objects in the heap. The second component is an array that
contains the objects in the heap. The heap could be made visible as a private,
limited private, or controlled type, depending on the client's needs.
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Listing 7.6. Heap Insert procedure.

procedure Insert (Heap : in out Heap_Type;
Object: in out Object_Type) is

Parent: natural:= (Heap. Size + 1) / 2;
Child: natural:= Heap.Size + 1;
begin
if Heap.Size = Heap.Max_Size then
raise Heap_Overflow;
else
Heap.Size:= Heap.Size + 1;
while (Parent> 0) and then

not «Heap.Data(Parent) >= Object» loop
Swap (Heap.Data(Parent), Heap.Data (Child»;
Child := Parent;
Parent:= Parent / 2;

end loop;
Swap (Object, Heap.Data(Child) );

end if;
end Insert;
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The Insert procedure for heaps appears in Listing 7.6. The procedure
begins by testing for possible overflow and then proceeds with the sift-up process.
The index Child is set to where the new node has been placed. Parent
indicates the location of the parent node of that position. The loop compares the
object at the Parent location against the new object. If the parent-child
relationship is not satisfied, the object at the Parent location is swapped with the
object being sifted up from the Child location and the looping process continues
until a location is found where the new object satisfies the parent-child
relationship. Once a location is found, the loop terminates.
The time required to perform the Insert procedure is bound by the length

of the longest path from the root to any node. In a complete tree that is bound
by O(log n), hence the worst-case time for the Insert procedure, and the sift-up
algorithm contained within, is O(log n).
The Remove_Root procedure is more complex. It contains the sift-down

process. The algorithm, which appears in Listing 7.7, performs as follows. First,
the procedure tests for a potential exception, an Empty_Heap. The object at the
root, The_Heap. Data (1), is placed in the procedure's out parameter. The size
of the heap is reduced. If the heap has become empty, the sift-down process is
not performed.

In preparation for the sift-down process, the last node is pruned from the heap
and placed in Candidate. With the root empty and Candidate playing the role
of the object that is to be sifted down the heap, the procedure calls the
S i f t_Down process.
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Listing 7.7. Heap Remove_Node procedure.

procedure Remove_Root (The_Heap in out Heap_Type;
The_Object: out Object_Type) is

Candidate: Object_Type;
procedure Sift_Down (The_Heap in out Heap_Type;

The_Object: in Object_Type) is
Parent : positive:= 1;
Child : positive;
continue: boolean := true;
begin -- Sift_Down
while Continue loop
Child:= 2*Parent;
if Child> The_Heap.Size then
Continue:= false;
else
if «Child+l) <= The_Heap.Size) and then

The_Heap.Data(Child+l) >= The_Heap.Data(Child) then
Child:= Child+l;

end if;
if The_Object >= The_Heap.Data(Child) then
continue:= false;
else
The_Heap.Data(Parent):= The_Heap.Data(Child);
Parent:= Child;

end if;
end if;

end loop;
The_Heap.Data (Parent):= The_Object;

end Sift_Down;

begin -- Remove_Root
if The_Heap.Size = 0 then
raise Empty_Heap;
else
The_Object := The_Heap.Data (1);
Candidate := The_Heap.Data (The_Heap.Size);
The_Heap.Size:= The_Heap.Size - 1;
if The_Heap.Size /= 0 then

sift_Down (The_Heap, Candidate);
end if;

end if;
end Remove_Root;

The difficulty in the Sift_Down procedure is that the algorithm must
compare the new object with the larger of the two children of the vacant node in
the heap. Also, each time through the algorithm's loop, the algorithm must
determine if the vacant node has two, one, or no children. The combination of
the number of child nodes of the vacant node and the relative values of the child
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nodes leads to the collection of if -else structures. Let's work our way through
the maze of conditions that are tested in the loop. First,

if Child> The_Heap.Size then
Continue:= false;

detennines if the vacant node has any children. If not, the loop is tenninated.
Next, the procedure tests a pair of conditions. The first condition detennines if
there are two children. If there are two children, a second test must be made to
detennine if the second child is larger. As a result,

if «Child+l) <= The_Heap.Size) and then
The_Heap.Data(Child+l) >= The_Heap.Data(Child) then
Child: = Child+1;

end if;

the parameter Child points to the larger of the two children of the vacant node
At this point, The_Obj ect is compared to the larger child,

if The_Object >= The_Heap.Data(Child) then
Continue:= false;

else
The_Heap.Data(Parent):= The_Heap.Data(Child);
Parent:= Child;

end if;

which tenninates the loop, if The_Obj ect is ">=", or else the larger child is
promoted to the parent position and the algorithm resets Parent to prepare for
the next loop iteration.
When the loop tenninates, the algorithm places The_Obj ect, guaranteeing

that the heap condition is satisfied. In the worst-case timing scenario for the
Sift_Down procedure, the number of loop iterations is bound by the length of
the longest path from the root to any node. The longest path in a complete tree
with n nodes is O(log n); hence, the time to perfonn the sift-down procedure is
bound by O(log n).

7.2.1 Heapsort

The best possible sort time for an arbitrary array of n objects in time O(n log n).
One sort that satisfies this timing is the heapsort. The heapsort uses the ordered
heap's sift-up and sift-down algorithms to obtain O(n log n) timing.
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The sort has two distinct phases that correspond to multiple applications of
the sift-up and sift-down algorithms. An array of numbers may be viewed as a
complete tree. The complete tree must be reorganized to form a heap. The
reorganization of the complete tree into a heap is accomplished with n-l
applications of the sift-up process. Figure 7.17 illustrates an array, its
corresponding view as a tree and the tree after the sifting process.
The sift-up algorithm is composed of a pair of nested loops. If the array

contained n objects, since the sift algorithm processes all nodes in the tree except
the root node, the outer loop iterates n-l times. The inner loop performs the sift­
up process on the ith node, for i in 2..n. The number of iterations of the sift-up
algorithm is bound by the size of the path from the node to the root, which is
bound by log(n). Hence the entire sift-up algorithm is bound by O(n log(n)).
Since the heap uses the complement of the desired sort ordering, the root of the
heap is the number that belongs in the nth array location. When the root is
removed, a sift-down process is applied and the item removed from the root may
now be placed in the nth location of the array, which became vacant.
Once the heap has been ordered, the second phase does the following, as

illustrated in Figure 7.18. The last node in the heap is removed. In the array,
this equates to vacating the position in the array where the root should eventually
be placed when the objects in the array are ordered. Next, the object in the root
is placed in that position. The object that was removed from the array is now
used in the sift-down process. This process repeats until the entire tree is
processed. As a result, the array is ordered.
The sift-down phase of the heapsort contains a nested pair of loops. The

outer loop iterates n-l times, and the inner loop iteration is bound by the length
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of the longest path in the tree, log(n). Therefore, the timing of the second phase
is also bound by O(n log(n)).
Specifications for a generic heapsort procedure appear in Listing 7.8. The

procedure is instantiated with an Ob j ect_Type and an unconstrained array type
containing the Obj ect_Type. It is also instantiated with a linear ordering
function for the objects in the array. Note that since the heapsort uses the array

Listing 7.8. Generic heapsort specifications.

generic
type Object_Type is private;
type Object_Array is array (natural range <» of Object_Type;
with function "<" (Left. Right: Object_Type) return boolean;

procedure Heap_Sort (Item: in out Object_Array);

Precondition :

Postcondition:

Side Effects :
Exceptions

Objects are placed in array positions indexed by
Item (first .. Last_Index)
Item'first = 1
Objects are ordered according to the order
indicated by the collating function "<"
(None)
constraint error if Item'first /= 1
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Listing 7.9. Generic heapsort body.

procedure Heap_Sort (Item: in out Object_Array) is
Last_Index: natural:= Item'last;
function U>=" (Left, Right: Object_Type) return boolean is
begin
return not (Left < Right);

end ">=";

procedure Order_Heap is
Outer, Child, Parent: natural;
Extra: Object_Type;
begin -- Order_Heap
for Outer in 2 .. Last_Index loop

Child:~ Outer;
Parent:= Child / 2;
while (Parent /= 0) and then (Item(Parent) < Item(Child» loop
Extra := Item (Child);
Item (Child) := Item (Parent);
Item (Parent):= Extra;
Child := Parent;
Parent:= Child / 2;

end loop;
end loop;

end Order_Heap;

procedure Sort_The_Array is
Fill_Position: natural; The_Key: Object_Type;
procedure Sift_Down (The_Heap : in out Object_Array;

The_Object: in Object_Type is
Parent: positive:- 1; Child: positive;
Continue: boolean := true;
begin -- Sift_Down
while Continue loop
Child:- 2*Parent;
if Child> The_Heap'range'last then
Continue:= false;
else
if «Child+l) <= The_Heap'range'last)

and then The_Heap (Child+l) >= The_Heap(Child) then
child:~ Child+l;

end if;
if The_Object >= The_Heap(Child) then
Continue:= false;
else
The_Heap(Parent):= The_Heap(Child);
Parent:= Child;

end if;
end if;

end loop;
The_Heap (Parent):= The_Object;

end Sift_Down;
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Listing 7.9. Generic heapsort body (cont.)

begin -- Sort_The_Array
for Fill_Position in reverse 2 .. Last_Index loop
The_Key:= Item (Fill_Position);
Item (Fill_Position):= Item (1);
Sift_Down (Item (1 .. Fill_Position-l), The_Key);

end loop;
end Sort_The_Array;

begin -- Heap_Sort;
if Item'first /~ 1 then
raise constraint_error;

end if;
Order_Heap;
Sort_The_Array;

end Heap_Sort;
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indices to form the array representation of a complete tree, the constrained array
must be over a range starting with index 1.
The heapsort body appears in Listing 7.9. The procedure is composed of two

algorithms. The first procedure, Order_Heap, views the array as a complete tree
and uses the complement of the linear ordering to convert the complete tree into
a heap. This is accomplished through application of the sift-up procedure at each
node.
The second procedure, Sort_The_Array, appears in Listing 7.9. Each time

through the outer loop in this procedure, the size of the heap is reduced by
removing the last object in the heap and placing it in The_Key. The object at the
root of the heap is placed into the vacated position. The remainder of the array
and The_Key are processed with the Sift_Down procedure.
The Sift_Down procedure in Sort_The_Array is fundamentally the same

as the Sift_Down procedure that appears in Listing 7.7. Since both the sift-up
and sift-down procedures perform in time O(log n) and each is called n-l times,
the total time for the heapsort algorithm is O(n log n).

7.2.2 Priority Queues

A priority queue is a structure for storing and retrieving information. The
structure is queuelike in that objects are retrieved from the structure by a dequeue
operation, which removes objects from the front of the priority queue. However,
each object is placed in a priority queue according to a user-assigned priority
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value. If "<" is the linear ordering for a priority queue (0/, 02' ... , On)' then

for any two objects OJ and Ok' if i < k, then 0; ~ Ok'
At first glance, a list seems to be an appropriate structure for representing a

priority queue. In fact, the ordered list package could be used with the queue's
priority forming the list's order. One potential problem with using a list to
represent a priority queue is that the enqueuing procedure contains a loop and the
timing of that loop is bound by the size of the list, O(n), where n is the number
of objects in the priority queue. An alternative would be to store the objects in
a binary tree. If the nodes in the binary tree are height-balanced, the time
required to place an object in a priority queue would be bound by O(log n),
where n is the number of objects in the priority queue. This is a much more
desirable result.
Heaps are an ideal structure for representing priority queues. In fact, very

little must be done to a heap's package to represent a priority queue. The
procedures made visible in the heap specification are ideal for building a priority
queue package.

Listing 7.10 contains the specifications for a priority queue. The package
has three instantiation parameters. The instantiation parameters are the client's
Obj ect_Type and an ordering function, "<". The package uses the linear
ordering to order the objects in the priority queue. The priority of the objects at
the front of the queue are "<" the priority of the objects at the rear of the queue.

7.2.3 Huffman Coding

In some applications a variable-length coding for characters reduces storage
requirements. One method of reducing the size of text uses the relative
frequencies of characters. Variable-length codes assign small code sequences to
letters that occur more frequently and longer codes to letters that occur less
frequently.

If a variable-length coding scheme is to have good timing characteristics,
O(length of the string), one obvious requirement is that the code for any character
may not be a prefix of the code for any other character. If one code was a prefix
to another, it would be difficult to determine which symbol is being represented.

Huffman coding is a method of developing, encoding, and decoding variable­
length codes that are encoded and decoded in linear time. It should be noted that
many data compression techniques are based on Huffman coding methods.
Huffman coding assumes the existence of information about the relative frequency
of characters. A Huffman code is created from a binary tree that is constructed
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Listing 7.10. Priority queue specifications.

with Heap_Pt_Pt;
generic
type Object_Type is private;
type Priority_Type is «»;
with function "<" (Left, Right: Priority_Type) return boolean;

package PrioritY_Oueue_Pt_Pt is

type PO_Type (Max_Size: positive:= 50) is private;

Empty_PO, PO_Overflow: exception;

procedure Enq Object in Object_Type;
Priority: in Priority_Type;
Oueue : in out PO_Type );

Procedure Deq ( Oueue : in out PO_Type;
Object: out Object_Type );

function Is_Empty (Queue: PQ_Type) return boolean;

function O_Size (Queue: PO_Type) return positive;

private
type Heap_Node is
record
Object : Object_Type;
Priority: priority_Type;

end record;
function "<" (Left, Right: Heap_Node) return boolean;

type pQ_Type (Max_Size: positive:= 50) is
record
Actual: MY_PO.Heap_Type (Max_Size);

end record;
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from the frequency information. The binary tree is constructed with the help of
a priority queue. It should be noted that Huffman codes are not unique, in that
through slight variations of the construction method, several different binary trees
could be constructed. Also, given the final binary tree, several codes could be
generated from the tree.
Figure 7.19 contains a frequency listing for seven characters. A priority

queue of binary trees is constructed from the data, as illustrated in Figure 7.19 a.
The frequencies of the characters are used as the priority, but with a "<" ordering.
That is, lower frequency is placed at the front of the queue, with higher
frequencies to the rear. The trees at the front of the queue are dequeued, and a
new binary tree is constructed. The new binary tree is constructed by grafting the
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two dequeued trees as the left and right subtrees of its root. The priority for the
newly constructed tree is the sum of the priorities of the two subtrees. The
dequeuing, combining, and requeuing results appear in Figure 7.19 b-f.
This process produces a single binary tree, which appears in Figure 7.19. It

should be noted, as stated previously, that the tree produced by this process is not
unique. Specifically, at any point in the process, interchanging the order of two
trees of equal priority in the priority queue results in a different tree.
Once the tree is formed, zeros and ones are assigned to the branches in the

tree. The zeros and ones may be assigned in any order, just as long as each arc
in a pair of child arcs is assigned two different values, one with a zero, the other
with a one. Since there are many possible assignments of zeros and ones to arcs,
the resulting Huffman code is not unique.
Given the binary tree with the zero-one assignments, the Huffman code

corresponding to the tree is obtained by transcribing the sequence of zeros and
ones on the path to each terminal node. Figure 7.19 lists the Huffman code
generated by the binary tree. The Huffman code has the distinct advantage that
the code for any symbol is never the prefix of the code for another symbol. This
means that the time to decode a symbol is O(length of symbol's encoding).
Huffman coding requires three components, one to create a Huffman code,

one to encode a string to a Huffman coding, and one to decode the Huffman
coding. The processes involved in building a system to generate Huffman codes
is described above. Building the coding and decoding components are left as an
exercise.
The message encoder simply replaces each letter by its Huffman coding. The

decode component is handled most efficiently in a binary tree, a reconstruction
of the tree used to create the coding. Two exercise problems suggest methods of
building Huffman decoders.

7.3 Dictionary Trees

When processing strings of characters it is desirable to have a method of quickly
comparing two strings to see if they match. A tree structure may store strings in
a fashion that makes it easy to perform string matching in time O(string length).
This type of tree is referred to as a dictionary tree.
Figure 7.20 illustrates a dictionary tree containing the words ABLE, BAKER,

CHARLIE, BAKE, BAT, QUICK, and QUIZ. The words are stored in an n-ary tree
with the first letter of each word appearing in a child node of the root. The nodes
at the ends of words are marked with an '* I. To determine if a word is in the
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Figure 7.20. Example of a dictionary tree.

tree, a letter- by-letter match is perfonned as the word is processed against the
words in the tree. Words are added to the tree by correctly linking additional
nodes to the tree. Sometimes, all the letters in the word must be added, while
other times only a few letters need to be added. For example, to add QUIT to the
tree in Figure 7.20, only a node containing a 'T' need be added as a child node
of the node containing the 'I' in the path 'Q', 'U', and 'I'.

A procedure that creates and prints a dictionary tree appears in Listing 7.11.
The package instantiates the n-ary tree package with a record that contains a
character and an end-of-word mark, EoW. The mark is set to true when the
corresponding character is the last character in a word.

7.4 Explorations

1. Complete and test a binary search tree package.
2. Rewrite the body of the binary search tree package to include AVL tree
restructuring algorithms using the positional paradigm. This may be
accomplished in the following manner:

a. Build and test a procedure AVL_L_L that perfonns restructuring for the
AVL L-L rebalancing case.
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Listing 7.11. Dictionary tree example.
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string;
Tree_Type) is

with tree_nary_pt_lpt, text_io;
procedure Dictionary is
package tio renames text_io;

type Node is
record
Symbol: character:= ' ';
EoW : boolean := false;

end record;
package tre is new tree_nary_pt_lpt (Node);
use tre;

Tree: Tree_Type;
Word_File: tio.File_Type;
Word: string (1 .. 80);
W_Size: natural;

procedure Place (Str : in
Tree: in

begin -- Place
if Empty (Tree) or else Str(Str'First) <= Root_Of(Tree).Symbol then
if Empty (Tree) or else Str(Str'First) < Root_Of (Tree) . Symbol then
Graft «Str(Str'First), false), Tree);

end if;
if Str'First = Str'Last then

Update_Root (Tree, (Str(Str'First),true»;
else
Place (Str(str'First+l .. Str'Last), Child_Subtree(Tree»;

end if;
else
Place (Str, Sibling_Subtree(Tree»;

end if;
end Place;

procedure List_words (Tree: in Tree_Type; Str: in string) is
begin -- List_Words
if not Empty (Tree) then
if Root_Of(Tree) .EoW then
tio.Put (Str & Root_Of (Tree) .symbol); tio.New_Line;

end if;
List_Words (Child_Subtree(Tree) , Str & Root_Of(Tree).Symbol);
List_Words (Sibling_Subtree(Tree) , Str);

end if;
end List_Words;

begin -- Dictionary
Initialize (Tree);
tio.Open (Word_File, tio.in_file, "words.dat");
while not tio.End_Of_File (Word_File) loop
tio.Get_Line (Word_File, Word, W_Size);
Place (Word(l .. W_Size), Tree);

end loop;
tio.Close (Word_File);
List_Words (Tree, "");
Finalize (Tree);

end Dictionary;
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b. Build and test a procedure AVL_L_R that perfonns restructuring for the
AVL L-R rebalancing case.

c. Build and test a procedure AVL_R_R that perfonns restructuring for the
AVL R-R rebalancing case.

d. Build and test a procedure AVL_R_L that perfonns restructuring for the
AVL R-L rebalancing case.

e. Modify the binary tree Insert procedure to include AVL balancing and
have this procedure calI the appropriate restructuring procedure as needed.

3. Rewrite the body of the binary search tree package to include AVL tree
restructuring algorithms using the recursive paradigm. FolIow the steps in
Exercise 2.

4. Build and test a B-tree package based on the use of the Tree_Nary_Pt_Lpt

package illustrated in Listing 7.3.
5. Build and test a B-tree package based on the use of the Tree_Nary_Pt_Lpt

package illustrated in Listing 7.4.
6. Complete and test a priority queue package based on heaps.
7. Build and test a procedure that accepts a series of symbols and their relative
weights and builds a Huffman coding for those symbols.

8. Build and test a system that accepts a Huffman coding for a set of symbols,
accepts strings composed of those symbols, and generates the encodings of
the strings.

9. Build and test a system that accepts the Huffman coding of a set of symbols
and accepts strings of zeros and ones and decodes them using a binary tree
representation of the Huffman codes.

10. Complete and test a dictionary tree package.
11. Given a set of delimiters, a concordance listing of a text file is a list of alI
strings separated by delimiters in the text file. The listing indicates the string
and the sequence number of alI the records that contain that string. Build and
test a concordance listing system based on the dictionary tree package.

12. Develop the preconditions, postconditions, and invariants for the heap
Sift_Down and Sift_Up procedures.

13. Perfonn a comparative analysis of a B-tree package based on the
specifications in Listings 7.3 and 7.4, paying particular attention to space
requirements and algorithm timings.

14. A trie is an alternative to an n-ary tree when there is a predetennined number
of child nodes. Research a trie, create specifications, and detennine if a trie
construction may be efficiently based on an existing binary tree package.
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Graphs

8.1 Graphs and Digraphs

A graph, G, is an ordered pair of sets, G = (N, A). The set N is a finite set,
called the set of nodes,

The finite set A, called the set of arcs, is a set of pairs of objects from N,

where for each i, Q j = {np , nJ. Figure 8.1 illustrates a simple graph with 6 nodes
and 12 arcs. Observe from the figure that two arcs may contain the same pair of
nodes. Also, note that an arc may contain the same node twice. The multiplicity
of a node in a graph is the count of the number of times the node appears in the
definitions of arcs. In Figure 8.1, the multiplicity of node 2 is four, not three.
The multiplicity of node 6 is five.
A path in a graph between two nodes, u and v, is a sequence of arcs
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if and only if U EP I , VEPd , hinpi#0 for all i in 15:i<d, and for the sequence
of sets Qo' QI' . . . , Qd defined by

Qo = {u},

Qj=pj-Qi-l for i, 15:i<d,

Qd = {v} and each Qi contains exactly one element. Simply stated, a path is a
sequence of arcs that links two nodes by starting at one of the nodes and
traversing from node to node by following arcs until the second node is reached.
For example, the sequence of arcs

{a, b, c, j}

is a path between node I and node 6. However, the sequence of arcs,

{a. b. j}

is not a path between node I and node 6. A path may traverse one or more arcs
several times. A path may also pass through a node several times. For example,
the sequence of arcs

{a, e, f, f, f, b. i, j, c}

is a path between node 5 and node 3.
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The length of a path is the number of arcs in the sequence. In determining
the length of a path, each arc is counted each time it appears in the path. A cycle
is a path from a node to itself. For example, the arc sequence

{a, h, C, d, e}

is a cycle from node 1 to itself. {j} is also a cycle.
Paths play a fundamental role in the manipulation and use of graphs. A

simple path is a path that does not properly contain any cycles. Frequently, the
distance between two nodes is defined as the minimum length of all paths
between the nodes, where length is an application-dependent value that may be
assigned to each arc. Two nodes in a graph are said to be connected if a path
exists between them.

A graph Gs = (Ns' A) is a subgraph of a graph G = (N, A) if Nsc;;;,N and

As c;;;, A. A Euler path is a path in a graph, if such a path exists, that traverses
each arc once. A Hamiltonian path is a path in a graph that traverses each node
once. Similarly, Euler cycles and Hamiltonian cycles may be defined. There is
a simple method of determining if a graph has a Eulerian path. No such simple
method exists for determining the existence of Hamiltonian paths. There are
several exercise problems elaborating on classical graph problems.
Figure 8.2 illustrates a directed graph, also called a digraph. A digraph is

similar to a graph except that the arcs are defined as ordered pairs, hence giving
each arc direction. Formally, a digraph, D, is an ordered pair of sets (N, A). The
set N, as with a graph, is a finite set called the set of nodes. The finite set A,
called the set of arcs, is a set of ordered pairs of objects from N,

Figure 8.2. A sample digraph.
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where for each i, ai = (np, nq). All graph concepts, like path and cycle, may be
extended from graphs to digraphs. The extension of these terms must take into
account the direction of arcs. For example, in Figure 8.2, arc a is a path of
length one from node A to node B, but not a path from node B to node A. All
paths in a digraph must follow the arc directions from one node to the next.
Each graph may be represented by a digraph simply by representing each arc

in the graph with a pair of arcs in the digraph. Therefore, digraphs may represent
graphs. For this reason, this chapter discusses the representation of digraphs. It
is desirable to have a package to represent digraphs that has sufficient features to
apply to a large variety of graph and digraph applications. However, the great
range of potential graph applications leads to a variety of representation methods
depending on whether an application deals simply with connectivity concerns or
with more complex relationships between arcs and nodes.
Many graph applications involve not just representing graphs, but using other

data objects in the analysis of the graph. Some graph problems involve
constructing a tree as part of the analysis of the graph application and, often,
using a third structure to assist in developing the tree. Often, the tree that is built
is a subgraph of the digraph, called a spanning tree. A spanning tree T of a
digraph G, G = (N, A), if T is a subgraph Gs' Gs= (Ns' As), N =Ns and Gs is a
tree.

8.2 Digraph Specifications

Since a digraph is a fairly complex structure, a number of issues arise regarding
the structure of a digraph support packages. Three object types come together to
define a digraph, a node type, an arc type, and a digraph type. For example,
sometimes the node type may be represented as the subrange of some discrete
type. For example, the nodes might simply be referred to as nodes numbered 1
through n, where n is the number of nodes in the digraph. Other times nodes
may be identified with a label, or name. Typically, the name might be a string
of characters. Because of the large variety of applications for digraphs, it is
common to have several digraph packages, each supporting the fundamental
digraph operations, but allowing a variety of instantiations.
A digraph package must make object types available, like Digraph_Type,

Node_Type, and Arc_Type, as well as the constructors, observers, and iterators
that assist users in building, maintaining, and gaining information about the graph,
its contents, and structure. All digraph packages must include two fundamental
operations, a constructor, Add_Arc, to attach an arc from one node to another,
and an observer, Arc_Exists, to determine if an arc exists from one node to
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Listing 8.1. Digraph specifications.

generic
type Node_Label_Type is private;
type Node_Data_Type is private;
type Arc_Data_Type is private;
-- Max_No_Nodes is natural; -- FOR STATIC REPRESENTATION
-- Max_No_Arcs is natural; -- FOR STATIC REPRESENTATION

package Digraph_??_En is

type Node_Type is private;
type Arc_Type is private;

Label_Error, Node_Error, Arc_Error,
Node_Overflow, Arc_Overflow exception;

Node_Label_Type;
Arc_Data_Type );

Node_Type;
Arc_Data_Type );

Node_Type;
Arc_Data_Type );

in
in

procedure Update_Arc

procedure Add_Arc

procedure Update_Node

From_Node,
To_Node in
Data in

procedure Add_Arc ( From_Label,
To_Label : in Node_Label_Type;
Data : in Arc_Data_Type );

procedure Bind ( Label: in Node_Label_Type;
Data in Node_Data_Type;
Node out Node_Type );

procedure Update_Node Node: in Node_Type;
Data: in Node_Data_Type );
Label: in Node_Label_Type;
Data: in NOde_Data_Type );
From_Node,
To_Node in
Data in

procedure Update_Arc ( From_Label,
To_Label
Data

function Arc_Exists
function Arc Exists

From_Node, To_Node Node_Type) return boolean;
From_Label, To_Label: Node_Label_Type )

return boolean;

function Node (Label: Node_Label_Type ) return Node_Type;
function Label (Node: Node_Type) return Node_Label_Type;

function Data
function Data

From_Node, To_Node: Node_Type ) return Arc_Data_Type;
From_Label, To_Label: Node_Label_Type )

return Arc_Data_Type;
generic
Type Pass_Type is limited private;
with procedure Process ( Node in

Label in
Data in
Pass_Thru: in out
Continue: out

procedure Sel_Node Iterator (Pass_Thru: in

Node_Type;
Node_Label_Type;
Node_Data_Type;
Pass_Type;
boolean );
out Pass_Type);
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Listing 8.1. (cont.)

generic
Type Pass_Type is limited private;
with procedure Process ( Node in

Label in
Data in out
Pass_Thru: in out
Continue: out

procedure Con_Node_Iterator (Pass_Thru: in

Node_Type;
Node_Label_Type;
Node_Data_Type;
Pass_Type;
boolean) ;
out Pass_Type);

Node_Type;
Node_Type;
Arc_Data_Type;
Pass_Type;
boolean) ;

Node_Type;
out Pass_Type);

Node_Type;
Node_Type;
Arc_Data_Type;
Pass_Type;
boolean) ;

Node_Type;
out Pass_Type);

Node_Type;
Node_Type;

out Arc_Data_Type;
out Pass_Type;
out boolean );
in Node_Type;
in out Pass_Type);

out
out
out
in
in

out
out
in
in

Node_Type;
Node_Type;
Arc_Data_Type;

out Pass_Type;
out boolean );
in Node_Type;
in out Pass_Type);

is limited private;
Process (TO_Node in

From_Node: in
Data in
Pass_Thru: in
Continue :

procedure Con_Out_Arc_Iterator ( Node
Pass Thru:

generic
type Pass_Type
with procedure

is limited private;
Process (TO_Node in

From_Node: in
Data in
Pass_Thru: in
Continue :

procedure Sel_Out_Arc_Iterator ( Node
Pass_Thru:

generic
type Pass_Type
with procedure

generic
type Pass_Type is limited private;
with procedure Process (To_Node in

From_Node: in
Data in
Pass_Thru: in
continue :

procedure Con_In_Arc_Iterator ( Node
Pass_Thru:

generic
type Pass_Type is limited private;
with procedure Process (To_Node in

From_Node: in
Data in
Pass_Thru: in
continue :

procedure Sel_In_Arc_Iterator ( Node
Pass_Thru:

private
type Arc_Type is

type Node_Type is
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another. Other constructors and observers may be included to provide additional
versatility.
One possible specification for a digraph package appears in Listing 8.1. In

this illustration, a user instantiates the package with the data types that are
associated to each node, Node_Data_Type, and are, Arc_Data_Type, as well
as a Node_Label_Type that the client may associate to a node.
Node_Label_Type represents the data type that the client plans to use to
reference nodes in the digraph. For example, in a large graph, like a map of the
United States, the user may wish to use application-specific labels to manipulate
the node, like abbreviations for the names of states (MA, PA, NY, ...). The
package provides access to nodes and arcs through references to both Node_
TypeS and Node_Label_Types.
A careful review of the package raises one question: Where is the

Digraph_Type defined? Instead of defining a Digraph_Type, the package
itself encapsulates the digraph. That is, one instantiation of the package supports
one digraph. Since many digraph applications normally work with a single
digraph, this is a reasonable approach for encapsulating and hiding
implementational details. In fact, since there is no Digraph_Type, there is no
need to reveal the details of the graph representation in the pr ivate part of the
specification. This means the details of the representation may be placed in the
body of the package, further hiding them from the client.
Note the collection of iterators provided through the package, iterators to

traverse the nodes, in arcs, and out arcs. Given a Node, one pair of iterators
processes through all the arcs coming into a Node, and another pair to process the
arcs leaving a Node. With this collection of iterators, users may build a large
number of digraph algorithms.

8.3 Matrix Representation

The simplest method of representing a digraph is with an n-by-n boolean
matrix where n is the number of nodes in the digraph (see Figure 8.3). A digraph
G is represented with a boolean matrix M with the criteria

M(i, j) is true if and only if there is an arc from node i to node j.

This representation contains only connection information. The user must maintain
information about the nodes and arcs elsewhere. However, many digraph
problems only need access to connection information to solve certain problems.
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ABC D E F

A F T F F F T
B F F T F F F
C F F F T F T
D F F F F T T
E T F F F F T
F T F F F F F

Figure 8.3. Boolean matrix representation of the digraph in Figure 8.2.

The major advantage of this approach is the simplicity and speed of the
algorithms for a package's support subprograms. Adding an arc between two
nodes is accomplished by setting the appropriate location in the matrix to true.
Testing for the existence of an arc between two nodes is accomplished by testing
to see if the corresponding position in the matrix is true.
One advantage frequently mentioned about this approach is the

correspondence between connectivity information and matrix operations. IfM is
the matrix representation of the digraph, the matrix describes all nodes connected
with paths of length one. An identity matrix, I, may be thought of as representing

all connectivity with paths of length zero. Therefore, the matrix,M/ ~ I +M
indicates all node connectivity of paths of length zero or one. That is, M(i, J) is
true if and only if there is a path of length zero or one from node i to node j.

Applying matrix multiplication to M/ provides further connectivity information.

Position (i, J) in M /2 is true if and only if there is a path of length two or less
between node i and node j.

With subsequent matrix multiplications the sequence of matrices, (M/ 2)2,

«M/2)2f,. . . , is formed. After log2n + I multiplications, subsequent
multiplications produce no changes in the resulting matrix, and the positions in
the resulting matrix indicate all node connectivity. That is, a position (i,;) is true
if and only if there is a path from node i to node j.
The traversal from node to node through the out arcs of nodes may be

realized in terms of matrix manipulations. For example, to traverses the out arcs
of node i, the algorithm simply processes the ith row of the matrix representation.
To view the traversals of the in arcs of node i, the algorithm processes the ith
column of the matrix.
There are several limitations to this approach. One, mentioned above, is that

the matrix representation does not maintain node and arc information; it provides
information only about the connections between arcs. The second limitation is
that the boolean matrix records only the existence of an arc between two nodes,
not the number of arcs between two nodes.
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A third possible limitation of the matrix representation is the potential size of
the matrix. With n nodes, the matrix is of size n2

• Therefore, for large values of
n, the storage requirements for the matrix could be prohibitive. This potentially
large storage requirement leads to alternate methods, described in Section 8.4.
For example, if the rows of the matrix could be formed one at a time, the

matrix could be represented by comb vectors. For sparse matrices, comb vectors
have a very favorable time - space tradeoff with substantial1y reduced storage
requirements with only a constant factor increase in the timing of the comb vector
algorithms when compared to a boolean matrix representation.
Figure 8.4 illustrates a comb vector representation for the digraph in

Figure 8.2. Two arrays are used for the comb vector representation of a boolean
matrix. The first array, Index, indicates the location in the second array of the
first element in the row of the corresponding boolean matrix. The value in
position (i, j) in the matrix is determined by the computation

Comb (Index(i) + j - 1).

Under certain circumstances, sparse matrix techniques may be applied to represent
the connection matrix.
If the index into the Comb array, Index ( i) + j - 1, is outside the range

of the Comb, then there is no arc from node i to node j. Otherwise, the existence
of an arc from node i to node j is determined by the boolean expression

Comb (Index(i) + j - 1) = i

For example, in Figure 8.4, node 4 has only one out are, to node 5. Row 4 of the
boolean matrix is represented as fol1ows: The Index array in Figure 8.4
indicates that row 4 begins at location O. Therefore, there is no arc from node 4
to node 1. Since the only arc exiting node 4 goes to node 5, observe that for all

Index
ABC D E F

~
Comb
1 2 3 4 5 6 7 B 9 10 11 12 13 14

Figure 8.4. Comb vector representation of the digraph in Figure 8.2.
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k in the range 1 .. 6, only when k = 5 does

Comb (Index(4) + k - 1) = 4.

8.4 Table Representation

A more straightforward alternative to a boolean matrix is a connection table. In
many digraph applications there may be a predetermined bound, k, on the
maximum number of out arcs for each node. If n is the number of nodes in the
digraph, the digraph may be maintained in a table with n rows and k columns.
Figure 8.5 illustrates a table representation for the digraph in Figure 8.2.

123

A B F
B C
C D F
D E F
E F A
F A

Figure 8.5. Table representation of the digraph in Figure 8.2.

Suppose a digraph application constructs paths in reverse order. That is,
given a particular node, it maintains information on the arc that come into the
node. The table in Figure 8.5 illustrates a table of all arcs coming out of a node.
This table lends itself to processing arcs in one direction but not in the other.
Fortunately, with the approach in Figure 8.5, another table of information for the
arcs coming into each node could be constructed.
A set of declarations that describe the table representation for digraphs

appears in Listing 8.2. These declarations lead to a static table representation for
digraphs. The representation includes three array declarations: an array to hold
information on all arcs leaving a node, an array to hold information about arcs
entering a node, and an array of node information. The declarations for
Graph_Type is a record containing two components, a count of the actual
number of nodes in the graph and an array of information on the nodes. The
Node_Array is an array of node information. Each node record has six
components. The Name component in the Node_Record contains the node's
label defined by the client, and the Data component contains the data associated
with the node. The remaining four components maintain the in arc and out arc



Node_Label_Type;
Node_Data_Type;
positive:= 0;
In_Arc_Array;
positive:= 0;
Out_Arc_Array;

8.4 Table Representation

Listing 8.2. Digraph declarations for a table representation.

subtype Arc_Range is positive Range 1 .. Max_No_Arcs;
type Out_Arc_Record is
record
In_Node: natural:= 0;
Out_Node: natural:= 0;
Data : Arc_Data_Type;

end record;
type Out_Arc_Array is array (Arc_Range) of Out_Arc_Record;
type In_Arc_Record is
record
Out_Node: natural:= 0;
Arc_Index: natural:= 0;

end record;
type In_Arc_Array is array (Arc_Range) of In_Arc_Record;
subtype Node_Range is positive Range 1 Max_No_Nodes;
type Node_Record is
record
Name
Data
No_In_Arcs
In_Arc
No_Out_Arcs:
Out_Arc

end record;
type Node_Array is array (Node_Range) of Node_Record;
type Graph_Type is
record
No_Of_Nodes: positive:= 0;
Node Node_Array;

end record;
type Arc_Type is
record
Out_Node: natural:= 0;
Index natural:= 0;

end record;
type Node_Type is
record
Index: positive:= 0;

end record;
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information. Note that the data associated with each arc are stored once, in an
Out_Arc_Record in the Out_Arc component of the Node_Record.

The information in each In_Arc_Record is sufficient for rapid access to arc
data. Each In_Arc_Record contains two components, Out_Node and
Arc_Index. Together they provide rapid access to the arc's data, which is stored
in an Out_Arc_Array. If G is a Graph_Type, and n and k are the contents of
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the Out_Node and Arc_Index components, respectively, of a given
In_Arc_Record, then the data that corresponds to the arc are

G.Node(i).Out_Arc(k).Data

Both Node_Type and Arc_Type are defined to provide quick access to the
information about a node and an are, respectively. Each Node_Type record
contains the index into the graph's Node array component. Arc_Type contains
two pieces of information, the In_Arc_Records to access the node and the
Out_Arc component that contains the arc's information.
There is a classical tradeoff between the matrix representation described in

Section 8.3 and the table representation in this section. The matrix method may
take more space, but the table method requires more time. For example, to
determine if there is an arc from node i to node j requires a constant amount of
time to access the matrix representation. However, with the table representation,
a sequential search through the ith row of the table for an occurrence of an arc
to node j requires O(k) time. However, if k is substantially smaller than n, the
time-for-space tradeoff between the boolean matrix and table representation may
be worthwhile.
But even the space requirement of the table representation may be improved

upon. For example, suppose most nodes have substantially fewer than k arcs.
Then much of the space in the table is actually wasted. Another static
representation, based on the table approach, is to form a single vector combining
all arc information.
A combined arc vector is to the table representation what the comb vector

is to the boolean matrix. As the list of all out arcs is formed for each node, the
list of terminal nodes for the arcs is placed in a vector and the first and last
locations where the information was placed are recorded. Figure 8.6 illustrates
this for the digraph in Figure 8.2. This approach uses two arrays. One array,
Nhbr, contains the list of the terminal nodes for all arcs. The other n-by-2 array

123 4 5 6

First

Last

1 3 5 7 8 10

2 4 6 7 9 12

1 2 3 4 5 6 7 8 9 10 11 12

Nhbr

Figure 8.6. Alternate array representation of the digraph in Figure 8.2.
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contains indices that indicate the piece in the neighbor array where the terminal
nodes appear. For example, in column 1, the First and Last components locate
the beginning and the end of the piece of the Nhbr array that corresponds to
terminating nodes of the arcs leaving node l.

The space requirements for this approach are of order O(n) + O(k), the sum
of the lengths of the two arrays. That is less than the space required for the table
method, O(nk), and the matrix method, O(n2

). The time requirements for the
various algorithms that manipulate the representation are of the same order of
magnitude as the algorithms that manipulate the table representation. The tradeoff
among the alternate approaches and the table method is that the alternate
approaches require all out arc information for a specific node to be processed
together. However, that is not a serious restriction for many digraph applications.

8.5 Dynamic Representation

A table representation of a digraph uses three arrays. By trading off the size
limits of arrays for sequential access, we arrive at a dynamic representation of a
digraph. Figure 8.7 illustrates the parallel. The Graph_Type points to a list of
records containing node information. Each Node_Record contains a pointer to
the next node record, which has components to maintain the node's Label and
Node_Datao The Node_Records in the table representation contained two
arrays. Those arrays are replaced by pointers to two lists, an Out_Arc list and
an In Arc list. The records in the Out_Arc list contain four components: a

point to To_Node

.. point to From_Node

point to next Out_Arc record

point to In_Arc list

4-l...=.=':===OL.::_W-.J'+---'. point to Out_Arc list

In_Arc_Record

point to an Arc_Rec in some Out_Arc list

point to next In_Arc record

Figure 8.7. A Digraph as lists.
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pointer to the next record in the list, the Arc_Data, and pointers to the records
of the FrOID_Node and To_Node of the arc.
Declarations to form the dynamic representation for digraphs suggested by

Figure 8.7 appear in Listing 8.3. The private type, Node_Type, is defined as
a pointer to a Node_Record. Each Node_Record contains a pointer to the next
node record, the label, the node data, and pointers to the In_Arc and Out_Arc

lists. Arc_Type is defined as a pointer to Out_Arc_RecordS, which contain all
the information related to an arc, the arc's data, and pointer to the FrOID_Node

and To_Node of the arc, as well as a pointer to the Next_aut_Arc in the same
Out_Arc list. Each In_Arc_Record contains two components, the pointer to
the next record in the In_Arc list, and an Arc_Type pointer that points to the
Out_Arc_Record that contains the arc's information.

Listing 8.3. Dynamic digraph declarations.

Arc_Type;
Label_Type;
Arc_Data_Type;
Node_Type;
Node_Type;

Node_Type;
Node_Data_Type;
Arc_Type;
In_Arc_ptr;

type Node_Record;
type Node_Type is access Node_Record;

type In_Arc_Record;
type In_Arc_ptr is access In_Arc_Record;

type Out_Arc_Record;
type Arc_Type is access Out_Arc_Record;

type In_Arc_Record is
record
Next_In_Arc: In_Arc_ptr;
Arc_ptr Arc_Type;

end record;

type Out_Arc_Record is
record
Next_aut_Arc:
Label
Data
From_Node
To_Node

end record;

type Node_Record is
record
Next_Node:
Data
out_List
In_List

end record;
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Digraphs and graphs have many important applications. Typical of digraph
applications is the use of other structures for assistance. For example, to solve
some digraph problems, it is necessary to build a spanning tree for the digraph.
Sometimes a third structure - a queue, stack, priority queue, or some other linear
structure - may be required to maintain certain information while the spanning
tree is constructed.
To illustrate a simple digraph application, consider the problem of

determining the minimum number of borders that must be crossed to traverse
from one state to another in the 48 contiguous United States. Figure 8.8
illustrates a part of the U.S. map as a graph. Each arc in the graph is represented
by a pair of arcs in a digraph to represent the connection between adjoining
states.
Suppose the border-crossing problem must find a path with the fewest number

of border crossings from Washington (WA) to Florida (FL). One method of
solving this problem is to build a spanning tree, starting at one of the two states
in question and building a spanning tree as follows:

Place one of the two states in question at the root of the tree. Place
the neighbors of the root at the first level of the tree. Now, go across
the tree, one level at a time, and for each node, place as child nodes
all neighbors of that node that are not already in the tree. Continue
this process until the node being sought is placed into the tree. When
the node being sought is placed into the tree, the path from that node
back to the root is a solution to the border-crossing problem.

ND

NE

TX
Figure 8.8. United States map as a digraph.
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The construction of the tree one level at a time is analogous to a level-by­
level tree traversal, hence a queue could be used to assist in constructing the tree.
Figure 8.9 illustrates part of a spanning tree that might be constructed in finding
a shortest path from Washington to Florida. It should be noted that there may be
more than one spanning tree, hence more than one solution to the border-crossing
problem. If the nodes were added to the spanning tree in a different order, a
different tree would be created. For example, if Idaho was placed in the second
level of the tree before Oregon, Nevada would appear as a child node of Idaho
instead of Oregon.
Figure 8.10 illustrates a static method of representing both the tree and the

queue in one structure. The structure is an array of records with two components,
one for storing access to the node and an index indicating the location of the
node's parent. The first location in the array contains the root of the tree,
Washington. Since Washington is the root of the tree, the index zero is placed
with it to indicate that it has no parent. As each node is placed, the location of
its parent is placed with it. Hence Oregon and Idaho appear in the tree with the
index 1, indicating the location of their parent.

OK

AK

MS

AL

FL

Figure 8.9. Border-crossing spanning tree of Figure 8.8.
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NV CA

w

MT

1234567910
~,--------

~

t t
Front Rear

Figure 8.10. Combined tree/queue for the border-crossing problem.

The array also contains the queue, as indicated by the indices Front and
Rear. The queue in Figure 8.10 illustrates the queue after Idaho is processed but
before the Front pointer is changed to begin processing the next node. The
result of processing Idaho was the placement of three nodes in the array that
represents both the tree and the queue: Utah, Wyoming, and Montana. Next, the
Front pointer would be incremented and Nevada would be processed.
Completing this application is left as an exercise.

8.7 Explorations

1. Build and verify a Digraph_Range_En package based on the boolean matrix
representation.

2. Build and verify a Digraph_Range_En package based on the comb vector
representation of a boolean matrix.

3. Build and verify a Digraph_Pt_En package based on the table
representation.

4. Build and verify a Digraph_Pt_En package based on the combined arc
vector representation.

5. Build and verify a Digraph_Pt_Lpt package based on a linked list
representation using a linked list of arcs with linked lists of nodes.

6. Build, test, and validate a system to solve border-crossing problems.
7. Read about CPM, the critical path method. Build a package to find critical
paths through a digraph.

8. Build, test, and validate a system to find Euler paths and cycles.
9. Build, test, and validate a system to find Hamiltonian paths and cycles.
10. Build, test, and validate a system to test four-color planar maps.
11. None of the packages described in this chapter maintains multiple arcs
between two nodes. Evaluate the possible ramifications of incorporating the
possibilities of multiple arcs between any two nodes.
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12. Several of the packages in this chapter contain examples of iterators that are
encapsulated as generic procedures. Reconstruct these iterators as nongeneric
procedures, with the user procedure that completes the algorithm passed as
a procedure access parameter.
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Sets

9.1 Specifications

Sets are a fundamental building block for mathematical systems. Sometimes,
when building the representation of an object type a software developer must
apply set fundamentals to model the problem and its solution.
Sets are collections of elements. A universal set, U, is the collection of all

elements from which sets may be derived. Sets are formed by collecting elements
from a universal set. Like every other object type, sets have certain fundamental
attributes and operations. Let x be an element in the universal set, and let A be
a set. The notation x E A indicates x is a member of the set A.
Correspondingly, x ~ A indicates that x is not a member of A. A set is normally
indicated using the notation, { ... }, to indicate the elements in the sets. Within
the braces, two types of notation are used to indicates the elements. If a set is
finite, the elements in the set may be listed. For example,

{I, 2, 3, 4, 5}

indicates a set composed of the integers between and including 1 and 5. Set
membership may also be indicated with the notation

{x I P(x)},
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where x is a free variable and P a boolean expression. The set consists of all
elements x for which P(x) is true. The set of integers between and including 1
and 5 may be indicated as

{x I (x E r)/\(l :::;x)/\ (x:::; 5)},

where r indicates the universal set of positive integers.
Set A is a subset of set B, A~B, if and only if, for all xEA, xEB. A is a

proper subset of B, AcB or A r;B, if and only if A~B and there is anx E B

such that x e; A. Set A is a superset of set B if and only if B ~ A. A is a proper
superset of B if and only if B is a proper subset of A. Set A equals set B if and

only if A ~ B and B ~ A.
Four fundamental binary and one fundamental unary operation are defined for

sets. They are the following:

1. The union of two sets is the collection of all objects in either set,
AUB=!x I xEA V xEBl.

2. The intersection of two sets is the collection of all objects that are

in both sets, A nB = Ix I x E A /\ x E B l.
3. The difference of two sets, A -B, is the collection of all objects in A

that are not in B, A - B =(x I x E A /\ x e;B l.
4. The symmetric difference of two sets, AE9B , is the union of the two

set differences, AE9B=(A-B)U(B-A).
-

5. The complement of a set A, A, is the collection of all objects not in

A, A={xlxe;Al.

These operations do not form a minimal collection of set operations. For
example, from deMorgan's laws,

Hence, union may be described in terms of complement and intersection.
Similarly, difference and symmetric difference may be reduced to descriptions in
terms of complement and intersection.
The symbols for union and intersection are not in the standard ASCII

characters sets. Typically, the arithmetic symbols "+" and "*" are used to
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Listing 9.1. Set specifications.

generic

package set_??_?? is
subtype Set_Type is
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procedure Include ( Element: in Element_Type:
To_Set: in out Set_Type):

function Cardinality (The_Set: in Set_Type) return natural:
procedure Clear (The_Set: in out Set_Type):
procedure Copy ( from_The_Set: in Set_Type:

to_The_Set out Set_Type ):
procedure Swap ( Left_Set, Right_Set: in out Set_Type ):

function Difference ( Left_Set, Right_Set: in Set_Type) return Set_Type:
function "-" ( Left_Set, Right_Set: in Set_Type) return Set_Type
renames Difference:

function Intersection (Left_Set,
Right_Set: in Set_Type) return Set_Type;

function "*" (Left_Set, Right_Set: in Set_Type) return Set_Type
renames Intersection;

function "&" (Left_Set, Right_Set: in Set_Type) return Set_Type
renames Intersection;

function "and" (Left_Set,
Right_Set: in Set_Type) return Set_Type

renames Intersection;

function Is_Empty (The_Set: in Set_Type) return boolean;
function Are_Equal (Left_Set,

Right_Set: in Set_Type) return boolean;
function Is_Element ( Element: Element_Type;

The_Set: Set_Type) return boolean;

function Is_Proper_Subset (Left_Set,
Right_Set: in Set_Type) return boolean:

function "<" (Left_Set, Right_Set: in Set_Type) return boolean
renames Is_Proper_Subset:

function Is_Proper_Superset (Left_Set,
Right_Set: in Set_Type) return boolean;

function ">" (Left_Set, Right_Set: in Set_Type) return boolean
renames Is_Proper_Superset;

function Is_Subset (Left_Set, Right_Set: in Set_Type) return boolean:
function "<=" (Left_Set, Right_Set: in set_Type) return boolean
renames Is_Subset;

function Is_Superset (Left_Set, Right_Set: in Set_Type) return boolean:
function ">=" (Left_Set, Right_Set: in Set_Type) return boolean
renames Is_Superset;
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Listing 9.1. (cont.)

generic
with procedure Process ( Element : in out Element_Type;

Continue: out boolean);
procedure Iterate (The_Set: in out Set_Type);

procedure Remove ( Element : in Element_Type;
From_Set: in out Set_Type);

function Union (Left_Set, Right_Set: in Set_Type) return Set_Type;
function "+" (Left_Set, Right_Set: in Set_Type) return Set_Type
renames Union;

function "or" (Left_Set, Right_Set: in Set_Type) return Set_Type
renames Union;

function Sym_Diff (Left_Set, Right_Set: in Set_Type) return Set_Type;
function "xor" (Left_Set, Right_Set: in Set_Type) return Set_Type
renames Sym_Diff;

private

represent union and intersection, respectively. An advantage of using "+" and "*"
is that these symbols may be overloaded in Ada. A set package specification
appears in Listing 9.1. Fundamentally, the package supplies subprograms that
include the fundamental operations users apply to sets and their elements.
Note that the generic instantiation parameters and the private declarations

have not been included with the specifications. They are missing because they
depend on the method of representation employed. The choice between different
representations depends on the structure of the universal set and the set
application under consideration.

9.2 Static Representation

Perhaps the simplest sets to represent are those whose universal set may be
represented by a contiguous range of an ordinal type. Such a universal set may
be encapsulated as

subtype Universal_Range is ordinal_type range low .. high;
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Each set composed from this universal set may be represented as an array,
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type Set_Type is array (Universal_Range) of boolean;

where a value of true indicates the element that corresponds to that index is in
the set and false indicates the element corresponding to the index is not in the
set. Sets may be declared and initialized as empty with a declaration like

P: Set_Type:= (others => false);

An element E in the Universal_Range is in a set P if and only if

PtE) = true;

The set operations of union, intersection, and complement are directly
implemented through the boolean operations of or, and, and not, respectively.
Listing 9.2 illustrates the generic instantiation parameters, declarations, and

types associated with a static representation of sets over an ordinal range. The
instantiation parameters for the static set package whose elements are over a range
of an ordinal type must include replacements for ordinal_type, low, and high.
The package defines Element_Type and Set_Type. The private declarations
include

type Set_Type is array (Element_Type) of boolean;

Listing 9.2. Ordinal range of set declarations.

generic

type Universal_Range is «»:
Low: Universal_Range:= Universal_Range'first:
High: Universal_Range:= Universal_Range/last:

subtype Element_Type is Universal_Range range Low .. High;

type Set_Type is private:

private

type Set_Type is array (Element_Type) of boolean;
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The representation of sets as boolean arrays lends itself to simplify algorithms
for the set operations. For example, determining if an element E is a member of
a set S is accomplished through the boolean expression

if S (E) then
return true;
else
return false;

end if;

If P and Q are two sets, then forming the intersection set, I, of two sets is
accomplished with the for loop

for Index in Element_Type loop
I (Index):= P(Index) and Q(Index);

end loop;

Completing the bodies of the various algorithms is left as an exercise for the
reader.
One potential problem with representing sets with boolean arrays is the size

of the arrays. The array may be packed, using each bit in a byte to represent a
position in the array. Even with packing, each set requires

Set_Type'storage_size = (High - Low + 7)/8,

where High and Low are two of the set_Pt_Lpt package's generic instantiation
parameters.
If (High - Low) is very large, but the actual maximum sizes of sets is

known, there is another alternative for static representations of sets. The generic
instantiation parameters and declarations for an alternate static representation
appear in Listing 9.3. The alternate representation requires an additional
instantiation parameter, Max_Size, that establishes the maximum size of sets.
The type declarations made visible are the same as before, but the private
declaration for Set_Type is substantially different. In the alternate static
representation, sets are represented with a record that contains two components,
the count of the number of objects in the set and an array to contain the objects.
Since Element_Type is an ordinal type, the elements in each set may be placed
in the Element_Array, ordered according to their ordinal values.

A comparison of this approach to the boolean array static representation
illustrates some of the classical tradeoffs between algorithm execution time and
space requirements. For example, when a set is represented with a boolean



9.2 Static Representation

Listing 9.3. An alternate static representation of sets.

generic

275

type Universal_Range is «»;
Low Universal_Range: =
High : Universal_Range:=
Max_Set_Size: positive

Universal_Range' first;
Universal_Range'last;
16;

subtype Element_Type is Universal_Range range Low .. High;

type Set_Type is private;

private

type Element_Array is
array (1 .. Max_Set_Size) of Element_Type;

type Set_Type is
record
No_Of_E1ements:
Elements

end record;

natural:= 0;
Element_Array;

array, testing an element for set membership is performed in a constant amount
of time. When the set is represented with a record and the array in the record
contains an ordered list of the element in the array, the time required to test for
set membership is

O(log (seUize)).

On the other hand, all basic set operations have algorithms that perform in
time

O(size (Universal_Set))

for the boolean array representation, but the record containing an ordered array
approach may use mergesortlike algorithms and perform in time

O(sum of set sizes).
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This is illustrated by the algorithm in Listing 9.4. Completing the body of a sets
package using the record containing an ordered array of elements is left as an
exercise.
Finally, part of the tradeoff between the two methods is the potential

constraint_error that may be raised if Max_Set_Size is not chosen to be
sufficiently large. Removing this potential error leads naturally to a dynamic
representation with the array replaced by a list of elements, which is discussed in
Section 9.3.

Listing 9.4. Union algorithm for static representation.

Answer: Set_Type;
Index_I, Index_2: natural:= 1;

procedure Move_Rest ( Index: in out natural;
The_Set: in Set_Type );

begin
while Index <= The_Set.No_Of_Elements loop
Answer.No_Of_Elements:= Answer.No_Of_Elements + 1;
Answer.Elements (Answer.No_Of_Elements):= The_Set. Elements (Index);
Index:= Index + 1;

end loop;
end Move_Rest;

begin
while (Index_l <= set_l.No_Of_Elements)

and (Index_2 <= Set_2.No_Of_Elements) loop
Answer.No_of_Elements:= Answer.No_Of_Elements + 1;
if Set_l.Elements (Index_l)<Set_2.Elements (Index_2) then

Answer. Elements (Answer.No_Of_Elements):= Set_I. Elements
(IndeX_I);

Index_l:= Index_l + 1;
elsif Set_l.Elements (IndeX_I) > Set_2.Elements then
Answer. Elements (Answer.No_Of_Elements):= Set_2.Elements

(Index_2);
Index_2:= Index_2 + 1;
else
Answer. Elements (AnSwer.No_Of_Elements):= Set_l.Elements

(IndeX_I);
Index_l:= Index_l + 1;
Index_2:= Index_2 + 1;

end if;
end loop;
if Index_l <= Set_l.No Of_Elements then

Move_Rest (Index_I, Set_I);
else
Move_Rest (Index_2, Set_2);

end if;
end Union;
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When the elements that fonn the universal set cannot be simply described as a
subrange of an ordinal type, a dynamic representation is appropriate. The
package must be instantiated with the type representing the universal type used
to represent the set elements:

generic
type Element_Type is limited private;

with function u=u

( Left, Right: Element_Type) return boolean;
with procedure Copy
( Source: in Element_Type;
Target: out Element_Type );

with procedure Swap
( Source: in out Element_Type;
Target: out Element_Type );

package Sets_Lpt_Lpt is

As a 1imited pr ivate type, the representation of the values of an element may
be structured or involve indirection. Since the elements are limited private,
the package requires an II = II function in its instantiation, as well as the typical
Copy and Swap subprograms to manipulate objects. The dynamic sets package
instantiates the List_Lpt_Lpt package:

type Set_Type is limited private;

is represented as

private
type Set_Type is
record
ElementS: Set_List. List_Type;

end record;

This package is influenced by the Sets package described in Booch's Software
Components in Ada.
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Building a reliable sets package requires some care to guarantee that one and
only one copy of each member in a set appears in the list. To illustrate, consider
the Union function appearing in Listing 9.5. The Union algorithm first copies
one of the two sets into the New_Set. Union contains a subprogram
Check_And_Add, which checks one element. If it is not in'the set being fonned,
it is added to the set. A new set iterator, Process_Right_Set, is created by
instantiating the set package iterator with Check_And_Add. The Union

algorithm simply copies the first set and then checks to see if the second set is
not empty. If it is not empty, Process_Right_Set is called to traverse the
elements and pass them to Check_And_Add for possible inclusion in the union
of the two sets.

Unchecked_Add is a support procedure used by the package. This procedure
simply appends the element to the set without checking, because the checks are
perfonned before the procedure is called. Practically all of the basic set
operations may be built by using the sets package iterator to create algorithms for
the various set processes. Completing the body of the dynamic sets package is
left as an exercise for the reader.

Listing 9.5. Union algorithm for dynamic representation.

function Union ( Left_Set, Right_Set: in Set_Type) return Set_Type is

New_Set: Set_Type;
Working: Set_Type;

procedure Check_And_Add Element: in out Element_Type;
continue: out boolean) is

begin
Continue:= true;
if not Is_In (Element, New_Set) then

Sets.Unchecked_Add (Element, New_Set);
end if;
end Check_And_Add;

procedure process_Right_Set is
New Set_List. Iterate (Check_And_Add);

begin
Sets.Copy (Right_Set, Working);
Sets.Copy (Left_Set, New_Set);
if not Set_List.At_Front (Working. Element_List) then

Set_List.Move_To_Front (Working.Element_List);
Process_Right_Set (Working.Element_List);

end if;
return New_Set;
end Union;
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For many set applications, the number of objects in the universal set is extremely
large. This may preclude the use of either of the two static representations
described earlier. If the dynamic representation is used and the sets formed from
the universal set are large, the time required to determine the existence of an
element in a set is bound by the size of the set. It is desirable to reduce this
search time. This may be accomplished by representing sets by combining the
flexibility of the dynamic representation with the potential speed improvement of
hashing, which is described in Chapter 12. Hashing may be applied to any object
type, not just strings. One method of applying hashing to the representation of
sets, as illustrated in Figure 9.1, is to represent each set with a hash table of lists.
Given an element, the hash function selects a list from the hash table. If the hash
table contains k locations, the time to search that list for an occurrence of the
element is reduced by a factor of k.

Listing 9.6 illustrates the instantiation parameters for the specifications of a
generic Hashed_Sets package. If the Object_Type is limited private,
then the package must also be instantiated with an "=" function for the
Object_Type. Naturally, the user of the package must also supply a Hash
function for the Obj ect_Type.
Since the user supplies the hash function and may be aware of other factors

relative to the application, the user may override the default Table_Size. A
relationship may exist between the hashing function and the choice of the table
size that produces better performance than other choices. Hashing is discussed
in detail in Chapter 12. The Hashed_Sets package may be derived from a list­
based set package. The derivation is left as an exercise for the reader.

Hash Table

Element --.

Figure 9.1. Set element hashing.
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Listing 9.6. Formal parameters for hash set.

generic
type Object_Type is private;
with function Hash (Object: Object_Type) return natural;
Table_Size: positive;
with function "=" (Left, Right: Object_Type) return boolean;

package Set_Pt_Lpt
type Set_Type is limited private;

9.5 Hamming Codes

Sets fonn a powerful mathematical system with numerous applications. An
important application is the use of sets to create error-correcting codes. Error­
detecting codes are coding systems that add additional infonnation to the data so
that upon reception of the data the receiver may determine if the transmission
media introduced an error into the data. An error-correcting code is a coding
system that includes additional infonnation with the data so that upon reception
it may be detennined if an error was introduced during transmission and if there
is sufficient infonnation to correct the error.
Error-detecting and error-correcting codes operate under certain limits to their

perfonnance capabilities. The limit is usually defined in tenns of the probabilities
of certain types of errors. The discussion in this section is limited to error
situations where there is a very high degree of probability that there will be at
most one bit in n that is in error for some predefined n. The simplest example
of error-detecting code systems is parity checks. A parity check adds an
additional bit to the data bits. A zero or one is included so that the count of the
number of one bits is either even or odd. If the count is made odd by the parity
bit, the parity check system is said to produce odd parity.
For example, eight bits of data are stored in parallel on a typical nine-track

tape. Nine-track tapes are extremely reliable, hence there is extremely high
probability that no more that one bit in nine will be stored and retrieved with an
error. Figure 9.2 illustrates three parity checks. If the eight data bits in each
column are as indicated, the parity bits are selected so that the number of one bits
in each column is odd. When the data are read, a test, usually perfonned in
hardware, may quickly detennine if the data were received correctly by
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bit 0 1 0 1

bit 1 1 0 0

bit 2 0 0 1

bit 3 1 1 0

bit 4 0 1 1

bit 5 0 1 1

bit 6 0 1 0

bit 7 1 1 1

parity 1 0 0

281

Figure 9.2. Parity checking example.

performing a parity check. This parity check is frequently referred to as a
latitudinal, across the tape, parity check.
Using magnetic tapes as an illustration, parity may be used to perform error

correcting. Frequently when data are stored on a magnetic tape, they are stored
one block at a time on the tape. That is, there is a block of data followed by an
unused piece of tape. Besides performing the latitudinal parity checks described
above, at the end of each block a longitudinal check may be performed on each
row. That is, as the data are placed on the tape, the system may maintain a count
of the number of l' s stored in each track of the tape and place one additional
column of data so that the number of l's in each track is odd. When a block of
data is read, the system may use the latitudinal parity check in each column to
determine if a column is in error. If only one column contains an error, when the
entire block is read, the longitudinal parity check may be used to determine which
track contains the error. If there is only one latitudinal and one longitudinal
parity error, that pair of checks may be used to locate the bit that is in error.
Usually, the blocks of data on a magnetic tape are extremely large.

Fortunately, tapes and their hardware are extremely reliable, and these pairs of
parity checks are useful in correcting the occasional errors that occur. However,
with most data communications over the airwaves and on various networks, there
is more electronic noise and hence a higher probability that errors will appear in
the data received over various communications media. Further, as the distance
over which data are communicated becomes larger, the need for error correction
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becomes very important because it may be difficult or impossible to retransmit
the data.
A family of important error-correcting codes, discovered by Richard

Hamming, is based on the use of set concepts. Assume that a data transmission
facility has a very high probability of producing zero or one bits in error for each
eight bits transmitted. The simplest Hamming code is constructed that transmits
four bits of data along with four error-correcting bits. Given four data bits, the
four error-correcting bits are selected as follows using the Venn diagram in
Figure 9.3: Associate each of the four data bits to one of the four areas formed
by the intersection of two or more sets, areas labeled [3], [5], [6], and [7].
There is an area in each circle that does not contain a data bit. Place a 0 or 1 in
each of these areas so that the parity on each set is odd. Finally, place a 0 or 1
in the remaining area so that the entire Venn diagram has odd parity.
Assume four data bits have been associated to the four areas of the Venn

diagram:

[0] [1] [2] [3] [4] [5] [6] [7]
101 0

Since set A consists of areas [1], [3], [5], and [7] and contains only one 1,
a 0 is placed in area [1] to produce odd parity in set A. Set B consists of the
areas [2], [3], [6], and [7]. It contains two Is, and so a 1 is placed into area
[ 2] to give set B add parity. Set C is like set A; hence area [4] has a 0 placed
in it. This produces the result

[0] [1] [2] [3] [4]
011 0

[5] [6]
o 1

[ 7 ]
o

{OJ

Figure 9.3. Venn diagram.
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Finally, the universal set, consisting of all areas, currently has odd parity. Thus,
a 0 is placed in area [0], yielding

[0] [1] [2] [3] [4]
o 0 110

[5] [6]
o 1

[7 ]
o

With this coding scheme, if anyone bit is changed, it may be corrected by
associating the eight bits to the eight areas in a Venn diagram. To illustrate,
assume the pattern

[0] [1] [2] [3] [4] [5] [6] [7]
o 0 110 110

is received. The parity for the three sets is checked. Set A contains the areas in
positions [1], [3], [5], and [7]. This set no longer has even parity, so the
error is in set A. Set B contains areas [2], [3], [6], and [7]. This has odd

parity. Therefore, if an error exists, it is in B. Finally, set C contains areas [4],
[ 5 ], [6], and [7]. This area has even parity; hence there is an error in set c.
An odd parity test on the universal set, U, indicates that an error exists in the
universal set. It should be noted at this time that if there is a positive indication
of a parity error, as we have for sets A and C, and there is no indication of an
odd parity error in U, that is an indication of the rare event that two bits were
modified and no error correction may occur. Given the results of the parity tests,

the error is in An iinen U =(A nC)- B, which is area [5]. Once the bit in
[ 5] is changed, the parity test for all three sets is satisfied. After bit [5] is
changed, we have

[0] [1] [2] [3] [4] [5] [6] [7]
001 1 0 0 1 0

This error-correcting code is based on using three sets. It involves 2 3 = 8

bits and 4 (3+1) error-correcting bits. This approach may be applied using a
larger number of sets if the system has a lower error transmission probability. In
general, a Hamming code based on n sets corresponds to 2° bits, of which n+1
bits are used for error correction. Naturally, a larger value of n presumes a lower
probability of error.
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9.6 Bags

9 Sets

Bags are a setlike structure. The fundamental difference between a set and a bag
is that elements may appear in a bag more than once. That is, it is necessary to
keep track of the multiplicity of each object in the bag. It is natural to draw
analogies between sets and bags and have some consistency between the
operations on bags and the operations on sets. With sets the basic relationship
between sets and elements, set membership, is performed with a boolean function.
For bags, the basic relationship between bags and elements is carried out with an
ordinal function:

function Multiplicity (Element: Element_Type;
Bag : Bag_Type ) return natural;

The bag operations are analogous to the set operations, but the definitions
must be modified to address the issues raised by counting the number of
occurrences of objects rather than just observing their presence or absence.

Let U be a universal set and A a bag. For x E U, if x is in bag A, x EBA,

the multiplicity of x in A, IxI
A

, is the number of occurrences of x in A. Consider

the bag equivalents of set union and intersection. Bag union, UB' is defined as

Bag intersection, nB , is defmed so that

The other bag operations may be derived from these by analogy to the
corresponding set operations.
The representation of bags is analogous to the various representation of sets.

If a bag is defined over a range of an ordinal type, where the set representation
was defined with the declarations

subtype Universal_Range is ordinal_type range Low .. High;
type Set_Type is array (Universal_Range) of boolean;
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the equivalent declarations for bags are
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subtype Universal_Range is ordinal_type range Low .. High;
type Bag_Type is array (Universal_Range) of natural;

With these declarations, the algorithms to carry out the various set operations are

analogous to the set algorithms. For example, the union of two bags, U=P UBQ,
is accomplished with the statement sequence

for Index in Element_Type loop
U (Index):= P(Index) + Q(Index);

end loop;

The dynamic representation of bags requires a modification of the dynamic
representation of sets. Specifically, before instantiating the list to represent bags,
a Bag_Record must be declared to hold each object along with its multiplicity,

type Bag_Record is
record
count: natural:= 0;
Object: Object_Type;

end record;

then use this record to instantiate Bag_List,

and define Bag_Type as

Completing the static and dynamic bag packages is left as a exercise.

9.7 Explorations

1. Complete and test a set package based on the use of boolean arrays.
2. Complete and test a set package based on the representation of sets with a
record containing two components, one component to represent the count of
the number of objects in the set and an array to hold the objects.

3. Complete and test a set package based on the representation of sets by lists.
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4.

5.

6.
7.

8.
9.

9 Sets

Complete and test a bag package based on the use of integer arrays storing
the count of the number of occurrences of each object in the bag.
Complete and test a bag package based on the representation analogous to the
static set representation based on the use of records.
Complete and test a bag package based on the representation of sets by lists.
Build a generalized Hamming error-correcting code package that includes an
instantiation parameter that allows a user to select the number of sets to be
used to perform encoding and decoding.
Experiment with a set package based on the use of hashing.
Perform an analysis of the time and space tradeoffs between set
representations that use hashing and those that do not.
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Strings

10.1 Specifications

Practically every software system must manipulate sequences of characters or
bytes. Bytes are addressable eight-bit memory locations. In Ada 83, characters
are represented with seven-bits. In Ada 95, characters are ISO standard eight-bit
character representations, including eight-bit extended ASCII. The material in this
chapter makes a distinction between bytes and characters only when necessary.
Many peripheral devices are controlled by command sequences embedded in

a sequence of bytes. The sequences of bytes may contain the coding for both
control information and printable characters. For example, to display information
on a printer, a sequential collection of bytes, containing both the printer's control
information and the text to be displayed, is assembled and transmitted to the
device. Also, information entered from a keyboard forms a sequence of both
control codes and display characters. When control keys, like the "ENTER" and
"ESC" keys, are pressed, a code is transmitted just like the codes for printable
characters. It is up to the hardware and software interfaces as to how these codes
are interpreted.
A string is an array of characters, or bytes, regardless of whether the contents

are control information or printable characters. For the purposes of this
discussion, the ASCII, or an extended ASCII, code scheme is assumed for
characters. The length of a string is the count of the number of characters, or
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bytes, in the string. The length of a string should not be confused with the size
of the array that holds a string. For example, a particular string might contain 10
characters, but it might be contained in an array of 25 bytes.
Unfortunately, in Ada 83 characters are defined in seven bits, not eight.

Therefore, one must distinguish between strings of characters and string of bytes.
Fortunately, this problem disappears in Ada 95.
The ordinal value of a character, character' pas, is the natural number

derived by interpreting its bit pattern as a binary number. This also corresponds
to the character's position in the ASCII, or extended ASCII, code scheme. A
string whose length is zero is referred to as a null string. If Str is a nonnull
string, and

I S; i S; length(Str),

then Str (i) is the ith character in the string. Two strings, Str} and Str2, are
equivalent if

length (Strl) = length (Str2).

If the strings are not null,

Str} (i) = Str2 (i) 'V i E [1, length(Strl)].

Given two strings, Str} and Str2, the string Str} is said to precede the string Str2,
if there is a j,

1 S;j S;Min (length(strl), length(str2)),

and either

a. j =}and Str}(l) < Str2(l), or

b. j> J, StrJ(l) < Str2(l) and Str} (i) < Str2(i) 'V i E [I, J).

For certain types of string applications, other definitions for string equivalence
and precedence might be more appropriate. Several of these are described in the
Explorations section.
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The selection of a particular collections of string constructors might depend on
the particular string application. The set of constructors described here is not
minimal, but it is sufficient for a large number of string applications. Seven
constructors are listed in Table 10.1.
Append, also called concatenation, attaches one string to the end of another

string. In Ada the & symbol is used as a binary string append operator. If

Strl = "this, that, "

Table 10.1. String constructors.

Constructor Description

Append Attach one string to the end of another string.

Clear Remove all characters from a string and make the string a null string.

Copy Copy the contents of one string into another. The result is that the two
strings are equivalent.

Delete For i and j, remove the substring Str(i..j) from the string Str. The new
value fonned is the concatenation, &, of the two pieces of Str that
precede and follow the piece removed:

Str (Li-I) & Str U+I ..length (Str»

Insert

Prepend

Overlay

Given two strings, Stri and Str2, and an index i, insert the string Str2
into the string Strl at location i. The new string value fonned is

Stri (Li-I) & Str2 & Stri (I .. length (StrI)

Place one string at the beginning of another. Prepend is equivalent to
Insert (StrI, Str2, 1).

Replace the characters in the string Str1 starting at position i with the
contents of string Str2.
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and

Str2 = "these and those."

then Appending Str2 to Strl, Strl: = Strl & Str2, produces

Strl = "this, that. these and those."

Clear changes the value of a string variable to a null string, a string of
length zero. Depending on the type of representation, the implementational
details of Clear may vary from placing a predefined null value in array locations
to simply nulling an access pointer.
Copy duplicates the contents of one string to another string. Delete removes

a portion of a string. For example, if

str = "Now is a good time to do it"

the procedure Delete (Str. 10. 14) removes the 10th through 14th
characters, inclusive, producing the result

Str = "Now is a time to do it".

Insert places a second string into the initial string starting at an indicated
position. If

Str1 "This is a very good time to do it".

and

Str2 = "not "

the procedure call Insert (Str1. Str2, 9) produces

Strl = "This is not a very good time to do it".

Note that Append is equivalent to Inserting at the end of strl. Prepend is
equivalent to Inserting at position 1.
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The string constructor Overlay changes the value of a string object by
changing the characters in a substring of the string. For example, if the value of
a string is

"The quick brown fox jumped over the lazy dog."

and if the string value" green" is overlayed at position 11, then the new value
of the string object is

"The quick green fox jumped over the lazy dog."

10.1.2 String Observers

Table 10.2 summarizes eight string observers. Four of them are sufficient:
Precede, Is_Null, Length_Of, and Position_Of. The remaining four may
be derived from Precede. They are included for the sake of clarity. The
ordering observers use a combination of the relative orderings of the characters
along with the lengths of the strings. For example, the string" bat" precedes the
string "bats". Two strings, strl and Str2, are equivalent if and only if

NOT(Strl < Str2) AND NOT(Str2 < Strl)

which, by DeMorgan's laws is equivalent to

NOT ((Strl < Str2) OR (Str2 < Strl))

The observer Length_Of reports on the number of characters in the string.
Pas i tion_Of (Strl, Str2) determines if Str2 is a substring of Strl and
reports on the position of the first occurrence of Str2 in Strl. If Str2 is not
in Strl, the function may report this result in one of two ways: either by
returning an illegal string position, like 0, or by raising an exception. Although
some might consider this an exception, many string applications search for
substrings expecting that the substring may not be in the string. Hence, raising
exceptions would not be a suitable method of reporting the search's failure.
Is_Null, or IS_Empty, is a observer that reports on the string being null,

or empty.
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Table 10.2. String selectors.

Selectors Description

Equivalent A boolean function that is true if the values of two strings are the same.

Precede A boolean function that returns true if the first string precedes the second
string.

<= A boolean function that returns true if the first string either precedes or
is equivalent to the second string.

Follows Identical to NOT Precede_Or_Equivalent.

>= Identical to NOT Precede.

Length_Of An natural-valued function that returns the length of the value of a string
object.

Position Of Given two strings Str] and Str2, this function helps determine if the value
of Str] appears in Str2. It is an natural-valued function that returns the
location in Str2 of the first character of Strl's value if it appears in Str2.
Otherwise, it returns the value of 0 if the value of Str] does not appear
in Str2.

Is Null Returns true if the string is null.

10.1.3 String Exceptions

A string package implies two exceptions, not including additional exceptions that
may be implementation-dependent. The Insert and Overlay constructors may
raise a string_position_error if the position for the insert or overlay
operation is not a valid position in the string under construction. Another
exception is not_a_substring, if the implementor of the package decides to
raise exceptions when the Substring_Of observer does not find the substring
being sought.
A third exception, string_overflow, may be raised when the

implementation of the package employs a static representation for strings. This
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exception may be raised by several constructors when they produce results that
are too large for the static representation where the result is placed.
The implementor of a string package faces several issues, the most important

one being the choice of representation. There is a large number of choices, such
as

1. Should Ada's predefined stringS be employed directly?
2. Should another static representation be employed?
3. Should a dynamic representation be employed?

Each choice has its own collection of tradeoffs. For example, some packages
require their own housekeeping support, some of which might have to be visible
to package users.

10.2 Static Representations

It is only natural to immediately consider ways of representing strings as arrays
of characters directly applying Ada's string type. By definition, arrays are of
fixed size. Variables defined using an unconstrained array type must be bound
when the variable is defined. Strings may vary greatly in size however. For
many string applications, an upper bound on the size of strings may frequently
be predetermined. When an upper bound on the size of strings is predetermined,
arrays, or a fixed-size structure containing arrays, are an appropriate means of
representing strings.
When arrays represent strings, there should be a method of distinguishing

between the length of the string and the size of the array containing the string.
There are three basic methods of representing strings within static structures:

1. Direct use of Ada's string type. The predefined unconstrained array
type, string, does not include a method of distinguishing between the
length of a string and the size of the array containing the string.

2. Terminating strings with sentinels.
3. Maintaining a count of the number of characters in the string.

The following subsections explore these methods.
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10.2.1 Ada Strings

10 Strings

Ada's support for strings is very elementary. The type string is predefined as
an unconstrained array:

string is array (positive range <» of character;

Hence, when one declares a string variable,

My_string: string (1 .. 80);

only the holder for the string is declared. An aggregate may be used to initialize
the space, but it is up to the user to devise a method, if necessary, to distinguish
between the size of the array and the length of the string contained in the array.
Although Ada's support for strings is limited, it is worth considering as the basis
upon which other static methods may be built.
The fundamental complaint about Ada's string type centers on the effects

of strong type checking. Specifically, as strings and pieces of strings are being
manipulated and combined to create new strings, users must be cautious when the
results of string operations are placed into an array. If the size of the new string
does not exactly match the size of the array where the result is to be placed, an
exception, constraint_error, is raised. For example, if a concatenation of
several pieces or'strings are joined together to fonn a new string and place it in
a variable,

My_String (l .. xx):= Able & " a piece" & Sam (5 .. 35);

a constraint_error is raised if xx is not equal to the size of the string
expression. The problem of matching the size of the result string to the size of
the location when the string is assigned to a variable may be handled in one of
two ways, as illustrated with the function and procedure depicted in Listing 1O.I.
The Assign function accepts the length of the variable where the string is placed
and produces the result in a string of the same size:

My_String:= Assign ( Able & " a piece" & Sam (5 .. 35),
My_String'length);

The Assign procedure

Assign (To_Str => My_String ,
Str_value => Able & " a piece" & Sam (5 .. 35) );
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Listing 10.1. String assignment algorithms.

function Assign (Str_Value : in string;
Result Size: in natural) return string is

Result: string (1 .. Result_Size);

begin
Result (1 .. Str_Value'length):= Str_Value;
return Result;
end Assign;

procedure Assign ( To_Str: out string;
Str_Value: in string) is

begin
To_Str (1 .. Str_Value' length) := Str_Value;
end Assign;
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detennines the size of the string value being assigned and uses its size to properly
range the piece of the array where the value is placed.
Although these subprograms place string values correctly, they do not address

the problem of distinguishing between the values in locations in the string
variable that contain the string's value and the remaining positions in the array.
The next two sections illustrate two traditional methods of clarifying the location
of the string's value within an array. A third alternative would be to erase the
contents of the other array locations, where erase means that a specific character
value, which has been predetennined for this purpose, is placed in the remaining
locations. A value typically employed for this purpose is character' first,
also referred to as ASCII. nul. This is accomplished in the Assign function
with the statement sequence

if str_value'length < result size then
result (str_value'length+l .. result_size):=

(others => character'first);
end if;

before the return statement. A similar change could be made in the Ass ign
procedure.
Let's take a look at the tradeoffs associated with filling a string with some fill

character. Naturally, this removes the fill character from the set of characters that
may appear in the string. The character does not have to be character' first;
any character could be used. By placing the fill character in the rest of the string,
the length of strings may be detennined in time O(log array length). The
algorithm in Listing 10.2 finds the length of the string value contained in the
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Listing 10.2. A string Length function.

function Length ( Str: string) return natural is

Low natural:= 0;
High natural:= Str'Length+l;
Middle: natural;

begin
while (Low + 1) < High loop
Middle:= (Low + High) / 2;
if str (Middle) /= character'first then

Low:= Middle;
else
High:= Middle;

end if;
end loop;
return High-I;
end Length;

string variable. The algorithm is basically a bisection method search that looks
for the location of the first position in the array that contains character' first.
The length of the string is one less than the index of the first occurrence of
character' first in the array.
To achieve the log timing for this algorithm requires that a fill character be

placed in all array locations that do not contain the string's value. This requires
time, including the time to initialize each empty string with the fill character.

10.2.2 TurboPascal·like Strings

One popular method of maintaining strings in arrays stores the string's value in
consecutive array locations and uses an extra location to store the actual size of
the string. This is the method employed in Borland's TurboPascal, an excellent
Pascal system. In TurboPascal, string variables are defined in a manner similar
to Ada's unconstrained arrays. A string type defined as

type Message_Type = string [25];

in TurboPascal is actually represented as an array of 26 char variables:

string [n] = array [0 .. n] of char;
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The first location in the array is used to maintain a count of the number of
locations actually used to contain a string value. For example, the string, "The
quick brown fox" would be stored as

o 1 2 3 4 5 6 7 17 18 19

String variables of different lengths may be defined:

VAR Small: str [3];
Large: str [200];

I I I I I

The value of the string is stored in locations 1 k, where k is the length of the
string. The length k is encoded in location zero:

integer (Small [0]) = length of string in Small.

An advantage of this representation is immediate access to the length of the string
value in each object. A disadvantage of the approach used in TurboPascal is the
size of the location where the string length is kept, which is an eight-bit character
location. Hence, only a value in the range 0 .. 255 can be stored. Therefore,
the maximum size of strings is 255 characters. It should be said that this is only
a minor disadvantage. Many string applications either fit within this bound or can
be made to do so.
This upper bound on the size of TurboPascal strings may easily be overcome

in Ada by representing strings in a record with a discriminant, as

type TP_String (Max_Size: natural) is
record
Size : natural range 0 .. Max_Size:= 0;
Symbol: string (1 .. Max_Size);

end record;

When variables of this type are declared, they are initialized as null strings, with
the automatic initialization, which places a zero in the record's Size component.
This string representation has the typical problem of static representations,

namely, the predetennined limit on the size of the array in each TP_String
record. On balance, the implementation of the algorithms for the various
constructors and observers is straightforward. Even additional support, like string
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Listing 10.3. TP_strings package specifications.

package Turbo_Strings is
type TP_String (Max_Size: positive:= 40) is private;

function "<" Left : in TP_String;
Right: in TP_String ) return boolean;

function 11<" Left : in TP_String;
Right: in string ) return boolean;

function "<" Left : in string;
Right: in TP_String ) return boolean;

procedure Append IN STRING in TP_String;
TO- THE STRING: in out TP_String );

procedure Append In_String in string;
To_The_String: in out TP_String );

procedure Clear ( The_String: in out TP_String );
procedure Copy ( From_The_String: in TP_String;

To_The_String out TP_String ) ;
procedure Copy From_The_String: in string;

To- The_String out TP_String );
procedure Copy From The_String: in TP_String;

To- The_String out string );
procedure Delete ( In-The_String in out TP_String;

From_The Position: in positive;
To- The- position in positive );

procedure Delete In- The_String in out TP_String;
From_The Position: in positive;
To The- Position in positive ) ;

procedure Insert The_String in string;
To_The_String in out TP_String;
At The- Position: in positive );

procedure Insert ( The_string in TP_String;
To- The_String in out TP_String;
At- The- position: in positive );

procedure Prepend

procedure Prepend

function Position_Of

function
function
function

IS_Null ( The_String: TP_String ) return boolean;
Length_Of ( The_String: TP_String ) return natural;
Position_Of ( Substring: TP_String;

The_String: TP_String;
Start_At positive:= 1) return natural;
Substring : string;
The_String: TP_String;
start_At positive:= 1) return natural;

The_String in string;
To_The_String: in out TP_String );
The_String in TP_String;
To_The_String: in out TP_String );

procedure Replace_Substring (In_The_String in out TP_String;
At_The_Position: in positive;
With_The_string: in STRING);

procedure Replace_substring (In_The_String in out TP_string;
At_The_position: in positive;
With_The_String: in TP_String );
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Listing 10.3. TP_strings specifications (cont.)
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function Get_Substring (The_String : TP_String;
From_The_Position : positive;
To_The_Position : positive;
Return_Size : positive) return TP_String;

function Get_Substring (The_String TP_String;
From_The_Position positive;
To_The_Position : positive;
Return Size : positive) return STRING

String_Overflow, String_Position_Error exception;

private
type Char is array (positive range <» OF character
type TP_String (Max_Size: positive 40) is
record
Size: natural := 0;
Strng: Char (1 ..Max_Size);

end record ;

end Turbo_Strings ;

I/O, is easy to build. For example, a get_line procedure for TP_Strings may
directly use text_io. get_line:

procedure Get_Line (Str: out TP_String) is
begin
Text_IO.Get_Line (Str.Symbol, Str.Size);
exception
when constraint_error => raise String_Overflow;

end Get_Line;

If, through the analysis of the system being designed and needing string
support, a software developer can determine the maximum size of strings, the
TP_Strings representation is an excellent, and efficient, method for representing
strings. The only potential efficiency problem with this approach relates to the
efficient use of memory. Specifically, if the maximum size of strings is
substantially larger than the actual size manipulated by the system, the amount of
storage reserved for strings could affect system performance.
Once a package developer makes a decision to have a package export its own

string type, the number of constructors and observers must be increased, or the
existing ones must be overloaded, to assist package users through a collection of
subprograms for the conversion and interaction between TP_Strings and Ada's
strings. This is illustrated with the package specifications for TurboPascal-like
strings appearing in Listing 10.3.



300 10 Strings

Note that it is unnecessary to provide 110 support for TurboPascal-like strings
because the package provides subprograms for passing string values between
Ada's strings and TP_Strings, allowing users to perform their own string 110
with the existing Ada string 110 support.
Building the body of a strings package based on TP_Strings is not a

difficult matter and is left as an exercise for the reader.

10.2.3 The Sentinel Method

When a specific character does not appear in string values, the sentinel method
could be an appropriate means of representing strings. This is the method
employed in C and Modula-2. In Modula-2, strings are maintained in any array
of char. However, Modula-2's standard ReadString procedure in the module
InOut places strings in arrays of characters in such a way that if the string does
not fill the array, the string is terminated with an ASCII. nul character. Also,
Modula-2's InOut's WriteString is consistent with ReadString in that when
a string is processed by WriteString, all characters are printed until either an
ASCII. nul is encountered or all characters in the array are printed. For
example, the string II Sma11 one II would appear as

1 2 3 4 5 6 7 8 9 10

One disadvantage to this approach is the time required, O(string length), to
determine the length of a string. This also affects several string constructors,
which need to know the position of the end of a string. However, the bodies of
string constructors and observers are easy to build. This approach may directly
use Ada strings. A package to support this approach should be built as a generic
package, whose instantiation parameter is the sentinel value

generic
sentinel: character:= character' first;

package Modula-2-like_Strings is

Another decision that must be addressed when building this package is whether
to use Ada's string type, either directly or indirectly; that is, whether to use
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Ada strings or export a private type. An advantage of having the package
declare a private type is that the initialization of that type, with the sentinel
value in the first array location, may be guaranteed. If string initialization is
provided, a package specification similar to the one in Listing 10.3 is necessary.
Construction of the specifications and body for a Modula-2-like strings

package is left as an exercise for the reader.

10.3 Dynamic Representations

10.3.1 Strings as Lists

The complete opposite to the static methods for representing strings is the direct
representation of a string as a list of characters, one character per list record.
This is illustrated in Figure 10.1.
Despite the simplicity of this approach, there is one very obvious

disadvantage: the overhead for each record in the string representation.
Allocating an access component with each character's record requires the memory
overhead for access types. This overhead may range from two to eight bytes per
record, depending on the method for representing access types on a particular
system. If we assume four bytes are required for the access component in each
record, then 20 percent of each record is allocated to each character and 80
percent is allocated for the access component. That is, the space cost is five bytes
per character for each character in the string.

~
GE-+GG+~[E+~

C::-83-CiliJ--.83-lilij-~

C-=-[b]3-+@3-+GEt-+~~_~

c=ffi-.[!J3-.GB+rn
Figure 10.1. String as a list.
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The effects on constructing and timing the various constructor and observer
algorithms are as one would expect when comparing list-based structures to array­
based structures. The use of array indexes and ranges and random access to array
locations are replaced by pointers and the strict sequential access of lists. Other
than that, there is a great deal of similarity between array-based and list-based
string processing algorithms.
Building a simple list-based string package is a nice academic exercise, but

the memory overhead precludes the use of this package for serious string
applications.

10.3.2 Strings as Piecewise Lists

Figure 10.2 illustrates an alternative to the straight list approach described in
Section 10.3.1. This approach breaks the string into pieces, stores the pieces of
the string in records, and forms the records into a list. The piecewise list
illustrated in Figure 10.2 stores up to six characters per record. If the access
component used to link strings requires four bytes, then the space utilization
approaches 60 percent efficiency, six bytes for the characters and four bytes for
the access component.
Figure 10.2 also illustrates a potential space utilization problem for

dynamically allocated piecewise strings, namely, a last piece that is not fully
utilized. The example illustrated in Figure 10.2 shows a last piece containing
only one character. Hence, this piece has a space cost of 10 bytes for that one
character.
The specifications for a piecewise string package are essentially the same as

the specifications for the TurboPascal-like string package appearing in
Listing 10.3. The description of the private type, pw_Strings, appears in

Figure 10.2. Strings as a piecewise list.
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Listing 10.4. The List_Pt_Lpt module may be used to assist in the
representation of PW_Strings. The private declarations indicate the structure
of PW_Strings, which includes a component that provides access to the
piecewise list, the length of the string, and other components that assist in
navigating the string. Included in each PW_String record is an array, where a
copy of the current piece is kept. This array component is used by several string
manipulating subprograms as a buffer to improve the speed of access to characters
in the string. Selection of an appropriate piece size is application-dependent.
Therefore, it is appropriate for a piecewise representation to include a generic
instantiation parameter like

Piece_Size: positive:= 8;

with a reasonable default value. If the software developer can predetennine the
expected size of strings, piece size may be optimized. For example, if most
strings are expected to be 15 or more characters long, a piece size of 15 may be
appropriate. However, users should avoid very large piece sizes, because of the
potential memory requirements that may be associated with this approach.

Listing 10.4. Piecewise string representation.

with List_Pt_Lpt;
generic

Piece_Size: in positive:= 10;

package Piecewise_Strings is

type PW_String is limited private;

SPECIFICATIONS OF SUBPROGRAMS

private

type Char is array (0 .. Piece_Size-1) of character;

package Str_Lst is new List_Pt_Lpt (Char);
use Str_Lst;

type PW_String is
record
List
Length
Logical_Index:
Piece_Index
Current_Piece:

end record;

end Piecewise_Strings;

Str_Lst.List_Type;
natural:~ 0;
natural:= 0;
natural RANGE 0 .. Piece_Size:~ 0;
Char;
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To illustrate the potential memory utilization problems, consider a case where
a piecewise representation is instantiated with a piece size of 50. Further assume
that 50 is the average size of strings, but with a very small standard deviation in
string size. For each string whose length is in the range 45 to 49, there may be
a similar number of strings with lengths in the range 51 to 55. Although each
string in the first group has good space utilization, every string in the second
group requires two pieces. resulting in poor space utilization for these strings, in
the range of about 50 percent.
The piecewise representation of strings does represent some challenges to the

implementor when building the bodies of the string constructors and observers.
However, most of the processing of the string constructors and observers is
sequential. The only nonsequential operation entails the initial position of some
operations. Listing 10.5 illustrates several navigation procedures for strings.
These procedures provide navigation and access support for the package's
constructors and observers. The procedure Set_pos i tion accepts a string and
a position and initializes the various components in the string in preparation for
access to the string. The function Current_Char returns the character indicated
by the current index into the string. Set_Position attempts to reduce the
amount of list access by comparing the new index to the old. If they are the
same, no change occurs. If they access the same piece, only the Piece_Index
component is modified; otherwise, the algorithm sequentially processes the list
and places a copy of the appropriate piece in current_Piece. The procedures
Increment_Index and Decrement_Index provide relative processing access
by associating the repositioning request in the string to an appropriate call to
Set_Position.

10.3.3 Tradeoffs

The tradeoffs between the various list representations are the typical ones that
occur between static and dynamic representations, namely, the speed of static
representations versus the unboundedness of dynamic representations. A
comparison between the two dynamic approaches leaves no questions about the
large overhead of the straight list method. The only remaining question is: What
is an appropriate choice for the Piece_Size in the piecewise list representation?
Under certain circumstances it has been shown that if L is the average length of
strings and a is the overhead per record for access pointers, then the piece size

that minimizes wasted memory is J2aL .
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Listing 10.5. Navigation processes for piecewise strings.
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procedure Set_Position Str in out PW_String;
Index: in natural ) is

begin
if Index = 0 then
str.Logical_Index:= 0;
elsif «Index-i) mod Piece_Size)

= «Str.Logicai_Index-i) mod Piece_Size) then
Str.Logicai_Index:= Index;
Str.Piece_Index := (Index-i) mod Piece_Size;
else
Str:= (Str.List, Str.Length, Index, (Index-i)

mod Piece_Size, Str.Current_Piece );
Move_To_Front (Str.List);
if (Index-i)/Piece_Size > 0 then
for IX in 1 .. (Index-i)/Piece_Size loop
Move_Towards_Rear (Str.List);

end loop;
end if;
Str.Current_Piece:= Current_Object (Str.List);

end if;
end set_position;

procedure Increment_Index Str in out PW_string;
Increment: in positive) is

begin
Set_Position (Str, Str.Logical_Index + Increment);
end Increment_Index;

procedure Decrement_Index Str in out PW_String;
Increment: in positive) is

begin
Set_Position (Str, str.Logical_Index - Increment);
end Decrement_Index;

function Current_Char (Str: PW_String) return character is

begin
return Str.Current_Piece(Str.Piece_Index);
end Current_Char;

The piecewise method does present some challenges when coding the bodies
of the constructors and observers. For example, inserting one string in another
may require the manipulation of characters between pieces and adjusting each
piece from the position where the insertion was made to the end of the string.
However, there is no reason why this algorithm should not function in the same
order of magnitude of time as the array-based algorithm, O(n).
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10.4 String Search Algorithms

Fundamental to practically every string processing application is the searching
within one string for the occurrences of a second string,

The simplest algorithm, sometimes called the obvious algorithm, searches
The_String for occurrences of the first character in the Sub_String. At each
such occurrence it performs pairwise matches between corresponding characters
in the two strings until a pairwise match fails, or until the substring is located.
The algorithm is discussed in Section 10.4.1. This approach makes no use of any
information about the structure of the substring.
Alternate algorithms, which appear in Sections 10.4.2 through 10.4.4, make

use of the structure of the substring. Section 10.4.2 describes the simplest of
these, a variation of the obvious algorithm, selects a unique character in the
substring, a character whose occurrences in the The_String are expected to be
rare, and centers the initial search process for this character; and then checks the
characters that surround it for the desired substring. The next two sections
describe two important string search algorithms.

10.4.1 The Obvious Algorithm

Listing 10.6 contains an example of the obvious algorithm. This example
searches through a string contained in a PW_String for an occurrence of a
substring contained in an Ada string. This algorithm makes use of the string
navigation subprograms described in Listing 10.5. To illustrate the potential time
for the algorithm, assume the substring being sought is

DABADABADO

and the search is through a large string like

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
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Listing 10.6. The obvious algorithm.
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function Position_Of Substring : string;
The_String: PW_String;
Start_At positive:= 1) return natural is

Answer natural 0;
Str_Copy: PW_String:= The_String;
Found_It: boolean false;

begin
for Index in 1 .. (The_String. Length-Substring' length+1) loop
Set_Position (str_Copy, Index);
if Current_Char (Str_Copy) = Substring (1) then

Found_It:= true;
for Index in 2 .. Substring' length loop

Increment_Index (Str_Copy,l);
if current_Char (Str_Copy) /= Substring(Index) then

Found_It:= false;
exit;

end if;
end loop;
if Found_It then

Answer:= Index;
exit;

end if;
end if;

end loop;
return Answer;
end Position_Of;

As the search progresses, the substring is compared a character at a time to the
string

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
1IIIIIIIIx
DABADABADO

In this example, the search fails with the last character. Note that this search time
is the length of the substring. Because the search fails, the substring is moved up
one character and compared with the larger string

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
x
DABADABADO

This time the search fails at the first character. Unfortunately, every fourth
substring search takes time in the order of the length of the substring. Since the
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substring being sought is found at the end of the large substring, the entire search
time is of order

O(length of string I * length of small string 2).

Despite the potential time problem for this search technique, the maximum
time is reached only when there are unusual relationships between the two strings,
as illustrated with the previous example. The next three sections describe three
search techniques that improve upon the potential upper bound described here.

10.4.2 A Human Variation

When humans search for a substring in a string, they frequently use a simple
variation of the search described above. The human variation of substring
searching usually begins with an analysis of the substring. The analysis usually
involves finding something unique in the substring, like a symbol, or small
sequence of symbols, that does not occur frequently. This special symbol is then
used in the sequential search of the other string and comparisons are made
surrounding this special letter.
An illustration of this search method is typical of the method employed when

solving word matrix puzzles. A word matrix puzzle is a rectangular arrangement
of letters and the puzzle solver is given a list of words that appear in the matrix.
The words may appear in any row, column, or diagonal of the matrix and be
spelled left to right or right to left. A method frequently employed in solving
these puzzles is to search for a word by first looking for a special letter in the
word and seeing if the rest of the word might surround the letter. For example,
if the word "dazzle" is sought in a word matrix, the searcher would probably
look for the letter "z" - actually look for a pair of "z" S - and see if the word
surrounds the letters.
The rationale behind this approach is that fewer "z" s than "d" s will appear

in the word matrix, and hence less time will be spent making comparisons with
other letters in the string being sought.
Consider the example from Section 10.4.1. In the substring

DABADABADO

the letter 0 occurs only once. Now the other string is searched to look for
occurrences of this letter. Fortunately, in this case only one 0 occurs in the other
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string, and hence no time is wasted comparing the other letters in the string being
sought, except for the one occurrence of an o.
The two algorithms described in the next two sections perform their searches

by making use of information available in the string being sought. In the
example discussed in Section 10.4.1, when the comparison

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
1IIIIIIIIx
DABADABADO

was made, there is enough information in the comparisons to indicate that the
next test should be made not by moving the string one character, but by moving
it four characters

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
III111
DABADABADO

and continuing the comparison with the seventh character, the B and not repeat
a comparison of the beginning characters, DABADA. Algorithms for these
improved search strategies are described next.

10.4.3 Knuth-Marris-Pratt Algorithm

Let 5\ and 52 be two strings. The Knuth-Morris-Pratt (KMP) algorithm searches
5\ for occurrences of 52 in time,

T = O(length(5 j ) + length(52) ).

Assume 5\ is being searched for an occurrence of 52' Simply stated, the goal of
the KMP algorithm is not to back up. That is, once the jth symbol in 51' 5lj),
is found the algorithm does not look back at any 51(;), for i < j. For example,
consider the strings used as an example in Section 10.4.1. After the first
comparison of the characters in 51 to those in 52'

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
1IIIIIIIIx
DABADABADO
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there is enough information from the successful character-by-character
comparisons so that the comparisons continue the search

DABADABADABADABADABA . . . DABADABADABADABADABADABADABADO
IIIII?
DABADABADO

as indicated with the "?". That is, there is enough information in the successful
character-by-character comparisons so that the second string may be positioned
appropriately so that the comparisons may continue where the last failure
occurred. It should be noted that when a comparison succeeds, the character in
51 at that position is known, but when a comparison fails, all that is known is that
the character is not the same in this case, it was not an o. It was not know that
the character was an A.
The key to the KMP algorithm is the formation of a table associated to the

positions in 52 that indicate how to slide the string 52 when the character-by­
character match fails at that position. Table 10.3 illustrates three strings and their
corresponding slide tables. String (a) in Table 10.3 is the string appearing in
several examples above, "DABADABADO". A quick look at the rationale for each
slide value could be instructive. The reasons for the slide values for the nine
symbols are as follows:

I. The first D does not have a match so, obviously, move the string over one
position and try again.

2. The symbol does not match the A, therefore, it might be a D, so the string
must be slid over one so the symbol may be compared to the starting
symbol, D.

3. The symbol does not match the B, therefore, the string must be slid over
to check against the leading D.

4. Same reason as (2) and (3).

Table 10.3. KMP table examples.

DAB A D A B ADO
112 355 6 794

(a)

S I M P L E
1 1 2 3 4 5

(b)

X Y Z X Y Z
1 1 2 4 4 5

(C)
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5. This symbol does not match the D, therefore, it will not match the leading
D, so slide the string over and continue the comparisons with the next
character.

6. Same reasons as (2), (3), and (4).
7. Same as (6).
8. Same reason as (5).
9. The lack of a match to the 0 must be adjusted with the matches to the
previous five symbols. Therefore the string is slid only four places, and
the symbol compared to the 0 will be compared to the A in position 6.

Listing 10.7 describes a type declaration for the offset table used by the KMP
algorithms and the specification for the procedure that builds the table. The
algorithm for building the slide table appears in Listing 10.8 without explanation.
Developing a detailed rationale for the algorithm is left as an exercise for the
reader.
The preprocessing algorithm that produces the table that supports the KMP

algorithm is performed in time of the order of the length of the string being
sought. The KMP algorithm does not backtrack. Therefore, the search algorithm
performs in time of the order of the length of the string being searched. As a
result, the entire search is performed in time of the order of the sum of the
lengths of the two strings.

Listing 10.7. KMP support specifications.

package KMP_Support is

type Slide_Array is array (positive range <» of natural;

procedure KMP_Scan

end KMP_Support;

The_String :
String_Size:
Table

in string;
in positive;
in out slide_array);

10.4.4 Boyer-Moore Algorithm

The Boyer-Moore algorithm was published in the same year as the KMP
algorithm. The Boyer-Moore algorithm uses the KMP algorithm but builds upon
it with a second approach. Fundamentally, the Boyer-Moore algorithm uses two
slide tables, a KMP-like slide table and a second table. Also, the Boyer-Moore
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Listing 10.8. KMP table construction algorithm.

procedure KMP_Scan The_String: in string;
String_Size: in positive;
Table in out slide_array is

Index_l: natural:= 1;
Index_2: natural:= 0;

begin
Table (1): = 0;
while Index_l < String_Size loop
while (Index_2 > 0) and

then The_String (Index_i) /= The_String (Index_2) loop
Index_2:= Table (Index_2);

end loop;
Index_l:= Index_l + 1;
Index_2:= Index_2 + 1;
if The_String (Index_l) = The_String (Index_2) then

Table (Index_l):= Table (Index_2);
else
Table (Index_l):= Index_2;

end if;
end loop;
end KMP_Scan;

algorithm performs its matching comparisons working from right to left instead
of from left to right.
The KMP-like table is prepared making use of the results of the right-to-Ieft

comparisons. Table 10.4 illustrates the slide table for several strings. A
comparison of strings (a) and (d) in Table 10.4 helps gain an understanding of the
interaction between the various matches and the right-to-Ieft comparisons. In
string (a), if a match occurs with the rightmost symbol, an 0, and since there is
no other 0 in the string, the entire string must be moved past the 0 when a match
fails on other symbols in the string. In string (d), note that if the match fails on
the second character from the right, the A, the string is moved only eight
positions, because the failure to match against the A might be because the symbol
at that location is an o.
The second table makes use of the character in the larger string that did not

match the corresponding character. This character mayor may not be in the
string being sought. It describes how far the string should slide knowing where
the rightmost occurrences of this character appears in the string being sought. For
example, if the word II APPEAR II is sought, the table entries for the characters in
this string would be

- APE R
61320
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Table 10.4. Boyer-Moore KMP-like tables.

D A B A D A B A D 0
10 10 10 10 10 10 10 10 10 1

(a)

S I M P L E
1 1 2 3 4 5

(b)

X Y Z X Y Z
1 1 2 4 4 5

(e)

0 D A B A D A B A D
10 10 10 10 10 10 10 10 8 1

(d)
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where "-" indicates all the characters not appearing in the string being sought.
Each value indicates the distance of the first occurrence of that character from the
right-hand end of the pattern.
Let S be the string being searched and P the pattern being sought. The

Boyer-Moore algorithm performs the search as follows: Let is be the index used
in scanning the string Sand ip be the index used in scanning the pattern P.
Initially,

is = ip = length of P.

When the characters at the indices match, both indices are decremented. When
there is no match, ip is reset to the length ofP. is is reset to the larger of the two
values obtained in the KMP-like table at position is and in the second table at ip,

before ip is reset. Building the Boyer-Moore algorithm and its support is left as
an exercise.

10.4.5 Comparisons

A comparison of the three search algorithms - the obvious algorithm, the KMP
algorithm, and the Boyer-Moore algorithm - indicates that for small patterns, the
obvious algorithm is as good as any. In practice, most matches fail with the first
or second character. Hence, there is not much gained with the overhead of the
KMP algorithm versus the obvious algorithm. However, a glance at the slide
table for the Boyer-Moore algorithm indicates that for many patterns, the Boyer-
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Moore algorithm makes large jumps while scanning the string. Experiments show
that as patterns get larger, the Boyer-Moore algorithm is substantially faster, in
the order of two or three to one, than either the obvious algorithm or the KMP
algorithm.

10.5 Tradeoffs

The choices between the various static and dynamic representations of strings
depends on the application. From a user's point of view, it is desirable to select
the least complex representation of strings. From our experience, and no
scientific survey, we believe that most software developers make their choice of
string representation based not on what might be an appropriate representation for
the application, but on the string representation with which they are most
experienced. In many cases, this is not necessarily bad.
We find that two packages seem to cover all possible situations with good

reliability and efficiency, the TP_Strings package and the piecewise dynamic
representation. As long as a reasonable upper bound on the size of strings being
manipulated may be predetermined, TP_Strings is a practical first choice.
When in doubt, the piecewise strings package is a good compromise that performs
with reasonable efficiency over a wide range of applications.

10.6 Explorations

1. For string applications involving text processing, the normal ASCII collating
order might not be appropriate. In particular, for some applications, the
ASCII collating order of characters,

A .. Z, a .. z

might not be suitable for certain text-processing applications. In some cases,
it might be desirable to maintain the ASCII collating order but ignore the case
of alphabet characters. That is, consider A equivalent to a, B equivalent to b,
and so forth.

Another alternative might be to maintain the ASCII collating order for all
nonalphabetic characters and the ASCII collating order between any
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alphabetic character and any nonalphabetic character, but use the collating
order

AaBbCcDd ... Yyzz.

Build observers, No_Case_Equivalent and No_Case_Precede, that per­
form the normal equivalent and precede selections except that the upper and
lower cases of each alphabet character are considered equivalent. Also build
Alpha_Precede that uses the AaBbCc ... collating order for alphabet
characters.

2. Evaluate the time-space requirements for your solution of Exercise I.
3. Is an Alpha_Equivalent observer necessary? Explain.
4. In the ASCII scheme, the numerals come before the alphabetic characters and
the control and special characters are dispersed around the numeric and
alphabetic characters. Build a package that includes all of the string pro­
cessing features but allows a user to specify a unique collating order.

5. Evaluate the various factors that must be considered when building a string
package for an EBCDIC or other encoding scheme.

6. Build a package that uses a translation table that allows a user to modify all
or part of the ASCII collating order of characters. This package should
include procedures to modify all or part of the table as well as display the
new table both in its collating order as well as in ASCII order with each
character's new collating value. Also include procedures that allow a user to
determine if several characters might have the same collating value, which
mayor may not be desirable, depending on the application.

7. How many of the exercises in this section could be handled with a translation
table? Explain. Evaluate the use of a translation table versus other
approaches to implementing alternative collating orders.

8. Modify the string package with an instantiation option that allows a user to
decide whether the function Pos it ion_Of returns an exception,
Not_A_Substring, or a value of zero when the search does not find the
substring.

9. Develop a written description, and appropriate assertions, for the KMP
algorithm for creating the support table.

10. Build the Boyer-Moore modification of the KMP table builder.
11. Build a Boyer-Moore support package including the Boyer-Moore pattern­
searching algorithm.

12. Create the specification and body for a complete TP_Strings package.
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13. Create the specification and body for a complete dynamic piecewise string
package.

14. Analyze the problems surrounding the use of the Boyer-Moore algorithm for
pattern searching within the dynamic piecewise string package.

15. Build a Boyer-Moore pattern-search subprogram within the piecewise strings
package.

16. Investigate the various Ada string packages, like Ada. Strings. Bound and
Ada. Strings. Unbound, with respect to their limitations and the timing
characteristics of their subprograms.

17. Construct the KMP tables for the following strings:

abcdefghij
abcdabchabc

abcaefgaij
abcdabcdab

abcdabghab
abcdabcdabcde

18. Construct the Boyer-Moore tables for the strings in Exercise 17.
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Sorting

Organizing information, seeking information, and updating collections of
information stored in various structures consume both a large portion of software
development efforts and enormous amounts of program execution time. This
chapter addresses the fundamentals that surround the organization of arrays of
data. The searching and updating of collections of information stored in arrays
appears in Chapter 12.
The term sorting, the topic discussed in this chapter, refers to the process of

organizing collections of objects into sequential structures according to a linear
ordering relationship that defines an ordering of the objects. The ordering relation
is also referred to as a collating relationship. In the simplest cases, the objects
to be collated are represented by an ordinal data type and the objects are placed
into an array, with a linear order relation between the objects.
This chapter begins with several classical array sorting techniques along with

an analysis of the complexity of their algorithms. These range from algorithms
with poor timing, O(n2

), to the best possible timings, O(n log(n)).
In some cases, these algorithms are presented generically. In other cases,

instances of the algorithms are presented so that the algorithm's structure is not
obscured by a generic presentation. In those cases, the generic representations are
left as exercises with hints pointing out some of the difficulties encountered in
creating generic versions of these algorithms.
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11.1 O(rt) Sorts

Sorting methods are usually categorized according to the timing of the algorithm.
Sort timings fall into three basic categories: poor sort techniques whose timing is
O(n2

); the best sort timings, which is O(n log n); and a collection of sort
techniques that fall between the two extreme categories. This section describes
the sorts with poor timing; Section 11.2 describes the middle group of sort
techniques; and Section 11.3 describes the best possible timings.

11.1.1 Selection Sort

Each sort technique may be described by its strategy. Once the strategy leads us
to an algorithm, the algorithm may be measured and analyzed. The selection sort
has a simple strategy, which may be described as follows:

For each position in the array, starting with the first position, find
the object that belongs in that position.

Listing 11.1 illustrates a selection sort. The outer loop selects the locations in the
array. For each selection, the inner loop searches for the object that belongs in
that location. Once the inner loop finds the object, the object is swapped with the
object in the selected location so that the next iteration of the outer loop will not
reselect that object.

It is easy to determine the timing for this sort. If n is the number of objects
in the array, the outer loop executes n - 1 times. Each time through the outer loop,
the number of iterations of the inner loop is completely determined. The first
time through the outer loop, the inner loop iterates n - I time; the second time
through the outer loop, the inner loop iterates n -2 times. Each time through the
outer loop, the number of iterations of the inner loop is one less than the number
of iterations of the same loop during the previous iteration. This leads to the total
number of iterations of the inner loop as

(n- I) + (n-2) + ... + 3 + 2 + I = 0(n2).

Since this is the largest timing component in the algorithm, the algorithm's timing
is 0(n2

).

Frequently, when reviewing the timing of algorithms, it is not always easy to
get a firm handle on the algorithm's timing. When that occurs, there are three
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Listing 11.1. Generic selection sort algorithm.

generic

type Array_Range is «»:
type Object_Type is private;
type Array_Type is array (Array_Range range <» of Object_Type;
with function Precedes ( left, Right: Object_Type) return boolean;
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procedure Select_Sort The_Array: in out Array_Type;
left_end: in Array_Range:= Array_Range'first;
Right_End: in Array_Range );

generic Select_Sort body

procedure Select_Sort The_Array: in out Array_Type;
Left_End: in Array_Range:= Array_Range'first;
Right_End: in Array_Range) is

function "<" (Left, Right: Object_Type) return boolean renames Precedes:
function pred (IX:Array_Range)return Array_Range

renames Array_Range'pred;
function succ (IX:Array_Range)return Array_Range

renames Array_Range'succ;

Selected_Index: Array_Range;
Extra : Object_Type:

begin -- of sort
for Outer_Index in Left_End .. pred(Right_End) loop
Selected_Index:= Outer_Index:
for Inner_Index in succ (Outer_Index) .. Right_End loop
if The_Array(Inner_Index) < The_Array(Selected_Index)
then Selected_Index:= Inner_Index;

end if;
end for;
if Selected_Index /~ Outer_Index then
Extra The_Array(Outer_Index);
The_Array (Outer_Index) The_Array(Selected_Index);
The_Array(Selected_Index):= Extra;

end if:
end loop;
end Select_Sort:

cases that are usually discussed, the algorithm's worst timing case, the algorithm's
best timing case, and the average timing for the algorithm. The worst-case timing
provides an upper bound on the algorithm's timing, and the best case provides a
lower bound on the timing. Sometimes, the average case is an easy one to
determine. The selection sort, because of the simplicity of its algorithm, is
unusual in that all cases have the same timing characteristic, O(n2

).
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11.1.2 Insertion (Bubble) Sort

11 Sorting

The sort strategy of the insertion sort is as follows:

For each i E [2,n], assume the object in locations 1 through i-I
are in order. Insert the ith number into position so that objects
in locations I through i are in order.

The simple algorithm that appears in Listing 11.2 performs this strategy. If the
objects in array positions 1 through i-l are in sorted order, the ith object is
placed in its correct position by comparing it to the object in the position
preceding it. If these two objects are not in the correct order, they are swapped
and a new comparison is made. This process proceeds until either no swap
occurs or the ith object is "bubbled" up to the first position in the array.
The inner loop in Listing 11.2 is a while loop controlled with two

conditions. As a result, the timing of the sort depends on the organization of the
data. An upper bound may be observed by assuming that each time through the
outer loop, the object being "bubbled" in the inner loop bubbles up to the first
location in the array. The first time through the outer loop, the inner loop iterates
at most 1 time. The second time through the outer loop, the inner loop iterates
at most 2 times. The total number of iterations of the inner loop is at most,

(n-1) + (n-2) + ... + 3 + 2 + 1 = (n-1)*nJ2 = O(n2
).

This bound is realized in the worst-case scenario, which is achieved if the objects
were placed in the array in reverse order.
On the average, each time through the outer loop, the inner loop would

bubble objects halfway up between the object's initial location and the first
location in the array. This leads to an inner loop timing of

(n-1)/2 + (n-2)/2 + ... + 3/2 + 2/2 + 1/2 = n*(n-l)/4 = O(n2
).

From this we may observe that both the worst-case and the average-case timings
are the same order of magnitude, and the average-case timing of the inner loop
takes half the time of the worst case.
The best-case timing is achieved if the inner loop in Listing 11.2 does not

iterate. This is realized when the objects in the array are initially in order. The
timing for the algorithm is bound by the timing of the outer loop, O(n).
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Listing 11.2. Bubble sort algorithm.

generic
type Array_Range is «»;
type Object_Type is private;
type Array_Type is array (Array_Range range <» of Object_Type;
with function Precedes ( Left, Right: Object_Type) return boolean;

procedure Bubble_Sort The_Array: in out Array_Type;
Left_End: in Array_Range:= Array_Range'first;
Right_End: in Array_Range );

generic Bubble_Sort body

procedure Bubble_Sort ( The_Array: in out Array_Type;
Left_End: in Array_Range:= Array_Range'first;
Right_End: in Array_Range) is

function "<" (Left, Right: Object_Type) return boolean renames Precedes;
function pred (IX: Array_Range) return Array_Range

renames Array_Range'pred;
function succ ( IX: Array_Range) return Array_Range

renames Array_Range'succ;
continue_Looping boolean;
Inner_Index, Inner_Plus_l: Array_Range;
extra : Object_Type;
begin -- of sort
for outer_index in Left_End .. pred(Right_End) loop
Inner_Index := outer_index;
Inner_Plus 1 := succ (outer_index);
continue_Looping:= true;
while Continue_Looping and then
not (The_Array(Inner_Index) < The_Array(Inner_Plus_l»
loop
extra The_Array(Inner_Index);
The_Array(Inner_Index) := The_Array(Inner_Plus_l);
The_Array(Inner_Plus_l):= extra;
if Inner_Index = Left_End then

Continue_Looping:~ false;
else

Inner_Plus_l:~ Inner_Index;
Inner_Index pred(Inner_Index);

end if;
end loop;

end loop;
end Bubble_Sort;

The best-case timing leads to a special case. Suppose each object is at most
k positions from the location where it finally belongs. In this special case, for
each object the number of iterations of the inner loop is bound by k for each
iteration of the outer loop. Thus, for this case, the algorithm would bound by
k*(n-I) =O(n). This is an important observation that leads to the strategy for the
Shell sort.
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11.1.3 Timing Characteristics

11 Sorting

Table 11.1 lists the timings for the selection and bubble sorts. Although both
sorts have poor timing characteristics, for the bubble sort the best-case timing and
the special-case timing, observed in Section 13.1.2, demonstrate that we should
not be so quick to dismiss the bubble sort as a poor sort method. The special
case leads to the Shell sort, which first attempts to place objects close to where
they belong and then perfonns a bubble sort.

Table 11.1. O(n2
) sort timing characteristics.

Sort Method Best Average Worst

11.2 Better Sorts

Although these sorts are referred to as "better," not "best," they are worthy of
study for several reasons. First, their algorithms are relatively easy to implement
in any programming language, because the algorithms are not very complex.
Second, the timing characteristics of these sorts almost mimic the timing of the
best sort techniques. The Shell sort is not intuitive in that it is composed of three
nested loops! One might think that three nested loops would have worse timing
characteristics than two nested loops. However, the timing of an algorithm
depends on the combined timing characteristics of each of the nested loops.
Both of these sorts, the Shell sort and the quicksort, share the indication that

the sort timings could be in the neighborhood of O(n log n). In fact, the
quicksort, discovered by C. A. O. Hoare, has an average timing of O(n log n).
However, the Quicksort has a potential timing problem that keeps it from being
considered as one of the best. But the probability of an occurrence of a poor
timing anomaly is substantially reduced with a slight modification of the
algorithm.
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A generic Shell sort algorithm appears in Listing 11.3. The approach taken with
this algorithm may be described as follows:

Try to put each number close to where it belongs, and then do a
bubble sort.

This approach is accomplished by attempting to overcome a shortcoming in the
bubble sort. That shortcoming is that the bubble sort moves objects by moving
them only one location at a time. The approach taken with the Shell sort is to
compare numbers that are a fixed distance apart and swap pairs of numbers the
specified distance apart that do not satisfy the linear ordering. This process is
performed several times using successively smaller distances.

Listing 11.3. A generic Shell sort.

generic

type Object_Type is private;
type Array_Type is array (positive range <» of Object_Type;
with function "<" (Left_Side, Right_Side: Object_Type) return boolean;

procedure Shell_Sort Object in out Array_Type;
No_Of_Objects: in positive);

-- Sort Body
procedure Shell_Sort ( Object in out Array_Type;

No_Of_Objects: in positive) is

Inner_Index: natural;
Distance natural:= No_Of_Objects I 2'
Extra Object_Type;

begin of Shell_Sort
while Distance >~ 1 loop
for Outer_Index in 1 .. No_Of_Objects - Distance loop
Inner_Index:= outer_Index;
while Inner_Index > 0 and then
not (Object(Inner_Index)

< Object(Inner_Index+Distance)) loop
Extra :~ Object(Inner_Index);
Object(Inner_Index):= Object(Inner_Index+Distance);
Object(Inner_Index+Distance):= Extra;
Inner_Index:= Inner_Index - Distance;

end loop;
end loop;
Distance:= Distance I 2;

end loop;
end Shell_Sort;
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The algorithm in Listing 11.3 initially sets the distance at half the size of the
array. The inner pair of loops is a bubble sort that bubbles groups of objects.
Two objects, a(i) and a(j), are in the same group if and only if

li-jl = 0 (mod distance).

The algorithm interleaves the sorting of the groups of objects. With the distance
equal to 5, there would be five groups of objects, indicated by the sets of indices,

1,5,9, ,
2,6, 10, ,
3.7.11, .

and

4,8.12, ...

Figure 11.1 (i) illustrates the shell sort with a distance of 5, which produces the
result in Figure 11.1 (ii). This, in tum is processed with a distance of 2,
producing the result that appears in Figure 11.1 (iii), which may now be
processed with a distance of 1 and sorting the array.
Timing the Shell sort is a challenge. In fact, the best that has been

accomplished in timing the Shell Sort is the observation that its timing falls
somewhere between O(n log n) and O(n/·s).
To get a handle on the timing of the Shell sort, first observe the number of

iterations of the outer loop. Since distance is halved each time the loop
iterates, the number of iterations of the outer loop is bound by O(log n). Under
ideal circumstances, if each time through the outer loop, each object is at most
some fixed distance k from where it belongs, the inner pair of loops would be a
bubble sort with time bound by O(n). Therefore, the total timing of the algorithm
is bound below by O(n log n).
Although no useful theoretical upper bound has been found for the Shell sort,

experiments with the algorithm have indicated that the upper bound is
substantially less than the O(n2

) of the poorer sorts and might be close to O(n137
).

The sort timing does seem to depend on the selection of successive distances used
in the bubble sort implemented by the inner pair of nested loops. In particular,
there should be log n values used for the successively decreasing distances. Each
distance should be approximately half the previous distance. The best possible
timing for the Shell sort seems to be achieved if the successive distances are
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Distance - 5
1234567891011

Distance - 2

5 swaps
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10 11 2 swaps

Figure 11.1. Shell sort illustration.

relatively prime. That is, the sequence of distances

1,2,4,8, 16, ... , nl2

will nonnally produce poorer timing results than a sequence like

1,2,3,7, 17,31, ... , nl2.

Experimenting with various sets of distances is left as an exercise.

11.2.2 Quicksort

The quicksort is called a distributed sort technique. It lends itself to a recursive
algorithm that sorts a piece of the array at a time. The approach taken by the
quicksort is as follows:

Given a key object, detennine where it belongs. In the process
of detennining where it belongs, place all objects that precede it
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to the left of where the key belongs and place all the objects that
follow it to exactly where the key object belongs.

Listing 11.4 contains an example quicksort algorithm. This version of the
procedure contains a recursive sorting algorithm. The algorithm is straight­
forward. An object is selected and placed into the variable Key_Obj ect. As
part of the selection process, the location 1 in the array is vacated. The main
looping structure of the algorithm is a while loop that contains two other loops.
The two inner loops work in tandem, one incrementing Right_Index down from
the high end and the other incrementing Left_Index up from the low end.
Since the loop begins with location 1 available, the first inner loop searches

from the high end of the array, decrementing the Right_Index, until it finds an
object less than the Key-Object. When it does, that object is moved into
location 1. The second inner loop now searches up from the left end,
incrementing Left_Index, until an object greater than the Key_Obj ect is found.
When an object is found, it is moved to the location previously vacated and
indicated by Right_Index. This process continues until Left_Index =

Right_Index, at which point the Key_Object may be placed back into the
array.
After being processed by the algorithm, the array may be considered as being

composed of three components:

a. That part of the array with indices in the range

contains those objects whose values are less than or equal to the value of
the Key_Object.

b. The Key_Object, which does not have to be moved because it is in the
correct position relative to all other objects in the array.

c. That part of the array with indices in the range

contains those objects whose values are greater than or equal to the value
of the Key_Object.

If either or both of parts a and c contain more than one object, the algorithm is
called to recursively sort those parts of the array.
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Listing 11.4. Quicksort algorithm.

generic

type Object_Type is private;
type Array_Type is array (positive range <» of Object_Type;
with function "<"

( Left_Side, Right_Side: Object_Type) return boolean;

procedure Quick_Sort ( Object in out Array_Type;
Number_Of_Objects: in positive);

procedure Quick_Sort ( Object in out Array_Type;
Number_Of_Objects: in positive) is

procedure Recursive_Quick ( Object in out Array_Type;
Left_End,
Right_End: in positive ) is
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Left_Index : natural
Right_Index: natural
Key_Object : Object_Type;

Left_End;
Right_End;

begin -- of Recursive_Quick
if Left_End < Right_End then

Key_Object:~ Object (Left_End);
while Left_Index /~ Right_Index loop

--I Move the Right_Index <--
while Right_Index /~ Left_Index and then

not (Object(Right_Index) < Key_Object) loop
Right_Index:~ Right_Index - 1;

end loop;
Object(Left_Index):~Object(Right_Index);
--I Move the Left_Index -->
while Left_Index /= Right_Index and then

not ( Key_Object < Object(Left_Index) ) loop
Left_Index:~ Left_Index + 1;

end loop;
Object(Right_Index):= Object(Left_Index);

end loop;
--I Left_Index = Right_Index and
Object(Left_Index):~Key_Object;

if Left_End+l < Left_Index then
Recursive_Quick (Object, Left_End, Left_Index-I);

end if;
if Right_Index+l < Right_End then

Recursive_Quick (Object, Right_Index+l, Right_End);
end if;

end if;
end Recursive_Quick;

begin -- of Quick_Sort
Recursive_Quick (Object, 1, Number_Of_Objects);
end Quick_Sort;
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Timing the sort involves a careful look at the timing of each recursive call
and determining the number of recursive calls. The time for each recursive call
is bound by the sum of the number of iterations of the two inner loops. Since
one loop starts at the Right_End and iterates down and the other loop starts at
Left_End and iterates up until the two indices are equal, the timing for one
recursive call is bound by the size of the piece of the array being processed.
To arrive at the timing for one particular case, assume that during each

recursive process the Key-Ob j ect that is selected is placed close to the middle
of the piece of the array being processed. In this case, an array of size n is split
into two arrays whose size is approximately n12. Each of these pieces is split into
two pieces of size nl212 = n14. This splitting continues until each piece contains
a single object and the recursion halts. The depth of this splitting, under our
assumption that during each recursive call, Key_Object comes very close to
splitting the piece of the array in half, is log n. The sum of the length of all the
pieces processed yields the order of magnitude of the timing;

n + (nl2 + nl2) + 4 (nl4) + ... + =
n + n + ... + n {there are log n "n"s}

= O(n log n).

This case happens to illustrate the best-case timing. For the quicksort, this
also happens to be the average-case timing. Unfortunately, the worst-case timing
for the quicksort is O(n2

). This case may be arrived at by considering the
quicksorting of an array that is already sorted. This is left as an exercise for the
reader.
Fortunately, there is a way to keep the quicksort away from its worse-case

result. This method involves the use of a random number generator. Assume
Random is a package containing an integer random number generator,

... ;= Random.Integer (Left, Right);

that returns a random integer in the interval [Left, Right]. The random
number generator is used to select the location from which the Key_Obj ect is
chosen. Swap this value with the value in the first location,



11.2 Better Sorts

R_Index:= Random.Integer (Left_End, Right_End);
Key_Object object (R_Index);
object (R_Index):= object (Left_End);
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and then use the rest of the algorithm in Listing 11.4.
The selection of the object whose location must be determined during each

iteration of the recursive process has a major impact on the eventual timing of the
algorithm.

11.2.3 Timing Characteristics

The timing characteristics of the Shell and quicksort methods are summarized in
Table 11.2. Although precise theoretical timing results are not available for the
Shell sort, there is substantial information that indicates that in practice it is an
excellent sort. I saw one example many years ago where an updating process
based on a bubble sort was replaced by a Shell sort. As a result, a program that
ran in about 1.5 hours took only 10 minutes after the Shell sort was installed.
The average timing for the quicksort makes it a prime candidate for basic

array sorting. However, in practice, several variations are employed. First, the
use of the random number generator to select Key_Obj ect dramatically reduces
the probability of a worst-case scenario. Next, rather than having the recursive
process continue subdividing the array down to single object pieces, a practical
algorithm goes down to somewhere between 20 and 40 objects and reverts to a
simple sort. like a bubble sort, for these small pieces of the array. The claim is
that although a simple sort, like a bubble sort, might have poor theoretical timing,
in fact the algorithm overhead on small array pieces outweighs the actual results
when compared to a bubble sort on small pieces. That tradeoff is typically
encountered in the range of 20 to 40 objects.

Table 11.2. Better sort timings.

Sort Worst Average Best

O(n 1 ') >= ?? >= O(n log n)
Shell ?? ?? ??

Quicksort O(n') O(n log n) O(n log n)
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11 Sorting

Three sort methods are discussed in this section, the heapsort, the mergesort, and
a "realworld" variation of the mergesort, calIed the polyphase mergesort.

11.3.1 Heapsort

The heapsort was presented in Section 7.2.1. The timing for each phase of the
heapsort is easily bound. During the first phase, n-l nodes in the tree are
processed to order the heap. The sifting up of each node is bound by the length
of the longest path in the tree, log n. Therefore, the timing of phase one is bound
by (n-l)log n.
During phase two, n-l nodes are pruned from the heap and sifted down. As

in the first phase, the sifting process is bound by the length of the longest path
in the tree, log n. Hence the second phase is bound by

(n-l)log n.

Therefore, the timing, T, of the entire heapsort satisfies

T <= 2(n-I)log n = O(n log n).

11.3.2 Mergesort

The approach taken by the merge sort may be described as follows:

Given two ordered colIections of objects, merge them together as
a single ordered colIection of objects by comparing the first
object in the one colIection with the first object in the other and
removing the object that would be placed first by the ordering
function from its collection and placing it into the rear of the
newly formed collection. Continue this until all objects are
placed.

To illustrate, consider the two ordered colIections of integers

n, 25, 36, 44, 62



and

~, 27, 33, 52, 59

11.3 O(n Log n) Sorts 331

The mergesort would compare the two values underscored and move the smaller
value to the rear of the new collection being formed:

New Collection

8

Old Collections
.ll, 25, 36, 44, 62

27, 33, 52, 59
(i)

As a result, the numbers 12 and 27 are compared and 12 would be moved. As the
process continues, the new collection is formed

25, 36, 44, 62
8, 12

27, 33, 52, 59

36, 44, 62
8, 12, 25

27, 33, 52, 59

and the process finally produces the ordered collection

8, 12, 25, 27, 33, 36, 44, 52, 59, 62

(ii)

(iii)

Figure 11.2 illustrates how a mergesort might work on an array of 12 objects.
The merge process initially views the array as 12 collections of 1 object. These
12 collections are merged two at a time into six collections of 2 objects. The six
collections of two objects are then merged into three collections of four objects.
At this point, the merge process would merge two of these collections together
and form an ordered collection of eight objects. Finally, the collection of eight
is merged with the remaining collection of four, forming the ordered collection
of objects.
The mergesort timing may be observed as follows: The total timing of the

merge algorithm is the same order of magnitude as the number of times objects
are moved from one of the old ordered collections into the new ordered
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Figure 11.2. Mergesort illustration.

collection. Following the levels of successive merges, as illustrated in
Figure 11.2, at the first level, n objects are moved from n collections of one
object to nl2 collections of two objects. This requires n moves, hence is bound
by O(n). At the next level, nl2 collections of two objects are merged into nl4
collections of four objects. The timing of this level is also bound by O(n). In
fact, the timing at each level is bound by O(n). Hence, the total timing of a
complete merge process is bound by O(number of levels * n). Since the goal at
each level is to halve the number of collections, the number of levels is of order
log n, producing the timing bound O(n log n) for the mergesort.
A complete merge algorithm is normally composed of two processes. The

first process is the merging process, described above. The merge process is
continued until one of the two collections is empty. At this point, the merge
algorithm must take the objects remaining in the nonempty collection and place
them at the rear of the new collection.
The merge algorithm does not lend itself well to array processing. Typical

array implementations of the mergesort use two arrays and move the objects from
one array to the other in performing the merge process. Merging does lend itself
to processing lists and queues of ordered objects.
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The mergesort lends itself well to merging ordered collections of objects. The
polyphase merge is a practical version of a mergesort. Many sort processors
made available in operating systems are based On the polyphase mergesort. The
polyphase merge is best described as if the objects are stored On magnetic tapes.
The minimum resources required for a polyphase merge are three tape drives or
the ability to manipulate three sequential files at one time. An assumption made
in performing a polyphase merge is that the number of objects to be sorted, n, is
so large that all the objects cannot be placed in memory at the same time, but the
memory is sufficiently large to place some number k of objects, k > 2, in memory
at one time.
Under these assumptions, the polyphase merge operates as follows:

First, k object are placed in memory and sorted. This sorted
collection is placed on one of two tape drives. This process
continues until all objects are placed into a sorted grouping s On
two tapes. Next, one sorted group from each of the two drives
are merged and placed on the third drive. When all the groups
are processed from one of the tapes, groups on the other two
tapes are merged and sorted groups are placed On the remaining
tape. This process continues until a single ordered collection
appears on one drive.

Figure 11.3 illustrates the operation of the polyphase mergesort. First, the
objects collected on tape A are read into the computer, k objects at a time, and the
sorted group is placed on one of the other two tape drives. When this processed
is completed, a number of sorted collections appear on tapes Band C. Tape A
is nOw available. The collections on tapes Band C are merged and placed onto
tape A until one of the tapes B or C is emptied. At this point, the collections on
tapes A and C are merged onto B. This process continues until a single collection
is formed.
An obvious question that arises is: How many ordered collections must be

initially formed and how should they be placed On the two available tapes so that
the merging process may easily bounce back and forth among the drives and
produce a single collection On one drive? The answer to this question may be
obtained by working backwards. One collection on one drive is obtained by
merging one collection, each from the other two drives.
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Figure 11.3. Polyphase illustration.

Table 11.3 illustrates the number of groups on each drive during each phase,
starting with the last phase and working backwards. The number of ordered
groups on each tape during one phase is arrived at by taking the larger number
and assuming that this number was formed by merging that number of groups
from the two other tapes. As a result, at the beginning of each phase, the number
of groups on two tapes must be two consecutive Fibonacci numbers. This
guarantees that the polyphase process leads directly to one group on one tape.
During the initial phase, if the number of ordered groups of numbers does not

equal two consecutive Fibonacci numbers, then null collections may be added to
one of the tapes to start the process correctly.
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Table 11.3. Polyphase collections.

A B C

1 (1)
1 1 (2 )

1 2 (3 )
3 2 (4 )

5 3 (5 )
5 8 (6 )
13 8 (7 )

21 13 ( 8)

F(i) F(i-l) ( i)

Although the description above illustrates the polyphase merge using three
tapes, or sequential files, the process may be performed with ( tapes, merging (-]
at a time. It is an interesting exercise, and is left as one, to determine the number
of groups of ordered objects that must be placed on t- I tapes to guarantee that
the merge leads to one ordered group on one tape.

11.4 Explorations

1. Verify the performance characteristics of the bubble sort by running it with
several sets to observe its performance with random sets of data and data sets
where the numbers are almost in order.

2. Experiment with the following variation of the Shell sort: In a Shell sort,
instead of simply dividing the previous distance by two (50, 25, 12, ...),
create a predefined set of distances. Check the performance with various sets
of predefined distances, and verify whether a choice of predefined distances
maximizes the number of distances used that are relatively prime to each
other. For example, would the set of distances (1, 2, 3, 7, 17, ...) produce
better timing results than (1, 2, 4, 8, 16, ...)?

3. A random number generator is used with the quicksort to avoid the possible
anomaly of O(n2

) timing. Assuming a random number generator is not
available, devise an alternate plan to avoid O(n2

) timing. Build your
algorithm and test it.

4. Build and test the mergesort procedure described in Section 11.3.2.
5. Build and test a polyphase mergesort that uses three sequential files to
simulate the three queues.



336 11 Sorting

6. The following three tables of data contain samples of the loop counts required
to sort 100, 200, 300, 400, and 500 objects from each of five data sets. One
of these five data sets is a random set of data, and another is a set of data
where each object is almost where it belongs. The three main data sets are
one set in order, one in reverse order, and one of identical objects. Determine
which data set is which. Also, guess at the sort technique represented by
each of the three collections of data. Provide rationale for your choices as to
which data set is which and which sort technique is represented by each set
of data.

Set 1 100 200 300 400 500

Data #1 509 1210 2112 2811 3514
Data #2 769 1830 3112 4251 5614
Data #3 509 1210 2112 2811 3514
Data #4 663 1526 2487 3472 4215
Data #5 957 2266 3480 4527 5861

Set 2 100 200 300 400 500

Data #1 726 1712 2718 3608 5012
Data #2 616 1650 2495 3556 5877
Data #3 324 745 1186 1686 2031
Data #4 636 1544 2496 3619 4857
Data #5 589 1515 2244 3412 5398

Set 3 100 200 300 400 500

Data #1 99 199 299 399 499
Data #2 5049 20099 45149 80199 125249
Data #3 99 199 299 399 499
Data #4 398 791 1192 1582 1956
Data #5 2669 9985 22523 39495 62879
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Search/Update

Different methods of organizing information lead to various method of seeking
objects. Chapter 7 described several important search and update methods based
on tree structures. This chapter describes several classical search and update
techniques based on array access. Each technique depends on a particular array
organization method and involves tradeoffs between the algorithm that organizes
the data and the algorithm that searches for information. Searching is the
seeking of a particular object in a structure. In this chapter, the structures happen
to be arrays. Updating refers to the process of adding one or more objects to a
structure.
Search and update combine with sorting to form the foundation for organizing

and retrieving information. Searching takes advantage of the method of data
organization to locate information. Updating is inserting, or deleting, a few
objects in the organized collection. The sequential search algorithm is included
to illustrate searching and updating a collection of data that is not ordered. The
bisection method takes full advantage of ordering. The block sequential and
address calculation methods demonstrate two array-ordering techniques that do not
directly employ a linear ordering of the objects in the array. Each of these
methods has tradeoffs between the searching and updating processes.
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12.1 Sequential Search

Given an array of objects, a sequential search simply starts at the first location
and searches sequentially until the object is located or until it is determined that
the object is not in the array. Listing 12.1 illustrates a sequential search process.
If n objects are in the array, the average search time is O(nt2). If the object is
not in the array, the search processes the entire array and hence is O(n) time.
There are some advantages to a simple sequential search. First, no sorting of

the objects is required. Second, updating the collection of objects takes only a
constant amount of time to place the new object at the end of the array and
updating the count of the number of objects.
Removing an object, once its location is known, may be quickly accomplished

by placing the last object in the array in the vacated location and resetting the
count of the number of objects.
There is one serious disadvantage to the sequential search. Its timing is O(n).

The other search techniques described ahead are substantially faster. If one
expects to perform a very large number of searches, the other techniques offer
substantial advantages over a sequential search.

Listing 12.1. Sequential search algorithm.

generic

type Object_Type is private;
type Array_Type is array (integer range <» of Object_Type;

function Linear_Search Look_For: Object_Type;
The_Array: Array_Type) return integer;

function Linear_Search ( Look_For : Object_Type;
The_Array: Array_Type) return integer is

begin -- Linear_Search
for Index in The_Array'range loop
if Look_For = The_Array (Index) then
return Index;

end if;
end loop;
raise constraint_error;
end Linear_Search;
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12.2 Bisection Method Search
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The bisection method search, also cal1ed binary search, assumes the col1ection
of objects has been ordered. This method selects the object at the center of the
array range being searched and determines the relationship of that object to the
object being sought. Depending on whether the object being sought precedes or
fol1ows the object at the center of the array range, the algorithm uses this result
to bisect the search range and recursively continues the process.
Listing 12.2 illustrates a recursive version of the bisection search algorithm.

This process cuts the search space in half during each recursive cal1. If the array
contains n objects, the search is bound by O(1og n) recursive cal1s. This timing
bound may be derived by observing that each recursive cal1 reduces the search
space by one-half. The original space was of size n. The number of recursive
cal1s is bound by k, where k is the integer for which 2k <= n < 2k

+
1
• Hence,

k = O(1og n).

Listing 12.2. Bisection search algorithm.

generic

type Object_Type is private;
type Ordered_Array is array (integer range <» of Object_Type;
with function "<" ( Left, Right: in Object_Type) return boolean;

function Bisection_Search Looking_For: Object_Type;
The_Array Ordered_Array;
Last_Index : integer ) return integer;

function Bisection_Search Looking_For: Object_Type;
The_Array Ordered_Array;
Last Index : integer ) return integer is

Left integer:= 0; --The_Array (Left) < Looking_For
Right integer:~ Last_Index;--Looking_For <~ The_Array (Right)
Middle: integer;

begin -- Bisection_Search
while (Left+l) < Right loop

Middle:~ (Left + Right) / 2;
if The_Array (Middle) < Looking_For then
Left := Middle; The_Array (Left) < Looking_For
else

Right:~ Middle; -- Looking_For <~ The_Array (Right)
end if;

end loop;
return Right;
end Bisection_Search;
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The obvious advantage to the bisection is its very fast search time. This
search time is a major advantage when a very large number of searches are
expected with very few updates. The only apparent disadvantage is updating.
Whether objects are inserted or removed from the array, the time to update the
array is O(n). This disadvantage is not a problem if only a few updates are
expected. If updates are expected to be relatively frequent, then the search
methods discussed in Sections 12.3 and 12.4 are more appropriate.

12.3 Block Sequential Search/Update

If a large number of updates are expected, since the bisection method search
requires a sorted array, each update requires O(n) time. It would be desirable to
have a method of searching and updating where the search and update times are
about the same order of magnitude and still reasonably fast. The block sequential
method does just that.
The block sequential search requires an initialization. Assume k blocks are

used in this search method. This method requires a collection of n representative
objects. The representative objects are sorted and placed one per block into the
fIrst location of each block. Figure 12.1 illustrates an initial confIguration for a
block sequential search. The representative objects are sorted. After the sorting,
the rust object is placed in the first block, the second object in the second block,
and so forth. Each object is followed by a sentinel value, the algorithm
recognizes as a sign that there are no more objects in the block.
With this setup, the search and update algorithms share a common piece of

code that locates the starting point for the algorithm. Given a value x, regardless
of whether x is being sought or being placed in the array, the algorithm first
compares x to the first object in each block until x is less than the object at the
beginning of one block. When it is, the algorithm then backs up and sequentially
searches the previous block until x is located, an object greater than x is located,
or all objects in the block have been searched. At this point, if the algorithm was
searching for x, it can report on the result of the search. If the algorithm was an
update, the algorithm may place x at that point in the block and move all objects
down one, including the sentinel object. Figure 12.2 illustrates a block sequential
structure after several objects are placed into the structure.
In either case, the search or update time is the time required to find the block

plus the time to search through the block. Hence, it is bound by

O(n/k + k).
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block 1

block 2

block 3

block nlk

Figure 12.1. Block sequential setup.

The update time is O(k); hence, the update time is bound by

O(n/k + k)+O(k) =O(n/k + k).

Since the timing is represented as a function of nand k,

T = n/k + k,

calculus may be used to determine the minimum value for the function. The

minimum is achieved when k=.;;; and produces a timing T=0(';;;).
Although the block sequential search/update has the desirable attribute that

both the search and update times are of the same order of magnitude, it does have
its drawbacks. For example, if the initial set of values used to initialize the
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Figure 12.2. Block structure after inserts.

blocks is not representative, a block may overflow. Therefore, the support should
contain a method for handling block overflow or for reorganizing the blocks.
Overflow handling, or block reorganization, could become time consuming.
Specifications for a block sequential search/update package appear in

Listing 12.3. The private types Collection_Type and Access_Type hide
details of the representation of the block sequential structure. A
Collection_Type object must be initialized by passing an Init_Array_Type
array containing representative objects to the Initialize procedure. Once
initialized, the other procedures update the structure by inserting and deleting
objects and searching through the structure. Block overflow may occur because
of an unusual distribution of the objects placed in the structure, or because of a
poor choice of objects used to initialize the array. The operation of the
reorganize procedure is left as an exercise.
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Listing 12.3. Block sequential specifications.

generic
Block_Size : positive:= 50,
Number_Of_Blocks: positive:= 50,
type Object_Type is private,
with function "<" ( left, right: Object_Type) return boolean;

package Blk_Sqtl is
type Block_Seq is private,
type Object_Access is private,
subtype Block_Range is positive range 1 .. Number_Of_Blocks,
type Init_Array_Type is array (Block_Range) of Object_Type,

procedure Initialize ( Structure: out Block_Seq,
Init_Array: in Init_Array_Type ),

procedure Insert An_Object: in Object_Type,
Structure: in out Block_Seq ),

procedure Delete An_Object: in Object_Type;
Structure: in out Block_Seq );

procedure Reorganize ( Structure: in out Block_Seq ),
function Get_Access Object : Object_Type,

Structure: Block_Seq) return Object_Access,
function Get_Object ( Object_ptr: Object_Access,

Structure : Block_Seq ) return Object_Type;
procedure Update ( Object in Object_Type;

Object_ptr: in Object_Access,
Structure: in out Block_Seq);

generic
with procedure Process (Object in out Object_Type,

Continue: out boolean ),
procedure Block_Iterator ( Block: in out Object_Access ),
function First (Object_Ptr: Object_AcCess) return Object_Access,
function Last (Object_Ptr: Object_Access) return Object_Access,
function Pred (Object_Ptr: in Object_Access) return Object_Access,
function Succ (Object_Ptr: in Object_Access) return Object_Access,

null;Structure_ptr
Block_Range,
xtd_Sub_Block_Range:= 0,

is array (Block_Range) of Sub_abject_Access;
is access Block_Seq,
is

Block Filled, Object_Not_In_Block, Object_Update_Error,
Not_Initialized, Structure_Error, Block_Error: exception;

private
subtype Xtd_Sub_Block_Range is natural range 0 .. Block_Size;
subtype Sub_Block_Range is Xtd_Sub_Block_Range range 1 .. Block_Size,
type sub_Block_Array is array (Sub_Block_Range) of object_type,
type sub_abject_Access is
record
Number_In_Block: Xtd_Sub_Block_Range:= 0;
Item Sub_Block_Array,

end record,
type Block_Seq
type Structure_ptr
type Object_Access
record
Structure
Block_Number
Object_Number:

end record;
end Blk Sqtl;
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The Get Access function provides access to individual objects in the
structure. Get_Obj ect obtains the value of the object at the location indicated
by the Obj ect_Access parameter. Searching to see if an object, x, is in the
structure is performed as

x = Get_Object (Get_Access (X, structure), Structure)

where Structure is a Collection_Type.
Frequently, users of a collection require alternate methods of accessing a

structure in an exhaustive fashion. The package specifications support two types
of exhaustive access, one through the entire structure and one through a block.
The generic procedure Block_Iterator allows a user to instantiate the
iterator with a procedure and apply the process to an arbitrary block. Through
the function, First, Last, Pred, and Succ, users may sequentially process the
objects in the structure. A user may use First or Last to begin at one end or
the other of the entire structure, then use Pred and Succ to sequentially process
the objects.
Note that objects in the structure may be modified with either the Update

procedure or the procedure used to instantiate the Block_Iterator. However,
an exception would be raised if the attempt to update an object changes the order
of the object in the structure.
The private declarations in Listing 12.3 illustrate the structures that

represent the block sequential structure. The structure is an array of blocks. Each
block is stored in a record containing a count of the number of objects in the
block and an array of Object_Type. As objects are inserted or removed, the
count for the block contained in the record is updated. Building the body of the
package is left as an exercise.

12.4 Address Calculation Search/Update

There are many search update scenarios where the universal set of potential
objects is very large, M, but the actual number of objects, m, in the collection is
relatively small and the size of the target array, n, where the objects are placed
is sufficient, n > m, to hold the actual number of anticipated objects. This set of
circumstances lends itself to the address calculation techniques.
The address calculation search update process attempts the impossible, a

search update method that takes a constant amount of time for each search or
update. The desired ideal may be approached under certain circumstances. These
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circumstances typically require some knowledge about the distribution of expected
values as well as a value that will not be in the distribution. In general, the
address calculation function requires

I. a linear ordering function for the collection of objects,
2. a cumulative distribution function for the collection of objects,
3. a "null object," an object not expected to be in the collection should be
known.

Figure 12.3 illustrates the basic concept, namely that there is a direct connection
between the value of the object and the object's location in the array. This
object-to-array-index association is normally achieved with a cumulative
distribution function. A cumulative distribution function, C, satisfies

0<= C(x) <= 1

and Xi < xj if and only if C(x;) < C(x). The cumulative function value may then
be mapped onto the array range.
A cumulative distribution function may be derived from a probability

distribution function. A probability distribution function, f, satisfies

(1) fix) > 0 for all X, and
~

(2) Jfix)dx = 1.

IObject 1-.
(f)
(f)

'---~).• ~
'0

i--------1<

Figure 12.3. Address calculation concept.
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Then the cumulative distribution function, C, is

x

C(x)= fftx)dx.

The simplest cases of the address calculation method involve linear ordered
objects, like ranges of numbers. Figure 12.4 illustrates the case where the objects
are numeric values over a fixed range and the expected values are uniformly
distributed over the range. If these values are placed in an array of size n, then
the relationship between the values and their anticipated positions is linear and is
given by the equation of the straight line

y = m(x-First) + 1,

where the slope m is given by

m = (Lasr-First)/(n-l).

The address calculation method works best if the size of the array is
substantially larger than the anticipated number of objects. Also, the support
algorithms must expect worst-case possibilities, including that two or more objects
might correspond to the same address.
The address calculation algorithm described in this section assumes there is

a null object. The array is initialized with the null object to indicate that all
positions in the array are available. Both searching and updating use the same

n+--------------"

y=m(x -first}+1
y+---"--'----"-----'---7!"

first x last

Figure 12.4. Address function for numeric objects.
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address calculation function to locate the possible position of an object. If the
space indicated by the address calculation contains a null object, then that space
contains no object, and an update process could directly place the object in that
location. However, if there is an object in that space, it might not be the one
being sought. If the location is occupied by another object, a sequential search
is made from that location until the process is resolved.
The heart of the address calculation approach is the address_of function

that appears in the package body. The function, which appears in Listing 12.4,
uses the distribution function from the package's instantiation. The
address_of function expands the value returned by the distribution function to
the range 1 .. an_array. size. The function also tests for anomalies and adjusts
them to the desired range before returning the value.
To illustrate a typical distribution function, assume the objects being

manipulated are uniformly distributed in a specified range, as illustrated in
Figure 12.4. The distribution function for this example is given by

function Uniform ( Object: in float ) return positive is
begin -- Uniform
return (Object-First_Object)/(Last_Object-First_Object);
end Uniform;

The address calculation function determines where an object should be placed
in an array. However, two or more objects may have the same address, which is
referred to as an address collision. Address calculation packages must have a
strategy for resolving collisions. There are many potential collision resolution
strategies. This section describes two, chaining and linear searching. Other
strategies are discussed in Section 12.5, on hashing.

Listing 12.4. The Address_of function.

function Address_Of Object float:
An_Array: adrs_calc_array) return positive is

Answer: integer:

begin -- Address_Of
Answer:= integer (float(An_Array.size - 1)

* distribution (Object»:
if Answer < 1 then

Answer: = 1;
end if;
if Answer> An_Array.size then

Answer:= An_Array.size;
end if;
return Answer;
end Address Of;
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The chaining approach does not require a Null_Object. In the chaining
approach, the array is an array of lists and the address calculation function
computes an index into an array of lists. Each list is a list of the objects in the
structure with the same address calculation result. Building this type of address
calculation package is left as an exercise.
The second approach uses the address calculation as if it is an approximation

of the location of the object, and linear searching and insertions are made relative
to the calculated address. The Is_In function, in Listing 12.5, illustrates the
search strategy. The algorithm is fundamentally a selection structure that first
tests for a potential Illegal_Object exception. The next two alternatives test
whether the computed address contains a Null_Object - in which case the
function returns false - or the object being sought - in which case the function

Listing 12.5. An address calculation Is_In function.

function Is_In ( Object : float;
Ad_Array: adrs_calc_array) return boolean is

Index: positive:= Address_Of (Object, Ad_Array);

begin
if Object = null_Object then
raise Illegal_Object;
elsif Object = Ad_Array. Item (Index) then
return true;
elsif Null_Object ~ Ad_Array. Item (Index) then
return false;
elsif Object < Ad_Array. Item (Index) then
while Index > 1

and then Ad_Array. Item(Index) /= nUll_Object
and then Object < Ad_Array. Item (Index) loop
Index:= Index - 1;

end loop;
if Ad_Array.Item (Index) = Object then
return true;
else
return false;

end if;
else
while Index < Ad_Array.size

and then Ad_Array.Item(Index) /= nUll_Object
and then Object> Ad_Array. Item (Index) loop
Index:= Index + 1;

end loop;
if Ad_Array.Item (Index) = Object then
return true;
else
return false;

end if;
end if;
end Is In;
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returns true. The two remaining alternatives search sequentially in one or the
other direction depending on whether the object at the location indicated by the
address calculation is either greater than or less than the object being sought.
The structures of the insert and remove algorithms have similar

complexity. Listing 12.6 illustrates the Insert algorithm for the address
calculation search. This algorithm first tests for an exception. If none is raised,
it searches in both directions, starting at the index computed by the address
calculation. The search proceeds until a Null_Obj ect is found or until there is
no space available in the array. If a Null_Object is found, the new object is
bubbled into the array so that the linear ordering is maintained. This requires two
loops, one to bubble up from Low_Index and the other to bubble down from
High_Index depending on where Null_Object was found. Completing the
Insert procedure is left as an exercise.

Listing 12.6. An address calculation Insert algorithm.

procedure Insert (Object : in float;
Ad_Array: in out Adrs_Calc_Array) is

Index positive:~ AddreSS_Of (Object, Ad_Array);
Low_Index: positive:~ Index;
Up_Index : positive:~ Index;

< first_Object or Last_Object < Object then
illegal_Object;

Ad_Array. Item (Low_Index) /= Null_Object
and Ad_Array.Item (Up_Index) /- Null_Object
and Low_Index /~ 1
and Up_Index /= Ad_Array.Size loop

if Low_Index /~ 1 then
Low_Index:= Low_Index - 1;

end if;
if Up_Index /~ Ad_Array.Size then

Up_Index:= Up_Index + 1;
end if;

end loop;
if Ad_Array. Item (Low_Index) = Null_Object then
-- bubble new Object in from below

begin
if Object
raise
else
while

elsif Ad_Array.Item (Up_Index) = Null_Object then
-- bubble new Object in from above

else
raise Constraint_Error;

end if;
end if;
end Insert;
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One class of objects that lend themselves to an address calculation-like strategy
is strings. Various calculations may be performed on the bits patterns that form
the characters in the string to create an address from the bit pattern. This address
may be used in ways similar to the address calculation search. Hashing is the
application of address calculation strategies to strings. There is one fundamental
difference between hashing and address calculation. Address calculation might
use the linear ordering of the objects, and objects of similar value associate to
close addresses. Hashing, on the other hand, makes no attempt to associate any
possible string ordering to the positions where the objects are placed into the
array.
A discussion of hashing must address three topics:

1. the desirable traits of hashing functions,
2. hashing methods,
3. collision resolution.

One obvious trait that hashing functions should have is that the function should
distribute the collection of potential strings in a relatively uniform way into the
target array. Other desirable traits have to do with the way certain strings are
distributed relative to each other. For example, the hash function should take
strings that are similar, like bat, bit, but, and bite, and compute different target
values for these strings. One reason why this trait is desirable is that many
applications involve situations where users may use similar strings or strings using
the same symbols but in different orders, like pat, tap, and apt.
These problems may be resolved with string hashing by the classical methods

of forming hashing functions. These methods normally involve various
manipulations of bit patterns of the characters by pattern shifting and various
boolean and integer arithmetic operations of the bit patterns.
To simplify the discussion of these methods, assume the hash function must

compute an array index in the range 0 .. 2* - 1. This range of 2* values may be
represented with exactly k bits. For the illustrations ahead, assume k = 10 hence,
the range would be 0 .. 1023.
One hashing method is folding. Folding takes the string of characters and

views it as a string of bits. If the string has n characters, there are 8n bits. These
8n bits are collected together in groups of 10 bits. If the last group of bits does
not contain 10 bits, it is padded with zeros or ones. These groups of 10 bits are
folded together with a boolean operation, like exclusive or. The result is a
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hashed lO-bit pattern, which may be viewed as an integer value in the range
0 .. 1023.
The folding method works well when the table size is a power of two. If the

table is of size n, with a range 0 .. n-l, the hashing-by-division method works
well. If the string of characters is viewed as a binary value, S, the hash function
h is defined as

h(S) = S mod n.

This method works well, but certain values for n should be avoided. Specifically,
n should not be even because the hash function would map strings whose value
is even onto even indices and strings that are odd onto odd indices. That is, one
bit in the string plays a significant role in determining the possible corresponding
indices. This is not desirable.

In general, the value n selected for a division method should be prime.
However, certain primes should be avoided. Research into the selection of n has
shown that nonprime values of n may be good choices if n contains no small
primes less than 20. Other poor choices for n are

where p is prime and r is the radix of the character set. For Ada 83, r = 128.
For Ada 95, r = 256.
There are two popular hashing methods based on multiplication. One, called

the mid-square method, takes bit patterns and squares them. The purpose of this
method is to randomize the bits used to fonn the hash value. For example,
suppose the strings being hashed are formed as strings of uppercase alphabetic
characters. This represents only 26 of the 127 available character patterns.
Further, these 26 patterns are sequential, not distributed, in the ASCII scheme.
However, if each 8-bit pattern is viewed as an integer value and that value is
squared, the result is a 16-bit pattern:

The middle of this pattern,
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produces a value that, when compared to the original, has better scattering over
the range of possible values. The drawback to this approach is that if the key
begins or ends with a long sequence of zeros, the new key obtained by the mid­
square method may also contain a long sequence of zeros.
Another multiplication method that appears to avoid the problems of the mid­

square method is the hash function given by the equation

h(S) = truncate (n *«c*S) mod 1)),

where S is the string, n is the size of the array, and c is a real number, 0 < c < 1.
Naturally, the choice of c is critical. Knuth has found that

2c= __ =0.61803398...
1+[5

is a good choice.
Hashing functions are usually formed through some combination of the

methods shown above and other methods of manipulating the bits. As long as the
function may be rapidly computed and satisfies the performance criterion, it is
acceptable. Hashing is similar to the address calculation method described in
Section 12.4, except that no ordering is maintained. However, once the hash
function is applied, the hash package must address collision resolution, handling
strings that hash to the same array location. There are a number of techniques for
addressing collision resolution: linear search, chaining, and double hashing.
Linear probe is similar to the linear search method employed in the address

I~

Figure 12.5. Hash with chaining
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calculation package described in Section 12.4. Chaining is illustrated in
Figure 12.5. In this method, the hash indexes into an array of lists. Each list is
a list of the strings whose hash result is the index into this list. Building a hash
package with chaining is left as an exercise.
Because of the many applications that require the manipulation of strings,

there is substantial literature expanding on the hash methods described here, as
well as many other variations, including double hashing and perfect hashing.
Readers are encouraged to search the literature, including several articles and
texts, including Smith's, which contains a very thorough presentation on hashing.

12.6 Evaluation

The sequential search, presented at the beginning of the chapter, serves as a
baseline and should not be considered a serious search/update strategy. The
bisection method is a very fast search technique, but updating is relatively
expensive. If little or no updating is expected to be performed, the bisection
method should be given top consideration.
The block sequential method is an excellent compromise when both searching

and updating are intermingled. The block sequential method is an array
equivalent of the first fast disk access method called the indexed sequential
access method (ISAM). ISAM has been superseded by methods based on the
tree restructuring concept described in Chapter 7.
The address calculation method is an excellent method when the data

distribution is well known or the size of the array is larger than the expected
number of objects. However, if for any reason one expects substantial contention
between objects for the same target, the method could become a timing disaster.
Hashing is the premier method for handling tables of strings. The only real

alternative is the dictionary tree approach described in Section 7.5. Various
hashing methods with chaining are very successful. Also, chaining may be
accomplished with arrays, thus avoiding the potential overhead of dynamic
storage allocation. There is very interesting literature on perfect hashing
functions, which are very useful when there is a predefined collection of search
strings. This is very useful for speeding up compilers, where the programming
language's reserved words, or lexical symbols, are predefined.



354

12.7 Explorations
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1. Implement and test the block sequential search package.
2. Review the probability and statistics literature, and form a taxonomy of
cumulative distribution functions. Evaluate various possible applications of
the address calculation function where the linear distribution would not be
appropriate. For one of these applications, determine which distribution
function in your taxonomy is most appropriate for the application under
consideration. Provide rationale to defend your selection of a distribution
function to represent the application.

3. Implement and test a hashing function.
4. Search the literature on perfect hashing functions and implement a perfect
hash for Ada's lexical symbols.
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