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Preface

Applications of probabilistic methods in geotechnical engineering have increased remark-
ably in recent years. As we have worked on this book, we have encountered uses ranging
from practical design and construction problems to advanced research publications. We
have also found that many engineers are concerned about what these developments mean
and how they can be applied with confidence. Our main goal in preparing this book has
been to try to bring to the geotechnical and geological engineering profession a description
of probabilistic methods that emphasizes both the underpinnings of the methodologies
and their practical applications. There are many books on structural reliability theory
and practice, and, of course, there are entire libraries of books on statistics and prob-
ability. However, the geotechnical world is different in many ways from the structural
and mechanical worlds, and a book is needed that deals with reliability methods from
a geotechnical point of view. Geotechnical engineers and geologists deal with materi-
als whose properties and spatial distribution are poorly known and with problems in
which loads and resistances are often coupled. Thus, a somewhat different philosophical
approach is necessary. Historically, the geotechnical profession has dealt with uncertainty
on important projects by using the ‘observational’ approach; this is quite compatible with
reliability-based methods.

We have tried to steer a middle course between an abstract, mathematical treatment
so typical of many graduate texts on statistics and a purely practical presentation that
reduces all methods to a set of recipes. We have also had to choose among the wide
range of probabilistic material in geotechnical engineering and geology. Inevitably, this
means that we go more deeply into some subjects than others. In making such choices,
we have been guided by our view of what is important to geotechnical practice.

The book is organized in four parts. Part I introduces concepts of uncertainty, proba-
bility, reliability, statistics, and risk. It discusses both practical considerations and philo-
sophical issues that have existed as long as probability theory itself. Part II deals with
uncertainty in a geologic or geotechnical context. It deals with issues of uncertainty in
engineering properties and the spatial variation of soils and rocks. Part III describes how
reliability analyses are performed. It surveys important methods and provides detail on
various models. Part IV presents applications of reliability and probabilistic methods to
practical problems. It also addresses how probabilistic information is obtained and man-
aged. These major parts of the book could be viewed in an alternate way as well: they
deal, in turn, with (1) the nature of uncertainty in geotechnical engineering and how
uncertainty is modeled; (2) inference and estimation from data involving the use of statis-
tical techniques; (3) predictions of the uncertainty in engineering performance involving
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the use of probabilistic techniques, and (4) integrating uncertainties and consequences by
means of risk analysis.

Many people have contributed to advances in probabilistic approaches to geotechnical
engineering and have assisted us in preparing this book. At the risk of leaving out many
significant contributors, we would like to mention the pioneering work of (alphabetically)
C. Allin Cornell, Herbert H. Einstein, Milton E. Harr, Wilson H. Tang, and Tien H. Wu.
We would also like to acknowledge the intellectual contributions of David Bowles, Karl
Dise, Desmond Hartford, and Andrew Zielinski to Parts 1 and 4. Both of us spent several
years as students and faculty members in the geotechnical group of the Department of
Civil Engineering at the Massachusetts Institute of Technology in an environment of active
debate on uncertainty and how to deal with its consequences. We learned a lot from the
experience. In addition to those already mentioned, we acknowledge our debt to Charles
C. Ladd, T. William Lambe, W. Allen Marr, Richard de Neufville, Erik Vanmarcke,
Daniele Veneziano, Robert V. Whitman, and the many graduate students of the period
who worked with us. Finally, we are thankful for the help and patience of the staff of
John Wiley & Sons, especially Jan de Landtsheer, Wendy Hunter, and Céline Durand.
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1 Introduction –
Uncertainty and Risk
in Geotechnical
Engineering

Human beings built tunnels, dams, canals, fortifications, roads, and other geotechnical
structures long before there was a formal discipline of geotechnical engineering. Although
many impressive projects were built, the ability of engineers to deal with geotechnical
problems in analytically rigorous ways that allowed them to learn from experience and to
catalogue the behavior of soils and rocks was limited. During the first two-thirds of the
20th century, a group of engineers and researchers, led by Karl Terzaghi (1883–1963),
changed all that by applying the methods of physics and engineering mechanics to the
study of geological materials (Terzaghi 1925). They developed methods of theoretical
analysis, procedures in laboratory testing, and techniques for field measurements. This
allowed a rational approach to design and, in the process, provided that most important
prerequisite for technological advancement: a parsimonious system of reference within
which to catalogue observation and experience.

The developments of the early 1900s came almost a century after the introduction of
rational methods in structural engineering and machine design. The lag is not surprising,
for the enterprise of dealing with materials as nature laid them down is profoundly dif-
ferent from that of dealing with man-made materials, even such complicated materials as
reinforced concrete. Structural and mechanical engineers deal with a world almost entirely
of their making. Geometries and material properties are specified; systems of components
and their points of connection are planned in advance. The principal uncertainties have
to do with the tolerances to which a structure or mechanical device can be built and with
the loads and environmental conditions to which the structure or device will be exposed.

The enterprise of geotechnical engineering is different. The geotechnical engineer or
engineering geologist deals mostly with geometries and materials that nature provides.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5



4 INTRODUCTION

These natural conditions are unknown to the designer and must be inferred from lim-
ited and costly observations. The principal uncertainties have to do with the accuracy
and completeness with which subsurface conditions are known and with the resistances
that the materials will be able to mobilize. The uncertainties in structural and mechan-
ical engineering are largely deductive: starting from reasonably well known conditions,
models are employed to deduce the behavior of a reasonably well-specified universe. The
uncertainties in geotechnical engineering are largely inductive: starting from limited obser-
vations, judgment, knowledge of geology, and statistical reasoning are employed to infer
the behavior of a poorly-defined universe. At this point, some examples are called for.

1.1 Offshore Platforms

The search for oil in ever deeper ocean waters and ever more hostile environments has
led engineers to develop sophisticated artificial islands for exploration and production.
These offshore structures can be as tall as the tallest building, or can float tethered to a
sea bottom 1000 meters below. They are designed to withstand storm waves 30 meters
or more in height, as well as collisions with ships, scour at their mud line, earthquake
ground shaking, and other environmental hazards. These challenges have led to inno-
vative new technologies for characterizing site conditions on the deep sea bed and for
designing foundation systems. They have also forced the engineer to confront uncertain-
ties directly and to bring modern statistical and probabilistic tools to bear in dealing with
these uncertainties.

Among the earliest attempts at engineered offshore structures were those built for
military purposes in the 1960s along the northeast coast of the United States. A series
of five ‘Texas Towers’ (Figure 1.1) was planned and three were put in place by the US

Figure 1.1 Texas Tower 2, off New England (photo courtesy US Coast Guard).
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Government as sites for early-warning radar off New York and on the Georges Bank. The
experience with the towers was not good. On the night of January 5, 1961 the first of
the towers broke apart in heavy seas, with a loss of 28 lives. Within the year, all three of
the original towers had failed or were abandoned due to large dynamic movements under
wave loading.

Later attempts at building offshore structures for the oil industry have been more suc-
cessful, and through the 1970s and 1980s structures were placed in ever deeper waters.
Whereas early developments in the Gulf of Mexico were in 30 or 60 meters of water, North
Sea structures of the 1980s are placed in 200 meters. The 1990s have seen bottom-founded
structures in 350 meters, and tethered structures in 1000 meters. Yet, hurricanes, high seas,
and accidents still take their toll. Figure 1.2 (from Bea 1998) shows a frequency-severity
(‘F-N’) chart of risks faced by offshore structures. Charts like this are a common way to
portray probabilities of failure and potential consequences, and are often used to relate
risks faced in one situation to those faced in others.

What are the uncertainties an engineer faces in designing offshore structures? These
can be divided into two groups: uncertainties about what loads to design for (loading
conditions), and uncertainties about how much load a structure can sustain (resistances).
As a first approximation, uncertainties about loading conditions have to do with opera-
tional loads (dead and live loads on the structure itself), environmental loads (principally
waves, currents, and winds), and accidental loads (for example, from vessels colliding
with the structure). Uncertainties about resistances have to do with site conditions, static
and dynamic soil properties, and how the structure behaves when subject to load.

How large are the largest waves that the structure will be exposed to over its operating
life? This depends on how often large storms occur, how large the largest waves can be
that are generated by those storms, and how long the structure is intended to be in place.
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Like the weather patterns that generate large waves, storms and their associated wave
heights are usually described by the average period between their reoccurrence. Thus,
we speak of the ‘100-year wave’ as we might of the 100-year flood in planning river
works. This is the wave height that, on average, occurs once every 100 years, or more
precisely, it is the wave height that has probability 0.01 of occurring in a given year.
Figure 1.3 shows an exceedance probability curve for wave height at a particular site in
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Figure 1.3 Exceedance probability curve for wave height (Bea, R. G. 1998, ‘Oceanographic and
reliability characteristics of a platform in the Mississippi River Delta,’ Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 124, No. 8, pp. 779–786, reproduced by permission of
the American Society of Civil Engineers).
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the Gulf of Mexico. Such relations always depend on the particular site, because weather,
currents, and ocean conditions are site specific. Based on such information, the engineer
can calculate probabilities that, during its design life, the largest wave a structure will
face will be 60 feet, or 100 feet, or perhaps even higher.

To investigate foundation conditions, the engineer measures penetrations of bottom
sediments using tools such as the cone penetrometer, takes specimens in borings, and
performs laboratory tests. Figure 1.4 (from Lacasse and Nadim 1996) shows a typical
pattern of soundings and cone penetration tests at a site in the North Sea. The soil profile
consists of 7–10 m of sand over a weaker, partly laminated clay of variable shear strength,
which controls the foundation design. The location and undrained shear strength of this
weak clay dictates the feasibility of the foundation, and using conservative lower bound
estimates results in prohibitive costs. Therefore, the design needs to be based on best-
estimates of the clay strength and extent, adjusted by a sensible assessment of spatial
variation and statistically calculated uncertainties in estimates of engineering properties.
Figures 1.5 and 1.6 show Lacasse and Nadim’s interpolated map of clay strength and
estimate of uncertainty in the undrained clay strength profile.

340 340

340340350360370380390400410420430440450460

350
360

370
380

390
400

410
420

430
440

450

360

380

400

420

440

(m
)

(m
)

(m)

0

5

10

q c
 (

M
P

a)

qc (MPa)

Figure 1.5 Autocorrelation function and interpolated map of clay penetration resistance (Lacasse,
S., and Nadim, F. 1996, ‘Uncertainties in characterising soil properties,’ Uncertainty in the Geologic
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of Civil Engineers).



8 INTRODUCTION

120

D
ep

th
, m

100

80

60

40

20

0
0 50 100

Undrained shear strength, Su (kPa)

150 200

Ip = 60 − 70%
w = 90 − 110%

Ip = 40 − 50%
w = 50 − 70%

Ip = 30 − 45%
w = 40 − 50%

Ip = 35 − 40%
w = 35 − 40%

sx/s
1
xx = 0.24 = 0.15 s/s1

xx

250

5.5 m

24 m

55m

s−1/s1
x = 0.24

Figure 1.6 Uncertainty in undrained strength profile of clay (Lacasse, S., and Nadim, F. 1996,
‘Uncertainties in characterising soil properties,’ Uncertainty in the Geologic Environment, GSP
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Gravity structures in the North Sea are floated into position by being towed out to sea
from deep fjord construction sites along the coast of Norway. Once in position, ballast
tanks are filled with water, and the structure is allowed to sink slowly to rest on the sea
floor. The dead weight of the structure holds the structure in place upon the sea floor, and
the great width and strength of the structure resists lateral forces from wave action and
currents. In calculating the stability of the gravity foundation, Lacasse and Nadim identify
many of factors influencing uncertainty in model predictions of performance (Tables 1.1
and 1.2).

Reliability analyses were performed for the design geometry of Figure 1.7, involving a
number of potential slip surfaces. Spatial averaging of the uncertainties in soil properties
along the slip surfaces reduced the uncertainty in overall predictions. The coefficient
of variation (standard deviation divided by the mean or best estimate) of wave loading
was approximated as 15%, and variations in horizontal load and moment caused by
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Table 1.1 Typical load and resistance uncertainties associated with off-
shore structures

Load uncertainties Examples

Operational loads Dead loads of structural weight
Live loads of operations or equipment

Environmental loads Hurricane winds
Storm wave heights
Seismic ground shaking

Accidental loads Ship impact effects
Fire or explosions

Resistance uncertainties Examples

Site conditions Location and character of stratification
Thickness of important strata
Existence of soft inclusions or gas
pockets

Soil properties Strength-deformation in static loading
Consolidation parameters
Cyclic strength parameters

Structural performance Strength of critical members
Fatigue behavior of structural materials

Interaction effects Structural behavior of pile foundations

Table 1.2 Uncertainties in model predictions

Uncertainties

Position of the critical slip surface
Modeling of static and cyclic load history
Strain-softening
Progressive failure
Testing procedures in reference tests
Scale effect
Rate of shear
Stress conditions
Redistribution of stresses
Anisotropy
Structure stiffness
Model of soil profile
Drainage assumptions
Plane strain versus 3D analysis

environmental loads were approximated as perfectly correlated. The analysis showed,
as is often the case, that the slip surface with the highest probability of failure (lowest
reliability) is not that with the lowest conventional factor of safety (FS), but rather is that
with the least favorable combination of mean factor of safety and uncertainty. Figure 1.7
summarizes this combination using a ‘reliability index,’ β, defined as the number of
standard deviations of uncertainty separating the best estimate of FS from the nominal
failure condition at FS = 1.
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Figure 1.8 Wedge failure Mechanism for Chuquicamata mine slope.

1.2 Pit Mine Slopes

Pit mines are among the largest geotechnical structures in the world; the Chuquicamata
copper mine in northern Chile is 750 m deep. They are necessarily located where ore,
coal, or other material to be extracted is located, and such locations are often inconvenient
for both the geotechnical engineer and the owner of the mine. In many cases seepage
processes concentrate the ore along a fault, which then passes through the pit. The strata on
opposite sides of the fault may have different geotechnical properties; it is not uncommon
to find them dipping in different senses – one side toward the pit and the other at an
oblique angle. Excavation usually takes place in a series of benches, each of which may
be many meters high, so the engineer must evaluate the stability of individual benches as
well as the overall slope, under conditions that vary from place to place.

Excavating and disposing of material is a major cost of operating the mine. The simplest
way to hold down the cost of excavation and disposal is to reduce the volume that needs
to be excavated to reach ore-bearing strata, and this implies that the slopes of the pit
should be as steep as possible. On the other hand, the steeper the slopes, the greater the
danger of slope failures, with attendant costs in life and money. Balancing the costs and
benefits involves estimating the properties of the materials in the slopes, calculating the
stability of various slope geometries, and monitoring the performance of the slopes as the
pit is developed. Figure 1.8 shows a typical failure mechanism.

A related problem is the stability of tailings embankments (Vick 1983). These are piles
of waste material from the mining and extraction processes. Although the operators of
the mine have some control over the design and placement of the embankments, the
materials themselves often have very poor geotechnical properties. Steeper slopes allow
more material to be disposed of in a particular area, but they increase the danger of failure.
There have been spectacular failures of tailings dams, and, since they tend to be located
in areas that are more accessible than the open pits themselves, loss of life often involves
the public.

Both open pit mine slopes and tailings embankments have traditionally been designed
and operated on a deterministic basis. In many mining operations, this was based on
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the empirical, and often undocumented, experience of the operators. In recent years, the
scientific methods of geotechnical engineering, including soil and rock mechanics, have
been employed, and there is now a much better understanding of the principles involved
in their behavior. However, much of the design is still based on manuals developed over
the years by mining organizations.

Because each mine or tailings slope tends to be unique, there is little empirical informa-
tion on the overall risk of slope failure. However, mine operators recognize that instability
of slopes poses a serious risk both to the safety of the operators and to the economic
viability of the mine. In recent years, there has been growing interest in quantifying
these risks.

The most important loads affecting the stability of a slope in a mine or tailings embank-
ment are those due to gravity. Since the unit weight of soils and rocks can usually be
determined accurately, there is little uncertainty in gravitational loads. In addition the
patterns of percolation of pore fluids have major effects on the stability, and these are
much more uncertain. Finally, some external factors can be important; probably the most
significant of these are earthquakes (Dobry and Alvarez 1967).

The major resistance to failure is the shear strength of the soil or rock. This is a major
concern of geotechnical engineers, and much of the application of reliability methods to
geotechnical practice involves the probabilistic and statistical description of strength and
its distribution.

The geology of a mine site is usually well known. Geotechnical properties will vary
from place to place around the mine site, but the investigations that led to the establish-
ment of the mine in the first place usually provide a much better description of the site
than is common in geotechnical engineering – and certainly much better than the descrip-
tions of underwater conditions with which the designers of offshore platforms must deal.
In contrast, engineering properties of soils and rocks in the slopes are often less well
known. Since the slopes are part of the cost structure of the mine rather than the revenue
stream, there is sometimes not as much money available for site characterization as would
be desirable.

Mapping the geologic characteristics of faces exposed during excavation is part of mine
operation, so the operators have a good idea of the faults, joints, and interfaces in the
slopes. Observation of mine operations also provides information on incipient problems.
Thus, potential failure modes can be identified and analyzed, but surprises do occur. One
typical mode of failure involves a block of material sliding on two or three planes of
discontinuity. Riela et al. (1999) describe the use of reliability analysis to develop the
results of the analysis of one of the potential sliding blocks of the Chuquicamata mine
in probabilistic terms. For a particular mode of failure they found that the probability
of failure was between 13% and 17%, depending on the method of analysis. They also
found that the largest contributors to the probability were uncertainty in the friction angle
and in depth to the water table.

Decisions regarding mine operation, and even which mines to open and close, are based
on costs of operation, amount of ore to be extracted, and the value of the product on world
markets. These are all inherently uncertain quantities, and modern management methods
incorporate such uncertainties formally in the decision-making process. The probability
of failures, whether in existing mines or as a function of the steepness of proposed
excavations, is part of the cost structure for the mine. Reliability analysis provides the
input to such an analysis.
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1.3 Balancing Risk and Reliability in a Geotechnical Design

Most of the early pioneers of geotechnical engineering were educated in structural and
mechanical engineering while those disciplines were developing rational and scientific
bases. For example, Terzaghi’s first degree was in mechanical engineering, Peck started
out as a structural engineer, and Casagrande’s education was in hydraulics. However, as
these and other pioneers went about putting a rational foundation under what eventually
came to be known as geotechnical engineering, they were keenly aware of the limitations
of purely rational, deductive approaches to the uncertain conditions that prevail in the
geological world. Their later writings are full of warnings not to take the results of
laboratory tests and analytical calculations too literally. Indeed, one of the factors that
attracted many students into the field was this very uncertainty. Even at the undergraduate
level, things did not seem to be cut and dried. Each project presented a new challenge.
There was scope for research on each new project, and the exercise of judgment.

The most widely accepted and successful way to deal with the uncertainties inherent
in dealing with geological materials came to be known as the observational method,
described succinctly by Casagrande (1965) and Peck (1969). It is also an essential part
of the New Austrian Tunneling Method (Rabcewitz 1964a; 1964b; 1965; Einstein et al.
1996). The observational method grew out of the fact that it is not feasible in many
geotechnical applications to assume very conservative values of the loads and material
properties and design for those conditions. The resulting design is often physically or
financially impossible to build. Instead the engineer makes reasonable estimates of the
parameters and of the amounts by which they could deviate from the expected values. Then
the design is based on expected values – or on some conservative but feasible extension
of the expected values – but provision is made for action to deal with the occurrence of
loads or resistances that fall outside the design range. During construction and operation
of the facility, observations of its performance are made so that appropriate corrective
action can be made. This is not simply a matter of designing for an expected set of
conditions and doing something to fix any troubles that arise. It involves considering the
effects of the possible range of values of the parameters and having in place a plan to deal
with occurrences that fall outside the expected range. It requires the ongoing involvement
of the designers during the construction and operation of the facility.

Recent years have shown a trend to place the treatment of uncertainty on a more formal
basis, in particular by applying the results of reliability theory to geotechnical engineer-
ing. Reliability theory itself evolved from the structural, aerospace, and manufacturing
industries; it has required special adaptation to deal with the geological environment. This
book deals with current methods of reliability theory that are most useful in geotechnical
applications and with the difficulties that arise in trying to make those applications. It must
be emphasized at the outset that reliability approaches do not remove uncertainty and do
not alleviate the need for judgment in dealing with the world. They do provide a way
of quantifying those uncertainties and handling them consistently. In essence, they are
an accounting scheme. The experienced geotechnical engineer has already made the first
step in applying reliability methods – recognizing that the world is imperfectly knowable.
The rest of the process is to discover how to deal with that imperfection.

Today the geotechnical engineer must increasingly be able to deal with reliability.
There are several reasons for this. First, regulatory and legal pressures force geotechnical
engineers to provide answers about the reliability of their designs. This is most notable
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in heavily regulated areas of practice such as nuclear power, offshore technology, and
waste disposal. It is a trend that will affect other areas of practice in the future. Secondly,
management decisions on whether to proceed with a projected course of action, how to
finance it, and when to schedule it are increasingly based on statistical decision analysis.
A brief review of almost any textbook on modern financial management demonstrates that
today’s managers are trained to assess the value of a course of action from probabilistic
estimates of the value of money, future profits, costs of production, and so on. The
performance of major civil engineering facilities enters into such evaluations, and it,
too, must be stated probabilistically. Thirdly, modern building codes are based on Load
and Resistance Factor Design (LRFD) approaches, which are in turn based on reliability
methods. These techniques are now being introduced into such areas as pile design for
highway structures. Fourthly, reliability theory provides a rational way to deal with some
historically vexed questions. For example, how much confidence should the engineer place
on a calculated factor of safety? How should the engineer quantify the well-founded belief
that the value of the friction angle is more dependable than that of the cohesion? How can
the engineer demonstrate that a design based on more data and more consistent data is
more robust than one based on partial information – and therefore worth the extra cost of
obtaining those data? How can the engineer distinguish between different consequences
of failure or separate cases in which progressive failure occurs from those in which an
average behavior is to be expected? Reliability approaches provide insights in these areas
and, in some cases, numerical procedures for analyzing them.

1.4 Historical Development of Reliability Methods
in Civil Engineering

To find the antecedents of today’s risk and reliability methods in civil engineering, one
must look back to the allied field of structural reliability and to such pioneers as Alfred
Freudenthal (1890–1975). In the 1950s and 1960s, Freudenthal published a series of
fundamental papers in which many of the precepts of modern risk and reliability the-
ory first appeared (Freudenthal 1951, Freudenthal et al. 1966; Freudenthal and Gumbel
1956). Among these were the concept of statistical description of material properties,
state-space representation of failure conditions, and non-parametric reliability indices.
Freudenthal’s work was followed by a generation of researchers in structural engineer-
ing, including A. H.-S. Ang, C. A. Cornell, O. Ditlevsen, A. M. Hasofer, N. Lind, and
R. Rackwitz. In the early 1970s the emerging field of structural reliability began to spill
over into geotechnical engineering research, and this book is based on the results of
that work.

As has already been stated, major government programs and economic trends of the
1970s and 1980s exerted significant influence on the direction of the field. The most impor-
tant were the regulatory environment surrounding nuclear power generation, nuclear and
solid waste disposal, and the energy crisis of the 1970s, which led to the development
of offshore oil and gas production facilities in water of unprecedented depth. Each of
these trends placed increased attention on uncertainties attending site characterization and
quantified assessments of geotechnical performance. Other industrial interest in geotech-
nical risk and reliability came from surface mining, where high rock slopes are designed
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Figure 1.9 Historical numbers of modern dam failures (Baecher et al. 1980).

to small factors of safety, and seismic safety, where lifelines and other critical facilities
could be corrupted by violent but infrequent ground motions.

With the failure of the Teton Dam in 1976, the dam-building agencies in the United
States became strongly involved in risk assessment. Failures of dams and near-failures
without loss of containment, while fortunately not common, are far from unknown.
Figure 1.9 shows the frequency of modern day dam failures, which has led some workers
to conclude that the annual risk of failure of a modern dam, absent other information, is
on the order of 10−5 to 10−4 per dam-year (Baecher et al. 1980). Today, the U. S. Bureau
of Reclamation has become a leading exponent of risk assessment for dams, and the U.
S. Army Corps of Engineers has produced numerous manuals and workshops to guide
their staff and contractors in applying reliability theory to their projects. They have both
developed broad technical expertise in risk methodology.

1.5 Some Terminological and Philosophical Issues

The evaluation of risk and reliability is closely connected to the fields of probability
and statistics. This creates certain problems for presenting reliability concepts to an engi-
neering audience. First, the various disciplines that developed modern probability and
statistics have erected elaborate, precise, and formidable systems of notation and nomen-
clature that often seem designed less to assist the reader in grasping concepts than to
prevent the uninitiated from participating in sacerdotal rites. Some of this difficulty is
the confusion attendant on any unfamiliar discipline. Some of the distinctions are in fact
important and subtle. Therefore, the notation and nomenclature are largely necessary, but
in this book we have tried to explain what the notation means as we go along. We hope this
will make the material accessible to the intelligent and interested geotechnical engineer,
even at the risk of explaining concepts well known to the probabilistic community.

Secondly, probability and statistics, though often lumped together in the public’s mind,
in textbooks, and in introductory college courses, are actually different subjects with dif-
ferent sets of procedures and definitions. Probability can be thought of as an algebra – a
set of results derived by rigorous reasoning from a set of postulates. Statistics deals with
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description of the observed world. That they often arrive at similar statements and con-
clusions does not change the fact that the basic reasoning processes of the two disciplines
are different. Some of the confusion in the literature on reliability is due to this difference.

Thirdly, there is a related distinction between the frequentist approach and the degree-
of-belief approach to uncertainty. The frequentist concept is that the uncertainties descri-
bed by probabilistic and statistical work have to do with long series of similar events
in the world. The degree-of-belief concept is that the uncertainties have to do with the
confidence one places in knowing the state of the world. The dispute between the two
schools can become at times a precious philosophical argument, but there is a meaningful
difference that has practical implications. For example, an insurance company sells life
insurance from a frequentist point of view based on actuarial tables. The consumer buys
it on the basis of a degree of belief in his or her longevity. The modeling of geotechnical
problems involves both types of reasoning, but most geotechnical engineers seem more
at home with the degree-of-belief view of uncertainty than with the frequentist view.

This distinction between frequency and belief can be elaborated by considering the
difference between uncertainties that are inherent to a process and those that reflect lack
of knowledge. A good example is the difference between the uncertainties associated
with a pair of dice and those of a shuffled deck of cards. A fair (unloaded) die is a
randomizing device. The number that will turn up is random, and no practically obtainable
knowledge about how the die is thrown, or when, or with what force affects one’s ability to
predict the outcome. This type of underlying uncertainty governs some natural processes.
Radioactive decay is one example; quantum mechanics demonstrates that it is impossible
to know precisely which atom will decay or when it will decay. The deck of cards typifies
the other type of uncertainty. The deck has a definite arrangement, and anyone dealing
honestly from the deck will find the same order of cards. The uncertainty lies entirely in
our ignorance of the deck’s arrangement, and sophisticated play in such games as poker
and bridge is largely concerned with trying to garner information about the arrangement of
the cards from the play of the hand. A great deal of geological uncertainty is of this type,
for there is at any site a definite arrangement of geological materials and their properties,
but we do not know what it is.

Hacking (1975) popularized the terms aleatory (after the Latin word aleator, meaning
‘gambler’ or ‘die caster’) for the first type of uncertainty, which reflects underlying phys-
ical randomness, and epistemic (after the Greek, επιστηµη meaning ‘knowledge’) for
the second, which reflects lack of knowledge. A National Research Council (2000) study
suggested the terms natural variability for aleatory uncertainty, and knowledge uncer-
tainty for epistemic uncertainty. These are also useful terms, which enjoy the benefit of
familiarity. Workers in the field of seismic hazard evaluation have used the terms random
for aleatory uncertainty and uncertain for epistemic uncertainty. Because ‘random’ and
‘uncertain’ already mean so many other things, we have chosen to use Hacking’s nomen-
clature in this book. The distinction is important. Much of the confusion in geotechnical
reliability analysis arises from a failure to recognize that there are these two different
sources of uncertainty and that they have different consequences. For example, one can
propose a program of investigations to reduce epistemic uncertainty, but such a program
will not do much for the aleatory uncertainty.
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1.6 The Organization of this Book

This book is divided into four sections, the last three of which correspond approximately
to the stages of a geotechnical design project. The first part describes uncertainty in
geotechnical engineering and sets out some basic principles of probability, statistics, and
decision theory. The second describes procedures for data analysis and site characteriza-
tion. Every project starts with the site, and the site must be characterized. The engineers
must understand the soil, rock, and groundwater conditions and how these will interact
with the proposed facilities. Thus, the first phase is to gather background information on
the site and to conduct a program of exploration and testing to gather detailed informa-
tion. From this, the engineer expects detailed maps, description of surface features, testing
results from which to estimate engineering parameters, and identification of anomalous
conditions that might affect the project. All these are subject to statistical analysis and
interpretation.

The third part deals with reliability analysis itself. This corresponds to the project’s
design and analysis phase, in which analytical tools are employed to predict the behavior
of various components of the project and to refine the design. This may involve detailed
analytical or numerical modeling, evaluation of design alternatives, and sensitivity stud-
ies. Reliability analysis is part of a modern design and analysis effort and enhances
traditional approaches.

The last part describes procedures for making decisions and evaluating risk. In a project,
this involves comparing different alternatives with respect to feasibility, cost, safety, and
other concerns. It also involves the monitoring during and after construction in keeping
with the observational method. In effect, this is a summarizing and integrating phase for
both the design and the reliability evaluation.

1.7 A Comment on Notation and Nomenclature

This book deals with material in several well-developed disciplines. Inevitably the notation
and nomenclature of different fields clash. For example, a ‘sample’ of soil means one
thing to a geotechnical engineer logging a boring, but a ‘sample’ means something quite
different to a statistician estimating a trend. The Greek letter σ denotes a standard deviation
in probability and statistics, but it denotes a normal stress in soil mechanics. There are
two ways to deal with this problem. One is to develop a new, unambiguous notation
for the purposes of this book. We have chosen not to do this because such a notation
would inevitably not agree with that used in any of the other literature and would be
difficult for workers in any field to understand. The other approach is to stick with the
traditional notation and provide explanations when there is a chance of ambiguity. That
is the approach adopted here. We have followed the common probabilistic convention
of using an upper case letter to identify a variable and a lower case letter to indicate a
particular value of that variable. Bold face letters denotes vectors and matrices.





2 Uncertainty1

We use terms like uncertainty, randomness, and chance in the course of daily life but
seldom devote thought to what those terms mean precisely. Similarly, we use those terms
in dealing with engineering problems, but overlook philosophical questions that use of
the terms implies. Implicitly, we think we know what those terms have to do with, but
sometimes the more we think about the sorts of uncertainties that are part of an engineering
analysis, the less clear they seem to become. This chapter takes a look at the different
sorts of uncertainties encountered in geotechnical risk and reliability studies and at the
corresponding meanings of the probability models used to analyze them.

Most engineers, at least those who deal with the macroscopic world of civil infras-
tructure and geological processes, think of nature as deterministic. That is, for any effect
there is a cause, and any cause and its effects are directly linked. There are grand laws of
nature that control the behavior of the physical world, and if we knew initial conditions
with precision, we could forecast the future state of the world with precision. But if it
is true that the world is deterministic, what does it mean for something to be random?
If the world is deterministic, what does it mean to speak of the world in probabilities?
Such questions have to be answered if the results of risk and reliability analysis are to be
correctly interpreted in practice.

In this chapter we delve into what it means for things to be uncertain, what it means
for things to be random, and what it means to use probability measures to represent
uncertainties. For example, is an “0.1 probability of rain” the same thing as an “0.1
probability of a factor of safety being less than 1”? Rain is a recurring natural phenomenon;
factor of safety is a calculated parameter. Is the meaning of uncertainty the same in each
case, and do the two probabilities carry the same meaning?

2.1 Randomness, uncertainty, and the world

We start the discussion with the philosophical question of necessity and chance. That is,
is the world deterministic as suggested above, or is it random, or both? Is this distinction

1 The authors are grateful to David Bowles of Utah State University, Karl Dise of the U.S. Bureau of Reclama-
tion, Desmond Hartford of BC Hydro, and Andrew Zielinsky of Ontario Power Generation for their involvement
in developing the concepts discussed in this chapter. Expanded discussion of these concepts appears in the
Canadian Electricity Association’s Guide to Risk Analysis for Dam Safety (forthcoming).
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important? Then we turn to the categories of uncertainty that arise in engineering analysis,
and consider a taxonomy of uncertainty for geotechnical applications. Finally, we consider
what it means to assign quantitative probabilities to uncertainty.

2.1.1 Necessity or chance?

In a simple way, there are two opposing schools of philosophy on the question of fortune
and fate, and these can be traced to antiquity. One school holds that things in the world
happen by necessity; the other that they happen by chance. The difference has implications
even to the mundane enterprise of engineering analysis.

As early as the 5th century BCE, Leucippus and, shortly thereafter, Democritus held
that there is a cause for everything and that nothing in the world happens by chance.
To these Atomists, ‘chance’ meant only that the cause of a thing was unknown and not
that the thing itself was unknowable in advance of its happening. Centuries later, Laplace
(1814) adopted the same point of view. In the introduction to his Philosophical Essay on
Probabilities, Laplace wrote:

Given for one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective situation of the beings who compose it – an
intelligence sufficiently vast to submit these data to analysis – it would embrace in the
same formula the movements of the greatest bodies of the universe and those of the
lightest atom; for it, nothing would be uncertain and the future, as the past, would be
present to its eyes.

Laplace held that both the future and retrospectively the past (i.e. all history) are know-
able from natural laws, combined with what today we would call boundary and initial
conditions. This theme was picked up by historians (e.g. Buckle 1858) and social philoso-
phers (e.g. Quetelet 1827), as well as by scientists of the standing of Boltzmann, Bousi-
nesq, and Maxwell, all of whom struggled over reconciling this Doctrine of Necessity,
with contemporary concepts of free will (see, e.g. Hacking 1990).

Two centuries after Leucippus, Epicurus argued, contrary to the Atomist position, that
since people’s decisions are not constrained, that is, that people have free will, things
in the world cannot happen by necessity. Were things to follow from necessity, so, too,
must human actions, and this would negate free will and consequently negate that people
should be responsible for their own actions. In the late decades of the 19th century this
stochastic view began to gain adherents, driven by Maxwell’s development of statistical
mechanics and by Peirce’s criticisms of the Doctrine of Necessity. Peirce (1998) refuted
Laplace’s quotation by taking its argument to an extreme:

The proposition in question is that the state of things in any time, together with certain
immutable laws, completely determine the state of things at every other time (for
a limitation to future time is indefensible). Thus, given the state of the universe in
the original nebula, and given the laws of mechanics, a sufficiently powerful mind
could deduce from these data the precise form of every curlicue of every letter I am
now writing.

This is seen as an early example of the stochastic view of the world, now broadly held
within the high-energy physics community.
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Probabilism is a reconciliation of the extreme views of necessity and chance. Probabil-
ism holds that the world is indeed unpredictable, but principally because our knowledge is
inadequate to the task. That is, the world may or may not behave on the basis of necessity,
but in any event we are ignorant of its initial state and of the details of natural law, and
thus the world can only be described as if it were random. This is a point of view that
might be imputed to Laplace’s Essay, which goes on to develop probabilistic concepts
and methods, and it is a view expanded on by Jaynes (1996). The present volume adopts
this view as proper to geotechnical analysis.

In recent years a new consideration, compatible with probabilism, has arisen: chaos. The
origins of chaos theory lie in the observation that, for non-linear systems, a small change
in initial conditions can lead to large changes in outcomes. Since variations in initial
conditions are too small to be modeled or possibly even observed, outcomes seem for
practical purposes to be random (Gleick 1988). The often cited example is meteorological
modeling, wherein small disturbances in input on one side of the world may generate large
differences in output for the other side of the world. Wolfram (2002) expands on this
concept in relation to computing. One can speculate that it is chaos effects that explain
the old question of our inability to predict deterministically the simple toss of a coin.

2.1.2 Randomness and uncertainty

We have used the terms random and uncertain loosely in the foregoing discussion; what
is it that we mean by these terms more precisely?

Since ancient times, the notion of randomness has concerned natural processes that
are inherently unpredictable. For example, a modern dictionary definition of the word
random is:

Random (adjective). Date: 1565. 1. a: lacking a definite plan, purpose, or pattern b:
made, done, or chosen at random; 2. a: relating to, having, or being elements or events
with definite probability of occurrence. b: being or relating to a set or to an element of
a set each of whose elements has equal probability of occurrence. (Merriam-Webster
Inc. 1997)

Random has the sense of completely unpredictable, except in the relative frequencies
with which something occurs. Think of simple games of chance involving coins, dice,
and roulette wheels. The distinctive feature of games of chance is that the outcome of
a given trial cannot be predicted, although the collective results of a large number of
trials display regularity. There are many examples of the same sort involving collections
of people, molecules of a gas, sets of genes, and so on. In this sense, randomness is a
property of nature, independent of anyone’s knowledge of it. It is innate. There are “true”
values of these relative frequencies, although we may not know what they are.2

In recent times, the notion of random processes has often been described as aleatory,
as discussed in Chapter 1. This is especially the case in seismic hazard analysis, nuclear
safety, severe storm modeling, and related natural hazards (Table 2.1 gives a list of

2 In this sense one encounters risk analyses in which the probability associated with an aleatory process is,
itself, treated as a random variable, that is, probability is assumed to be a parameter (U. S. Army Corps
of Engineers 1996).
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Table 2.1 Terms used in the literature to describe the duality of meaning for “uncertainty”

Terms pertaining to uncertainty
due to naturally variable
phenomena in time or space:
“Uncertainties of nature.”

Terms pertaining to uncertainty
due to lack of knowledge or
understanding:“Uncertainties

of the mind.” Citation

Natural variability Knowledge uncertainty (National Research
Council 2000)

Aleatory uncertainty Epistemic uncertainty (McCann 1999)
Random or stochastic variation Functional uncertainty (Stedinger et al. 1996)
Objective uncertainty Subjective uncertainty (Chow et al. 1988)
External uncertainty Internal uncertainty (Chow et al. 1988)
Statistical probability Inductive probability (Carnap 1936)
Chance Probabilité Poisson, Cournot

(Hacking 1975)

synonyms for random uncertainties that are commonly found in the literature of engi-
neering analysis).

In this book, we adopt the word random to refer to those things which, for the purposes
of modeling, we assume to be caused by chance. We also call these aleatory uncertainties.
Even though one might adhere to a Laplacian philosophy that the world is deterministic,
it is often convenient in risk and reliability analysis to presume that some part of the
uncertainty we have about the world is due to randomness. This allows us to bring
powerful mathematical tools to bear on a problem that might otherwise be difficult to
address. Usually, the notion of uncertainty when applied to such random events is taken
to mean the frequency of occurrence in a long series of similar trials. Two observers,
given the same evidence, and enough of it, should converge to the same numerical value
for this frequency or uncertainty.

In contrast to randomness, since ancient times the notion of uncertainty has concerned
propositions of unproven veracity. For example, a modern dictionary definition of the
word uncertain is:

Uncertain (adjective). Date: 14th century. 1: Indefinite, indeterminate 2 : not cer-
tain to occur : Problematical 3: not reliable: Untrustworthy 4 a : not known beyond
doubt : Dubious b: not having certain knowledge: Doubtful c: not clearly identified or
defined 5: not constant: Variable, Fitful. Synonyms: doubt, dubiety, skepticism, suspi-
cion, mistrust. (Merriam-Webster Inc. 1997).

Uncertain has the sense of unknown or unverified, but not unpredictable. An individual
can be uncertain about the truth of a scientific theory, a religious doctrine, or even about
the occurrence of a specific historical event when inadequate or conflicting eyewitness
accounts are involved. Such propositions cannot be defined as repeatable experiments.
In this sense, uncertainty is a property of the mind; it can only be learned by self-
interrogation, and is unique to the individual. Two observers, given the same evidence,
can arrive at different values and both be right. There is no “true” value of such degrees
of belief, and correspondingly no “true” value of the probability assigned to them.

In recent times, this notion of knowledge uncertainty has been described as epistemic,
as discussed in Chapter 1. The notion of uncertainty when applied to such propositions
is taken to mean the strength of belief in their truth or falsity.
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In modern practice, risk and reliability analysis usually incorporates probabilities of
both aleatory and epistemic varieties. The separation is not an immutable property of
nature, but an artifact of how we model things. Some aspects of geotechnical engineering
can be treated as if they were random and thus describable by relative frequencies (e.g.
flood frequency, spatial variations of soil properties), but not all. Others may not have
to do with real world processes that are repeatable; they may have to do with a unique
event that we are unsure about. In this case, uncertainty has a meaning of strength of
opinion or degree of belief. Such strength of opinion may not be one-to-one identifiable
with observed responses in the past but may depend on qualitative experience, reasoning
from first principles, and intuition.

2.2 Modeling uncertainties in risk and reliability analysis

To understand the implications of how we conceive the world – whether of necessity or
of chance – on the practice of risk and reliability analysis, it is useful to consider the
types of uncertainties that arise in engineering practice.

2.2.1 Categories of uncertainty

As a first approximation, the uncertainties that are dealt with in geotechnical engineering
fall into three major categories (Figure 2.1):

Natural variability is associated with the “inherent” randomness of natural processes,
manifesting as variability over time for phenomena that take place at a single location
(temporal variability), or as variability over space for phenomena at that take place at
different locations but at a single time (spatial variability), or as variability over both time
and space. Such natural variability is approximated using mathematical simplifications,
or models. These models many or may not provide a good fit to naturally phenomena. In
the best case, they are close but only approximate fits.

Knowledge uncertainty is attributed to lack of data, lack of information about events
and processes, or lack of understanding of physical laws that limits our ability to model
the real world. Knowledge uncertainty is just a more common description of epistemic
uncertainty. This has sometimes also been called subjective uncertainty or internal uncer-
tainty. Knowledge uncertainty divides into three major sub-categories for geotechnical
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Figure 2.1 Categories of uncertainty entering risk analysis.
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applications: site characterization uncertainty, model uncertainty, and parameter uncer-
tainty.

Site characterization uncertainty has to do with the adequacy of interpretations we make
about the subsurface geology. It results from data and exploration uncertainties, including
(i) measurement errors, (ii) inconsistency or inhomogeneity of data, (iii) data handling
and transcription errors, and (iv) inadequate representativeness of data samples due to
time and space limitations.

Model uncertainty has to do with the degree to which a chosen mathematical model
accurately mimics reality. Model uncertainty, reflecting the inability of a model or design
technique to represent precisely a system’s true physical behavior, or our inability to
identify the best model, or a model that may be changing in time in poorly known ways.
The models we fit to naturally varying phenomena need to be fit to natural process by
observing how those processes work, by measuring important features, and by statistically
estimating parameters of the models.

Parameter uncertainty has to do with the precision to which model parameters can
be estimated. Parameter uncertainty results from our inaccuracy in assessing parameter
values from test or calibration data and is exacerbated by limited numbers of observations
and resulting statistical imprecision.

In addition to natural variability and knowledge uncertainties, two practical types of
uncertainty also sometimes enter geotechnical risk and reliability analysis. These have
to do with the implementation of designs in practice and with the economic issues
attending benefit-cost calculations. These are operational uncertainties, including those
associated with construction, manufacture, deterioration, maintenance, and human factors
not accounted for in models of engineering performance; and decision uncertainties, which
describe our inability to know social objectives or to prescribe social discount rates, the
length of a planning horizon, desirable temporal consumption-investment trade-offs, or
the social aversion to risk. For the most part, these latter uncertainties are not considered
in the present volume.

2.2.2 Natural variation

How does aleatory uncertainty – randomness – arise in testing and performance monitor-
ing? Consider in more detail how we estimate soil parameters. We observe scatter in test
data and treat that scatter as if it derived from some random process. Presume for the
moment that the test data are free from measurement error. We then use statistical theory
to summarize the data and to draw inferences about some hypothetical population of soil
samples or test sections. Most people would agree that the things being observed, that
is the soil properties or engineering performances, are not random. One may not know
the properties or performances at every point in the soil deposit, but the properties and
performances are knowable. They could, in principle, be observed. The variation in the
data is spatial.

To say that the variability being observed is spatial rather than random is to liken the
soil deposit to a deck of playing cards, rather than, say, to a pair of dice. Once the deck of
cards has been shuffled and placed on the table, the order of cards in the deck is fixed. As
with a soil deposit, the variation in the deck is spatial, not random. A player simply does
not know the order of the cards before the game begins. Indeed, in many card games,
such as Bridge or Blackjack, the winning strategy is for players to try to infer the order
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of cards remaining in the deck as play proceeds. In this way, card games are profoundly
different from dice games, in which the sequential outcomes are assumed to be random.
Thus, geotechnical engineering can be thought akin to card games, but not to dice games
(for further discussion see Chapter 9).

To simplify modeling and inferences from data, the assumption is sometimes made
to treat natural variations as if they were random – even though they are not. In this
case, the variations are a function of time or space, and said to be stochastic, the term
merely meaning a random process defined over some domain. This is a modeling – and
presumably simplifying – assumption that transfers some of the uncertainty about natural
variation from the epistemic column to the aleatory column, where it is easier to handle.
Moving the boundary between the two types of uncertainty does not lessen the total. It
does, however, create an irreducible level of uncertainty in the analysis and corresponding
predictions, by presuming a fraction of the total uncertainty to be random, and thus
unknowable. The trade off against this irreducible level of uncertainty is that one hopes
the modeling assumption will allow more powerful methods of mathematics to be applied
to the problem of inference and estimation and thus, in the end, a more precise outcome
to be achieved.

2.2.3 Trade-off between aleatory and epistemic uncertainty

An implication of making the trade-off between aleatory and epistemic uncertainty is
that what is meant by a predictive probability may change. Consider the “probability of
excessive settlement” of a long levee, or by the same token, the “probability of excessive
lateral deformation” in a long excavation. What does it mean that this probability equals,
say, 0.1? Does it mean that 10% of the levee or excavation should be expected to fail?
Does it mean that there is a 0.1 chance that the entire levee or excavation will fail? Does it
mean something between these two? Confusion over this issue is frequent in the literature,
where the temporal or spatial fraction of adverse performance of a large structure is often
used to verify a probabilistic prediction.

The answer to the question is that it depends on how the modeling assumptions are
made; specifically, on how the total uncertainty is divided between aleatory (temporal
or spatial) and epistemic (parametric). To the extent that all the uncertainty is assumed
aleatory, the probability refers to a temporal or spatial fraction. To the extent that all the
uncertainty is assumed epistemic, the probability refers to a chance of complete failure.
Almost always, the uncertainty is apportioned between aleatory and epistemic, so the
probability itself is a mixture.

A second implication of the trade-off between aleatory and epistemic uncertainty is the
variability of performance as a function of scale. To the extent that uncertainty is presumed
to be aleatory, the uncertainty averages over space and perhaps time. The variability of
measured performance among long test sections will be less than the variability among
short test sections. This was alluded to above. The variability of soil properties among
large specimens will be less than among small specimens. The variability among in situ
tests that mobilize large soil volumes will be less than the variability among in situ tests
that mobilize small soil volumes. The converse is true of behaviors that rest on extreme soil
or formation properties. Seepage conditions and piping that depend on the most conductive
element of a formation become both more variable with scale and also on average more
extreme. Rock slope failures that depend on the least favorably inclined joint become more
variable and also more probable as the volume of rock mass considered becomes larger.
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2.2.4 Are frequencies ‘‘objective’’?

There is much debate in the literature of probability over the issue of frequency vs. belief,
over whether probability is a property of the world or a property of the mind. We argue
that from a modeling point of view, probability is neither a property of the world nor
(uniquely) a property of the mind, but a property of the model used to make sense of
a physical world. Frequency and belief coexist in our modeling endeavors; they are not
opposed to one another. Furthermore, one can have a degree of belief about a frequency,
as well as a frequency of degrees of belief (as in the case of expert judgments).

The modeling activity circumscribes a particular phenomenon in space, time, and extent.
In doing so, it defines a frequentist process for which parameters exist, and these param-
eters are frequencies. Are these frequency parameters properties of the world or of the
mind? Insofar as they are associated with worldly phenomena but have no meaning out-
side the modeling enterprise, they are properties of the world as circumscribed by the
model. Within the narrow confines of the definition of the frequentist process being mod-
eled, these frequency parameters are properties of reality. But their meanings depend on
the model, and thus changing the modeling configuration can profoundly change their
values. The richer the modeling of nature, the narrower the purview of frequency-based
probability and the broader the purview of belief-based probability, and conversely.

So, are frequencies objective? When a model is fixed, the processes that we assume to
be stochastic are fixed as well. For example, the domain and mean-trend of a spatially or
temporally varying process are thus determined. The frequency parameters that define the
processes are therefore properties of the world, given the model that has been adopted.
If one changes the modeling assumptions, of course, the definitions and values of the
frequency parameters change. But, while the modeling assumptions obtain, the frequency
parameters are properties of the world, as the world is defined in the model. Typically,
we do not know exact values for these frequency parameters. We have to estimate them
from sample data. Thus, it is permissible for one to have a degree of belief about such
a frequency.

2.3 Probability

James Clerk Maxwell, the eminent 19th century physicist, in 1850 wrote (Tolstoy 1981),

The [. . .] science of logic is conversant at present only with things either certain,
impossible, or entirely doubtful, none of which (fortunately) we have to reason on.
Therefore the true logic for this world is the calculus of Probabilities, which takes
account of the magnitude of the probability which is, or ought to be, in a reasonable
man’s mind.

Most engineers and scientists today use quantified probabilities as the standard way to
talk about uncertainty; and, to an increasing extent, so, too, do people in health care,
education, natural resources, and other areas of public policy (Morgan and Henrion 1990).
Geotechnical engineering – almost unique among the professions – has until recently been
reluctant to make this transition to modernity. The present section discusses the meaning
of probability as a philosophical concept and the use of mathematical probability as a
measure of uncertainty.
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We take for granted today that uncertainties and risks should be expressed in the lan-
guage of probability and that calculations of risk should be based on inferences made using
statistics. Underlying this supposition is a history of debate over the human enterprises to
which probability theory applies, and to the very meaning of the term, probability. The
historical development of the theory of probability since the time of Pascal and Fermat
has been associated with a rich and subtle body of thought, and has led to a duality in
the way we interpret what is meant by the term probability. It should surprise no one
that this duality in the concept of probability parallels the similar duality, discussed in
preceding sections, in the concept of uncertainty, which is interpreted on the one hand
as a natural frequency in the world, and on the other hand as a lack of knowledge in
ourselves. This parallel between the duality of probability and the duality of uncertainty
needs to be reflected in practical engineering applications.

The debate over the interpretation of probability is often simplified to contrasting two
alternative views of the meaning of the term. One is that probability reflects frequencies of
occurrences in the natural world which operate outside human agency, or at least outside
human manipulation. The other is that probability reflects degrees of rational belief in
the outcome of an event or truth of a proposition that an individual holds in the face of
evidence. This often is referred to as the debate between frequency and belief, but the
philosophical convolutions of this debate are more complex and subtle than the simple
distinction suggests (Hacking 1975).

For engineering purposes, on the other hand, the dual concepts of probability-as-
frequency and probability-as-belief complement one another. They are not competing
notions of uncertainty; rather they are measures of different things. Just as differential
fields can be used to represent such different things as groundwater and magnetism, so,
too, probability can be used to represent such different things as frequency and belief.
Thus, probability is the over-arching framework for grappling with the dual nature of
uncertainty: probability-as-frequency is used to grapple with natural variations in the
world, while probability-as-belief is used to grapple with limited knowledge. Probability
is also the lingua franca for integrating the two notions of uncertainty within a uniform
analytical reference. Frequency and belief each has a rôle to play, and there is no contest
between them.

This is a practical view. There are those who argue that only objective frequencies
of the world can be logically treated as probabilities (von Mises et al. 1939) and those
who argue that even the frequencies we observe in the world can only be interpreted
as the subjective belief of the observer (De Finetti 1974). These extreme positions are
philosophically engaging but difficult to implement in practical risk and reliability mod-
eling. As Gigerenzer (1991) points out, many people perceive uncertain events in the
world through the lens of frequency, no matter the philosopher’s view. Thus, a modeling
approach that combines frequencies of natural variations with uncertain degrees of belief
seems practical.

2.3.1 What is probability and why use it?

Ideas about human behavior and reasoning have long shaped the meaning of probability
and remain central to understanding the interpretations in use today (Bernstein 1996). The
thing most practitioners overlook, however, is that, while all other terms in the probability
calculus have well-defined meanings, the term probability itself does not; it is a primitive
term which is not part of the formal system of probability theory (Salmon 1998).
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Probability theory is a logical, mathematical construct based on a small number of
axioms. The mathematical aspects of these axioms and their implications are discussed in
Chapter 3. As long as one accepts the axioms, all the results of mathematical probability
theory follow necessarily. But, within these axioms, only the mathematical properties of
probability as a measure are defined. Nowhere do these axioms, and therefore mathemati-
cal probability theory as a whole, address the meaning of the concept of probability. That
is, probability theory is simply a logical construct, the meaning we give the construct in
risk analysis is a philosophical question independent of mathematics. The meaning we
assign, however, does affect what can be done with the mathematical theory and the mean-
ing of the numbers or functions that derive from our modeling. As a result, it is pertinent
to review briefly how probability theory evolved and the philosophical interpretations
imputed to probability over the course of history.

2.3.2 Historical development of probability

The history of probability theory is rich and fascinating, and the interested reader can find
a sampling of its intellectual development in a number of places (David 1962; Hacking
1975; Pearson and Pearson 1978; Porter 1986; Stigler 1986; Daston 1988; Gigerenzer
et al. 1989; Hacking 1990). The early modern references to the development of a prob-
ability theory, as related to games of chance, date to Cardano in the 16th century, but
today the origin of probability theory is usually traced to a correspondence between Fer-
mat and Pascal just prior to 1654. Out of this arose the combinatorial mathematics that
underlie modern probability theory. The Chevalier de Méré became a footnote in history
by having suggested to Pascal the famous “problem of points,” which has to do with how
to divide the stakes in a game of chance that is interrupted before one side wins. The
correspondence with Fermat on the problem of points led to the arithmetic triangle of
binomial coefficients (David 1962).

Shortly after the Fermat-Pascal correspondence, the Englishman John Graunt in 1662
compiled a bill of mortality for the city of London, charting births and deaths from
1604–1661, and published it with commentary on the meaning of the data. Thus, for
the first time statistical data were collected on a social process and published with an
intent to inform trade and government.3 The popularity of the endeavor quickly expanded
to continental Europe, where the French undertook a similar compilation for Paris in
1667 (Bernstein 1996). Graunt foreshadowed modern concerns with risk, in commenting
that, while many people fear “notorious diseases, [the author] will set down quantitatively
how many actually die of them, so that those persons may the better understand the hazard
they are in.”

The development of probability theory, beyond questions of games and population
statistics to physics, principally astronomy and geodesy in the earlier years and a broad
range of applications by the end, flowered in the 18th and 19th centuries. This was the work
of many people, whom we now think of as among the great scientists, mathematicians,
and philosophers of the modern age. Among these were James and Daniel Bernoulli,
Laplace, Poisson, Legendre, Gauss, Maxwell, Boltzmann, and Gibbs.

3 The quote from Graunt, J. Natural and political observations made upon the bills of mortality, is “[. . .] to
know how many people there be of each Sex, state, age, religious, trade, rank, or degree &c. by the knowing
whereof trade and government may be made more certain [. . .]. ”(Newman 1966).
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So, too, during this age of the Enlightenment, did the nature of uncertainty became part
of the emerging inquiry into human knowledge among the adherents of logical deduc-
tion from first principles and the proponents of inductive reasoning from empiricism.
The former were concerned with fundamental truths and the latter with observed frequen-
cies (David 1962; Hacking 1975; Daston 1988). Between 1710 and 1750, Jacob Bernoulli,
John Locke, David Hartley, and David Hume put forward views on knowledge and rea-
son that accommodated both objective and subjective concepts of uncertainty (Gigerenzer,
1994).

A seminal work of this period was Jacob Bernoulli’s Ars Conjectandi (published posthu-
mously in 1713), which set the stage for the use of probability as logic, or, in his terms,
the art of conjecturing. The probability of Bernoulli was to play the central role in moral
philosophy, and its implementation was to use the model of jurisprudence rather than that
of empirical science. This view followed closely upon that of Leibniz who had recom-
mended that a serious effort be made toward developing a theory of probabilistic reasoning
for public purposes. Within this practical discipline, mathematics was to provide a rigor-
ous method of reasoning and a way of insuring consistency when the complexity of the
situation might otherwise overwhelm normal reason. Maxwell, at the beginning of the
Victorian age, echoes this view, in the quotation at the start of this section.

By about 1850, growing misgivings about the rationality of the common man gave way
to the rise of statistical inference and its stature in the increasingly influential fields of
physics and social science (Porter 1986; 1995). Throughout most of the 19th and early
20th centuries, probability became defined by frequencies of occurrence in long series of
similar trials, largely to the exclusion of degree of belief. In engineering, this view was
most associated with Richard von Mises (Wald 1957). Beginning with the pioneering work
of Ramsey (Ramsey and Braithwaite 1931) and De Finetti (1937), followed by Savage
(1954) after World War II, the degree-of-belief view gradually regained acceptance. The
rapid advance of operations research and decision analysis during the war had been an
important factor. This duality of frequency and belief remains today, with frequency
dominating the experimental sciences, and belief prevailing in economics, management,
and public policy. An exposition of the practical differences is given by Barnett (1999).

2.3.3 The meaning of probability

The theory of probability is an internally coherent mathematical construct based on axioms
originally due to Kolmogorov (Carnap 1936). There exist parallel, equivalent sets of
axioms upon which the theory of probability can also be founded. The point made earlier,
but worth repeating, is that probability is a purely mathematical theory. If the axioms are
accepted, then all the results of the theory hold necessarily. Thus, there is no disagreement
about the properties that probability obeys, and these properties can be found in any
textbook on probability theory.

The issue is not what properties probability has, but what the term means. Since the
beginning of modern probability theory in the 1600’s, there has been a dual meaning:
(a) relative frequency in a long or infinite number of trials, and (b) objective or subjective
degree of belief. Poison and Cournot used the French words chance and probabilité to
refer to the two concepts of frequency and belief. The terms have more distinct meaning in
French than their translations in English suggest. Chance denotes an objective propensity
of an event, the facility with which it can occur. An event will have, by its very nature, a
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larger or smaller chance, known or unknown. Probabilité denotes credibility or degree of
reasonable belief. The probability of an event is the reason for thinking that the event did
or will occur. The French terms parallel the distinction between aleatory and epistemic
uncertainty.

How can a theory describe two quite different concepts? As Pólya (1954) notes, this
is not unusual in science, as the example of groundwater flow and magnetism suggests.
The meanings of probability are not in opposition, although strongly stated points of
view in the literature might lead one to think otherwise. The meanings describe distinct
concepts, both of which are part of most geotechnical risk and reliability studies. The
concepts coexist in practical applications because the natural variability and knowledge
uncertainty coexist in practical applications. The issue is not which meaning to adopt, but
how to convolve the two types of uncertainty and thus the two types of probability in a
useful way.

In recent years, a third concept of uncertainty and correspondingly a third sense of
probability has appeared in the engineering literature of risk and reliability. This is the
uncertainty caused by vagueness of language and definition. For example, it is suggested
in this literature that concepts such as ‘stiff’ clay or ‘poorly graded’ filter material are
imprecisely defined, therefore a new way of capturing the uncertainty attending this vague-
ness is needed. A variety of non-bivalent measures of uncertainty (e.g. ‘fuzzy sets’) have
been proposed for the purpose. The present discussion takes the position that what is
needed is not a replacement for probability theory but better definitions for the vague
terms, as in the traditional scientific approach.

2.3.4 Probability as relative frequency

In much of engineering, probability is interpreted to be the frequency of occurrence of
some event in a long series of similar trials. A principal early proponent of this view was
John Venn (1834–1923), who summarized the notion as,

The fundamental Conception is that of a series which combines individual irregularity
with aggregate regularity. Probability has no meaning except in connection with such
a series. Any probability must be referred to a series. The probability of an event is
its relative frequency in the series.

A more modern proponent was Richard von Mises (1883–1953).
A trial is an individual occurrence producing an outcome of some sort. For example,

each individual lift of soil placed in a compacted embankment might be considered a
trial. The frequency of soils having low moisture content among these lifts (i.e., among
the trials) would be the probability of soil with low moisture content. Similarly, each
maximum annual discharge in a stream might be considered a trial. The frequency of
peak annual flows above a certain magnitude would be the probability of floods of at
least a certain size.

Frequency definitions of probability are the ones that non-statisticians usually think of
first when asked to define probability. They are based on the relative number of times a
certain outcome will occur in a long or infinite number of similar trials. There are three
traditional definitions of frequency, which might be called, the classic, the Venn limit, and
the infinite trials. The classic definition defines probability a priori. If there are n possible
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alternatives, for m of which A is true, then the probability of A is defined as m/n. The
Venn limit says that if an event occurs a large number of times, the probability of A is
the limit of the ratio of the number of trials on which A is true to the whole number of
trials, as the number of trials tends to infinity. The infinite trials definition assumes an
infinite number of trials and defines the probability of A as the ratio of cases in which
A is true to the whole number. The classic definition is associated with the work of de
Moivre and Cramer, the Venn limit with that of Venn and von Mises, and the infinite trials
with that of Gibbs and Fisher. The implicit assumption underlying all these definitions
is that one cannot place probabilities on states of nature or on unique events. States of
nature are constants (perhaps unknown), not random variables. To ask the probability of
a flood stage higher than some value occurring this year is meaningless; the probability
of a single occurrence is undefined.

The frequency theory gives answers in the form of the probability of different sets of
observations occurring, given some hypothesis. The practical problem is just the reverse of
this. That is, the practical question usually is, what is the probability of some hypothesis
being true, given the observations recorded. This is illustrated in Figure 2.2 (Baecher
1972). To say, “if a fault existed at this site, the aerial photographs would show its trace
90% of the time,” is not to say that if a trace does not appear, the probability of the fault
existing at the site is only 10%. The probability of a trace showing in the air photos given
that a fault exists is B/(A + B), which is permitted by frequentist theory; whereas the
probability of a fault existing given a trace is observed in the air photos is B/(B + D),
which is undefined in frequentist theory.

The frequency approach requires at least the potential for large numbers of similar
trials, for example, many realizations of a process, or a sample of many measurements
from a population. The frequency interpretation pertains to variability among collections
of things. A frequency interpretation cannot be applied to the unique occurrence of an
event, or to a condition where statistical sampling with representative trials is impossible,
or to the direct inference of a state of nature. Proponents would say that the frequentist
interpretation is objective, because it deals only with observable patterns of behavior
within groups of similar things. Inference from these patterns about the state of nature does
not follow necessarily from the mathematics, but this is acceptable within the frequentist
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(probability proportional to area)

Figure 2.2 Conditional probabilities of observing evidence of a geological fault.
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school. Inference within the frequentist school is based on refutation and is thus ad hoc
(see, e.g., Barnett 1999).

Consider again a deck of cards. The order of the cards is not random, although we
may not know what it is. A frequentist interpretation allows statements to be made about
where the Ace of Clubs may appear in many re-shuffles of the deck. A belief interpretation
allows statements about the location of the Ace of Clubs within one particular shuffle.
Unlike a deck of cards that can be shuffled repeatedly forming a long series of trials, a
geological formation is created once. Thus, uncertainties about soil and rock properties
are not averages over ensembles but degrees of belief. For example, drilling to discover
the presence of a geologic fault at some specified location is not replicable. The fault
is found or it is not. A frequentist would consider any statement about the chance the
fault’s existence to be outside probability altogether, even though geologic knowledge
may provide partial evidence.

2.3.5 Probability as degree of belief

The belief interpretation, quite common in civil engineering, holds that probability is a
rational degree of belief. The probability that an important solution cavity exists in a lime-
stone dam abutment is typical of a dam-related problem that cannot be easily approached
using the frequency definition of probability, since the uncertainty is fundamentally epis-
temic. Such probabilities have to do with one-time events, past experience, and amounts
of information. They are personal and subjective, and not easily related to frequencies,
actual or conceptual, as summarized by Augustus de Morgan (1845),

Probability is the feeling of the mind, not the inherent property of a set of circumstances.
[. . .] the amount of our belief of one proposition varies with the amount of our belief
of other propositions with which it is connected.

According to Ramsey and Braithwaite (1931), a degree of belief is the propensity to
take action when faced with a situation of uncertainty. To say that someone has degree
of belief p that a proposition is true means that for integers r and b with r/(r + b) < p,
if that individual is offered an opportunity to bet an equal amount on the truth of a
proposition or on “red in a single draw” from an urn containing r red and b black balls,
he will prefer the first bet; if r/(r + b) > p, he will prefer the second bet. Degree of
belief is manifest in action, not in introspection.

The notion of degrees of belief as subjective probability was much debated in the early
half of the 20th century. While, today, the notion is widely accepted, in earlier times
significant efforts were devoted to developing an objective degree-of-belief theory. This
theory holds that two observers of the same data necessarily arrive at the same degree of
belief in a proposition. Subjective degree-of-belief theory says that two observers of the
same data may arrive at different degrees of belief in a proposition. Objective degree-of-
belief theory is most notably associated with the work of Jeffreys, the great Cambridge
geophysicist, but it has fallen in to disfavor in recent times.

Jeffreys postulates an objective degree of belief by presuming that every observer
starts from a condition of complete ignorance about the quantity to be inferred and in this
state should have the same prior probability distribution. Jeffreys’ principle of indifference
states that in a condition of ignorance, one should assign equal probabilities to all possible
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outcomes of an experiment or values of a parameter. Thus, if a coin can land heads-up
or heads-down, and if one has no information about the possible bias (unfairness) of the
coin, then the rational assignment of probability a priori is to treat each possible outcome
as equi-probable, that is, to assign each the value 0.5. This uniform assignment of prior
probability is called “non-informative.” In the same way, if one had no information about
the value of, say, the mean strength of a soil, then the prior probability distribution over
its possible values should be taken as uniform within the region of the possible sample
outcomes. The principal difficulty of this approach is that the resulting prior probability
distributions expressing total ignorance are not invariant to transformations of variable.
As a result, objective degree-of-belief theory has fallen from favor.

The degree-of-belief theory does not require a number of trials. It provides that prob-
abilities can be assigned to unknown outcomes of particular realizations of a process,
or to the very properties (states) of nature itself. The belief interpretation pertains to
the weight of evidence leading to a quantitative statement of uncertainty about nature.
Thus, a belief interpretation can be applied to the unique occurrence of an event. On the
other hand, the belief interpretation necessarily implies that probability is in the eye of
the beholder, it is necessarily subjective. Two observers can view the same data, assess
different probabilities, and each, working from his or her experience and knowledge, can
be right.

A subjective approach considers information of all kinds, statistical and otherwise, as
admissible in developing a probability estimate. The way people use various types of
information in formulating subjective probabilities is not fixed; they adopt statistical and
knowledge-based reasoning or a mixture of the two depending on the circumstances. A
familiar case is a weather forecaster’s prediction of rain. While climatological records for
the day in question provide a base-rate frequency, information from satellite photographs,
atmospheric pressures, and even a glance out the window are also incorporated in a prob-
ability estimate. In fact, weather forecasters have served as subjects in behavioral studies
for just this reason, and they have been found to forecast probabilities that correspond
closely to long-run frequencies (Murphy and Winkler, 1974).

Likewise in geotechnical applications, all the information at hand, together with per-
sonal experience and judgment are brought to bear in estimating the subjective probability
of an event or condition. Because subjective probability inherently depends on one’s state
of knowledge at the time it is formulated, any such value can be expected to vary, both
from one person to another and with time, as information and knowledge are gained, in
the same way as (engineering) judgment itself. Subjective probability can be said to be a
reflection of judgment.





3 Probability

Engineering data on soil or rock mass properties are usually scattered. Graphical and
simple probabilistic methods are useful in summarizing this scatter so that a better under-
standing of the data – and of the corresponding uncertainties associated with engineering
performance – can be developed. In this chapter, we introduce basic concepts of probabil-
ity theory and the use of probability in describing geotechnical uncertainties. This chapter
is intentionally brief. The fundamental concepts of probability theory are well described,
and in greater detail than possible here, in many texts. For example, Benjamin and Cornell
(1970) and Ang and Tang (1975, 1990) provide eminently readable introductions to basic
probabilistic concepts in the context of civil and environmental engineering, while Feller
(1967, 1971) provides a general introduction of substantial depth. A principal purpose of
the present chapter, then, is to establish a vocabulary to follow through the rest of the
book. Appendix A contains a more detailed discussion of probabilistic concepts and of
the properties of various distributions.

3.1 Histograms and Frequency Diagrams

The most common way to represent scattered data graphically is a histogram. A histogram
graphs the number of measurements falling within specific intervals of value as a vertical
bar. Thus, a histogram is sometimes called a bar chart. The height of the bar above each
interval shows the number of measured values within the interval, and the sum of the
heights of the bars equals the total number of measurements (Figure 3.1). The histogram
divides data into fixed intervals. The choice of intervals is arbitrary, but they should be
of uniform width and have convenient end points. If too many intervals are chosen the
general picture of relative frequencies will be jagged, and, conversely, if too few intervals
are chosen, the general picture will be blurred. A frequency distribution is constructed
from a histogram by dividing each vertical bar by the total number of measurements. This
gives the relative frequency of observed values in each interval as a decimal fraction. The
cumulative frequency distribution, shown as a solid curve in Figure 3.1, sums the number
of data less than or equal to a particular value.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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Figure 3.1 Example of a histogram and cumulative distribution of liquidity index data from a
marine clay.

Many important features of the data are apparent by inspection of the frequency distri-
bution. For example, the data in Figure 3.1 vary about a central peak between 0.84 and
0.86. The data are more or less symmetric about this peak, and data that vary substantially
from the peak are infrequent. The bulk of the data lie within an interval approximately
between 0.75 and 0.95, with extreme values ranging to 0.71 and 1.02. A symmetric
distribution like this is sometimes described as ‘bell-shaped.’

A histogram gives a summary view of variation. The shape suggests whether the data
have a central tendency and, if so, where along the x-axis the bulk of the data is con-
centrated. The width suggests the dispersion or scale of variation. Some histograms have
one point of concentration and are thus called unimodal. Others have more than one and
are called multimodal. Usually, hydrological and geotechnical data have unimodal distri-
butions. Multimodal distributions may indicate an inhomogeneous mixture of data from
different soil types, hydraulic regimes, construction procedures, or sites. The histogram
also shows whether the variation is symmetric or asymmetric, that is, whether high and
low variations are evenly balanced, whether variations from the central tendency are more
frequent on one side than on the other.

A histogram and cumulative distribution of a set of cone penetration data from a copper
porphyry tailings dam are shown in Figure 3.2. These data are not symmetric about a peak
frequency, but are skewed with a long upper tail. The highest frequency occurs near the
lower end of the scale, at about 2 psi (13.8 kPa), and, while frequencies decline on both
sides of the peak, they do so more slowly on the upper side. Such distributions are said
to be skewed.
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Figure 3.2 Histogram and cumulative distribution of a set of cone penetration data from a copper
porphyry tailings dam (Baecher et al. 1980).

To construct a histogram, a simple procedure can be used: (1) divide the data range into
about five to ten intervals of constant width; (2) count the number of data having values
within each interval; and (3) plot this number as a vertical bar. Five to ten intervals are
used because this number typically allows a sufficient number of data in each interval for
the observed frequencies to vary smoothly, yet provides adequate definition to the shape
of the distribution. If larger numbers of data are available, larger numbers of intervals
might be used. For small numbers of data, a convenient rule-of-thumb for choosing the
number of intervals is

k = 1 + 3.3 log10 n (3.1)

in which k = the number of intervals, and n = the number of data values (Sturges 1926).
Usually, it is convenient to specify interval boundaries to one fewer decimal place that
to which the data are measured, avoiding the problem of where to place values falling
directly on an interval boundary. When this is not possible, a consistent procedure should
be adopted for deciding how to count data that fall directly on a boundary. Since the choice
of number of intervals can affect visual interpretation of data scatter, it is sometimes useful
to construct more than one histogram, using a different number of intervals for each.

A cumulative distribution is constructed by summing relative frequencies starting at the
lower end of the data and proceeding toward the upper end. The cumulative frequency
distribution gives the fraction of measurements less than or equal to a particular value:

FX(x0) = fraction of measurements ≤ x0 (3.2)
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An empirical cumulative frequency distribution is found by plotting the data of
Figures 3.1 or 3.2 against fraction-less-than. The plotting positions in a cumulative
frequency distribution are usually taken as

F(xm) = m

N + 1
(3.3)

in which F(xm) is the cumulative frequency of the mth point, with m = 1 being the lowest
value, and N being the total number of points (McCuen and Snyder 1986). Sometimes
the plotting points are taken as F(xm) = m/N , for all but the largest value, which is then
plotted as in Equation (3.3). An advantage of the cumulative distribution is that the data
do not need to be grouped into an arbitrary number of intervals. A disadvantage is that
the shape of the distribution is not as readily apparent as in the histogram.

3.2 Summary Statistics

Frequency distributions are convenient representations of data for visual inspection, but
statistics of distribution characteristics are often more useful for calculations or for setting
standards. The term statistic refers to any mathematical function of a set of measured data.
For example, given measurements x = {x1, . . . , xm}, any function T (x) is a statistic of
the data. The arithmetical average is such a statistic, the largest value xmax or the smallest
value xmin is a statistic, and so on. There are infinitely many statistics that could be
calculated from a set of data, but the most useful usually have to do either with central
tendency or dispersion (spread) of the data.

3.2.1 Central Tendency

The common measures of central tendency are the mean, median, and mode. The mean
is the arithmetic average of a set of data. The median is the value for which half the
observations are smaller and half larger. The mode is the most frequent value.

The mean of a set of n data x = {x1, . . . , xn}, denoted x, is the arithmetical average

x = 1

n

n∑
i=1

xi (3.4)

The mean is the center of gravity of the frequency distribution along the x-axis. For
example, the mean of the liquidity index data of Figure 3.1 is 0.87, while that of the cone
penetration data in Figure 3.2 is 7.13.

The median of the set of data, denoted x0.5, is that value of xn for which half the
data are less and half more. Correspondingly, the cumulative distribution evaluated at the
median is 0.5:

FX(x0.5) = 0.5 (3.5)

The median is the midpoint of the data when listed in increasing or decreasing order.
Common practice in the case of an even number of data is to define the median as
intermediate between the two middle data.
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The mode of a set of data is most common data element or interval. For theoretical
distributions the mode is usually obvious, but in sample data it can be erratic or unstable
depending of the vagaries with which data appear. In Figure 3.1 the mode is 0.84, although
it might nearly have been 0.94. In Figure 3.2 the mode is 2.

3.2.2 Dispersion

Common measures of dispersion are the standard deviation, range, and inner quartiles of
the frequency distribution. The standard deviation is the root-mean-square (rms) value of
the difference between the data and the mean, the range is the spread between maximum
and minimum values, and the inner quartiles bracket the middle 50% of the data.

The standard deviation of a set of data x = {x1, . . . , xn}, denoted sx , is

sx =
√∑n

i=1 (xi − x)2

n
(3.6)

in which x = the mean of the data. Sometimes the denominator (n − 1) rather than (n)

is used to correct a statistical bias (Chapter 4), due to the fact that the mean, too, must
be estimated from the same data. The coefficient of variation of a set of data is defined
as the standard deviation divided by the mean

�X = sx

x
(3.7)

which expresses relative dispersion. The variance of a set of data, denoted Var(x), is the
square of the standard deviation

Var(X) = 1

n

n∑
i=1

(xi − x)2 (3.8)

In many statistical calculations, the variance is a more convenient measure than the
standard deviation. The variance is the moment of inertia of the frequency distribution
about x.

The range of a set of data, denoted r , is the difference between the largest and smallest
values,

rx = |xmax − xmin| (3.9)

The range has poor statistical properties in that it is sensitive to extreme values in a data
set; however, it is easily evaluated and therefore often useful.

The inner quartiles of a set of data, denoted x0.25 and x0.75, are the data values for which
one-quarter of the data are smaller and one-quarter larger, respectively. The quartiles may
be found from the cumulative distribution as

F(x0.25) = 0.25 (3.10)

F(x0.75) = 0.75 (3.11)
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Table 3.1 Summary statistics for the data of Figures 3.1 and 3.2

Statistic
Liquidity index

(Figure 3.1)
Cone penetration

(Figure 3.2)

Mean 0.87 7.13
Median 0.86 5.00
Mode 0.84 2.00
Standard Deviation 0.067 8.64
Coefficient of Variation 0.077 1.21
Variance 0.0045 74.63
Lower Quartile 0.81 2.50
Upper Quartile 0.91 9.30
Interquartile Range 0.10 5.80

The inter-quartile range, denoted r0.5,

r0.5 = (x0.75 − x0.25) (3.12)

is less influenced by extreme values than is the range itself, but it is correspondingly more
troublesome to compute. Various summary statistics applied to the data of Figures 3.1
and 3.2 are shown in Table 3.1.

3.2.3 Quick estimates of central tendency and dispersion

Often one wants quick, approximate estimates of means, standard deviations, or other
summary statistics from limited numbers of data. Shortcut techniques are available for
this purpose. These provide economies of time and effort while sometimes causing only
minor loss of precision.

A quick and often good estimate of central tendency can be obtained from the median.
For data scatter that is symmetric about its central value and for small numbers of data,
the sample median is a good estimate of the mean. On the other hand, if the data scatter
is asymmetric – for example, if there are many small values and a few large values – the
sample median is not such a good estimator. A second shortcut for estimating the mean
is taking one-half the sum of the largest and smallest values, (1/2)(xmax + xmin). This
estimator is sensitive to extreme values in a set of measurements, and thus fluctuates
considerably. It should be used with caution.

A quick estimate of dispersion from small numbers of tests can be made from the
sample range rx = (xmax − xmin). Like the standard deviation, the range is a measure of
dispersion in a set of data. However, the relationship between the standard deviation and
the sample range, on average, depends on how many observations are made. If the data
are Normally distributed, to obtain an estimate of sx from the range of data rx one uses a
multiplier Nn (i.e. a correction factor) dependent on sample size (Table 3.2). The estimate
is then

ŝx = Nn(xmax − xmin) (3.13)

in which ŝx indicates an estimate.
As in the case of the sample median, the range is a good estimator of the standard

deviation for symmetric data scatter with small n. However, for asymmetric data scatter
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Table 3.2 Multiplier for estimating standard deviation
from sample range for normally distributed variable (Bur-
ington and May 1970; Snedecor and Cochran 1989)

n Nn n Nn n Nn

11 0.315 30 0.244
2 0.886 12 0.307 50 0.222
3 0.510 13 0.300 75 0.208
4 0.486 14 0.294 100 0.199
5 0.430 15 0.288 150 0.19
6 0.395 16 0.283 200 0.18
7 0.370 17 0.279
8 0.351 18 0.275
9 0.337 19 0.271

10 0.325 20 0.268

the range, which is strongly affected by extremes, is not a good estimator of standard
deviation. Fortunately, with the notable exception of hydraulic parameters such as per-
meability, most geotechnical data display symmetric scatter. In the case of hydraulic data
a logarithmic transformation usually makes data scatter symmetric (Kitanidis 1997), and
again the median and range become reasonable estimators.

3.3 Probability Theory

Probability theory is a branch of mathematics. It is logically consistent in the sense that
the mathematics of probability theory all can be derived from a set of axioms. These
axioms specify properties that probability must have, but do not say what probability is.
As a result many interpretations are possible.

One set of axioms that probability theory can be based on is the following, although
there are others (Kolmogorov 1950). The technical terms used in the axioms are defined
in the discussion to follow:

Axiom 1: the probability P [A] of event A has a value between 0 and 1: 0 ≤ P [A] ≤ 1.
Axiom 2: the sum of the respective probabilities of each of a set of mutually exclusive
and collectively exhaustive events {Ai} is 1.0:

∑
i P [Ai] = 1.

Axiom 3: the probability that two independent events Ai and Aj both occur equals the
product of their individual probabilities: P [Ai and Aj ] = P [Ai]P [Aj ].

All the formal mathematical relationships of probability theory derive from these simple
axioms.

3.3.1 Random events

The mathematical theory of probability deals with experiments and their outcomes. An
experiment is a random process generating specific and a priori unknown results or
outcomes. The set all possible outcomes of an experiment is called the sample space, S
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(sometimes called, the outcome space). Individual outcomes (points) within the space are
called sample points. The sample space can be discrete or continuous.

The example sample space of Figure 3.3 contains 77 discrete sample points. A simple
event consists of a single sample point; a compound event consists of more than one
sample point. The event, A, as shown, is a collection of 15 sample points within S. The
complement of A, denoted A, comprises the 62 = 77 − 15 sample points in S not in A.

The union of two events A and B (denoted A-or-B, or symbolically A ∪ B) is the
collection of sample points contained in A or B or both. The intersection of two events
A and B (denoted A-and-B, or symbolically A ∩ B) is the collection of sample points
contained in both A and B. The well known Venn diagram (Figure 3.4) conventionally
illustrates these relations (Venn 1866). The term mutually exclusive means that two (or
more) events cannot occur together, that is, the events share no sample points in common,
while collectively exhaustive means that at least one event within the group of events must
occur, that is, together the events comprise all the sample points in S.

A

S

'

Figure 3.3 Sample space showing sample points and an event A.

A

B

A-and-B

A-or-B

S

Figure 3.4 Venn diagram of events A and B in sample space S.
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3.3.2 Conditional probability, dependence, and independence

One of the most important concepts in probability theory is conditional probability, with
its corollaries, dependence and independence. Informally, conditional probability has to
do with the notion that the probability of an event A may be changed if another event B

is known to obtain. For example, the probability assigned to high values for the undrained
strength of a clay is presumably changed by knowing the preconsolidation pressure of
the clay. From empirical observation and theory, high values of undrained strength are
associated with high preconsolidation pressures, and conversely. Thus, the probability of
high undrained strength should rise if we learn that the preconsolidation pressure is high.

The conditional probability of event A, given event B, is written, P [A|B]. The proba-
bility P [A], irrespective of B, is said to be the marginal probability, for reasons that will
become clear later in the chapter. For the case in which the conditional probability is the
same as the marginal

P [A|B] = P [A] (3.14)

A is said to be independent of B. For the case in which the conditional probability
differs from the marginal, P [A|B] �= P [A], A is said to be dependent on B. The intuitive
meaning of independence is that the probability of A is not changed by knowing that B

obtains. The definition is symmetric in A and B, and when applying to both, A and B

are said to be mutually independent.
From an informal consideration of Figure 3.4

P [A and B] = P [A]P [B|A]

= P [B]P [A|B]
(3.15)

can be rearranged and combined with the second axiom to give the relationship among
conditional probabilities known as Bayes’ Theorem:

P [A|B] = P [A and B]

P [B]
= P [A]P [B|A]

P [A]P [B|A] + P [A]P [B|A]
(3.16)

The expression A means ‘not A.’

Table 3.3 Elementary relationships among probabilities of events

Description Equation

Event and its complement P [A] = 1 − P [A]
Intersection of two events P [A and B] = P [A] + P [B] − P [A or B]

P [A and B] = P [A]P [B|A]

Intersection of mutually exclusive
and collectively exhaustive events

P [A1 and . . . An] =
n∏

i=1
P [Ai]

Union of two events P [A or B] = P [A] + P [B] − P [A and B]
Union of mutually exclusive and

collectively exhaustive events
P [A1 or . . . An] = ∑n

i=1 P [Ai]

Total probability P [A] = ∑n
i=1 P [A and Bi], s.t. Bi me & ce

Conditional probability P [B|A] = P [A and B]

P [A]
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In summary, a number of mathematical relationships derive immediately from the
axioms of probability. These are presented without proof in Table 3.3. The derivations of
these and other elementary relationships of probability theory can be found in Benjamin
and Cornell (1970), or Ang and Tang (1975), or in any introductory text on probability.

3.4 Random Variables

In practice, we are often concerned with mathematical functions of natural variations or of
uncertainties. Thus, the question arises, is there not a more convenient way of describing
the distribution of probability over a space of outcomes than fully enumerating separate
values of P [A] for every possible outcome?

For many distributions of probability over a sample space, S, there exists a function
fX(x) from which the probability P [A] for any event A can be obtained by a summation
of the form

P [A] =
∑

A
fX[x] x ∈ A (3.17)

For discrete sample spaces, this function is called, a probability mass function (pmf),
and for continuous sample spaces, a probability density function (pdf). In either case, we
will use the generic notation, f (x), to indicate the probability distribution. In applying
Equation (3.17) to a continuous variable, the summation is replaced by integration.

3.4.1 Probability mass functions

The simplest case of a discrete sample space is an ordered series, for example, the
frequency distribution corresponding to either Figures 3.1 or 3.2. This ordered series asso-
ciates a probability, pi , with each sample point, xi

X :
x1 x2 · · · xn

p1 p2 · · · pn
(3.18)

The probability that the uncertain quantity X takes on a particular value, x, is

fX(x) = P(X = x) (3.19)

which is the probability mass function. Since the outcome takes on exactly one value, the
sum of the pmf over S is

n∑
i=1

fX(xi) = 1 (3.20)

The Cumulative Mass Function (CMF) describes the probability that the outcome of X

is less than or equal to a particular value:

FX(xj ) =
j∑

i=1

fX(xi) (3.21)



RANDOM VARIABLES 45

The CMF rises monotonically from zero and approaches one as ever more of the sample
space is included in the summation.

3.4.2 Probability density functions

For a continuous sample space, S, it makes no sense to speak of masses of probability,
since there are infinitely many outcomes within the space. Instead, we deal with probability
as a density, as we do with the density of gravitational mass in a soil formation. Probability
is then found by integrating the probability mass over a finite region of S.

The distribution of probability mass over the sample space is the pdf, above. This
function has properties corresponding to those of the pmf. Specifically, for the case of a
scalar real-valued variable

P(A) =
∫

A

fX(x)dx (3.22)

or correspondingly

P(x1 ≤ x ≤ x2) =
∫ x2

x1

fX(x)dx (3.23)

Since the outcome takes on exactly one value, the integral of the pdf over the sample
space is ∫ +∞

−∞
fX(x)dx = 1 (3.24)

The Cumulative Density Function (CDF) describes the probability that the outcome of
X is less than or equal to a particular value

FX(xi) = P(x ≤ xi)

=
∫ xi

−∞
fX(x)dx (3.25)

As with the CMF, the CDF rises monotonically from zero approaching one as ever more
of S is included in the integral

FX(−∞) = 0

FX(+∞) = 1 (3.26)

3.4.3 Moments of probability distributions

As in engineering mechanics, is it mathematically convenient sometimes to represent
probability distributions by their moments. The nth moment of a probability distribution
about the origin – for either pmf or pdf, but we will use the common notation fX(x) to
indicate either – is

E(xn) =
∫ +∞

−∞
xnfX(x)dx (3.27)
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in which the weighted integral over the probability distribution is said to be the expecta-
tion. For the case, n = 1, this is the arithmetic average or mean, also called, the expected
value of x, and is often denoted E(x) = µ.

The nth moment about the mean, said to be the nth central moment, is

E[x − E(x)]n =
∫ +∞

−∞
[x − E(x)]nfX(x)dx (3.28)

The most common is the second central moment, called the variance

E[x − E(x)]2 =
∫ +∞

−∞
[x − E(x)]2fX(x)dx (3.29)

often denoted E[x − E(x)]2 = σ 2.
The third and fourth central moments also capture qualities of the distribution of prob-

ability that are useful in practice. The third central moment, or skew, E[x − E(x)]3, is
used as a measure of asymmetry in the distribution of probability over X. The larger this
absolute value, the more asymmetric the pmf or pdf. A symmetric distribution has zero
skew, a skew toward higher values of x has positive value, and a skew toward lower
values of x has negative value. The fourth central moment, or kurtosis, E[x − E(x)]4, is
used to measure the degree of peakedness of the distribution of probability in the central
region around the mean. The greater the kurtosis, the more peaked the pmf or pdf, and
correspondingly, the thinner the tails of the distribution for values of x distant from the
mean.1

3.4.4 Mathematical models for probability distributions

For many problems it is convenient to approximate the probability distribution by a
mathematical function. Surprisingly, a comparatively small set of mathematical functions
can be used to fit a broad range of frequency distributions encountered in practice, and we
return to these in the next section in discussing random process models. Johnson and Kotz
(1969; 1970) and Evans et al. (1993) give mathematical equations, ranges, and moments
for a variety of commonly used probability mass and density functions.

In the late nineteenth century, Karl Pearson attempted to systematize families of prob-
ability distributions. The system consists of seven solutions (of twelve originally enu-
merated by Pearson) to a differential equation, which also approximate a wide range
of distributions of different shapes. Gruska, Mirkhani, and Lamberson (1973) describe in
detail how the different Pearson curves can be fit to an empirical distribution. This system,
using a simple graph to plot the relationship of families of distributions to functions of
their moments, is widely used in hydrologic and geotechnical engineering. Lumb (1994)
gives an example, and the technique is also used in Chapter 8 of this volume. Detailed
explanation of Pearson’s families of distributions is given by Ord (1972).

Johnson (1960) described another system of frequency curves representing transfor-
mations of the standard Normal curve (see Hahn and Shapiro 1967). By applying such

1 For reference, the kurtosis of a Normal distribution is three (3), and this value is often used as a reference in
comparing the peakedness of other probability distributions.



RANDOM VARIABLES 47

transformations, a wide variety of non-Normal distributions can be approximated, includ-
ing distributions which are bounded on either one or both sides (e.g. U-shaped distribu-
tions). The advantage of this approach is that once a particular Johnson curve has been fit,
the normal integral can be used to compute expected percentage points under the curve.
Methods for fitting Johnson curves, so as to approximate the first four moments of an
empirical distribution, are described by Hahn and Shapiro, (1967: 199–220).

3.4.5 Multiple variables

When more than one variable is of concern, the probability mass function is directly
extended to a joint pmf. For the bivariate case

fx,y(x, y) = P [(X = x) and (Y = y)] (3.30)

Fx,y(x, y) = P [(X ≤ x) and (Y ≤ y)] (3.31)

The joint probability density function is the continuous analog of the joint pmf

fx,y(x, y) = ∂2

∂x∂y
Fx,y(x, y) (3.32)

The marginal distribution of one variable irrespective of the other(s) is found by inte-
grating (summing in the discrete case) over the distribution of probability in the other
variable(s). For example,

fX(x) =
∫
Y

fx,y(x, y)dy (3.33)

This is called ‘marginal’ because historically common practice was to plot it along the
axis, i. e. in the margin, of the plot of a bivariate distribution (Pearson and Pearson 1978).

The conditional distribution of a variable x given another variable y is found from the
joint distribution by renormalizing with respect to the second variable

fX|Y (x, y0) = fX,Y (x, y)

fY (y0)
(3.34)

For the special case in which X and Y are independent, the following relations hold:

fX|Y (x|y) = fX(x) (3.35)

fY |X(x|y) = fY (y) (3.36)

fX,Y (x, y) = fX(x)fY (y) (3.37)

FX,Y (x, y) = FX(x)FY (y) (3.38)

FX|Y (x|y) = FX(x) (3.39)

FY |X(y|x) = FY (y) (3.40)

When the variables are dependent, these simple multiplicative relations do not hold.
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3.5 Random Process Models

In many cases, there are physical considerations that suggest appropriate forms for the
probability distribution function of an uncertain quantity. In such cases there may be
cogent reasons for favoring one distributional form over another, no matter the behavior
of limited numbers of observed data. The term uncertain quantity is used to encompass
natural variability and lack of knowledge. In the follow sections we consider a pair of
pmf’s resulting from random process models, and several pdf’s.

3.5.1 Success and failures: The Binomial pmf

The number of North American dam failures in any year is the sum of all the failures
of individual dams across the continent. For purposes of illustration, assume that these
failures are independent from one dam to another; that is, the failure of one dam is assumed
for the purposes of data modeling in no way to affect potential failures of other dams;
and furthermore, that no common cause initiating event simultaneously affects failures of
multiple dams.2

Presuming independence among the failures of large dams, let the probability of any
one dam failing in a particular year be p. The probability that x dams fail in one year is
then, px . The probability that the remaining n − x dams do not fail is (1 − p)n−x .

Thus, the probability of x dams out of a total on n dams failing is the product of the
probability of x failing and the complement n − x not failing, or px(1 − p)n−x . Since
there are many different combinations of how x dams can be chosen from a set of n total
dams, the probability distribution (pmf) of the number of failures of x out of n dams in
any given year is

F(x|n) =
(

x

n

)
px(1 − p)n−x (3.41)

in which (
x

n

)
= n!

x!(n − x)!
(3.42)

is the number of combinations of n things taken x at a time. The mean of x is E[x] =
np, and the variance is V ar[x] = np(1 − p). Equation (3.41) is known as the Binomial
distribution, and is originally due to Pascal and Fermat’s correspondence alluded to in
Chapter 2. Figure 3.5 shows the pmf for one scenario of dam failures.

3.5.2 Poisson pmf and Exponential pdf

In surveying rock joints in a dam abutment, sampling lines are laid out across outcrops,
borings are cored into the abutment, and the number of fractures intersected by the

2 Of course, this assumption of independence is not strictly true even for large dams, and may not be even
approximately true for small dams. The failure of a dam upstream may directly cause the failure of a dam
down stream by releasing a flood wave that over tops the lower dam. When the Austin, Pennsylvania Dam
failed in 1911, it washed out seven dams downstream (PEMA 2000). Similarly, extreme weather events may
cause multiple dam failures across a region. When Hurricane Floyd struck North Carolina in 1998 it led to the
failure of 36 dams in 44 North Carolina counties.
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Figure 3.5 Binomial pmf of the annual number of dam failures in the US, for which p = 10 −4

and n = 75,000. (Baecher, G. B., Paté, E. M., and de Neufville, R. 1980, “Risk of dam failure in
benefit/cost analysis,” Water Resources Research, 16(3), pp. 449–456. Copyright 1980 American
Geophysical Union. Reproduced by permission of the American Geophysical Union.)
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Figure 3.6 Sampling configuration for joint spacings in rock outcrop.

sampling line or boring is recorded. Jointing patterns in rock masses are known to display
distinct orientation clusters, but it is often assumed that the locations of fractures within
clusters are random (Einstein and Baecher 1983) (Figure 3.6).

Under the assumption that joints of a particular cluster are random and independent,
the number intersecting a unit length of sampling line follows the Binomial pmf of
Equation (3.41), in which x is the number occurring within a given interval, p is the
probability of any one fracture occurring within the interval, and n is the total number of
fractures. In the field, the total number of fractures n is large, and thus it is convenient
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to replace n and p with their product λ = np, the density of fractures per unit length.
Taking the limit of the Binomial pmf as n → ∞ and p → 0, while keeping their product λ

constant, leads to

f (x|λ) = λxe−λ

x!
(3.43)

is known as the Poisson distribution. The mean of x is E[x] = λ and the variance
V ar[x] = λ. For sampling widths w other than unit length, the density λ is replaced
by the density over w, which is λw, to obtain

f (x|λ, w) = (λw)xe−λw

x!
(3.44)

for which E[x] = λw and V ar(x) = λw (Figure 3.7).
The distribution of spacings among adjacent rock fractures is obtained by noting that,

if starting at a given intersection, the next closest fracture is at distance s, then there must
be no occurrences of fractures within the interval (0, s). Thus, setting the sampling width
equal to s and making it the argument of the distribution, and setting x = 0, one obtains

f (s|λ) = λe−λs (3.45)

known as the Exponential distribution. For example, Priest and Hudson (1976) have used
this model for rock fractures surveys. The mean of s is E[s] = 1/λ and the variance
V ar[s] = 1/λ2 (Figure 3.8).
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Figure 3.7 Poisson pmf for λ = 5.
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Figure 3.8 Exponential pdf for λ = 5.

3.5.3 Adding variables: the Normal pdf

In calculating the limiting equilibrium strength of a potential failure arc through an earthen
embankment, the contributing strengths of a number of segments of the arc passing
through different zones are added together to estimate total resistance. The contributing
strengths of each of these segments are known only with some uncertainty, say up to a
mean and a variance. What distributional form is appropriate for total resistance?

Figure 3.9 shows the normalized sums of uniformly distributed random variables in
which one, two, five, and ten variables, respectively, are summed, and then divided by
the number of variables in the sum. Thus, the plot labeled N = 1 shows 100 realizations
of a random variable distributed as

fx(x) ∼ U(0, 1) =
{

1 for 0 ≤ x ≤ 1

0 otherwise
(3.46)

The plot labeled N = 2 shows 100 realizations of a random variable that is the sum of
two uniformly distributed variables, divided by 2. That is, x2 = (xi + xj )/2, in which the xi

and xj are independently and identically (IID) distributed. Similarly, for the plots labeled
N = 5 and N = 10; they are the sums of five and ten uniform variables, normalized by
5 and 10, respectively.

As N increases, the distributions of Figure 3.9 become more concentrated and more
bell-shaped. In fact, as N becomes large, the distribution of the sum of independent
random variables asymptotically approaches a Normal distribution, almost regardless of
the distributions of the underlying variables. This is reflected in the Central Limit The-
orem (Feller 1967), which states that the distribution of the sum of N random variables
approaches Normality as N becomes large.3

3 The Central Limit Theorem is not without constraints upon the underlying or component distributions. For
example, Kaufman (1963) has shown in the context of oil reserve estimation that the sum of logNormal
variables does not satisfy these conditions, and thus the distribution of reserve estimates involving logNormally
distributed pool volumes is more complex than would they be if the Central Limit Theorem applied to them.
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Figure 3.9 Distributions of the normalized sums of 1, 2, 5, and 10 uniformly distributed ran-
dom variables.
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Figure 3.10 Normal pdf for µ = 0 and σ = 1.0.

Thus, for uncertainties such as the average strength across a large failure arc which
averages random variations, the Normal pdf is an appropriate model.

The Normal pdf is (Figure 3.10),

fX(x|µ, σ) = 1

σ
√

2π
exp

{
−1

2

(
x − µ

σ

)2
}

(3.47)
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in which µ is the mean and σ 2 the variance. As can be seen from the exponent, the
pdf is symmetric about a mode at µ, and falls off quickly as x deviates from the mean.
The Normal pdf is usually tabulated or calculated numerically using its Standard Normal
form, with mean zero and variance one, N(0, 1).

3.5.4 Multiplying variables: the logNormal distribution

In the same way that calculating limiting equilibrium strengths involves the sum of ran-
dom variables, other calculations involve the product of random variables. For example,
in calculating certain material properties a series of modifying terms is sometimes applied
to measurements. These modifying terms may have to do with known testing and mea-
surement biases, model uncertainties, and the like, resulting in a term of the form

z = k1k2knx (3.48)

Taking the logarithm of each side of the preceding equation leads to an equation involving
the sum of logarithms, or more specifically,

log z = log k1 + log k2 + · · · + log kn + log x (3.49)

Thus, since log z is the sum of the logarithms of the k and x, with only loose assumptions
on the distributions of the logarithms of the k and x, the distribution of log z should
approach Normality (and hence z approach logNormality) as n becomes large. Figure 3.11
shows a normal distribution on the logarithm of X; Figure 3.12 shows the corresponding
logNormal distribution on X.
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Figure 3.11 Normal distribution on Log Z.
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Figure 3.12 Distribution on Z corresponding to Figure 3.18.

If the mean and standard deviation of the data themselves are µ and σ , respectively, and
the mean and standard deviation of the logarithms of the data are λ and ζ , respectively,
the following relations apply and are useful in working with logNormal distributions:

ζ 2 = ln

(
1 + σ 2

µ2

)

λ = ln(µ) − 1

2
ζ 2

µ = exp

(
λ + 1

2
ζ 2

)
(3.50)

3.5.5 Tails of probability distributions: Extreme Value pdf’s

The peak annual flow in a stream is the largest discharge to occur in any of the weeks in
the year. Presume for the purpose of discussion that peak weekly flows are independent of
one another. (This is clearly not the case for daily flows, since storms typically last more
than one day.) If the peak weekly discharge, say, can be modeled by a Normal pdf, what
is the appropriate distributional form the peak annual discharge? In essence, the question
reduces to the distribution of the maximum value within samples of size 52 drawn from a
Normal population. In concept, this question is the same as that of the weakest link of a
chain, which can be thought of as the minimum value within samples of a size reflecting
the number of links in the chain. Such problems are said to involve the distribution of
extreme values.

Let the population from which peak weekly discharges are drawn be fQw
(q), in which

Qw is peak weekly discharge. For the peak annual discharge to be less than or equal to
some value qo, all the 52 weekly peak discharges must be less than qo. Thus

FQmax(q|n = 52) = F 52
Q (q|n = 1) (3.51)
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In the more general case, in which the largest of n uncertain quantities is sought, the cdf
of the maximum becomes

FQmax(q|n) = F n
Q(q) (3.52)

and, after taking the derivative of each side, the pdf of the maximum is

fQmax(q|n) = d

dq
FQmax(q|n) = nF n−1

Qmax
(q)fQ(q) (3.53)

Figure 3.13 shows the pdf’s of the largest value within samples of 1, 10, 100, and
1000 drawn from a Normal parent distribution. As would be expected, as the sample
size becomes larger, the mean value of the largest observation within the sample also
becomes larger, but the variance becomes smaller. The classical reference on the statistics
of extreme values is Gumbel (1954; 1958).

The shape of the extreme value is sensitive to the shape of the tails of the parent
distribution. The pdf of the largest value within a sample is sensitive to the shape of the
upper tail of the parent pdf, and likewise the pdf of the smallest value is sensitive to the
lower tail. For a Normal distribution these are symmetric, but this is not the case for all
parent distributions. Gumbel classified extreme value distributions into three categories,
depending on their asymptotic behavior as n → ∞. The Type I limiting distribution arises
for the largest variable from a parent distribution with an exponentially decaying upper
tail, that is, an upper tail that falls off as

FX(x) = 1 − exp(−g(x)) (3.54)

in which g(x) is an increasing function of x. For example, the Normal, Gamma, and
Exponential distributions are all of this type. Gumbel showed that for large n this distri-
bution approaches

FX(x) = exp(−e−α(y−u)) (3.55)

fX(x) = α exp(−α(y − u) − e−α(y−u)) (3.56)
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Figure 3.13 Distribution on Z corresponding to Figure 3.11.
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The parameters of the distribution are typically estimated from observed data, the
presumption being that the extreme variable arises from a large but perhaps unknown
number n of, say, large stream discharges during the course of a year.

The Type II limiting distribution arises for the largest variable from a parent distribution
with an upper tail that falls off as

FX(x) = 1 − β

(
1

x

)k

(3.57)

Gumbel showed that for large n this Type II distribution approaches

FX(x) = e(−u/y)k (3.58)

fX(x) = k

u

(
u

y

)k−1

(3.59)

The Type III limiting distribution arises for either the largest or smallest variable from
a parent distribution with a limited tail, that is, a tail that falls off as

FX(x) = 1 − c(w − x)k (3.60)

in which x ≤ w and k > 0. In practice, this distribution is most often used to model
smallest values, having a lower tail of the form FX(x) = c(w − ε)k for x ≥ ε, where ε is
the lower limit for x (Benjamin and Cornell 1970). For example, the Gamma distribution
is of this type. Gumbel showed that for large n the Type III distribution approaches

FX(x) = 1 − exp

[
−

(
x − ε

u − ε

)k
]

x ≥ ε (3.61)

fX(x) = k

u − ε
exp

[
−

(
x − ε

u − ε

)k−1
]

exp

[
−

(
x − ε

u − ε

)k
]

x ≥ ε (3.62)

3.6 Fitting Mathematical Pdf Models to Data

Sometimes probability distributions are chosen simply because they appear to fit observed
data. The rationale has nothing to do with physical law. This is often the case in fitting
probability distributions to, say, soil data. One observes that when the frequencies of
undrained strength measurements are plotted against strength value they might exhibit a
bell-shaped form characteristic of the Normal pdf, and thus a Normal distribution model
is used to approximate them.

Various statistical methods can be used to test whether the match between the empir-
ical data frequencies and the theoretical pdf model is close enough that it is reasonable
to assume the differences between observed and modeled could be simply due to sam-
pling variability (Kendall and Stuart 1977). The most common of these tests are the
Chi-square goodness-of-fit test and the Kolmogorov-Smirnov maximum deviation test.
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The next chapter discusses some of these tests. In many cases, however, the easiest way
to assess the quality of the fit of a theoretical distribution to an observed distribution is
to plot the observed distribution against the theoretical distribution.

Probability grid is a specialized graph paper with horizontal and vertical scales designed
such that the cumulative frequencies of a particular form of pdf (e.g. a Normal distribution)
plot as straight lines. Thus, empirical data can be plotted on probability grid and a visual
determination made whether they are well approximated. The effect of Normal probability
grid can be achieved by using cumulative frequencies as arguments to an inverse standard
Normal cumulative distribution function. The results are Figures 3.14 and 3.15 for the data
of Figures 3.1 and 3.2, respectively. The liquidity index data fall nearly along a line in

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

Liquidity Index

In
ve

rs
e 

N
or

m
al

 P
ro

ba
bi

lit
y

Figure 3.14 Liquidity index data from a marine clay plotted against probability axes.
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Figure 3.15 Cone penetration resistance data plotted against probability axes.
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this plot, and one would infer that that they are well modeled as a Normal distribution.
The cone penetration data do not fall along a line in this plot, and one would infer that
they are poorly modeled as a Normal distribution. As a first improvement one could plot
the logarithms of the data, as in Figure 3.16. This comes closer to a straight line, but at
the high end of the data there is some deviation from a straight line fit.

Another graphical tool for comparing data with analytical distributions is the quantile-
quantile (Q-Q) graph (Tukey 1977; Hoaglin, et al. 2000). A Q-Q graph shows observed
quantiles of the data plotted against theoretical quantiles of the best fitting distribution. If
the frequency distribution of the sample data is reasonably approximated, the empirical
and analytical quantiles should be approximately the same, and the data pairs should lie
on a 45-degree line (Figures 3.17 and 3.18).

In selecting a pdf empirically, the argument is occasionally made that domain constraints
on the variable, X, should apply equally to the pdf. For example, the friction angle of a
soil is an angular variable defined over [0◦, 90◦]. It cannot take on values outside this
range; thus, the argument goes, the pdf fit to friction angle data should likewise be defined
over a closed interval. For example, one such pdf is the Beta distribution,

fX(x|α, β) =
{
Kx(α−1)(1 − x)(β−1) for 0 ≤ x ≤ 1
0 otherwise

(3.63)

in which K = 
(α + β)


(α)
(β)
is a normalizing constant to force the integral over x to be 1.

The gamma function 
(x) is a tabulated function that is available in modern spreadsheets,
and for integer values of x it is related to the factorial by 
(n + 1) = n!

In practice, this is seldom an important restriction, since probability density falls rapidly
outside a few standard deviations above or below the mean of the distribution, and thus
the modeled probability of the variable falling outside the physically-defined range is
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Figure 3.17 Q-Q plot for liquidity index data from a marine clay.

1%

11%

21%

31%

41%

51%

61%

71%

81%

91%

1% 21% 41% 61% 81%

Cone Penetration Resistance (psi) Quantile

N
or

m
al

 Q
ua

nt
ile

Figure 3.18 Q-Q plot for cone penetration data from a copper porphyry tailings dam.

negligible. For example, the American Army uses a Normal pdf to size uniforms for its
troops, even though few American soldiers are shorter than four feet or taller than eight.

This same argument holds for derived variables such as the factor of safety, which
cannot be less than zero. For commonly encountered means and standard deviations of
factor of safety there is little justification in forcibly fitting a bounded distribution such as
the logNormal just because that pdf has a theoretical lower bound at zero, when another
distribution such as the Normal provides a more satisfying fit. For example, fitting a
Normal pdf to a factor of safety prediction having mean 1.5 and standard deviation 0.2
leads to a probability of approximately 10−14 that Fs < 0.
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In addition to fitting distributions by inspection, as mentioned earlier, one can also fit
general ‘families’ of distributions. Two such families are common, the Johnson curves
and the Pearson curves. We have already encountered the first moment of the distribution
in the form of the mean and the second in the variance. The third and fourth moments are
simply the sums or integrals of x3 and x4 over the distribution of x. The shapes of most
continuous distributions can be sufficiently summarized in the first four moments. Put
another way, if one fits to a histogram of observed data a distribution that has the same
mean (first moment), variance (second moment), skewness (third moment) and kurtosis
(fourth moment) as the observed data, then one can usually approximate the overall shape
of the distribution very well. Once a distribution has been fitted, one can then calculate
the expected percentile values under the (standardized) fitted curve, and estimate the
proportion of items produced by the process that fall within the specification limits.

3.7 Covariance Among Variables

When dealing with more than one variable, uncertainties in one may be associated with
uncertainties in the another. That is, the uncertainties may not be independent. Consider
estimating the ‘cohesion’ and ‘friction’ parameters of a Mohr–Coulomb strength envelope.
If the slope of the envelope, φ, is mistakenly estimated too high, then for the line to fit
the data, the intercept, c, will have to be too low. The reverse is true if the slope is too
high. Thus, uncertainties about the slope and intercept are associated with one another.
Dependencies among events or among the uncertainties in estimates can be critical to
obtaining proper numerical results in reliability analyses. To complicate matters, these
dependencies can also be subtle to identify and difficult to estimate.

3.7.1 Causes of covariation and dependence

Probabilities associated with separate events or uncertainties can be made dependent
through a number of circumstances. Causal dependence means that one event physically
causes another; for example, liquefaction-induced settlement may directly lead to over-
topping of an embankment, thus the liquefaction event and the overtopping event are
not be independent of one another. If liquefaction settlement occurs, the probability of
overtopping is enhanced. Table 3.4 describes such a case.

Table 3.4 Conditional probabilities of liquefaction and overtopping given the existence or
non-existence of low-density, soft lenses in an embankment

Pr. Liquefaction
No

liquefaction Overtopping
No

overtopping

Low-density lenses
exist

0.1 0.9 0.1 0.67 0.33

No low-density lenses
exist

0.9 0.0 1.0 0.01 0.99

Marginal (sum of Pr
x column entries)

0.09 0.91 0.076 0.924
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Probabilistic correlation means that two uncertainties may share a common dependence
on a third uncertainty, as in the case of the low-density soil lenses in the example above.
The realization that the low-density soil lenses exist (or do not exist) simultaneously
changes the probabilities of both liquefaction cracking and of overtopping.

Spatial or temporal autocorrelation means that two uncertainties depend on the spatial
or temporal realization of some third uncertainty which itself exhibits stochastic depen-
dence in space or time. The performances of two sections of a long levee may depend on
soil engineering properties in the naturally occurring valley bottom, which, when mod-
eled as a stochastic (aleatory) process, exhibit a long wave length of correlation in space;
thus, adjacent sections will exhibit similar settlements or factors of safety against strength
instability.

Statistical correlation means that two uncertainties are simultaneously estimated from
a given set of data and therefore are influenced by a common sampling variability error.
In soil mechanics, a common – and mostly overlooked – statistical correlation is that
between soil cohesion and friction angle just described, which being regression parameters,
are negatively correlated.

3.7.2 Covariance and the correlation coefficient

The most common measure of dependence among uncertain quantities is the correlation
coefficient. This measures the degree to which one uncertain quantity varies linearly with
another uncertain quantity. Note, the notion of linearity here is important. Two uncertain
quantities may be deterministically related to one another but have negligible correlation
if the relationship is strongly non-linear.

The correlation coefficient for two uncertain quantities x and y is defined as the ratio
of the covariance of x and y to the square root of the product of the variances of x and
y (i.e. the product of the standard deviations of x and y):

ρxy = Cov(x, y)√
V ar(x)V ar(y)

= E[(x − µx)(y − µy)]√
E[(x − µx)2]E[(y − µy)2]

(3.64)

The correlation coefficient varies within [−1,+1], with the higher bound implying a
strict linear relation of positive slope and the lower bound a strict linear relation of
negative slope. The higher the magnitude, the more closely the data fall on a straight line
(Figure 3.19). Zero correlation coefficient implies no (linear) association between x and
y. The correlation coefficient is equivalent to a normalized product moment of inertia
in solid mechanics. It expresses the degree to which two parameters vary together. The
correlation coefficient is non-dimensional because deviations of x and y are measured in
the same units as their respective means.

3.7.3 Quick estimates of correlation

Calculation of correlation coefficients can be time consuming. A quick graphically approx-
imation is obtained from the shape of the scatter plot. The method works well whenever
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Figure 3.19 Pseudo-random Normal correlated variables: left plot ρ = 0.9, right plot ρ = 0.4.
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Figure 3.20 Example of ‘balloon’ shortcut method for estimating correlation coefficient (Chatillon
1984; Schilling 1984).

the outline of the scatter plot is approximately elliptical, and works even with small
numbers of observations. Chatillon (1984) called this, the balloon method :

1. Plot a scatter diagram of y vs. x.
2. Draw an ellipse (balloon) surrounding all or most of the points on the data.
3. Measure the vertical height of the ellipse at its center, h, and the vertical height of the

ellipse at its extremes, H .
4. Approximate the correlation coefficient as ρ̂ = [1 − (h/H)2]1/2.
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An example of the method is shown in Figure 3.20 Chatillon’s method gives a correlation
coefficient of about 0.92, whereas the calculated value is 0.90. Empirically, the method
works well for ρ > 0.5.

Schilling (1984) suggests a similar method:

1. Plot a scatter diagram of (y − my)/sx vs.(m − mx)/sy .
2. Draw an ellipse surrounding most of the data.
3. Measure the length of the principal axis of the ellipse having positive slope, D, and

the length of the principal axis of the ellipse having negative slope, d .
4. Approximate the correlation coefficient as ρ̂ = (D2 − d2)/(D2 + d2).

This method seems to work as well as Chatillon’s. For the data of Figure 3.20, Schilling’s
method gives a correlation coefficient of about 0.91.





4 Inference

In this chapter we consider the use of statistical methods for drawing inferences from
observations. Statistical methods are based on probability theory. As we saw in the
last chapter, probability theory is a branch of mathematics; that is, it has to do with
formal logic. Starting from axioms, all the relations of probability theory follow necessar-
ily (Kolmogorov 1950). There is no room for different points of view. Statistical methods,
in contrast, are more ad hoc. They do not derive from a set of axioms and, as a result, are
open to interpretation. Thus, it is not surprising that schools of thought with strongly held
points of view have grown up around the proper way of approaching statistical inference.

The chapter begins with a look at the two predominant schools of statistical thought: the
frequentists and Bayesians. These grow out of the duality in the meaning of probability
discussed in Chapter 2. The frequentist school builds on the notion of probability as a
frequency with which things occur in a long series of trials; the Bayesian school builds
on the notion of probability as a degree of belief. The resulting differences in the methods
that have developed under the two schools of thought are profound. These differences
directly and substantially affect how data are analyzed and the sorts of inferences that
can be drawn from observations.

In this book we favor the Bayesian approach over the frequentist approach. We find it
more consistent with geotechnical practice. This is not to say that frequentist approaches
are never useful, but we do not devote a great deal of attention to them. The first section of
the present chapter briefly summarizes concepts and vocabulary from frequentist statistics
because these are necessary to understand at least some of the applications in the geotech-
nical literature. The rest of the chapter develops the Bayesian approach to statistical
inference, regression theory and hypothesis testing. The chapter ends with a consideration
of lessons learned from sampling theory for planning site characterization.

4.1 Frequentist Theory

The division between frequentist or ‘traditional’ school1 and the Bayesian school follows
from the meaning given by each to the term probability. The frequentist school takes

1 What is here called the ‘traditional’ school has been called ‘orthodox’ by Jaynes (1996) and ‘classical’
by Raiffa and Schlaifer (1968), but neither of these names is wholly satisfactory. Each conflicts with other uses
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Schools of
inference

Traditional
(frequentist)

Bayesian
(belief)

Non-likelihoodist
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Likelihoodist
Fisher

Objectivist
Jeffreys

Subjectivist
Ramsey

Figure 4.1 Taxonomy of statistical thought, adapted from Raiffa (1968) and Baecher (1972).

probability to mean frequency, while the Bayesian school takes probability to mean belief.
A schematic taxonomy is show in Figure 4.1.

The frequentist school is based on a theory of refutation. Probabilities are not placed
directly on states of nature, but confidences are calculated in a form of reverse reasoning by
excluding states of nature under which the chance of observing the data that actually were
observed would be small. The point of view, according to Fisher (1925), is that sufficient
information should be collected until one cannot explain them, beyond a reasonable doubt,
except by concluding that the conjecture under consideration is correct. The focus of
traditional theory is on the probability of rejecting an hypothesis when in fact it is true
(what epidemiologists call a false negative).

Consider a set of observations, z = {z1, . . . , zn} arising from an experiment on an
uncertain process. Let the process be described by a probability distribution fZ(z|θ),
with parameter θ (which could be a vector). One would like to say something about the
uncertainty in θ that exists after having made the observations. The frequentist school
rejects this question as undefined because, to it, θ is not a random variable. The data are
random variables; the parameter of the process generating the data is a state of nature.
This parameter has a particular value even if that value is unknown; that is, θ can be
thought of as an unknown constant.

The frequentist-school approach to imputing a range of values to θ , given a set of obser-
vations, is based on the concept of estimators. Estimators are statistics of the observed
data that can be used to make estimates of the value of an unknown but constant state of
nature, θ . Any mathematical function of the sample observations

T = g(z) (4.1)

is said to be a statistic of the data, or simply a sample statistic. For example, com-
monly used sample statistics are the average, the standard deviation, the range, and so on.
Appropriately chosen sample statistics are used to estimate a population parameter, as

θ̂ = T = g(z) (4.2)

where ‘appropriately chosen’ means any of a set of desirable properties that estimators
might have.

of the terms in the historical literature on probability. While ‘traditional’ itself is also not wholly satisfactory,
it seems less objectionable then the other two. To avoid the issue, we have adopted the term, frequentist.
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Note that, because an estimator is a mathematical function of the observed data and
the observed data are taken to be random variables, the estimator is also a random vari-
able. The sampling distribution of an estimator is its probability distribution in repeated
sampling from the same uncertain process. The sampling distribution describes the fre-
quencies of the estimator over all possible ways a set of observations might be made from
the sampled process with given parameter, θ .

While a good estimator is one whose sampling distribution is concentrated in a narrow
region near the true value of θ , certain mathematical properties of the sampling distribution
are considered desirable. Some of the more common of these good-estimator properties
are given in Table 4.1. These include unbiasedness, meaning that the expected value of
T equals the true value of θ ; consistency, meaning that T converges to θ as n becomes
large; efficiency, meaning that the variance of the sampling distribution of T is as small
as possible; sufficiency, meaning that the estimator T summarizes all the information
contained in the sample observations relevant to making estimates of θ (i.e., knowing
T , the actual data z carry no additional information with respect to θ ); and robustness,
meaning that the statistical properties of T in relation to θ are insensitive to deviations
from the assumed form of fZ(z|θ).

As an example, consider sampling from a Normal process. The sampling distribution
of z = {z1, . . . , zn} is

fZ(z|µ, σ) ∝
∏

i=1,n

exp

(
−

n∑
i=1

zi − µ

2σ 2

)
(4.3)

in which µ is the mean and σ the standard deviation, and the individual observations
are assumed independent and identically distributed (IID). Since the observations are
assumed independent, their joint probability is simply the product of their marginal prob-
abilities. Taking the sample average z = 1/n

∑
zi as an estimator, its sampling distribution

is (Benjamin and Cornell 1970)

fz(z|µ, σ) ∝ exp

(
−n(z − µ)2

2σ 2

)
(4.4)

The expected value of z equals the mean of the process being sampled, E[z] = µ, and
thus, z is an unbiased estimator of the population parameter µ.

Table 4.1 Desirable properties for statistical estimators

Estimator property Definition

Unbiasedness The expected value of T over all ways the sample might have been
realized from the parent population equals the parameter to be
estimated (E[T ] = θ).

Consistency T converges to θ , as n becomes large (T
→

n→∞θ).
Efficiency The variance of the sampling distribution of T is minimum.
Sufficiency The estimator T makes maximal use of the information contained in the

sample observations.
Robustness The statistical properties of T in relation to θ are insensitive to

deviations from the assumed underlying pdf of z.
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Estimators yield specific values for parameters; likely ranges of values are based on
confidence intervals. The concept of a confidence interval arises from refutation. The con-
fidence interval of an estimate of θ is that interval of the θ -axis for which the probability
of observing the sample data, conditioned on θ , is larger than some arbitrary small value,
say, p = 0.05. For any value of θ outside this interval, the probability of observing the
z that we did observe would be small; thus, those values of θ are refuted. Those values
of θ within the interval are not (yet) refuted. The gist of this estimate is not that there is
a probability 0.05 that the true value of θ is within the confidence interval, but that, if θ

is outside the interval, the probability of observing the actual sample outcomes could be
no larger than 0.05. This distinction is often confused in the geotechnical literature.

A major subdivision within the frequentist school is that between statisticians who
believe that the only relevant information from an experiment is contained in the likeli-
hood function, which is the conditional probability of z given θ , and those who believe
that the entire experimental frame of reference carries information. Consider, for example,
someone trying to decide whether a clay core has adequately low permeability. While
selectively taking only data that support the hypothesis causes a bias, one might run tests
only until a favorable case is established, and then stop. This is legitimate to the ‘likeli-
hoodist,’ to whom all the information resides in L(θ |z ), but not to the ‘non-likelihoodist.’
The latter would say the experiment was biased in favor of the hypothesis, because the
number of tests depended on the early outcomes.

The likelihood principle, due to Fisher (1921), says that all relevant information about
θ arising out of an experiment with outcome z = {z1, z2, . . . , zn} is contained in the
likelihood function

L(θ |z) = L(θ |z1, z2, . . . , zn) = Pr[z1, z2, . . . , zn|θ ] (4.5)

For IID observations from fZ(z|θ), the likelihood becomes

L(θ |z) = fz[z1, z2, . . . , zn|θ ]dz1dz2, . . . , dzn

=
n∏

i=1

fz[zi|θ ]dzi (4.6)

Fisher recommends using the value of θ that maximizes the likelihood as an estima-
tor, calling this the maximum likelihood estimator (MLE). The MLE has many desirable
properties. It is asymptotically (n → ∞) unbiased, consistent, sufficient, and asymptoti-
cally Normal.

The Neyman–Pearson school of inference, in contrast to the Fisher school, is not
based on the likelihood principle and holds that statistical inference is about hypothesis
testing, which is an action (or decision) problem of accepting or rejecting an hypothesis.
Probability enters the problem of inference as a way of characterizing the experimental
process itself: to express how reliably the testing process discriminates between alternative
hypotheses, balancing the chance of rejecting a correct hypothesis with the chance of
accepting a wrong hypothesis. It is from the Neyman-Pearson school that we inherit the
concepts of Type I error (rejecting the null hypothesis when actually it is true) and Type
II error (accepting the null hypothesis when actually it is false). The tool for balancing
these error rates is called the power function, which, for a given frequency of Type I error,
describes the frequency of Type II errors resulting from a particular testing strategy.
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Wald (1971) expanded the solution to the decision problem by adding the concepts of
cost and worth of consequences. As in the Neyman–Pearson and Fisher schools, Wald did
not place probabilities on the state of nature, but in arguing the worth of consequences,
he reduced the choices among which a decision must be made.

4.2 Bayesian Theory

The core difference between Bayesian and frequentist approaches is that the former treats
uncertainty as degrees of belief and therefore admits probability statements on states of
nature. To this way of thinking, states of nature are variables, not unknown constants.

4.2.1 Inferring probabilities

Consider a simple site characterization example in which standard penetration test (SPT)
borings are used to explore for the possible liquefiable layers in the subsurface. The SPT
tests are taken every five (5) feet (1.5 m) vertically, and presume that the target layers
are two (2) feet (0.6 m) thick. Given the data that result, what is the probability that a
liquefiable layer exists?

If a layer exists, then the conditional probability of finding it with a single boring is
p = 2/5 = 0.4, but engineers sometimes mistake a low blow count as an outlier. Thus,
assume the conditional probability is 0.3. Also, it is possible to get a false positive when
no liquefiable material exists, so the assumptions are made that

P [find|exists] = 0.3

P [no find|exists] = 0.7

P [find|does not exist] = 0.1

P [no find|does not exist] = 0.9

(4.7)

From Bayes’ Theorem (Equation (3.16)),

P [E|F ] = P [E]P [F |E]

P [E]P [F |E] + P [E]P [F |E]
(4.8)

in which E = layer exists, F = positive result, E = layer does not exist. Presuming no
prior information on whether a layer exists, we take the prior probability to be 0.5. If one
boring is drilled, and returns a positive result, then,

P [E|F ] = 0.5 × 0.3

0.5 × 0.3 + 0.5 × 0.1
= 0.75 (4.9)

If the probabilities of hitting a layer are independent from one boring to another, the
results of Figure 4.2 are obtained for three borings and zero to three hits. Parametric
results for various prior probabilities are shown in Figure 4.3.



70 INFERENCE

0
0

0.2

0.4

0.6

0.8

1

1 2

Trial Number

F

F

F
F

F

F

not F

not F

not F

not F
not F

not F

Bayesian Updating of Results

P
[E

]

3
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An intuitive and easily verified result is that it does not matter whether the revision
of the posterior probability is done for the three borings all at once, or incrementally as
each boring is made. In the former case,

P [E|B1, B2, B3] = P [E]P [B1, B2, B3|E] (4.10)

In the latter case,

P [E|B1] = P [E]P [B1|E]

P [E|B1, B2] = P [E|B1]P [B2|E,B1] (4.11)

P [E|B1, B2, B3] = P [E|B1, B2]P [B3|E,B1, B2]

= P [E]P [B1, B2, B3|E]

Sequential application of Bayes’ Theorem yields the same result as incremental appli-
cation, in which the intermediate posterior probabilities from the previous increment are
used as the prior probabilities for the next round of sampling (Figure 4.4).

Bayesian methods use Bayes’ Theorem and thus the Likelihood function as the basis
for inference, so in a way they are philosophically similar to Fisher’s later work on
fiducial probabilities (Fisher and Bennett 1971; Hacking 1965). Common practice is to
call the marginal probability before taking account of the observations, the prior or a
priori probability; and to call the conditional probability accounting for the observations,
the posterior or a posteriori probability. Sometimes, the prior and posterior are denoted
with noughts and primes, respectively, as p0 and p′.

Starting in the 1930s, a great deal of effort was invested in exploring the implications
of Bayesian inference. Among those early authors were Fisher, Jeffreys, and de Finetti.
This work flourished after World War II, in part growing upon the wartime investment
in operations research and decision sciences. Among these later authors were Barnard,
Savage, Lindley, Raiffa and Pratt, Box and Tiao, Zellner, and DeGroot. In addition to

Prior probability
p(H |Io)

Initial Information
Io

New data
y

Likelihood
function
p(y |H)

Bayes's
Theorem

Posterior
probability
p(H |y,Io)

Figure 4.4 The process of revising probabilities of an hypothesis H , given new data.
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other things, this work led to a realization that Bayesian methods enjoy favorable mathe-
matical properties that frequentist methods do not. Important among these is mathematical
coherency and simplicity.2

4.2.2 Inferring probability distributions

The case of inferring probability distributions over a discrete or continuous random vari-
able is exactly analogous to the preceding case. Starting from the marginal probability
distribution (pmf or pdf) over a state of nature, f�(θ), the likelihood function of the data is
used to update the distribution via Bayes’ Theorem to a posterior probability distribution
conditioned on the observations,

f�(θ |z) = N f�(θ)L(θ |z) (4.12)

in which N is a normalizing constant ensuring that the posterior distribution is proper,
that is, that it integrates to one, N−1 = ∫ +∞

−∞ f�(θ)L(θ |z) dθ . Often, Equation (4.12) is
simply written as a proportionality.

In the example of finding liquefiable layers in SPT borings, we assumed a value for the
detection probability, that is, we assumed a probability that an existing layer would be
detected in an SPT boring log if the boring in fact penetrates the layer. If empirical data
were available from other sites or from other areas of the present site, we might instead
have tried to use those data to infer the detection probability statistically. Consider that
we have a set of twenty (20) SPT borings that we know ex ante to have intersected a
liquefiable layer, and that in six (6) of those the layer was detected. What can we say
about the value of the detection probability?

Assume that the observations are independent of one another, and that the probability of
detection in any one boring is π . The individual outcomes are Bernoulli random variables
(i. e., zeros or ones with some fixed probability), and thus the likelihood of observing six
‘hits’ out of twenty attempts can be modeled by a Binomial pmf (Equation 3.41),

f (x|n, π) =
(

x

n

)
πx(1 − π)n−x

= L(π |x, n)

(4.13)

in which x = 6, the number of ‘hits,’ and n = 20, the number of attempts. From Bayes’
Theorem (Equation 4.12),

fπ(π |x, n) ∝ fπ(π)L(π |x, n)

∝ (1.0)πx(1 − π)n−x
(4.14)

in which the prior pmf is taken to be uniform over [0,1], pπ(π) = 1, and terms not
involving π are ignored (Figure 4.5). The maximum (mode) of the posterior pmf is at

2 This can be seen, for example, in the complexity of Fisher’s derivations of sampling distributions (Fisher and
Bennett 1971), compared with the simple elegance of Jeffreys’ (1983) results for corresponding cases.
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Figure 4.5 Posterior probability mass function of the Binomial parameter, π .

π = 6/20 = 0.3, corresponding to the naı̈ve estimate, although the distribution is not
perfectly symmetrical.

4.3 Prior Probabilities

The sticking point in Bayesian inference is specifying a prior distribution, especially in the
case of no prior information. In his posthumous paper, Bayes (1763) introduces a postulate
that says, in the case of ignorance every possible value of an uncertain quantity should
be given equal probability. This suggests, for example, a uniform prior on a parameter
such as π in the example above. Jeffreys (1983) builds on this postulate, calling it the
principle of indifference.

A difficulty with this approach is that the resulting prior probability distributions
expressing total ignorance are not invariant to transformations of variables. For example,
if one is ignorant of the relative probabilities of values of π , one would be equally igno-
rant of the relative probabilities of values of π2, so why not specify a uniform prior on the
latter? Doing so results in a different posterior on π . This problem is discussed at length
by Jeffreys and Zellner, and a variety of pragmatic justifications have been suggested
by other authors (Box and Tiao 1992; Lindley 1971). Our view is that a great many
assumptions enter any modeling activity – for example, the assumption that a random
variable is Binomial, that the observations are independent, or even that the process is
stationary – and the modest invariance introduced by the flat prior is inconsequential in
this mix. In practical situations with little prior information, as the number of observations
grows, the posterior pmf or pdf rapidly approaches the likelihood function.

4.3.1 Non-informative priors

The case of assigning prior probabilities to discrete variables when no information is avail-
able – such as ‘presence’ vs. ‘non-presence’ of a geological anomaly – is conceptually
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straightforward. There are n categories, each is assigned the same prior probability, 1/n,
and the sum is 1.0. But, what do we do about variables with infinite domain?

Consider an event such as extreme flood or severe earthquake. This is usually modeled
as a Poisson process with parameter, λ, describing the number of occurrences per unit time

fn(n|λ, t) = (λt)ne−λt

n!
(4.15)

in which n is the number of occurrences, and t is duration. The parameter λ has
domain [0,∞). What prior distribution should be used? A ‘flat’ pdf, f 0

λ (λ) ∝ k, k =
constant, is improper because its area is infinite; and as before, we could just as reasonably
make the pdf flat over λ2 or even λ3.

Several authors, notably Jeffreys (1983), have considered the best choice of non-
informative prior distributions. Jeffreys argues that prior probabilities should be taken
as uniform over the parameter for variables with domain (−∞,∞), and uniform over the
logarithm for variables with domain [0,∞]

f 0
X(x) ∝

{
k −∞ ≤ x ≤ ∞
x−1 0 ≤ x ≤ ∞ (4.16)

The latter becomes proportional to the inverse of the parameter in arithmetic space
(Figure 4.6). Jeffreys presents a long and subtle discussion of the issues surrounding pdf’s
to represent ignorance. He notes that both Bayes and Laplace used uniform prior distri-
butions in problems relating to sampling, but that this choice is not always satisfactory.

The so-called Jeffreys prior, fX(x) ∝ 1/x, is widely used in practice. Jeffreys argues
for this prior on the basis of power transformation invariance. Sivia (1996) argues for it
on the basis of scale transformation invariance. Zellner (1971) summarizes much of the
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five (5) events within ten (10) years, starting from a uniform prior on λ−1.
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Table 4.2 Prior distributions suggested to represent ignorance under various conditions

Constraint Description pdf
Colloquial

name Citation

any Uniform f (x) ∝= constant Laplacian/Bayes
prior

(Bayes 1763;
Laplace 1814)

a ≤ x ≤ b Uniform f (x|a, b) = 1/(b − a) Uniform prior (Jeffreys 1983)
−∞ ≤ x ≤ +∞ Uniform f (x) ∝= constant Uniform prior (Jeffreys 1983)
0 ≤ x ≤ ∞ Uniform in

ln x
f (x) ∝ 1/x Jeffreys prior (Jeffreys 1983)

0 ≤ x ≤ 1; Uniform in
x

f (x) ∝= 1

x(1 − x)
Beta prior (Haldane 1932)

Jeffreys argument in favor of the prior. Suggestions of other non-informative priors are
given in Table 4.2.

Another line of reasoning in selecting non-informative priors is based on the information
content in the pdf. One measure of information common in modern communications theory
is Shannon’s Entropy (Shannon and Weaver 1949):

H =
∫

fX(x) log fX(x) dx (4.17)

in which fX(x) is the pdf of x, and H is said to be the informational entropy. This
approach has been championed by Jaynes (Jaynes 1996; Sivia 1996) and by Harr (1987).
Table 4.3 summarizes maximum entropy priors for various constraints and levels of infor-
mation (Baecher 1972).

Table 4.3 Maximum entropy probability distributions for various constraints and levels of infor-
mation (Baecher 1972)

Constraint
Maximum

Entropy pdf pdf Range Mean Variance

a ≤ x ≤ b Uniform f (x|a, b) = 1/(b − a) a ≤ x ≤ b (b − a)/2 (b − a)2/12
−∞ ≤ x ≤

+∞; mean,
variance
known

Normal f (x|µ, σ) =
1√

2πσ
e

− 1
2

(
x−µ

σ

)2
−∞ ≤ x ≤ ∞ µ σ 2

x ≥ 0; mean
known

Exponential f (x|λ) = λe−λx 0 ≤ x ≤ ∞ 1/λ 1/λ2

x ≥ 0; mean,
mean of ln
x known

Gamma f (x|λ, k) = λkxk−1e−λx

�(k)
0 ≤ x ≤ ∞ k/λ k/λ2

0 ≤ x ≤ 1;
mean of ln
x, and (1-ln
x) known

Beta f (x|c, d) = 1

B(c, d)
xc−1

× (1 − x)d−1

0 ≤ x ≤ ∞ c

c + d

cd

(c + d)2(c + d + 1)
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Jeffreys made a broader observation respecting the non-invariance of prior distributions
based on Fisher’s information matrix. Fisher (1925) proposed a measure of the information
contained in a set of observations y = {y1, . . . , yn} with respect to a parameter θ to be

Iθ = Ey|θ
(

−∂2 log f (y|θ)

∂θi∂θj

)
(4.18)

Note, that f (y |θ) is the likelihood of θ . Jeffreys observed that taking the non-informative
prior proportional to the square root of the determinant of the information matrix

f (θ) ∝ |Iθ |1/2 (4.19)

provides invariance to any one-to-one differentiable transformation η = g(θ). That is,
similarly taking the prior f (η) ∝ |Iη|1/2 leads to a consistent posterior probability for
both cases (Zellner 1971).

Consider again sampling from a Binomial process with parameter π . The likelihood of
an individual observation is

fx(x|π) ∝ πx(1 − π)1−x (4.20)

in which x is the observation (either zero or one), and π is the probability of success on
the individual trial. Thus, since E[x|π] = π

Iπ = Ex|π
(

−∂2 log f (x|π)

∂π2

)

= π−1(1 − π)−1

(4.21)

and the non-informative prior pdf on π should be taken proportional to

fπ(π) ∝ π−1/2(1 − π)−1/2 (4.22)

Note that this differs from the naı̈ve prior, fπ(π) ∝ k, a constant. Box and Tiao (1992)
discuss the justification for this rule in more detail.

4.3.2 Informative and conjugate priors

It is sometimes the case that prior information exists about the value of a parameter so
that the prior distribution is informative rather than non-informative. While prior infor-
mation can be modeled by any probability distribution, in practice it is convenient to
choose a functional form for the prior distribution that simplifies multiplication by the
likelihood function in Bayes’ Theorem. The most common choice is a distribution closed
under multiplication by the likelihood function. This is called the conjugate (or natural
conjugate) distribution.
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From the example of Binomial sampling, the likelihood of an individual observation
xi is Equation (4.20), thus the inference from a set of observations x = {x1, . . . , xn} on
the parameter π by Bayes’ Theorem is

fπ(π |x) ∝ fπ(π)L(π |x)

∝ fπ(π)[πm(1 − π)n−m]
(4.23)

in which m = 	xi . Taking a prior pdf in the form of a Beta distribution

fπ(π) ∝ πa−1(1 − π)b−1 (4.24)

with parameters (a, b) yields a posterior pdf of the same Beta form

fπ(π |x) ∝ [πa−1(1 − π)b−1][πm(1 − π)n−m]

∝ πa+m−1(1 − π)b+(n−m)−1
(4.25)

but with updated parameters, a′ = a + m and b′ = b + (n − m).
More detailed discussions of conjugate distributions are presented by Jeffreys

(1983), Raiffa (1968), Zellner (1971), and Box and Tiao (1992). Conjugate distributions
for common likelihoods are given in Table 4.4.

4.4 Inferences from Sampling

Attention now turns to the use of Bayes’ Theorem in drawing inferences from specific sam-
pling processes, specifically in estimating the parameters of probability distributions from
observations. Following the question of inference is that of forecasting: how is Bayes’ The-
orem used to establish probability distributions over unobserved outcomes? We consider
only select cases; more complete results are given in Table 4.4 and in Appendix A.

4.4.1 Binomial sampling

To review the continuing example earlier in the chapter, the Binomial process with param-
eter π is

f (m|n, π) =
(

m

n

)
πm(1 − π)n−m (4.26)

in which m is the number of successes out of n observations; the mean is E[m] = nπ

and Var[m] = (nπ)(1 − π). Thus the likelihood of the parameter π is

L(π |m, n) ∝ πm(1 − π)n−m (4.27)

The non-informative prior distribution of π is

fπ(π) ∝ π−1/2(1 − π)−1/2 (4.28)
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although one often sees the naı̈ve prior, fπ(π) ∝ constant, used in the literature. The
informative, conjugate prior distribution of π is of the Beta form with parameters (a, b),

fπ(π) ∝ πa−1(1 − π)b−1 (4.29)

and the posterior pdf on π is of the same form, but with parameters, a′ = a + m and
b′ = b + (n − m)

fπ(π |x) ∝ [πa−1(1 − π)b−1][πm(1 − π)n−m]

∝ πa+m−1(1 − π)b+(n−m)−1
(4.30)

4.4.2 Poisson sampling

The Poisson process with parameter λ is of the form

fN(n|λ) = (λt)ne−λt

n!
(4.31)

in which n is the number of occurrences; the mean is E[n] = λt and Var[n] = λt . Thus
the likelihood of the parameter λ for a set of observations n = {n1, . . . , nk} in periods
t = {t1, . . . , tk} is

L(λ|n) ∝
∏

i

(λti)
ni e−λti (4.32)

The non-informative prior distribution of λ is

fλ(λ) ∝ λ−1 (4.33)

The informative, conjugate prior distribution of π is of the Gamma form with parame-
ters (a, b)

fλ(λ|a, b) = λa−1 exp(−bλ) (4.34)

and the posterior pdf on π is of the same form, but with parameters, a′ = a + 	n and
b′ = b + 	t ,

fλ(λ|n, t) ∝ λ(a+	ni)−1e−(b+	ti)λ (4.35)

As an example, consider that n = 5 events have been observed in t = 10 years. The
uniform prior pdf on λ−1 and the posterior pdf are shown in Figure 4.6. The modal (most
probable) value of λ is found by setting the derivative of Equation (4.35) to zero, giving
λ̂ = 0.4. The outcome that the mode is located at 0.4 rather than the average of the sample
(events/year = 0.5) derives from the prior pdf on λ. For the case of uniform prior pdf on
λ, the posterior mode is 0.5, the same as the mode of the likelihood function. No matter
how large the sample size, there will always remain a 1/λ difference in the posterior pdf
between the cases of the two prior pdf’s.
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4.4.3 Exponential sampling

The Exponential process with parameter λ is of the form,

fx(x|λ) = λe−λx (4.36)

in which x is a continuous variable with domain [0,∞]; the mean is E[x] = 1/λ and
Var[n] = 1/λ2. Thus the likelihood of the parameter λ is

L(λ|x) ∝
∏

i

λe−λxi (4.37)

for a set of observations x = {x1, . . . , xk}. The non-informative prior distribution of λ is

fλ(λ) ∝ λ−1 (4.38)

The informative, conjugate prior distribution of π is of the Gamma form with parame-
ters (a, b),

fλ(λ|a, b) = λa−1 exp(−bλ) (4.39)

and the posterior pdf on λ is of the same form, but with parameters, a′ = a + k and
b′ = b + 	xi ,

fλ(λ|n) ∝ λ(n+a)−1 exp(−(b + 	xi)λ) (4.40)

4.4.4 Normal sampling

Perhaps the most common sampling encountered in geotechnical practice is that from
Normally distributed properties. The Normal process with parameters (µ, σ ) is of the form

fX(x|µ, σ) = 1

σ
√

2π
exp

{−(x − µ)2

2σ 2

}
(4.41)

in which x is a continuous variable with domain (−∞, +∞); the mean is E[x] = µ and
Var[x] = σ 2. Thus the likelihood of the parameters (µ, σ ) is

L(µ, σ |x) ∝ 1

σn

∏
i

exp

{−(xi − µ)2

2σ 2

}
(4.42)

for a set of observations x = {x1, . . . , xn}. The non-informative prior distribution of
(µ, σ ) is

fµ,σ (µ, σ ) ∝ σ−1 (4.43)

The informative, conjugate prior distribution of (µ, σ ) is of the Normal-Inverted Gamma
form with parameters (m′, d ′, n′, ν ′),

f (µ, σ |m′, d ′, n′, ν ′) ∝
[

exp

{
− 1

2σ 2
n′

}
(µ − m′)2

] 
 1

σ
exp

{
− 1

2σ 2
d ′ν ′

} (
1

σ 2

) 1
2 ν′−1




(4.44)
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That is, the prior distribution of µ conditional on σ is Normal, and the marginal prior
distribution of σ is Inverted-Gamma. The posterior pdf of (µ, σ ) is of the same form,
with parameters (Raiffa and Schlaifer 1968),

m′′ = 1

n′′ (n
′m′ + nm)

d ′′ = 1

ν ′′ [(ν
′d ′ + n′m′2) + (νd + nm2) − n′′m′′2]

n′′ = n′ + n

ν ′′ = ν ′ + ν + 1

(4.45)

in which

m = 1

n

∑
i

xi = x

d = 1

ν

∑
i

(xi − m)2

ν = n − 1

(4.46)

For the data of Figure 4.7, this yields the joint posterior pdf shown as a contour plot in
Figure 4.8. The ovals in the figure show the contours of the pdf.
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Figure 4.7 Comparison of SPT blow count data with the best-fitting Normal distribution. Data
set has broader ‘shoulders’ than the Normal pdf and less populated tails (from Baecher 1987a).
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Figure 4.8 Posterior pdf of the Normal mean µ and standard deviation σ based on the data from
Figure 4.7.

4.4.5 Predictive distribution

The inferences from sample observations discussed above lead to posterior pdf’s on the
parameters of the underlying processes. Often, however, we are not so concerned with
uncertainty in the parameters as we are with the uncertainties in future outcomes of the
process itself. For example, from the historical record of flood or earthquake events, we
use Equation (4.35) to infer a pdf on the rate of occurrence, λ. The question becomes, what
uncertainty does this imply about the number of future events, and what time duration
can we expect between events?

Common practice is to integrate out the parametric uncertainty to obtain a predictive
probability distribution. For example, the pmf of n marginal of uncertainty in λ is found
by integrating the model forecast over the uncertainty in the parameter (Aitchison and
Brown 1969)

fn(n) =
∫

λ

fn(n, λ) dλ =
∫

λ

fn(n|λ)fλ(λ) dλ (4.47)

Thus, presume that we have observed n = {n1, . . . , nk} numbers of events in k unit time
periods. From Equation (4.35), starting with a non-informative prior on λ, the posterior pdf
on λ is Gamma with parameters (	ni, k), and thus from Equation (4.31), the predictive
pmf on the future number of events per unit of time, n, is

fN(n) =
∫

λ

fN(n|λ)fλ(λ|n) dλ

∝
∫

λ

(
λne−λ

n!

)
(λ	ni−1e−(k+1)λ)dλ (4.48)

which, upon integrating, becomes the Negative-Binomial pmf (Aitchison and Dunsmore
1975):

fN(n|	ni, k) =
(

n + 	ni − 1
	ni

)(
1

k + 1

)n (
1 + 1

k + 1

)	ni

(4.49)

Note that the predictive distribution may combine uncertainty due to natural variability,
for example, the number of flood occurrences in a period of time, with uncertainty due
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to limited knowledge, that is, the uncertainty in the rate parameter. If more than one
aspect of natural variability depends on the same uncertain parameter (e.g. number of
occurrences in two separate periods, n1 and n2) then forming the predictive distribution
of each in isolation from the other may mask an implied correlation caused by their shared
dependence on the same uncertain realization of λ.

A point of caution in dealing with predictive distributions is that, if the conditional
distribution fX(x|θ) changes rapidly within the interval of interest of θ , then reliance is
being placed on the precise shape of the pdf of θ within that region. While the resulting
predictive pdf is theoretically correct, errors in the specification of f�(θ) can result in
large errors in fX(x).

4.5 Regression Analysis

It is often the case that soil properties or other variables are related to one another, as
illustrated in Figure 4.9, in which a gradual increase in maximum past pressure in a Gulf
of Mexico clay formation is observed with depth. Since the undrained strength of the clay
increases with pre-consolidation pressure (Ladd and Foott 1974), this information can be
used in a reliability analysis to model the increasing strength of the clay as one moves
deeper in the deposit. To do so, however, necessitates a quantitative relationship between
depth and maximum past pressure.

In Chapter 3 we introduced the notion of a correlation coefficient as a measure of
the degree to which two variables are (linearly) related. Here, the correlation coefficient
between depth and maximum past pressure is ρ = 0.41. What we need, however, is a
mathematical relationship that captures this correlation and allows a probabilistic predic-
tion to be made of maximum past pressure for a known depth. This is the purview of
regression analysis.
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Figure 4.9 Maximum past pressure in an over consolidated Gulf of Mexico clay as a function of
depth (Baecher and Ladd 1997).
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Regression analysis was introduced by Sir Francis Galton (1822–1911), also the dis-
coverer of fingerprinting and inventor of the silent dog whistle, to describe the relationship
of hereditary characteristics between parents and children, the most often cited being that
of the heights of fathers and their sons (Gillham 2001). The term regression was adopted
because Galton observed that, on average, the characteristics of the offspring regress
toward the overall population average, tending to be less extreme than the characteristics
of the parents. That is, tall fathers tend to breed taller than average sons, but not as tall
as they. The reverse is true for short fathers.

4.5.1 Linear regression model

The univariate linear regression model has the form

yi = β1 + β2xi + ui (4.50)

in which y = {y1, . . . , yn}i are dependent observed variables, x = {x1, . . . , xn} are inde-
pendent variables, β = {β1, β2} are scalar constants usually called regression parameters
(or, intercept and slope), and u = {u1, . . . , un} are random errors. The assumptions are
made that, (1) the u are Normally and independently distributed with zero-mean and a
common variance, σ 2; and (2) the x are either fixed, deterministic variables, or they are
random variables independent of u (see, e.g. Zellner 1971).

The Likelihood of the observations y conditioned on x and the parameters of the
regression model is

L[y|x, β1β2σ ] =
n∏

i=1

N [y|x, β1β2σ ]

∝ 1

σn
exp

[
− 1

2σ 2

n∑
i=1

(yi − β1 + β2xi)
2

] (4.51)

From Bayes’ Theorem

f (β1, β2, σ |x, y) ∝ f (β1, β2, σ )L[y|x, β1β2σ ] (4.52)

in which f (β1, β2, σ |x, y) is the posterior pdf of the regression parameters, and
f (β1, β2, σ ) is the prior pdf. If a non-informative prior is adopted,

f (β1, β2, σ ) ∝ 1/σ (4.53)

the posterior pdf of the regression parameters becomes

f (β1, β2, σ |x, y) ∝ 1

σn+1
exp

[
− 1

2σ 2

n∑
i=1

(yi − β1 + β2xi)
2

]
(4.54)
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Integrating over the uncertainty in σ yields the marginal posterior pdf on the regression
coefficients β1 and β2

f (β1, β2|x, y) =
∫ ∞

0
f (β1, β2, σ |x, y) dσ

∝ [v s2 + n(β1 − β̂1)
2 + 2(β1 − β̂1)(β2 − β̂2)	xi + (β2 − β̂2)

2	x2
i ]−n/2

(4.55)

in which, ν = n − 2, and

β̂1 = y − β̂2x

β̂2 = 	(xi − x)(yi − y)

	(xi − x)2

s2 = v−1	(yi − β̂1 − β̂2xi)
2 (4.56)

where y = n−1	yi , and x = n−1	xi . Equation (4.55) is in the form of a Student-t distri-
bution (Appendix A), which means that inferences about the coefficients β1 and β2 can
be made from tabulated versions of the Student-t pdf. The marginal distributions of β1

and β2 are (Zellner 1971),

f (β1|x, y) ∝
[
v + 	(xi − x)2

s2	x2
i /n

(β1 − β̂1)
2

]−(v+1)/2

(4.57)

f (β2|x, y) ∝
[
v + 	(xi − x)2

s2
(β2 − β̂2)

2

]−(v+1)/2

(4.58)

and the marginal distribution of σ is (Zellner 1971)

f (σ |x, y) ∝ 1

σv+1
exp

(
− vs2

2σ 2

)
(4.59)

which is of the Inverted-Gamma form. The derivation here follows Zellner (1971), but
similar results are also found elsewhere (Box and Tiao 1992; O’Hagan 1994; Press et al.
1992; Sivia 1996; Zellner 1997). For the maximum past pressure data of Figure 4.9, the
joint posterior pdf of β1 and β2 is shown in Figure 4.10; and the marginal posterior pdf
of σ is shown in Figure 4.11. Note the strong dependence of β1 and β2. Since both
parameters depend on the same observational data, they are not independent.3 The same
is true for σ in its relation to of β1 and β2, although this cannot be seen in the marginal
distribution. Informative priors for the case of linear Normal regression are discussed by
Zellner and by Box and Tiao.

4.5.2 Predictive distribution of y|x
The predictive distribution of maximum past pressure at a particular depth is found by
integrating the conditional pdf with given regression coefficients over the uncertainty in

3 The same correlation arises in estimates of the Mohr–Coulomb strength parameters, c, φ, which are negatively
correlated when estimated from measurements.
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Figure 4.11 Marginal posterior pdf of σ for the maximum past pressure data of Figure 4.9.
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the regression coefficients

f (yi |xi) =
∫∫∫

N [yi |xi, β1, β2, σ ]f (β1, β2, σ ) dβ1dβ2dσ (4.60)

which has the form of the Student-t distribution with ν = n − 2 degrees of freedom
(Broemeling 1985; O’Hagan 1994; Zellner 1971):

yi − (β̂1 + β̂2xi)

s

(
1

n
+ xi

Sxx
+ 1

)1/2 ∼ tv (4.61)

in which Sxx = 	(xi − x)2. The predictive distribution on the mean of y for a given
x is also Student-t, with mean equal (β̂1 + β̂2xi), spread equal s(1/n + xi/Sxx + 1)1/2,
and ν degrees of freedom. Aitchison and Dunsmore (1975) also discuss the problem of
updating an estimate of regression relationships (in their case, ‘calibrations’) to account
for site specific information. Figure 4.12 presents results for the problem of maximum
past pressure.

4.5.3 Normal multiple regression

Results for the general Normal multiple regression model involving multiple independent
variables are presented in Zellner and Box and Tiao, but are only summarized here. The
general model for Normal multiple regression is

y = Xβ + u (4.62)

in which y is the vector of observations, as before, X is an (n × k) design matrix for the
n observations made against k independent variables, β is a (k × 1) vector of regression

0

10

20

30

40

50

0 2 4 6 8 10

Maximum Past Pressure (KSF)

D
ep

th
 (

fe
et

)

uncertainty on
mean trend

uncertainty on
individual values

mean trend

Figure 4.12 Predictive distributions on the mean maximum past pressure at dept 30 feet, and on
the local (point value) of maximum past pressure at 30 feet.
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coefficients, and u is an (n × 1) vector of independent, Normally distributed error terms
of zero mean and common variance, σ 2.

The following results are offered without proof, which is to be found in a number of
places (e.g. O’Hagan 1994; Press et al. 1989; Zellner 1971). The marginal posterior pdf
of β starting from a non-informative prior, f (β, σ ) ∝ 1/σ , is

f (β|y, X) ∝ {v s2 + (β − β̂)tXtX(β − β̂)}−n/2 (4.63)

which is multivariate Student-t. The marginal posterior pdf on σ under the same assump-
tion on prior is the same as in Equation (4.44). For a vector of as yet unobserved values of
y at locations or conditions X, the predictive distribution of y (i.e. marginal of uncertainty
in β, σ ) is multivariate Student-t with mean,

E[y] = X0β̂ (4.64)

in which X0 is the matrix of future independent variables, and β̂ is the vector of mean
regression coefficients; and covariance matrix,

	 = E{[y − ŷ][y − ŷ]t}

= v s2

v − 2
[I + X0(XtX)X0

t]
(4.65)

in which ν is the number of degrees of freedom, I is the identity matrix, X0 is the matrix
of future independent variables, and X is the matrix of x values from the original data set
upon which the regression was based.

4.6 Hypothesis Tests

In the modern literature, Abraham Wald (1950) is credited with observing that statistical
estimates and hypothesis tests are each a type of decision and should be approached
from that point of view. Wald’s work built on the then recent advances in game theory
introduced by von Neumann and Morgenstern (1947). This led, especially in the Bayesian
literature, to a broad treatment of both estimation and hypothesis testing under an umbrella
of statistical (or sometimes, Bayesian) decision theory.

There are many excellent introductory and advanced level introductions to statistical deci-
sion theory from a Bayesian perspective: Lindley (1965; 1985), Raiffa (1968), Schlaifer
(1978), Aitchison (1970), Pratt et al. (1995), and Clemen and Reilly (2001) provide intro-
ductory presentations; while De Groot (1970), Raiffa and Schlaifer (2000), Berger (1993),
and French and Raios Insua (2000) provide more advanced introductions. We will treat the
general topic of statistical decision analysis in Chapter 5; this section of Chapter 4 addresses
the more narrow topic of hypothesis testing.

4.6.1 Historical background

As with probability theory, there are different schools of thought on hypothesis test-
ing. Following Raiffa (1968), it is convenient to associate these with their principal
proponents: Fisher, Neyman-Pearson, Wald, and Savage (Baecher 1972; 1983a).
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Fisher (Fisher and Bennett 1971) used statistics to evaluate hypotheses on the state
of nature, while relegating action decisions to judgment. Thus, Fisherians are primarily
concerned with testing null hypotheses and with the probability of rejecting the null
hypothesis when it is true.4 Decisions rely on maximum likelihood, and probabilities are
not placed on the state of nature.

Consider deciding on a foundation treatment to reduce seepage. For simplicity, presume
experience suggests that the natural permeability of the deposit is either about 10−4 or
about 10−5 cm/sec, depending on alternate soil property characteristics about which there
is little a priori evidence. The best decisions, if we knew the permeability, are shown in
Table 4.5. Treatment A is more expensive but more thorough than Treatment B. Which
treatment should we chose?

Fisher would proceed by evaluating the likelihood function of a set of experimental
observations (i.e. soil property measurements), z, which for a given state of nature θ

equals the conditional probability of observing z. He would then conclude that the best
estimate of the real state of nature is that which maximizes L(θ |z) = fz(z|θ). The decision
of which treatment to use, however, is left to judgment.

Neyman and Pearson (1933) held that experimentation and accepting or rejecting a null
hypothesis are ‘action problems.’ When considering alternate strategies for accepting or
rejecting hypotheses, each having the same probability of incorrectly rejecting a true null
hypothesis (i.e. a so-called, type I error), one should favor those decision rules with the
lowest probability of incorrectly accepting a false null hypothesis (i.e. a type II error). The
tool for making this comparison is the power function, which describes the conditional
probability of a type II error resulting from the use of that decision rule, given the state
of nature.

Two power functions are shown in Figure 4.13 for two statistical rules for testing the
hypothesis that there is no difference between the population of soil specimens sampled
from the site and a population having an average permeability of l0−5 cm/sec. Assume that
the rules were chosen to have the same probability of rejecting this null hypothesis when
it is in fact true (type I error). The power functions describe the probability of accepting

Table 4.5 Consequence table for the
foundation treatment

Treatment option Worth

k = 10−4 10−5

Treatment A −1000 −100
Treatment B −300 −300

4 The null hypothesis is that which is the subject of statistical tests of significance. Typically, this is the
hypothesis that an apparent difference between the populations is due to sampling or experimental error and
that there is no actual difference between the populations. The OED (Brown 2002) attributes the first use of
the term to Fisher (Fisher 1935): “The two classes of results which are distinguished by our test of significance
are those which show a significant discrepancy from a certain hypothesis; namely, in this case, the hypothesis
that the judgments given are in no way influenced by the order in which the ingredients have been added; and
results which show no significant discrepancy from this hypothesis. This hypothesis is again characteristic of
all experimentation. We may speak of this hypothesis as the ‘null hypothesis’, and it should be noted that the
null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation.”
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Figure 4.13 Power functions of two rules for deciding between alternative foundation
characteristics.

the hypothesis when it is actually false (type II error). For the sake of illustration, this
latter probability is assumed to depend on the value of the population variance. If the true
standard deviation were actually 1.0 × 10−5, then rule 1 would have a probability of a
type II error of about 0.18, and rule 2 of about 0.06. The choice between the rules would
depend on the range within which the true variance is thought to lie. The ‘best’ strategy is
the one that has the universally lowest power function. One can usually obtain better error
control over the entire parameter space only by increasing the cost of experimentation.
Probability assessments are conditional and never assigned to states of nature; decisions
are based on judgment.

Wald (1950) expanded the solution to the decision problem by adding the costs and
worth of consequences directly into the equation. However, as in the Fisher and Neyman-
Pearson schools, Wald did not place probabilities on states of nature. Wald first evaluates
the worth of a proposed rule under each possible state of nature (Table 4.5). Then, he
proposed using a minimax rule, which is to minimize the maximum loss. This would lead
to treatment option B, since the maximum loss associated with that option for any state of
nature is −300, which is a smaller loss than the −1000 associated with option A should
the worst state of nature obtain. Alternative decision criteria have also been proposed for
this approach.

Wald defines admissible solutions as those for which no other option exists with a
greater worth under all possible states of nature. For example, a hypothetical option C

with worth {−500, −500} would not be admissible since B has a greater worth no matter



HYPOTHESIS TESTS 91

the true state of nature. The decision therefore is reduced to choosing among admissible
solutions. Although the rationality of restricting consideration to admissible solutions
cannot be questioned, the choice of secondary strategy may not be consistent with one’s
preferences and aversion to risk. For example, if one assigned a probability to k = 10−4

that was exceedingly small, the minimax criterion would still lead to option B; yet, one
might be willing to risk this small probability of a large loss to save a non-negligible cost
difference between treatments.

Everything to do with statistical decision making changes under a degree-of-belief
view, because the stricture of not placing probabilities on states of nature is relaxed. The
concept that probability and action are inseparable was introduced in the philosophy litera-
ture by Ramsey and Braithwaite (1931) (although foreshadowed in the writings of Peirce
(1998) and James (1907)) and leads to the use of subjective probability and utility in
decision making. Utility might be thought of as subjective worth, differing from direct
monetary value by its inclusion of personal values and attitudes toward risk (Raiffa 1968).

In The Foundations of Statistics, Savage (1954) develops a theory of idealized behav-
ior under uncertainty predicated upon Ramsey’s view of probability and upon the theory
of utility developed by von Neumann and Morgenstern (1947). Beginning from a set of
axioms describing what is meant by a consistent set of preferences (utilities). Savage
shows that an ideally rational person should make decisions on the basis of expected util-
ity. Having already entered subjective probability into the analytical formulation, Savage
would evaluate the expected utility of taking each of several actions and elect that with
the largest (Table 4.6).

4.6.2 Bayes’ decision framework for hypothesis testing

Bayesian theory views all hypothesis tests and parameter estimates as decisions. The
structure of these decisions involves the following (Figure 4.14):

• A space of actions, A = {a1, . . . , am};
• A space of states of nature, � = {θ1, . . . , θk};
• A sample space of observations, z = {z1, . . . , zn};
• Likelihood functions, L(θi |zj ), over all i, j ; and
• Prior probabilities over, f (θi), over all i;
• Utilities of the outcomes, U = {u(ai, θj )}, over all i, j ;

The problem is to choose the best action within A, given sample information, z, and the
utilities, U. The Bayesian approach does so by using the likelihood functions, L(θi |zj ),

Table 4.6 Expected utilities for treatment options given proba-
bilities on the states of nature. The change point between treat-
ments is for p(k = 0.0001) of 0.22

Treatment option Utility Expected utility

Permeability 1.E-04 1.E-05
Probability 0.10 0.90

Treatment A −1000 −100 −190
Treatment B −300 −300 −300
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Figure 4.14 Process of revision of probabilities combined with decision making.

and Bayes’ Theorem to update the a priori probabilities over the states of nature, f (θi),
to a posteriori probabilities, f (θi |z), and then to maximize the expected value of U over
A for these probabilities.

The action space, A, is the set of alternative hypotheses under consideration. For
example, in testing the hypothesis that the average permeability of subsurface soils at
a site in question is k = 10−4 vs. k = 10−5, the alternative actions (or hypotheses) are

A =
{

a1:accept that k = 10−4 cm/s

a2:accept that k = 10−5 cm/s
(4.66)

Note in the Bayesian sense, that a hypothesis can never be tested without there being at
least one alternative hypothesis.

The utilities of the outcomes are a function of the consequences, in the present case, the
costs shown in Table 4.6. For the moment, we will take the utilities simply to be equal
to the cost outcomes, and return to the question of non-linear utility and the attitudes
toward risk it implies in Chapter 5. In some cases, as for example in using least-squares
estimates, the utilities are implicitly taken to be quadratic loss. In principle, at least from
a Bayesian view, the implicit structure of utilities and prior probabilities can always be
back-calculated from a set of decisions actually taken.

The situation sometimes arises in which, rather than arriving at a yes-or-no decision
among two hypotheses (the problem is extendible to more than two alternatives), the
outcome of the hypothesis test is a set of probabilities on the hypotheses. In this case we
might seek a loss function defined on the assigned probability, of the form

u(π, θ) =
{

�1(π) if θ1

�2(π) if θ2
(4.67)

in which π is the probability assigned to hypothesis H1, and �1(π) is the corresponding
loss if θ1 obtains, and �2(π) if θ2 obtains. This problem arises in subject probability
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assessment, where one wishes to establish scoring rules that reward subjects for honest
reporting (Speltzer and Stael von Holstein 1975). Thus, a reward structure is established
that reduces the fee paid to the subject by �1(π) if θ1 occurs, and �2(π) if θ2.5

4.6.3 Test of a point hypothesis

A finite action problem is one in which the set of alternative actions contains a finite
number of discrete alternatives. For example, the choice above between two average per-
meabilities is a finite action problem, as is the case that follows, in which the choice
is between accepting an historical defect rate or deciding that the rate differs from
the historical.

Consider a case in which n observations, z = {z1, . . . , zn}, are made from a population
having probability density f (z|θ), in which θ is a vector of unknown parameters. From
these observations we wish to draw conclusions about some hypothesis, H0. For example,
we may be testing the puncture resistance of specimens of filter fabric and recording the
number defects. In this case, the zi are ones (defects) or zeros (no defect), and the relevant
statistics are the number of defective specimens m = 	zi and the total number n. The
process is f (z|θ) and is Binomial, with θ the fraction of failures.

We wish to test the hypothesis that this rate of defects has a certain value, say the
rate experienced over the project to date, against an alternative hypothesis that the rate is
something different. Thus, the hypotheses are

H0 : θ = θ0

H1 : θ 	= θ0

(4.68)

Presuming no prior knowledge, we set the prior probabilities of the two hypotheses equal;
that is, Pr(H0) = Pr(H1) = 1/2. We then apply Bayes’ Theorem to calculate a posterior
probability on the null hypothesis, Pr(H0|z).

The likelihood of θ0 given z is simply L(θ0|z) = f (z|θ0), is the Binomial pmf. What,
however, is the likelihood when θ 	= θ0? It depends on the value of θ0. Thus, we have to

5 Typically, the extremes of the scoring rule are set as �1(1.0) = 0 and �2(0) = 0; and the �1(π) is taken to be
a continuous decreasing function of π , while �2(π) is taken to be a continuous increasing function of π . If the
subject’s actual probability of θ1 is p, the expected score is

Eu(π, θ) = p�1(π) + (1 − p)�2(π)

We wish this to be maximized for π = p, thus if we differentiate with respect to π and recognize that the
maximum is desired to occur for π = p, the following condition results:

π�′
1(π) + (1 − π)�′

2(π) = 0

Any scoring rule that satisfies this condition for π between zero and one is said to be a proper scoring rule,
one example of which is the quadratic loss function:

u(π, θ) =
{

�1(π) = (1 − π)2

�2(π) = π2

which is why this function is so common in subjective assessment.
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specify some pdf, fθ 	=θ0(θ), over the value θ might have when it is not θ0. The obvious
assumption is to say that it can be anything, that is, that it has a uniform pdf, or fθ 	=θ0(θ) =
k, where k is a constant. Then, by Bayes’ Theorem,

Pr(H0|z) = Pr(H0)f (z|θ0)

Pr(H0)f (z|θ0) + Pr(H1)

∫
θ 	=θ0

f (θ)f (z|θ0) dθ

(4.69)

which, after substitution becomes (Berger 1993),

Pr(H0|z) = [1 + θ0
−m(1 − θ0)

m−nB(m + 1, n − m + 1)]−1 (4.70)

in which B(α, β) = �(α)�(β)/�(α, β) is the Beta function.
Consider the null hypothesis that the historical defect rate of 5% applies to the new filter

fabrics as well. Presume that n = 20 tests are performed among which there are m = 2
defects. This is about twice the 5% defect rate. Testing the null hypothesis H0 : θ = θ0

against the alternate and calculating the posterior probability by Equation (4.68) leads to
a posterior probability on H0 of Pr(H0|m = 2, n = 20) = 0.83. So, the evidence leads
us to assign a posterior probability of more than 0.8 to the hypothesis of the historical
defect rate of 5% even though the observed rate among 20 specimens was twice that.
Had n = 100 specimens been tested with a failure rate of 10%, the posterior probability
on the null hypothesis would drop to about 0.75. The reason these posterior probabilities
are still high is that the sample sizes are statistically relatively small.

4.6.4 Altering the posterior probability of an hypothesis for non-uniform prior

The calculation leading to the above results for the posterior probability of a null hypoth-
esis H0 given the evidence from observations was predicated on a non-informative prior,
that is, Pr(H0) = Pr(H1) = 1/2. It is relatively easy to adjust this value for a non-uniform
prior, say, the prior subjective probability of another observer, simply by rearranging
Bayes’ Theorem. If Prnon-informative(H0|z) is the posterior probability of the null hypothesis
calculated using a non-informative prior, and Prsubjective(H0) is a different prior probabil-
ity on H0, then the following adjustment provides the posterior probability of the null
hypothesis associated with the different prior:

Pr(H0|z) = 1[
1 +

(
1

Prsubjective(H0)
− 1

)(
1

Prnon-informative(H0|z) − 1

)] (4.71)

For example, a skeptical observer might conclude a priori that the probability was only
0.2 (one in five) that the historical defect rate applies to the new fabric. This observer’s
posterior probability would then be about 0.55. Conversely, a willing observer might
conclude a priori that the probability was as much as 0.75 (three in four) and that the
historical defect rate applies to the new fabric. This observer’s posterior probability would
then be about 0.93.
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4.7 Choice Among Models

Another common problem in hypothesis testing is the comparison among models. The
models might be, say, alternative probability distribution shapes for a set of data (i.e. are
the data better fit by a logNormal or a Gamma pdf?), or the models might be alternative
geomechanics models (e.g. different constitutive relations).

As a generalization, suppose there are k alternative models, {M1, . . . ,Mk}. For each
model there is some density function of the set of observations, fi(z|θ i ), but with unknown
parameters, θ i . The subscript refers to the model. The a priori density function over the
parameters is, f (θ ), which could be non-informative (i.e. uniform in some sense). Then,
for any given model, the marginal pdf of the observations, z, over the possible values of
the parameters, is

fi(z) =
∫

f (θi)f (z|θi) dθi (4.72)

and the a posteriori pdf of the parameters for each model, given the data is

fi(θi |z) = f (θi)f (z|θi)∫
f (θi)f (z|θi) dθi

(4.73)

If the a priori probabilities of the models, respectively, are Pr(Mi); then applying
Bayes’ Theorem, the a posteriori probabilities, given the data, z, are

Pr(Mi |z) = Pr(Mi)fi(z)∑
i

Pr(Mi)fi(z)
(4.74)

Consider the hypothesis test that a set of n data is modeled with a Normal distribution vs.
a Uniform distribution. Berger (2001) shows that the marginal pdf’s of the observations
for these two distributions (among others), are

f (z|MN) = �[(n − 1)/2]

2π(n−1)/2
√

n

[∑
j

(zj − z)2

](n−1)/2
(4.75)

f (z|MU) = 1

n(n − 1)[zmax − zmin](n−1)
(4.76)

in which the subscripts, M and U , refer to the Normal and Uniform distributions.
As an example, n = 31 data points were generated from a [0, 1] Uniform random num-

ber generator by adding sets of four values each. By the Central Limit Theorem, as the
number of variables in the sum increases, the pdf should approach Normality. On the other
hand, the unsummed variables are by definition Uniform. The resulting statistics were:
n = 31, z = 2.02, 	(zj − z)2 = 3.10, zmax = 2.87, and zmin = 1.06. Thus, the respective
marginal pdf’s become, f (z|MN) = 7.16E-10 and f (z|MU) = 2.00E-11. The a posteriori
probability for the Normal hypothesis by Equation (4.82) is then, Pr(M N) = 0.97. Repeat-
ing the experiment for sums of two uniform variables led to n = 31, n = 31, z = 1.08,
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	(zj − z)2 = 4.60, zmax = 1.74, and zmin = 0.16. For this case, the posterior probability
for the Normal hypothesis was reduced to Pr(MN) = 0.60. For the case of one Uniform
variable (by definition, generated from a Uniform pdf), the corresponding statistics were,
n = 31, z = 0.39, 	(zj − z)2 = 2.12, zmax = 0.96, and zmin = 0.03; and the correspond-
ing a posteriori probability for the Normal hypothesis was, Pr(MN) = 2 × 10−5 → 0, all
of which is to be expected.



5 Risk, Decisions
and Judgment

What do we mean by risk, and how can decisions be made better by attempting to quantify
the probabilities and potential consequences of undesired events? This chapter begins by
examining the potential hazards that people face every day and the various ways that
risk is defined. Attention then turns to how knowing something about the probabilities of
potential outcomes and magnitudes of consequences can be used to help us make decisions
more systematically and thoughtfully. Finally, the chapter looks at some of the strategies
that engineers use to make decisions, and to the question of what is engineering judgment.

5.1 Risk

In the course of daily life, as well as engineering practice, we routinely encounter situations
that involve some event that might occur and that, if it did, would bring with it some
adverse consequence. We might be able to assign probability to the occurrence of the event
and some quantified magnitude or cost to the adversity associated with its occurrence.
This combination of uncertain event and adverse consequence is the determinant of risk:

Risk = (probability , consequence) = (p, c) (5.1)

In common usage, the word risk has a variety of meanings.1 In engineering practice the
definition is usually more narrow. Kaplan and Garrick (1981) write that, to assess risk,
three things need to be defined: a scenario, a range of consequences, and a probability
of the event’s leading to the consequences. Building on this, Bedford and Cooke (2001)

1 risk n. 1. The possibility of suffering harm or loss; danger. 2. Factor, thing, element, or course involving
uncertain danger; a hazard: 3(a) The danger or probability of loss to an insurer. (b) The amount that an insurance
company stands to lose. 4(a) The variability of returns from an investment. (b) The chance of nonpayment of
a debt. 5. One considered with respect to the possibility of loss (Merriam-Webster 1998).

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5



98 RISK, DECISIONS AND JUDGMENT

write that risk analysis attempts to answer three questions: What can happen? How likely
is it to happen? Given that it occurs, what are the consequences?

Thus, in engineering, risk is usually defined as comprising:

• A set of scenarios (or events), Ei, i = 1, . . . , n;
• Probabilities associated with each element, pi ; and
• Consequences associated with each element, ci .

The quantitative measure of this risk might be defined in a number of ways, and, indeed,
different industries quantify risk in different ways. For example, in the insurance industry,
risk is commonly defined as the monetary value of the insured casualty (Bühlmann 1970).
So, if an insurance company writes a earthquake damage policy to insure a building
against, say, total loss in the event of an earthquake, then the risk is the total value of the
insured building:

Risk = (consequence) = (c) (5.2)

In public health, risk is commonly defined as the probability that an adverse effect will
occur due to some agent or activity (Alaszewski et al. 1998). So, if a large number of
people are exposed to some pathogen, the public health risk is the fraction that become
sick or are in some way adversely affected:

Risk = (probability) = (p) (5.3)

In engineering contexts, risk is commonly defined as the product of probability and con-
sequence, or expressed another way, risk is taken as the expectation of adverse outcome:

Risk = (probability × consequence) = (pc) (5.4)

This is the way we will use the term risk. When more than one event may lead to an
adverse outcome, Equation (5.4) is extended to be the expectation of consequence over
that set of events:

Risk =
∑

i
pici (5.5)

in which pi is the probability of consequence ci .

5.1.1 Acceptable risks

In engineering, as in other aspects of life, lower risk usually means higher cost. Thus, we
are faced with the question, “how safe is safe enough,” or “what risk is acceptable?”

Starr and Whipple (1980) note, “implicit in the term, acceptable risk is, ‘acceptable
to whom?”’ Governmental approval is usually required to establish the legitimacy of
methods for making risk analysis decisions, but public consensus is needed to make them
satisfactory. In the United States, the government acting through Congress has not defined
acceptable levels of risk for civil infrastructure, or indeed for most regulated activities. The
setting of ‘reasonable’ risk levels – or at least the prohibition of ‘unreasonable’ risks – is
left up to regulatory agencies, such as the Environmental Protection Agency, Nuclear
Regulatory Commission, or Federal Energy Regulatory Commission. The procedures these
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regulatory agencies use to separate reasonable from unreasonable risks vary from highly
analytical to qualitatively procedural.

People face individual risks to health and safety every day, from the risk of catching
a dread disease, to the risk of being seriously injured in a car crash (Table 5.1). Society
faces risks that large numbers of individuals are injured or killed in major catastrophes
(Table 5.2). We face financial risks every day, too, from the calamities mentioned to
the risk of losses or gains in investments. Intuition does not necessarily yield accurate
estimates of these risks (Figure 5.1).

Some risks we take on voluntarily, like participating in sports or driving an automobile.
Others we are exposed to involuntarily, like a dam failing upstream of our home or disease

Table 5.1 Average risk of death to an individual from various human-caused
and natural accidents (US Nuclear Regulatory Commission 1975)

Accident type Total number
Individual chance

per year

Motor Vehicle 55,791 1 in 4,000
Falls 17,827 1 in 10,000
Fires and Hot Substances 7,451 1 in 25,000
Drowning 6,181 1 in 30,000
Firearms 2,309 1 in 100,000
Air Travel 1,778 1 in 100,000
Falling Objects 1,271 1 in 160,000
Electrocution 1,148 1 in 160,000
Lightning 160 1 in 2,500,000
Tornadoes 91 1 in 2,500,000
Hurricanes 93 1 in 2,500,000
All Accidents 111,992 1 in 1,600

Table 5.2 Average risk to society of multiple injuries or deaths from
various human-caused and natural accidents (US Nuclear Regulatory
Commission 1975)

Type of event
Probability of 100 or

more fatalities
Probability of 1000

or more

Human-Caused

Airplane Crash 1 in 2 yrs. 1 in 2000 yrs.
Fire 1 in 7 yrs. 1 in 200 yrs.
Explosion 1 in 16 yrs. 1 in 120 yrs.
Tonic Gas 1 in 100 yrs. 1 in 1000 yrs.

Natural

Tornado 1 in 5 yrs. very small
Hurricane 1 in 5 yrs. 1 in 25 yrs.
Earthquake 1 in 20 yrs. 1 in 50 yrs.
Meteorite Impact 1 in 100,000 yrs. 1 in 1 million yrs.
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Figure 5.1 Comparison of perceived with actual risk for common hazards and diseases (Licht-
enstein et al. 1982).

due to air pollution. Just being alive in the US or Europe carries a risk of dying of about
1.5 × 10−6 per hour. Some risk analysts consider this number, about 10−6, a baseline to
which other risks might be compared (Stern et al. 1996).

For voluntary risks, the individual uses his or her preferences to decide whether or not
to accept the risk. It has long been observed, for example, that wage rates in dangerous
occupations tend to rise with level of risk (Figure 5.2). In mining, accident rates are
roughly proportional to the third-power of wages (Starr 1969). This balancing of personal
risk and benefits may not be quantitative, but the implicit trade-offs people make have
been back-calculated to obtain Figure 5.3. Risk-benefit rates for voluntary risks in the
US are somewhat higher than 10−6 per hour, and for involuntary risks, roughly 1000
times lower.

Starr arrives at four conclusions about acceptable risk: (1) the public is willing to accept
‘voluntary’ risks roughly 1000 times greater than ‘involuntary’ risks; (2) statistical risk
of death from disease appears to be a psychological yardstick for establishing the level
of acceptability of other risks; (3) the acceptability of risk appears to be proportional to
the third-power of the benefits; and (4) the societal acceptance of risk is influenced by
public awareness of the benefits of an activity, as determined by advertising, usefulness,
and the number of people participating. The exactness of these conclusions has been
criticized (Otway and Cohen 1975), but the insight that acceptable risk exhibits regularities
is important.

5.1.2 Risk perception

People view risks not only by whether those risks are voluntary or involuntary, or by
whether the associated benefits outweigh the dangers, but also along other dimensions
(Table 5.3). Over the past twenty years, researchers have attempted to determine how
average citizens perceive technological risks.
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Table 5.3 Separation of risk perceptions along two factor dimensions

Factor I: controllable vs. uncontrollable

Controllable Uncontrollable

Not dread Dread
Local Global
Consequences not fatal Consequences fatal
Equitable Not equitable
Individual Catastrophic
Low risk to future generations High risk to future

generations
Easily reduced Not easily reduced
Risk decreasing Risk increasing
Voluntary Involuntary

Factor II: observable vs. unobservable

Observable Unobservable

Known to those exposed Unknown to those
exposed

Effect immediate Effect delayed
Old risk New risk
Risk known to science Risk unknown to science

A common approach has been to use multivariate analysis to reveal an implied struc-
ture of preferences over various risks. An interesting finding is that, whereas risk analysts
tend to categorize risk by annual fatalities or economic impacts, normal people tend to
categorize risk by the potential for catastrophe, controllability, threat to future gener-
ations, familiarity, equity, level of understanding of the risk, and a host of other less
quantitative factors.

Various models have been proposed to represent these findings. For example, Figure 5.4
suggests a separation along the factors of dread or uncontrollability of the risk and of
unknown-ness or unobservability. Better understanding of the way people perceive risk
may help in planning projects and in communication. The public’s perception of risk is
arguably more subtle than the engineer’s, and quickly becomes political (Douglas and
Wildavsky 1982).

5.1.3 F-N Charts

An approach to describing risk popularized by Wash 1400 (USNRC 1975) – although
Farmer had earlier used the approach in the UK (Bedford and Cooke 2001) – is to plot
the exceedance probability of risks against their associated consequence (Figure 5.5).
Mathematically, these are complementary cumulative probability density functions:

CCDF x(x0) = 1 − Fx(x0) = Pr[x > x0] (5.6)
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Figure 5.5 Annual risk in the US due to a variety of natural and man-made hazards (US Nuclear
Regulatory Commission 1975).

in which Fx(x0) is the cumulative density function (CDF). Figure 5.6 is a similar plot
showing fatalities caused by dam failures.

Such curves are sometimes referred to as F-N curves, in that they summarize the relation
between frequencies and number of lives lost, or some other undesired consequence. They
have become a convenient way for comparing risk associated with different facilities or
with different design alternatives. Chapter 22 discusses a project for which F-N charts
were used to compare seismic hazards facing a refinery to averaged risks facing other
civil works (Figure 5.7).
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Figure 5.6 Historical frequency of fatalities due to dam failures from 1800 through 2000 (Baecher
and Christian, unpublished manuscript).

European government safety agencies have been forward thinking in developing quan-
titative risk guidelines for public works. In the UK, the Health and Safety Executive pub-
lished guidelines for acceptable risk as early as 1982 (HSE 1982). These were published
as quantified guidelines in the early 1990s (HSE 1991; HSE 1992) and were later modified
and adopted by the Hong Kong Government Planning Department (1994), as shown in
Figure 5.8. Similarly, the Dutch government published risk guidelines (Figure 5.9) in the
late 1980s (Versteeg 1987).

The slope of the lines dividing regions of acceptability expresses a policy decision
between the relative acceptability of low probability/high consequence risks and high
probability/low consequence risks. The steeper the boundary lines, the more averse is the
policy to the former. Note that, the boundary lines in the Hong Kong guidelines are twice
as steep (in log-log space) as the slopes in the Dutch case. Note also that, in the Hong
Kong case there is an absolute upper bound of 1000 on the number of deaths, no matter
how low the corresponding probability.

Decision theorists have noted that the use of F-N charts is not without inconsisten-
cies. Specifically, one can conceive of two individual risks, each of which is acceptable
under a guideline, yet when the two are probabilistically combined, the combination
is not (Bedford and Cooke 2001; Evans and Verlander 1997; Vrijling et al. 1995). In
geotechnical practice, however, the guidance derived from F-N curves is usually viewed
as qualitative.
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Figure 5.7 F-N chart showing average annual risks posed by a variety of traditional civil facilities
and other large structures or projects (Baecher 1982b).

In 1993, British Columbia Hydro and Power Authority began a program to develop risk
criteria for flood and earthquake safety of its dams (Salmon 1998; Salmon and Hartford
1995a; Salmon and Hartford 1995b; Salmon and von Ehn 1993). At the time, the company
operated 49 dams, including large structures at Mica (240 m), Revelstoke (175 m), and
WAC Bennett (185 m) (Vick and Stewart 1996). In pursuit of this goal, company engineers
called upon the emerging development of F-N curves by the European safety agencies for
use as standards in setting facility risks. ANCOLD followed suit and published quantitative
risk guidelines in 1994 (Figure 5.10). The US Bureau of Reclamation has used F-N charts
in comparing safety risks within a portfolio of dams (Figure 5.11).

5.2 Optimizing Decisions

Rather than judge risk by comparing probabilities and consequences to simple thresholds,
we can also identify best decisions by optimizing over some objective function. For
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Figure 5.8 Acceptable, societal risk guidelines for Hong Kong Planning Department.

example, we could pick the risky alternative that minimized expected monetary loss or
some other function.

5.2.1 Decision trees

Consider the decision whether to use spread footings or driven piles for the abutment of
a bridge. The advantage of footings is cost. The disadvantage is risk. The footings may
settle excessively, necessitating repairs. Thus, while footings are less expensive to begin,
they may be more expensive in the long run. Table 5.4 gives the engineer’s estimates of
these costs and probabilities. Which alternative is better?

A decision tree (Figure 5.12) is a graph for organizing what we know about a deci-
sion (Raiffa 1968). The choice is between adopting footings vs. a deep foundation, shown
as a decision (box) node at left. From that node emanate two decision branches. If we
use footings, the cost for design and construction is $1 million, shown as a gate. If we
use piles, the cost is $3 million.

If we use footings, either the footings perform satisfactorily or they do not (i.e. they
settle excessively). These uncertain events emanate from a chance (circle) node, each
having some associated probability. Say, the chance the footings settle excessively is
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assessed to be 0.2, and the chance they do not is 0.8. If the footings do settle excessively,
the total cost to the project is the initial cost plus the cost of repair, or, $1 m + $5 m =
$6 m. On the other hand, if the footings perform satisfactorily, the total cost to the project
is only the initial cost, $1 m.
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Table 5.4 Probability cost matrix for shallow and deep foundations under a bridge structure

Foundation type Initial cost
Probability of

large settlement
Possible repair

costs

Shallow footings $1 million 0.2 $5 million
Driven piles $3 million 0.01 $3 million

footings
1m

3m
piles   

5m

0m

3m

0m

0.2

0.8

0.01

0.99

unsatisfactory
1.0

0.03

2.0

satisfactory

unsatisfactory

satisfactory

3.03

Figure 5.12 Simple decision tree for choice of bridge foundation.

The expected cost is the total cost of each possible outcome weighted by its
respective probability. For excessive settlement, this is (0.2)$6 m + (0.8)$1 m = $2.0 m.
A similar calculation could be made for the pile alternative, which yields, (0.01)$6 m +
(0.99)$3 m = $3.03 m. So, from an expected cost basis, the footings are superior, because
their expected cost (shown above the corresponding node) is lower.

Say the decision is made to use footings but then the soil conditions turn out to be
unfavorable, settlement is excessive, and repairs must be made (Table 5.5). The total

Table 5.5 Outcomes of foundation decision

Shallow Foundations

Soil Conditions Probability Cost

‘good’ 0.8 $1 m
‘poor’ 0.2 $6 m

Deep Foundations

Construction Conditions Probability Cost

‘good’ 0.01 $3 m
‘poor’ 0.99 $6 m
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cost actually turns out to be $4 m, which is more than the piles would have cost. Note
that neither of the potential outcomes of selecting footings leads to the expected cost:
the favorable outcome is less, and the unfavorable outcome is more. Was this a ‘bad’
decision? No, at least not given the objective. Given the state of information at the
time the decision was made, footings were the best decision. While the outcome was
unfavorable, the decision was the right one.

5.2.2 Expected value of perfect information (EVPI)

Faced with the uncertainty in this example, about whether the soil conditions are good
enough to use footings, one’s reaction might be not to make a decision immediately, but
to gather more information first. In situ load tests cost $50,000, but let us presume that
they provide essentially perfect information on whether the soil conditions are suitable
for footings.

Without the tests, the analysis leads us to use footings. Thus, if the tests confirm that
the soil conditions are good, the decision to use footings would not change. The money
spent on the tests would have been wasted because the decision would be the same. On
the other hand, if the tests indicate that the soil conditions are poor and that footings
would settle excessively, then the decision would be to use piles. We would have avoided
the excess cost of repairs, and saved $2 m (less the cost of the tests). The tests would be
a real bargain, even at $50,000.

The decision tree can be expanded to include this new decision, whether to perform load
tests (Figure 5.13). This decision to test or not has the same functional form as any other
decision and is represented in the tree as a decision node. Since we make this decision
about testing – and find out the result – prior to making the decision about foundation
type, its node appears first in the tree. If we decide to test, we incur an up-front cost of
$50,000, then we find out whether the soil conditions are ‘good’ or ‘poor.’ Thus, if the
outcome of the test is ‘good’ soil conditions, the probability that footings would settle
excessively and lead to the need for repairs becomes zero, and they are the best choice,
with a corresponding cost of $1 m. Conversely, if the outcome is ‘poor’ soil conditions,
the probability that footings would settle excessively and lead to the need for repairs
becomes one, and piles are the best choice, with a corresponding cost of $3 m. Given a
0.8 probability that the load test will indicate ‘good’ soil conditions, the expected cost
is, (0.8)$1 m + (0.2)$3.03 m = $1.4 m. This means that, the perfect information provided
by the test lowers the overall expected cost from $2.0 m to $1.4 m, and thus the expected
value of perfect information (EVPI) is $0.6 m. That is, the value of obtaining perfect
information is $0.6 m, and any cost up to that amount would be reasonable to pay to
obtain the information.

This can also be argued in a reverse way, minimizing the regret that would be suffered
by using a less good foundation scheme. There is an 0.8 chance that the soil conditions are
‘good,’ in which case the results of the load test do not alter the choice of foundation type.
On the other hand, there is an 0.2 chance that the soil conditions are ‘poor,’ in which case
the results of the load test do alter the choice of foundation type, and rather than adopting
shallow foundations and then incurring $5 m of repairs, the pile foundation is used and
$3.0 m is saved. In this case the expected regret would be, (0.8)$0 m + (0.2)$3 m =
$0.6 m, which is the same as the difference between the best choice with and without
perfect information, weighted by the probability of the two states of nature.
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Figure 5.13 Decision tree including the option of performing a load test before deciding between
footings or piles.

5.2.3 Expected value of sampled information (EVSI)

In most cases, of course, the information obtained from testing is not perfect. The results
merely increase or decrease the probabilities associated with the possible states of nature.
For example, rather than performing expensive load tests, we could elect to place less
expensive, but simultaneously less diagnostic, borings. Table 5.6 shows an assessment of
what the borings might show, given the actual soil conditions.

If the actual soil conditions are ‘good,’ the assessment is made that the borings might
correctly show ‘favorable’ conditions with probability 0.85, but incorrectly show ‘unfa-
vorable’ with probability 0.15. The latter is akin to a ‘false-positive’ in clinical testing.
If the actual soil conditions were ‘poor,’ the corresponding probabilities of ‘favorable’
and ‘unfavorable’ are assessed as 0.3 and 0.7, respectively. The values at the LHS show
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Table 5.6 Probabilities of possible outcomes of borings

Actual soil conditions

‘Good’ ‘Poor’

Outcome of borings Pr Pr = 0.8 Pr = 0.2

Favorable 0.74 0.85 0.3
Unfavorable 0.26 0.15 0.7

the marginal probabilities of the borings returning ‘favorable’ and ‘unfavorable’ results,
respectively, given the conditional probabilities in the body of the table.

Given that the borings indicate ‘favorable,’ the (posterior) probability of ‘good’ soil
conditions can be calculated by Bayes’ Theorem (Chapter 2) as,

Pr[good |favorable] = Pr[good ]L[favorable|good]

Pr[good]L[favorable|good ]Pr[poor]L[favorable|poor]
(5.7)

Similarly the probability of ‘good’ conditions, given ‘unfavorable’ indications, can be
calculated by Bayes’ Theorem. These results are shown in Table 5.7, and the correspond-
ing probabilities are entered into the decision tree of Figure 5.14. The expected value of
sample information (EVSI) is the difference between the expected value of the decision
using the information and that without, or EVSI = $2.0 − $1.82 = $0.18 m.

So, the expected value of the borings, which lead not to perfect information but only
to a change in the probabilities of ‘good’ and ‘poor’ soil conditions, is still positive, but
smaller than the ESPI. Given that the borings cost but $10,000, they are a good value
compared to the expected $180,000 they save.

This is an exceptionally simple example. More complex decisions involve more complex
trees, but the calculation of these trees is straightforward. Examples in the geotechnical
literature are many (Angulo and Tang 1996; Baecher 1984a; Einstein and Baecher 1983;
Einstein et al. 1978; Liao et al. 1996). Related examples in oil and gas exploration are also
common (Grayson 1960; Harbaugh et al. 1977; Kaufman 1963; Newendrop 1975).

5.2.4 Utility theory

Expected monetary value may be a reasonable decision criterion for governments or
large corporations, but if the potential consequences of decisions are large relative to
the asset position of a decision maker, then other considerations enter the picture. The

Table 5.7 Probabilities of actual conditions given indications in borings

Posterior probability
of: ‘good’ soil

conditions

Posterior probability
of: ‘poor’ soil

conditions

Outcome of borings Pr Prior Pr = 0.8 Prior Pr = 0.2

“Favorable” 0.74 0.92 0.08
“Unfavorable” 0.26 0.46 0.54
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Figure 5.14 Decision tree including the option of placing borings before deciding between foot-
ings and piles.
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Figure 5.15 Despite the higher EMV of the right-hand bet most people would choose the bet on
the left.

most important of these is risk aversion, the propensity to treat large losses or gains as
different from simply the multiple of so many smaller ones. That is, to an individual
decision maker the loss of, say, $100,000 may be valued as different from – and usually
greater than – simply one hundred times the loss of $1000. Most individual decision
makers, and many corporate decision makers, are more than proportionally averse to
large losses (Figure 5.15).



OPTIMIZING DECISIONS 115

The presumption of utility theory is that no matter how complex or subtle an individual’s
preferences over the consequence of a decision, people do have such preferences, and their
preferences are revealed through the decisions they make. Thus, one can posit a function,
called a utility function, which is optimized in making decisions. Subject to assumptions
on coherence, this utility function can be shown to enjoy well-behaved mathematical
properties, as first suggested by Ramsey and Braithwaite (1931).2

Let C1, C2, and C3 be three outcomes along an individual attribute scale. Let the
preference ordering among these outcomes be

C1 � C2 and C2 � C3 (5.8)

where the symbol � means, ‘is preferred to.’ By transitivity, C1 � C3. The utility function
u(Ci) will have the same ordering

u(C1) > u(C2) > u(C3) (5.9)

From a measurement theory point of view, this function u(Ci) need only be invariant up
to a positive linear transformation. That is, the scale and origin of the function can vary,
and the function still serves its intended purpose. It is common practice to assign the
utility of the least preferred outcome a value of zero and of the most preferred a value of
one, but this is not necessary.

The expected utility hypothesis says that there exists a function u(Ci) such that the
expectation of the function over uncertainties in the consequences Ci is a logically con-
sistent criterion for decisions. That is, a choice between the sure outcome C2 and a lottery
yielding C1 with probability p and C3 with probability (1-p) can be made on the basis
of a comparison of u(C2) against the expected value, {pu(C1) + (1 − p)u(C3)}.

The question is, how can this utility function for an individual be inferred from past
decisions? This can be done by reversing the normal order of thinking, asking not which
lottery involving known probabilities of uncertain outcomes one prefers, but rather, what
probability in such a lottery would make one change one’s preference? Consider a mone-
tary lottery offering a p chance of winning $1000 vs. the complementary (1 − p) chance
of winning nothing. Set u(0) = 0 and u(1000) = 1.0. Then, the expected utility of the
lottery is

Eu = (1 − p)u(0) + pu(1000) = p (5.10)

What value of p would cause one to be indifferent between the lottery and a sure outcome
of $100? If p were close to 1.0, most people would take the lottery; but, if p were 0.1
or 0.2, or even 0.4, many people would take the sure $100. Presume that the answer
p0 = 0.25 is the point of indifference. Figure 5.16 shows the beginnings of a utility
function incorporating this datum,

u(100) = (1 − p0)u(0) + p0u(1000)

= (1 − 0.25)u(0) + (0.25)u(1000) = 0.25
(5.11)

2 The formal concept of utility functions, and of the hypothesis of expected utility maximization, is treated in
specialized books on the topic (Fishburn 1964; Fishburn 1970; Keeney and Raiffa 1976; De Groot 1970), and
in general texts on statistical decision theory (Pratt et al. 1995).
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Figure 5.16 Uniattribute utility function over monetary outcome.

Given these relations, the value of u(C2) must lie between u(C1) and u(C3), which is
satisfied for any p. This experimental question of finding the certainty equivalent for a
lottery by setting a deterministic outcome, here $100, and then asking, what probability
p0 would cause indifference, could also be structured in the reverse by asking, for a given
p0 what value of certain outcome would cause indifference.

We can now specify a new lottery involving a deterministic outcome within the interval
[0,100], asking what new value of probability p1 would cause indifference; and then
specifying another new lottery involving an outcome within [100,1000] and assessing a
probability p2, and so forth, until the shape of the utility function between zero and 1000
is sufficiently approximated.

5.2.5 Risk aversion

In the present case, as in most commonly encountered cases, the utility function for money
is concave. The function displays diminishing marginal returns. For a concave function
u(x) on the interval (a, b), and for a random variable X defined within the interval, for
which the expectations of X and u(X) exist, Jensen’s inequality (De Groot 1969) holds that
E[u(X)] ≤ u(E[X]). Thus, a person exhibiting a concave utility function over money will
always choose a fixed gain x in the interval (a, b) over a lottery involving a random gain in
(a, b) with an expectation E[X] = x. This can be seen from the dashed line in Figure 5.16
which is the locus of all linear combinations of u(0) and u(1000) for values of p.

Grayson (1960) experimentally measured the utility functions for money of wildcat oil
and gas operators in Texas in the late 1950’s, an example of which is shown in Figure 5.17.
These functions typically display risk aversion, despite the reputation of wildcatters as
risk-prone. The curves are gently concave over positive outcomes, and plunge steeply
concave over negative outcomes. This risk aversion behavior is what motivates the insur-
ance industry. An insurance company is a large entity for which individual losses on
policies are comparatively small and within the linear range of the corporate utility func-
tion. On the other hand, such losses are not small to the individual insured, and thus
the policy holder’s utility within the pertinent interval may be highly concave. Thus, by
Jensen’s inequality, the individual policy holder is willing to pay a premium larger than
the actuarial value of the risk to avoid the disutility associated with a loss. At the same
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time, the insurance company values the lottery at the actuarial value, and thus generates
a profit from the transaction, and both sides benefit.3

The theory of multi-attribute utility over monetary and non-monetary attributes has
advanced significantly over the past thirty years, and is well beyond the scope of this
book. Early work on utility theory within the context of economic games was provided
by von Neumann and Morgenstern (1944). More recent work on multi-attribute utility
has been contributed by Keeney and Raiffa (1976).

5.3 Non-optimizing Decisions

Not all decisions need be optimized, indeed intuitive decisions tend to the acceptably good
rather the absolutely best. This section considers alternative decision criteria, including
consistency, the observational approach, and some other suggested approaches.

5.3.1 Consistent decisions

The James Bay Project involved large, low-head hydropower reservoirs of large extent,
requiring long lengths of low embankment dykes on soft clays. These soft clays would
not support dykes of the height needed, so a staged approach was adopted. The plan was
for low, 6 m embankments to be built, and the foundation clays allowed to consolidate
before heightening to 23 m. In some parts of the site, the 6 m dykes were all that was
required, and would became the final embankments.

Initially, the plan called for the 6 m dykes to be designed with a modest factor of safety
against instability, perhaps FS = 1.5; but the 12 m and 23 m dykes, due to their greater
size and cost of failure, would be designed ‘more conservatively,’ with FS = 1.75 to 2.0.
In the end, these choices – so obvious to engineering judgment – proved inconsistent.
Reliability analysis showed that the 6 m dykes were much less reliable than the 12 m and
23 m dykes, and consequently needed to be designed to a higher FS to make the risks
about the same. These calculations are detailed in Chapter 14.

For both the low and the high dykes, the largest contributor to uncertainty was the
spatial variability of the properties of a lacustrine clay that underlay a marine clay. For
the higher dykes, however, the failure surfaces over which this variability was averaged
were large. For the low dykes, the failure surfaces were smaller. Variability in the clay
properties enjoyed less averaging and thus less variance reduction. Another factor affecting
uncertainties in clay properties was that, for the low dykes, undrained clay strengths were
correlated to cone penetration resistance and a limited number of laboratory tests. For
the high dykes, they were correlated to normalized soil engineering properties (Ladd and
Foott 1974). The latter led to considerably smaller variances.

The combined result was that the variances in predictions of FS for the 23 m and 12 m
dykes were substantially lower than for the 6 m dykes. However, the consequences of
failure of the larger dykes were correspondingly larger, and the design team thought it
prudent to set their target probabilities of failure to be lower (Table 5.8). The consequent

3 Another perspective is that the insurance company views risk as a relative frequency while the insured views
it as a degree of belief.
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Table 5.8 Consistent factors of safety for the James Bay dykes

Design Case Nominal Pf
Consistent FS
(Calculated)

Design FS
(Recommended)

Single stage, H = 6 m, circular
failure surface

0.01 1.63 1.6

Single stage, H = 12 m, circular
failure surface

0.001 1.53 1.5

Multi-stage, H = 23 m, wedge
failure surface

0.0001 1.43 1.4

choices of a design F = 1.6 for the 6 m dykes and F = 1.4 for the 23 m dykes may or
may not be ‘optimal,’ but they are consistent in risk.

5.3.2 Terzaghi’s observational approach

Since Terzaghi, geotechnical engineering has been characterized by a special approach to
uncertainty: the observational approach (Peck 1969). What exactly this approach com-
prises is subject to debate, but everyone agrees it is fundamental to modern practice.

The observational approach as described today seems not to appear in Terzaghi’s writ-
ings prior to Terzaghi and Peck (1948). It was rather Terzaghi’s contemporaries, especially
Bjerrum, Casagrande, and Peck, who brought it to the attention of the profession. Bjerrum
(1960) described the approach as well as anyone,

The conventional way of dealing with the prevailing uncertainties is to prepare the design
on the basis of the most pessimistic interpretation of the available data. Terzaghi’s proce-
dure is different. He commonly designed his dams on what the outsider might consider
optimistic assumptions, but at the same time he made elaborate and carefully planned
provisions for detecting during construction whatever differences might exist between
the assumed and the real subsoil conditions. Furthermore, he worked out in advance
his plans for action to be carried out in the event that significant errors in the original
assumptions were detected. Hence, he could not be taken by surprise.

Peck (1969) comments that it was not until late in the writing of Soil Mechanics in
Engineering Practice that Terzaghi “realized the undercurrent of observation common to
all his work,” and organized his concepts in what he at first called, the ‘learn-as-you-go’
method. Peck cites an unpublished introduction written by Terzaghi, that includes the
following.4

4 In a well-known paper near the end of his life, Terzaghi (1961) wrote, “Soil engineering projects, such as
dams, tunnels, and foundations, require a vast amount of effort and labor securing only roughly approximate
values for the physical constants that appear in the [design] equations. The results of the computations are
not more than working hypotheses, subject to confirmation or modification during construction. In the past,
only two methods have been used for coping with the inevitable uncertainties: either adopt an excessively
conservative factor of safety, or make assumptions in accordance with general, average experience. The first
method is wasteful; the second is dangerous. A third method is provided that uses the experimental method.
The elements of this method are ‘learn-as-you-go’: Base the design on whatever information can be secured.
Make a detailed inventory of all the possible differences between reality and the assumptions. Then compute,
on the basis of the original assumptions, various quantities that can be measured in the field. On the basis of
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1. Base the design on whatever information can be secured.
2. Make a detailed inventory of all the possible differences between reality and the

assumptions.
3. Then compute, on the basis of the original assumptions, various quantities that can be

measured in the field. [. . .]
4. On the basis of the results of such measurements, gradually close the gaps in knowledge

and, if necessary, modify the design during construction.

The observational approach has had broad impact on geotechnical engineering, even to
the point that its principles form the basis for environmental policy on field measure-
ments and data quality objectives for hazardous waste site investigations (Wallace 1995;
US Environmental Protection Agency 2000). The approach also foreshadowed the move
toward adaptive management of natural resources (Holling 1980).

Angulo and Tang (1996) address a groundwater sampling problem at the Savannah
River Site of the US Department of Energy using a probabilistic version of the observa-
tional approach. The study focuses on the continuity of geological formations affecting
radionuclide transport. As a basis for the study, a probabilistic site model is developed
and updated as site characterization data become available. At any point in the project
the full weight of current information can be used to project the outcomes of subsequent
exploration and development stages, and to make decisions accordingly.

A schematic profile of the site is shown in Figure 5.18. The lowermost aquifer is the
Congaree Formation, a well-sorted marine sand. Above lies the Green Clay, generally
thought to be an aquitard. The Green Clay is mostly continuous, 2–3 m thick, but with
offsite discontinuities. Above lie the McBean, Tan Clay, Barnwell Formations. These form
a surface aquifer that is of most concern.

The authors consider the possibility of a window in the aquitard allowing groundwater
communication from the upper aquifer to the Congaree. The decision tree of Figure 5.19
shows possible outcomes of an initial exploration plan with respect to detecting a window.
If a window is found, the sub-tree labeled I shows the forecast performance of two
subsequent monitoring schemes. If a window is not found, then sub-tree II applies. In
this way, the decision tree was used as a form of accounting scheme, by which possible
outcomes of exploration and monitoring activates were projected and corresponding best
decisions identified for each possibility. The decision tree became an analytical device
for keeping track of an observational approach.

5.3.3 Satisficing, muddling through, and other styles of decision making

The decision theory literature is abundantly provided with alternatives to traditional opti-
mization, some similar in spirit to the observational approach. This section provides a
few points of entry into this literature, without surveying it in any detail.

Perhaps no one is more associated with non-optimizing approaches to decision making
than Herbert Simon. Simon (1957) introduced the notion of satisficing. Satisficing is a
decision criterion that seeks to reach an outcome that is good enough rather than best,
a satisfactory decision. Simon argued that it is rational in many situations to arrive at a
good rather than best result, that is easier, quicker, and cheaper to find. Finding the best

the results of such measurements, gradually close the gaps in knowledge, and if necessary modify the design
during construction.”
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Figure 5.18 Profile of the Savannah River Plant site, showing details used in the analysis of
Angulo and Tang. (Angulo, M. and Tang, W. H., 1996, ‘Groundwater monitoring system design
using a probabilistic observational method for site characterization,’ Uncertainty in the Geologic
Environment, GSP No. 58, ASCE, Madison, WI, pp. 797–812, reproduced by permission of the
American Society of Civil Engineers.)

result may even be infeasible with finite effort. This is especially the case, Simon argued,
when there are multiple, competing objectives.

Lindblom (1959; 1979), in addressing public policy decisions, proposed a ‘science of
muddling through,’ in contrast to what he called the rational-comprehensive method, or
what we would call optimization. He held that optimization “assumes intellectual capaci-
ties and sources of information that men simply do not possess [. . ..],” requiring clarity of
objective, explicitness of evaluation, comprehensiveness of overview, and quantification
of values that are usually not possible in any but small-scale problems.

In contrast, he proposed a method of successive limited comparisons, or ‘muddling
through.’ This method is characterized by, building out from current situations, a step-
by-step process, objectives based on consensus, limited analysis, and alternate theories
being reduced by successive comparisons. The step-by-step process bypasses excessive
calculations, reduces time needed to define goals, and limits comprehensive comparisons
between the current situation and the changes that result from incremental changes. An
advantage, it is argued, of incrementalism is that one can recover errors and mistakes in a
one-step-at-a-time process. Also, decisions evolve in mutually agreed increments to meet
the current needs and objectives, constantly changing and moving toward the goal.

5.4 Engineering Judgment

People have a great deal of confidence in human intuition. This is not limited to geotech-
nical engineers, although the geotechnical literature makes a great to do about engineering
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Figure 5.19 Decision tree for groundwater monitoring at the Savannah River site, based on obser-
vational approach. (Angulo, M. and Tang, W. H., 1996, ‘Groundwater monitoring system design
using a probabilistic observational method for site characterization,’ Uncertainty in the Geologic
Environment, GSP No. 58, ASCE, Madison, WI, pp. 797–812, reproduced by permission of the
American Society of Civil Engineers.)

judgment with little discussion of what the notion means. There seems tacit agreement
that readers understand the notion, but a cursory review of the geotechnical literature
gives little comfort.

To some writers, engineering judgment is the basic tenet of responsible professional
decision making, without which even the term professional is suspect (Peck 1980; Vick
2002); to others, engineering judgment little more than guesswork, a flimsy substitute
for logic and reasoning (Hartford 2000). Although too ambitious a task for the current
volume, better understanding of the nature and limitations of engineering judgment would
be helpful in geotechnical practice.

While engineering judgment is raised to transcendent heights within the geotechnical
community, it is often questioned by policy makers and the public. Despite the benefits
provided society by modern constructed facilities, adverse environmental consequences
and other unfavorable impacts of those same facilities are much on people’s minds. To an
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extent, engineers are blamed for these adverse consequences, and the paternalistic senti-
ment embedded in the notion of engineering judgment – that professionals know best – is
out of fashion. In recent years, US federal government agencies such as the Nuclear
Regulatory Commission (NRC) have even discouraged the use of the term engineering
judgment in their deliberations (US NRC 1999).

Even though public opinion polls consistently rank engineers among the most trusted
occupational groups, that same public increasingly questions whether engineering judg-
ment can be relied on to answer questions of public safety. Perhaps safety can be improved
by more public involvement, more regulatory oversight, and more explicit proof of engi-
neers’ contentions. Perhaps engineering truth is no more than a social construct, lacking
objective validity, the way deconstructionist theory in recent years has viewed science
itself (Hacking 1999). This is to say that, the elevated position to which engineering
judgment is raised by the geotechnical community is by no means echoed by the rest
of society.

The role of engineering judgment in routine design, for example in selecting pile driv-
ing criteria or in dimensioning a retaining wall, is relatively accepted; but its role in
making decisions with potentially catastrophic consequences, for example in dam safety
or environmental remediation, is another matter. The public and regulatory authorities
that represent public interests require more than assurances of confidence from experts to
put fear to rest. Modern history has examples of technological failures about which engi-
neering experts had expressed great confidence beforehand: the Tay Bridge, Titanic, Saint
Francis Dam, Malpasset Dam, the Challenger, among others. To say to the public – or
even to owners and clients – ‘trust us,’ is to miss the mark by a wide margin.

So, what is engineering judgment, how does it relate to decision making and risk
management in geotechnical practice, and how does it relate to probabilistic risk and
reliability?

5.4.1 Problem solving and cognition

In a book dedicated to this topic, Parkin (2000) notes that “judgment is informed by
experience, expertise, reasoning, and analysis.” Such judgment may be brought to bear
quickly, or only after a long period of deliberation. It may be the result of one per-
son’s considerations, or of a collaborative process involving many people, possibly with
differing professional expertise.

We know a great deal about the psychological factors that come into play when people
attempt to estimate risks subjectively. This understanding has developed over the past
30 years in the work of Tversky, Kahneman, Slovic, and many others (Chapter 21). We
similarly know something about the psychology of judgment, although the present volume
is not the place to delve into this topic. This understanding has developed in the field
of social judgment theory growing out of the work of Brunswik (1969) and others, out
of various fields of philosophy, for example in the work of Nozick (1993) on rationality,
and to some extent in the growing literature of knowledge management, for example in
the work of Prusak (Davenport and Prusak 1998), and others.

The field of social judgment theory views judgment as the ability to arrive at con-
clusions based on attributes of an object or situation. Margolis (1987) identifies seven
progressive levels of cognitive function, which Parkin suggests may be thought of as
different ways that people process experience and reach decisions on actions. These are:
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(1) simple feedback, (2) pattern recognition, (3) learning, (4) choice, (5) intuitive judg-
ment, (6) reasoning, and (7) calculation.

Simple feedback is involuntary stimulus-response of the nervous system; driving a car
and hand-eye coordination involve simple feedback. Pattern recognition is the integration
of stimuli from the natural world into recognized configurations; butterflies migrate thou-
sands of miles based on patterns of temperature, wind speed, and other things. Learning
is the process by which a lasting change in potential behavior occurs as a result of prac-
tice or experience. The pattern of cues is remembered and abstracted from the past; in
response to the stimulus of a cabinet door opening and a can of food being opened, a pet
dog will run to its bowl. Choice arises when multiple stimulus-response relations have
been learned; the dog may flee danger or stand and fight when someone tries to take its
bowl away.

Feedback, pattern recognition, learning, and choice are cognitive process we share with
many other animals. Judgment, reasoning, and calculation are not. Intuitive judgment has
to do with being able to see with the mind’s eye what might happen if specific actions
are taken in the external world and thereby to engage in mental simulation to find an
answer to a problem. Pattern recognition is brought within the process of cognition. Data,
experience, representations, and patterns are compared within the mind until a fit is found
with the problem at hand. Margolis says that this is not the sort of thing that “very plausibly
requires logic, calculation, following out of formal rules, or even verbal reasoning of the
most informal sort.” It is the sort of thing that is at the center of craftsmanship, and even
our cousins in the primate world evidence judgment.

Reasoning and calculation lie beyond intuitive judgment, and are the stuff of human
intelligence. Reasoning is the explicit use of language to facilitate judgment. It is among
the reasons that language skills are so important to engineering. Without language, there
is no reasoning, and thus reasoning is a human development of relatively recent vintage,
since language is a development of the late Pleistocene. Language provides the abstract
symbolic framework within which people move beyond intuitive judgment. Syntax, the
rules whereby words or other elements of language are combined to form grammatical
sentences, is the logical structure within which the “language equivalent of physical real-
ity,” to use Parkin’s phrase, can be manipulated as one might manipulate an engineering
model. Semantics, the meanings and classifications of what words signify, provides the
elements to be manipulated. So, reasoning is a rationally structured way to draw conclu-
sions about the world and to chose among alternate courses of action. The emphasis here
is on rationally structured – in contrast to intuitive – which is the substance of judgment.

It is a small step conceptually from reasoning to calculation. Calculation replaces the
informal logic of reasoning with the formal logic of mathematics. Semantic names are
replaced by abstract variables, and the disciplines of symbolic logic and mathematics are
brought to bear on uncovering relationships or patterns and reaching conclusions. This is
the ‘engineering modeling’ with which so much of the university curriculum is obsessed.
For most people, there is little intuitive about calculation, and calculation and reasoning
are tightly bound.

5.4.2 Cognitive continuum theory

The cognitive basis of intuitive judgment is poorly understood. Brunswik’s model, which
has been the basis of later work by Hammond (1996), Cooksey (1996), and others – and
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which has been cited by Parkin, Vick (2002), and others – is based on perception, specif-
ically the perception of attributes which he calls, cues. Such cues are statistically related
to objects and situations based on experience. When faced with a new object or situation,
the individual perceives a relatively limited number of cues (Brunswik speculates that the
number seldom exceeds seven) from among the almost limitless possibilities, and from
these draws conclusions. The cues tend to be complex; thus they many not be interpreted
in the same way each time they are perceived, or they may be perceived differently each
time. Different people, presumably, perceive and interpret cues in different ways, presum-
ably place different weights on them, and presumably combine cues in different ways,
and thus may come to different conclusions about the same object or situation. Brunswik
posits that most intuitive judgments can be modeled as weighted averages of cues and
that the redundancy among cues ensures that conclusions are not highly sensitive to the
exact values of the weights, suggesting a robustness of judgment.

Hammond and Cooksey combined Brunswik’s model of cues and intuitive judgment
with reasoning and calculation to form cognitive continuum theory. Cognitive continuum
theory holds that intuitive judgments should be evaluated by the correspondence between
the weighted average of the cues perceived about an object or situation, on the one hand,
and the critical attributes of the real object or situation they reflect, on the other. If
these two correspond, then the judgment is said to be valid. In contrast, reasoning or
calculation should be evaluated by the coherence of the model produced. If the parts of
the model form an internally consistent totality, then the reasoning or calculation is said
to be valid. The correspondence of this logically sound model to physical reality is of
secondary importance.

Cognitive continuum theory further holds that people do not – or cannot – simulta-
neously think in both correspondence mode (intuitive judgment) and coherence mode
(reasoning and calculation) but rather flip back and forth between these two cognitive
processes. People form intuitive judgments, then subject those judgments to reasoning
and calculation, and then take the results back into an intuitive correspondence mode, and
so on, and so on. Hammond calls this, ‘quasi-rational cognition.’ In solving a difficult
problem, one might first look to hunches, intuitive guesses, or premonitions, and then
subject whatever arises to analytical thought. When the analysis becomes bogged down,
one might go the other way and seek hunches about the analysis. This is something
akin to Karl Popper’s (1968) hypo-deductive view of the scientific method, in which an
hypothesis is developed intuitively but then tested deductively.

Parkin notes that, in practical applications, analytical cognition is more highly accurate
on average than is intuitive judgment but sometimes can be wildly inaccurate. This is
unsurprising. When underlying assumptions are more or less correct, analytical cognition
can be both accurate and precise; but, when those same assumptions are incorrect, the
conclusions based on analysis can be widely off. Large errors were sometimes made
in the analytical mode, but research suggests that they are less frequent in the intuitive
mode (Hammond 1996).

The confidence that people, both professionals and the public, place in a prediction
appears to be related to the degree of internal consistency that manifests itself in the
arguments or model underlying the prediction. For example, this has been observed in
legal proceedings among other places, where juries seem to reconcile conflicting evi-
dence by constructing stories based on prior experiences (Pennington and Hastie 1993),
the more complete and consistent the story is, the more it tends to be believed. Thus,
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because intuitive judgments often lack the clearly stated internal consistency of analytical
cognition, they are sometimes underestimated in empirical value.

5.4.3 The place of engineering judgment

Among other things, this book embraces two apparently contradictory positions. First,
applications of probability to engineering problems yield the most satisfactory results
when probability is based on a degree of belief. That is, the most important aspects of
probability are fundamentally subjective. Secondly, engineers, along with other experts,
are usually excessively optimistic about their knowledge of important parameters and
especially about the uncertainty in that knowledge. In fact, however, the two are not
contradictory. Much of our uncertainty is subjective, and we are often not very good at
estimating that uncertainty. One of the things that distinguishes a professional in any field
from a dilettante is the degree to which he or she is able to assimilate experience and
extrapolate from it to new situations. In effect, what is important is not the amount of
experience but the amount of evaluated experience.

Properly applied, engineering judgment reflects accumulated and evaluated experience.
The term should not be used as an excuse for avoiding analysis or investigation. As the
quotations in the earlier sections reveal, Terzaghi’s success depended in large part on a
willingness to examine a problem deeply before rendering an opinion. Engineers who
have invoked ‘engineering judgment’ without thought when asked to justify an opinion
have done themselves and the profession a disservice and have tended to put the phrase
engineering judgment into disrepute.



Part II





6 Site Characterization

This second section of the book deals with many issues of modeling, site characterization,
and drawing inferences about geological conditions. All of the enterprises revolve around
statistical reasoning and the weight of information in data. They have to do with the
logic of decision making in allocating exploration resources and deciding when enough
information has been gathered for design.

A site characterization program is a plan of action for obtaining information on site
geology and for obtaining estimates of parameters to be used in modeling engineering
performance. In other words, site characterization is the enterprise of exploring and inves-
tigating a site to gain sufficient information about the geometry and material properties
of local geological formations that rational engineering decisions can be made. Some of
those engineering decisions have to do with the best use of the site, some have to do
with remedial measures needed before a project can be built, and some have to do with
selecting soil or rock engineering parameters for modeling and design.

6.1 Developments in Site Characterization

Nearly every textbook on geotechnical engineering or engineering geology starts with a
discussion of the enterprise and strategies of site characterization. Surprisingly – given
the centrality of site characterization to all the analyses and predictions that geotechnical
and geological engineers make – these discussions are notably brief. The third edition
of the classic Soil Mechanics in Engineering Practice (Terzaghi et al. 1996) devotes two
and a half of its 550 pages to the subject, before moving off into details of drilling rigs
and test apparatuses. Taylor (1948) devotes three pages; Lambe and Whitman (1969),
none at all. Perhaps the sense is that site characterization is a wholly intuitive process,
dependent on ‘engineering judgment’, but not analytical thinking, and as such there is little
to discuss regarding strategy and inference. As Underwood (1974) notes and Dowding
(1979) expands upon, there is “an apparent hope for some new magical development that
will fill in the gaps between a few poorly sampled, widely spaced and often poorly logged
borings;” what Dowding calls, new ‘gigits’ to substitute for adequate information.
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The engineering geology literature is somewhat more generous in its discussions of
site characterization approaches (e.g. Legget and Hatheway 1988), and specialty volumes
do exist on the topic (e.g. Hvorslev 1949), but even they tend to dwell on equipment
rather than logic and inference. There have also been several specialty conferences on
site characterization and geotechnical uncertainty, which provide greater, if still limited,
consideration of strategy (e.g. Dowding 1979; Saxena 1982; Shackelford et al. 1996,
Robertson and Mayne 1998).

6.1.1 Minor geological details

In 1929, Terzaghi presented a classic paper at the New York meeting of the American
Institute of Mining and Metallurgical Engineering entitled, ‘Effects of minor geological
details on the safety of dams,’ in which he wrote (Terzaghi 1929),

‘Minor geological details’ refer to features that can be predicted neither from the results
of careful investigations of a dam site nor by means of a reasonable amount of test
borings (sic). They include such items as the exact position and the variations in width
of fissures passing through the rock beneath a dam foundation, the shape and the local
variations of the permeability of minor seams, of coarse sand and gravel contained in
fine-grained alluvial valley fills, and similar features of minor geological importance.

One might add, “of minor geological importance but major geotechnical importance.”
Two dam sites might be to outward appearance almost identical in their geology; yet one
might harbor adverse details too minor to detect with reasonable exploration effort, while
the other might not. A dam constructed at the latter may perform well, but a dam at the
former might prove disastrous. Terzaghi went on to ask, “To what extent can an opinion
based on analogy be depended on in the field of dam foundations?”

In Chapter 12 we show that the probability of finding geometrically small details in
the geological subsurface is negligible, absent unthinkably large investments in people,
equipment, and time. The probability of finding geological features even on the scale
of meters in width is seldom large enough to give one confidence that none have been
missed. In this case, the importance of applying probabilistic methods to the question of
site exploration may lie mostly in dispelling the sometimes intuitive notion that one has
any real chance of detecting small features.

The implication of this state of affairs as reflected in Terzaghi’s writing is the need for
painstaking observation, both of site conditions as they are revealed during construction
and of engineering performance as it manifests itself in the as-built structure. This led to
the development of what Peck later called the observational approach (Peck 1969, 1980;
Peck et al. 1984). The observational approach is now seen as a hallmark of geotechnical
engineering, and it has even been adopted outside the field, for example, in environmental
engineering (Wallace 1995). The adaptive management approach widely used for envi-
ronmental problems is similar in spirit and application to the observational method. We
return to the observational method later in this chapter.

6.1.2 Exploration strategy in the oil, gas, and mineral industries

It should hardly surprise us that the oil, gas, and mineral industries have invested heavily
in attempting to deal rationally with exploration strategies. The exploration expenditures in
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these industries are exceptionally large, and the rewards of finding economically sized oil
pools or mineral deposits even larger. The minerals industry has, for the most part, taken
a traditional statistical sampling approach to geological exploration. This led to a swell of
book length publications in the 1960s and 1970s on various aspects of relative frequentist
methods applied to mineral exploration and earth science issues more generally (e.g.
Agterberg 1974; Davis 1986; Koch and Link 1970; Miller and Kahn 1962) and also to
establishment of the journal, Mathematical Geology.

In Europe, starting in the 1960s, a group of researchers at the Ecole des Mines de Paris
around Georges Matheron began developing a theory of random fields that came to be
called geostatistics. This name is somewhat misleading, because the method it describes
is not the equivalent of its cognate in the life sciences, biostatistics, but refers rather
to a specific modeling approach to spatial variation. Also, the approach is probabilistic
rather than statistical, at least within the original French school, although more recent
North American and English work has tended to blur this distinction (viz. Cressie 1991).
Nonetheless, the name has stuck and now also describes a large literature of work that
began with mining applications (Matheron 1971) but now finds application to many fields,
including environmental pollution (Ohlson and Okland 1998), groundwater flow (Marsily
1986), satellite imagery (Blodgett et al. 2000), paleobotany (McCartney 1988), and even
geotechnical engineering (Soulie et al. 1990).

The development of exploration strategy in the oil and gas industry has progressed
along a somewhat different path than that in the minerals industry. This work has been
driven more by decision theory and Bayesian probability, starting from the pioneering
PhD theses by Grayson and Kaufman under Raiffa at Harvard Business School (Grayson
1960; Kaufman 1963). Later contributors include Harbaugh et al. (1977), Lerche (1992;
1997), Newendrop (1975), as well as many others. Today, sophisticated software packages
and other tools are available to assist in the use of decision theory and statistics to oil
and gas exploration, and large annual conferences focus on the topic (SPE 2001).

6.2 Analytical Approaches to Site Characterization

Ideally, we would like to have perfect knowledge of site conditions, but, in reality,
resources are limited. Expenditures must be commensurate with both the scope of the
proposed project and with the potential consequences of using imperfect information to
make decisions. Generally, we try to obtain as much information as possible about four
aspects of site geology:

• The geological nature of deposits and formations,
• Location, thickness, and material composition of the formations,
• Engineering properties of formations as they may affect facility performance, and
• Groundwater level and its fluctuations.

The information resulting from site characterization may be distinguished, in large mea-
sure, as having either to do with geometry or with material properties. Either can be
important, and uncertainties in either geometry or material properties combines with
uncertainties in the other, as Dowding (1979) points out concerning the stability of a
rock slope with a mylonized shale interface (Figure 6.1). The factor of safety for slope
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Figure 6.1 Idealized stability – mylonite problem. (Dowding, C. H., 1979 ‘Perspectives and chal-
lenges of site characterization,’ ASCE Conference on Site Characterization and Exploration, Evans-
ton, IL, pp. 10–38, reproduced by permission of the American Society of Civil Engineers.)

stability depends both on the extent of the mylonization as well as on the properties of the
shale where the mylonization occurs. In this case, it was estimated that the mylonization
was about 40% of the potential shear surface; Dowding accurately points out that this
40% estimate is numerically just as crucial to the calculation of factor of safety as is the
residual strength value assigned to the material.

Here, both the connected extent of a critical joint surface and the shear properties of
the interface of the joint complement one another in leading to stability or instability:
connected length multiplies with frictional resistance to yield total resistance. Terzaghi
et al. (1996) argue that information on geometry comes first and that precise information
on material properties is important only if the geometry is reasonably well known. This,
of course, is the substance of Terzaghi’s argument that in specialized domains such as
dam construction the influence even of minor geometries can control performance.

6.2.1 Exploration and investigation

When we write exploration in the present discussion, we mean the process of gaining
sufficient information upon which to found important hypotheses that will later be used to
explain the detailed measurements that are made (Figure 6.2). For example, exploration
involves interpretations of regional geology and geological history, and it involves decid-
ing whether significant anomalies should be expected in site formulations. Exploration
is a process of induction and hypothesis formation. On the other hand, when we write
investigation, we mean the process of collecting the detailed measurements upon which
models and calculations can be based. For example, investigation involves statistical sum-
maries of strength or permeability test data, and it involves mapping the stratigraphy or
other geometric structures at the site. Investigation is a process both of deduction and of
statistical inference.

Obviously, both exploration and investigation are needed for site characterization. How-
ever, the development of hypotheses is not something usually modeled with probabilistic
and statistical methods. Peck (1969, 1980) has said that site characterization requires
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Figure 6.2 Nature of reasoning in site characterization, and the relationship of exploration and
investigation to the logic of inference.

familiarity with soil mechanics but knowledge of geology. That is, he places emphasis on
geology, not mechanics, because it is the awareness of earth history and the acquaintance
with case stories elsewhere that enable the engineer or geologist to ‘explain’ what is
observed within a larger framework. This framework is a set of hypotheses.

Once a set of hypotheses has been generated by which to explain the observations
made in exploration, quantitative methods of analysis and inference – that is, probability,
statistics, and decision theory – can be brought to bear on developing models of site
geometry and random process descriptions of soil or rock parameters. This latter activity
is amenable to modeling and analysis. It is the principal subject of this chapter.

6.2.2 Tasks in site characterization

Site characterization is usually organized in three stages, described variously as reconnais-
sance, preliminary investigation, and detailed investigation (Figure 6.3). The findings of
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Figure 6.3 Traditional phases of site characterization and the various tasks that are undertaken in
relation to each.

each stage are integrated with project considerations and design objectives to identify the
sorts of information to be gathered in the subsequent phase and to identify the principal
unknowns that need to be investigated.

Reconnaissance involves a general review of local and regional geology with the pur-
pose of obtaining qualitative estimates of (1) the geological nature of site formations,
(2) the engineering properties of major formations, and (3) the possibility of adverse geo-
logical details. This typically starts with a study of published documents, for example
geological and topographic quadrangles, airphotos, and records of nearby construction.
Good practice dictates that the documentary record be augmented by on-site inspection.
The products of reconnaissance are qualitative hypotheses. As Dowding (1979) notes,
many times this reconnaissance phase is not pursued as vigorously as it should be, and,
as a result, the hypotheses to be subsequently investigated by sampling and testing may
not be sufficiently well posed.

Preliminary investigation intends to collect the first quantitative information at the site
and, by so doing, to extend the reconnaissance phase by confirming qualitative hypotheses
and moving into a first set of quantitative hypotheses. The location and descriptive geom-
etry of major formations are determined by a limited number of borings, by field mapping,
and perhaps by geophysical surveys. Initial quantitative estimates of engineering proper-
ties are made, and the type and possible locations of geological anomalies are suggested.
On projects involving issues of rock mechanics, joint surveys are typically begun.

Detailed investigation seeks to confirm the quantitative hypotheses generated in pre-
liminary investigation, particularly about conditions thought to be controlling for facility
performance. Accurate information is sought on geometry and material properties through
detailed field mapping, comprehensive boring programs, and additional geophysical sur-
veys. Specimens are taken for laboratory testing, and in-situ tests are made to complement
estimates of material properties made on specimens. Anomalous details are searched for
in earnest, with the objective of either finding such features or of reducing their chance
of existing undetected to a tolerable level.

Most of the quantitative results of site characterization involve properties measured at
points (or over small volumes) and separated from one another in space. The continuity of
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strata or zones with site formations can only be inferred. It is the engineer’s responsibility
to interpret these data and to draw conclusions about site conditions between observations.
These conclusions rest primarily on the hypotheses about site geology generated during
exploration and investigation, not on the specific numerical results of laboratory and field
testing of physical properties. The importance of the sampling and test results lies in the
extent to which they lend support to the hypotheses.

Rowe (1972) suggested in the Twelfth Rankine Lecture that we categorize projects into
three groups with respect to site characterization requirements. There are those projects,
both important and risky, where the complexity of local geology necessitates extensive
investigation and design decisions require a great deal of subsurface information (Class
A). These are the sorts of projects – dams, large underground openings, and major and
sensitive structures – for which the observational method is also appropriate. Next, there
are those projects where the relationship between a modest project risk and tolerable
uncertainties in site conditions makes the question of how much exploration and investi-
gation is needed difficult to answer (Class B). These are possibly the largest in number.
Finally, there are those projects, of routine use and low risk, where relatively straightfor-
ward site conditions require little investigation (Class C). These are the routine, smaller
projects for which the costs of exploration planning and extensive testing are not justified
by reduced project risk.

6.3 Modeling Site Characterization Activities

The logical process of modeling site characterization involves the following steps
(Figure 6.4):

Hypotheses

Geological
model

F-ma Random
process
model

Observational
model

Likelihood
function

Prior
probabilities

Posterior
probabilities
(inference)

Bayes
Theorem

Figure 6.4 Modeling site characterization activities and inferences.



136 SITE CHARACTERIZATION

1. Develop hypotheses about site geology.
2. Build a random process model based on the hypotheses, which describes site geology

and engineering parameters for design.
3. Make observations (i.e. measurements) in the field or laboratory.
4. Perform statistical analysis of the observations to draw inferences about the random

process model (i.e. about the geometry of site formations and about the values of soil
or rock engineering parameters).

5. Apply decision analysis to optimize the type, number, and location of observations.

Developing hypotheses is an undertaking for which mathematics and probability provide
limited insight, relying as they do on the inductive act of conceiving explanations and
building orderly structures within which the narrowly specific observations one makes
at the site might be organized to paint a coherent picture of site geology and history.
This act is not a logical process in the sense of deductive inference, nor is it illogical; it
simply does not have to do with the formalities of logical reasoning. It is an intuitive act
of judgment.

In site characterization, the random process models we use are usually models of spatial
variation. Based on the language of probability theory, these models describe how soil
or rock structures and properties may vary in space. Since a sufficiently large number of
observations is never available with which to characterize precisely the spatial variation
of site geology, we use these random process models of spatial variation to interpolate
what might exist among the locations were we to have made the observations.

6.3.1 Probability is in the model not the ground

It is important to point out that the presumed randomness in this analysis is a part of the
model(s) we employ, not part of the site geology. The assumption is not being made that
site geology is in some way random. A convenient analogy, as used in Chapter 3, is the
deck of playing cards. Once the deck has been shuffled and in play, the (spatial) order of
the cards in the deck is not random. The order is unknown to the players, but the order is
determined. Yet, probability theory models are useful in making decisions with respect to
the play. Site characterization is much the same, only more complex. Once a formation
has been deposited or otherwise formed, and has come down to us through the vagaries
of geological time, the spatial distribution of structure and material properties is fixed.
We are ignorant of that spatial distribution, but the distribution is not random. Unlike
the deck of cards, however, a geological formation cannot be reshuffled to generate a
‘new’ trial, so the reality is a unique instance. Matheron (1989) discusses this point in
considerable depth.

We can think about these random process models of spatial variation in one of two
ways. The most common way is to presume that they are frequency (i.e. aleatory) models
of natural variation, for example, in the same way that a flood-frequency relation is a
frequency model of natural variation. The model of spatial variation reflects an inherently
random process – just like the shuffling of a deck of cards – that has generated the site.
Metaphorically, we consider an arbitrarily large number of sites generated in exactly the
way this one has been, and then we use probability theory as does the card player. Of
course, in reality there has not been a large number of similar sites; there is only one
site. So, the philosophical logic of this approach is suspect, but in practice, the results
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are useful. Unlike the card player, we get only one shuffle of the deck. This is the view
adopted by the overwhelming majority of risk and reliability practitioners and of workers
in the allied field of geostatistics.

A second way to think about these random process models of spatial variation is to
presume they are models of our information about a fixed but spatially varying realization.
Such an approach is unusual in the literature, but not unknown (viz. Gelb et al. 1974;
Matheron 1989).

In all risk and reliability analysis we deal with two distinct categories of uncer-
tainty: natural variation and knowledge uncertainty. As we discussed at greater length
in Chapter 2, this distinction is not part of nature, but part of our modeling of nature.
We take the philosophical position that, at the most primitive level, all uncertainty has
to do with limited knowledge, not inherent randomness. This is a Laplacian view of the
world. Nonetheless, it is convenient to structure our models as if some fraction of the
uncertainty we deal with has to do with irreducible randomness and then to use statistical
methods to draw inferences about the models applied to that natural variability. We do
this in seismic hazard analysis, we do this in flood hazard estimation, and we do this in
site characterization.

6.3.2 Centrality of prior probability

Uncertainty in site characterization is subjective, because it arises from limited knowl-
edge. Attempts to make this uncertainty objective are never likely to be successful. The
most important results of site characterization are hypotheses. These are generated induc-
tively, given a priori support by subjective reasoning, and confirmed to differing and
imperfect degrees by observations made at the site. This confirmation rests on the logic
of Bayes’ Theorem:

P(H |data) ∝ P(H)L(H |data) (6.1)

in which the posterior probability attributed to an hypothesis, H , given a set of data, is
proportional to the product of the prior probability of H and the likelihood of H given
the data. The likelihood of H is the conditional probability of observing the data that
we actually did observe, were the hypothesis H true. If it is probable that these data
would be observed, then the hypothesis is further confirmed; if it is improbable, then
the hypothesis is less confirmed. We see here the import of De Finetti’s (1972) well-
known saying (Chapter 2), “data never speak for themselves.” The data tell us only how
to modify a degree of belief held prior to their expression into a logically consistent
degree of belief after their expression. We have experience and knowledge of geology
that cause us to suspect conditions not directly manifest in exploration records and to
correlate physical behavior with the results of geological processes. The uncertainties we
associate with these suspicions and correlations cannot be objectively evaluated from the
records of exploration.

We see in Equation (6.1) the centrality of the Likelihood function in attributing probabil-
ities to hypotheses about site conditions. Bayesian inference is built around the likelihood
of hypotheses given the observations made. However, much of the frequentist school of
statistical estimators and confidence limits – at least that part building on the work of
Fisher – is similarly based on maximum likelihood estimation and the desirable sampling
properties of those estimators.
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Figure 6.5 Bayes’ Theorem serves to balance the ‘weight of evidence’.

The weight we give hypotheses, as expressed by their probability, exists in balance
with the likelihood of data as if on a scale, and Bayes’ Theorem is that scale (Figure 6.5).
In the early phases of site characterization we have few data, and essentially all of our
confidence or degree of confirmation in hypotheses comes from our prior, subjective
probabilities. As data accumulate, the confidence or degree of confirmation in hypotheses
starts to be influenced by the observations as manifested in the Likelihood function.
Some hypotheses are given more credibility while others are given less. As data become
overwhelming (seldom the case in a real site characterization program, of course), the
weight of observational evidence comes to dominate and the influence of the prior recedes.

6.4 Some Pitfalls of Intuitive Data Evaluation

Statistical modeling and analysis is a relatively new set of tools in the history of site char-
acterization, which leads some to suggest that the enterprise of geotechnical engineering
has gotten along fine without these methods, so why introduce them now? The intuitive
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methods of engineering judgment, based on extensive experience with site conditions,
should do just as good a job – maybe better – than mathematical methods. Surprisingly,
however, even trained statisticians are easily led astray using intuition to interpret sam-
pling observations based simply on inspection. Interestingly, the errors people make in
intuitively interpreting data are remarkably similar from one person to another, and seem
to exist somewhat independently of professional training (Kahneman et al. 1982).

6.4.1 Sample variation

When measurements are made in the laboratory or field they exhibit scatter. These mea-
surements might more generically be called observations to include things other than
instrument readings. A set of observations is typically called a sample. If the sample
comprises a large number of observations, the data scatter among the observations tends
to exhibit regularity. That is, the scatter within a sample and from one sample to another
tends to display regular patterns, and over the years statisticians have learned to catego-
rize those patterns and to use them to draw inferences about the population from which
the sample comes, the parent population. Patterns of scatter within an individual sample
are interpreted against what is known of the probable scatter among samples to make
estimates about the parent population.

For convenience, the scatter within a sample or from one sample to another is described
by a frequency distribution or histogram, and this in turn can be summarized by its low
order moments. The most useful of these are the first two moments, the mean or arithmetic
average of the observations, and the variance or mean-square variation about the mean.
Such mathematical functions of the sample observations are said to be statistics of the
data, or alternately, sample statistics, and form the basis for making inferences about the
parent population.

The law of large numbers, a fundamental principle of statistical theory, implies that,
as a sample becomes larger, the statistical properties of the sample become ever more to
resemble the population from which the sample is taken.1 The operative phrase here is,
“as the sample becomes larger.” For example, one is often interested in the average value
of some parameter or performance measure in the field, across all the elements of the
population that may not have been observed in the sample. If the number of observations
in a sample is large, it seems reasonable, and the law of large numbers confirms, that one
might use the sample average of the set of observed values as indicative of the population
average in the field. But, what about the case where the sample is not large, as is almost
always the case in geotechnical practice?

The law of large numbers says that variations of the statistics of a sample about their
counterparts in the parent population become ever smaller as sample size increases, but
for small samples these variations can be large. Presume we take many samples each
containing n test specimens from the same soil layer, and for each sample we calculate the
sample mean of tests performed on the n specimens, m. The values of m across the many
samples themselves exhibit scatter, and could be plotted as a histogram. This distribution
of the sample mean, or of any other sample statistic, is called the sampling distribution.
The sampling distribution is the frequency distribution of some sample statistic over

1 The Law of Large Numbers is more specific and limited than this colloquial interpretation (Feller 1967), but
the practical implication is quite broad. See, also, Maistrov (1974) for an historical treatment.
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repeated sampling. The theoretical variance of the scatter among the means of each of
many samples of size n is V ar(m) = σ 2/n, where σ 2 is the actual variance within the
layer. The standard deviation is sm = σ/

√
n.

The coefficient of variation of soil properties measured in the field can be as large as
100%, although values of 30–50% are more common (Kulhawy and Trautmann 1996;
Phoon and Kulhawy 1996). Thus, if ten (10) tests are made, the variation of their sample
average about the (unknown) layer average would have a standard deviation of 10–16%.
Since, under very general assumptions, the sampling distribution of the mean is approxi-
mately Normal, the range for which one would be comfortable bracketing the population
mean is, say, 2–2.5 standard deviations, or in this case between ±20–40% of the best
estimate. In other words, there is considerable uncertainty in the inference of even average
soil properties, when reasonable sample sizes are taken into account. There is, of course,
even more uncertainty about inferences of soil properties at specific locations within a
soil deposit.

6.4.2 Representativeness

Despite the fact that sampling variations can be large – and in geotechnical practice, they
are large – there is an intuitive tendency to treat sample results as representative of – or
similar to – the population from which they are taken. Most people believe intuitively that
samples should reflect the essential characteristics of the population out of which they
arise, and thus the converse, that essential characteristics of the population should mimic
those of the sample. People’s intuition tells them that a sample should be similar to the
population from which it comes, but that is only true in the limit, as sample sizes become
large. This leads to errors. Speaking strictly, representativeness is a property of sampling
plans, not of samples. A sampling plan is representative of the population being sampled if
every element of the population has an equal chance of affecting the (weighted) properties
of the sample (Cochran 1977), and from this one speaks of ‘representative sampling.’ A
sample, in contrast can never be representative; it is a unique collection of particular
elements within the population, and each such collection has different properties.

Take, for example, the string of sample outcomes deriving from six tosses of a coin,
{H,H,H,H,H,H}. Most people intuitively think of this string as less likely to occur than,
say, the string, {H,T,T,H,T,H}, even though each has the same probably: (1/2)6. This is
akin to the Gambler’s Fallacy that if heads has not appeared in some time, it is overdue
and should occur with increased probability. Intuition tells us that the sample should
represent the population, that is, be similar to the population in salient aspects, and in
short runs as well as long. In this case, the sample should have about the same number
of heads as tails, and the sequence of heads and tails should be ‘random,’ that is, erratic.
That this is a misperception is obvious to anyone who thinks about it, but our intuition
tells us otherwise.

The same thing is true of samples of geotechnical observations. We presume them to
be representative of the geotechnical population out of which they arise. The averages
within the sample ought to be about the same as the averages in situ. The variability
of observations ought to be about the same as the variability in situ. Spatial patterns of
variation among the observations ought to mirror spatial patterns in situ. All of these things
are true in the limit, but for small samples they are compromised by sampling variability,
and they may be profoundly untrue. Small samples of the size typical in geotechnical
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practice seldom display the salient properties of the population; the variability among
sample outcomes is simply too great.

6.4.3 Overconfidence

The intuitive belief in representativeness leads people to believe that important charac-
teristics of a population should be manifest in every sample, no matter the sample size.
Yet, we know from statistical theory that this is not true: small samples exhibit large
variation from one to another. This leads people to put too much faith in the results
of small numbers of observations and to overestimate the replicability of such results.
If tests are repeated, people have unreasonably high expectations that significant results
will be replicated. Thus, the ten (10) observations of field performance are made, and
one is surprised that the next set of ten yields a 30% difference in average results. A
person’s typical response is not to ascribe this difference to perfectly normal statistical
variation but to seek a cause for the difference. The engineering literature is filled with
well-intentioned attempts to explain away differing sample results, when in fact, such
explanations are totally unnecessary. The explanation is normal sampling variation.

A corollary to this belief in the representativeness of small samples is the overconfi-
dence even scientifically trained people place in their inferences or estimates of unknown
quantities. In a famous early study, Alpert and Raiffa (1982) demonstrated that when peo-
ple are asked to place 25–75% or 5–95% confidence bounds on estimates of unknown
quantities, the true values of the quantities being estimated fall outside the assessed bounds
considerably more often that the nominal 50% or 10%, respectively. Often more than half
the real values fall outside 5–95% confidence bounds people estimate. This result has
been replicated in another early study by Folayan et al. (1970) involving engineers’ esti-
mates of the properties of San Francisco Bay Mud, and by Hynes and Vanmarcke (Hynes
and Vanmarcke 1976) involving predictions of embankment height at failure for the MIT
I-95 Test Embankment.

As reliability analysis becomes increasingly important to geotechnical practice, it is
sometimes suggested that an expedient way of assessing the standard deviation of an
uncertain quantity is by eliciting the maximum and minimum bounds one could conceive
the quantity having, and then assuming that this range spans a certain number of standard
deviations of variation, typically, ±3 σ . The reasoning is that for a Normal variate, ±3
standard deviations spans 99.75% of the variation. However, if people are overconfident
of their estimates of uncertain quantities – which we know them to be – then people will
frequently be surprised in practice to find their maximum and minimum bounds exceeded.
Thus, the ‘six-sigma’ rule is unconservative, and possibly quite significantly. This can also
be seen in Figure 6.6, in which the expected range of sample values, rn = |xmax − xmin|,
for a Normal variate is plotted as a function of sample size. Even for samples as large
as n = 20, the range expected in a sample is less than four standard deviations. The
reciprocal of this expected range, in fact, makes a useful estimator of standard deviation,
and one with known sampling properties (Snedecor and Cochran 1956).

6.4.4 ‘Law of small numbers’

In a series of papers in the 1970s, Tversky and Kahneman described the systematic
difference between the way people perceive probability and the way statistical theory
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Figure 6.6 Expected range of Normal sample in standard deviation units (Snedecor and Cochran
1956).

operates (Kahneman and Tversky 1982a; Kahneman and Tversky 1982b; Kahneman and
Tversky 1982c; Tversky and Kahneman 1971; Tversky and Kahneman 1974). That body
of work, and the studies that followed, are sometimes referred to as the heuristics and
biases school of thought on subjective probability (viz. Morgan and Henrion 1990).

This work emphasizes that the use of representativeness to judge probabilities is fraught
with difficulty, because it is not affected by factors that should influence judgments of
probability. Important among these are the overconfidence described above, a disregard
for base rates (a priori probabilities), and ignorance of common regression effects. The
concept that observers presume samples to be representative of the population seems
benign, but it leads to serious errors of judgment in practice. Tversky and Kahneman
dubbed this, ‘The Law of Small Numbers,’ which states that the Law of Large Numbers
applies to small numbers as well.

This overlooking of sample size occurs even when a problem is stated so as to empha-
size sample size, and in many different contexts. Consider, for example, a question in
flood hazard damage reduction. A river basin is analyzed in two different ways to assess
levee safety. In the first case, the river is divided into 10 mile (16 km) long reaches; in
the second, the river is divided into 1 mile (1.6 km) long reaches. Would the average
settlements among the levee reaches be more variable in the first case, the second case,
or about the same? Of an admittedly unscientific sample of 25 engineers, seven said the
first (more variation among long reaches), six said the second (more variation among
short reaches), and 12 said about equal. Clearly, the long reaches have the least variation
among their average settlements, because they are larger samples.

6.4.5 Prior probabilities

A second manifestation of representativeness is that people tend to overlook background
rates and focus instead on the likelihood of the observed data when drawing conclu-
sions. Sometimes representativeness leads people to place undue importance on sample
data (because they “should be similar to the population”), and in so doing ignore, or at
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least downplay, prior probabilities (the latter sometimes referred to as base-rates in the
heuristics and biases literature). As a simple example, in risk analyses for dam safety
a geologist might be asked to assess the probability that faults exist undetected in the
bottom of a valley. Noting different rock formations on the adjoining valley walls, he or
she might assign a high probability to faulting, because of the association of this condition
with faulting, in spite of the fact, say, that the base-rate of faulting in the region is low.
The two sources of evidence, prior probability and likelihood, should each influence the
a posteriori probability (Equation (6.1)), but intuition leads us to focus on the sample
likelihood and, to some extent, ignore the prior probability.

6.5 Organization of Part II

The second part of this book looks at a number of specific aspects of how we can formally
model site characterization activities and draw statistical conclusions from the observations
made in exploration and investigation. It begins with a review of the variability of typical
soil and rock engineering properties encountered in site characterization, starting with
index properties and then turning attention to strength, deformation, and permeability. It
then considers the issues involved in classifying site conditions into identifiable groups and
mapping those groups over space. Next, it discusses the spatial variation of engineering
properties within formations that are judged to be ‘homogeneous.’ Finally, the section
concludes with a discussion of the search for anomalous geological details.





7 Classification
and Mapping

Among the most basic tasks of site characterization is to map local and regional geolog-
ical formations, create vertical profiles (or cross sections), and infer the continuity and
homogeneity (or lack thereof) of important deposits. This mapping attempts to divide the
three-dimensional site into coherent formations or strata; identify, interpolate, and charac-
terize structural features that form the boundaries among formations and strata; and relate
these formations or strata to regional geological processes and trends. Conventionally,
this has been done by observing the geological nature of a finite number of locations and
inferring contacts among formations.

We, as a profession, have a great deal of experience with geological mapping. Nonethe-
less, probability theory and statistics have been relatively little used in rationalizing how
we do this mapping, and the undertaking is often viewed as more art than science. As
a consequence, there are fewer tangible results in the literature on quantitative mapping
than on other aspects of quantitative site characterization. This is a shame, and it is likely
to change, because increasing use of remote sensing, global positioning, and other sensing
technologies has generated an abundance of data on geology that could feed more rational
and efficient approaches to mapping. Many of the topics considered in this chapter find
equal applicability to regional geological mapping as to local site mapping.

Probability theory and statistics can aid this process of geological mapping in at least
two ways. First, they can be used to make inferences about the geology of unobserved
parts of a site (or region) that are more powerful than those based on intuition, and
those inferences can be associated with measures of precision and accuracy. Second, they
can be used to optimize the way exploration effort is allocated across a site or among
different means of collecting data, balanced against competing investments in sampling
for material properties or finding geological anomalies. In principle, they should be able
to inform the process of site characterization on “how much mapping effort is enough,”
but as we will see, this question is more difficult to answer than one might hope because
the consequences of uncertainty in the products of mapping programs are often difficult
to measure and sometimes even ill-defined.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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The development of a comprehensive theory of quantitative mapping is a big under-
taking, but the rewards are enticing. Such a theory would afford measures of potential
confidence to be placed on projections, techniques for economizing expensive allocations
of effort, and facility for rational design decisions based on mapped information. Such
a theory might also usher in the use of machine constructed geological maps, including
favorable subsequent allocations of effort as output. Haralick and Dinstein (1971) have
developed automated procedures for clustering geographical phenomena and producing
area classification maps directly from raw satellite photographs.

7.1 Mapping Discrete Variables

The attributes portrayed on geological maps are of two types: discrete and continuous. This
chapter treats the former. Continuous attributes are considered in Chapters 9 through 11.
A common geological map, like those provided by the USGS in the U.S. or Royal
Geological Survey in the UK, assigns to each location at a site one of several discrete
classes of attribute, for example, formation name or lithology. Geotechnical maps typically
assign a soil type or name to each location, which itself may be a compound description
combining many different physical attributes, for example, a “silty soft green clay with
traces of organics.” But this compound description describes a soil judged to be in pertinent
respects the same, no matter where it exists at the site. Some limited subset of these
locations have actually been directly observed, while most locations at the site have been
interpolated or extrapolated from this subset of direct observations, and thus these are to
one degree or another uncertain classifications.

Discrete maps are constructed by observing and classifying geology at a finite number
of locations. Sometimes these observed locations are in the two-dimensional plane of
the ground surface, and sometimes in the three-dimensional space of the subsurface.
Sometimes the observations are made at points, sometimes within small areas. In principle,
this dimensionality of the observations and whether the observations are point values or
area averages should make no difference to our modeling of the enterprise. From this
set of observations, classifications are inferred for all the other, unobserved locations at
the site. The way people typically make these classifications at unobserved locations (i.e.
construct the full map) is very much an inductive process. People recognize patterns in the
site geology. Based on these patterns, and based on the individual’s knowledge of geology
and experience at other sites, he or she will interpret and infer geological structures to
exist, and on the basis of these inferred structures, extend the perceived patterns into
maps. Those perceived patterns may or may not actually exist at the site, and, even if
they are accurately interpreted, the extrapolations and interpolations across the site may
be subject to error.

All of this is difficult to model mathematically. The difficulty can be judged by con-
sidering a parallel problem out of another discipline: automated face recognition with
computers. Given the photograph of some unidentified person, from which measurable
features can be abstracted, such as eye color and position, the height and width of the
nose, and so forth, whose face is this? This is a problem of pattern recognition. Pattern
recognition is a problem of classification. Then, given that we have made a guess at
whose face this is, what does the rest of the body look like, and does he or she have
the right of access to this facility? This is a problem of extending the pattern, sometimes
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referred to as pattern reconstruction. Pattern reconstruction is a problem of interpola-
tion or extrapolation. A great deal more work appears in the various engineering and
mathematical literatures on pattern recognition, which has been fairly well-researched in
computer science and artificial intelligence, than on pattern reconstruction, which is more
inductive and thus subjective.

7.2 Classification

The first step in mapping (Figure 7.1) is to classify individual observations, each within
one of a number of discrete categories. As a simple example, soil cores from a split spoon
are classified with respect to soil type, and subsequently these classified data are used to
create a soil profile showing the locations, depths, and continuities of soil strata underlying
a site (Figure 7.2). In the case of soil type, the classifications are made by visual inspection
and are seemingly straightforward. This is not the case when the borders among classes are
fuzzy, when indirect measurements such as geophysical signals are used, or when multi-
attribute data are used to classify observations. In these cases a more robust approach
than simple inspection is needed, and this approach is statistical classification analysis.

7.2.1 Pattern recognition

Statistical classification analysis, sometimes called statistical pattern recognition, is a
well-developed set of techniques that have been widely used in biology, archeology,

Observe finite number of
locations

Classify observations into
discrete types

Measure "uncertainty" in
mapped attributes

yes

no

Develop (optimum)
exploration plan

Infer classifications at
unobserved locations

More information?

Figure 7.1 Logic flow chart for discrete mapping of the type used in developing geological maps.
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Figure 7.2 Soil profile constructed from individual soil cores classified as to soil type, and ‘dia-
gram illustrating the writer’s hypothesis concerning the origin of the artesian pressure.’ (Terzaghi,
K., 1960. From Theory to Practice in Soil Mechanics: Selections from the Writings of Karl Terzaghi,
with Bibliography and Contributions on his Life and Achievements. New York, John Wiley & Sons,
 John Wiley & Sons 1960, reproduced with permission.)

computer science, and other fields for separating observations into discrete classes. For
example, skeletal remains of fossilized fishes might be classified into species type on
the basis of a suite of geometric measurements of length, height to width ratio, jaw
length, and so on. The frequency distributions of any one of these attributes may overlap
from one species to another, but taken together, the set of measurements allows individual
specimens to be assigned to a species (i.e. class) with the minimum error rate. These same
statistical techniques have found application to geotechnical engineering in the question
of classifying soil profiles subject to seismic ground shaking as being either, (A) prone
to liquefaction, or (B) not prone to liquefaction, based on SPT blow counts, peak ground
acceleration, and fines content (Christian and Swiger 1975, 1976; Liao et al. 1988).

Some classification tasks are obvious and may be accomplished by inspection, for
example, logging a core run visually by rock type. Others are not so obvious and require
analytical or statistical techniques, for example, logging a drill hole using geophysical logs.
The classification problem in geological mapping is this: given measurements of a limited
number of physical properties on a particular specimen or observed location, to which
geological class should the specimen or location be assigned such that some decision
criterion is optimized (e.g. the most likely class, the class maximizing some expected
utility, or so forth)? Figure 7.3 shows data from a geophysical core in a sedimentary
formation consisting principally of sandstones, shales, and limestones. Assigning stratifi-
cation by lithology to this run based only on the geophysical properties is an example of
a (statistical) classification problem.

The first step in classification is extracting features, sometimes also called factors, to
form the basis for deciding to which class an entity belongs. These are the measured
values that are used to make the classification decision. In the example of the archeo-
logical fishes, these features were length, height-to-width ratio, and jaw length. In the
liquefaction example, these features were SPT blow count or CPT value, estimated peak
ground acceleration at depth, earthquake magnitude, and fines content. In the geophysical
profile example of Figure 7.3, these features were self-potential and electrical resistiv-
ity. The features can be any measure against which the alternate classes have frequency
distributions that differ from one class to another and therefore provide discriminatory
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Figure 7.3 Geophysical core in a sedimentary formation consisting principally of sandstones,
shales, and limestones. The problem is to classify the lithology of each depth interval based on the
geophysical properties alone. (Krumbein and Sloss 1963.)

information for judging the class to which an entity likely belongs. The approach is a
traditional Bayesian comparison of likelihoods: the greater the Likelihood function for
one class relative to another class, based on the actually observed feature data, the greater
the probability of the class being correct for the entity on which the feature measurements
were made.

7.2.2 Bayesian classification

Let there be n classes to one of which an entity might belong, w1, . . . , wn; and m factor
measurements upon which the classification is to be made, x = {x1, . . . , xm}, in which
the vector x is the set of measurements. The prior probability mass function (pmf) of
the entity belong to class wi is p(wi), for i = 1, . . . , n, and may be uniform if no prior
information is available on classification. The Likelihood (i.e., conditional probability)
of the measured vector x given the class wi is L(wi |x) = Pr{x|wi}. Then, by Bayes’
Theorem, the posterior pmf that the entity belongs to class wi given that the set of
measurements x has been made, follows as,

p(wi |x) ∝ p(wi)L(wi |x) (7.1)

in which the normalizing constant of the proportionality is �ip(wi)L(wi |x). So, the
basis of classification is a simple decision under uncertainty: classify an entity as one
of the n classes based on the posterior pmf of its membership (Equation (7.1)), such
that the appropriate utility function or other criterion of cost and loss in the case of
misclassification is optimized.

If the utility (e.g. cost) of each type misclassification is the same, minimizing the prob-
ability of misclassification maximizes expected utility. This probability is minimized by
assigning the entity to the most probable class (e.g. max i {p(wi |x)}). Since the normaliz-
ing term in Equation (7.1) is a constant, this criterion is the same as max i {p(wi)L(wi |x)},
or max i {lnp(wi) + lnL(wi |x)}, the latter being convenient when the likelihood function
is exponential, as it often is in practice. If the utility of each type misclassification is not
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the same, but can be expressed as the function u(i, j), which is the utility of deciding
that the class of the entity is i when the correct class is j , then the Bayesian optimal
classification decision is max E(u) = maxi{p(wi |x)u(i, j)}. This is a standard statistical
decision problem (Figure 7.4).

Consider an example from oil exploration. Shoestring sands are elongated sandstone
deposits formed by the burying of near-shore sand bars or of ancient streams. The mode
of deposition is important to reconstructing subsurface maps because the plan view shapes
of the two deposits differ from one another: bar deposits more resemble low-order polyno-
mials, whereas stream deposits are more sinusoidal and therefore more difficult to project.
Several features might be used to differentiate bar deposits from stream deposits, but for
simplicity we consider only one geometric feature, the ratio of arc length along known
locations of the body to the linear separation of the end points (Figure 7.5), which might
be called the ‘straightness index’ or SI.

From empirical data on shoestring sands, the frequency distributions of straightness
index could be evaluated as shown schematically in Figure 7.6. Let the classes be
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Figure 7.4 Decision tree for classification problem. A class is selected from the n classes,
w1, . . . , wn, and depending on the actual class, a utility u(i, j) is achieved. The ‘best’ classification
is that which maximized the expected value of the utility over the pmf of the wi .
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Figure 7.5 Definition of ‘straightness index’ or SI for shoestring sand deposit: SI = arc
length/linear separation. Filled circles show borings intersecting sand deposit; open circles show
borings not intersecting sand deposit. Dashed line shows supposed centerline of sand deposit.
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Figure 7.6 Hypothetical likelihoods of straightness index for near-shore bar deposits and for
stream deposits.
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Figure 7.7 Probability distributions (cdf) for straightness index for a limited sample of shoestring
sand deposits from near-shore bars and streams (Baecher 1972).

w1 = stream deposit, and w2 = near-shore bar deposit. Following our classification pro-
cedure, assuming the utilities u(i, j) to be constant, the SI of the formation in question is
measured and the formation assigned to class w1 or w2 depending on which class max-
imizes Equation (7.1). Assuming the prior probabilities equal, the decision rule reduces
to “assign the formation to w1 if SI > x0, or to w2 otherwise.”

Figure 7.7 shows empirical data collected for a limited sample of bar and chan-
nel type deposits (Baecher 1972). Let w1 and w2 be defined as before, and assume
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Figure 7.8 Calibrating data for downhole geophysical measurements to classify sandstone and
shale with respect to the factors self-potential and resistivity (LeRoy 1951).

p(w1) = p(w2) = 1/2. Then from Equation (7.1),

p(w2|SI = 1.12) = p(w2)p(SI = 1.12|w2)

p(w1)p(SI = 1.12|w1) + p(w2)p(SI = 1.12|w2)

= 0.83 (7.2)

p(w1|SI = 1.12) = 1 − 0.83 = 0.27

Were another shoestring deposit in the same vicinity and of about the same age as the
Silverville known to be bar-type, the prior probabilities might no longer be uniform.
Assume, p(w1) = 1/4 and p(w2) = 3/4; then

p(w2|SI = 1.12) = 0.94

p(w1|SI = 1.12) = 1 − 0.94 = 0.06
(7.3)

which is stronger than with uniform priors, as would be expected.
Posterior probabilities of classifications (Equation (7.1)) depend on the factor or sets of

factors used to make the classification decision. Some sets lead to greater deviations of the
expected likelihood ratio, L(wi |x)/L(wj |x), than do others. A set of factors that leads to
large expected deviations is said to have high resolution. One that leads to small expected
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deviations is said to have low resolution. Other things equal, factors having high resolu-
tion are favored to those having low resolution, because they lead to lower probabilities of
misclassification and fewer factor measurements when classification is performed sequen-
tially. The use of multiple factors increases resolution but also increases cost. Sometimes,
instead of using the best subgroup of factors from a large number of possible factors,
dimensionality reduction is used. This simply refers to forming linear combinations of
the original factors, thereby reducing their number to a convenient size (Duda et al. 2001).
The linear discriminant function used in traditional frequentist sampling theory (Kendall
et al. 1994) is a dimensionality reduction.

7.3 Discriminant Analysis

When the number of items to be classified becomes large, evaluating Equation (7.1) for
each of them becomes infeasible. If, however, a map of factor space (the space over
which x is defined) could be partitioned into regions of similar ‘best’ classification, then
classification could be accomplished simply by noting where the vector x plots in this
partitioned space. This is the underlying concept of discriminant analysis. Discriminant
analysis is a widely used statistical tool in many branches of science (Huberty 1994;
McLachlan 1992; Rao and Toutenburg 1999).

7.3.1 Bayesian discriminant analysis

Consider the geophysical log of Figure 7.3. Here is a case where a pre-analysis of the best
classification of rock type could be made over the space of self-potential and electrical
resistivity and the borings automatically logged from the digital records. The borings
penetrate interbedded sandstones and shales. The question is how to use the observations
of the factor vector,

x = {self-potential, electrical resistivity} (7.4)

to discriminate best between the rock types.
Given sample (i.e. calibration) data from logs for which a physical core was recov-

ered, we first need to evaluate the conditional probability densities of the factors the two
lithologies. Much of the difficulty in determining the factors’ conditional probability den-
sities rests with the assumptions made at the outset. We can simplify the task by assuming
the factors to be statistically independent. The validity of this assumption is sometime
questionable, but it reduces the two-dimensional problem to two one-dimensional prob-
lems. If we also assume that the density functions are members of particular families of
distributions (e.g. Normal, Beta, etc.), the problem reduces to estimating the parameters
of the distribution.

A common assumption in practice is that the marginal distributions of the factors (i.e.
the marginal Likelihood functions)

x1 = self-potential ∼ N(µ1, σ1) (7.5)

x2 = electrical resistivity ∼ N(µ2, σ2) (7.6)



154 CLASSIFICATION AND MAPPING

are independently Normal, with means µ1 and µ2, and variances σ 2
1 , and σ 2

2 , respectively.
The joint pdf of x = {x1, x2} is then

f (x1, x2) ∼ MN(µ, �)

= 1

2π |�|1/2
exp

{
−1

2
(x − µ)t�−1(x − µ)

}
(7.7)

where MN is the multi-Normal distribution, with (vector) mean µ = {µ1, µ2} and covari-
ance matrix

� =
[

σ 2
1 0

0 σ 2
2

]
(7.8)

The parameters, µ and �, being presumably different for the alternative classes, sandstone
and shale. The likelihood for an observation, x, is the value of this joint density function
at x, and the posterior pmf over {shale, sandstone} is found by Equation (7.1).

If the prior pmf is Uniform (i.e. p(x1) = p(x2) = 1/2) and the utilities of misclassifica-
tion are constant over i, j , then the classification rule based on the ‘most probable class,’
(i.e. max i{p(wi |x)}) is to maximize the kernel of the joint Likelihood by minimizing the
term in the exponent

if

{
(x − µsh)

t�−1
sh (x − µsh) < (x − µss)

t�−1
ss (x − µss), then ‘shale’

otherwise, then ‘sandstone’
(7.9)

in which the subscript indicates the class to which the statistical parameters apply. Cal-
ibrating data from LeRoy (1951) were used to estimate marginal density parameters for
the distributions of Equations (7.5) and (7.6). The results, in the relevant units, were
µsh = {15.3, 24.4}, µss = {33.3, 73.7}, and

� =
[

243 0
0 433

]
(7.10)

Combining these parameter estimates with the decision rule, Equation (7.9) gives the
linear rule (partition) shown in Figure 7.8. This is a line passing through the point
(1/2)(µsh + µss), and normal to �−1(µsh − µss) (Rao and Toutenburg 1999). Strata whose
factor vectors plot above and to the right of the decision boundary are classified as
sandstone; those to below and to the left are classified as shale. The error rates for
this classification rule can be found from the volumes under the respective pdf’s of
x on the misclassified side of the partition. That is, the error rate for misclassifying
shale as sandstone is the volume under the joint pdf for x given shale above and to the
right of the line. Breitung (1994) provides algorithms and approximations for calculating
such volumes.

Relaxation of the assumptions of Normality and common covariance matrix, and treat-
ment of other variants such as non-linear and non-parametric discrimination are treated
by McLachlan (1992), among others. The use of sequential methods in classification
problems has received considerable attention, but is beyond the present scope. Fu (1968a,
1968b, 1970) discusses the theory of sequential classification as applied to optical char-
acter recognition, and McLachlan (1992) presents a more current survey of statistical
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Figure 7.9 In one or two dimensions the determination of clusters within factor space may be a
simple matter of inspection. This is not the case for higher dimensions.

pattern recognition. Baecher (1972) discusses the use of sequential methods in geological
exploration.

In practice, the population parameters µi and �i must themselves be estimated from the
sample, and for this, a straightforward inference via Bayes’ theorem is used (Chapter 4)
to develop a obtain a joint pdf f (µi , �i | data). This pdf can be used to form a predictive
pdf over the classification equations (Aitchison and Dunsmore 1975). Duda et al. (2001)
treat this problem in more detail.

7.3.2 Frequentist discriminant analysis

Discriminant analysis within the frequentist school is conceptually similar to the Bayesian
treatment, except that (1) prior probabilities on class membership are generally disallowed,
and (2) in considering the statistical issues attending imprecisely known likelihood func-
tions for the respective classes, probabilities are placed on the repeated sampling activity
of estimating the discriminant function (i.e. the dividing boundary) rather than on the
probabilities of correctly or incorrectly classifying a particular observation.

Confusion sometimes arises in comparing the Bayesian and frequentist approaches to
discriminant analysis. This comes about because discriminant analysis deals with two
types of probability. The discriminant (i.e. classification) problem itself is formulated
as a probabilistic model, much as, say, Bernoulli trials are a probabilistic model. Two
questions arise upon which Bayesian and frequentist approaches to the problem differ.
This first is, given that we know the relevant pdf’s of the class populations (i.e. moments
of the distributions), what statements can be made about the probable class membership
of a unique observation. Within the Bayesian school, the answer is clear: assess a prior
pmf, informative or not, and apply Bayes’ Theorem. Within the frequentist school the
answer is the same if a prior pmf is known, which it usually is not; otherwise, the answer
is to express the uncertainty of classification as error rates over many trials, conditional
on the true but unknown classification.

The second point of confusion is the treatment of statistical uncertainty in the parameters
or distributional form of the pdf’s describing the classes. Since we usually have only
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limited numbers of observations from which to infer these pdf’s, the estimates of moments
of the respective distributions are uncertain. The Bayesian approach treats this statistical
uncertainty just as it does the statistical uncertainty in a Bernoullian model: it expresses
the parameter uncertainty in pdf’s and then forms a predictive distribution by integrating
over the parameter uncertainty. The frequentist approach treats this statistical uncertainty,
also, just as it does the statistical uncertainty in a Bernoullian model: it considers the
sampling variability of possible sets of observations and then assesses best estimators and
confidence intervals.

As in the Bayesian example, the goal is to establish a mathematical equation, using the
factor values as arguments, that in some ‘best’ way discriminates among populations. The
common approach has been to consider discrimination as related to regression analysis,
in that a (usually) linear function of the factor values,

V = b0 + b1x1 + · · · + bnxn = btx (7.11)

is sought that best distinguishes among populations. This value V is sometimes called
the discriminant score. Following Fisher’s original work (Fisher 1936), the regression
coefficients are taken to be values that maximize the distance between the respective
means of two populations, chosen to make the ratio of between-group variance relative to
the within-group variance as large as possible (Figure 7.9). The discriminant score is found
by multiplying the discriminant weights associated with each factor by the corresponding
factor values, and summing over the thus weighted factors of Equation (7.11), creating a
projection as shown in Figure 7.10.

The original solution to the two-class discriminate analysis problem is due to Fisher,
who developed the method in dealing with biological taxonomy. Assuming, as in earlier
subsections, that the class means and covariance matrices are µi and �i , respectively,
and that the latter have common value, �, Fisher suggested maximizing the ratio of the
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Figure 7.10 Illustration of the two-class discriminant analysis.
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squared distance between class means to the within class variance

� = (btµ1 − btµ2)

bt�bt (7.12)

over the weights b. The formulation makes no assumptions on the distributional forms
of the underlying classes, other than that they have a common covariance matrix, �. The
solution is to set b proportional to �−1(µ1 − µ2).

This result can also be obtained from an approach originally due to Wald (1944) in
which the probability ratio between the pdf’s of two Normally distributed classes with
common covariance matrix is set to equal a constant. This leads to the following decision
rule for assigning an observation to class 1:

if

{
xt�−1(µ1 − µ2) − 1

2 (µ1 + µ2)�
−1(µ1 − µ2) > k, then Class 1

otherwise, then Class 2
(7.13)

in which k is a constant, usually, k = 0. Note, the first term in Equation (7.13) is just,
bt [x − 1

2 (µ1 + µ2)], Fisher’s linear discriminant function. Building on Fisher’s original
work, which does not rest of parametric distributional assumptions for the pdf’s of the
respective classes, we should expect that discrimination according to Equation (7.13) is
reasonably robust, which it is. Also, as should be expected from Figure 7.10, the solution
is not unique, only the ratios among the weights are. Anderson (1984) provides greater
detail on the derivation of this and related mathematical results, while Everitt and Dunn
(2001) provide a more tutorial introduction.

Using this rule, the probabilities of misclassification of observations in class 1 and class
2, respectively, are (Anderson 1984)

P(2|1) =
∫ c

−∞
1√
2πα

exp

(
−1

2
(z − 1

2α)2/α

)
dz

=
∫ (c−1/2α)/

√
α

−∞
1√
2π

exp

(
−1

2
y2

)
dy (7.14)

P(1|2) =
∫ ∞

c

1√
2πα

exp

(
−1

2

(
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2
α

)2

/α

)
dz

=
∫ ∞

(c+1/2α)/
√

α

1√
2π

exp

(
−1

2
y2

)
dy (7.15)

in which α = �−1(µ1 − µ2)�
−1(µ1 − µ2). The advantage of the transformed integrals

is that they can be evaluated from tables of the Normal distribution.
In practice, the population parameters µi and �i must themselves be estimated from

the sample, and for this, the sample mean and sample covariance matrix are used. The
statistical sampling properties of these estimators and the resulting sampling properties of
the estimates of the discriminant boundary are discussed by Kendall et al. (1994).

7.3.3 Categorizing liquefaction data

One problem of discriminant analysis and classification that has seen a good deal of
attention in the geotechnical literature is that of liquefaction. When a saturated, fine, loose
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sand is subjected to vibratory motions, such as those caused by an earthquake, the sand
can liquefy, losing almost all its shear strength and possibly flowing like a dense fluid.
Structures supported on such liquefying soil may fail catastrophically, and, indeed, the
literature contains many references to liquefaction either during or immediately following
earthquakes (Richter 1958). The Niigata earthquake of 1964 was notable for dramatic
photographs, many times reprinted, of completely intact apartment buildings capsized and
overturned due to liquefaction beneath their shallow foundations. The question is: how to
decide whether a soil formation is subject to liquefaction in the event of an earthquake?
This is the question addressed using statistical methods of discriminant analysis and
classification.

In deciding whether a formation is subject to liquefaction, one normally considers two
things: the level of ground shaking to which the formation is likely to be subject (i.e.
the ‘load’), and the dynamic resistance of the soil to the stresses induced by that ground
shaking (i.e. the ‘resistance’). The load is related to the intensity of ground shaking, which
in turn is usually measured by peak ground surface acceleration of the design earthquake.
Other measures could be used, but this is the most common. To compare field observations
with measurements taken in the laboratory under controlled conditions, the peak ground
acceleration may be modified by a stress averaging factor, usually taken to be 0.65, which
relates the irregular time history of earthquake acceleration to the steady cyclic loading
used in laboratory tests.

The resistance is related to soil density, fines content, and other factors. This is usually
empirically associated to Standard Penetration Test (SPT) blow count. These SPT blow
counts were converted into apparent relative densities by the relationships of Gibbs and
Holtz (1957) or others or otherwise manipulated to remove the effects of different over-
burden pressures at different depths. In recent years, the data sets using SPT to predict
liquefaction potential have been augmented by, and compared to, data based on Cone
Penetration Test (CPT) and various geophysical measurements, yet SPT remains the most
common in situ measurement upon which resistance to liquefaction is predicted.

In 1971, based on a series of studies conducted during the late 1960’s (Seed and Idriss
1967; Seed and Lee 1966; Seed and Peacock 1971), Seed and Idriss (1971) published
a famous paper reporting empirical data on observed liquefaction and non-liquefaction
events that occurred during or after a large number of earthquakes, comparing those
observations against cyclic shear stress ratio (CSR) and dynamic resistance, in turn a
function of modified SPT blow count expressed as relative density, DR (Figure 7.11).
This created a two-dimensional chart showing two clusters of data, the ‘black dots’ and
‘white dots’ in the figure, corresponding, respectively, to the liquefied and non-liquefied
cases. The authors separated the two clusters by visual inspection to yield a discriminant
line for classifying future cases. This line errs to the side of minimizing the number
of liquefaction data misclassified while allowing the error rate for misclassifying non-
liquefaction cases to rise. That is, this is not the equi-probable discriminant curve, but a
conservative one biased to enlarge the area of factor space allocated to ‘liquefaction.’

Christian and Swiger (1975, 1976) analyzed the same liquefaction problem using linear
discriminant analysis on a data set of 39 cases, overlapping but not exactly the same as
the data set used by Seed and Idriss. Because the various sites represented in the data
set had different depths of overburdened and different elevations of the water table, the
peak ground surface acceleration values were multiplied by the ratio of the total vertical
stress at the critical point to the effective vertical stress at the same point. This ratio was
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Figure 7.11 Empirical data showing observed cases of liquefaction and non-liquefaction plot-
ted against dynamic stress and cyclic resistance (after Seed and Idriss 1971 and Christian and
Swiger 1975). (Christian, John T., and Swiger, William F., 1975, ‘Statistics of liquefaction and
SPT results’, Journal of the Geotechnical Engineering Division, reproduced by permission of the
American Society of Engineers.)

thought to account approximately for the effect of overburden above the saturated material
being analyzed. This ratio had a maximum value of 2.0, if the ground water level was at
the surface, and a minimum of 1.0. The averaging factor of 0.65 was not included. Soil
densities were taken as ‘apparent relative densities’ using the Gibbs and Holtz relations.

Probability paper plots of the X = {ln(CSR), (N1)60} data, separated into liquefaction
and non-liquefaction cases are shown in Figure 7.12, suggesting that the data are well-
modeled by logNormal distributions. Sample statistics for the two data sets are shown in
Table 7.1, suggesting also that the covariance matrices for the two data sets are similar.
The discriminant function value V was then calculated by Equation (7.13), yielding the
regression form

V = −1.4964 ln A + 4.8165 ln Dr − 21.6221 (7.16)

The value of V is chosen from the probability that a new point actually belonging to class
2 will seem to fall on the class 1 side of the line, e.g. a case of actual liquefaction having
data that would indicate no liquefaction. This, in turn, in found from Equation (7.15).
The procedure is to select a desired value of the probability of mislabeling and to invert
Equation (7.15) to obtain the corresponding value of V .

Figure 7.13 shows the 20% probability line obtained from a discriminant analysis based
on Christian and Swiger’s data (note, on a logarithmic grid this is a straight line). The
averaging factor of 0.65 has been re-introduced for this plot for compatibility with other
similar plots.
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Figure 7.12 Cumulative probability plots of (a) liquefied and (b) non-liquefied data, suggesting
logNormality of the frequency distributions (after Christian and Swiger 1975). (Christian, John T.,
and Swiger, William F., 1975, ‘Statistics of liquefaction and SPT results’, Journal of the Geotech-
nical Engineering Division, reproduced by permission of the American Society of Engineers.)

7.3.4 Logistic regression

Another approach to classifying observations among classes is logistic regression. This
approach has become popular in recent years because it requires fewer assumptions than
traditional discriminant analysis and therefore is considered more robust. For the multi-
Normal case with common covariance matrix, linear logistic regression gives the same
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Table 7.1 Sample statistics for liquefied and non-liquefied data of Figure 7.12
(after Christian and Swiger 1975). (Christian, John T., and Swiger, William F., 1975,
‘Statistics of liquefaction and SPT results’, Journal of the Geotechnical Engineering
Division, reproduced by permission of the American Society of Engineers.)

Category 1 Category 2

Description
(1)

All
data (2)

No
Liquefaction (3)

liquefaction
(4)

Mean in ln A −1.20982 −1.26815 −1.17336
Equivalent A, in g 0.298 0.281 0.309

Mean in ln DR 4.07164 4.27580 3.94404
Equivalent DR ,

as a percentage
58.7 71.9 51.6

Variance of ln A 0.19517 0.18511 0.20617
Standard deviation 0.44178 0.43024 0.45406
Coefficient of variation −0.36516 −0.33927 −0.38697

Variation of Ln DR 0.08161 0.05460 0.05742
Standard deviation 0.28567 0.23367 0.23962
Coefficient of variation 0.07016 0.05465 0.06076

Covariance of ln A, ln DR 0.04096 0.05525 0.04666
Correlation coefficient 0.32456 0.54957 0.42885

Discriminanant Analysis of Liquefaction
0.5

0.4

0.3

0.2

0.1

0

Non-Liq
Liq
p = 0.20
p = 0.10

p = 0.05

Dr (%)

0 10 20 30 40 50 60 70 80 90 100

C
S

R

Figure 7.13 Discriminant analysis of liquefaction using Christian and Swiger data updated to
(N1)60. Curve is for probability 0.2. (Christian, John T., and Swiger, William F., 1975, ‘Statistics
of liquefaction and SPT results’, Journal of the Geotechnical Engineering Division, reproduced by
permission of the American Society of Engineers.)

result as traditional discriminant analysis (Goldstein and Dillon 1978). Logistic regression
is conceptually related to the Bernoulli process of Chapter 3. A Bernoulli process consists
of n repeated trials, each of which is classified as a ‘success’ or ‘failure.’ The probability
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of success, π , remains constant across trials, and outcomes of the trials are independent
of one another. The number of successes (or failures) in n trials follows a Binomial pdf.

Consider a simple mechanical device with some empirical failure rate, π , denominated
in probability of failure per use. We can use observed numbers of failures, x, in given
numbers of tests, n, to estimate π from the Binomial distribution

f (x|n) =
(

x

n

)
πxπn−x (7.17)

in which x is the number of failures in n tests. What if the failure rate depended on
the temperature at which the device operated, with higher failure rates associated with
higher temperatures? We could divide the empirical data into bins by temperature, and
then individually estimate π for each bin, and, in effect, develop a functional relationship
between failure rate and temperature, π = g(T ). This is essentially what logistic regression
analysis attempts to do, but by forming a regression model through which the probabilities
are approximated. This model has the form

π = g(X) (7.18)

in which π is probability, and X = {X1, . . . , Xn} is a vector of parameters upon which
the probability depends.

The first thing to note, of course, is that probabilities range from zero to one, while
regression analysis fits a model to variables that vary from −∞ to +∞. Thus, the prob-
abilities – for us, the classification probabilities – are transformed by forming the log
odds-ratio, usually called, the logit,1

Q = ln

(
π

1 − π

)
(7.19)

to give values that vary within (−∞,+∞). The logit or log odds-ratio is set equal to a
linear regression of the parameters X

Q = β0 + β1X1 + β2X2 + · · · + βmXm (7.20)

in which the parameters X = {X1, . . . , Xn} are the factors influencing the regressed prob-
ability, and the scalar weights β = {β0, β1, . . . , βn} are regression coefficients estimated
from data. Thus

ln

(
π

1 − π

)
= β0 + β1X1 + β2X2 + · · · + βmXm (7.21)

From which it follows, by taking the exponential of each side, that

π = 1

1 + exp(−xT β)
(7.22)

1 The etymology of the term, logit is often traced to the 1944 paper by Berkson in the Journal of the American
Statistical Association, XXXIX : 361, in which the author says, “Instead of the observations qi we deal with
their logits li = ln(pi/qi). [Note] I use this term for ln p/q following Bliss, who called the analogous function
which is linear on x for the normal curve ‘probit’.”
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The term xT β is called the linear predictor, but this regression could also be, for example,
polynomial.

A quick look at the shape of a logistic regression curve (Figure 7.14) suggests why it
is so useful for the problem of estimating probabilities. It is non-linear, it asymptotically
approaches zero at the low end and unity at the high end, and the coefficients can be
estimated using standard maximum likelihood techniques of regression analysis, which
are well known.

Estimating the parameters of logistic regressions is slightly more complex than the
corresponding estimates of linear discriminant functions in that simple moment estimators
do not suffice. The usual manner is by means of maximum likelihood estimators, which
work for both Bayesian and frequentist approaches. The likelihood function for the vector
of parameters β, given a set of m independent observations, X = {x1, . . . xi, . . . xm}, is
the product of the respective probabilities of the observations, given the parameters

L[β|x1, x2, . . . , xm] =
k∏

j=1

fX(xj |β)

=
k∏

j=1

[P1(xj |β)]yj [P2(xj |β)]1−yj (7.23)

=
k∏

j=1

[
1

1 + exp(−xtβ)

]yj
[

1 − 1

1 + exp(−xtβ)

]1−yf
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Figure 7.14 Typical shape of a logistic regression relationship.
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where yj , j = 1, . . . , k, is a dichotomous variable (0 or 1), depending on whether the
point j is a member of class 1 or of class 2. Equation (7.23) can be optimized by
direct enumeration (e.g. numerically in a spreadsheet), particularly if m is of modest
size. For larger sample sizes, however, it may be more convenient to work with the
logLikelihood function

log L =
k∑

j=1

[yj ln P1(xj |β) + (1 − yj ) ln P2(xj |β)] (7.24)

in which the subscript on the vector of factor values, xj , refers to the jth observation. The
maximum likelihood estimators are then found by maximizing log L over β.

Logit coefficients need to be interpreted with care, as they are not as intuitive as,
say, common regression coefficients, to which most of us are accustomed. Logit coef-
ficients are not the rate of change in class probability with change in xi ; they are the
rate of change in log odds-ratio with change in xi .2 Thus, eβi is the effect of changes
in xi on the odds-ratio. For example, if eβi = 2, then a unit change in xi makes an
event twice as likely. Odds ratios equal to unity mean there is a equal chance that a
event or its complement will occur; and negative coefficients imply odds ratios less
than one.

Following the early work of Christian and Swiger (1975; 1976) on applying discrimi-
nant analysis to a relatively limited set of liquefaction observations, several studies have
used logistic analysis, as well as other techniques, based on larger databases (Cetin et al.
2002; Haldar and Tang 1979; Haymsfield 1999; Ho and Kavazanjian 1986; Juang et al.
2002; Liao et al. 1988; Loh et al. 1995; Tang and Angulo 1996; Veneziano and Liao 1984;
Youd et al. 2001). Obviously, the results are dependent on the details of the data used.
For present purposes it is interesting to compare the results of discriminant analysis and
logistic regression for the same liquefaction data. The original Christian and Swiger data
were updated to use (N1)60 rather than ln DR , and both methods were applied to the same
database. Figure 7.15 shows the curves for 20% probability. They are close throughout
and nearly the same in the region of the data points.

For this case the probability of mislabeling if the deposit does not liquefy is 0.70.
If we assume a non-informative prior (i.e. the prior probability of liquefaction is 0.5
reflecting ignorance) and one obtains data falling below and to the right of the 20% line,
the posterior probability of liquefaction based on Bayes’ Theorem is 0.22. Figure 7.16
shows the posterior probabilities for the full range of priors when discriminant lines with
probabilities of 0.1, 0.2, and 0.3 are used.

2 Interestingly, log odds-ratios also play an important role in Bayesian estimation, especially in the assessment
of subjective probabilities (Chapter 21), since Bayes’ Theorem can easily be restated as a relationship among
posterior and prior log odds-ratios, and corresponding log Likelihood ratios,

f (a|b)

f (b|a)
= f (a)L(b|a)

f (b)L(a|b)

log

(
f (a)

f (b)

)
= log

(
L(b|a)

L(a|b)

)
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Figure 7.15 Discriminant analysis of liquefaction using Christian and Swiger data. Logistic curve
is for probability 0.2; it falls almost identically on the discriminant curve for probability 0.2.
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Both discriminant analysis and logistic regression are widely used in classification
studies, although the latter has gained favor in recent years due, in part, to the looser
assumptions it requires and the broader array of situations it can handle. If the classes to
be decided among are Normally distributed with the same covariance matrix, then both
discriminant analysis and logistic regression yield the same answer, and the discriminant
analysis is arguable easier to use. In many applications, however, the factoring variables,
X may be non-Normal, or at least one of the xi is a qualitative variable (thereby eliminat-
ing Normality). Under these circumstances, logistic regression is the preferred method.
Further discussion of the relative properties and uses of discriminant analysis and logistic
regression is provided by Press and Wilson (1978) and by Dillon and Goldstein (1984).

7.3.5 Clustering

When one encounters a new problem, the number of classes into which data should
be grouped and their locations in factor space are generally unknown. In one or two
dimensions the number of classes can be adequately determined by inspection of the data
plot (Figure 7.9). With computer visualization, this is increasingly becoming the case for
3D factor spaces as well. Unfortunately, for higher dimensions, visual inspection is of
little use.

One approach to this clustering problem is to project data against lines, planes, or
volumes in which visual inspection is useful, and to isolate modes or clusters within
those lower-dimension spaces. The question then becomes which lines, planes, or spaces
to project the data against to obtain the greatest discriminatory benefit? Figure 7.17 shows
this conundrum. Projecting against the line B-B’ provides little benefit, while projecting
against A-A’ provides nearly the best discrimination.

The way to find the best projections is to seek those lines, planes, etc. in which the
projected data have the maximum variance (this can be thought of as the lines, planes,
etc. of maximum moment of inertia of the data). Let there be k observations in the data
set, and let the ith factor value of the j th observation be xi ,j . The location, sj , of the j th
observation when projected into a line S is the scalar product of x and a, where a is the
vector along line S

sj = x · a =
m∑

i=1

xij ai (7.25)

and m is the dimension of the factor space (e.g. number of factors measured on each
observation). The mean locations for the entire data set are

E[sj ] = 1

k

k∑
i=1

sj =
k∑

i=1

E[xj ]ai (7.26)

in which E[sj ] is the expected value of the ith component of the observed factor vectors.
The variance along S is proportional to

V ar[sj ] ∝
k∑

i=1

(si − E[s])2 (7.27)
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Figure 7.17 Projecting data into well-chosen lower-dimensional spaces allows visual inspection
to be used in clustering classes of data.

which can be made a large as desired by allowing the ai to be large. If, however, we
seek to maximize Equation (7.27) subject to the constraint that �a2

i is small, the crite-
rion becomes

max




k∑
i=1

(si − E[s])2

m∑
i=1

a2
i


 (7.28)

and the problem reduces to finding the eigenvector associated with the largest eigenvalue
of the matrix (Mattson and Dammann, 1965)

{Vij } =
k∑

r=1

(xir − E[xi])(xjr − E[xj ]) (7.29)

which, in turn, is proportional to the data covariance matrix.
The algorithm for sequential clustering a data set into multiple classes is to apply

repeatedly this eigenvector calculation: (1) compute the largest eigenvalue of the data
set covariance matrix and determine the eigenvector corresponding to this eigenvalue;
(2) project the multivariate data set onto the eigenvector to obtain a one-dimensional
density distribution; (3) partition the data set at any nodes in the projected density which
approach zero probability density; (4) if no such nodes exits, repeat the process using the
eigenvector corresponding to the second largest eigenvalue (and if all eigenvectors are
considered with no partitioning appearing, stop and conclude that only one class exists);
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Figure 7.18 Sequentially clustered factor data in multiple classes using the algorithm of Mattson
and Dammann (1965).

(5) to partition the data set further, isolate the data in each partitioned class and repeat
the procedure for each (Figure 7.18).

7.4 Mapping

Geological mapping seems more ‘art’ than ‘science,’ but the rise of remote sensing and
other data intensive technologies has given rise to the need for and experience with auto-
mated procedures for mapping. Clearly, from a reliability perspective, the uncertainties
of site geometry may be equally important to those of material properties, as discussed
by Dowding (1979).

Geological mapping assigns each point at the site to a geological class, which in turn
may be a formation, a stratigraphic bed, a lithological type, or some other discrete unit.
Thus, one might think of mapping as the estimation of a discrete field, analogous to the
continuous fields discussed in Chapters 8 through 10, but for which the random process
generates a discrete rather than continuous variable at each point in space. In geostatistics
there is a newly-minted term for this, as for most things; this is called an indicator
field (Matheron 1971), and is discussed in more detail in Chapter 11. The estimation
in mapping leads to a probability mass function (pmf) at each point rather than to a
probability density function (pdf) as would be the case with a continuous field. This
outcome is a set of ordered n-tuples, one at each point in space describing the probabilities
of possible geological classes.

7.4.1 Probabilistic mapping

A probabilistic mapping scheme based on uncertainties in knowledge of site geology
should satisfy four requirements: (1) it should be simple to conceive and use, (2) one
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should be able to assign subjective prior probabilities to its components, (3) it should
allow probabilistic rules for inferring the classifications of unobserved locations, and
(4) the uncertainties in mapping should be directly useful in design decisions.

The use of discrete stochastic fields (Bernoulli fields in the two-color case) for mapping
satisfies these four requirements: They are reasonably well-known in the stochastic process
literature, pmf’s (possibly subjective) may be assigned a priori to individual locations,
inference (statistical estimation) rules can be constructed for interpolation and extrapo-
lation from known locations, and uncertainties may be directly interfaced with design
decisions. Design decisions can be related to the probabilities of composition in regions
influenced by a proposed project, and these probabilities in turn can be read directly from
a map of the type described. Such a map includes the probabilities of unlikely as well
as likely composition. Other schemes, such as assigning each point to the most probable
class and associating with it a probability of misclassification, generally do not have this
facility of directly informing the reliability assessment.

7.4.2 Discrete stochastic fields

Consider a site composed of only two geological materials – a two-class, or black and
white, region. We can assign to each point at the site an ordered pair p = {p1, p2} whose
first term is the probability that the point belongs to class 1 and whose second term is
the probability that the point belongs to class 2, where p1 + p2 = 1 (all points must be
classified as either class 1 or class 2). The terms of this pair are the elements of a pmf of
class membership for the point in question, defined as

p(c) = p(c1, c2) (7.30)

in which c = {c1, c2} are the two classes (e.g. black and white), and p(c) is the pmf. For
observed points the pmf would either be (1,0) or (0,1), assuming no observation error.
For unobserved points the pmf could be anything between these extremes, subject to the
constraint that p1 + p2 = 1. The dimension of this assignment can be expanded to any
required size, in which case one would assign an ordered n-tuple p(c) = p(c1, c2, . . . , cn)

rather than ordered pair (and, in principle, could include a term representing the probability
that the location belongs to an unenumerated or ‘unknown’ class).

Unless the function that assigns pmf’s to locations can be approximated by some
continuous mathematical function, discretizing the site into elemental areas or pixels
(sometimes called quadrats in the geography literature) of homogeneous classification is
a convenience. These elements may be made as small as needed to adequately satisfy the
assumption of homogeneous classification, and this approximation is no worse here than
in other discretized methods of engineering analysis.

The classification pmf at a given point or within a given element might be estimated
on the basis of two considerations: The first is the classification of near-by elements; the
second is the presence of trends in local geology. Figure 7.19 illustrates these proximity
and trend considerations. Figure 7.19(a) shows a clear case in which proximity consid-
erations dominate. All the points around the question mark point are of a single class,
and thus it seems reasonable that the unobserved point would more likely than not be of
the same class. Figure 7.19(b) shows a somewhat clear case in which trend considera-
tions dominate. Although the unobserved point has an equal number of each class as its
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Figure 7.19 Influence of proximity and trend considerations in mapping discrete fields (here a
two-class or black-and-white field).

immediate neighbors, the trending shape of the formation suggests one class over another.
Figure 7.19(c) shows a case in which proximity and trend considerations conflict. It is not
clear to which class to assign the highest probability for the unobserved point. Theories
exist for modeling each of these two considerations, proximity and tends, individually,
but not yet for combining them in a single model.

7.4.3 Proximity rules

Simple nearest neighbor rules appear frequently in civil engineering practice (e.g., assign-
ing areas of influence to rainfall measurements), but they usually specify only the most
probable classification. The typical nearest-neighbor rule would be: “Assign to any unob-
served location the class to which the nearest observed point belongs.” This leads to the
familiar Thiessen polygon maps so common in hydrology, ore reserve estimation, and
many other applications (Dingman 2002; Koch and Link 2002; Okabe 2000). We want
more detailed inferences than this. At a minimum, we want a rule that specifies the most
probable class and its probability. However, better would be a rule that specifies the entire
pmf over possible classes for unobserved locations.

Proximity rules are based on the assumption that locations close together are more likely
to be of the same class than are locations far apart. Switzer (1967) and Matérn (1947)
have suggested the use of a function related to autocorrelation (i.e. spatial correlation)
that specifies the probability that a location will be of class i, given that an observation at
distance d is also of class i. The value of this function would equal 1.0 at d = 0, and the
prior probability at d = ∞. Matérn has shown that the function is convex in the vicinity
of d = 0, and Switzer has proposed the form

pi|i (d) = pi + (1 − pi)e
−αd (7.31)

in which pi is the prior probability of class i, or the spatial frequency of the class in
a frequency sense, and α is a decay constant related to the autocorrelation function of
the discrete field (Figure 7.20). Equation (7.31) assumes isotropic autocorrelation (i.e.
correlation depends on separation distance but not direction), but can be expanded to
account for anisotropy in a form such as

pi|i (d) = pi + (1 − pi)e
−
√

α2d2
x +β2d2

y (7.32)
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Figure 7.20 Switzer (1967) proximity rule for discrete mapping.

in which α and β are directional decay constants, and dx and dy are separation distances
parallel to the principal axes of an anisotropic correlation structure (i.e. preferred regional
directions in the geology).

Since the terms of the pmf must sum to unity, the sum of the complementary functions
Pj |i(d) for j �= i is related to the original decay function by

∑
j

pj |i (d) = 1 − pi|i (d) (7.33)

and the two-color map (Figure 7.20)

pj |i (d) = 1 − pi|i (d) (7.34)

Much of the earlier work has only considered the partitioning, not the determination of
probabilities, and has only considered the influence of nearest neighbors, but proximity
rules can be extended to include all sample data by application of Bayes’ Theorem. Given
r sampled locations, z1, . . . , zr , each at some distance d(zj ) from an unexplored location,
the posterior probability of class i at an unexplored location is

p(i|z) ∝ p(i)L(z|i) ∝ p(i)�r
j=1L(zj |i) (7.35)

presuming the observations to be independent, which of course they are not, because they
are spatially situated with respect to one another as well. This assumption of independence
appears not to have a large effect on the resulting inference; however, it can be easily
relaxed by assigning a covariance matrix among the observations the terms of which are
related to the separations among observations. An example is shown in Figure 7.21.

The proximity rule, can only be considered an empirical model whose parameters are
determined for the site in question. Several authors have discussed the possibility of
developing random process models that would predict the form of Equation (7.31), but
no realistic model has yet appeared. A random process model is one that describes the
generating mechanism for a particular physical phenomenon in probabilistic terms, from
which is described the theoretically ‘correct’ stochastic behavior of the phenomenon.
This is in contrast to an empirical model that simply fits a convenient, smooth analytical
function to observed data with no theoretical basis for choosing the particular function.
Lack of a random process model need not concern us as long as empirical data are
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Figure 7.21 Example of proximity rule applied to a two-class site.

available from which to construct a function; however, in a given situation we may find
need to exchange Switzer’s exponential form for some other.

We have assumed in our discussion that autocorrelation and other properties of the
process (e.g. the relative frequency of different classes of materials) are stationary. This
means that Equation (7.31) is the same for every location at the site (i.e. it depends only on
separation distance and direction, not location), which in certain contexts may prove to be
a poor assumption. One suspects the density of certain geologic bodies may be greater in
some regions of a site than In others (i.e. bodies may be ‘clumped’). For example, altered
bodies may occur in clumps due to the structural nature of the region. Non-stationarity
would cause the parameters (and potentially even the shape) of Equation (7.31) to depend
on location.

Estimation of the parameters of the proximity model can be made by maximizing the
joint Likelihood function of the data.

max
pi ,α

L(pi, α|z) =
k∏

u=1

k∏
v=i+1

[pi + (1 − pi)e
−αdu,v ]yu,v [1 − (pi + (1 − pi)e

−αdu,v )]yu,v

(7.36)
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Figure 7.22 Numerical optimization of joint likelihood function for the observed data of
Figure 7.21 using moment estimator of pi as the starting point.

in which yu,v is a Boolean variable equaling zero when the classes of u and v are the same,
and unity otherwise. This maximization is easily obtained numerically, starting from a
moment estimator of p̂i = ni/N , in which ni is the number of class i observations and N

is the total number. For the data of Figure 7.21, numerical optimization of Equation (7.36)
is shown in Figure 7.22.

7.5 Carrying Out a Discriminant or Logistic Analysis

Both discriminant and logistic analyses are techniques for developing an expression that
separates data into two categories; these might be liquefaction versus non-liquefaction,
success versus failure, or any other discrete division into two groups. The raw data consist
of a set of observations that fall into one category or the other. Both analyses work best
when there are approximately equal numbers of points in each category. Each point
is described by two or more variables. In the case of an analysis of liquefaction, the
categories would cases where liquefaction was observed and cases where it was not.

The analyst’s first task is to compile a set of data points approximately evenly distributed
between the two categories. Next the analyst must determine the functional form in which
each variable will enter the analysis; that is, are the values of the data to be used directly,
or are some functions of the values to be used? For example, in the case of the liquefaction
analysis we could consider CSR and (N1)60 directly, but we might consider ln CSR to
be a better variable. Such choices will depend on the physics of the problem at hand
and judgment.

After establishing the functional forms to be used, the analyst prepares a table containing
columns of the values for each of the data points. Further work is greatly simplified if
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the table is sorted into two blocks, say first the non-liquefaction cases and then the
liquefaction cases.

7.5.1 Discriminant Analysis

Once the table of data points has been prepared, it is necessary to determine whether the
functional forms of the data to be used in the discriminant analysis satisfy the necessary
assumptions. First of these is that the functional form of the data should be Normally
distributed. There are analytical statistical tests for this, but the most satisfying is usually
to plot the data on probability paper or in a quantile-quantile (Q-Q) plot. Each variable in
each category and in the data as a whole should be plotted. Thus, for the liquefaction case,
six plots are required: ln (CSR) and (N1)60 for each of the two categories and ln (CSR)
and (N1)60 for the entire data set. If the data seem to conform to a Normal distribution,
the analysis proceeds to the next step. If they do not, it helps to try a different functional
form, but, if nothing avails, discriminant analysis is not appropriate for this data set.

The next step is to compute for each of the two categories and for the data as a whole
the mean of each variable, the variance of each variable, and the covariance between all
the variables. The variances and covariances for the two categories should be close, but
they do not have to be equal.

The notation adopted is that the variables are listed in a vector X, whose components are
the functional forms of the m individual variables {X1, X2, . . . , Xm}. In the liquefaction
case X = {ln(CSR), (N1)60}. Then we define

X
(1) = {E[X1] E[X2] · · · E[Xm] } category 1 (7.37)

X
(2) = {E[X1] E[X2] · · · E[Xm] } category 2 (7.38)

� =




V ar[X1] Cov [X1, X2] · · · Cov [X1,Xm]
Cov [X1, X2] V ar[X2] · · · Cov [X2,Xm]

...
...

. . .
...

Cov [X1, Xm] Cov [X2, Xm] · · · V ar[Xm]


 (7.39)

The covariance matrix � is best calculated as the weighted average of the covariance
matrices of the two categories, the weights being proportional to the number of data
points in each category.

The discriminant function V is then calculated by

V =
[
X − 1

2

(
X

(1) + X
(2)

)]
· �−1 ·

(
X

(1) − X
(2)

)
(7.40)

When the matrix multiplication is carried out, an expression of the following form results:

V = β0 + β1X1 + β2X2 + · · · + βmXm (7.41)

The βs are all determined; the task is now to find V .
The value of V is chosen from the probability that a new point actually belonging

to category 2 will seem to fall on the category 1 side of the line, e.g. a case of actual
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liquefaction having data that would indicate no liquefaction. This, in turn, depends on a
parameter α defined as

α =
(

X
(1) − X(2)

)T ·
−1∑

·
(

X
(1) − X(2)

)
(7.42)

The probability is then

P [1|2] =
∫ ∞

V +0.5α√
α

1√
2πα

exp

[
− t2

2

]
dt (7.43)

which is simply the complementary CDF of the standard Normal distribution. Note that if
we were to compute P [2|1], V would be the negative of Equation (7.41), and the equation
corresponding to Equation (7.43) would be

P [2|1] =
∫ −V +0.5α√

α

−∞
1√
2πα

exp

[
− t2

2

]
dt (7.44)

The procedure is then to select a value of the probability of mis-labeling and to invert
Equation (7.43) to obtain the value of V . This then is inserted into Equation (7.41) to
obtain an equation relating the variables at the desired probability level.

7.5.2 Logistic Regression

Logistic regression finds values of the coefficients in

QL = β0 + β1X1 + β2X2 + · · · + βmXm (7.45)

which is similar to Equation (7.41) except that QL is related to the probability P1 of
being in category 1 (say liquefaction) by

QL = ln

(
P1

1 − P1

)
(7.46)

The notation QL has been used in liquefaction analysis, but other notation may apply to
other fields. It follows that

P1 = 1

1 + exp(−QL)

P2 = 1 − P1 = 1

1 + exp(QL)

(7.47)

The likelihood function for a set of parameters β, given a set of observations is the
product of the probabilities of the observations, given the parameters:

L[β|x1, x2, . . . , xm] =
∏
m

fX(xi |β)

=
m∏

i=1

[P1(xi)]
Yi [P2(xi)]

1−Yi

(7.48)
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where Yi is 1 or 0 depending on whether point i is in category 1 or 2. Equation (7.48)
means that, if the β’s were known, one would evaluate the likelihood by working point
by point, evaluating QL for each point from Equation (7.45), using Equations (7.47) to
evaluate P1 or P2, depending on which category the point belongs in, and multiplying the
results. It is easier to work with the logarithm of the likelihood:

log L =
m∑

i=1

[Yi ln P1(xi) + (1 − Yi) ln P2(xi)] (7.49)

The problem is then to select the β’s so that the log likelihood is maximized.
The following computational procedure implements this analysis:

1. Set up initial estimates of the β’s in some locations in a spreadsheet or mathematical
analysis software.

2. For each point set up an expression for QL based on the variable β’s.
3. For each point falling in category 1 set up an expression for P1 based on the first of

Equation (7.49), and for each point falling in category 2 set up an expression for P2

based on the second of Equation (7.49).
4. Using the solving capabilities in the software, maximize the sum of the expressions in

step 3 by iterating on the β’s.



8 Soil Variability

Measurements of soil properties along with detailed observation are what differentiated
the emerging discipline of soil mechanics of the early twentieth century from traditional
groundworks as practiced since at least the time of the great projects of Egypt and the Near
East long before the common era. These measurements suggested considerable variability
in soil properties, not only from site to site and stratum to stratum, but even within
apparently homogeneous deposits at a single site.

In recent years, our ability to measure the properties of natural soils has expanded
rapidly, although it might be argued that our corresponding abilities to understand what
many of these measurements mean for engineering predictions, or to deal with the vari-
ability among our measurements, have not kept up. As mentioned in Chapter 6, the trend
in site characterization research seems to be to seek the next magical device for unlocking
the secrets of in situ soil properties, rather than attempting to deal more analytically with
the data we already collect (Dowding 1979). This chapter summarizes some of the things
we know about the variability of natural soils and how that variability can be captured in
probabilistic descriptions for use in reliability or risk analysis.

The Mexico City soil profile illustrated in Figure 8.1, taken from Lambe and Whitman
(1979), suggests the variability often observed in comparatively homogenous soil forma-
tions. The profile where this boring was taken consists mostly of a thick, soft lacustrine
clay layer, from about 6–33 m in depth. The clay is overlain by a thin layer of silt and,
over that, a thick layer of fill. Thin sand lenses appear throughout the clay, with thick
layers of sand and silt beneath. The measured properties of the clay are more or less
uniform with depth but have coefficients of variation from about 20% to as much as 50%,
depending on the property. The strength parameters are least variable, while the water
contents are most variable. This latter observation should not be surprising, for strengths
are usually measured on much larger specimens that are water contents or soil densities.

The sandy soil profile of Figure 8.2, well-known to soil engineers as it appeared in the
first edition of Terzaghi and Peck (1948), displays considerably more erratic stratification
and property data. Whereas the Mexico City profile comprises a single thick layer, the
Chicopee profile contains many layers and lenses or inclusions. The soil permeabilities
vary dramatically from layer to layer and lens to lens.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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Figure 8.1 Mechanical properties of clays of the Valley of Mexico at a typical spot of the City.
(Lambe, T. W. and Whitman, R. V., 1969. Soil Mechanics. New York, John Wiley & Sons,  John
Wiley & Sons 1969, reproduced with permission.)

The variability in soil properties encountered on any project is inextricably related to the
particular site and to a specific regional geology. It is neither easy nor wise to apply typical
values of soil property variability from other sites in performing a reliability analysis. One
should no sooner do this than apply ‘typical friction angles’ or ‘typical undrained strength
ratios’ from other sites. The discussion of soil variability in this chapter intends to suggest
conditions that might be encountered in practice. The range of variabilities from one site
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to another is great, and the data one finds reported in the literature often compound real
variability with testing errors. In practice, soil variability measures should always be based
on site-specific data.

We begin this chapter by discussing the variability in some elementary soil properties.
Much of the description of the properties themselves is well known to engineers trained in
soil mechanics, but it may not be familiar to people working in other fields. Therefore, we
ask the indulgence of those versed in soil mechanics as we review some basic material.

8.1 Soil Properties

Soils have some properties, such as color, that are useful for differentiating one soil from
another, other properties, such as compressibility, that are useful for predicting mechanical
behavior, and yet others, such as electrical resistivity, that are useful (to geotechnical
engineers at least) only in specialized situations.

In this chapter we consider three categories of physical properties: (1) index and clas-
sification properties, (2) mechanical properties of intact specimens of soil and rock, and
(3) in situ properties of soil masses. We use the term soil mass to describe the complex
structure of geological materials and their discontinuities that makeup and control the
physical behavior of geological formations as nature created them in the field.

The extent to which data on these various properties vary is suggested by Table 8.1,
taken from Lee et al. (1983), in which the authors have compiled reported coefficients
of variation for a broad variety of soil properties. The ranges of these reported values
are sometimes quite wide and can only be considered as suggestive of conditions on
any specific project. Lacasse and Nadim (1996) have also published a table of suggested
coefficients of variation for various soil properties (Table 8.2).

Table 8.1 Coefficients of variation for soil engineering test (Lee et al. 1983)

Test Reported COV(%) Source Standard Remarks

Absorption 25 1 25
Air voids 16–30 4,16 20
Angle of friction

(sands)
5–15 2,3,20,21 10

Angle of friction
(clays)

12–56 2,20,21 – Wide variation

Bitumen content 5–8 4,16 6
CBR 17–58 1,4 25
Cement content 13–30 4,5 20
Clay content 9–70 1,2,14,15,22 25
Cohesion

(undrained)
(clays)

20–50 2,20 30

Cohesion
(undrained)
(sands)

25–30 2 30

Compaction
(OMC)

11–43 1,6,12 20,40 Lower value, clay
sails; higher
value, sands and
gravels
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Table 8.1 (continued )

Test Reported COV(%) Source Standard Remarks

Compaction
(MDD)

1–7 2,4,6,12,22 5

Compressibility 18–73 2,15,21,22 30
Consolidation

coefficient
25–100 2,15,22 50

Crushing value 8–14 1
Density (apparent

or true)
1–10 1.2,12,20,22 3

Elastic modulus 2–42 17,18 30
Elongation 18–33 1 25
Flakiness 13–40 1,6 25
Flow (bitumen) 11–15 4.16 15
Grading (means) 9–31 I 25
Grading (slopes) 19–37 1 30 On a

Rosin–Rammler
plot

Levels (e.g.
pavement)

50–300 7,11 200

Linear shrinkage 57–135 1,6 100 Refers to gravel
and crushed
rock; will be
lower for soils

Liquid limit 2–48 2,4.10,12.14,15,20,22 10
Los Angeles

abrasion
31 1 30

Moisture content 6–63 4,5,9,15,20,21,22 15 Is gamma
distributed

compaction,
“OMC”

Permeability 200–300 2 300
Plastic limit 9–29 2,12,14,15,20 1
Plasticity index 7–79 1,4,6,10,12,15,20 30,70 Lower value clay

soils; Higher
value sandy,
gravelly soils

Gravelly soils
Sand content 1–43 2,4.5,8,10,15 20
Sand equivalent 25 1 25
Specific gravity see Density
Stability (bitumen) 13–19 4 20
Standard

Penetration
Test 27–85 21,22 30

Sulphate
soundness

92 1 100 Is gamma
distributed

Tensile strength 15–29 18 20
Thickness

(concrete
pavement)

3–4 4 4

Thickness (AC
pavement)7–16

4,13 15

(continued overleaf )
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Table 8.1 (continued )

Test Reported COV(%) Source Standard Remarks

Thickness
(stabilization
work)

11–13 4,6 15

Unconfined
compressive
strength

6–100 17,19,22 40

Void ratio 13–42 2,4,15,21 25

1. (Ingles and Noble 1975) 12. (Sherwood 1970)
2. (Lumb 1974) 13. (Hoede-Keyser 1970)
3. (Hoeg and Murarka 1974) 14. (Minty et al. 1979)
4. (Kuhn 1971) 15. (Corotis et al. 1975)
5. (Ingles and Metcalf 1973) 16. (Cranley 1969)
6. (Leach 1976) 17. (Otte 1978)
7. (Auff 1978) 18. (Kennedy 1978)
8. (Kennedy and Hudson 1968) 19. (Morse 1971)
9. (Wu 1974) 20. (Singh 1971)

10. (Mitchell 1993) 21. (Schultze 1975)
11. (Murphy and Grahame 1976) 22. (Stamatopoulos and Kotzias 1975)

Table 8.2 Coefficients of variation of different soil properties for summary data from (a) Lacasse
and Nadim (1996), and (b) Lumb (1974)

(a) Soil property Soil type pdf Mean COV(%)

Cone resistance Sand Clay LN ∗ ∗
Clay N/LN

Undrained shear strength Clay (triaxial) LN ∗ 5–20
Clay (index Su) LN 10–35
Clayey silt N 10–30

Ratio Su/σ
′
vo Clay N/LN ∗ 5–15

Plastic limit Clay N 0.13–0.23 3–20
Liquid limit Clay N 0.30–0.80 3–20
Submerged unit weight All soils N 5–11 (kN/m3) 0–10
Friction angle Sand N ∗ 2–5
Void ratio, porosity,

initial void ratio
All soils N ∗ 7–30

Over consolidation ratio Clay N/LN ∗ 10–35

(b) Soil property

Density All soils 5–10
Voids ratio All soils 15–30
Permeability All soils 200–300
Compressibility All soils 25–30
Undrained cohesion

(clays)
All soils 20–50

Tangent of angle of
shearing resistance
(sands)

All soils 5–15

Coefficient of
consolidation

All soils 25–50
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8.2 Index Tests and Classification of Soils

Index and classification tests usually pertain to descriptive properties of soils rather than
to mechanical properties. Descriptive properties include such things as color, unit weight,
water content, and grain size distribution; whereas mechanical properties refer to strength,
deformability, and permeability. In addition to descriptive and mechanical properties
which are of most interest to geotechnical engineers, soils also possess thermal, electro-
magnetic, and other properties of interest in special circumstances or to specific scientific
enterprises. For example, the thermal conductivity of soils is of interest to someone wish-
ing to store liquefied natural gas in underground openings, and electrical resistivity would
be of interest to the geophysicist conducting regional magnetic surveys.

Index and classification properties are those easily measured attributes useful in cat-
egorizing soils and possibly in making rough forecasts of mechanical properties based
on correlations to those simple measures. The most common index and classification
properties of soils are:

• Field identification properties, including color and odor (which are not further consid-
ered here).

• Bulk properties related to density, including water content, specific gravity, void ratio,
relative density, unit weight, and specific gravity.

• Classification properties, including grain size distribution and index limits.

Detailed discussion of how such tests are performed can be found in a variety of refer-
ences (e.g. Lambe 1951).

8.2.1 Bulk properties

Bulk properties based on density and water content are related to one another through
volumetric formulae, for which the well known representation of Figure 8.3 is common
to most introductory texts. Porosity, n, of a soil is the ratio of the volume of voids (air
plus water) to the total volume (n = Vv/Vt ). Void ratio, e, is the volume of voids to
volume of solids (e = Vv/Vs). Degree of saturation, S, is volume of water to the volume

air

water

solids

Va

Vw

Vv

Vs

Vt

Figure 8.3 Volumetric relationship of soil constituents (after Taylor 1948).
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of voids (S = Vw/Vv), expressed as a percentage. Water content, w, is the ratio of the
weight (not volume) of water to the weight of solids (W = Ww/Ws), also expressed as a
percentage. Note that, because the total volume is the sum of the volumes of air, water,
and solids, the properties of porosity, void ratio, degree of saturation, and water content
are interrelated by formulas such as, n = e/(1 + e), which can be found in introductory
texts (Lambe and Whitman 1969). Furthermore, this simple view of soil components is
only an abstraction. Some water may be bound to the soil minerals and may or may not be
driven off by heating. Pore water may have dissolved solids such as salt (NaCl) or calcium
chloride (CaCl) that precipitate during heating. These and many other such considerations
are beyond the present discussion but can be found in the literature (Hillel 1998; Lambe
and Whitman 1969; Sowers and Sowers 1979; Taylor 1948; Terzaghi et al. 1996).

Index properties based on bulk properties are summarized in Table 8.3. Unit weights
for the total specimen, water, and solids are formed from the ratios of weights to corre-
sponding volumes. Specific gravities are formed by the ratios of total, water, and solid unit
weights to the unit weight of water at Standard Temperature and Pressure (STP). Because
soil-forming minerals (quartz, feldspars, clay minerals) have similar unit weights, most
soils have specific gravities of solids between 2.65 and 2.85 (Taylor 1948). The excep-
tions are soils high in organic content, calcareous soils, and soils containing less common
dense minerals such as ferromagnesians.

The terms ‘very dense,’ ‘dense,’ ‘loose,’ and the like, relate in principle to void ratio, but
are commonly measured by or correlated to in situ mechanical tests such as the Standard
Penetration Test (SPT) or Cone Penetration Test (CPT), and generally describe the soil mass
rather than a soil specimen. For example, Seed and Lee (1966) describe soil deposit with
SPT blow counts greater than some number of blows per foot (bpf) as ‘very dense’ for the
purpose of predicting liquefaction behavior. This description is not uniquely related to void
ratio as factors other than e, such as particle angularity, also influence blow count.

Unit weight and water content are perhaps the two bulk properties that most often turn
up in quantitative calculations of engineering performance. Given the ease of measuring

Table 8.3 Index properties based on weights and den-
sities of soils

Property
Saturated
sample

Unsaturated
sample

Volume of solids
Ws

Gγw

Volume of water
Ww

γw

Volume of gas 0 V − (Vs + Vw)

Volume of voids
Ww

γw

V − Ws

Gγw

Total volume Vs + Vw measured

Porosity
Vv

V

Void ratio
Vv

Vs
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these properties, a great number of data on them appear in project reports and publications.
Lee et al. (1983) report (Table 8.1) that the coefficient of variation of the water (moisture)
content for clay soils varies from negligible up to about 60%, although most sites appear
to display considerably less than this upper bound. There is some evidence that sandy
soils display less variability in water content than do clay soils (Fredlund and Dahlman
1971), but everything depends on local site conditions. Unit weight appears to display
considerably less variability than do most other soil properties, usually with COV’s less
than 10% (Table 8.1). This is perhaps not surprising. First, soil minerals mostly have
specific gravities within a narrow range; second, the procedure for measuring unit weight
is reasonably precise, thus the measurement error is small.

8.2.2 Classification properties

The Atterberg limits are index properties for cohesive soils, relating water content to sim-
ple mechanical properties (Atterberg 1913). The limits consist of three values, the liquid
limit, wl , plastic limit, wp, and shrinkage limit, ws . These tests are hardly sophisticated,
but they have proved of value over time as a consistent way of comparing and classifying
cohesive soils.

The liquid limit is the water content at which a remolded specimen of soil exhibits a
certain small shear strength, where this ‘certain shear strength’ is based on a standard
apparatus and test procedure. This test involves placing a specimen of soil in a brass
bowl, cutting a standard grove in the soil, and then allowing the bowl to drop from a
specified height onto a rubber mat until the grove just closes. The liquid limit, measured
as a water content, is attained when 25 blows are needed to close the grove (Lambe 1951).
Another test in wide use employs a falling cone whose penetration into the soil measures
the strength.

The plastic limit is the water content in which the remolded, partially dried soil can be
rolled into a thread 1/8 inch (3.2 mm) in diameter on a glass plate before crumbling and
thus ceasing to behave plastically. The difference between liquid limit and plastic limit,
expressed as a percentage difference in water content, is called the plasticity index, PI.
The Plasticity index is a calculated quantity, and since it depends both on the liquid limit
and the plastic limit, its variance depends on the variances of each measured quantity,
and on the correlation between the two measured values:

Var(P I) = Var(Wp) + Var(Wl) − 2 Cov(Wl, Wp) (8.1)

in which Var(·) is the variance and Cov (·) is the covariance.
The shrinkage limit is the smallest water content that can occur in a completely satu-

rated specimen of soil. As a specimen dries, its total volume decreases. At some water
content, further shrinkage of the specimen stops, even though after this point water con-
tent continues to decrease as further water is dried out of the specimen. The saturated
water content at this smallest volume is called the shrinkage limit.

Typical Atterberg limits data, in this case for Hong Kong clay, are shown in Figure 8.4,
where the data have been re-plotted from Zhu et al. (2001). It is not unusual for liquid and
plastic limits to have COV’s of 30% or more, especially since the testing error in Atter-
berg limits is itself 10% or more. The liquid limit and plasticity index are almost always
strongly, positively correlated. Liquid limit and plastically limit tend to be positively cor-
related, although not so strongly. Data clusters on the plasticity chart of Figure 8.4 for
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which the slope is less than 45◦ display positive correlation between liquid limit and plas-
ticity limit; those for which the slope is greater than 45◦ display negative correlation. This
is because plasticity index equals the simple difference of liquid limit and plastic limit.

Holtz and Krizek (1971), among others, have performed extensive cross correlation
analyses of index tests and simple engineering properties. An example of their results is
shown as Table 8.4. As is well known, weak correlations exist between many pairs of
these parameters – which is the reason that the use of index properties is widespread.
For example, the undrained strength of clay is weakly correlated to liquid limit, with
correlation coefficients of between about 0.2 to about 0.5, depending on the soil.

Grain size distributions are by traditional practice plotted as Cumulative Frequency
Distributions (CDF) or as complimentary cumulative frequency distributions (CCDF) over
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Figure 8.4 Summary of Atterberg limits data for upper marine clan, upper alluvial crust, and lower
marine clay (re-plotted from Zhu et al. 2001), based on the plasticity chart of Casagrande (1932).

Table 8.4 Correlation matrix among index properties (Holtz and Krizek 1971)

qu(tsf) wn(%) LL(%) PL(%) %Sand %Silt %Clay

qu(tsf) 1.00 −0.54 −0.30 −0.12 −0.20 −0.29 0.41
wn(%) −0.54 1.00 0.67 0.48 −0.15 0.36 −0.19
LL(%) −0.30 0.67 1.00 0.55 −0.36 0.20 0.10
PL(%) −0.12 0.48 0.55 1.00 −0.40 0.29 0.06
%Sand −0.20 −0.15 −0.36 −0.40 1.00 −0.27 −0.55
%Silt −0.29 0.36 0.20 0.29 −0.27 1.00 −0.64
%Clay 0.41 −0.19 0.10 0.06 −0.55 −0.64 1.00
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a logarithmic grain diameter scale. Normal distributions of particle diameters plot as
inverted ‘S’ shapes, starting at 1.0 at the upper left and decreasing monotonically to 0.0
at the lower right. Curves with flat portions are said to be ‘gap-graded,’ in that they lack
one or more ranges of grain size, yielding bimodal or multimodal pdf’s.

With a simple form for the grain size CDF, for example, a Normal, logNormal, or
Exponential distribution, the shapes of a grain size distribution can be described in a small
number of statistical moments, as could any other frequency distribution. In the Normal
or logNormal case, the mean and variance suffice; in the Exponential case, the mean
alone. Most natural soils, however, have grain size distributions less well behaved. Hazen
(1911) proposed using the 0.1 and 0.6 fractiles of the grain size distribution, denoted
D10 and D60, as summary measures, rather than, say, the mean and variance. These
two fractiles carry less information about the frequency distribution then do statistical
moments, but they have been found useful in characterizing the suitability of soils for
particular uses. Also, Hazen found that the permeability (or hydraulic conductivity in
modern parlance) of sand filters could be estimated roughly by the statistical correlation
of the form, k = 100 D2

10, in which k is permeability or hydraulic conductivity in cm/s,
and D10 is in cm. Hazen called D10 the ‘effective size’ for the distribution. The log scale
of diameters is used because it nicely reflects the relative gradation of a set of particles,
irrespective of average size. That is, similar proportional distributions of particle sizes
produce similar curves simply displaced horizontally.

8.3 Consolidation Properties

When soil is placed under stress, its volume decreases as mineral grains compress,
rearrange their positions, or both. If the soil is saturated, this volumetric compression
corresponds to a net outflow of pore water, and the soil is said to consolidate. Consolida-
tion strains can be large, causing displacement of serious magnitude within the soil mass.
In this section we consider only cases in which the applied stresses are of such magnitude
or of such proportion as not to threaten shear failure of the soil.

The above description concerns the consolidation behavior of saturated soil; the con-
solidation behavior of unsaturated soils under compression loading is more complex, in
that pore gasses (e.g. air) are compressible. In this case, compression of the soil may
correspond to a net outflow of pore water, plus a net outflow of pore gases, plus a net
compression of the pore gas. This more complex case of unsaturated soil consolidation
is not further considered.

As stress increments are added to the saturated soil, the relative incompressibility of
the pore water compared to the mineral skeleton leads to the octahedral stress increment
being borne by the water alone. However, since the water cannot sustain shear stress,
deviator stresses are borne by the mineral skeleton alone. Consolidation is the slow pro-
cess by which outflow of pore water due to the pore pressure gradient from inside the
specimen or stressed volume to the outside causes a gradual decrease in pore water pres-
sure and a corresponding transfer of stress from the water to the mineral skeleton. As
stress builds upon the mineral skeleton, the latter compresses due to the combined action
of particle deformation and particle rearrangement, and the macroscopic volume of the
specimen decreases. This definition of consolidation is sufficiently broad to apply to the
three-dimensional as well as the one-dimensional case, the latter being the case routinely
measured in the laboratory.
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Consolidation properties in the laboratory are usually measured in the one-dimensional
oedometer or consolidometer test. The primary test results are reported as a relationship
between void ratio, e, total vertical stress, and time (Figure 8.5 from Terzaghi et al. 1996).
The specimen is loaded one-dimensionally with zero lateral strain.

Above some level of applied stress, the change in void ratio, e, is approximately linear
with increasing log σv . The slope of this relationship is called the compression index, Cc,

e = e0 − Cc log10
σ

σ0
(8.2)

in which e0 is the initial void ratio at the initial vertical stress σ0, and Cc is the compression
ratio. The rebound upon unloading may be expressed in a similar fashion, in which the
slope of the rebound curve is the rebound index, Cs . As a specimen is first loaded, it
follows a recompression slope Cr approximately similar to Cs . The supposition is that, at
some earlier point in time, the soil had been subjected to a one-dimensional stress about
as large as that at the point of inflection of the loading curve. Thus, the initial branch
of the curve reflects recompression, while the steeper curve above the point of inflection
reflects first-time or virgin compression.

The transition between recompression and virgin compression in the consolidation curve
is not sharp, but gradual. The more the specimen may have been disturbed from its
initial state in the ground or from its condition upon initial loading, the more gradual
this transition becomes. Casagrande (1936) among others proposed a standard graphical
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Table 8.5 Representative values of the variability in consolidation parameters, expressed as coef-
ficient of variation in percent

Parameter Soil Reported COV (%) Source

Cc, Cr Bangkok Clay 20 Zhu et al. (2001)
Various 25–50 Lumb (1974)
Dredge Spoils 35 Thevanayagam et al. (1996)
Gulf of Mexico Clay 25–28 Baecher and Ladd (1997)

cv Ariake Clay 10 Tanaka et al. (2001)
Singapore Clay 17 Tanaka et al. (2001)
Bangkok Clay 16 Tanaka et al. (2001)

procedure for estimating a unique stress σvm at which the change from recompression to
virgin compression takes place. This stress, in principle, is the maximum past pressure
that the soil has experienced in its loading history. At the very least, the Casagrande or
similar procedures provide a standard way of specifying this point.

When the incremental stresses are first applied, the octahedral increment is taken up
by increased pore water pressure, and the specimen deforms only under the action of
increased shear stress. As pore pressure dissipates, stresses are transferred to the mineral
skeleton and the soil begins to deform volumetrically. At first, the rate of deformation is
small, but the changes soon become approximately linear in log-time. The slope of this
linear portion of the e vs. log t curve is defined as the coefficient of consolidation, cv .

Table 8.5 shows representative values of COV of consolidation parameters for various
soils. These values are somewhat smaller than reported by Lee et al. (Table 8.1), ranging
only up to about 50%, but the data are not numerous.

8.4 Permeability

The hydraulic conductivity of soils, also referred to as Darcy permeability, or just per-
meability, is that property of soil describing the rate at which water flows through a unit
cross section of soil mass under a unit gradient of pore pressure. This parameter, k, is
used by means of Darcy’s law to model seepage, and by extension, the pore pressure
fields that are inextricably related to seepage.

Darcy’s law relates pore pressure gradients and water flows by the simple relationship

q = kiA (8.3)

in which q is the fluid flux or discharge measured in volume per time, i is the pore pressure
gradient measured in change of pressure head per distance, A is the cross-sectional area of
flow, and k is a constant of proportionality, called hydraulic conductivity or permeability.
Thus, Darcy’s law is similar in structure to the linear heat flow law.

The permeability of soils, k, varies over orders of magnitude, from values on the order
of 10−12 cm/sec, or less, for clays, to nearly unity for gravels. Similarly, the coefficient
of variation of k for a specific soil can also be large. For example, Lumb (1974) reports,
COVs of 200 to 300% for k; Benson (1993) reports values of 50 to 200%, but with some
soils reaching 500 or even 700%. As a result, common practice is to express permeability
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Table 8.6 Statistics of the hydraulic conductivity at 57 sites. (Benson, C. H., 1993, ‘Probability
distributions for hydraulic conductivity of compacted soil liners,’ Journal of Geotechnical and
Geoenvironmental Engineering, reproduced by permission of the American Society of Engineers.)

Site
n

(cm/s)
mean k
(cm/s) COV k

Skew
in K

Kurtosis
in K

Skew
test

Kurtosis
test

PPCC
test

1 46 3.30E-09 94 0.60 2.20 P P F
2 27 4.50E-09 129 0.10 3.03 P P P
3 36 1.30E–08 151 0.74 2.70 P P F
4 33 9.36E–09 139 1.84 9.79 F F F
5 13 4.70E–08 55 0.24 2.10 P P V
6 31 8.20E-08 42 0.98 7.50 F F P
7 31 5.OOE-08 34 0.18 2.30 P P P
8 115 7.70E–09 133 0.35 2.96 P P P
9 15 3.OOE-08 88 0.34 2.41 P P P

10 15 4.40E-08 27 0.89 3.43 P P P
11 184 1.29E–06 92 1.09 1.61 F F F
12 73 8.40E–07 177 0.05 1.93 P F P
13 120 1.OOE-05 767 2.53 9.84 F F F
14 25 4.20E–08 49 0.46 2.45 P P P
15 15 2.50E-08 91 0.16 1.56 P F P
16 24 2.12E–08 79 0.067 2.01 P P P
17 64 2.30E-08 164 0.67 2.71 P P F
18 2(1 9.OOE–09 120 0.05 1.70 P F P
19 42 6.11E–07 507 1.97 7.71 F F P
20 18 1.40E–08 62 0.63 2.45 P P P
21 24 9.50E–09 101 1.14 2.47 F P F
22 44 4.50E–08 52 0.38 2.43 P P P
23 33 6.20E–08 86 0.53 3.29 P P P
24 57 7.20E-08 64 0.68 3.70 F P P
25 84 5.91E–08 53 1.56 3.31 F P F
26 112 3.40E–08 113 0.39 2.37 P P P
27 8 2.43E–08 210 1.18 3.18 F P F
28 31 6.00E-08 161 0.60 3.20 P P P
29 16 2.45E–08 88 0.50 2.55 P P F
30 27 8.OOE-08 99 0.59 4.36 P P F
31 10 2.87E–09 143 0.90 3.35 P P P
32 34 5.30E-08 89 0.52 2.37 P P P
33 14 5.20E–08 46 0.07 2.15 P P P
34 30 5.62E–08 118 0.13 2.04 P P P
35 22 1.17E-08 163 1.44 4.77 F F F
36 18 1.22E-08 142 0.70 3.62 p p P
37 26 2.30E-08 107 0.33 2.47 P P P
38 28 4.45E–08 278 2.32 8.91 F F F
39 18 1.40E–07 134 0.42 3.06 P P P
40 40 1.60E-08 157 0.89 3.04 F P F
41 34 2.30E-08 60 0.02 3.26 P P P
42 10 2.40E–08 157 1.74 4.86 F F F
43 87 5.OOE–08 56 1.53 4.46 F F F
44 17 2.40E–08 63 0.69 2.31 P P P
45 40 9.10E–09 114 0.44 3.34 P P P
46 82 6.38E09 166 0.12 3.56 ∼ P P
47 102 3.90E-08 77 −0.64 2.75 F P F
48 39 5.50E–08 151 0.42 2.80 P P P
49 16 7.1OE–08 90 0.15 2.58 P P P
50 13 6.50E–08 138 0.20 1.82 P P P
51 22 1.97E–08 84 0.49 2.32 P P P
52 26 1.97E–08 121 0.31 2.65 P P P
53 205 9.90E–09 100 0.48 4.63 F F F
54 49 8.90E–09 47 0.58 2.43 P P F
55 45 8.90E–09 46 0.13 3.50 P P P
56 34 1.50E–08 129 1.99 10.3 F F F
57 53 9.50E–09 33 0.17 3.30 P P P
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in log10, and to model its variability for a given soil formation by logNormal probability
distributions (Marsily 1986). This is done in both geotechnical practice (Ang and Tang
1975) and hydrogeology (Kitanidis 1997).

Benson (1993) studied the probability distributions of permeabilities of compacted
clay liners for landfills and reports the results shown in Table 8.6. As can be seen, the
coefficients a variation range from a low of 27% to high of 767%, but with all but two of
the 57 data sets showing COVs under 300%. A more interesting result is, however, that
Benson finds that the (two-parameter) logNormal pdf only passes common goodness-of-fit
tests (from frequentist theory) for about 2/3 of the data sets (all significance tests were
set at the α = 0.05 level). For the other approximately 1/3, either the skews of the data
sets are larger than would be predicted by the logNormal model, or the kurtosis is too
great, or both.

Benson speculates that the physical cause for this lack of good fit in many of the data
sets could be, “(1) mixtures of micro- and macro-scale flows; (2) undetectable trends in
hydraulic conductivity; and (3) measurement errors. [. . .] The cumulative effect of the
mixtures is a distribution of hydraulic conductivity with characteristics that change from
site to site and even within a site.” He goes on to investigate other candidate pdf forms,
including the three-parameter logNormal, generalized Extreme Value, inverse Gamma,
and three-parameter Gamma. These are all families of distributions that are common in
the stochastic hydrology literature. The paper concludes that either the three-parameter
logNormal or the generalized Extreme Value pdf provides the best fit to the widest number
of cases. It is not entirely surprising that these models would provide more flexible fit
to data, as they both enjoy three parameters in contrast to the two parameters of the
traditional logNormal distribution.

The appropriate conclusion to draw from these well-formulated studies is not imme-
diately clear. The logNormal pdf enjoys widespread use in hydrogeology and appears to
have been a serviceable model. Similarly, Benson’s study is restricted to a narrow class of
materials, namely artificially placed compacted clay liners. The study suggests that good
practice is to remain skeptical of the choice of pdf model and to verify the model choice
against data wherever possible.

8.5 Strength Properties

The downhole measurements of standard penetration test blow counts (SPT) and cone
penetration resistance (CPT) are widely used in practice and return large numbers of
data. As a result, a great deal of statistical work on in situ data has been reported in
the literature. Phoon and Kulhawy (1996) have summarized a number of these studies.
Table 8.7 shows results for various downhole test devices, including in addition to SPT
and CPT, the field vane (FVT), dilatometer (DMT), and pressure meter (PMT). The
coefficients of variation for all these tests range to large values, in part because these test
data many times reflect small-scale variations in soil properties, and in part because the
tests themselves may introduce significant measurement error.

Baecher et al. (1983) summarize strength and other geotechnical data on tailings from
41 copper, uranium, and gypsum mines in north America, Africa, and Japan. Table 8.8
summarizes within site variability for SPT and CPT measurements, linearly de-trended
using regression analysis to remove systematic variations with depth. Kulhawy and Traut-
mann (1996) have analyzed the probable measurement error in the same types of in situ
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Table 8.7 Coefficient of variation for some common field measurements (Phoon and Kulhawy
1999)

Test type Property Soil type Mean Units COV(%)

CPT qT Clay 0.5–2.5 MN/m2 <20
qc Clay 0.5–2 MN/m2 20–40
qc Sand 0.5–30 MN/m2 20–60

VST su Clay 5–400 kN/m2 10–40
SPT N Clay & Sand 10–70 blows/ft 25–50
DMT A Reading Clay 100–450 kN/m2 10–35

A Reading Sand 60–1300 kN/m2 20–50
B Reading Clay 500–880 kN/m2 10–35
B Reading Sand 350–2400 kN/m2 20–50
ID Sand 1–8 20–60
KD Sand 2–30 20–60
ED Sand 10–50 MN/m2 15–65

PMT pL Clay 400–2800 kN/m2 10–35
pL Sand 1600–3500 kN/m2 20–50
EPMT Sand 5–15 MN/m2 15–65

Lab Index wn Clay and silt 13–100 % 8–30
WL Clay and silt 30–90 % 6–30
WP Clay and silt 15–15 % 6–30
PI Clay and silt 10–40 % –a

LI Clay and silt 10 % –a

γ, γd Clay and silt 13–20 KN/m3 <10
Dr Sand 30–70 % 10–40;

50–70b

aCOV = (3–12%)/mean.
bThe first range of variables gives the total variability for the direct method of determination, and the second range of values
gives the total variability for the indirect determination using SPT values.

Table 8.8 Variabilities of in situ test results for SPT and
CPT in 41 mine tailings deposits (Baecher et al. 1983)

Commodity SPT (b/ft) CPT (psi)

Mean COV Mean COV

Copper 28 39 304 76
Uranium 14 52 – –
Gypsum 20 56 161 52

measurements and report total COV’s due to various measurement errors (equipment,
procedure, random noise) of between 10% and 25% for all but SPT, and COV’s of up to
45% for SPT (Table 8.9). This would suggest that as much as half of the variability among
in situ measurements could arise from random testing errors. This result is consistent with
other reports in the literature (e.g. Hilldale 1971).

The variability among laboratory measurements of effective friction angle, φ, is consid-
erably less than that among in situ tests. First, greater care is usually taken with laboratory
tests than with in situ tests, and, second, the specimen quality for laboratory tests is almost
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Table 8.9 Uncertainty estimates for five common in situ tests. (Kulhawy, F.H. and Trautmann,
C.H., 1996) ‘Estimation of in-situ test uncertainty.’ uncertainty in the Geological Environment,
Madison, WI, ASCE: 269–286, reproduced with permission of the American Society of civil
Engineers

Test Coefficient of Variation, COV (%)

Acronym Equipment Procedure Random Total Range

Standard Penetration Test SPT 5c –75d 5c –75d 12–15 14c –100d 15–45
Mechanical Cone

Penetration Test
MCPT 5 10e –15f 10e –15f 15e –22f 15–25

Electric Cone
Penetration Test

ECPT 3 5 5e –10f 8e –22f 5–15

Vane Shear Test VST 5 8 10 14 10–20
Dilatometer Test DMT 5 5 8 11 5–15
Pressuremeter Test,

Pre-bored
PMT 5 12 10 16 10–20g

Self-Boring
Pressuremeter Test

SBPMT 8 15 8 19 15–25g

aCOV(total) = {COV(equipment)2 + COV(procedure)2 + COV(random)2}1/2.
bbecause of limited data and judgment involved in estimating COVs, ranges represent probable magnitudes of field test
measurement error.
c,dBest to worst case scenarios, respectively, for SPT.
e,fTip and side resistances, respectively, for CPT.
gResults may differ for p0, pf , and p1, but data are insufficient to clarify this issue.

Table 8.10 Variabilities of laboratory-measured φ for var-
ious soils

Soil type COV Source

Various soils 9 (Lumb 1966)
Clay 40 (Kotzias et al. 1993)
Alluvial 16 (Wolff 1996)
Sands 2–5 (Lacasse and Nadim 1996)
Tailings 5–20 (Baecher et al. 1983)

Table 8.11 Variabilities of laboratory-measured φ for five (5) mine tailings deposits (Baecher
et al. 1983)

Commodity n Mean
Standard
Deviation COV

Skew
(β1)

Kurtosis
(β2) pdf

Copper 26 30.4 2.56 0.08 0.0015 2.17 Beta/Uniform
Copper 16 35.7 2.90 0.08 0.750 3.99 Beta/Gamma
Copper 21 36.2 4.35 0.12 0.100 3.01 Normal
Uranium 23 35.8 6.04 0.17 0.202 3.02 Normal
Gypsum 19 41.6 5.80 0.14 0.146 2.68 Normal
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always better than for in situ tests. As a general rule, the most intact and least disturbed
section of a boring is selected for laboratory testing, creating an implicit sampling bias
that reduces variability.

Table 8.10 shows reported variabilities in laboratory measured values for φ for a variety
of soils. The range of variabilities is large, and it is not clear what one can conclude from
these results. Baecher et al. (1983) report variabilities of φ for three types of mine tailings
(Table 8.11) along with third and fourth moment information which allows the data to be
plotted on Pearson distribution charts (more below).

8.6 Distributional Properties

The preceding sections have concerned themselves with the coefficients of variation of soil
data. The empirical probability distributions characterizing those observations are typically
reported in histograms, but analytical forms are also available with which to model sample
distribution functions, and such models are of convenience both for statistical inference
and for engineering modeling.

Certain analytical functions that play a central role in statistical theory and data analysis
are discussed in Chapter 3. The more common and useful of these for fitting empirical
data are summarized here. The most common analytical distribution functions are those
of the general exponential form

fX(x) ∝ exp{a + bx + bc2)xd (8.4)

in which a, b, c, and d are constants. The better known distributions having this form are
the Normal, logNormal, Exponential, and Gamma.

The Normal distribution, recognized by its characteristic bell-shape, is the most common
of all distributions. It is observed in sample data with such frequency that Galton (Gillham
2001), in his early work on the distribution of features in human populations, coined its
common name, at least for the English literature. In non-English literatures the distribution
is more commonly called the Gaussian, in honor of Gauss’s original proof of the central
limit theorem, which says that variables composed of the sum of independent perturbations
necessarily tend toward Normal distributions as the number of perturbations becomes
large. Thus, through the central limit theorem there exists theoretical justification for the
widespread use of the normal form, and for the central position occupied by this form in
statistical sampling theory. Stigler (1999) observes that the term ‘Gaussian’ is a misnomer,
as De Moivre discovered the distribution early in the seventeenth century.

The logNormal distribution describes the distribution of a variable, the logarithm of
which is normally distributed. Thus, the logNormal is closely related to the Normal, and
by an extension of the central limit theorem one can show that the logNormal distribution
describes a variable formed by the product of independent perturbations as the number
of perturbations becomes large.

The Exponential distribution, sometimes called Negative Exponential, is a one-
parameter function and is arguably the simplest of common distributions. While this
distribution is often observed in geometric data, as, for example, the spacings among
rock joint traces in outcrop, it is not commonly encountered in strength, deformation,
or flow data. Theoretical arguments can be made that certain types of data should be
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exponentially distributed, for example spacings between random events in time or space,
but in the general case its use is primarily one of convenience.

The Gamma distribution is positively skewed, as is the logNormal, and although derived
from theoretical arguments pertaining to discrete measurements, its use with continuous
measurements is often based on its similarity to the logNormal and its greater convenience.

Only a limited number of non-exponential forms are commonly used with geotech-
nical data. Perhaps the most publicized of these is the Beta distribution, which has
been advocated principally due to its flexibility and the upper and lower bounds of its
domain, matching the upper and lower bounds for such geotechnical variables as friction
angle (Harr 1987). The Beta distribution is a four-parameter pdf and is thus flexible. It
often approximates empirical data quite well because of this fact. On the other hand,
one must be mindful that, due to the large number of parameters required to specify the
beta distribution, the degrees of freedom in fitting empirical data are reduced. Thus, with
limited data sets the statistical uncertainty in estimated parameters increases. With large
data sets, the number of degrees of freedom is seldom a problem, but many geotechnical
data sets are not large. Since the Beta distribution is defined over a segment of the mea-
surement axis rather than the entire axis, upper and lower bounds on x must be estimated
or fixed a priori. This can be a difficult task.

Given the large number of analytical forms for distribution functions, attempts have
been made to develop systems of distributions to bring order to the taxonomy of functions.
The principal attempt in this direction is due to Pearson (Ord 1972), and his chart of
distributional types is now widely used. Other systems of distributions have also been
proposed, and are discussed by Ord.

The Pearson family of distributions comprises the solutions to the differential equation

dfX(x)

dx
= (x − a)fX(x)

bo + b1x + b2x2
(8.5)

in which a, b0, b1, and b2 are constants. Among others, these solutions include the Normal,
logNormal, Gamma, Exponential, and Beta distributions. They also include other common
or useful distributions, for example, Student’s t distribution. Members of the Pearson
family are usually identified by study of their low-order moments, specifically those of
order one through four (related to the mean, standard deviation, skewness, and kurtosis).
These moments may be combined in the two statistics (Ord 1972), β1 = µ2

3/µ
3
2 and β2 =

µ4/µ
2
2 in which µi is the ith central moment of the distribution (Chapter 3), which can

then be used to distinguish among members of the Pearson family. The simplest use of the
β1 and β2 statistics is through the Pearson Diagram (Figure 8.6), with which distributional
forms may be identified by inspection.

Systems of distributions other than Pearson’s have been studied, primarily by repre-
senting frequency functions as series expansions, or by considering the transformations
of frequency functions to common shapes (e.g. to Normal distributions). These are briefly
listed for reference. Discussions of these families can be found in Ord (1972) or Kendall
and Stuart (1977). The principal series expansion systems of distributions are: (1) the
Chebyshev–Hermite polynomials, based on polynomial multipliers of the error function
integral; (2) Edgeworth’s Type A series, and the (3) Gram–Charlier Type A series, each
based on series of normal integrals or their derivatives; (4) the Tetrachoric function series,
due to Pearson; and (5) Charlier’s Type B series, based on derivatives of the Poisson pdf.
The principal transformation systems are (1) polynomial transformations to Normality,
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Figure 8.6 Pearson diagram for distinguishing members of the Pearson family of distributions
from the low-order moments of data (Ord 1972).

and (2) general (non-polynomial) transformations to Normality. In each case a frequency
function is categorized by the nature of the transformation that changes it to a Normal
distribution.

Figure 8.7 shows Pearson charts of CPT data for copper tailings collected in 21 borings
at the Chingola Mine, Zambia. The plot to the left shows raw measurements without de-
trending for depth. The plot to the right shows the same data with a linear (or multi-linear)
trend with depth removed. That is, the plot to the right is for residuals off the trend. The
raw data spread widely, because no trend has been removed, and are well-modeled by
uniform or Beta pdf’s (Figure 8.8). The residual data are more clustered about their
respective means (i.e. trends) are well-modeled in most cases by Normal pdf’s, or where
not, then by logNormal pdf’s (Figure 8.9). Table 8.12 reports best fitting pdf’s for various
tailings properties at 41 mines.

Many measures of soil strength appear to be well-modeled by Normal distributions
(Figure 8.10), or by more flexible distributions of such as the four-parameter Beta, which
mimic the Normal within the high probability density region of the distribution. However,
this is not the case for all strength data, as illustrated by Figure 8.11, taken from Kaderabek
and Reynolds (1981). Most soil strength measurements reflect the influence of moderate
to large volumes of soils within which the effects of individual elements add to those of
other elements to produce the macroscopic property. Thus, from a random process model
view, soil strength is in averaging process, and we should expect the results to display a
tendency toward Normal distributions.
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The data represented in Figure 8.11 however, do not reflect an averaging process.
These data were collected from confined compression tests on brittle specimens of Miami
limestone. Rock specimens tested in unconfined compression do not, in fact, fail due to
compression stresses, but from lateral tensile stresses in the middle of the specimen (Price
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Figure 8.7 Pearson charts of CPT data for copper tailings collected in 21 borings at the Chingola
Mine, Zambia, (a) raw (non de-trended) data, (b) residuals off linear trend with depth (Baecher
et al. 1983).
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Figure 8.8 Histogram and probability paper plots of raw (non de-trended) CPT data for cop-
per tailings collected in 21 borings at the Chingola Mine, Zambia (Baecher et al. 1983). Curves
on probability paper plot show best fitting Normal (line), logNormal, Exponential, and Gamma
distributions.
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Figure 8.8 (continued )

1966). Thus, the failure mechanism reflects extreme values, the most critical flaw, and one
should expect the skew that is typical of extreme value phenomena. This can be observed
in both the unconfined compression test data shown here, and in splitting tension test
data also presented by Kaderabek and Reynolds. Tellingly, however, this skew does not
appear in the rock modulus data, which, as should be expected, are closer to Normality.
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Figure 8.9 Histogram and probability paper plots of residuals off linear trend with depth CPT data
for copper tailings collected in 21 borings at the Chingola Mine, Zambia (Baecher et al. 1983).
Curves on probability paper plot show best fitting Normal (line), logNormal, Exponential, and
Gamma distributions.
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Table 8.12 Best fitting pdf’s for various tailings properties at 41 mines, distributions passing
Kolmogorov-Smirnov goodness-of-fit at 5% level (Baecher et al. 1983)

Commodity Site Measurement Raw Data Residuals

Copper Chambishi cone penetration none none
Chibuluma cone penetration Beta Normal

Beta
China SPT all Normal
Chingola cone penetration none none
Magna water contents Normal Normal

Beta Beta
logNormal
Gamma

field vane Normal Normal
Beta Beta
logNormal
Gamma

dry density Normal none
Beta
logNormal
Gamma

Mindola cone penetration none none
Uranium Colorado SPT none none

triaxial φ Normal none
Beta
logNormal
Gamma

Gypsum Texas SPT Normal Normal
Beta
LogNormal
Gamma

unit weight Normal Normal
Beta Beta
logNormal
Gamma

(continued overleaf )
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Table 8.12 (continued )

Commodity Site Measurement Raw Data Residuals

La.1 SPT(0 to 50 ft) Normal Normal
Beta Beta
logNormal
Gamma

SPT(55 to 100 ft) Beta Normal
logNormal. Beta
Gamma

SPT Beta Normal
logNormal Beta
Gamma

Piney Point cone penetration Beta none
LogNormal
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Figure 8.10 Distribution of unconfined compression strength. (Wu, T. H. and Kraft, L. M.,
1967. ‘The probability of foundation safety.’ Journal of the Soil Mechanics and Foundations
Division, ASCE 93(SM5), pp. 213-23, reproduced with permission of the American Society of
Civil Engineers).
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Figure 8.11 Histogram of ultimate unconfined compressive strength for Miami Limestone from
4 inch (100 mm) diamond rock core test. (Kaderabek, T.J. and Reynolds, R.T., 1981, ‘Miami lime-
stone foundation design and construction.’ Journal of the Geotechnical Engineering Division, ASCE
107(G77): 859–872, reproduced with permission of the American society of civil Engineers.)

8.7 Measurement Error

Measurement error enters the determination of soil properties in at least two ways, through
systematic biases in average property measurements, and through random errors or noise.
The usual model for these errors is

z = bx + e (8.6)

in which x is a measured value, b is a bias term, x. is the actual property, and e is a
zero-mean independent and identically distributed perturbation. Thus, the error terms are
b and e. The bias is often assumed to be uncertain, with mean µb and standard deviation
σb. The IID random perturbation is usually assumed to be Normally distributed with zero
mean and standard deviation σe.

For a given value of x, the mean and variance of z can be found from a simple
expansion of the derived variable (Chapter 3):

V ar(z) = µ2
xV ar(b) + µ2

bV ar(x) + µxµbCov(x, b) + V ar(e) (8.7)

in which µx is the mean of the actual soil property. Usually, the dependence of b on x

is ignored, such that covariance Cov(x,b) is assumed negligible.
Bias error in measurement arises from a number of reasonably well-understood mech-

anisms. Sample disturbance is among the more important of these mechanisms, usually
causing a systematic degradation of average soil properties along with a broadening of
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dispersion. The second major contributor to measurement bias is the phenomenological
model used to interpret the measurements made in testing and especially the simplifying
assumptions made in that model. For example, the physical response of the tested soil
element might be assumed linear, when in fact this is only an approximation; the rever-
sal of principal stress direction might be ignored; intermediate principal stresses might
be assumed other than they really are; and so forth. The list of possible discrepancies
between model assumptions and the real test conditions is long.

Model bias is usually estimated empirically by comparing predictions made from mea-
sured values of soil engineering parameters against observed performance. Obviously,
such calibrations encompass a good deal more than just the measurement technique; they
incorporate the models used to make predictions of field performance, inaccuracies in site
characterization, and a host of other things.

Bjerrum’s (1972; 1973) calibration of field vane test results for the undrained strength,
su, of clay is a good example of how measurement bias can be estimated in practice.
This calibration compares values of su measured with a field vane against back-calculated
values of su from large-scale failures in the field. In principle, this calibration is a regres-
sion analysis (Chapter 4) of back-calculated su against field vane su, which yields a mean
trend plus residual variance about the trend. The mean trend provides an estimate of µb

while the residual variance provides an estimate of σb. The residual variance is usually
taken to be homoscedastic – meaning it has the same variance regardless of the value of
x, a common assumption in regression analysis – implying independence of the variation
of b and x. This approach to measurement bias is adopted and Chapter 14 in an example
of slope stability calculations applied to water retaining dikes on the James Bay project
in Quebec.

Random measurement error is that part of data scatter attributable to instrument or oper-
ator induced variations from one test to another. This variability may sometimes increase
a measurement and sometimes decrease it, but its effect on any one, specific measure-
ment is unknown. Systematic difference between the real value and the average of the
measurements is said to be measurement bias, while the variability of the measurements
about their mean is said to be random measurement error.

Random measurement errors are ones whose sign and magnitude cannot be predicted;
they may be plus or minus. Typically, random errors tend to be small and they tend to
distribute themselves equally on both sides of zero. Measurement error is the cumulative
effect of an indefinite number of small ‘elementary’ errors simultaneously affecting a
measurement.

Random measurement errors of soil properties are difficult to assess directly because
most soil is destructively tested. The standard way to gauge random measurement errors
is to make repeated measurements of the same property and then to characterize how
much those measurements vary. This is, for example, the way surveyors find the average
squared error in transit measurements, and it is the way commercial testing laboratories
calibrate instruments. But this cannot be done for measurements of, say, su, because the
specimen is destroyed in the process of testing.

For tests of soil properties than do not require undisturbed specimens, for example,
Atterberg limits, repeated testing is possible. Hammitt (1966) reports findings of a series
of comparative laboratory tests conducted by the American Council of Independent Lab-
oratories. In these comparative tests, specimens of three soils, as close to identical as
possible, were distributed to different commercial testing laboratories. Each laboratory
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Table 8.13 Statistical analysis of soil tests performed on identical soil samples distributed by the
American Council of Independent Testing Laboratories (Hammitt 1966)

Highly Plastic Soil Medium Plastic Soil Low Plastic Soil

Type of test Mean
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

LL 54.3 5.4 32.7 2.3 27 1.7
PL 22.2 3.4 22.4 2.8 23.6 2.4
PI 32 5.7 10.4 3.6 3.8 2.1
Specific Gravity 2.63 0.115 2.66 0.060 2.69 0.054

reported back measurements of liquid limit, plastic limit, plasticity index, and specific
gravity. The summarized results are shown in Table 8.13.

The results suggest that the coefficients of variation of random measurement errors for
liquid limit and plastic limit range from about 5% to about 15%. The COV of plasticity
index should be the rms sum of the COV’s of LL and PL, since PI = LL − PL, and,
as can be seen from the data, this is in fact the case. The COV’s for specific gravity
measurements are quite small, typically only about 2%. The fact that random measure-
ment errors in Atterberg limits are high should surprise no one who has ever performed
such tests.

An indirect way of assessing random measurement error is by making use of the spatial
structure of test results in the field. This approach, using the autocorrelation function,
manages to get around the problem caused by destructive testing by leveraging the fact
that soil properties tend to be spatially correlated, and thus properties at closely spaced
locations tend on average to be more alike than do properties at widely separated locations.
The decay of this correlation with separation distance can be interpolated back to the origin
(zero separation) of the autocorrelation plot to infer measurement error. A more complete
description of this approach awaits the introduction of concepts and models of spatial
correlation in Chapter 9.





9 Spatial Variability
within Homogeneous
Deposits

Soils are geological materials formed by weathering processes and, save for residual soils,
transported by physical means to their present locations. They have been subject to various
stresses, pore fluids, and physical and chemical changes. Thus, it is hardly surprising that
the physical properties of soils vary from place to place within resulting deposits. The
scatter observed in soil data comes both from this spatial variability and from errors in
testing. Each of these exhibits a distinct statistical signature, which can be used to draw
conclusions about the character of a soil deposit and about the quality of testing. In this
chapter, we consider the spatial variation of actual soil properties.

9.1 Trends and Variations About Trends

In Chapter 8, means and standard deviations were used to describe the variability in a
set of soil property data. These are useful measures, but they combine data in ways that
mask spatial information. Describing the variation of soil properties in space requires
additional tools.

Among the first things engineers do in analyzing data is plot them. This might be a
map showing the horizontal extent of the site, or it might be a profile section or fence
diagram, showing vertical slices. From such plots, one recognizes trends, anomalous
geological conditions, and other features that may affect engineering performance. The
same is true of statistical interpretation of data. Indeed, the first rule of statistical analysis
might well be: Plot the data.

Consider two sequences of measurements shown in Figure 9.1. Presume that each
measurement was made at the same elevation, one in each of nine consecutive borings
along a line. These two sets of data have the same mean and standard deviation, but
reflect different soil conditions. The first data exhibit a horizontal trend; the second are

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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Figure 9.1 The data in the two figures share the same mean and variance, but display different
patterns of spatial variation.

erratic. This difference cannot be inferred from the mean and standard deviation alone,
for they are the same in both cases. Trend analysis is concerned with distinguishing these
two cases.

In principle, the spatial variation of a soil deposit can be characterized in detail, but
only after a large number of tests. In reality, the number of tests required far exceeds
what can be acquired in practice. Thus, for engineering purposes a simplification is intro-
duced – a model – with which spatial variability is separated into two parts: (i) a known
deterministic trend; and (ii) residual variability about that trend. This model is written

z(x) = t (x) + u(x) (9.1)

in which z(x) is the soil property at location x, where x may be a vector (e.g. location in
three dimensions), t (x) is the value of the trend at x, and u(x) is the residual variation.
The trend is characterized deterministically by an equation. The residuals are characterized
statistically as a random variable, usually with zero mean, and non-zero variance1

Var[u] = Ez[{z(x) − t (x)}2] (9.2)

Rather than characterize soil properties at every point, data are used to estimate a smooth
trend, and remaining variations are described statistically. The residuals are characterized
statistically because there are too few data to do otherwise. This does not presume soil
properties to be random; clearly, they are not. The variance of the residuals reflects
uncertainty about the difference between the interpolated trend and the actual value of
soil properties at unobserved locations.

1 Statistical methods of trend analysis usually presume zero-mean residuals, but this is not true of all trend
fitting methods. The Galerkin method of fitting polynomial trends, common in finite element analysis, is a
counter example.
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Figure 9.2 Fitting the same data with a line versus a curve changes the residual variance.

The division of spatial variation between trend and residuals is an artifact of how we
model soil variability. The data of Figure 9.2 are first modeled using a linear trend. As a
result, the residual variation about the trend line has some variance. If, instead, the trend
is modeled as a quadratic curve, the trend more closely approximates the data, and the
variance of the residual variations is corresponding lower. Carrying this to its extreme, if
the trend were modeled using a polynomial one order less than the number of data points,
the curve would fit the data perfectly, and the variance of the residuals would be zero.
On the other hand, as the flexibility of the trend becomes ever greater, the (statistical)
estimation uncertainty in the parameters of the trend rises, eventually approaching infinity
as the number of parameters approaches one less than the number of data.

In a world of perfect information, soil properties at every location at the site would
be known, and there would be no reason to divide the observed variation artificially.
But this is never the case in the real world. Data are limited, and analytical capacity is
finite. We model the spatial variation of soil properties using the mathematics of random
processes not because soil properties are random, but because our information about those
properties is limited. While statistical techniques provide a convenient way to describe
what is known about spatial variation, grouping data together may also mask important
geological details. The tension between the need to smooth data enough to make them
useful in further analyses and the concern that smoothing will eradicate significant details
is a salient feature of much engineering work, whether it employs statistical, numerical,
graphical, or other tools.

9.1.1 Trend analysis

Trends are estimated by fitting well-defined mathematical functions (i.e., lines, curves,
or surfaces) to data points in space. The easiest way to do this is by regression analysis
(Chapter 4). For example, Figure 9.3 shows maximum past pressure measurements as
a function of depth in a deposit of Gulf of Mexico clay near Mobile. For geological
reasons the increase of maximum past pressure with depth is expected to be linear within
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Figure 9.3 Maximum past pressure data as a function of depth (Baecher and Ladd 1997).

this homogeneous stratum. Data from an overlying desiccated crust are not shown. The
equation for maximum past pressure, σ ′

vm , with depth x, is

σ ′
vm = tσ ′

vm
(x) + u(x) = β0 + β1x + u (9.3)

in which tσ ′
vm

(x) is the trend of maximum past pressure with depth, x, β0 and β1 are scalar
coefficients (intercept and slope), and u = residual variation about the trend taken to be
constant with depth.2 Applying the least squares regression equations of Chapter 4 to the
data, thus obtaining the trend parameters minimizing Var[u] = σ 2, leads to β0 = 3 ksf,
β1 = 0.06 ksf/ft, and σ 2 = 1.0 ksf, for which the corresponding trend line is shown in
Figure 9.3. For data analysis purposes, the trend line tσ ′

vm
= E[σ ′

vm|x] = 3 + 0.06x is
the best estimate or mean of the maximum past pressure as a function of depth. This
regression analysis can be done using either a frequentist or Bayesian approach, and all
the philosophical concerns attending this choice, obviously, apply.

A similar analysis can be made of data in higher dimensions. Figure 9.4a shows a map
of the locations of borings within a region of a large office development project underlain

2 Here we have used x to indicate depth, rather than the more common z, to provide consistency with the
generic expressions for multidimensional regression found in the statistical literature, and used in Chapter 4.
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Figure 9.4a Boring locations, showing contour lines of the best-fitting plane to the boring-average
shear strength ratio.

by lacustrine clay. Taking the measured undrained strength ratios (Su/σ
′
vo) through the

clay in each boring, a best fitting planar trend to the spatial variation of the mean is
taken as

z(x1, x2) = {β0 + β1x1 + β2x2} + u(x1, x2) (9.4)

which may be rewritten in matrix notation as

z = Xβ + u (9.5)

in which z is the vector of the n observations z = {z1, . . . , zn}, X = {x1, x2} is the 2 ×
n matrix of location coordinates corresponding to the observations, β = {β0, β1, β2} is
the vector of trend parameters, and U is the vector of residuals corresponding to the
observations.

Minimizing the variance of the residuals u(x) over β gives the best fitting trend surface
in a frequentist sense (again, this analysis could also be made in a Bayesian sense):

min
β

Var[u] = min
β

E[z − Xβ]2 (9.6)

which is the common regression surface, described in more detail in Chapter 4.3 Contours
of this planar trend surface are also shown in Figure 9.4a. The corresponding variance

3 For the general, n-dimensional case, the estimates of the coefficients β which satisfy the minimization of the
residual variance, β̂, are

β̂ = (XTX)−1XTz
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Figure 9.4b Residual variations for the data of Figure 9.4a.

of the residuals about the trend is shown in Figure 9.4b, and the relationship of values
predicted by the trend compared to the measurements in Figure 9.4c.

For the quadratic case, the linear expression in Equation (9.4) is replaced by

z(x) = {β0 + β1x1 + β2x1
2 + β3x2 + β4x2

2 + β5x1x2} + u(x1, x2) (9.7)

and the calculation for β̂ performed the same way. Because the quadratic surface is more
flexible than the planar surface, it fits the observed data more closely, and the residual
variations about it are smaller.

Examples of the use of trend surfaces in the geosciences are given by Krumbein and
Graybill (1965), Davis (1986), and Agterberg (1974). Examples in the geotechnical liter-
ature are given by Wu et al. (1996) and Ang and Tang (1975).

9.1.2 Uncertainty in trend parameters: frequentist approach

When trend surfaces are computed, the calculated parameters are those that provide the
trend that most closely fits a given set of observations. Had the observations been made
in slightly different places, or had the observed values been slightly different because
of measurement errors, then the best fitting parameter values would be slightly different.

in which

X =




1 x1,1 . . . xk,1

1 x1,2 . . . xk,2

. . .

1 x1,n . . . xk,n




(sometimes called, the design matrix of locations), n is the number of dimensions of the trend model, k is the
number of data, and z is the vector of observed values.
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Figure 9.4c Comparison of shear strength ration predicted by best-fitting planar regression to the
observed values.

Estimating coefficients of trend surfaces involves statistical error, and the estimates of the
parameters differ if the same population is sampled repeatedly.

The probability distribution of the parameters over repeated sampling is said to be the
‘sampling distribution’ of the parameters. The sampling variances and covariances of the
estimated coefficients, β̂, are summarized in the covariance matrix

�β̂ =




V ar[β̂0] Cov[β̂0, β̂1] . . . Cov[β̂0, β̂n]
Cov[β̂1, β̂0] V ar[β̂1] . . . . . .

. . . . . . . . . . . .

Cov[β̂n, β̂0] . . . . . . V ar[β̂n]


 (9.8)

which is obtained by propagating residual variances through Equation 9.6:

�β̂ = (XT X)−1V ar[u] (9.9)

presuming the residuals to be independent of one another. This assumption of indepen-
dence of the residuals for spatial data such as those obtained in site characterization is only
good if the observations are widely spaced. We return to this theme in the Section 9.3.

For the one-dimensional case of the maximum past pressure trend of Equation (9.3),
the sampling variances of the intercept β0 and slope β1 are4

4 Matrix notation for finding the sampling variances of trend coefficients is convenient, but for the simple
one-dimensional case the solution can also be calculated from the expressions
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�β̂ =
(

V ar[β̂0] Cov[β̂0, β̂1]
Cov[β̂1, β̂0] V ar[β̂1]

)

=
(

0.1691 −0.0002
−0.0002 0.0002

) (9.10)

Again, these are the variances of the regression coefficients in a frequentist sense over
repeated sampling, and are shown as standard deviation envelopes on Figure 9.3. From
these, the standard deviation of the sampling variation (standard error) of the intercept
is 0.411, and that of the slope is 0.0143. The intercept and slope estimates are slightly,
negatively correlated, with ρ = −0.04.

The common assumption in analyzing trends is that residual variation is Normal (Gaus-
sian); that is, the variations about the trend line or surface are Normally distributed.
Usually, this is a reasonable assumption, but, in any event, the statistical properties of the
estimators of the parameters of the trend model are robust (i.e. insensitive) to variations
from the Normal assumption. In the Normal case, the sampling distributions of the esti-
mators β̂ of the parameters β are themselves jointly Normal, with means equal to the least
squares values, and with the covariance matrix of Equation (9.9). Since the covariance
matrix of Equation (9.9) itself depends upon the variance of the residuals, the Normality
of β̂ is conditional on the value of σ 2. When σ 2 is unknown (i.e. σ 2 must itself be esti-
mated from the sample), the sampling distribution of β̂ based on the estimate of σ 2 has
the Student-t form (Chapter 4). The Student-t distribution is similar to the Normal distri-
bution, but has thicker tails to account for the added uncertainty of not knowing the true
value of σ 2. The covariance matrix of the estimated parameters becomes n�β̂/(n − k), in
which n is the number of observations and k is the number of trend parameters. Clearly,
for a given n, as the flexibility of the trend, reflected in the number of its parameters,
increases, the uncertainty in the estimates of those parameters increases. For k → n, the
uncertainty becomes infinite. This result parallels the situation of independent, identi-
cally distributed (IID) sampling from a univariate Normal population (Chapter 4). Tests
of confidence, significance limits, and other traditional estimation procedures are straight-
forward. These are summarized in Chapter 4 and in texts on regression analysis (Draper
and Smith 1998; Johnson 1960).

In practice, it is common for people to use the sampling variances of Equation (9.9)
as if those variances directly expressed uncertainty on the trend parameters β, that is,
as if the variances were the moments of a probability density function (pdf) over β.
This is not the case. The least square estimates and the associated sampling variances
of the estimates have to do with the behavior of the estimators in repeated sampling.

V ar(β0) =
n∑

i=1

(
1

n

)2

V ar[u] = σ 2

n

V ar(β1) =
n∑

i=1

[
xi − µx∑n

i=1(xi − µx)2

]2

V ar(u) = σ 2

nV ar[x]

in which σ 2 = V ar[u]. Note that each variance is inversely proportional to n, the number of observations. The
fewer observations, the larger the sampling variance of the coefficients. When σ 2 is unknown but must itself
be estimated from the same data, as σ̂ 2, the sampling variances of β0 and β1 increase by the factor n/(n − 2).
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They answer the question, if the same number of observations were made in slightly dif-
ferent ways or in slightly different places, how might the estimates so obtained vary
from one another? The least squares approach as presented is a frequentist method,
and does not admit probability statements directly on estimated parameters. A Bayesian
approach is needed to answer the reverse question, which is, given a set of observa-
tions, what is the pdf of β? Fortunately, under reasonably broad assumptions, the second
moments of the Bayesian posterior pdf of β are close to or identical with those of
Equation (9.9).

9.1.3 Uncertainty in trend parameters: Bayesian approach

The Bayesian approach to trend analysis begins with the same model of
Equations (9.1) or (9.5). However, rather than defining an estimator such as the least
squares coefficients and then calculating the behavior of those estimators in repeated
sampling, the Bayesian approach specifies a pdf on the coefficients of the model (β, σ ),
and uses Bayes’ Theorem to update that pdf in light of the observed data (for a more
detailed discussion, see Chapter 4).

Adopting the trend model of Equation (9.5), let Var[u] = σ 2, so that Var[u] ≡ � =
Iσ 2. The prior probability density function (pdf) of the parameters (β, σ ) is then repre-
sented as f (β, σ ). Given a set of observations z = {z1, . . . , zn}, the updated or posterior
pdf of (β, σ ) is found from Bayes’ Theorem, f (β, σ |z) ∝ f (β, σ )L(β, σ |z), in which
L(β, σ |z) is the Likelihood of the data. Assuming, as in the previous section, that varia-
tions about the trend line or surface are jointly Normal, the likelihood function becomes

L(β, σ |z) = MN(z|β, σ ) ∝ exp{−(z − Xβ)�−1(z − Xβ)} (9.11)

in which MN(z |β, σ ) is the multivariate Normal distribution having mean Xβ and covari-
ance matrix � = Iσ 2.

Addressing the linear, one-dimensional case for which β = (β1, β2), and adopting a
non-informative prior, f (β1, β2, σ ) ∝ 1/σ , the posterior pdf of the regression parameters
is (Zellner 1971)

f (β1, β2, σ |x, y) ∝ 1

σn+1
exp

[
− 1

2σ 2

n∑
i=1

(yi − β1 + β2xi)
2

]
(9.12)

The marginal distributions of the regression coefficients are then,

f (β1, β2|x, y) ∝ [vs2 + n(β1 − β̂1)
2 + 2(β1 − β̂1)(β2 − β̂2)�xi + (β2 − β̂2)

2�x2
i ]−n/2

f (β1|x, y) ∝ [v + �(xi − x)2

s2�x2
i /n

(β1 − β̂1)
2]−(v+1)/2

f (β2|x, y) ∝ [v + �(xi − x)2

s2
(β2 − β̂2)

2]−(v+1)/2 (9.13)

f (σ |x, y) ∝ 1

σv+1
exp

(
− vs2

2σ 2

)
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in which ν = n − 2, β̂1 = y − β̂2x, β̂2 = [�(xi − x)(yi − y)]/[�(xi − x)2], s2 =
v−1�(yi − β̂1 − β̂2xi)

2, y = n−1�yi, and x = n−1�xi . The joint and marginal pdf’s of
β1, β2 are Student-t , which means that inferences about β1 and β2 can be made from
tables of the Student-t pdf.

9.2 Residual Variations

In fitting trends to data, a decision is made to divide the total variability of the data,
expressed as a variance, into two parts: one part explained by the trend; the other part
reflected in variability about the trend. Residual variations not accounted for by the trend
are characterized by a residual variance. For example, the overall variance of the blow
count data of Figure 9.5 is 45 bpf2. Removing a linear trend reduces this total to a residual
variance of about 11 bpf2. The trend explains 33 bpf2, or about 75% of the spatial variation.
Conversely, 25% of the spatial variation remains unexplained by the trend.

Given the procedure by which the trend is fitted, the residuals by definition have
zero mean. The assumption made in fitting the trend is that (squared) deviations of the
residuals are of equal importance, no matter where in space they occur. Underlying the
statistical model for calculating uncertainties in the trend parameters is a similar but
stronger assumption that the variance of the residual is probabilistically the same no matter
where the residuals occur in space. This is called homoscedasticity. This assumption is
usually good, but may be relaxed (Johnson 1960). A second assumption that was made
in fitting the trend is that the residual variations are independent of one another. That
is, knowing the residual variation at one location provides no information about residual
variations at other locations, for example, those near by. This assumption is not so good;
in fact, it is seldom strictly true for geotechnical data. The trend may explain a large
measure of the spatial structure of soil variability, but spatial structure remains within the
residuals themselves.

The spatial structure remaining after a trend is removed commonly manifests in cor-
relations among the residuals. That is, the residuals off the trend are not statistically
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Figure 9.5 SPT blow count data in a silty-sand bay fill (T.W. Lambe Associates 1982).
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independent of one another. Positive residuals tend to be clumped together, as do nega-
tive residuals. Knowing that an observation at point xi is above the trend suggests that
the observation at a nearby point xj will, with probability greater than 0.5, also be above
the trend at its respective location. The same is true, conversely, for an observation at xi

that would be below the trend. The practical importance of this remaining spatial struc-
ture in the residuals is that, for example, low values of soil strength may occur together;
thus, the probability of encountering a continuous zone of weakness is greater than would
otherwise be predicted.

Figure 9.6 shows residual variations of SPT blow counts measured at the same elevation
every 20 m beneath a horizontal transect at a site. The data are normalized (standardized)
to zero mean and unit standard deviation. The dark line is a smooth curve drawn through
the observed data. The light line is a smooth curve drawn through artificially simulated
data having the same mean and same standard deviation, but which are probabilistically
independent. Inspection shows the natural data to be smoothly varying, or wavy. The
artificial, probabilistically independent data are more erratic.

9.2.1 Autocorrelation

The remaining spatial structure of variation in the residuals can be described by spatial
correlation, usually called autocorrelation, because it refers to correlations of an individual
variable with itself over space (or time, or some other dimension). Formally, autocorrela-
tion is the property that residuals off the mean trend are not probabilistically independent,
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Figure 9.6 Residual variations of SPT blow counts measured at the same elevation every 20 m
beneath a horizontal transect at a site. The data are normalized (standardized) to zero mean and
unit standard deviation. The dark line is a smooth curve drawn through the observed data. The light
line is a smooth curve drawn through artificially simulated data having the same mean and same
standard deviation, but which are probabilistically independent.
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but display a degree of association among themselves which is a function of their sepa-
ration in space. This degree of association can be measured by a correlation coefficient,
taken as a function of separation distance.

Correlation was introduced in Chapter 4. Correlation is the property that, on average,
two variables are linearly associated with one another. Knowing the value of one pro-
vides information on the probable value of the other. The strength of this association
is measured by a correlation coefficient ρ that ranges between −1, and +1. A correla-
tion coefficient ρ = +1 means that two residuals vary together exactly. When one is a
standard deviation above its trend, the other is a standard deviation above its trend, too.
A correlation coefficient ρ = −1 means that two residuals vary exactly inversely. When
one is a standard deviation above its trend, the other is a standard deviation below its
trend. A correlation coefficient ρ = 0 means that the two residuals are unrelated to one
another.5 Knowing the realized value of one provides no information about the realized
value of the other.

For two scalar variables z1 and z2, the correlation coefficient is defined as

ρ = Cov(z1, z2)√
V ar(z1)V ar(z2)

= 1

σz1σz2

E[(z1 − µz1)(z2 − µz2)] (9.14)

in which Cov(z1, z2) is the covariance, Var(zi) is the variance, σ is the standard deviation,
and µ is the mean. The two variables might be of different but related types, for example,
z1 might be water content and z2 might be undrained strength, or the two variables might
be the same property at different locations, for examples z1 might be the water content
at one place on the site and z2 the water content at another place.

The locations at which the blow count data of Figure 9.6 were measured are shown
in Figure 9.7. In Figure 9.8 these data are plotted against each other as a function of
separation distance, δ. That is, in Figure 9.8a all the data pairs having separation distance
δ = 20 m are plotted; then, in Figure 9.8b, all the data pairs having separation distance
δ = 40 m are plotted; and so on. The data pairs at close separation exhibit a high degree of
correlation, for example, those separated by 20 m have a correlation coefficient of 0.67. As
separation distance increases, correlation goes down, although at large separations, where
the numbers of data pairs are smaller, there is much statistical fluctuation. The observed
correlations as a function of separation distance, δ, are shown in Figure 9.8e. For zero
separation distance (δ = 0), the correlation coefficient must equal 1.0. For large separation
distances (δ → ∞), the correlation coefficient typically goes to zero. In between, the
autocorrelation of geotechnical data usually falls monotonically from 1.0 to zero, although
this need not be the case.

The effect of correlation structure on residual variation can be seen in Figure 9.9 in
which four cases are sketched. Spatial variability about a trend is characterized by variance
and autocorrelation. Large variance implies that the absolute magnitude of the residuals
is large; large autocorrelation implies that the ‘wave length’ of the variation is long.

An important observation is that the division of spatial variation into a trend and
residuals about the trend is an artifact of analysis. By changing the trend model – for
example, by replacing a linear trend with a polynomial – both the variance of the residuals

5 This statement is not strictly true. Correlation is a measure of linear association. Two variables can be
deterministically related to one another in a non-linear way and yet have a zero correlation coefficient.
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Figure 9.7 Sampling locations for the data of Figure 9.6.
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Figure 9.8a SPT data of Figure 9.7 plotted against each other for separation distance, δ = 20 m.

and their autocorrelation function are be changed. This can be seen in an analysis that
DeGroot (1996) made, the results of which are shown in Figure 9.10. As the flexibility
of the trend increases, the variance of the residuals goes down, and in general the extent
of correlation is reduced. From a practical point of view, the selection of a trend line or
curve is in effect a decision on how much of the data scatter to model as a deterministic
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Figure 9.8c SPT data of Figure 9.7 plotted against each other for separation distance, δ = 100 m.
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Figure 9.8d SPT data of Figure 9.7 plotted against each other for separation distance, δ = 200 m.
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Figure 9.8e Autocorrelation function for the data of Figure 9.7.

function of space, and how much to treat statistically. Dividing spatial variability into a
deterministic part and a statistical part is a matter of convenience. Prudence requires that
each datum be judged for what it might say about a soil deposit, but engineering analysis
requires models of soil properties for making predictions.
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Figure 9.9 Effect of correlation structure on residual variation.

As a rule of thumb, trend surfaces should be kept as simple as possible without doing
injustice to a set of data or ignoring the geologic setting. The problem with using trend
surfaces that are very flexible, as for example high order polynomials, is that the number
of data from which the parameters of those equations are estimated is limited. As was seen
in Equation (9.9), the sampling variance of the trend coefficients is inversely proportional
to the degrees of freedom, v = (n − k − 1), in which n is the number of observations and
k is the number of parameters in the trend. The more parameter estimates that a trend
surface requires, the more uncertainty there is in the numerical values of those estimates.
Uncertainty in regression coefficient estimates increases rapidly as the flexibility of the
trend equation increases.

9.2.2 Autocorrelation of a deck of cards

A simple but illustrative example of autocorrelation is that of an ordered deck of cards,
due to Jensen (1997). Consider a fresh deck of standard cards arranged in suites and by
pip value. Let the Ace be one, and so forth, up to the King being 13. The sum of the
values in the deck is 364, so the mean is m = 364/52 = 7. The standard deviation is 3.78.

To begin, the cards in the deck are strictly ordered. The pip values in each suit are
arranged from Ace to King, and one suit follows another. The autocorrelation function,
calculated by Equation (9.18), is a series of repeating curves (Figure 9.11). The correlation
between every thirteenth card is perfect, and the correlation for other separations follows a
regular, repeating pattern. The correlation between every seventh card is strongly negative,
because if the first card in the pair has a pip value greater than seven, the mean, the pip
value of the second card will have a value less than seven, and conversely. Note there is
nothing random in the order of the cards, the ordering is completely known. Nonetheless,
an autocorrelation function can be calculated.
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Figure 9.10 Method of moments autocovariance plots for DMT data, assuming (a) mean value
trend, (b) single function linear regression trend, and (c) bilinear regression trend (note differences
in x-axis scales) (DeGroot 1996).

If the cards are now shuffled, the ordering becomes less perfect. Neither the mean nor the
standard deviation changes as we shuffle the deck, but the autocorrelation function does.
It becomes less regular. Figure 9.11 shows the experimentally developed autocorrelation
functions calculated after one, two, and three shuffles of the deck. After the first shuffle
some, of the original pattern of the autocorrelation remains, but after the third shuffle
the autocorrelation is essentially a spike at zero. The ordering of the cards has become
almost unrelated.

Note again, even after the cards have been shuffled, there is nothing “random” in
the ordering of the cards, the ordering is again completely known to us, because we
looked. Nonetheless, an autocorrelation function can be calculated and used to summarize
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the pattern of variation in the deck. This is exactly the same situation with the spatial
variation of soil or rock properties. The spatial pattern may or may not be known to us,
but it is not random. We use autocorrelation to describe the pattern of spatial variation in
a parsimonious way.

9.2.3 Autocovariance and autocorrelation functions

If z(xi) = t (xi) + u(xi) is a continuous variable and the soil deposit is zonally homoge-
neous, then at locations i and j , which are close together, the residuals ui and uj should
be expected to be similar. That is, the variations reflected in u(xi) and u(xj ) are associated
with one another. When the locations are close together, the association is usually strong.
As the locations become more widely separated, the association usually decreases. As
the separation between two locations i and j approaches zero, u(xi) and u(xj ) become
the same, the association becomes perfect. Conversely, as the separation becomes large,
u(xi) and u(xj ) become independent, the association becomes zero. This is the behavior
observed in Figure 9.8 for SPT data.

This spatial association of residuals off the trend t (xi) is summarized by a mathematical
function describing the correlation of u(xi) and u(xj ) as separation distance δ increases.
This description is called the autocorrelation function. In concept, the autocorrelation
function is a mathematical way of summarizing the correlations from the scatter plots of
Figure 9.8 and shown in Figure 9.8e. Mathematically, the autocorrelation function is

Rz(δ) = 1

Var[u(x)]
E[u(xi)u(xi+δ)] (9.15)

in which Rz(δ) is the autocorrelation function, Var[u(x)] is the variance of the residuals
across the site, and E[u(xi)u(xi+δ)] = Cov [u(xi), u(xi+δ)] is the covariance of the resid-
uals spaced at separation distance δ. By definition, the autocorrelation at zero separation
is Rz(0) = 1.0; and empirically, for most geotechnical data, autocorrelation decreases to
zero as δ increases.

If Rz(δ) is multiplied by the variance of the residuals, Var[u(x)], the autocovariance
function, Cz(δ) is obtained:

Cz(δ) = E[u(xi)u(xi+δ)] (9.16)

The relationship between the autocorrelation function and the autocovariance function
is the same as that between the correlation coefficient and the covariance, except that
autocorrelation and autocovariance are functions of separation distance, δ.

The SPT data shown earlier in Figure 9.5 come from a site shown in Figure 9.12 which
overlies hydraulic bay fill in Kawasaki Harbor (Japan). The SPT data were taken in the
silty fine sand between elevations +3 and −7 m, and show little if any trend horizon-
tally, so a constant horizontal trend at the mean of the data is assumed (Figure 9.13).
Figure 9.14 shows the means and variability of the SPT data with depth. Figure 9.15
shows autocovariance functions in the horizontal direction estimated for three intervals of
elevation. At short separation distances the data show distinct association, i.e. correlation.
At large separation distances the data exhibit essentially no correlation.

In natural deposits, correlations in the vertical direction tend to have much shorter dis-
tances than in the horizontal direction. A ratio of about one to ten for these correlation
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Figure 9.14 Soil model and blow count data used to describe Site 400. (Lambe, T. W., and
Associates, 1982. Earthquake Risk to Palio 4 and Site 400, Longboat Key, FL, reproduced by
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distances is common. Horizontally, autocorrelation may be isotropic (i.e. Rz(δ) in the
northing direction is the same as Rx(δ) in the easting direction) or anisotropic, depending
on geologic history. However, in practice, isotropy is often assumed. Also, autocorrela-
tion is typically assumed to be the same everywhere within a deposit. This assumption,
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called stationarity, to which we will return, is equivalent to assuming that the deposit is
statistically homogeneous.

It is important to emphasize, again, that the autocorrelation function is an artifact of the
way soil variability is separated between trend and residuals. Since there is nothing innate
about the chosen trend, and since changing the trend changes Rz(δ), the autocorrelation
function reflects a modeling decision. The influence of changing trends on Rz(δ) is illus-
trated in data analyzed by Javete (1983) (Figure 9.16). Figure 9.17 shows autocorrelations
of water content in San Francisco Bay Mud within an interval of 3 ft. Figure 9.18 shows
the autocorrelation function when the entire site is considered. The difference comes from
the fact that in Figure 9.17 the mean trend is taken locally within the 3 ft interval, and in
Figure 9.18 the mean trend is taken globally across the site. The schematic drawing of
Figure 9.19 suggests why the autocorrelations should differ.

Autocorrelation can be found in almost all spatial data that are analyzed using a
model of the form of Equation 9.1. For example, Figure 9.20 (Baecher et al. 1980)
shows the autocorrelation of rock fracture density in a copper porphyry deposit;
Figure 9.21 (Tang 1979) shows autocorrelation of cone penetration resistance in North
Sea Clay; Figure 9.22 (Baecher 1980) shows autocorrelation of water content in the
compacted clay core of a rock-fill dam. An interesting aspect of the last data is that
the autocorrelations they reflect are more a function of the construction process through

Figure 9.16 Study area for San Francisco Bay Mud measurements analyzed by Javete (1983)
(reproduced with the author’s permission).
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Figure 9.17 Autocorrelation function of water content over small intervals of San Francisco Bay
Mud (after Javete 1983). Distance expressed in lag intervals of 0.5 inch (1.2 cm) (reproduced with
the author’s permission).
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Figure 9.18 Autocorrelation function of water content over small intervals of San Francisco Bay
Mud (after Javete 1983). Distance expressed in lag intervals of 25 feet (7.7 m) (reproduced with
the author’s permission).

which the core of the dam was placed than simply of space, per se. The time stream of
borrow materials, weather, and working conditions at the time the core was placed led
to trends in the resulting physical properties of the compacted material. In a similar way,
the time stream of geological conditions – now long lost to our knowledge – that led to
particular soil or rock formations, also led to the spatial correlations we see today.

For the purposes of modeling and analysis, it is usually convenient to approximate
the autocorrelation structure of the residuals by a smooth function. In Figure 9.8e, the
calculated autocorrelations of the residuals were approximated by the exponential function

Rz(δ) = exp(−δ/δ0) (9.17)

in which δ0 is a constant having units of length. Other functions commonly used to
represent autocorrelation are shown in Table 9.1.
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Figure 9.20 Autocorrelation function of rock joint density in a copper porphyry (Baecher et al.
1980).

9.3 Estimating Autocorrelation and Autocovariance

In the foregoing discussion, we have described the behavior of spatial variations in soil
and rock masses, and shown that this variation might be decomposed into large-scale
trends and small-scale residual fluctuations. The remaining spatial structure of the residual



ESTIMATING AUTOCORRELATION AND AUTOCOVARIANCE 229

0 20 40 60 80

1.0

0.8

0.6

0.4

0.2

0.0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Distance of Separation (m)

ρ = exp [−{r/b2}]

r = 30 m

At Depth 3 m

0 20 40 60 80

1.0

0.8

0.6

0.4

0.2

0.0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Distance of Separation (m)

r = 30 m

At Depth 36 m

Figure 9.21 Autocorrelation functions for penetration measurements of bottom soils in the North
Sea. (Tang, W. H., 1979. ‘Probabilistic Evaluation of Penetration Resistance.’ Journal Geotechnical
Engineering Division, ASCE 105(10), pp. 1173–1191, reproduced by permission of the American
Society of Civil Engineers).

0 20 40 60 80 100

Lag Distance (test number)

0.50

0.25

0.00

−0.25

−0.50

A
ut

oc
ov

ar
ia

nc
e

Figure 9.22 Autocorrelation estimates for soil compaction data in clay core of Carters Dam,
Georgia, showing weak but significant correlation structure with sequence of soil placement in
addition to spatial location within core (Baecher 1980).

Table 9.1 One-dimensional autocorrelation models

Model Equation
Limits of
validity

White noise Rx(δ) =
{

1 if δ = 0
0 otherwise

Rn

Linear Rx(δ) =
{

1 − |δ|/δ0 if δ ≤ δ0
0 otherwise

R1

Exponential Rx(δ) = exp(−δ/δ0) R1

Squared exponential (Gaussian) Rx(δ) = exp2(−δ/δ0) Rd

Power Cz(δ) = σ 2{1 + (|δ|2/δ2
0)

−β Rd, β > 0
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variations manifests in a waviness, or lack of independence, from one observation to the
next in space. This lack of independence can be summarized by plotting the observed
covariance or correlation of the residuals as a function of the latter’s separation distance.
The resulting graph is called an autocovariance or autocorrelation function, respectively.
Thus far, we have spoken loosely of how one goes about estimating autocovariance
from field measurements. In this section, attention turns to statistical issues of inferring
autocovariance.

9.3.1 Conceptual methodology

Estimating autocovariance from sample data is the same as making any other statistical
estimate. The sample data differ from one set of observations to another, and thus the
estimates one makes of autocovariance vary from one sample to another. The important
questions are, how much do these estimates vary, and, as a result, how much might
one be in error in drawing inferences about autocovariances? As in Chapter 4, there are
a number of ways one might approach sampling and inference for autocovariance. In
this section, we consider common frequentist approaches: moment estimates, and max-
imum likelihood estimates. Bayesian inference for autocorrelation has not been widely
used in geotechnical and geoscience applications, and is not as well developed. For fur-
ther discussion of Bayesian approaches to estimating autocorrelation, see Zellner (1971)
and Cressie (1991).

Moment estimates and maximum likelihood estimates both arise out of relative fre-
quentist concepts. In each case, a mathematical function of the sample observations is
used as an estimate of the true population parameters, θ , one wishes to determine

θ̂ = g{z1, . . . , zn} (9.18)

in which {z1, . . . , zn} is the set of sample observations, and θ̂ can be a scalar, vector, or
matrix. For example, the sample mean might be used as an estimator of the true population
mean. Such a function is called an estimator or a statistic of the data. The realized value
of θ̂ for a particular sample {z1, . . . , zn} is called an estimate.

The observations {z1, . . . , zn} are presumed to arise as observations of random variables
from a joint probability distribution fz(z), in which z is a vector. Usually, the distributional
form of fz(z) is fully specified, although in some cases, as for example when using moment
estimators, only the existence of low order moments needs to be assumed. Over replicate
samples, the observations {z1, . . . , zn} are random variables, and thus θ̂ = g{z1, . . . , zn}
is a random variable.

As the probabilistic properties of the {z1, . . . , zn} are known from the assumed model
of spatial variation, the corresponding probabilistic properties of θ̂ can be calculated as a
function of the true population parameters, θ . The probability distribution of θ̂ conditioned
on θ , fθ̂ (θ̂ |θ), is called the sampling distribution of θ̂ . The standard deviation of the
sampling distribution is sometimes called, the standard error.

The quality of the estimate obtained in this way depends on how variable the estimator
θ̂ is about the true value θ ; that is, the sampling distribution is central to knowing how
good an estimate might be. Note that this entire discussion is predicated on a frequency
concept of probability. The sampling distribution, and hence the goodness of an estimate,
has to do with how the estimate might have come out if another sample and therefore
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another set of observations other than that actually in hand had been made. Inferences
made in this way do not admit of a probability distribution directly on the true popu-
lation parameter, θ (what Bayesians would call the state of nature). Therefore, there is
a gap between the result a traditional estimator provides and the information needed by
the reliability analyst in forecasting the uncertain engineering performance of a soil or
rock mass.

Various measures of estimator quality were introduced in Chapter 4. It is typically the
case that an estimator that is optimal in one sense is not optimal in all other senses. For
example, the sample variance for a scalar random variable is a minimum squared error
estimator, but it is not unbiased.

As introduced in Chapter 4, Bayesian estimation differs from frequentist estimation
in that degree-of-belief theory allows probabilities to be assigned directly to states of
nature (e.g. population parameters, θ ). Thus, Bayesian methods start with an a priori
probability distribution on θ , f (θ ), which is updated by the likelihood of observing the
sample {z1, . . . , zn} through Bayes’ Theorem,

f ′(θ |z1, . . . , zn) ∝ f 0(θ)L(θ |z1, . . . , zn) (9.19)

in which f (θ |z1, . . . , zn) is the updated or a posteriori pdf of θ conditioned on the obser-
vations, and L(θ |z1, . . . , zn) = fz1,...,zn

(z1, . . . , zn|θ) is the likelihood of θ , which equals
the conditional probability of {z1, . . . , zn} as a function of θ . Thus, the Bayesian method
gives a direct pdf on θ , but at the expense of needing to specify some a priori distribution,
which may be taken as uniform, but which may be hard to estimate.

9.3.2 Moment estimation

The most common method of estimating autocorrelation or autocovariance functions for
soil and rock properties is the method of moments (Chapter 4). Moment estimators use
the statistical moments of the set of data (e.g. sample means, variances, and covariances)
as estimators of the corresponding moments of the population being sampled. Moment
estimators of autocovariance are conceptually and operationally simple, but have poor
sampling properties for small sample sizes.

Consider the measurements {z1, . . . , zn} made at equally spaced locations x =
{x1, . . . , xn} along a line, as for example in a boring. The sample autocovariance of
the measurements for separation δ is

Ĉz(δ) = 1

(n − δ)

n−δ∑
i=1

[{z(xi) − t (xi)}{z(xi+δ) − t (xi+δ)}] (9.20)

in which Ĉz(δ) is the estimator of the autocovariance function at δ, (n − δ) is the number
of data pairs having separation distance δ, and t (xi) is the trend removed from the data
at location xi . Often, t (xi) is simply replaced by the spatial mean µz, estimated by the
mean of the sample, mz = (1/n)

∑
z(xi). At δ = 0, Ĉz(δ) reduces to the sample variance.

The corresponding moment estimator of the autocorrelation, R̂z(δ) is obtained by dividing
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both sides of Equation (9.20) by the sample variance, to obtain

R̂z(δ) = 1

(n − δ)s2
z

n−δ∑
i=1

(z(xi) − t(xi))(z(xi+δ) − t(xi+δ)) (9.21)

in which sz is the sample standard deviation. Computationally, this simply reduces to tak-
ing all data pairs of common separation distance δ, calculating the correlation coefficient
of that set, then plotting the result against δ. The results of Figure 9.23 were obtained
from the James Bay data of Christian et al. (1994) using this moment estimator. When
the samples are non-uniform in space, data pairs are usually grouped within intervals and
the same procedure used.

In the general case, measurements are seldom uniformly spaced, at least in the hor-
izontal plane and seldom lie on a line. For such situations the sample autocovariance
can still be used as an estimator, but with some modification. The most common way
to accommodate non-uniformly placed measurements is by dividing separation distances
into bands, and then taking the averages of Equation (9.24) within those bands. This
introduces some error into the estimate, but for engineering purposes it is usually of
sufficient accuracy.

The James Bay Project is a large hydroelectric development in the northern region
of Québec, Canada. The data used in this case study are from an investigation into the
stability of dykes on a soft marine clay (Ladd et al. 1983). The site is interesting, among
other reasons, in that the statistical properties of the clay strength have been analyzed
by several authors. The marine clay at the site is approximately 8 m thick and overlies
a lacustrine clay. The depth-averaged results of field vane tests conducted in 35 borings
as part of the soil exploration program were selected for the correlation analysis. Nine
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Figure 9.23 Autocovariance function for field vane strength data from marine clay at James Bay.
(DeGroot, D. J. and Baecher, G. B., 1993. ‘Estimating autocovariance of in situSoil properties.
Journal of the Geotechnical Engineering Division, ASCE 119(GT1): 147–166, reproduced with
permission of the American Society of Civil Engineers).



ESTIMATING AUTOCORRELATION AND AUTOCOVARIANCE 233

of the borings were concentrated in one location. Information on the correlation structure
of the soil at this site was used by Ladd et al. (1983) for the purpose of conducting a
reliability analysis of dyke stability, which is elaborated further in Chapter 15.

To estimate the autocovariance function of the cone penetration strengths, first a con-
stant mean was removed from the data. Then, the product of each pair of residuals was
calculated, and plotted against separation distance. A moving average of these products
was used to obtain the estimated points. Note the precipitous drop in covariance in the
neighborhood of the origin, and also the negative sample moments in the vicinity of
50–100 m separation. Note, also, the large scatter in the sample moments at large sepa-
ration distance. From these estimates. a simple exponential curve was fit by inspection,
and this intersects the ordinate at about 60% of the sample variance. This yields an
autocovariance function of the form

Cz(δ) =
{

22 kPa2, for δ = 0
13 exp{−δ/23 m}, for δ > 0

(9.22)

in which variance is in kPa2 and distance is in meters.
The moment estimator of the autocovariance function is non-parametric, in that no

assumptions are needed about the mathematical shape of the autocovariance function,
except that the second moments exist. This is a highly desirable property, because there
is little theoretical justification in most geotechnical applications for a priori choosing
one functional shape over another. Usually, if a functional form for the autocovariance is
needed, a mathematical equation is fitted to the moment estimates by inspection.

The moment estimator is consistent, in that as the sample size becomes large, E[(θ̂ −
θ)2] → 0, the sample autocovariance function becomes ever closer to the true autocovari-
ance function in mean square error (m.s.e.) On the other hand, the moment estimator is
only asymptotically unbiased. Unbiasedness means that the expected value of the estima-
tor over all ways the sample might have been taken equals the actual value of the function
being estimated. This is true only as n → ∞. For finite sample sizes, the expected val-
ues of the sample autocovariances can differ significantly from the actual values, that
is, the moment estimators given by Equations (7.24) and (7.25) are biased at small n.
Figure 9.24, from Weinstock (1963), shows how much disparity can exist between the
actual autocovariance and the expected value of the autocovariances observed in a sam-
ple. Compare Weinstock’s results to Figure 9.23. The normalized length of record in
those data is between 5 and 6 (i.e. about 400 m/70 m). The negative correlation observed
at δ = 200 m is reasonably consistent with this estimator bias, and illustrates one of the
difficulties with moment estimators of autocovariance.

9.3.3 Maximum likelihood estimation

Maximum likelihood estimation, due originally to Fisher (Box 1978), sets the estimator
to be that value of the parameter(s) θ that leads to the greatest probability of observ-
ing those data, {z1, . . . , zn}, that actually were observed. This is expressed through the
likelihood function

L(θ |z1, . . . , zn) = fz1,...,zn
(z1, . . . , zn|θ) (9.23)
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Figure 9.24 Moment estimator bias for autocorrelation as a function of the length of the window
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which is simply the joint conditional probability density of {z1, . . . , zn}, given θ . Maxi-
mum likelihood estimation is said to be a parametric method, because the distributional
form fz1,...,zn

(z1, . . . , zn|θ) is assumed known.
In the particular case of independent z1, . . . , zn, the likelihood becomes

L(θ |z1, . . . , zn) =
n∏

i=1

fzi
(zi |θ) (9.24)

(Obviously, this is not the case in estimating autocovariances, but we return to that below.)
The estimator is then set so as to maximize the likelihood of the data, {z1, . . . , zn}, over θ :

θ̂ML = θ s.t. max
θ

L(θ |z1, . . . , zn) (9.25)

which are obtained from

∂L(θ |z1, . . . , zn)

∂θ
= 0 such that

∂2L(θ |z1, . . . , zn)

∂θ2
< 0 (9.26)

These are the values of θ which, were they to obtain, would lead to the greatest probability
(density) of observing the actually observed data.
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In practice, the estimate is usually found by maximizing the log-likelihood:

LL(θ |z1, . . . , zn) =
n∑

i=1

log fzi
(zi |θ)dzi (9.27)

which, because it deals with a sum rather than a product, and because many common prob-
ability distributions involve exponential terms, is more convenient. As with any functional
optimization, special cases are sometimes encountered involving multiple local maxima
of LL(θ |z1, . . . , zn), discontinuities in LL or its first derivative, and so on, but these are
exceptions rather than the rule.

Although linguistically, the term likelihood seems to imply a probability statement
about the state of nature, θ , in fact the maximum likelihood is another frequentist esti-
mator, and the probability statement is linked firmly to the observations, {z1, . . . , zn}, not
the parameters, θ . The appeal of the maximum likelihood estimator is that it possesses
many desirable sampling properties in frequentist theory. Among others, it has minimum
variance (even though not necessarily unbiased), is consistent (which implies asymptotic
unbiasedness, if not unbiasedness for small n), and is asymptotically Normal regardless
of the pdf of z. Further, the maximum likelihood estimator of a function of θ , g(θ), is the
function of the maximum likelihood estimator θML, or g(θML). The asymptotic variance
of θ̂ML is

lim
n→∞ Var[θ̂ML] = Iz(θ) = nE[−∂2LL/∂θ2] (9.28)

in which Iz(θ) is Fisher’s Information (Barnett 1982). This means that, asymptotically,

θ̂ML → N(θ, nE[−∂2LL/∂θ2]) (9.29)

Obviously, because the maximum likelihood estimator maximizes probability, it requires
a parametric description of the pdf of z; that is, a distributional form must be assumed,
and the autocovariance function must be specified analytically.

Figure 9.25 shows the results of simulated sampling experiments in which spatial fields
were generated from a multivariate Gaussian pdf with specified mean trend and autoco-
variance function. Samples of sizes n = 36, 64, and 100 were taken from these simulated
fields, and maximum likelihood estimators used to obtain estimates of the parameters
of the mean trend and autocovariance function. The smooth curves show the respec-
tive asymptotic sampling distributions, which in this case conform well with the actual
estimates (DeGroot and Baecher 1993).

A significant advantage of the maximum likelihood estimator in dealing with spatial data
is that it allows simultaneous estimation of the spatial trend and autocovariance function
of the residuals. Let the trend be represented by a regression surface T (x) = xβ, in which
x is a matrix of location coordinates, and β = {β1, β2, . . . , βn} is a vector of regression
coefficients. Let the parameters of the autocovariance function be θ = {θ1, θ2, . . . , θp}.
Assume that the random field of soil properties is isotropic Gaussian, represented by
the model

z(x) = xβ + ε (9.30)

in which ε is a vector of correlated residuals defined by a parametric autocovariance
function, Cε(δ). The autocovariance function is assumed to be twice differentiable with
respect to θ , and the autocovariance matrix � = Cov [zi, zj ], is assumed positive definite.
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Figure 9.25 Histograms of maximum likelihood variance estimates compared to theoretical
asymptotic distribution. (DeGroot, D. J. and Baecher, G. B., 1993. ‘Estimating Autocovariance
of in Situ Soil Properties.’ Journal of the Geotechnical Engineering Division, ASCE 119(GT1)
pp. 147–166, reproduce with permission of the American Society of Civil Engineers.)

Given a set of measurements z = {z (x1), z (x2), . . . , z (xn)}, the vector of unknown
parameters is defined as φ = {β, θ}, and the log likelihood for φ is

LL(φ|Z) = −n

2

n� − 1

2
(Z − βX)tC−1(Z − βX) (9.31)

in which X is an n × q design matrix of locations (i.e. the matrix of coordinates of the
sample locations), and C is the covariance matrix, with terms Cov(zi, zj ). The maximum
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likelihood estimators of β and Cz(δ) are found by maximizing L(φ|Z) with respect to φ.
An algorithmic procedure due to Mardia and Marshall (1984) for finding this maximum
is given as an appendix to this chapter.

DeGroot and Baecher (1993) analyzed the James Bay data in two ways using maximum
likelihood estimation. First, they removed a constant mean from the data, and applied
Equations 9.26 and 9.31 to the residuals to obtain

Cz(δ) =
{

23 for δ = 0
13.3 exp{−δ/21.4}, for δ > 0

(9.32)

in which variance is in kPa2 and distance is in meters. Then, using Equation 9.31 and
estimating the trend implicitly, they obtained

β̂0 = 40.7 kPa

β̂1 = −2.0 × 10−3 kPa/m

β̂2 = −5.9 × 10−3 kPa/m

Cz(δ) =
{

23 kPa2 for δ = 0
13.3 kPa2 exp{−δ/21.4 m}, for δ > 0

(9.33)

This curve is superimposed on the moment estimators of Figure 9.23.
The small values of β̂1 and β̂2 suggest that the assumption of constant mean is reason-

able. Substituting a squared-exponential model for the autocovariance, results in

β̂0 = 40.8 kPa

β̂1 = −2.1 × 10−3 kPa/m

β̂2 = −6.1 × 10−3 kPa/m

Cz(δ) =
{

22.9 kPa2 for δ = 0
12.7 kPa2 exp{−(δ/37.3 m)2}, for δ > 0

(9.34)

The data presented in this case suggest that a sound approach to estimating autocovari-
ance should involve both the method of moments and maximum likelihood. The method
of moments gives a plot of autocovariance versus separation, providing an important
graphical summary of the data, which can be used as a means of determining if the data
suggest correlation and for selecting an autocovariance model (for example, selecting the
exponential model over the squared exponential in this case). This provides valuable infor-
mation for the maximum likelihood method, which then can be used to obtain estimates
of both autocovariance parameters and trend coefficients.

9.3.4 Bayesian estimation

Bayesian inference for autocorrelation has not been widely used in geotechnical and
geostatistical applications, and is less well developed than moment estimates. A surprising
aspect of Bayesian inference of spatial trends and autocovariance functions is that for many
of the non-informative prior distributions one might choose to reflect little or no prior
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information about process parameters (e.g. the Jeffreys prior, the Laplace prior, truncated
parameter spaces), the posterior pdf’s calculated through Bayes’ theorem are themselves
improper, usually in the sense that they do not converge toward zero at infinity, and thus
the total probability or area under the posterior pdf is infinite.

Following Berger (Berger 1993; Berger et al. 2001) and Kitanidis (1985; 1997), the
spatial model is typically written as a multi-Normal (Gaussian) random field:

z(x) =
k∑

i=1

fi(x)β + ε(x) (9.35)

in which fi(x) are unknown deterministic functions of the spatial locations x, and ε(x)
is a zero-mean spatial random function. This is a slight change from Equation (9.30) in
that the functional terms fi(x) make the model more general.

The random term is the same spatially correlated component as in Equation (9.30), with
isotropic autocovariance function Cz|θ (δ) = Cov(zi, zj ) = σ 2

z Rz|θ (δ), in which as before,
δ is vector separation distance, and σ 2

z is the variance. The autocovariance depends on a
vector of unknown parameters, θ , which describe the range and shape of the function. The
autocovariance function is assumed to be non-negative and to decrease monotonically with
distance from 1.0 at zero separation, to 0 at infinite separation. These assumptions fit most
common autocovariance functions in geotechnical applications, including the exponential,
squared-exponential, spherical, quadratic, and Matérn.

The Likelihood of a set of observations, z = {z1, . . . , zn}, is then

L(β, σ |z) = (2πσ 2)−n/2|Rθ |−1/2 exp

{
− 1

2σ 2
(z − Xβ)tRθ

−1(z − Xβ)

}
(9.36)

in which X is the (n × k) matrix defined by Xij = fj (Xi), Rθ is the matrix of correlations
among the observations dependent on the parameters θ , and |Rθ | indicates the trace of
the correlation matrix of the observations.

In usual fashion, a prior non-informative distribution on the parameters (β, σ, θ) might
be represented as f (β, σ, θ) ∝ (σ 2)−af (θ), for various choices of the parameter a and of
the marginal pdf f (θ ). The obvious choices might be {a = 1, f (θ) = 1}, {a = 1, f (θ) =
1/θ}, or {a = 0, f (θ) = 1}; but each of these leads to an improper posterior pdf, as
does the well-known Jeffreys prior, which is proportional to the root of the determi-
nant of Fisher’s Information matrix, as discussed in Chapter 4. A proper, informative
prior does not share this difficulty, but it is correspondingly hard to assess from usu-
ally subjective opinion. Given this problem, Berger et al. (2001) suggest the reference
non-informative prior:

f (β, σ, θ) ∝ 1

σ 2

(
|W 2

θ | − |Wθ |2
(n − k)

)1/2

(9.37)

in which

W2
θ = ∂Rθ

∂θ
R−1

θ {I − X(XtR−1
θ X)−1XtR−1

θ } (9.38)

This does lead to a proper posterior. The posterior pdf is usually evaluated numerically,
although, depending on the choice of autocovariance function model and on the extent to
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which certain of the parameters θ of that model are known, closed form solutions can be
obtained (Kitanidis 1985). Berger et al. (2001) present a numerically calculated example
using terrain data from Davis (1986).

9.4 Variograms and Geostatistics

In mining, the importance of autocorrelation for estimating ore reserves has been recog-
nized for many years. In mining geostatistics a function related to the autocovariance,
called the variogram (Matheron 1971), is more commonly used to express the spatial
structure of data. The variogram requires a less restrictive statistical assumption on sta-
tionarity than the autocovariance function does, and it is therefore sometimes preferred
for inference problems. On the other hand, the variogram is more difficult to use in spatial
interpolation and engineering analysis, and thus for geotechnical purposes autocovariance
is more commonly used. In practice, the two ways of characterizing spatial structure are
closely related.

Whereas the autocovariance is defined as the expected value of the product of two
observations (Equation (9.21)), the variogram 2γ is usually defined as the expected value
of the squared difference

2γ = E[{z(xi) − z(xj )}2] = Var[z(xi) − z(xj )] (9.39)

which is a function of only the increments of the spatial properties, not their absolute
values. Cressie (1991) points out that, in fact, the common definition of the variogram
as the mean squared difference – rather than as the variance of the difference – limits
applicability to a more restrictive class of processes than necessary, and thus the latter
definition is to be preferred. Nonetheless, one finds the former definition more commonly
referred to in the literature. The term γ is usually referred to as the semivariogram,
although caution must be exercised because different authors interchange the terms. The
concept of average mean-square difference has been used in many applications, including
turbulence (Kolmogorov 1941) and time series analysis (Jowett 1952), and is alluded to
in the often cited work of Matérn (1960).

As noted, the advantage of the variogram over autocovariance is that it makes less
restrictive assumptions on the stationarity of the spatial properties being sampled, specif-
ically, only that their increment and not their mean is stationary. Furthermore, the use
of geostatistical techniques has expanded broadly, so that a great deal of experience has
been accumulated with variogram analysis, not only in mining applications, but also in
environmental monitoring, hydrology, and even geotechnical engineering (Chiasson et al.
1995; Soulie and Favre 1983; Soulie et al. 1990).

For spatial variables with stationary means and autocovariances (i.e. second-order sta-
tionary processes, as discussed in Chapter 8), the variogram and autocovariance function
are directly related. Expanding the definition of the variogram

2γ = Var[z(xi) − z(xj )] = Var[z(xi)] − Var[z(xj )] − 2Cov[z(xi), z(xj )] (9.40)

thus
2γ (δ) = 2{Cz(0) − Cz(δ)}
γ (δ) = Cz(0) − Cz(δ)

(9.41)
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So, the variogram and autocovariance function, if the latter exists, are directly related.
For the data of Figure 9.23, with their respective autocovariance function, the correspond-
ing variogram is shown in Figure 9.26. Common analytical forms for one-dimensional
variograms are given in Table 9.2.

For a stationary process, as |δ| → ∞, Cz(δ) → 0; thus, γ (δ) → Cz(0) = Var[z(x)].
This value at which the variogram levels off, 2Cz(δ), is called the sill value. The dis-
tance at which the variogram approaches the sill is called, the range. More mathematical
properties of the variogram and of incrementally stationary process are considered in
Chapter 8. The sampling properties of 2γ (δ) are summarized in some detail by Cressie
(1991). Unfortunately, the geostatistical literature itself is reasonably quiet on the topic
of statistical sampling properties.
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Figure 9.26 Semi-variogram for field vane data of Figure 9.23.

Table 9.2 One-dimensional variogram models

Model Equation
Limits of
validity

Nugget γ (δ) =
{

0 if δ = 0
1 otherwise

Rn

Linear γ (δ) =
{

0 if δ = 0
c0 + b||δ|| otherwise R1

Spherical γ (δ) =
{
(1.5)(δ/a) − (1/2)(δ/a)3 if
1 otherwise

Rn

Exponential γ (δ) = 1 − exp(−3δ/a) R1

Gaussian γ (δ) = 1 − exp(−3δ2/a2) Rn

Power γ (δ) = hω Rn, 0 < ω < 2
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Appendix: Algorithm for Maximizing Log-likelihood
of Autocovariance

To maximize L(φ|z), we set the first derivative of the log likelihood LL(φ|z) with respect
to φ equal to zero. Then, we use a scoring procedure developed by Mardia and Marshall
(1984). This method uses an updating expression of the form

φi+1 = φ̂i + [B−1L′] (9.42)

where B−1 is the inverse of Fisher’s information matrix, and L′ is the first derivative
vector of the log-likelihood function.

Starting with an initial estimate vector of the autocovariance parameters, θ̂0, the regres-
sion coefficients are computed as

β̂i = (xT�−1x)−1(xT�−1z) (9.43)

and θ̂ is updated using
θ̂i+1 = θ̂i + [Bθ

−1Lθ
′]i (9.44)

The information matrix, B is given by

B = −E[L′′] = diag(Bβ, Bθ ) (9.45)

where L′′ is the second derivative of the log-likelihood function. The components Bβ and
B0 are computed as

Bβ = (xT�−1x)

Bθ = 1

2
tij

(9.46)

where (1/2)tij is the (i, j )th element of Bθ .

tij = tr

(
�−1 ∂�

∂θi
�−1 ∂�

∂θj

)
(9.47)

The first-derivative vectors of the log-likelihood function

L′ = (LT
β, LT

θ )
T (9.48)

are equal to

Lβ = −(xT�−1xβ) + xT�−1z

Lθ = −1

2
tr

(
�−1 ∂�

∂θk

)
− 1

2
wT

(
−�−1 ∂�

∂θk
�−1

)
w (9.49)

where
w = z − xβ̂ (9.50)
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In some instances, in may be necessary to pre-multiply the updating term [B−1
θ L′

θ ] by a
scaling factor α(0 ≤ α ≤ 1) to ensure stability of the algorithm during iterations.

A simple application of the solution algorithm is solving for the parameters required
to describe the structure of a soil property measured in one dimension (e.g. blow counts
versus depth). The trend model is taken as

z(x) = β0 + β1x (9.51)

with an autocovariance function of the form, C(δ|σ 2, δ0). Thus, given the measurements
z(x) at locations x1, . . . , xn, the maximum likelihood estimates of β0, β1, σ

2, and r0 fully
describe the model. This example can be readily extended to incorporate two-dimensional
trends and autocovariance models with added noise.



10 Random field theory

Thus far we have considered descriptive summaries of spatial variability in soil and
rock formations. We have seen that spatial variability can be described by a mean trend
or trend surface, about which individual measurements exhibit residual variation. This
might also be thought of as separating the spatial variability into large-scale and small-
scale increments, and then analyzing the two separately. We have seen that residual
variations themselves usually exhibit some spatial structure, which can be described by
an autocorrelation function. In this section, we consider more mathematical approaches
to modeling spatial variation, specifically random field theory. Random field theory is
important for two reasons: first, it provides powerful statistical results which can be used
to draw inferences from field observations and plan spatial sampling strategies; secondly, it
provides a vehicle for incorporating spatial variation in engineering and reliability models.
Random field theory is part of the larger subject of stochastic processes, of which we will
only touch a small part. For more detailed treatment, see Adler (1981), Christakos (1992;
2000), Christakos and Hristopoulos (1998), Parzen (1964), or Vanmarcke (1983).

10.1 Stationary Processes

The application of random field theory to geotechnical issues is based on the assumption
that the spatial variable of concern, z(x), is the realization of a random process. When
this process is defined over the space x ∈ S, the variable z(x) is said to be a stochastic
process. In this book, when S has dimension greater than one, and especially when S is
a spatial domain, z(x) is said to be a random field. This usage is more or less consistent
across civil engineering, although the geostatistics literature uses a vocabulary all of its
own, to which we will occasionally refer.

A random field is defined as the joint probability distribution

Fx1,...,xn
(z1, . . . , zn) = P {z(x1) ≤ z1, . . . , z(xn) ≤ zn} (10.1)

This joint probability distribution describes the simultaneous variation of the variables z
within the space x ∈ Sx . Let

E[z(x)] = µ(x) (10.2)
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for all x ∈ S, be the mean or trend of z(x), presumed to exist for all x; and let

V ar[z(x)] = σ 2(x) (10.3)

be the variance, also assumed to exist for all x. The covariances of z(x1), . . . , z(xn) are
defined as

Cov[z(xi ), z(xj )] = E[(z(xi ) − µ(xi )) · (z(xj ) − µ(xj ))] (10.4)

10.1.1 Stationarity

The random field is said to be second-order stationary (sometimes referred to as weak or
wide-sense stationary) if E[z(x)] = µ for all x, and Cov[z(xi ), z(xj )] depends only upon
vector separation of xi , and xj , not on absolute location:

Cov[z(xi ), z(xj )] = Cz(xi − xj ) (10.5)

in which Cz(xi − xj ) is the autocovariance function. The random field is said to be
stationary (sometimes referred to as strong or strict stationarity) if the complete probability
distribution, Fx1,...,xn

(z1, . . . , zn), is independent of absolute location, depending only on
vector separations among xi . . . xn (Table 10.1). Obviously, strong stationarity implies
second-order stationarity. In the geotechnical literature, stationarity is sometimes referred
to loosely as statistical homogeneity. If the autocovariance function depends only on the
absolute separation distance of xi , and xj , not vector separation (i.e. direction), the random
field is said to be isotropic.

10.1.2 Ergodicity

A final, but important and often poorly understood property is ergodicity. Ergodicity is
a concept originating in the study of time series, in which one observes individual time
series of data, and wishes to infer properties of an ensemble of all possible time series.
The meaning and practical importance of ergodicity to the inference of unique realizations
of spatial random fields is less well defined and is much debated in the literature.

Simply, but inelegantly, stated, ergodicity means that the probabilistic properties of a
random process (field) can be completely estimated from observing one realization of that

Table 10.1 Summary properties of random fields

Property Meaning

Homogeneous, stationary Joint probability distribution functions are invariant to
translation; joint PDF depends on relative, not absolute,
locations.

isotropic Joint probability distribution functions are invariant to
rotations

ergodic All information on joint pdf’s can be obtained from a single
realization of the random field.

second-order stationary E[z(x)] = µ, for all x ∈ S
Cov[z(x1), z(x2)] = Cz(x1, x2), for all x1, x2 ∈ S
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process. For example, the stochastic time series z(ξ) = v + ε(ξ), in which v is a discrete
random variable and ε(ξ) is an autocorrelated random process of time ξ , is non-ergotic.
In one realization of the process there is but one value of v, and thus the probability
distribution of v cannot be estimated. One would need to observe many realizations
of z(ξ) to have sufficiently many observations of v, to estimate Fv(v). Another non-
ergotic process of more relevance to the spatial processes in geotechnical engineering is
z(x) = µx + ε(x), in which the mean of z(x) varies linearly with location x. In this case,
z(x) is non-stationary; V ar[z(x)] increases without limit as the window within which
z(x) is observed increases, and the mean mz of the sample of z(x) is a function of the
location of the window.

It is important to note that, ergodicity of a stochastic process (random field) implies
strong stationarity. Thus, if a assumed second-order stationary field is also assumed
to be ergotic, the latter assumption dominates, and the second-order restriction can be
relaxed (Cressie, 1991).

The meaning of ergodicity for spatial fields of the sort encountered in geotechnical
engineering is less clear, and has not been widely discussed in the literature.1 An assump-
tion weaker than full ergodicity, which nonetheless should apply for spatial fields, is
that the observed sample mean mz and sample autocovariance function Ĉz(δ) converge
in mean squared error to the respective random field mean and autocovariance function
as the volume of space within which they are sampled increases (Cressie, 1991; Chris-
takos, 1992). This means that, as the volume of space increases, E[(mz − µ)2] → 0, and
E[{(Ĉz(δ) − Cz(δ)}2] → 0. In Adler (1981), the notion of a continuous process in space,
observed continuously within intervals and then compared to the limiting case of the
interval tending to infinity, is introduced.

When the joint probability distribution Fx1,...,xn
(z1, . . . , zn) is multivariate Normal

(Gaussian), the process z(x) is said to be a Gaussian random field. A sufficient
condition for ergodicity of a Gaussian random field is that lim||δ||→∞Cz(δ) = 0. This
can be checked empirically by inspecting the sample moments of the autocovariance
function to ensure they converge to 0. Cressie (1991) notes philosophical limitations
of this procedure. Essentially all the analytical autocovariance functions common in
the geotechnical literature obey this condition, and few practitioners – or even most
theoreticians – are concerned about verifying ergodicity. Christakos (1992) suggests that,
in practical situations, it is difficulty or impossible to verify ergodicity for spatial fields
and, thus, ergodicity must be considered only a falsifiable hypothesis, in the sense that it
is judged by the successful application of the random field model.

10.1.3 Nonstationarity

A random field that does not meet the conditions of Section 10.1.1 is said to be non-
stationary. Loosely speaking, a non-stationary field is statistically heterogeneous. It can
be heterogeneous in a number of ways. In the simplest case, the mean may be a function
of location, for example, if there is a spatial trend that has not been removed. In a more
complex case, the variance or autocovariance function may vary in space. Depending
on the way in which the random field is non-stationary, sometimes a transformation of

1 Cressie cites Adler (1981) and Rosenblatt (1985) with respect to ergodicity of spatial fields.
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variables can convert a non-stationary field to a stationary or nearly stationary field. For
example, if the mean varies with location, perhaps a trend can be removed.

In the field of geostatistics, a weaker assumption is made on stationarity than that
described in Section 10.1.1. Geostatisticians usually assume only that increments of a
spatial process are stationary (i.e. differences |z1 − z2|) and then operate on the proba-
bilistic properties of those increments. This leads to the use of the variogram (Chapter 9)
rather than the autocovariance function as a vehicle for organizing empirical data. The var-
iogram describes the expected value of squared differences of the random field, whereas
the autocovariance describes the expected values of products. Stationarity of the latter
implies stationarity of the former, but not the reverse.

Like most things in the natural sciences, stationarity is an assumption of the model,
and may only be approximately true in the world. Also, stationarity usually depends upon
scale. Within a small region, such as a construction site, soil properties may behave as if
drawn from a stationary process; whereas, the same properties over a larger region may
not be so well behaved.

10.2 Mathematical Properties of Autocovariance Functions

By definition, the autocovariance and autocorrelation functions are symmetric, meaning

Cz(δ) = Cz(−δ) and Rz(δ) = Rz(−δ) (10.6)

and they are bounded, meaning

Cz(δ) ≤ Cz(0) = σ 2 and |Rx(δ)| ≤ 1 (10.7)

In the limit, as absolute distance |δ| becomes large:

lim|δ|→∞
Cz(δ)

|δ|−(n−1)/2
= 0 (10.8)

10.2.1 Valid autocovariance functions

In general, for Cz(δ) to be a permissible autocovariance function, it is necessary and
sufficient that a continuous mathematical expression be non-negative-definite, that is

m∑
i=1

m∑
j=1

kikjCz(δ) ≥ 0 (10.9)

for all integers m, scalar coefficients k1, . . . km, and vectors δ = |xi − xj |. This condi-
tion follows from the requirement that variances of linear combinations of the z(xi ), of
the form

V ar

[
m∑

i=1

kiz(xi)

]
=

m∑
i=1

m∑
j=1

kikjCz(δ) ≥ 0 (10.10)
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be non-negative (Cressie 1991). The argument for this condition can be based on spectral
representations of Cz(δ), following from Bochner (1955), but beyond the present scope
(see also Yaglom 1962). Christakos (1992) discusses the mathematical implications of
this condition on selecting permissible forms for the autocovariance. Suffice it to say that
analytical models of autocovariance common in the geotechnical literature usually satisfy
the condition.

Autocovariance functions valid in Rd , the space of dimension d , are valid in spaces of
lower dimension, but the reverse is not necessarily true. That is, a valid autocovariance
function in 1-D is not necessarily valid in 2-D or 3-D. Christakos (1992) gives the example
of the linearly declining autocovariance:

Cz(δ) =
{
σ 2(1 − δ/δ0), for 0 ≤ δ ≤ δ0

0, for δ > δ0
(10.11)

which is valid in 1-D, but not in higher dimensions. This is easily demonstrated by
considering a 2 × 2 square grid of spacing δ0/

√
2, and constants ai,1 = ai,2 = aj,1 = 1,

and aj,2 = −1.1, which yields a negative value of the variance.
Linear sums of valid autocovariance functions are also valid. This means that if Cz1(δ)

and Cz2(δ) are valid, then the sum Cz1(δ) + Cz2(δ) is also a valid autocovariance function.
Similarly, if Cz(δ) is valid, then the product with a scalar, αCz(δ), is also valid.

10.2.2 Separable autocovariance functions

An autocovariance function in d-dimensional space Rd is separable if

Cz(δ) =
d∏

i=1

Czi (δi) (10.12)

in which δ is the d-dimensioned vector of orthogonal separation distances {δ1, . . . , δd},
and Ci(δi) is the one-dimensional autocovariance function in direction i. For example,
the autocovariance function in Rd ,

Cz(δ) = σ 2 exp{−a2|δ|2}
= σ 2 exp{−a2(δ2

1 + · · · + δ2
d)}

= σ 2
d∏

i=1

exp{−a2δ2
i } (10.13)

is separable into its d , one-dimensional components.
The function is partially separable if

Cz(δ) = Cz(δi)Cz(δj �=i ) (10.14)

in which Cz(δj �=i ) is a (d − 1) dimension autocovariance function, implying that the
function can be expressed as a product of autocovariance functions of lower dimen-
sion fields. The importance of partial separability to geotechnical applications, as noted
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by Vanmarcke (1983), is the 3-D case of separating autocorrelation in the horizontal plane
from that with depth

Cz(δ1, δ2, δ3) = Cz(δ1, δ2)Cz(δ3) (10.15)

in which δ1, δ2, are horizontal distances, and δ3 is depth.

10.3 Multivariate (vector) random fields

Thus far, we have considered random fields of the scalar variable z(x), in which x is
a vector of location coordinates. By direct analogy, we can define a random field of
the vector variable z(x), in which z is an ordered n-tuple of variables. For example,
water content in a clay stratum can be modeled as a scalar random field. The joint pair
of variables water content and shear strength might be modeled as a vector (bi-variate)
random field. Note, that in this case each of the variables, water content and shear strength,
would have its own autocorrelated properties, but the pair of variables would also be cross
correlated one to the other, and as a function of spatial separation.

In analogy to Equation (10.1), a vector random field is defined by the joint probability
distribution

Fx1,...,xn
(z1, . . . , zn) = P {z(x1) ≤ z1, . . . , z(xn) ≤ zn} (10.16)

in which zi is a vector of properties, and x is spatial location, x ∈ S. Let

E[z(x)] = µ(x) (10.17)

for all x ∈ S, be the mean or trend of z(x), presumed to exist for all x; and let

V ar[z(x)] = �z(x) (10.18)

be the covariance matrix of the zi, zj , such that

�z(x) = {Cov[zi(x), zj (x)]} (10.19)

is the matrix comprising the variances and covariances of the zi, zj , also assumed to exist
for all x. The cross-covariances of z(x1), . . . , z(xn) as functions of space are defined as

Cz(δ) = Cov[zh(xi ), zk(xj )] = E[(zh(xi ) − µh(xi )), (zk(xj ) − µk(xj ))] (10.20)

in which Cov[zh(xi ), zk(xj )] is the covariance of the (h, k)th components of z, at locations
xi and xj . Again, by analogy, the spatial cross-correlation function is

Rz(δ) = Cov[zh(xi ), zk(xj )]]

σzh
(xi )σzk

(xj )
(10.21)

The matrix Cz(δ) is non-negative definite, and symmetric, as a covariance matrix is.
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10.4 Gaussian random fields

The Gaussian random field is an important special case, because it is widely applicable
due to the Central Limit Theorem (Chapter 2), has mathematically convenient properties,
and is widely used in practice. The probability density distribution of the Gaussian or
Normal variable is

fz(z) = − 1√
2πσ

exp

{
− 1

2

(
x − µ

σ

)2
}

(10.22)

for −∞ ≤ z ≤ ∞. The mean is E[z] = µ, and variance V ar[z] = σ 2. For the multivariate
case of vector z, of dimension n, the corresponding pdf is

fz(z) = (2π)−n/2|�|−1/2 exp
{− 1

2 (z − µ)′�−1(z − µ)
}

(10.23)

in which µ is the mean vector, and � the covariance matrix,

�ij = {Cov[zi(x), zj (x)]} (10.24)

Gaussian random fields have the following convenient properties (Adler 1981): (1) They
are completely characterized by the first and second-order moments: the mean and auto-
covariance function for the univariate case, and mean vector and autocovariance matrix
(function) for the multivariate case; (2) any subset of variables of the vector is also jointly
Gaussian; (3) the conditional probability distributions of any two variables or vectors are
also Gaussian distributed; (4) if two variables, z1 and z2 are bi-variate Gaussian, and if
their covariance Cov[z1, z2] is zero, then the variables are independent.

10.5 Functions of random fields

Thus far, we have considered the properties of random fields themselves. In this section,
we consider the extension to properties of functions of random fields.

10.5.1 Stochastic integration and averaging

Spatial averaging of random fields is among the most important considerations for geotech-
nical engineering. Limiting equilibrium failures of slopes depend upon the average strength
across the failure surface. Settlements beneath foundations depend of the average com-
pressibility of subsurface soils. Indeed, many modes of geotechnical performance of
interest to the engineer involve spatial averages – or differences among spatial aver-
ages – of soil and rock properties. Spatial averages also play a significant role in mining
geostatistics, where average ore grades within blocks of rock have important implications
for planning. As a result, there is a rich literature on the subject of averages of random
fields, only a small part of which can be reviewed here.

Consider the one-dimensional case of a continuous, scalar stochastic process (1D ran-
dom field), z(x), in which x is location, and z(x) is a stochastic variable with mean
µz, assumed to be constant, and autocovariance function Cz(r), in which r is separation
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distance, r = (x1 − x2). The spatial average or mean of the process within the interval
[0,X] is

MX{z(x)} = 1

X

∫ X

0
z(x)dx (10.25)

The integral is defined in the common way, as a limiting sum of z(x) values within
infinitesimal intervals of x, as the number of intervals increases. We assume that z(x)

converges in a mean square sense, implying the existence of the first two moments of z(x).
The weaker assumption of convergence in probability, which does not imply existence
of the moments, could be made, if necessary (see Parzen 1964, 1992) for more detailed
discussion.

If we think of MX{z(x)} as a sample observation within one interval of the process z(x),
then over the set of possible intervals that we might observe, MX{z(x)} becomes a random
variable with mean, variance, and possibly other moments. Consider first, the integral of
z(x) within intervals of length X. Parzen (1964) shows that the first two moments of∫ X

0 z(x)dx are

E

[∫ X

0
z(x)dx

]
=

∫ X

0
µ(x)dx = µX (10.26)

V ar

[∫ X

0
z(x)dx

]
=

∫ X

0

∫ X

0
Cz(xi − xj )dxidxj = 2

∫ X

0
(X − r)Cz(r)dr (10.27)

and that the autocovariance function of the integral
∫ X

0 z(x)dx as the interval [0,X] is
allowed to translate along dimension x, is (Vanmarcke 1983),

C∫ X

0
z(x)dx

(r) = Cov

[∫ X

0
z(x)dx,

∫ r+X

r

z(x)dx

]
=

∫ X

0

∫ X

0
Cz(r + xi − xj )dxidxj

(10.28)

The corresponding moments of the spatial mean MX{z(x)} are

E[MX{z(x)}] = E

[
1

X

∫ X

0
z(x)dx

]
=

∫ X

0

1

X
µ(x)dx = µ (10.29)

V ar[MX{z(x)}] = V ar

[
1

X

∫ X

0
z(x)dx

]
= 2

X2

∫ X

0
(X − r)Cz(r)dr (10.30)

CMX{z(x)}(r) = Cov

[
1

X

∫ X

0
z(x)dx,

1

X

∫ r+X

r

z(x)dx

]

= 1

X2

∫ X

0

∫ X

0
Cz(r + xi − xj )dxidxj (10.31)

The effect of spatial averaging is to smooth the process. The variance of the averaged
process is smaller than the original process z(x), and the autocorrelation of the aver-
aged process is wider. Indeed, averaging is sometimes referred to as, smoothing (Gelb
et al. 1974).
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The reduction in variance from z(x) to the averaged process MX{z(x)} can be repre-
sented in a variance reduction function, γ (X):

γ (X) = V ar[MX{z(x)}]
V ar[z(x)]

(10.32)

The variance reduction function is 1.0 for X = 0, and decays to zero as X becomes large.
Using Equation (10.32), γ (X), can be calculated from the autocovariance function of
z(x) as

γ (X) =
2

X2

∫ X

0 (X − r)Cz(r)dr

V ar[z(x)]
= 2

X

∫ X

0

(
1 − r

X

)
Rz(r)dr (10.33)

in which Rz(r) is the autocorrelation function of z(x). Note, the square root of γ (X)

gives the corresponding reduction of the standard deviation of z(x). Table 10.2 gives 1-D
variance reduction functions for common autocovariance functions. It is interesting to
note that each of these functions is asymptotically proportional to 1/X. Based on this
observation, Vanmarcke (1983) proposed a scale of fluctuation, θ , such that

θ = lim
X→∞ Xγ (X) (10.34)

or γ (X) = θ/X, as X → ∞; that is θ/X is the asymptote of the variance reduction
function as the averaging window expands. The function γ (X) converges rapidly to this
asymptote as X increases. For θ to exist, it is necessary that Rz(r) → 0 as r → ∞, that
is, that the autocorrelation function decreases faster than 1/r . In this case, θ can be found
from the integral of autocorrelation function (the moment of Rz(r) about the origin),

θ = 2
∫ ∞

0
Rz(r)dr =

∫ ∞

−∞
Rz(r)dr (10.35)

Table 10.2 Variance reduction functions for common 1D autocovariance (after Vanmarcke, 1983)

Model Autocorrelation Variance reduction function

Scale of
fluctuation,

θ

White noise Rx(δ) =
{

1 if δ = 0
0 otherwise

γ (X) =
{

1 if X = 0
0 otherwise

0

Linear Rx(δ) ={
1 − |δ|/δ0 if δ ≤ δ0
0 otherwise

γ (X) =
{1 − X/3δ0 if X ≤ δ0
(δ0/X)[1 − δ0/3X] otherwise δ0

Exponential Rx(δ) = exp(−δ/δ0) γ (X) = 2(δ0/X)2

(
X

δ0
− 1 + exp2(−X/δ0)

)
4δ0

Squared
exponential
(Gaussian)

Rx(δ) = exp2(−|δ|/δ0) γ (X) =
(δ0/X)2

[√
π

X

δ0

(−X/δ0) + exp2(−X/δ0) − 1

]
in which 
 is the error function

√
πδ0
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(It should be noted that this variance reduction function is not to be confused with the
variance reduction schemes described in Chapter 17.)

This concept of summarizing the spatial or temporal scale of autocorrelation in a single
number, typically the first moment of Rz(r), is used by a variety of other workers, and
in many fields. Taylor (1921) in hydrodynamics called it the diffusion constant (Papoulis
and Pillai 2002), Christakos (1992) in geoscience calls θ /2 the correlation radius, and
Gelhar (1993) in groundwater hydrology calls θ the integral scale.

In two dimensions, the equivalent expressions to Equations (10.25) and (10.27) for the
mean and variance of the planar integral,

∫ X

0

∫ X

0 z(x)dx, are

E

[∫ X

0
z(x)dx

]
=

∫ X

0
µ(x)dx = µX (10.36)

V ar

[∫ X

0
z(x)dx

]
=

∫ X

0

∫ X

0
Cz(xi − xj )dxidxj = 2

∫ X

0
(X − r)Cz(r)dr (10.37)

Papoulis (2002) discusses averaging in higher dimensions, as do Elishakoff (1999) and
Vanmarcke (1983).

10.5.2 Stochastic differentiation

The issue of continuity and differentiability of a random field depends on the convergence
of sequences of random variables {z(xa), z(xb)}, in which xa, xb are two locations, with
(vector) separation r = |xa − xb|. The random field is said to be continuous in mean
square at xa , if for every sequence {z(xa), z(xb)}, E2[z(xa) − z(xb)] → 0, as r → 0.

The random field is said to be continuous in mean square throughout, if it is continuous
in mean square at every xa . Given this condition, the random field z(x) is mean square
differentiable, with partial derivative

∂z(x)

∂xi

= lim|r|→0
z(x + rδi) − z(x)

r
(10.38)

in which the delta function δi is a vector of all zeros, except the ith term, which is unity.
While stronger, or at least different, convergence properties could be invoked, mean

square convergence is often the most natural form in practice, because we usually wish
to use a second-moment representation of the autocovariance function as the vehicle for
determining differentiability.2 A random field is mean square continuous if and only if
its autocovariance function, Cz(r), is continuous at |r| = 0. For this to be true, the first
derivatives of the autocovariance function at |r| = 0 must vanish

∂Cz(r)
∂xi

= 0, for all i (10.39)

2 Other definitions of convergence sometimes applied to continuity and differentiability include convergence
with probability one, convergence in probability, and weak or in-distribution convergence. For further discussion
and definitions of these convergence criteria, see Adler (1981).
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If the second derivative of the autocovariance function exists and is finite at |r| = 0, then
the field is mean square differentiable, and the autocovariance function of the derivative
field is

C∂z/∂xi
(r) = ∂2Cz(r)/∂x2

i (10.40)

and the variance of the derivative field can be found by evaluating the autocovari-
ance C∂z/∂xi

(r) at |r| = 0. Similarly, the autocovariance of the second derivative field
∂2z(x)/∂xi∂xj is

C∂2z/∂xi∂xj
(r) = ∂4Cz(r)/∂x2

i ∂x2
j (10.41)

The cross covariance function of the derivatives ∂z(x)/∂xi and ∂z(x)/∂xj in separate
directions is

C∂z/∂xi ,∂z/∂xj
(r) = −∂2Cz(r)/∂xi∂xj (10.42)

Importantly, for the case of homogeneous random fields, the field itself, z(x), and its
derivative field, ∂z(x)/∂xi , are uncorrelated (Vanmarcke 1983).

So, the behavior of the autocovariance function in the neighborhood of the origin is
the determining factor for mean-square local properties of the field, such as continuity
and differentiability (Cramér and Leadbetter 1967). Unfortunately, the properties of the
derivative fields are sensitive to this behavior of Cz(r) near the origin, which in turn is
sensitive to the choice of autocovariance model. Empirical verification of the behavior of
Cz(r) near the origin is exceptionally difficult.

10.5.3 Linear functions of random fields

Assume that the random field z(x), is transformed by a deterministic function g(.),
such that

y(x) = g[z(x)] (10.43)

g[z(x0)] is a function of z alone, that is, not of x0, and not of the value of z(x) at
any x other than x0. Also, we assume that the transformation does not depend on the
value of x; that is, the transformation is space- or time-invariant, y(z + δ) = g[z(x +
δ)]. Thus, the random variable y(x) is a deterministic transformation of the random
variable z(x), and its probability distribution can be obtained from the derived distribution
methods of Chapter 3. Similarly, the joint distribution of the sequence of random variables
{y(x1), . . . , y(xn)} can be determined from the joint distribution of the sequence of random
variables {x(x1), . . . , x(xn)}. The mean of y(x) is then

E[y(x)] =
∫ ∞

−∞
g(z)fz(z(x))dz (10.44)

and the autocorrelation function is

Ry(y1, y2) = E[y(x1)y(x2)] =
∫ ∞

−∞

∫ ∞

−∞
g(z1)g(z2)fz(z(x1)z(x2))dz1dz2 (10.45)

Papoulis (2002) shows that the process y(x) is (strictly) stationary if z(x) is
(strictly) stationary.
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The solution to Equations (10.44) and (10.45) for non-linear transformations may be
difficult, but for linear functions general results are available. The mean of y(x) for linear
g(z) is found by transforming the expected value of z(x) through the function

E[y(x)] = g(E[z(x)]) (10.46)

The autocorrelation of y(x) is found in a two-step process

Ryy (x1, x2) = Lx1 [Lx2 [Rzz (x1, x2)]] (10.47)

in which Lx1 is the transformation applied with respect to the first variable z(x1) with the
second variable treated as a parameter, and Lx2 is the transformation applied with respect
to the second variable z(x2) with the first variable treated as a parameter.

10.5.4 Excursions (level crossings)

A number of applications arise in geotechnical practice for which one is interested not
in the integrals (averages) or differentials of a stochastic process, but in the probability
that the process exceeds some threshold, either positive or negative. For example, we
might be interested in the probability that a stochastically varying water inflow into a
reservoir exceeds some rate or in the weakest interval or seam in a spatially varying soil
mass. Such problems are said to involve excursions or level-crossings of a stochastic
process. The following discussion follows Cramér and Leadbetter (1967), Parzen (1964),
and Papoulis (2002).

To begin, consider the zero-crossings of a random process: the points xi at which
z(xi) = 0. For the general case, this turns out to be a surprisingly difficult problem. Yet,
for the continuous Normal case, a number of statements or approximations are possible.
Consider a process z(x) with zero mean and variance σ 2. For the interval [x, x + δ], if
the product

z(x)z(x + δ) < 0 (10.48)

then there must be an odd number of zero-crossings within the interval, for if this product
is negative, one of the values must lie above zero and the other beneath. Papoulis (2002)
demonstrates that, if the two (zero-mean) variables z(x) and z(x + δ) are jointly normal
with correlation coefficient

r = E[z(x)z(x + δ)]

σxσx+δ

(10.49)

then

P(z(x)z(x + δ) < 0) = 1

2
− arcsin(r)

π
= arccos(r)

π

P (z(x)z(x + δ) > 0) = 1

2
+ arcsin(r)

π
= π − arccos(r)

π
(10.50)

The correlation coefficient, of course, can be taken from the autocorrelation function,
Rz(δ); thus

cos[πP (z(x)z(x + δ) < 0)] = Rz(δ)

Rz(0)
(10.51)
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and the probability that the number of zero-crossings is positive is just the complement
of this.

For simplicity, let the probability of an odd number of zero-crossings within the interval
[x, x + δ] be p0(δ). If δ is small, then this probability is itself small compared to 1.0. Thus,
the probability of two or more zero-crossings is negligible. Therefore, the probability
of exactly one zero-crossing, p1(δ), is approximately, p1(δ) ≈ p0(δ), and thus, from
Equation (10.50), expanding the cosine in a Fourier series and truncating to two terms:

1 − π2p2
1(δ)

2
= Rz(δ)

Rz(0)
(10.52)

or

p1(δ) ≈ 1

π

√
2[Rz(0) − Rz(δ)]

Rz(0)
(10.53)

In the case of a regular autocorrelation function, for which the derivative dRz(0)/dδ exists
and is zero at the origin, the probability of a zero-crossing is approximately

p1(δ) ≈ δ

π

√
−d2Rz(0)/dδ2

Rz(0)
(10.54)

The non-regular case, for which the derivative at the origin is not zero (e.g. dRz(δ) =
exp(δ/δ0)), is discussed by Parzen (1964). Elishakoff (1999) and Vanmarcke (1983) treat
higher dimensional results.

The related probability of the process crossing an arbitrary level, z∗, can be approxi-
mated by noting that, for small δ and thus r → 1, from Equation (10.50),

P [{z(x) − z∗}{z(x + δ) − z∗} < 0] ≈ P [{z(x)}{z(x + δ)} < 0]e
− arcsin2(r)

2σ 2 (10.55)

For small δ, the correlation coefficient Rz(δ) is approximately 1, and the variances of
z(x) and z(x + δ) are approximately Rz(0), thus

p1,z∗(δ) ≈ p1(δ)e
− arcsin2(r)

2Rz(0) (10.56)

and for the regular case

p1(δ) ≈ δ

π

√
−d2Rz(0)dδ2

Rz(0)
e

− arcsin2(r)

2Rz(0) (10.57)

Many other results can be found for continuous Normal processes, e.g. the average
density of the number of crossings within an interval, the probability of no crossings (i.e.
drought) within an interval, and so on. A rich literature is available of these and related
results (Adler 1981; Christakos 1992, 2000; Christakos and Hristopulos 1998; Cliff and
Ord 1981; Cramér and Leadbetter 1967; Cressie 1991; Gelb et al. 1974; Papoulis and
Pillai 2002; Parzen 1964; Yaglom 1962).





11 Spatial Sampling

Sampling theory for spatial processes has developed principally from a frequentist point
of view, involving estimators, sampling distributions, and confidence limits, and this is
the approach reflected in this chapter. There is no reason that parallel results cannot
be developed from a Bayesian view, and Chapter 4 presents Bayesian sampling results
for simple independent identically distributed (IID) situations. IID means that sample
observations are assumed to be drawn independently of one another and all from the
same sampled population. This chapter briefly summarizes a large literature on frequentist
sampling theory as applied to spatial variables, and discusses how that theory applies to
the spatial sampling problems encountered in site characterization. Many excellent books
are available on sampling theory, and more complete discussions are available in Cochran
(1977), Thompson (2002), and Levy and Lameshow (1999), among others. More detailed
treatment of spatial sampling can be found in Matérn (1960), Cliff and Ord (1981), Ripley
(1981), Cressie (1991), Berger (1993), or Stein (1999).

11.1 Concepts of Sampling

The purpose of sampling is to obtain estimates of population parameters (e.g. means, vari-
ances, covariances) or possibly to characterize the entire population distribution without
observing and measuring every element in the sampled population. Spatial sampling dif-
fers from IID sampling in that the observations may display spatial structure, for example,
autocorrelation.

An estimator, in the frequentist sense, is a sample statistic that can be used to estimate
true population parameters. It can be chosen on several bases (Table 4.1), and individ-
ual estimators seldom satisfy all the desired criteria simultaneously. An estimate is the
realization of a particular estimator for a specific set of sample observations.

Estimates are not exact. Uncertainty is reflected in the variance of their distribution
about the true parameter value they estimate. This variance is, in turn, a function of both
the sampling plan and the sampled population. By knowing this variance and making
assumptions about the distribution shape, confidence limits on true population parameters
can be set.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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A sampling plan is a program of action for collecting data from a sampled population.
Common plans are grouped into many types: for example, simple random, systematic,
stratified random, cluster, traverse, line intersects, and so on. In deciding among plans,
or in designing a specific program once the type plan has been chosen, one attempts to
obtain the highest precision for a fixed sampling cost or the lowest sampling cost for a
fixed precision. The contrast with Bayesian methods is that the latter attempt to maximize
the overall expected utility of sampling and engineering design.

11.2 Common Spatial Sampling Plans

Statistical sampling is a common activity in many human enterprises, from the national
census, to market research, to scientific research. As a result, common situations are
encountered in many different endeavors, and a family of sampling plans has grown up
to handle these situations. In this section, we consider four such sampling plans: simple
random sampling, systematic sampling, stratified random sampling, and cluster sampling.
We revisit some of these again in Chapter 17 in discussing Monte Carlo methods.

11.2.1 Simple random sampling

The characteristic property of simple random sampling is that individual observations
are chosen at random from the sampled population, and each element of the sampled
population has an equal probability of being observed.

An unbiased estimator of the population mean from a simple random sample, x =
{x1, . . . , xn}, is the sample mean

x = 1

n

n∑
i=1

xi (11.1)

This estimator has sampling variance,

Var(x) = σ 2

n

N − n

N
(11.2)

where σ 2 is the (true) variance of the sampled population, and N is the total sampled
population size. The term, (N − n)/N , is called the finite population factor, which for n

less than about 10% of N , can safety be ignored. However, since σ 2 is usually unknown,
it is estimated by the sample variance

s2 = 1

n − 1

n∑
i=1

(xi − x)2 (11.3)

in which the denominator is taken as n − 1 rather than n, reflecting the loss of a degree-
of-freedom due to estimating the mean from the same data. The estimator is unbiased,
but does not have minimum variance (Chapter 4).

The only choice (i.e. allocation) to be made in simple random sampling is the sample
size n. Since the sampling variance of the mean is inversely proportional to sample size,



COMMON SPATIAL SAMPLING PLANS 259

Var(x) ∝ n−1, a given estimator precision can be obtained by adjusting the sample size, if
σ is known or assumed. A sampling plan can be optimized for total cost by assuming some
relationship between Var(x) and cost in construction or design. A common assumption is
that this cost is proportional to the square root of the variance, usually called the standard
error of the mean, σx = Var1/2(x).

Consider a set of direct shear tests performed on silty sand specimens collected
using a simple random sampling plan. Under a normal stress of 60 kPa, the tests yield
the results: x = {38, 51, 43, 39, 48, 45, 42, 45, 49 kPa}. The mean strength is estimated
from the sample mean, x = 44.4 kPa, and the standard deviation from the sample
standard deviation, s = 4.2 kPa. The standard error in the estimator for the mean, from
Equation (11.2) is,

√
Var(x) = 4.2/

√
9 = 1.4 kPa. This implicitly assumes that the total

volume of the specimens is small compared to the volume of the soil in situ, as the finite
population factor is ignored.

11.2.2 Systematic sampling

In systematic sampling the first observation is chosen at random, and subsequent obser-
vations are chosen periodically throughout the population. For example, grid sampling
is a systematic plan. An unbiased estimate of the mean from a systematic sample is the
same as Equation (11.1). The sampling variance of this estimate is

Var(x) =
(

N − 1

N

)
σ 2

w +
(

k(n − 1)

N

)
(11.4)

where k is the interval between samples (k = N/n), and σ 2
w is the variance of elements

within the same systematic sample

s2
w = 1

k

k∑
i=1

∑n
j=1(xij − x)2

n − 1
(11.5)

in which xij is the j th member of the ith interval of the sample. When only one systematic
sample has been taken (i.e. one set of n observations at spacing k) the variance of the
mean cannot be evaluated unless an assumption is made about the nature of the sampled
population. The conventional assumption is that the population can be modeled by a linear
expression of the form, xi = µ + ei , in which µ is the mean and ei is a zero-mean random
perturbation. For constant mean, this leads to (Cochran 1977)

Var(x) = 1

n

(
N − n

N

)(
�(xi − x)2

n − 1

)
(11.6)

and for linearly trending mean, µ = µ0 + bi ,

Var(x) = 1

n

(
N − n

N

) (
�(xi − 2xi+k + xi+2k)

6(n − 2)

)
(11.7)

This estimate depends upon the population being adequately described by a linear trend.
A general way of estimating Var(x) from one systematic sample does not exist. Matérn
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(1986) among others deals with this problem. Standard convention is to assume the linear
model, although in geotechnical practice different choices are sometimes called for.

The parameter over which allocation is optimized for systematic sampling is k, the
spacing between observations, although, in more than one dimension the pattern of sys-
tematic sampling can also be optimized (e.g. triangular vs. rectangular grids, etc.). From
Equation (11.4), if s2 and s2

w are approximately the same, Var(x) ≈ s2
w(k/N), so precision

is controlled by changing the ratio of sample spacing to population size (e.g. borehole
spacing to formation or site dimension). Using the cost model, c(n) = c0 + c1n, where c0

is a setup cost and c1 is unit cost, an optimal k can determined, as before, by assuming
a risk cost proportional to

√
Var(x).

11.2.3 Stratified random sampling

A heterogeneous population can sometimes be divided into subpopulations that are inter-
nally homogeneous. For each homogeneous subpopulation, usually called a stratum –
somewhat confusing in the geological context, but common statistical usage – precise
estimates of stratum characteristics can be obtained by random sampling. Estimates of
the total population characteristics can then be made by combining the individual stratum
estimates. For certain populations, stratifying before sampling is more efficient than taking
samples directly from the total population. Sampling plans that specify a simple random
sample in each stratum are called stratified random sampling plans.

An unbiased estimator of the mean of the total sampled population is (Thompson 2002)

x = 1

N

m∑
h=1

Nhxh (11.8)

where x is the population mean, m is the number of strata, and h denotes the stratum
(i.e. Nh is the size of the hth stratum, and xh is the corresponding mean). The variance
of this estimate is

Var(x) =
∑

h

w2
h

s2
h

nh

(1 − fh) (11.9)

where wh = Nh/N and fh = nh/Nh. Since the sample from each stratum is simple ran-
dom, the estimate of the variance within each can be taken from Equation (11.2). Then,
an estimate of the variance of the total population is

Var(x) = 1

N

∑
h

s2
h + s2

among means (11.10)

The data of Table 11.1 are standard penetration test blow counts measured in a sequence
of sand and silty sand strata that are part of a harbor reclamation project. The data have
been divided among the five apparent geological strata within which they were measured.
The sizes of the respective strata are measured in meters of thickness, and are assumed
large compared to the volume of soil tested. The strata means and standard deviations are
estimated assuming simple random sampling within each by Equations (11.1) and (11.3),
respectively. The overall formation mean is estimated by taking the sum-product of the
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Table 11.1 Standard penetration test blow counts in silty sand reclaimed land by stratum

Measurements
Stratum Stratum

Stratum N(h) n(h) 1 2 3 4 5 6 Mean SD

1 1.67 5 7.80 11.41 6.88 10.65 5.36 8.42 2.55
2 3.33 4 12.19 13.27 13.41 11.96 12.71 0.74
3 6.67 6 10.47 12.50 6.81 9.27 10.72 12.35 10.35 2.12
4 4.00 6 11.09 20.49 15.04 16.41 14.46 15.00 15.42 3.05
5 4.67 5 8.17 11.57 10.01 10.65 12.03 10.49 1.51

Sum Product over N(h) = 11.61 2.00

strata means over the relative sizes of the strata, according to Equation (11.8), to obtain
11.61 bpf. The sampling variance is calculated by Equation (11.9) to obtain Var(x) =
0.18 bpf2 = 0.18 bpf2.

Assuming that the strata are obviously separable and that the relative sizes of the
sampled strata are known, how many elements do we sample from each stratum? If
the cost function is of the form c(n) = c0 + �chnh, then Var(x) is minimized when
nh ∝ Nhsn/

√
ch (Cochran 1977). In words, the sample size within a stratum should

be larger when (1) the stratum is larger, (2) the variance of the stratum is larger, and
(3) the cost of sampling in the stratum is lower. For the common case when the unit
cost is the same in each stratum, Var(x) is minimized when nh = n(Nhsn/�Nhsn) (Ney-
man 1934). This is sometimes called, the Neyman allocation. A second common plan is
proportional allocation, nh = n(Nh/N).

The sampling of some populations of interest to geotechnical practice, for example the
orientation of rock joints (Einstein and Baecher 1983), presents questions of sampling
one population for two or more independent variables, e.g. strike and dip. The difficulty
with such plans is that the optimum allocation on one variable may not be the optimal
allocation on the other.

For Neyman allocation the easiest approach is to determine the optimum allocation on
each variable and average the results. Since the precision of a stratified sampling plan
is insensitive to minor deviations from optimal allocation, the averaging procedure often
offers almost as much precision as the optimum allocation for each variable. In the case
of positive correlation between the two variables, averaging works even better. For cases
where the optimum allocations for each variable are widely different, other allocating
techniques have been proposed by Yates (1948).

11.2.4 Cluster sampling

In cluster sampling, aggregates or clusters of elements are selected from the sampled
population as units rather than as individual elements, and properties of the clusters
are determined. From the properties of the clusters, inferences can be made on the total
sampled population. Plans that specify to measure every element within clusters are called
single-stage cluster plans, since they specify only one level of sampling; plans that specify
that cluster properties be estimated by simple random sampling are called two-stage
cluster plans, since they specify two levels of sampling. Higher order cluster plans are
sometimes used.
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We consider the simplest case first: of M possible clusters, m are selected; the ratio
f1 = m/M is called, as before, the sampling fraction. Each cluster contains the same
number of elements, N , some number n of which are selected for measurement (f2 =
n/N). An unbiased estimate of the average of each cluster is

xi = 1

ni

∑
j

xij (11.11)

where xij is the j th element of the ith cluster. An unbiased estimate of the average of the
total population is

xi = 1

m

∑
i

xj = 1

mn

∑
i

∑
j

xij (11.12)

and the variance of this estimator is

Var(x) = (1 − f1)

m
s2

1 + f1(1 − f2)

mn
s2

2 (11.13)

in which s2
1 is the estimated variance among cluster means

s2
1 = �(xi − x)2

n − 1
(11.14)

and s2
2 the estimated variance within clusters

s2
2 = ��(xij − xi)

2

m(n − 1)
(11.15)

In the more general case, not all of the clusters are of equal size. For example, the num-
bers of joints appearing in different outcrops are different. With unequal sized clusters the
selection plan for clusters is not as obvious as it was previously. The relative probability,
zi , of selecting different sized clusters is now a parameter of the plan. Commonly, the
zi are either taken all equal (simple random sampling of the clusters) or proportional to
size. The precisions of these two plans are different. For selection with equal probability
an unbiased estimate of the true total population mean is

x =
∑

i Nixi∑
i Ni

(11.16)

and the variance of this estimator is

Var(x) = (1 − f1)

mN
2

�(Nixi − xm)2

(m − 1)
+ f1

m2N
2

∑ N2
i (1 − f2i )s

2
2i

ni

(11.17)

in which N is the average value of Ni , and xm = ∑
i Nixi/m. If the assumption is made

that ni ∝ Ni , then the plan is self-weighting and this simplifies to

Var(x) = (1 − f1)

mN2

�(Nixi − xm)2

(m − 1)
+ f1(1 − f2)

mnN

∑
N2

i s2
2i (11.18)
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This assumption (i.e. ni ∝ Ni) is frequently valid; for example, proportionally more
joints are typically sampled from larger outcrops than from smaller outcrops.

For selection with probability proportional to size, an unbiased estimate of the total
population mean is

x = 1

n

∑
i

xi (11.19)

and the variance is

Var(x) = �(xi − x)2

m(n − 1)
(11.20)

In all cases, the variance of the total population can be estimated from the variances
between elements within clusters and the variance between the means of the clusters:

σ 2 = σ 2
among means + σ 2

within clusters (11.21)

Joint surveys and many other types of geotechnical sampling may be based on cluster
plans because the cost of sampling many individual joints on one outcrop (i.e. a cluster)
is less than the cost of traveling between outcrops.

The variance of geological populations is often a function of spatial extent. Indeed, this
is the principal argument in the geostatistical literature for favoring variograms over auto-
covariance functions. If we consider the strength of soil specimens taken close together,
the variance among specimens is usually smaller than the variance among specimens
taken from many locations in one area of the site, which, in turn, is smaller than the
variance among specimens taken from all across the site. Cluster techniques allow us to
evaluate variance as a function of the “extent” of the distribution in space by nesting the
variances. Examples of the analysis of nested levels of variance in geology are found
in Pettijohn (1987) and Potter and Siever (1953), who analyze variance in cross-bedding
as a function of scale.

To analyze nested levels of variance we first assume a model for the total population.
Consider Figure 11.1, in which an abstract map of a population is shown. The population
is divided into elements. The variance within each smallest element is s2

4 , since the

j = 1 j = 2

k = 4

k = 1

i = 4

i = 2

i − 3

j = 3
k = 2

k = 3

Figure 11.1 Nested model of a sampled population, showing 54 smallest level elements structured
within four levels of nesting.
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example has four levels of nesting. The means of smallest level elements within each
second-smallest element are themselves distributed with some variance, s2

3, and so forth.
The whole population, therefore, can be modeled by some ‘grand’ mean, µ, plus random

components accounting for the variance at all four levels. Mathematically,

xijkl = µ + ai + bij + cijk + dijkl (11.22)

where ai , is a zero-mean error term associated with variability among the largest elements,
and dijkl is the error term associated with variability among the smallest elements within
the next largest element. If the variance among means at level a is, s2

a , then the total
variance is s2

i + s2
j + s2

k + s2
l ; and the variance in the estimate of the grand mean, µ, is

Var(x) = (1 − f1)

n1
s2

1 + f1(1 − f2)

n1n2
s2

2 + f1f (1 − f3)

n1n2n5
s2

3 + · · · (11.23)

where fi is the sampling fraction at level a, and na is the size of the sample at that level,
respectively (Cochran 1977).

As an example, a large site is divided into nested clusters according to the logical
scheme of Figure 11.1, but with three rather than four levels of nesting. At the smallest
cell level, five specimens are tested in each cell. The average of all the tests (N =
5 × 4 × 4 × 4 = 320) is 22.56. The standard deviations among the nested means at each
level, respectively, are s1 = 5.2, s2 = 1.4, and s3 = 0.4. Thus, the standard error in the
estimate of the site mean, by Equation (11.23), ignoring the finite population correction,
is

√
Var(x) = √{(5.2)2/4 + (1.4)2/16 + (0.4)2/64} = 5.4.

11.3 Interpolating Random Fields

A problem common in site characterization is interpolating among spatial observations to
estimate soil or rock properties at specific locations where they have not been observed.
The sample observations themselves may have been taken under any number of sampling
plans: random, systematic, cluster, or so forth. What differentiates this spatial estimation
question from the sampling theory estimates in preceding sections of this chapter is that
the observations display spatial correlation. Thus, the assumption of IID observations
underlying the estimator results is violated in an important way. This question of spatial
interpolation is also a problem common to the natural resources industries such as forestry
(Matérn 1986) and mining (Matheron 1971), but also to geohydrology (Kitanidis 1997),
and to environmental monitoring (Switzer 1995).

Consider the case for which the observations are sampled from a spatial population
with constant mean, µ, and autocovariance function Cz(δ) = E[z(xi)z(xi+δ)]. The set of
observations z = {zi, . . . , zn} therefore has mean vector µ in which all the terms are
equal, and covariance matrix

� =



Var(z1) · · · Cov(z1, zn)

...
. . .

...

Cov(zn, z1) · · · Var(zn)


 (11.24)
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These terms are found from the autocovariance function as Cov(z(xi)z(xj )) = Cz(δij ), in
which δij is the (vector) separation between locations xi and xj .

In principle, we would like to estimate the full distribution of z(x0) at an unobserved
location x0, but in general, this is computationally intensive if a large grid of points is
to be interpolated. Instead, the most common approach is to construct a simple linear
unbiased estimator based on the observations

ẑ(x0) =
n∑

i=1

wiz(xi) (11.25)

in which the weights w = {w1, . . . , wn} are scalar values chosen to make the estimate
in some way optimal. Usually, the criteria of optimality are unbiasedness and minimum
variance. This is sometimes called the Best Linear Unbiased Estimator (BLUE).

The BLUE estimator weights are found by expressing the variance of the estimate ẑ(x0)

using a first-order second-moment formulation (Chapter 14), and minimizing the variance
over w using a Lagrange multiplier approach subject to the condition that the sum of the
weights equals one (Hildebrand 1976). The solution in matrix form is

w = G−1h (11.26)

in which w is the vector of optimal weights. The matrices G and h are the covariance
matrix of the observations and the vector of covariances of the observations related to the
value of the spatial variable at the interpolated location, x0, respectively,

G =




Var(z1) · · · Cov(z1, zn) 1
...

. . .
... 1

Cov(zn, z1) · · · Var(zn) 1
1 1 1 0


 h =




Cov(z1, z0)

...

Cov(zn, z0)

1


 (11.27)

in which the terms z(xi) are replaced by zi for convenience. The resulting estimator
variance is

Var(ẑ0) = E[(z0 − ẑ0)
2]

= Var(z0) −
n∑

i=1

wi Cov(z0, zi) − λ
(11.28)

in which λ is the Lagrange multiplier resulting from the optimization. This is a surprisingly
simple and convenient result, and forms the basis of the increasingly vast literature on
the subject of so-called Kriging in the field of geostatistics (below). For regular grids of
observations, like a grid of borings, an algorithm based on Equations (11.25) and (11.26)
can be established for the points within an individual grid cell, and then replicated for all
cells to form an interpolated map of the larger site or region (Cressie 1991; David 1977;
Isaaks and Srivastava 1989; Journel and Huijbregts 1978).

In the mining industry (Matheron 1971), and increasingly in other applications (Kitani-
dis 1997), it has become common to replace the autocovariance function as a measure of
spatial association with the variogram (Chapter 9). In place of the expected value of the
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Figure 11.2 Models of horizontal and vertical variograms. (Soulie, M., Montes, P. and Silvestri,
V., 1990. ‘Modeling spatial variability of soil parameters.’ Canadian Geotechnical Journal 27, pp.
617–630, reproduced with permission of the National Research Council of Canada.)
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product of two variables as used in the autocovariance function, the variogram, 2γ (δ),
uses the expected value of the squared difference:

� =




γ11 · · · γ1n 1
...

. . .
... 1

γn1 · · · γnn 1
1 1 1 0


 λ =




γ10
...

γn1

1


 (11.29)

In the geostatistics literature, this interpolation procedure is called Kriging, named by
Matheron (1971) after Krige (1951).

Soulie and his associates (Soulie and Favre 1983; Soulie et al. 1990) have used Kriging
to interpolate shear vane strengths of a marine clay both horizontally and vertically among
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Figure 11.4 Histograms of maximum likelihood estimates of spatial variance, σ 2 = Var(z(x)),
compared to the theoretical asymptotic distribution for the pdf of the estimates. (DeGroot, D. J.
and Baecher, G. B., 1993. ‘Estimating autocovariance of in situ soil properties.’ Journal of the
Geotechnical Engineering Division, ASCE 119 (GT1), pp. 147–166, reproduced with permission
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Figure 11.5 Histograms of maximum likelihood estimates of autocovariance distance, r , com-
pared to the theoretical asymptotic distribution for the pdf of the estimates. (DeGroot, D. J. and
Baecher, G. B., 1993. ‘Estimating autocovariance of in situ soil properties.’ Journal of the Geotech-
nical Engineering Division, ASCE 119 (GT1), pp. 147–166, reproduced with permission of the
American Society of Civil Engineers.)

borings. To do so, they estimated semi-variograms based on spherical and exponential
models (Table 9.2) separately for the horizontal and vertical directions (Figure 11.2), and
then used Equations (11.25) and (11.29) to interpolate the observations (Figure 11.3).

11.4 Sampling for Autocorrelation

The literature addressing statistical aspects of estimating autocovariance functions or var-
iograms from data is not extensive. Most texts on geostatistics quickly pass over the
estimation of variograms based on intuitive plotting of sample moments, and quickly
move on to Kriging and other applications of the variogram. Cressie (1991) provides an
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Civil Engineers.)

overview and summary of various issues and statistical questions surrounding the estima-
tion of variograms. The parallel literature of time series analysis, albeit in one-dimension
rather than three or more, is much more extensive on statistical questions, and is another
starting point for working with spatial data (Kendall and Stuart 1976). Mardia and Mar-
shall (1984) in a widely-cited work, present a maximum likelihood approach to estimating
autocovariance functions, which is discussed in Chapter 9 of this book. The method is,
of course, closely related to Bayesian approaches. The issue of estimating these functions
was treated in Chapter 9.

The question here is, how to design a sampling plan for estimating the autocovariance
or variogram function, and the answer follows the results of DeGroot (DeGroot 1996;
DeGroot and Baecher 1993). DeGroot carried out a series of simulation experiments to
investigate the properties of maximum likelihood estimators of autocorrelation along the
lines of Mardia and Marshall. Simulations were performed by generating pseudo-random
standard Normal variates z ∼ N(0, 1), and then taking the transformation Y = Xβ + AZ,
where I is the identify matrix and A is the Cholesky decomposition (Chapter 17) of the
autocovariance matrix V = AAt. The mean was taken as constant, µ = 0. Maximum like-
lihood estimates of trend and autocovariance parameters were obtained using Mardia and
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Figure 11.7 Histograms of maximum likelihood estimates of spatial variance, σ 2 = Var(z(x)),
for various sampling plans, for n = 64 points. (DeGroot, D. J. and Baecher, G. B., 1993. ‘Estimating
autocovariance of in situ soil properties.’ Journal of the Geotechnical Engineering Division, ASCE
119 (GT1), pp. 147–166, reproduced with permission of the American Society of Civil Engineers).

Marshall’s algorithm for maximum likelihood estimation (Chapter 9). Since the principal
constraint facing most geotechnical site characterization is limited numbers of observa-
tions, the analyses focused on small sample sizes, n, and results were expressed as a
function of n.

Initially, square grids of, respectively, n = 36, 64, and 100 observations were simulated;
corresponding to 6 × 6, 8 × 8, and 10 × 10 grid patterns, uniform over the same site
area. Thus, the respective proportional grid spacings were, 1.7, 1.25, and 1.0. Data were
generated using a squared exponential autocovariance function

Cz(δ) = σ 2 exp(−δ/r) (11.30)

in which σ 2 = Var(z(x)) is the spatial variance and r is the so-called autocorrelation
distance (i.e. the distance at which the autocorrelation diminishes to 1/e). The resulting
asymptotic distribution of the maximum likelihood estimates of σ 2 and r along with the
simulated results from 100 trials are shown in Figures 11.4 and 11.5. The fit, even for a
6 × 6 grid, is reasonable in most cases.
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Figure 11.8 Histograms of maximum likelihood estimates of autocovariance distance, r , for var-
ious sampling plans, for n = 64 points. (DeGroot, D. J. and Baecher, G. B., 1993. “Estimating
autocovariance of in situ soil properties.’ Journal of the Geotechnical Engineering Division, ASCE
119 (GT1), pp. 147–166, reproduced with permission of the American Society of Civil Engineers.)
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Figure 11.9 Comparison of maximum likelihood estimate of the autocovariance function, and the
moment estimate, for data from James Bay (after Christian et al. 1994).
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In comparing different sampling plans, at least two criteria of optimality might be con-
sidered: the quality of the estimates of trend and autocovariance function, and the quality
of interpolations using Kriging or equivalent methods. Olea (1984) studied the latter, and
concluded that for spatial interpolation with known variograms, systematic spatial samples
were superior to other sampling plans in the sense of minimizing the variance of interpo-
lations, and that cluster plans fared the worst. DeGroot studied the former (Figure 11.6),
and concluded that for estimating the autocovariance function either nested or cluster
plans fared better, and gridded plans fared less well (Figures 11.7 and 11.8). A compari-
son of the maximum likelihood estimate of autocovariance for in situ clay strength data
from James Bay (Christian et al. 1994) with traditional moment estimates is shown in
Figure 11.9.



12 Search Theory

Faced with designing a structure on limestone, one would naturally be concerned about
karst. We might have a general idea of the geometry of solution features in the region,
and also of the size and depths of cavities that would cause trouble for the structure being
planned. How much effort should be invested trying to find such cavities – which, after
all, might not exist – and how should that effort be distributed over the site?

This is typical of a class of site characterization problems called, search. The problem
of search is to locate a geological feature of certain description – usually referred to as an
anomaly – in an efficient way, subject to a prior probability distribution on its location,
and in the presence of measurement noise. In site characterization, the problem is to
maximize the probability of finding anomalies at a cost commensurate with the risk cost
of not finding them. These anomalies might be solution features, faults, weak clay layers,
high permeability sand lenses, serpentinized joints, or any other unusual geological feature
with the potential to affect engineering performance adversely.

The suspicion that adverse geological anomalies exist, and what those anomalies might
look like, rests on geological knowledge, as does the prior probability distribution of
anomaly locations across the site, that is, their spatial distribution. These suspicions can
be expressed as subjective probabilities and evaluated by the methods of Chapter 21 or
they might be based on statistical analysis of observations already made. In this chapter,
we assume that these evaluations can and have been made.

Throughout, we refer to the anomalies for which we search as targets, the distribution
of effort in space as allocation, and the distribution of effort in time as strategy. We
consider both single-stage search, in which all the available effort is expended in one
allocation, and sequential search, in which the effort is expended in sequential allocations
after each of which the observations are evaluated and probabilities updated. We consider
throughout the discussion that the geometries and dimensions of targets are either known,
assumed, or described parametrically by a probability distribution.

12.1 Brief History of Search Theory

Search problems are important to geotechnical site characterization, but not surprisingly,
they arise in a broad variety of human enterprises, from finding sailors lost at sea (NSRC
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2000), to finding enemy submarines in war (Stone 1975), to finding mineral resources
(Wignall and De Geoffroy 1985), to finding data in databases (Hand et al. 2001), to
finding consumer products (Barron and Peterson 1976), to finding information in libraries
or on the internet (Morse 1970). The literature on search theory is large, and one may
even need the rudiments of that theory to find things within its own literature.

The initial major theoretical contribution to rationalizing search procedures came as a
result of antisubmarine warfare efforts by the United States military during World War
II. The product of many people’s work, it was first published by Koopman (1946) as
a classified report to the Department of the Navy. The report was declassified in 1958,
but selected portions of it had been earlier revised and published in the professional
literature (Koopman 1956a, 1956b, 1957). An updated version of the original wartime
report was published some years later in the form of an introductory textbook (Koopman
1980). Such military applications of search theory have continued to be developed up to
the present (Baston and Garnaev 2000). Stone (1975) published a comprehensive review
of the mathematical theory of optimal search developed in the quarter century following
World War II, mostly under funding of the US Department of the Navy, and has continued
to publish on the topic (Stone 1983; 1989). Other surveys of search theory have been
published by Washburn (1989), Dobbie (1968), and Benkoski et al. (1991).

12.1.1 Civilian applications of search theory

After World War II, search theory was seen to have application to a host of non-
military problems. Gluss (1959) applied the theory to searching for defective compo-
nents in electronic circuitry; Posner (1963) applied the theory to searching for satellites
lost in space; Morse (1970) applied the theory to searching for books in libraries and
to establishing policies for new-book shelving practices. Dobbie (1963) and de Guenin
(1961) extended search theory to exploration techniques more general than Koopman’s,
while Charnes and Cooper (1958) modified the basic search problem of Koopman for
solution by linear-programming techniques. In recent years, search theory has formed the
basis for international land-sea rescue operations (NSRC 2000). A recent primer on opti-
mal search theory from the perspective of search and rescue has been published online
by Frost (2000).

The most common optimizing criterion is maximum probability of a find, although a
minor amount of work has been based on changes in uncertainty as measured by Shannon’s
information or entropy (Danskin 1962; Mela 1961). Various reviews and annotated bibli-
ographies of search theory articles up to the mid-1980s have been published (Chudnovsky
and Chudnovsky 1989; Enslow 1966; Haley and Stone 1980; Nunn 1981). Benkoski et al.
(1991) have presented a survey through 1990.

Interest in sequential procedures of search – procedures in which each unit of effort is
allocated on the basis of all preceding allocations – began appearing in the literature dur-
ing the middle 1960s (Black 1962; Charnes and Cooper 1958; Dobbie 1968), and were
treated from an entirely different approach than were single-stage allocations. Sequen-
tial search is among the sequential decision problems for which analytical solutions can
be found.

Starting with the work of the French economist and Nobel laureate Allais (1957), vari-
eties of search theory have been applied to a broad class of problems in mineral and
in oil and gas exploration. Applications to mining are many (Brown 1960; Drew 1966;
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Engle 1957; Slichter 1955; Wignall and De Geoffroy 1985; Wignall and De Geoffroy
1987). Applications to oil and gas exploration are discussed by Harbaugh et al. (1995,
1977). One of the more intriguing applications is to the search for seafloor mineral
deposits (Wagner 1979).

12.1.2 Search theory in geotechnology

In the geotechnical literature, Baecher (1972) presented an overview of search theory, and
suggested applications to specific issues in site characterization (Baecher 1979a, 1979b).
Wu and his students have discussed the nature of geological information in formulat-
ing search problems (Wu et al. 1996; Wu and Wong 1981), and Tang and his students
have worked on geometric models of anomalies and on Bayesian updating of probabil-
ity distributions of shape, size, and location of anomalies (Tang 1979, 1987; Tang and
Halim 1988; Tang et al. 1988; Tang and Quek 1986; Tang and Saadeghvaziri 1983),
as well as on the influence of anomalies on engineering performance (Tang 1990; Tang
et al. 1988). Halim (1991) has written a PhD dissertation on the effect of anomalies on
geotechnical performance, including the use of search theory to characterize the distri-
bution of anomalies at specific sites. More recently, McGrath, Gilbert, and Tang (Gilbert
and McGrath 1997a, 1997b, 1999; Gilbert and Tang 1989; McGrath and Gilbert 1999)
used first-order second-moment approaches to search in a Bayesian context.

12.2 Logic of a Search Process

From an analytical perspective, the logic of a search process in the earth sciences is
divided into two parts: a geological model describing the character, number, and possible
location of anomalies; and an observation model describing the probability of detect-
ing existing anomalies with particular distributions and intensities of effort expended in
searching (Baecher 1979b). These combine to yield a likelihood function describing the
conditional probability or probability density of the observations actually made, given
parameter values of the two models. The likelihood function is subsequently combined
with prior probabilities through Bayes’ Theorem to draw inferences (Figure 12.1)

fx(x|data) ∝ fx(x)L(data |x) (12.1)

in which x is a parameter or set of parameters describing the distribution of anomaly
shapes, sizes, orientations, or other attributes.

The most common geological models simplify target features as regular geometric
shapes with random size, shape (e.g. obliquity), and location distributions. For example,
solution features might be idealized as independently positioned ellipsoids, with spatially
variable but preferred orientations, and having some probability distribution over hori-
zontal and vertical location. Clearly, this is a highly idealized view of solution cavities,
which, in fact, usually have tortuous shapes, and must be interconnected. Nonetheless,
important conclusions are possible even with simple models, as has been demonstrated
in various applications of search theory.

Tang and Quek (1986) developed a simple model for use in characterizing the distri-
bution of boulders in sedimentary deposits in Singapore on the basis of boring logs. The
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Figure 12.1 Schematic diagram of the logic of search models and inference.

problem is that rock inclusions are encountered in borings which otherwise appear to
penetrate a deep stratum of clay (Figure 12.2). These are thought to reflect the presence
of large boulders in the formation, but the question is, on the basis of these intersec-
tions, can quantitative conclusions be drawn about the size, number, or volume fraction
of these boulders?

To address this question, the boulders, which presumably might have quite irregular
shapes, were idealized as spheres of unknown diameter. The intersected lengths observed
in the boring logs are then random chords through the spheres (Figure 12.3).1 If the boring
may strike the boulder anywhere within the horizontal plane, the likelihood of observing
a chord of length l given that the diameter of a boulder is x, is shown to be

fl(l|x) = 2l

x2
for 0 ≤ l ≤ x (12.2)

Thus, for a given prior probability distribution on boulder diameter, Bayes’ Theorem
can be used in conjunction with the likelihood of Equation (12.2) to infer a posterior
distribution of boulder diameter

fX(x|l1, l2, . . . , ln) ∝ fX(x)L(l1, l2, . . . , ln|x)

∝ fX(x)
∏n

i=1

2li

x2

(12.3)

making the presumption that the intersections are independent of one another, which is
not precisely so unless the boulders are widely spaced, but it is perhaps a reasonable
approximation.

1 The exact definition of randomness in generating ‘random chords’ can cause non-invariance to coordinate
transformations. See, for example, discussion of what has become known as the Bertrand paradox (Bertrand
1907). As a general rule, the realm of geometric probability is complicated, and such things as coordinate
systems can introduce differences in outcomes. For more in depth discussion see Kendall and Moran (1963).
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Figure 12.2 Boring log showing intersections with boulders buried in a sandy-silty clay. (Tang,
W. H. and Quek, S. T., 1986. ‘Statistical model of boulder size and fraction.’ Journal of Geotech-
nical Engineering, ASCE, 112 (1), pp. 79–90, reproduced with permission of the American Society
of Civil Engineers.)

In a similar way, a number of workers in the minerals industry have used simple two-
dimensional shapes such as circles, ellipses, and rectangles to model ore deposits or oil
pools for the purposes of search (Drew 1966; Savinskii 1965; Slichter 1955). For example,
Figure 12.4 shows clay lenses in a sandy stratum modeled as 2D ellipses. The probability
of one of these lenses being intersected by one or more borings is a function of its size,
obliquity, and orientation, as has been derived and summarized in tables by Savinskii
(1965). A number of more complex but statistically more tractable models based on
Poisson flats have been developed by Lippman (1974), Veneziano (1979), Dershowitz
et al. (1991), and others (see Figure 12.5).

The most common observational models are simple probabilities of detection. For
example, Cone Penetration Testing (CPT) might be used in characterizing a site, and
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Figure 12.4 Geometric (geological) model of clay lenses as 2D ellipses in a sandy stratum
(Baecher 1972).

Figure 12.5 Poisson flat model of rock joints (Veneziano 1979).
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the question arises whether soft layers are being found with adequate probability. The
observation model for this type of search might be a simple conditional probability of
detecting a soft layer given that it is intersected by a specific penetration. This probability
might be further conditioned on the thickness of the target layer, and on how differen-
tially soft that layer is compared to the rest of the soil formation. As we shall see in
the next section, such simple detection models can lead to mathematically interesting and
tractable models.

12.3 Single Stage Search

Single-stage search refers to the commitment of the total available search effort in one
stage, the outcome of any one unit of effort not being reviewed until the entire effort has
been expended. This is a common case in site characterization. A program of exploration
is planned, a contract let to perform the exploration, and the results submitted to the
engineer in the form of a report.

We shall consider several allocation schemes for the search effort, starting with the
analytically simplest and proceeding through allocations that are in some sense optimal.
We begin with random search, then discuss the use of grid patterns, and end with allo-
cations that maximize the probability of finding the target when the prior pdf of target
location is non-uniform.

Random search is not a technique often used in practice, but it serves as a starting point
for considering more complex allocations, and it also provides a bounding case with which
to compare other, presumably more efficient, allocations (Tang 1987). Random search
refers to a procedure that allocates each unit of effort independently of all others. The
conditions for random search are: (i) each small element of area within the site has an
equal probability of being searched by a unit of effort; (ii) each unit of effort has an equal
probability at being located at any elemental area within the site; and (iii) the selection
of the location of any one unit of effort in no way influences the selection of the location
of any other unit.

The probability of finding a target using random search follows the Binomial distribution
since each unit of effort is independent and has the same probability of success. Let the
probability of success of any one unit of effort (e.g. a boring) be p. The probability of
not detecting the target with any one unit is, therefore, (1 − p). Thus, the probability of
not detecting the target with any of n units is

P(no finds|n) = (1 − p)n (12.4)

The probability of at least one detection is the complement, or

P(one or more finds|n) = 1 − (1 − p)n (12.5)

which for small p(p ≤ 0.1) is approximately

P(one or more finds|n)
∼=1 − e−np (12.6)

This is compared to a simple linear model in Figure 12.6.
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Figure 12.6 Probability of detecting one or more target with random search, p = 0.01.

For small values of n, the probability of finding at least one target is approximately
linear in n, but as n grows larger an increasing deviation from linearity reflects the
growing chance that more than one boring will strike a target, perhaps even the same
target. For small exploration effort or for low probabilities of success per unit, random
search provides approximately the same probability of a find as do systematic plans.
However, as the overall probability of a find rises, the probability of a find with random
plans becomes smaller than that with systematic plans.

12.4 Grid Search

Locating exploration effort in a grid pattern is the most common allocation in geotech-
nical practice, the primary reasons being that grid allocations are easy to specify, and
coverage of the site is ensured. Nearly every textbook in applied soil mechanics and
engineering geology discusses the appropriate grid spacings for particular structures or
projects (Table 12.1).

In search problems, grid allocations are most appropriate for targets lacking preferred
locations at a site because they distribute effort uniformly, but they can be used whether
or not preferred locations are suspected. In the latter case, however, grid allocations are

Table 12.1 Recommended boring spacings in site characteri-
zation for various classes of project (Sowers and Sowers 1979)

Boring spacing

Structure or project ft m

Highway 1000–2000 300–600
Earth dam 100–200 30–60
Borrow pits 100–400 30–120
Multistory building 50–100 15–30
Manufacturing plants 100–300 30–90
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usually sub-optimal (that is, other allocations of the same effort may return a higher
probability of finding targets).

12.4.1 Point Grids

Analyzing grid allocations for the probability of finding an object of given geometry and
size is generally straightforward. Grids are repeating geometries, and only one cell need
be considered in an analysis. Consider first the one dimensional problem of finding an
object whose location can be described by the single variable, x.

Let the size of the object in the x-direction be b (Figure 12.7). If the center of the
object is located at x, than a find will be made if one point of the exploration grid falls
within the interval [x − b/2, x + b/2]. Letting the grid spacing be s, the probability of a
find, neglecting boundary conditions, is2

P{find|b, s} = b/s (12.7)

When we expand the problem to two dimensions, the probability of a find becomes
dependent on geometry as well as on target size. Consider a circular target of diameter
b whose center is randomly located in the (x, y) plane (i.e. each small element of area
δxδy has an equal probability of containing the center at the circle). The exploration grid
can be broken down into repeating elements, each containing a boring at its center. If the
center of the target falls within a circle of diameter b about a boring, a find will be made
(Figure 12.8). If it falls outside of this circle, no find will be made. Since the elementary
element is repeating over the zone of search, the probability of finding a target becomes

P(find|b, s) = π2

4

(
b

s

)2

(12.8)

When b > s the circles within which a find is recorded overlap. This complicates
the problem only in that the area within which a find is recorded in each element is
more complicated to specify analytically. The solution for square targets follows the
same algorithm, except that expectations are now taken over, say, a presumed uniform
probability distribution of target orientation (Baecher 1972). Figure 12.9 shows results for
circles and arbitrarily oriented squares.

b

s

x

Figure 12.7 Geometry model for one-dimensional search.

2 We have implicitly assumed the target to be continuous in setting up the problem statement. However,
p(find |b, s) depends only upon the length of the intersection of the target with the x-axis and not tar-
get continuity.
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Figure 12.9 Probability of finding circular and square targets with a square grid of borings. Solid
lines are analytical solutions; dashed lines are interpolations.

Other target and grid shapes may be treated in a similar fashion, first by determining
the elemental circle around each boring for which a find occurs as a function of target
orientation, then by taking the expectation over the probability density function of target
orientation. This approach applies whether or not the pdf of target orientation is uniform.
For example, Slichter (1955) presents results for rectangular targets using line grids (e.g.
as used in geophysical searches), and Savinskii (1965) presents results for elliptical targets
using rectangular point grids. Similar results may be straightforwardly obtained for other
grid shapes, for example circular targets and triangular girds (Figure 12.10), or for oblique
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Figure 12.10 Probability of finding circular targets with triangular grids (after Slichter 1955).

target geometries, or any combination of grid and target geometry. For complex target
or grid geometries, the Monte Carlo procedures of Chapter 17 provide a powerful and
inexpensive way of calculating probabilities of a find.

12.4.2 Line Grids

We have thus far considered only point grids: grids in which the effort is allocated at
the intersections of grid lines. In geophysical work, field reconnaissance, and certain
other search techniques the effort is allocated along the grid lines themselves. Thus, the
allocation is continuous along lines rather than localized at points. The probability of a
find using line grids equals the probability that a line intersects the target. We consider
only rectangular grids and circular targets to illustrate how the probability of a find
is determined.

The probability of a find with a rectangular grid is the probability that the center of the
target falls in hatched area of the elemental unit shown in Figure 12.11

P {find|a1, a2, b) =



1 −
[
(a1 − b)(a2 − b)

a1a2

]
for b ≤ a2 ≤ a1

1.0 otherwise
(12.9)

a1

a1 − b

a2 − ba2

Figure 12.11 Elemental areas for line search with a rectangular line grid and circular target.
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b/2
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Figure 12.12 Elemental areas for line search with a triangular line grid and circular
target obliquity.

The probability of a find with a triangular grid equals the probability that the target center
falls into the cross-hatched area of the elemental unit shown in Figure 12.12:

P {find|b, st ) =




1 −



st − b(Csc
π

6
+ Sin

π

6
)

st




2

for b ≤ 0.575st

1.0 otherwise

(12.10)

12.4.3 Target Obliquity

Up to this point, we have considered equi-dimensional planar targets (i.e. circles and
squares). We now consider targets that have one dimension larger than the other, specif-
ically, ellipses and rectangles. Once the target ceases to be equi-dimensional, target
orientation acquires importance, and prior probabilities of target orientation need to
be considered.

Let the ratio of the maximum dimension of the target, a, to the minimum dimension,
b, be the target obliquity, λ = a/b. We first concern ourselves with uniform prior prob-
abilities of target orientation, and evaluate the sensitivity of the probability of a find to
changes in target obliquity; following this we consider rectangular grids in searching for
oblique targets for which some orientation information exists prior to searching. Finally,
we consider grids that maximize the probability of a find for a given target and prior pdf
of orientation.

The graphs in Figure 12.13 and Figure 12.14 show the relationships between probability
of a find and target obliquity for elliptical and rectangular targets with uniform pdf of
orientation. The important thing to note here is that once the grid spacing exceeds about
1.5 times the square root of the target area, the probability of a find is insensitive to
changes in target obliquity, and the error for spacings greater than 1.5 times the square
root of the target area is less than 5%. This means that in most practical applications the
assumption of a circular target causes little error. As the grid spacing becomes smaller,
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Figure 12.13 Probability of finding elliptical targets with square grids (after Savinskii 1965).

(after Slichter,1955)

Grid Spacing / Square Root of Target Area

1

0.8

0.6

0.4

0.2

0

l = 2.0
l = a/b

4.0

10.0

0.0 1.0 2.0 3.0 4.0

b

a

P
ro

ba
bi

lit
y 

of
 a

 F
in

d

Figure 12.14 Probability of finding rectangular targets with square grids (after Slichter 1955).
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however, the actual obliquity of the target is important and must be considered. Errors of
20–25% can occur by neglecting target obliquity in the region of spacings on the order
of the size of the target. In geological problems, such situations seldom occur.

In the case that oblique targets have preferred orientation, the probability of a find can
be augmented by sizing and orienting the boring grid to take account of this information.
As seen in the last two figures, the probability of finding an elliptical target and the
probability of finding a rectangular target are essentially the same when the obliquities of
the two are the same, so we may restrict attention to the elliptical case with little error.

Consider an elliptical target of dimensions a by b and a rectangular grid, s1 by
s2. Savinskii (1965) has provided tables of the probability that rectangular grids intersect
elliptical targets as a function of grid spacings, target geometry, and target orientation
relative to the grid. Baecher (1972) built upon these to calculate the probability of inter-
secting elliptical targets with orientations described by a probability distribution. While
the results of these analyses are beyond the scope of this book, and in any event only
results for relatively simple cases have been tabulated, nonetheless useful observations
suggest themselves. First, when the preferred target orientation is known, the optimum
grid obliquity is approximately proportional to the target obliquity, Secondly, the optimal
orientation of the long axis of the grid is parallel to the long axis of the target.

12.5 Inferring Target Characteristics

The numbers and sizes of targets found with a given search effort offers evidence that
may be used to refine our assessment of the total number and sizes of targets existing at
a site. We first consider the evidence provided by the total number of targets found.

Let the actual number of targets at a site be n, and the number found in a given search
with effort � be m. If the prior pmf of n is p(n), the posterior pmf can be found by
Bayes’ Theorem

p(n|m) = p(n)L(m|n, �)∑
n p(n)L(m|n, �)

(12.11)

The probability that one or more targets exist somewhere at the site when no find is
recorded is simply p(one or more|m) = 1 − p(0|m).

Consider the problem of trying to estimate the number of soft clay lenses interbedded at
a site from the records of a boring program. On a regional basis, the prevalence of lens of
the type in question is guessed to have an average rate of about λ per some measure of unit
area. As a simplification, assume the lenses are randomly and independently distributed
in the horizontal plane. Under these assumptions, the number of lenses could be modeled
as a Poisson distribution

p(n) = (λA)ne−λA

n!
(12.12)

in which A is the site area. What inferences can we draw about the total number of lenses
if a search has encountered m of them?

To avoid geometric complexities, assume that the vertical dimensions of the lenses
are small compared to the deposit depth, and hence the probability of two lenses being
at the same elevation and intersecting one another is negligible. We further assume that
systematic borings of spacing s, completely penetrating the deposit, have been used. The
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likelihood of m finds, from the binomial theorem, is

p(m|n) = Cn
mp(find)m(1 − p(find))n−m (12.13)

in which Cn
m is the combinations of n things taken m at a time, and p(find) is found from

Figure 12.13. Consider a site area 5000 × 2000 m searched by a square grid of borings
100 m on center. If the lenses are approximately circular with 50 m diameters, and the
prior pmf of the number of lenses is Poisson with λA = 10 (i.e. about 10 lenses would
be expected at a site this large), then the posterior pmf would be

p(n|m) ∝ p(n)L(n|m)

∝
[
λAne−λA

n!

] [
n!

m!(n − m)!
p(find)m(1 − p(find))n−m

]
(12.14)

for which the prior and posterior pmf’s of n are shown in Figure 12.15, for the case of
m = 3 finds of 50 m lenses with a 100 m boring spacing. Note, this problem could also be
formulated by assigning a prior pdf to the spatial density of lenses, λ, and then using the
sample observations to draw inferences on the posterior pdf of λ, then forming a predictive
pmf on n by integrating the Poisson function over the uncertainty in λ (Chapter 4).

An interesting result of general usefulness is the posterior probability that a target exists
undetected. That is, if a certain level of effort has been expended to find a target, but
fails to do so, what is the probability that the target yet exists? This is straightforward
application of Bayes’ Theorem

p(target exists|0) ∝ p(target exists)L(0|target exists, �) (12.15)
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Figure 12.15 Prior and posterior pmf’s for total number of 50 foot lenses, given that m = 3 have
been found with a grid spacing of 100 feet.
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Figure 12.16 Posterior probability of a target existing undetected as a function of the prior prob-
ability and the conditional probability of finding an existing target with the search program.

as shown in Figure 12.16 as a function of the prior probability that the target exists. This is
an interesting chart. Note that, if the conditional probability of finding a target is zero, the
posterior probabilities are the same as the priors, since the search provides no information
on the existence of targets. As the probability of finding an existing target increases, that
is, the search efficacy increases, the posterior probability of a target existing becomes less
and less dependent on the prior probability, at least up to a prior of about 0.6 or 0.7. That
is, the search provides more and more information, to the posteriors depend more and
more on the search outcomes. Finally, the search efficacy has to be reasonably high, say
greater than about 0.7 before the posterior probability is strongly affected by the result of
not finding a target.

Were target dimensions not deterministic but themselves represented by some prior pdf,
we could compute a posterior pdf of dimension in much the way as we have just treated
total number of targets. We do this by first assuming the distribution of b to belong to
a family of distributions (Normal, Gamma, etc.), and then record the prior uncertainty
about b in the form of a joint pdf on the parameters of its distribution. This uncertainty
can be updated in the same way that the pmf of number of targets was updated, and it
can be integrated to get the likelihood of the sample results for number of targets.

Tang and his students (Halim and Tang 1993; Halim 1991; Halim and Tang 1990; Halim
and Tang 1991; Halim et al. 1991; Tang 1979, 1987, 1995; Tang 1990; Tang and Halim
1988; Tang et al. 1988a, 1988b; Tang and Quek 1986; Tang and Saadeghvaziri 1983) have
used a Bayesian approach to draw inferences of target or anomaly size based on systematic
drilling. Suppose that n borings are randomly located within a site of overall area, A0.
The likelihood that exactly m of these borings would intersect a target of area a can be
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modeled as a Binomial process as in Equation (12.13), in which p(find) = a/A0. Then,
the posterior pdf of target size, f (a|m,n), can be determined from Bayes’ Theorem to be

f (a|m, n) ∝ f (a)L(a|m, n)

∝ k
n!

m!(n − m)!
(a/A0)

m(1 − a/A0)
n−m

(12.16)

in which the prior pdf is assumed uniform, f (a) = k. Note that one might also use the
non-informative prior f (a) ∝ 1/a, following Jeffreys (1983), in which case the posterior
would differ slightly. For the important special case that m = 0, that is, there are no finds

f (a|m = 0, n) = (n + 1)

A0

(
1 − a

A0

)n

(12.17)

in which a ≤ A0, and for which E[a] = A0/(n + 2) and Var[a] = A2
0(n + 1)/(n +

2)2(n + 3). For relative size, a/A0, the corresponding posterior pdf is (Figure 12.17)

f

(
a

A0
|m = 0, n

)
= (n + 1)

(
1 − a

A0

)n

(12.18)

This suggests that should a large number of borings fail to detect a target, any target that
is still present must be small. Tang (1987) also presents results for gridded borings and
for informative prior pdf’s on target size.
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Figure 12.17 Probability distribution over the normalized area of a target, when no finds have
been recorded with n = 1,2,3 borings.
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12.6 Optimal Search

Grid and random search patterns allocate effort uniformly over the region of search. When
no prior information exists to indicate likely areas for targets (i.e. the prior probabilities
of target location are uniform), there is no reason to allocate effort other than uniformly:
A uniform allocation produces the highest probability a find. However, when prior prob-
abilities are not uniform – when some areas are more likely to contain a target than
others – non-uniform allocations may increase the probability of a find. These allocations
place more effort where a target is more likely to be.

The probability of finding a target in a particular elemental area, A, is the product of
the probability that it exists there, and the conditional probability of finding it, given that
it exists there,

p(find in A) = p(find target exists in A)p(target exists in A) (12.19)

Allocating more effort to those areas with a higher probability of containing a tar-
get – and thus less effort to those areas with a lower probability – increases the term
p(find |target exists in A) in those areas where p(target exists in A) is greatest.

12.6.1 Detection functions

The detection function is the conditional probability of finding a target as a function of
the amount of effort expended

detection function ≡ p(find|target exists in A, search effort expended) (12.20)

For grid allocations, the detection function was assumed to be constant (i.e. if a target
existed at a grid point it was assumed to be detected with some fixed probability, p).
When the prior probability distribution of location is uniform, the exact value of p has
no effect on the optimal allocation of effort.

Borings are discrete quantities of effort, and their density of allocation as a function of
area or length is a series of points. Correspondingly, the conditional probability of finding
a target, given that it exists at point x, is a series of spikes (Figure 12.18). For search
segments or areas that are large relative to the boring spacing,3 the allocation of effort
over x (where X is the space of the search) can be expressed as

φ{x} ∝ s−k (12.21)

in which φ{x} is the allocation of effort at x, and k is the dimension of the search (i.e.
k = 1 for search over a line, k = 2 for search over an area, etc.). Because the conditional
probability of a find with systematic observations is proportional to s−k, the detection
function becomes

p(φ{x}) ∝ φ{x} (12.22)

3 The requirement of large elemental area relative to boring spacing avoids complications of boundary effects.
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Figure 12.18 Allocation of borings over a line, and conditional probability of finding a target at
location x.

Thus, systematic observations such as boring grids obey a linear detection function. From
Equation (12.20), the probability of finding a target is

f (find) =
∫

fX(x)Nϕ{x}dx

= N

∫
fX(x)ϕ{x}dx

(12.23)

in which N , a normalizing constant, is in turn maximized by

ϕ{x} =
{

� x such that fX(x) is maximal
0 otherwise

(12.24)

and �, the total effort, is a constant. In other words, by placing all the effort in those
regions having the highest probability of containing a target – and no effort in other
regions – the overall probability of a find is maximized.

12.6.2 Exponential saturation detection functions

When the prior probability distribution of location is not uniform, imperfect detection
assumes greater importance. Most detection functions encountered in practice exhibit
diminishing returns. That is, allocations of increasingly large amounts of exploration
effort do not produce proportionally large increases in the conditional probability of a
find. In this case, the optimum amount of effort allocated in a particular area is a function
both of the probability of the target existing there and of the rate of diminishing returns
in detecting a target.

Let the prior probability distribution of target location be fX(x). We assume that the
target exists somewhere, that is, the integral of fX(x) over the complete space is 1.0,∫
X

fX(x) dx = 1. The only restriction on fX(x) is that it be continuous except for finite
jumps. As above, the amount of search effort allocated at x is represented by the function
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φ{x}, such that φ{x} ≥ 0 for all x. The integral of φ{x} over all x is the total search
effort,

∫
X

φ{x}dx = �.
Consider the one-dimensional case of search along a line, X. Let the probability of

detecting a target – known to exist within some interval (x, x + dx) – with one quan-
tum of search effort, be p. If n quanta are used, the probability of detection increases
according to

p(find|target exists) = 1 − (1 − p)n (12.25)

which, for p smaller than about 0.1, is approximately

p(find|target exists) ∼= 1 − e−np = 1 − e−ϕ{x} (12.26)

Koopman (1946) called this the exponential saturation detection function.

12.6.3 Optimal one-dimensional search

If we combine the detection function of Equation (12.26) with the, possibly non-uniform,
prior probability distribution of target location, fX(x), the probability of detecting a target
within the interval (x, x + dx) becomes

p(detecting target in(x, x + dx)) = fX(x)[1 − e−ϕ{x}] (12.27)

and the probability of a find anywhere is the integral over the search space, X

p(find) =
∫
X

fX(x)[1 − e−ϕ{x}] dx (12.28)

The optimal allocation of search effort φ∗{x} maximizes p(find ) while being everywhere
non-negative and integrating to the total effort,

∫
X

φ{x}dx = �. Koopman shows that the
function φ∗{x} maximizing Equation (12.28) satisfies the condition

fX(x)e−ϕ{x} = λ (12.29)

in which λ is a constant. Taking the logarithm of both sides gives

φ{x} = ln fX(x) − ln λ (12.30)

and integrating over x gives

∫
φ{x}dx = � =

∫
[ln fX(x) − ln λ]dx (12.31)

in which � is the total search effort.
Koopman noted that Equation (12.31) suggests a simple graphical procedure by which

to determine φ∗{x}. This is carried out by graphing the logarithm of fX(x), and drawing in
a horizontal line of height ln (λ) (Figure 12.19). The difference between these two under
optimal allocation, from Equation (12.31), equals the total search effort �. The line ln (λ)
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x0

ln l

ln fx (x0)

Figure 12.19 Graphical procedure for determining the optimal allocation ϕ ∗ {x}.

is moved up or down until the area between the curves satisfies this criterion. Transforming
the logarithmic ordinate to arithmetic yields the optimal allocation of effort, φ∗{x}.

The probability of finding a target given that it exists can be found by substituting
terms into Equation (12.28) to obtain

p(find) =
∫

[fX(x) − λ]dx (12.32)

This shows that the probability of a find is the area between the curves fX(x) and λ

(Figure 12.19).
In the event that the target is not found by the optimal allocation of effort, the posterior

distribution of target location can be determined from Bayes’ Theorem

fX(x|no find) ∝ fX(x)L(no find|targest exists atx) (12.33)

in which the probability of no find given that the target exists at x is the likelihood. After
some manipulation, this posterior pdf can be shown to be (Baecher 1972)

fX(x|no find) =




fX(x)

(1 − P)
for x s.t. ϕ{x} > 0

λ

(1 − P)
for x s.t. ϕ{x} = 0

(12.34)

in which P is the probability of finding the target with the optimal allocation. Thus, the
posterior pdf of location for any x is proportional to the distance between the x-axis and
either the curve fX(x) or the curve λ, whichever is smaller, by the factor (1 − p)−1.
Successive allocations of effort without a find yield posterior pdf’s of location that are
found by successively lowering the horizontal line representing λ (Figure 12.20).

Consider a large reconnaissance effort in which exploration is undertaken to route a gas
pipeline across a 9 km-long by 1 km-wide section of terrain, and in which the objective of
the program is to identify potentially troublesome geological conditions that might hinder
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Step II: Draw a line parallel to the x-axis
truncating the graph of lnfX (x).
This line is a plot of lnψ, where ψ is
the total search effort

Step 1:Graph the natural logarithm of the prior
pdf, lnfX(x)

xo

xo

ln fx (xo)

(a)

ln fx (xo)

ln l

Step  III: Determine the area under the curve in
lnfX(x) and above the line ln l. This area is the
RHS of Equation Equation 12-31. Under the 
optimal allocation this should equal the total search
effort, ψ. By moving the horizontal line up and down
(i.e. by varying l), this area can be made to equal ψ)
and the value of l thus determined satisfies the
criterion for optimal allocation of equation

A

(b)

A
xo

f (xo)

Step IV: The probability of finding the
target given that it exist somewhere at
the site is just the area between the
curves fX(x) and l.

Step V: In the event the target is not found,
the posterior probability distribution of target
location is proportional to the distance
between the x-axis and either fX(x) or l,
whichever is less.

xo

(c)

l

l

fx (xo)

fx (xo)
fx′ (xo)(1 − p)−1

Figure 12.20 Step-by-step graphical procedure for determining the optimal allocation ϕ ∗ {x}.

the project. About 500 person-days of effort have been allocated to the program (i.e. two
person-years), and as a rough estimate, the field teams can investigate an area of about
100 m by 100 m per person per day. Thus, the total available effort (denominated in units
of site area) is

� = 500 days × (100 × 100 m2 day) = 5 km2 (12.35)
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We presume the probability of finding troublesome conditions follows an exponential
saturation relationship with respect to level of effort. How should the 500 days – equaling
5 km2 of effort – best be allocated over the 9 km2 of potential right-of-way?

To begin, the right-of-way is divided into nine, one-km long by one-km wide sections.
Subjective probabilities are assessed (Chapter 21) to establish a prior probability distri-
bution (pmf) of where difficult geological conditions might be expected to occur. That is,
some sections are likely to be more problematic than others – based on regional geology
and perhaps other experience in the region – and it would make sense to allocate more
effort in those subsections than in others. This prior pmf is shown in Figure 12.21, and
the natural logarithms of the pmf in Figure 12.22. Trial values of ln(λ) are chosen, begin-
ning at −1.0 and moving down to −4.0, and the answers interpolated to find the optimal
λ ≈ −2.85 (Figure 12.23). Transforming from logarithms to arithmetic scale, the optimal
allocation of effort is shown in Figure 12.24. The allocation that maximizes the chance
of finding unsuitable conditions is that which devotes effort to subsections 2,3,4,7, and 8;
while ignoring sub-sections 1,5,6, and 9. The reasons for ignoring the latter sub-sections
in the search are that the prior probability of problematic conditions existing in them is
simply too low and that sufficiently diminished returns are not reached in the more likely
subsections with the total amount of available effort.

12.6.4 Optimal search in higher dimensions

Koopman’s theory of optimal search is readily extended to higher dimensions by substitut-
ing a multivariate pdf of location for fX(x). The construction to determine φ∗{x}, in which
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Figure 12.21 Prior pmf of potentially difficult geological conditions along the proposed
right-of-way of a new gas pipeline.
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Figure 12.22 Natural logarithms of the prior pmf of potentially difficult geological conditions
along the proposed right-of-way of a new gas pipeline.
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OPTIMAL SEARCH 297

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00
1 2 3 4 5 6 7 8 9

E
ffo

rt
 a

llo
ca

te
d 

to
 e

ac
h 

su
b-

se
ct

io
n 

(k
m

2 )

Sub-section number

Figure 12.24 Optimal allocation of reconnaissance effort.

x is a vector, is analogous to the construction already considered. In the two-dimensional
case, the volume between the surfaces fX1X2(x1, x2) and ln(λ) is varied by changing the
value of the constant λ until this volume equals the total search effort. The optimum is
then to allocate effort only to those elemental areas for which fX1X2(x1, x2) > ln λ, and
to expend effort at each in proportion to

ϕ∗{x1, x2} ∝ | ln fX1X2(x1, x2) − ln λ| (12.36)

Thus, the construction in multi-dimensions is strictly analogous to the one-
dimensional case.

Koopman’s theory is limited by the assumption of exponential saturation of the detec-
tion function, which only applies to search techniques with small conditional probability
of finding a target. This assumption is violated in many geological exploration problems.
de Guenin (1961) extended Koopman’s theory to cover any detection function display-
ing diminishing returns, that is, all detection functions for which dP (φ{x})/dφ{x} is a
decreasing function of φ{x}.

De Guenin shows that a more general statement of Equation (12.29) for optimal
allocation is

fX(x)
dP (ϕ∗{x})

dϕ{x} = λ (12.37)

which in the exponential case reduces to Equation (12.29). Based on this modification, de
Guenin proposes an iterative graphical procedure, somewhat more involved than Koop-
man’s, by which the optimal allocation can be determined.
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In some cases more than one target type may be of interest. For example, at a dam
site both faulting and weathered zones unrelated to faulting may be of concern. Optimal
search theory can be applied to such problems by restating the objective not as maximizing
probability of a find, but maximizing expected utility (Chapter 5). There are utilities
associated with finding each type target and these utilities are usually not the same.
Furthermore, the detection function for each target typically differs. In such cases one
seeks an optimal allocation that maximizes the expected total utility of search. Baecher
(1972) considers this problem further.

12.7 Sequential Search

A sequential search procedure is one in which the pdf of location is made current and a
new optimal strategy determined after each increment of effort is allocated, as opposed
to single stage procedures in which all of the effort is expended before updating. Since
each allocation is made on the basis of all past information, sequential procedures fre-
quently produce greater probabilities of finds than do single-stage procedures. However,
the increased probability of a find may not be sufficient to compensate for discontinuities
in field work and for the increased effort required by constant updating.

One may formulate the problem of sequential search in a manner similar to the single-
stage problem already considered. We are searching for a target that is thought to exist
somewhere along a line (extensions to higher dimensions are straightforward), and the
prior pdf of the target’s location will be denoted by fX(x). We break from the single-stage
formulation in that we specify that discrete quantities of effort are expended in searching.
These discrete quantities may be located at any point along the continuous x-axis within
the region of search. We once again assume that the search technique is not perfectly
efficient, that there exists a positive conditional probability of the target being missed in
a search of location xi , even though the target exists at xi . This conditional probability
of a miss is denoted as before

αi = Pr(miss at xi |target at xi) (12.38)

We seek a strategy of search, that is, a rule telling us where to look at each stage
that is in some sense optimal. To judge the goodness of each strategy we consider four
criteria commonly of interest in site exploration: (1) minimizing the expected amount
of effort required to find the target; (2) maximizing the probability of finding the target
with a given amount of effort; (3) minimizing the conditional probability that the target
exists somewhere at the site when no find is made; and (4) minimizing the expected
amount of effort required to lower the conditional probability that the target exists to
a specified level. It can be demonstrated that each of these criteria leads to the same
optimal strategy (Baecher 1972). The importance of this property is that a unique optimum
strategy exists.

The subject of optimal sequential decisions forms a major component of the theory of
statistical decisions. The basic functional equations for the problem of sequential search
are difficult to solve directly (De Groot 1970; Stone 1975), but for several cases the
optimal strategy can be found by other analytical means (Chew 1967). Without loss of
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generality, since each of the criteria above leads to the same optimal strategy, we consider
optimality in the sense of the first criterion, minimizing the expected effort to find a target.

For any strategy δ, let the cost of the search at the nth stage be cn and the probability
that the target is found at the nth stage be λn. Assume that the cost of searching location
xi is ci . The probability of finding the target at location xi is

Pr(find at xi) = fX(xi)(1 − αi)dx (12.39)

The expected cost of finding the target using strategy δ is

E[C(δ)] =
∞∑

n=1

cnPr(N ≥ n)

= c1 + c2(1 − λ1) + c3(1 − λ1 − λ2) + . . . .

(12.40)

where N is a random variable equal to the number of searches until a find is made. For
the present we only consider prior distributions for which the integral of fX(xi) is 1.0
(i.e. the target exists somewhere), since the expected value of cost is infinite when there
is a positive probability of continuing the search indefinitely.

One can show that the strategy δ* that minimizes E[C(δ)] must satisfy the relation that
λn+1/cn+1 < λn/cn (De Groot 1970). The proof of this assertion is easily demonstrated.
Suppose δ is a strategy for which E[c(δ)] < ∞, but for which (λn/cn) < (λn+1/cn+1)

for some value of n. Let δ* be the strategy that is similar to δ at every stage, except that
stages n and (n + 1) are reversed. Then

E[C(δ)] − E[C(δ∗)] = cn(1 − λ1 − · · · − λn−1)

+ cn+1(1 − λ1 − · · · − λn)

− cn+1(1 − λ1 − · · · − λn−1) (12.41)

− cn(1 − λ1 − · · · − λn−1 − λn+1)

= cnλn+1 − cn+1λn > 0

Thus, the expected total cost for δ* is lower than for δ.
The optimal strategy, therefore, specifies that at any stage in the search, the next location

to be searched is the one that maximizes the probability of a find per unit cost. A sequential
strategy like this, which at each stage specifies the short-term best decision is said to
be myopic. In the case for which all the ci’s are equal, which is not uncommon in
site investigation, the optimal strategy specifies searching the location with the highest
probability of a find f

(n)
X (xi)(1 − αi), where at any given stage, n, f

(n)
X (x) is the current

posterior pdf of target location.





Part III





13 Reliability Analysis
and Error
Propagation

Reliability analysis deals with the relation between the loads a system must carry and its
ability to carry those loads. Both the loads and the resistance may be uncertain, so the
result of their interaction is also uncertain. Today, it is common to express reliability in
the form of a reliability index, which can be related to a probability of failure. It should be
understood in this context that ‘failure’ includes not only catastrophic failure – as in the
case of a landslide – but also, in Leonards’ (1975) phrase, any “unacceptable difference
between expected and observed performance.”

13.1 Loads, Resistances and Reliability

The loading to which an engineering system is exposed is Q. The available resistance is
R. In this context, ‘loading’ and ‘resistance’ must be taken in their broadest sense; that
is, they include not only forces and stresses, but also seepage, settlement, and any other
phenomena that might become design considerations. The values of both R and Q are
uncertain, so these variables have mean or expected values, variances, and covariances,
as well as other statistical descriptors that will be ignored for the present. The notation is
as follows:

µR, µQ: mean values of R and Q, respectively.
E[R],E[Q]: expected values of R and Q, respectively,= µR,µQ.
σR, σQ: standard deviations of R and Q, respectively.
�: coefficient of variation = σ/µ.
σ 2

R, σ 2
Q: variances of R and Q, respectively, also denoted Var[Q], Var[R]

ρRQ: correlation coefficient between R and Q.
Cov [R,Q]: covariance of R and Q = ρRQσRσQ.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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The margin of safety, M , is the difference between the resistance and the load:

M = R − Q (13.1)

From the elementary definitions of mean and variance, it follows that regardless of the
probability distributions of R and Q the mean value of M is

µM = µR − µQ (13.2)

and the variance of M is

σ 2
M = σ 2

R + σ 2
Q − 2ρRQσRσQ. (13.3)

A reliability index, β, is defined as

β = µM

σM

= µR − µQ√
σ 2

R + σ 2
Q − 2ρRQσRσQ

(13.4)

which expresses the distance of the mean margin of safety from its critical value (M = 0)

in units of standard deviation. If the load and resistance are uncorrelated, the correlation
coefficient is zero, and

β = µM

σM

= µR − µQ√
σ 2

R + σ 2
Q

(13.5)

Figure 13.1 shows plots of typical probability distributions of R and Q. Figure 13.2 (a)
shows the resulting probability distribution of M . The probability of failure must
be the probability that M is less than 0.0, which is the shaded area in the figure.
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Figure 13.1 Probability densities for typical resistance (R) and load (Q).
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Figure 13.2 Probability density (a) and cumulative probability (b) for margin (M). Note that the
area in (a) under the curve and to the left of the axis is the probability of failure identified in (b).

Figure 13.2 (b) shows the cumulative distribution corresponding to the distribution
function of Figure 13.2 (a). The probability of failure is the intercept of the cumulative
distribution function with the vertical axis at M = 0.

In the special case that R and Q are Normally distributed, M is Normally distributed
as well. Thus, the reliability index, β, which normalizes M with respect to its standard
deviation, is a standard Normal variate, usually designated Z. The standardized Normal
distribution, with zero mean and unit standard deviation, is widely tabulated (Abramowitz
and Stegun 1964; Burington and May 1970), and modern spreadsheets include it as
a function. Usually, the tabulation expresses the integral � of the standardized Normal
distribution between −∞ and positive values of the parameter Z. We want the probability
of failure pf , which is the integral between −∞ and values of the parameter Z located
below the mean value, that is, negative values of Z. Due to the symmetry of the Normal
distribution, pf is simply 1 − �(β) = �(−β).

Geotechnical engineers are more accustomed to working with the factor of safety, F ,
defined by

F = R

Q
(13.6)
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Failure occurs when F = 1, and a reliability index is defined by

β = E[F ] − 1

σF

(13.7)

Calculations of the reliability index are more difficult when it is expressed in terms
of the factor of safety because F is the ratio of two uncertain quantities while M is
their difference. To avoid this problem, some researchers have assumed that R and Q are
logNormally distributed (that is, the logarithms of R and Q are Normally distributed) so
that the logarithm of their ratio becomes the difference between their logarithms. Then,
the formulation is identical to Equations (13.1)–(13.5), but numerical results for a given
problem will be different. Also, in estimating the statistical parameters of R and Q from
experimental and field data, calculations must be made on the logarithms of the data
rather than the arithmetic values.

13.2 Results for Different Distributions of the Performance
Function

Either M or F can describe the performance of a geotechnical structure, so either will be
called the performance function. Table 13.1 gives values of the probability of failure for
several distributions of the performance function and for a range of values of the reliability
index. The same information is plotted in Figure 13.3. The ‘Normal’ case applies when M

is Normally distributed. It also applies when the logarithm of F is Normally distributed
and the standard deviation of the logarithm of F can be calculated. The ‘Triangular’ case
applies when M has a symmetric triangular distribution. The ‘logNormal’ cases arise
when β is defined by Equation (13.7) in terms of F , but F is logNormally distributed.
The relation between β and the probability of failure is then not unique but depends on

Table 13.1 Probability of failure for various distributions of performance function

Probability of failure

Reliability Normal Triangular
LogNormal distribution

index distribution distribution � = 0.05 � = 0.10 � = 0.15

0.0 5.000 × 10−1 5.000 × 10−1 5.100 × 10−1 5.199 × 10−1 5.297 × 10−1

0.5 3.085 × 10−1 3.167 × 10−1 3.150 × 10−1 3.212 × 10−1 3.271 × 10−1

1.0 1.586 × 10−1 1.751 × 10−1 1.583 × 10−1 1.571 × 10−1 1.551 × 10−1

1.5 6.681 × 10−2 7.513 × 10−2 6.236 × 10−2 5.713 × 10−2 5.111 × 10−2

2.0 2.275 × 10−2 1.684 × 10−2 1.860 × 10−2 1.437 × 10−2 1.026 × 10−2

2.5 6.210 × 10−3 0.0 4.057 × 10−3 2.298 × 10−3 1.048 × 10−3

3.0 1.350 × 10−3 0.0 6.246 × 10−4 2.111 × 10−4 4.190 × 10−5

3.5 2.326 × 10−4 0.0 6.542 × 10−5 9.831 × 10−6 4.415 × 10−7

4.0 3.167 × 10−5 0.0 4.484 × 10−6 1.977 × 10−7 6.469 × 10−10

4.5 3.398 × 10−6 0.0 1.927 × 10−7 1.396 × 10−9 4.319 × 10−14

5.0 2.867 × 10−7 0.0 4.955 × 10−9 2.621 × 10−12
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Figure 13.3 Probability of failure versus reliability index for various distributions.

the coefficient of variation (�) of F :

�[F ] = σF

E[F ]
(13.8)

Results are shown for three values of �: 0.05, 0.10, and 0.15.
Table 13.1 and Figure 13.3 show that for most of the range of the reliability index

the assumption of a Normal distribution is conservative and that, for values of β less
than about 2, there is little difference between the results. For very small values of β

the probability of failure is actually slightly larger for the Normal distribution than for
the others. These results suggest that it is reasonable to assume a Normal distribution in
the absence of further information and that the assumption will probably overestimate
the probability of failure.

A further argument in favor of using the Normal distribution to relate β to the proba-
bility of failure is the Central Limit Theorem, a fundamental result of probability theory.
It states that, for a wide variety of conditions, the distribution of the sum of a large
number of random variables converges to a Normal distribution. The theorem is not
proven here, but it is a basic probabilistic concept first developed by Laplace (Stigler
1986). As long as there is a reasonably large number of variables, no one variable dom-
inates, and the variables are not highly dependent on each other, the theorem applies
with only weak conditions, regardless of the distributions of the individual variables.
However, see footnote 3 of Chapter 3. An extension of this argument is that geolog-
ical and geotechnical phenomena are determined by the combined contributions of a
large number of small effects and, therefore, that the distribution of the overall effect
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ought to be Normal. A different argument is that these combinations are not the sum
of individual effects but their product, in which case the resulting distribution should
reflect the sum of their logarithms and be logNormally distributed. Most workers would
probably agree that it is reasonable to assume that M is Normally distributed. Other
distributions apply to some geotechnical variables. For example, probability of exceed-
ing a particular seismic acceleration is often represented by an exponential function.
Gamma and Beta distributions are appropriate for other parameters. There is more con-
troversy over the appropriate distribution for F . However, the authors believe that it is
reasonable, simple, and conservative to assume that F is Normally distributed unless
demonstrated otherwise.

One argument against using a Normal distribution is that it allows negative values,
which are obviously impossible for F , while the logNormal distribution does not admit
of negative values. The trouble with this argument is that the error introduced by the
portion of the Normal distribution that has negative values of F is almost always so
small that it has virtually no effect on the results. For example, in practice 1.25 is a
relatively low value of E[F ], and 0.25 is a relatively large value of σF . These correspond
to β = 1.0 and pF = 1.59 × 10−1. A table of the standardized Normal distribution shows
that the probability of F < 0.0 is 2.9 × 10−7, which is insignificant compared to the
computed probability of failure. Therefore, in practice, this argument has little merit.

Example 13.1 – Vertical Cut in Cohesive Soil

The example describes a case in which the calculations can be done exactly. Figure 13.4
shows a vertical cut in a purely cohesive soil. The critical sliding surface is inclined 45
degrees from the horizontal. The shear strength that resists sliding on this surface is c.
The shearing force that tends to cause sliding is γH/4. Therefore, the margin of safety is

M = c − γH/4 (13.9)

45°

H
c, g

Figure 13.4 Geometry of vertical cut in cohesive soil.
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(It should be noted that, if curved failure surfaces are allowed, the critical failure mode
has a factor 3.77 instead of 4 in this equation.)

The cut is given to be 10 m deep. Then, the uncertainty in M is contributed by c and
γ , which are the basic uncertainties in the analysis. Test data for the soil suggest the
following means, standard deviations, and correlation coefficient for the variables c and
γ :

µc = 100 kPa σc = 30 kPa

µγ = 20 kN/m3 σγ = 2 kN/m3 ρcγ = 0.5

The expected value of the margin of safety from Equation (13.2) is

µM = 100 − (20)(10)/4 = 50 kPa

and the variance of the margin of safety is

σ 2
M = (30)2 + (2)2(10/4)2 − 2(0.5)(30)(10/4)(2) = 900 + 25 − 240 = 775

The reliability index is then
β = 50/

√
775 = 1.80

If the strength and the unit weight are Normally distributed, so is the margin of safety,
and the probability of failure is

pf = 3.62 × 10−2

If the shear strength and the unit weight were uncorrelated, the expected value of the
margin would be unchanged, but the variance would be

σ 2
M = (30)2 + (2)2(10/4)2 = 925

and

σ 2
M = (30)2 + (2)2(10/4)2 = 900 + 25 = 925

β = 50/
√

925 = 1.64

pf = 5.01 × 10−2

Thus, the fact that c and γ are positively correlated – that is, that they tend to vary
together – reduces the uncertainty about the stability of the cut. High values of c are
associated with high values of γ , and vice versa. The chance that the difference (c −
γH/4) is less than zero is smaller than it would be if c and γ were not associated with
each other. This is reasonable, for we have more confidence in an estimate of the stability
of a cut if we know that strength and unit weight are correlated than if we know nothing
about their correlation.
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13.3 Steps and Approximations in Reliability Analysis

In the above description of reliability theory and in the simple example just presented,
each portion of the reliability analysis could be carried out exactly, and the steps flowed
seamlessly into each other. Real problems are not so simple. The analyses may not be
tractable, and approximations may be necessary in any or all of the steps. The approxi-
mations define the differences between the procedures for performing practical reliability
analyses.

To explain what is involved in the various approaches to reliability calculations, it is
useful to set out the steps explicitly. The goal of the analysis is to estimate the proba-
bility of failure pf , with the understanding that ‘failure’ may involve any unacceptable
performance. The steps are:

1. Establish an analytical model. There must be some way to compute the margin
of safety, factor of safety, or other measure of performance. It can be as simple as
Equation (13.9), or it can be an elaborate computational procedure. There may be
error, uncertainty, or bias in the analytical model, which can be accounted for in
the reliability analysis. For example, the well-known bearing capacity formulas are
notoriously conservative and thus systematically biased.

2. Estimate statistical descriptions of the parameters. The parameters include not only
the properties of the geotechnical materials but also the loads and geometry. Usually,
the parameters are described by their means, variances, and covariances, but other
information such as spatial correlation parameters or skewness may be included as
well. The forms of the distributions of the parameters may be important.

3. Calculate statistical moments of the performance function. Usually this means cal-
culating the mean and variance of the performance function. In the example of the
vertical cut in cohesive soil the calculation can be done exactly, but most practical
cases require approximation.

4. Calculate the reliability index. Often this involves the simple application of Equa-
tion (13.5). Sometimes, as in the Hasofer–Lind (1974) method, the computational pro-
cedure combines this step with step 3.

5. Compute the probability of failure. If the performance function has a well defined
probabilistic description, such as the Normal distribution, this is a simple calculation. In
many cases the distribution is not known or the intersection of the performance function
with the probabilistic description of the parameters is not simple. In these cases the
calculation of the probability of failure is likely to involve further approximations.

The engineer who is carrying out a reliability analysis should understand that most
practical methods of reliability analysis involve approximations, even if one or more
steps are exact. One should expect that different methods will give different answers. In
particular, the calculation of the probability of failure from the reliability index usually
implies the assumption that the margin or factor of safety is Normally distributed, and
this is seldom the case. Therefore, it is often a good idea to compare results from two
or more approaches to gain an appreciation of the errors involved in the computational
procedures.
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13.4 Error Propagation – Statistical Moments
of the Performance Function

The evaluation of the uncertainty in the computed value of the margin of safety and the
resulting reliability index is a special case of error propagation. The basic idea is that
uncertainties in the values of parameters propagate through the rest of the calculation and
affect the final result. For example, an engineer might measure properties of a soil in
the laboratory, use these in some constitutive relation, and employ the results to compute
the stability of an embankment using a simplified method of slices. Each of these steps
involves some error and uncertainty on its own, and uncertainties in the original mea-
surements of soil properties will affect the numbers calculated at each subsequent step.
The study of error propagation is aimed at dealing rationally with this problem. There
is a large literature on this subject, but Taylor’s (1997) book is an excellent practical
introduction.

The treatment of error propagation starts by recognizing that the result of the calcu-
lations can be considered a function g of the several input parameters and variables,
(X1,X2, . . . , Xn) evaluated at some point (x1, x2, . . . , xn):

g = g(x1, x2, . . . , xn) (13.10)

If there is only one independent variable X and the value of g is known for some value
of X, say X, then the value of g can be found for any other value x by using the well
known Taylor series

g(x) = g(X) + 1

1!
(x − X) · dg

dx
+ 1

2!
(x − X)2 d2g

dx2
+ 1

3!
(x − X)3 d3g

dx3
+ · · · (13.11)

This equation is exact, provided all terms out to infinity are used. In practical applications
x is chosen to be near X, so higher order terms become small and the series can be
truncated after only a few terms. However, in some reliability applications (x − X) may
not be small, and complications ensue.

In the study of error propagation more than one independent variable usually appears, so
a generalization of Equation (13.11) is needed. Also, the initial value of each independent
variable Xi is usually taken to be its mean value, µXi

. There are several equivalent forms
of the Taylor series for multiple variables, but a convenient one is

g(x1, x2, . . . , xn) = g(µX1, µX2, . . . , µXn
) + 1

1!

n∑
i=1

(xi − µX1)
∂g

∂xi

+ 1

2!

n∑
i=1

n∑
j=1

(xi − µXi
)(xj − µXj

)
∂2g

∂xi∂xj

+ 1

3!

n∑
i=1

n∑
j=1

n∑
k=1

(xi − µXi
)(xj − µXj

)(xk − µXk
)

∂3g

∂xi∂xj∂xk

+ · · ·
(13.12)
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The partial derivatives are taken at µX1, µX2, . . ., etc., but notation to this effect is left
out of Equation (13.12) to reduce clutter.

13.4.1 First order methods

The simplest and most widely used methods start by assuming that all the (xi − µXi
)

terms are small, so their squares, cubes, and higher powers will be even smaller, and
can be ignored. Since only the first order terms are included, methods based on this
assumption are called First Order Reliability Methods (FORM), although this term is
sometimes limited to geometrical reliability methods based on the Hasofer–Lind (1974)
approach that is described in Chapter 16. Then, the first order terms give

g(x1, x2, . . . , xn) ≈ g(µX1, µX2, . . . , µXn
) +

n∑
i=1

(xi − µX1)
∂g

∂xi

(13.13)

The approximation sign replaces the equal sign because this is now an approximation
once the higher order terms have been removed. To find the expected value of g, it is
necessary to integrate g multiplied by the joint probability density function of the variables
X1 through Xn from −∞ to +∞. Equation (13.13) is the sum of n+1 terms, so each
term can be integrated in turn and the results added. The term g(µX1, µX2, . . . µXn

) is
a constant. So are all the partial derivatives, for they have been evaluated at the means
of the individual variables. Also, the integral from −∞ to +∞ of a probability density
function multiplied by a constant is simply that constant. This all leads to

µg ≈ g(µX1, µX2, . . . µXn
) +

n∑
i=1

∫ ∞

−∞
(xi − µXi

)fXi
(xi)dxi (13.14)

but each of the terms after the summation sign must be identically zero, so

µg ≈ g(µX1, µX2, . . . µXn
) (13.15)

This is the intuitively reasonable result that the expected value of a function of several
variables is approximately equal to the value of the function calculated with the mean
values of all the variables. However, it remains an approximation. For example, a well
known result from elementary probability theory is that, if g(X) = X2, then

E[g] = µg = E[X2] = (µX)2 + σ 2
X �= (µX)2 (13.16)

The variance of a function g is

Var[g] = σ 2
g = E[(g − µg)

2] (13.17)

and from Equations (13.13) and (13.15),

σ 2
g ≈ E




(
n∑

i=1

(xi − µX1)
∂g

∂xi

)2

 (13.18)
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Again, multiplying the expression in brackets by the probability density function and
integrating over the complete range of probabilities leads to an expression for the variance.
However, in this case care must be taken to multiply out the terms before interchanging
the order of integration and summation. The result is

σ 2
g ≈

n∑
i=1

n∑
j=1

ρXiXj
σXi

σXj

∂g

∂xi

∂g

∂xj

=
n∑

i=1

σ 2
Xi

(
∂g

∂xi

)2

+
n∑

i=1

n∑
j �=i

Cov(Xi, Xj )
∂g

∂xi

∂g

∂xj

(13.19)

Some comments are in order. First, Equation (13.19) requires the values of some partial
derivatives. Sometimes it is possible to differentiate the function g and evaluate the
corresponding terms exactly. The more common situation is that g is not so tractable
and the partial derivatives must be found numerically. The easiest way to do this is to
use central differences. The function g is evaluated with each of the variables set at its
mean value; this yields the estimate of µg in Equation (13.15). Then the partial derivative
for each variable in turn is found by increasing and decreasing the variable by a small
amount, finding the difference between the two resulting values of g, and dividing the
difference by twice the small increment. In mathematical notation, for variable Xi :

∂g

∂xi

≈ 1

2εi

{g(µX1, µX2, . . . , µXi
+ εi, . . . , µXn

) − g(µX1, µX2, . . . , µXi
− εi, . . . µXn

)}
(13.20)

in which εi is the small increment in variable Xi .
As an example, consider the vertical cut of example 13.1 and assume that the perfor-

mance is expressed by the factor of safety F . Then,

F = 4c

γH
,

∂F

∂c
= 4

γH
,

∂F

∂γ
= − 4c

γ 2H
(13.21)

When these are evaluated at the mean values of the variables, the results are 2.0, 0.02, and
−0.1, respectively. F is linear in c, so the central difference approximation is exact, but
F is not linear in γ . If the increment and decrement in γ are 1.0, then F calculated with
the incremented value of γ is 1.90476, and with the decremented value is 2.11526. Then

∂F

∂γ
≈ (1.90476 − 2.10526)

2 · 1
= −0.10025

which is an accurate estimate. As larger increments in γ are used, the accuracy of the
estimate deteriorates. For example, if the increment and decrement in γ were each 5, the
resulting estimate of the partial derivative would be −0.1167.

Secondly, as can be seen in the example, the increments and decrements in the variables
should be small. In the limit the derivative is defined as the result of taking the increment
to zero, but that is computationally impossible. The derivative is estimated from the
difference between two numbers, and, if the increment is too small, rounding errors
could overwhelm the calculation. Therefore, the optimal choice is an increment as small
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as possible without unacceptable rounding error. The easiest way to verify this is to
compare the change in the magnitude of the estimate of the partial derivative for different
increments and decrements of the independent variable. For example, if the increment
and decrement in γ for the above example is 0.5, the estimate of ∂F/∂γ is −0.100063.
Comparing this value with the result for an increment and decrement of 1.0 shows that
the estimate of the derivative is robust and the contribution of the rounding error is
insignificant.

On the other hand, the increment should be no larger than necessary to obtain an
accurate result. The example shows that, the larger the increment, the larger the error in
the estimate of the derivative. It has been suggested that the increment in each variable
should be equal to the standard deviation of that variable. This is not a good idea. The
standard deviation, or, equivalently, the variance, enters directly into Equation (13.20),
and there is no need to introduce it into the calculation of the partial derivatives. One
reason for the recommendation to use the standard deviation may be confusion between
the Taylor series approach and Rosenblueth’s point-estimate method, which is discussed
in Chapter 15. These approaches are not the same.

Thirdly, if g is a linear function of the variables xi , the first order approximations
become exact, so

g = a1x1 + a2x2 + · · · + anxn =
n∑

i=1

aixi (13.22)

µg =
n∑

i=1

aiµXi
(13.23)

σ 2
g =

n∑
i=1

n∑
j=1

aiajρXiXj
σXi

σXj
(13.24)

When there are two variables, R and Q, these equations reduce to Equations (13.1)–(13.3).
Fourthly, none of the results described in this section depends on the forms of the

distributions of the variables or the functions, provided the distributions and functions are
regular and smooth.

13.4.2 Second order methods

One possible extension of the first order approximation is to include terms in
Equation (13.12) up to the second derivatives. Two principal justifications for this are:
(1) the terms (xi − Xi)are not small enough to vanish when squared but do become
small when cubed; and (2) the third and higher derivatives of g vanish or become small.
Furthermore, it can be argued that the addition of second order terms improves the
approximations enough to warrant the additional trouble. When second order terms are
included, the techniques are called Second Order Reliability Methods (SORM), although
this term too has sometimes been limited to second order geometrical reliability methods.

Removing all terms with third and higher derivatives from Equation (13.12) and per-
forming the same integration as was done for the first order approximation yields the
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following estimate for the mean of g:

µg ≈ g(µX1, µX2, . . . µXn
) + 1

2

n∑
i=1

n∑
j=1

σXi
σXj

ρXiXj

∂2g

∂xi∂xj

(13.25)

The expression for the variance when second-order terms are included is more com-
plicated. Ang and Tang (1975) give the following equation for the variance when g is a
function of one variable x:

σ 2
g ≈ σ 2

X ·
(

dg

dx

)2

− 1

4
(σ 2

X)2 ·
(

d2g

dx2

)2

+ E[(x − µX)3] · dg

dx
· d2g

dx2

+ 1

4
E[(x − µX)4] ·

(
d2g

dx2

)2

(13.26)

This expression involves the square of the second derivatives and moments higher than
second order. If these higher order terms are removed, Equation (13.26) reduces to

σ 2
g ≈ σ 2

X ·
(

dg

dx

)2

(13.27)

The corresponding expressions for multiple variables are much more complicated, but,
if the squares of the second derivatives and the moments higher than second order are
removed, the result is the same as Equation (13.19). In other words, the simplified form
of the second order expression for the variance is the same as the first order expression.

13.4.3 Some useful results

Probability theorists have developed many relations among random variables; civil
engineers will find some of these explained in standard references, such as Benjamin
and Cornell (1970), Ang and Tang (1975), and Ayyub and McCuen (1997).
Equations (13.22), (13.23), and (13.24) give the mean and variance of the sum of a set
of random variables. Similar derivations lead to the following results for the product of
a set of random variables when they are mutually independent:

g = a1x1 · a2x2 · · · · · anxn =
n∏

i=1

aixi (13.28)

µg =
n∏

i=1

aiµXi
(13.29)

σ 2
g ≈

n∑
i=1




n∏
j = 1
j �= i

µ2
Xi


σ 2

Xi
(13.30)
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Note that Equation (13.29) is exact, but expression (13.30) is approximate. When there
are only two mutually independent variables, Equation (13.30) reduces to

σ 2
g ≈ µ2

X1
σ 2

X2
+ µ2

X2
σ 2

X1
(13.31)

and the coefficients of variation (�) are approximately related by

�2
g = σ 2

g

µ2
X1

µ2
X2

≈ �2
X1

+ �2
X2

(13.32)

If the standard deviations are very small compared to the magnitudes of the variables
themselves, and the variables are mutually independent, a further elimination of higher
order terms leads to

�2
g ≈ �2

X1
+ �2

X2
+ · · · + �2

Xn
=

n∑
i=1

�2
Xi

(13.33)

This expression is the basis for calculating the uncertainty in laboratory measurements
when the various contributing factors combine by multiplication.

In the same case that the variables are mutually independent, the exact expression for
the relations among the coefficients of variation is

1 + �2
g = (1 + �2

X1
)(1 + �2

X2
) · · · (1 + �2

Xn
) =

n∏
i=1

(1 + �2
Xi

) (13.34)

Equation (13.34) reduces to the approximate Equation (13.33) when all the variances are
small. If there are only two variables, Equation (13.34) becomes

σ 2
g = µ2

X1
σ 2

X2
+ µ2

X2
σ 2

X1
+ σ 2

X1
σ 2

X2
(13.35)

Finally, when there are two correlated variables, the mean value of their product is

µg = µX1µX2 + ρX1X2σX1σX2 (13.36)

The exact equations for the variance are more complicated.

Example 13.2 – Error Propagation in Staged Construction

Noiray (1982) estimates the uncertainties in the values of the shear strength for use in the
analysis of the stability of a limestone storage area built over soft clay. Many factors must
be considered, such as how the parametric uncertainty is divided between systematic and
spatial uncertainty, the uncertainty in the loads, and the bias and uncertainty in the stability
analysis, but the present discussion concentrates on the shear strength at a particular depth.
Because the failures of concern would be rapid, the analysis uses undrained strength and
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bases its calculations on the SHANSEP model (Ladd and Foott 1974), which describes
the undrained shear strength of a soft clay by

su = σv0 · s ·
(

σvm

σv0

)m

(13.37)

where su is the undrained shear strength, σv0 is the in situ effective vertical stress,
σvm is the maximum past effective vertical stress, and s and m are empirical para-
meters.

The first step in evaluating error propagation is to find the means and standard deviations
for the parameters. Based on field and laboratory tests, profiles of existing and maximum
past effective vertical stress are developed and regression lines drawn through them.
At a depth of 20 ft., σv0 is 2 KSF, and its standard deviation is vanishingly small. At
the same depth the mean value of σvmis 4.18 KSF, and the standard deviation in the
estimate of the mean is 0.97 KSF. From laboratory tests on soils from the site and from
comparisons to similar soils, the mean value of m is taken to be 0.86, with a standard
deviation of 0.03; the corresponding values for s are taken to be 0.213 and 0.023. Both
these parameters are dimensionless. It is reasonable to assume that the parameters are
mutually independent.

The second step is to propagate these errors or uncertainties through Equation (13.37)
using the first order approximation technique. This states that the best first order esti-
mate of the mean of the strength is the value calculated using the mean values of the
parameters. Substituting the mean values of the parameters into Equation (13.37) gives
µsu

≈ 0.803KSF . Equation (13.19) is then used to estimate the variance or standard
deviation in the strength, and this requires the partial derivatives of su. One way to find
these is to differentiate Equation (13.37) analytically and perform the necessary algebra
to arrive at

�2[su] ≈ �2[s] + m2 · �2[σvm] + ln2(σ vm/σ v0) · σ 2
m + (1 − m) · �2[σv0]m (13.38)

where �[X] represents the coefficient of variation of X. Substitution and simplification
gives σsu

≈ 0.183 KSF . Another approach is to avoid the tedium of differentiation by
using the central difference technique. If the increments and decrements in m and s are
0.01 and those in σvm are 0.1, the resulting estimate is again σsu

≈ 0.183 KSF . Actu-
ally, the calculations agree to six decimal places, so the central difference approach is
quite accurate. One should note, however, that both these calculations are first order
approximations.

The next step would be to combine these estimates of uncertainty with estimates of
other factors contributing to the analysis to obtain an estimate of the overall uncertainty
in the stability of the structure. Similar error propagation studies would be performed
for the other factors. It would, of course, be possible to perform the entire estimate in
one step by doing a central difference estimate for each original parameter, carrying its
effect through the entire calculation. In addition to being tedious and unwieldy, such an
approach would not reveal the relative contributions of the individual components of the
problem. Breaking the problem into steps and performing the error propagation at each
step is not only easier, it is less prone to error, and it gives a deeper insight into the
behavior of the physical system.
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13.5 Solution Techniques for Practical Cases

The example of the vertical cut is simple enough that it is possible to perform the calcu-
lations exactly. In more typical cases, the analyst must usually employ a technique that
yields an approximation to the true value of the reliability index and the probability of
failure. Several methods are available, each having advantages and disadvantages. Among
the most widely used are

• The First Order Second Moment (FOSM) method. This method uses the first terms of a
Taylor series expansion of the performance function to estimate the expected value and
variance of the performance function. It is called a second moment method because the
variance is a form of the second moment and is the highest order statistical result used
in the analysis. If the number of uncertain variables is N , this method requires either
evaluating N partial derivatives of the performance function or performing a numerical
approximation using evaluations at 2N + 1 points.

• The Second Order Second Moment (SOSM) method. This technique uses the terms in
the Taylor series up to the second order. The computational difficult is greater, and the
improvement in accuracy is not always worth the extra computational effort. SOSM
methods have not found wide use in geotechnical applications.

• The Point Estimate method. Rosenblueth (1975) proposed a simple and elegant method
of obtaining the moments of the performance function by evaluating the performance
function at a set of specifically chosen discrete points. One of the disadvantages of the
original method is that it requires that the performance function be evaluated 2N times,
and this can become a very large number when the number of uncertain parameters is
large. Recent modifications reduce the number of evaluations to the order of 2N but
introduce their own complications.

• The Hasofer–Lind method. Hasofer and Lind (1974) proposed an improvement on the
FOSM method based on a geometric interpretation of the reliability index as a measure
of the distance in dimensionless space between the peak of the multivariate distribution
of the uncertain parameters and a function defining the failure condition. This method
usually requires iteration in addition to the evaluations at 2N points. The acronym
FORM often refers to this method in particular.

• Monte Carlo simulation. In this approach the analyst creates a large number of sets
of randomly generated values for the uncertain parameters and computes the perfor-
mance function for each set. The statistics of the resulting set of values of the function
can be computed and β or pF calculated directly. The method has the advantage
of conceptual simplicity, but it can require a large set of values of the performance
function to obtain adequate accuracy. Furthermore, the method does not give insight
into the relative contributions of the uncertain parameters that is obtained from other
methods. The computational effort can be reduced significantly by using statistical
techniques known as variance reduction schemes, and these should be employed when-
ever possible.

The subsequent chapters discuss these methods in detail. It should be noted that selecting
a method involves several tradeoffs. Each method involves different computational effort,
provides a different level of accuracy, and yields a different insight into the effects of the
individual parameters. In addition, some of the methods provide values of the reliability
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index, and a further assumption about the distribution of the performance function is
necessary to obtain the probability of failure.

13.6 A Simple Conceptual Model of Practical Significance

Lambe and his colleagues (Lambe 1985; Lambe et al. 1988; Marr 2000) developed an
interesting perspective on the reliability of slopes. They observed that the factor of safety is
meaningful only in the context of the methodology used for analysis, design, construction,
and maintenance of the facility. That is, a factor of safety computed for a slope constructed
of materials whose properties have been carefully measured and whose behavior has been
continuously monitored means something different from a number computed on the basis
of little field work, index properties, and no monitoring.

Four levels of engineering effort are described in Table 13.2. It should be borne in
mind that the choices of specific items in the table are affected by the concentration
on slope stability and influenced by the state of the art in the 1980s. Lambe and his
colleagues reckoned that a slope designed and built to a factor of safety of 1.5 with
level II engineering had a probability of failure of 10−4. The corresponding sets of

Table 13.2 Description of different levels of engineering (after Lambe 1985)

Design Construction Performance FS Determination

I By qualified engineer Full-time supervision by
qualified engineer

Complete performance
program

Effective stress analyses
based on measured
data (strength,
geometry, pore
pressure. . .) for site

Based on measured
data for site

Field control
measurements

No malfunctions (slides,
cracks, artesian
heads. . .)

Complete flow net

Has key components
(filters, cut-off, etc.)

No errors, omissions Continuous maintenance
by trained crews

No error, omissions
Complete assessment

of geologic
conditions

II By qualified engineer Part-time supervision by
qualified engineer

Periodic inspection by
qualified engineer

Effective stress analyses

Has key components No errors, omissions No malfunctions
No errors, omissions Few field measurements
Geology considered Routine maintenance

III Approximate design
using parameters
inferred from index
tests

Informal supervision Annual inspection by
qualified engineer

Rational analyses using
parameters inferred
from index tests

No malfunctions
Maintenance limited to

emergency repairs

IV No rational design No supervision Occasional inspection by
non-qualified person

Approximate analyses
using assumed
parameters
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Table 13.3 Relations between factor of safety and probability of failure
for different levels of engineering (after Lambe 1985)

Level of engineering Factor of safety Probability of failure

I 1.3 10−4

II 1.5 10−4

III 1.5 10−2

IV 1.5 10−1
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Figure 13.5 Conceptual relation between design factor of safety and probability of failure when
design factor of safety is the expected value and FS is Normally distributed.

probabilities of failure and design factors of safety for the other levels of engineer-
ing are listed in Table 13.3. Having identified one relation between factor of safety and
probability of failure for each of the levels, they sketched curves similar to those in
Figure 13.5 to extrapolate to other factors of safety. These were clearly intended to rep-
resent a concept rather than a set of hard relations; as Lambe (1985) wrote, “We prepared
Figure [13.5] as a numerical expression of our judgment – we had little data to prepare
these plots.”

Some reasonable assumptions yield a more precise extrapolation. Let it be assumed that
(a) the factor of safety is Normally distributed, and (b) the coefficient of variation �(=
σ/mu) is constant for all values of factor of safety. From assumption (a), the reliability
index β can be computed from the probability of failure pf :

β = −�−1[pf ] (13.39)
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If µ and σ are the expected value and the standard deviation of the factor of safety,

β = µ − 1

σ
= 1 − 1/µ

�
= 1 − µ

� · µ (13.40

At each of the four known points, pf and µ are known, so we can solve for � and
compute the probability at any other mean factor of safety:

pf = �

[
1 − FS

FS · �
]

(13.41)

The resulting curves are plotted in Figure 13.5.
An additional assumption might be made to the effect that the engineer actually unin-

tentionally introduces conservatism is calculating factors of safety so that the computed
factor of safety (FS0) is actually one σ less than the mean µ. This leads to the relations

� = FS0 − 1

FS0 · β − 1

pf = �

[
1 − FS − �

FS · �
]

(13.42)

where FS is the factor of safety at any other point. This set of relations is plotted in
Figure 13.6.
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Figure 13.6 Conceptual relation between design factor of safety and probability of failure when
design factor of safety is one standard deviation below the expected value and FS is Normally
distributed.
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These figures are not rigorous representations of the relations between levels of engi-
neering and probabilities of failure because the necessary verification studies have not
been done. Nevertheless, they do present a conceptual model. The owner or regulator
of a constructed facility does not, in the last analysis, care about the factor of safety.
What he or she should be concerned with is the probability of failure or the amortized
costs associated with the facility. Figures 13.5 and 13.6 show that an owner can achieve
reduced probability of failure (and therefore reduced costs) by increasing the design fac-
tor of safety or by improving the level of engineering and construction. In most cases,
improved engineering reduces the probability of failure even when the factor of safety
is smaller.



14 First Order Second
Moment (FOSM)
Methods

Chapter 13 described the first order approximation to the mean, variance, and standard
deviation of a function F , based on the first terms of a Taylor series expansion of F .
When the variables are uncorrelated the expressions become

E[F ] = µF ≈ F(X1, X2, . . . , Xn) (14.1)

and

σ 2
F ≈

n∑

i=1

n∑

j=1

∂F

∂xi

∂F

∂xj

ρXiXj
σXi

σXj
(14.2)

where the x’s are the values of the variables X that enter into the calculation of F . As
is shown in the following example, a modeling error can be added to these expressions.
The function F could be any relevant function, but for present purposes it is the factor
of safety calculated by some appropriate numerical method. Once the mean and variance
have been calculated it is a simple matter to compute the reliability index β:

β = E[F ] − 1

σF

(14.3)

The usual practice is then to assume that the factor of safety is Normally distributed and
to compute the probability of failure from β. The First Order Second Moment (FOSM)
procedures that follow are easier to demonstrate than to describe, so the bulk of this chapter
is a detailed presentation of the application of FOSM methods to a specific problem of
the reliability of the dikes for the James Bay Project (Christian et al. 1994).

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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14.1 The James Bay Dikes

The James Bay hydroelectric project required the construction of approximately fifty
kilometers of dikes on soft, sensitive clays (Ladd et al. 1983; Ladd 1991). When the
stability of an embankment in such circumstances is evaluated, professional opinions
often diverge regarding the strengthening of foundation soil during construction, selecting
appropriate factors of safety, and evaluating strength properties. The owners formed an
international committee to address and resolve the issues of the stability of the slopes. In
particular, the engineers had to determine appropriate factors of safety to be used in the
design of dikes for different parts of the project ranging in height from 6–23 m.

Ladd et al. (1983) provide details of the use of the mean first-order reliability method
to evaluate the single- or multi-stage construction of a typical dike, whose cross-section
is shown in Figure 14.1. The goals of the analysis included understanding the relative
safety of different designs, obtaining insight about the influence of different parameters,
and establishing consistent criteria for preliminary designs.

The first design cases to be considered were the construction of embankments in a
single stage, either to a height of 6 m without berms or 12 m with one berm. Undrained
shear strength values were obtained from field vane tests, and the stability analyses were
done using the simplified Bishop circular arc method of slices. The second design case
called for multi-stage construction. Following the installation of vertical drains, the first
stage would be built to a height of 12 m. Then the zone with the drains would be allowed
to consolidate to 80% of primary consolidation, and a second stage would be built to
a height of 23 m. In this case the undrained shear strength would be obtained from
consolidated-undrained shear tests combined with knowledge of the stress histories (Ladd
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Figure 14.1 Cross-section of typical dike. (Christian, J. T., Ladd, C. C. and Baecher, G. B.,
1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical Engineering,
ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American Society of
Civil Engineers.)



UNCERTAINTY IN GEOTECHNICAL PARAMETERS 325

s′p

s′vo

Block

Selected
s′p Profile

Tube

Ip
IL

Mean from
8 FV

Crust

SOIL
PROFILE

20

18

16

14

12

10

8

6

4

2

0
0 1 2 3 IL 0
0 10 20

INDEX PROPERTIES FIELD VANE STRESS HISTORY

D
ep

th
, Z

 (
m

)

30 Ip (%) cu (FV), (kPa) s′vo AND s′p (kPa) 
20 40 60 0 100 200 300

Marine
clay

Lacustrine
clay

Till

gb = 9.0 kN
m3

Selected
cu Profilegb = 9.0 kN

m3

gb = 10.5 kN
m3

Figure 14.2 Simplified soil profile. (Christian, J. T., Ladd, C. C. and Baecher, G. B., 1994, ‘Reli-
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1991). The stability analysis was done by the Morgenstern–Price method of slices for a
wedge-shaped failure pattern.

Figure 14.2 is a simplified soil profile, showing that the foundation is composed of 4 m
of crust underlain by 8 m of a highly sensitive marine clay underlain in turn by 6.5 m of
lacustrine clay, for a total thickness of clay of 18.5 m. It also shows the distribution of
vane shear strength and the effective vertical stress history.

14.2 Uncertainty in Geotechnical Parameters

The uncertainty in the stability of a slope is the result of many factors. Some, such as
ignorance of geological details missed in the exploration program, are difficult to treat
formally; others, such as the estimates of soil properties are more amenable to statistical
analysis. The first part of this book discusses the statistical description of geological
profiles and geotechnical properties, upon which this chapter builds.

Uncertainties in soil properties arise from two sources: scatter and systematic error in
estimates of properties. The former consists of inherent spatial variability in the properties
and random testing errors in measurements. The latter consists of systematic statistical
errors due to the sampling process and bias in the methods of measurement. The following
sections describe how this conceptual view was applied to the properties of the soils in
the James Bay Dikes.



326 FIRST ORDER SECOND MOMENT (FOSM) METHODS

14.2.1 Data Scatter: Spatial Variability and Noise

Field vane tests conducted with the Nilcon device on the James Bay clays exhibited an
unusually large degree of scatter. If α is Bjerrum’s (1972) empirical factor for correcting
the bias in field vane data, then a common model of measurement error is

αcu(FV ) = cu + ce (14.4)

where cu is the actual undrained strength, cu(FV ) indicates the value measured by the
field vane test, and ce is a random experimental error with a zero mean. This equation
assumes that α is known precisely. The engineer needs to know the actual in situ shear
strength, cu, including its spatial variability, but the random experimental variations
represented by ce must be eliminated. One way to do this is to use the autocovari-
ance function, provided it does not change with position (i.e. the spatial variation of cu

is stationary).
Chapter 9 described how the autocovariance could be used to separate the noise from the

spatial variability. Figure 9.23 shows the application of maximum likelihood estimators
to the horizontal variation of vane shear data at James Bay. Because the autocovariance
functions for soil properties are different in the vertical and horizontal directions, the
vertical autocorrelations should be made using values from the same boring, and the
horizontal autocorrelations using data from different borings at the same elevation. Then
each pair of data is used to compute the autocovariance as a function of the separation
distance r . The results are averaged or smoothed within each interval of r . DeGroot
and Baecher (1993) and Soulié et al. (1990) have published more rigorous analyses of
these data.

It must be emphasized that the purpose of the exercise is to separate the observed
variation in measured soil properties into two categories. The first is the spatial variance
in the field values, which should represent a real effect that occurs in the field and needs
to be taken into account in the slope stability analysis. The second consists of random
scatter due to error in measurements and small-scale fluctuations in soil properties. While
these appear in the observed data, they do not affect the behavior of the soil in the field
and should not be included in the stability analysis.

14.2.2 Systematic Error

In addition to the data scatter and spatial variability, there are systematic errors in the
estimation of the soil properties. The systematic error contributes to the analytical eval-
uation of slope stability differently from data scatter because spatial variability averages
over the volume of soil while systematic error is constant. Therefore, systematic error
propagates almost unchanged through an analysis and can have a greater influence on
predictive uncertainty than does spatial variability.

In the present example two factors contribute to systematic error. First, a limited number
of tests is used to determine the mean or trend of shear strength, and different set of
measurements would yield a different estimate. To the extent that the statistical estimate
of mean or trend is wrong, it is so everywhere. Standard statistical methods, such as those
described by Benjamin and Cornell (1970), provide variances of estimates obtained by
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regression analysis. In the present case of a mean value of a parameter X, the variance
in the estimate from n measurements is approximately

V {E[x]} ≈ V [x]/n (14.5)

The second component of systematic error is bias. The experimental technique may
not measure directly the quantity of interest or may measure it in some systematically
erroneous way. The need to correct data from field vane tests is well known. The factor
α in Equation (14.4) is a function of the plasticity index, Ip. However, there is scatter
in the data defining this relationship (Ladd et al. 1977, 1983; Azzouz et al. 1983). The
scatter, which has a coefficient of variation of about 25%, represents the uncertainty in
using this correction factor. On the basis of other observations on this marine clay, the
mean of α was taken to be 1.0, but, of course, this would not be true for most clays.

In separating spatial variability and systematic error it is easiest to think of spatial
variation as scatter of the soil property about the mean trend and of systematic error as
uncertainty in the location of the mean trend itself. The only component of the former is
inherent spatial variability after random measurement error has been removed, while the
latter consists of measurement bias and statistical estimation error due to a finite number
of measurements. The contribution of spatial variability depends on the size of the region
or failure surface over which it is effective in relation to the autocorrelation distance, r0.

14.3 FOSM Calculations

As explained in Chapter 13, there are two direct ways to evaluate Equation (14.2). First,
the function can be differentiated formally to give a closed form expression for the vari-
ance of F . Second, the function can be differentiated numerically by divided differences
to give approximations to the partial derivatives.

14.3.1 Computing Uncertainty in Factor of Safety

The computation of factor of safety using the method of slices for an actual geometry is
an example of a case in which direct differentiation may not be feasible and numerical
methods of evaluating the variance becomes attractive. The approach is to evaluate F for
the values of the parameters at the condition of interest and then to change each of the
parameters in turn by a small amount and re-evaluate F . The differences, divided by the
increments in the parameters, provide estimates of the derivatives. As in all numerical
work, the user must exercise care not to extrapolate a linear analysis too far beyond the
region in which actual results exist.

14.3.2 Uncertainty in Soil Profile and Fill Properties

The single stage cases involved many kilometers of embankment with a modest explo-
ration program at any particular site along the embankment. The analysis had to include
uncertainty about the thickness of the crust and the depth to the till as well as the unit
weight and friction angle of the fill. The multi-stage case involved a limited length of
embankment with an extensive exploration and instrumentation program. The geometry
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Table 14.1 Soil profile and fill property uncertainties for reliability
analysis. (Christian, J. T., Ladd, C. C. and Baecher, G. B., 1994, ‘Reli-
ability Applied to Slope Stability Analysis,’ Journal of Geotechnical
Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by
permission of the American Society of Civil Engineers)

Variance

Variable
Expected

value Spatial Systematic Total

Depth of crust 4 m 0.96 0.04 1.0
Depth to till 18.5 m 0.0 1.0 1.0
Fill density 20 kN/m3 1.0 1.0 2.0
Fill friction φ′ 30◦ 1.0 3.0 4.0

and the soil properties were better known, and the major uncertainty was in the properties
of the fill and the partially consolidated clay.

The depth of the crust and the depth to the till were both treated as uncertain variables.
From the results of field exploration, the uncertainties listed in Table 14.1 were established.
The separation of the uncertainty into spatial and systematic components is important
because averaging over the failure surface affects the contribution of spatial variability.
The depth of the crust affects the undrained strength profile, and its spatial variance was
estimated from the field vane data across the entire axis of the dike. The systematic
statistical uncertainty for the vane soundings was estimated from Equation (14.5) with
n = 27.

Uncertainty in the depth to the till affects the depth of the failure surfaces in the anal-
ysis. Since the critical surfaces are nearly tangent to the top of the till for H = 12 m, this
uncertainty does not affect the average across the profile but is a systematic uncertainty
even though the estimate of variance reflects spatial variance along the cross-section. That
is, there is only one critical failure surface at any location. The location of this surface and
its associated F are dictated by the uncertain depth of the till at that location, but the uncer-
tainty in the depth of the till comes about by the variation in depth over the whole project
site. The estimate of systematic error reflects the effects of a finite number of borings.

Uncertainty in the density of the fill was taken to be composed equally of spatial and
systematic components. This assumption and estimated magnitudes of the variances were
based on judgment. The assumption that E[φ′] = 30◦ reflected Canadian practice.

14.3.3 Uncertainty in Shear Strength of Foundation Clay

Table 14.2 presents the uncertainty in cu used for the single stage analyses, based on
the field vane data for the marine and lacustrine clays. The relatively small coefficient
of variation selected for the bias in α for the marine clay (� = 0.075) reflected detailed
comparison with results from laboratory CKoU shear tests with different modes of failure,
described by Lefebvre et al. (1988). This bias was doubled for the lacustrine clay, for
which a similarly detailed comparison had not been made. The other components of
spatial and systematic uncertainty were developed from the techniques described above.
For example, the statistical coefficient of variation for the marine clay ([(0.24)2/62]1/2 =
0.03) follows from Equation (14.5). As the total variance due to several independent
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Table 14.2 Undrained shear strength uncertainty
based on vane shear data. (Christian, J. T., Ladd,
C. C. and Baecher, G. B., 1994, ‘Reliability Applied
to Slope Stability Analysis,’ Journal of Geotechnical
Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207,
reproduced by permission of the American Society of
Civil Engineers)

Clay

Field vane statistics Marine Lacustrine

Number of tests 62 37
Mean, kPa 34.5 31.2
Data scatter, COV 0.236 0.272
Spatial variability, COV 0.183 0.272
Systematic error, COV:
Statistical 0.030 0.045
Correction factor: 0.075 0.15
Sub-total 0.08 0.16
Total COV 0.20 0.32

variates is the sum of the individual variances, coefficients of variation and standard
deviations are combined by taking the square root of the sum of the squares of the
individual components.

For the multi-stage case, the shear strengths were established from a combination of
undrained strength ratios and the in situ stress history. For the overconsolidated intact
clay beyond the limits of the vertical drains, no consolidation was assumed, and cu/σ

′
p

ratios were applied to the σ ′
p profile shown in Figure 14.2. For the clay within the limits

of the vertical drains, 80% consolidation was assumed under berm number 2, and the
cu/σ

′
vc ratios were applied to σ ′

vc = σ ′
v0 + 192 kPa (= 0.80 × 12 m × 20 kN/m3). There-

fore, it is necessary to deal with uncertainty in both cu/σ
′
p or cu/σ

′
vc and σ ′

p or σ ′
vc .

Morgenstern–Price wedge stability analyses used anisotropic undrained strength profiles
for compression, direct simple shear, and extension modes of failure.

The undrained shear strength ratios were obtained from CKoU triaxial compression and
extension and Geonor direct simple shear tests run using the recompression technique
and treated for strain compatibility to account for the effects of progressive failure (Ladd
et al. 1983; Ladd 1991). Table 14.3 shows best estimates of these ratios. These were not
intended to be conservative. In this table the subscript C indicates compression failure,
D direct simple shear failure on a horizontal plane, and E extension failure.

Table 14.4 presents the uncertainties in the undrained strength ratios, the vertical precon-
solidation and consolidation stresses, and the resulting values of undrained shear strength,
τ . Some uncertainties were developed by combining engineering judgment, experience,
and experimental data. As in Table 14.3, these are not conservative values of parameters,
but best estimates.

14.3.3.1 Undrained strength ratios

The coefficient of variation for the intact and consolidated clay were treated collectively
for convenience. The spatial coefficient of variation was assumed equal to the average
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Table 14.3 Undrained strength ratios from laboratory CK0U
tests. (Christian, J. T., Ladd, C. C. and Baecher, G. B.,
1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal
of Geotechnical Engineering, ASCE, Vol. 120, No. 12, pp.
2180–2207, reproduced by permission of the American Society
of Civil Engineers)

Deposit State τC/σ ′ τD/σ ′ τE/σ ′

B-6 Marine OC 0.26 0.225 0.16
NC 0.26 0.225 0.16

B-6 Lacustrine OC 0.225 0.19 0.14
NC 0.25 0.215 0.12

Note: σ ′ = σ ′
p for OC clay, and σ ′ = σ ′

vc for NC clay.

Table 14.4 Uncertainty in undrained shear strength estimates for multi-stage
analysis. (Christian, J. T., Ladd, C. C. and Baecher, G. B., 1994, ‘Reliability
Applied to Slope Stability Analysis,’ Journal of Geotechnical Engineering,
ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the
American Society of Civil Engineers)

Coefficient of Variation

Parameter Clay Spatial Systematic Total

Intact clay

τ/σ
′
p Marine 0.067 0.076 0.10

Lacustrine 0.084 0.092 0.12
σ

′
p Marine 0.18 0.10 0.21

Lacustrine 0.27 0.15 0.31
τ Marine 0.19 0.13 0.23

Lacustrine 0.28 0.18 0.33

Consolidated clay

τ/σ
′
vc Marine 0.067 0.076 0.10

Lacustrine 0.084 0.092 0.12
σ

′
vc Marine 0.09 0.08 0.12

Lacustrine 0.09 0.08 0.12
τ Marine 0.11 0.11 0.16

Lacustrine 0.12 0.12 0.17

total scatter measured in τ/σ ′ for each of the three modes of failure. The systematic
coefficient of variation had two components: one due to the statistical error calculated
from Equation (14.5), and the other the estimated bias. The latter assumed that the triaxial
tests underestimated plane strain shear strengths by 10 ± 5% (� = 0.05) and that the strain
rate used for the tests overestimated the in situ strengths by 10 ± 5% (� = 0.05). Thus,
these two errors cancel in the mean but cause a bias � = √

2 × 0.05 = 0.07.
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14.3.3.2 Preconsolidation pressures and consolidation stresses

Because very few oedometer tests were run (see Figure 14.2), the spatial coefficient of
variation of σ ′

p was assumed equal to that obtained from the field vane data, that is
� = 0.18 and 0.27 from Table 14.2 for the marine and lacustrine clays, respectively.
The systematic coefficients of variation reflected a combination of statistical error and
judgment regarding the likely bias and were higher for the lacustrine clay because of the
lack of data within the bottom half of the deposit (again, see Figure 14.2). The vertical
consolidation stress, σ ′

vc , assumed no uncertainty in σ ′
v0 and therefore reflected uncertainty

in the average degree of consolidation, U , which would be estimated from field piezometer
data and the load imposed by berm 2. The values in Table 14.4 were all based on judgment
and assumed the following: for spatial uncertainty, �[U ] = 0.075 and �[load] = 0.05 to
give �[σ ′

vc] = 0.09; for systematic uncertainty, �[U ] = 0.075 and �[load] = 0.0 to give
�[σ ′

vc] = 0.075, which was rounded to 0.08.

14.3.3.3 Undrained strength

The coefficient of variation for shear strength τ in Table 14.4 is obtained from

�2[τ ] = �2[τ/σ ′] + �2[σ ′] (14.6)

The variance in τ actually used in the analysis then becomes

Var[τ ] = �2[τ ] · (E[τ ])2 (14.7)

where E[τ ] is the mean undrained strength within the intact or consolidated layer of clay.

14.3.4 Calculating the Reliability Index

There are six steps to the calculation:

1. Identifying all the variables that affect the stability of the embankment; examples are
the geometry, the weight and strength of fill materials, and the relevant properties of
the foundation soils.

2. Determining the best estimate (usually the mean value) of each variable, E[Xi], and
using these to calculate the best estimate of the factor of safety, E[F ] by the method
of slices.

3. Estimating the uncertainty in each variable and, in particular, its variance, Var[Xi],
based on the uncertainties in soil properties.

4. Performing sensitivity analyses by calculating the partial derivatives of F with respect
to each of the uncertain variables or by approximating each derivative by the divided
difference 	F/	Xi .

5. Using Equation (14.2) to obtain Var[F ].
6. Calculating the reliability index β from Equation (14.3).
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Table 14.5 Variance composition, single-stage dike, H = 12 m. (Christian, J. T., Ladd, C. C. and
Baecher, G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical
Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American
Society of Civil Engineers)

Variance (	F/	xi)
2 · Var(xi)

Parameter 	F/	xi Systematic Total Systematic Total

φ′ 0.01 3.0 4.0 0.0003 0.0004
γfill 0.06 1.0 2.0 0.0036 0.0072
Dcrust 0.008 0.04 1.0 nil 0.0001
Dtill 0.056 1.0 1.0 0.0031 0.0031
cu(M) 0.0137 7.6 47.6 0.0014 0.0089
cu(L) 0.0215 24.9 99.7 0.0115 0.0461

V [F ] = 0.0199 0.0658
Spatial V [F ] = 0.0459

Vave[F ] at R = 0.2 = 0.0199 + 0.0092 = 0.0291

β = (1.453 − 1.0)/
√

0.0291
= 2.66

The numbers in Tables 14.1–14.4 are the result of the first three steps. Tables 14.5 and
14.6 show the results of the last three steps for two specific cases. In these tables column
3 contains the systematic variances, and column 4 the total variances. The differences
are the spatial variances. Similarly, column 5 contains the contribution of the systematic
variances to the variance in F , and column 6 the total variances. Again the differences are
the spatial contributions. Columns 5 and 6 are summed to obtain the systematic variance
in F and the total variance in F . Their difference is the spatial variance, which is reduced
as explained below.

First, however, it should be noted that the procedure minimizes F over the range of
failure surfaces and then calculates β. It does not minimize β directly. The minimum F

surface and the minimum β surface may not be identical (Lacasse and Nadim 1996). Oka
and Wu (1990) observed that, in a situation with two different but likely modes of failure,
reliability calculations based on one mode only can be seriously in error. This turned out
not to be the situation here.

14.3.4.1 Single stage embankments

The results for the single stage dike built with one berm to a height of 12 m, without the
model error, are displayed in Table 14.5. The circular arc analyses gave, for the critical
failure circle, E[F ] = 1.453. The spatial variations tend to average out over the failure
surface. By integrating the statistically varying shear strength over the failure surface
it can be shown (see Chapter 9) that the effective spatial variance of the average shear
strength is

V [cu,ave]

V [cu]
≈ 2ro

L
(14.8)
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Table 14.6 Variance composition, multi-stage dike H = 23 m. (Christian, J. T., Ladd, C. C. and
Baecher, G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical
Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American
Society of Civil Engineers)

Variance (	F/	xi)
2 · Var(xi)

Parameter 	F/	xi Systematic Total Systematic Total

φ′ 0.0088 3.0 4.0 0.0002 0.0003
γfill 0.055 1.0 2.0 0.0030 0.0061

Intact clay

τ(M) 0.0018 13.3 41.5 nil 0.0001
τ(L) 0.012 26.3 88.5 0.0038 0.0127

Consolidated clay

τ(M) 0.0021 52.7 111.5 0.0002 0.0005
τ(L) 0.009 62.0 124.4 0.0050 0.0101

V [F ] = 0.0122 0.0298
Spatial V [F ] = 0.0176

Vave[F ] at R = 0.07 = 0.0122 + 0.0012 = 0.0134

β = (1.427 − 1.0)/
√

0.0134
= 3.69

where ro is the autocorrelation distance and L is the length of the curve of the intersection
of the failure surface with the plane of analysis. For the geometry of this case the ratio
becomes 0.2. This is applied to the spatial V [F ] of 0.046.

For the case with a single stage to 6 m, E[F ] = 1.50, the critical failure circle is much
smaller, and the reduction ratio for the spatial variation in Equation (14.8) becomes 0.7.
This leads to significantly larger variation in the computed factor of safety and a much
lower value of β (Table 14.7).

Figure 14.3 shows graphically how the different parameters contribute to the variance
in the factor of safety for the two single stage cases. The bars represent the sum of
the systematic uncertainty and the spatial uncertainty reduced due to averaging over the
failure surface. The importance of the uncertainty in the strength of the lacustrine clay is
obvious. The density of the fill and the strength of the marine clay are less important. The
6 m dike has a much smaller β than does the 12 m dike (1.84 versus 2.66), even though its
factor of safety is slightly higher (1.50 versus 1.45). The reduced reliability index reflects
a somewhat larger systematic uncertainty and a much larger spatial variability.

14.3.4.2 Multi-stage embankment

Table 14.6 shows the results for the multi-stage dike. The failure surface in this case is
large (see Figure 14.2) and mostly horizontal, so the appropriate autocorrelation distance
for the shear strength is also large. The reduction ratio for spatial variation of shear strength
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Table 14.7 Summary of reliability results and effects of model error. (Christian, J. T., Ladd, C. C.
and Baecher, G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical
Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American
Society of Civil Engineers)

Var[F ]
β =

Case
(No. Stages) E[F ]1

Reduced
spatial

Prior
systematic

Model
error2 Total

E[F ] − 1√
Var[F ]

Sgl., H = 6 m
w/o mod. err. 1.500 0.050 0.024 0.074 1.84
with mod. err. 1.575 0.050 0.024 0.012 0.086 1.96

Sgl., H = 12 m
w/o mod. err. 1.453 0.009 0.020 0.029 2.66
with mod. err. 1.526 0.009 0.020 0.011 0.041 2.60

Multi, H = 23 m
w/o mod. err. 1.427 0.0012 0.0122 0.0134 3.69
with mod. err. 1.498 0.0012 0.0122 0.0110 0.0244 3.19

1E[F ] with model error = E[F ] w/o model error × 1.05
2V [e] = (0.07 × increased E[F ])2
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Figure 14.3 Variance components for single-stage dikes. (Christian, J. T., Ladd, C. C. and Baecher,
G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical Engineering,
ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American Society of
Civil Engineers.)

becomes 0.07. Because the overall uncertainty is much lower in this case, the reliability
index, at 3.69, is the largest of all the cases. As in the single-stage cases, the strength
of the lacustrine clay and the density are the most important contributors to the overall
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uncertainty. Since very little of the failure surface passes through the marine clay, its
uncertainty contributes little. The failure surface passes about equally through the intact
and consolidated lacustrine clays, and each contributes about equally to the uncertainty.
Although the coefficients of variation are larger for the intact clay, the mean strength is
smaller. The contributions of the different parameters are illustrated in Figure 14.4, which
again shows the importance of the lacustrine clay. This figure shows the breakdown of
the uncertainty between spatial and systematic contributions and also shows the important
effect of averaging the spatial uncertainty.

14.3.4.3 Model error

Even if the soil parameters have been estimated correctly, the predictions of an engineering
model can be expected to deviate from reality. Estimating the error introduced by this
factor can be difficult; the most effective approach is to rely on empirical observations
when they exist. An alternative is to use formal analysis. In the present case three sources
of model error were considered: three-dimensional failure compared to two-dimensional
analysis (i.e. end effects), failure to find the most critical failure surface in the analysis,
and numerical and rounding error. Azzouz et al. (1983) examined the contributions of end
effects in eighteen case histories. They found that the ratio between the three-dimensional
and the plane strain F was 1.11 with a standard deviation of 0.06. These numbers were
rounded to 1.1 and 0.05. Failure to find the lowest factor of safety is considered to
overestimate F by about 5% with a standard deviation of about 5%. The third factor
was incorporated by assuming that it contributed 2% to the variability of the results. The
combined effect of these three sources is to increase E[F ] by about 5% and to create an
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Figure 14.4 Variance components for multi-stage dike. (Christian, J. T., Ladd, C. C. and Baecher,
G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical Engineering,
ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American Society of
Civil Engineers.)
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added systematic uncertainty described by

� = (0.052 + 0.052 + 0.022)1/2 = 0.073 ≈ 0.07 (14.9)

14.3.4.4 Summary of results for three cases

The results for all three cases are summarized in Table 14.7. Although the factor of safety
in the multi-stage case is slightly less than for the single stage cases, the reliability index
is significantly larger. Figure 14.5 summarizes the overall contributions of systematic
and spatial uncertainty. It shows the effect of the reduction in spatial uncertainty from
averaging the soil parameters over the failure surface. Spatial variability becomes almost
insignificant for the 23 m high dike constructed in two stages. It should be noted that, in
order to simplify calculations, the values of R used for spatial averaging were based on
analyses of the field vane data and therefore should apply only to the undrained strength
for the single stage cases with H of 6 and 12 m and the part of the multi-stage case
involving the intact clay. Different values of R would exist for the fill density, friction
angle, and normally consolidated undrained shear strength.

Table 14.7 shows that introducing model error can have unexpected results. For the
single stage dike with H = 6 m, β increases from 1.84 to 1.96. There is little effect for the
single stage dike with H = 12 m; β changes from 2.66 to 2.60. For the multi-stage dike β

decreases from 3.69 to 3.19. Thus, the computed reliability index can increase or decrease
when the effects of model uncertainty are introduced. For a particular configuration and
set of properties an increase in E[F ] might be offset by an increase in σ [F ].
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Figure 14.5 Separation of spatial and systematic uncertainties. (Christian, J. T., Ladd, C. C. and
Baecher, G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of Geotechnical
Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of the American
Society of Civil Engineers.)
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14.4 Extrapolations and Consequences

The above results follow from detailed consideration of a limited set of geometries and
parameters. In order to develop consistent criteria for design, it is necessary to extrapolate
them to other conditions. Also, a consideration of the results of the analyses reveals much
about the interactions between the parameters of the design problem. As the first page
of Hamming’s (1962) book on numerical methods states, “The purpose of computing is
insight, not numbers.”

14.4.1 Extrapolation to Other Values of Parameters

There are two simple ways to extrapolate the results. On the one hand, one could assume
that for a basic geometry the variance or standard deviation of F is constant and apply
Equation (14.3). On the other hand, one could assume the coefficient of variation is
constant and apply the modified form of the equation:

β = E[F ] − 1

E[F ] · �[F ]
(14.10)

The consequences of the two assumptions are shown in Figure 14.6. Constant variance
means that the absolute uncertainty in F does not change with the target value of E[F ].
Constant coefficient of variation means that the uncertainty in F changes in proportion
to E[F ]. Since the derivatives (or in this case the divided differences 	F/	Xi) are for
the most part nearly constant for different values of F , a projection based on constant
variance seems the better choice. It is also computationally simpler.
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Figure 14.6 shows the projected nominal probabilities of failure as functions of the com-
puted factors of safety for the example stability problems. The probabilities are computed
on the assumption that F is Normally distributed. Until now the form of the distribution
of F has not entered into these calculations. Curves are plotted for results both with and
without the effects of model uncertainty. From this figure the designer can determine
the computed factors of safety that correspond to a desired target nominal probability
of failure.

14.4.2 Effects of types of failure

The uncertainties associated with the three design cases differ from one another because
each reflects a different mixture of spatial variability and systematic uncertainty. This has
an important implication. A 1% probability of failure deriving from spatial variability
alone implies that, on average, one per cent of the length of a long dike would fail.
Conversely, a one per cent probability of failure due to systematic uncertainty alone
would imply that, on average, one out of one hundred of a large number of similar dikes
would fail along its entire length. In any specific case, such as this one, the probability
of failure derives from both spatial variability and systematic uncertainty.

Figure 14.5 shows the contributions of the two components for the three cases. In the
single stage case with H = 6 m the distribution of F for different sections along the dike
is broad, but the uncertainty on the location of the mean is small. In the multi-stage case
the distribution of F along the dike is narrow, but there is proportionally more uncertainty
on the location of the mean. In other words, the uncertainty in the case of a single stage
dike with H = 6 m deals principally with the fraction of the dike that will fail, but the
uncertainty in the case of a multi-stage dike deals principally with the failure of all or a
large portion of the dike.

14.4.3 Target Probability of Failure

Baecher et al. (1980) determined that the historical rate of failure of modern, well-
engineered dams is about 10−4 per dam-year. The details of failures are often imprecise in
the catalogues from which this result was computed, but it appears that about one third of
the failures were due to overtopping and another one third to internal erosion, piping, or
seepage. These numbers are close to what would be expected from professional judgment
and experience. The remaining one third are due to slides and other mechanisms, which
include the subject of the present analysis.

The relative contribution of different modes of failure should be kept in mind when a
target probability of failure is being selected. It makes little sense to reduce the computed
probability of failure due to slope stability problems if other causes of failure are not
addressed at the same time. The historical data would suggest that, for a dam with a life
of 100 years, the overall probability of failure is 0.01, in the absence of specific attention
during design and construction to mitigate the hazards. Since well less than one third
of the failures are due to slope instability per se, a target probability of failure of slope
stability failure of about 0.001 seems reasonable for design purposes and consistent with
past experience. Figure 14.7 indicates that to achieve this target probability the stability
analysis should give factors of safety of 1.84, 1.53, and 1.36 for the 6 m, 12 m, and
23 m cases, respectively. If the effects of model uncertainty were included, the values of
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Figure 14.7 Nominal probability of failure versus computed factor of safety. (Christian, J. T.,
Ladd, C. C. and Baecher, G. B., 1994, ‘Reliability Applied to Slope Stability Analysis,’ Journal of
Geotechnical Engineering, ASCE, Vol. 120, No. 12, pp. 2180–2207, reproduced by permission of
the American Society of Civil Engineers.)

desired factor of safety would increase to 1.91, 1.63, and 1.48. As the computation of the
effects of model uncertainty was probably somewhat too conservative and the effects on
the desired factors of safety relatively small, this effect was ignored in further results.

14.4.4 Consistent Factors of Safety

The present analysis was concerned with stability during construction due to failure of the
foundation clay. The consequences of such a failure can be expected to consist primarily
of the costs of reconstruction. Failure of the embankment after the facility is in operation
would involve much larger economic costs as well as other public consequences. This
means that different target reliability indices or probabilities of failure are appropriate for
different stages in the life of the project. The selection of such values is a difficult task for
owners, designers, and public officials. Even for the present problem, the consequences
of failure are quite different in the different cases. Because experience with staged con-
struction is less fully evaluated and the consequences of failure of a major portion of the
completed multi-stage embankment are expected to be greater than those of the failure
of the 12 m high embankment, the target probability for the multi-stage case might be
reduced to 0.0001, implying a calculated factor of safety of about 1.43. Conversely, the
consequences of failure of a portion of the smallest dike might be only one tenth as great.
The target probability then becomes 0.01 and the desired factor of safety about 1.63.
Based on the revised target probabilities, one obtains the consistent, desired factors of
safety shown in Table 14.8. The range in factors of safety for the different cases is now
much smaller than for the same pf = 0.001. These results led to the recommendation that
F = 1.50 be adopted for feasibility studies and preliminary cost estimates for both single
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Table 14.8 Consistent factors of safety (without model error). (Christian,
J. T., Ladd, C. C. and Baecher, G. B., 1994, ‘Reliability Applied to Slope
Stability Analysis,’ Journal of Geotechnical Engineering, ASCE, Vol. 120,
No. 12, pp. 2180–2207, reproduced by permission of the American Society
of Civil Engineers.)

Case Target pf

Consistent factor of
safety

Single stage, H = 6 m, circular
failure surface

0.01 1.63

Single stage, H = 12 m,
circular failure surface

0.001 1.53

Multi-stage, H = 23 m, wedge
failure surface

0.0001 1.43

and multi-stage dikes. It is worth noting that a previous committee had recommended
using F = 1.4 for minor dikes and F = 1.7 for major (i.e. multistage) dikes.

14.5 Conclusions from the James Bay Study

The review of reliability analysis and its application to the problems of the embankments
at the James Bay project illustrate several major points that apply to reliability analyses in
general. The relative importance of the different observations will vary from case to case.

14.5.1 General Conclusions

The reliability index β provides a more meaningful measure of stability than the factor of
safety F . Geotechnical engineers have long recognized that F has little physical meaning
and that the choice of a satisfactory value is fraught with difficulty. In contrast, the
reliability index describes safety by the number of standard deviations (i.e. the amount
of uncertainty in the calculated value of F) separating the best estimate of F from its
defined failure value of 1.0. It is a more explicit approach.

The uncertainty in the values of the soil properties is a major contributor to the uncer-
tainty in the stability of slopes and embankments. It consists of two portions: scatter and
systematic error. The first comprises real spatial variability and noise or measurement
error. These represent variations about the trend of the parameters. The systematic error
includes both a statistical uncertainty in the expected values and the effects of bias. The
latter is much the more difficult to evaluate.

The structure of the spatial variation can be used to estimate the level of random noise
in soil property data and to eliminate it from the calculation of reliability index. The
effects of the spatial variability on the computed reliability index are further reduced
because the variability is averaged over a region or failure surface, and it is only its
average contribution to the uncertainty that is of interest.

Several difficulties arise in practical assessment of scatter and systematic error. There
are often not enough data to evaluate the autocorrelation distance statistically. Evaluating
the effects of bias introduces many additional concerns. Bias is often very important, and
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the associated uncertainty can be a significant contributor to the overall uncertainty. Since
bias is often ignored in theoretical treatments of analytical procedures and it is difficult
to quantify, the engineer must often rely on judgment to establish its contribution. The
strength of the reliability analysis is not that one can get a better estimate of each of these
uncertainties but that one can deal with them explicitly and coherently.

Uncertainties in soil properties yield a lower bound estimate of the probability of failure,
not the absolute probability of failure. That requires a more elaborate probabilistic risk
analysis involving fault trees or other methods of evaluating risk due to all contingencies
(e.g. Whitman 1984). However, for most practical applications the calculation of relative
probability of failure is sufficient for parametric analysis.

A 1% chance that the whole slope will fail is different from a near certainty that one
per cent of a long embankment will fail, and reliability analysis allows such a distinction.

14.5.2 Analysis of the James Bay Embankments

The analysis of the James Bay embankments illustrates a multi-step procedure for evalu-
ating the reliability index. Once the uncertainties in the soil properties, geometry, loads,
and other contributing factors have been established, it is necessary to propagate their
effects through the stability analysis. Equation (14.2) provides one way to do so. The
FOSM approach is a powerful approximate method to deal with the calculations. The
Taylor series combined with a divided difference approximation to the derivatives has
proven effective.

In the analysis, the effects of both spatial and systematic uncertainty are considered.
The averaging effect tends to reduce greatly the contribution of the spatial uncertainty.
In the case of the multi-stage construction spatial uncertainty contributes so little that it
could almost be ignored without affecting the results. The small embankment with a short
failure surface has a large uncertainty in F due to spatial variation in undrained strength.
This means that several small failures along the length of the embankment are likely.
The multi-stage embankment with a long failure surface has almost all the uncertainty in
systematic error, which leads to a small probability of failure along a long section of the
embankment. When the autocorrelation distance is not known, the analysis can at least
give point estimates of the reliability index without providing information on the length
of embankment likely to fail. The example also illustrates the contribution of model error,
and the difficulty in determining the magnitude of such bias effects.

However the solution is carried out, it is important to deal rationally with the spa-
tial variability of the parameters. In particular, the averaging effect on variations that
are due to inherent spatial scatter and are not systematic must be accounted for, or
the resulting probabilities of failure will be too high. The technique used here is one
appropriate method.

14.5.3 Improvements in the James Bay Analysis

The preceding sections describe the reliability analysis of the James Bay dikes as it
was actually carried out. Several factors were not included in the analysis, and some
of the procedures could have been improved upon. This is typical of most engineering
calculations; they are done under the pressures of the job and with the tools available
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at the time. Nevertheless, we should mention some areas where the procedures could
be modified.

First, the analysis ignored the possible correlation between the parameters and variables
that entered into the calculation. Little additional effort is needed to incorporate correlation
in an FOSM analysis. Equation (14.2) includes all the necessary terms, and more rows
can be added to Tables 14.5 and 14.6 to incorporate the correlated terms. In the case of
the James Bay dikes there was not enough information available to include correlation
effects. Furthermore, the effect of most reasonable correlations would be to increase
the reliability and decrease the probability of failure. Therefore, ignoring the correlation
effects was conservative in this case, but, if data were available to establish the correlation
coefficients, their inclusion would certainly be a meaningful extension of the analysis.

The analysis of the multi-stage dike relied on a Morgenstern-Price analysis of a failure
that incorporated a long, flat middle section. More recent work indicates that a failure
mechanism involving a curved or wavy middle section can give lower factors of safety
in some cases (Ladd 1996).

The analysis found the minimum factor of safety for the various modes of failure.
Further iterations could have been introduced to find the failure mode that gave the
lowest value of β instead of the lowest value of F . It does not seem that the overall
results would have changed very much, but it would be a desirable improvement in
methodology, especially if the results were very near the margin for a decision.

The procedure for reducing the contribution of the spatial variations by averaging their
effects over the length of the failure surface assumed that the spatial correlation for the
strength parameters applied to all the variables. This is probably not the case. A better
procedure would be to apply the averaging correction to each variable separately.

14.6 Final Comments

In summary the FOSM method consists of the following steps:

1. Identify the significant variables contributing to the uncertainty.
2. Find the mean values, variances, correlation coefficients, and autocorrelation distances

for the variables.
3. Determine how the variances are distributed between spatial and systematic uncertainty

and remove measurement errors, if possible.
4. Find the expected value of the performance function, in this case F .
5. Find the partial derivatives of the performance function with respect to the variables,

usually employing some form of numerical differencing.
6. Using a format like Tables 14.5 or 14.6, find the contributions of each variable to

the systematic and spatial variance of the performance function. Modify the spatial
contribution to account for averaging effects.

7. Compute the variance in the performance function, as in Tables 14.5 and 14.6.
8. Compute β and the probability of failure.
9. Examine the results to determine the relative contributions of various parameters and

to extrapolate the results into meaningful conclusions.

One of the great advantages of the FOSM method is that it reveals the relative contri-
bution of each variable to the overall uncertainty in a clear and easily tabulated manner.
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This is very useful in deciding what factors need more investigation and even in revealing
some factor whose contribution cannot be reduced by any realistic procedure. Many of
the other methods do not provide this useful information.

Evaluation of the partial derivatives or their numerical approximations is critical to
the use of the method. When numerical differentiation is used, the increment in the
independent variable should be as small as possible until rounding error affects the result.
It is customary to take the derivatives at a point defined by the expected values of the
independent variables. In some cases the point at which the derivatives are taken can
have an effect on the result. This question is central to the geometrical definition of the
reliability index, which is the subject of Chapter 16.





15 Point Estimate
Methods

In a paper slightly longer than two pages appearing in the October 1975 Transactions of
the National Academy of Science (USA), Emilio Rosenblueth of the National Autonomous
University of Mexico published a method for numerically approximating the moments of
functions of random variables (Rosenblueth 1975). Starting from the low-order moments
of the independent variable X, the method provides approximations for the low-order
moments for the dependent variable Y . The procedure, which Rosenblueth called the point-
estimate method, has become a staple of geotechnical reliability analyses. The method is
straightforward, is easy to use, and requires little knowledge of probability theory. It is
widely employed in practice, often to good effect (Harr 1987; Wolff 1996; Duncan 1999)
and has been commented on further by several workers in reliability analysis (Lind 1983;
Wong 1985; Harr 1989; Li 1992).

While the point-estimate method is popular in practice, it has many detractors. Rosen-
blueth’s original paper contains many unfortunate typographical errors that make the
equations difficult to interpret, and the very simplicity of the method suggests to some that
the answers are overly approximate. A deeper look at the point-estimate method brings to
light interesting relationships with well-known numerical methods of approximate quadra-
ture and identifies categories of problems for which it is well suited, as well as some for
which it is not. Rosenblueth was well acquainted with both the theory and practice of
numerical analysis and knew the appropriate and inappropriate applications of the point-
estimate method to engineering problems. This chapter attempts to explicate these relations
and applications in a way that is more accessible to the practicing geotechnical profession
and to place the point-estimate within the broader category of numerical methods, such as
the finite element method. The method is a powerful tool and more rigorously based than
many workers in geotechnical engineering and reliability analysis give it credit for being.

15.1 Mathematical Background

The basic mathematical problem is that of a random variable or variables X with prob-
ability distribution function (pdf) fX(x) and another variable Y , which is a deterministic
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function of X, Y = g(X). X could be soil properties, geometrical parameters, seismic
loadings, and so on; Y could be a factor of safety, settlement, quantity of flow, and so
on. Assume that g(X) is well behaved and that the mth order moments of fX(x) exist.
The question then is how to approximate the low-order moments of fY (y) using only the
low-order moments of fX(x) and the function g(X).

The approaches most commonly used in geotechnical reliability analysis (e.g. FOSM)
start by approximating g(X) by a Taylor series, truncating it to low order terms, and
computing the approximate moments from the result. This requires calculating or approx-
imating the derivatives of g(X), which can involve significant algebraic or numerical
effort, as well as iteration when g(X) is non-linear. Rosenblueth approached the problem
by replacing the continuous random variable X with a discrete random variable whose
probability mass function (pmf) pX(x) has the same moments of order m as does fX(x).
He transformed pX(x) through Y = g(X) to obtain another discrete function with a pmf
denoted pY (y). He then used this pmf to calculate the moments, which were assumed to
approximate the moments of Y in the continuous case.

The first moment of fX(x) about the origin is the mean, µX:

µX =
∫

x · fX(x) · dx (15.1)

The higher-order central moments of fX(x) of order m are

µXm =
∫

(x − µX)m · fX(x) · dx (15.2)

We use µXm for the mth central moment to distinguish it from the mth power of µX. The
second central moment, µX2, is the variance, and its square root is the standard deviation,
σX. The discrete pmf has non-zero probabilities at a limited number of discrete points
only. The corresponding moments of the discrete pmf pX(x) are

µXm =
∑

(x − µX)m · pX(x) (15.3)

Then, equating the moments of fX(x) and pX(x) yields

µXm =
∫

(x − µX)m · fX(x) · dx =
∑

(x − µXm) · pX(x) (15.4)

It is well known that any probability density function can be represented to any desired
degree of accuracy by taking moments of high enough order. In principle, there are
infinitely many pmf’s of X satisfying the low-order moments of Equation (15.4). To limit
these to a unique representation, Rosenblueth considered only pmf’s with two, three, or
some other small number of discrete masses, the number chosen depending on the order
of the moments in Equation (15.4).

This approach falls within a long-standing practice of approximating complicated func-
tions by a series of simpler functions. As Equations (15.1) and (15.2) show, the moments
of a pdf are integrals, and the large body of experience with numerical quadrature as an
approximation to integration is relevant to the present problem. In particular, Gaussian
quadrature procedures are concerned with choosing the optimal values of the coordinates at
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which to evaluate the integrand (called the Gauss points in the finite element literature) and
the corresponding weights. Rosenblueth’s method is in fact an application of the Gaussian
quadrature procedures to the problem of finding the moments of a random function.

15.2 Rosenblueth’s Cases and Notation

Rosenblueth (1975) deals with three cases: (1) when Y is a function of one variable X,
whose mean, variance, and skewness are known; (2) when Y is a function of one variable
X whose distribution is symmetrical and approximately Gaussian; and (3) when Y is a
function of n variables X1,X2, . . . , Xn, whose distributions are symmetric and which may
be correlated. In most cases the calculations are made at two points, and Rosenblueth uses
the following notation:

E[Y m] ≈ P+ym
+ + P−ym

− (15.5)

In this equation,

Y is a deterministic function of X, Y = g(X),
E[Y m] is the expected value of Y raised to the power m,
y+ is the value of Y evaluated at a point x+, which is greater than the mean, µx ,
y− is the value of Y evaluated at a point x−, which is less than µx , and
P+, P− are weights.

The problem is then to find appropriate values of x+, x−, P+, and P−.

15.2.1 Case 1

In the first case – Y a function of one variable X whose mean, standard deviation, and
skewness are known – Rosenblueth gives four conditions that must be satisfied for the
low-order moments of X to be modeled accurately:

P+ + P− = 1 (15.6)

P+x+ + P−x− = µx (15.7)

P+(x+ − µx)
2 + P−(x− − µx)

2 = σ 2
x (15.8)

P+(x+ − µx)
3 + P−(x− − µx)

3 = νxσ
3
x (15.9)

In these equations σx is the standard deviation of X, and νx is the skewness (i.e. νX ≡
µ3

X/σ 3
X). A simple solution to these equations (Rosenblueth 1981) is

x+ = µx +
[

νx

2
+

√
1 +

(νx

2

)2
]

σx (15.10)

x− = µx +
[

νx

2
−

√
1 +

(νx

2

)2
]

σx (15.11)
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P+ = 1

2

[
1 − νx

2
· 1√

1 + (νx/2)2

]
(15.12)

P− = 1 − P+ (15.13)

A great simplification occurs when the skewness is zero or negligible. The distribution
of X is then symmetric, and

P+ = P− = 1
2 x+ = µx + σx x− = µx − σx (15.14)

15.2.2 Case 2

In the case that X is symmetric and approximately Gaussian, Rosenblueth proposes that x

can be estimated at more than two points. For example, a three-point estimate would use
a central point at x = µx and two points x+ and x− symmetrically distributed about the
mean. The weight for the central point is designated P , and the other notation remains
the same. Then

2P+ + P = 1 (15.15)

2P+(x+ − µx)
2 = σ 2

x (15.16)

2P+(x+ − µx)
4 = 3σ 4

x (15.17)

The last equation follows from the fact that the expected value of the fourth central
moment of a normal distribution is 3σ 4

x . The solution of these equations gives the fol-
lowing results, analogous to those in Equations (15.10)–(15.13):

P = 2

3
, P+ = P− = 1

6
(15.18)

x± = µx ± √
3σx (15.19)

By analogy to case 1,

E[Y m] ≈ P−(y−)m + P(yµ)m + P+(y+)m (15.20)

where yµ is the value of Y evaluated at µx .
Rosenblueth observes that higher order approximations can be obtained by using more

points and suggests in passing that the points can be found from the zeros of Hermite
polynomials. We will return to this issue later.

15.2.3 Case 3

The most widely used application of Rosenblueth’s method follows from the third
case – when Y is a function of n variables whose skewness is zero but which may be
correlated. The procedure is a generalization of the procedure in case 1 when the skewness
is ignored. The procedure chooses 2n points selected so that the value of each variable is
one standard deviation above or below its mean. Thus, if there were two variables X1 and
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X2, the four points would be (µX1 + σX1, µX2 + σX2), (µX1 + σX1, µX2 − σX2), (µX1 −
σX1, µX2 + σX2), and (µX1 − σX1, µX2 − σX2). If the variables are not correlated, the
function Y is evaluated at each of the four points, and the weight for each point is 0.25.

If the correlation coefficient between X1 and X2 is ρ, the points are still located
one standard deviation above or below the mean of each variable, but the weights
are changed. At the two points (µX1 + σX1, µX2 + σX2) and (µX1 − σX1, µX2 − σX2) the
weights become (1 + ρ)/4, and at the other two points they are (1 − ρ)/4. The locations
of the points and the weights are illustrated in Figure 15.1.

When Y is a function of three variables, X1,X2, and X3, there are eight points, which
are located at each combination one standard deviation above or below the mean of all the
variables. In defining the weights Rosenblueth uses a set of + and − signs as subscripts
on the weight P . The convention is that the first sign refers to X1, the second to X2, and
the third to X3. If the point is at µxi

+ σxi
, the sign is positive; otherwise it is negative.

For example, P−+− refers to the point (µx1 − σx1, µx2 + σx2, µx3 − σx3). The convention
is illustrated in Figure 15.2. Also ρ12 is the correlation coefficient between X1 and X2,
and so on. Then

P+++ = P−−− = 1
8 (1 + ρ12 + ρ23 + ρ31)

P++− = P−−+ = 1
8 (1 + ρ12 − ρ23 − ρ31)

P+−+ = P−+− = 1
8 (1 − ρ12 − ρ23 + ρ31)

P+−− = P−++ = 1
8 (1 − ρ12 + ρ23 − ρ31) (15.21)

For any two variables, when the point coordinates both have the same sense of the standard
deviation, the sign of the corresponding correlation coefficient is positive, and when the
senses are opposite, the sign is negative.

The generalization to more than three variables is obvious. If there are n variables, then
2n points are chosen to include all possible combinations with each variable one standard
deviation above or below its mean. If si is +1 when the value of the ith variable is

(1 + r)/4
(1 − r)/4

(1 + r)/4
(1 − r)/4

sx1 sx1

sx2

sx2

mx2

mx1
X1

X2

Figure 15.1 Rosenblueth’s points and weights for two variables, correlated or uncorrelated. (Chris-
tian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as Numerical Quadrature,’ Journal of
Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9, pp. 779–786, reproduced
by permission of the American Society of Civil Engineers).
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2sx1

2sx3

2sx2

P+ − +

P+ − −

P− + −

P− − +

P+ + +

P− + +

P− − −

X3

X1

X2

Figure 15.2 Rosenblueth’s points and weights for three variables, correlated or uncorrelated.
(Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as Numerical Quadrature,’
Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9, pp. 779–786,
reproduced by permission of the American Society of Civil Engineers.)

one standard deviation above the mean and −1 when the value is one standard deviation
below the mean, then the weights are

P(s1s2...sn) = 1

2n


1 +

n−1∑
i=1

n∑
j=i+1

(si)(sj )ρij


 (15.22)

Again,
E[Y m] ≈

∑
Pi(yi)

m (15.23)

where yi is the value of Y evaluated at xi and i is an appropriate combination of + and
− signs indicating the location of xi which are the corners of a hypercube.

When the variables are uncorrelated, Equation (15.21) reduces to P = 1/2n. This still
requires evaluating Y at 2n points, which can be onerous. Rosenblueth proposed that,
when the variables are uncorrelated, the following approximations (in his notation) are
also a valid generalization of Equations (15.14):

Y

y
= Y 1

y

Y 2

y
. . .

Y n

y
and (15.24)

1 + V 2
Y = (1 + V 2

Y1
)(1 + V 2

Y2
) . . . (1 + V 2

Yn
) (15.25)

In these equations, Y is the estimate of the expected value of Y, y is the value of Y evalu-
ated at the mean values of the variables (i.e. y = y(µx1, µx2, . . . µxn

)), Y i is the mean value
of Y calculated with all variables but the ith variable held constant at their mean values,
VY is the coefficient of variation of Y that is to be found (COV = σY /µY ), and VYi

is the
coefficient of variation of Y calculated as if the ith variable were the only random variable
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and the others were all held constant at their mean values. The Y i and VYi
can be cal-

culated using the procedures of Equations (15.5) and (15.14). This method requires only
2n + 1 evaluations of Y – two evaluations for each variable and one for the estimate of y.

15.3 Numerical Results for Simple Cases

The multivariate form of Rosenblueth’s method for uncorrelated variables has been
applied widely in geotechnical reliability studies (Wolff 1996; Duncan 1999), and will
be discussed further below. However, it is worthwhile to examine the accuracy of the
point-estimate method by looking at the results for relatively simple problems for which
the exact answers are known.

15.3.1 Example – Vertical Cut in Cohesive Soil

The first simple case is the vertical cut in a cohesive soil that was used in Chapter 13.
The margin of safety M is

M = c − γH/4 (15.26)

and when the height of the cut H is fixed, the exact values for the mean and variance of
M are

µM = µc − µγ H/4

σ 2
M = σ 2

c + (H/4)2σ 2
γ − 2ρcγ σc(H/4)σγ (15.27)

When H = 10 m, µc = 100 kPa, µγ = 20 kN/m3, σc = 30 kPa, σγ = 2 kN/m3, and ρcγ

= 0.5, the exact results are
µM = 50 kPa

σ 2
M = 775 (kPa)2

σM = 27.84 kPa

(15.28)

Table 15.1 shows the calculations using Rosenblueth’s multivariate method with M

evaluated at four points. The first column gives the number of each point. The second
gives the value of c at each point, and the third gives the value of γ at the point. It can
be seen that the values of c alternate between one σ above and below the mean while the
first two entries for γ are below the mean and the last two are above. This arrangement
gives all four possible combinations of points above and below the mean for the two
variables. The fourth column contains the value of M calculated from the values for each
point. The fifth column lists the corresponding values of the weight assigned to that point.
Note that this weight is (1 ± ρ)/4 and that the sign is positive when the values in columns
2 and 3 are both on the same side of the means and negative when they are on opposite
sides. Multiplying the values in columns 4 and 5 gives the values in the sixth column,
which are the weighted values of M . These are added to give the estimate of µM , which
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Table 15.1 Results from point-estimate method for vertical cut

Point c (kPa) γ (kN/m3) M (kPa) p pM pM2

1 70 18 25 0.375 9.375 234.375
2 130 18 85 0.125 10.625 903.125
3 70 22 15 0.125 1.875 28.125
4 130 22 75 0.375 28.125 2109.375

Sum = 50.000 3275.000

Var = 3275 − (50)2 = 775 σ = 27.84

H = 10 m, µc = 100 kPa, σc = 30 kPa, µc = 20 kN/m3, σc = 2 kN/m3

is 50. Similarly, the products of the entries in column 5 and the square of the entries
in column 4 give the entries in column 7, and the sum of these gives the estimate of
E[M2]. The difference between this and the square of the estimate of the mean gives the
estimate of the variance. The square root of the variance is the standard deviation. The
calculations in the next-to-last row show that this gives 27.84. The values of the mean
and the standard deviation of M agree exactly with the theoretical values. These give
a reliability index β = 1.796, and, if M is Normally distributed, a probability of failure
pf = 3.6 × 10−2. When the correlation coefficient is set to zero, µM is unchanged, and
σM in both the exact and Rosenblueth calculations becomes 30.41 kPa. Then β = 1.644,
and pf = 5.0 × 10−2.

15.3.2 Example – Culmann Failure Mechanism along a Plane

A more complicated example is the margin of safety of a slope against sliding on a single
plane, otherwise known as the Culmann analysis (Taylor 1948). The margin of safety is

M = c +
[

1

2

H

sin ψ
sin(ψ − θ) cos θ

]
[tan φ − tan θ]γ (15.29)

where θ is the inclination of the failure plane, ψ is the inclination of the front of the slope,
H is the vertical distance from the crest to the toe of the slope, and the other variables
have the conventional soil mechanics meanings. If the only uncertain variables are the
unit weight, the cohesion, and the tangent of the friction angle (γ, c, and tanφ), and if
these variables are mutually independent, the mean and variance of M can be expressed
exactly. For the following values of the parameters:

H = 10 m, θ = 20◦
, ψ = 26◦

µγ = 22 kN/m3, σγ = 2.2 kN/m3

µc = 5 kPa, σc = 0.5 kPa

µtan φ = 0.267949(φ = 15◦
), σtan φ = 0.018756(	 = 0.07) (15.30)

the exact analytical results are

µM = 2.633 kPa σM = 0.722 kPa (15.31)



RELATION TO ORTHOGONAL POLYNOMIAL QUADRATURE 353

Table 15.2 Results from point-estimate method for Culmann slope

Point γ (kN/m3) c (kPa) tan(φ) M (kPa) p pM pM2

1 24.2 5.5 0.286706 3.405 0.125 0.4256 1.4493
2 24.2 5.5 0.249193 2.388 0.125 0.2985 0.7128
3 24.2 4.5 0.286706 2.405 0.125 0.3006 0.7230
4 24.2 4.5 0.249193 1.388 0.125 0.1735 0.2408
5 19.8 5.5 0.286706 3.786 0.125 0.4733 1.7917
6 19.8 5.5 0.249193 2.954 0.125 0.3693 1.0908
7 19.8 4.5 0.286706 2.786 0.125 0.3483 0.9702
8 19.8 4.5 0.249193 1.954 0.125 0.2443 0.4773

Sum = 2.6333 7.4559

Var = 7.4559 − (2.6333)2 = 0.52160 σ = 0.7222

H = 10 m, θ = 20 deg, ψ = 26 deg

Table 15.2 shows the calculations for Rosenblueth’s method with three independent vari-
ables. The arrangement is similar to that of Table 15.1. In this case all the weights are
the same (0.125) because the variables are uncorrelated. The results are the same as
the exact values to the limit of computational precision. In both cases β = 3.647, and
pf = 1.3 × 10−4.

It is much easier to carry out the Rosenblueth point estimates than to derive the exact
expressions for the mean and variance of M . Further, in the cases not considered here
that the variables were correlated or that some of the other fixed variables were uncer-
tain, an analytical expression would be very difficult or impossible to derive, and an
approximate approach would be necessary. These results inspire some confidence in the
point-estimate method.

15.4 Relation to Orthogonal Polynomial Quadrature

Case 2 is actually a direct application of a well known technique for numerical integration
known as Gauss-Hermite quadrature, which provides an approximate value for the integral

I =
∫ +∞

−∞
g(z) exp(−z2)dz (15.32)

where g(z) is some arbitrary function of z. The approximate solution is

I ≈
n∑

i=1

Hi · g(zi) (15.33)

in which n is the number of points used in the approximation, zi is a point at which f (z)

is to be evaluated, and Hi is the corresponding weight. Salzer et al. (1952) provide a table
of the values of zi and Hi for n ≤ 20, but a more accessible reference is Abramowitz
and Stegun (1964). The first three columns of Table 15.3 give the values for n ≤ 5.
The obvious example of a function containing exp(−z2) and integrated from minus to



354 POINT ESTIMATE METHODS

Table 15.3 Coordinates and Weights, Gauss–Hermite and Rosenblueth Quadrature

Gauss–Hermite Quadrature Equivalent Rosenblueth Values
Order

n Abscissas zi Weights Hi Coordinates xi Weights wi

2 ±0.707107 0.886227 ±1.0σ 0.5
3 0.0 1.181636 0.0 σ 0.666667

±1.224745 0.295409 ±1.732051 σ 0.166667
4 ±0.524648 0.804914 ±0.741964 σ 0.454124

±1.650680 0.081313 ±2.334414 σ 0.045876
5 0.0 0.945309 0.0 σ 0.533333

±0.958572 0.393619 ±1.355626 σ 0.222076
±2.020183 0.019953 ±2.856970 σ 0.011257

plus infinity is the Gaussian or Normal probability distribution. Hildebrand (1956), for
example, points out that Hermite polynomials are ‘of particular importance in the theory of
statistics.’ The probability density function for the normal distribution with zero mean is

pdf(x) = 1√
2πσ

exp

(−x2

2σ 2

)
(15.34)

Let x and z be related by
x = √

2σz (15.35)

Then

I =
∫ +∞

−∞
f (x) · pdf(x) · dx =

∫ +∞

−∞
f (

√
2σz) · 1√

π
· exp(−z2) · dz

≈
n∑

i=1

(
√

2σzi)
Hi√
π

=
n∑

i=1

xiwi (15.36)

The values of xi and wi are in the last two columns of Table 15.3. For n = 3, the values
are the same as those given by Rosenblueth in Equations (15.18) and (15.19). In effect,
case 2 is a restatement of Gauss–Hermite quadrature with a change of variable.

In case 1, when the skewness is zero, the values of the variable x and the weights (±σx

and 0.5) are the same as the values in Table 15.3 for n = 2. However, Rosenblueth’s
method in case 1 is not simply an application of Gauss–Hermite quadrature with two
points. It is actually based on a more radical approach, namely, the assumption that the
continuously distributed variable x can be replaced by a discrete variable that has values
only at the discrete points and that the locations of the points and their weights can be
chosen so that the moments of x are recovered. Then the integrals of functions of the
discrete variable should approximate the integrals of functions of the continuous variable.
The approach is then extended to the case of a skewed variable in case 1 and multiple
variables in case 3.

To illustrate that the approach is more than simply an application of a well-known
numerical technique for integrating functions of a normally distributed variable, assume
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that x is uniformly distributed between a and b. Equations (15.10)–(15.13) then give

P− = P+ = 1
2

x± = µx ± σx = (b − a)

2
± (b − a)

2
√

3
(15.37)

These are identically equal to the weights and integration points called for by two-point
Gauss-Legendre quadrature, which is the form of Gaussian quadrature that applies in the
case of a uniform weighting function.

Now consider a function that is exponentially distributed. The skewness coefficient is
2, and, if the parameter (hazard rate) is λ, the mean and standard deviation are both
1/λ (Evans et al. 1993). Equations (15.10)–(15.13) give

P± = 2 ∓ √
2

4

x± = 1

λ
(2 ± √

2) (15.38)

Again, these are identical to the weights and coordinates called for by Gauss-Laguerre
quadrature, which is the technique appropriate for an exponential weighting function.

In these three cases, the Rosenblueth procedure yields values of the coordinates and
weights that are identical to the optimum values for numerical integration using two points.
In fact, for any distribution of x, the Rosenblueth procedure in case 1 gives the values of
the two coordinates and two weights that recover exactly the first three moments of x and
the condition that the sum of all probabilities must be 1.0. This is the optimal choice for a
two-point integration scheme. Rosenblueth’s method is thus analogous to the generalized
method of numerical integration with orthogonal polynomials (Press et al. 1992) and
applies for any probabilistic distribution of X. Miller and Rice (1983) developed a similar
point-estimate approach based on generalized numerical quadrature and described how to
obtain the coordinates and weights for multiple concentration points.

15.5 Relation with ‘Gauss Points’ in the Finite Element Method

Figures similar to Figure 15.3 are to be found in most textbooks on the finite element
method. They illustrate the most common technique for numerical integration of various
components, such as the stiffness matrix, over an irregularly shaped element. First, the
element is mapped onto a square with normalized coordinates s and t . The points for
Gaussian quadrature are identified along each coordinate direction and a grid is formed
locating the points throughout the element. The weights are the products of the weights for
the individual directions. Then the entire process is mapped back onto the actual element.
Extensions to more than two dimensions or to curved isoparametric elements are obvious.

Rosenblueth’s third case is a similar extension of the one-dimensional Gaussian quadra-
ture points to a grid of higher dimensions. Whereas the finite element method works almost
exclusively with polynomial definitions of the functions to be integrated, Rosenblueth’s
method incorporates the effects of different probabilistic distributions for the underlying
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Figure 15.3 Typical four-point gaussian quadrature and mapping pattern employed. (Christian,
J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as Numerical Quadrature,’ Journal of
Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9, pp. 779–786, reproduced
by permission of the American Society of Civil Engineers.)
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Figure 15.4 Points at which the bearing capacity is calculated using the point-estimate method
with one uncertain variable, the bearing capacity factor Nγ using empirical results from Ingra and
Baecher (1983). (Christian, J. T. and Baecher, G. B., 2003, ‘The Point-Estimate Method with Large
Numbers of Variables,’ International Journal for Numerical and Analytical Methods in Geomechan-
ics, Vol. 126, No. 15, pp. 1515–1529, reproduced by permission of John Wiley & Sons).
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variables. In fact, the method implicitly allows each of these variables to have a different
distribution, so long as the mean and variance of the variable are known.

Ingra and Baecher (1983) performed logarithmic regression analyses on 145 model and
prototype footing tests to estimate the expected value and variance of Nγ for footing length
to width ratios of 1.0. The uncertainty in Nγ is logNormally distributed with skewness
coefficient of 0.928. Using the point-estimate method to obtain the mean and variance of
the bearing capacity when the only uncertainty is in the evaluation of Nγ , the calculations
would be made at two values of the bearing capacity coefficient. For φ = 35◦, Figure 15.4
shows the distribution of Nγ and the points at which the evaluations should be made. The
corresponding weights are 0.710 and 0.290.

15.6 Limitations of Orthogonal Polynomial Quadrature

Although Rosenblueth’s method is a simple way of obtaining the coordinates and weights
for evaluating the mean and variance of a function of an arbitrarily distributed variable x,
it does have limitations. First, two points may not be adequate to obtain accurate estimates
of the moments for the function Y in a particular case. Rosenblueth gives some examples
where the procedure has to be modified for some difficult functions, but in most practical
cases the functions are well behaved.

A more serious deficiency appears when the method is used to evaluate moments of
Y higher than the second moment. By evaluating the skewness coefficient of an arbitrary
function Y from the case 1 procedure and working through the algebra, one discovers
that, regardless of the function Y, Rosenblueth’s two-point procedure will always return
the skewness of X instead of the skewness of Y. The procedure should not be used for
moments higher than the second, but most practical reliability calculations do not use the
higher moments anyway. Harr (1987) observes that the point-estimate method cannot be
used for moments higher than those used to define the points and weights. The limitation
is actually stronger: because the two-point method returns the skewness of X not Y , it
should not be used for moments higher than the second order even when the third moments
are used to find the points and weights.

Rosenblueth’s method is most widely used in case 3 to estimate the mean and vari-
ance of a function of several variables. It is worth noting that, in most applications to
geotechnical engineering of which the authors are aware, the technique has been used
for uncorrelated variables. The additional effort required to include the correlations is
insignificant, and one of the strengths of Rosenblueth’s method is the ease with which it
can be applied to multivariate problems.

15.6.1 Example – Normal to Log-Normal Transformation

Although the two previous examples show excellent results from the point-estimate
method, this is not always the case. Consider the case when X is a standard normal
variable; that is, its mean is 0 and its standard deviation is 1. Let Y = eX. Then Y

is logNormally distributed with µY = 1.649, σY = 2.161, and the skewness coefficient
νY = 6.185. Now, Gauss–Hermite quadrature applies for the case where the probability
distribution of the underlying variable (X) is normal, so successively higher orders of
Gauss–Hermite quadrature can be used to estimate the moments of Y . When n = 2, this
is the Rosenblueth case 1 method, and, when n = 3, this is the Rosenblueth case 2 method.
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Table 15.4 Estimates of moments for lognormal distribution

X = exp(Y ); Y = N[0,1]

µY σY νY

Exact Values: 1.648721 2.161197 6.184877
Estimate, n = 2 1.543081 1.175201 0.0
Estimate, n = 3 1.638192 1.822602 1.822157
Estimate, n = 4 1.647969 2.071355 3.425399
Estimate, n = 5 1.648678 2.143514 4.79062

The results are in Table 15.4. It can be seen that, while n = 3 gives a reasonable estimate
of µY , it is necessary to go at least to n = 4 to get a reasonable estimate of σY and the
estimate of the skewness νY is still quite far off when n = 5. These results indicate that the
point-estimate methods, and, for that matter, Gauss–Hermite quadrature, should be used
with caution when the function of g(X) changes the probability distribution severely.

15.7 Accuracy, or When to Use the Point-Estimate Method

There is an unfortunate tendency for persons using numerical tools to employ them without
first considering their accuracy. It is almost as though the numerical procedure were some
sort of machinery enclosed in a black box whose workings were not to be investigated.
Once the procedure is described in books and manuals, the results are seldom questioned.
This attitude can lead to some very inaccurate work.

When numerical procedures are involved, it is often difficult to determine the accuracy
of the technique, for one of the principal reasons for employing numerical methods is that
the problem is not tractable analytically. Nevertheless, this section offers some guidance
on when the Rosenblueth method with two points may or may not be expected to give
accurate results.

15.7.1 Accuracy for Y = X2

Gaussian quadrature is a numerical approximation to the integral

I =
∫

g(z) · f (z) · dz (15.39)

in which the limits of integration have been left out because they can vary depending on
the form or the functions to be integrated. In Equation (15.39), g(z) is the function to
be evaluated at the integration points, and f (z) is the so-called weighting function. The
approximate integral is

I ≈
∑

Hi · g(zi) (15.40)
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Figure 15.5 Error in the estimate of the variance for Y = X2, X normally distributed. (Christian,
J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as Numerical Quadrature,’ Journal of
Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9, pp. 779–786, reproduced
by permission of the American Society of Civil Engineers.)

The values of the Hi’s are determined by the function f (z). Equations (15.32)–(15.36)
deal with the condition that f (z) is the pdf for the Normal distribution.

Rosenblueth’s method establishes the locations of the integration points and the values
of the Hi’s for whatever pdf applies to the variable X. Gaussian quadrature with n points
then guarantees that the integration will be exact for any polynomial function g(x) of
an order up to and including (2n − 1). In the case of the Rosenblueth two-point method,
this means the results will be exact for polynomials of cubic order or less. Thus, in the
trivial case that Y is a linear function of X, its variance will be of order 2, and the point
estimate method will calculate both the mean and the variance of Y exactly. If Y is a
function of X2, the mean will be calculated exactly, but the variance will be of order 4,
so some error will occur. Figure 15.5 shows the error in the estimate of the variance as a
function of the coefficient of variation (	) of X when X is Normally distributed. It can
be seen that, the larger the 	, the larger the error in the estimate.

15.7.2 Accuracy for Some Typical Functions

Figures 15.6–15.12 show the errors that arise when the point-estimate method is applied
to several functions of X that typically arise in geotechnical reliability analyses. When
Y = exp(X) with X Normally distributed, Y is logNormally distributed. We have already
indicated for this case that, when X is the standard Normal variable, with mean = 0 and
variance = 1, the point-estimate method is seriously in error and it is necessary to use
five or more points in Gauss-Hermite quadrature to obtain reasonably accurate results.
Figures 15.6 and 15.7 show the percent errors in the mean and variance as functions of
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Figure 15.6 Error in the estimates of mean and variance for Y = exp X, X normally distributed,
mean value of X = 1. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as
Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)
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Figure 15.7 Error in the estimates of mean and variance for Y = exp X, X normally distributed,
mean Value of X = 5. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as
Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)
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Figure 15.8 Error in the estimates of mean and variance for Y = 1/X,X uniformly distributed,
mean value of X = 20. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as
Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)
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Figure 15.9 Error in the estimates of mean and variance for Y = ln X, X uniformly distributed,
mean value of X = 2. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method as
Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)
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Figure 15.10 Error in the estimates of mean and variance for y = tan X, X uniformly distributed,
mean value of X = 15 degrees. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method
as Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)
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Figure 15.11 Error in the estimates of mean and variance for y = tan X, X uniformly distributed,
mean value of x = 30 degrees. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method
as Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)
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Figure 15.12 Error in the estimates of mean and variance for y = tan X, X uniformly distributed,
mean value of x = 45 degrees. (Christian, J. T. and Baecher, G. B., 1999, ‘Point-Estimate Method
as Numerical Quadrature,’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
125, No. 9, pp. 779–786, reproduced by permission of the American Society of Civil Engineers.)

the 	 of X when the two-point estimate method is used. X is Normally distributed in
both figures. When the mean of X is 1, the estimates of the mean of Y are accurate,
but the estimates of the variance are seriously in error unless 	 is quite small. When the
mean of X is 5, the results are unsatisfactory for all values of the 	.

Unfortunately, it is seldom possible to compute the exact values of the mean and
variance of a function g(X) when X is Normally distributed, or even when it has almost
any other practically interesting distribution. The integrations are simply too difficult.
However, it is possible to make a coarse estimate of the accuracy of the method for other
functions g(X) by assuming that X is uniformly distributed between µX − √

3σX and
µX + √

3σX. Then Equation (15.39) reduces to

I = 1

2
√

3σX

∫ µ+σX

µX−σX

g(x) · dx (15.41)

Equation (15.41) can be evaluated with g(x) and with [g(x)]2 under the integral sign.
This will give exact values of the first two moments of g(X) about the origin, and from
these the exact values of the mean and variance can be calculated. In many practical cases
such integrals are tabulated. The point estimate method is then used to estimate the first
two moments of g(X) about the origin and, from them the mean and variance.

Figure 15.8 shows the results of performing this calculation when Y = 1/X. The mean
value of X is taken to be 20 kN/m3, which is close to the value for the total unit weight
of typical geotechnical materials. Unless 	 is small, the estimates of the variance are
poor, but this is satisfactory because in most practical cases the uncertainty in the unit
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weight is relatively small. Figure 15.9 shows the results when Y = ln X and the mean of
X is 2. The pattern for the error in the mean of Y depends on the mean of X, but the
errors in the variance of Y are not affected by the value of the mean of X. The errors are
probably not acceptable for large values of 	. Figures 15.10–15.12 show the results for
Y = tan X, with three values of the mean of X. When the mean of X is 15 or 30 degrees,
the results range from excellent to satisfactory. When X is 45 degrees, the errors in the
variance of Y become large when 	 exceeds approximately 0.2. However, it should be
noted that a case with a mean of 45 degrees and 	 of 0.5 corresponds to an angle varying
uniformly between 22.5 and 67.5 degrees, which seems an unlikely situation. Again, it
must be emphasized that in all the analyses represented by Figures 15.8–15.12, X was
assumed to vary uniformly.

The numerical results presented in this section demonstrate that the method works best
when the 	’s are small and when the functions of X to be integrated can be reasonably
approximated by a third-order polynomial. When these conditions do not apply, the results
in Figures 15.5–15.12 can be used to estimate the errors, or the analyst can compare
the results of the Rosenblueth approach to results from higher order Gaussian quadrature
before embarking on an extensive set of calculations employing the point-estimate method
with two points along each variable axis.

It should be noted that methods based on truncated Taylor series, such as FOSM, which
can also be used to approximate the integrals that arise in reliability calculations, are
generally less accurate than the point-estimate methods because they are based on lower
order expansions. Harr (1989) observed that Rosenblueth’s approach circumvented many
of the shortcomings of Taylor series and Monte Carlo methods. Hong (1998) demonstrates
improved accuracy for logNormal and Gamma distributions.

15.8 The Problem of the Number of Computation Points

A great limitation of the original point-estimate method for multiple variables is that it
requires calculations at 2n points. When n is greater than 5 or 6, the number of evaluations
becomes too large for practical applications, even in the day of cheap computer time. As
noted above, Rosenblueth (1975) himself proposed a technique for reducing the number of
calculation points to 2n + 1 when the variables are uncorrelated and when skewness can
be ignored. Li’s (1992) method applies when the function consists of polynomials of the
individual variables and their cross-products. Lind (1983) proposed that, instead of using the
points at the corners of the hypercube (Figure 15.2), one could select points near the centers
of the faces of the hypercube, and he provided a procedure for finding those points and their
weights. More recently, two relatively simple methods for reducing the number of points in
the general case to 2n or 2n + 1 have been proposed (Harr 1989; Hong 1996, 1998).

15.8.1 Multiple, Correlated, Unskewed Variables

Harr (1989) deals with the case in which the variables may be correlated but their skewness
coefficients are zero. The procedure starts by computing the eigenvalues and eigenvectors
of the correlation matrix. Then the hypercube is rotated into a coordinate system whose
axes coincide with the eigenvectors. A hypersphere is imagined to pass through the corners
of the hypercube. The calculation points are then the intersections between the rotated



THE PROBLEM OF THE NUMBER OF COMPUTATION POINTS 365

coordinate axes and the surface of the hypersphere. This gives 2n points. Harr further
recommends that the contribution of each calculation point be weighted in proportion to
its eigenvalue.

Harr’s method is best illustrated by an example. Consider the above example of the
Culmann slope failure analysis, but now assume that the three uncertain variables are
correlated with the following correlation coefficients:

ρc,tan φ = −0.5ρc,γ = 0.2ργ,tan φ = 0.2 (15.42)

This leads to the following correlation matrix, K:

K =

 1.0 −0.5 0.2

−0.5 1.0 0.2
0.2 0.2 1.0


 (15.43)

Rosenblueth’s case 3 inserts the correlation coefficients of Equations (15.42) into
Equations (15.21) to obtain a new set of weights replacing those in the sixth column of
Table 15.2. The eight-point calculations then give µM = 2.643, µM = 0.447, µ = 5.916,
and (if M is Normally distributed) pf = 1.7 × 10−9.

Harr’s method uses six points (2n when n = 3). The calculations proceed in the fol-
lowing steps:

(1) Calculate the eigenvalues and normalized eigenvectors of K:

λ = { 1.5 1.127 0.373 } (15.44)

E =

 0.707 −0.291 −0.645

−0.707 −0.291 −0.641
0 −0.912 0.411


 (15.45)

The entries in each column of Equation (15.45) comprise the eigenvector for the
corresponding eigenvalue.

(2) Compute the values of c, tan φ, and γ for each of the six points. Each pair of points
corresponds to the intersections of one eigenvector with the hyperspherical surface.
The easiest way to do this is to create three columns of six elements, one column for c,
one for tan φ, and one for φ. The values in the 2ith and (2i + 1)st entries of the columns
give the coordinates of the intersection of the ith eigenvector. The value for a variable
x at a point is found from x = µx ± σx

√
n · Ei,j , where Ei,j is the corresponding

component of E. For example, the component in the fifth position of the c column
(which corresponds to the third eigenvector) is 5.0 + 0.5 · √3 · (−0.645) = 4.442.

(3) Evaluate M and M2 at each of the six points just defined.
(4) The weight associated with each point is equal to the corresponding eigenvalue divided

by 2n.
(5) The remainder of the calculations proceeds as in the earlier versions of the point-

estimate method.

When this procedure is applied to the Culmann problem, the results are µM =
2.643, µM = 0.445, β = 5.938, and (if M is Normally distributed) pf = 1.4 × 10−9. The
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Table 15.5 Results from Harr’s method for Culmann slope

Point c (kPa) tan (φ) γ (kN/m3) M (kPa) p

1 5.612 0.244977 22 2.680 0.250
2 4.388 0.290921 22 2.587 0.250
3 4.748 0.258509 18.526 2.559 0.188
4 5.252 0.277389 25.474 2.781 0.188
5 4.442 0.247007 23.566 1.354 0.062
6 5.558 0.288892 20.434 3.840 0.062

Mest = Sum of Mp = 2.643

Variance = Sum of M2p − (Mest)2 = 0.198

σ = 0.445, β = 5.938

H = 10 m, θ = 20 deg, ψ = 26 deg

differences between this solution and the eight-point method are small and are due in part
to rounding errors. The detailed values are given in Table 15.5.

Lind’s (1983) method starts with the covariance matrix, C:

C =




σ 2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ12σ1σ2 σ 2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρ1nσ1σn ρ2nσ2σn · · · σ 2
n


 (15.46)

where the subscripts correspond to the variables. He then defines a series of vectors zi ,
one for each variable:

z1 = [z11, z12, z13, . . . , z1n]

z2 = [0, z22, z23, . . . , z2n]

z3 = [0, 0, z33, . . . , z3n]

...

zn = [0, . . . , 0, znn] (15.47)

The terms are computed by from the terms in the C matrix by a set of recursive equations:

zii =
(

n · cii −
i−1∑
k=1

z2
ki

)1/2

i = 1, 2, . . . , n

zij =
(

n · cij −
i−1∑
k=1

zkizkj

)/
zii

{
i = 1, 2, . . . , n − 1
j = i + 1, i + 2, . . . , n

(15.48)

Each of the z vectors can be made a row in a matrix, denoted Z. Each column of the
matrix corresponds to one of the variables. The coordinates of each of the 2n evaluation
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points are found by proceeding down each column, first adding and then subtracting the
entry from the mean value of the corresponding variable. The weights are simply 1/2n.

For the above example of the Culmann failure analysis with three correlated variables,

C =

 0.25 −4.7 × 10−3 0.22

−4.7 × 10−3 3.5 × 10−4 8.2 × 10−3

0.22 8.2 × 10−3 4.84


 (15.49)

Z =

 0.886 −0.016 0.762

0 0.028 1.32
0 0 3.492


 (15.50)

and the remainder of the analysis is summarized in Table 15.6 The results are almost
identical to those from Harr’s method though the specific computation points are different.

15.8.2 Multiple, Uncorrelated, Skewed Variables

Hong (1996, 1998) deals with the other problem of uncorrelated variables with signifi-
cant skewness. He develops, for each variable, a two-point and a three-point estimation
procedure. The two-point equations are similar to Equations (15.10)–(15.13) except that
the term

√
1 + (νx/2)2 is replaced by

√
n + (νx/2)2 wherever it appears. The three point

equations include both skewness and kurtosis and are chosen so that the central point is at
the mean value of the variables. Since this point is common to all variables, the composite
system has 2n + 1 points. Skewness could have been included in the original Rosenblueth
procedure by selecting the points and weights according to Equations (15.10)–(15.13),
but this would still have led to 2n points.

To illustrate the use of Rosenblueth’s two-point method for multiple skewed variables
and Hong’s method, consider the Culmann problem extended so that the inclination of the
failure surface is also uncertain. Also, the friction angle itself rather than the tangent of
the angle will be taken as the uncertain variable. It will be assumed that all the uncertain
variables are triangularly distributed. Table 15.8 lists the values at the two ends (a and
b) and the peak (c) of the distributions.

Table 15.6 Results from Lind’s method for Culmann slope

Point c (kPa) tan (φ) γ (kN/m3) M (kPa) p

1 5.866 0.251706 22.762 3.003 0.167
2 4.134 0.284193 21.238 2.236 0.167
3 5 0.296084 23.320 3.226 0.167
4 5 0.239815 20.680 2.123 0.167
5 5 0.267949 25.492 2.258 0.167
6 5 0.267949 18.508 3.009 0.167

Mest = Sum of Mp = 2.643

Variance = Sum of M2p − (Mest)2 = 0.198

σ = 0.445, β = 5.938

H = 10 m, θ = 20 deg, ψ = 26 deg
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The extended form of Rosenblueth’s method uses Equations (15.10)–(15.13) to com-
pute the coordinates and the weights in each coordinate direction. The coordinates of the
points at which the function is to be evaluated are found by forming each possible com-
bination of the four variables identified at two points each. This gives sixteen points. The
corresponding weights are found by multiplying the corresponding weights from the one-
dimensional case. The calculations then proceed as in the usual multi-variable case. The
results are that µM = 2.576, βm = 1.096, and σ = 2.350. If M is Normally distributed,
then pf = 9.4 × 10−3.

Hong’s method employs eight points, two for each variable. At each pair of points three
of the variables are fixed at their mean values, and the remaining one is allowed to take
values above of below the mean value. For each of the n variables, the first calculation
is to evaluate

ζ =
√

n +
(ν

2

)2
(15.51)

Then the first coordinate value corresponding to this variable is

x1 = µ +
(ν

2
− ζ

)
· σ (15.52)

and the coordinate of the other point is

x1 = µ +
(ν

2
+ ζ

)
· σ (15.53)

The corresponding weights are

p1 = 1

2n
·
(

1 + ν

2ζ

)
(15.54)

and

p2 = 1

2n
·
(

1 − ν

2ζ

)
(15.55)

Table 15.7 shows the coordinates and weights for the eight points. The results are
that µM = 2.576, µm = 1.096, and β = 2.350. If M is Normally distributed, then pf =
9.4 × 10−3. These are identical to those from the 16-point Rosenblueth method.

Once the calculations are set up, it is easy to perform parametric studies. For example,
if the low value of c is made 0.0, he results are that µM = 1.910, σm = 1.484, and
β = 1.287. If M is Normally distributed, then pf = 0.1. If the low value is raised to 4,
the results are that σM = 3.243, µm = 0.804, and β = 4.032. If M is Normally distributed,
then pf = 2.8 × 10−5.

Figure 15.13 shows these methods graphically for the case of three uncorrelated and
unskewed variables. Rosenblueth’s original proposal for reducing the number or calcula-
tion points required (2n + 1) calculations. Li’s method requires (n3 + 3n + 2)/2 calcula-
tions. Figure 15.14 describes how the number of calculations varies with the number of
variables for each of these procedures.
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Table 15.7 Results from Hong’s method with four variables for Culmann slope

Point c(kPa) φ (deg) γ (kN/m3) θ (deg) M (kPa) p

1 2.445 15.667 19.333 20.000 0.636 0.112
2 5.863 15.667 19.333 20.000 4.054 0.138
3 4.333 12.556 19.333 20.000 1.274 0.132
4 4.333 19.167 19.333 20.000 3.978 0.118
5 4.333 15.667 17.445 20.000 2.701 0.112
6 4.333 15.667 20.863 20.000 2.381 0.138
7 4.333 15.667 19.333 18.367 2.900 0.125
8 4.333 15.667 19.333 21.663 2.521 0.125

Mest = Sum of M p = 2.576

Variance = Sum of M2 p – (Mest)2 = 1.202

σ = 1.097, β = 2.350

H = 10 m, ψ = 26 deg

15.8.3 Points far from Mean for Large n

Lind’s, Haar’s, and Hong’s methods give results superior to those from FOSM methods
with little or no increase in computational effort. Because they use fewer points than the
original point-estimate methods, they may be somewhat less accurate for some functions,
but limited testing indicates that they are usually quite satisfactory. All the methods locate
the points at or near the surface of a hypersphere or hyperellipsoid that encloses the points
from the original Rosenblueth method. The radius of the hypersphere is proportional to

x1

x2

x3

(a)

Figure 15.13 Distribution of evaluation points for three uncertain variables. The variables have
been normalized by subtracting the mean and dividing by the standard deviation. (a) Coordinate
system, (b) black squares are the eight points in the original Rosenblueth procedure, (c) ellipses
are circular arcs defining a sphere circumscribed around the Rosenblueth points, (d) black dots are
the intersections of the circumscribed sphere with the coordinate axes, which are the six points
in the Harr and Hong procedures. (Christian, J. T. and Baecher, G. B., 2002, ‘The Point-Estimate
Method with Large Numbers of Variables,’ International Journal for Numerical and Analytical
Methods in Geomechanics, Vol. 126, No. 15, pp. 1515–1529, reproduced by permission of John
Wiley & Sons.)
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Figure 15.14 Numbers of calculations by various algorithms. (Christian, J. T. and Baecher, G.
B., 2002, ‘The Point-Estimate Method with Large Numbers of Variables,’ International Journal for
Numerical and Analytical Methods in Geomechanics, Vol. 126, No. 15, pp. 1515–1529, reproduced
by permission of John Wiley & Sons.)

√
n in Harr’s method and nearly so in Lind’s and Hong’s. It is possible that, when n

is large, the values of the xi’s at which the evaluation is to take place may be so many
standard deviations away from the means that they are outside the range of meaningful
definition of the variables. Figure 15.15 shows what happens in a case of normalized
uncorrelated and unskewed variables. The four black points are the points in the conven-
tional Rosenblueth procedure for two variables. The four open points on the circle drawn
through the black points are the evaluation points that would be used in the Harr, Hong, or
Lind procedures. There is obviously no advantage in doing this for two variables as four
points are needed in either case. However, if there were nine variables, a reduction from
512 to 18 evaluations would be well worth the effort. The outer circle in Figure 15.15
represents a two-dimensional section through the nine-dimensional hypersphere, and the
evaluation points now lie three standard deviations form the mean. Thus, critical values of
the variables will be located far from the region where the distributions are known best.

In Table 15.8, which gives the coordinates of the points to be used in the analysis
with four uncertain variables triangularly distributed, it is clear that the values of some
of the variables are quite close to the limits of their triangular distributions. If there
were seven variables, Table 15.9 shows that the values of all the variables would fall
outside the bounds of their distributions. Figure 15.16 is the same as Figure 15.4, except
that the locations of the evaluation points for cases with 5 and 10 variables are shown.
The evaluations fall far out along the tails of the distribution, where the values of the
distribution are known poorly.
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Figure 15.15 Evaluation points. Black points are the original Rosenblueth points for two uncor-
related, unskewed variables. Open points are those defined by a point reduction scheme on a
circle circumscribed around the four points. Large circle is a two-dimensional cut through the
nine-dimensional hypersphere for nine variables, and open points on this circle are the loca-
tions of points used in point reduction schemes. (Christian, J. T. and Baecher, G. B., 2002, ‘The
Point-Estimate Method with Large Numbers of Variables,’ International Journal for Numerical and
Analytical Methods in Geomechanics, Vol. 126, No. 15, pp. 1515–1529, reproduced by permission
of John Wiley & Sons).

Table 15.8 Values of triangular distribution points for four-variable problem

c(kPa) φ (deg) γ (kN/m3) θ (deg)

Point a 2 12 17 18
Point c 5 15 20 20
Point b 6 20 21 22

µ 4.333 15.64 19.333 20
σ 0.850 1.66 0.850 0.802
ν −0.422 0.236 −0.422 0

H = 10 m, ψ = 26 deg

Table 15.9 Extreme values of coordinates for Culmann problem
with n = 7

c (kPa)  (deg) γ (kN/m3) θ (deg)

Minimum 1.898 11.492 16.898 17.840
Maximum 6.409 20.231 21.409 22.160
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Figure 15.16 Points at which the bearing capacity is calculated using the point-estimate method
with 5 and 10 variables for bearing capacity factor Nγ . (Christian, J. T. and Baecher, G. B.,
2002, ‘The Point-Estimate Method with Large Numbers of Variables,’ International Journal for
Numerical and Analytical Methods in Geomechanics, Vol. 126, No. 15, pp. 1515–1529, reproduced
by permission of John Wiley & Sons.)

Because the distributions of many variables encountered in civil engineering are not
well known, and because there may be physical reasons for limiting their ranges, it is
common to use triangular or Beta distributions. Figure 15.17 shows what happens in the
case of a triangular distribution between 0 and 1 with c defining the peak of the triangle.
The solid lines describe, as a function of c, the number of uncertain variables necessary
to move the coordinate of the lower evaluation point in Hong’s method below zero, and
the dashed lines depict the number of uncertain variables that move the upper point above
one. Both evaluation points will fall outside the range of definition when n ≥ 7. In the
extreme case that the peak of the triangle occurs at one end of the distribution, one
evaluation point will fall outside that end when the number of variables is 3.

The Beta distribution allows a large range of distribution shapes between the bounds.
Table 15.10 shows that for combinations of parameters typical of those that are encoun-
tered in practice the evaluation points fall outside the boundaries of definition even for
relatively small numbers of variables. Only in the strongly skewed case of q = 2 and
r = 8 does the number of variables needed to push the evaluation point beyond the upper
limit of the distribution become large (39), and in that case the number of variables
required to locate the other evaluation point below the lower limit is only 5.

A value of a variable falling outside the limits of definition can be physically unreason-
able. For example, negative values of cohesive strength or friction or construction time
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Figure 15.17 The number of uncertain variables necessary to move the evaluation points in
Hong’s method below 0 (solid lines) or above 1 (dashed lines) for a triangular distribution between
0 and 1. The parameter c is the coordinate of the third or peak point defining the triangular distribu-
tion. (Christian, J. T. and Baecher, G. B., 2002, ‘The Point-Estimate Method with Large Numbers
of Variables,’ International Journal for Numerical and Analytical Methods in Geomechanics, Vol.
126, No. 15, pp. 1515–1529, reproduced by permission of John Wiley & Sons.)

Table 15.10 Number of variables causing evalua-
tion points to fall outside the limits of a Beta distri-
bution. (Christian, J. T. and Baecher, G. B., 2002,
‘The Point-Estimate Method with Large Numbers
of Variables,’ International Journal for Numerical
and Analytical Methods in Geomechanics, Vol. 126,
No. 15, pp. 1515–1529, reproduced by permission
of John Wiley & Sons)

Beta parameters Number of variables for

q r lower limit upper limit

2 3 5 9
2 4 5 13
2 8 5 39
3 3 7 7
3 4 7 11
3 4.5 7 12
3.26 4.89 7 13
4 6 8 16

are unacceptable to most engineers. Values outside the limits or far from the means may
also be unacceptable because they are used in functions that become unrealistic for the
extreme values of the arguments. Some functions, such as ln X for X < 0, may not even
have a real definition outside the range of definition of X.

Riela et al. (1999) in a study of the stability of mine slopes used a triangular distribution
to describe the uncertainty in friction angle. In one case they had four significant uncer-
tain variables, and in the other they had seven. Their analysis used the FOSM method
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Figure 15.18 Probability density function (pdf) for triangularly distributed friction angle in
Chuquicamata analysis and points for one, four, and seven variables. (Christian, J. T. and Baecher,
G. B., 2002, ‘The Point-Estimate Method with Large Numbers of Variables,’ International Journal
for Numerical and Analytical Methods in Geomechanics, Vol. 126, No. 15, pp. 1515–1529,
reproduced by permission of John Wiley & Sons.)

and the direct Rosenblueth method without trying to reduce the number of calculations.
Figure 15.18 shows where the evaluation points would fall if one of the computation
reduction schemes were employed. The lines labeled ‘n = 1’ are the original points.
Those labeled ‘n = 4’ and ‘n = 7’ identify the points that would be used in the computa-
tion reduction schemes for four and seven variables, respectively. For four variables the
points fall near the ends of the distribution, and for seven variables they fall outside their
range of definition.

It is clear that all three of the simple ways to modify the point-estimate method in
order to reduce the number of evaluations cause the locations of the evaluation points to
move far from the central region of the distributions. In the case of bounded distributions
the evaluation points move beyond the range of definition of the distribution, and this
can happen when n = 6 or 7. In some cases it occurs with as few as three variables. The
phenomenon is primarily controlled by the number of variables and does not result from a
poor choice of probability distributions. Since the main reason for adopting the modified
point-estimate methods is to make it feasible to deal with large numbers of variables, this
problem is a serious impediment.

Several alternatives suggest themselves. First, one could use the unmodified point-
estimate method. The number of evaluations will be large (2n), but in the days of cheap
computer time, when people routinely do Monte Carlo simulations with hundreds of thou-
sands of samples, the cost may be bearable. Secondly, when the variables are uncorrelated
and unskewed, Rosenblueth’s (1975) own modification could be used. Third, under the
restrictive conditions that Y is the sum of polynomials and cross-products of each of the
variables, Li’s (1992) method is appropriate.

Finally, when faced with a large number of uncertain variables, the analyst would do
well to ask whether all of them need to be carried along in the analysis. Relatively simple
sensitivity studies will often reveal that uncertainties in many of the variables have little
effect on the results and that other variables can be combined. The reduction in the number
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of active variables not only makes the computations more tractable but also increases the
chances that the results can be interpreted. However, Lind (1983) points out that, since
removing some of the smaller contributors will reduce the overall variance, the variances
of the remaining variables should be increased proportionately.

15.9 Final Comments and Conclusions

Rosenblueth’s point estimate method, which is widely used in geotechnical engineering
reliability analysis, but which has also been criticized for its simplicity, is a special
case of the orthogonal polynomial approximation procedures leading to the Gaussian
quadrature formulas that are well known in numerical analysis and finite element methods.
Rosenblueth described the method to be used when there are two or three variables, and
he showed how their correlation structure could be incorporated in the analysis. A simple
extension of Rosenblueth’s approach applies for more than three variables – correlated or
uncorrelated.

The method is reasonably robust and is satisfactorily accurate for a range of practical
problems, though computational requirements increase rapidly with the number of uncer-
tain quantities of interest. The method is not Monte Carlo simulation and should not be
confused with Taylor series methods. Caution should be used in applying the method to
cases in which the transformation of uncertain quantities severely changes the distribu-
tional form, or to moments higher than order two. In particular, when the functions of
the variable X to be integrated are not well represented by a third-order polynomial and
when the 	 of X is large, the results can be seriously in error.

Despite these limitations, the method remains a simple, direct, and effective method of
computing the low-order moments of functions of random variables. Its continued use in
geotechnical reliability analysis is justified by experience and theory, but users familiar
with the mathematical principles underlying it will be less likely to apply it outside the
regions where it can be expected to yield good results.



16 The Hasofer–Lind
Approach (FORM)

The previous two chapters describe the basic procedures for carrying out a first-order
reliability analysis. The analysis starts by establishing the statistical properties of the
variables – means, variances, and covariances – and then propagates these through the
analytical model for some failure criterion such as the factor of safety (F) or the margin
of safety (M). The results are expressed in the form of the mean and standard deviation
of F or M , which are then used to compute the reliability index (β). With an assumption
about the distribution of F or M , the value of β leads to a value of the probability of
failure (pf ).

While the FOSM method and its extension by the Rosenblueth point-estimate method
are powerful tools that usually give excellent results – or at least results that are as accurate
as the underlying data – they do involve some approximations that may not be acceptable.
One is the assumption that the moments of the failure criterion can be estimated accurately
enough by starting with the mean values of the variables and extrapolating linearly. In
other words, there is an implicit assumption that it makes little difference where the partial
derivatives are evaluated. A second is that the form of the distribution of F or M is known
and can be used to compute pf from β. In practice these assumptions are seldom valid.

Hasofer and Lind (1974) addressed these concerns by proposing a different definition
of the reliability index that leads to a geometric interpretation. The approach has been
named after them, but it is also known as geometric reliability and as the First Order
Reliability Method (FORM). To minimize confusion with the FOSM method, we have
chosen to use the term FORM as little as possible here, but it is often seen, especially
in the structural engineering literature. We begin by revisiting the simple problem of the
stability of the vertical cut in cohesive soil from Chapter 13.

16.1 Justification for Improvement – Vertical Cut
in Cohesive Soil

Example 13.1 described the reliability analysis of a vertical cut in cohesive soil expressed
in terms of the margin of safety M

M = c − γH/4 (16.1)

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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where c is the cohesion, γ is the unit weight, and H is the height of the cut. For a 10 m
deep cut and uncorrelated cohesion and unit weight, the following values were used:

H = 10 mµc = 100 kPa σc = 30 kPa

µγ = 20 kN/m3 σγ = 2 kN/m3
(16.2)

Then
µM = 100 − (20)(10)/4 = 50 kPa

σ 2
M = (30)2 + (2)2(10/4)2 = 925(kPa)2

β = 50/
√

925 = 1.64

(16.3)

If the cohesion and unit weight are both Normally distributed, any linear combination of
them, such as M , must also be normally distributed, and

pf = P [M ≤ 0] = �(−β) = 5.01 × 10−2 (16.4)

Note that, because the variables are normally distributed and M is a linear combination
of them, these results are exact.

Now, let us solve the problem using FOSM. The derivatives are

∂M

∂c
= 1 and

∂M

∂γ
= −H

4
(16.5)

The value of µM is unchanged at 50 kPa. The FOSM estimate for σM is

σ 2
M ≈

(
∂M

∂c

)2

σ 2
c +

(
∂M

∂γ

)2

σ 2
γ = (1)2(30)2 +

(
10

4

)2

(2)2 = 925 kPa (16.6)

which is identical to the exact result. The rest of the calculation gives once again β = 1.64
and pf = 5.01 × 10−2. This is what one would expect from a linear combination of
Normal variables.

However, the problem could also have been stated in terms of the factor of safety

F = 4c

γH
(16.7)

∂F

∂c
= 4

γH
and

∂F

∂γ
= −4c

H

1

γ 2
(16.8)

If the evaluations are done at the mean values of the variables, then

∂F

∂c
= 0.020

∂F

∂γ
= −0.100 (16.9)

µF ≈ 4µc

Hµγ

= 2.00 (16.10)

σ 2
F ≈

(
∂F

∂c

)2

σ 2
c +

(
∂F

∂γ

)2

σ 2
γ = (0.020)2(30)2 + (0.100)2(2)2 = 0.4 (16.11)

β = (2.0 − 1.0)/
√

0.4 = 1.58 (16.12)

pf = 3.81 × 10−2 (16.13)
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The calculation of the probability of failure assumes F is Normally distributed, which is
certainly not the case. However, it is also not clear what the correct distribution of F is.

This example shows that, even for a very simple problem, the FOSM procedure gives
different results for calculations based on M and on F even though the failure conditions
(M = 0 and F = 1) are mathematically identical. Discrepancies and inaccuracies can be
expected to become larger as problems become more complicated.

Figure 16.1 illustrates the differences between the two computational approaches. Val-
ues of c are plotted along the horizontal axis, and values of γH /4 are plotted along the
vertical axis. The large black dot represents the mean values of both variables. The heavy
black line represents the failure condition (M = 0 or F = 1). Points above it and to the
left are unsafe, and those below it and to the right are safe. The dashed lines represent
constant values of M . The solid lines represent constant values of F . The lines for M = 0
and F = 1 coincide.

Reliability analysis is an attempt to quantify how close the system is to failure, that is
how close the black dot is to the heavy failure line. The FOSM analysis based on M does
this by treating M as a surface whose contours are the dashed lines. Then the most rapid
line of descent to M = 0 is the negative gradient of the surface (the positive gradient is
uphill). The negative gradient is identified on the figure, but, because the contours are
parallel, the same gradient would be found anywhere on the M surface. When the same
procedure is applied to the F surface, whose contours are the solid lines, the gradient
does not represent the shortest distance to the failure condition. Furthermore, different
gradients are found at different points. In particular, if we had been able to evaluate the
gradient at a point on the line representing the failure condition (F = 1), it would have
had the same orientation as the gradient from the M surface and the results from the two
approaches would have been the same. The failure to achieve this result is a deficiency
of the FOSM approach.

Furthermore, even if we did find the shortest distance from the black dot to the failure
surface and if we knew the probability densities of the variables c and γ , we would not

Figure 16.1 Factor of safety reliability compared to margin of safety reliability. Both methods
start from the same point (shown as a large solid dot), but they go in different directions and meet
the failure line at different points.
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know the distribution of F . The computation of probability of failure requires that we
assume that F has one of the common distributions, such as the Normal or LogNormal
distributions. The Hasofer–Lind approach deals with both these problems.

16.2 The Hasofer–Lind Formulation

The first step in the Hasofer–Lind approach is to reformulate the problem with dimen-
sionless variables. There are n uncertain variables, and each is identified by a subscript
i. Each variable xi is defined in terms of its mean µxi

and its standard deviation σxi
. We

now define a primed variable

x ′
i = xi − µxi

σxi

(16.14)

which is dimensionless and has the mean value of zero and unit standard deviation. It
follows that

xi = σxi
x ′

i + µxi
(16.15)

We can rewrite any function of the unprimed variables as a function g(x ′
1, x

′
2, . . . , x

′
i , . . .,

x ′
n) of the primed variables. In the example of the vertical cut the failure criterion F = 1

or M = 0 gives

g(c′, γ ′) = c′σc − H

4
γ ′σγ +

(
µc − H

4
µγ

)
= 0 (16.16)

We can express these relations in matrix form, using bold-face letters to indicate vectors
and matrices. Then

x ≡ {x1, x2, . . . , xi, . . . , xn} (16.17)

x′ ≡ {x ′
1, x

′
2, . . . , x

′
i , . . . , x

′
n} (16.18)

g(x′) = 0 (16.19)

From the definition of the primed variables,

dxi

dx ′
i

= σxi

dx ′
i

dxi

= 1

σxi

(16.20)

so, for any function f of the unprimed variables,

∂f

∂x ′
i

= ∂f

∂xi

dxi

dx ′
i

= σxi

∂F

∂xi

(16.21)

Now let us return to the basic case of the reliability of a system with loading Q and
resistance R, which was discussed in Chapter 13. From the above definitions we can
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express reduced variables

R′ = R − µR

σR

Q′ = Q − µQ

σQ

(16.22)

If R and Q are uncorrelated, Equation (13.1) for the margin of safety becomes

M = R − Q = σRR′ − σQQ′ + µR − µQ = 0 (16.23)

Figure 16.2 is a plot of the failure criterion using the reduced variables as the axes. The
origin is the point at which both R and Q equal their mean values, that is, the point at
which each variable has its expected value. The distance d between the origin and the
line M = 0 is

d = µR − µQ√
σ 2

R + σ 2
Q

(16.24)

which is identical to the definition of the reliability index β. This result suggests that the
reliability index can be interpreted geometrically as the distance between the point defined
by the expected values of the variables and the closest point on the failure criterion.

Figure 16.3 presents another view of this geometric interpretation. The horizontal and
vertical axes are the normalized variables, which are assumed to be Normally distributed
and independent. Their joint distribution is the hill with its peak at the origin. The linear
failure criterion (M = 0) is represented as a wall that cuts the failure region off from the
rest of the distribution, so the probability of failure is the integral under the joint proba-
bility distribution surface in the failure region. If we now find the marginal distribution
on a plane perpendicular to the wall, Figure 16.4 results. In effect, we are looking along
the wall and determining how much of the distribution lies on each side. The probability

d

A
Q′

P′

Figure 16.2 Plot of Resistance (R) and Load (Q) showing definition of reliability index.
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Figure 16.3 Joint probability distribution of two independent Normal variables and a linear fail-
ure criterion.

of failure is the area under the Normal curve and lying to the left of the failure line. This
probability is a function of the dimensionless distance β.

Note that the joint Normal distribution of the two variables and the Normal marginal
distribution in Figure 16.4 represent the distributions of the variables – not the distribution
of the failure function. In the development so far, the failure function can have any shape
as long as the criterion (F = 1 or M = 0) is a straight line. This contrasts with the
FOSM and Point-Estimate methods, in which the computations are directed at establishing
statistical parameters for the failure functions. One of the arguments in favor of the
Hasofer–Lind formulation is that it does not require that the distribution of the failure
function be found.
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Figure 16.4 Marginal distribution of margin of safety from Figure 3.

This result can be generalized when there are more than two variables. The failure
criterion is Equation (16.19). In the multidimensional space, the distance from the origin
to a point on the failure criterion is

d =
√

x
′2
1 + x

′2
2 + · · · + x

′2
n = (x

′T x)
′1/2 (16.25)

where x′ is the vector of the x ′
i s and the superscript T indicates the transpose of a matrix

or vector. The problem is then a constrained minimization that can be summarized as
the requirement to minimize d with the constraint that Equation (16.19) is satisfied. Two
practical techniques recommend themselves:

1. Express the constraint (Equation (16.19)) and the definition of d in a spreadsheet such
as EXCEL or QUATTRO-PRO or other mathematical software such as MATLAB or
MATHCAD. These systems have commands, usually named ‘solve’ or ‘minimize,’ that
direct the computer to perform the minimization. Some of the examples in this chapter
were solved using this feature in MATHCAD, and Low and his colleagues (Low 1996;
Low 1997; Low and Tang 1997a, 1997b; Low et al. 1998) have used the optimization
features of the spreadsheet EXCEL.

2. Develop a computational algorithm suited to the particular problem at hand and imple-
ment it either in a special purpose computer program or by hand. Since it is always a
good idea for the analyst to know what is going on rather than simply to use a black
box, the following section describes how the calculations can be carried out without
relying on a canned computer program.
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16.3 Linear or Non-linear Failure Criteria and Uncorrelated
Variables

To describe the best-known procedures for finding the minimum of Equation (16.25), we
will start with a generalized approach using the technique of the Lagrangian multiplier.
We will then show that this gives results identical to a revised FOSM formulation. The
section ends with a discussion of the Rackwitz (Rackwitz and Fiessler 1978) algorithm,
which is the most widely used approach.

16.3.1 The Lagrangian Multiplier Approach

The problem is to minimize Equation (16.25) subject to the constraint that
Equation (16.19) is satisfied. First, we define the gradient of the failure function with
respect to the primed variables

G =
(

∂g

∂x ′
1

,
∂g

∂x ′
2

, . . . ,
∂g

∂x ′
n

)
(16.26)

Since g(x′) = 0 at the point to be found, minimizing d is equivalent to minimizing L in
the following equation:

L = d + λg(x′) = (x′T x′)1/2 + λg(x′) (16.27)

The term λ is called a Lagrangian Multiplier. It is zero at the solution point, so the
minimum of L and d must be the same, but including λ makes the rest of the develop-
ment easier.

For L to be a minimum all its partial derivatives must be zero. Therefore,

∂L

∂x ′
i

= x ′
i

(x′T x′)1/2
+ λ

∂g

∂x ′
i

= 0 (16.28)

and
∂L

∂λ
= g(x′) = 0 (16.29)

which is nothing more than a restatement of Equation (16.19).
Rewriting Equations (16.28) in matrix form gives




1

(x′T x′)1/2
0 · · · 0

0
1

(x′T x′)1/2
· · · 0

...
...

. . .
...

0 0 · · · 1

(x′T x′)1/2







x ′
1

x ′
2
...

x ′
n




= −




λ
∂g

∂x ′
1

λ
∂g

∂x ′
2

...

λ
∂g

∂x ′
n




(16.30)
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Hence,

x ′
i = −λd

∂g

∂x ′
i

(16.31)

x′ = −λdG (16.32)

d = (x′T x′)1/2 = [(λdG)T (λdG)]1/2 = λd(GT G)1/2 (16.33)

λ = (GT G)−1/2 (16.34)

x′ = − dG
(GT G)1/2

(16.35)

GT x′ = − dGT G
(GT G)1/2

= −d(GT G)1/2 (16.36)

d = − GT x′

(GT G)−1/2
(16.37)

This is the minimum value of d , and when we impose the condition that the minimum
must satisfy the failure criterion (g = 0), we obtain the reliability index β:

β = dmin = − G∗T x
′∗

(G∗T G∗)1/2
= −

∑
x

′∗
i

(
∂g

∂x ′
i

)
∗√∑(

∂g

∂x ′
i

)2

∗

(16.38)

In this equation, the superscript or subscript star indicates that the term or derivative is
evaluated at the nearest point on the failure criterion.

16.3.2 The Taylor Series Approach

We start from the starred point on the failure criterion even though we have not developed
a method for calculating the location of this point. The Taylor series for finding the value
of g at some other point is

g(x1, x2, . . . , xn) = g(x∗
1 , x∗

2 , . . . , x∗
n) +

∑
(xi − x∗

i )

(
∂g

∂xi

)
∗

+
∑∑

(xi − x∗
i )(xj − x∗

j )

(
∂2g

∂xi∂xj

)
∗
+ · · · (16.39)

This expression is in terms of the unprimed variables. After removing the higher order
terms and recognizing that g = 0 at the failure criterion, we get

g(x1, x2, . . . , xn) ≈
∑

(xi − x∗
i )

(
∂g

∂xi

)
∗

=
∑

(σxi
x ′

i + µxi
− σxi

x
′∗
i − µxi

)

(
∂g

∂x ′
i

)
∗

1

σxi

=
∑

(x ′
i − x

′∗
i )

(
∂g

∂x ′
i

)
∗

(16.40)
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The primed variables are, by definition, zero when the unprimed variables have their mean
values. Hence,

µg ≈ −
∑

x
′∗
i

(
∂g

∂x ′
i

)
∗

(16.41)

and

σ 2
g ≈

∑
σ 2

xi

(
∂g

∂xi

)2

∗
=

∑
σ 2

xi

(
∂g

∂x ′
i

)2

∗

(
1

σxi

)2

=
∑(

∂g

∂x ′
i

)2

∗
(16.42)

Therefore,

β = µg

σg

= −
∑

x
′∗
i

(
∂g

∂x ′
i

)
∗√∑ (

∂g

∂x ′
i

)2

∗

(16.43)

which is identical to the result found using the Lagrangian Multiplier.

16.3.3 Solving the Equations

Both the above approaches give the same final equation for the reliability index, but
they do not describe how to find the starred point at which Equations (16.38) or (16.43)
are to be evaluated. As in any other non-linear minimization problem, the choice of
algorithm depends on the specific function to be minimized and the constraints, and
these will vary from problem to problem. There is a large literature on minimization
problems; Press et al. (1992) give a good general introduction to the subject. Lin and
Der Kiureghian (1991) examine a number of algorithms that have been proposed for the
reliability problem. Rackwitz and his colleagues (Rackwitz 1976; Rackwitz and Fiessler
1978) proposed a technique that remains widely used. Ang and Tang (1990) included it
in the second volume of their book, and it is described below.

Equation (16.26) in Section 16.3.1 defines G as the gradient of the failure function with
respect to the primed variables. This can be normalized into a unit vector α:

α = G
(GT G)1/2

αi =

(
∂g

∂x ′
i

)
√∑(

∂g

∂x ′
i

)1/2
(16.44)

We can use a superscript star to indicate that the unit vector is evaluated at the failure
point. It then follows that the coordinates of the failure point must be

x
′∗
i = −α∗

i β (16.45)

The Rackwitz algorithm then proceeds in six iterative steps (Ang and Tang 1990):

1. Assume initial values of x∗
i and compute the corresponding values of x

′∗
i .
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2. Compute G and α at x
′∗
i .

3. Form the expressions for the new x∗
i = µxi

− αiσxi
β .

4. Substitute these expressions into g(x∗
1 , x∗

2 , . . . , x∗
n) = 0, and solve for β.

5. With this value of β, calculate new values of x
′∗
i = −αiβ .

6. Repeat steps 2 through 5 until the process converges.

The process is best understood from examples, two of which follow. The first is the
failure of the vertical cut with which the chapter started, and the second is the Culmann
single plane slope failure analysis discussed in Chapter 15.

Example 16.1 – Reliability of Vertical Cut Using Factor of Safety

The failure criterion based on the factor of safety is F − 1 = 0, so

g(c, γ ) = 4c

γH
− 1 = 0

∂g

∂c
= 4

γH

∂g

∂c′ = 4

γH
σc

∂g

∂γ
= − 4c

γ 2H

∂g

∂γ ′ = − 4c

γ 2H
σγ

First iteration:

Step 1 – assume c* = µc = 100 and γ ∗ = µγ = 20, so c′ = γ ′ = 0.

Step 2 –
∂g

∂c′ = (4)(30)

(20)(10)
= 0.6

∂g

∂γ ′ = − (4)(100)(2)

(20)2(10)
= −0.2

G =
{

0.6
−0.2

}
α =

{
0.948683

−0.316228

}
Step 3 – c∗ = 100 − (0.948683)(30)β = 100 − 28.460490β

γ ∗ = 20 + (0.316228)(2)β = 20 + 0.632456β

Step 4 – [4(100 − 28.460490β)]/[10(20 + 0.632546β)] = 1

β = 1.664357

Step 5 – c
′∗ = −(1.664357)(0.948683) = −1.578947

γ
′∗ = +(1.664357)(0.316228) = +0.526316

Second iteration:

Step 1 – from first iteration c∗ = 52.631584 and γ ∗ = 22.052633

Step 2 –

∂g

∂c′ = (4)(30)

(21.052633)(10)
= 0.570000

∂g

∂γ ′ = − (4)(52.631584)(2)

(21.052633)2(10)
= −0.095000

G =
{

0.570
−0.095

}
α =

{
0.986394

−0.164399

}
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Step 3 – c∗ = 100 − (0.986394)(30)β = 100 − 29.591820β

γ ∗ = 20 + (0.164399)(2)β = 20 + 0.328798β

Step 4 – [4(100 − 29.591820β)]/[10(20 + 0.328798β)] = 1

β = 1.64399

Step 5 – c
′∗ = −(1.64399)(0.986394) = −1.62162

γ
′∗ = +(1.64399)(0.164399) = +0.27027

Further iterations will not change these results, within the limits of numerical accuracy.
The value of β is identical to that found directly from the margin of safety. This demon-
strates that the Hasofer–Lind method gives consistent results whether the failure criterion
is expressed as a margin of safety or as a factor of safety, so long as the actual failure
conditions are the same.

Example 16.2 – Reliability of Single Plane Failure (Culmann Analysis)

One of the examples in Chapter 15 was the calculation of the reliability of a slope when
failure occurs along a single plane; this is known as the Culmann analysis. The margin
of safety M is

M = c +
[

1

2

H

sin ψ
sin(ψ − θ) cos θ

]
[tan φ − tan θ]γ

so the failure criterion is M = 0. It is assumed that only γ, c, and tan φ are uncertain; the
other parameters have fixed values. The parameters are listed at the bottom of Table 16.1.

In most cases, it is necessary to resort to central difference numerical approximations
to obtain the partial derivatives needed to carry out the Hasofer–Lind analysis, but the
equation for M is simple enough that they can be evaluated analytically. First, to simplify
the expressions, the first term in brackets is replaced by the symbol A. For the values in
Table 16.1, A = 1.120336. Then

∂M

∂γ
= A(tan φ − tan θ)

∂M

∂γ ′ = A(tan φ − tan θ)σγ

∂M

∂c
= 1

∂M

∂c′ = σc

∂M

∂ tan φ
= Aγ

∂M

∂ tan φ′ = Aγσtan φ

Table 16.1 shows the numerical results for each step in the first four iterations, starting
with the mean values of the uncertain parameters. The last column of the table shows the
results of using the built-in minimization function of either MATHCAD or a spreadsheet.
The Rackwitz iteration converges satisfactorily in two iterations, and the iterated value
of β agrees with the value computed from the built-in minimization to seven significant
figures after four iterations. Although not shown here, the values of the primed variables
agree to seven significant figures after eight iterations.
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Table 16.1 Parameters and Hasofer–Lind analysis for Culmann failure, Case 1

Iteration Number

Step Parameter 1 2 3 4 Minimize

1 γ 22 kN/m3 24.519433 25.261950 25.223633
c 5 kPa 3.790286 3.910041 3.924214
tan φ 0.267949 0.225991 0.225815 0.225104

2 ∂g/∂γ ′ −0.236667 −0.340082 −0.340516 −0.342269
∂g/∂c′ 0.500000 0.500000 0.500000 0.500000
∂g/∂ tan φ′ 0.462298 0.515240 0.530843 0.530037
αγ −0.328283 −0.428081 −0.423092 −0.425158
αc 0.693555 0.629378 0.621252 0.621088
αtanφ 0.641258 0.648561 0.659574 0.658400

3 αγ σγ −0.722223 −0.941777 −0.930803 −0.935349
αcσc 0.346778 0.314689 0.310626 0.310544
αtan φσtanφ 0.012028 0.012165 0.012371 0.012349

4 β 3.4884 3.4636 3.4633 3.4633 3.4633

5 γ ′ 1.145197 1.482704 1.465288 1.472440 1.471572
c′ −2.419428 −2.179919 −2.151572 −2.150997 −2.150653
tan φ′ −2.236991 −2.246362 −2.284292 −2.280218 −2.281102

Values of Statistical Parameters

µγ = 22 kN/m3 σγ = 2.2 kN/m3 (� = 0.1) H = 10 m
µc = 5 kPa σc = 0.5 kPa (� = 0.1) θ = 20◦
µtan φ = 0.267949 (φ = 15◦) σtan φ = 0.018756 (� = 0.07) ψ = 26◦

If the variances in the uncertain variables are increased and the mean of tan φ is set at
0.577350 (corresponding to φ = 30◦), the results are as shown in Table 16.2. The con-
vergence is slower, but the results of the Rackwitz iteration and the built-in minimization
again agree to seven significant figures after eight iterations.

When the mean frictional contribution corresponds to φ = 15◦, the factor of safety
computed from the mean values of the variables is 1.294, and, when it corresponds to
φ = 30◦, the factor of safety becomes 2.144. However, Tables 16.1 and 16.2 show that
the larger uncertainties in the latter case lower the reliability. If one calculates the exact
values of the mean and standard deviation of the margin of safety and the reliability index
as their ratio, the results are

Case of Table 16.1

µM = 2.6333 σM = 0.7224 β = 3.6452

Case of Table 16.2

µM = 10.2593 σM = 4.1517 β = 2.4711



390 THE HASOFER–LIND APPROACH (FORM)

Table 16.2 Parameters and Hasofer–Lind analysis for Culmann failure, Case 2

Iteration Number

Step Parameter 1 2 3 4 Minimize

1 γ 22 kN/m3 18.856275 23.692739 23.056535
c 5 kPa 2.282954 2.111294 2.550344
tan φ 0.577350 0.255903 0.284430 0.265239

2 ∂g/∂γ ′ 1.051853 −0.532714 −0.392090 −0.486696
∂g/∂c′ 2.000000 2.000000 2.000000 2.000000
∂g/∂ tan φ′ 3.415244 2.97217 3.678022 3.579259
αγ 0.256853 −0.148594 −0.093245 −0.117875
αc 0.488382 0.557877 0.475630 0.484388
αtanφ 0.833972 0.816513 0.874689 0.866876

3 αγ σγ 1.130153 −0.653815 −0.410278 −0.518649
αcσc 0.976764 1.115753 0.951260 0.968777
αtan φσtan φ 0.115559 0.113139 0.121200 0.120118

4 β 2.7817 2.5890 2.5752 2.5744 2.5744

5 γ ′ −0.714483 0.384713 0.240122 0.303460 0.295097
c′ −1.358523 −1.444353 −1.224828 −1.247023 −1.237608
tan φ′ −2.319844 −2.113967 −2.252472 −2.231708 −2.238007

Values of Statistical Parameters

µγ = 22 kN/m3 σγ = 4.4 kN/m3 (ω = 0.2) H = 10 m
µc = 5 kPa σc = 2.0 kPa (ω = 0.4) θ = 20◦
µtan φ = 0.577350 (φ = 30◦) ωtan φ = 0.138564 (ω = 0.24) ψ = 26◦

The values of β are close but not identical to those in Tables 16.1 and 16.2. This is not
an unexpected result. The definitions of reliability index are different. When β is defined
as the ratio of the mean and standard deviation of the failure function, it is a measure
of the location and shape of the failure function. If we assume or know the shape of the
distribution of the failure function (e.g. Normal or LogNormal) the reliability index can be
used to compute the probability of failure. In the Hasofer-Lind analysis the reliability index
defines the distance from the means of the variables to the failure point. The probability
of failure is computed by evaluating how much of the distribution of the variables falls
on the unsafe side. The probability distribution of the failure function does not enter the
calculations, and the shape of the failure function enters only insofar as it defines the
boundary between the regions. The two definitions agree only when the failure function
is linear.

Many non-linear problems have multiple solutions, and a particular iterative scheme
may not converge or may converge on a solution other than the optimal one. In the present
cases three iterative procedures – the Rackwitz algorithm, the MATHCAD minimization,
and a spreadsheet minimization – give the same results, so we can have some confidence
in the results. In other cases the analyst must examine the results to be sure that they
are reasonable.
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16.4 Higher Order Reliability

Most practical cases involve non-linear failure functions. When there are only two vari-
ables X and Y , the relations can be examined on a two-dimensional plot as in Figure 16.5.
The joint probability density functions plots upwards out of the paper. Line A is the case
of the linear failure criterion, already illustrated in Figures 16.2 and 16.3. The probability
of failure is the volume under the joint probability density function on the unsafe side of
the failure criterion.

Curve B is a convex failure criterion. Since the linear failure line is tangent to curve
B, the volume on the unsafe side of curve B must be less than that on the unsafe side of
curve A. The probability of failure computed on the assumption that the failure criterion
is linear is, therefore, a conservative estimate. Figure 16.6 presents an oblique view of
this case. Curve C is a concave failure criterion. Some of the volume under curve C
lies on the safe side of curve A, so the linear estimate is unconservative. Of course, the
failure criterion could be convex on one side of the point of tangency and concave on
the other. It could be a complicated wavy curve. The relations become more complicated
when more than two variables are involved.

Two issues have to be addressed. First is the question of how adequate is the linear
approximation. Figure 16.7 shows the failure criterion for the Culmann problem. It as a
hyperbolic paraboloid, so it is curved everywhere. However, comparisons between the
results of Hasofer-Lind analyses and Monte Carlo simulation for the example problems
show that the differences between the probabilities of failure computed from the linearized
Hasofer–Lind approach (FORM) and from simulation are not large. For most geotechnical
problems the Hasofer-Lind approach gives satisfactory results.

Secondly, if the Hasofer–Lind approach does not give adequate results, what is to
be done next? As suggested above and described in more detail in Chapter 17, Monte
Carlo simulation with variance reduction can be used to improve the estimate of the
probability of failure. A second approach is to compute directly the probability volume

d

B
C

A
Q

P

Figure 16.5 Linear, convex, and concave failure criteria for two independent variables.
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Figure 16.6 Joint probability distribution of two independent Normal variables and a non-linear
failure criterion.

c

tan f gH/2

Figure 16.7 Failure surface for Culmann problem in which γ , c and tan � are the uncer-
tain variables.
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in the unsafe region. Der Kiureghian and his colleagues (1987; 1991), and many others,
have developed methods for solving the problem of the Second Order Reliability Method
(SORM). These techniques may involve numerical integration of some formidable inte-
grals (Breitung 1984). In any case, the technique to be used depends on the form of the
non-linearities, so they are most applicable in situations like the development of struc-
tural codes where the forms of the non-linearities are known. Since this is not the case for
broad classes of geotechnical problems, SORM has not been widely used in geotechnical
reliability applications.

16.5 Correlated Variables

The previous discussion has concentrated on cases in which the uncertain variables were
not correlated. The Hasofer–Lind approach can also be used effectively when the variables
are correlated, but some adjustments are necessary. Two techniques are widely used – one
based on the Cholesky decomposition of the correlation matrix and the other on its
eigenvectors and eigenvalues.

16.5.1 Cholesky Approach

Let K be the correlation matrix:

K =




1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n

...
...

. . .
...

ρ1n ρ2n · · · 1


 (16.46)

Since K must be symmetric and positive definite, it can be factored into two matrices
that are the transposes of each other:

K = SST (16.47)

S is a lower triangular matrix, and its transpose ST is an upper triangular matrix. The
details of how to compute S are found in most books on numerical methods and are sum-
marized in Chapter 17. Now, let z be a vector of n independent variables {z1, z2, . . . , zn},
each of which has a standard Normal distribution. That is, each has zero mean and unit
standard deviation. We want to find a vector w of n variables, each of which has a standard
Normal distribution, with correlation matrix K. It can be shown that

w = Sz or wi =
n∑

j=1

sij zj (16.48)

The z vector consists of uncorrelated primed variables that are the basis of the Hasofer–
Lind approach. The w vector is another set of primed variables, but this set is correlated.



394 THE HASOFER–LIND APPROACH (FORM)

If we could work with the uncorrelated variables, all of the previous developments would
be applicable, and in particular the distance d would be (zT z)1/2. Then

d = (zT z)1/2 = [(S−1w)T (S−1w)]1/2 = [wT S−1,T S−1w]1/2

= [wT ST ,−1S−1w]1/2 = [wT (SST )−1w]1/2

= (wT K−1w)1/2 (16.49)

In other words, correlation can be incorporated into the analysis by using the same failure
criterion but replacing the distance of Equation (16.25) with

d = (x′T K−1x′)1/2 (16.50)

Low et al. (1998) observe that, if m is the vector of means of the variables and C is the
covariance matrix, Equation (16.50) can also be written

d = [(x − m)T C−1(x − m)]1/2 (16.51)

In summary, defining the constraint as before and minimizing the distance expressed
by either Equation (16.50) or Equation (16.51) results in the correlated version of the
Hasofer–Lind analysis.

16.5.2 Eigenvalue and Eigenvector Approach

Shinozuka (1983) proposed another approach, which Ang and Tang (1990) also describe.
The correlation matrix K has n positive eigenvalues, designated λi . For each eigenvalue
there is a normalized eigenvector, designated φi . The matrix of the eigenvectors is

� = [
φ1φ2 · · ·φn

]
(16.52)

From linear algebra we know that � is orthonormal; that is

�T = �−1 (16.53)

It then follows that a vector y of uncorrelated variables can be obtained from x′

y = �−1x′ = �T x′ x′ = �y (16.54)

The variances of the y variables are the eigenvalues of K. Furthermore,

x = [σ ]x′ + [µ] = [σ ]�y + [µ] (16.55)

where [σ ] and [µ] are diagonal matrices with the standard deviations and means of the x
variables on the diagonals.

The procedure is first to calculate the eigenvalues and eigenvectors and express the
x variables in terms of the uncorrelated y variables from Equation (16.55). Then these
are substituted into the failure function, which is then expressed as a function of the
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uncorrelated variables. The remainder of the calculation proceeds as in the uncorrelated
case, using the new variables. When the iterations have converged, the x variables are
back-calculated.

16.5.3 Low and Tang’s Approach

Low and Tang (1997a) proposed a very efficient procedure that takes advantage of the
optimization and solution techniques that are available in modern spreadsheets and math-
ematical software packages. They work directly with the correlated variables themselves
without any rotations or transformations. If x is the vector of uncertain variables and C
is their covariance matrix (not the correlation matrix) and µ is the vector of their means,
they show that the Hasofer–Lind reliability index is

β = min
√

(x − µ)T C−1(x − µ) (16.56)

subject to the constraint that x must satisfy the failure criterion that M = 0. The procedure
is as follows:

1. Values of the means and covariance matrix are defined and C−1 is calculated.
2. The functional form of the following equation is entered

β2 = (x − µ)T C−1(x − µ) (16.57)

3. The failure criterion (M = 0) is expressed as a constraint in terms of the variables
in x.

4. The ‘minimize’ or ‘solve’ command (depending the spreadsheet or mathematical soft-
ware used) is invoked to minimize β2 by changing the values of x subject to the
constraint that the failure criterion is satisfied.

5. The result consists of values of the terms in x at the failure point and a corresponding
value of β2. Computing β and the probability of failure follows easily.

This technique is extremely easy to use. It can deal with correlated as well as uncor-
related variables. Low and Tang also show how distributions other than Normal can
be employed.

16.6 Non-normal Variables

The Hasofer–Lind approach is based on independent, Normal variables. We have shown
how the procedure can be modified when the variables are correlated. When some of the
variables are logNormally distributed, the problem can be reformulated in terms of the
logarithms of those variables, which are Normally distributed. The mathematical manip-
ulations will become more complicated, but the basic procedures will be those described
in this chapter.

For other distributions there is a procedure known as the Rosenblatt transformation
(Rosenblatt 1952), which is also described by Ang and Tang (1990). This presenta-
tion follows Ang and Tang’s. The transformation considers a set of n random variables
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(X1, X2, . . . , Xn). If their joint CDF is F(x1, x2, . . . , xn) and �(u) is the standard normal
CDF, then we can develop a set of relations:

�(u1) = F1(x1)

�(u2) = F2(x2|x1)

...

�(un) = Fn(xn|x1, . . . , xn−1) (16.58)

In words, this means that the u’s are scaled so that their standard Normal CDFs correspond
to the conditional CDFs of the x’s. Equation (16.58) implies that

u1 = �−1[F1(x1)]

u2 = �−1[F2(x2|x1)]

...

un = �−1[Fn(xn|x1, . . . , xn)] (16.59)

Figure 16.8 shows how this works in the case of one variable. On the right is the CDF
of a function x that has an arbitrary distribution. For each value of x, there corresponds
a value of the CDF. On the left is the CDF of the standard Normal variable, and for
the particular value of the CDF there corresponds a value u. In most cases the failure
functions and its derivatives are expressed in terms of the x’s, but the analysis is driven
by the u’s. During the analysis one moves from a set of the u’s to corresponding values
of the x’s by the following procedure:

1. For all the ui and find �(ui).
2. Find x1 = F −1

1 [�(u1)].
3. Find F −1

2 [�(u2)] and from the result and the value of x1 calculate x2.
4. Find F −1

3 [�(u3)] and from the result and the values of x1 and x2 calculate x3.
5. Repeat for the rest of the variables.

Figure 16.8 Conceptual basis for the Rosenblatt transformation.
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Except for variables whose distribution functions are mathematically quite tractable, this
procedure can only be implemented effectively on a computer. However, it does provide
a generally applicable way to convert almost all distributions into Normal distributions
and thus makes the Hasofer–Lind approach widely applicable.





17 Monte Carlo
Simulation Methods

A wide range of engineering and scientific disciplines use simulation methods based on
randomized input, often called Monte Carlo methods. They have been employed to study
both stochastic and deterministic systems. Because developments are often bound to the
application disciplines, notation and nomenclature sometimes reflect the preferences of a
particular field.

17.1 Basic Considerations

Monte Carlo methods can be divided into two broad and sometimes overlapping areas.
First, there is the simulation of a process that is fundamentally stochastic. For example,
we might want to study the patterns that develop when vehicles arrive at a set of toll bar-
riers, pay their tolls, and proceed through the barrier. The intervals between the arrivals,
the drivers’ choices of lanes, and the times to service each vehicle are all random vari-
ables, whose statistical parameters can be defined but whose actual values are uncertain.
Traffic engineers have used Monte Carlo simulation methods to study such problems for
many years.

17.1.1 A Simple Integration Problem

The second area involves problems that are not inherently stochastic but can be solved
by simulation with random variables. An example is the definite integration of a function,
say cos2 θ between 0 and π . In this case, we know that

I =
∫ π

0
cos2 θdθ = π/2 (17.1)

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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Figure 17.1 Function cos2 θ to be integrated between 0 and π by Monte Carlo simulation. Integral
is shaded area.

If we did not, we could approximate the integral by Monte Carlo simulation. We start by
imagining that the function and the limits are plotted and enclosed in a box, as shown
in Figure 17.1. The area of the box is π . The area we are looking for is the shaded area
under the curve. We proceed by generating a series of points such as A and B. Both the
horizontal and the vertical coordinates of each point are random. If the point falls in the
shaded area (A), it is a ‘Hit’; if not (B), it is a ‘Miss.’ We count the number of hits and
misses and compute the ratio between the number of hits and the total number of points
generated. This ratio should approximate the ratio between the shaded area and the area
of the enclosing rectangle. Of course, the exact answer is 0.5.

Table 17.1 presents the results for a series of ten runs. Each run consists of 100 points.
In the Hit-or-Miss procedure (second column) each point consists of a random value of
θ generated uniformly between 0 and π and a random value of y generated uniformly
between 0 and 1. If the value of cos2θ is greater than y, the point is counted as a ‘Hit,’
otherwise it is a ‘Miss.’ After 100 points are tested, the number of “Hits” divided by 100
gives the entry in Table 17.1. The entire procedure is repeated ten times, with the results
shown in the entries for trials 2 through 9.

In the alternative ‘Sample-Mean’ procedure a random value of θ is generated uniformly
between 0 and π ; actually the same values as in the Hit-or-Miss procedure were used.
Then cos2θ is computed. The average of 100 values of cos2θ is entered in the third column
of Table 17.1. Again the entire procedure is repeated ten times.

Finally, the last line of Table 17.1 contains the averages of the ten trials for both
methods, which can also be regarded as the averages of 1000 random points. Deferring a
discussion of error analysis for the present, we can draw several conclusions:

• The results are close to the exact value, but not always. Trial 9 in the Hit-or-Miss
approach gave a value of 0.38, which is a poor estimate of the correct value.

• The results tend to straddle the exact value so that using more points improves the
accuracy of the estimate.

• While the procedure tends to converge on the exact value, convergence is slow.
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Table 17.1 Results of Monte Carlo integra-
tion of cos2 θ

Mean of 100 Points

Trial No. Hit or Miss Sample Mean

1 0.50 0.459510
2 0.51 0.576580
3 0.54 0.546674
4 0.44 0.476346
5 0.42 0.482850
6 0.50 0.481759
7 0.47 0.492535
8 0.52 0.501243
9 0.38 0.488337

10 0.51 0.527823
Average 0.479 0.503366

Note: Numbers in the table must be multiplied by π to obtain
the value of the integral.

• Results are more accurate from the Sample-Mean approach than from the Hit-or-Miss
method. Rubinstein (1981) proves this result in the general case.

• The technique is easy to use and does not require skill in evaluating definite integrals.

This example is intended only to illustrate the concepts of Monte Carlo techniques.
Evaluating a definite integral of one variable or, equivalently, finding the area of a plane
figure is not a good application for the method. To integrate cos2θ numerically, one could
select a series of equally spaced values of θ , calculate cos2θ at each point, average the
results, and multiply by π . This is simply repeated use of the trapezoidal rule. If each
value of θ is in the center of one of n equal intervals, the exact result of 0.5 is recovered
using any value of n greater than 1. If the values of θ are at the ends of n equal intervals
(so there are n + 1 points), the results converge rapidly to the correct value so that the
results using 100 points are as good as or better than those from 1000 points of Monte
Carlo simulation. Monte Carlo methods are best suited for cases in which (a) there are
many independent variables or (b) the function to be integrated is strongly non-linear so
that it is difficult to determine how to divide the region of integration efficiently.

17.1.2 Accuracy and Convergence

The analyst must determine how many trials are necessary to ensure a desired level
of accuracy in the results. The following summary is based on the books by Rubinstein
(1981), Morgan and Henrion (1990), and Fishman (1995), but many other authors present
similar material. For a more thorough coverage the reader is directed to a text, such as
Fishman’s (1995), that is devoted entirely to Monte Carlo methods.

Each point in the Hit-or-Miss strategy is an independent sampling of the total area in
Figure 17.1. It is completely analogous to withdrawing balls from an urn that contains
a large number of black and white balls and replacing the ball after each test. This is a
Bernoulli trial, and the probability of success on a single trial, which is in this case the
probability of hitting the shaded area, is the ratio between the shaded area and the total
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area. Let us call this p. If A is the area of the region over which the sampling is done,
N is the number of sampling points, and NH is the number of hits, then

p = I/A

p̂ = NH/N (17.2)

This is the classic case of p̂ as an unbiased estimator of p. NH must be Binomially
distributed. If a large number of samples are taken and Q is defined as

Q = A · NH

N
= A · p̂ (17.3)

then
I = p · A ≈ p̂ · A = Q (17.4)

Furthermore, the expected value of Q is

E[Q] = A · E[p̂] = A · p = I (17.5)

so that Q is an unbiased estimator of I .
Because NH is binomially distributed,

Var[NH ] = N · p · (1 − p) (17.6)

It follows that

Var[p̂] = Var

[
NH

N

]
= 1

N2
· Var[NH ] = 1

N
· p · (1 − p)

= 1

N
· I

A
·
(

1 − I

A

)
= 1

N
· I

A2
· (A − I ) (17.7)

and

Var[Q] = A2 · Var[p̂] = I

N
· (A − I ) (17.8)

σQ = 1√
N

· I ·
(

A

I
− 1

)1/2

(17.9)

The last result indicates that the error in the estimate of the integral decreases as
the square root of the number of trials. This is a slow rate of convergence, and much
of the modern work on Monte Carlo methods has been directed at either reducing the
error in the sampling process or decreasing the number of trials necessary to achieve a
desired accuracy.
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In most cases, the analyst is less interested in estimating the error than in determining
how many trials must be made to achieve a desired accuracy. Fishman (1995) shows that,
starting from Chebychev’s inequality

pr

[ |Z|
σZ

≥ β

]
≤ 1

β2
(17.10)

defining Z = p̂ − p and β = ε/σ , and recalling that Var[Z] = Var[p̂] = p · (1 − p)/N ,
we obtain

pr[|p̂ − p| < ε] ≥ 1 − p · (1 − p)/(Nε2) (17.11)

We must specify a confidence level, which is to say that the probability in Equation (17.11)
must be greater than some desired level, say 90% or 95%. This is usually stated in the
form (1 − δ) with δ = 0.1 or 0.05, respectively. It follows that the number of trials needed
to achieve a desired confidence level is

nC(ε, δ, p) = p · (1 − p)/(δε2) (17.12)

where any real result is rounded up to the next integer.
Equation (17.12) cannot be used as written because the value of p is not known a

priori. One alternative is to use p̂ as an estimate of p. An upper limit on nC follows from
the recognition that p(1 − p) has its maximum when p = 0.5. This gives

nC(ε, δ) = 1/(4δε2) (17.13)

The subscript C indicates that it is based on the Chebychev approximation.
An improved estimate follows from the Central Limit Theorem, which states that as

N → ∞ the quantity (NH − Np)/[Np(1 − p)]1/2 converges to the standard Normal dis-
tribution with mean of zero and standard deviation of 1. Fishman (1995) shows that the
corresponding requirements for achieving a desired accuracy with a given confidence
level are

nN(ε, δ, p) = p · (1 − p) · [�−1(1 − δ/2)/ε]2 (17.14)

nN(ε, δ) = [�−1(1 − δ/2)/(2ε)]2 (17.15)

The expression �−1(x) is the inverse of the CDF for the standard Normal distribution;
that is, it is the value of the variate that gives the cumulative distribution x. Any real
results in Equations (17.14) and (17.15) are rounded up to the next integer. The subscript
N indicates that the result is based on a Normal approximation. Fishman (1995) observes
that this estimate does not converge uniformly so that many workers prefer to multiply
its estimates by 2.

Table 17.2 lists the maximum values of nC and nN for various error bounds and for
90% and 95% confidence levels. The values for nN are also plotted in Figure 17.2. The
results are consistent with the results for the Hit-or-Miss strategy in Table 17.1. For 100
trials Table 17.2 and Figure 17.2 indicate that we can have 90% confidence that the error
is less than 0.08 and 95% confidence that it is less than 0.1. Table 17.1 shows that in
one out of the ten sets of 100 trials (Number 9) the mean differed from the true value by
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Figure 17.2 Error estimates for Hit-or-Miss Monte Carlo integration.

Table 17.2 Number of trials required to achieve desired
accuracy

90% confidence 95% confidence

ε nC nN nC nN

0.005 100,000 27,056 200,000 38,415
0.01 25,000 6,764 50,000 9,604
0.02 6,250 1,691 12,500 2,401
0.03 2,778 752 5,556 1,068
0.04 1,563 423 3,125 600
0.05 1000 271 2000 385
0.1 250 68 500 97
0.2 63 17 125 25
0.3 28 8 56 11
0.4 16 5 32 4
0.5 10 3 20 4

more than 0.1. For 1000 trials one would expect 90% confidence that the error is less than
0.025 and 95% confidence that it is less than 0.03. In fact, the error in the Hit-or-Miss
strategy is 0.021 and in the ‘Sample Mean’ strategy is about 0.004.

It should be noted that Trial Number 9 in Table 17.1 presents an unusual result. It has
the largest error observed in several repeated runs of the numerical experiment. However,
it does represent the sort of result that can be expected in Monte Carlo simulation and is
consistent with the calculated error bounds.

17.2 Computer Programming Considerations

Most practical applications of the Monte Carlo method require that a function be evaluated
at a large number of points, so a computer is essential. Indeed, the popularity of Monte



COMPUTER PROGRAMMING CONSIDERATIONS 405

Carlo methods coincides historically with the availability of computers. Today the analyst
can use many computer systems specifically written for stochastic simulation, Monte Carlo
capabilities are in most general-purpose statistical software, and even spreadsheets include
the functions necessary to perform Monte Carlo analyses. Thus, software developers have
now resolved many issues with which the analyst had to wrestle in the past. Nevertheless,
the analyst should be aware of some of the issues that lie behind the Monte Carlo method
because it may be necessary to perform analyses that are beyond the capabilities of canned
software packages, and it may be necessary to check that the software is functioning
properly.

17.2.1 Random Number Generation

Any simulation that relies on random numbers requires that there be some way to generate
the random numbers. There is a large literature on the subject (Kahaner et al. 1989; Press
et al. 1992; Fishman 1995; Knuth 1997), and readers interested in the details of random
number generation should consult those references. The following is a brief summary of
the highlights.

The very concept of a series of uniformly distributed random numbers is a difficult
one to formulate, even though it seems intuitively simple. Statisticians have developed a
set of criteria that must be satisfied by a sequence of truly random numbers. First, they
must be uniformly distributed over the interval of definition. Statisticians use tests such as
the χ2 and Kolmogorov–Smirnov tests to determine whether the numbers are uniformly
distributed. Rubinstein (1981) and Press et al. (1992) give the details. Second, the value
of any number in the sequence must be statistically independent of the other numbers. In
practice it is difficult to satisfy these criteria.

Some commercially available packages include random number generators that rely
on the architecture of a particular computer and are, therefore, not portable to different
machines. Kahaner et al. (1989), Press et al. (1992) and Fishman (1995) provide detailed
programming information or actual Fortran or C code that can be implemented on dif-
ferent machines. Some analytical systems, such as MATHCAD, give references for the
algorithms used to generate random numbers, but most spreadsheets do not. In either case,
the user should be aware of some of the considerations in the following paragraphs.

Most random number generators employ a linear congruential algorithm, in which a
sequence of uniformly distributed random integers (I1, I2, . . . , Ii, Ii+1, . . . , In) is gener-
ated from

Ii+1 = a Ii + c (mod m) (17.16)

In this equation, a and c are constants and (mod m) indicates that the calculations are to
be modulo m; that is, the result is divided by m and only the remainder retained. Since
integer operations are faster than real calculations, the usual procedure is to perform
the calculations in integer mode and then divide the results by m to obtain real random
numbers Zi between 0 and 1. Equation (17.16) implies that

• each random variable depends only on the previous value in the sequence,
• if any value recurs, the sequence starts over,
• the length of the non-repeating sequence cannot exceed m,
• but it may be a great deal shorter.
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Therefore, m is usually taken to be as large as practicable. In most applications m is 232

or 231, or close to it. In many applications c = 0, and the algorithm is simplified. It can be
shown that, with the appropriate choice of a and m, the results are as good as they would
be with c �= 0. However, it is critically important that the first value of the sequence of
random number, called the seed, not be set to zero, even though many users of random
numbers are tempted to do so. Park and Miller (1969) and Press et al. (1992) endorse
using a = 75 = 16,807 and m = 231 − 1 = 2,147,483,647.

The most commonly used sequences of random numbers are not random at all but are
determined exactly by the computational algorithm. They are sometimes called ‘pseudo-
random’ numbers. However, the sequence must be sufficiently long that it does not repeat
during the simulation. If the parameters of the sequence are chosen with care, the sequence
will appear random and can be used as though it were. A linear congruential algorithm
is very fast if implemented properly.

One difficulty with pseudo-random number generators of this type is well known in the
simulation community but is not so familiar to casual users of simulation software. As
Press et al. (1992) state,

[The generator] is not free of sequential correlation on successive calls. If k random
numbers at a time are used to plot points in k dimensional space (with each coordinate
between 0 and 1), then the points will not ‘fill up’ the k-dimensional space, but rather
will lie on (k − 1)-dimensional ‘planes.’ There will be at most about m1/k such planes.
If the constants m, a, and c are not very carefully chosen, there will be many fewer
than that. The number m is usually chosen close to the machine’s largest representable
integer, e.g. ∼232. So, for example, the number of planes on which triples of points
lie in three-dimensional space is usually no greater than about the cube root of 232,
about 1600. You might well be focusing attention on a physical process that occurs in
a small fraction of the total volume, so that the discreteness of the planes can be very
pronounced. (Italics in the original.)

The parameters in a linear congruential generator must be selected carefully to maximize
the number of planes – or hyperplanes – along which the sets of points cluster. It is
surprising that some of the commercially developed generators behave very badly. The
best known horror story concerns the RANDU routine that was part of the IBM Scientific
Subroutine Package for the 360 and 370 computers in the 1960s and 70s (Press et al.
1992; Fishman 1995). This used a = 216 + 3 = 65,539, c = 0, and m = 231. Although
m1/k gives about 1290 as the number of planes that should exist in three dimensions, this
generator actually had all the points falling on 15 planes in three dimensions. Figure 17.3
shows in part (a) that the points seem to be fully distributed when the space is viewed
from an arbitrary angle but in part (b) that the 15 planes are clearly visible from the
right perspective. This random number generator was widely used, and its performance
became notorious.

Knuth (1997) gives the following recommendation for dealing with these issues in
important applications:

The most prudent policy for a person to follow is to run each Monte Carlo program at
least twice using quite different sources of random numbers, before taking the answers
of the program seriously; this will not only give an indication of the stability of the
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(a) (b)

Figure 17.3 Pattern of sequential values from RANDU. (a) Arbitrary view; (b) View along planes.
(Fishman, G. S.; Monte Carlo: Concepts, Algorithms, and Applications, p. 620, Fig. 7.7, 1995, New
York,  Springer-Verlag, reproduced with permission.)

results, it will also guard against the danger of trusting in a generator with hidden
difficulties. (Every random number generator will fail it at least one application.)

17.2.2 Improvements

Several improvements have been proposed, but most of these have not found extensive
use because they are more time-consuming than the simple linear congruential generators.
Perhaps the simplest approach is adopt a two-step approach. First a series of pseudo-
random numbers is generated in the usual way. Then this array is sampled randomly by
choosing the location with another random number generator. After each sample, the
number is replaced with the next number in the original random sequence. This process
has the effect of shuffling the arrangement of random numbers. Press et al. (1992) give
the Fortran code for such a generator, which is both fast and easy to use. The C version
of the code is available in the other editions of their book.

17.2.3 Non-uniform Distributions

The standard techniques described in the preceding sections provide a series of random
numbers uniformly distributed between 0 and 1. However, what we usually need is a
sequence of random numbers satisfying some other distribution, such as a Normal distri-
bution. It is easy to formulate a way to do this. If Y is uniformly distributed between 0
and 1, X is distributed in some known way, and �(x)is the CDF of X, it is easy to write

y = �(x)

x = �−1(y) (17.17)

The procedure would then be to generate a sequence of uniformly distributed random
numbers and then to find the inverse of the CDF for each number in the sequence. The
result would be a sequence of random numbers with the desired distribution. For example,
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if we generate a series of random numbers xi that are uniformly distributed between 0
and 1, then − ln(xi)/λ will be a series of exponentially distributed numbers with mean of
1/λ. The trouble with this approach is that we almost never have an analytical form for
the inverse CDF, even for well-known distributions. The difficulty is sometimes resolved
by approximating the CDF with a simpler function.

For some distributions mathematical procedures exist for avoiding approximating the
inverse CDF. It can be shown (Press et al. 1992; Fishman 1995) that, if X and Y are
uniform variates between 0 and 1 and if we define two new variables

U = √−2 ln X · cos(2πY)

V = √−2 ln X · sin(2πY) (17.18)

then U and V are independent standard normal variates. Another technique is the accep-
tance-rejection algorithm, in which one generates a random variate uniformly distributed
over the area under some analytically simple curve that envelopes the desired distribution
and accepts or rejects the value depending on whether it falls under the target distribution.

Abramowitz and Stegun (1964), Press et al. (1992), Evans et al. (1993) and Fishman
(1995) give approximations or algorithms for many distributions. Many canned software
packages and spreadsheets are able to generate random number sequences satisfying sev-
eral prescribed distributions, so the user need only specify that the random numbers must
satisfy a prescribed distribution. However, once again the analyst should be aware of what
is going on, especially for important applications involving large numbers of variables or
many dimensions.

17.2.4 Correlated Random Numbers

In many practical applications the uncertain variables are correlated, and the random
number systems must be capable of generating correlated sequences. This is relatively easy
to do if the uncertain variables are Normally distributed. Consider a vector X consisting of
n random variables, each of which is statistically independent and has a standard Normal
distribution with zero mean and unit standard deviation. (There are n variables, but there
may be thousands of randomly generated instances of each variable.) Consider also another
vector Y consisting of n random variables, also with standard Normal distribution and
related to X by a correlation matrix K:

K =




1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n

...
...

. . .
...

ρ1n ρ2n · · · 1


 (17.19)

in which ρij is the correlation coefficient between variables i and j . Since in any physically
realizable case K must be positive definite, the Cholesky algorithm can be used to factor
it into an upper triangular matrix S and its lower triangular transpose ST :

ST S = K (17.20)

We summarize the Cholesky decomposition shortly, but let us first follow its implications.
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The definitions of variance and covariance can be summarized by

∫
X · XT f (x1, x2, . . . , xn) dx =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


 = I (17.21)

and ∫
Y · YT f (y1, y2, . . . , yn) dy = K (17.22)

The notation in these equations is somewhat imprecise, but it is adopted to reduce clutter.
The intention is that the f ’s are the joint probability density functions and the integrations,
whether single or double, are carried out between −∞ and +∞. Now, let the vectors be
related by

Y = ST X (17.23)

Then ∫
Y · YT f (y1, y2, . . . , yn)dy =

∫
ST X · XT Sf (x1, x2, . . . , xn)dx

= ST

∫
X · XT f (x1, x2, . . . , xn)dx S

= ST · I · S = ST · S = K (17.24)

In other words, if Y is computed from the independent X according to Equation (17.23),
it follows that Y has the correlation described by K.

The Cholesky decomposition is a well-known technique in numerical analysis. The
algorithm is

Sii =
(

Kii −
i−1∑
k=1

S2
ki

)1/2

i = 1, . . . , n

Sij =
(

Kij −
i−1∑
k=1

SkiSkj

)
/Sii j = i + 1, . . . , n

Sji = 0 j = i + 1, . . . , n (17.25)

The calculations start at the upper left corner and proceed by first calculating the diagonal
term, calculating the remaining terms in that row and column, and proceeding to the next
diagonal terms. Fishman (1995) lists the algorithm, without identifying it as Cholesky
decomposition. Morgan and Henrion (1990) provide a simple form for the special case
that n = 2. The correlation coefficient between the two Normally distributed random
variables is ρ. If x1 and x2 are a pair of uncorrelated random numbers drawn from the
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standard Normal distribution. Then a pair of correlated random numbers, y1 and y2, from
the standard Normal distribution are

y1 = x1

y2 = ρx1 +
√

1 − ρ2x2 (17.26)

In summary, to generate correlated sequences of random numbers when the random
variables have standard Normal distributions, one proceeds as follows:

1. Calculate the correlation matrix, K.
2. Perform the Cholesky decomposition to find S.
3. Generate n uniform random numbers between 0 and 1.
4. Modify each number so that it corresponds to the standard Normal distribution with

mean 0 and standard deviation 1. This is one instance of the vector X.
5. Compute the vector Y from Equation (17.23). This is an instance of the correlated

variables.
6. To obtain the random variables with the correct means and standard deviations, for

each variable compute:
zi = µzi

+ σzi
· yi (17.27)

The zi comprise one instance of the vector Z of correlated random variables with the
desired means and standard deviations.

7. Repeat steps 2 through 6 for each additional randomly generated instance of Z.

17.3 Simulation of Random Processes

So far, this chapter has described the use of Monte Carlo methods to evaluate integrals.
The other application is to study the behavior of random processes. These are problems
in which the input is stochastic and the results uncertain. The Monte Carlo method is
particularly effective when the process is strongly nonlinear or involves many uncertain
inputs, which may be distributed differently.

To perform such a study, the analyst generates a random value for each uncertain
variable and performs the calculations necessary to yield a solution for that set of values.
This gives one sample of the process. The trials are repeated many times, giving many
samples of the process. Once a large number of runs have been completed, it is possible
to study the output statistically and to obtain values of means, variances, probabilities of
various percentiles, and other statistical parameters. Two important points should be noted:

1. Regardless of the number of stochastic variables, each run gives one sample of the
process. Hence, increasing the number of stochastic input variables does not increase
the number of runs for the same level of accuracy.

2. The technique is essentially a repeated sampling of the stochastic process, and the
methods of Part 2 and particularly Chapter 11 can be used to examine the accuracy
and precision of the results.
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17.3.1 Some Useful Results

The unbiased estimate of the mean of a random process is simply the mean of the values
returned by the process

E[µX] = 1

n

n∑
i=1

xi (17.28)

and the standard deviation of this estimate is related to the standard deviation of all the
values by

σ
X

= σX√
n

(17.29)

If the process is Normally distributed, the variance is χ2 distributed. It can be shown that
the upper confidence limit at the (1 − α) level is

(σ 2)1−α = (n − 1)s2

χ2
α,n−1

(17.30)

in which s2 is the variance computed from the sample, and the denominator is the cumu-
lative χ2 distribution with the parameters α and (n − 1). These equations can be used to
obtain estimates of the number of samples necessary to achieve a desired level of accuracy.

17.3.2 An Example of the Monte Carlo Method

Example 13.1 described the analysis of the reliability of a vertical cut in a cohesive
soil. Direct analytical techniques are adequate to treat this problem, whether or not the
variables are correlated. If the input variables are Normally distributed, the margin of
safety is Normal as well, but the factor of safety F is not. Since we have the exact
analysis of this problem, we use it to examine the behavior of Monte Carlo simulation
applied to the same problem.

Example 17.1 – Vertical Cut in Cohesive Soil

The equation for the margin of safety of a vertical cut is

M = c − γH/4 (17.31)

In the present problem H = 10 m, and the other quantities are Normally distributed with
the following parameters

µc = 100 kPa σc = 30 kPa

µγ = 20 kN/m3 σγ = 2 kN/m3 ρcγ = 0.5 (17.32)

For each sample, the analysis generated two random numbers, x and y, with standard
Normal distribution. The Cholesky decomposition of Equation (17.26) can be used to give
a third random number z that is correlated to x

z = ρcγ · x +
√

1 − ρ2
cγ · y (17.33)



412 MONTE CARLO SIMULATION METHODS

The values of c and γ for this sample are then

c = µc + σc · x
γ = µγ + σγ · z (17.34)

These are used to generate one sample of the margin M .
It will be recalled from Example 13.1 that M is Normally distributed and the exact

values of the results are

µM = 50 kPa σM = 27.84 kPa

β = 1.80pf = 3.62 × 10−2 (17.35)

The Monte Carlo simulation was carried out with 100, 1000, and 10,000 samples.
Table 17.3 gives the results for one set of runs. Figures 17.4, 17.5 and 17.6 show the
corresponding plots of the ordered results. In each plot the dashed line is the result of
the Monte Carlo simulation and the solid line is the exact cumulative distribution for the
margin of safety. The table and plots show that, while the results from a simulation using
100 points give a general picture of the true answer, 1000 points or more are necessary to
obtain accurate results. An additional benefit of the plots is that, generally, the smoother
the curves the more accurate the results.
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Figure 17.4 Ordered sequence of results for 100 simulations of vertical cut problem (dashed line).
The solid line is the exact answer.
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Figure 17.5 Ordered sequence of results for 1000 simulations of vertical cut problem (dashed
line). The solid line is the exact answer.
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Figure 17.6 Ordered sequence of results for 10,000 simulations of vertical cut problem (dashed
line). The solid line is the exact answer.
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Table 17.3 Results from Monte Carlo simulation of vertical cut

Results

n µM σM β pf

100 47.90 kPa 30.05 kPa 1.594 5.55 × 10−2

1,000 49.71 kPa 28.03 kPa 1.773 3.81 × 10−2

10,000 49.95 kPa 27.66 kPa 1.806 3.55 × 10−2

exact 50.00 kPa 27.84 kPa 1.796 3.62 × 10−2

17.4 Variance Reduction Methods

The previous section shows what might be called the brute-force Monte Carlo method.
A set of randomly distributed points is generated; they are used to compute a sample
of values of the desired function or integral; and the statistical properties of the result
are calculated from the sample. As the examples show, obtaining satisfactory accuracy
requires that a large number of random points be used. Is there any way to reduce the
computational burden or, equivalently, to increase the accuracy for the same number of
points? It turns out that this is indeed possible, and the techniques as usually described
as variance reduction methods.

Variance reduction is something of a misnomer. The techniques are actually meth-
ods of obtaining the same level of accuracy with fewer simulations. Rubinstein (1981)
summarizes the goals and conditions as well as anybody:

Variance reduction can be viewed as a means to use known information about the
problem. In fact, if nothing is known about the problem, variance reduction cannot be
achieved. At the other extreme, that is, complete knowledge, the variance is equal to
zero and there is no need for simulation. Variance reduction cannot be obtained from
nothing; it is merely a way of not wasting information. One way to gain this information
is through a direct crude simulation process. Results from this simulation can then be
used to define variance reduction techniques that will refine and improve the efficiency
of a second simulation. Therefore the more that is known about the problem, the more
effective the variance reduction techniques that can be employed. Hence it is always
important to clearly define what is known about the problem. Knowledge of a process
to be simulated can be qualitative, quantitative, or both.

Variance reduction always involves some effort at the beginning of the problem to
identify ways in which the number of simulations can be reduced. It may also involve some
additional computational effort for each simulation. Therefore, we must first ask whether
the improved efficiency is worth the effort, and a brief review of the time consumed in
the parts of a simulation analysis is helpful. A simulation analysis consists of three parts:

1. Analyzing the problem and determining the appropriate computational methods. The
more sophisticated the computational approach, the more time-consuming this part of
the process is likely to be.

2. Computation: This includes three components:
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(a) Setting up the computation, initializing variables, and so on.
(b) Performing the simulation n times. Each simulation involves generating the random

variables and computing the thing to be simulated.
(c) Summarizing the results, making plots, computing variances, and so on.

3. Evaluating the results.

Variance reduction reduces the cost of the simulation by reducing the number of simu-
lations that have to be done in part 2b. If the computations in each simulation are simple
and cheap but the initial costs in parts 1 and 2a are large, there is little benefit is devoting
much effort to variance reduction. On the other hand, if the costs for each simulation are
high, there is a lot to be gained by reducing their number. In this area, as in much other
numerical work, the analyst must weigh benefits against costs and exercise judgment. It
is worth bearing in mind that, in practice, most analyses are repeated far more often than
the analysts originally planned, so improved efficiency may be worth some attention early
in an analytical program.

Some improvements are relatively simple. For example, the simple integration problem
introduced in Section 17.1.1 involves a function that is symmetrical about π/4. The
simulation effort could have been cut in half by distributing the points between 0 and
π/2 instead of between 0 and π .

17.4.1 Importance Sampling

Importance sampling starts with the observation that, if we are going to sample randomly,
we should distribute the points to put most of them in the region that contains information
and to waste as few as possible. For example, in the hit-or-miss attack on the integration
problem discussed in the first part of this chapter, half the random points are expected
to fall outside of the area to be integrated; changing the search area so that more of the
points are useful should improve the efficiency of the computation. In the analysis of the
vertical cut, we used Monte Carlo simulation to evaluate the mean and standard deviation
of the margin of safety and then combined these estimates with our knowledge that M

is normally distributed to determine the probability of failure. If the distribution of the
failure criterion were not known (as, say, when it is defined by the factor of safety), the
probability of failure could be estimated by comparing the number of simulated points
that fall in the unsafe region to the total number of points. Since the probability of failure
in this example is on the order of 10−3, it is obvious that several thousand points must
be used to obtain reasonable accuracy unless the sampling can be concentrated in the
failure region.

The central problem is to find the integral of a function g(x)

I =
∫

g(x)dx (17.36)

where x can be a vector of several variables, the integration can be multidimensional,
and the limits of integration are appropriate to the specific problem. Now, let us assume
that we can find some probability distribution function f (x) concentrated in the region
of interest. Then

I =
∫

g(x)

f (x)
f (x)dx = E

[
g(x)

f (x)

]
(17.37)
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If we generate points from the distribution f (x), then the Monte Carlo estimate of the
integral is

I ≈ 1

n

n∑
i=1

g(xi)

f (xi)
(17.38)

It turns out (see Rubinstein (1981), Press et al. (1992) or Fishman (1995)) that the
optimal choice of f (x) is

f (x) = g(x)

I
(17.39)

This states essentially that, if we know the value of the integral, we can then find the best
importance function, but the whole purpose of the exercise is to find the value of that
integral. Nevertheless, Equation (17.39) does indicate that a good choice of f (x) is one
that closely approximates the function to be integrated in the significant region. The trick
is to find f (x) without expending more effort than is saved by the increased efficiency
of the simulation. Two examples demonstrate how this is done.

Example 17.2 – Importance Sampling for Integration of a Function

Section 17.1.1 showed how Monte Carlo simulation could be used to estimate the integral
of cos2θ between 0 and π . We have already observed that the effort could be cut in half
by integrating between 0 and π/2 and doubling the result. Figure 17.7 shows two possible
choices for f (x) compared with cos2θ . The solid line is cos2θ , the dotted line is a linear
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Figure 17.7 Function (cos2θ ) to be integrated (solid line), linear importance function (dotted line),
and cubic importance function (dashed line).
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function, and the dashed line is a cubic function. The linear and cubic functions are scaled
to enclose unit areas. The functional forms are

linearf (θ) = 4

π

(
1 − 2

π
θ

)

cubicf (θ) = 4

π

(
1 − 3

(
2

π

)2

θ2 + 2

(
2

π

)3

θ3

)
(17.40)

The computation proceeds as follows:

1. Establish n = number of simulation points to be used.
2. For each point, generate a random variable uniformly distributed between 0 and 1.
3. From the cumulative distributions corresponding to Equations (17.40) find θ corre-

sponding to the value found in step 2. This requires solving a quadratic or quartic
equation, but modern software packages include efficient solving routines.

4. Compute cos2θ, f (θ), and their ratio. Keep a running total of the ratios.
5. Compute the average value of the ratio. Multiply this by 2 to get the integral from 0

to π .

To compare the results with those from the brute-force approach, the computed values of
the integrals were divided by π . The correct answer is then 0.5. The number of simulation
points, n, varied from 10 to 10,000. For each value of n, ten simulations were run. An
estimate of the standard deviation of the error for each n is then

σerror ≈
(

k∑
i=1

errori/(n − 1)

)1/2

(17.41)

Figure 17.8 shows the error plotted against the number of points in the simulations.
Squares correspond to the basic case, solid upward triangles to linear importance, and
solid downward triangles to cubic importance. The open triangles are the results from
using control variates, which are discussed in Section 17.4.4.

Figure 17.8 demonstrates that importance sampling dramatically reduces the number
of simulations necessary to achieve a given level of accuracy, or, alternatively, reduces
the error for a given number of simulations. The figure shows that, even when 10,000
simulations are used, the estimated error in the brute-force case is about 0.003, and this
is nearly the same as the error in the cubic case with 10 simulations. There is about
a one-thousandfold reduction in the number of points necessary to achieve a particular
accuracy when going from the basic case to the cubic case. The ratio between cos2θ and
the cubic importance function varies between 0.79 and 0.64 and is nearly constant over
the region where cos2θ has the largest value. Thus, cubic importance sampling generates
sampling points that are almost entirely within the area to be integrated.

Example 17.3 – Importance Sampling for Failure of Vertical Cut

Example 17.1 described the use of Monte Carlo simulation to estimate the mean and
standard deviation of the margin of safety of the vertical cut. From these we can compute
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Figure 17.8 Estimated error in Monte Carlo simulation of integration of cos2θ with basic
method, linear importance function, cubic importance function, linear control variate, and cubic
control variate.

the probability of failure for a normally distributed M , but we might need to compute the
probability of failure directly when the distribution is not known. Many simulations will
be needed if we estimate the probability by comparing the number of failure states with
the total number of simulations. Importance sampling is one way to reduce this number.

Hasofer and Wang (1993) and Melchers (1993) describe the theoretical basis for impor-
tance sampling; the specific technique follows from Melchers’ approach. There are two
uncertain variables, c and γ , and they have a joint probability distribution function f (c, γ ),
which in this case is a bivariate Normal distribution. We want an importance function of
two variables that is concentrated in the region of failure. First we find values of c and γ

that satisfy the failure condition (M = 0 or FS = 1) and have the maximum value of the
joint probability distribution function. This is actually easy to do using the ‘solve’ feature
in a spreadsheet or a mathematical simulation system; it is also the failure point found in
the Hasofer-Lind first-order reliability method described in Chapter 16. We then assume
that the importance function is a joint Normal distribution with means at the failure point
and variances equal to the variances of the original variables c and γ . Let us call this
h(c, γ ).

The probability of failure is

pf =
∫∫

D

f (c, γ )dcdγ =
∫∫

c,γ

Jf (c, γ )dcdγ (17.42)

where D is the region of failure (M ≤ 0 or FS ≤ 1) and J is a function that is 0 outside
of D and 1 inside it. The basic Monte Carlo simulation for calculating pf is
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1. Establish n = the number of simulation points to be used.
2. For each point i generate a pair of values ci and γi from their joint distribution f (c, γ ),

including the correlation.
3. If M(ci, γi) ≤ 0, add 1 to the number of hits and go to the next i. If not, skip to the

next i.
4. After all n points have been evaluated, pf is approximately the sum divided by n.

This can be stated also in the form

pf ≈ 1

n

n∑
i=1

Ji where Ji = 1 if M(ci, γi) ≤ 0

Ji = 0 if M(ci, γi) > 0 (17.43)

Importance sampling changes the second part of Equation (17.42) into

pf =
∫∫

c,γ

J
f (c, γ )

h(c, γ )
h(c, γ )dcdγ (17.44)

which leads to the Monte Carlo approximation

pf ≈ 1

n

n∑
i=1

Ji

f (ci, γi)

h(ci, γi)
(17.45)

where Ji is as defined for the basic Monte Carlo method. This leads to the following
computational procedure:

1. Establish n = the number of simulation points to be used.
2. For each point i generate a pair of values ci and γi from the distribution h(ci, γi).

Note that this is not f (ci, γi) and does not include the correlation.
3. If M(ci, γi) > 0, skip to the next i. If M(ci, γi) ≤ 0, calculate f (ci, γi)/h(ci, γi), add

the result to a running sum, and go to the next i.
4. After all n points have been evaluated, the estimate of pf is the running sum divided

by n.

The correct probability of failure for the parameters in Example 17.1 is 0.0362. Both
the basic Monte Carlo simulation and the importance-sampled simulation were run for
n = 10, 100, and 1000, and each simulation was repeated ten times. Figure 17.9 shows
the results. There are two vertical lines above each value of n. The right one represents the
results for the basic simulation, and the left one corresponds to the importance sampled
simulation. The top of the line is the largest estimate of pf , the bottom is the smallest
value, and the horizontal line near the middle of the vertical line represents the mean result.
It is not surprising that results for basic simulation with n = 10 are poor, but the mean
result for the importance sampled simulation with n = 10 is remarkably good. The results
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Figure 17.9 Probability of failure of vertical cut 10 m high evaluated by Monte Carlo simulation
with and without importance sampling with different numbers of simulations. Results on the left are
importance sampled. Lines span between the smallest and largest values from 10 sets of simulations;
line near middle is average of 10 results.

get better as n increases, and in each case the importance-sampled results are significantly
superior. When n = 1000, the results with importance sampling are nearly exact.

These results demonstrate the particular usefulness of importance sampling when the
probability to be calculated is small. The convergence could be improved further by choos-
ing a better importance function. Hasofer and Wang (1993) propose a more complicated
function that is exponentially distributed in a direction normal to the failure criterion and
normally distributed in the remaining directions. While this would probably give better
results, it is more complicated, and the present results demonstrate the effectiveness of
importance sampling even with a relatively crude importance function.

Another point to be emphasized is that the same calculation could be done using the
factor of safety instead of the margin of safety. The criterion that FS ≤ 1 is identical to
the requirement that M ≤ 0. Thus, the same center and form for the importance function
are defined, and the computational results are identical.

17.4.2 Antithetic Sampling

Antithetic sampling can be useful when there are reasons to believe that different senses
of deviation from the mean values of the variates will have different effects on the value
of variable to be integrated. Suppose ZA and ZB are two unbiased estimators of I . Then

Z = 1
2 (ZA + zB) (17.46)

is an unbiased estimator of I . The variance of Z is

Var(Z) = 1
4 [Var(ZA) + Var(ZB) + 2 Cov(ZA, ZB)] (17.47)
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If ZA and ZB are uncorrelated, then

Var(Z) = 1
4 [Var(ZA) + Var(ZB)] (17.48)

Therefore, if Cov(ZA,ZB) < 0, the variance in Equation (17.47) is less than the variance
when the two samples are uncorrelated, and the simulation will be more efficient.

One widely used technique for making ZA and ZB negatively correlated is to create
ZA from n simulations and ZB from n complementary simulations, making a total of
2n simulations. By the complement we mean that, if X is uniformly distributed between
0 and 1, each xB is equal to the corresponding xA subtracted from 1, and, if X has a
standard Normal distribution, each xB is equal to the negative of the corresponding xA. It
is easy to derive the corresponding relations for other distributions. The algorithm works
as follows:

1. Perform one simulation.
2. Compute the complementary random numbers and perform another simulation.
3. Repeat steps 1 and 2 a total of n times.
4. Combine the results as though this had been one simulation with 2n samples.

Obviously, this will work only if the complementary random numbers do actually
generate negatively correlated results. The following example shows what happens when
this condition is satisfied and when it is not.

Example 17.4 – Antithetic Sampling for Culmann Failure along Single Plane

The Culmann analysis applies to the failure of a slope along a single plane. The following
parameters appear in the solution:

H = height of slope = 10 m in this case
ψ = inclination of failure plane = 20◦ in this case
θ = inclination of face of slope = 26◦ in this case
c = cohesion, µc = 5 kPa, σc = 2 kPa in this case

tan φ = tangent of friction angle, µtan φ = 0.5774, σtan φ = 0.1386 in this case
γ = unit weight, µγ = 5 kN/m3, σγ = 2 kN/m3 in this case

All variables are uncorrelated. The mean value of tan φ corresponds to φ = 30◦.
The factor of safety, FS, is

FS =
c + 1

2

γH

sin ψ
sin(ψ − θ) cos θ tan φ

1

2

γH

sin ψ
sin(ψ − θ) sin θ

(17.49)

and the margin of safety is

M = c + 1

2

γH

sin ψ
sin(ψ − θ) cos θ(tan φ − tan θ) (17.50)

Since only c, γ , and tan φ are uncertain, exact values of µM and σM can be calculated.
The results are µM = 10.26 kPa and σM = 4.15 kPa.
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The analysis consisted of Monte Carlo simulation of both M and FS. The basic sim-
ulations used 10, 100 and 1000 points. For each value of n (number of points), ten
independent simulations were run. All the uncertain variables were assumed to be Nor-
mally distributed. Then, the simulations were repeated with the same first n/2 points and
a second group of n/2 points using the complements of these values. Mean values of
M and FS were calculated for each sampling. The results are shown in Figure 17.10 for
the factor of safety. The plot shows the maximum and minimum and the mean of the
results for each group of simulations. Antithetic sampling clearly improves the conver-
gence. Indeed, the results using ten points with antithetic simulation are better than those
from the simulations using 1000 points. Similar results occur for the margin of safety.

When the results of these simulations are used to compute the standard deviations of M

or FS, the results are completely different, as Figures 17.11 shows. The results from anti-
thetic simulation are worse than those from direct simulation. Study of Equations (17.49)
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Figure 17.10 Results for basic Monte Carlo simulation and simulation with antithetic sampling
of mean factor of safety for Culmann single plane failure model.
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Figure 17.11 Results for basic Monte Carlo simulation and simulation with antithetic sampling
of standard deviation of factor of safety for Culmann single plane failure model.
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and (17.50) reveals why. Changes in c and tan φ affect M or FS directly, although the
effects of changing γ are somewhat more complicated. The value of M or FS calculated
with one set of values should lie on the other side of the mean result from the results using
the complementary values. Therefore, antithetic sampling improves convergence because
differences tend to cancel out in calculating the mean. However, the variance is com-
puted from the square of the difference between the values and the mean, so that values
on opposite sides of the mean both contribute positively. In effect, the antithetic portion
of the simulation emphasizes rather than canceling the earlier portion of the calculation
of the standard deviation, and the calculation is based on half the number of independent
points as the basic simulation. Therefore, antithetic simulation givers worse results than
basic simulation.

17.4.3 Correlated Sampling

Correlated sampling is useful when we are interested in the relative effects of different
treatments. For example, suppose there is a deposit of clay that is to be consolidated
under a preload to improve shear strength. Alternative designs of sand drains and wicks
have been proposed. The properties and geometry of the soil are uncertain, and so are
the properties of the different design alternatives. One way to study this problem would
be to carry out independent Monte Carlo simulations of the soil with each alternative
design. Then the results of one simulation could be subtracted from the other to estimate
the relative effects of the different treatments.

A significant improvement follows after recognizing that the properties and geometry
of the soil deposit are the same for each alternative design. Therefore, the simulation
should be run using the same random numbers to describe the soil in each alternative
design. Of course, the uncertain parameters that describe the different designs should be
varied independently. The results are expressed in terms of the differences between the
results for the several designs.

Such a procedure is called correlated sampling because using the same models for
the soil in each design correlates the results. The amount of the improvement varies,
depending on how much of the uncertainty is in the design parameters and how much in
the soil.

17.4.4 Control Variates

The technique of the control variate can be used when there is some function that closely
approximates the function we have to deal with and that we can integrate exactly. To be
consistent with the notation used earlier in the chapter, let us assume that the function is
g(x) and the integral is I . The integral I could be an area, a volume, a mean value, a vari-
ance, or some other quantity. Now, let the function that closely approximates g(x) – also
known as the control variate – be C(x), and let the integral of C(x) be denoted IC . We
can always change the variables so that the integral over the range of the problem is
unity. Then we can define a new function Z(x) as

Z(x) = g(x) − β[C(x) − IC] (17.51)
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where β is a factor to be determined. Because∫
C(x)dx = IC (17.52)

it follows that, regardless of the value of β,∫
Z(x)dx =

∫
g(x)dz (17.53)

If the integrations are approximated by Monte Carlo simulation, it similarly follows that
the expected values of the simulation of the integral of Z will be the expected value of
the integral of g.

The basic idea of the control variate approach is to simulate the integration of Z rather
than g. Why this should work is illustrated in Figure 17.12, which shows two control
variates that approximate the function cos2θ , whose integration was discussed in earlier
sections. One control variate is a linear approximation; the other is cubic. If we let
θ = πx/2, the equations for the control variates become

C(x) = 1 − x linear

C(x) = 1 − 3x2 + 2x3 cubic (17.54)
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Figure 17.12 Linear and cubic control variates compared to cos2θ .



VARIANCE REDUCTION METHODS 425

The area under each of the control variates is π/4, which equals the area under cos2θ . If
we set β = 1 and rearrange Equation (17.51) into

Z(x) = IC + [g(x) − C(x)] (17.55)

we can see that the procedure is equivalent to starting with a good estimate of the integral
IC and doing the simulation on the difference between the functions. If C(x) is a good
approximation, the correction term should be small.

The open triangles in Figure 17.8 show the results of using control variates to improve
convergence of the integral with the factor β set to unity. The calculations were done the
same way as for importance sampling. The figure shows that the variance reduction in this
case is even more effective than it was with importance sampling. A further advantage of
the control variate approach in this case is that the importance function approach requires
that the random variables conform to a cubic probability distribution function, which
involves finding the inverse of a quartic function, while the control variable is a simple
cubic function that is not inverted. Thus, the programming and computational efforts are
both reduced.

The control variate does not have to match the function to be integrated exactly. A more
general statement of control variate theory is that, if Y is an estimator to be evaluated by
simulation, then the modified simulation is governed by

Z = Y − β(C − µC) (17.56)

The optimum value of β is

β∗ = Cov(Y , C)

Var(C)
(17.57)

and the variance in the resulting estimate is

Var(Z) = Var(Y )[1 − ρ2
Y ,C

] (17.58)

In other words, the requirement is that the control variate be well correlated with the
uncontrolled estimator.

17.4.5 Stratified Sampling and the Latin Hypercube

The stratified sampling technique is widely used in statistical sampling, and it can be
applied to Monte Carlo simulation as well. Whereas importance sampling is an attempt to
place most of the sampling points in regions that contribute most to the integral, stratified
sampling tries to place the points so that more of them will be found in regions where
the variance of the function g(x) is largest. Following Rubinstein’s (1981) notation, we
consider that the sampling is to be done with N points in m intervals or regions. The
probability that the random variable lies in the region i is Pi , and of course the Pi’s must
add up to unity. If then the standard deviation of the variable in region i is σi , the number
of sampling points to be used in region i should be

Ni = N
Piσi∑m

j=1 Pjσj

(17.59)
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A common procedure is to select intervals so that the Pi’s are all the same. Then the
distributions are weighted according to the variances in each interval. A special case
occurs when Pi = 1/m and Ni = N/m. Rubinstein (1981) calls this systematic sampling.
It can also be shown that, when one point is used in each interval, the most efficient place
for that point is in the middle of the interval.

Although stratified sampling can reduce the number of sampling points, it is subject
to one major problem. If there are D variables to be sampled and each is to be sampled
in k regions, the total number of simulation points becomes kD, which can grow into a
very large number. To avoid this so-called ‘kD problem,’ the Latin hypercube method
is often employed. For each variable the k sampling points are placed in independent
random order. Then k samplings are made by choosing the first randomized value for
each variable, the second randomized value for each variable, and so on until k sets of
randomized variables have been chosen. This ensures that each value is used once and
that their combination is randomized. The effects of these approaches are illustrated in
the following example.

Example 17.5 – Estimated Settlement with Maximum Past Pressure

Duncan (2000) describes a problem of estimating the settlement of a soft soil under a
surface load. Figure 17.13 shows the geometry of the problem and the means and standard
deviations of the consolidation parameters. Figure 17.14 shows the estimated initial stress
conditions and the maximum past pressures. It is assumed that the uncertain variables are
Normally distributed. Dividing the consolidating layer into six layers, each 5 ft. thick, and
using the mean values of the parameters gives an estimated final settlement of 1.024 ft.
The FOSM method, as used by the U. S. Army Corps of Engineers with the increment
in each uncertain variable taken as its standard deviation, yields 0.254 ft. for the standard
deviation of the final settlement. Corresponding estimates calculated by the Rosenblueth
point-estimate method are 1.013 ft. and 0.256 ft. In these and subsequent calculations the

4 ft

30 ft

8 ft
San Francisco Bay Mud

Preconsolidation pressures shown in Figure 2(a)

cc/(1+e) = 0.34 s = 0.034

cr/(1+e) = 0.068 s = 0.019

cv = 8 ft2/yr s = 2.6 ft2/yr

Surcharge fill, 4 ft thick, g = 125 pcf

Permeable soil

Figure 17.13 Geometry of settlement problem. (Duncan, J. M., 2000, ‘Factors of Safety and
Reliability in Geotechnical Engineering,’ Journal of Geotechnical and Geoenvironmental Engi-
neering, ASCE, Vol. 126, No. 6, pp. 307–316, reproduced by permission of the American Society
of Civil Engineers.)
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Figure 17.14 Stress distribution parameters for settlement problem. (Duncan, J. M., 2000, ‘Factors
of Safety and Reliability in Geotechnical Engineering,’ Journal of Geotechnical and Geoenvi-
ronmental Engineering, ASCE, Vol. 126, No. 6, pp. 307–316, reproduced by permission of the
American Society of Civil Engineers.)

final settlement of a layer is calculated as

ρi =




CRh log

(
pf

p0

)
if pf ≤ pm

CCh log

(
pf

p0

)
if pm = p0

CRh log

(
pm

p0

)
+ Cch log

(
pf

pm

)
otherwise

(17.60)

where ρi is the settlement of layer i, CC and CR are understood to be divided by (1 + e), h

is the thickness of the layer, pf is the final vertical effective stress, p0 is the initial vertical
effective stress, and pm is the maximum past vertical effective stress. These results differ
slightly from those reported by Duncan because of minor differences in computational
procedures and in scaling values from figures.

Figures 17.15, 17.17 and 17.18 show the results of direct Monte Carlo simulation using
100, 1,000, and 10,000 points, respectively. In each case each variable was sampled at
random with no attempt at variance reduction. For comparison the CDFs for Normal
distributions with the parameters from the FOSM and point-estimate methods are included
on the plots. While the results with 100 points are ambiguous, those for 1000 and 10,000
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Figure 17.15 Results from Monte Carlo simulation of settlement problem with 100 points.
p = simulation, pep = point-estimate, pfo = FOSM.
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Figure 17.16 Results from Monte Carlo simulation of settlement problem with 1000 points.
p = simulation, pep = point-estimate, pfo = FOSM.
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Figure 17.17 Results from Monte Carlo simulation of settlement problem with 10,000 points.
p = simulation, pep = point-estimate, pfo = FOSM.

points show that a Normal distribution fits the results quite well. Though not plotted here,
the comparison with a LogNormal distribution is much less satisfactory.

Figure 17.18 shows the results from Monte Carlo simulation with stratified sampling.
In the simulation, 10 points were used for each variable, for a total of 1000 points. The
results are much better than those from direct Monte Carlo simulation with the same
number of points but not quite as good as those with ten times as many. The procedure
for each simulation was as follows:

1. Divide the probability range from 0 to 1 into 10 intervals.
2. Identify the middle of each range.
3. From the inverse of the Normal CDF find the value of the variable corresponding to

the middle of the range.
4. Use all combinations of these values in the simulation.

It should be noted that an error exists in this procedure because the middle of the proba-
bility range is not necessarily the same as the middle of the range of the variable in that
portion of the distribution. The effect is most severe at the ends of the distribution.
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Figure 17.18 Results from Monte Carlo simulation of settlement problem with 1000 total points
and stratified sampling. p = simulation, pep = point-estimate, pfo = FOSM.

Finally, the Latin hypercube method gave the results in Figure 17.19, for 1000 points.
The procedure described above for stratified sampling was applied to each variable, only
using 1000 points instead of 10. The orders of the values were then randomized to
give 1000 points in a Latin hypercube. The results are somewhat better than those for a
comparable number of points in direct simulation. The number of simulations required
to achieve a desired level of accuracy is less than that required by direct Monte Carlo
simulation, but not by an order of magnitude.

17.5 Summary

Monte Carlo simulation uses randomly generated points to cover the range of values
that enter into a calculation. In most cases the problem involves integration, but it
can arise in deterministic or probabilistic circumstances. Some of the computations in
probabilistic applications are in fact evaluations of integrals, rather than simulations of
stochastic processes.
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Figure 17.19 Results from Monte Carlo simulation of settlement problem with 1000 points
and stratified sampling combined with the Latin hypercube. pl = simulation, plpe = point-estimate,
plfo = FOSM.

The technique has the advantage that it is relatively easy to implement on a computer
and can deal with a wide range of functions, including those that cannot be expressed
conveniently in explicit form. The major disadvantage is that it can converge slowly.

Several techniques are available to accelerate convergence or, equivalently, to reduce
variance. Each can be effective for some problems and counter-productive for others.
The choice of which method to employ depends on knowledge of the problem and its
components. Sometimes a preliminary calculation with a limited number of simulation
points will indicate which variance reduction method can be expected to work best. In
many cases two or more techniques can be combined effectively.

Finally, accurate Monte Carlo simulation depends on reliable random numbers. Gen-
erating random numbers is an art, and one method will not work for all circumstances.
There is a substantial literature on the subject, and a person contemplating an important
study involving random numbers would be well advised to be satisfied that the random
number generators are appropriate for the job.





18 Load
and Resistance
Factor Design

Most of this book discusses conceptual issues of uncertainty analysis, statistics, and relia-
bility theory and deals with design examples on their own merits, independent of building
codes and other aspects of professional practice. In recent years, however, these concepts
of uncertainty, statistics, and reliability have begun to enter the public debate over how
new structural and geotechnical building codes ought to be written. An important result
of this debate is the evolution of building codes based on reliability considerations. The
most important of these developments at present is the appearance of Load and Resistance
Factor Design (LRFD) as the basis for new codes. This chapter discusses the evolution
of LRFD-based codes and how reliability theory is used to calibrate and optimize these
new codes.

18.1 Limit State Design and Code Development

Allowable Stress Design (ASD) – sometimes called Working Stress Design (WSD) – has
been the traditional design basis in civil and mechanical engineering for over a century.
Working stress design attempts to ensure that loads acting upon a structure or foundation
do not exceed some allowable limit, often taken to be the limit of elastic resistance.
Typically, the level of assurance that loads do not exceed this allowable limit is reflected
in a factor of safety on the ratio of allowable to predicted loads, stresses, or other demands.
The safety factor commonly used in ASD is not the central safety factor discussed in
earlier chapters that uses the ratio of expected resistance to expected load, but the nominal
safety factor that uses some higher than expected value of load and some lower than
expected value of resistance. That is, the load might be taken as that value with an
exceedance probability of, say, 0.05; while the resistance might be taken as that value
with an exceedance probability of, say, 0.95.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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The geological uniqueness of individual construction sites, along with the demand
for economical design, caused the geotechnical community at a very early stage in the
development of the field to adopt Limit State Design (LSD). Limit state design rather
than being based on allowable stresses, is based on predictions how designs actually
perform near failure. ‘Failure’ in this meaning is typically taken either as ultimate failure
(collapse) or as conditions affecting serviceability (e.g. excessive deformation). Although
limit state design has become widespread in modern structural codes, in fact, geotechnical
design led the civil engineering profession in the move toward performance-based design.
Limiting equilibrium approaches to the design of slopes, deformation-based approaches to
the design of underground openings, and plasticity criteria for the foundations of offshore
structures are all examples of limit state design in traditional geotechnical practice. With
limit state design, the relation between uncertainties in loads and resistances can be more
directly related to the probabilities of ‘failure’ than they can with ASD. This has led to
new directions in North American and European building codes.

In the 1970s and 1980s, the field of structural engineering was dramatically changed by
the rapid development of structural reliability theory (Melchers 1987), and the resulting
incorporation of probabilistic concepts in structural codes (AASHTO 1994; Ellingwood
et al. 1980).1 This was most notable in the development and implementation of load and
resistance factor design (LRFD) as the basis for new code development in the 1980s
and 1990s (Ravindra and Galambos 1978). Among the new structural codes using the
LRFD approach are those of the American Institute of Steel Construction (AISC 1994),
the American Concrete Institute (ACI 2002), the American Association of State High-
way and Transportation Officials (AASHTO 1994), and the American Forest and Paper
Association.

LRFD replaces single factors of safety on the ratio of total resistance to total load with
a set of partial safety factors on individual components of resistance and load and uses
limiting states as the checking points for design. The partial safety factors can be chosen to
reflect differing uncertainties associated with the individual components of resistance and
load and thus to improve upon the undifferentiated approach of simple factors of safety.
This approach is not new. Freudenthal (1951, 1956) proposed partial safety factors in
his seminal early papers on structural safety, and Taylor (1948) discusses partial safety
factors (specifically with respect to the soil strength parameters c and φ for analysis of
the stability of embankments) in his classic soil mechanics text.

18.1.1 Allowable Stress Design

Allowable Stress Design (ASD) attempts to ensure that for some applied service load
on a structure or foundation the stresses induced in the soil mass are less than some set
of specified allowable stresses. ASD combines uncertainties in loads and soil strengths
(or deformations) into a single factor of safety, FS. That is, a set of design loads, Qi ,
comprising the actual forces estimated to be applied directly to a structure is balanced
against a set of resistances, R, from the soil mass, such that

R/FS =
∑

Qi (18.1)

1 This period also saw a good deal of work on the philosophy of code writing, some of which is captured in
the publications of Lind (1972), Veneziano (1976), Turkstra (1970), Ditlevsen (1997), and others.



LIMIT STATE DESIGN AND CODE DEVELOPMENT 435

in which, Qi = individual design loads, i = 1, . . . , n, R = ultimate resistance, and FS =
factor of safety. Equation (18.1) can also be written as

R/Q = FS (18.2)

in which Q = �Qi is the total load. The factor of safety is commonly defined as the
ratio of the resistance of the structure to the sum of the loads acting on the structure.

The factor of safety of Equation (18.2) can be thought of as either a variable or a
constant. As a variable, the factor of safety reflects uncertainty in both resistance and
load. As a constant, the factor of safety reflects a target value for the ratio of predicted
resistances and predicted loads. In practice, the factor of safety depends mostly on the
level of control that is used in design and construction phases, and thus on resistances.
As a result, traditionally, the factor of safety is considered to apply to the resistance side
of Equation (18.1), in that uncertainties in material strength are the largest uncertainties
affecting geotechnical design.

As an example of ASD, AASHTO (1998) recommends factors of safety for pile foun-
dations reflecting different levels of control in the prediction of ultimate resistance. When
a more reliable and consistent level of construction control is used, a smaller factor of
safety can be used, leading to a less expensive design.

Because uncertainty is involved in both the resistance and the loads, it is important to
distinguish the two ways referred to above in which the factor of safety is sometimes
defined. The first is the central factor of safety

FS = E[R]

E[Q]
(18.3)

in which E[R] is the expected value of total resistance and E[Q] is the expected value
of total loads; and the second is the nominal factor of safety, which is the definition more
common in traditional practice

FS = Rk

Qk

= E[R] − kRσR

E[Q] + kQσQ

(18.4)

in which Rk and Qk are the nominal values of resistance and load, respectively; σR, σQ

are the standard deviations; and kR , kQ are constants. In the present discussion, unless
otherwise specified, factor of safety refers to the central meaning of Equation (18.3).

Serviceability limit states for working stress design typically apply to deformation cri-
teria. Following the example of pile design, in addition to the predicted axial geotechnical
and structural capacity of a pile, the design of driven piles evaluates pile deflections and
compares them with deformation criteria using the following:

δi ≤ δn (18.5)

where δi is the estimated displacement; and δn is the tolerable displacement established
by designer, and tolerable displacement depends on the type of structure (e.g. serviceable
of bridge foundations depend on the type of supports used for the superstructure as well
as the superstructure design itself).
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18.1.2 Limit states

Limit states, as discussed in previous chapters, are defined as those conditions under
which a structure or its components no longer perform an intended function (Allen 1994;
Simpson et al. 1981). Whenever a structure or a part of a structure fails to satisfy one
of its designated operational criteria, it is said to have reached a limit state. The two
limit states of interest for most foundations are (1) ultimate limit state (strength limit
state), and (2) serviceability limit state. Ultimate limit states pertain to structural safety
and collapse. For foundations, the ultimate limit state is typically taken to be ultimate
bearing capacity of the soil. Serviceability limit states pertain to conditions under which
performance requirements under normal service loads are exceeded. Such conditions might
include excessive deformations or deterioration of a structural foundation system such as
piles. Serviceability limit states are typically checked using a partial factor of unity on
all specified or characteristic service loads and load effects (Meyerhof 1994).

In ASD, the concept of allowable soil bearing pressure may be controlled either by
bearing capacity (ultimate state) or by settlement (serviceability limit) considerations.
ASD implicitly accounts for both of these, but generally does so only implicitly (Becker
1996). In other words, the ASD method usually does not require that calculations be made
to check both limit states but instead resorts to charts that show whether a design needs
to be checked for ultimate limit state or for serviceability limit state.

Common wisdom holds that serviceability limit states have a higher probability of
occurrence than do ultimate limit states, principally because they occur at lower absolute
loads (Duncan et al. 1989). As a result, the allowable settlement of a structure rather
than the ultimate bearing capacity of the soil generally controls the design of shallow
foundations. Accordingly, most routine design is based on specific serviceability limits,
and ultimate limits are checked subsequently (Becker 1996). However, this in not always
the case; in the design of piles ultimate limit state often controls the design.

18.2 Load and Resistance Factor Design

In contrast to working stress design with its single safety criterion – the factor of safety,
FS – Load and Resistance Factor Design (LRFD) takes into consideration the variability
in loads and resistances separately by defining separate factors on each. A load fac-
tor, γ , is assigned to variability or uncertainty in loads, while a resistance factor, φ, is
assigned to variability or uncertainty in resistances. Thus, in LRFD the comparison of
loads and resistances is formulated for strength limit states in an equation of the form
(Withiam et al. 1997)

Rr = φRn ≥ η
∑

γiQi (18.6)

in which Rr is factored resistance, Rn is ultimate resistance, Qi is force effect, stress,
or stress resultant, φ is resistance factor, γi is load factor, and η = ηDηRηI > 0.95 is a
series of dimensionless factors (taken from the structural code) accounting for the effects
of ductility (ηD), redundancy (ηR), and operational importance (ηI ). For the serviceability
limit states,

η
∑

γiδi ≤ φδn (18.7)
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in which δi is the estimated displacement, and δn is the tolerable displacement. The method
for determining the ultimate geotechnical resistance (Rn) is basically the same for both
the LRFD and ASD methods. The difference between the methods is the separation of
factors for load and resistance in the LRFD method.

The use of LRFD in geotechnical engineering is a relatively recent development, which
has been in large part driven by the development of LRFD codes for structural engineering,
especially in application to highway structures. To date, the principal use of LRFD in
geotechnical engineering has been in foundation design. The approach has not enjoyed
extensive use in the design of earth structures, such as dams, or of underground works.

Early development of the LRFD codes for structural design grew out of efforts at
the Nationals Standards Institute to develop probability-based load criteria for build-
ings (Ellingwood et al. 1980); some of this was summarized and later republished by
ASCE (1993). The American Petroleum Institute sponsored research on LRFD methods
for the design of offshore structures during the 1980s. Much of the publicly available
parts of this work is reported in API sources (API 1989; Moses 1985; Moses and Lind
1970). Other contemporary efforts to incorporate LRFD in codes for the structural design
of buildings are reported by Sui et al. (1975), the National Research Council of Canada
(1977) and CIRIA (1977). In more recent years, LRFD has begun to be introduced to
structural designs in traditionally non-civil engineering applications, such as ship struc-
tures (Ayyub et al. 1997, 1995), although its introduction in machine design and other
traditionally mechanical engineering applications continues to lag behind.

Early applications of LRFD to transportation structures (e.g. highway bridges) – which
in recent years has led to more attention paid to the use of LRFD for the foundations of
those structures – were encouraged by the American Association of State Highway and
Transportation Officials (AASHTO), and by 1994 the AISC Manual of Steel Construction
itself had adopted LRFD (AASHTO 1994; AISC 1994; Galambos and Ravindra 1978). This
move to LRFD appears to have allowed significant savings in structural system costs on
highway bridges, with some studies suggesting savings of from 5–30% in steel weight, with
average savings of about 10% (Stenersen 2001). In an effort to harmonize design between
structural systems and the foundations on which those systems rest, AASHTO and the
Federal Highway Administration again led the effort to develop geotechnical codes similarly
based on LRFD (AASHTO 1997; Withiam et al. 1998). These codes have primarily focused
on the design of shallow foundations, piles and drilled shafts, and earth retaining works.

The benefits of moving to LRFD for foundations has been a more efficiently bal-
anced design with corresponding improvements to reliability, a more rational approach
to accounting for load and resistance uncertainties in design codes, and a broadening of
the benefits of reliability-based design into routine design problems where specific relia-
bility calculations are not cost-effective (i.e. LRFD-based codes deliver optimized design
formulas without the need for repeating reliability calculations for each particular design
situation). Other applications of LRFD to geotechnical engineering – principally for foun-
dation design – have been published by Barker et al. (1991), Fellenius (1994), Meyerhof
(1994), O’Neill (1995), Kuhlhawy and Mayne (1990) and Goble (1998), among others.

18.2.1 Calibration to allowable stress design

Determinating load and resistance factors for a particular case is done either by calibrat-
ing Equation (18.6) to past practice, that is, to typical or codified factors of safety used
in working stress design, or by optimizing Equation (18.6) for a chosen reliability index
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β using the methods of reliability theory of the previous chapters. Typically, this opti-
mization has used either first-order second-moment reliability (FOSM) or Hasofer–Lind
reliability (FORM).

Calibration through fitting to the ASD method is used when insufficient statistical
data exist to perform a calibration by optimization (Withiam et al. 1997). The method
of calibrating by fitting to ASD is a simple process in which the LRFD Equation (18.6)
is divided by the fundamental ASD Equation (18.1) to determine an equation for the
resistance factor (φ). If an average value of 1.0 is used for the load modifier η, then

φ ≥
∑

γ iQi

FS
∑

Qi

(18.8)

If only the dead loads and live loads are considered, this becomes

φ = γ DQD + γ LQL

FS (QD + QL)
(18.9)

Dividing both the numerator and denominator by QL (O’Neill 1995) yields

φ =
γ DQD

QL

+ γL

FS

(
QD

QL

+ 1

) (18.10)

Equation (18.10) can be used to determine the resistance factors that need to be used in
the LRFD equations to obtain a factor of safety equal to that of the ASD method.

While the load and resistance factor design method represented by Equation (18.6)
as calibrated using Equation (18.10) provides a clearer separation of load and resistance
uncertainties than does a single factor of safety, the use of the load and resistance fac-
tors based on earlier, non-reliability-based procedures does little to improved design.
Table 18.1 shows values of the resistance factors using Equation (18.10) for factors of
safety varying between 1.5 to 4 and average dead and live load factors of 1.25 and 1.75,
respectively. The table gives resistance factors that would be used to obtain factors of
safety of 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 for dead to live load ratios of 1, 2, 3 and 4. Clearly,

Table 18.1 Values of resistance factors from Equation (18.10) corresponding to dif-
ferent values of safety factor and dead to live load ratios for γD = 1.25 and γL = 1.75
(after Withiam et al. 1998)

Resistance factor, φ

Safety factor QD/QL = 1 QD/QL = 2 QL/QD = 3 QL/QD = 4

1.5 1.00 0.94 0.92 0.90
2.0 0.75 0.71 0.69 0.68
2.5 0.60 0.57 0.55 0.54
3.0 0.50 0.47 0.46 0.45
3.5 0.53 0.40 0.39 0.39
4.0 0.38 0.35 0.34 0.34
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calibrating the LRFD method to existing practice leads to a design much the same as that
obtained using ASD.

18.2.2 Calibration using FOSM reliability

The resistance factor chosen for a particular limit state must take into account (i) the
variability of the soil and rock properties, (ii) the reliability of the equations used for
predicting resistance, (iii) the quality of the construction workmanship, (iv) the extent of
soil exploration (little versus extensive), and (v) the consequences of failure.

Replacing the ultimate or nominal resistance Rn in Equation (18.6) by E[R]/λR (the
product of the expected value of resistance E[R] and the statistical bias in the resis-
tance λR) and ignoring the correction terms η leads to a resistance factor that satisfies
the inequality

φR ≥ (λR/E[R])
∑

γiQi (18.11)

For the case in which R and Q are each logNormally distributed and probabilistically
independent (an assumption often made in LRFD codes for geotechnical design), setting
Equation (18.11) to an equality produces a simple relationship between resistance factor
φ and the uncertainties in resistance and loads as expressed in coefficients of variation.
For logNormal variables, it is convenient to define the limiting condition on the safety
margin involving the logarithms, lnR–lnQ, such that

g(R, Q) = ln R − ln Q = 0 (18.12)

Then the reliability index β is the number of standard deviations of the derived ran-
dom variable (lnR − lnQ) separating its mean value from the limiting state or failure
condition of 0

β = E[ln R] − E[ln Q]√
Var[ln R − ln Q]

(18.13)

That standard deviation is related to the marginal standard deviations by the sum
of variances

Var[ln R − ln Q] = Var[ln R] + Var[ln Q] (18.14)

Recall from Appendix A that the first two moments of a logNormal variable can be simply
related to the first two moments of the logarithms of the variable by

E[ln R] = ln


 E[R]√

1 + 	2
R


 (18.15)

Var[ln R] = ln(1 + 	2
R) (18.16)

in which 	 is the coefficient of variation; similarly for Q. Substituting into Equation (18.13)
yields the expression (Barker et al. 1991)

φR =
λR

(∑
γiQi

)√
1 + COV (Q)2

1 + COV (R)2

E(Q) exp{βT

√
ln[(1 + COV (R)2)(1 + COV (Q)2)]} (18.17)
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in which λR is the overall bias for resistance, COV (Q) is coefficient of variation of the
load, COV (R) is coefficient of variation of the resistance, βT is target reliability index,
and E(Q) is the expected value of total load.

When dead and live loads are considered separately, Equation (18.17) becomes (Yoon
and O’Neill, 1997)

φR =
λR

(
γDE(QD)

E(QL)
+ γL

)√[
(1 + COV (QD)2 + COV (QL)2)

(1 + COV (R)2)

]
(

λQD
E(QD)

E(QL)
+ λQL

)

× exp{βT

√
ln[(1 + COV (R)2)(1 + COV (QD)2 + COV (QL)2)]} (18.18)

in which λR , λQD and λQL are bias terms for resistance, dead load (QD) and live load
(QL), and γD and γL are dead load and live load factors, respectively.

Because the levels of uncertainty in dead loads and live loads differ from one another,
so, too, do their corresponding load factors. Table 18.2 shows typical bias terms and
coefficients of variation for dead load components and for live loads on highway bridges.
The AASHTO (1994) load factors combine dead loads into a single factor.

A typical example of calibrated resistance factors is shown in Table 18.3, taken from
Barker et al. (1991) for axially loaded piles, calibrated both against ASD and by using
FOSM analysis with the specified target reliability indices. For use in codes, recommended
values of load and resistance factors are typically rounded to the nearest increment of 0.05,
and judgment on the historical development of earlier code factors of safety is taken into
account in balancing differences between the two calibrations. Also, for most common
situations, the dependence of reliability index, β, on the ratio of dead load to live load,
QD/QL, is relatively small. Thus, a representative value of QD/QL is typically used,
and a single resistance factor chosen, irrespective of load ratio.

18.2.3 Calibration using FORM reliability

The currently preferred way to perform the calibration to obtain load and resistance
factors is through first-order reliability (FORM), that is, using the Hasofer–Lind procedure
discussed in Chapter 16. This procedure is based on choosing a checking point, called,

Table 18.2 Statistics for structural load components for highway bridges.
(Nowak, A. S., 1995, ‘Calibration of LRFD Bridge Code,’ Journal of Structural
Engineering, ASCE Vol. 121, No. 8, pp. 1245–1251, reproduced by permission
of the American Society of Civil Engineers)

Load component Bias, λ COV, 	
AASHTO

Load factor, γ

Dead load 1.25
Factory-made 1.03 0.08
Cast-in-place 1.05 0.10
Asphaltic wearing surface 1.00 0.25
Live load 1.10–1.20 0.18 1.75
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Table 18.3 Resistance factors for axial loaded driven piles in sand calibrated to ASD and FOSM
(D/L = 3.7, γD = 1.3 and γ = 2.17) (after Barker et al. 1991)

Resistance factor∗, φ

Soil test
Pile length

(m)
Factor of
safety, FS

Target reliability,
βT

Reliability
analysis,

Fitting
with ASD Recommended

SPT 10 4.0 2.0 0.48 0.33 0.45
SPT 30 4.0 2.0 0.51 0.33 0.45
CPT 10 2.5 2.0 0.59 0.53 0.55
CPT 30 2.5 2.0 0.62 0.53 0.55

∗Notes: Dead load to live load ratio assumed to be, D/L = 3.7; load factors taken as γD = 1.3 and γ = 2.17. Were these
calculations performed with the current AASHTO (1997) load factors of γD = 1.25 and γ = 1.75, the corresponding resistance
factors would be 5–20% lower (Withiam et al. 1998).

the design point, at a particular point on the limiting state surface, and calculating the
reliability index, β, separating that point from the joint mean of the uncertain load and
resistance variables. The design point is taken as that point on the limiting state surface
at which the probability density of the joint random variables is greatest. To simplify the
procedure, the calculation of β is made in a normalized space of derived random variables,
in which each derived variable has unit variance and is independent of all other derived
variables. In this derived space, the shortest distance between the joint mean of the derived
variables and the state limit function identifies both the design point and the reliability
index. The method yields partial safety factors for loads and resistances at a specified target
reliability index, βT . As discussed in Chapter 16, this procedure has the advantage over
FOSM of greater invariance with respect to the mathematical definition of limiting state.

Define the limit state function as,

g(X) = g(X1,X2, . . . , Xn) = 0 (18.19)

in which X is a vector of random variables (X1, X2, . . . Xn) of loads and resistances,
for which the limit state is g(X) = 0. Failure occurs for g(X) < 0, non-failure otherwise
(Figure 18.1). The n-dimensional space of the variables X is first transformed to X′ by
the normalization

x ′
i = xi − mxi

σxi

(18.20)

to create zero-mean, unit-variance variables. The space X′ is then rotated to remove
correlations among the derived variables, yielding zero-mean, unit-variance, independent
variables. Finally, the space is transformed for non-Normal distributions (e.g. for logNor-
mal variables the logarithm of each is taken), yielding a normalized space in which the
shortest distance between the origin (i.e. the joint means of the derived random variables
x ′

i) and the design point – the most probably failure point – on the transformed limit state
gives the reliability index for the design (Figure 18.2).

For a given target reliability index βT , the mean values of basic variables can be used
to compute partial safety factors required to provide the target reliability

γi = x∗
i

E[xi]
(18.21)
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in which γi is the partial factor for variable xi , and xi* is the value of the transformed
variable xi at the design point. Considering the usual case (Figure 18.3) in which there
are more than one load variables, Qi , but only a single aggregated resistance variable, R,
the corresponding load and resistance factors become

γi = Q∗
i

E[Li]
(18.22)

φR = R∗

E[R]
(18.23)

in which the γi are the load factors and φ is the resistance factor. Note, this case of mul-
tiple load variables and a single resistance variable is strongly influenced by structural
(as opposed to, geotechnical) reliability considerations, in which the uncertainties of load
conditions dominate those of resistance. As the practice of geotechnical reliability contin-
ues to evolve, it is likely that geotechnical applications of LRFD will begin to differentiate
resistance factors, while consolidating the multiplicity of load factors. This would be in
line with Taylor’s early work on separating partial safety factors for cohesion and fric-
tion components of soil strength (Taylor 1948). For the present, however, load factors for
superstructure design, for practical purposes, need to harmonized with load factors for
foundation design, and thus the formulation of Equations (18.22) and (18.23) remains.

18.2.4 Choice of reliability index β

Studies by a number of workers suggest ASD methods for foundation design result in
nominal probabilities of failure that range from 0.0001 to 0.01 (Meyerhof 1994). These
correspond to reliability indices that range from 2.5 to 3.5 (Table 18.4). In modern foun-
dation codes, target reliability indices ranging from 2.0 to 3.0 are common, the former for
cases of non-essential designs with high redundancy, the latter for critical designs with
little redundancy. Unlike the case of a unique site and facility with a known loss function
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Table 18.4 Relationship between probability of failure and reliability index
for lognormal distribution (after Withiam et al. 1998)

Probability of failure, pf

Reliability index, β Normal distribution logNormal distribution

2.5 6.21 × 10−3 0.99 × 10−2

3.0 1.35 × 10−3 1.15 × 10−3

3.5 2.33 × 10−4 1.34 × 10−4

4.0 3.17 × 10−5 1.56 × 10−5

4.5 3.40 × 10−6 1.82 × 10−6

5.0 2.87 × 10−7 2.12 × 10−7

5.5 2.90 × 10−8 2.46 × 10−8

for failures, a code must be developed for a broad spectrum of potential conditions, and
thus the optimization of reliability level against cost is more qualitative.

As an approximation, the relationship between probability of failure and reliability
index for Normal variables is often taken from Rosenblueth and Esteva (1972) as

pf = 460e(−4.3β) for 2 ≤ β ≤ 6 (18.24)

β =
ln

(
460

pf

)
4.3

for 10−1 ≤ pf ≤ 10−9 (18.25)

18.3 Foundation Design Based on LRFD

Two areas of geotechnical engineering where LRFD approaches have enjoyed popularity
are the design of foundations and the development of codes for foundations. This has been
driven in part by the desire to harmonize the design of structural elements of bridges and
buildings with the design of the foundations that support those superstructures. In the
United States the move to LRFD codes for both shallow and deep foundations has been
fostered by AASHTO.

The design of foundation systems has benefited more from LRFD than have other areas
of geotechnical engineering because it is one of the few areas to be codified, especially
in European practice. Foundation performance is also an area for which the extensive
statistical data exist for comparing observed with predicted performance that are required
with which to calibrate partial factors.

18.3.1 Spread footings

Spread footings are typically designed against six (6) limiting states, one pertaining to ser-
vice limits, i.e. settlement deformations, and the remainder to strength limits (Table 18.5).
Suggested or codified factors of safety in ASD typically are expressed as a range, depend-
ing on the type and extent of site characterization and the analytical method used in making
performance predictions. Higher factors of safety have been recommended for use with
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Table 18.5 Limiting states for spread footing design

Limiting state Limit state equation ASD Factor of safety

Settlement δi ≤ δn

Bearing capacity Q ≤ RnFS 2.0–3.0
Sliding Q ≤ RnFS 2.0–3.0
Overturning Resultant load w/in B/6 of centerline
Overall stability or

∑
T ≤ ∑

RFS 1.25–2.0
structural capacity

In which, δi = differential settlement, δn = tolerable differential settlement, Q = allowable load, Rn = ultimate
capacity of the soil subgrade, FS = factor of safety, �T = net driving forces, �R = net resisting forces.

empirical measures of soil properties, such as the Standard Penetration Test (SPT), rather
than with measures based on the principles of mechanics, such as the Cone Penetration
Test (CPT) or laboratory measurements. Whereas, the summation of all uncertainties in
loads and resistances for ASD is accounted for in the factor of safety, in LRFD the
uncertainties in loads and resistances are treated separately to account for the differing
magnitude of those uncertainties.

In U.S. codes for LRFD, the load factors γi are typically set by the structural sections
of the code (e.g. Table 18.2), which historically have preceded the geotechnical sections.
In the AASHTO codes, the current dead load and live load factors are

γDQ = 1.25 (18.26)

γLQ = 1.75 (18.27)

In the case of highway bridge structures, for example, load factors are optimized within
the calibration of the structural design procedure and then imposed on the geotechnical
design procedure. Obviously, this produces a sub-optimal calibration of resistance factors
in the geotechnical side of the LRFD code, because load and resistance factors should be
jointly determined or optimized in the calibration procedure. On the other hand, adopting
the structural load factors in the geotechnical design provides consistent load factors
across the structural and geotechnical parts of the codes, since, after all, the load factors
in both the structural and geotechnical parts of the code apply to the very same live
and dead loads.

Load factors associated with earth pressures on structural elements, taken from the
AASHTO code are shown in Table 18.6. It is important to note that most work to
date on LRFD for geotechnical design has focused on foundation design. This focus
has been driven by the desire to develop geotechnical sections within codes primar-
ily concerned with structural engineering, for example the AASHTO codes for highway
bridges or the National Institute of Standards and Technology model codes for building
structures (Ellingwood et al. 1980). Thus, most of the work on LRFD for geotechnical
applications has enjoyed a more or less clear separation – and presumably a probabilis-
tic independence – between (structural) loads and (soil or rock) resistances. In the arena
of earth structures, such as retaining structures and embankments, this separation is no
longer so obvious. Loads depend on soil properties such as density and groundwater lev-
els, but so, too, do resistances. The development of LRFD procedures for these other
design considerations in geotechnical engineering will be more complex.
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Table 18.6 Load factors associated with earth pressures on structural elements (AASHTO 1994)

Load factor, γ

Load Maximum Minimum

Components and attachments 1.25 0.90
Downdrag 1.80 0.45
Wearing surfaces and utilities 1.50 0.65
Horizontal earth pressures Active 1.50 0.90

At-rest 1.35 0.90
Vertical earth pressures Overall stability 1.35 N/A

Retaining structure 1.35 1.00
Rigid buried structure 1.30 0.90
Rigid frame 1.30 0.90
Flexible buried structures (other than

metal box culverts)
1.95 0.90

Flexible metal box culverts 1.50 0.90
Earth surcharge 1.50 0.75

Example

The bearing capacity of shallow footings is usually predicted using Terzaghi’s superpo-
sition method (Terzaghi 1943) combined with a good deal of empirical calibration. The
literature contains many theoretical derivations, as well as model tests and field obser-
vations, which may be combined to assess the mean and variance of bearing capacity
predictions as a function of soil properties. Using Terzaghi’s superposition, the ultimate
bearing capacity of a shallow, concentrically loaded strip footing on a homogeneous soil
is commonly determined from

qv = cN c + qN q + 1
2 BN γ (18.28)

in which qv is the ultimate bearing capacity for a vertical concentric load, Nc,Nq , and Nγ

are bearing capacity factors, B is the foundation width, q is a uniform surcharge around
the foundation, and c and γ are effective soil cohesion and unity weight, respectively.
Note that the N ’s are functions of the friction angle φ.

For the special case of a footing initially on the surface of a cohesionless soil, c = q = 0,
and Equation (18.28) becomes qv = 1

2 BN γ . Empirical data summarizing the relationship
of this equation (and other theoretical solutions) to empirically observed ultimate bearing
capacities are shown in Figure 18.4 (from Ingra and Baecher 1983). Regression analysis
on the data yield the predictive relationships,

E[Nγ ]L/B=6 = exp{−1.646 + 0.173φ}
Var[Nγ ]L/B=6 = (0.0429) exp{−3.292 + 0.345φ} (18.29)

so, for the case of, say, φ = 35◦, the mean and standard deviation of predicted bearing
capacity factor would be, E[Nγ ] = 82 and

√
Var[Nγ ] = 17. Thus, using a first-order

second-moment approximation (Chapter 14) to find the mean and standard deviation of



FOUNDATION DESIGN BASED ON LRFD 447

the bearing capacity from Equation (18.28)

E[qγ ] = 1
2γBE[Nγ ] = 1

2 (18.5 kN/m3)(1m)(82) = 760 kPa

Var[qγ ] = { 1
2γB}2 Var[Nγ ] = { 1

2 (18.5 kN/m3)(1m)}2(17)2 = (157)2 kPa2
(18.30)

which yields a coefficient of variation of, 	q = 157/760 = 0.21.
In design, the prediction of bearing capacity using this empirically calibrated formula

would have no bias, that is, the mean value of the ratio of observed to predicted bearing
capacity is by definition, 1.0, since Figure 18.4 calibrates the method to experience. The
coefficient of variation would be, as above, 21%. For these values, and using dead and
live load factors of 1.25 and 1.75, respectively, the corresponding resistance factor using
the FORM methodology is about φR = 0.62 for a reliability index β = 3. The design
equation then becomes

Rr = φRn ≥ η
∑

γiQi

= (0.62)Rn ≥ (1.0)[1.25QDL + 1.75QLL]
(18.31)

completing the example.
Barker et al. (1991) developed resistance factors for bearing capacity and sliding resis-

tance of shallow footings supporting highway bridges, based on calibration using the
FOSM approach. This procedure involved four steps: (1) estimating the inherent level
of reliability in various methods of calculating footing capacity; (2) observing variations
in reliability with bridge span length; (3) choosing target reliabilities based on the safety
margin used in ASD; and (4) back calculating resistance factor using Equation (18.17).
Partial results are shown in Table 18.7, suggesting the differences between the ASD and
FOSM calibrations, and the effect of bridge span length. They suggest the values of
resistance factors in the last column, in part to be more consistent with ASD experience.

Resistance factors for overall slope stability under a shallow footing were also calculated
by Barker et al. (1991) by direct calibration to the AASHTO code ASD requirements for
factor of safety, using Equation (18.17). ASD calibration was used because it was thought
that computer methods of slope stability analysis did not easily lend themselves to FOSM
calibration procedures. More recent developments by Low (1996) using the Hasofer–Lind
method for slope stability analysis, however, suggest that a reliability-based calibration of
resistance factor for slope stability design is straightforward, although yet to be reported
in the literature.

Table 18.7 Resistance factors for semi-empirical evaluation of bearing capacity for spread footings
on sand using FOSM. (After Barker et al. (1991), modified by Withiam et al. (1998))

Resistance factor, φAverage Target

Data FS
reliability
index, β

reliability
index, βT

Bridge
span (m)

Fitted
ASD

Calibrated
FOSM Suggested

SPT 4.0 4.2 3.5 10 0.37 0.49 0.45
50 0.37 0.53 0.45

CPT 2.5 3.2 3.5 10 0.60 0.52 0.55
50 0.60 0.57 0.55
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Resistance factors from the AASHTO bridge design code for all limiting states of shallow
footings are given in Table 18.8. For this same set of resistance factors in the AASHTO
code, Withiam et al. (1997) evaluate ‘equivalent factors of safety’ using the relationship,

FS LRFD = γ /φ (18.32)

in which γ is the average load factor, assuming γ = 1.45 for bearing capacity and sliding
and γ = 1.35 for overall stability, and compares these implicit values to the older ASD
factors of safety common in bridge design practice. Withiam goes on to recommend that,
for different ASD factors of safety or for load factors different than those assumed in the
development of Table 18.8, the following relationship be used:

φmodified = φtabulated

(
FS tabulated

FS desired

)(
γ tabulated

γ actual

)
(18.33)

Note that, this relationship is inherently an ASD calibration approach, and, as Withiam
notes, may be inconsistent with the goal of achieving equal reliabilities for different
limiting states. A modified resistance factor is more appropriately calculated using a

Table 18.8 Resistance factors for geotechnical strength limiting state for shallow foundations
(Barker et al. 1991; Withiam et al. 1997)

Method and soil
condition

Resistance
factor, φ FSLRFD FSASD

Bearing
capacity

Sand Semi-empirical using SPT data
Semi-empirical using CPT data

0.45
0.55

3.2
2.6

3.0
2.5

Rational method, SPT 0.35 4.1 2.5
Rational method, CPT 0.45 3.2 2.5

Clay Semi-empirical, CPT data 0.50 2.9 2.5
Rational method, lab tests 0.60 2.4 2.5
Rational method using field vane 0.60 2.4 2.5
Rational method using CPT data 0.50 2.9 2.5

Rock Semi-empirical procedure 0.60 2.4 3.0
Plate load test data 0.55 2.6 3.0

Sliding and
passive
pressure

Pre-cast
Cast-in-place

Sand, friction angle from SPT
Sand, friction angle from SPT
Sand, friction angle from SPT

0.90
0.90
0.85

1.6
1.6
1.8

1.5
1.5
1.5

Sand, friction angle from SPT 0.85 1.8 1.5
Cast on 15 cm sand sub-base over

clay with Su < 0.5 normal
pressure, estimated from:

Lab tests (UU triaxial) 0.85 1.7 1.5
Field vane 0.85 1.7 1.5
CPT data 0.80 1.8 1.5
Cast on 15 cm sand sub-base over

clay with Su > 0.5 normal pressure
0.85 1.7 1.5

Passive earth pressure component of
sliding resistance

0.50 2.9 1.5

Overall Shallow foundations on or near slope 0.85 1.6 1.5
stability evaluated for stability against deep-seated failure
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reliability calibration approach, if sufficient data are available from which to estimate
method biases (λ) and coefficients of variation.

18.3.2 Piles and drilled shafts

As for spread footings, piles and shafts are typically designed against six (6) limiting
states, two pertaining to service limits, specifically, settlement and lateral deformations,
and the remainder to strength limits (Table 18.9). Again, suggested or codified factors of

Table 18.9 Strength and service limit states for design of driven pile foundations.
(After Withiam et al. 1998)

Performance limit
Strength limit

state(s)
Service limit

state

Settlement of pile group x
Lateral displacement of pile/group x
Bearing resistance of single pile/group x
Pile/group punching x
Tensile resistance of uplift-loaded piles x
Structural capacity of axially/laterally-loaded piles x
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Figure 18.4 Experimental and theoretical bearing capacity results for strip footings (L/B = 6) on
sand. (Ingra, T. S. and Baecher, G. B., 1983, ‘Uncertainty in bearing capacity of sands,’ Journal
of Geotechnical Engineering, ASCE, Vol. 109, No. 7, pp. 899–914, reproduced by permission of
the American Society of Civil Engineers).
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safety in ASD typically are expressed as a range, depending on the type and extent of
site characterization and the analytical method used in making performance predictions.
Higher factors of safety have been recommended for use with empirical measures of soil
properties; lower factors for use with measures based on the principles of mechanics or
on laboratory measurements.
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Figure 18.5 Empirical data for the Gates method of predicting the axial capacity of driven
piles (Stenersen 2001).
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Consider the data of Figure 18.5 from Stenersen (Stenersen 2001), which show empiri-
cal comparisons of observed versus predicted pile capacity using the Gates modification of
the Engineering-News Record formula for predicting the capacity of driven piles (Bowles
1968). The abscissa shows the ratio of observed to predicted pile capacity at failure
(method bias), with failure defined by Davisson’s criterion. The abscissa shows number
of observations. As can be seen, the data are more or less logNormally distributed, with
a mean bias about 1.8 and a coefficient of variation about 0.48. The Gates formula is
strongly negatively biased, on overage under-predicting the actual resistance of a single
pile by almost a factor of 2. In contrast, the data of Figure 18.6 show empirical compar-
isons of observed versus predicted pile capacity using the PDLT Energy method. Here, the
mean bias is 0.92, and the coefficient of variation of the bias is 0.46. The PDLT Energy
method is close to unbiased, although it also has a large coefficient of variation. Note that
since the coefficient of variation is the ratio of standard deviation to mean, the standard
deviation of the bias for the Gates method is about half that for the PDLT Energy method.

Table 18.10 shows recommended resistance factors based on AASHTO (1997) and
Barker et al. (1991) for a variety of methods for predicting ultimate axial geotechnical

Table 18.10 Resistance factors for geotechnical strength limit state for axially loaded piles based
on FOSM analysis (modified after AASHTO, 1998)

Method/Soil/Condition
Resistance

factor, φFOSM

Ultimate bearing resistance of
single piles

Skin friction, clay
α-method

0.70

β-method 0.50
λ-method 0.55
End bearing, clay and rock
Clay 0.70
Rock 0.50
Skin friction and end bearing, sand
SPT-method 0.45
CPT-method 0.55
Wave equation analysis with,
Assumed driving resistance 0.65
Load test 0.80

Block failure Clay 0.65

α-method 0.60
Uplift resistance of single piles β-method 0.40

λ-method 0.45
SPT-method 0.35
CPT-method 0.45
Load Test 0.80

Group uplift Sand 0.55
resistance Clay 0.55

Stress wave measurements on 10% to 70% of piles, capacity 1.00
verified by simplified methods, e.g. the pile driving analyzer
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Table 18.11 Resistance factors for geotechnical strength limit state for axially loaded piles based
on FORM analysis (Paikowsky et al. 2002)

Resistance factor φ φ/λ

Pile type
Soil
type

Design
method

Redun-
dant

Non-
redundant

Redun-
dant

Non-
redundant

Concrete
Pile

Mixed SPT97 mob 0.70 0.50 0.40 0.29

Clay α-API 0.50 0.40 0.67 0.55
λ-Method 0.63 0.55

Sand β-Method 0.46 0.34
SPT97 mob 0.42 0.31

Mixed FHWA CPT 0.60 0.48
β-Method/Thurman 0.40 0.30 0.51 0.39

αTomlinson/Nordlund/Thurman 0.41 0.30
Sand Nordlund 0.42 0.31
Clay α-Tomlinson 0.35 0.25 0.41 0.30
Mixed α-API/Nordlund/Thurman 0.41 0.30
Sand Meyerhof 0.20 0.15 0.32 0.22

Pipe Pile

Sand SPT97 mob, 0.55 0.45 0.38 0.28

Nordlund 0.38 0.27
Mixed SPT 97 mob 0.40 0.30 0.51 0.40

α-API/Nordlund/Thurman 0.35 0.25 0.44 0.31
Sand β-Method 0.31 0.21
Clay α-API 0.30 0.20 0.36 0.26
Sand Meyerhof 0.33 0.23
Mixed αTomlinson/Nordlund/Thurman 0.25 0.15 0.32 0.23

β-Method/Thurman 0.41 0.30
Clay α-Tomlinson 0.40 0.29

λ-Method 0.36 0.25

H Piles

Mixed SPT 97 mob 0.55 0.45 0.45 0.33

Sand SPT 97 mob 0.46 0.35
Nordlund 0.45 0.35 0.49 0.37
Meyerhof 0.51 0.39

Clay α-API 0.48 0.37
α-Tomlinson 0.40 0.30 0.49 0.37
λ-Method 0.50 0.39

Mixed α-API/Nordlund/Thurman 0.35 0.25 0.45 0.34
αTomlinson/Nordlund/Thurman 0.30 0.51 0.39

Sand β-Method 0.39 0.28
Mixed β-Method/Thurman 0.20 0.15 0.42 0.31

Non-Redundant = Four or less piles under one pile cap (β = 3.0 pf = 0.1%)
Redundant = Five piles or more under one pile cap (β = 2.33 pf = 1.0%)
λ = bias = Mean KSX = measured/predicted
φ/λ = efficiency factor, evaluating the relative economic performance of each method (the higher the better)
φ/λ values relate to the exact calculated φ and λ and not to the assigned φ values in the table
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resistance. These can also be found, with comment, in Withiam et al. (1997). The resis-
tance factors from the 1998 code are based on FOSM calibrations using coefficients of
variation based on expert opinion and a review of the literature, combined with calibrations
back-calculated to earlier ASD codes (Table 18.10). A more recent study by Paikowsky
et al. (2002) has introduced FORM calibrations to a series of comprehensive databases
of pile and drilled shaft load test data. These results are shown in Table 18.11. AASHTO

Table 18.12 Typical load and resistance factors for axially loaded piles in compression on land
(modified after Meyerhof 1994)

Code factor
Eurocode 7

(1993)
Canadian Geotechnical

Society (1992)
AASHTO

(1994)

Dead load 1.1 1.25 1.3
Live load 1.5 1.5 2.17
Resistance (driven piles with load tests) 0.4–0.6 0.5–0.6 0.80
Resistance (driven piles from SPT tests) – 0.33–0.5 0.45
Resistance (bored piles with load tests) – – 0.80
Resistance (bored piles from static

analysis)
– – 0.45–0.65

Table 18.13 Predictions of the dynamic methods for three case history piles (Paikowsky and
Stenersen 2001)

Qult (kN)

Friction piles End bearing pile

Type of
analysis Method

Newbury
TP#2

Newbury
TP#2

Choctawhatchee
Pier 5

CAPWAP
analyses

CAPWAP EOD 418 738 –

CAPWAP BOR – – 2527
CAPWAP BORL 1112 1228 2598

Simplified
methods

EA EOD 792 1228 –

EA BOR – – 4484
EA BORL 1432 4075 5187

Dynamic
equations

ENR x/FS = 6,
EOD

347 409 –

ENR w/FS = 6,
BOR

– – 4857

ENR w/FS = 6,
BORL

1041 2527 5480

Gates EOD 721 783 –
Gates BOR – – 2304
Gates BORL 1219 1708 2447
FHWA EOD 1157 1299 –
FHWA BOR – – 4680
FHWA BORL 2251 3354 4982

Static load test results Qult = 658 kN Qult = 872 kN Qult = 5560 kN
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1994 load and resistance factor results are compared with Eurocode 7 (Orr and Farrell
1999) and Canadian equivalents (Canadian Geotechnical Society 1992) in Table 18.12.

Example

Paikowsky and Stenersen (2001) have presented a comparison example of three test piles
designed using ASD and LRFD, the latter based on calibrations developed in the course
of a research project under sponsorship of the National Cooperative Highway Research
Program (NCHRP). The first two test piles from Newbury, Massachusetts, are friction
piles, driven into a soil formation that is mostly clay with some interbedded sand and
silt. The third test pile is an end-bearing pile from the Choctawhatchee River project in
Florida, driven into sandy soil. Table 18.13 gives the predicted capacities computed by
various techniques.

Table 18.14 summarizes design capacities based on ASD and LRFD with the reported
load and resistance factors. Four methods of pile capacity prediction were used, with
factors of safety taken from the existing AASHTO code (1998): CAPWAP (FS = 2.25),
Gates (3.5), FHWA (3.5) and the Energy Approach (2.75). The LRFD capacities were
determined using Equation (18.6) with dead and live load factors of 1.25 and 1.75, respec-
tively, and the resistance factors shown in Table 18.11.

Table 18.14 Summary of design capacity comparisons for three case history piles (Paikowsky
and Stenersen 2001)

Qult (kN)

Friction piles End bearing piles

Newbury TP #2 Newbury TP #3 Choctawhatchee Pier 5Type of
analysis Method WSD AASHTO Ch 9 φ’s WSD AASHTO Ch 9 φ’s WSD AASHTO Ch 9 φ’s

Wave
matching

CAPWAP
EOD

187 178 329 320 – –

CAPWAP
BOR

– 667 – – 943 – 1121 1246 1290

CAPWAP
BORL

489 569 543 623 1157 1326

Simplified
methods

EA EOD 285 320 445 489 – –

EA BOR – 605 – – 854 – 1628 1121 1432
EA BORL 525 463 1486 1308 1886 1664

Dynamic
equations

ENR EOD 98 53 116 62 – –

ENR BOR – – – – 1388 730
ENR BORL 294 160 721 383 1566 818
Gates EOD 205 534 383 222 756 418 – 996 –
Gates BOR – – – – 658 1219
Gates BORL 347 649 489 907 703 1299
FHWA EOD 329 302 374 338 – –
FHWA BOR – – – – 1334 1219
FHWA BORL 641 587 961 872 1423 1299

Static load test results Qult = 658 kN Qult = 872 kN Qult = 5560 kN
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18.4 Concluding Remarks

The geotechnical community in the United States has not yet adopted LRFD, although it is
now part of practice in Europe and Canada. Federal agencies such as the Federal Highway
Administration have introduced it into the practice of highway abutment foundation and
retaining wall design in order to achieve consistency between structural and geotechnical
practice. The technique is equally applicable to other areas of geotechnical engineering,
such as slope stability evaluation, and Taylor’s (1948) book shows that much of the basic
intellectual framework for partial safety factors in geotechnical engineering has existed
for a long time. There are several reasons that the profession has been slow to adopt
LRFD, including reluctance to change current and generally successful methods of anal-
ysis and design, poor understanding of the LRFD methodology and underlying analysis,
and inadequate calibration against actual data. The authors expect that current research
and training programs will address these problems. In the mean time, LRFD remains one
of the most powerful methods for implementing probabilistic methods into design prac-
tice. It was developed for situations involving repeated design, such as estimation of pile
capacity or design of conventional retaining walls. It is not applicable for special projects
in which a full reliability analysis is called for; Chapter 22 gives such an example.





19 Stochastic Finite
Elements

Advances in computer science have made numerical methods increasingly important in
engineering calculations. Geotechnical engineers have found the finite element method to
be easily the most versatile of the advanced numerical methods, but some very widely
used computer codes are based on finite difference approximations. In this chapter the
term ‘finite element method’ is used to include both finite element and finite difference
methods unless there is particular reason to distinguish the two.

19.1 Elementary Finite Element Issues

Many books describing the finite element method have appeared since its first introduction
in the late 1950s. Applications have spread from the original use in structural analy-
sis for the aircraft industry into almost every branch of engineering science, and each
field has spawned its own literature with its own notation and terminology. The book
by Zienkiewicz and Taylor (2000a, 2000b, 2000c) provides a comprehensive view from
a civil engineering point of view. Hughes (1987) gives a treatment that is mathematically
more rigorous. There are a few books that deal specifically with geotechnical engineer-
ing issues (Desai and Christian 1977; Zienkiewicz et al. 1999). Haldar and Mahadevan
(2000) have described the use of stochastic finite element methods for structural reliability
applications. Since the details of the finite element method have been widely disseminated
in books like these, there is little point in repeating them here. We shall proceed with the
assumption that the reader is familiar with the basic finite element methodology or can
readily look it up.

19.1.1 The Basic Finite Element Method

The essence of the finite element method is to convert a problem described by partial
differential equations over space and time into one described by algebraic equations. This
is done by dividing the space-time continuum into a set of discrete elements and assuming
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that the unknowns vary in a simple way over each element. Usually, this means that the
unknowns vary linearly or quadratically over each element, but more complicated patterns
are also used. Because the method originated among structural engineers, structural nota-
tion and nomenclature have clung to the method, and some explanation is often necessary
when the method is employed in another area.

The simplest form of the finite element method is the application to the static deforma-
tion of a linearly elastic body undergoing infinitesimal strains. The body is divided into
m elements – usually triangles or quadrilaterals in the plane case. Each element has a
number of nodes, and the deformation of the element is determined by the displacements
of the nodes. In the basic case the patterns of deformation are chosen so that continuity
is maintained across the element interfaces. Displacements are prescribed at some nodes.
At the remaining nodes, the displacements must satisfy the matrix equation

Ku = p (19.1)

in which p is a vector of the n loads, u is the vector of the corresponding n unknown
displacements, and K is the n × n stiffness matrix. The parameter n is the sum of the
degrees of freedom for all the nodes. The global stiffness matrix K is assembled by
placing in appropriate locations the terms from the stiffness matrices of the individual
elements. The individual element stiffnesses are

ke =
∫

V

BT CBdV (19.2)

The subscript e indicates that this is the stiffness of a particular element. The matrix C
contains the elastic constants. For example, for a linearly elastic body in plane strain and
with shear defined by the engineering shear strain

C = E

(1 + ν)(1 − 2ν)




1 − ν −ν 0
−ν 1 − ν 0

0 0
1 − 2ν

2


 (19.3)

E is Young’s modulus and ν is Poisson’s ratio. The matrix B relates the strains at any
point in the element to the nodal displacements:

ε = Bue (19.4)

Once again, the subscript e indicates the nodal displacements for this particular element.
The integrations prescribed by Equation (19.2), the assembly of the global stiffness

matrix, solution of the matrix Equation (19.1), and back substitution to obtain the strains
and stresses are all done automatically in contemporary computer codes. Several user-
friendly computer codes are available for applications in geotechnical engineering.

The meanings of the terms change when the method is applied to a problem other
than elastic stress distribution. For example, the most common application to steady-state
flow through porous media replaces load with prescribed flow and displacement with pore
pressure. Some coupled formulations require that the ‘load’ and ‘displacement’ vectors
consist of two or more different types of variables. If the problem involves developments
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over time as in the cases of transient flow or dynamic excitation, additional terms must
be included. In some formulations of the dynamic problem, the vectors and matrices have
complex terms. Non-linear material properties usually require incremental or iterative
approaches. Nevertheless, despite the large number of possible variations and extensions,
the basic method is that described by Equations (19.1)–(19.4).

19.1.2 Stochastic Applications using Deterministic Finite Elements

The simplest way to employ finite element methods in a reliability analysis is to treat the
material properties as random variables that do not vary across their region of definition.
This approach does not try to use the finite element methodology to represent the corre-
lation structure of the random field of the variables. For example, the means and standard
deviations define Young’s modulus and Poisson’s ratios of particular regions in the finite
element analysis and the loads are similarly described. This information can then be used
in any of the methods of Chapters 14–17. In effect, the finite element code is being used
in the same way that the stability analysis code was used in Chapter 14. This approach
is an easy way to get an estimate of the reliability of a system, but at the expense of
ignoring the spatial variation of the properties.

Schweiger et al. (2001) describe this approach for three applications: a sheet-pile wall,
tunnel excavations, and comparison of a single and double shell for tunnel support. In the
case of the sheet-pile wall, the analysis assumed that the angle of friction and the reference
modulus of elasticity were described by logNormal distributions defined by means and
standard deviations. All the other parameters were deterministic. The excavation was
simulated in 0.5 m intervals. The finite element program used in the analysis reduces the
strength parameters until no equilibrium can be found and uses these values to compute
a factor of safety. At each level of excavation, this capability combined with the point-
estimate method gave estimates of the reliability. Figure 19.1 is a plot of reliability index
versus excavation depth reported by Schweiger et al. The analysis also yielded the means
and standard deviations of the displacements at each depth of excavation.

The second application, the tunnel excavation, started with twelve random variables
defined by their means and standard deviations. The variables were the friction angle φ,
cohesion c, Young’s modulus E, and coefficient of earth pressure at rest K0 for the soil
(four variables), similar parameters for the rock (four variables), parameters defining the
pre-relaxation for the top heading and bench (two variables), and the shear modulus for
young and old concrete (two variables). The K0’s and the shear modulus of the concrete
were assumed to be Normally distributed; all the other variables were logNormal. They
performed a sensitivity study using FOSM, identifying seven variables that had significant
impact on the results. Then the point-estimate method was used with these seven variables
to develop statistics of safety with respect to a limit state function and surface settlement.

The study of the single and double shells used five stochastic variables: the friction
angle φ, cohesion c, and Young’s modulus E of the soft rock, and the normal stiffness
EA and uniaxial compressive strength βR of the shotcrete lining. Parameters φ and c had
a correlation coefficient of −0.5. The uniaxial compressive strength enters only in the
evaluation of the performance function, so four variables were used in the point-estimate
method to determine the probability of failure as a function of the thickness of the second
shotcrete layer. Figure 19.2 shows the results.

These results demonstrate that the deterministic finite element method – that is, the
finite element method formulated with deterministic variables – can be used in conjunction
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Figure 19.1 Reliability index versus excavation depth for sheet pile study. (Reprinted with permis-
sion from Schweiger, H. F., Turner, R. and Pottler, R. (2001). ‘Reliability Analysis in Geotechnics
with Deterministic Finite Elements.’ International Journal of Geomechanics, Vol. 1, No. 4, pp.
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Figure 19.2 Probability of failure versus shotcrete thickness in tunnel section. (Reprinted with
permission from Schweiger, H. F., Turner, R. and Pottler, R. (2001). ‘Reliability Analysis in
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with means and standard distributions of the input variables to obtain reliability estimates.
The results are particularly useful in design and sensitivity studies.

19.2 Correlated Properties

Although applications such as those described by Schweiger et al. demonstrate the power
of the deterministic finite element method combined with reliability methods, they do not
take advantage of the finite element method’s power to model stochastic spatial variation.
This requires modifying the finite element method to incorporate random fields and,
in particular, the spatial correlation of the material properties. Most studies that model
random fields are Monte Carlo simulations. That is, each analysis is a representation of
the random field.

The simplest approach is simply to generate the material properties for each element
randomly and independently. While we have seen this done in some quick studies, we do
not recommend it because it ignores the correlation structure of the material properties.
The deterministic approach of the previous section implicitly assumes that, within each
material area, the properties are perfectly correlated, and this approach assumes they are
perfectly uncorrelated. As will be pointed out below, the critical condition often lies
between these extremes.

19.2.1 Turning Bands

Based on Matheron’s (1973) original insight, Mantoglu and Wilson (1982) described the
turning bands method as a way to generate correlated random fields. Matheron originated
the name ‘turning bands.’ It is assumed that the field is defined by some trend and by
some correlated, random, Normally distributed departure from that trend. First, the trend
is removed; it can be added back in later. This leaves the problem of generating a random
field with zero mean and correlated, Normally distributed, random error.

The method is illustrated in Figure 19.3 for the case of a two-dimensional field. The
line labeled x is a coordinate axis. Line i is one of a set of turning bands lines, oriented
by an angle θi with respect to the x axis. The parameter ζi describes distances along this
line, and short increments along the line are δζ . A unit vector oriented along line i is
ui . A one-dimensional, correlated random process is generated along each of the turning
bands lines and defined in increments δζ . N is a point in the two-dimensional or three-
dimensional region where the random field is to be generated; xN is the vector from the
origin to point N . The projection of N onto the line i is the point Ni , and the distance
from the origin to Ni is the vector dot product (xN · ui). The value of the one-dimensional
random process at Ni is zi(ζNi ) = zi(xN · ui ). Then, the value of the correlated random
field at N is found by summing the contributions of all L lines:

zs(xN) = 1√
L

L∑
i=1

zi(xN · ui) (19.5)

The subscript s indicates that this is a simulated random field.
Mantoglu and Wilson report that the best results are obtained by distributing the L

lines at equal angles to cover the region of the random field. They state that, in the
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Figure 19.3 The Turning Bands Method. (Mantoglu, A. and Wilson, J. L., 1982, ‘The Turning
Bands Method for Simulation of Random Fields Using Line Generation by a Spectral Method,’
Water Resources Research, Vol. 18, No. 5, pp. 1379–1394,  (1982) American Geophysical Union,
Reproduced by permission of American Geophysical Union.)

two-dimensional case, 4–16 lines are adequate, more lines yielding finer results. In the
three-dimensional case, they cite the finding of Journel and Huijbregts (1978) that accurate
results are obtained with 15 lines connecting the opposite midpoints of the edges of a
regular icosahedron (or, equivalently, the nodes of a regular dodecahedron) enveloping
the region.

To generate the random process along the turning bands lines, it is necessary to develop
a radial spectral density function f (ω) corresponding to the covariance function C(r).
Mantoglu and Wilson give the following pair for a simple exponential correlation

C(r) = σ 2 exp(−br)

f (ω) = ω/b

b[1 + (ω/b)2]3/2
(19.6)

and for a double exponential

C(r) = σ 2 exp(−b2r2)

f (ω) = ω/b

2b
exp

[
−

( ω

2b

)2
]

(19.7)

They further show that the spectral density function of the one-dimensional process, S1(ω),
is related to the radial spectral density function by

S1(ω) = σ 2

2
f (ω) (19.8)

The one-dimensional process along line i is generated by summing M harmonics

zi(ζ ) = 2
M∑

k=1

[S1(ωk)	ω]1/2 cos(ω′
kζ + φk) (19.9)
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in which φk are independent random angles uniformly distributed between 0 and 2π, ωk =
(k − 1/2)δω, and ω′

k = ωk + δω. The range of frequencies is [−�, +�], and δω is �/M .
The term δω is a small random frequency added to prevent periodicities. Mantoglu and
Wilson give examples showing that, for a correlation distance b−1, adequate accuracy
results from using � = 40b and M = 50 to 100.

It should be noted that the points N at which the random field is simulated are not
necessarily the centroids of simple elements. They could be Gauss integration points for
more complicated elements. Therefore, this approach could be used in conjunction with
sophisticated elements incorporating higher order expansions or coupled behavior.

The turning bands method has found its greatest application in the analysis of water
resources and ground water hydrology. Gui et al. (2000) used the turning bands technique
in successive Monte Carlo simulations of a homogeneous embankment. They assumed
that the hydraulic conductivity was logNormally distributed about a constant mean value
and that the spatial correlation was anisotropic. Therefore, the random field is defined by
the mean σlnK , the standard deviation σlnK , and the spatial covariance function

CP (v) = σ 2
P exp


−

[(
vx

Ix

)2

+
(

vy

Iy

)2
]1/2


 (19.10)

where P is the function ln(K), Ix and Iy are the correlation lengths of P in the x and
y directions, σ 2

P is the variance of P , v is the offset vector with components vx and vy .
For each realization of the random field, 50 simulations were run. The flow regime was
evaluated at 50, 100, and 500 days, and the factor of safety and reliability index were
computed. In this case, the other material properties were held constant. They concluded
that the reliability index was very sensitive to the uncertainty in K . They also found that
the factor of safety was adequately modeled as Normally or logNormally distributed when
σlnK ≤ 0.5, but was not well represented by either distribution when σlnK > 0.5.

19.2.2 Local Average Subdivision

The local average subdivision (LAS) method grew out of Fenton’s doctoral work at
Princeton University (Fenton 1990; Fenton and Vanmarcke 1991). The method works by
successive division of the region over which the random field is to be defined. At each
stage of the process the equal subdivisions must (1) have the correct variance according
to local averaging theory, (2) be properly correlated with each other, and (3) average to
the parent value.

Fenton, Griffiths, and their colleagues (Fenton and Griffiths 1996; Fenton et al. 1996;
Paice et al. 1996; Griffiths and Fenton 1997; Griffiths and Fenton 1998) have used this
technique to study a variety of problems, primarily in steady-state seepage through porous
media. Griffiths and Fenton (1998) studied the classic problem of a sheet-pile wall pen-
etrating into a single layer of soil. The particular geometry they used consisted of 3.2 m
of soil and sheet piling penetrating 1.6 m. They performed 2000 realizations for each
two-dimensional case and 1000 for each three-dimensional case. The variation in the exit
gradient was considerably higher than that of other quantities of interest. They found that,
for all values of the coefficient of variation of the hydraulic conductivity, the maximum
values of the mean and standard deviation of the exit gradient corresponded to a corre-
lation distance of 2–4 m. In other words, the most severe impact of randomness in the
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hydraulic conductivity occurs when the correlation distance is nearly the same as the gap
through which the seepage must flow. The probability of exceeding the estimate of the
exit gradient based on mean values of the hydraulic conductivity could be as high as 50%
but generally ranged near 40%. An interesting result from a design point of view was
that a factor of safety of 5 could correspond to 10% probability of the exit gradient’s
exceeding unity when the coefficient of variation of the hydraulic conductivity was high.
The authors concluded that, in such situations, factors of safety against initiating piping
of 10 are not unreasonable.

In an earlier paper, Griffiths and Fenton (1997) studied the flow through a homogeneous
dam. They observed that one effect of variability in hydraulic conductivity was to lower the
position of the phreatic surface and the overall rate of flow. This seems to happen because
the overall rate at which water moves through the dam is affected more by deceleration
in areas of low conductivity than by acceleration in areas of high conductivity. They
also found that the generally accepted design methods were indeed conservative for these
cases and assumptions.

19.2.3 Cholesky Decomposition

Section 17.2.4, points out that a set of correlated Normally distributed random variables
can be generated by a combination of the correlation matrix K and a vector X of uncor-
related random variables with Normal distribution and zero mean. If K is decomposed by
the Cholesky algorithm:

ST · S = K (19.11)

then a vector Y of Normally distributed random variables with zero mean but with the
correlation structure of K is

Y = ST · X (19.12)

This suggests another approach for generating a correlated set of values for finite ele-
ment simulation. The analyst first generates randomly for all elements a set of Normally
distributed but uncorrelated variables with zero mean and the desired coefficient of vari-
ation. Then the K matrix is constructed by using the midpoint distances between the
elements to evaluate the off-diagonal terms. The row and column numbers in this matrix
are element numbers, not node numbers. Many finite element codes already contain a
Cholesky decomposition algorithm, so the decomposition is performed easily. Cholesky
decomposition does not increase the bandwidth or the profile of the original matrix.
Equation (19.12) yields the desired correlated values, to which the trend can be added.

While this technique is conceptually simple and easily accommodated into existing finite
element software, it does have disadvantages. First, the construction of the correlation
matrix may over-simplify the correlation structure between two finite areas, especially
when they are closely spaced. The method is also more difficult to apply when values
are desired not at the centroids of elements but at the Gauss integration points. Finally,
Mantoglu and Wilson (1982) show that the computational cost of the algorithm is

C = α × NP3 + β × NS × NP (19.13)
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in which NP is the number of points to be simulated, NS is the number of simulations,
and α and β are proportionality parameters. By contrast, the cost of the turning bands
method is

C = γ × NS × √
NP (19.14)

in which γ is another proportionality parameter. Although the exact comparison depends
on the values of the parameters α, β, and γ , for large numbers of points the turning bands
method is clearly more efficient.

19.3 Explicit Formulation

The approaches described previously in this chapter generate sets of random fields to be
used in Monte Carlo simulation. This requires a large number of simulations if accurate
results are desired. It can often be difficult to perform sensitivity analyses on the parame-
ters in a Monte Carlo analysis. Therefore, a direct calculation of the effects of correlation
becomes attractive. Unfortunately, the computational difficulties have stood in the way of
many such efforts.

Baecher and Ingra (1981) describe a direct evaluation of correlation effects in the
finite element analysis of settlements. Starting from Equation (19.1), they observe that a
first-order estimate of the expected displacements is

E[u] = (E−1[K])p (19.15)

where (E−1[K]) is the inverse of the matrix of expected stiffnesses. The first-order estima-
tion of the variances and covariances requires partial differentiation of the displacement
vector with respect to the element moduli:

K
∂u

∂〈M〉i + ∂K
∂〈M〉i u = ∂p

∂〈M〉i (19.16)

in which 〈M〉i is the average modulus within element i. If the loads are independent of
the element properties,

K
∂u

∂〈M〉i = − ∂K
∂〈M〉i u (19.17)

and
∂u

∂〈M〉i = −K−1 ∂K
∂〈M〉i K−1p (19.18)

Solution of Equation (19.18) for a system with n displacement components and m ele-
ments gives an n × m matrix:



∂u1

∂〈M〉1

∂u1

∂〈M〉2
· · · ∂u1

∂〈M〉m
∂u2

∂〈M〉1

∂u2

∂〈M〉2
· · · ∂u2

∂〈M〉m
...

...
...

∂un

∂〈M〉1

∂un

∂〈M〉2
· · · ∂un

∂〈M〉m




(19.19)
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Then the first-order approximation for the covariance between displacements k and l is

C[uk, ul] ≈
m∑

i=1

m∑
j=1

∂uk

∂〈M〉i
∣∣∣∣
E[〈M〉i]

∂ul

∂〈M〉j
∣∣∣∣
E[〈M〉j ]

C[〈M〉i , 〈M〉j ] (19.20)

In this expression C[〈M〉i , 〈M〉j ] is the covariance of the material properties between
two elements. Baecher and Ingra found that, for elements that are widely spaced with
respect to the correlation distance, the covariance at element centroids can be used as an
approximation. For more closely spaced elements, two approximations are suggested:

C[〈M〉i , 〈M〉j ] ≈ V [M]R(ξ)

C[〈M〉i , 〈M〉j ] ≈ V [〈M〉]R(ξ) (19.21)

R(ξ) is the distance between centroids. The first applies when the autocorrelation function
is approximately linear between points in two elements, and the second when it is not.

Baecher and Ingra observed, “Two-dimensional settlement uncertainties depend on
uncertainties in the properties of all the elements through the ∂uk/∂〈M〉i terms. Cor-
relation is introduced among nodal displacements due to the common dependence on
the realizations of particular random variables. This correlation would exist even if the
element properties themselves were mutually independent.”

They introduced a further simplification by assuming that Poisson’s ratio is deterministic
so that the uncertain Young’s modulus can be factored out of the element stiffnesses.
Consequently the term at row s and column t of the stiffness matrix, to which w elements
contribute, becomes

ks,t =
w∑

i=1

〈M〉iαiβi

∂ks,t

∂〈M〉i =
w∑

i=1

αiβi (19.21)

In these expressions αi and βi are constants that depend on the element geometry and
Poisson’s ratio. They ran analyses for the effects of a strip surface load of width B over
a layer of thickness 4B. The first-order approximation yielded estimates of the expected
values of the displacements under various assumptions regarding the correlation function.
The variance of the relative settlement is

V [	ur] = V [ui − uj ] = V [ui] + V [ui] − 2C[ui, uj ] (19.23)

If it is assumed that the absolute differential settlements (	uabs = |ui − uj |) are Normally
distributed, the moments of the absolute relative settlement become
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E[	uabs] =
(

2

πV [	ur]

)1/2

V [	uabs] =
(

1 − 2

π

)
V [	ur ] (19.24)

Figure 19.4 presents results for the effect of correlation distance on the implied differ-
ential settlement for several modeling assumptions. The ‘one-dimensional’ results refer to
a simpler, one-dimensional model not discussed here. The two solid lines show that, in
the two-dimensional finite element analyses for both exponential and double exponential
isotropic correlation, the largest effect occurs when the correlation distance is near the
width of the loaded strip. The figure also shows that the simplified one-dimensional model
gives results very different from those obtained by the finite element analysis.
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Figure 19.4 Absolute relative displacement under strip load in surface of stochastic layer versus
autocorrelation. (Baecher, G. B. and Ingra, T. S., 1981, ‘Stochastic FEM in Settlement Predic-
tions,’ Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT4, pp. 449–463,
reproduced by permission of the American Society of Civil Engineers.)
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Because of computational burdens, Baecher and Ingra used a very coarse mesh of 99
nodes and 320 triangular elements. The recent increases in computing power and reduc-
tions in cost make it possible to apply the methodology to more complicated problems.
However, this has not been done to date.

19.4 Monte Carlo Study of Differential Settlement

Fenton and Griffiths (2002) used Monte Carlo simulation of correlated random fields to
study the differential settlement of two strip footings of equal size placed on the surface of
an elastic medium for which Young’s modulus was logNormally distributed and spatially
correlated. They showed that the expected value of the differential settlement (µ	) is
zero, but its variance depends on the correlation structure, the size of the footings, and
their spacing. They proposed that assuming the differential settlement δ is approximately
Normal and that the settlements of the two footings (γ1 and γ2) are identically and log
Normally distributed leads to

µ	 = 0, σ 2
	 = 2(1 − ρδ)σ

2
δ (19.25)

in which σγ is the standard deviation of each settlement and ρδ is the correlation coefficient
between the settlements. When the correlation distance for the modulus (θln E) approaches
zero, the settlement variance σ 2

δ does as well. When it becomes very large, the correlation
between the settlements of the two footings approaches one. Thus, Fenton and Griffith
observe that expected differential settlements would disappear for both very large and very
small values of θln E . This prediction is supported by the results depicted in Figure 19.5.
In this figure Wf is the width of each footing, D is the distance between their centers,
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Figure 19.5 Predicted and sample standard deviations of differential settlement for two strip
loads on elastic foundation material. (Fenton, G. A. and Griffiths, D. V., 2002, ‘Probabilistic
Foundation Settlement on Spatially Random Soil,’ Journal of Geotechnical and Geoenvironmental
Engineering, ASCE, Vol. 128, No. 5, pp. 381–390, reproduced by permission of the American
Society of Civil Engineers).
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and σE/µE = 1. The points identified as ‘sample’ are the results of the Monte Carlo
simulation. The maximum standard deviation of the differential settlement occurs when
the separation distance has the same order of magnitude as the correlation distance for
the modulus, a result consistent with other studies discussed above.

19.5 Summary and Conclusions

The finite element method is especially well suited to analyzing problems in which
properties and geometries vary from place to place, but its combination with stochastic for-
mulations presents some computational problems. Three approaches have been employed.
First, the finite element method has been used as a deterministic computational tool with
the uncertain properties varying uniformly in each region. This essentially assumes per-
fect correlation from point to point. Nevertheless, results useful for design studies have
been obtained. Secondly, the random field of properties can be represented in a series of
Monte Carlo simulations. In addition to the need for large computational times to obtain
adequate results, this approach requires a method for developing the properties of the ran-
dom field. The two most popular approaches are the Turning Bands Method (TBM) and
Local Average Simulation (LAS). Finally, direct computation of the covariance matrices
and solution for the variances by first-order second-moment methods has been described
but not widely used.

The geotechnical literature contains relatively few descriptions of stochastic finite ele-
ment analyses. Most of those deal with flow through porous media. Many of the results
published to date tend to confirm the conservatism of conventional deterministic design
approaches, in itself a welcome result.

A conventional way to deal with uncertainty deterministically is to bracket the results.
When this is applied to problems in which spatial correlation is important, this approach
would call for analysis with uncorrelated properties and with perfectly correlated prop-
erties. However, studies of exit gradients in flow under sheet piles and of differential
settlements under strip loads demonstrate that the critical condition occurs when the cor-
relation distance is approximately the same as the significant dimension of the problem
being studied.





Part IV





20 Event Tree Analysis1

A variety of methods are available for analyzing engineering risks, but event trees have
become the common approach for complex geotechnical systems. There are a number
of reasons for this. Event trees provide an intuitive structure within which to organize
issues about a particular site or structure. Because event trees typically progress from
start to finish in chronological order, they follow a chain of events as it might unfold.
They are also versatile in adapting to unique conditions at a particular site. All of this
is comforting to practical engineers facing practical problems: Problems are decomposed
into tractably small pieces and then brought back together to shed light on the prospect
of system failures.

The place where event trees have had the most extensive use in geotechnical practice is
the area of dam safety. This has been driven by work at the U.S. Bureau of Reclamation,
British Columbia Hydro and Power Authority (BC Hydro), and other owners of large
portfolios of hydropower and irrigation dams. This chapter discusses event trees primarily
around this dam safety application. The application of event trees to another type of system
safety, namely the seismic safety of a petrochemical tank farm, is discussed in Chapter 22.

20.1 Systems Failure

In the context of risk analysis, system failure means the cessation of proper functioning
of what is expected of a site or structure as a whole. For example, consider a modern
earth embankment dam, simplified in Figure 20.1. Since the function of a dam as a whole
is to retain water (with some allowable seepage) functional failure occurs when the dam
(i.e. the system) ceases to retain water. System means the group of interacting elements
that form the complex whole of the site or structure, here, the dam, its foundation, and
appurtenant mechanical equipment. The ultimate goal of Event Tree Analysis (ETA) is

1 The authors are grateful to Karl Dise of the U.S. Bureau of Reclamation, Desmond Hartford of BC Hydro,
and Andrew Zielinsky of Ontario Power Generation for their thoughts and involvement in the development of
the materials in this chapter. Expanded discussion these issues appears in the Canadian Electricity Association’s
Guide to Dam Safety Risk Management (forthcoming).

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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rip rap rip rap

coreupstream shell downstream shell

filterfilter

Figure 20.1 Schematic representation of earth dam system, showing typical discrete components
for an event tree analysis: riprap, upstream and downstream shells, filters, and core.

to provide insight into the functioning of a system and into the associated uncertainties
about the way the system functions. Along the way, this leads to a quantification of the
probability that the system (i.e. the dam) may cease to provide its essential function. This
is the probability of system failure. This probability reflects the aggregate uncertainty in
knowledge about the functional performance of the dam and about the environmental
loads and service conditions that the dam may face.

As in any modeling activity, assumptions and simplifications are made at each step in
conceptualizing the dam as a system and creating an event tree. Different analysts have
different ways of defining events, different ways of linking events together, and different
ways of estimating parameters and assigning probabilities to events. An event tree reflects
a belief structure about a system, about the natural environment within which the system
resides, and about the natural and human processes that affect performance.

20.1.1 Event trees

An event tree is a graphical representation of the many chains of events that might result
from some initiating event, a few of which, should they occur, would lead to system
failure. As the number of events increases, the diagram fans out like the branches of a
tree, suggesting the name (Figure 20.2).

An event tree begins with some accident-initiating event (Figure 20.3). This might be
a flood, an earthquake, human agency, an internal flaw, or something else. The analysis
attempts to generate all possible subsequent events, and correspondingly, events that might
follow the subsequent events, and so on. The event outcomes are represented as branches
issuing from the chance node representing a particular event. This process follows until
many chains of events are generated, some of which lead to failure, but most of which
do not.

A conditional probability is associated with each event, given all the events preceding in
the tree. A joint probability of a chain of events is calculated by multiplying the conditional
event probabilities along the chain. Summing the probabilities of all the chains of events
that start from a single initiating event and lead to failure yields the total probability of
failure due to that one initiating event. Summing the probabilities over all initiating events
yields the total probability of system failure. Bury and Kreuzer (1985, 1986) and Kreuzer
and Bury (1984) give examples of how event trees can be structured for a gravity dam.
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Initiating Event

Success State

Failure State

Success State

Success State

Failure State

Failure State

Initiating Event System 1 System 2 Accident
Sequences

(I)

(S1)

(S2)

(F2)

(F1)

(S2)

(F2)

(IS1S2)

(IS1F2)

(IF1S2)

(IF1F2)

Figure 20.2 Illustration of a simple, generic event tree (US Nuclear Regulatory Commission
1975).

Initiating
Event

Node

Branch

Leaf

Consequence

Figure 20.3 Event tree terminology.

In the risk analysis literature for power plants, aircraft, and other mechanical equip-
ment, events within event trees are often limited to dichotomous outcomes (Leveson
1995; McCormick 1981). This is overly restrictive for most geotechnical applications.
It is reasonable for events to have many possible discrete outcomes, or even to have
continuous outcomes. For computational purposes, however, continuous outcomes are
usually replaced by a discrete approximation. The only theoretical requirement on the
outcome space for events within an event tree is that the outcomes be mutually exclusive
and collectively exhaustive; that is, the outcome of a chance node follows exactly one
branch.

The terminal node at the end of any chain of events through an event tree is referred
to as a leaf. Each leaf in the event tree has associated consequences. The consequences
are the costs or benefits accruing should the particular chain of events leading to that leaf
obtain. In most cases, these consequences themselves may be complex and are analyzed
by constructing a consequence tree. A consequence tree structures the set of considera-
tions involved in estimating consequences of failures in the same way that an event tree
structures chains of events leading to possible systems failure.
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Event trees most likely originated in efforts to enumerate (also to visualize) multi-
variate outcomes in probability sample spaces. Event trees appear in the work of early
writers on probability theory (Daston 1988; Hacking 1975). In recent times, event trees
have formed the basis for statistical (Bayesian) decision analysis (Raiffa 1968) with its
corresponding decision trees. Some writers have linked the origin of event trees to decision
trees (Leveson 1995), but event trees seem to have a much earlier provenance.

20.1.2 Initiating events

Initiating events are the first nodes in an event tree, the events that precede or initi-
ate subsequent chains of the events. For the example of dam safety, typical initiating
events might include (1) storms leading to large reservoir inflows, (2) earthquakes creat-
ing ground shaking, (3) design or construction ‘flaws,’ (4) equipment failures, for example
of spillway gates, or (5) human agency. Usually, initiating events and their consequences
are considered in isolation from one another, that is, independent, but sometimes this is
not a good assumption (Baecher 2002).

Initiating events external to the system, such as extreme storms or earthquakes, are
usually treated as naturally varying phenomena, that is, as aleatory variables that occur
randomly in time (Chapter 2). Thus, they might be modeled by a stochastic point process
such as the Poisson or Negative Binomial. These initiating events are brought into an event
tree much as they might be brought into a fragility curve. They are loadings on the sys-
tem, while the event tree models system response to the loading (Figure 20.4). Presuming
initiating events to be random implies annual probabilities of failures, as for example, in
flood frequency curves or earthquake recurrence functions. In actuality, the uncertainties
concerning initiating events may be caused in large part by limited knowledge, in which
case the annualized probabilities of failure are an artifact of the modeling. Event trees for

Annualized
initiating

event
Event
Tree

Annualized
initiating

event

P
ro

ba
bi

lit
y 

of
 fa

ilu
re

Load

Fragility
curve

Figure 20.4 Annualized initiating events generate input to a system failure model that can be
represented as an event tree, a fragility curve, or some other way.
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dam safety typically focus on relatively few initiating events. Internal initiating events
have also been called, ‘failures under normal operating conditions’ (Von Thun 1996).

20.1.3 Event trees and fault trees

Fault trees, which begin with the final system failure and reason backward to identify
causes, are the principal way mechanical systems such as power plants or ships are ana-
lyzed (Bedford and Cooke 2001; McCormick 1981). Strictly speaking, there is no reason
that dams could not be modeled by fault trees, and indeed, Parr and Cullen (1988), Vick
and Bromwell (1989) and Bury and Kreuzer (1985; 1986) report risk analyses of dam
safety using fault trees (Figure 20.5). McCann (2002) provides a pedagogical discussion
of the use of fault trees for dam safety.

Event trees, at least in concept, start with initiating events or causes to the left-hand side
of the drawing and progress toward ever more detailed consequences to the right-hand
side. The ordering of events in an event tree can be rearranged so long as the relations
among conditional probabilities are adjusted (more below), but in concept, the logical
progression from cause to effect in a tree is an important if sometimes concealed princi-
ple of event tree analysis. In contrast, fault trees start with consequences (i.e. failures),
typically at the top of the diagram, and progress backwards toward the ever more detailed
causes, typically at the bottom of the diagram. Thus, the logical structure of fault trees
is reverse to that of event trees, in that the logic moves from consequence to cause. A
system failure mode is considered the ‘top event’ and a fault tree is developed in branches
below this event showing causes. An event tree analyst asks, “what might happen if an
initiating event occurs?” A fault trees analyst asks, “how can a particular outcome come to
pass?” In concept, fault trees are photographs showing conditions at an instant in time. In
contrast, event trees might be thought of as interaction models of the system components.

It is sometimes suggested that event trees and fault trees can be used interchangeably,
but this is true only with difficulty. Event trees and fault trees evolved out of different
needs and are adapted to different tasks (Bier 1997). A fault tree presents all possible ways
of producing a single event, using binary logic from Boolean algebra and resembling a
‘root system rising to a main stem’ (McCann 2002). It is most suited to well-defined
systems, such as mechanical equipment, for which all the components can be enumerated
and their interrelationships specified. It is less well suited to poorly defined situations,
such as earth structures or the geological subsurface, for which discrete components may
not be differentiable or interrelationships may not be unequivocal. It is also poorly suited
to non-Boolean conditions in which component performance may have multiple states.

Sometimes fault trees can be used as the reliability analyses that underlie the estimation
of probabilities for event branches (Figure 20.6). For example, spillway gate structures
are well-modeled using fault trees because they are mechanical systems. The probabilities
associated with gate malfunction can be calculated using a fault tree just as they might
be using some other structural reliability approach, and then input as the probability
associated with a simple event branch, ‘spillway gate fails to function,’ in an event tree.

20.1.4 Conceptual basis of event trees

The definition of event as used in common speech has to do with outcomes and occur-
rences: with things that come to pass or come into being, with things that happen:
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Figure 20.6 Event tree showing event probabilities calculated with associated fault trees for indi-
vidual events (McCormick 1981).

Event. 1 a: OUTCOME, something that follows as a result or consequence; b: the
final outcome or determination of an action c: a postulated outcome, condition, or
eventuality; 2 a: something that happens: OCCURRENCE, a noteworthy happen-
ing. (Merriam-Webster 1998).

This definition is less restrictive than, although similar to, those found in textbooks on
probability:

Event. 1 a: OUTCOME, or a collection of outcomes, of a defining experiment; b: a
set of sample points in a sample space (Davenport 1970).

In probability theory, the notion of an event has to do with random experiments and sample
spaces. This has led some people to think of event trees as the graphical expressions
of sample spaces. As such, causality, time ordering, and other logical structures become
moot. Events can be arbitrarily rearranged as long as conditional probabilities are adjusted
accordingly. On the other hand, it may be helpful from an engineering view to retain the
chronological ordering or the logical structure of the set of events within an event tree.
Thus, different people may view the purpose of event trees differently.

What does an event tree intend to be? The most common concepts are: (1) a model of a
physical system (e.g. a model of a particular dam); (2) a statement about joint probabilities
of random variables; and (3) an accounting scheme for information and beliefs. These
distinctions have to do with the way uncertainties are divided between natural variations
and limited knowledge and which uncertainties are included in the tree. Some workers
limit the events represented as nodes in the event tree to only those having to do with
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aleatory uncertainty: things that happen in space or time. In this approach, epistemic
uncertainties are represented in event tree as ‘states of nature.’ A state of nature is a fixed
condition of the world, the value of which may be unknown. For example, a ‘constant’
in the sense of an engineering model is a fixed parameter, the value of which is known
imprecisely.2 As in all aspects of geotechnical risk and reliability, it is essential to draw
a distinction in event trees between aleatory and epistemic uncertainties.3

If an event tree is viewed as a model of a physical system, then only events happening
in time or space, and happening to or within the system, should be represented as nodes
in the tree. States of nature that describe the external environment or parameters of
engineering models should enter the tree only through reliability models used to assign
branch probabilities. To the extent possible, events should be arranged in causal order.

A stricter interpretation of event-trees-as-systems-models is that only nodes that have
to do with system states should be included in the tree. Using this interpretation, a node
such as ‘liquefaction slumping of crest greater than 3 m’ would be included in the event
tree, because it describes a physical state of the dam. An event such as, ‘heroic effort
made to protect eroding toe’ would not be included because, even though it is an event
that occurs in time, it is not the description of a physical state of the dam.

In contrast, existing but unknown conditions may be important uncertainties determining
probabilities associated with event outcomes, but these uncertainties would belong in the
reliability analysis leading to branch probabilities, not as event nodes in the tree. These
conditions would be viewed as states of nature. Thus, for example, the suspected but
uncertain existence of a low density fill in a dam foundation is important to the probability
that the fill liquefies under seismic ground shaking, but it would not be an event node
itself in the tree, although it would influence probabilities associated with events in the
tree. Approaching an event tree as a model of a physical system greatly simplifies the
tree structure, because condition variables that might appear as nodes are now subsumed
within the reliability models leading to branch probabilities.

If an event tree is viewed as a statement about the possible joint outcomes of a set
of random variables, then either (1) both events and condition variables co-exist in the
tree, presuming a degree-of-belief view of probability is adopted, or (2) only events are
represented, presuming a frequentist view is adopted. In either case, the ordering of
the events and variables can be arbitrarily rearranged, and the tree is used mostly as a
calculation engine.

Figure 20.7 shows an event tree for flood discharge and stage. The probabilities asso-
ciated with the first branching are the marginal probabilities of discharge taken from the
flood frequency curve. The probabilities associated with the second branching are the
conditional probabilities of stage for known discharge. Reversing the order, putting stage
as the first event and discharge as the second, changes only the branch probabilities.
The probabilities at the first branching are the marginal probabilities of stage, while the

2 The present usage is more restrictive than that common in the decision analysis literature (Raiffa 1968), where
the meaning of states of nature also includes what are here called events.
3 It is interesting to speculate whether these two analysts would end up with the same estimate final of risk. On
the one hand, the total uncertainty should be unchanged by the assumption that one part thereof is epistemic
and the other aleatory. On the other hand, we use the separation between aleatory and epistemic uncertainties
to exploit differences in the power that statistical and probabilistic models bring to the analysis. In a specific
case, there may well be an optimum way of dividing the two types of uncertainty, although it would be difficult
to prove.
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Figure 20.7 Simple event tree for discharge and stage of a river reach.

probabilities at the second branching are the conditional probabilities of discharge for
known stage. The joint probabilities of the right-hand side outcomes are the same in
both cases. The event tree is simply a convenient way of consistently representing the
relationships among events and conditional probabilities.

Viewing event trees as statements of joint probability presumes no causality from parent
node to child, and no temporal ordering. Events can logically appear in the tree in arbitrary
chronology. Causality is irrelevant.

If an event tree is viewed as a logical statement about information and beliefs, then again
both events and condition variables co-exist in the tree. This is the common approach in
most geotechnical studies. The uncertainties associated with events and condition vari-
ables can be convolved, or they may be separated into two distinct parts: an event tree to
summarize occurrences in time or space, along with a logic tree to summarize the state
of knowledge about the dam and its environment. An event tree is thus a representation
of what we know, not a model of a particular dam (Figure 20.8).

Evolving practice in seismic hazard, nuclear safety, and some other disciplines is to
separate aleatory random variables from epistemic uncertainties. Two trees are then cre-
ated: an event tree and a logic tree. The event tree contains only aleatory events; the
logic tree contains only epistemic uncertainties. The logic tree is a representation of the
possible realizations of the states of nature controlling probabilities within the event tree.

g
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Figure 20.8 Logic tree describing fixed-but-unknown conditions (states) of nature, as conditioning
point for event tree of system.
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The event tree structure appends to individual ‘leaves’ of the logic tree, so that all
calculations within the event tree are conditioned on the realized states of nature in the
logic tree. This simultaneously accounts for dependencies anywhere in the event tree due
to the common realization of states of nature in the logic tree. The final combined tree
need be no more complex than before, since the number of combinations of all uncertain
events, both aleatory and epistemic, remains the same.

20.2 Influence Diagrams

An influence diagram graphs relationships among initiating events, states of nature, con-
ditions of the system, and consequences. Creating an influence diagram is, in essence,
creating the basic model of the risk analysis from which event trees, reliability calcula-
tions, and other models arise. There is not a rigid set of steps or a recipe for creating an
influence diagram, but only a structured procedure to help maintain logical consistency.

As in all modeling, the influence diagram should represent the logic of the sys-
tem, influences upon the system, and uncertainties affecting system performance. To the
extent possible, it should do so parsimoniously; it should seek an efficient representa-
tion. Obviously, this, too, is an art, requiring interpretation and judgment. The enterprise
of creating an influence diagram seeks a relatively simple representation with compar-
atively few parameters, which, despite its simplicity, closely represents the behavior of
the dam.

An influence diagram provides a visual model of the structure of a risk analysis problem.
This includes the timing of events, relationships among risky outcomes, and uncertain
events, quantities, or variables. The intent of an influence diagram is to help visualize
how system components, uncertainties, and outcomes are interrelated; and especially to
support the development of a systems risk model of the components, uncertainties, and
outcomes. The influence diagram involves no mathematical model; it deals only with
relationships among entities.

Two important advantages of influence diagrams over event or decision trees make
them useful in the early stages of risk analysis. First, even a complicated problem can
sometimes be represented in a simple influence diagram. An influence diagram repre-
sents a single uncertain quantity by a single node, and does not lead to the combinatory
explosion of branches associated with event trees and fault trees. Secondly, influence dia-
grams explicitly show interrelationships among events. In an event tree there is usually
no immediately obvious way to track the causal dependence of one uncertain quantity
on another.

20.2.1 Influence diagrams and event trees

Influence diagrams and event trees are alternate representations for the same systems.
It is often convenient first to structure a systems model as an influence diagram, and
then to use the insight gained from the influence diagram to structure an event tree for
the same system. Each tool provides a means of graphically representing events and the
interrelationships among events, although these means differ between influence diagrams
and event trees. Each tool can be used to quantify the effects of external risks on process
activities, or on engineered or natural systems (Marshall and Oliver 1995).
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An influence diagram uses event nodes representing the uncertain conditions surround-
ing a process, as well as activity nodes representing discrete process steps. Relationships
among nodes are shown by directed paths, which sometimes are referred to as arcs or
influence lines. The graphical display of events, process steps, and consequences, and their
relationships to components of the system being analyzed is used to visualize the impacts
of external events or uncertainties. An influence diagram is often used as an exploratory
tool leading to the development of more formal event trees, and, as such, system states
and uncertainties of various types may be mixed within the same diagram.

The quantification of uncertainty in an influence diagram is accomplished by building
a compatible event tree in conjunction with the diagram. Such a tree consists of chance
nodes corresponding to the risk and activity nodes in the influence diagram, connected
by branches delineating their paths of influence (Clemen and Reilly 1991; Rowe 1977;
Stedinger et al. 1996).

Relationships among events in event trees follow a hierarchy from independence,
through causality, to networked causality, and to temporal orderings. These may be shown
in a number of ways, as suggested in Figure 20.9. Many analysts make no distinction
between statistical correlations and causal effects, in that the mathematics of probability
theory can be made to account for inverted ordering of events, even if the events are
causally related.

20.2.2 Elements of influence diagrams

Standard practice in constructing influence diagrams (Marshall and Oliver 1995), similar
to standard practice for decision trees (Pratt et al. 1995), is to represent node types by
circles or ellipses for uncertainties, squares for decisions, and diamonds for outcomes.
Typically, influence diagrams in dam safety analyses do not include decision nodes, but
that need not be the case. Some authors add a fourth, deterministic node, but this could
be viewed as a degenerate case of an uncertain node (Bedford and Cooke 2001).

A directed arc is used to denote dependence or conditionality in influence diagrams. A
directed arc joining node A to node B (Figure 20.10) may denote that, (1) event A causes

statistical correlation

causal effect

causal chain

causal network

independent events

Figure 20.9 Relational structures in event trees.
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A B

Figure 20.10 Directed arcs in influence diagrams.

A

B

C

Figure 20.11 Two uncertain variables, A and B, each dependent on a third variable, C.

event B or influences the way B happens, or (2) knowing the value of A changes the
probability or probability distribution of B (i.e. A and B are probabilistically dependent,
and A or the knowledge of A occurs first in time).

Two events A and B can be probabilistically correlated and yet not be joined by a
directed arc, for example, if they share common dependence upon some third variable
C (Figure 20.11). Knowing the value of C, the uncertainties A and B are assumed prob-
abilistically independent in this influence diagram (because they are not directly joined
by an arc); but if C is unknown, A and B are probabilistically dependent, because each
depends on the realization of C.

Two events A and B can also be statistically correlated and yet not joined by a directed
arc, for example, if estimates of their values are based on the same set of experimental
observations. Estimating the Mohr-Coulomb strength parameters c and φ from a sin-
gle set of tests introduces correlation because the parameters are effectively regression
coefficients.

20.2.3 Developing an influence diagram

The typical procedure for creating an influence diagram is:

1. Identify the events and uncertain quantities whose outcomes could be important to the
safety of the system.

2. For each uncertain quantity, assign a name and a unit of measure; if decision variables
are involved, define specific, quantitative alternatives.

3. Identify influences or dependencies among the uncertain quantities, and between each
decision and each uncertain quantity; then represent each uncertain quantity and each
decision by a node in a graph, aligning them in order of occurrence, if time is relevant.

4. Assign directed arcs among uncertainty nodes and between decision and uncertainty
nodes, with the direction of the arcs indicating the direction of presumed influence.

5. In constructing the influence diagram, there should be no closed loops or cycles among
the nodes. That is, there should be no connected path along the directed arcs that leads
back to an earlier node.

We earlier introduced the system states and uncertainties associated with a simple flood-
way levee. These can be combined in an influence diagram to begin to show the inter-
relationship among the various elements and considerations in beginning a risk analysis
of the levee. A first attempt at such an influence diagram is shown in Figure 20.12. This
diagram consists both of system states and uncertainties affecting those states.
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Figure 20.12 Influence diagram for levee failure. (Canadian Electricity Association, Guide to
Dam Safety Risk Management, forthcoming.)

While it is not common for an influence diagram in dam safety studies to include
decision nodes, it is also not unknown. Figure 20.13 shows the same influence diagram,
now with the addition of an active decision node representing the option of releasing
water upstream of the levee reach into a flood by-pass. The directed arc between flood
duration and overtopping is neglected in this diagram as a simplification. If the operators
of the floodway recognized that a potentially dangerous flood was heading into the levee
reach, they now might make an active decision to intervene. As with the other nodes in
the diagram, the behavior of the decision node may itself be affected by many variables
and uncertainties, for example, ones associated with the availability of timely information
and with human factors.

20.2.4 Markovian behavior in influence diagrams

The Markovian property, so prized for its practical usefulness in belief networks, (Pearl
1988) sometimes runs counter to good practice in influence diagrams involving decision
nodes (belief networks typically do not include decision nodes). Consider a site char-
acterization situation involving the potential for two steps of data gathering (akin to a
‘second-opinion’ decision problem in the clinical literature). Presume that the performance
of the levee with respect to under-seepage depends on the possible, but uncertain, existence
of sand lenses in the substrata. Geological information may lead to a prior probability of
lenses existing (Figure 20.14), and based on this information, a decision can be made. The
decision might be to choose a remedial option or to drill more borings to try to gain more
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Figure 20.13 Influence diagram for levee failure, including active decision node. (Canadian Elec-
tricity Association, Guide to Dam Safety Risk Management, forthcoming.)
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Figure 20.14 Influence diagram for the two-staged exploration decision. (Canadian Electricity
Association, Guide to Dam Safety Risk Management, forthcoming.)

information about whether or not sand lenses exist. Once this additional information has
been gathered, a new (posterior) probability of a lens existing is calculated through Bayes’
Theorem, and a decision on remedial actions revisited. After a decision on remedial actions
is taken, and a lens turns out either to exist or not to exist, some performance result obtains.
Before the fact, of course, this performance result can only be described probabilistically.
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The directed arc between the geological information and the second decision, denoted
by a dotted line, must be there. The influence diagram cannot describe a meaningful
decision problem without this arc. Absent the arc, the geological information known at
the time of the first decision would be forgotten by the time of the second decision, and
this is not realistic, since the geological information is pertinent to the second decision. A
requirement for a proper influence diagram is that information known at an earlier deci-
sion is remembered at a later decision. The arc from the ‘geological evidence’ node to
the second decision node is sometimes called a ‘no-forgetting arc’ (Marshall and Oliver
1995).

The nature of the geological evidence at the LHS initial node leads to a conditional
probability of a sand lens existing via Bayes’ Theorem,

Pr(lens|geology evidence) ∝ Pr(lens)L(geology evidence|lens) (20.1)

in which the left-hand side is the conditional probability of a lens existing given the
geological evidence, and the right-hand side is the product of the marginal probability of
a lens existing, by the likelihood (i.e. conditional probability) of the geological evidence
given that a lens exists.

One could just as logically reason that the existence or non-existence of a lens influ-
ences the probabilities of different sorts of geological evidence, and the corresponding
conditional probabilities are found by reversing Equation (20.1). Restructuring the influ-
ence diagram in this way (Figure 20.15), however, creates a disallowed cycle within the
graph, illustrating that it is comparatively easy to create improper graphs. In a simple
influence diagram with only a few nodes, it is relatively easy to detect this sort of incon-
sistency and reverse the offending arc(s). It is more difficult with large diagrams, and
more formal methods are available to detect cycles in such cases (Marshall and Oliver
1995).
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Data From
Borings

Performance

Decision
to act or

drill

Decision
to act

Figure 20.15 Arc reversal in the influence diagram for two-staged exploration. (Canadian Elec-
tricity Association, Guide to Dam Safety Risk Management, forthcoming.)
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20.3 Constructing Event Trees

Consider the homogeneous, compacted soil flood levee shown in Figure 20.16. The pur-
pose of the levee is to retain high water during floods. As a first approximation, this levee
might ‘fail’ – and thus allow flood waters to escape – in one of three ways: (1) high
river stage might overtop the levee, causing embankment erosion and consequent loss of
containment; (2) the levee itself might fail due inadequate soil strength and high internal
pore pressures; or (3) seepage in the soils beneath the levee might lead to piping and a
deep sliding failure. How might we build an event tree with which to analyze the risk of
failure of this levee?

20.3.1 Considerations in developing the event trees

Some of the considerations in analyzing the risk that the levee will fail are suggested by
Table 20.1. First, at least four system states are relevant to a potential failure: the flood
height relative to top of the levee, internal pore pressures in the levee and its foundation,
the geotechnical strength and stability of the levee proper, and the presence of piping
(internal erosion) in the foundation. For this example, piping in the levee itself is ignored.
The probabilities associated with each system state depend on various uncertainties. Since
some of these uncertainties may be common to different system states, the uncertainties
about system states are likely not to be independent (National Research Council 2000).
The separation of natural variations from knowledge uncertainties in Table 20.2 is, in fact,
a modeling decision that could be made in different ways by different people, or made in
different ways by the same person if the purpose of the modeling changes.
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Figure 20.16 Example of levee subject to flood flow. (Canadian Electricity Association, Guide
to Dam Safety Risk Management, forthcoming.)

Table 20.1 Important system states for levee example

Failure modes System states State variable

Overtopping of levee Overtopping of levee Relative water height

Structural or geotechnical Internal pore pressure in levee Pressure on pertinent failure
instability in fill Subgrade water pressure surface

difference Differential water pressure
Levee strength stability Levee deformations

Erosion of the foundation Subsurface piping Rate of seepage in subsurface
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Table 20.2 Division of important uncertainties for levee example onto those related to natural
variability and those related to knowledge uncertainty

Naturally varying (aleatory) conditions Knowledge (epistemic) uncertainties

Extreme storm in upstream basin Average strength of the levee fill
Peak flood discharge (flood-frequency) Presence of ‘flaw’ zones in the levee
Peak river stage for a given discharge Existence of permeable lenses in foundation
Flood duration given peak flood Critical duration of overtopping to cause
Spatial variation of soil properties failure

Q > 200

S < 48 

S > 48 

No

No

Yes

Yes

Flood discharge River stage Levee overtops 

Q > 200 S = 48

No

Yes

S = 0

S = ∞

Figure 20.17 Alternative simple event trees for levee overtopping: Top showing dichotomous
representation of outcome: bottom showing continuous representation of outcome.

An event tree is built from a set of events, each represented by a node. The
branches emanating from an event node represent possible outcomes. Since these are
mutually exclusive and collectively exhaustive, the outcome follows exactly one branch.
Figure 20.17 shows the initiating event of a flood discharge greater than some value.
The subsequent event, ‘river stage,’ is summarized in the upper tree by a dichotomous
outcome. In this case, the corresponding river stage is either greater than some value, or
less than that value (by convention, the upper branch at each event usually corresponds
to the associated event being ‘true’). In the lower tree, the event is summarized by a
continuous outcome between lower and upper bounds.

A probability distribution is associated with each event node. When the outcomes
are defined as discrete, the probabilities are represented in a probability mass function
(pmf). When the outcomes are continuous, the probabilities are represented in a probabil-
ity density function (pdf). Calculations in the first case are made by multiplying branch
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probabilities by their corresponding consequences, and in the latter case by integrating
the consequences over the pdf.

An event tree quickly becomes large. Expanding a simple chain of events leading from
an initiating event of high rainfall to strength failure of a levee could pass through at
least the following five events, each of which might have many possible outcomes: (1) an
extreme storm generates rainfall of a given amount; (2) discharge in the river exceeds
some value; (3) stage rises above some critical elevation; (4) high water lasts for a critical
length of time; and finally (5) the levee fails due to high loads and rising pore pressures.
Simplifying to dichotomous events yields the tree of Figure 20.18, which is already large.

A more realistic model might include consideration of whether soft zones (flaws)
exist within the embankment, how high the pore pressures rise, whether a levee expe-
riencing structural instability might yet retain the flood flow, and so on. One problem
with any of the simple logic tools used to model risks associated with system per-
formance, such as influence diagrams or event trees, is that the tools are static anal-
yses that decompose events into individual realizations. This simplifies the analysis,
but may lose important features. Since the tree grows combinatorially with the num-
ber of events, care must be taken to keep event chains as short as can be reasonably
accommodated.

Consider an issue suggested by Zielinsky (2001) of the height and duration of overtop-
ping. Each is important for failure, and they act jointly. Shallow overtopping, that is, not
much water volume passing over the levee, may cause failure, but only if the condition
lasts for a long time; if the overtopping is brief, the levee may withstand potential erosion.
On the other hand, deep overtopping even if brief may cause failure. Figure 20.19 shows
two cases of overtopping. On the left, the overtopping is shallow but lasts for 20 hours;
on the right, the overtopping is deep but lasts a much shorter time, perhaps three or
four hours. Both are cases of overtopping, but the levee may respond differently to each.
A simple influence diagram or event tree may not capture this combined dependence.
Events may need to be defined by depth-duration pairs in order to model the behavior of
the levee.

For convenience, event trees are usually separated by initiating event (Figure 20.20).
Thus, in a dam safety study it is common to see three, four, or even more event trees,
associated respectively with extreme storms, earthquakes, flaws in design or construction,

Rainfall
Strength Failure

(yes/no)Discharge Stage Duration

Figure 20.18 Simple event tree for structural/geotechnical strength instability of levee.
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Figure 20.19 Height and duration of overtopping interact to affect levee performance.
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Figure 20.20 Hydrologic, piping, and strength failure parts of the levee failure event trees.

mechanical or electrical dysfunction of an appurtenant structure, and possibly more exotic
things. Note that this tree combines states of nature (‘soft soil fill exists’) with system
states of the levee (‘high pore pressure in levee’). That is, it does not separate aleatory and
epistemic uncertainties into a logic tree and event tree but combines them. The dashed
vertical line indicates separate event trees leading to distinct failure modes but arising
from the same initiating event. The triangle at a terminating end of a path through the
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Table 20.3 A comparison of influence diagrams and decision trees (Marshall and Oliver 1995)

Model features Influence diagrams Event or decision trees

Modeling

Timing Shows timing of all decisions
and uncertain events.

Shows timing of all decisions and
uncertain events.

Conditional
independence

Shows dependence among
uncertain events and
decisions.

Dependence among uncertain events and
decisions not shown.

Size Number of nodes grows
linearly with the number of
variables.

Number of terminal nodes and paths
grows exponentially with the number
of variables.

Data Identifies dependencies of
variables without need for
data.

Decision, probability and result data
shown explicitly.

Variable type Both continuous and discrete
decisions and probabilities.

Both continuous and discrete decisions
and probabilities.

Asymmetry Scenarios with different event
sequences not distinguished.

Shows asymmetric structure of problem.

Modeling
usefulness

Most useful in initial stages of
modeling; captures
interaction between decision
maker and analyst.

Useful in depicting detailed uncertain
event outcomes and decisions, and
model solution; difficult to display
large problems.

Solution process

Bayes’ theorem Indicated by arc reversal, but
calculation not shown.

Indicated by node reversal (a separate
event tree may be used as an aid for
calculation).

Solution method Reduction by a set of reduction
operations possible using
advanced methods.

Uses simple rollback algorithm.

tree indicates a ‘failure’ consequence. Despite the common logical content of influence
diagrams and event or decision trees, the practical uses of the two differ, as summarized
in Table 20.3.

20.3.2 Consequences

The consequences that result from a dam incident or failure depend on a large number
of factors beyond the behavior of the dam itself. For example, consequences depend on
safety functions such as barriers, safety systems, operating procedures, operator actions,
and so on, and on how they respond to an initiating event or an indication of dysfunction
of the dam proper. Safety functions may include systems that respond automatically to an
initiating event or to a failure, alarms that alert operators or other cognizant personnel that
an event or failure has occurred, predefined operating procedures that follow an alarm, or
barriers or other containment facilities intended to limit the effects of an initiating event
or failure. Other considerations that influence the consequences resulting from initiating
event or failure include time of day, meteorological conditions, downstream warning
systems, and emergency response procedures to protect life and property.
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Figure 20.21 Consequence tree summarizing various events that may occur upon a particular
outcome (leaf) of the event tree.

Typically, these many considerations are not of the dam system itself or are not part of
the uncertainties related to limited knowledge about natural processes or the functioning
of the dam. Thus they are separated into a consequence model or, more typically, into a
separate consequence tree.

20.3.3 Consequence trees

As in probabilistic risk analyses (PRA) of nuclear power plants (McCormick 1981), a
separate event tree is often used to model consequences of a failure; for example to provide
an estimate of the consequences conditional on loss of pool or some other damage state of
the dam (Figure 20.21). This sub-tree incorporates exposure cases and other downstream
activities or events, such as the effectiveness of evacuations or other risk mitigation
procedures. Usually, this downstream sub-tree can be treated independently of the event
tree for the dam itself, but it is often no less complicated.

Event trees are evaluated by generating a set of probability-consequence pairs for each
mutually exclusive end node in the tree. In principle, consequences could be expressed
in utilities (Keeney and Raiffa 1976), rather than direct physical units (e.g. dollars or
lives lost), but usually they are not. Multiplying probability by consequence to obtain
an expected consequence implicitly treats high-probability low-consequence outcomes as
equivalent to low-probability high-consequence outcomes, as long as the product is the
same. For government projects this is usually taken to be reasonable, given governments’
asset positions and the multiplicity of projects (Morgan and Henrion 1990). For a private
owner, such risk neutrality may not be reasonable.

20.4 Branch Probabilities

An individual branch probability is typically assigned by one of several procedures:
(1) statistical (i.e. empirical) estimates; (2) reliability (i.e. engineering) models; (3) fault
tree analysis; or (4) expert opinion. Statistical estimates and reliability models are
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discussed here. Fault trees are outside the present scope, but are discussed by Bedford
and Cooke (2001). Expert opinion is discussed in Chapter 21.

There is a trade-off in assigning probabilities to event branches. On the one hand,
an event tree can be large and finely detailed with many branches. The probabilities
assigned to these branches might be estimated from simple data analysis or models. On
the other hand, the tree can be compact, with relatively few event nodes and branches,
but with probabilities estimated from complexly detailed sub-models. The choice along
this spectrum is part of the craft of risk assessment.

20.4.1 Statistical estimates

Among the more common places that statistical estimates are used is in estimating prob-
abilities of initiating events such as extreme floods or earthquakes. The occurrence of
initiating events is typically modeled as a stationary Poisson process, with a single param-
eter, λ, describing the number of occurrences per unit time, usually a year. This model is

fn(n|λ) = λne−λ

n!
(20.2)

in which n is the number of occurrences, and λ is the rate per unit time. Stationary means
that λ is constant over time. The number of occurrences in time interval t is

fn(n|λ, t) = (λt)ne−λt

n!
(20.3)

for which the mean of n is E[n] = λt and the variance, Var[n] = (λt)2. Other point
process models could also be used to represent the occurrence of initiating events, for
example, if one wanted to introduce probabilistic dependence among the event occur-
rences (Lewis 1972).

The most important assumption of the Poisson distribution is that events occur inde-
pendently. Thus, if a large storm occurs this year, the probability of a similar storm
occurring next year is unaffected: In principle, one could have two Pr = 0.001 events
(1000-year storms) back-to-back. The exception to independence in the Poisson model is
that, for most natural hazards, the length of historical record is short. New information,
such as the occurrence of an extreme storm or a large earthquake, affects the statisti-
cal estimate of the parameter λ. Thus, the occurrence of an extreme event changes the
parameter of the model of the process itself, and consequently influences the estimated
probabilities of future events. For example, in constructing Oroville Dam, two presumably
250-year (p = 0.004) storms and one 1000-year (p = 0.001) storm occurred during the
few years of construction (Gilbert 2002). With the occurrence of each of these storms
the rate parameter λ for the site changed, as did subsequent estimates of the annual
exceedance curve.

Historical statistical records are usually the basis for estimating exceedance probabilities
of external initiating events, but in most places these records are short. Estimates of the
exceedance probability of rare events, such as the p = 0.01 (‘100-year’) event are prone
to error. Estimates of yet lower probability events are prone to even more error. Common
practice – presupposing a degree-of-belief view of probability – is to represent statistical
uncertainty in a model parameter such as λ by a probability distribution, fλ(λ). Then a
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predictive probability distribution can be taken on the number of events n in a unit length
of time by integrating the model forecast over uncertainty in the parameter (Aitchison
and Brown 1969)

fn(n) =
∫

λ

fn(n, λ)dλ =
∫

λ

fn(n|λ)fλ(λ) dλ (20.4)

This predictive distribution is simply the marginal distribution on n after integrating
out uncertainty on λ. Similar results obtain for the case when more than one uncertain
parameter is involved, that is for vector λ.

Note that the predictive distribution combines uncertainty due to natural variability,
that is, the number of occurrences n given the parameter λ, with uncertainty due to
limited knowledge, that is, the uncertainty in the model parameter itself. If more than
one aspect of natural variability depends on the same uncertain parameter (e.g. number of
occurrences in two separate periods, n1 and n2) then forming the predictive distribution
of each in isolation from the other will mask the implied correlation caused by their
shared dependence on the same uncertain realization of λ. This is one of the arguments
for separating out natural variability from limited knowledge using logic trees.

The usual approach to quantifying the probability distribution for an uncertain model
parameter, such as λ, based on statistical data is to start from some uniform or non-
informative probability density function (pdf) on the parameter, presumed to exist prior
to having observed the data, and then to update that probably distribution using Bayes’
Theorem, as reviewed in Chapter 4. Modeling the occurrence of initiating events as a
Poisson process typically presumes the uncertainty in those events to be due to natural
variability in time or space. Given the average rate of occurrence specified by the param-
eter λ, the actual occurrence of initiating events is a purely stochastic process. The only
place that knowledge uncertainty enters the formulation is in the statistical estimate of
the parameter λ itself (which may be far from negligible). The assumption that initiating
events are stochastic in time or space is convenient but not necessary. In the case of
extreme storms, one could model storm events based on first principles of meteorology.
Given this approach, the occurrence and magnitude of storm events are results of the
modeling activity, and are not necessarily treated as random in time or space. Uncer-
tainty enters this approach to modeling extreme events in the statistical estimates of the
parameters of the meteorological model and in model error. This approach trades off the
uncertainty due to natural variability for uncertainty due to limited knowledge.

Usually, an event tree analysis presumes stationarity for stochastic initiating events,
but for events such as flood volumes or river stages the assumption may not be good.
Changing upstream conditions in land use, channelization, and other factors may cause
flood frequencies or rating curves to gradually change with time. This means that the
probability distributions used to represent random variables, such as peak flood discharge,
may change.

20.4.2 Reliability model estimates

Reliability models reason from first principles of mechanics or natural science to calculate
uncertainties in the performance of specified variables (Chapter 13). For example, such
models might start from uncertainties in soil engineering properties in an embankment
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and calculate probabilities of excessive settlement of the crest of the embankment, or
probabilities of strength failure. Conceptually, they are similar to the predictive distri-
butions discussed in the previous section, in which statistical uncertainties in parameter
values are integrated out to give an aggregate uncertainty in some random variable. With
probabilistic engineering models, uncertainties in input parameters such as, say, undrained
soil strength, are integrated over to yield implied uncertainties in model predictions that
might otherwise have been deterministic.

Presume an engineering model, perhaps deterministic, that relates some dam perfor-
mance variable x to a parameter or set of parameters θ through the equation(s)

x = g(θ) (20.5)

Presume also that uncertainty in θ can be expressed in a pdf fθ (θ). Then uncertainty in
the performance variable x can be expressed as

fx(x) =
∫

θ

g(θ)fθ (θ) dθ (20.6)

This is akin to the predictive pdf of Equation (20.4), in that uncertainty in the parameter
is integrated out. If the engineering model g(θ ) is deterministic, then fx(x) is a simple
probability density function reflecting the effect of uncertainty in the model parameter
on uncertainty in the performance variable. If the engineering model is itself a stochastic
relationship, then fx(x) will have a more complicated form, and some of the model
parameters of g(θ ) may themselves be expression of spatial or temporal variability.

Whether the prediction fx(x) reflects natural variation or limited information, or some
combination of both, depends on the nature of the uncertainty in the model parameters,
and on whether the model itself is deterministic or stochastic. If the model is deterministic
and the uncertainty in θ is statistical, then fx(x) reflects limited knowledge. If the model
is deterministic and the uncertainty in θ is spatial or temporal, then fx(x) reflects natural
variation. If the model is stochastic, then fx(x) will typically reflect both natural variation
and limited knowledge.

The other source of uncertainty in a prediction of the performance variable, in addition
to that due to parameter uncertainty, is that due to uncertainty in the model formulation
itself. This model uncertainty manifests in many ways. For example, a model may itself
be statistical, as in the case of models based on regression analysis. Many current soil
liquefaction models are of this variety. For such statistical models there may be well
founded estimates of the uncertainty in model predictions made when using reasonably
well identified input parameters. These uncertainties have to do with the set of calibrating
data used to develop the original model and may reflect both natural variability and limited
knowledge but usually in unknown proportions.

Another way model uncertainty manifests is in models that are approximations to
complicated physical conditions. For example Mohr–Coulomb strength theory is a lin-
earization to what is more commonly a nonlinear strength relationship between normal
and shear stresses. Model uncertainties based on such approximations are due to limited
knowledge and may be systematic, that is, they may tend consistently to bias predictions
in one direction or another.
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20.4.3 Probabilistic dependence

Dependence among branch probabilities associated with separate nodes in an event tree
can be critical to obtaining proper numerical results in an event tree analysis, but at the
same time both subtle to identify and difficult to estimate. It is imperative that correlations
among probabilities be dealt with properly, as the following example shows.

Presume that one is concerned both about liquefaction during an earthquake and also
about overtopping after a storm. The probability of liquefaction sometime during the
life of the dam, accounting for the various earthquakes that might occur, but marginal
of all other uncertainties, is estimated as 0.09. Similarly, the probability of overtopping
sometime during the life of the dam, accounting for the various storms that might occur,
but marginal of all other uncertainties, is estimated as 0.076. Then, were liquefaction and
overtopping independent, the probability of one or the other, or both, occurring during
the life of the dam would be

Pr[liquefaction OR overtopping] = Pr[liquefaction] + Pr[overtopping]

− Pr[liquefaction]Pr[overtopping]

= (0.09) + (0.076) − (0.09)(0.076)

= 0.16

(20.7)

Consider, however, that both liquefaction and overtopping – due in part to settlement
of the embankment – are influenced by the possible existence of low-density soil lenses
under the embankment. The respective conditional probabilities are given in Table 20.4,
from which the marginal probabilities in Equation (20.7) can be verified. Given that
the two events depend in common on the existence of low-density lenses, the actual
probability of one or the other, or both, happening during the life of the dam is the
weighted sum of the calculation of Equation (20.7), taken once conditioned on the zones
occurring and a second time conditioned on the zones not occurring. This yields an actual
probability of 0.11, about a third less than the calculation above:

Pr[liquefaction OR overtopping]

= Pr[zones]




Pr[liquefaction|zones]
+ Pr[overtopping|zones]
− Pr[liquefaction|zones]Pr[overtopping|zones]




+ Pr[no zones]




Pr[liquefaction|no zones]
+ Pr[overtopping|no zones]
− Pr[liquefaction|no zones]Pr[overtopping|no zones]




= (0.1)[0.9 + 0.67 − (0.9)(0.67)] + (0.9)[0 + 0.01 − (0)(0.01)]

= 0.11 (20.8)

Table 20.4 Conditional probabilities of liquefaction and overtopping given the existence or
non-existence of low-density, soft lenses in an embankment

Pr Liquefaction
No

liquefaction Overtopping
No

overtopping

Low-density lenses exits 0.1 0.9 0.1 0.67 0.33
No low-density lenses exist 0.9 0 1.0 0.01 0.99
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The reason for this result is that the existence of the soft lenses makes both events
simultaneously more likely, while the non-existence makes both simultaneously less likely.
Since the two events are no longer independent, their marginal probabilities can no longer
be simply summed to give the probability that either one or the other occurs. The corre-
lation due to a common dependence reduces the risk to the structure in this case, but the
outcome could be the reverse in other circumstances.

Branch probabilities associated with separate event nodes can be correlated through of
any of the following:

1. Causal dependence, meaning that one event physically causes another. For example,
liquefaction-induced settlement may directly lead to overtopping of an embankment,
thus the liquefaction event and overtopping event would not be independent of one
another. If the liquefaction settlement occurs, the probability of overtopping might be
greatly enhanced.

2. Probabilistic correlation, meaning that two uncertainties may share a common depen-
dence on a third uncertainty, as in the case of the low-density soil lenses in the example
above. Whether the low-density soil lenses exist or not simultaneously changes the
probability of liquefaction cracking and of overtopping.

1.0 E--4
Extreme

storm = 0.001

Water level
above crest p = 0.1 

50%–100%
of crest p = 0.7

< 50% 
of crest p = 0.99

Overtopping

>week
p = 0.25

<week
p = 0.75

Stringers
p = 0.15

None
p = 0.85

Piping
p = 0.5

No piping
p = 0.5

Failure
p = 0.2

No Failure

50%–100%
of crest p = 0.2

>week
p = 0.25

<week
p = 0.75

Soft soil
fill

Good soil
fill

High pore
pressure

Low pore
pressure

Geotechnical
Failure

No
Failure

2.6 E--6

1.0 E--7

Figure 20.22 Event tree for levee failure during extreme storm, with estimated branch
probabilities.
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3. Spatial or temporal autocorrelation, meaning that two uncertainties depend on the spa-
tial or temporal realization of some third uncertainty which itself exhibits stochastic
dependence in space or time. The performances of two sections of a long levee may
depend on soil engineering properties in the naturally occurring valley bottom, which,
when modeled as a stochastic (aleatory) process, exhibit a long wave length of cor-
relation in space; thus adjacent sections will exhibit similar settlements or factors of
safety against slope instability.

4. Statistical correlation, meaning that two uncertainties are simultaneously estimated
from a fixed set of data and therefore influenced by a common sampling variabil-
ity error. In soil mechanics, a common – and almost always overlooked – statistical
correlation is that between soil cohesion, c, and soil friction angle, φ, which, being
regression parameters of the Mohr-Coulomb model, are negatively correlated, given a
finite number of test data.

20.5 Levee Example Revisited

Figure 20.22 shows the event tree for levee failure during an extreme flood that was
developed earlier, but now with branch probabilities. Table 20.5 shows the justification
for each probability estimate, the estimation approach, and the sources of uncertainty due
to natural variation and limited knowledge.



21 Expert Opinion

Many important uncertainties in risk analysis are not amenable to quantitative estimation
from data. In some cases there are no data at all, only the judgment of experts. These
uncertainties have traditionally been treated using expert opinion. The tacit knowledge of
experts is based on intuition, unenumerated past experience, subjective theory, and other
important but qualitative beliefs. How should we interpret expert testimony and include
it in quantitative risk analysis? How do experts estimate probabilities associated with
qualitative judgment? Can expert opinion be quantified in a way that is repeatable, and
if so, how? Is there any way to test the external validity of expert opinion? This chapter
surveys the growing field of expert elicitation of subjective probabilities, and summarizes
the emerging understanding of the psychology of probability assignment.

21.1 Expert Opinion in Geotechnical Practice

In almost all risk analyses there are some uncertainties that are simply not amendable to
quantitative estimation based on data and models. These may reflect unique situations that
are not found in the historical record of experience, they may reflect uncertainties associ-
ated with poorly understood physical phenomena, they may reflect conditions for which
data could, in principle, be collected but only at a prohibitive price, and so forth. Formally
incorporating such uncertainties in a risk analysis relies on professional judgment (Gilbert
et al. 1998). In most cases, this judgment has to do with tacit rather than explicit knowl-
edge. It is based on intuition, qualitative theory, anecdotal experience, and other sources
that are not easily amenable to mathematical representation. Yet, this judgment of experts
is important information in analyzing risk.

Within the degree-of-belief school of probability, personal opinion is an admissible
basis for estimating probability, as long as that opinion is quantified in a way that main-
tains consistency. That is, given certain assumptions, degrees of belief have been shown
by Ramsey (1978) and others to satisfy the axioms of probability theory, and, thus, the
mathematics of probability theory can be used to operate on them, and they can be
formally incorporated in a quantitative risk analysis. Such degree-of-belief probabilities,
which mostly have to do with epistemic uncertainties, may or may not be appropriately

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5



502 EXPERT OPINION

convolved with probabilities associated with natural variability. Whether they are or are
not depends upon the decisions at hand and not on matters of principle. In principle,
within the probability-as-logic school of thought, quantitative probabilities inferred from
data and associated with natural variation may indeed be mixed with degree-of-belief
probabilities inferred by eliciting expert opinion.

21.2 How do People Estimate Subjective Probabilities?

While it is evident that subjective probability requires integrating information of various
kinds within a consistent framework, it is less clear how people do this. Subjective prob-
abilities should be concordant with probability theory (e.g. they should sum to 1.0), and
one would prefer they be calibrated to observed frequencies in the physical world (i.e.
they should have predictive value). These properties are called, coherence and calibration.
A considerable body of behavioral research indicates that people are not well equipped
for mentally processing uncertainty according to probability theory, or in harmony with
observed frequencies (Hogarth 1975). The mathematics of probability theory describes
how people ought to quantify uncertainties, not how they do.

In practice, it appears that people use simple mental strategies or rules of thumb to
simplify the task of quantifying subjective probabilities. In the literature of cognitive psy-
chology, these are called, heuristics. A large literature has grown up around heuristics
and, as importantly, around the systematic errors to which heuristics lead. The litera-
ture calls the latter cognitive biases. The conclusion is that people use rules of thumb
to simplify judgments about probability, and to the extent these fall short of normative
standards, so do the assessed probabilities. A surprising number of engineers take sub-
jective probability assessments for granted, treating them as though they were coherent
and calibrated, when, in fact, they often are not. This heuristics-and-biases school of
thought is most associated with the work of Edwards and Tversky (1967), Kahneman
et al. (1982), and their colleagues. Criticism of the approach can be found in Gigerenzer
(1991). Folayan et al. (1970), Baecher (1972) and Hynes and Vanmarcke (1976) have
reported on its use for subjective probability assessment in geotechnical engineering, and
some of their results are discussed below. The work on heuristics and biases has been
used extensively in nuclear risk assessment (Meyer and Booker 1990, Mosleh et al. 1987),
and in seismic hazard analysis (Budnitz et al. 1997). The following subsections describe
common heuristics revealed by behavioral research. These have mostly been identified in
controlled settings. In practical settings, heuristics are more difficult to distinguish.

21.2.1 Representativeness

Representativeness is more often illustrated than precisely defined (Kahneman et al.
1982). In general, it reflects subjective probability judgments based on the resemblance
of particular conditions in one circumstance to those in another. In a classic experiment,
subjects are provided with a detailed profile of the behavior and personality characteristics
of a hypothetical person, then asked to estimate the probability that the person is a lawyer
vs. an engineer. Subjects told that the individual was drawn from a group of 70 lawyers
and 30 engineers produced the same estimates as those told that the group contained 30
lawyers and 70 engineers. The subjects’ judgments are based on matching the description
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to stereotypes of lawyers and engineers, ignoring other information – in this case prior
frequencies.

In geotechnical practice, representativeness is often undermined by over-reliance on
complex models, while discounting simple observations. Uncertainties remain disguised
by embedded approximations, simplifications, and assumptions so that analysis results are
taken as uniquely representative of field conditions with near-certainty, because ‘it’s the
best analysis we have’ (Vick 2002).

21.2.2 Anchoring and adjustment

Anchoring-and-adjustment is easily illustrated. When asked to estimate a quantity or an
uncertainty, people often start with a ‘best estimate,’ and adjust up or down. Unfortunately,
people tend to stick too close to the initial value, not adjusting sufficiently to reflect
uncertainty. Asked to estimate the undrained shear strength of a clay and the uncertainty
in that value, one’s natural reaction is first to think about a typical value. What is the
average shear strength for this type soil across the many sites I have dealt with? How
does the present site differ? Do I think the soil here is stronger or weaker, stiffer or
looser? How much should I adjust up or down? Might this soil be 10% stronger? How
different could this site be, to suggest upper and lower bounds? These are the questions
one asks oneself, but this chain of reasoning is exactly that which has been shown to lead
to significant overconfidence in resulting estimates.

Quite a different result is obtained if one first states the largest value the strength
might have, then the lowest, and only afterwards hones in on a central value. The latter
yields a broader range of assessed uncertainty and a better calibration to the physical
world. Folayan et al. (1970) present an example from geotechnical practice.

21.3 How Well do People Estimate Subjective Probabilities?

The heuristics of the last section deal with how people quantify probabilities, but they
also influence how well people do so. The many fallacies that people – even technically
trained people – exhibit at the gambling table should dissuade us from thinking that
one’s natural tendencies concerning probability are well calibrated to the physical world.
People behave as if games of chance even out, or as if pulling the slot machine handle
oneself improves the chance of winning, or as if small numbers of observations are
highly representative of a random process. These things are all false, and, left to one’s
own devices, the probabilities we estimate are usually neither coherent nor consistent. In
particular, people tend to over-confidence in their assessments, and mis-calibration seems
to vary systematically with the difficulty of the assessment.

21.3.1 Overconfidence

Overconfidence is the most pervasive bias in assessing subjective probability (Lichtenstein
et al. 1982). It manifests in probability estimates that are too extreme at both ends of the
probability scale and estimated distributions having insufficient dispersion about the mean.
People – even experts – rarely assess their uncertainty to be as large as it usually turns
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out to be, sometimes to a shocking extent, as reported in a well-known study by Alpert
and Raiffa (1982).

Figure 21.1 plots the results of experiments reported by Fischhoff et al. (1997) in which
three groups of subjects provided answers to general-knowledge questions as well as esti-
mated probabilities that their answers were correct. The estimated error probabilities were
found to be reasonably well calibrated relative to the actual error frequencies only when
the actual probabilities were no less than about 0.1. Their overconfidence, expressed as
the difference between actual and judged error probabilities, increased dramatically at
smaller values of actual error frequency. The subjects estimated a subjective probability
of error as small as 10−6 when the actual error frequency was slightly less than 10−1,
a ratio of five orders of magnitude. Moreover, the subjects showed little ability to dis-
tinguish among varying degrees of extreme likelihood, with judged probabilities ranging
from 10−2 to 10−6 despite actual error frequencies hovering near 10−1. A related and sur-
prising finding is that the harder the probability estimation task, the greater the associated
overconfidence. For quite easy tasks sometimes under-confidence is displayed, although
this effect is poorly understood (McClelland and Bolger 1994).

Neither experts in general nor geotechnical experts in particular seem immune from
overconfidence. Hynes and Vanmarcke (Hynes and Vanmarcke 1976) reported on predic-
tions of embankment failure height made by seven internationally-known geotechnical
engineers for a test embankment on soft clay at the MIT I-95 test site. Figure 21.2 shows
each expert’s best estimate and 50% confidence interval for the amount of additional fill
needed to fail the embankment, the average of the best estimates, and the actual amount
required to cause failure. While the average of the seven best estimates is reasonably close
to the outcome, no individual estimate had 50% error bounds large enough to encompass
the actual outcome. Had the estimates been unbiased, half would have encompassed the
actual failure height at the 50% confidence level, but none did so. Figure 21.3 is similar

Overconfidence Bias
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Figure 21.1 Subjectively estimated vs. actual probabilities. (Data from Fischhoff et al. (1997),
after Vick, S. G., 1997, ‘Dam safety risk assessment: new directions,’ Water Power and Dam
Construction, Vol. 49, No. 6, reproduced with permission of International Water Power and Dam
Construction.)
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Figure 21.2 MIT I-95 embankment predictors’ 50% confidence ranges of added height to cause
failure (after Hynes, M. and Vanmarke, E., 1977, ‘Reliability of Embankment Performance Pre-
dictions,’ Proceedings ASCE Engineering Mechanics Division Specialty Conference. Mechanics in
Engineering, University of Waterloo Press, pp. 367–384, reproduced with permission of University
of Waterloo Press).
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Figure 21.3 MIT I-95 embankment predictors’ maximum and minimum ranges of added height to
cause failure (after Hynes, M. and Vanmarke, E., 1977, ‘Reliability of Embankment Performance
Predictions,’ Proceedings ASCE Engineering Mechanics Division Specialty Conference. Mechan-
ics in Engineering, University of Waterloo Press, pp. 367–384, reproduced with permission of
University of Waterloo Press).

to Figure 21.2, except that it shows the experts’ estimates of the maximum and minimum
additional needed fill. In some cases these estimates do encompass the actual event, but
the values are clearly not consistent. Some maximum and minimum estimates actually
fall within an expert’s 50% confidence limits. Hynes and Vanmarcke state, “It is clear that
there are wide differences among engineers in the way they interpret the terms ‘minimum’
and ‘maximum.’ These widely used terms are essentially meaningless unless related to
relative likelihood or probability.” It should also be noted that those in the audience at
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the seminar were also invited to give their estimates and their 50% intervals “capture[d]
the true value 62% of the time.”

Slovic et al. (1982) and others have cited these and similar findings in suggesting that
substantive expertise, or capability within one’s specialized knowledge domain, has no
necessary relationship to normative expertise or ability to provide coherent and unbiased
probability judgments. On the other hand, at least some evidence with experts assess-
ing probabilities about professional subjects with which they are familiar suggests that
they may be more calibrated than are non-experts (viz., weather forecasters (Winkler and
Murphy 1968) and auditors (Smith and Kida 1991)).

Similar over-confidence effects have been shown in subjective estimates of proba-
bility distributions provided by geotechnical engineers. Folayan et al. (1970) obtained
estimated distributions for compressibility parameters of San Francisco bay mud from
engineers with up to 17 years of experience. Baecher (1972) further analyzed these prior
distributions in comparison to that obtained from subsequent laboratory tests. As shown in
Figure 21.4, the estimated means were lower than that measured, but, more significantly,
overconfidence produced distributions too narrow to encompass most of the measured
data. The one exception was subject 5, a graduate student whose estimate showed gross
under-confidence.

Why over-confidence? There are many suggestions in the literature. Keren (1994) sug-
gests that anchoring and adjustment may be to blame. People may anchor on a probability
estimate reflecting intermediate difficulty, say 75%, and adjust up or down – but not suffi-
ciently – depending of the perceived difficulty of the estimation task. Ferrell and McGoey
(1980) present a similar argument, but the literature contains other attempted explanations
as well (McClelland and Bolger 1994).

Subjective Estimates of Compressibility of San Francisco Bay Mud

0.1 0.2 0.3 0.4 0.5 0.6

Compression Ratio

pd
f

Test Data
Expert 1
Expert 2
Expert 3
Expert 4
Expert 5

Figure 21.4 Subjective estimates of the compressibility of San Francisco Bay mud compared
to test results for five experts (after Folayan, J., Höeg, K. and Benjamin, J., 1970, ‘Decision
Theory Applied to Settlement Predictions,’ Journal of the Soil Mechanics and Foundations Division,
ASCE, Vol. 96, No. SM4, pp. 1127–1141, reproduced by permission of the American Society of
Civil Engineers).
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21.3.2 Neglect of base rates

Neglect-of-base-rate bias reflects people’s tendency to judge probability by the similarity
of one circumstance to another. Typically, this manifests in ignoring the average frequency
or a priori probability of an event in light of new information, even when that new
information may have limited diagnostic strength. A typical result is that an event, known
to be rare in the physical world, will be assigned a reasonably high probability based
on fragmentary evidence. Forensic engineering (failure-cause analysis) is a rich breeding
ground for examples of neglect-of-base-rate bias. The presumption is that people, even
people with expertise in an area, focus on recent identifiable results as if they in themselves
were wholly typical of some uncertain process or quantity. In so doing, people forget
about – or at least under-rate – prior information or probabilities.

On a seismic hazard project undertaken by one of the authors some years ago, and
described in more detail in the next chapter, great care had been invested in calculating
liquefaction potential index (Yegian and Whitman 1978) for a particular industrial site
in Tokyo Bay. This LPI was used in the analysis to predict ground failure. The result,
expressed as a PDF, is shown in Figure 21.5. At about the time the analysis was done,
a magnitude 6.5 earthquake occurred in the Tokyo area, causing 65 gal peak ground
acceleration at the site and evidence of liquefaction within the facility perimeter. How
should this affect the calculated probability distribution of LPI?

Subjective estimates by several engineers were made of the new most likely value of
LPI. All of these were significantly in excess of LPI = 1. Figure 21.5 shows a calculation
of the posterior PDF of LPI using Bayes’ Theorem. The statistical calculation shows less
updating and more influence of the prior PDF. Because many uncertainties are involved
in calculating LPI (corrected below count, water level, effect of vertical stress, cyclic
shear strength, etc.), the combined effect of small changes in each of the many uncertain
quantities easily accounts for the observed liquefaction. Our intuition suggests that the
updating should be greater than statistical theory requires.

A particularly malicious manifestation of base-rate neglect appears in what Tversky and
Kahneman (1971) and Kahneman et al. (1982) have called, the ‘law of small numbers.’
Recall that the law of large numbers states that as the number of observations (i.e. sample
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size) becomes large, statistical patterns of the sample asymptotically resemble those of
the sampled population. Tversky and Kahneman’s law states that most people believe
the same resemblance manifests in small samples. The enormous variability in statistical
properties of small samples is largely ignored by engineers. Thus, we should not be
surprised when subsequent measurements vary considerably from those taken initially,
but we usually are. Interestingly, Gigerenzer (1991) argues that the neglect of base-rate
effects can be reduced or eliminated by describing priors in frequency terms rather than
as probability functions, but, while interesting, this is beyond the present scope.

21.3.3 Misperceptions of independence

Over-confidence and neglect of base rates deal with single variables. In risk and reliability
analysis a critical factor is often the probabilistic independence – or lack thereof – among
variables. How good are people at quantifying conditional probabilities or correlations?
Somewhat less work has been done on this topic.

Some evidence exists that people judge the probability of the combined occurrence of
events as being higher than the probabilities of the constituent events, when the events
are representative of a pattern. This has been called the conjunction fallacy by Tversky
and Kahneman (1983). Consider the following question: “A small dam was built across
a stream with similar geology at both abutments. The regional geology is flat lying
sedimentary rocks. A spring flowing muddy water appears at the downstream toe of the
dam, creating a small volcano of silty sand. Which of these two alternatives is more
probable? (a) There is a geologic fault beneath the dam, or (b) there is a geologic fault
beneath the dam allowing internal erosion of the embankment.” While many experienced
people judge the second alternative as more probable, clearly it cannot be, because the
joint occurrence of two events is necessarily less likely than either event alone. Hacking
(2001) presents a lucid discussion of this and similar fallacies.

Another place where misperceptions of independence arise is in combining statistical
data with judgment. This is especially apparent in quantifying the uncertainties in soil
engineering parameters, which may be statistically correlated. For example, soil cohesion
and friction angle are in essence regression parameters. Larger values of c imply smaller
values of φ, and vice versa, because a Mohr envelope is fit to given data. Thus, judgmental
estimates of uncertainties in c and φ cannot be made separately, although common practice
is to do so.

21.4 Can People Learn to be Well-calibrated?

A great deal of work has gone into finding out whether people can be trained to be
better calibrated in their probability assessments. The common conclusion is: yes, but the
results of training seem not to generalize well to new tasks (Ferrell and McGoey 1980;
Keren 1994; McClelland and Bolger 1994). People seem to provide better calibrated
probabilities when asked questions within their realm of expertise, although this is not
without controversy.

A highly encouraging result comes from the realm of weather forecasting. In a series
of studies, Murphy and Winkler established that National Weather Service forecast-
ers are perhaps the world’s best-calibrated probability assessors (Murphy and Winkler
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1974,1977a,1977b; Winkler and Murphy 1973). Why should this be? The authors attribute
the result to (i) practice (forecasts are made every day), (ii) immediate feedback (outcome
on the following day), (iii) quantitative scoring of performance, and (iv) promotion and
pay incentives for accuracy. The important suggestion for geotechnical practice is, the
very act of risk assessment and quantifying subjective probabilities may improve practi-
tioners’ ability to assess their own personal uncertainties, whether or not a project calls
for formal risk analysis.

21.5 Protocol for Assessing Subjective Probabilities

The preceding discussion has summarized empirical findings suggesting that people are
not inherently adept at quantifying intuitive probability values, at least in the sense of
providing numbers that are consistent, coherent, and well calibrated. This should not sur-
prise us. People are not adept at all sorts of intuitive mathematical tasks, nor for that
matter are they adept at consistently judging the loudness of sounds or other psychophys-
ical phenomena (Stevens 1951). That is why we calculate probabilities and perform risk
analysis in the first place. The question is, what do we learn from the preceding evi-
dence that helps us structure a protocol for assessing subjective probabilities that supports
useful outcomes?

People, even geotechnical engineers, do not enter a situation with a well-structured,
mathematical conception of the probabilities of events pre-formed in their minds. The
protocol of assessment must evoke such a structure. Current usage calls this process,
elicitation. The protocol cannot simply ask a subject to guess a number for the probability
for an event and expect that numbers so generated will be consistent, coherent, and
well calibrated.

Even if the cognitive influences of heuristics and biases would seem to paint a bleak
picture, people are nevertheless remarkably well adapted to dealing with uncertainty in
everyday life, and successfully accommodating uncertainty has always been a hallmark of
geotechnical practice. The problem is less one of expressing uncertainty judgments than
in doing so in ways congruent with probability theory. The first requirement is external
validity or coherence with basic probability axioms. For example, a set of subjectively-
estimated probabilities for mutually exclusive and collectively exhaustive events must
sum to 1.0.

Beyond this, internal consistency depends on how information may be presented or
synthesized, and here is where heuristics and biases come into play. Defeating or at
least reducing their effects is one important factor, but, unfortunately for practitioners,
the heuristics-and-biases school is mostly silent on this topic. Elicitation procedures from
related fields, however, provide a framework for subjective probability assessment that
acknowledges behavioral effects.

21.6 Conducting a Process to Elicit Quantified Judgment

A common misconception in eliciting expert judgment is that people carry fully-formed
probabilistic opinions around in their heads on almost any subject of interest and that the
focus of an elicitation process is merely to access these pre-existing opinions. Actually,
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people do not carry fully-formed constructs around in their heads but develop them during
the process of elicitation. Thus, the elicitation process needs to help experts think about
uncertainty, needs to instruct and clarify common errors in how people quantify uncer-
tainty, and needs to lay out checks and balances to improve the consistency with which
probabilities are assessed. A successful process of elicitation is one that helps experts
construct carefully reasoned judgments. The process should never be approached as a
‘cookbook’ procedure, for the results will be unsatisfactory, as will the risk assessment
in which the results are used.

The steps in using expert elicitation to quantify judgmental probabilities are the fol-
lowing:

1. Decide on the general uncertainties for which the probabilities need to be assessed.
2. Select a panel of experts displaying a balanced spectrum of expertise about the iden-

tified uncertainties.
3. Refine issues in discussions with the panel, and decide on the specific uncertainties

for which the probabilities need to be assessed.
4. Expose the experts to a short training program on concepts, objectives, and methods of

eliciting judgmental probability, and on common errors that people make when trying
to quantify probability.

5. Elicit the judgmental probabilities of individual experts on issues pertinent to their
individual expertise.

6. Allow the group of experts to interact, supported by a facilitator, to explore hypotheses,
points of view, and quantified estimates of probability, toward the goal of aggregating
probabilities and resolving the breadth of opinion.

7. Document the specific process used to elicit judgmental probabilities and communicate
the results back to the panel of experts.

It is important for credibility – as well as defensibility – that the process be well docu-
mented, open to inspection, and methodologically transparent to peer review.

21.6.1 Choosing experts: who should be on the panel?

The choice of experts is the most important step in determining success or failure
of the expert elicitation process. Depending on personality, experience, and technical
background, individual experts may serve different functions. These individuals can be
categorized into distinct types:

• Resources – individuals with special knowledge of a problem, technology, site, or
project.

• Proponents – individuals with a particular and strongly argued point of view about a
technology, issue, or project.

• Evaluators – individuals with open mind, willing to judge objectively the credibility
of different hypotheses, points of view, or opinions.

• Facilitators – individuals versed in the technical issues who are also willing to lead
discussions and manage interactions among other experts.

To be successful, an expert panel usually needs to include an evaluator and a facilitator.
Resources and proponents are typically used to elucidate specific issues, to give depth in
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specific areas; they are typically not used to give balance and breadth. It is important in
considering potential experts that individuals be willing to be objective, willing to commit
time, and willing to interact with others in a professional manner. Panel members who
cannot be counted on to commit to these terms harm the process more than they help it.

21.6.2 Systematic process of elicitation

The process of eliciting expert opinion in judgmental probabilities has five phases:

1. Motivating phase
2. Training phase
3. Structuring (deterministic) phase
4. Assessing (probabilistic) phase
5. Documenting phase

The first two, motivating and training, set the stage for the whole process. The next
two, structuring and assessing, comprise the central effort of the process, the former
establishing a structure for the uncertainties to be assessed, and the latter performing the
actual quantification. The process is complete with documentation, the purpose of which
is to create a defensible set of results. To obtain consistent and defensible results, it is
important that a systematic process like this be used, although individual organizations
may tailor the details of the protocol to their own special needs.

21.6.3 Motivating phase

The motivating phase intends to develop rapport with the experts and to explain why and
how judgmental probabilities will be elicited and how the results will be used in risk
assessment. Experts are justifiably reluctant to participate in probability elicitation unless
assured about how resulting assessments will be used in practice. During this phase, the
basic philosophy of judgmental probability is reviewed, and an attempt is made to bring
motivational biases within the expert panel out into the open. Motivational biases include
those factors that might lead experts to provide assessments that do not accurately or com-
pletely reflect actual beliefs, whether generated consciously or unconsciously. Examples
of motivational bias include the desire to appear knowledgeable and thus under-report
uncertainty, the desire to influence a decision and thus prejudice answers, and the desire
to advance a special cause and thus refuse to credit alternate points of view.

21.6.4 Training phase

The training phase has the purpose of making the experts aware of the processes and
aids people typically use in quantifying judgmental uncertainties and how well calibrated
judgmental probabilities are with respect to observed frequencies of assessed events in
the world. The goal of this training is to encourage the experts to think critically about
how they quantify judgment and to avoid the common biases encountered in quantifying
judgmental probability.

A typical training phase involves having the experts explain how they proceed to
make probabilistic judgments and how they use data and other information in arriving at



512 EXPERT OPINION

expressions of uncertainty about the technical issues to be faced in the elicitation. Common
cognitive biases are discussed, and warm-up exercises involving probabilistic predictions
are used to illustrate these biases. It is helpful if these exercises involve uncertain quantities
of an engineering nature, such that the experts feel professionally engaged. A useful
exercise is to have the experts explain retrospectively how unanticipated outcomes of an
engineering project might have occurred; that is, “If you know that an earth embankment
settled excessively on what would otherwise appear to be a stable and homogeneous
sand foundation, how might you explain that observation?” The benefit of such thought
experiments is that they open up the range of considerations the experts might consider
and illustrate how easily one can become overconfident in assessing probabilities.

21.6.5 Deterministic phase

The structuring or deterministic phase has the goal of defining the specific uncertainties
to be addressed, and the relationships among those uncertainties that allow individual
probability assessments to be combined. The outcome of the deterministic phase should
be clear, specific definitions of the uncertainties to be assessed, such that, were a new
expert added to the panel, the descriptions of the uncertainties to be assessed would
stand on their own without further clarification. The goal is to make unstated assumptions
explicit and to disaggregate the technical problem into components with which experts
can readily deal.

The deterministic phase begins with a review of the technical issues to be addressed in
the elicitation. If time permits beforehand, a literature review and collection of documents
should be made. A summary of this material should be prepared, along with graphs
and tables comparing principal results or issues. Copies of the summary book should be
distributed to the experts before the meeting, and time should be allocated at the beginning
of the elicitation sessions to review the information. This helps the experts understand why
the elicitation is approached the way that it is and establishes a sense that the elicitation
process is being attempted in a serious, complete, and professional manner.

Two procedural issues affect the outcomes of a risk assessment: the way failure
sequences are conceptualized, and away probabilities are assessed. The deterministic
phase considers the way failure sequences are conceptualized and then decomposed into
tractable parts.

One reason for decomposing failure sequences is that research suggests that people
tend to be better at working with decomposed problems, and with estimating the prob-
abilities associated with components than they are at working with entire systems and
assessing probabilities for holistic processes (Gettys et al. 1973). By design, engineered
systems have very low probabilities of adverse performance or failure. From empirical
experience, people are not well able to estimate accurately these low probabilities. Thus,
by decomposing a system into a series of events, the conditional probabilities associated
with individual components are made larger, and people can more readily deal with them.

21.6.5.1 Asking questions about problem structure

The most common way of decomposing an engineering problem is by building an event
tree or a fault tree, which were the subjects of the previous chapter. An event tree starts
with some initiating event and then considers all possible chains of events, which could lead
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from that first event to various performances by the system. Some of these chains of events
lead to adverse outcomes or failures, some do not. For each event in the tree, a probability
is assessed presuming the occurrence of all the events preceding it in the tree, that is,
a conditional probability. The total probability for a particular chain of events or path
through the tree is found by multiplying the sequences of conditional probabilities. Bury
and Kreuzer (1986) describe how an event tree might be structured for a gravity dam.

A fault tree decomposes the problem in the reverse direction. The fault tree starts with
some failure condition and then considers all possible chains of faults that could lead to
that failure. Conditional probabilities for each fault are assessed in the same way as with
an event tree, but the total probability is calculated by starting at the failure and moving
backwards, rather than starting from an initiating event and moving forward, as in an event
tree. The advantage of the event tree is that it comprehensively uncovers combinations of
events leading to failures; the disadvantage is that event trees can become bushy messes.
The advantage of a fault tree is that it focuses only on chains of events leading to failures;
the disadvantage is that it may fail to uncover important combinations of events.

An event tree can be used to decompose a problem at different levels of detail. Usu-
ally, judgment is more easily applied to smaller components, and research suggests that
more detailed decomposition, within reason, enhances the accuracy of calculated failure
probabilities. One reason, presumably, is that the more detailed the event tree is, the less
extreme the conditional probabilities which need to be estimated.

Both event trees and fault trees require a strict structuring of a problem into sequences.
This is what allows probabilities to be decomposed into manageable pieces and provides
the accounting scheme by which those probabilities are put together. In the process of
decomposing a problem, however, it is sometimes convenient to start not with highly
structured event or fault trees, but with an influence diagram. An influence diagram is a
graphical device for exploring the interrelationships of events, processes, and uncertainties.
Once the influence diagram has been constructed, it can be readily transformed into
event or fault trees. Stedinger et al. (1996) show how influence diagrams can be used in
assessing hydrologic risks of dam projects.

21.6.5.2 Finding an appropriate level of detail

Decomposition of a probability estimation problem relies on disaggregating failure sequen-
ces into component parts. Usually, these are the smallest sized pieces that can be defined
realistically and analyzed using available models and procedures. Decomposition can be
used for any failure mode that is reasonably well understood. Clearly, decomposition
cannot be used for failure modes for which mechanistic understanding is lacking. Internal
erosion leading to piping is arguably one such, poorly understood failure mode.

In most cases, the extent of decomposition, that is the size of the individual events into
which a failure sequence is divided, is a decision left to the panel of experts. Most real
problems can be analyzed at different levels of disaggregation. Considerations in arriv-
ing at an appropriate level of disaggregation include the availability of data pertinent to
the components, the availability of models or analytical techniques for the components,
the extent of intuitive familiarity experts have for the components, and the magnitude of
probabilities associated with the components. Typically, best practice dictates disaggre-
gating a failure sequence to the greatest degree possible, subject to the constraint of being
able to assign probabilities to the individual components. Usually, it is a good practice to
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disaggregate a problem such that the component probabilities that need to be assessed fall
with the range 0.01 to 0.99 (see e.g. Vick 1997). If this range can be limited to 0.1 to 0.9,
all the better. People have great difficulty accurately estimating judgmental probabilities
outside these ranges.

21.6.6 Assessment (probabilistic) phase

Research in psychology has shown that people have limitations in their ability to assess
consistently the numerical probabilities representing their beliefs. Therefore, procedures
that aid probability assessment and help minimize common forms of assessment bias
should be routinely used in expert elicitation. The elicitation of judgmental probability
borders on experimental psychology, and as such it is strongly influenced by procedu-
ral details.

21.6.6.1 Associating numbers with descriptive statements

Probability theory is one way of measuring uncertainty. Probability theory expresses
uncertainty as a number between 0 and 1. People also use descriptive phrases to express
the notion of uncertainty. For example, people say that something is ‘likely,’ or ‘prob-
able.’ People might say, ‘there is a very good chance of that happening.’ These verbal
descriptions carry meaning but they are less precise than numbers. Thus, it is tempting
to attach verbal descriptions to the numerical scale of probability, and then to use ver-
bal descriptions as a means of measuring judgmental probability. Common experience
suggests that, at least in the early stages of expert elicitation, people find verbal descrip-
tions more intuitive than they do numbers. Such descriptions are sought for components
within the event or fault tree. Then, using approximate transformations between verbal
descriptions and quantitative judgmental probabilities approximations can be assigned
to component events. The warning about using verbal descriptions is that the range of
implied numerical probability different people associate with verbal descriptions can be
wide and the number even an individual associates may change with the semantic context
in which the verbal description is used.

Table 21.1, taken from Lichtenstein and Newman (1967) and Vick (1997), shows a
simple list of verbal descriptions of uncertainty that have been used in the course of
dam safety studies. More extensive studies have also been performed in the psychology
literature to attempt to quantify the relationship between verbal descriptions of uncertainty
and probability. The results show encouraging consistency from one person to another, but
the ranges of responses are large; also, mirror-image pairs sometimes give asymmetric
results. Thus, verbal descriptions of uncertainty are a useful tool, but they are only a
starting point.

21.6.6.2 Avoiding intuitive or direct assignment

It is common for experts who have become comfortable using verbal descriptions to
describe probability to want to begin directly assigning numerical values to those prob-
abilities. This should be discouraged, at least initially. The opportunity for systematic
error or bias in directly assigning numerical probabilities is too great (viz. Phillips and
Edwards 1966; Luce and Suppes 1965). More experience with the process on the part of
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Table 21.1 Empirical translations of verbal descriptions of uncertainty. (Source: Vick (1997),
and Lichtenstein and Newman (1967))

Verbal description Probability equivalent Low High

virtually impossible 0.01 0.00 0.05
very unlikely 0.10 0.02 0.15
unlikely 0.15 0.04 0.45
fairly unlikely, rather unlikely 0.25 0.02 0.75
fair chance, toss-up 0.50 0.25 0.85
usually, good chance, probable,

likely
0.75 0.25 0.95

quite likely 0.80 0.030 0.99
very likely, very probably 0.90 0.75 0.99
virtually certain 0.99 0.90 1.00

the experts should be allowed to occur before directly assigning numbers. At this initial
point, no more than order-of-magnitude bounds on the elicited numerical degrees belief
are a realistic goal.

The direct numerical values generated by experts unfamiliar with judgmental probability
elicitation tend to be unstable and often to violate basic axioms of probability. Because
the judgmental probabilities elicited for component events are almost always conditional
on the occurrence or non-occurrence of other events in the event schema, it is useful to
use these numerical values to calculate total probabilities and then to review implications
with the panel.

Intuitive approaches that simply ask people what they think a probability to be tend
to make no attempt to foster careful weighing of judgmental opinions or to disassociate
events from their consequences. One result, for example, is that people tend to overesti-
mate the probability of events having a favorable consequence and to underestimate the
probability of those with an unfavorable consequence. Intuitive approaches make use of
specific numerical scales, and these may be suggestive of things not intended.

21.6.6.3 Action approach to elicitation

The degree-of-belief theory is based on the notion that judgmental probability and actions
are inseparable: judgmental probabilities may be inferred from behavior, but they are
not necessarily intuitive. As a consequence, simply asking an expert what he or she
judges a probability to be will not necessarily result in an accurate assessment of his or
her judgmental probability (i.e. as might be reflected in a situation requiring the expert
to make a decision). Thus, to assess judgmental probability accurately one needs some
form of ‘action’ approach in which probabilities are inferred from behavior in a con-
trolled situation.

The action approach to assessment presents subjects with comparisons and decisions,
as the well-known urn example asks a person to compare and thus gauge the uncertainty
about a particular event with that about drawing colored balls from an urn. It places
gambles involving the probabilities to be assessed. In the literature, the hypothetical
gamble is called a ‘reference lottery.’ Judgmental probabilities are inferred from the
resulting decisions. The expert is given the choice between two lotteries: one presents a



516 EXPERT OPINION

probability p of winning a significant cash prize, C, with a complementary probability
(1 − p) of wining nothing; the other presents the same cash prize C if a discrete event
A occurs, and nothing if A does not occur. The expert is asked to adjust the value of p

until he or she is indifferent between the two lotteries. The resulting p is assumed to be
the same as the judgmental probability of A.

Consider a dam site at which one potential mode of troublesome performance involves
the unlikely but possible existence of a fault or shear zone in the rock formation under
the dam. If such a zone were there, problems of uplifting and potential internal erosion
would be of increased concern. Some amount of site characterization has been carried out,
but the results are not definitive, and the resulting uncertainty is sought as part of a risk
assessment. That uncertainty depends in part on the prior experience of the expert making
the judgment and in part on the inconclusive information from the site characterization
program. How might this judgmental uncertainty of the fault existing be quantified?

Were no other information available (e.g. regional frequencies of shear features), the
expert’s uncertainty about the fault can be approximately measured by comparison to
familiar events. For example, if the expert prefers to bet on the toss of a fair coin rather
than on the existence of the fault, by implication his or her judgmental probability of the
fault existing must be less than 1/2. Should he or she prefer to bet on the existence of the
fault over the roll of a six-sided die, then the judgmental probability of the fault existing
must be greater than 1/6, and so forth, leading to a bounding of the uncertainty. Changing
the payoff odds on the gambles is another means for bounding the assessment.

Research on expert elicitation has addressed a number of methodological issues of how
probability questions should be formulated. For example, should questions ask for prob-
abilities, percentages, odds ratios, or log-odds ratios? In dealing with relatively probable
events, probabilities or percentages are often intuitively convenient to experts; but in deal-
ing with rare events, odds ratios (such as ‘100 to 1’) may be easier because they avoid very
small numbers. Also, do devices such as probability wheels – which spin like a carnival
game and represent probability as a slice of the circle – help experts visualize probabil-
ities? Definitive conclusions from research are lacking, and in the end, facilitators and
experts must pick and choose a protocol that is comfortable to the individuals involved.

21.6.6.4 Quantifying judgmental probability distributions

Not all uncertain quantities involve simple probabilities of discrete events. Many of the
parameters needed for engineering analysis have a realized value along a scale, and the
issue facing expert elicitation is to assess the uncertainty about the parameter’s value over
that scale. For example, the base friction between a concrete mass and its foundation,
measured as a drained friction angle, could in principle have a value anywhere between
zero and ninety degrees. Uncertainty about the interval of this scale in which the actual
value lies is described by a probability distribution. A probability distribution summarizes
the relative uncertainty about the parameter’s value lying within specific intervals of the
scale. In expert elicitation it is often convenient to represent probability distributions as
cumulative functions, which graph the scale of the parameter along the horizontal axis and
the (judgmental) probability that the realized value of the parameter is less than specific
values along the vertical axis.

The process starts by asking the expert to suggest extreme values for the uncertain quan-
tity. It is useful to have the expert describe ways that values outside these extremes might
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occur. Then, the expert is asked to assess probabilities that values outside the extremes
occur. Starting with extreme values rather than best estimates is important in guarding
against overconfidence and anchoring. Asking the expert to conceive extreme scenarios
makes those scenarios ‘available’, and allows the expert to think about the extremes more
readily. As numerical values are elicited, the facilitator should begin plotting these on
graph paper; however, at this point the plot should not be showed to the expert, because
it might bias future responses to conform to the previous ones. As ever more assessments
are made, these are plotted on the graph to begin establishing bounds and to point out
inconsistencies.

After establishing extreme values and their exceedance probabilities, the next step
is to fill in values and their corresponding probabilities between the extremes. As in the
beginning, it is good practice to avoid early assessment of the mean or mode and rather to
focus on values without particular significance to the expert. The judgmental probability
that the realized value of the uncertain quantity is less than a specific number can be
elicited using comparative gambles, a probability wheel, or other aid, as discussed above.
The plot of assessed values is used to identify gaps where more assessments are needed,
and inconsistencies in the expert’s responses where further assessments or clarification is
called for. Toward the end of the process, the interval technique might be used to elicit
the median and quartiles of the distribution.

In checking for consistency, it is useful to compare numerical results elicited as values
with those elicited as probabilities. In the fixed probability approach, the expert is given
a probability, and asked for a corresponding value of the uncertain quantity; or given
a probability interval, and asked for corresponding ranges of the uncertain quantity. For
example, “what value of friction angle do you think has a 1/3 chance of being exceeded?”
“What values of friction angle do you think have a 50:50 chance of bounding the true
value?” In the fixed value approach, the expert is given a value of the uncertain quantity
and asked the probability that the true value is less than that value, or the expert is given
a range of values and asked the probability that the true value lies within that range. In
the interval approach, the expert is asked for the median of the uncertain quantity, then
the half points (quartiles) of each resulting interval, then the next half points (octiles),
and finally the 0.01 and 0.99 points.

Limited research suggests that, in general, fixed value procedures produce probability
distributions that are more diffuse and usually better calibrated than do fixed probability
or interval procedures. Furthermore, for reasons of avoiding overconfidence, the interval
approach is discouraged (Baecher 1972).

21.6.6.5 Normalized frequency approach to estimating probabilities

The normalized frequency approach to assessing a judgmental probability starts with an
observed, empirical frequency of similar events and adjusts those background rates either
up or down to reflect local conditions.

A number of issues arise in using the normalized frequency approach. The first of these
is identifying the relevant subcategory of events or processes in the inventory to which
the present project relates. The collection of items in the inventory is heterogeneous and
often of insufficient size from which to draw firm statistical conclusions. Unique aspects
of the project at hand may make it difficult to select a sufficiently similar subset within
the inventory from which to infer base rate frequencies. Secondly, failures or incidents
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within the inventory seldom display simple cause and effect. Therefore, it is often difficult
to isolate the empirical frequency of narrowly defined events and processes. Thirdly,
the calculation procedures for adjusting base-rate frequencies to the peculiarities of the
current project are themselves not without difficulties. On the other hand, the normalized
frequency approach has intuitive appeal in that it begins with empirical frequencies.

Two approaches have been used for adjusting base-rate frequencies either up or down
to account for local conditions. Each of these starts with a list of factors to differentiate
the current project from the aggregate of projects in the inventory, that is, the factors
that make a particular item either better worst then average. The question is how to
combine these unique factors with the base-rate frequencies. The less formal approach is
to make adjustments directly, through intuition and discussions among the expert panel.
A significant hazard to this informal approach is that it exacerbates the anchoring bias
discussed below. Nonetheless, experts often find direct, intuitive adjustments reasonable.

The more formal procedure is to use Bayes’ Theorem to update the base frequency.
Bayes’ Theorem provides a calculation procedure for formally combining prior prob-
abilities (that is, base rates) with other information that can be captured in likelihood
functions (that is, conditional probability statements). To apply Bayes’ Theorem, first fea-
tures are identified which distinguish the current project from those in the catalog. Then,
estimates are made of the conditional probability of these features being associated with
a project performing adversely, and correspondingly the conditional probability of those
features being associated with a project not performing adversely. The ratio of these two
conditional probabilities, the likelihood ratio, is multiplied by the ratio of the base rate
frequency and its complement (that is, one minus the base rate) to obtain an updated odds
ratio. While, in principle, Bayes’ Theorem provides a vehicle for quantitatively updating
a base rate for project specific factors, in application it requires that the reliability of
indicator factors be known in both a false-positive and false-negative way, which is often
difficult to assess.

Consider again the uncertainty surrounding the possible existence of a fault of modest
size in the foundation of a proposed dam site. Presume that in the experience of the expert
panel, the incidence of such faulting is about 0.2 with projects in similar geology. That is,
the base rate, as a first approximation, is p(fault) = 0.2. In the present project, however,
a reasonable number of borings has failed to detect faulting. How should the base rate
be adjusted? The base rate can be updated from Bayes’ Theorem, expressed as odds (i.e.
the ratio the probability in favor to the probability against, p/(1 − p)):

p(faulting|data)

1 − p(faulting |data)
= p(faulting)

1 − p(faulting)

p(failed to find|faulting)

p(failed to find|no faulting)
(21.1)

The expression reads, the “odds ratio that faulting exits given the observed data, equals
the product of the odds ratio before observing the data, times the ratio of the likelihoods
(the likelihood ratio) of the data presuming that faulting were present compared to the
likelihood if it were not. Let us say that the expert panel, using geometric arguments,
estimates that the probability that the boring grid would have successfully detected exist-
ing faulting is 2/3. Conversely, if no faulting existed, the probability is by definition,
zero. Thus,

p(faulting |data)

1 − p(faulting |data)
= 0.2

1 − 0.2

1 − 0.67

1.0
= 0.0825 (21.2)
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So, the site characterization data reduces the odds from 1:4 to 1:12, and the corresponding
probability from 0.2 to 0.076.

21.6.6.6 Reliability modeling for assessing probabilities

For some component events, engineering models are available for predicting behavior. In
these cases, reliability analysis can be used to assess probabilities associated with the com-
ponents. Reliability analysis propagates uncertainty in input parameters to uncertainties in
predictions of performance. The assessment problem is changed from estimating probabil-
ities of adverse performance directly to estimating probabilities for the input parameters.
Once probabilities for the input parameters are assessed, any of a variety of simple math-
ematical techniques can be used to calculate probabilities associated with performance.
Among these are first-order second-moment approximations, advanced second-moment
techniques, point-estimate calculations, or Monte Carlo simulation. Sometimes, experts
elect to assess an additional component of uncertainty in the reliability analysis to account
for model error. While there are many ways to do this, the most common is to assign a
simple, unit-mean multiplier to the model output, having a standard deviation estimated
by the experts to reflect model uncertainty.

Experience with panels of experts suggests that model uncertainty is among the least
tractable issues dealt with. The difficult questions about model uncertainty have to do
with underlying assumptions, with conceptualizations of physical processes, and with
phenomenological issues. Experts tend to have strongly held beliefs on such matters, so
that discussions can become intense. Nonetheless, model uncertainty is a critical aspect
of risk assessment. Most models engineers deal with in their daily work were developed
for design purposes. They deal with incipient failure conditions and with assuring that
loads and resistances remain within working ranges. Risk assessment deals with adverse
performance and failures. Thus, models which were developed to prevent the precur-
sors of failure are now used to model failure processes themselves. Failure processes
involve strongly nonlinear behaviors in considerations of time rates and sequences. Tradi-
tional engineering models may require a good deal of manipulation to draw conclusions
about failure processes, and this typically requires a good deal of qualitative reasoning
by experts.

21.6.6.7 Correlations among uncertainties

Most experts find the notion of judgmental probability intuitively reasonable and, with
practice, develop proficiency at assessing their own uncertainty about individual events
or parameters. On the other hand, most people, whether experts or not, have difficulty
thinking about the correlations among the uncertainties pertaining to different events or
parameters (viz. Alloy and Tabachnik 1984). Correlation means that a person’s uncertainty
about one event or parameter is affected by knowing whether another event occurred or
by knowing the value of another parameter.

People usually require significant analytical assistance when grappling with correlations,
so it is good practice not to be overly aggressive in trying to assess correlations. The easiest
way to assess probabilistic dependence between two uncertain quantities, x1 and x2, is
first to assess the conditional probabilities for x2, assuming various values for x1, then
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to assess the marginal probabilities for x1 (i.e. irrespective of the value of x2). The joint
probabilities are found from the relationship

P(x1, x2) = P(x2|x1)P (x1) (21.3)

in which
P(x1, x2) = the probability of x1 and x2 occurring together,
P(x2|x1) = the probability of x2, given the value of x1, and
P(x1) = the probability of x1 irrespective of the value of x2.

This approach requires that multiple assessments of the conditional probabilities
P(x2|x1) be made for various values of x1, but the advantage is that the expert does
not have to grapple explicitly with the concept of correlation coefficients, which tend not
to be intuitive. The reverse conditional probabilities, P(x1|x2), which are often needed
for the risk assessment, can be calculated using Bayes’ Theorem.

In practice, it is better to attempt to restructure a problem rather than to assess corre-
lations among uncertainties. This can be done, for example, when two uncertainties are
correlated because they each depend on some third uncertainty, as in the case of down-
stream costs of flooding. Emergency mobilization costs and property damage costs in the
future may be correlated because each depends on inflation. It would be more effective
to assess the uncertainties in each cost conditioned on inflation, and then to combine the
two independent assessments, rather than to attempt to assess the correlated behavior of
the two uncertainties. Of course, not all correlated uncertainties can be handled in this
convenient way.

21.6.6.8 Verifying assessed probabilities

Once a set of probabilities has been elicited, it is important to check for internal consis-
tency, which statisticians sometimes call ‘coherence.’ Coherence means that the numerical
probabilities obtained are consistent with probability theory. This can be done, first, by
making sure that simple things, such as the probabilities of mutually exclusive and col-
lectively exhaustive events adding up to 1.0, are confirmed. Secondly, it is also good
practice to reword or restructure questions in logically equivalent ways to see if the
resulting answers change. Also, redundant questions can be asked about events or param-
eters whose probabilities could be calculated from previous answers. Inconsistencies are
resolved by discussion and reconsideration.

Beyond coherence, the implications of the elicited probabilities for risk estimates and
for the ordering of one set of risks against other sets is also useful feedback to the experts.
Sometimes, seeing unexpected or unanticipated implications of a set of assessments causes
experts to reflect again upon the answers that have been given and the probabilities that
have been elicited.

21.6.7 Documentation Phase

Documentation is an essential part of an exercise in expert elicitation. In the first place,
a great deal of time and money has been invested in the elicitation, and the sponsoring
organization needs to know what it has obtained. Perhaps more important is the fact that
many expert elicitations take place in a contentious regulatory or political environment.
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Documentation consists of records of everything that was done, from the earliest expert
training to the final report. Much of this material can be saved in files that are accessible to
interested parties, but it is important that the reports describe the process and the rationale
behind major decisions so that they can be reviewed without searching the files. Budnitz
et al. (1998) give a detailed description of documentation for expert elicitation for seismic
hazard analyses for nuclear power plants.

21.7 Practical Suggestions and Techniques

Elicitation of subjective probabilities is best conducted with the assistance of probability
analysts or facilitators versed in probability and decision theory, behavioral effects, and
ideally geotechnical engineering as well. Their job is principally one of ensuring exter-
nal validity and promoting internal consistency of the probabilities produced, much of
which involves a process of prompting and querying the assessor. For example, proba-
bilities of 0.4 and 0.8 for the presence of either soil or rock at a particular location in
the ground would fail the requirements of external validity. Further questioning of the
underlying reasoning would be necessary either to reconcile the discrepancy, or to reveal
hidden assumptions (perhaps a perceived potential for residual weathering products at the
soil/rock interface) which could then be made explicit by restructuring the problem with
a revised set of possible outcomes.

Formal elicitation techniques customarily rely on education and training of assessors for
reducing bias, under the precept that an assessor conscious of bias can and will compen-
sate for its effects. General knowledge questionnaires are sometimes used to demonstrate
overconfidence on a personal level. However, research findings on the effectiveness of
such debiasing techniques are mixed, with some (Alpert and Raiffa, 1982) showing sub-
jects to be nearly impervious to training even when offered rewards for unbiased results.
Another perhaps more consistently effective debiasing technique for overconfidence is to
request that the assessor specify and list the reasons why an elicited probability might be
wrong, for instance by imagining reasons that might explain the occurrence of a less-likely
outcome after the fact.

Encoding refers to the actual specification of numerical probability values, and various
aids are useful in geotechnical applications. One such technique adopted for risk analysis
in tunneling applications (Einstein et al. 1996) uses a ‘probability wheel’ device that
separates a circle into adjustable sectors of different color. A visual reference is obtained
by adjusting the sector size until the assessor is indifferent between its relative proportion
of the circle and the likelihood for the outcome in question.

Like people in general, most assessors express uncertainties more readily verbally
than they do numerically, and another encoding technique used extensively in dam
safety risk analysis exploits this trait using transformations from verbal to numerical
designations (Vick 1997). Table 21.1 shows conventions defined for mapping of verbal
expressions of uncertainty to probability values. The table also provides median values
and ranges for these and similar terms from a considerable body of behavioral research
summarized by Reagan et al. (1989), who show that not only do people adopt these
transformations in fairly consistent ways but that they also use them commutatively in
converting both words to numbers and numbers to words.

The conventions help promote consistency among likelihood judgments expressed by
a particular assessor and from one assessor to another. In practice, the verbal expressions
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allow encoding to proceed along the lines of a multiple-choice exercise in first estab-
lishing a bounding range on verbal expressions by eliminating those which do not apply,
then converging on the most appropriate one(s), followed by refinement of an interpolated
probability value as needed. The defined conventions are purposefully truncated at prob-
abilities of 0.01 and 0.99, since cognitive discrimination limitations usually produce little
meaning for probabilities outside this range. At the same time, this maintains encoded
values within or at least reasonably near the well-calibrated range and thereby provides
some structural limitation on the effects of overconfidence bias. These constraints are
relaxed in some circumstances, such as when indicated by further decomposition or by
applicable base-rate frequency information.

21.8 Summary

It many practical instances the only way to obtain estimates of probability distributions
is by expert elicitation. Although this seems at first sight to be a relatively simple matter,
a large body of experience in a wide variety of disciplines has shown that experts are
subject to many subtle pressures and make many errors. They tend to be overconfident.
They tend to be influenced by earlier estimates. They often do not understand the statistical
implications of their estimates. To mitigate these problems, a set of procedures has been
developed, originally in the social sciences but now extending into many branches of
engineering such as seismic hazard analysis and dam safety studies. Effective use of
these measures requires the use of experienced facilitators.



22 System Reliability
Assessment

Up to this point we have mostly considered failures of individual soil or rock structures,
such as the instability of a slope or excessive settlement of a foundation. In many cases,
we are interested not only in the performance of individual structures, but also in the
way a group of structures performs as a whole system. For example, a tank farm for the
storage of petroleum products comprises many tanks in which oil is stored. Some of these
tanks are large, some are small; some are used to store oil, others are used to store other
distillates. These tanks are typically grouped within patios surrounded by fire walls. The
purpose of the patios is to trap oil that might be spilled should a tank fail, to separate
different types of spilled products, and to contain a fire, should a spill ignite. The entire
site may also be surrounded by an external fire wall, whose purpose is to contain oil and
fires on site even if individual patios are breached. How safe is this system of facilities in
the face of seismic ground shaking? Clearly, the safety assessment must consider more
than the isolated behavior of the individual tanks, patios, and firewalls. Safety of the
system depends on how all these structures work together.

22.1 Concepts of System Reliability

Most system reliability studies begin with an initiating event, that starts a sequence of
subsequent events, that ultimately leads to failure of the overall system. Some examples
of natural hazards that serve as initiating events are earthquakes, floods, and hurricanes.
Things other than natural hazards may also be initiating events; for example, excessive
settlement in a manufacturing facility may cause equipment failure and simultaneously
disrupt utility services needed to deal with the equipment failure. Failures of the latter
type are of considerable concern in assessing the safety of nuclear power plants.

The steps involved in a system reliability assessment are:

1. Identify initiating events and determine the probabilities of these events.
2. Quantitatively define the meaning of failure of the system.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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3. Develop quantitative models of the performance of individual components.
4. Identify mechanical interactions among component failures and failure modes.
5. Investigate statistical or probabilistic correlations, if any, among component failures

and failure modes.
6. Integrate component performance models, interactions, and correlations within an over-

all system performance model.
7. Calculate numerical results for system reliability.

22.2 Dependencies Among Component Failures

The interdependencies of component failures or failure modes, whether caused by mechan-
ical interaction as in step four or by correlation as in step five above, are extremely
important. Consider the design of Figure 22.1, in which one tank in a patio is surrounded
by a firewall to contain leaks. Presume that the annual probability of the tank failing
and spilling its contents into the patio is pT = 0.01 and that the overflow capacity of
the patio is sufficient to retain the full volume of one tank. For oil to leak out of the
patio, the tank must fail, and then the firewall must fail, too. Let the probability of the
firewall failing given an oil load behind it be pF = 0.01. The joint probability of both
the tank and firewall failing, presuming the probabilities independent, is the product,
Pr{oil loss} = PT PF = 0.0001, a fairly small number. However, what if liquefaction of
the site caused by seismic ground shaking had an annual probability of occurring of 0.001,
and should liquefaction occur, both the tank and firewall would fail? The probability of
this failure is then 0.001. While the probability of liquefaction is a small contributor to
the annual risk of tank failure alone, the probabilistic dependence it causes between tank
and firewall failure increases the annual probability of loss of oil off the site (system
failure) by a factor of ten.

Dependencies in component failure probabilities can arise in at least three ways:

1. Mechanical interaction among failure modes (e.g. the tank fails and in so doing uproots
the soil under the firewall, and the wall then fails, too).

2. Probabilistic correlation (e.g. a common initiating event affects both the tank and
firewall).

Oil Tank

Firewall

cL

Overflow
Capacity

Tank

Plan View

Figure 22.1 Typical tank farm geometry.
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3. Statistical correlation (e.g. uncertainty about the consolidation coefficient of the foun-
dation soils affects the performance of the tank and firewall in the same way; excessive
settlement of each occurs together).

The last two categories are often called common mode failures.

22.3 Event Tree Representations

The most common way of decomposing a geotechnical risk assessment is by building an
event tree, which we described in Chapter 20. An event tree starts with some initiating
event, and then considers all possible chains of events that could lead from the first event.
Each chain of events leads to some performance of the system. Some of these chains of
events lead to adverse outcomes; some do not. For each event in the tree, a probability
is assessed presuming the occurrence of all the events preceding it in the tree, that is,
a conditional probability. The total probability for a particular chain of events or path
through the tree is found by multiplying the sequences of conditional probabilities.

In this way, we can build an event tree for the oil storage patio of Figure 22.1. This
event tree is shown in the upper part of Figure 22.2. The first event is loss of oil from
the tank. This occurs with probability p. If the tank leaks, then either the fire wall retains
the spilled oil or it does not. Let the probability that the fire wall fails to retain the oil
be, q. Note, this probability q depends on whether the tank leaks or not. The pressure of

pqSpill

No Spill

No Spill

No Spill

Spill

No Spill

No Spill

No Spill

Tank leaks

Not

Not

Not

Not

Not

Not

1 − q

1 − r

p

1 − p
r

q

(1 − p) (1 − r )

(1 − p) r

p (1 − q)

s

Tank leaks

Firewall fails

Firewall fails

Firewall fails

Firewall fails

0p = 1

0

1

r = 0

q = 1

0

0

0
Liquefaction

occurs

s

Figure 22.2 Event tree for tank farm failure.
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ponded oil against the firewall presumably makes the wall more likely to fail, compared
to the case without oil pressure. If system failure is defined as loss of oil off the site, then
the only end node in the event tree that includes a failure is that for which both the tank
has spilled its oil and the fire wall does not retain the oil. Thus, the probability of system
failure is p × q.

Now consider the initiating event that seismic ground shaking leads to liquefaction of
the soils underlying the patio. This event tree is shown in the lower part of Figure 22.2.
Once liquefaction occurs, the assumption is made that both the tank and the fire wall fail.
So, in this case, rather than the two failures being probabilistically independent, they are
correlated through the occurrence of a common event which causes each of them to fail
at the same time. An event tree serves as a simple way of showing the interrelationship
of events in a system failure.

An event tree can be used to decompose a problem at different levels of detail. Bury and
Kreuzer (1986) and Vick (1997) describe in simple terms how event trees can be structured
for gravity dams. Usually, analytical calculations or judgment are more easily applied
to smaller components, and research suggests that more detailed decomposition, within
reason, enhances the accuracy of calculated failure probabilities. One reason, presumably,
is that the more detailed the event tree is, the less extreme the conditional probabilities
that need to be calculated or estimated (Vick 2002).

Whitman (1984) describes a simple event tree that is part of the risk assessment for
erosion in an earthen dam. The issue being addressed is scour in the channel downstream
of the dam, caused by large releases over the concrete spillway. The spillway is capable
of passing large flows, and the natural channel below may be eroded by these large
discharges. Headward erosion of the channel may undermine the spillway basin and then
possibly undermine the spillway itself. If the spillway fails, this may lead to breaching of
the dam directly, or to erosion of an adjacent earth embankment that in turn could lead
to breaching of the dam.

The initiating event in this case is a flood discharge of some specified range of mag-
nitudes centered on the probable maximum flood, PMF. The subsequent events leading
from this initiating event are shown on the event tree of Figure 22.3. In sequence, these
potential events are:

1. The natural downstream channel erodes back to the stilling basin, causing scour holes
of various depths.

2. The foundation of the stilling basin collapses as a result of a scour hole.
3. Collapse of the stilling basin leads to undermining of the spillway and consequent

breaching of the earthen dam.
4. Collapse of the stilling basin leads to erosion of an adjacent earthen embankment and

thus to breaching of the dam.

The probability of the initiating event, occurrence of the PMF flood, is established
from hydrologic studies. In this case, the probability of the PMF within the design life
of the dam was estimated to be 10−4. Based on model hydraulic tests, it was concluded
that the natural channel was certain to erode under the discharge of the PMF. Thus, the
branch probability at the first node after the initiating event was taken to be 1.0. Using
stability calculations and other hydraulic model tests, the various other branch probabilities
were estimated and filled into the event tree. Each branch probability is conditional on



EVENT TREE REPRESENTATIONS 527

1.0

0.8

0.7

0.3

10−4

0.6
0.34 × 10−4

0.17 × 10−4

P
M

F
 o

cc
ur

s

D
ow

ns
tr

ea
m

 c
ha

nn
el

 e
ro

de
s

ba
ck

 to
 s

til
lin

g 
ba

si
n

D
ee

p 
sc

ou
r 

ho
le

 a
t

st
ill

in
g 

ba
si

n

S
til

lin
g 

ba
si

n
co

lla
ps

es S
pi

llw
ay

  u
nd

er
m

in
ed

C
on

di
tio

na
l p

ro
ba

bi
lit

y
of

 b
re

ac
h

E
ro

si
on

 o
f e

ar
th

em
ba

nk
m

en
t

Figure 22.3 Event tree for dam failure. (Whitman, R. V., 1984, ‘Evaluating the Calculated Risk
in Geotechnical Engineering,’ Journal of Geotechnical Engineering, ASCE, Vol. 110, No. (2), pp.
145–188, reproduced by permission of the American Society of Civil Engineers.)

the occurrence of events leading into its node. The probability of any path of branches
through the tree is found by multiplying the individual branch probabilities. The final
result is shown at the right hand side of the figure. The total probability of the earth dam
failing by loss of containment is the sum of the probabilities of the two ways in which that
failure could occur, or in this case, about 0.51 × 10−4, not much less than the probability
of the initiating event. In other words, if the initiating event occurs, it is reasonably likely
(about a 50:50 chance) that the dam will fail.

The event tree provides a convenient way for decomposing a system reliability problem
into smaller pieces that are easier to analyze and then provides a vehicle with which to
recombine the results obtained for the smaller pieces in a logically coherent way to obtain
the reliability of the system itself. Other examples of relatively simple event trees used in
geotechnical practice are provided by Vick and Bromwell (1989) for dam failure caused
by the collapse of a sinkhole, and by Wu et al. (1989) for liquefaction of a sand caused by
seismic ground shaking. More complex event trees for existing dams to assess reliability
are given by Vick and Stewart (1996) for Terzaghi and Duncan Dams in British Columbia
and by Von Thun (1996) for Nambe Falls Dam in New Mexico.

One sub-tree from the US Bureau of Reclamation’s event tree for Nambe Falls Dam
is shown in Figure 22.4. This particular sub-tree is associated with hydrologic initiating
events. The tree is separated into panels. The first simply identifies the loading case. The
second panel describes the loading conditions with associated probabilities, and contin-
uing through events that affect the dam. The third panel enumerates the ways in which
the dam may react to the various loading conditions (e.g. failure conditions, damage
states, and no-failure events). Finally, the fourth and fifth panels enumerate the potential
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consequences of each chain events and show the calculated probability associated with
each chain.

In most cases, the activity of constructing event trees for a system is in itself instructive,
whether or not the resulting probabilities are used in a quantitative way. The exercise
requires project engineers to identify chains of events that could potentially lead to a
failure of one sort or another. This explicit activity, especially when carried out with
a group of people, often leads to insights that might not otherwise have been obvious
and therefore that might have been overlooked. In some cases, the event tree becomes a
‘living’ document that follows the progress of design; it is changed or updated as new
information becomes available or as design decisions are changed.

22.4 Fault Tree Representations

Consider again the simple case of the oil storage patio of Figure 22.1. In building an
event tree of this system, we started with a spill of oil from the tank, and then considered
the subsequent event that the fire wall fails to contain the oil. In building a fault tree of
the same system, we start with the system failure, ‘oil spilled off site,’ and then ask, how
this might have happened. For oil to be spilled off site, both the fire wall must fail to
contain any spilled oil existing on the site, and the tank must somehow fail to hold the
oil that was contained within it.

Common practice is to draw a fault tree from top to bottom as in Figure 22.5. At the top
is the system failure condition, ‘oil spilled off site.’ Beneath are the two faults that need
to occur to enable this system failure, namely, ‘tank fails to contain oil,’ and ‘fire wall
fails to contain oil.’ Since both of these things must occur for the system failure to occur,
they are connected in the tree by an ‘AND’ node, denoted by a bullet shaped symbol
with a multiplication sign. This shows that the probabilities are multiplied to obtain the
probability of the next higher fault

p0 = p1p2 (22.1)

Oil Spilled Off Site

Tank Fails to
Contain Oil

Fire Wall Fails to Contain
Oil

Structural Tank
Shell Ruptures

Piping
Connecting
Tank Breaks

∗

+

Figure 22.5 Fault tree for tank farm failure.
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in which p0 = Pr{oil spilled off site}, p1 = Pr{tank fails to contain oil}, and p2 =
Pr{fire wall fails to contain oil}.

One continues to decompose the fault at each level into the contributing faults that
would cause it to occur. For the fault, ‘tank fails to contain oil,’ to occur, one could
assume that either of two other faults might have to occur, namely, ‘structural tank shell
ruptures,’ or ‘piping connecting tank breaks.’ Since only one or the other (or both) of
these need occur for containment to be lost by the tank, they are connected by an ‘OR’
node, denoted with a plus sign. This shows that the probabilities are added to obtain the
probability of the next higher fault

(1 − p0) = (1 − p1)(1 − p2)

p0 = p1 + p2 − p1p2

(22.2)

in which p0 = Pr{tank fails to contain oil}, p1 = Pr{structural tank shell ruptures}, and
p2 = Pr{piping connecting tank breaks}.

The advantage of a fault tree over an event tree is that it focuses only on chains
leading to failures; the disadvantage is that it may fail to uncover important combinations
of events. For example, it is not clear that the fault tree of Figure 22.5 can identify the
hazard posed by liquefaction induced failure of both the tanks and the fire walls. Thus, the
advantage of the event tree is that it comprehensively uncovers combinations of events
leading to failures, but the disadvantage is that event trees quickly become bushy messes.

Fault trees have been comparatively less used in geotechnical risk and reliability than
have event trees. One geotechnical application in which fault trees have been widely
used, however, is safety assessment for nuclear waste disposal facilities (e.g. Arthur
D. Little 1978; Battelle Pacific Northwest Laboratories, Inc. 1981). Presumably, the close
connection of this enterprise to the nuclear industry, where fault tree analysis is common,
explains the phenomenon.

Van Zyl et al. (1996) used fault tree analysis to assess the risk associated with tailings
impoundment in a region of Ireland underlain by geologically old karst formations. The
study defines system failure as ‘uncontrolled release of tailings from the impoundment as
a result of a karst cavity,’ and developed the fault tree show in Figure 22.6 to structure the
analysis. At the top level, the tree is separated by an OR node between the fault, ‘tailings
embankment failure,’ and ‘liner system failure.’ The tree in the figure shows just the first
half, associated with embankment failure. The boxed faults are those for which a further
decomposition is made; the circled faults are those for which a probability is calculated
or assessed directly, and they are called basic faults (i.e. they are not further structured).

The rationale for estimating probabilities associated with a partial list of the basic
faults in the analysis is presented in Table 22.1. Analytical models were used to calculate
probabilities associated with some basic faults, and subjective estimation was used to esti-
mate others. For example, the probability of a solution cavity of sufficient size to cause
structural failure occurring under the embankment was calculated by first using reasoning
based on soil mechanics to arrive at a critically sized cavity and second assuming that
uncertain cavity locations within the karst formation can be modeled as a two-step pro-
cess. The size distribution of cavities and intact rock units among cavities were modeled
with exponential probability density functions (Figure 22.7); then the number of cavities
occurring within a given area was modeled with a binomial process (Appendix A). On the
other hand, the probability of cavity collapse caused by ground water lowering was based
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Table 22.1 Summary of basic events and their probabilities for tailings embankment failure (after
Van Zyl, et al. 1996)

Basic event Description Remarks Probability

E1 Cavity of sufficient
size at critical
location

The probability of a cavity at the
critical location was evaluated
using eight to state Markov
process. This analysis was based
on data from the exploratory
drilling program.

0.048

E2.1.1.1.1 Residuum fines
present and
erodible

Confirmation drilling indicates that
residuum fines are present. Grain
size analysis of the residuals
indicate clay and sand. The sand
material provides a filter for the
fine clay material.

0.099

E2.1.1.1.2 Infill fines present
and erodible

No evidence of karstic features at
Gelmoy. Infill material would
consist of peat and glacial till with
low erodibility.

0.0001

E2.1.1.2.1.1 Sufficient gradient
exists from
pumping

Higher flow gradient exists close to
the wells. Gradient at a distance
from the wells is less than critical.

0.001

E2.1.1.2.1.2 No mitigation e.g.
screen fails, no
monitoring

Wells will be constructed to prevent
removal of fines. Discharge of
dewatering will be monitored for
turbidity.

0.001

.1.1.2.2.1.1 Radial flow and
i > icrit

Average gradient is about all 0.04
using a ‘capacity-demand’ model
for the critical gradient for fine
sand a probability is calculated.

0.0007

E2.1.1.2.2.1.2 Pipe flow and
i > icrit

Unlikely that a continuous pipe exists
therefore, the gradient is taken as
the effective gradient of a 0.09.

0.0005

E2.1.1.2.2.2 No mitigation, e.g.,
no monitoring, and
sealing of inflow

Mine inflows will be mitigated
through regular monitoring during
operations.

0.25

E2.1.2.1 Material liquefiable Requires a 10% size of a 0.01 to
0.25 mm and a relative density of
less than 5%. It is highly unlikely
that continuous zones of such
material exists.

0.001

E2.1.2.2 material liquefies Requires stress conditions including
rapid strain or dynamic loading
such as blasting. Infill material
would have to be submerged. Low
probability of occurrence as blast
loading attenuates rapidly.

0.001

E2.1.2.3 Continuous
connection

Continuous connection would require
mature continuous karstic cavity in
Waulsortian formation. the Gelmoy
area does not contain mature karst.

0.001



FAULT TREE REPRESENTATIONS 533

Table 22.1 (continued )

Basic event Description Remarks Probability

E2.1.3.1 Material removed by
piping from well

Well pack and screens designed to
prevent removal of fines. Much
local experience, negligible
erodibility

0.001

E2.1.3.2.1 Critical gradient
exists

A high gradient would have to exist
throughout the entire length of the
continuous cavity. For a continuous
infilled connection the gradient
would decrease with distance from
the exit point.

0.001

E2.1.3.2.2 Continuous cavity
connection exists
between mine and
dike

Continuous connection would require
mature continuous karstic cavity in
Waulsortian formation. The
Gelmoy area does not contain
mature karst.

0.001

E2.1.3.2.3 All material in cavity
between mine and
dike is erodible

Would require a continuous
connecting of erodible materials.
Various materials ()clay, sand,
gravel, and peat) would have
varying degrees of erodibility.

0.001

E2.1.3.2.4 No mitigation prior to
sufficient volume
of removal

For sufficient volume of material to
be removed, considerable fill
material would be deposited within
the drift. Monitoring in the
underground working would detect
this condition. Difficult to initiate
large opening.

0.25

E2.2.2 Cavity has existing
void of sufficient
size

Upward stopping could result if a
cavity of critical volume is located
beneath the embankment.
Confirmation drilling indicated a
low occurrence of cavities filled
with void apace.

0.001

E2.2.1 Cavity collapse due
to groundwater
lowering

Collapse of cavity at the bedrock
surface would most likely occur
during lowering of the groundwater
table prior to construction. Failure
at a later time is less likely

0.01

E3 Rapid failure without
warning

Settlement beneath compacted
earthen structures typically result
in signs of distress. Daily
monitoring will be conducted to
detect signs of distress.

0.01

on the subjective expert opinion of a group of geologists, using qualitative observations
of the rate of cavity collapse in paleokarst, and reasoning from rock mechanics principles.

The study concluded that the probability of tailings release due to embankment failure
is of the order 5 × 10−7, and due to liner failure, of the order 2.5 × 10−6. Thus, the incre-
mental probability of failure of the tailings embankment due to karst is small compared
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Figure 22.7 Exponential distribution for Karst analysis. (Van Zyl, D., Miller, I., Milligan, V.
and Tilson, W. J., 1996, ‘Probabilistic Risk Assessment for Tailings Impoundment Founded on
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with commonly accepted probabilities of failure of other water retaining structures such
as earth dams (i.e. 10−4).

22.5 Simulation Approach to System Reliability

Event and fault trees approach system reliability by developing a logical structural model
of the system built around events. A geotechnical structure such as a dam, foundation,
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Waste Form Model

Disruptive Events
Model

Dose/Risk Model

Pathways Model

System Parameters

Performance Measures:
- Releases

- Doses/Risks
- Time-Histories

Figure 22.9 Interaction diagram for repository simulation. (Miller, I. and Kossik, R., 1996, ‘Prob-
abilistic Simulation of Geologic Waste Disposal Facilities Using the Repository Integration Program
(RIP),’ Uncertainty in the Geologic Environment, Madison, WI, pp. 944–964, reproduced by per-
mission of the American Society of Civil Engineers.) (Also Miller et al. 1992.)

or tunnel is represented not through models of engineering mechanics but in an abstract
relationship of events. Probabilities are assigned to these events in one manner or another,
and then a calculation is made combining these probabilities with the logic-tree structure
assumed to apply to the events (i.e. the event or fault tree), and an analytical probability
of system failure is calculated. A limitation of this approach is that, for complex systems,
the logic tree becomes large and messy. Similarly, the analyst may overlook important
interrelationships or functional dependencies among events not obvious by inspection,
even to the trained observer.

Simulation approaches to system reliability use a mathematical model of the “physics”
(in our case, engineering mechanics) of the system as a vehicle for experimentation.
The simulation is subject to a wide range of parameter values and boundary and initial
conditions and is run many times to assess system performance. Incorporating randomness
in the parameter values and boundary and initial conditions leads to variability in system
response. A statistical sampling approach is used to draw conclusions about the reliability
of the system. Often, uncertainties in the models used to calculate performance (i.e. model
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uncertainty) are also included in the calculations. The simulation approach to system
reliability is an extension of the Monte Carlo methods discussed in Chapter 17 to more
complex applications.

In the simulation approach, a large number of equally likely runs (or trials) are made.
These are viewed as potential realizations of the future performance of the system. Using
sampling theory and statistical inference, the uncertain future performance is summarized
in probabilistic descriptions, and investigations can be made of the influence of individual
uncertainties or combinations of uncertainties on that future performance. It has become
customary to display the outcomes of simulation studies as Cumulative Density Func-
tions (CDF) or Complementary Cumulative Density Functions (CCDF) of performance
variables. The CDF expresses the probability of an outcome being less than or equal to
some value (Appendix A). The CCDF is the complement of the CDF, and expresses the
probability of an outcome being greater than some value.

Miller et al. (1992, 1996) performed a large system simulation of a geologic disposal
facility for high-level radioactive waste. In this modeling effort, major components of the
repository system – such as the container system isolating the radioactive materials, the
response of excavated openings to thermo-mechanical loadings, or the deep groundwater
flow regime about the repository – are modeled using deterministic procedures, but with
randomly generated input parameter values, and sometimes with randomly generated ini-
tial conditions. The interrelationships among the various models in the overall simulation
of the repository are shown in Figures 22.8 and 22.9. The random variables used to char-
acterize uncertainty in model parameters relate to the degree of uncertainty about soil or
rock mass conditions or about other processes important to repository performance (e.g.
waste form properties).

The system model has four principal components: disruptive events model, waste form
model, pathways model, and dose/risk model. The outputs of the simulation are releases
of radiation over time and human or ecosystem doses and toxicological risk over time.
The results of the realizations are summarized statistically, as shown in Figure 22.10, in
histograms and CDFs. The bounds show 5% and 95% statistical confidence limits on the
inferences, in the relative frequentist sense (Chapter 3).

It is sometimes the case that the inputs and outputs of individual models used in a
simulation relate to the inputs and outputs of the other models. For example, advective
flow of ground water around and through the repository can be modeled using finite
element procedures, but the boundary conditions of the model depend on the thermo-
mechanical response of the rock mass to in situ stresses and to heat generated by the
waste canisters. Thus, the outputs of the stress model and of the waste form model
may be required before executing the flow model, and conversely if the stress or heat
calculations depend on the fluid flow. In such cases an iterative approach may be needed,
further increasing the computational burden of simulation.

22.6 Combined Approaches

The TONEN refinery and tank farm sit on reclaimed land in Tokyo Bay near the city of
Kawasaki, south of Tokyo. The region is seismically active, and signs of liquefaction in
the bay fill have been observed during moderate earthquakes in the area. The refinery and
tank farm is a major installation, storing large volumes of oil and petroleum products.
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Should foundation failures occur during an earthquake, leading to the loss of stored prod-
ucts off site into Tokyo Bay, both environmental and financial costs could be substantial.
The owners of the facility, desiring to manage these risks consistently with other corpo-
rate activities and to identify remedial actions that might be taken to reduce risk, needed
to quantify the magnitude and character of the risks the facility posed. The risk assess-
ment performed for the site combined event and fault tree analysis with simulation to
obtain estimates.

22.6.1 The site

The facility is divided into four principal areas, as shown in Figure 22.11. The present
discussion focuses on the KSS site, to the northwest and inland of the larger Sites 200 and
400. Risk assessments were performed on each site, but the KSS analysis is representative.
The analysis was carried under the direction of T. W. Lambe & Associates (1989).

The KSS oil storage area is located on 8 m of loose sand and silty sand. The area consists
of six large tanks (greater than 20,000 kl capacity) and sixty smaller tanks (Figure 22.12).
These tanks are separated into patios and surrounded by fire walls, the purpose of which
is to contain any spilled oil. The spill capacity of the patios is sized for individual tank
failures, since in normal operations the probability is small that more than one tank
within a patio fails or leaks simultaneously. Should more than one tank within a patio
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Figure 22.11 The TONEN site. (T. W. Lambe & Associates 1982, 1989, reproduced with
permission.)
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simultaneously spill their full volume of oil, the fire walls would be overtopped, resulting
in oil released outside the patio.

Previous risk assessments of Sites 200 and 400 showed unacceptably high levels of
risk (T.W. Lambe & Associates, 1982). In many ways the KSS site is similar to the 200
and 400 sites, but with three important differences: (1) the SPT blow count value for the
KSS site, and thus the imputed cyclic shear strength of the foundations, are lower than at
the other sites; (2) the fines content is higher; and (3) most of the tank foundations were
treated by vibroflotation.

The risk assessment of Sites 200 and 400 identified the principal source of risk as an
off-site spill caused by rupture of multiple tanks due to foundation failure. Seismic ground
shaking causes the foundation soils to deform or liquefy. This deformation results in large
differential settlements of the tank bottoms, resulting in rupture of the tank and loss of
contents. Multiple tanks failing within a patio cause the fire walls to be overtopped, or
the same soil deformations that cause the tanks to rupture also cause the fire wall to
fail. In either case, oil is spilled off site. Proximity to Tokyo Bay and the enormous costs
associated with an oil spill into the Bay, make an off-site spill the dominating risk. Earlier
experience by other oil companies in Alaska and Japan indicated that clean-up and legal
costs attending a significant off-site spill could be well in excess of US$ 109 (ca. 1980
dollars). Structural failure was deemed unlikely, given the highly conservative dynamic
load assumptions used in design. Losses from fire were not addressed.

The KSS site, comprising about 300,000 m2, is located in an industrial area on reclaimed
land developed by hydraulic filling the in late 1950s and early 1960s. Approximately 4 m
of fill was placed, the first part hydraulically, and the last 1–3 m by dumping landslide
debris and miscellaneous fill, and by spreading with earthmoving equipment. A typical
profile is shown in Figure 22.13. The bay bottom sands and clays are recent (Holocene)
alluvial deposits. The hydraulic fill was dredged from the sea floor and shoreline.

The clay is weak and compressible and the potential source of meters of long-term
settlement. Concern existed that it was a possible source of foundation failure by sliding
during an earthquake. The bay bottom sands are relatively clean sands mixed with silty
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Figure 22.12 KSS region of the TONEN site. (T. W. Lambe & Associates 1982, 1989, reproduced
with permission.)
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Figure 22.13 KSS soil profile. (T. W. Lambe & Associates 1982, 1989, reproduced with
permission.)

sand in places. The lower portions of the sand are relatively dense, with blow counts
greater than 20 BPF. The upper 3–5 m contain more silt and have lower blow counts,
in the range 1–9 BPF. These upper sands could potentially liquefy during an earth-
quake. The surficial fill consists of sands, silty sands, and sandy silts, with very low blow
counts (0–8 BPF). The ground water level (gwl) is at about 1-2 m depth. The sands and
gravels below −40 m elevation are overconsolidated and thought to pose no risk during
an earthquake.

The low densities (manifest in low blow counts) of the bay bottom sands and fill,
combined with their particle size distributions, suggests they may cause problems during
earthquakes. In 1987, a magnitude 6.7 earthquake 65 km from the site caused liquefaction
near one of the tanks at the KSS site. Measurements at site 400 indicated 85 gal (0.085 g)
peak ground surface acceleration. A ground surface crack was observed 20 m from the
tank, surrounded by a mound of fine sand. No tanks were damaged.

Vertical effective stresses at the site were calculated from the expression

σv = γtH − (H − Dw)γw (22.3)

in which

σv = effective vertical stress
γt = total unit weight of the soil
H = depth
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Dw = depth to ground water surface
γw = unit weight of water

Since γw was presumed to be known, the variance in σv as a function of depth was
calculated by a first-order approximation as

Var[σv] = H 2 Var[γt ] + γw
2 Var[Dw] (22.4)

From actual measurements, the mean and standard deviation of γt were 1.85 t/m3 and
0.093 t/m3. There was a systematic variation (standard deviation) of the depth to gwl of
0.45 m, on top of which was seasonal variation (standard deviation) of 0.6 m. Combining
these two (by summing the variances) led to a standard deviation of depth to gwl of 0.75 m.
Given the large coefficient of variation of depth to gwl (�Dw = standard deviation/mean),
the variable Dw was modeled as logNormally distributed to preclude negative values of
depth in the analysis. This distributional assumption also seemed to fit the empirical
histogram of observations made at the site.

A total of 48 SPT borings were made at the site between 1959 and 1988, at locations
shown schematically in Figure 22.14. Values of blow count (N) greater than 50 were
ignored as spurious. Figure 22.15 summarizes the uncorrected N values with depth for
the entire site, separated into values before and after vibroflotation and shows means and
standard deviations for one-meter depth intervals. The average N in the upper 5 m before
treatments is about 4; after treatment, about 8. The mean value of 12 to 13 BPF between
depths 5 m and 8 m was unchanged by treatment. The mean below 8 m was consistently
greater than 20 BPF

For use in the liquefaction analysis, the blow counts were corrected by the Gibbs and
Holtz (1957) factor

NC = 50N

σv + 10
(22.5)

in which

NC = corrected blow count
N = measured blow count
σv = effective vertical stress

The average corrected blow count in the top 5 m was 14 and 30, for treated and untreated
areas, respectively. The spatial variance of Nc across the site was 8.4 BPF2. In addition,
the limited number of measurements and the regression fitting with depth to estimate a
mean trend in Nc and to estimate σv created a systematic error variance in Nc of about
0.2 BPF2.

22.6.2 Tank, fire wall and revetment reliability

The probability of tank and fire wall failures was based on Yegian and Whitman’s (1978)
Liquefaction Potential Index (LPI). LPI is a ratio of applied shear stress due to ground
shaking to effective shear resistance

LPI = He0.M

σ v(R + 16)Sc

(22.6)
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Figure 22.15 Uncorrected SPT N values at KSS site. (T. W. Lambe & Associates 1982, 1989,
reproduced with permission.)

in which

H = depth
M = magnitude
σv = effective vertical stress in psi
R = hypocentral dist. in miles
Sc = empirical cyclic strength
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Using regression analysis of worldwide data, Yegian and Whitman developed an empir-
ical relationship between cyclic strength and corrected blow count, Nc,

Sc = N0.839
c

8.12
exp{0.5Var[ln Sc/Nc]} = 0.1336N0.839

c (22.7)

in which the variance term in the exponential comes from the regression fitting, and equals
0.163, leading to the shorter expression on the right-hand side.

Tank settlements were correlated to LPI based on finite element analyses of represen-
tative conditions at the site, and the probability of tank failure as a function of settlement
was approximated by the curve shown in Figure 22.16, based on work by Marr et al.
(1982). For each acceleration level of Table 22.2, a mean and variance of LPI were cal-
culated, and a logNormal probability density function (pdf) applied to LPI. The pdf of
LPI was propagated through the settlement vs. LPI curve to obtain a pdf of settlement,
and this, in turn, was propagated through the settlement vs. probability of failure curve
to obtain pf for the tank.
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Figure 22.16 Probability of tank failure as a function of settlement. (T. W. Lambe & Associates
1982, 1989, reproduced with permission.)

Table 22.2 Discrete approximation to seismic hazard at the KSS site

Case

Surface acceleration
(cm/sec2)

value (range)

Base level velocity
(cm/sec)

value (range)
Average return period

(years)
Probability
(in 20 yrs)

I 50 (30–75) 2 (1–3) 2.5 ≈1.0
II 100 (75–150) 5 (3–7) 16 0.71
III 200 (150–250) 10 (7–15) 100 0.12
IV 300 (>250) 20 (>15) 300 0.06
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Two special concerns arose in performing the analysis just described. The first was the
effect of spatial correlation of soil properties, and thus LPI, on the probabilities of failure
calculated for tanks, fire wall sections, and revetment sections. The second was the lack
of independence among probabilities of failure for tanks, wall sections, and revetment
sections adjacent to one another.

The performance of the tank foundations was indexed to average LPI beneath the
tank. This means that the variability of the soil properties entering the LPI equation was
averaged over a volume of soil. For the large tanks, this volume was larger than for
the small tanks, and as a consequence the variance of the average LPI under the larger
tanks was less than under the small tanks. Thus, the probability of failure for the small
tanks was larger than for the large tanks, although the consequences of failure measured
in the volume of oil spilled, would be less. A variance reduction factor based on the
methodology of Chapter 10 was applied to each tank, depending on the volume of soil
over which the soil properties were averaged.

Spatial variation of soil properties affected the probabilities of failure of the fire walls
and revetment in a related way. Both the fire walls and the revetment are long, linear
features. Failure at any location along the length of the wall or revetment means failure
to contain a spill. Thus, the concern in assessing the probability of failure of a wall or
revetment is one of ‘first crossing’ or ‘worst condition,’ in the sense of the exceedances
of random processes. To simplify calculations, the walls and revetments were divided
into a number of ‘equivalent independent sections,’ each of length 1/δo, in which/δo is the
autocorrelation distance. The probability of failure of an individual section was calculated,
based on LPI and spatial averaging, and the probability of at least one such section failing
in a wall containing n such sections was calculated by the relation

Pr{wall failure} = 1 − (1 − Pr{section failure})n (22.8)

Special considerations were made for corners in the walls, or other places where wall
geometry deviated from a straight line. These considerations were made by numerically
solving the geometrical averaging of spatial variation for the particular geometries.

Chapter 8 describes the importance of spatial and systematic uncertainty. Spatial corre-
lations and systematic uncertainty in soil properties also affected the degree of correlation
among the failures of multiple tanks, fire wall segments, and revetment segments. First, the
uncertainty in soil properties has both a systematic and a spatial component. The system-
atic component comprises estimation error in the mean and bias error in the geotechnical
model used to interpret test results. This affects all the tanks, walls, etc. the same way. If
the mean is in error under one tank, it is in error under all. Thus, to the extent that the
probabilities of failure of the tanks, walls, etc. depend upon systematic uncertainty, they
are perfectly correlated. At the same time, to the extent that the probabilities of failure
depend on spatial variation, they are independent, but only if the individual facilities are
widely separated in space. Adjacent tanks rest on soils which, given the autocovariance
of the soil properties, have average properties that are to some degree correlated, and
thus the probabilities of failure of the adjacent tanks must be to some degree correlated.
Therefore, in calculating probabilities of failure, both the effects of systematic error and
spatial correlation must be accommodated in inferring the degree of correlation among
the failure probabilities of tanks, wall segments, and revetment segments.
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22.6.3 Event tree analysis

The risk assessment consisted of five steps:

1. Identify the factors influencing seismic performance of the storage tanks: frequency
of earthquakes, variability of soil properties, behavior of the tanks during earthquakes,
performance of the foundation soils during earthquakes, performance of the fire walls
and revetments during earthquakes, performance of other site facilities designed to
prevent spills, and so forth.

2. Analyze earthquake source models to establish seismic hazard at the site and establish
levels of ground shaking and their respective probabilities of being exceeded.

3. Develop an event tree for a typical patio; the event tree is used to illustrate how various
facilities in a tank patio interact to lead to system failure.

4. Build a numerical (Monte Carlo) simulation of the entire site to analyze random behav-
ior of each key component; run the model through many realizations to develop a
statistical sample of the behavior of the site and facility.

5. Compare the predicted probability of an off-site spill and the corresponding conse-
quences to other risk; use the comparison and the annual expected monetary loss to
judge the acceptability of the risk faced at this site.

The seismic hazard at the site was developed using methods similar to those based
on Cornell’s (1968) work. The outcome of this hazard assessment is shown in Figure 22.17
as a complementary cumulative distribution (CCDF) of peak surface ground acceleration.
For the numerical computation, this curve was approximated by the four discrete levels
shown in Table 22.2.
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Figure 22.17 Seismic hazard results for TONEN region. (T. W. Lambe & Associates 1982, 1989,
reproduced with permission.)
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An event tree was developed for Patio 1, the large patio at the south of the site,
comprising four 20,000kl tanks. This event tree is shown in Figure 22.18 for one particular
level of acceleration. The complete event tree for Patio 1 has four branches, each identical
in form to that of the figure, corresponding to the four levels of acceleration listed in
Table 22.2.

The event tree begins from the left with the occurrence of a given level of seismic
ground shaking. Given this ground shaking, the first event checked is deep sliding within
the clays. If sliding of the entire site within the clays occurs, complete disruption of the
site is assumed, leading to an off-site spill, and no further analysis is required.

If deep sliding does not occur, the next event checked is failure of the revetment
surrounding the entire site. The revetment along the waters edge, with its associated outer
fire wall, is the last bulwark against an off-site spill. Even if oil is released from a patio, it
may still be trapped behind the revetment, but if the revetment fails, this is no longer the
case. Also, because certain patio walls and even tanks are within the zone of influence of
a revetment failure, depending where the revetment failure occurs, it may mechanically
affect the stability of the firewalls or tanks.

Within the patio are four tanks. One or more of these may fail, or none may fail. If
one or more fail, some amount of oil is released into the patio, depending on how full
the tanks are at the time of failure. Throughout the year, the volume of product stored in
the tanks varies, and the volume in some tanks varies more than that in others. Since the
four tanks are near one another in space, their respective probabilities of failure tend to
be dependent. The failure of one tank may mechanically affect another tank, and the soil
properties underlying the tanks are spatially correlated. If no tanks fail, then there is no
off-site spill.
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If one or more tanks fail, then next event checked is breaching (failure or overtopping)
of the firewall. In Figure 22.18 the subsequent branches of the tree are only shown for
two tanks failing, but the same subsequent branch emanates from each tank failure event.
If the volume of spilled oil within the patio exceeds the storage capacity of the fire walls
(which by fire code needs only equal the volume of one full tank), then the fire wall is
overtopped and some volume of off-site spill occurs. If one or more tanks fail and the fire
wall also fails, then off-site spill occurs. As for multiple tank failures, fire wall failure is
correlated with the failures of tanks, revetment, and possibly other facilities at the site.

A complete event tree for the entire KSS site becomes the bushy mess mentioned at
the start of this section. It leads to a few thousand end nodes, because the combination of
facility failures and non-failures grows exponentially. Nonetheless, a rough approximation
of the system failure probability for the entire site can be calculated starting with the
probability of a spill from Patio 1, and making the highly simplifying assumption that the
entire site consists merely of some number, k, of ‘equivalent, independent’ such patios.
Then, the probability of system failure becomes the probability of an off-site spill from
at least one of these equivalent, independent patios

Pr{system failure} = 1 − (1 − Pr{patio failure})k (22.9)

Among the conclusions drawn from an analysis of the Patio 1 event tree were (i) the
logical relationship among failure elements, (ii) the importance of both mechanical and
probabilistic correlation among facility (tank, walls, revetment, piping, etc.) failures,
(iii) the influence of specific combinations of failure conditions on the volume of oil
spilled off site, and (iv) a rough estimate of the overall probability of an off-site spill.

22.6.4 Simulation analysis

The event tree analysis provided an understanding of the importance of different risk
elements at the site, and a rough estimate of the probability of an off-site spill. To develop
a more precise estimate of system failure probability, a simulation model of the tank farm
was built.

The occurrence of an off-site spill of oil during an earthquake depends on the simul-
taneous occurrence of many interdependent elements within the oil storage areas. The
many possible combinations of failure of revetments, outer fire walls, inner fire walls,
overflow of unfailed fire walls, and tank failures from foundation settlement, caused by an
earthquake the size of which is, itself, uncertain, cannot easily be resolved analytically. In
the simulation model, the principal components affecting the likelihood of an off-site spill
were considered. For each component, random numbers were generated to represent the
component’s response to a particular seismic event. The random numbers were chosen to
fit probability distributions whose means and variances reflected the inferred uncertainty
in the behavior of each component. Systematic uncertainties and uncertainties due to spa-
tial variation were analyzed separately, since realizations of the systematic uncertainties
apply to every component in the same way, while those of the spatial variation differ
from one component to another.

This simulation model started with the plan of the facility shown in Figure 22.11, and
reliability models of the individual components of the site were developed to predict prob-
abilities of component failure given different levels of peak ground acceleration. In most
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cases, these were the same reliability models used to calculate branch probabilities for
the event tree described above. From these reliability representations, failure probabilities
and correlations among failure probabilities were derived for each facility component,
and for each of the four identified levels of ground acceleration. Then, runs were made
in which a random number generator was used to assign failure or non-failure conditions
to each component in a calculated realization, volumes of oil spilled in each realization
were summed, and a storage volume accounting was made to determine whether oil was
spilled off site in each realization. A large number of realizations was run, and the results
analyzed statistically to infer exceedance probabilities of the volume of oil spilled off site
in a given time period.

At the end of each run, an accounting is made to determine how much, if any, oil
is spilled. Each tank is polled to see whether it failed. If it did fail, a random number
ranging between 0 and 100% is generated to reflect the volume of oil stored in the tank
at the instant of failure. The statistical parameters of this random variable are taken from
production records at the tank farm, and differ from one tank to another depending on the
product stored and the size and location of the tank. Typical site records for three patios
are shown in Figure 22.19.

For each patio, an accounting of the total volume of oil spilled by tanks within is made.
If one or more segments of the patio fire wall has also failed, the total volume of oil spilled
within the patio is considered released onto the facility. If no wall segments have failed,
a check is made to see if the fire wall has been overtopped, and, if so, the balance of oil
volume larger than the patio capacity is considered to be released. Finally, a summation
of oil spilled out of all the patios onto the facilities is made, and the revetment (and its
associated outer fire wall) is checked to see whether failure occurred, in which case all
the oil spilled onto the facility is considered to be released off site. If the revetment has
not failed, a check is made for overtopping, in which case the balance of oil greater than
the site capacity is considered to have been spilled off site. At the end, a histogram of oil
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Figure 22.19 Site production records expressed as probability of proportion of tank inventory in
use. (T. W. Lambe & Associates 1982, 1989, reproduced with permission.)
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spilled off site in the individual realizations is plotted, and the frequency with which a
non-zero volume was spilled is used as an estimator of the probability of system failure
for the particular acceleration interval.

The entire simulation was carried out four times, once for each interval of peak ground
acceleration in Table 22.2, using 2000 realizations each. Typical results are shown in
Figure 22.20 for levels of dewatering from 0 m to 7 m. The summary of results for the
three facility locations at Kawasaki is shown in Table 22.3.
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Figure 22.20 Results of simulation for three sites and lowering water table by 0 to 7 m. (a) linear
probability scale, (b) logarithmic probability scale (T. W. Lambe & Associates 1982, 1989, repro-
duced with permission.)
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Table 22.3 Calculated probability of off-site spill at KSS and
TONEN 200 and 400 sites

Event
(gal)

Probability
(annual)

KSS Site
(%)

Site 200
(%)

Site 400
(%)

50 0.400 0.002 0.008 0.013
100 0.625 0.006 0.011 0.018
200 0.010 0.340 0.450 0.590
300 0.003 0.567 0.667 0.800

Total – 0.010 0.017 0.025
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22.6.5 Comparative risk at Kawasaki

To understand the risk faced by the tank farm owners, the calculated exceedance proba-
bilities and corresponding consequences were plotted in a probability-consequence or F-N
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chart. This chart (Figure 22.21) shows annual probability of occurrence on the vertical
axis with the corresponding consequence(s) of failure – either in monetary cost, lives
lost, or both – on the horizontal axis. The envelopes marked, ‘accepted’ and ‘marginally
accepted’ reflect risks inferred for other civil works. Because the monetary cost associated
with an off-site spill is of an order greater than US$109, clearly the risk faced at the tank
farm (0.01 to 0.025) is too high.

One way to reduce the annual probability of an off-site spill is to lower the ground
water level beneath the facility. This has the effect of reducing the pore water pressure,
increasing the effective vertical stress in the soil, and thus decreasing the probability of
liquefaction given seismic ground shaking. The simulation model allowed a direct calcu-
lation of the effectiveness of dewatering on risk reduction, since the effect of dewatering
on LPI could be calculated in Equation (22.6), and new statistical parameters for LPI
for each interval of peak ground acceleration used in the simulation model. The results
of these re-calculations are shown in Figures 22.20 and 22.22, in which the reduction in
annual probability of an off-site spill as a function of ground water lowering is shown.

The summary of the results presented in the form of Figures 22.20–22.22 enabled the
corporate management to make a rational decision about the course of action it should
undertake. By comparing the annualized cost of failure due to earthquakes with the annual
cost of preventive measures, the management decided that continuous lowering of the
groundwater level was justified economically. An impervious slurry wall was built around
the site, pumps were installed, and a continuous program of pumping and monitoring of
groundwater levels was instituted. This remains in place at the time of writing, and similar
solutions have been implemented at other sites in the area.
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F-N chart. (T. W. Lambe & Associates 1982, 1989, reproduced with permission.)



554 SYSTEM RELIABILITY ASSESSMENT

22.7 Summary

This chapter describes some of the procedures for evaluating the reliability of a system
rather than a single component. The example of the tank farm in the seismically active
region shows how this is carried out in practice. Similar efforts have been undertaken for
evaluating the safety of dams. Several points will have become obvious to the reader but
should be emphasized in any case. First, all the tools and insights of the preceding chapters
must be brought to bear on such an analysis, including logic trees, expert elicitation,
detailed reliability assessment, and simulation. Second, some components of the system
are inevitably better understood than others, and judgment must be applied to include
them in the analysis. Third, the major limitation on such studies is not a limitation in
reliability theory or methodology or restrictions in computer facilities but the investment
of time and effort required for interaction between personnel who understand the system
to be studied and those experienced in reliability studies.

Finally, effective use of reliability analysis of a system requires commitment by man-
agement, as typified in the TONEN case just described. Without such commitment, the
reliability analysis is a sterile exercise. Of course, the same comment applies to the use
of the observational method. It is to be hoped that the future will see broader use of both
reliability and observational approaches to deal with complicated geotechnical systems
and the two approaches will be combined more closely than in the past.



Appendix A: A Primer on Probability
Theory

A.1 Notation and Axioms

Probability theory is a branch of algebra with its own axioms and notation. While one can
construct an algebra with almost any set of self-consistent axioms, some are more useful
than others, and the particular axioms and theorems of probability theory have proven
very useful over the years. The notation is sometimes opaque to the casual user; in this
appendix we set out the forms most widely used in civil engineering applications.

The first notation is the expression for the probability of A, where A could be an event,
a condition, a state of nature, or almost anything else. We write that the probability of A

is P [A]. Obviously, we can replace ‘A’ with any appropriate expression or phrase such
as ‘X ≤ x’ or ‘soil liquefies.’

All the theorems of probability theory can be derived from three axioms:

1. P [A] ≥ 0. (That is, a probability must be equal to or greater than zero.)
2. P [A] = 1 means that A is certain.
3. P [A ∪ B] = P [A] + P [B] if A and B are mutually exclusive. The notation ‘∪’ stand

for the ‘union’ of A and B or that A or B or both occur.

The Venn diagram, illustrated in Figure A.1, is a great help in visualizing probability
concepts. The rectangular box represents the universe, that is all possible events. The
circle labeled A represents event A, and that labeled B represents event B. For axiom 3
these events are mutually exclusive, so their circles do not intersect. Venn diagrams will
be used below to elucidate more complicated situations.

A.2 Elementary Results

By convention A or Ã means ‘not A.’ In words, if A means ‘the soil liquefies,’ A means
‘the soil does not liquefy.’ From the axioms

P [A] + P [A] = 1 (A.1)

or, in words, the soil either liquefies or does not, but not both.

Reliability and Statistics in Geotechnical Engineering Gregory B. Baecher and John T. Christian
 2003 John Wiley & Sons, Ltd ISBN: 0-471-49833-5
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A

B

Figure A.1 Venn diagram for two mutually exclusive events.

A

B

Figure A.2 Venn diagram for two events that are not mutually exclusive.

When both A and B occur, the event is said to be their intersection, denoted by A ∩ B

or simply AB. Figure A.2 shows a situation in which A and B are not mutually exclusive;
that is, they can both occur. It is easily verified that

P [A ∪ B] = P [A] + P [B] − P [A ∩ B] (A.2)

By extension, and by reference to Figure A.3, when there are three events

P [A ∪ B ∪ C] = P [A] + P [B] + P [C] − P [AB ] − P [AC ] − P [BC ] + P [ABC ]
(A.3)

This can be extended to any number of events, with the general rule that items with an
odd number of intersecting events have positive signs and those with even numbers have
negative signs.

Manipulation of combinations of events is helped by de Morgan’s rule:

A ∪ B = A ∩ B (A.4)
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A

C

B

Figure A.3 Venn diagram for three events that are not mutually exclusive.

In many cases, we want to express the probability that A occurs, given that B also
occurs. This is called the conditional probability. It is expressed as P [A|B]. Furthermore:

P [A|B] = P [AB]

P [B]
(A.5)

and
P [AB] = P [A|B] · P [B] = P [B|A] · P [A] (A.6)

This can be extended to more variables:

P [ABC] = P [A|BC] · P [B|C] · P [C] (A.7)

A.3 Total Probability and Bayes’ Theorem

A very useful result, analogous to the chain rule for partial differentiation is that, if
E1, E2, . . . , En is a set of mutually exclusive and exhaustive events (that is, they include
all possible events Ei) and A is some event conditional on one or more of the Ei , then

P [A] = P [A|E1] · P [E1] + P [A|E2] · P [E2] + · · · + P [A|En] · P [En]

=
n∑

i=1

P [A|Ei] · P [Ei] (A.8)

This is known as the Total Probability Theorem.
Suppose that there is an exhaustive series of events with estimated probabilities Ei .

These are called prior probabilities. Now, suppose some event A occurs. (This might be
the result of some measurements or some happening such as a failure.) We want to know
how this affects the estimate of the probability of Ei . From the above results,

P [AEi] = P [A|Ei] · P [Ei] = P [Ei|A] · P [A] (A.9)

∴ P [Ei|A] = P [A|Ei] · P [Ei]

P [A]
= P [A|Ei] · P [Ei]∑

P [A|Ei] · P [Ei]
(A.10)
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In other words, Equation (A.10) describes how to revise the estimate of the probability of
Ei after we have learned that A has occurred. To do this we must know the prior estimates
of the probabilities of the Eis and the conditional probabilities of A. This theorem is
known as Bayes’ Theorem; it forms the basis of much modern reliability work.

A.4 Discrete Distributions

Several well-known functions can be used to describe the uncertainty in a variable. These
have become widely used because they describe situations that arise in practice, but many
variables do not conform to any of the standard functions. The distributions are usually
divided into two categories: discrete and continuous. Discrete distributions describe cases
in which the uncertain variable can have only discrete values, such as the value of pips on
a die or the number of floods in a given period of time. Continuous distributions describe
cases in which the uncertain variable can have any value within a given range, such as
the amount of rainfall in a year or the shear strength of a soil. This section describes
discrete distributions, and the next deals with continuous distributions. It is customary
to refer to the variable by an upper case letter (e.g. X) and to specific values that the
variable assumes by a lower case latter (e.g. x).

Evans et al. (1993) have presented, for most of the commonly encountered distri-
butions, a compendium of parameters and related functions, including many that are
not discussed here. Most of the material included in the following two sections and in
Tables A.1, A.2 and A.3 can be found in their book. Some of the other material was taken
from standard references such as Burington and May (1970), or independently derived by
the authors.

A discrete variable can have n distinct values. Each of these values has a probability
of occurrence, which we will designate pi . The collection of all the pi is called the
probability mass function or pmf. It is usually written as pX(x) or pi . Obviously, since
the n distinct values exhaust al the possibilities,

∑n
i=1 pi = 1.

The probability that the variable has the ith value is pi , and the probability that the
variable has a value equal to or less than the ith value is

∑i
j=1 pj . This is called the

cumulative distribution function or CDF, written FX(x). If the ith value of the variable
is xi , we can define moments of the distribution, mk:

mk =
n∑

i=1

pi · xk
i (A.11)

The first moment, for k = 1, is the mean or expected value of the variable. It is denoted
by µX or E[X]. It is convenient to center the other moments about µX instead of about
the origin. The second moment taken about µX is the variance, denoted by Var[X], and
its square root is the standard deviation, σX. Algebraic manipulation gives

Var[X] = σ 2
X =

n∑
i=1

pi · (xi − µX)2 =
n∑

i=1

pi · x2
i − µ2

X (A.12)
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Table A.1 Parameters for common discrete distributions

Name Parameters Symbol pmf (= pX(x)) Mean Variance
Skewness
coefficient

Uniform a, n, h D(a, n, h)
1

n + 1
a + nh

2

h2n(n + 2)

12
0

Uniform
(counting)

0, n D(0, n)
1

n + 1

n

2

n(n + 2)

12
0

Binomial n, p B(n, p)

(
n
x

)
pxqn−x np npq

q − p

(npq)1/2

Geometric p G(p) pqn
q

p

q

p2

1 + q

q1/2

Negative Binomial y, p NB(y, p)
�(x + y)

�(y)x!
pyqx yq

p

yq

p2

1 + q

(yq)1/2

Pascal (N. B. with
integer
parameters)

y, p NB(y, p)

(
x + y − 1

y − 1

)
pyqx yq

p

yq

p2

1 + q

(yq)1/2

Poisson λ P(λ) λx exp(−λ)/x! λ λ λ−1/2

Notes: 1. q = 1 − p.

2. m

(
n

m

)
= n!

(n − m)!m!
= number of combinations of n things taken m at a time.

3. �(x) is the gamma function of x and is (x − 1)! when x is an integer.
4. In the Poisson distribution λ is often replaced by νt .

The coefficient of variation, �, is the ratio of the standard deviation and the mean:

� = σ

µ
(A.13)

Higher moments are used less often, but the skewness, νX, is occasionally employed:

νX =

n∑
i=1

pi · (xi − µX)3

σ 3
X

(A.14)

Table A.1 lists the parameters, the conventional symbol, the pmf, the mean, the variance,
and the skewness coefficient for commonly encountered discrete variables. The Uniform
distributions describe conditions when the variable has equal probability at n + 1 equally
spaced points. The counting special case occurs when the points are the integers from 0
to n.

A Bernoulli process consists of n trials, each of which has a probability p of success.
Drawing balls from and urn containing red and white balls is an example if the ball is
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replaced after each drawing. The probability of having exactly x successes in n trials is
described by the Binomial distribution. The Geometric distribution describes the number
of the trial at which the first success occurs. This is also the number of trials necessary
to obtain the next success after a particular success. The Negative Binomial distribution
describes the number of the trial at which the kth success occurs. The Pascal distribution
is the special case of the Negative Binomial distribution with integer values of X and Y .

A Poisson process is one in which an event can occur at any time but each event is
independent of the previous events. In other words, the process has no memory. The
Poisson distribution gives the number of events in a time period νt (= λ). The Exponen-
tial distribution also arises in the Poisson process, but it is described under continuous
distributions.

A.5 Continuous Distributions

A continuous distribution has a CDF that is defined as the probability that the value of
X is less than or equal to x, i.e. P [X ≤ x]. This is identified by the notation FX(x). The
derivative of the CDF is called the probability density function, pdf, and describes how
the probability is distributed over the range of X. It is also identified by the notation
fX(x). Thus,

fX(x) = dFX(x)

dx
FX(x) =

∫ x

−∞
fX(ξ)dξ (A.15)

We can also talk about the probability that x lies between two values of X; it is simply
the integral of fX(x) between those limits. The interval of integration must be finite if
the result is to be a probability. For this reason fX(x) is called a density function. From
the basic axioms of probability theory,

FX(∞) =
∫ +∞

−∞
fX(ξ) dξ = 1 (A.16)

Continuous distributions have moments defined by

mK =
∫ +∞

−∞
ξ k · fX(ξ) dξ (A.17)

The first moment of a continuous function is the mean or expected value of the variable.
The second moment taken about µX is the variance, and so forth. Algebraic manipula-
tion gives

Var[X] = σ 2
X =

∫ +∞

−∞
(ξ − µX)2 · fX(ξ) dξ =

∫ +∞

−∞
ξ 2·fX(ξ) dξ − µ2

X (A.18)

The skewness coefficient is based on the third moment:

νX =

∫ +∞

−∞
(ξ − µX)3 · fX(ξ) dξ

σ 3
X

(A.19)
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Higher moments are seldom used in reliability work, but the fourth moment is used to
define the kurtosis (or ‘flatness’) coefficient:

κX =

∫ +∞

−∞
(ξ − µX)4 · fX(ξ) dξ

σ 4
X

(A.20)

Table A.2 lists the parameters, the conventional symbol, the pdf, the mean, the variance,
and the skewness coefficient or third moment for commonly encountered continuous
variables. The Uniform distribution describes conditions when the variable X has equal
probability density from a to b. The Triangular distribution has a pdf that rises linearly
from zero at a to a peak at c and falls linearly back to zero at b.

The Normal distribution describes a large number of random processes. The Central
Limit Theorem states that, in the limit, the sum of most random processes will be a
Normal distribution. The logNormal distribution describes the product of many random
processes. The logarithm of the variable X is Normally distributed.

The Exponential distribution arises from the Poisson process. It describes the time to
the first occurrence in the Poisson process. The Gamma distribution describes the time
until the cth occurrence in a Poisson process. The parameter b is equal to 1/γ from the
Poisson process.

The Beta distribution is used to model variables that are bounded between 0 and 1.
The bounds can be extended to a and b by simple algebra. Many different shapes can be
achieved by judicious choice of p and q.

The Chi-squared and Student’s t distributions are used in statistical tests. The von
Mises distribution is a circular version of the normal distribution that is useful is studying
the statistics of orientation of features such as joint sets. The Fisher (1953) distribution
is a spherical extension of the Normal distribution used to describe the orientation of
joint sets.

Table A.3 lists the parameters for the best known Extreme Value distributions. Type I
distributions describe the limiting distributions of the largest or smallest values when the
variable is unlimited in the upper and lower directions and the tails are approximately
exponential. An example is the Normal distribution. Type II distributions are limited at
one end but tail off at the other. They relate to the Type I distributions as the logNormal
distribution relates to the Normal distribution. Type III distributions describe the smallest
values when the underlying distributions are limited in the tail.

A.6 Multiple Variables

When several random variables exist, they can be represented by a joint pmf if they
are discrete or a joint pdf if they are continuous. For example, if there are two discrete
variables, X and Y, pX,Y (x, y) is the probability that X has the value x and Y has the
value y, or

pX,Y (x, y) ≡ P [(X = x) ∩ (Y = y)] (A.21)

The joint CDF is then

FX,Y ≡ P [(X ≤ x) ∩ (Y ≤ y)] =
∑
xi≤x

∑
yi≤y

pX,Y (xi, yi) (A.22)
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By analogy, the continuous pdf and CDF also exist. For the case of two continuous
variables X and Y

P [(x0 ≤ X ≤ xi) ∩ (y0 ≤ Y ≤ yi)] =
∫ xi

x0

∫ yi

y0

fX,Y (ξ, η) dξ dη (A.23)

The joint CDF is then

FX,Y =
∫ x

−∞

∫ y

−∞
fX,Y (ξ, η) dξ dη (A.24)

and the pdf is

fX,Y = ∂2FX,Y (x, y)

∂x∂y
(A.25)

These equations can be extended for more than two variables.
The marginal distribution is the distribution of a variable for all values of the other

variables. For example, for two discrete variables, the marginal pmf of X is

pX(x) = P [X = x] =
∑
all yi

pX,Y (x, yi) (A.26)

and, for two continuous variables, the marginal pdf is

fX(x) =
∫ +∞

−∞
fX,Y (x, η) dη (A.27)

The marginal CDF is

FX(x) ≡ P [X ≤ x] =
∑
xj ≤x

∑
all yi

pX,Y (xj , yi) or
∫ x

−∞

∫ +∞

−∞
fX,Y (ξ, η) dξ dη (A.28)

The conditional pmf or pdf represents the distribution of a variable when all the other
variables are held fixed. Thus, in the case of two variables, they are the distributions of
X when Y has some fixed value. The pmf is

pX|Y (x, y) = pX,Y (x, y)

pY (y)
(A.29)

and the pdf is

fX|Y (x, y) = fX,Y (x, y)

fY (y)
(A.30)

These relations can be elaborated for more variables.
The moments of multivariate distributions are found by extension from the definitions

for single variables. Let Z be some function g of X and Y , i.e. Z = g(X, Y ). Then the
expected value or mean of Z is

E[Z] ≡ µZ = E[g(X, Y )] =
∑
allxi

∑
allyi

g(xi, yi)pX,Y (xi, yi) (A.31)
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or

E[Z] ≡ µZ = E[g(X, Y )] =
∫ +∞

−∞

∫ +∞

−∞
g(x, y)fX,Y (ξ, η) dξ dη (A.32)

There are three central second moments of g(X, Y ). The first is

E[(X − µX)2] =
∫ +∞

−∞

∫ +∞

−∞
(ξ − µX)2fX,Y (ξ, η) dξ dη

=
∫ +∞

−∞
(ξ − µX)2fX(ξ) dξ = Var[X]

(A.33)

Similarly, the second is
E[(Y − µY )2] = Var[Y ] (A.34)

The third is

Cov [X,Y ] = σX,Y = E[(X − µX)(Y − µY )]

=
∫ +∞

−∞

∫ +∞

−∞
(ξ − µX)(η − µY )fX,Y (ξ, η) dξ dη (A.35)

This is called the covariance of the two variables. The notation ‘Cov’ should not be
confused with the abbreviation ‘COV’ for the coefficient of variation. To reduce confusion,
we have usually used the symbol � for the latter. A further problem is that the units of
the covariance are the same as those for the variance, which is σ 2. It is unfortunate that
the symbol σ with appropriate subscripts is used for both the standard deviation and
covariance, even though they have different units, but that is the convention that has
grown up over the yeas.

The dimensionless expression of the degree of correlation between two variables is
expressed by the correlation coefficient:

ρX,Y = σX,Y

σXσY

(A.36)

When there are two or more variables, their variance and correlation structure can be
expressed by the covariance matrix, C, which is also denoted by �:

C ≡




σ 2
X1

σX1,X2 · · · σX1,Xn

σX1,X2 σ 2
X2

· · · σX2,Xn

...
...

. . .
...

σX1,Xn
σX2,Xn

· · · σ 2
Xn


 (A.37)

or by the correlation matrix, K:

K ≡




1 ρX1,X2 · · · ρX1,Xn

ρX1,X2 1 · · · ρX2,Xn

...
...

. . .
...

ρX1,Xn
ρX2,Xn

· · · 1


 (A.38)
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It follows that

C =




σX1 0 · · · 0
0 σX2 · · · 0
...

...
. . .

...

0 0 · · · σXn


 · K ·




σX1 0 · · · 0
0 σX2 · · · 0
...

...
. . .

...

0 0 · · · σXn


 (A.39)

A.7 Functions of Random Variables

Much work in probability theory involves manipulating functions of random variables. If
some set of random variables has known distributions, it is desired to find the distribution
or the parameters of the distribution of a function of the random variables. Some simple
results having wide application are as follows (X and Y are random variables; a and b

are constants, g(X) is a function of X):

E[aX] = aE[X] Var[X] = a2 Var[X] (A.40)

E[a + bX] = a + bE[X] Var[a + bX] = b2 Var[X] (A.41)

E[g1(X) + g2(X)] = E[g1(X)] + E[g2(X)] (A.42)

The variance of the sum of two functions is not so simple, as the variance is not a
linear function.

The linear combination of several random variables yields the following simple results. If

Y =
n∑

i=1

aiXi (A.43)

then

E[Y ] =
n∑

i=1

aiE[Xi] (A.44)

Var[Y ] =
n∑

i=1

a2
i Var[Xi] + 2

n∑
i=1

n∑
j=i+1

aiaj Cov [Xi, Xj ] (A.45)

When the variables are uncorrelated, the last equation simplifies to

Var[Y ] =
n∑

i=1

a2
i Var[Xi] (A.46)

When variables are multiplied, the expected value of the result is

E[XY ] = E[X]E[Y ] + Cov [X, Y ] (A.47)



FUNCTIONS OF RANDOM VARIABLES 567

However, only when the variables are uncorrelated is there a simple expression for
the variance:

Var[XY ] = µ2
Xσ 2

Y + µ2
Y σ 2

X + σ 2
Xσ 2

Y (A.48)

and
�2

XY = �2
X + �2

Y + �2
X �2

Y (A.49)

Many applications of functions of random variables involve integrating the probability
density functions. The most common examples are calculations of the moments of a joint
probability distribution. From calculus we know that, if there is a set of variables xi that
can be expressed in terms of another set yi and we want to integrate some function g(xi),
it may be more convenient to express the integral in terms of the yi variables. However,
it is then necessary to transform the dxi into the dyi , and this requires using the Jacobian
determinant. The equation for two variables in each set is

∫∫
g(xi, x2) dx1dx2 =

∫∫
g[x1(y1, y2), x2(y1, y2)]

∂(x1, x2)

∂(y1, y2)
dy1dy2 (A.50)

The Jacobian determinant is

∂(x1, x2)

∂(y1, y2)
=

∣∣∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣∣∣
(A.51)

For example, suppose that X1 and X2 are independent and uniformly distributed
between 0 and 1. Define

Y1 = √−2 ln X1 cos 2πX2

Y2 = √−2 ln X1 sin 2πX2 (A.52)

It follows that

X1 = exp

[
−1

2
(Y1 + Y2)

2

]

X2 = 1

2π
arctan

Y2

Y1
(A.53)

If we evaluate the partial derivatives of the X’s and substitute them into Equation (A.51),
we find

∂(X1, X2)

∂(Y1, Y2)
= −

[
1√
2π

e−Y 2
1 /2

] [
1√
2π

e−Y 2
2 /2

]
(A.54)

Thus,

dX1dX2 = −
[

1√
2π

e−Y 2
1 /2

] [
1√
2π

e−Y 2
2 /2

]
dY1dY2 (A.55)
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which demonstrates that Equations (A.52) transform the uniform variables into indepen-
dent standard Normal variables N(0.1). This result is useful in generating random Normal
variables for Monte Carlo simulation. Extension of the Jacobian determinant for more
than two variables is straightforward.
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